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Abstract

Thanks to substantial past and recent developments, model predictive control
has become one of the most relevant advanced control techniques. Nevertheless,
many challenges associated to the reliance of MPC on a mathematical model
that accurately depicts the controlled process still exist. This thesis is concerned
with three of these challenges, placing the focus on constructing mathematically
sound MPC controllers that are comparable in complexity to standard MPC
implementations.

The first part of this thesis tackles the challenge of model uncertainty in
time-varying plants. A new dual MPC controller is devised to robustly control
the system in presence of parametric uncertainty and simultaneously identify
more accurate representations of the plant while in operation. The main
feature of the proposed dual controller is the partition of the input, in order to
decouple both objectives. Standard robust MPC concepts are combined with
a persistence of excitation approach that guarantees the closed-loop data is
informative enough to provide accurate estimates. Finally, the adequacy of the
estimates for updating the MPC’s prediction model is discussed.

The second part of this thesis tackles a specific type of time-varying plant
usually referred to as switching systems. A new approach to the computation
of dwell-times that guarantee admissible and stable switching between mode-
specific MPC controllers is proposed. The approach is computationally tractable,
even for large scale systems, and relies on the well-known exponential stability
result available for standard MPC controllers.

The last part of this thesis tackles the challenge of MPC for large-scale
networks composed by several subsystems that experience dynamical coupling.
In particular, the approach devised in this thesis is non-cooperative, and does
not rely on arbitrarily chosen parameters, or centralized initializations. The
result is a distributed control algorithm that requires one step of communication
between neighbouring subsystems at each sampling time, in order to properly
account for the interaction, and provide admissible and stabilizing control.
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ˆ̂ui,k. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

5.11 Optimized state sequence for inner and outer OCPs:
initial optimized states, x̂i,k, ˆ̂xi,k, final predicted
states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

5.12 Phase plot of the state trajectory of truck i = 2: Centralized
MPC, Decentralized MPC, Tube MPC, Algorithm 1.217

5.13 Phase plot of the state trajectory of truck i = 3: Centralized
MPC, Decentralized MPC, Tube MPC, Algorithm 1.217



List of Tables

3.1 Plant limit conditions. . . . . . . . . . . . . . . . . . . . . . . . 85
3.2 Parameters for the persistently exciting signal. . . . . . . . . . . 86
3.3 Tube MPC parameters, standard design approach. . . . . . . . . 88
3.4 Tube MPC parameters, robustified design approach. . . . . . . . 88
3.5 Time variation of the plant parameters. . . . . . . . . . . . . . . 90
3.6 PE associated parameters. . . . . . . . . . . . . . . . . . . . . . 98

4.1 Summary of proposed MDTs . . . . . . . . . . . . . . . . . . . . 147
4.2 Dynamics for all modes of the switching system. . . . . . . . . . 148
4.3 Constraints for all modes of the switching system. . . . . . . . . 149
4.4 Value of the scaling factor εm used to compute Ωm = εmX̄f,m. . 150
4.5 Convergence constants computed according to [1]. . . . . . . . . 153
4.6 Feasibility MDTs (with (cm, λm) computed according to [1]). . . 153
4.7 Convergence constants computed with numerically obtained dm. 154
4.8 Feasibility MDTs (with (cm, λm) computed numerically). . . . . 154
4.9 Stability MDTs (with (cm, λm) computed numerically). . . . . . 155

5.1 Dynamic parameters of the network. . . . . . . . . . . . . . . . 208
5.2 Linear gains for each subsystem Ki = K̂i =

ˆ̂
Ki = K̂f,i =

ˆ̂
Kf,i = K̄i.208

5.3 Initial state of each truck xi(0). . . . . . . . . . . . . . . . . . . 212
5.4 Cost of the closed-loop trajectories Ci. . . . . . . . . . . . . . . 216

xi



xii LIST OF TABLES



Nomenclature

Rn Real coordinates space of dimension n

N0 Set of natural numbers inclunding 0

× Cartesian product of sets∏
Cartesian product of a collection of sets

⊂ Strict set inclusion

conv(·) Convex hull (of a set or collection of points)

int(·) Interior of a compact set

Br Ball of radius r centred at the origin (of appropriate dimension)

⊕ Minkowski sum

	 Pontryagin difference

In Identity matrix of dimension n

0 Zero matrix of appropriate dimension

Q> Transpose of matrix Q

Q(≥) > 0 Matrix Q is positive (semi) definite

Q(≤) < 0 Matrix Q is negative (semi) definite

ξm(Q) Minimum eigenvalue of matrix Q

ξM(Q) Maximum eigenvalue of matrix Q

|x|p p-norm of vector x

||x||2Q 2-norm of vector x weighted by matrix Q

xiii



xiv LIST OF TABLES

dH (x,S) Haussdorf distance between vector x and set S

#�u t Sequence of values of variable u(t) up until time t

q−1 Backwards shift operator

π Pi constant

Az z-transform of transfer function A



Chapter 1

Introduction

1.1 Motivation

The last couple of decades have come with a steep increase in society’s demand
for improving the performance of several complex processes needed for its
correct functioning. Some of them are evident to everyone, such as the need for
reliable transmission of power from producers to consumers and the efficient
organization of people and goods’ transport networks. Others are rather
concealed to the wider population, such as the production of said power and
the manufacturing of such goods.

Feedback control, if implemented correctly, has the capability to greatly
improve the output performance of many such processes and in many different
aspects. The most standard approach is to design a feedback controller to track
a particular operating point which is deemed “optimal” for a particular process,
however there are several different measures that can be employed to define the
latter. Economic approaches to feedback control, for example, aim to reduce
directly the economic cost of a process.

Independent of the process, plant or system under consideration, and the
measure used to drive its performance, it is highly likely that any real world
problem will be subject to constraints. These are, in most cases, associated to
the limited capabilities of the controlling variables, also called inputs. Take for
example the task of coordinating several automated forklifts in a warehouse. The
torque available to move them around is limited by the type of engine they are
fitted with. Several processes are also constrained in their controlled variables,
due to physical limitations and/or safety considerations. The temperature of a
chemical reaction, for example, may have an upper limit to avoid damaging
the physical elements in contact with the reactants (such as valves and pipes).

1



2 CHAPTER 1. INTRODUCTION

Constraints pose a major difficulty in the design of feedback controllers, and
render several control techniques ineffective for certain applications. There are,
on the other hand, some feedback control design approaches that have been
particularly devised to account for the constraints affecting the plant; one of
them is Model Predictive Control (MPC). MPC, when properly implemented,
stabilizes the control target and ensures a constraint satisfying closed-loop,
however these highly desirable properties depend almost solely on having a
mathematical model that accurately depicts the controlled process.

The last three decades have seen major and extensive developments in the
framework of MPC, regarding both theoretical and implementability issues.
Nevertheless, the need for a model that accurately represents the plant is, still,
one of the main obstacles in the real world implementation of theoretically
sound MPC methodologies. Indeed, the complexity of some plants/processes
makes it difficult to obtain an accurate mathematical depiction of it, even if all
elements involved are assumed invariant. Furthermore, it is highly unlikely that
a plant will remain invariant throughout its entire life cycle, suffering changes
that are not necessarily easy to foretell, meaning that any model will eventually
become outdated and inaccurate.

There are other obstacles associated to the need of MPC for a model
that are not directly related to the latter’s accuracy. Indeed, there exist
several applications in which a single model is not enough to fully represent
a particular process due to foreseeable changes in the plant’s behaviour. The
different representations of the plant may be accurately known, but not the
order in which they become active throughout an operation cycle, nor the
length of time they remain active, complicating the construction of an MPC
controller.

Even if an accurate model of the process is available, this is only the first
step in implementing proper MPC controllers. Indeed, the many desirable
properties of MPC controllers rely, most commonly, on a centralized control
and design of many model-dependent elements. Several processes, however,
are formed by a network of subsystems which may already have controllers
in place and that may be physically widespread. Centralized control of the
network may then be physically or economically challenging, while the size
of the plant may lead to computational intractability in the design process.
Distributed control, and particularly distributed MPC, is the solution in such
cases, however there are several difficulties associated to guaranteeing the usual
properties that centralized MPC implementations enjoy. The latter are mostly
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associated to the design process, which in most cases is local and with some
degree of arbitrariness, but needs to accommodate to global demands and
remain optimal.

This thesis describes three new approaches to the design of MPC controllers
that tackle some of the issues discussed above for constrained linear systems
in discrete time representation. Standard MPC controllers enjoy simplicity of
design and straightforward operation, thereby the predominant goal throughout
this thesis is to devised MPC controllers that are comparable in complex-
ity to standard MPC, both in the design and operation stages. The main
tool employed in doing so is robustness, carefully implemented in a specific
way depending on the issue at hand, in order to reduce the conservativeness
introduced.

1.2 Organization of this thesis

This thesis is concerned with the general topic of MPC, but in particular with
three novel MPC controllers devised to overcome three different and specific
challenges. In view of this, each chapter is provided with its own literature
review, in order to properly frame the contribution depicted therein. This
thesis is organized as follows:

Chapter 2: Tube Model Predictive Control for Linear Discrete Time
Systems
The main tool used in the design of the proposed MPC controllers is robustness.
In particular, the robust approach known as tube MPC is employed. This is
due to its implementation complexity being comparable to standard non-robust
MPC, and its design complexity being slightly more demanding. This chapter
describes two variants of tube MPC, the most familiar one initially depicted
in [2] and a less known one described in [1]. The difference between both is
related to how the nominal state trajectories are computed, and has important
implications in the rationale behind the obtained results. Furthermore, a
combination of both approaches is proposed in order to improve the size of the
region of attraction associated to the variant described in [1].

Chapter 3: Tube-Based Adaptive Model Predictive Control with
Persistence of Excitation
One of the main obstacles in implementing MPC controllers is the uncertainty
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in the model parameters during the controller design stage. Moreover, although
a model can be accurate at a certain time instant, changes in the surrounding
environment and internal modifications to the plant may result in changes in
the dynamical properties of the process.

In order to properly control said time varying plants and capture future
changes in the model, this chapter puts forward a new dual controller that simul-
taneously guarantees constraint satisfaction, robust stabilizability of the control
target, and convergent recursive least squares estimates. This is achieved
by partitioning the input and separating both conflicting objectives. The
control/constraint related objectives are then achieved by a standard implemen-
tation of tube MPC, while the estimation objectives are achieved by a novel
MPC-like receding horizon optimization that guarantees a persistently exciting
regressor vector [3].

Chapter 4: Robust MPC for switching systems: Minimum dwell-
time for feasible and stabilizing switching
Plants with dynamics varying in an uncertain fashion are not the only obstacle
in implementing stabilizing and constraint admissible MPC controllers. There
exist several examples of plants whose dynamics leap within a finite set of
known conditions or modes. These are usually referred to as switching systems,
and the difficulties in designing an appropriate MPC controller grow with the
heterogeneity of the different modes, and the uncertainty of the sequence in
which they become active.

This chapter proposes a new approach to the computation of mode-dependent
dwell-times that guarantee constraints satisfaction and stability when each
heterogeneous mode is controlled by a local MPC controller. Several different
possibilities are studied, including non-disturbed and disturbed systems, and
independent or coupled design approaches. The proposed approach relies in
the well-known exponential stability result available for standard MPC and
tube MPC controllers.

Chapter 5: Distributed MPC for dynamically coupled systems: a
chain of tubes
This chapter proposes a new non-cooperative distributed MPC algorithm for
controlling a network of dynamically coupled subsystems. The algorithm
requires one step of communication and two steps of optimization at each
sampling time, in order to provide a constraint satisfying and stabilizing control
action for each subsystem in the network. The general design approach requires
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several additional elements when compared to standard MPC implementations
however simple design choices result in a design marginally more complex than
standard tube MPC. Most of the design procedure is local to each subsys-
tem, requiring only some information about state and input constraints of its
neighbours (that is, those subsystems that interact with it).

One of the main drawbacks of the proposed approach is, as in many other
distributed MPC algorithms proposed to date, the global stabilizability require-
ments that force the design process to be centralized. This disadvantage is
thoroughly discussed in this chapter, concluding that it is redundant in the
framework of tube-based distributed MPC.

Chapter 6: Concluding remarks
Finally, this chapter summarizes the contributions put forward by this thesis,
and discusses several avenues for future work.

1.3 Publications and presentations

Some of the work presented in this thesis has also been published and/or
presented at various events:

• Hernandez, B., Baldivieso, P., Trodden, P., “Distributed MPC: Guar-
anteeing Global Stabilizability from Locally Designed Tubes”, IFAC
PapersOnLine, 50, 1, pp. 11829–11834 (presented at the 20th IFAC World
Congress, July 2017).

• Hernandez, B., Trodden, P., “Distributed Model Predictive Control
Using a Chain of Tubes”, Proceedings of the 11th UKACC Conference on
Control, Belfast, August 2016.

• Hernandez, B., Trodden, P., “Persistently Exciting Tube MPC”, Pro-
ceedings of the 2016 American Control Conference, pp. 948–953, Boston,
July 2016.

• Hernandez, B., Trodden, P., “Design of reconfigurable and non-centralized
MPC implementations”, UK Automatic Control Council, PhD showcase,
May 2016.

• Hernandez, B., Trodden, P., “Distributed Model Predictive Control Us-
ing a Chain of Tubes”, University of Sheffield, ACSE Research Symposium,
October 2016.
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• Hernandez, B., Trodden, P., “Persistently Exciting Tube MPC (PETMPC)”,
University of Sheffield, ACSE Research Symposium (poster), October
2015.

• Hernandez, B., Trodden, P., “Persistently Exciting Tube MPC (PETMPC)”,
University of Oxford, Workshop on Control and Optimisation (poster),
September 2015.



Chapter 2

Tube Model Predictive Control for
Linear Discrete Time Systems

2.1 Introduction

Model predictive control (MPC) is an advanced control technique that relies
on having access to an accurate model of the plant or system being controlled
in order to predict its future behaviour and make optimal control decisions
on-line [4]. MPC has been successfully employed by the chemical industry
since the 1950s [4] to improve the performance of its processes, however it is
only in the recent decades that most of the theoretical guarantees regarding its
implementation have been devised [1].

One of the key features of MPC is its inherent ability to account for hard
constraints (unlike classical techniques such as LQR or PID) that may arise, for
example, from safety requirements or actuator limits [5]. In order to do so MPC
solves a constrained optimization problem in which the optimized function
represents the control objective not only at the current time instant, but over a
certain time span into the future. A model of the plant is employed to predict
its behaviour and evaluate the objective, and by enforcing the constraints
throughout this time span (horizon) it is possible to ensure future constraint
satisfaction. However, MPC is not an open-loop control strategy, indeed at
each time instant the current state/output of the system is updated (from
measurements) and the relevant forecasting optimization problem is re-solved.
This is why MPC is also referred to as receding horizon control.

The analysis of the closed-loop stability of MPC controllers is usually
based on the concept of Lyapunov stability [6]. This is because the explicit
consideration of the constraints turns the closed-loop non-linear, even if the

7
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plant itself is linear. Many different approaches have been devised in the last
three decades [7–19], however the current standard approach is to follow a
purposeful design [1,4] in order to make the objective function itself a Lyapunov
function for the controlled system, yielding a straightforward path for a stability
guarantee.

Although the receding horizon implementation of MPC controllers intro-
duces feedback at each time instant, the predictions within each optimization
are made independently. This highlights the importance of an accurate pre-
diction model in order to maintain stability and keep the system within its
constraints. However, even if an accurate model of the system is available,
external disturbances may cause constraint violations or even render the plant
unstable if actuator constraints are present. Although MPC does posses an
inherent degree of robustness [1, 20], the consensus is that to embed robustness
in MPC controllers, while maintaining optimality, it is necessary to optimize
over control policies instead of just control actions. This, in the most general
case, increases the size of the optimization problem beyond practicality.

In order to obtain a robust MPC controller that is feasibly implementable,
many robust MPC implementations have been proposed that settle for a
trade-off between optimality and computational complexity at different levels
[2,20–29]. The technique called tube MPC [2], devised to control linear systems
under the effect of bounded disturbances, has attracted considerable attention
due to its relative ease of implementation and lower number of extra design
variables. Furthermore, the generality of its design requirements allows its
use in solving control problems that are not necessarily robust problems but
can be reformulated as one, such as the control of distributed/large-scale
systems [30–36].

The remainder of this chapter introduces the class of systems that are
going to be considered and presents the preliminaries and necessary definitions
required for the implementation of two tube MPC variants: standard [2] and
modified [1, Chapter 3]. These are the main tools employed in developing
the adaptive, switching and distributed MPC implementations described in
Chapters 3–5, therefore are revised here.
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2.2 Constrained Linear Time Invariant Systems

The fundamental state space representation of a discrete, linear time invariant
(LTI) system affected by additive disturbances is

x(t+ 1) =Ax(t) +Bu(t) + Ew(t) (2.1a)

y(t) =Cx(t) +Du(t), (2.1b)

where t ∈ N0 represents the discrete time instant, x(t) ∈ Rn, u(t) ∈ Rm and
y(t) ∈ Rp are correspondingly the state, input and output of the system, and
w(t) ∈ Rq represents an uncontrolled and uncorrelated external disturbance
affecting the plant. Given the dimensions of the corresponding vectors, the
system matrices fulfil A ∈ Rn×n, B ∈ Rn×m, E ∈ Rn×q, C ∈ Rp×n and
D ∈ Rp×m. In order to simplify notation, and without loss of generality, in
the following it is assumed that p = n and E = In. Furthermore, in what
follows it is assumed that full state measurements are available and there is
no feed-forward thus D = 0 and C = In. Finally, it is assumed that (2.1) is a
minimal representation of the plant, meaning that n is the McMillan dregree
of (2.1).

The linear state space model in (2.1a) may represent an almost infinite
variety of linear systems, therefore, depending on the application, both state
and input may be subject to various types of constraints (for example the fully
open/closed position of a valve, or the safe maximum operation temperature).
In general, any constraint can be represented by a particular subset of the
relevant coordinate space, however optimizing over non-convex sets, for example,
is a challenging task. In what follows all constraint sets are assumed convex and
compact unless otherwise stated. This implies that a degree of conservatism
is introduced for certain applications, say for example, if it is necessary to
constraint the problem within a convex subset of the true non-convex constraint
set. Moreover, consider the relevant definition.

Definition 2.1. A C-set is a convex and compact set that contains the origin
and a PC-set is a C-set that contains the origin in its interior.

System (2.1a) is then assumed to be subject to the following constraints for
all t ∈ N0

x(t) ∈ X ⊆ Rn (2.2a)

u(t) ∈ U ⊆ Rm, (2.2b)
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where X and U are PC-sets .

Remark 2.1. The stabilizability guarantees of standard MPC controllers
generally require X to be closed but not necessarily compact. In what follows,
however, the boundedness of X is required for other purposes and therefore it
is assumed throughout.

In most cases the input constraint corresponds to a saturation of the
actuators, which implies that this constraint is enforced by the physicality of
the plant. State constraints, on the other hand, are in most cases associated
to safety limits, for example the maximum pressure in a boiler, and have
to be enforced through the proper selection of the control actions. However,
independent of the control technique employed, it is not possible to guarantee
satisfaction of state constraints under unbounded (unstructured) disturbances.
For the particular case of tube-based robust MPC implementations, it is
assumed that the disturbance w(t) is unknown but belongs, at all times, to a
C-set W ⊆ X.

2.2.1 Invariant sets

Generally speaking, tube MPC requires a single additional design parame-
ter when compared to standard MPC implementations: the existence and
knowledge of a stabilizing linear feedback gain. Consider then the following
assumption.

Assumption 2.1. The system (A,B) is stabilizable. Furthermore, a linear
feedback gain K ∈ Rm×n is available such that the closed-loop system AK =

A+BK is stable, i.e. the closed-loop system matrix AK is Schur.

Tube MPC controllers employ a variety of invariant sets, associated to the
additional design parameter, in order to guarantee robust constraint satisfaction
and robust regulation of (2.1a) under the effects of the disturbance w(t). For
the implementations revised here, [2] and [1, Chapter 3], the definitions of two
such sets are required.

Definition 2.2. Given a linear feedback gain K that satisfies Assumption 2.1,
a set S is a robust positive invariant (RPI) set for system (2.1a) in closed-loop
with K if for every x ∈ S, AKx + w ∈ S for all w ∈ W. Equivalently if
AKS⊕W ⊆ S. If W = {0} the adjective robust is dropped from the definition.

Definition 2.3. An RPI (PI) set is called admissible for system (2.1a) in closed
loop with K with respect to constraints (2.2) if S ⊆ X and KS ⊆ U.
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2.3 Tube Model Predictive Control

The main feature of the tube MPC algorithm proposed in [2] is that the
full control action is composed by a nominal MPC controller, to regulate the
trajectories of a fictitious undisturbed nominal system, and a linear feedback, to
act over the prediction error induced by the disturbance. The MPC controller
drives the nominal trajectories towards the control target while the linear
feedback keeps the true trajectories within a tube centred around the nominal
predictions, despite the disturbances.

The nominal reference system is defined by

x̄(t+ 1) = Ax̄(t) +Bū(t),

hence the state deviation induced by the disturbance is e(t) = x(t)− x̄(t). The
true input is composed by a nominal MPC action and a linear feedback acting
over the error, that is u(t) = ū(t) +Ke(t). It follows then that

e(t+ 1) = AKe(t) + w(t). (2.3)

It is clear that the nominal MPC controller cannot make use of the whole
constraint sets (2.2) if robustness is to be attained. Assume then that the true
constraints are tightened by a certain set C-set S, yet to be defined

X̄ = X	 S (2.4a)

Ū = U	KS, (2.4b)

it follows that if e(t) ∈ S and (x̄(t), ū(t)) ∈ X̄× Ū then

x(t) = x̄(t) + e(t) ∈ X̄⊕ S ⊆ X (2.5a)

u(t) = ū(t) +Ke(t) ∈ Ū⊕KS ⊆ U. (2.5b)

Equation (2.5) shows that, as long as the trajectory deviation e(t) remains
in S and the nominal variables are kept inside the tightened constraint sets in
(2.4), the true constraints are met by the disturbed system (2.1a) regardless
of the disturbance. The set S represents the cross section of the tube, and in
order to ensure that the trajectory deviation remains inside it at all times, it is
sufficient to select S as an RPI set for AK and W (although, many different
options with various degrees of complexity exist [37,38]). Furthermore, in order
for the tightened constraints in (2.4) to not be empty, it is sufficient to choose
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S as an admissible RPI with respect to the constraints (2.2).
In order to keep the nominal state trajectories within the tightened con-

straints, the nominal control action ū(t), is driven by a nominal-tightened
MPC controller, that is one that ignores the disturbances and enforces the
tightened constraints in (2.4). However, setting up the appropriate (nominal)
optimization problem requires the fictitious nominal state x̄(t) at each time
instant. There are, generally, two approaches to do so, either optimize the
nominal trajectories at each time instant [2] or allow them to evolve indepen-
dently [1, Chapter 3]. The former is more general and therefore is addressed
first.

2.3.1 Optimizing trajectories

The control law that defines the nominal control action is defined by a standard
MPC controller. The objective function (performance index) employed by most
MPC implementations is the finite horizon LQR with a terminal penalty that
approximates (perfectly in the absence of constraints) the infinite horizon LQ
problem. This selection allows to achieve significant theoretical results with
simplicity. Consider then a cost function defined by

JN (ū, x̄0) =
N−1∑
k=0

` (x̄k, ūk) + Vf (x̄N) =
N−1∑
k=0

(
||x̄k||2Q + ||ūk||2R

)
+ ||x̄N ||2P , (2.6)

where (x̄k, ūk) are the nominal predicted values at prediction time k and N
is the prediction horizon. For a given predicted sequence of control actions
ū = {ū0, . . . , ūN−1}, the predicted state trajectory associated to it is defined
by x̄ (ū) = {x̄0, · · · , x̄N} with x̄k+1 = Ax̄k +Būk. The optimization problem
solved at each time instant to compute the optimal, constraint admissible,
nominal control action is

PN(x(t)) : min
ū,x̄0

JN (ū, x̄0) (2.7a)

s.t. (for k = 0, . . . , N − 1)

x(t)− x̄0 ∈ S (2.7b)

x̄k+1 = Ax̄k +Būk (2.7c)

x̄k ∈ X̄ (2.7d)

ūk ∈ Ū (2.7e)

x̄N ∈ X̄f . (2.7f)
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It is clear from (2.7b) that the initial state of the nominal predictions, and
therefore the value of x̄(t) at time t, is not externally defined (via measurements
for example), but optimized by the controller at each time instant. This is
possible because, as stated before, these are fictitious, and do not correspond
to the true plant state trajectories. Furthermore, constraint (2.7b) ensures that
the trajectory deviation is always contained inside the set S as long as such
x̄0 ∈ X̄ exists. Indeed, the optimization problem (2.7) is not feasible for all
initial states, but only for a subset of the associated state constraint set. Define

X̄N = {x̄0 ∈ Rn | ∃ ū s.t. for k = 0, . . . , N − 1, (2.7c)–(2.7f) hold} , (2.8)

it follows that, independent of the actual size or shape of X̄N , for all x inside
XN = X̄N ⊕S, there exists x̄0 ∈ X̄N such that (2.7b) holds. XN is the feasibility
region of the optimization problem (2.7) and it is also called the region of
attraction (RoA) of the associated controller. Let the optimum and optimal
value of the cost function be respectively defined by

(
ū?(x(t)), x̄?0(x(t))

)
= argPN(x(t)) (2.9a)

VN(x(t)) = JN(ū?(x(t)), x̄?0(x(t))), (2.9b)

set the nominal input to the associated receding horizon control law ū(t) =

κ̄N(x(t)) = ū?0(x(t)) and let the nominal trajectories be updated with x̄(t) =

x̄?0(x(t)). The following result holds [1, 2].

Proposition 2.1. If (a) Assumption 2.1 holds with a certain K, (b) the sets
S and X̄f are, correspondingly, admissible RPI and PI sets for AK with respect
to constraints (2.2), disturbance set W and tightened constraint (2.4a), (c)
Q,R > 0, and P fulfils A>KPAK+Q+K>RK−P ≤ 0 and (d) the loop is closed
with u(t) = κN(x(t)) = κ̄N(x(t)) +Ke(t), then (1) the optimization problem
(2.7) is recursively feasible, (2) state and input constraints are met at all times
despite the disturbances, and (3) there exist constant scalars b, d, f > 0 such
that for all x ∈ XN and w ∈W it holds that

b|x̄?0(x)|22 ≤VN(x) ≤ d|x̄?0(x)|22 (2.10a)

VN (Ax+BκN(x) + w)−VN(x) ≤ −f |x̄?0(x)|22. (2.10b)

The proof is omitted as it can be found in [1]. Proposition 2.1 implies
that for any feasible initial state, the closed-loop remains feasible, i.e. the
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optimization has a solution and the constraints are satisfied at all time instants.
Furthermore, (2.10) implies that the optimal cost function is a Lyapunov
function for the nominal closed-loop, resulting in the following Corollary.

Corollary 2.1. There exist constant scalars c > 0 and γ ∈ (0, 1) such that for
all feasible x(0) ∈ XN it holds that

|x̄(t)|2 ≤ cγt|x̄(0)|2 (2.11a)

dH (x(t),S) ≤ cγt|x̄(0)|2. (2.11b)

Equivalently, the origin is exponentially stable for the closed-loop nominal
trajectories (2.11a) and the true trajectories converge exponentially fast to S
(2.11b).

The proof to Corollary 2.1 is also available in [1] and hence omitted here.
In practice, and as pointed out in [1], Corollary 2.1 does not guarantee (robust)
exponential stability of the set S for the true trajectories, but only for the
set difference equation associated to the disturbed dynamics (i.e. the set that
contains the true trajectory approaches S exponentially fast rather than the
trajectory itself).

Note, however, that given (2.6), the value x̄?0(x(0)) depends solely on the
initial state x(0) because no disturbance has affected the system yet, thus the
following stronger corollary to Proposition 2.1 holds. This is a new result.

Corollary 2.2. There exists a constant scalar δ > 0 such that for all x(0) ∈ XN

dH (x(t), S) ≤ cγtδdH (x(0),S)

Corollary 2.2 provides a result that is not explicitly provided in [1,2], hence
a proof is contributed here.

Proof. Given the definition of the trajectory deviation e(t) it holds that

dH (x(0),S) = dH (x̄(0) + e(0), S) = dH (x̄?0(x(0)) + e(0),S)

≤ dH (x̄?0(x(0)) + e(0), e(0)) = |x̄?0(x(0))|2

where the inequality follows from the fact that e(0) ∈ S. Given an initial
state, x̄?0(x(0)) can be computed off-line, hence the values of dH (x(0),S) and
|x̄?0(x(0))|2 are also available before initialization. Define then δ > δ̄ with

δ̄ = max
x∈XN

|x̄?0(x)|2/dH(x,S),
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it follows that

|x̄?0(x(0))|2 < δdH (x(0),S)

=⇒ cγt|x̄?0(x(0))|2 < cγtδdH (x(0),S)

=⇒ dH (x(t),S) ≤ cγtδdH (x(0), S)

which completes the proof. �

Corollary 2.1 ensures that the set S is indeed exponentially stable for the
true trajectories when the loop is closed with the tube MPC composite control
law κN(·).

2.3.2 Independently evolving trajectories

The nominal state trajectory is regarded as an optimization variable in (2.7),
therefore its value is not known a priori by the controller, despite the model
dynamics and the values of x̄(t − 1) and ū(t − 1) being available at time t.
For several reasons particular to the challenges addressed in Chapters 3–5,
the uncertainty introduced by the continuous re-optimization of x̄(t) may be
detrimental. It is shown in [1, Chapter 3] that constraint (2.7b) can be replaced
by

x̄0 = Ax̄(t− 1) +Bκ̄N(x(t− 1)) (2.12)

while keeping all the results from Proposition 2.1. Note, however, that this
reduces the degrees of freedom of the optimization, thus resulting in a possibly
higher cost at each time instant.

This approach requires the user to initialize the nominal trajectories. It
is proposed in [1, Chapter 3] to do so by setting x̄(0) = x(0), however this
significantly reduces the RoA to X̄N in (2.8). It is proposed here to initialize the
nominal trajectories by solving PN(x(t)) for t = 0 and subsequently replacing
constraint (2.7b) with (2.12) for all t > 0. This results in the nominal and true
states evolving separately after the first time instant, however the feasibility
region remains as XN . The latter approach is implicitly observed in [1] by
saying that the RoA of the modified controller is XN , however their initialization
proposal does not truly achieve this.

Note that, for all t > 0, the optimization does not depend on the true state,
therefore the cost function and its optimal value depend only on the nominal
state trajectories.
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Proposition 2.2. If Proposition 2.1 holds and (a) constraint (2.7b) is replaced
by (2.12) for all t > 0, then (1) the optimization problem (2.7) is recursively
feasible, (2) state and input constraints are met at all times despite the distur-
bances, and (3) there exist constant scalars b, d, f > 0 such that for all x̄ ∈ X̄N
it holds that:

b|x̄|22 ≤VN(x̄) ≤ d|x̄|22
VN (Ax̄+Bū?0(x̄))−VN(x̄) ≤ −f |x̄|22.

Furthermore, define the composite state vector χ(t) = (x(t), x̄(t)), there exists
constant scalars c > 0 and γ ∈ (0, 1) such that for all x(0) ∈ XN it holds that

|x̄(t)|2 ≤ cγt|x̄(0)|2 (2.13a)

dH (χ(t),S× {0}) ≤ 2cγtdH (χ(0),S× {0}) . (2.13b)

Equivalently, the origin is exponentially stable for the closed-loop nominal
trajectories (2.13a) and the set R = S × {0} is exponentially stable for the
composite trajectories χ(t) (2.13b).

Proof. If u(0) is set by solving PN(x(0)), it follows from Proposition 2.1 that
x(1) ∈ XN and x̄(1) ∈ X̄N . The rest of the proof follows from the proof
in [1]. �

Again, note that (2.13b) does not guarantee exponential stability of the set S
for the true closed-loop, but exponential stability of the set R for the composite
trajectories χ(t), which is a slightly weaker result. However, Corollary 2.2
holds for Proposition 2.2 also, thus S is indeed exponentially stable for the true
trajectories when in closed-loop with κN(·).

2.4 Summary

This chapter introduced the general class of systems and robust controllers
that will be employed to tackle some of the challenges related to controlling
uncertain and changing constrained linear system. Well known results related
to tube-based MPC controllers were presented and a minor modification was
proposed to enlarge the RoA of the tube MPC variant that does not re-optimize
the nominal trajectories, described in [1].

It is important to emphasize that although Section 2.2 introduces constrained
LTI systems as the object of study, the tools presented here can be exploited
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to control constrained LTV systems. The key feature that allows this is to
observe the changing/uncertainty of the system as a disturbance affecting an,
otherwise, invariant system. The following chapters address the advantages
and drawbacks of this rationale in different arrangements.
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Chapter 3

Tube-Based Adaptive Model
Predictive Control with
Persistence of Excitation

3.1 Introduction

A key element of any MPC controller is, certainly, the mathematical model used
to make the necessary predictions. As discussed in Chapter 2.1 standard MPC
controllers have a certain degree of robustness against prediction errors, however
uncertainties in the model can lead to large mismatches and therefore have a
significant impact on the overall performance of the controller [39,40]. Moreover,
several MPC implementations, including those presented in Chapter 2.1, rely
on the computation of invariant sets. The latter are highly model dependent,
therefore model mismatch can not only decrease performance but also result in
constraint violation or even unstable behaviour of the closed-loop.

It seems then that the necessity of a precise prediction model may be one
of the main drawbacks of any MPC implementation due to the challenges
related to its acquisition. First-principle approaches, for example, may result
in models that are too complex for controller design [41] or hinge on a-priori
simplifications that neglect important input-output interactions. Even if an
adequate model is obtained through such techniques several obstacles remain on
the path to a successful MPC implementation: large non-linearities, expected
degradation due to normal operation (resulting in changes to the values of the
model parameters), expected structural changes due to operation conditions
(such as payload changes) and the explicit realization of the plant (i.e. the
uncertainties related to its manufacture [42]). On the other hand, the cost of

19
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system identification experiments may be prohibitively large [43], particularly
if they ought to be regularly repeated due to degradation or plant changes.

In order to improve the performance of MPC controllers in the context
of uncertain and changing systems, it is necessary to obtain new and more
accurate descriptions of the current condition of the plant throughout its
life-time. Moreover, in order to avoid expensive experiments and account for
continually changing systems, it is necessary to obtain these models on-line. To
do so, a form of system identification ought to be coupled with the controller.
This combination is commonly known as the dual control problem [44], given
that it confronts two incompatible objectives: the controller aims to regulate the
system towards a desired optimal operation point while the identifier requires
the system to be constantly disturbed, in order to accurately estimate it [3].
Moreover, it is necessary not only to identify a better model on-line, but also
use this new and better description of the system to provide more accurate
predictions for the MPC optimization. Changing the prediction model of an
MPC controller while maintaining its key control properties, however, is not
trivial due to the high model-dependency of most of the controller’s design
parameters. This adds a second layer of complexity to the challenges inherent
to the dual control problem.

The techniques devised to solve these problems, within the MPC context, are
usually grouped under the label of Adaptive MPC (AMPC) [45], however this
concept has been occasionally misused. For example, the techniques presented
in [46–48] are referred to as AMPC approaches, however gain-scheduling or
time-varying MPC might be more appropriate. Indeed, a look-up table is
constructed in [46–48] by successive linearisation of a non-linear model around
different operating points. At each time instant, the model used for predictions
is chosen depending on the current state, however no stability guarantees are
provided. Similar misconception is found in [49], where the prediction model
is computed as a fuzzy weighted combination of an ensemble of linear models
that represent the plant throughout the entire state space. A more rigorous
approach is found in [50,51], where the prediction model is properly defined by
a linear time varying model, however this is obtained via constant linearisation
of a known, thus not uncertain, non-linear model.

There are, generally, three properties that can be used to categorize AMPC
algorithms:

• Are there any closed-loop stability and/or constraint satisfaction guaran-
tees?



3.1. INTRODUCTION 21

• Is the system identification (parameter estimation) algorithm guaranteed
to converge to an accurate description of the true plant?

• Is the new model effectively used to update the MPC prediction model?

The latter is of paramount importance, since it is the characteristic that allows
to take advantage of the information provided by the system identification
algorithm. Adaptation of the prediction model is present in almost all current
AMPC algorithms, however the updating is performed in different ways owing
to the type of uncertainty considered and the MPC technique employed. In
general, most approaches proposed to date either fail to guarantee closed-loop
stability, constraint satisfaction and/or estimation convergence guarantees.
Nonetheless, many provide good solutions for certain aspects of the problem,
and thus are important to contextualize the solution proposed here.

3.1.1 AMPC without estimation guarantees

There exist many application driven solutions to the AMPC problem that avoid
almost any type of rigorous analysis [52–57]. These usually resort to suitable
assumptions on system behaviour (such as open-loop stability) that fit the
purpose at hand, but greatly reduce their applicability. In [53], for example,
a fuzzy supervisor overviews the closed-loop behaviour and, based on some
arbitrary performance criteria which include a numeric evaluation of stability,
adapts the controller by modifying some of its design parameters (weights and
terminal conditions).

A simple, yet effective way of formally addressing a possible mismatch
between plant and model is to characterize it with respect to a predefined
model structure, bound it, and treat it as a disturbance affecting an, otherwise,
invariant plant [40,58–60]. The model structure and the particular selection
of its nominal parameters are not trivial to obtain but may be available from
first-principle approaches and previous identification experiments. Furthermore,
quantifying the mismatch may prove to be a challenging task, however a priori
knowledge about the plant and its operation program are usually enough to
properly estimate the expected mismatch (for example the stiffness variation
of certain mechanical parts due to increased operational temperature, or the
expected payload changes on unmanned vehicles). If the mismatch has been ac-
curately estimated, robust approaches such as tube-based ones can be employed
to regulate a nominal representation of the plant subject to the prediction
error induced by model mismatch. Although this approach addresses the uncer-
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tainty, if no form of system estimation is coupled with it, the mismatch itself
remains un-addressed. This implies that only robust stabilizability and robust
constraint satisfaction can be achieved, albeit true external disturbances may
be completely absent.

A number of recent robust-based approaches have focused on the control
guarantees when implementing AMPC algorithms. Uncertain continuous time
state space models subject to state and input constraints are considered in [59].
The adaptive estimation algorithm provides not only an estimate of the model
parameters, but also an estimate of the error bound. This bound is included
in a comparison model robust MPC [61] in order to reduce uncertainty and
guarantee robust stability and constraint satisfaction via standard Lyapunov
arguments. The prediction model is updated by the estimates only when the
information provided by the data reduces the uncertainty on the parameters.
This is quantified by checking whether the smallest eigenvalue of the inverse of
the information matrix is larger than at the previous step. However, this is not
guaranteed to happen at any time instant.

A similar approach is developed in [60] but for a class of non-linear contin-
uous time systems with a parametric affine type of uncertainty. In this case
the estimation algorithm guarantees unbiased estimates [3] alongside with a
non-increasing parameter error bound, however, as in [59], the latter is not
guaranteed to decrease at each time instant. A min-max robust MPC imple-
mentation is proposed to account for the uncertainty arising from the model
mismatch. The recursive estimation algorithm is included in the MPC predic-
tions in order to account for future estimation and reduce conservativeness.
The latter, however, may lead to constraint violation because predictions may
be far off the true plant behaviour. This becomes evident in that the terminal
constraint set and associated terminal cost have to be computed accounting
for all possible values of the true estimation error. Overall, the min-max opti-
mization is considered a computationally intractable problem, and therefore
replaced by a Lipschitz-based worst-case approach similar to the robust MPC
technique in [23]. This is extended to account for external disturbances in [39]
and to discrete time systems in [62].

The algorithm proposed in [63] also resorts to a robust approach similar to
that in [23], but the algorithm is only applicable for open-loop stable plants.
At initialization a set of all models that may represent the plant is supposed to
be known in polytopic form. Every time step a set membership identification
algorithm updates this set in a recursive inclusion fashion, and the prediction
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model used for the MPC is selected as the centre of the largest ball contained
in this set. Recursive feasibility of the optimisation is secured by an additional
group of constraints designed to ensure that the output of any model inside the
current set satisfies the output constraints. For MIMO systems, these additional
constraints are first introduced as a set of linear programming problems (similar
to a min-max optimization problem) but then transformed into a set of auxiliary
decision variables. This, although straightforward, increases the computational
complexity of the problem.

It should be clear that predictions cannot be considered as reliable data for
the parameter estimates computation, since they are not real measurements.
In [64], however, a-priori knowledge on the rate of change of the uncertainty
and the error bound provided by the estimator are used to predict a set that
contains the uncertainty throughout the prediction horizon, given the current
conditions. This time-varying error bound is fed to the MPC controller, unlike
in [39,60] where the bound was fixed, and therefore uncertainty is decreased.
A min-max MPC algorithm is shown to guarantee ultimate boundedness of the
closed-loop under several assumptions that include the existence of an invariant
set to be used as terminal constraint. However, constraints may be violated,
and again, the parameter error is not guaranteed to decrease at each time
instant.

In all of the above, the obtained estimates are not necessarily convergent
to the true plant parameters, because proper excitation of the closed-loop
system is assumed rather than guaranteed. A similar set-up leads to an
analogous outcome in [65, 66], where constrained polytopic linear difference
inclusion (pLDI) systems are considered. In this case the pLDI structure is
exploited in order to address the uncertainty in a more structured way when
compared to [39,60]. Assuming a convex and bounded set of possible parameters,
arguments from the robust controller proposed in [26] are employed to compute
parameter dependent terminal conditions. A considerable advantage with
respect to [60, 64] is that constraints are satisfied even if the parameters are
slowly changing within their initially assumed bound. A drawback of embedding
a strong structure in the controller’s design is that, to maintain feasibility of
the optimization, newly estimated parameters can only be included at the end
of the prediction, moving forward one step at each time instant. Furthermore,
there is no discussion about the associated estimator, and it is only assumed
that a convergent one exists.

The same type of systems is studied in [58], however the standard MPC



24 CHAPTER 3. ADAPTIVE MPC

cost function is enhanced in order to push for convergent estimates by adding
a term that depends on the covariance matrix of the estimates. It is expected,
rather than guaranteed, that this will promote input sequences that reduce
the uncertainty on the estimates, hence reducing the size of the covariance
and ultimately yielding a standard MPC cost once the true model is known.
Closed-loop stability and constraint satisfaction are guaranteed by means of a
robust invariant set for the pLDI structure (similar to [65]), and a Lyapunov
type constraint on the first prediction step. The modification of the cost results
in a non-convex problem which is addressed by either the inclusion of relaxation
variables, or the separation of the problem into two optimizations. The second
approach is discussed in more detail in [67], where the additional term in the
cost function penalizes the deviation of the input trajectory from an optimal
probing sequence. The latter is obtained through a preceding step of non-convex
optimization that maximizes the minimum eigenvalue of the inverse of the
information matrix as in [59].

A noticeably different architecture, yet also lacking a proper convergence
guarantee for the estimator, is employed in [40]. The core idea is to decouple
the control and performance objectives by maintaining two models of the
plant. A nominal model is employed to characterize the parametric uncertainty
and design a robustly stabilizing tube MPC controller, while a second model,
initialized as the nominal model, is constantly updated by an estimator. Both
are employed by the controller to make predictions; those from the first model
are used to ensure robust constraint satisfaction, while those from the second
are used to compute the cost. In this way robust stability is maintained even if
the estimates render the initial tube controller infeasible, but performance is
possibly improved by using a more accurate model for evaluating the cost.

A similar approach is presented in [68], where nonlinear systems are studied.
A machine-learning approach is used to obtain, off-line, a nominal model of
the plant given some previous data. This is accompanied by an estimation of
a Hölder constant, which allows to compute a bound on the prediction error
associated to this nominal model. This bound depends on the length of the
prediction, and is used to properly tighten the constraint sets in an otherwise
standard MPC optimization, in order to guarantee constraint satisfaction
and input-to-state stability with respect to the prediction error. This is in
similar fashion to the robust MPC approach depicted in [23], but without
parametrizing the control action. It is then proposed to use the closed-loop
data to continuously obtain more accurate models, however the different MPC
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elements used to guarantee recursive feasibility of the optimization have already
been computed for the model obtained off-line. This results in that newly
obtained models can only be used to evaluate the cost, while the off-line
obtained one continues to be used to guarantee constraint satisfaction.

In a similar fashion, the controller proposed in [69] attempts to decouple
the goals of control and system identification in order to provide a solution to
the dual control problem for uncertain LTI systems. The main drawback is
that both tasks are executed separately, employing the whole input capabilities,
thus open-loop stability is a required assumption. A technique known as zone-
tracking MPC [70, 71] is employed to steer the uncertain system towards an
invariant set for identification, or more simply a set that is robustly invariant
against model mismatch and persistently exciting inputs. While inside, a
previously defined persistently exciting sequence can be implemented, for
as long as necessary, in order to accurately estimate the model parameters.
Attractivity of the target set for identification is guaranteed for the nominal
model of the plant; although open-loop stability guarantees convergence of
the true plant to the set, only nominal trajectories are shown to be constraint
admissible, thus the mismatch may result in constraint violation. This issue is
dealt with in [72], by employing a robust MPC formulation, but several other
drawbacks remain, such as the requirement for open-loop stability.

The concept of homothetic tube MPC is coupled with a set-membership
identification algorithm in [73] to produce an adaptive MPC scheme that
guarantees constraint satisfaction and practical stability of the control target.
The set-membership identification approach, guarantees that the estimated set
that contains the true parameters is non-increasing in size. This allows the
homothetic tube MPC, which is also a set based MPC controller, to guarantee
recursive feasibility of the optimization problem (and hence recursive constraint
satisfaction). As opposed to standard tube MPC, the homothetic approach
reduces conservativeness as it updates the tightening on the constraint sets at
each time instant and throughout the prediction horizon. This update takes
into account the new information provided by the estimator, and also the
fact that the parametric uncertainty decreases in size as the state and input
trajectories approach the origin. Nevertheless, practical stability is achieved, by
modifying the standard MPC optimization problem into a min-max problem,
and the set-membership approach only guarantees a non-increasing set that
contains the true parameters. Furthermore, this implies that the proposed
approach is not applicable for uncertain time-varying plants.
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3.1.2 AMPC with estimation guarantees

The main motivation for designing and implementing an AMPC algorithm is
to address uncertainties in the model and changes in the plant while the latter
is in operation, thereby improving the performance of a predictive controller
without incurring expensive or prohibitively long down times. Therefore, it
is necessary to guarantee that the algorithm set forth to obtain the estimates
will effectively yield a more accurate representation of the plant (provided it is
allowed by the model structure selected [3]). Furthermore, particularly relevant
to robust AMPC approaches is to compute an a-priori bound on the prediction
error, ultimately meaning that a valid estimate ought to lie inside a bounded
set of models. Guaranteeing convergence, uniqueness and boundedness of the
estimates is not a trivial task, especially since the on-line nature of the process
implies that closed-loop system identification is to be performed. Indeed, it is
easily shown that many parameter estimation algorithms may result in biased
and non-convergent estimates if the system is in closed-loop or not properly
excited [3, 74].

Selecting and properly implementing a particular identification algorithm
is fundamental for the success of any AMPC controller. Given its computa-
tional tractability, similarity to the Kalman filter [1] and inherent receding
implementation, a recursive least square (RLS) estimation algorithm is the
choice in several AMPC controllers [53, 65,69,74]. Nevertheless, the successful
identification of an accurate description of the plant via an RLS algorithm
relies on the input/output data being sufficiently rich, equivalently it requires
data produced by a persistently excited system [3,75,76]. In the most general
sense, an input signal (sequence) is said to persistently excite a system if
the generated input/output data yields, via a certain parameter estimation
algorithm, a unique model [3] within the considered model structure. However,
many equivalent definitions exist [3, 75,76].

The first attempt to guarantee persistence of excitation (PE) within an MPC
set-up is, probably, the one presented in [77]. Input constrained FIR models
are considered, and an additional constraint is added to an otherwise standard
MPC optimization problem in order to force the predicted input sequence to
persistently excite the system [75]. Although several interpretations exist, the
PE constraint can be translated into a positive autocovariance demand, and
thus into a positive definiteness requirement, which is a non-convex constraint.
The MPC optimization problem is usually formulated as a convex quadratic
programming (QP) problem subject to linear convex constraints, therefore the
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addition of a non-convex constraint considerably increases the complexity of
the optimization. In order to tackle the non-convexity, a relaxation variable
is introduced in [77]. Since PE is sought over regulation, a periodic terminal
constraint is proposed instead of the usual equality constraint. This denies
the usual approach to guaranteeing stability however, to contextualize this
approach, the usual stability arguments employed in MPC were being developed
at the time.

This approach is extended to SISO-ARX systems in [44] and to MIMO-
ARX systems in [78]. The ARX structure results in that the RLS regressor
includes the output, and hence a standard PE constraint would also. Since the
only explicit optimization variable in MPC is the input, output reachability
arguments are employed in [44] to avoid using the full regressor vector in the
PE analysis. In [78] the PE constraint is posed in the frequency domain and
readily replaced by a collection of reverse convex constraints. In [44, 77, 78],
however, a standard (nominal) MPC is proposed for the control task, hence
the prediction uncertainty arising from model mismatch is not accounted for,
resulting in the lack of stability or feasibility guarantees.

An interesting additional development is proposed in [74] where the PE
constraint is enforced only over the first element of the predicted input sequence,
while the required time window is completed by looking backwards into past
control actions. This conforms with the receding horizon fashion of MPC, in
which only the first action of the optimized input sequence is ever applied to
the plant. In fact, even without a relaxation variable, it could happen that
the true sequence of inputs in [77] is not persistently exciting because the
optimization relies on the predictions to fulfil the related constraint. This
choice also allows to reformulate the PE constraint as a single non-convex
constraint which represents the outside of an ellipsoid (in the appropriate
dimension). A recursive feasibility proof based on periodicity is provided for
the PE constraint, however it is not fully discussed whether this remains valid
under non-periodic input sequences; furthermore, no guarantee of constraint
satisfaction is provided and closed-loop stability is a standing assumption.

An alternative approach is proposed in [79–83] where a two-step optimization
procedure is devised to solve the dual control problem for constrained linear time
invariant systems. The first step solves a standard (nominal) MPC optimization
problem, possibly subject to constraints, in order to obtain an optimal sequence
of predicted input actions. The second step modifies the previously obtained
optimum by maximizing the minimum eigenvalue of the information matrix
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related to the predicted data. This is nothing more than another interpretation
of the PE condition. The second optimization is constrained by an arbitrarily
defined allowable cost increase, in order to bound the optimality decrease.

The main difference between [79,80] and [81–83] is that the latter explicitly
consider the receding horizon fashion of MPC when computing the probing
action. This is done by either modifying only the first element of the optimal
control sequence obtained by the first step of optimization or by modifying
more than one and using a semi-receding horizon approach in order to apply
the entirety of the probing sequence. Although constraints may be considered,
the model mismatch is not addressed structurally, thus constraint satisfaction
while the estimates are not accurate is not guaranteed.

Different authors tackle different challenges of the dual control problem, and
the same is valid in the MPC context. In [43,84–86] the focus is placed upon the
challenges related to the parametric uncertainty and the estimation algorithms.
In [43] a standard MPC controller (without stability guarantees) is augmented
with an additional constraint designed to maintain the performance degradation
due to the model mismatch within a certain acceptable bound. Similar concepts
are implemented in the context of stochastic MPC for nonlinear systems in [84].
The approach taken in [85] for SISO-ARX systems differs in many aspects,
although it follows the same principle. The excitation in [85] is enforced by
a modification of the MPC cost in order to minimize the covariance of the
estimates, as in [58]. A sensitivity analysis shows that enforcing the exciting
constraint over more than one time step in the prediction horizon produces
negligible effects on the closed-loop performance, which is explained by the
receding horizon strategy of MPC. Similar ideas are employed in [86] but from
an stochastic probabilistic approach that results in less unnecessary excitation
of the system. This allows to account for the uncertainty in the optimization
and therefore produce probabilistic feasibility guarantees (chance constraints).
Apart from [86], constraint satisfaction is not studied in these approaches,
neither is the stability of the closed-loop.

3.1.3 Persistently exciting tube MPC

A new and simple robust-based solution to the dual control problem within
the MPC framework is proposed in this chapter. The focus is placed on the
regulation of plants for which a model structure is known to be (2.1) but the
value of its parameters is uncertain and may experience changes throughout
its operation. The latter means that (A,B) = (A(t), B(t)), but the time
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dependency is dropped almost everywhere in order to simplify notation. The
uncertainty in the model parameters could have many sources, such as mass
product variability [63] and changes in operation or environmental conditions
(for example variable payloads or operating temperatures). On the other hand,
all plants are bound to experience changes during its running time, most
likely due to degradation of mechanical parts or small modifications introduced
purposefully (for example the stiffness loss of certain supports due to extreme
events or the replacement of an actuator). In general terms then, the systems
under study are assumed to be time-varying, however not necessarily in any
parameter-affine structure such as in [87] for example. Furthermore, it is
assumed that the changes are not instantaneously known or measurable, such
as in the case of many switching systems controllers, and that the plant is
subject to constraints such as those in (2.2).

The proposed AMPC algorithm follows a reasoning similar to [40,69] in that
the objectives of the dual control problem are decoupled, albeit in an inherently
different way. The algorithm presented here, henceforth called persistently
exciting tube MPC (PETMPC), attains guaranteed properties for the control
and estimation objectives by allocating a certain portion of the system’s input
for each task. Furthermore, in order to obtain the aforementioned guarantees
with relatively low levels of complexity (both computational and in design), it is
determined that the feedback laws that guide each task should be independent
of each other.

With this general set-up established, consider system (2.1a) but neglecting
external disturbances for simplicity of exposition (they can be added later
without additional algebraic complexity); the pivotal feature of the proposed
controller is the separation of the input u(t) into a controlling part û(t) and an
exciting part ŵ(t), resulting in the following state-input dynamics

x(t+ 1) = Ax(t) +Bû(t) +Bŵ(t).

Furthermore, it is assumed that the the true dynamics, although uncertain
and possibly changing, lie at all time instants within a compact set M. If
constraints (2.2) are assumed to be satisfied, the effect of the uncertainty can
be lumped into a single disturbing term acting over a nominal representation
of the plant

(
Ā, B̄

)
∈M, i.e.

x(t+ 1) = Āx(t) + B̄u(t) +
(
A− Ā

)
x(t) +

(
B − B̄

)
u(t)︸ ︷︷ ︸

wp(t)

.
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with wp(t) ∈ Wp = Wp

(
M,X,U, Ā, B̄

)
. Note that the true dynamics may

change in time, however the nominal dynamics
(
Ā, B̄

)
are chosen by the user

(possibly in order to decrease the size of Wp) and remain fixed until a valid
better estimate has been found.

Section 3.2 of this Chapter introduces the estimation algorithm employed to
find a better estimate for the model parameters and discusses the requirements
over ŵ(t) and (A,B) in order to guarantee convergent estimates independent
of û(t) and initial conditions. Similarly, Section 3.3 proposes a tube-based
robust MPC controller in order to drive the controlling part û(t). The goal is
to guarantee constraint satisfaction and robust stabilizability of the closed-loop
despite the modelling uncertainties Wp, and the excitation induced by ŵ(t).
Finally, Section 3.4 presents a novel MPC-like receding horizon optimization to
drive ŵ(t) and fulfil the requirements set in Section 3.2. Although not necessary,
the rationale behind the proposed optimization is to minimize the disturbing
impact of the excitation part. A receding horizon MPC-like optimization attains
this by: firstly enforcing the control objective (MPC cost function) upon the
exciting part ŵ(t), albeit independently of û(t); secondly, by introducing
feedback through the receding horizon implementation. Section 3.5 provides
a detailed description of the verification process required to guarantee that
updating the prediction model will not break the tube MPC stabilizability and
feasibility properties. Finally, a numerical example is provided in Section 3.6
to showcase the performance of the proposed AMPC controller and the future
work avenues that remain open to improve the proposed algorithm.

The control properties discussed in Section 3.3 are robust to the initially
estimated size of the uncertainty Wp, therefore they remain robust to future
changes as long as they are bounded to lie within the estimated range. This is
in contrast to other AMPC algorithms that rely on a constant decrease on the
error bound to guarantee asymptotic stability of the origin such as [60,63,64].
Furthermore, the proposed algorithm guarantees robust stabilizability for open-
loop unstable plants, as opposed to [43,63,69,85,86]. The MPC-like optimization
proposed to drive the exciting part also guarantees the convergence of the
estimates, provided the plant changes slowly, unlike [39,64,65]. Finally, although
the arguments used to ensure convergence of the estimates follow the lines of
those provided in [74,77], the decoupling of the objectives results in an standard
convex QP problem for the control objective, allowing the non-convexity of the
PE conditions to be dealt with separately.

The main drawback of the proposed approach is that, in order to maintain
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all the guarantees provided, the current estimates have to undergo a verification
step before being used to update the MPC prediction model, as opposed
to [59, 60, 66] where the update is done instantly. The advantage, however,
is that PETMPC does not require the on-line re-computation of controller
elements in order to provide a feasible and stabilizing solution (such as PI
sets in [60] and stabilizing linear feedbacks in [59]). Section 3.5 discusses the
conditions that need to be verified before an update of the prediction model is
allowed. It may result that the current estimates require a full re-design of the
controller in order to be deployed as a prediction model, however it is shown that
this does not require one to halt operation. In summary, the adaptive control
approach proposed in this paper provides control and excitation guarantees
alongside with a simple design procedure, but at the price of not necessarily
being able to update the prediction model with the true plant parameters once
these have been obtained.

3.2 RLS and persistence of excitation

3.2.1 Recursive least squares algorithm

The PETMPC algorithm is proposed to control uncertain linear systems that
can be accurately represented by (2.1) therefore a standard linear RLS algorithm
fits the parameter estimation requirements while keeping the computational
demands low (the matrix inversion associated to RLS algorithms can also
be relaxed [75]). This is especially important given that in AMPC the new
estimates have to be obtained right after measurement acquisition and before
the optimization step of the MPC controller. This is in order to obtain a
more accurate prediction model before making the predictions, thus the overall
computational-time required at each step increases. An important thing to note
is that no constraints are considered for the RLS algorithm, meaning that the
estimates could eventually lie outside of the initially computed valid boundM.
This becomes an obstacle if the estimates are used to instantaneously update
the MPC prediction model, however Section 3.5 discusses how the control
properties of the PETMPC rely on a verification step on the estimates before
updating. This, alongside with the convergence guarantees that are developed
for the estimates in Section 3.2 render RLS constraints unnecessary.

It is also important to note that the proposed setting diverges from the
classical framework in system identification problems. First of all, it is assumed
that a full measurement of the state is available at each time instant. Secondly,
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no process noise is considered and measurement error is entirely neglected. This
results in an inherently deterministic approach, which paves the way for the
control related guarantees that the proposed robust dual controller enjoys. Note
however that a mock of process noise can be considered within the tube MPC
framework (in a similar way to [88] for robust output-feedback MPC), however
the set-up must remain deterministic for its properties to hold. Furthermore,
although the plant may experience changes, it will be considered time invariant
by the recursive estimation algorithm. This is in alignment with the expected
changes to be slow in nature, allowing for the forgetting capabilities of the RLS
algorithm to account for them.

Given the above considerations, define the following 1-step ahead predictor
for the state-input model in (2.1a)

x̂>(t) = ϕ>(t− 1)θ̂(t− 1) ∈ R1×n (3.1a)

ϕ>(t) =
[
x>(t) u>(t)

]
∈ Rn+m (3.1b)

θ̂(t) = [A(t) B(t)]> ∈ R(n+m)×n, (3.1c)

where A(t) ∈ Rn×n and B(t) ∈ Rn×m are the parameter estimates of (A,B)

at time t (element-wise). The estimate θ̂(t) is computed at each time instant
following a standard recursion that minimizes the squared error of the 1-step
ahead predictions [3]

θ̂(t) = θ̂(t− 1) + E(t)−1ϕ(t− 1)
[
x>(t)− ϕ>(t− 1)θ̂(t− 1)

]
(3.2a)

E(t) = λE(t− 1) + ϕ(t− 1)ϕ>(t− 1). (3.2b)

Initialization of the recursion in (3.2) requires the definition of θ̂(0) and E(0).
The former can be set to the currently known values of the plant parameters,
possibly obtained from a previous identification experiment or first-principle
approaches. The latter can be shown to be inversely proportional to the
covariance matrix of the parameter estimates, thus a standard initialization
is to set E(0) = δIn+m with δ proportional to the confidence on the accuracy
of θ̂(0). Finally, λ is an arbitrarily defined forgetting factor whose purpose
is to decrease the relevance of older data in the computation of the current
estimates. This is relevant since the assumption is that the controlled system
may undergo changes in the future, thus old data needs to weight less in the
overall estimation scheme.
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3.2.2 Convergence of the estimates

The recursive algorithm (3.2) provides a new value of the estimates at each time
instant, however without any further consideration it is not readily guaranteed
that the new values are ever going to reach the true plant parameters. Nonethe-
less, the recursion in (3.2) can be guaranteed to converge to a unique and
unbiased estimate through a proper excitation of the system. In general terms
it is said that the estimates (asymptotically) converge if θ̂(t)− θ̂(t− 1) → 0

as t→∞, furthermore it is said that the estimates converge to the true plant
parameters θ if θ̂(t)→ θ as t→∞ with θ = [A B]>.

A necessary condition for the true plant to be identifiable is that the model
structure chosen contains the true plant structure [3]. This is the case by
assumption, thus convergence of the RLS estimates to the unique true plant
parameters requires the input-output data to be informative enough with respect
to the model structure [3]. Informative enough is a purposely imprecise term
because it depends heavily on the system structure and the type of experiments
performed to obtain the input-output data (open or closed-loop). In the case
of an RLS recursion, however, the concept of persistence of excitation (PE) is
usually employed to characterise the information carried by the regressor.

The general notion of persistence of excitation, or persistently exciting
sequences, has many equivalent definitions, however all of them arise from the
necessity of guaranteeing the convergence of the estimates to a unique value.
Ultimately, the goal here is to obtain a condition of excitation over the input
partition ŵ(t) that: (1) guarantees convergent estimates, (2) is verifiable at
each time instant in a receding horizon fashion, and (3) it can be enforced
through a constraint of an optimization problem.

3.2.2.1 Persistence of excitation

In [3] a frequency domain definition that is independent of the estimation
algorithm is provided, albeit valid only for scalar signals. In what follows the
backwards shift operator is denoted by q−1.

Definition 3.1. A quasi-stationary scalar sequence #�u t with spectrum Φu(ω)

is said to be persistently exciting of order n if, for all filters of the form
Mn(−q) = m1q

−1 + . . .+mnq
−n and for all −π < ω ≤ π the relation

|Mn(ejω)|2Φu(ω) = 0 (3.3)

implies that Mn(eiω) = 0.
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Given Definition 3.1 it is fairly simple to derive a sufficient condition.

Lemma 3.1. A quasi-stationary scalar sequence #�u t is said to be persistently
exciting of order n if, its spectrum Φu(ω) is non-zero for at least n different
points in the interval −π < ω ≤ π.

Proof. Given that m0 = 0, the polynomial Mn(r) has one zero at the origin.
This means that Mn(r) has, at most, n− 1 zeros on the unit circle (i.e. such
that the zero can be represented as r0 = ejω0). Hence, if Φu(ω) is non-zero
at at least n different points in the interval −π < ω ≤ π, then (3.3) implies
Mn(eiω) = 0. �

In [3] general linear time invariant systems in open-loop are shown to
generate convergent RLS estimates provided that the input to the system is
persistently exciting of a certain order (following Definition 3.1). An example is
also provided to demonstrate the non-uniqueness of the convergence when the
data is generated in closed-loop operation. Note however that the spectrum of
a sequence is defined in [3] as the Fourier Transform (FT) of its autocorrelation
function. The latter is given by

Ru(τ) = lim
N→∞

1

N

N∑
t=1

u(t)u>(t− τ), (3.4)

therefore it is not possible to evaluate whether the regressor vector fulfils (3.3)
at a certain time instant t, since the regressor sequence is finite.

A time domain definition of persistence of excitation, targeting least squares
techinques, is provided in [75,76].

Definition 3.2. A sequence #�u t is called (weakly) persistently exciting of
order n if the following matrix exists and is positive-definite (PD)

Cn =


c(0) c(1) · · · c(n− 1)

c(1) c(0) · · · c(n− 2)
...

... . . . ...
c(n− 1) c(n− 2) · · · c(0)

 (3.5)

where

c(τ) = lim
N→∞

1

N

N∑
t=1

u(t)u>(t− τ) (3.6)

The parallel between Definitions 3.1 and 3.2 becomes obvious when compar-
ing (3.4) and (3.6). In fact, it can be shown that both definitions are equivalent
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by noticing that for a certain input-output model y(t) = Mn(−q)u(t),

Ry(0) = m>Cnm

with m = [m0 m1 . . .mn]; and also that, by definition, the inverse FT of the
spectrum is equal to the correlation function, thus

m>Cnm =
1

2π

∫ π

−π
Mn(ejω)Φu(ω)M>

n (e−jω)dω (3.7)

Definition 3.2 demands Cn to be PD, equivalently m>Cnm = 0 =⇒ m = 0.
Given (3.7), this can be readily rephrased as (3.3) (provided that u(t) is a
scalar).

Definition 3.2 still requires the computation of autocorrelations which is
not possible due to the regressor vector being finite at time t. An alternative
definition that provides a solution to this issue is also provided in [76] as well
as in [75].

Lemma 3.2. A sequence #�u t is called (strongly) persistently exciting of order
n if for all t, there exists an integer l and scalars ρ1, ρ2 > 0 such that

ρ2I >
l−1∑
j=0

(
ut−ju

>
t−j
)
> ρ1I (3.8)

where,

ut−j =


u(t− j)

u(t− j − 1)
...

u(t− j − n+ 1)

 (3.9)

Proof. The summation in (3.8) amounts to a portion, in time, of the summation
in (3.6). Analogously, a time dependent Cn can be constructed

Cn = lim
N→∞

1

N

N∑
t=1

Cn(t),

with Cn(t) defined as in (3.5) but with c(τ) replaced by the time dependent
portions in (3.8). It follows then that if Cn(t) is PD and bounded above by a
constant value for all t then Cn exists and is PD. �

Note that the definition in Lemma 3.2 is reported in a slightly different
manner when compared to [75,76]. The difference is in the position of the time
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window that is observed in order to compute the PE order. In (3.9) this window
is placed so that the resulting vector ut−j depends only on current and past
time instances. This is done to simplify the inclusion of such a requirement on
the receding horizon control framework that is to be employed. Furthermore,
the upper limit in the summation is set to l− 1 as opposed to l as in [75,76] in
order to simplify the recursive feasibility guarantees discussed in Section 3.4.
Since l from [75,76] can be arbitrarily set to l− 1 from (3.9) this does not affect
the PE definition. Finally, it is important to note that, in order to meet (3.8)
it is necessary that l ≥ n.

Definition 3.2 is used in [75] to guarantee unbiased convergence of the
RLS estimates of scalar FIR models when the input is (weakly) persistently
exciting. The same is shown to hold for open-loop stable ARX models, however
unstable plants may lead to invalid estimates due to an additional term in the LS
minimization that weighs the initial value of the parameters θ̂(0). Similar results
are presented in [76] where the LS estimate is shown to be unique provided a
certain matrix is non-singular. The parallel of this matrix in the RLS algorithm
is E(t) in (3.2), therefore Lemma 3.2 represents a suitable excitation condition
over the input of scalar FIR models to guarantee convergent recursive estimates.
The result in [76] however hints to a more general excitation condition to be
placed over the regressors instead of simply over the inputs.

Other authors prefer to avoid endowing an order property when defining a
persistently exciting signal. In [89] for example, the order is replaced by simply
defining an auxiliary variable that contains n past elements of the sequence
being analysed. In [90] the concept of sufficient richness is introduced to refer to
a persistently exciting sequence of a certain required order. The results in [89,90]
are particularly useful for the problem at hand since they are applicable to
multi-variable open-loop unstable plants in state space form [89] and ARX
form [90]. The concept of input-output reachability is employed in [89,90] to
guarantee that persistently exciting inputs will transfer its probing properties
towards the regressor vectors. Moreover, it is shown in [90] that persistently
exciting regressor vectors are sufficient to guarantee the convergence of certain
recursive estimation schemes such as a RLS. In what follows, the results
presented in [89, 90] are reproduced and employed to guarantee convergence
of the recursion in (3.2) through an appropriate design of ŵ(t) that follows
Lemma 3.2
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3.2.3 Persistence of excitation of the regressor vector

Convergence of the RLS estimates requires the regressor sequence to be per-
sistently exciting of order 1 [90]. Although Lemma 3.2 provides a suitable
definition to verify this at each time instant, it is not directly applicable to
the regressor sequence (3.1a) in the proposed AMPC framework. Firstly, the
regressor is formed by the full input and state vectors, however only ŵ(t) is
available for the controller to meet the PE requirements. Secondly, it is shown
in Section 3.4 that the recursive feasibility of the overall AMPC controller
hinges on including the PE condition over the prediction horizon. If the full
regressor is employed then this results in a collection of non-linear constraints
that couple the predicted states and inputs.

To devise a practical constraint that depends only on the exciting part
of the input, and that can be included in an MPC-like receding horizon
optimization problem, the subject of transmissibility of the PE condition
is studied. Particularly, it is necessary to guarantee that the PE condition will
transmit from ŵ(t) to u(t) and from the input to the regressor vector ϕ(t).

3.2.3.1 Input-to-regressor PE transmissibility

The first objective is to guarantee that PE characteristics from the input are
passed onto the regressor. Consider the following standard definitions and
results.

Definition 3.3. System (2.1) with E = 0 is said to be output reachable
(equivalently y is reachable from u), if for any y and arbitrary initial state,
there exists an input sequence #�u k with 0 ≤ k < ∞, such that y(k) = y.
Equivalently, the system’s output reachability matrix

Mo =
[
D CB CAB · · ·CAn−1B

]
is of full row rank.

Definition 3.4. If C = In and E,D = 0, system (2.1) is said to be state
reachable (equivalently x is reachable from u), if the state reachability matrix

Ms =
[
B AB · · ·An−1B

]
is of full row rank.
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Lemma 3.3. If C = In and E,D = 0, a system of the form (2.1) is said to
be state unreachable if and only if the matrix [zIn − A B] loses rank for some
z = λ where λ is an eigenvalue of A.

According to Definitions 3.3 and 3.4, the following PE results can be
established for reachable systems [89].

Proposition 3.1 (Corollary 2.1 in [89]). A necessary and sufficient condition
for the output of any output reachable time invariant linear system of McMillan
degree n to be persistently exciting of order 1, independent of initial conditions,
is that the input to the system is persistently exciting of order n+ 1.

The proof to Proposition 3.1 can be found in [89]. A remark is provided
in [89] to address systems with full state availability, but it is cast here as a
Corollary to Proposition 3.1.

Corollary 3.1. If C = In and E,D = 0, the reachability requirement is
reduced to that of state reachability, and the input is only required to be
persistently exciting of order n.

Proof. If C = In and D = 0 there is no feed-forward to the current measured
output (state), thus the reduction by 1 in the order requirement. �

Proposition 3.1 is a precise account of the result presented in [89] but
rephrased to fit the PE definition given in Lemma 3.2. The following is also an
exact depiction of a result in [89] but shaped to account for systems with full
state measurement.

Lemma 3.4 (Corollary 3.2 in [89]). Consider the multivariable ARMA model

x(t) +A1x(t− 1) + · · ·+An̄x(t− n̄) = B1u(t− 1) + · · ·+ Bm̄u(t− m̄)

and the corresponding regressor vector

ϕn̄m̄(t) =
[
x>(t− 1) · · ·x>(t− n̄) u>(t− 1) · · ·u>(t− m̄)

]>
.

Define the input-state transfer function as T (z) and assume it is proper.
Moreover define

A(z) =
[
Inz

n̄ A1z
n̄−1 · · · An̄

]
B(z) =

[
B1z

m̄−1 B2z
m̄−2 · · · Bm̄

]
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and assume that An̄ and Bm̄ are not zero. The regressor vector ϕn̄m̄(t) is
reachable from u(t) if and only if, [A (z) | B (z)] is of full row rank for all z.

Lemma 3.4 and Corollary 3.1 give way to the following result that guarantees
transmissibility of the persistence of excitation condition from the input to the
regressor.

Theorem 3.1. Consider the system in (2.1) with C = In, E,D = 0 and
assume that the system is state reachable. The corresponding regressor vector
(3.1a) is persistently exciting of order 1 if and only if the input to the system
is persistently exciting of order n+m according to Lemma 3.2.

Proof. The proof is based on Corollary 3.1, for which it is necessary to show
that the regressor vector is reachable from the input. Given C = In and
E,D = 0, the regressor vector (3.1a) meets the definition of Lemma 3.4 by
setting

n̄ = 1, A1 = A

m̄ = 1, B1 = B

A (z) = zIn − A, B (z) = B.

It follows that T (z) is proper and that [A (z) | B (z)] = [zIn − A | B]. Lemma
3.3 and the reachability assumption on the system imply then that [A (z) | B (z)]

is of full row rank for all z. Thereby all the hypotheses of Lemma 3.4 are
met and the corresponding regressor vector ϕ(t) =

[
x>(t− 1) u>(t− 1)

]> is
reachable from the input u(t). Once reachability has been established, the PE
order is guaranteed by Corollary 3.1. In fact, consider the following minimal
state space model

ϕ(t) =

[
A B

0 0

]
ϕ(t− 1) +

[
0

Im

]
u(t), (3.10)

where u(t) is the input and the regressor vector ϕ(t) is the state. The McMillan
degree of (3.10) is n+m, hence since the input u(t) is persistently exciting of
order n+m, the regressor vector (output of (3.10)) is persistently exciting of
order 1 by Corollary 3.1. �

Theorem 3.1 guarantees that the regressor vector (3.1b) defined for system
(2.1a) is persistently exciting of order 1 given a persistently exciting input of
order n+m. This result, however, requires that no disturbances are affecting the
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system. Although external disturbances, if assumed white noise, are persistently
exciting of infinite order, they excite the closed-loop thereby feeding biased
information to the RLS algorithm. Furthermore, if Bu(t) = −Ew(t) for any
given time instant t then the probing capabilities of the input are hindered by
the disturbance. In what follows it is assumed that the size of the possible
disturbances is small enough to neglect both these effects.

3.2.3.2 Exciting part-to-input PE transmissibility

Theorem 3.1 establishes the necessary assumptions and provides the required
design tools to guarantee that the regressor (3.1b) for system (2.1a) is persis-
tently exciting, thus that the RLS estimates will converge. Particularly, it is
required for the system’s input u(t) to be persistently exciting of order n+m.
However in the proposed AMPC algorithm part of the input sequence, namely
û(t), is governed by the tube MPC controller and hence not explicitly available
for excitation purposes. It is not sufficient to impose the same PE demands over
ŵ(t), given that û(t) could cancel out the probing capabilities of ŵ(t). This is
due to the fact that both portions are designed independently. Particularly the
robust control action achieves robust stabilizability and constraint satisfaction
by regarding the excitation as a disturbance, hence it is inherently designed to
reject it.

Nevertheless, given the characteristics of the tube MPC robust controller
described in Section 2.3, the same reachability arguments established in
Section 3.2.3.1 can be employed to guarantee PE of the regressor starting
from PE of the exciting part ŵ(t). Indeed, assume that a tube MPC con-
troller is employed to drive the controlling part of the input, meaning that
û(t) = κN(x(t)) = κ̄N(x(t)) +Ke(t) = ū(t) +K(x(t)− x̄(t)), it follows that

u(t) = û(t) + ŵ(t)

u(t) = ū(t) +K (x(t)− x̄(t)) + ŵ(t)

u(t) = (ū(t)−Kx̄(t)) + (Kx(t) + ŵ(t)) .

Now, according to Propositions 2.1 and 2.2, independent of whether the nominal
trajectories are optimized or not, the origin is exponentially stable for the
undisturbed closed-loop dynamics, hence the quantity ū(t)−Kx̄(t) converges
to the origin exponentially fast. Consider now the following result from [90].

Lemma 3.5 (Lemma 4 in [90]). Suppose that s(t) and r(t) are two bounded
sequences taking values in Rm, and assume that s(t) is persistently exciting of
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order n and that:
lim
t→∞

r(t) = 0

then s(t) + r(t) is also persistently exciting of order n.

Lemma 3.5 establishes that if the controlling part of the input is defined
by an exponentially convergent tube MPC controller, then the excitation
properties of the overall input u(t) depend purely on the excitation properties
of Kx(t) + ŵ(t). In view of this set û(t) = x̂(t) = 0, then the following
input-output state space model can be constructed

x(t+ 1) = (A+BK)x(t) +Bŵ(t) (3.11a)

u(t) = Kx(t) + ŵ(t). (3.11b)

System (3.11) has x(t) as the state, ŵ(t) as the input, and u(t) as the output.
By analysing this auxiliary system, the matter of transmissibility of the PE
conditions from ŵ(t) to u(t), reduces to analysing whether u(t) is reachable
from ŵ(t) via the dynamics in (3.11).

Theorem 3.2 (Transmissibility of the persistence of excitation through the
robust control action). Consider the system in (2.1a) and assume C = In,
E,D = 0 and that the system is state reachable. Assume also that the
controlling part of the input û(t) is driven by a robustly exponential stable
tube MPC controller such as those described in Section 2.3. The corresponding
regressor vector (3.1a) is persistently exciting of order 1 if and only if the
exciting part of the input w(t) is persistently exciting of order 2n+m+ 1.

Proof. The proof hinges on showing that the input u(t) is persistently exciting
of order n+m, which according to Theorem 3.1 is necessary and sufficient for
the regressor (3.1a) to be persistently exciting of order 1. First note that the
output reachability matrix for system (3.11) is

Mo =
[
D̂ ĈB̂ ĈÂB̂ · · · ĈÂn−1B̂

]
with Â = A + BK ∈ Rn×n, B̂ = B ∈ Rn×m, Ĉ = K ∈ Rm×n and D̂ = Im.
Since, D̂ has rank m, then Mo has full row rank, thus u(t) is reachable from
ŵ(t). Moreover, the McMillan degree of the system (3.11) is n, therefore ŵ(t)

being persistently exciting of order 2n+m+ 1 is necessary and sufficient for
u(t) to be persistently exciting of order n + m by Proposition 3.1. Finally,
by Theorem 3.1, it follows that the regressor vector in (3.1a) is persistently
exciting of order 1. �
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3.2.3.3 Time-varying systems

A shortcoming of Theorems 3.1 and 3.2 is that the system is required to be
time-invariant due to Proposition 3.1, however the goal was to also account for
slowly changing systems. A extension of these results to time-varying systems is
discussed in [91]; in order to properly employ the results therein it is necessary
to explicitly define the uncertainty on the model parameters. In order to do
so let β(t) ∈ Rn(n+m) be a vector that contain each element of the state and
input matrices, and that explicitly states the time-varying nature of the system
through its time dependency. It follows that A = A(β(t)) and B = B(β(t)).
Furthermore, suppose that β(t) is constrained, at all time instances, to lie inside
a compact set B ⊆ Rn(n+m), which is no more than the setM represented in a
different space.

Consider now the following results from [90,91].

Lemma 3.6. Consider two sequences v(t) ∈ Rn and v̂(t) ∈ Rn and suppose
there exists constants ε > 0 and l ∈ N such that

l−1∑
j=0

|
(
v(t− j)− v̂>(t− j)

)
|22 ≤ ε.

If v̂(t) is persistently exciting of order n according to Lemma 3.2, then so is
v(t).

Lemma 3.6 establishes that, as long as the deviation between two sequences
is bounded, then PE of one implies PE of the other. This property is used to
ensure PE characteristics of a time-varying system by looking at the PE order
of a suitable piece-wise constant approximation of it, thus the latter are first
established. Define f(β) = ξm(BB>), then the following holds.

Lemma 3.7. Consider a PWC system
(
Â(β(t)), B̂(β(t))

)
such that β(t) re-

mains constant over intervals [t, t+ l − 1] with l ∈ N. Assume there exists
constants l1, l2 > 0 such that

max
β∈B
||A(β)|| ≤ l1

min
β∈B

ξm
(
B(β)B>(β)

)
= l2.

If the input u(t) is persistently exciting of order n according to Lemma 3.2,
then x(t) is persistently exciting of order 1 according to Definition 3.2.
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Lemma 3.7 guarantees PE of the state of a state reachable PWC sys-
tem given a persistently exciting input of appropriate order. Furthermore,(
Â(β(t)), B̂(β(t))

)
will be referred to as a reachable PWC (l, ε)-approximation

of (A,B) if it fulfils the conditions of Lemma 3.7 and if for any arbitrary input
sequence it holds that for all t

l−1∑
j=0

|
(
x(t− j)− x̂>(t− j)

)
|22 ≤ ε, (3.12)

where x(t) and x̂(t) are correspondingly the state trajectories of (A,B) and(
Â(β(t)), B̂(β(t))

)
, and l is from Lemma 3.7. The PE characteristics for the

output of time-varying systems can now be established.

Lemma 3.8. Let a reachable PWC (l, ε)-approximation of (A,B) exist. If
u(t) is persistently exciting of order n according to Lemma 3.2 with l from
Lemma 3.7, then the state x(t) is PE of order 1 according to Definition 3.2,
provided that ρ1 > 2εl21/l2 where l1 and l2 are from Lemma 3.7 and ε is from
(3.12).

Lemma 3.8 implies that given a large enough lower bound in Lemma 3.2,
persistently exciting inputs guarantee persistently exciting outputs even if the
system is time-varying. This results can be analogously extended to guarantee
excitation of the regressor vector given a persistently exciting sequence ŵ(t),
provided that the lower bound ρ1 for ŵ(t) in Lemma 3.2 is large enough. Note
that l1 and l2 depend on B (orM) and thus are defined by the particular plant,
ε depends on l according to (3.12) and hence can be set by the designer. It
may seem intuitive that, given that the exciting part of the input is bounded to
Ŵ, the best option is to choose a small l in order to obtain a small ε according
to (3.12), and thereby a smaller lower bound for ρ1 needed to guarantee PE
transmissibility. However, note that l has to be equal to, or greater than
the order of PE sought, otherwise it is not possible to meet constraint (3.5).
Furthermore, a shorter time window l also makes it harder to guarantee (3.5)
given that the exciting part of the input is bounded inside Ŵ.

From the above discussion it is straightforward that: (1) there is a lower
bound to l, (2) the relationship between l and the minimum ρ1 required to
guarantee transmissibility is non-decreasing since the left-hand-side of (3.12) is
a norm, and that (3) the relation between l and the maximum ρ1 that allows
for (3.5) to be met is non-decreasing. It follows then that existence of l that
fulfils all requirements is not guaranteed and depends on the uncertaintyM
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which defines ε according to (3.12). Furthermore, if such an l exists, the most
likely case is that it is not unique. In such a case l is chosen to be as close as
possible to its lower bound, in order to reduce the computational complexity of
the PE related optimization (see Section 3.4).

Theorems 3.1 and 3.2 provide the necessary tools to design the exciting part
of the input ŵ(t) in a such a way that it guarantees uniqueness and convergence
of the RLS recursion (3.2). In summary, it is necessary to design ŵ(t) such
that it is persistently exciting of order 2n+m+ 1 where n is the number of
states and m is the number of inputs of the system (Theorem 3.2). In this
way the excitation is transmitted to the regressor vector through the control
part of the input and through the systems dynamics. Moreover, the results
in Lemma 3.8 allow to extend Theorem 3.2 to account for systems that are
varying in time, either continuously or in a piece-wise nature. However, all of
the above require the system (A,B) to be state reachable. Although testing for
reachability amounts to a rank verification, the issue is that the true system is
assumed uncertain, and even if the estimates converge at some time instant,
the plant may experience changes in the future, thereby requiring reachability
as an standing assumption.

Assumption 3.1. The true plant is state reachable at every time instant.

3.3 Tube-based MPC

The proposed architecture for the PETMPC is based on the partition of
the input. Section 3.2 describes the requirements over the exciting part in
order to achieve convergent estimates independently of the regulatory part û(t).
Similarly, it is now proposed to implement a standard tube MPC controller with
independently evolving trajectories (Section 2.3.2) in order to robustly regulate
the plant despite the presence of purposeful excitation ŵ(t) and parametric
uncertainty.

Before setting up the optimization problem related to the tube MPC con-
troller it is necessary to define the appropriate input constrains. The overall
input is subject to constraint (2.2b), notwithstanding the partition then, it
must happen that û(t) + ŵ(t) ∈ U at all times. To maintain the independency
between the input partitions set 0 < α < 1 and define

Û = αU (3.13a)

Ŵ = U	 Û = (1− α)U. (3.13b)
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It follows that if û(t) ∈ Û and ŵ(t) ∈ Ŵ at all times, then u(t) ∈ U. The sets
Û and Ŵ are independent scaling based partition of the input constraint set,
and although many different division schemes could be used, this one allows to
maintain the properties of the source set U. In this context, another option for
partitioning the input set would be to arbitrarily define Ŵ ⊂ U and then set
Û = U	 Ŵ, however this might result in a portion of the input not being used
since Û⊕ Ŵ would not necessarily be equal to U.

Given (3.13a) then, it holds that both Û and Ŵ are PC-sets. The selection
of α may seem a trivial step in the design of the proposed controller, but it
represents, almost on its own, the trade-off between both objectives of the dual
control problem. Indeed, it might seem intuitive to favour smaller values of
α to increase the RoA of the MPC controller; however, a small set Ŵ implies
that the exciting sequence ŵ(t) might not be able to meet the lower bound
requirements in Lemma 3.8.

3.3.1 Admissible RPI set for tightening

After the partition is executed, the dynamics of the uncertain system can be
recast as

x(t+ 1) = Ax(t) +Bû(t) +Bŵ(t). (3.14)

where the pair (A,B) is contained in the compact setM and the state and
input constraints X and Û are in effect. In order to employ a tube MPC
controller to robustly control such a system it is necessary to define: (1) a
nominal prediction model that does not require knowledge of the exciting
part ŵ(t) or exact knowledge of (A,B), and (2) an admissible RPI set for the
associated error dynamics given the standard composite tube control law and
constraints X and Û. The latter requires the computation of a linear gain that
stabilizes the error dynamics.

In Section 3.1.3 it was anticipated that the uncertainty on the values of
(A,B) can be dealt with by choosing an arbitrary model

(
Ā, B̄

)
∈ M to

represent the plant’s dynamics while regarding the mismatch due to parametric
uncertainty as a disturbance wp contained in the set Wp

(
M,X,U, Ā, B̄

)
. In

view of this the plant’s dynamics can be recast as

x(t+ 1) = Āx(t) + B̄û(t) + wp(t) + B̄ŵ(t), (3.15)

with an obvious selection of nominal prediction model for the MPC optimization
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x̄(t+ 1) = Āx̄(t) + B̄ū(t). (3.16)

This approach, however, might be unnecessarily conservative since the constraint
sets are employed in their entirety to computeWp, yet for any given pair (x, u) it
follows that wp =

(
A− Ā

)
x+
(
B − B̄

)
u. This prompts the question of whether

a more constructive consideration of the set M can lead to a considerable
decrease in conservatism when computing the RPI set associated to the tube
MPC implementation.

To answer this question note that, although the true values of (A,B) are
unknown, they are bound to be inside the compact setM at any time instant.
Assume thatM is (or can be outer approximated by) a polyhedron with vertices
mi = (Ai, Bi) for i ∈ [1, . . . ,M ], say M̃, and define w̄ = Bŵ(t) ∈ W̄ where W̄
is a function of Ŵ and M̃ (since B is unknown). It follows that the uncertain
system (3.14) can be recast as disturbed polytopic linear difference inclusion
(pLDI)

x(t+ 1) =
M∑
i=1

λi(t)Ai︸ ︷︷ ︸
A

x(t) +
M∑
i=1

λi(t)Bi︸ ︷︷ ︸
B

û(t) + w̄(t),

with λi(t) ≥ 0 for all i ∈ [1, . . . ,M ] and t ≥ 0 such that

M∑
i=1

λi(t) = 1.

It may seem appropriate then to take this pLDI framework explicitly into
account to compute a robust invariant set for (A+BK) when disturbed by
perturbations bounded in W̄. It is only reasonable to expect that, by doing
so, a less conservative RPI set will be obtained when compared to what would
emanate from the lumped uncertainty approach depicted by (3.15).

It is usual in tube MPC that, given the composite control law, the error
dynamics are driven by AK = (A+BK) with K being a stabilizing gain for
(A,B) (see (2.3)). In this case, as opposed to Chapter 2, AK is not time
invariant, nevertheless several approaches exist to compute a single K that
stabilizies the entirety of models in M̄, such as the LMI approach proposed
in [26] or the relaxation in [92]. A similar procedure is presented in [93], where
an admissible PI set is computed alongside the corresponding linear gain K.
Given an appropriate stabilizing gain there exists several approaches to compute
invariant sets for pLDI systems [93–95] and in particular to compute RPI sets
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that are minimal (or approximations of it that are invariant) [94, 95]. Once
a stabilizing gain K and associated RPI set S have been computed it follows
that (Ai +BiK)S ⊕ W̄ ⊆ S for all i ∈ [1, . . . ,M ] and, by convexity of M̃,
(A+BK)S⊕ W̄ ⊆ S for all (A,B) ∈M.

There is, however, an obstacle in using such an RPI set for tightening in a
standard tube MPC approach. Indeed, as described in Chapter 2, tube MPC
requires an RPI set for the dynamics of the error between the true trajectories
and those predicted by the prediction model, but selecting the latter is not
trivial. If the prediction model is set to

x̄(t+ 1) = Ax̄(t) +Bū(t) (3.17)

it follows that, with e(t) = x(t)− x̄(t) and u(t) = ū(t) +K (x(t)− x̄(t)), the
error dynamics are given by

e(t+ 1) = (A+BK) e(t) + w̄(t),

and the RPI set computed for the pLDI closed-loop is indeed an RPI set for
the error dynamics. However, (3.17) cannot be employed as a prediction model
because the pair (A,B) is unknown. If (3.16) is employed as a prediction model
it follows that

e(t+ 1) = (A+BK) e(t) + w̄(t) + w̄p(t), (3.18)

with w̄p(t) =
(
A− Ā

)
x̄(t)+

(
B − B̄

)
ū(t) and so S, computed as an RPI set for

the pLDI, is not RPI for the error dynamics. This is the reason why in [65, 66]
the invariant sets (controlled and positive) computed for the pLDI systems
considered therein are not employed for tightening, but directly as a constraint
over the MPC optimization.

Still, an RPI set for the pLDI system could be computed to account for
both disturbance w̄ and w̄p, but the latter depends on the nominal prediction
variables, and so any bounding set would depend on X̄ and Ū. The tightened
sets, however, are usually defined as a function of the RPI set to increase the
RoA of the resulting controller (see (2.4)) which makes the whole design proce-
dure intertwined. A workaround would be to arbitrarily define the tightened
constraint sets as a scaling of the true constraint sets, say

X̄ = αxX
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Ū = αuU.

with αx, αu ∈ (0, 1) and then to compute W̄p to contain w̄p at all times (in a
similar way as to how Wp would be computed). After that an RPI set S̄ for
the pLDI (3.18) could be computed, and used to verify constraint satisfaction
only if

αxX⊕ S̄ ⊆ X (3.19a)

αuU⊕KS̄ ⊆ U. (3.19b)

If not, the whole process needs to be repeated with different scaling factors αx, αu
until (3.19) are verified. Although it is expected that the necessary inclusions
will be met as (αx, αu) → (0, 0) this design approach does not necessarily
produce considerably less conservative RPI sets for the error dynamics since
the set W̄p would still depend on a nominal model chosen arbitrarily as a
prediction model for the MPC optimization. Furthermore, by defining the
tightened constraint sets as a scale of the true ones, as opposed to (2.4), it is
most likely that the overal RoA of the controller will suffer some shrinkage,
even if the obtained RPI set is indeed less conservative.

Since it is not clear whether the explicit consideration of a pLDI structure
is advantageous, it is proposed to move forward with the lumped uncertainty
approach proposed in Section 3.1.3 and characterized by the model (3.15). The
latter can be further simplified to

x(t+ 1) = Āx(t) + B̄û(t) + w(t), (3.20)

where the term w(t) lumps all the effects that the controller will regard as
external and uncontrollable disturbances, that is

w(t) = wp(t) + B̄ŵ(t) ∈Wp ⊕ B̄Ŵ = W. (3.21)

By assumption X, U are PC-sets andM is a compact set, thus the set Wp can
be constructed as a C-set. Nevertheless, sinceM is not necessarily convex (just
compact) it follows that a certain degree of conservatism is introduced in order
to make Wp convex. Finally, if Wp is a C-set, it follows that W is a C-set given
that and Ŵ is a PC-set [96].

As previously discussed, and given (3.20), (3.16) represents an obvious
choice for the nominal prediction model used in the MPC optimization. Define
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again then e(t) = x(t) − x̄(t) and u(t) = ū(t) + K (x(t)− x̄(t)), the error
dynamics follow

e(t+ 1) =
(
Ā+ B̄K

)
e(t) + w(t),

and so it is only left to find a stabilizing K for the pair
(
Ā, B̄

)
and an associated

(admissible) RPI set. There is, however, one remaining obstacle. Since the
model is uncertain, there is no immediate guarantee that a stabilizing feedback
for the nominal dynamics

(
Ā, B̄

)
∈M also stabilizes the true dynamics. This

is of paramount importance given the exponential stability guarantee available
for the nominal closed-loop in standard tube MPC. Indeed, consider that tube
MPC as in Section 2.3.2 is implemented with an associated disturbance rejection
gain K. Suppose then that at some time t it holds that the nominal state and
input are x̄(t) = ū(t) = 0. It follows

x(t+ 1) = ĀKx(t) + w(t) = AKx(t) +Bŵ(t) (3.22)

with ĀK =
(
Ā+ B̄K

)
and AK = (A+BK). It is clear then that, since ŵ(t)

is driven solely with excitation purposes, the undisturbed closed-loop (3.22)
could be unstable.

As previously discussed, and assuming the vertices of an outer bounding
polyhedron forM are known, a set of LMIs can be constructed to compute
a single linear gain K that stabilizes the entire model set M following the
developments in [26]. It might be the case, however, that there is an infinite
number of linear gains that fulfil the required inequalities, making it difficult
to chose an appropriate one. In [26] the sole purpose of K is to generate
a cost decrease and an optimization problem is set accordingly to drive the
aforementioned LMIs. In the present context, however, the purpose of K is
to compute an associated (admissible) RPI set which is usually sought to be
minimal in size, hence not allowing for a straightforward definition for a driving
optimization.

To avoid the implementation of an additional optimization problem and the
aforementioned LMIs, an iterative procedure is proposed here that allows to
freely select the linear gain K and to test its adequacy after. First note that for
any nominal model

(
Ā, B̄

)
∈M that fulfils Assumption 2.1 a stabilizing linear

gain K and RPI set S (with respect to and Wp) can be computed. Furthermore,
admissibility of S, as defined in Definition 2.3, is necessary to guarantee that
X̄ 6= ∅ and thus that the nominal optimization has a non-empty RoA. In view
of this, and ignoring for now the partition of the input, the following result
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holds.

Proposition 3.2. Consider a certain nominal model
(
Ā, B̄

)
∈M that fulfils

Assumption 2.1, and a stabilizing linear feedback K. If the RPI set S corre-
sponding to Wp is admissible with respect to constraint sets (2.2), then AK is
Schur for all (A,B) ∈M.

Proof. Suppose x(0) ∈ S and so x̄(t) = ū(t) = 0 for all t ≥ 0. Since S is
constraint admissible it holds that

x(t) ∈ S =⇒ x(t) ∈ X

x(t) ∈ S =⇒ u(t) = Kx(t) ∈ KS =⇒ u(t) ∈ U,

and so wp(t) ∈Wp for all t ≥ 0. According to Definition 2.2 then ĀKx+wp ∈ S
for any x ∈ S. It is straightforward to show that ĀKx + wp = AKx, thus
AKx ∈ S for all x ∈ S. By Definition 2.2 this implies that S is a PI set for AK ,
hence AK must be Schur. �

Proposition 3.2 allows for an arbitrary selection of the linear (nominally)
stabilizing gain K, followed by a verification of its eligibility through the
admissibility of the RPI set S. The proof to Proposition 3.2 ignores the input
partition, but the latter can be easily included while maintaining the same
outcome. Note however, that the admissibility of S depends on the size of
Wp and Û, hence given a collection

(
Ā, B̄,X,U, α

)
, there is a bound on the

parametric uncertainty that this approach can accept (i.e., a bound on the size
ofM).

3.3.2 MPC Optimization

Following the proposed input partition, with its corresponding constraint
allocation, the optimization problem to be solved at each time instant is

PN(x(t)) : min
ū,x̄0

JN (ū, x̄0) (3.23a)

s.t. (for k = 0, . . . , N − 1)

x(t)− x̄0 ∈ S if t = 0 (3.23b)

x̄0 = x̄(t) if t > 0 (3.23c)

x̄k+1 = Āx̄k + B̄ūk (3.23d)

x̄k ∈ X̄ (3.23e)

ūk ∈ Ū (3.23f)
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x̄N ∈ X̄f ⊆ X̄. (3.23g)

All the elements in (3.23) are defined according to Section 2.3.2, except the
tightened input constraint set which is Ū = Û 	 KS given the constraint
allocation defined by (3.13). The following result establishes the stabilizability
guarantees of the closed-loop when the above optimization problem is used to
drive the nominal input. This is a replica of Proposition 2.2, however a detailed
proof is provided here for completeness.

Theorem 3.3 (Robust stabilizability). If (a) Assumption 2.1 holds with a
certain K for the nominal system

(
Ā, B̄

)
, (b) the set S is an admissible RPI

set for ĀK with respect to constraints (2.2) and disturbance set W, (c) the
set X̄f is an admissible PI set for ĀK and tightened constraint (2.4a), (d)
Q,R > 0, and P fulfils Ā>KPĀK + Q + K>RK − P ≤ 0 and (e) the loop is
closed with u(t) = κN(x(t)) = κ̄N(x(t)) + Ke(t) and û(t) = κ̄N(x(t)), then
(i) the optimization problem (2.2) is recursively feasible, (ii) state and input
constraints are met at all times despite the disturbances, and (iii) there exist
constant scalars b, d, f > 0 such that for all x̄ ∈ X̄N it holds that

b|x̄?0(x)|22 ≤VN(x̄) ≤ d|x̄?0(x)|22 (3.24a)

VN
(
Āx̄+ B̄κ̄N(x̄)

)
−VN(x̄) ≤ −f |x̄?0(x)|22. (3.24b)

Furthermore, the set S is exponentially stable with a region of attraction X̄N⊕S
for the constrained closed-loop system

x(t+ 1) = Āx(t) + B̄κN (x(t)) + w(t), (3.25)

for all w(t) ∈ W, while the origin is exponentially stable with a region of
attraction X̄N for the nominal closed-loop system

x̄(t+ 1) = Āx̄(t) + B̄κ̄N (x(t)) . (3.26)

Proof. For (i) suppose that the optimal solution at time t is ū? (x̄(t)) with
an associated predicted state trajectory x̄? (ū? (x̄(t))) or simply x̄? (x̄(t)). It
follows that x̄?0 (x̄(t)) meets (3.23b) if t = 0 and (3.23c) otherwise. Furthermore,
the dynamics constraint (3.23d) is met by the pair of optimized sequences, hence
x̄? (x̄(t)) fulfils (3.23e), ū? (x̄(t)) fulfils (3.23f) and x̄?N (x̄(t)) meets (3.23g). In
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view of this, it is easy to show that

ũ =
{
ū?1 (x̄(t)) , ū?2 (x̄(t)) , . . . , ū?N−1 (x̄(t)) , Kx̄?N (x̄(t))

}
(3.27)

is a feasible solution at time t+ 1. Indeed note that by (3.26) it follows that
x̄(t + 1) = x̄?1 (x̄(t)), which fulfils constraint (3.23c). Moreover, the input
sequence ũ in (3.27) is formed by the elements of ū? starting from prediction
time k = 1 up to step N − 1, therefore the state trajectory x̃ associated to ũ

fulfils

x̃ =
{
x̄?1 (x̄(t)) , x̄?2 (x̄(t)) , . . . , x̄?N (x̄(t)) , ĀK x̄

?
N (x̄(t))

}
. (3.28)

Since x̄?N (x̄(t)) ∈ X̄f and the latter is an admissible PI set for the closed-loop
ĀK it holds that Kx̄?N (x̄(t)) ∈ Ū and ĀK x̄?N (x̄(t)) ∈ X̄f , thus the prediction
pair (ũ, x̃) as defined by (3.27) and (3.28) fulfil constraints (3.23e)–(3.23g),
thus making ũ a feasible solution at time t+ 1.

For (ii) note that (3.23b) forces e(0) ∈ S. Closing the loop of the true and
nominal trajectories with κN (·) and κ̄N (·), respectively, results in e(t+ 1) =

ĀKe(t)+w(t) for all t ∈ N0, thus e(t) ∈ S holds for all t by the robust invariance
of S. It follows then that

x(t)− x̄(t) ∈ S (3.29a)

=⇒ x(t) ∈ {x̄(t)} ⊕ S ⊂ X̄⊕ S (3.29b)

=⇒ x(t) ∈ (X	 S)⊕ S (3.29c)

=⇒ x(t) ∈ X. (3.29d)

The first inclusion in (3.29) holds by the definition of e(t), the second one by
the recursive feasibility of the optimization which keeps the nominal trajectories
inside X̄, the third by the definition of the tightened constraint (2.4a) and the
last one due to the properties of the Pontryagin difference and the Minkowsky
addition for convex sets [96]. The same chain of arguments can be made for
u(t).

For (iii) first note that for all x̄ ∈ X̄f

Vf
(
ĀK x̄

)
− Vf (x̄) =

(
ĀK x̄

)>
P
(
ĀK x̄

)
− x̄>Px̄ (3.30a)

= x̄>
(
Ā>KPĀK − P

)
x̄ (3.30b)

≤ −` (x̄, Kx̄) (3.30c)
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where the inequality holds by hypothesis (d). Suppose now that the optimal
solution at time t is defined by the pair (ū? (x̄(t)) , x̄? (x̄(t))), then the associated
optimal cost is

VN (x̄(t)) = ` (x̄?0 (x̄(t)) , ū?0 (x̄(t)))+
N−1∑
k=1

` (x̄?k (x̄(t)) , ū?k (x̄(t)))+Vf (x̄?N (x̄(t))) .

(3.31)
Recall that the pair (ũ, x̃) represents a feasible solution at time t+ 1, albeit
not necessarily optimal. Suppose then that the cost associated to the feasible
pair is defined by ṼN (x̄(t+ 1)), then similarly

ṼN (x̄(t+ 1)) =
N−1∑
k=1

` (x̄?k (x̄(t)) , ū?k (x̄(t))) + ` (x̃?N (x̄(t)) , Kx̄?N (x̄(t)))

+Vf
((
ĀK
)
x̄?N (x̄(t))

)
.

(3.32)

Define ∆VN (x̄(t)) = VN (x̄(t+ 1))− VN (x̄(t)), the possible sub-optimality of
(ũ, x̃) implies VN (x̄(t+ 1)) ≤ ṼN (x̄(t+ 1)), hence ∆VN (x̄(t)) ≤ ṼN (x̄(t+ 1))−
VN (x̄(t)). It follows then from (3.31) and (3.32) that

∆VN (x̄(t)) ≤ − ` (x̄?0 (x̄(t)) , ū?0 (x̄(t)))− Vf (x̄?N (x̄(t)))

+ ` (x̃?N (x̄(t)) , Kx̄?N (x̄(t))) + Vf
((
ĀK
)
x̄?N (x̄(t))

)
=⇒ ∆VN (x̄(t)) ≤ − ` (x̄?0 (x̄(t)) , ū?0 (x̄(t))) ,

with the second inequality following from (3.30).
Given the cost function (2.6), it is straightforward to show that for all

x̄(t) ∈ X̄N it holds that VN (x̄(t)) ≥ ` (x̄?0 (x̄(t)) , ū?0 (x̄(t))) and that VN (x̄(t)) ≤
Vf (x̄?0 (x̄(t))) for all x̄(t) ∈ X̄f . Moreover, according to (d) it is also trivial to
show that

` (x̄?0 (x̄(t)) , ū?0 (x̄(t))) ≥ ||x̄?0 (x̄(t)) ||2Q
≥ ξm (Q) |x̄?0 (x̄(t)) |22

Vf (x̄?0 (x̄(t))) ≤ ξM (P ) |x̄?0 (x̄(t)) |22.

In summary, it holds that

VN (x̄(t)) ≥ ξm (Q) |x̄?0 (x̄(t)) |22 ∀x̄(t) ∈ X̄N (3.33a)

VN (x̄(t)) ≤ ξM (P ) |x̄?0 (x̄(t)) |22 ∀x̄(t) ∈ X̄f (3.33b)

∆VN (x̄(t)) ≤ −ξm (Q) |x̄?0 (x̄(t)) |22 ∀x̄(t) ∈ X̄N (3.33c)
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According to [1], it can be shown that if X̄f is compact, then there exists
a constant d > ξM (P ) such that (3.33b) holds for all x̄ ∈ X̄N . Thereby (3.24)
holds and the optimal cost function is a Lyapunov function for the nominal
closed-loop dynamics. Furthermore, there exists constants c > 0 and γ ∈ (0, 1)

such that |x̄?0 (x̄(t)) |22 ≤ cγt|x̄?0 (x̄(0)) |22, indeed, note that (3.24a) means that
f/dVN (x̄(t)) ≤ f |x̄?0 (x̄(t)) |22, thus (3.24b) implies

VN (x(t+ 1)) ≤ (1− f/d)VN (x(t)) .

The same holds for all t ≥ 0 thus

VN (x(t)) ≤ γtVN (x(0)) .

with γ = (1 − f/d). Finally, the upper and lower bounds in (3.24a) result in
|x̄?0 (x̄(t)) |22 ≤ cγt|x̄?0 (x̄(0)) |22 with c = d/b, which ensures exponential stability
of the origin for the nominal closed-loop (3.26)

Now, note that x(t) = x̄(t) + e(t) hence dH (x(t), S) = dH (x̄(t) + e(t),S).
Now, since e(t) ∈ S at all times, it holds that

dH (x(t),S) ≤ dH (x̄(t) + e(t), e(t)) = |x̄?0 (x̄(t)) |22
=⇒ dH (x(t),S) ≤ cγi|x̄?0 (x̄(0)) |22

for all t ≥ 0. According to Corollary 2.2 this implies exponential stability of
the set S for the true closed-loop (3.25) for all w(t) ∈W, which concludes the
proof. �

In summary, Theorem 3.3 provides the necessary conditions to guarantee
that if the loop is closed with the MPC control law κN (·), driven by optimization
(3.23), then constraints are satisfied at all times despite the model uncertainty
and the excitation that ŵ(t) may induce. Furthermore, Theorem 3.3 also
shows that the set S is exponentially stable for the true closed-loop dynamics
irrespective of the disturbance w(t) ∈W.

It is important to remark that the size of the RoA is tightly related to
the terminal constraint set X̄f and the tightening set S. Indeed, a larger
terminal set allows for a larger X̄N while a larger S results in a smaller X̄ and
consequently a smaller X̄N . It is clear then that to allow for a larger RoA for
the controller, the best choices for terminal constraint set and tightening set
are, correspondingly, the maximal PI set and the minimal RPI set related to
ĀK and W [96]. Furthermore note that, although the same linear feedback is
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employed in Theorem 3.3 to compute both invariant sets, this is not necessary.
It could be argued that, given a cost defined to match the infinite horizon
LQ problem, both should be chosen as the optimal LQR gain in order to
be consistent. However, less aggressive feedback laws usually result in larger
maximal PI sets, thus allowing for a larger RoA. Similarly more aggressive
feedback laws result in smaller RPI sets, thus enlarging the corresponding RoA.

3.4 PE optimization

Section 3.2 developed the required characteristics of the exciting input in
order to guarantee convergent estimates within the proposed input partition
architecture. Particularly, it is required for the exciting part of the input
ŵ(t) to be persistently exciting of order 2n+m+ 1 according to Lemma 3.2.
This definition fits the best with the receding horizon fashion of the AMPC
architecture proposed since it places the design requirements only on the current
value of ŵ(t). Indeed, in a receding horizon architecture future predicted values
are not necessarily applied, hence characteristics that depend on them may
be met in the open-loop predictions but not in the true closed-loop. Equation
(3.8) presents the PE condition as a lower and upper bound enforced over a
portion of the covariance matrix of the corresponding sequence, however in
what follows the focus is placed solely over the lower bound. The upper bound
is trivially met given that the summation in (3.8) is finite and that Ŵ is a
PC-set.

It is important to note that the PE characteristics of the exciting input,
according to Lemma 3.2, are completely independent of the actual model
parameters and of the current state of the plant. Moreover, the tube MPC
proposed in Section 3.3 does not need to know ŵ(t) in order to compute a
control action at time t, thus a persistently exciting sequence

#�

ŵ t that fulfils the
required PE conditions could be devised off-line (as in [69]). However, in order
to reduce the impact that ŵ(t) has over the control objective, a receding horizon
optimization similar to (3.23) is now proposed to drive the exciting part. The
goal of this approach is to decrease the unnecessary disturbing effects that an off-
line computed ŵ(t) may generate, by introducing feedback in its computation.
Indeed, there are infinitely many persistently exciting sequences that fulfil
Lemma 3.2, but possibly only a few that do so with minimal state disturbance
for a particular state trajectory that depends on the control sequence

#�

û t. First a
general structure for the proposed optimization is presented, followed by a trivial
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recursively feasible solution and two specializations that include additional
constraints in order to guarantee recursive feasibility under non-trivial solutions.

3.4.1 General structure of the PE optimization

First define, as in Section 3.2, the sequence of exciting inputs up to time t as
#�

ŵ t = {ŵ(0), . . . , ŵ(t)} and

ŵt−j =


ŵ(t− j)

ŵ(t− j − 1)
...

ŵ(t− j − h+ 1)


where h is the order of persistent excitation sought. It follows form Lemma 3.2
that the exciting sequence

#�

ŵ t is guaranteed to be PE of order h at time t if
Γ (ŵ(t)) > 0 with

Γ (ŵ(t)) =
l−1∑
j=0

(
ŵt−jŵ

>
t−j
)
− ρ0I (3.34)

and ρ0 chosen according to the discussion on time-varying systems in Sec-
tion 3.2.3.3. In order to introduce feedback in the selection of ŵ(t) it is
proposed that, at each time instant, the value of ŵ(t) is obtained by solving an
MPC-like optimization problem that minimizes the effect of such an exciting
action over the control objective. The latter is defined by the cost function
associated to (3.23), so the general structure of the proposed optimization
problem is

P̂
(

#�

ŵ t−1, x(t)
)

: min
ŵ

N̄∑
k=0

` (xk, ŵk) (3.35a)

s.t. (for k < 0)

ŵk = ŵ(t− k) (3.35b)

and (for k = 0, . . . , N̄)

x0 = x(t) (3.35c)

xk+1 = Āxk + B̄ŵk (3.35d)

ŵk ∈ Ŵ (3.35e)

Γ (ŵk) > 0, (3.35f)
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where the decision variable is ŵ = {ŵ0, . . . , ŵN̄} and N̄ is the prediction horizon.
The optimum value at time t is defined by ŵ? (x(t)) =

{
ŵ?0 (x(t)) , . . . , ŵ?

N̄
(x(t))

}
or simply ŵ?(t) and the exciting input at time t is set by the feedback law
ŵ(t) = µ (x(t)) = ŵ?0 (x(t)).

It is important to note that PE, according to Lemma 3.2, cannot be
guaranteed until a sufficient amount of exciting inputs have been applied. That
is because Γ (ŵ(t)) requires the knowledge of h+ l − 2 past inputs in order to
be constructed. This is reflected in (3.35) by the dependency of P̂ (·, ·) on

#�

ŵ t−1

and in the constraints (3.35b) and (3.35f). Ultimately, this means that (3.35) is
not a memoryless optimization like (3.23), hence a (persistently exciting) buffer
sequence is required for initialization. The latter, however, is not necessarily
applied to the system, but only used to evaluate the corresponding constraints
during the initial time steps.

A major difficulty in solving (3.35) is that the PE constraint (3.35f) is
non-convex. Indeed, it is shown in [74] that for N̄ = 0 (3.35f) defines the
outside of an ellipsoid in the Rn space, but the complexity of such a constraint
grows with the length of the horizon. It is out of the scope of this chapter
to provide a comprehensive approach to tackle the non-convexity of (3.35f),
however a standard solution would be to relax it by introducing a slack variable
such as in [77].

The purpose of an optimization problem like (3.35) is to produce, at each
time instant, an exciting input ŵ(t) that guarantees PE of

#�

ŵ t of appropriate
order. As opposed to other approaches [44, 77, 78], the PE characteristics of
#�

ŵ t at time t do not depend on predicted values, but only on the currently
optimized exciting input. This implies that PE of the exciting sequence at the
current time instant is guaranteed if constraint (3.35f) is met merely at k = 0,
yet it is enforced over the whole horizon to better account for the effect of
future excitations over the state trajectories and hence the cost. Nevertheless,
given the finite horizon of the optimization, compliance of the PE constraint at
time t does not necessarily guarantee the same at time t+ 1. This is because
the PE constraint (3.35f) is formed by looking at a rolling windows of past
values, one of which ceases to be contained in this window at time t + 1. In
simpler words, past portions of

#�

ŵ t with high excitation content may permit the
addition of little excitation in the present while maintaining the required PE
order. If too low, however, and given the bound on the exciting input, it may
become impossible to guarantee the necessary order of PE in the future. This
issue is similar to the difficulties found in guaranteeing constraint satisfaction
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in standard finite-horizon MPC without terminal constraints (or cost).
Finally, note that the optimization problem (3.35) minimizes the running

cost associated to a nominal state trajectory that would be generated by purely
feeding the exciting part to the nominal model. This, however, is only an
approximation of the true effect of the exciting part over the state trajectories.
Setting aside the fact that (3.36b) uses the nominal representation of the
plant, since it is the only one available, the true input exerted on the plant
is u = û + ŵ. Given (2.6), it follows that ` (x, u) ≤ ` (x, û) + ` (x, ŵ) for any
x ∈ Rn, û, ŵ ∈ Rm. Nevertheless, it is not possible to predict the values of
û(t) throughout the horizon since κN (·) depends on the true value of the state
at each instant. Furthermore, even if ū? (x̄(t)) is employed, it would then
be necessary to solve both optimization problems in sequence rather than in
parallel, increasing the time required to compute the control action at each time
instant. However, it is expected that this definition of the cost helps minimize
the disturbing impact that ŵ(t) has over the plant, while securing persistence
of excitation through constraint (3.35f) and the feedback law µ (x(t)).

3.4.2 Recursively feasibly PE optimization

From the above discussion it follows that the constrained optimization (3.35)
is not necessarily suitable to introduce feedback in the selection of the exciting
part of the input, given that it may become infeasible at any time instant t.
This is true even if the horizon is set to N̄ = 0, that is, even if the optimization
variable amounts to a single exciting element. Since this issue is similar to
those that arise in MPC without terminal constraints, it is proposed here
to augment (3.35) with a terminal constraint in order to guarantee recursive
feasibility by inducing a periodically invariant behaviour towards the end of
the horizon. This will result in a recursive feasibility proof that is very similar
to that in standard MPC implementations, resorting to a previously feasible
solution extended in some way. It follows then that this approach not only
tackles the infeasibility issues, but also the non-convexity of the PE constraint,
guaranteeing the existence and knowledge of a feasible solution without the
need to optimize.

In what follows the additional constraint is referred to as the periodicity
constraint and it will be broadly denoted as C(ŵk) with an specific definition
that depends on the rational employed to guarantee recursive feasibility of
(3.35). Two different rationales will be discussed but in both C(ŵk) will be an
equality constraint applied over all elements of the optimization variable except
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the first one, letting a single input to be optimized throughout the prediction
horizon at each sampling time. It may seem then that the horizon N̄ could be
set to 0, however this is not the case since the optimized value has a direct
effect on the compliance of the PE constraint (3.35f) in future prediction times
and this has to be accounted for in order to guarantee recursive feasibility.
Furthermore, a longer horizon will also allow to better account for the effects of
a exciting sequence (rather than an exciting input) over the running cost. The
horizon then will remain as an arbitrary value for now, however it will be shown
that a minimum is required to guarantee recursive feasibility by verifying the
PE constraint well into the future.

In view of all these considerations, the optimization problem (3.35) is recast
as

P̂
(

#�

ŵ t−1, x(t)
)

: min
ŵ0

N̄∑
k=0

` (xk, ŵk) (3.36a)

s.t. (for k < 0)

ŵk = ŵ(t− k) (3.36b)

(for k = 0, . . . , N̄)

x0 = x(t) (3.36c)

xk+1 = Āxk + B̄ŵk (3.36d)

ŵk ∈ Ŵ (3.36e)

Γ (ŵk) > 0 (3.36f)

and (for k = 1, . . . , N̄)

C(ŵk) = 0. (3.36g)

Note that, given the inclusion of the periodicity constraint, the decision variable
is reduced from ŵ = {ŵ0, . . . , ŵN̄} to ŵ0. The associated optimum is then
ŵ?0(t) rather than ŵ?(t), but the latter will still be used, acknowledging that
N̄ − 1 of its elements are not really optimized but fixed by constraint (3.36g).

Constraint (3.36b) is employed to endow the optimization problem with
memory, so that constraint (3.36f) can be evaluated at all prediction times inde-
pendent of l and h. Constraints (3.36c) and (3.36d) allow for the computation
of the predicted state trajectory, given a particular exciting input sequence,
but have no influence in the feasibility of the optimization and could be merge
with (3.36a) in a more concise definition of the cost function. It follows that,
in order to design the periodicity constraint, the focus is placed on constraints
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(3.36e) and (3.36f).

3.4.2.1 Buffer sequence for recursive feasibility

Before delving into the periodicity constraint, the design of an appropriate buffer
sequence for initialization is discussed. Indeed, given that the PE constraint is
designed according to Lemma 3.2, a total of h + l − 2 initialization exciting
elements are required to evaluate Γ(ŵk) at time 0. The buffer sequence then
must be one such that it allows for the PE constraint (3.36f) to be met with a
single optimization variable that is ŵ0 ∈ Ŵ. It is proposed then to design a
buffer sequence that it is PE on its own, when applied with a certain period.
This not only will allow for the optimization at time 0 to be feasible, but also
to use the buffer as a fall-back for recursive feasibility. Indeed, despite (3.36f)
being a non-convex constraint, it is possible to guarantee recursive feasibility of
(3.36) resorting to a trivial periodic implementation of an appropriate buffer
sequence, even when no terminal constraint C(ŵk) is employed. Define the buffer
sequence as

#�

ŵb = {ŵb(−h− l + 2), . . . , ŵb(0)} with negative time indexing in
order to make explicit that this sequence is for initialization, and consider the
following assumption on its properties.

Assumption 3.2.
#�

ŵb is such that (i) ŵb(j) = ŵb(j − l) for all j ≥ −h, (ii)
ŵb(t) ∈ Ŵ for all t ∈ [−h− l + 2, 0] and (iii) Γ(ŵb(0)) > 0.

According to Assumption 3.2 only l elements of the buffer sequence are
independent, the rest are generated by an l-periodic repetition of past values.
Assumption 3.2 presents the design requirements for a buffer sequence that will
allow for a recursive feasibility proof.

Proposition 3.3. Suppose
#�

ŵb meets Assumption 3.2 and that C(ŵk) := 0. If
the buffer sequence is used to verify constraint (3.36b) during the initial time
steps, that is ŵ(t) = ŵb(t) for all t ∈ [−h− l + 2,−1], then a feasible solution
for the optimization (3.36) at time t = 0 is

ŵf (t) =
{
ŵf0 (t), . . . , ŵf

N̄
(t)
}

(3.37a)

ŵfk(t) =

ŵ(t+ k − l) k ∈ [0, l − 1]

ŵfk−l(t) k ∈
[
l, N̄

] (3.37b)

Furthermore, ŵ(t) = µf (x(t)) = ŵ(t− l) represents a feasible open-loop control
law that guarantees

#�

ŵt is persistently exciting of order h at all t according to
Lemma 3.2.



3.4. PE OPTIMIZATION 61

Proof. The proof hinges on the properties of the buffer sequence given by
Assumption 3.2, and that the proposed feasible feedback law µf (x(t)) closes
the loop while maintaining the same periodicity.

It is first shown that (3.37) is feasible at time t = 0. Indeed, given Assump-
tion 3.2, the candidate solution (3.37) at time t = 0 results in ŵf0 (0) = ŵ(−l) =

ŵb(−l). Since Assumption 3.2 requires every element of the buffer sequence to
be inside Ŵ, then the candidate solution meets (3.36e) at time 0. From (3.34)
it easy to see that for any t

Γ(ŵ(t)) = ŵtŵ
>
t +

l−1∑
j=1

(
ŵt−jŵ

>
t−j
)
− ρ0I +

(
ŵt−lŵ

>
t−l − ŵt−lŵ

>
t−l
)

= Γ(ŵ(t− 1)) + ŵtŵ
>
t − ŵt−lŵ

>
t−l,

It follows then that, given (3.37),

Γ(ŵf0 (0)) = Γ(ŵ(−1)) + ŵ0ŵ
>
0 − ŵ−lŵ

>
−l

with

ŵ0 =


ŵf0 (0)

ŵ(−1)
...

ŵ(−h+ 1)

 =


ŵ(−l)

ŵ(−l − 1)
...

ŵ(−l − h+ 1)

 = ŵ−l,

where the equality of the first element follows from (3.37) and the rest from the
l-periodicity of the buffer sequence established in Assumption 3.2. It follows
that Γ(ŵf0 (0)) = Γ(ŵ(−1)) = Γ(ŵb(−1)) ≥ 0, where the positive definiteness
follows from Assumption 3.2. The same arguments prove Γ(ŵfk(0)) ≥ 0 for all
k ∈

[
1, N̄

]
. The candidate then meets (3.36f), and so it is a feasible solution

for (3.36) at time 0. The second part follows by induction, and the l-periodicity
induced by µf (x(t)). �

Proposition 3.3 ensures that the l-periodic repetition of a buffer signal
that fulfils Assumption 3.2 is a feasible solution for (3.36), even without a
periodicity constraint C(ŵk). This is not surprising since the control law µf (x(t))

already induces periodicity, and periodic signals are persistently exciting of
a certain order [3, 76]; the disadvantage, however, is clear. The buffer signal
is computed entirely off-line hence its l-periodic implementation introduces
no feedback. In what follows two rationales are explored in order to allow for
the optimizer to introduce non-periodic values while maintaining feasibility
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and guaranteeing PE. Both stem out of the fact that the buffer sequence is a
feasible, persistently exciting, l-periodic sequence, and rely on the appropriate
design of the periodicity constraint (3.36g).

3.4.2.2 Recursive feasibility of a non-periodic signal: first approach

Ignore for now, as in Proposition 3.3, the periodicity constrain and assume
that at time 0 the optimizer chosen to solve (3.36) finds a feasible optimum
with ŵ?0(0) 6= ŵ(−l). Since by Proposition 3.3 the l-periodic repetition of the
buffer sequence is feasible and persistently exciting, a valid question is whether
this remains true, even after a non-periodic value, such as ŵ?0(0), has been
introduced in the sequence

As it stands, it is not possible to ensure the above will happen, however an
appropriate design of the periodicity constraint does allow it. In what follows
note that the periodicity constraint is enforced over all elements of the predicted
sequence except the first one, hence the optimization variable is reduced to ŵ0.

Theorem 3.4. Suppose
# �

ŵb meets Assumption 3.2, that the horizon is set to
N̄ ≥ h+ l− 2, that the buffer sequence is employed to verify constraint (3.36b)
during the initial time steps, that ŵ(t) = ŵb(t) for all t ∈ [−h− l + 2,−1], and
that the periodicity constraint (3.36g) is defined as

C(ŵk) :=


ŵk − ŵ(t+ k − l) k ∈ [1, l − 1]

ŵk − ŵ(t+ k − 2l) k = l

ŵk − ŵk−l k ∈
[
l + 1, N̄

]
.

(3.38)

If (a) the l-periodic feasible control law µf (x(t)) from Proposition 3.3 is used to
drive the exciting input until time instant t̄ ≥ 0, and (b) at time t̄ the optimizer
in place chooses an optimum ŵ?(t̄) and sets ŵ(t̄) = ŵ?0(t̄), then the control law

ŵ(t) = νf (x(t)) =

ŵ(t− 2l), t = t̄+ l

µf (x(t)), t 6= t̄+ l,
(3.39)

renders
#�

ŵ t a PE sequence of order h at all t ≥ t̄+ 1 according to Lemma 3.2
despite the possibility of ŵ?0(t̄) 6= µf (x(t)) = ŵ(t̄− l).

Note that the focus is placed on guaranteeing PE of the appropriate order
for all t ≥ t̄+ 1 since by assumption the implementation of µf (x(t)) for all t < t̄

and feasibility of the optimization at time t̄ guarantee
#�

ŵ t is a PE sequence of
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order h for all t ∈ [0, t̄]. Furthermore, note that it is assumed that at time t̄
the optimizer chooses an optimum ŵ?(t̄), however only the first element is a
real decision variable, since the periodicity constraint fixes the rest.

The rationale of Theorem 3.4 is to guarantee feasibility of the l-periodic
buffer sequence even after a new value disrupts the periodicity at a single time
instant. Indeed, this rationale seeks to return to the original buffer sequence
and only lets the optimizer interrupt its periodicity at a single time step. This
is realized in the periodicity constraint (3.38) by setting ŵk = ŵ(t + k − 2l)

when k = l, thus avoiding to include the new value in the future. It is also
realized in the feasible solution (3.39) by setting ŵf0 (t) = ŵ(t− 2l) if t = t̄+ l.
This is why Theorem 3.4 does not guarantee recursive feasibility of (3.36) with
periodicity constraint as in (3.38), but the existence of a PE control law.

This might seem counter-intuitive since the objective of such an approach to
define the exciting input is to introduce feedback, nevertheless it will be shown
that Theorem 3.4 does allow for such a feedback. The proof of Theorem 3.4
follows.

Proof. First note that, given (3.34) and the periodicity constraint (3.38) that
eliminates the newly optimized value from future periodic loops, the last
prediction time in which ŵ?0(t̄) is part of the computation of Γ (ŵk) is k =

h+ l−2. Indeed, it is easy to show that, given (3.38), Γ (ŵk) = Γ (ŵk−2l) for all
k > h+ l− 2, which by assumption are positive. This explains the lower bound
on the prediction horizon N̄ , which forces the optimizer to find an optimum
that guarantees compliance of the PE constraint until it stops being a function
of such optimum.

Given the implementation of the feasible control law µf (x(t)) up until t̄ and
feasibility of (3.36) at time t̄ it follows straightforwardly that the candidate
control law (3.39) fulfils the hard constraints over the exciting input (3.36e).
Furthermore, given the consistency constraint (3.38) and the candidate control
law (3.39) it also follows that

Γ (ŵ(t̄+ 1)) =

Γ (ŵ?1(t̄)) l 6= 1

Γ (ŵ(t̄+ 1− 2l)) l = 1
(3.40a)

Γ (ŵ(t̄+ k)) = Γ (ŵ?k(t̄)) ∀k ∈
[
2, N̄ − 1

]
(3.40b)

Γ (ŵ(t̄+ j)) = Γ (ŵ(t̄− λj)) ∀j ≥ N̄ (3.40c)

with λj ∈ N for all j. Since (3.36) is assumed feasible at time t̄ and µf(x(t))

is assumed used up until t̄ then Γ (ŵ(t̄+ k)) ≥ 0 for all k ≥ 1 as defined in
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(3.40). It follows then that (3.39) renders
#�

ŵ t a PE sequence of order h for all
t ≥ t̄+ 1. �

Again, Theorem 3.4 does not guarantee recursive feasibility of the optimiza-
tion problem (3.36) with consistency constraint (3.38), but the existence of a
PE inducing control law that takes over after the optimization. This is because
the rationale employed here is that of returning to an off-line computed buffer
sequence, while allowing the optimization to be solved at consecutive time
instances would go against that and against the periodicity constraint which
only accounts for a single new element. In the extreme, if the optimization is
allowed to be solved at each time instant, recursive feasibility would have to
be guaranteed by means of invariance of the non-linear equation that drives
the PE constraint. Nevertheless, it is possible to introduce feedback more than
once under this rational.

Corollary 3.2. Assume all the hypotheses of Theorem 3.4 hold. Define
ti with i ∈ N as the time instances in which the optimizer is allowed to
interrupt periodicity by setting ŵ(t̄) = ŵ?0(t̄) possibly different to ŵ(t̄− l). If
t̄i > t̄i−1 + h+ l − 2 and (3.39) is employed at all time instances t ∈ (ti, ti+1)

then
#�

ŵ t is a PE sequence of order h for all t ≥ 0 according to Lemma 3.2

Proof. The proof follows straightforwardly by noting that at time ti+1 ≥
ti + h+ l − 2 the oldest value of the exciting sequence needed to verify the PE
constraint is ti + 1, and hence only buffer sequence values are employed. The
rest follows from the proof of Theorem 3.4. �

Note that at any time instant ti the candidate (3.39) is still a feasible
solution. Thereby, even if the optimizer is not able to find the optimum due to
the non-convexity of the optimization, a solution that guarantees PE of the
exciting sequence is always available.

3.4.2.3 Recursive feasibility of a non-periodic signal: second ap-
proach

Theorem 3.4 guarantees the appropriate PE order on the exciting sequence by
introducing feedback under the rationale of employing the newly optimized
value only once, and then returning to a previously known feasible l-periodic
solution. This approach is valid only if the optimizer is allowed to interrupt the
buffer sequence every h+ l − 2 time steps, which does not help to introduce
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appropriate feedback. To allow the optimizer to continually provide optimized
values of the exciting input, a different rationale is now proposed.

Ignore again the periodicity constrain and assume that at time 0 the
optimizer chosen to solve (3.36) finds a feasible optimum with ŵ?0(0) 6= ŵ(−l).
Since the new value is feasible, and guarantees a

#�

ŵ(0) of appropriate order,
a valid question is whether this new value can take a place in the l-periodic
buffer sequence, replacing a former value of it for all time instances in the
future (rather than just at a single time instance). Similarly to the previous
rationale, it is not possible to guarantee such an outcome immediately, but an
appropriate design of the periodicity constraint does allow it.

Theorem 3.5. Suppose
# �

ŵb meets Assumption 3.2, that the horizon is set to
N̄ ≥ h− 1, that the buffer sequence is employed to verify constraint (3.36b)
during the initial time steps and that ŵ(t) = ŵb(t) for all t ∈ [−h− l + 2,−1].
If the periodicity constraint (3.36g) is defined as

C(ŵk) :=

ŵk − ŵ(t+ k − l) k ∈ [1, l − 1]

ŵk − ŵk−l k ∈
[
l, N̄

]
.

(3.41)

then
ŵf0 (t) = ŵ0(t− l) (3.42)

is a feasible solution for the optimization (3.42) for all t ≥ 0. Furthermore,
the sequence

#�

ŵt is persistently exciting of order h at all t ≥ 0 according to
Lemma 3.2.

Opposed to Theorem 3.4, Theorem 3.5 does claim recursive feasibility of
(3.36) with consistency constraint (3.41) at any time instant. This is thanks
to the rationale employed, that seeks to replace the l-periodic values of the
buffer sequence computed off-line by the newly optimized values obtained by
solving (3.36). Note, however, that Theorem 3.5 cannot guarantee feasibility
at time t + 1 simply given feasibility at time t, since the PE optimization is
not memoryless, hence the necessity of a PE buffer sequence. This is also why
the following proof of Theorem 3.5 starts by showing recursive feasibility at
time t = 1 given a feasible optimization at time t = 0.

Proof. At any time instant t, the periodic element to be replaced by a new
optimal one is ŵ(t − l). This element appears in the computation of Γ(ŵk)

for all k ∈ [0, h− 1), making k = h − 1 the first prediction step in which it
has been completely removed of the l-periodic prediction. This explains the
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lower bound on the prediction horizon N̄ , which forces the optimizer to find an
optimum that guarantees compliance of the PE constraint until the old value
is completely removed from the l-periodic buffer sequence.

Suppose then that a feasible solution exists at time 0 and refer to it as
ŵf (0) =

{
ŵf0 (t), . . . , ŵf

N̄
(t)
}

although only the first element would have been
available for the optimizer since the periodicity constraint fixes the rest. The
candidate at time 1, as given by (3.42), is then ŵf0 (1) = ŵ0(1− l) = ŵb(l − 1),
which by Assumption 3.2 meets the hard constraint (3.36e). Furthermore, the
candidate solution at time 1 and the consistency constraint (3.41) result in
that

Γ
(
ŵfk(1)

)
= Γ

(
ŵfk+1(0)

)
∀k ∈

[
0, N̄ − 1

]
(3.43a)

Γ
(
ŵf
N̄

(1)
)

= Γ
(
ŵf
N̄−1

(1)
)
. (3.43b)

Since (3.36) is assumed feasible at time 0, then (3.36f) is met at time 1 by the
candidate (3.42). It follows then that (3.42) is feasible at time 1. Feasibility of
(3.42) for t > 1 follows from induction and (3.43). �

Theorem 3.5 guarantees recursive feasibility under the rationale of employing
the newly optimized value to replace the l-steps prior value and generate a
completely new buffer sequence which contains an optimal value computed
through feedback. This result remains valid even if the optimizer is allowed to
change the buffer sequence at every time instant, as opposed to the limit on the
frequency of the optimization associated to the previous rationale. Furthermore,
note that Theorem 3.4 requires a prediction horizon that is, at least, l steps
longer than the one required by Theorem 3.5, resulting in l more instances of
the non-convex constraint that need to be evaluated by the optimizer. Thereby
the rationale of complete replacement of the old value (Theorem 3.5) is regarded
as an overall better approach to recursive feasibility and feedback.

The result in Theorem 3.5 depends heavily on the periodically-invariant
terminal constraint (3.41). Although theoretically pleasing, constraint (3.41)
allows a single element to be optimized, hence putting a possibly large lower
bound on the optimal value function. This deficiency can be tackled by allowing
several elements of the predicted exciting sequence to be optimized. In such
a case, extending the results in Theorem 3.5 is straightforward provided a
comparable increase of the prediction horizon and the periodicity constraint
(3.41).

However, increasing the amount of decision variables may result in the
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complexity of the optimization problem growing prohibitively large given that
constraint (3.36f) is non-convex. The latter is a problem even in the case of a
single optimization variable, and the time restrictions inherent to the receding
horizon framework imply that a solution to (3.36) may not be found suitably
fast. The non-convexity of constraint (3.36f) remains as a future challenge, and
it is important to note that the claims in Theorem 3.5 do not depend on the
quality of the solution provided by the optimizer at each time instant. In fact,
even if no optimization is performed, a feasible solution is always available by
looking at the exciting input applied l steps into the past.

In general, the approach presented here to drive the exciting part of the
input has similarities with the adaptive MPC architecture proposed in [74].
The most relevant difference is that in [74] the entire input is used to excite the
system, and hence stability is provided as an standing assumption. Another
significant difference is that [74] enforces the PE constraint (3.41) only on the
first element of the optimized sequence, independent of the prediction horizon,
and no terminal constraints are included. Following the fact that their demands
are weaker, their recursive feasibility results are also. A similar claim to that
in Proposition 3.3 is provided, however there is no guidance as to how the
buffer signal should be designed, as opposed to the structure described in
Assumption 3.2. Furthermore, there is no explicit analysis on whether recursive
feasibility is guaranteed after a time step in which the optimizer interrupts
periodicity with a new optimal value.

3.5 Model Update

Section 3.2 presented the necessary and sufficient conditions to guarantee
persistence of excitation of the regressor vector and hence convergence (in
deterministic fashion) of the RLS estimates to the true plant parameters.
Subsequently, Section 3.4.2.2 proposed a novel receding horizon control law,
driven by an MPC-like optimization, in order to achieve these conditions
while minimizing the disturbance of the exciting part on the control objective.
However, the fundamental goal of any adaptive controller is to employ the
current converged estimates, assumed more accurate, to improve the regulation
performance of the controller. When it comes to control via an MPC controller,
the control performance is tightly related to the accuracy of the prediction model.
In Section 3.3 tube MPC is proposed to regulate the system hence achieving
stability and feasibility despite model inaccuracy, however its performance could
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improve given a more accurate prediction model. Indeed, smaller disturbances
lead to smaller robust invariant sets, yielding the exponential stability of a
smaller neighbourhood of the origin according to Theorem 3.3 (even if the set
in question is never explicitly used in the MPC design).

It would then be desirable to use the current converged estimates to perform
the predictions in the optimizations problems (3.23) and (3.36). It was stressed
in Section 3.4 that the recursive feasibility and PE guarantees provided by
the receding horizon control law related to (3.36) are not dependent on the
state nor the model dynamics. Hence updating the prediction model in (3.36)
can be done instantaneously at any time instant at which a more accurate
representation of the plant is available. This is not the case for the prediction
model in (3.23). Indeed, most properties related to the feedback law κN(·)
(such as stability and feasibility) depend heavily on elements that were designed
specifically for a certain prediction model

(
Ā, B̄

)
. This is, possibly, the main

issue associated to AMPC controllers with simultaneous excitation and control
guarantees, and stems from the high model dependency of the MPC technique.

Consequently, if any converged set of estimates is to be employed to update
the prediction model, it is necessary to verify whether the tube MPC elements
retain their properties, or guarantee so by re-computing them. In what follows
three options are explored, ranging from simple verification of the assumptions
in Theorem 3.3, to complete controller re-design. The focus of these approaches
is placed on the fact that the plant is considered to be time varying, hence a
new controller, employing the converged estimates as prediction model, must
remain exciting and be robust to possible future plant changes (withinM).

Furthermore, none of the three approaches proposed here is necessarily better
than the others, and all three can be implemented concurrently. Hereafter, and
according to (3.1), the model (A(t),B(t)) refers to the RLS estimates at time t,
however the time index will be dropped almost everywhere to reduce notation.
Furthermore, it will be assumed that an estimate, to be a valid prediction
model candidate, has to fulfil (A,B) ∈ M. The analysis is performed for a
single instance of prediction model update, assumed to be attempted at time t̄,
however the results here presented are valid for any subsequent update attempt
at any time instant for which (A,B) ∈M.

3.5.1 A-posteriori verification

Ultimately, the objective is to retain the properties of the feedback law κN(·),
summarized by Theorem 3.3, under a new prediction model. If the controller
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parameters cannot be modified on-line, the current estimates can only be
used to update the prediction model if they fulfil the assumptions required
by Theorem 3.3 and if the arguments employed in its proof still hold. These
elements can be classified in three groups depending on the issue they tackle:
(i) constraint satisfaction, (ii) recursive feasibility of the MPC optimization and
(iii) stability of the control target.

3.5.1.1 Constraint satisfaction

Robust constraint satisfaction, despite the parametric uncertainty and the
perturbing effects of ŵ(t), is achieved through the robust invariance properties
of the tightening set S. The latter is computed to be robust against any
perturbation coming from the compound set of disturbances W defined in
(3.21). However, if the prediction model changes from

(
Ā, B̄

)
to (A,B), then

Wp and W also change. In view of this the following assumption is required.

Assumption 3.3. For every pair (A,B) ∈M there exists a C-setWp (A,B) ⊂
Rn such that wp = (A−A)x + (B − B)u ∈ Wp for all (x, u, (A,B)) ∈ X ×
U×M.

In Assumption 3.3Wp is a function of (A,B), i.e. a differentWp is considered
for every pair (A,B), however such dependency is dropped to reduce notation.
If the prediction model is to be updated by (A,B) ∈M while maintaining the
constraint satisfaction guarantees provided by the control law κN(·), S must
remain invariant for the candidate (A,B) ∈M when in closed-loop with K and
subject to disturbances bounded in Wp. This is summarized in the following
criterion.

Criterion 3.1. The current candidate (A,B), with associated parametric
uncertainty set Wp, fulfils

(A+ BK)S⊕
(
Wp ⊕ BŴ

)
⊆ S.

3.5.1.2 Recursive feasibility

Theorem 3.3 guarantees that, if the optimization is feasible at time instant
t = 0 and the nominal loop is closed with the MPC control law κ̄N (·), then the
optimization remains feasible for any time instant t > 0. Similarly, in order to
guarantee recursive feasibility of optimization (3.23) after a prediction model
update, it is not only necessary to guarantee feasibility at the transition time
instant t̄, but also for every t > t̄.
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The latter can be done by checking whether X̄f remains invariant for the
candidate prediction model. Provided that happens, if the optimization problem
is feasible at the update time t̄, then it remains feasible for all future time
instances under the same arguments of Theorem 3.3. The feasibility of the
optimization (3.23) at time t̄, however, cannot be readily guaranteed. Indeed,
changing the prediction model also changes the N -step stabilizability set [97]
associated to the terminal constraint set X̄f . It follows that the feasibility regions
associated to both prediction models, say X̄N

(
Ā, B̄

)
and X̄N (A,B), are not

necessarily equal. Thus, even if x̄(t̄− 1) ∈ X̄N
(
Ā, B̄

)
implies x̄(t̄) ∈ X̄N

(
Ā, B̄

)
,

the latter does not guarantee x̄(t̄) ∈ X̄N (A,B). Recursive feasibility through
and after an update then can be guaranteed if the following criterion is verified.

Criterion 3.2. The current candidate (A,B) and model update time t̄ are
such that (i) the set X̄f remains PI for the closed-loop dynamics A + BK
and (ii) x̄(t̄) ∈ X̄N (A,B). Equivalently, that (i) (A+ BK) X̄f ⊆ X̄f and (ii)
there exists a feasible solution to (3.23) at time t̄ with (3.23d) replaced by
x̄k+1 = Ax̄k + Būk.

As mentioned previously, x̄(t̄−1) ∈ X̄N
(
Ā, B̄

)
guarantees x̄(t̄) ∈ X̄N

(
Ā, B̄

)
,

but not x̄(t̄) ∈ X̄N (A,B). As opposed to standard MPC implementations then,
it is not possible to use the tail of the solution at time t̄−1 to demonstrate part
(ii) of Criterion 3.2. Nevertheless, there are at least two ways of verifying it.
Indeed, a simple approach would be to characterize the set X̄N (A,B) and test
for inclusion, however the computational complexity of computing the N -step
stabilizability set grows rapidly with the size of the problem (a more detailed
discussion about this is provided in Section 4.3.1.2).

Alternatively, note that Criterion 3.2 does not demand for a solution to
(3.23) at time t̄ nor for the computation of the set X̄N (A,B), but merely for
verifying if (3.23) is feasible at state x̄(t̄). This can be easily verified by solving
the linear program

max
ū,β̄

β̄

s.t. (for k = 0, . . . , N − 1)

x̄0 = β̄x̄(t̄)

x̄k+1 = Ax̄k + Būk
x̄k ∈ X̄

ūk ∈ Ū

x̄N ∈ X̄f ⊆ X̄,

(3.44)
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where u is the optimization variable associated to (3.23) and the optimum
is denoted by

(
u?, β̄?

)
. Given the constraints employed, the linear program

(3.44) produces an optimum such that the MPC optimization is feasible at
x̄0 = β̄?x̄(t̄); that is, there exists a sequence of N control inputs that drives
said state to the terminal set while respecting tightened state and input con-
straints. Furthermore, given that the original constraint sets are PC-sets and
the disturbance set is assumed a C-set, the tightening set S can be designed to
be a PC-set as well. Moreover, if X̄f is designed as a PC-set, it follows that
X̄N (A,B) is a C-set, thus x̄(t̄) ∈ X̄N (A,B) if and only if β̄? ≥ 1.

3.5.1.3 Stability

Finally, Theorem 3.3 guarantees that the set R = S × {0n} is exponentially
stable for the composite closed-loop by ensuring that the optimal cost function
is a Lyapunov function for the nominal closed-loop. The upper and lower
bounds in (3.24a) do not depend on the prediction model and thus still hold
at any time t ≥ t̄, however the upper bound on the optimal cost variation in
(3.24b) does depend on the prediction model. Analogously to the discussion
in Section 3.5.1.2 then, in order to guarantee exponential stability after a
prediction model update it is necessary to verify the appropriate cost decrease
at the update time t̄ and at any time in the future.

For all future time instances this can be done by checking whether the
matrix inequality of Theorem 3.3–(d) holds for the candidate prediction model.
Provided that this happens, it holds that ∆VN (x̄(t)) ≤ −` (x̄?0 (x̄(t)) , ū?0 (x̄(t)))

for all t > t̄. At the time of update, however, this is not necessarily the case
because the compared cost functions depend on two different prediction models
and the tail of a previously feasible solution is not feasible anymore (as seen in
Section 3.5.1.2). Lypaunov stability through and after an update then can be
guaranteed if the following criterion is verified.

Criterion 3.3. The current candidate (A,B) and model update time t̄ are
such that (i) A>KPAK +Q+K>RK ≤ P holds with AK = A+ BK, and (ii)
VN (A,B, x̄(t̄))− VN

(
Ā, B̄, x̄(t̄− 1)

)
≤ −` (x̄?0 (x̄(t̄− 1)) , ū?0 (x̄(t̄− 1))).

The cost decrease at the update time is explicitly required by part (ii) of
Criterion 3.3, rather than implicitly attained through properties of the terminal
cost function. Furthermore, the same upper bound for the cost variation is
requested. This is to guarantee the same rate of convergence, however any
cost decrease would be enough to guarantee stability throughout the update



72 CHAPTER 3. ADAPTIVE MPC

instant. Part (i) of Criterion 3.3 is required to guarantee that the cost decrease
is continued to be met after a change in prediction model.

3.5.1.4 Admissibility of a model update

The main goal of this first approach to prediction model update is to not
modify the controller. The properties of the control law κN (·), however, depend
on elements computed for the specific pair

(
Ā, B̄

)
, and if they are to remain

fixed, it is necessary to verify whether they retain their properties for the new
candidate (A,B). Criteria 3.1, 3.2 and 3.3 provide sufficient conditions for this
to happen.

Proposition 3.4. Suppose that at time t̄ the estimates have converged to
(A(t̄),B(t̄)) ∈M. If the candidate for model update (A(t̄),B(t̄)) fulfils Crite-
ria 3.1, 3.2 and 3.3, then the prediction model used in the MPC optimization
(3.23d) can be replaced by

x̄k+1 = A(t̄)x̄k + B(t̄)ūk.

while guaranteeing constraint satisfaction and stability as depicted in Theo-
rem 3.3 for all times t ≥ t̄.

Proof. The proof follows from the discussion around Criteria 3.1, 3.2 and 3.3,
and the proof of Theorem 3.3. �

Proposition 3.4 presents a series of comprehensive tests that need to be
performed at any time instant at which the estimates are to be employed as
a new prediction model. However, the order in which the different criteria is
verified does matter. Indeed, albeit the standing assumption of a slowly varying
system, parts (ii) of Criteria 3.2 and 3.3 not only depend on the candidate for
prediction model, but also on the current time instant. Thus if a model update
is to take place at time instant t̄, both conditions need to be verified in the
time between measuring the state and solving the MPC optimization. Clearly
then, once a candidate (A(t̄),B(t̄)) is identified, it is convenient to verify all
the other criteria first, in order to avoid spending unnecessary resources in the
on-line testing of parts (ii) of Criteria 3.2 and 3.3.

It is important to note that there exists a finite time instant t̃ ≥ 0 such that
part (ii) of Criterion 3.2 is met; this is independent of the current prediction
model

(
Ā, B̄

)
and the candidate for update (A,B). Indeed, from the properties

of the constraint sets, and an appropriate design of the invariant sets, X̄N can
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be guaranteed to be a PC-set. It follows then that X̄N
(
Ā, B̄

)
∩ X̄N (A,B) has

a non-empty interior. Given this and the exponential stability of the nominal
trajectories, it follows that there exists a finite time t̂ ≥ 0 such that x̄(t) is inside
X̄N (A,B) for all t ≥ t̂ (further discussion on this is provided in Chapter 4).

Notwithstanding the above fact, it is easy to show that for a given setM
there maybe only a limited subset of models M̄ ⊂M for which Criterion 3.1
is met, that is, for which the set S remains RPI in view of the new set of
disturbances and the updated model dynamics. The same happens for the
invariance of the terminal set. Ultimately this means that, although a given
(A(t̄),B(t̄)) ∈ M may represent the true plant dynamics for all t ≥ t̄, such
candidate may not be allowed to update the prediction model without incurring
some modifications to the controller.

3.5.1.5 Criterion relaxation

Another approach to classifying the conditions listed in Criteria 3.1, 3.2 and 3.3
is according to what they depend on. Following this rationale, Criterion 3.1, part
(i) of Criterion 3.2 and part (i) of Criterion 3.3 depend solely on the estimates
that are a candidate for prediction model updating, thus if they are not met,
the former cannot be employed unless the controller is re-designed. On the
other hand, parts (ii) of Criteria 3.2 and 3.3 depend not only on the prediction
model but also on the current nominal state value x̄(t̄), which is fictitious.
Indeed, the nominal trajectories are initialized through optimization but left
to evolve independently thereafter, following the discussion in Section 2.3.2.
However if x̄(t) is regarded as an optimization variable at time t̄ the chances of
meeting part (ii) of Criteria 3.2 and 3.3 may increase. To see this define the
following auxiliary optimization problem

QN(x(t)) : min
ū,x̄0

JN (ū, x̄0)

s.t. (for k = 0, . . . , N − 1)

x(t)− x̄0 ∈ S

x̄k+1 = Ax̄k + Būk
x̄k ∈ X̄

ūk ∈ Ū

x̄N ∈ X̄f ⊆ X̄,
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with associated optimum and optimal value of the cost function respectively
defined by

(
ū◦(x(t)), x̄◦0(x(t))

)
= argQN(x(t))

V ◦N(x(t)) = JN(ū◦(x(t)), x̄◦0(x(t))).

The following result holds.

Proposition 3.5. If PN (A,B, x(t̄)) is feasible, then QN (x(t̄)) is feasible and
V ◦N(x(t̄)) ≤ VN (A,B, x̄(t̄)). Furthermore, QN (x(t̄)) may be feasible even if
PN (A,B, x(t̄)) is not.

Proof. The proof is trivial and follows form the fact that PN (A,B, x(t̄)) is equal
to QN (x(t̄)) but the latter has an additional optimization variable. For the
first part suppose PN (A,B, x(t̄)) is feasible with solution ū?(x̄(t̄)), it follows
from the invariance of S that the pair (ū?(x̄(t̄)), x̄(t̄)) is a feasible, yet not
necessarily optimal solution for QN (x(t̄)). It then holds that V ◦N(x(t̄)) ≤
JN (ū?(x̄(t̄)), x̄(t̄)) = VN (A,B, x̄(t̄)).

To verify the second part note that to ensure feasibility of PN (A,B, x(t̄))

it is necessary and sufficient that x̄(t̄) ∈ X̄N (A,B), which then implies x(t̄) ∈
{x̄(t̄)}⊕S. On the other hand, to ensure feasibility of QN (x(t̄)), it is necessary
and sufficient that x(t̄) ∈ X̄N (A,B)⊕ S, resulting in a larger feasibility region
at time t̄ for QN (x(t̄)). �

It follows from Proposition 3.5 that by solving QN (·) (instead of instead of
PN(·)) at any time instant in which a prediction model change is attempted,
part (ii) of Criteria 3.2 and 3.3 are more likely to be met. In fact, more can be
said about the likelihood of meeting part (ii) of Criterion 3.3 if QN (·) is solved
at an intended update time. This is summarized in the following corollary to
Proposition 3.5.

Corollary 3.3. Assume that t̂ is such that x(t) ∈ X̄N (A,B)⊕ S for all t ≥ t̂

and so feasibility of QN (x(t)) is guaranteed for all t ≥ t̂. If for any t ≥ t̂ it
holds that x(t) ∈ S, then part (ii) of Criterion 3.3 is met immediately at said
time instant and for any future one.

Proof. The proof follows from the optimality of QN (x(t)). Indeed, it is easy to
show that for any x(t) ∈ S the optimal nominal state is x̄(t) = x̄?0(x(t)) = 0 with
associated optimal input sequence ū?(x(t)) = 0. This results in V ◦N(x(t)) = 0,
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reducing the the cost decrease requirement to

−VN
(
Ā, B̄, x̄(t̄− 1)

)
≤ −` (x̄?0 (x̄(t̄− 1)) , ū?0 (x̄(t̄− 1))) ,

which is always met. Furthermore, given the invariance of S and the tube MPC
composite control law κN (·), the same is valid for all future time instances. �

Finally, note that this approach to criterion relaxation would combine both
variants of the tube MPC described in Section 2.3 throughout the operation
time of the plant. Nevertheless, Corollary 2.2 ensures that the set S remains
exponentially stable for the true dynamics, as long as the cost decrease condition
in Criterion 3.3 is met.

3.5.2 Robust design

It was shown that the likelihood of meeting parts (ii) of Criteria 3.2 and 3.3
can be increased by solving an auxiliary OCP at each time instant an update
is attempted. However, this is not enough to guarantee that updating the
prediction model will be possible. This is because the requirements relating to
set invariance might not be met by any converged estimates provided by the RLS
algorithm. It could be argued that, once an accurate set of estimates has been
obtained, robustness to parametric uncertainty ceases to be necessary. Thereby
certain demands for prediction model update could be lowered, such as the
robust invariance of S. However the plant is assumed to be time-varying within
M, thus Criterion 3.1 needs to be verified, alongside parts (i) of Criteria 3.2
and 3.3, to allow for a prediction model update.

In order to increase the chance of the aforementioned conditions being met,
but without resorting to the on-line re-designing of the controller, the initial
design process could be robustified with respect to the parametric uncertainty,
or at least a subset of it, say M̃ ⊂M. Several approaches could be proposed
to achieve so, however one of the main features of the proposed dual controller
is its simplicity of design, and the aim of the following proposals is to maintain
it. The following definition is now required.

Definition 3.5. Given a scalar λ ∈ (0, 1), the set S is called a robust λ-
contractive set for the closed loop ĀK and disturbance set W if for every x ∈ S,
AKx+ w ∈ λS for all w ∈W; equivalently if AKS⊕W ⊆ λS. If W = {0} the
adjective robust is dropped from the definition.
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Note that every robust λ-contractive set is RPI, and every λ-contractive
set is PI. In what follows, these sets are employed to provide a constructive
proposal for robustifying the initial design of the tube MPC parameters. Note
also that every λ-contractive set is RPI for some level of disturbance. Indeed,
suppose T is a PC-set and a λ-contractive set for ĀK . Since λ ∈ (0, 1) it follows
that ĀkT ⊆ λT ⊂ T. It follows that there exists r > 0 such that λT⊕Br ⊆ T,
hence ĀkT⊕Br ⊆ T.

3.5.2.1 Terminal constraint

Parts (i) of Criteria 3.2 and 3.3 refer to the verification of the terminal conditions
which are usually employed in MPC implementations to guarantee recursive
feasibility of the optimization and stability of the control target. Particularly,
the terminal constraint set is computed such that ĀKX̄f ⊆ X̄f where the linear
feedback K is stabilizing for

(
Ā, B̄

)
, but also for every other model inM given

an admissible RPI set according to Proposition 3.2. Suppose now that the
terminal constraint set is computed not as a mere PI set but as a λ-contractive
set for the closed-loop dynamics, then it holds that ĀKX̄f ⊆ λX̄f . In view of
this, for all x̄ ∈ X̄f and for any (A,B) ∈M it follows that

AK x̄ = AK x̄+
(
ĀK − ĀK

)
x̄ (3.45a)

= ĀK x̄+
(
AK − ĀK

)
x̄ (3.45b)

=⇒ AK x̄ ∈ λX̄f ⊕
(
AK − ĀK

)
{x̄} ⊂ λX̄f ⊕

(
AK − ĀK

)
X̄f . (3.45c)

Assume now that (
AK − ĀK

)
X̄f ⊆ (1− λ) X̄f , (3.46)

it follows that AKX̄f ⊆ X̄f and hence the terminal set remains invariant for the
new candidate for prediction model. According to (3.45) then, if the terminal
constraint set is constructed as a λ-contractive set for

(
Ā, B̄

)
, there exists a

non-empty neighbourhood of
(
Ā, B̄

)
, say M̃(λ) ⊆M, such that the terminal

set is PI for all (A,B) ∈ M̃(λ) when in close-loop with K. As previously
discussed, this is because every λ-contractive set is also an RPI set, in this case
robust to disturbances stemming from the parametric uncertainty within the
terminal set and the associated time-invariant feedback law K.

The drawback of computing the terminal constraint as a λ-contractive
set is that the latter is a PI set by definition, thus it is contained within
the corresponding maximal PI set [98], resulting in a generally smaller RoA
for the controller designed for

(
Ā, B̄

)
. Nevertheless, this proposal allows for
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a-priori certainty about a set of models M̄(λ) for which the terminal set
remains invariant. Furthermore, computing the maximal λ-contractive set
contained within a certain constraint set, say X̄, is as computationally intensive
as computing the associated maximal PI sets [99].

An additional disadvantage is that the λ-contractive set X̄f depends indeed
on λ, hence verifying (3.46) can only be done after X̄f has been computed for
a given contraction factor. It follows that M̃(λ) can only be computed after
X̄f is known. If the goal is to achieve guaranteed invariance for an arbitrarily
defined subset M̃, then an iterative design process is required. Consider a
given target subset M̃ for which guaranteed invariance is required and define
WM̃ as a C-set that contains the terminal parametric uncertainty induced by a
model update within M̃, that is

(
AK − ĀK

)
X̄f ⊆WM̃ for all (A,B) ∈ M̃. It

follows that given a target subset M̃ and a tightening constant λ the sets X̄f

and WM̃ can be computed; if WM̃ * (1− λ) X̄f , recompute with a smaller λ.

Termination of such iterative algorithm is highly model dependent, and
can only be guaranteed if λ is allowed to be in [0, 1), however λ = 0 yields
the most conservative result with a terminal equality constraint, leading to
the smallest possible RoA. However, if the objective is merely to increase the
chances of part (i) of Criterion 3.2 to be met, it is only necessary to design X̄f

as a λ-contractive set for an arbitrarily chosen λ.

There exists, however, a non-iterative another approach for computing the
terminal set in a way that remains invariant for a subset of the uncertainty M̃.
Indeed, the terminal set is not used for tightening, as the RPI set, hence the
drawbacks discussed in Section 3.3.1 are not relevant. The terminal set could
then be computed as a PI set for the pLDI discussed in Section 3.3.1 following
the approach in [93], which guarantees maximum volume and invariance to
all possible candidates (A,B) ∈ M̃. Taking a pLDI approach to compute a
comprehensive PI set would, in theory, yield the least conservative terminal set,
yet possibly intractable to compute. Indeed, algorithms such as the one in [93]
do not compute the absolute maximal PI set for a pLDI, but the maximum
volume PI set given an arbitrarily polytopic complexity for its representation. It
follows then that, although less conservative, this approach could be intractable
when employed to outperform the previous ones.

Independently of the approach, a tighter terminal constraint set is expected
when attempting to guarantee its invariance for a subset M̃ of the model
uncertainty. Ultimately, this represents the trade-off between size of the initial
RoA and the ability to meet part (i) of Criterion 3.2.
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3.5.2.2 Terminal cost

The weight matrix that defines the terminal cost in (3.23) is designed according
to the matrix inequality in hypothesis (d) of Theorem 3.3. This is done to
guarantee that the terminal cost inequality (3.30) is met at all times, which
in turn allows to show that the MPC optimal cost function is a Lyapunov
function for the closed-loop nominal state trajectories. Note however, that
the cost decrease on which the Lyapunov property depends does not rely on
said inequality at the update time t̄. Indeed, the comparison of costs at the
update time involves different models, hence a decrease is explicitly requested
by part (ii) of Criterion 3.3, and not implicitly verified by hypothesis (d) of
Theorem 3.3.

If the model is indeed updated at time t̄, the cost decrease for all t > t̄ does
not depend on quantities associated to the previous model. It follows that an
entirely new terminal cost matrix for the candidate model could be computed
in order to guarantee a cost decrease after the update. In other words, the
verification step in part (i) of Criterion 3.3 can be replaced by a computation
step to define a new terminal weight matrix P such that

A>KPAK +Q+K>RK ≤ P (3.47)

holds. This, of course, has an impact on part (ii) of Criterion 3.3 however not
a necessarily detrimental one, since the latter does not explicitly depends on
how the terminal cost are defined for times t̄ and t̄− 1.

Replacing the verification in part(i) of Criterion 3.3 by a computation
step implies an on-line modification of the controller, however one that is
not necessarily prohibitively complex. Indeed, for a given stable closed-loop
AK , and positive definite weight matrices Q and R, there exists a unique and
positive definite solution to the discrete Lyapunov equation A>KPAK + Q +

K>RK − P = 0. Furthermore, computing a matrix P such that (3.47) holds
with strict inequality is also simple. Indeed, for any γ > 1 the discrete Lyapunov
equation A>KPAK + γ

(
Q+K>RK

)
− P = 0 also has a unique solution since

γ
(
Q+K>RK

)
= Q̃+K>R̃K with Q̃ = γQ > 0 and R̃ = γR > 0. If follows

then that

A>KPAK + γ
(
Q+K>RK

)
− P = 0

=⇒ A>KPAK − P = −γ
(
Q+K>RK

)
=⇒ A>KPAK +Q+K>RK − P = (1− γ)

(
Q+K>RK

)
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=⇒ A>KPAK +Q+K>RK − P < 0.

Thus computing a terminal cost that fulfils (3.47) with strict inequality amounts
to solving one instance of the discrete Lyapunov equation with Q and R scaled
by a particular γ > 1.

3.5.2.3 RPI set for tightening

The likelihood of meeting Criterion 3.1 can be increased through arguments
similar to those employed for the case of the terminal constraint set; that is,
designing the RPI set S to account for possible changes in the plant and its
corresponding effects on its invariance. Suppose that S is computed as an
admissible RPI set for the nominal closed-loop ĀK under disturbances arising
from the composite set W defined in (3.21). For any (A,B) ∈ M that fulfils
Assumption 3.3 and for all e ∈ S, w̃ ∈ BŴ⊕Wp it follows that

AKe+ w̃ = AKe+ w̃ +
(
ĀK − ĀK

)
e

= ĀKe+
(
w̃ +

(
AK − ĀK

)
e
)

=⇒ AKe+ w̃ ∈ ĀKS⊕
(
BŴ⊕Wp ⊕

(
AK − ĀK

)
S
)
.

Clearly, if (
BŴ⊕Wp ⊕

(
AK − ĀK

)
S
)
⊆W (3.48)

then S remains as an RPI set for the candidate (A,B) and its corresponding
disturbance set Wp ⊕ BŴ.

Similarly to the terminal constraint case, it is possible to use (3.48) to
guarantee robust invariance of the set S for a certain subset of models M̃. A
first approach to do so would be to artificially increase the size of the disturbance
set, say to W̃ ⊃W. Note however that, similarly to (3.46), the left hand side
of the inclusion in (3.48) depends on the RPI set S, which in turn depends
on the enlarged set W̃. Thereby the uncertainty subset M̃ for which robust
invariance of S is guaranteed, (thanks to the enlarging of the disturbance set)
could only be computed after the RPI set is known. Again then, if the goal is
to guarantee robust invariance of S for an arbitrarily defined M̃, an iterative
design procedure is required.

However, arbitrarily increasing the size of the disturbance set W is not
necessarily meaningful or conducing to a tight verification of (3.48). A more
constructive approach would be to compute the RPI set S as a robust λ-
contractive set [99]. This is similar to the approach taken for the terminal
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constraint however the effect that these two sets have over the nominal RoA is
opposite, hence it might be desirable to compute, if exists, the minimal robust
λ-contractive set associated to the disturbance set and nominal closed-loop ĀK .
The latter can be computed following an iteration similar to the one used to
compute the non-contractive minimal RPI set. Indeed, define the sequence

Ft+1 = Ft ⊕
ĀtKW
λt+1

(3.49)

with F0 = {0}, then the following results holds.

Theorem 3.6. Assume that AK is strictly stable and W is a C-set. If the
contraction factor λ is such that ĀK/λ is strictly stable, then (i) F = lim

t→∞
Ft

exists, (ii) is a C-set, and (iii) is the minimal λ-contractive set for ĀK under
disturbances bounded in W.

Proof. The proof follows directly form the proof of Theorem 4.1 in [96], and
hinges on the fact that (3.49) is a Cauchy sequence. �

Even though the minimal λ-contractive set exists and is known to be the
limit of (3.49), it might be computationally intractable to compute. If the
hypotheses of Theorem 3.6 hold, then robust λ-contractive outer approximations
of F can be computed in a finite number of iterations following the results
in [100]. Nevertheless, the Minkowski sum scales poorly with the size of the
plant, possibly rendering even such approximations intractable to compute.

An alternative is to employ the algorithm proposed in [99] to compute the
maximal robust λ-contractive set that is contained within an arbitrary compact
set. Suppose that the minimal RPI set associated to ĀK and W is admissible
and refer to it by Sm. The following result holds

Proposition 3.6. If X ⊂ Sm ⊆ X, the maximal robust λ-contractive set inside
X , say SλM (X ), is empty.

Proof. Any robust λ-contractive set associated to ĀK and W is, by definition,
also RPI. Since the minimal RPI is contained within every other RPI set, it
must happen that Sm ⊆ SλM ⊆ X ⊂ Sm which is a contradiction. �

Following Proposition 3.6, a small (although not necessarily minimal) robust
λ-contractive set can be computed as the maximal robust λ-contractive set
associated to a small subset of the state constraints that contains Sm. Never-
theless, this could still lead to an empty set SλM (X ) depending on the value of
λ and the size of X .
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Independent of the approach, assume that a certain non-empty and admis-
sible robust λ-contractive set, say Sλ, exists. The following holds for all e ∈ Sλ,
w ∈W and w̃ ∈ Wp ⊕ BŴ

AKe+ w̃ = AKe+ w̃ +
(
ĀK − ĀK

)
e+ (w − w)

= ĀKe+ w +
(
w̃ − w +

(
AK − ĀK

)
e
)

= ĀKe+ w +

(B − B̄) ŵ + w̃p − wp︸ ︷︷ ︸
w̄p

+
(
AK − ĀK

)
e


=⇒ AKe+ w̃ ∈ λSλ ⊕

((
B − B̄

)
Ŵ⊕ W̄p ⊕

(
AK − ĀK

)
Sλ
)
.

It follows that if

(
B − B̄

)
Ŵ⊕ W̄p ⊕

(
AK − ĀK

)
Sλ ⊆ (1− λ)Sλ

then Sλ remains as an RPI set for the candidate (A,B) and its corresponding
disturbance setWp⊕BŴ. Ultimately this implies that there exists a non-empty
set M̃ ⊆M of candidate models for which Sλ remains robust invariant with
respect to their own uncertainties. Again, however, the size of this set can only
be estimated once Sλ is known and hence an iterative procedure is needed to
compute a λ-contractive RPI set that retains invariance for a given arbitrary
subset M̃.

Note that the disturbance w̄p is defined as the difference between the para-
metric uncertainty arising from each prediction model, hence w̄p =

(
A− Ā

)
x+(

B − B̄
)
u. It follows that the set W̄p, which contains said difference, is con-

tained in the interior of Wp.

The main drawback of using the maximal robust λ-contractive set approach
is that the existence and size of SλM (X ) depend on two arbitrarily chosen
variables, that is λ and X , which may result in a lengthy design process. Also
note that, independent of the approach (either increasing the size of W or
computing a robust λ-contractive set), the resulting set for tightening will be
larger, yielding a smaller nominal RoA X̄N . The RoA of the true controller,
however, is XN = X̄N ⊕ S, thus a smaller X̄N does not necessarily yield a
correspondingly smaller XN since S would be larger. Nevertheless, a smaller
X̄N reduces the control authority of the nominal MPC control law κ̄N(·) and
hands it over to the linear tube gain K, possibly resulting in a decrease of
performance.
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3.5.3 Controller re-design

Even under the relaxations discussed in Section 3.5.1.5, it could happen that
the current converged estimates do not meet all the necessary assumptions
to update the prediction model. Particularly, as shown by Proposition 3.5,
the critical properties are the invariance of the terminal constraint set and
the robust invariance of the tightening set. Although the design could be
robustified to account for a subset of models M̃ as discussed in Section 3.5.2,
any (A,B) /∈ M̃ may still not meet the necessary conditions to become the
new prediction model.

If the estimates converge to (A,B) /∈ M̃ and are expected to remain there
for a considerable amount of time, updating the prediction model would require
a re-design of the controller parameters. It is likely that only the invariant sets
need to be re-computed, however this would result in a new controller with a
completely different RoA and performance. In order to account for such an
event define E = (Wp, K, S,X, P ) and consider the following result.

Proposition 3.7. Assume that, for a certain set of converged estimates (A,B),
a set of parameters Ẽ =

(
Wp, K̃, S̃, X̃f ,P

)
that fulfils the assumptions of

Theorem 3.3 exists. Furthermore, assume that the prediction model is to be
updated by (A,B) at time t̄. If QN

(
Ẽ , x(t̄)

)
is feasible and V ◦N

(
Ẽ , x̄(t)

)
−

VN (E , x̄(t̄− 1)) < −` (x̄?0 (x̄(t̄− 1)) , ū?0 (x̄(t̄− 1))), then for all t ≥ t̄ (i) the
optimization problem PN

(
Ẽ , x(t)

)
is feasible, (ii) state and input constraints

are met despite the disturbances, (iii) the set S̃ is exponentially stable with a
region of attraction X̄N

(
Ẽ
)
⊕ S̃ for the constrained closed-loop system

x(t+ 1) = A(t) + BκN (x(t)) + w(t),

for all w(t) ∈ Wp +BŴ and (iv) the origin is exponentially stable with a region
of attraction X̄N

(
Ẽ
)
for the nominal closed-loop system

x̄(t+ 1) = Ax̄(t) + Bκ̄N (x(t)) .

Proof. It follows from the proof of Theorem 3.3 and Proposition 3.5. �

Note that the origin remains exponentially stable for the nominal closed-
loop. Provided then that the cost decrease is met, the nominal trajectories
remain exponentially converging towards the origin during the transition. The
latter implies that the true trajectories also continue to converge exponentially
fast towards the RPI set S̃, albeit S̃ 6= S is likely. In fact, note that if x̄(t̄− 1)
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is already inside S, the cost decrease is met only if x̄(t̄) ∈ S̃, hence resulting in
V ◦N

(
Ẽ , x̄(t)

)
= 0.

Moreover, following Proposition 3.5 it is straightforward to show that
provided x(t) ∈ S̃ for some t, the controller transition is possible for any
(A,B) ∈M for which a corresponding Ẽ exists. The only obstacle in finding an
appropriate Ẽ for any (A,B) ∈M is the admissibility of the robust invariant
set S̃, which size depends on (A,B) andM, and thus could not be met given
the constraint sets X and U.

A drawback of resorting to the re-design of the controller is that the
computational cost of computing invariant sets grows rapidly with the size of
the state vector, thus making it difficult to compute them in most applications
(even off-line). Nevertheless, it is important to note that although the plant may
be accurately represented by (A,B) instead of

(
Ā, B̄

)
, the robustness of the tube

MPC controller guarantees that constraints are met at all times, independent
of when the controller transition takes place. Therefore, once the estimates
have converged to an accurate representation of the plant, the computation
of Ẽ can be performed during multiple sampling periods. Furthermore there
exists efficient methods to compute invariant approximations to the type of
set usually employed in MPC implementations, such as the minimal RPI set
(see for example [100, 101]). Ultimately, this implies that the conditions for
controller transition are not necessarily too demanding, and more importantly,
that the transition can be performed without demanding the plant to be shut
down.

Finally, as mentioned before, the three approaches proposed here are not
mutually exclusive. Particularly, a robustified design increases the changes of
the verification procedure to yield a positive outcome. If that is not the case,
then a full controller re-design may be launched. Moreover, if the estimates
have settled and are expected to remain there for a considerable amount of
time, even if re-design is not necessary for prediction model update, it may be
convenient due to performance requirements.

3.6 Illustrative example

The regulation and estimation capabilities of the propose adaptive MPC con-
troller are now demonstrated through a numerical example. To this end, a
point-mass spring-damper system is considered as the controlled plant (see
Figure 3.1). The controlling input is an horizontal force applied directly onto
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the point mass, and the control objective is to steer the mass (which represents
a truck) to an horizontal equilibrium arbitrarily defined.

m

k

cc

u

0

Figure 3.1: True plant.

The continuous time second order differential equation that represents the
dynamics of such plant is

ẋ =

[
0 1

−k/m −c/m

]
x+

[
0

100/m

]
u. (3.50)

The first element of the state vector, say x1, represents the horizontal position of
the truck (with respect to an arbitrary equilibrium point) while the second, x2,
represent the truck’s velocity. A sampling time Ts = 0.1[s] is used to discretise
(3.50) and obtain a state space model of the form of (2.1a). Finally, the truck
is supposed to be subject to state and input box constraints defined by

X =
{
x ∈ R2‖|x||∞ ≤ 15

}
U = {u ∈ R | |u| ≤ 5} .

3.6.1 A-priori knowledge

At initialization the truck is loaded with a fixed and known mass, and the
spring and damper constants are known factory values. Nevertheless, during
operation the truck might receive up to a 25% additional cargo, and changes in
the surrounding environmental temperature may result in the spring loosing
up to 25% of its stiffness. This a-priori insight results in 4 limit scenarios,
summarized in Table 3.1.

The Nominal–Nominal case ((I) in Table 3.1) is used to define the initial
prediction model

(
Ā, B̄

)
, since that is the true model at initialization and there

is no certainty on whether any of the other cases will effectively take place. In
order to account for all possible changes within the cases presented in Table 3.1,
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Table 3.1: Plant limit conditions.

Cargo–Stiffness m[kg] k[N/m] c[N/ms] (A,B)
(I) Nominal–Nominal 2 10 30 (AI , BI)
(II) Nominal–Decreased 2 7.5 30 (AII , BII)
(III) Increased–Nominal 2.5 10 30 (AIII , BIII)
(IV) Increased–Decreased 2.5 7.5 30 (AIV , BIV )

and given the linearity of the system, the setM is defined as

M = co {Aj, Bj}j=II,...,IV ,

which results in the parametric uncertainty set being defined by

Wp = co

( ⋃
j=II,III,IV

Wj
p

)
,

with
Wj

p = (Aj − AI)X⊕ (Bj −BI)U.

This guarantees that Wp is a PC-set.

The corresponding parametric uncertainty set is shown in Figure 3.2, along-
side the state constraint set. Although the scenarios considered in Table 3.1
represent changes of up to one fourth in some of the plant parameters, the
uncertainty set is contained in the interior of the state constraint set, fulfilling
some of the necessary conditions for an admissible RPI set to exist.
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Figure 3.2: Disturbance sets: X, W, Wp, B̄Ŵ.
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3.6.2 PE and RLS design parameters

First note that, provided that m is not zero, the (continuous time) system (3.50)
is state reachable for any combination of (k, c,m), and so Assumption 3.1 is
met independent the current condition of the plant. This allows for the analysis
in Section 3.2 to be valid. The selection of the input partition parameter α is
also closely related to the selection of the PE parameters l and ρ0. Indeed, a
larger α might be desirable to increase the size of the controller’s RoA, however
this will also result in a tighter constraint for the exciting part of the input.
The latter means that a smaller ρ0 or a larger l will be required to meet the
PE constraint. Also recall that, according to Theorem 3.2, the exciting part of
the input is required to be PE of order 2n+m+ 1 in order to guarantee that
the regressor is PE of order 1. In view of this h = 6 and the values of l and ρ0

are set to fulfil the discussion in Section 3.2.3.3.

Table 3.2 summarizes the values selected for the parameteres associated to
the PE requirements. These fulfil all the conditions discussed in Section 3.2.
The value of α is set small, so that 95% of the actuator’s capacity is handed

Table 3.2: Parameters for the persistently exciting signal.

Parameter Value
α 0.95
h 6
l 6
ρ0 0.02

over to the controller, allowing for a large RoA. The corresponding disturbance
set B̄Ŵ and the lumped disturbance set W are shown in Figure 3.2. The latter
is also contained in the interior of the state constraint set, which is a necessary
condition for an admissible RPI set to exist.

In order to initialize the exciting part it is necessary to compute a buffer
sequence that fulfils Assumption 3.2. This is done taking l random elements
within Ŵ and then repeating them periodically to form the buffer sequence.
Figure 3.3 shows the resulting sequence that fulfils all requirements of Assump-
tion 3.2 and the constraint bounds. Finally, the forgetting factor for the RLS
algorithm is set to λ = 0.75, in order to quickly forget the data associated to
past realization of the plant after a change takes place.
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Figure 3.3: Buffer sequence: ŵb, Ŵ.

3.6.3 Tube-MPC design parameters

For the tube MPC optimization the horizon is set to N = 3. A larger horizon
would increase the size of the nominal RoA, however the main source of
conservatism of the propose approach lies in the size of the RPI set associated
to the uncertainty set W, which does not depend on the horizon. The cost
matrices are set to R = 1 and

Q =

[
100 0

0 1

]

with K = KLQR

(
Ā, B̄, Q,R

)
= [−2.3441 − 0.1709].

Owing to the discussion in Section 3.5, two different approaches are taken
to design the remaining parameters. First, the different elements are computed
following standard requirements, according the discussion in Chapter 2. After,
said elements are computed in a robustified manner, according the discussion
in Section 3.5.2, in order to increase the likelihood of a set of converged
estimates being a valid candidate for prediction model update. Nevertheless,
the particular set M̃, that contains all the model for which certain criteria are
guaranteed to be met, is not comprehensively computed. Tables 3.3 and 3.4
summarize how the remaining elements are designed in each approach. The
additional subindices s and r will be used wherever explicit differentiation is
required.

Figure 3.4 provides a direct comparison of the tightening sets and terminal
constraint sets obtained for both approaches. As expected, any robust λ-
contractive set is also RPI and hence Ss ⊂ Sr, while any λ-contractive set is
also PI and hence X̄f,r ⊂ X̄f,s. This results, as shown in Figure 3.5, in smaller
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RoAs (true and nominal) for the robustified design approach.

Table 3.3: Tube MPC parameters, standard design approach.

Parameter Standard
Ss Minimal RPI set (admissible)
X̄f,s Maximal PI set (admissible)
Ps Solution of Ā>KPĀK − P +Q+K>RK = 0

Table 3.4: Tube MPC parameters, robustified design approach.

Parameter Robustified
Sr Minimal robust λ-contractive set (admissible) λ = 0.98
X̄f,r Maximal λ-contractive set (admissible) λ = 0.99
Pr Solution of Ā>KPĀK − P + γ

(
Q+K>RK

)
= 0 γ = 1.15
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Figure 3.4: Invariant sets: (Left) Ss, Sr, (Right) X̄f,s, X̄f,r.

Figure 3.6 compares the tightening sets and RoAs, of both approaches,
with the full state constraint set. The tightening set is, in both cases, large in
the second dimension of the state, resulting in a nominal region of attraction
X̄N that is small compared to the state constraint set X. The true region of
attraction XN = X̄N ⊕ S is considerably larger, however, still only represents
up to 20% of the allowable state space. In particular, the proposed controller
cannot guarantee constraint satisfaction for initial conditions with velocities
larger than around 4[m/s]. This is due to the state cost matrix Q and the
dynamics of the system, which ultimately define the shape of the linear gain K
and the shape of the tightening set S.
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Figure 3.5: RoA sets: (Left) X̄N,s, X̄N,r, (Right) XN,s, XN,r.
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Figure 3.6: Tightening and RoA sets for standard (Top) and robustified
(Bottom) designs: X, S, XN , X̄N .
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3.6.4 Dual controller

In order to assess the performance of the proposed dual controller the plant
(3.50) is assumed to be slowly changing in accordance to the a-priori insight
described by Table 3.1. Table 3.5 describes the changing profile that the plant
is assumed to follow throughout a single realization of operation. Said pattern
respects the a-priori knowledge of how the plant may change, and results in a
plant that is realized by several interior points ofM, rather than just leaping
between the vertices. Figure 3.7 shows how the bottom row values of the state

Table 3.5: Time variation of the plant parameters.

Time interval Plant dynamics
(a) t ∈ [0 39) Nominal-Nominal
(b) t ∈ [40 59) Linear decrease of the spring stiffness up to -25%
(c) t ∈ [60 79) Nominal-Decreased
(d) t ∈ [80 119) Instantaneous increase of 25% in cargo (Increased-Decreased)
(e) t ∈ [120 139) Linear increase of the spring stiffness up to Nominal
(f) t ∈ [140 159) Increased-Nominal
(g) t ∈ [160 179) Linear removal of the additional cargo
(h) t ≥ 180 Nominal-Nominal

matrix A (in discrete-time) change throughout time. The results that follow
are obtained by initializing the plant at x(0) = [−1.6 15]> ∈ XN,r ⊂ XN,s, and
running the simulation for a total of T = 220 time instances.

−0.26

−0.16

A
2
1

0 39 59 79 119 139 159 179 220
0.2

0.3

Time instant t

A
2
2

Figure 3.7: Time variation of the plant parameters.



3.6. ILLUSTRATIVE EXAMPLE 91

3.6.4.1 Parameter estimation performance

The implementation of the dual MPC controller guarantees that the regressor
is PE of order 1, and hence the RLS estimates must converge to the true plant
parameters. Note however, that given the time-varying nature of the plant, the
speed of convergence is tightly related to the forgetting factor used in the RLS
algorithm. In this particular case said factor has been set to λ = 0.75, in order
to quickly forget past information once a change has taken place.

Figures 3.8, 3.9 and 3.10 show the evolution of the true plant parameters
and the estimates values through time. In both design approaches the RLS
estimates converge to the true plant parameters once the latter have settled. The
convergence is exact and occurs in finite time, due to the lack of measurement
noise, however the number of time steps needed for convergence depends on
the forgetting factor. The estimates of A11 and A21 present a high level of
oscillation during the time intervals associated to a change in the cargo of the
truck. This is due to the dynamics of the truck, and the outdated information
carried by the RLS algorithm. However, this is not an issue for the MPC
controller since the estimates are only considered as a candidate for updating
the prediction model once they have converged.
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Figure 3.8: Parameter estimation results for A: true value, standard
design estimate, robustified design estimate.

Finally, figure 3.11 shows the estimation error Eid(t) and the value of the
logical variable f(t) that represents whether a particular set of estimates is a
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Figure 3.9: Parameter estimation results for A: true value, standard
design estimate, robustified design estimate.

valid candidate for prediction model update or not. The error is computed as

Eid(t) = max

∣∣∣∣∣ θ̂(t)− θ(t)θ(t)

∣∣∣∣∣ ,
where the division and the maximisation are performed element-wise. The flag
is set to f(t) = 1 if the estimates have converged (Eid(t) ≈ 0) and fulfil all
conditions of Proposition 3.4, and f(t) = 0 otherwise. As expected, since the
nominal prediction model used at initialization matches exactly the true plant
parameters, the Eid(t) = 0 and f(t) = 1 for all t < t1, however f(t) = 0 for all
t ≥ t1 for the standard design. In other words, albeit robust and stabilizing,
a naive approach to the design of the MPC controller may render impossible
to use any other model for prediction, even if it better represents the current
state of the plant.
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Figure 3.10: Parameter estimation results for B: true value, standard
design estimate, robustified design estimate.
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On the other hand, the robustified design allows for several periods of model
update. Indeed, the prediction model is updated at three different times to
match (AII , BII), (AIII , BIII) and to return to (AI , BI) during the last time
interval. This leaves (AIV , BIV ) as the only plant realization that cannot be
used as a prediction model for the MPC optimization. For this particular case,
it is the robust invariance of S that cannot be guaranteed for (AIV , BIV ).

3.6.4.2 Control performance

The control performance is analysed next. Given that the standard design
approach completely fails the task of prediction model update, only the results
obtained through the robust design approach are presented. Figure 3.12 shows a
phase plot of the nominal x̄(t) and true x(t) state trajectories obtained through
the implementation of the proposed dual controller. Recall that the true initial
state is set to x(0) = [−1.6 15]>, but at time t = 0 the nominal state is defined
by the optimizer to guarantee e(0) ∈ S and that the nominal constraints are
met. In this particular case this results in x̄(0) = [−1.3753 5.0689]>, which
lies at the border of the PC-set X̄N .
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Figure 3.12: Phase plot of the state trajectory from x(0) = [−1.6 15]>:
x(t), x̄(t), S, S̄.

The result in Theorem 3.3 guarantees exponential convergence of x(t) to S
and x̄(t) to the origin, however, as shown in Figure 3.12, the former converges
to a much smaller neighbourhood of the origin. This is due to two reasons.
First and foremost, the robust design approach allows for several instances of
model update, which results in wp(t) = 0 for several time steps. Ultimately
this implies that the only disturbance affecting the system is that induced by
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the exciting part ŵ(t), which is bounded in a set considerably smaller than the
one used to compute S (see Figure 3.2). This has a secondary effect which is
to keep the state trajectories close to the origin up until a new change takes
place, which ultimately reduces the size of the corresponding uncertainty since
not the whole state and input spaces are being used (similar to the ideas of
reduced uncertainty sets discussed in [30]).

Secondly, note that the tube control law can be recast as

û(t) = Kx(t) + ū?0(t)−Kx̄(t)

where the last two terms converge exponentially fast to the origin. In the limit
then, the true closed-loop simplifies to

x(t+ 1) = (A+BK)x(t) +Bŵ(t) (3.51)

with (A+BK) stable for all (A,B) ∈ M according to Proposition 3.1 and
x(t) ∈ S and Bŵ(t) ∈ BŴ ⊂W. Hence the true state converges to a subset of
S. In Figure 3.12 said set is depicted by S̄, computed as the minimal RPI set
for (AI , BI) (the true representation of the plant for all t ≥ t7) in presence of
disturbances bounded in BIŴ.

Figures 3.13 and 3.14 show the true, nominal and exciting part of the
input that drive the state trajectories shown in Figure 3.12. As expected, the
nominal input converges fairly fast, which results in u(t) = Kx(t) + Bŵ(t)

for all t ≥ 14. The exciting part of the input guarantees that the true input
remains persistently exciting of order n+m, and ultimate that the regressor is
persistently exciting (of order 1). The exciting sequence, as shown in Figure 3.14,
changes only slightly throughout operation, and is otherwise dominated by the
buffer sequence, which is defined off-line and is not necessarily optimal for the
current plant conditions and state. This is due to the non-convexity of the PE
optimization used to define the exciting sequence, and the approach to deal
with its feasibility, which forces l-periodicity on the optimal solution at each
time instant.

Nevertheless, the optimizer is able to intervene and modify the exciting
sequence at very specific times through operation. For example, after the first
h+ l− 1 time steps have passed, the buffer sequence runs out and the optimizer
takes charge of defining the exciting sequence in a way that is optimal for the
current state and prediction model. Another example is found at t ≥ 150,
after the estimates have converged to (AIII , BIII). Since the latter is indeed
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employed to update the prediction model, the optimizer proceeds to update
certain elements of the l-periodic exciting sequence to account for the new plant
realisation.
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Figure 3.13: Input trajectory: u(t) = κN(x(t)), ū(t) = κ̄N(x(t)).
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Figure 3.14: Excitation input trajectory: wh(t).

3.6.4.3 Robust versus adaptive approaches

The proposed adaptive MPC controller suffers from the fact that the excitation
is always present, and hence perfect regulation is not possible. In view of
Theorem 3.3 and Proposition 3.1, it could be argued that robust control would
be enough to achieve stability and constraint satisfaction for such a time-varying
plant. This is indeed, the case. Figure 3.15 shows the state trajectories obtained
when using a simple tube-based MPC controller to regulate the plant (that is,
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no input partition). Indeed, given Proposition 3.1, and the lack of excitation,
the state converges to the origin fairly fast.
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Figure 3.15: State trajectory under standard tube MPC from x(0) = [−1.6 15]>:
x1(t), x2(t).

Nevertheless, the objective of PETMPC dual controller is not just to
regulate the plant, but also to obtain a more accurate representation of it
during its operation. Figure 3.16 shows a selection of the estimates obtained
by employing the same RLS algorithm, but fed with the closed-loop data
generated by closing the loop with a standard tube-based MPC controller (that
is, without guaranteed persistence of excitation). It is clear that, although
perfect regulation is achieved, the estimates of the plant’s parameters do not
converge to the true values.

Finally, Table 3.6 presents the nominal and true aggregated cost of the three
discussed approaches: PETMPC with standard design, PETMPC with robus-
tified design and standard TMPC. The nominal aggregated cost is computed
as

C̄ =
T∑
t=0

x̄>(t)Qx̄(t) + ū>(t)Rū(t)

and the true aggregated cost as

C =
T∑
t=0

x>(t)Qx(t) + u>(t)Ru(t).

Note that, due to the exciting part of the input, the true states and inputs
do not converge to the origin when the loop is closed with the PETMPC
controller, as opposed to what happens when standard TMPC is implemented.
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Figure 3.16: Parameter estimation results for standard tube MPC: true
value, Tube MPC design estimate.

This results in a monotonically increasing C, which is why the true aggregated
cost of the PETMPC variants is much larger when compared to the TMPC
one. Nevertheless, the robustified approach to PETMPC outperforms the
standard one in both measures, and it even outperforms a standard TMPC
implementation in the nominal aggregated cost. This is notwithstanding the
fact that the nominal control law κ̄N(·) has a larger control input authority in
the standard TMPC given the smaller tightening set associated to it, stressing
the importance of having an accurate prediction model.

Table 3.6: PE associated parameters.

Implementation C̄ C
PETMPC–standard 294.7099 650.5544
PETMPC–robustified 274.0070 644.4342

TMPC–standard 279.4956 577.1174

In view of the true aggregated cost results depicted by Table 3.6 it could
be argued that standard TMPC implementations outperform the proposed
adaptive controller. However, it is important to note that this apparent
improved performance can only be observed in individual experiments, i.e., a
single closed-loop trajectory from a single initial state as analysed here. In
a more realistic operation setting, a controller has more to deal with than
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just a single initial value problem; changes to set-points and disturbances
will repeatedly move the plant away from equilibrium. In any of these cases,
having access to a more accurate representation of the plant will result in
better predictions for the nominal MPC controller, and thus in an improved
performance.

3.7 Summary

This chapter discussed the current approaches to adaptive model predictive
control within the MPC framework, and proposed a new robust-based solution
to the dual control problem. The proposed approach hinges on the partition
of the control input into a regulatory part and an exciting part, which ulti-
mately allows to tackle both problems independently, and guarantee robust
constraint satisfaction, robust stabilizability, and convergence of the estimates
of a standard RLS algorithm. In particular, the latter is achieved by forcing
the exciting part of the input to be persistently exciting of appropriate order,
which provided certain assumptions hold, guarantees the RLS regressor to be
persistently exciting. The exciting sequence could be designed off-line to be
PE of any required order, however in this chapter it is designed on-line, driven
by the solution of a receding horizon MPC-like optimization problem. The
objective of the latter is to introduce feedback in the computation of such a
sequence, in order to guarantee that no unnecessary excitation is introduced
into the system.

The main drawback of the proposed approach is that, although guaranteed
to converge to the current true plant, the parameter estimates cannot be readily
used to update the MPC’s prediction model. This is because several of the
MPC’s elements are specifically computed for a single prediction model, and
their properties may not hold for any other. This is overcome by proposing
several simple steps of robustification for the design of such elements, which
although not necessarily in full, may guarantee the adequacy of some future
estimates for updating the prediction model.

The numerical example shows that all the guarantees claimed in Theorem 3.3
and Theorem 3.2 are indeed attained, however they also present several avenues
for improvement. For example, Theorem 3.3 claims robust stability of the
set S for the true dynamics, however the true state trajectory converges to a
much smaller neighbourhood of the origin (see Figure 3.12). This is thanks
to Proposition 3.1, and the updating of the prediction model. If at any time
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instant x(t) ∈ S, then x̄(t) = ū(t) = 0 can be guaranteed by solving the variant
of tube MPC that optimizes trajectories, hence guaranteeing that the closed-
loop reduces to (3.51) for all subsequent time steps. Stability of a smaller
neighbourhood of the origin can then be guaranteed, at the expense of an
additional verification step to test whether x(t) ∈ S.

There is also room for improvement in the approach to guarantee recursive
feasibility of the PE related optimization. Indeed, although the optimizer is able
to modify the buffer sequence at key time instances (when the model is updated
for example), the exciting sequence is mostly dominated by the buffer sequence
(see Figure 3.3). As previously discussed, this is due to the non-convexity
of the PE constraint, and the recursive feasibility guarantee that relies on
the l-periodic application of previously feasible values. In particular, the non-
convexity of the PE constraint could be explicitly tackled by convexification
techniques [102], possibly leading to less conservative outcomes.

Finally, although the approach is deemed adaptive, it is only the prediction
model which is sought to be actively updated, leaving all the other parameters of
the MPC controller fixed (or changed when needed according to Section 3.5.3).
There are, however, several elements that, if actively updated, may help
improve performance throughout the plant’s operation. An obvious example
are the cost matrices, which may need to be updated to account for changes
in the prediction model. Another example is the input partition parameter α.
Indeed, the numerical example is set such that the plant continues to undergo
changes throughout the simulation time but this might not be the case. If the
plant parameters have settled, the control performance could be improved by
returning full authority of the control input to the MPC optimization, allowing
the excitation to return only when a new change is detected.



Chapter 4

Robust MPC for switching
systems: minimum dwell-time for
feasible and stabilizing switching

4.1 Introduction

Certainly, as established in Chapter 3, the prediction model of an MPC con-
troller plays a critical role in the overall control performance. In Chapter 3
an adaptive MPC controller was proposed to address the case in which the
system’s dynamics are slowly changing in an uncertain manner. Robust stabil-
ity and constraint satisfaction are guaranteed alongside with convergence of
parameter estimates due to the probing effects of a part of the input which is
specifically designed to excite the system. A key disadvantage of the PETMPC
approach is that instantaneous updating of the prediction model might not be
possible, thereby limiting the improvement in performance that is sought by
implementing adaptive algorithms. This is circumvented by noting that the
approach is robust to the entire parametric uncertainty, hence a new controller
can be designed on-line and the switch can feasibly take place as soon as the
true state enters the new RPI set.

The computation of the several elements related to the new controller,
however, may take the time spanning a large number of time steps. Therefore,
the assumption on slowly varying systems is key to allow for a prediction
model update before the current estimates become obsolete. However, if the
system experiments step-wise changes, every set of converged estimates may
require a full controller redesign. This is disadvantageous, but not necessarily
a drawback of the approach proposed in Chapter 3, but of the control and
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modelling paradigms employed for controlling a particular physical system.

Step-wise changes in the dynamics of a plant usually obey a modification of
the inherent structure of the system. Sources of these changes are many and can
range from system faults [103] to parts of the model becoming active/inactive
depending on the current values of the state [104,105]. Given their structural
source, however, it is reasonable to expect these changes to be among a finite
number of elements, opposed to the compact setM employed in Chapter 3
which is uncountable. Systems that undergo step-wise changes within a finite
amount of different dynamical representations are often referred to as switching
systems [106]. In the following discussion the focus is placed around switching
control strategies based on MPC and related controllers, such as optimal
control [107] and set theoretic methods [108].

Switching systems are comprehensively represented by a finite set of dynam-
ical models and a collection of rules that defines which model is active at every
time instant. These rules, albeit time-dependent, are not necessarily defined
by explicit functions of time, and may even be completely arbitrary. A typical
example of the former arises when several different models are used to represent
the non-linear dynamics of a plant over the entire state space [106]. The
area of the state space that each model covers depends on the non-linearities
of the plant, and the switching takes place at the boundaries of these parti-
tions [18, 104,105,109–112]. The switching signal depends on the current state,
which in turn depends on the initial state, the control input, the (non-linear)
dynamics of the plant and the time that has passed since initialization. The
state trajectories, however, are completely defined by the sequence of control
actions applied to the plant, hence a certain trajectory of switches can be
forced by an appropriate controller design. In fact, in some cases the switching
sequence is explicitly addressed as a design variable [110].

Arbitrary switching sequences, on the other hand, do not obey any particular
rule such as those defined by partitioning the state space, thus a switch can
take place at any given time [113]. Examples of arbitrary switching can be
found in systems that are subject to externally controlled actuators, such as
upstream valves allowing inflow of certain reactants in a tank system [109]. In
the most broad definition of arbitrary switching sequences, future values of
the sequence are entirely random and hence cannot be predicted; this means
that an MPC controller lacks the information to directly account for a change
in the plant’s dynamics throughout its prediction horizon [114]. Set-based
robust approaches, such as tube MPC, could be implemented to account for all
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possible changes [105], albeit resorting to high degrees of conservatism.

Conversely, and assuming that each element of the set of describing models
fulfils the assumptions of Chapter 2, the design of locally stabilizing and
constraint enforcing MPC controllers, with good individual performance, poses
no major challenge. It is natural then to inquire whether a collection of stable
and constraint admissible closed-loop systems remains stable and constraint
admissible through arbitrary switching between them; the answer is no. There
are certain cases in which a set of independently stabilized (or autonomous)
LTI modes can be shown to be stable despite arbitrary (and arbitrarily fast)
switching [107,115–119]. However, most of these approaches rely on explicit
characterization of the closed-loop system – which is not trivial in MPC –
and the existence of a common Lyapunov function [120, 121], hence placing
strong restrictions on the heterogeneity of the different modes. It follows then,
that it is generally not trivial to guarantee stability of a switching system
that switches arbitrarily fast between modes that have been stabilized by
independent controllers [106,113] (particularly non-linear controllers such as
MPC). Moreover, the problem of constraint admissibility becomes particularly
complex when the different dynamical models, also called modes from now on,
are allowed to be subject to heterogeneous constraints.

Several authors have addressed the problem of guaranteeing stable and
admissible closed-loop trajectories under arbitrary switching between indepen-
dently closed closed-loops (within the MPC context and related). A tool that
is repeatedly employed in this endeavour is the dwell-time, and most of the
proposed approaches resort to either coupling the design of the individual MPC
controllers, or centralizing the control on a single MPC [108,114–117,122–128].
Generally speaking, a dwell-time is the guaranteed number of time steps (or
length of switching interval in continuous time implementations) that the switch-
ing system remains in a particular dynamical mode. This concept introduces
certain conservatism in the notion of arbitrary switching since it effectively
imposes a constraint on how fast a switch can happen.

Nevertheless, many physical systems subject to arbitrary switching on their
dynamics do exhibit this type of behaviour, as opposed to impulsive changes
back and forth. Furthermore, there exists many examples of systems that
can only experience directed switching; consider for example an unmanned
aerial vehicle that is remotely directed to drop its payload. The mass of the
controlled system, and hence its dynamics, experience a step-wise change at an
arbitrary time, however a change back is generally possible only when operation
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has finished. Another frequent concept is the mode-dependent dwell-time,
or MDT. MDTs are employed to endow some flexibility to the controller by
acknowledging that different modes might be constrained to remain active for
different periods of time.

4.1.1 Switching with prescribed dwell-time

Depending on the application, it may happen that the dwell-time between
the different dynamical modes is inherently fixed by the system’s functioning,
hence not open for design. Consider again a tank system with an externally
controlled inflow valve. If the source of the inflow is subject to minimum volume
constraints then the minimum amount of time the valve is open (prescribed
dwell-time of such a mode) is set by an external demand.

In [122], for example, the MDTs are not only assumed prescribed, but also
periodically returning; that is, the system is assumed to remain fixed within a
certain mode during its corresponding MDT but in between these fixed events
arbitrarily fast switching is allowed to take place during a maximum period
of time T . This is a more general approach to the dwell-time problem, but
still poses constraints on how arbitrary the switching can be. A collection of
unconstrained linear modes subject to homogeneous disturbances is studied
and the control strategy can be summarized as a cascade of robust controllers.
The first layer is a tube-based approach designed to guarantee convergence of a
neighbourhood of the origin in presence of the additive disturbance. Standard
tube approaches use robust invariant sets as a cross-section for the tube, but
in this case a mode-dependent persistent RPI set is introduced, to account for
the prescribed periodical MDTs. The second layer of robust control is used
to stabilize the undisturbed switching system with the robust LTV approach
proposed in [26]. The two layers of robustness, however, may lead to small
regions of attraction in the presence of (input) constraints. Furthermore, the
iterations required for the computation of the generalized RPI set proposed
in [122] may grow prohibitively complex.

A set theory based alternative that accounts for constraints is presented
in [123, 129]. A set of command governors (CG) units are designed for the
admissible stabilization of each mode of the system, which in this case are
considered linear and subject to homogeneous disturbances and constraints.
Each CG unit has a particular feasibility region, within the constraints, hence
at the moment of switching it may happen that the current state is not feasible
for the CG designed for the mode becoming active. If this is the case, the
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concept of 1-step ahead robust controllable sets is employed to guarantee finite
time convergence to the intersection of the neighbouring feasibility regions. In
simple terms, a set-based controller is employed to recover feasibility of the
corresponding CG unit during the transition. The dwell-time in this approach
is not seen as a minimum time a mode is active, but as a maximum time allowed
for completing the transition. The drawback of this approach is twofold and
pertaining exclusively to the transition controller. First, stability guarantees
(or tracking capabilities) are completely lost during the transition, because the
goal shifts from stabilization of a point to minimum time convergence of a set.
Secondly, although feasibility is achieved thanks to the homogeneity of the
constraints (which results in all the CG feasibility regions contained within a
common set), there is no guarantee that the transition controller will be able
to meet the required transition time.

To guarantee constraint satisfaction without violating the prescribed dwell-
times [124,130] employs the concept of dwell-time invariant/contractive sets
first proposed in [131]. These sets are not invariant (or contractive) in the
more standard definition [99], but better described as returnable sets under
admissible switching sequences (similar to the generalized RPI sets in [122]). In
simple terms, a state trajectory that starts within this set is guaranteed to be
inside the set after any number of exact or surpassed dwell-times, but may be
outside for times that fall short of an exact dwell-time. In [131] the existence of
these sets is shown to be necessary and sufficient to guarantee admissible and
asymptotically stable closed-loop trajectories of autonomous (or independently
controlled) undisturbed switching linear systems subject to state constraints
and a prescribed dwell-time.

In [124] these sets are employed as a terminal set for a centralized min-max
MPC implementation that maximises over all possible admissible switching
sequences, given the horizon length, and current and previously active modes.
These sets, however, are returnable only for admissible switching sequences,
which are defined following specific dwell times for each mode. On the other
hand, the MPC horizon is fixed and recedes only by one time step each instance,
possibly resulting in non-admissible sequences within the prediction time. This
issue is solved by considering only a subset of the returnable set, which is
shown to be returnable for curtailed sequences. The min-max optimization
is discretised to comprehensively account for all possible switching sequences;
this finite characterization means that the min-max optimization is tractable,
however the design required to guarantee recursive feasibility of the optimization



106 CHAPTER 4. SWITCHING MPC

and exponential stability of the origin becomes considerably more complex than
in standard (robust) MPC implementations. Recursive feasibility is guaranteed
by including consistency constraints in the MPC optimization problem, to force
the control actions to be feasible throughout the maximisation over switching
sequences that have common initial modes. Exponential stability of the origin
is guaranteed by extending the length of the horizon over which the mode-2
controller (the terminal controller) is active, to ensure the standard quadratic
terminal cost decreases throughout admissible switching sequences. The latter
interacts with the consistency constraints resulting in, possibly, small regions
of attraction for the overall switching controller.

In order to avoid a min-max optimization [125] assumes that the switching
sequence is known over the MPC prediction horizon. This is clearly more
demanding than knowledge of the instantaneous value of the active mode,
however it also allows for a considerably simpler design procedure. Undis-
turbed linear systems subject to homogeneous state and input constraints are
analysed and the concept of backwards reachability is employed to guarantee
constraint satisfaction despite the switching given a prescribe dwell-time d
(same for all modes). A collection of d backwards reachability sets is designed
for each mode such that the inner-most one is a subset of the outer-most one
of the neighbouring modes. Given that this collection is backwards reachable,
initialization in the outer-most guarantees the existence a sequence of control
actions that drives the state into the inner-most one by the end of the cor-
responding dwell-time. This behaviour is enforced by actively changing the
terminal constraint of the receding horizon optimization problem at each time
instant, to align with the current left-over span of the dwell-time. Once the
dwell-time has expired, and the inner-most set is guaranteed to be reachable
within the horizon, safe transition to any neighbouring mode is ensured given
the coupled design. Asymptotic stability of the closed-loop is shown across
the switching intervals instead of the switching instances, although for a long
enough dwell-time rather than a particularly prescribed one. The algorithm
used to compute the backwards inter-reachable sets is initialized at the maximal
PI set for a particular stabilizing linear feedback and mode, and it considers
reachability under this same feedback rather than any control action. The
latter is done neglecting the input constraints, hence there is no guarantee the
algorithm will converge to a constraint abiding collection of inter-reachable
sets.

A similar approach is presented by the same authors in [126]. In this case
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the switching sequence is not assumed to be known over the prediction horizon
of the MPC controller, however stability guarantees are not devised. Again,
undisturbed linear systems are analysed but they are assumed to be subject
to heterogeneous constraints. A collection of d-step inter-reachable control
invariant sets is computed. Each set is invariant under a single mode dynamics
and any state inside it can reach the set of a corresponding neighbouring mode
in d steps, under the dynamics and constraints of the neighbouring mode.
Again, recursive feasibility is guaranteed by changing the terminal constraint
of the receding horizon optimization problem at each time instant. Once a
dwell-time has passed the upcoming state is guaranteed to be inside this control
invariant set, and hence guaranteed to be able to reach a neighbouring one
while respecting the neighbour’s constraints.

4.1.2 Computation of minimum dwell-time

Oppositely, it could be the case that the different modes the plant transition
through are heavily ruled by the expected performance and the objectives
of the process. In this case, the dwell-time of each mode may obey internal
demands instead of accommodating for external challenges, thus allowing for
the definition of the different dwell-times. Recall the example of a tank system
with an externally controlled outflow valve. If the destination of the outflow is
not subject to minimum volume requirements, the amount of time the valve
needs to remain open or closed (dwell-time of each mode) can be determined by
the controllability requirements of the reaction in the tank, and subsequently
informed to avoid violation. It is intuitive to expect that long dwell-times will
allow for some form of stability to be achieved, however it is generally not as
strong as for individual modes (e.g. Lyapunov stability). Furthermore, even
slow switching could result in state constraint violation if constraints are not
explicitly accounted for.

A minimum dwell-time required to guarantee stable switching is computed
in [116] for a collection of linear autonomous discrete-time systems. Each
system is assumed independently stable and hence local (quadratic) Lyapunov
functions are guaranteed to exist. Stability is studied by analysing the piece-
wise continuous function formed by the concatenation of the different individual
Lyapunov functions through the switches. Asymptotic stability is guaranteed
across the switching intervals instead of the switching instances, which means
that although the piece-wise continuous Lyapunov function may grow at any
given switching instance, the increase is smaller than the reduction experienced
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due to the most recent dwell-time spent in a single stable mode. It follows from
the results in [116] that if a common quadratic Lyapunov function exists across
modes, then a unitary dwell-time guarantees stability (this is a special case of
the result in [121]).

Similar results are reported in [107, 115, 132], where the optimal control
technique known as model reference adaptive control is implemented for output
tracking of continuous-time linear [107] and non-linear [115, 132] systems.
In [115,132] the switching sequence is not arbitrary, but associated to the state
space given the linearisation of the non-linear systems at different operation
points. However, the stability of the linear switching reference model is analysed
from an arbitrary switching perspective. In all these approaches the reference
model is defined as a linear switching system with a Hurwitz assumption on
the transition matrix of each reference mode. The latter implies that stability
of the switching reference model can be guaranteed through stability of its
homogeneous part, which reduces to finding quadratic Lyapunov functions
for each mode and a sufficiently long dwell-time to guarantee exponential
convergence over the switching intervals.

Quadratic Lyapunov functions, however, may be unnecessarily conservative
given their fixed structure. In [117] an alternative is proposed in a continuous-
time framework. First quadratic Lyapunov functions are employed to obtain an
analogous result to that of [116], but in continuous time. The existence of such
functions is shown to be merely a sufficient condition for stability and hence the
more versatile polynomial Lyapunov functions are proposed as a replacement.
The latter yields a necessary and sufficient result for the exponential stability of
the continuous-time autonomous switching system, with associated minimum
MDTs that are upper bounded by those associated to quadratic Lyapunov
functions.

The stability-inducing MDTs proposed in [115–117] can be effectively com-
puted by solving a tractable LMIs problem, however none of these approaches
considers constraints. Input constraints, even when they are homogeneous
throughout the modes, can result in instability due to saturated actuators
hence revoking the stability guarantees. In [108] a set-theoretic method is
proposed to compute stabilizing MDTs for undisturbed autonomous non-linear
systems subject to state constraints and a Lipschitz continuity assumption.
The central idea of this approach is to employ constraint admissible invariant
sets to bound the state trajectories of each mode. The minimum dwell-time re-
quired to guarantee admissible switching is obtained by computing the amount
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of time each mode takes to move from any point inside its own constraint
admissible invariant set, to the intersection of them all. Clearly, once inside the
intersection the state is feasible (and recursively feasible) for all modes, hence
a switch into any other mode can safely take place. Once feasible switching
is ensured, asymptotic stability throughout the switching intervals (such as
in [116]) follows if the invariant sets are computed as proper sub-level sets of
corresponding Lyapunov functions.

In the MPC context, a key contribution to the computation of admissible
and stabilizing dwell-times is found in [114, 133]. Linear modes subject to
individual constraints are analysed both in the nominal and disturbed cases;
the latter however only considers homogeneous disturbance levels. Opposed to
other approaches such as [124,125] that rely on a single MPC with changing
prediction model and preview of the switching sequence, in [114] individual
MPCs are designed for each mode. Given this structure, a switch between
modes does not prompt a change in the prediction model, but a switch in
the active controller, which ultimately allows to relax the assumptions on
the switching sequence to instantly known but a-priori uncertain. For the
undisturbed case, standard MPC controllers from the literature [1] are initially
proposed. Recursive feasibility through a switch is characterized similarly
to [108, 123], by means of the corresponding feasibility regions of each MPC
controller. Several results are provided owing to the possibility of knowing
a-priori the switching trajectory or at least the initially active mode, however
if there is no a-priori knowledge on the sequence, their approach is comparable
to the one proposed in [108]. The difference is that [108] considers autonomous
systems, while in [114] MPC controlled systems are studied. The latter means
that to compute forward reachability sets (to test for inclusion in an intersection
of different feasibility sets) the explicit characterization of the MPC control
law is required. This is certainly the biggest drawback of [114], since the
MPC control law is non-linear and its explicit representation requires the
implementation of multi-parametric programming tools [134].

Asymptotic stability of the origin is shown in [114] by enlarging the feasi-
bility MDTs to guarantee a contraction in the forward reachability sets, when
initialized in the intersection of the feasibility regions. The latter implies
attractivity of the origin while stability is guaranteed by means of returnable
sets. The approach in [131] is employed to compute a contractive returnable
set that lies inside the intersection of the several terminal regions. Attractivity
then implies that the states reach this returnable set in finite time, after which
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convergence is guaranteed provided the attractivity inducing MDTs are over-
ridden (if necessary) by those associated to the returnable set. The algorithm
in [131], however, is valid for explicitly characterized linear closed-loops. This is
achieved in [114] by a proper design of the different MPCs terminal conditions,
which result in time invariant linear feedback laws inside the terminal regions.

The robust case is tackled in fairly similar way. The generalized RPI sets
described in [122] (constructed from the returnable RPI sets presented in [135])
are employed as the cross section of a standard tube MPC implementation [1,2].
Recursive feasibility and asymptotic stability through the switches is guaranteed
by setting the MDTs to the largest between those required for the existence of a
non-empty generalized RPI set and those previously defined for the convergence
of the nominal system, albeit under tightened constraints. The version of tube
MPC employed forces the initial state of the nominal dynamics to match the
true initial state, reducing the overall region of attraction to that of the nominal
system under tightened constraints. In summary then, although the MPC
controllers (standard or tube-based) are initially designed independently, the
use of the coupled returnable sets proposed in [131, 135] results in that the
different controllers are indeed coupled.

Of all the different approaches previously discussed, clear differences can
be observed in the proposed stability results, and this is owing to the different
constraint considerations. In [115–117] (exponential) stability in the sense of
Lyapunov is achieved through the computation of common Lyapunov functions,
however this is possible because linear autonomous systems are analysed and
constraints are not considered. MPC, on the other hand, usually results in a
non-linear implicit closed-loop, furthermore constraints complicate the search
for Lyapunov functions. Asymptotic stability, in the sense of Lyapunov, is
achieved in [108] for constrained non-linear modes, albeit assumed autonomous
and thus with explicit closed-loop representations. In [124, 125] asymptotic
Lyapunov stability is guaranteed even in the presence of constraints, but
assuming preview of the switching sequence over the prediction horizon. The
individually designed, and posteriorly coupled, MPCs in [114] are shown to
render the origin asymptotically stable only after a particular returnable set is
reached.

A conceptually different approach is presented in [127], where the switching
between homogeneously constrained non-linear modes controlled by indepen-
dently designed MPC controllers is studied. An MDT that guarantees stabilizing
switching between modes is computed by directly comparing the optimal cost
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function (usually employed as a Lyapunov function in MPC implementations)
of each controller at the moment of switching. An important contribution is the
computation of a multiplicative difference to compare the different Lyapunov
functions within the MPC context, after which asymptotic stability follows
under similar arguments to those in [116]. In order to guarantee recursive
feasibility, an intersection of feasible sub-level sets of the optimal value function
of each mode is computed. This set is not invariant but returnable within a
single dwell-time under the dynamics of all modes, hence guarantees constraint
satisfaction by construction (similar to the ideas in [114,124,135]). The same
approach is extended to MPC without terminal conditions in [128], however
constraints are not considered.

4.1.3 Dwell-time computation based on exponential sta-

bility

In this chapter the concept of MDTs is further explored and a new approach
for their computation is proposed. The object of study is switching systems
composed by LTI modes that are subject to heterogeneous constraints and
disturbances and that are controlled by individual MPC controllers. The main
tool employed to compute the corresponding MDTs is the exponential stability
result thoroughly established in the literature for linear MPC [1,2, 4].

Although each model follows the structure outlined in Section 2.2, the
perturbed switching dynamics are formally introduced in Section 4.2, followed
by a recast of the tube-based MPC optimization problem in order to properly
introduce the mode-dependent notation. In Section 4.3, external disturbances
are neglected and the nominal case is studied. Completely independent (off-
the-shelf) MPC controllers are designed for each mode and minimum MDTs
that guarantee feasible and stable switching between them are computed. This
is opposed to other more complex formulations such as the min-max approach
in [124] or the LTV approach in [122]. Feasible switching follows standard
conditions of inclusion within the intersection of the feasibility regions of
neighbouring modes, such as in [114, 127]. However, instead of the explicit
characterization of reachable sets [114] or sub-level sets of implicit Lyapunov
functions [127], the exponential decay of the independent MPC closed-loops is
employed to characterize simple p-norm balls that bound the state trajectories
at all times. The latter results in a design procedure that is considerably less
computationally complex, which encourages the use of this approach, over other
proposals, for systems of higher dimensions.
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Stability inducing MDTs, on the other hand, are computed following a
similar idea to that in [127], however an additive difference is found to provide
a tighter bound (at least in the linear case). Ultimately, the origin is shown
to be exponential stable over the switching intervals in the Lyapunov sense,
achieving a result similar to that in [116,117] but considering constraints, and
also improving on the asymptotic stability result of [114,122,125]. Furthermore,
the MPC controllers for each mode are designed independently from each other,
as opposed to the solutions proposed in [114,122,125,126] which require the
computation of coupled returnable (invariant) sets.

In the perturbed case, and opposed to [114,122,135], heterogeneous distur-
bance levels across the different modes are considered. First, in Section 4.4,
independent robust MPC controllers are designed for each individual mode.
The tube MPC technique presented in Section 2.3.1 is employed since the
optimization of the nominal trajectories allows for a less demanding inclusion
test for guaranteeing feasible switching. The independently designed tube MPC
controllers yield a collection of RPI sets that are robustly invariant only for a
single mode and its corresponding disturbance levels, which ultimately results
in that a stability guarantee similar to that of the undisturbed case is not achiev-
able. Nevertheless, finite time convergence to a neighbourhood of the origin
is guaranteed, after which a second set of feasibility related MDTs guarantees
that such neighbourhood is attractive and stable. In order to improve on the
previous results, Section 4.5 employs the concept of invariant multi-sets [136]
instead of standard invariant sets for the definition of the corresponding tube
cross sections. Invariant multi-sets are computed in a coupled manner and
hence the overall design process is now coupled, however this allows for an
exponential stability guarantee for a neighbourhood of the origin in a similar
fashion than for non-switched tube-based MPC.

The biggest shortcoming of the proposed approach, as shown through nu-
merical examples in Section 4.7, is that the resulting MDTs are excessively
conservative owing to the loose analytical convergence rate available for MPC
controllers. Nevertheless, the applicability of the proposed approach is demon-
strated by recomputing the MDTs with tighter rates obtained numerically.

4.2 Switching linear systems

Consider a switching system composed by M LTI modes subject to, possibly,
heterogeneous constraints and levels of disturbance. Each mode is modelled
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in a general state space representation following the structure presented in
Section 2.2, thus the overall switching dynamics can be cast as follows

x(t+ 1) = Aσ(t)x(t) +Bσ(t)u(t) + w(t) (4.1a)

x(t) ∈ Xσ(t) ⊂ Rnx (4.1b)

u(t) ∈ Uσ(t) ⊂ Rnu (4.1c)

w(t) ∈Wσ(t) ⊂ Rnx . (4.1d)

At any particular time t, the mode that drives the system, alongside with
the constraints that bound it and the disturbances that affect it, are entirely
defined by the value of the switching signal σ(·). The latter is a assumed to
be a piecewise constant function that, at each sampling time, takes values in
the finite set M = {1, . . . ,M}. Following the discussion in Chapter 2, it is
assumed that, for all m ∈ M, Xm and Um are PC-sets and Wm is a C-set,
but furthermore, that all three constraint sets are polyhedrons. The latter
assumption will become relevant for the verification of the different inclusion
conditions related to the computation of MDTs for feasible switching. Finally,
it is also required that Assumption 2.1 holds for every pair (Am, Bm) with
m ∈M.

The switching instances are {t0, t1, . . . , tk, . . .} with t0 = 0 and tk ≥ tk−1 +1,
which results in σ(t) being constant in the interval [tk−1 , tk) for all k ≥ 1.
This structure implies that the dwell-times have to be at least of length 1, and
that the switches take place exactly at the sampling instances. The former
is necessary otherwise several modes could become active at the same time
instance, while the latter is crucial since (4.1a) is usually a discretised version
of a continuous-time process, hence switching that does not match the sampling
instances would effectively result in prediction errors throughout the sampling
intervals. Finally, it is assumed that the values of the switching signal are
known instantly at each time t. This is a standard assumption in the analysis
of switching systems [114,122,124–126] and it introduces less conservatism than
assuming a-priori knowledge of the switching sequence (such as in [125]).

The concept of mode-dependent dwell-time, as it will be considered in this
chapter, is now defined.

Definition 4.1. The mode-dependent dwell-time (MDT) associated to mode
m ∈M, say τm, is the minimum amount of time during which the dynamics of
the switching system (4.1) remain fixed at mode m before leaping into another
allowable mode. It follows that if mode m became active at time tk, that is
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σ(tk) = m but σ(tk − 1) 6= m, then tk+1 − tk ≥ τm.

In what follows, minimum values for τm that guarantee feasible and stable
switching between the different modes of (4.1) will be computed. These lower
bounds effectively constrain how arbitrary the switching sequence can be, how-
ever there are other types of restrictions that can be placed on the switching
sequence. A particular instance of the former is the case in which switching
between certain modes is not allowed. In such cases σ(·) is referred to as a
constrained switching signal (CSS), which can be precisely represented by a di-
rected graph G (M, E), whereM is the set of nodes, and E = {(s, d) |s, d ∈M}
the set of edges that link the nodes together. Each edge represents an allowed
switch and for each (s, d) ∈ E , s represents the source node and d the destina-
tion node (s and d will also be referred to as neighbouring modes). Note that
sources and destinations are not interchangeable, hence for any pair m, l ∈M,
(m, l) ∈ E does not imply (l,m) ∈ E . Notice also that for all m ∈ M it is
assumed that (m,m) ∈ E , otherwise the MDT for mode m would be fixed at
τm = 1. It follows that at each time instant t

σ(t) ∈Mσ(t−1) = {d ∈M| (σ(t− 1), d) ∈ E} ⊆M.

The focus is placed on the regulation problem, i.e. the design of a control law
u(t) = κ(x(t)) that admissibly stabilizes the origin (or a neighbourhood of it) for
the switching system (4.1) and a driving CSS. Initially, standard stabilizing and
admissible (robust) MPC controllers are deployed independently for each mode.
As discussed in Section 4.1, arbitrary switching among independently stabilizing
controllers can result in an unstable switching closed-loop. Furthermore, the
heterogeneity of the constraints may result in constraint violation at the moment
of switching. To avoid this issues MDTs that allow for feasible and stabilizing
switching between the independent MPCs are computed. Standard MPC
controllers are designed for the disturbance free case, while tube MPC is
employed for the disturbed case. The standard MPC implementation used to
control undisturbed LTI systems with constraints can be seen as a special case
of the tube-based MPC controller presented in Chapter 2. In view of this the
tube-based approach is now briefly recast to account for the change in notation
owing to the different modes.
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4.2.1 Single mode tube-based MPC

At each time instant, the optimal control problem solved by the m-TMPC
controller is

PNm(x(t)) : min
ū,x̄0

JNm (ū, x̄0) (4.2a)

s.t. (for k = 0, . . . , Nm − 1)

x(t)− x̄0 ∈ Sm (4.2b)

x̄k+1 = Amx̄k +Bmūk (4.2c)

x̄k ∈ X̄m ⊆ Xm 	 Sm (4.2d)

ūk ∈ Ūm ⊆ Um 	KmSm (4.2e)

x̄Nm ∈ X̄f,m ⊆ X̄m, (4.2f)

where again (x̄k, ūk) are the nominal predictions, updated at each time instant
to account for the newly measured true state, Nm is the prediction horizon
employed by mode m, and ū = {ū0, . . . , ūNm−1} is the input sequence to be
optimized. The sets Sm and X̄f,m are respectively an RPI and a PI set for the
uncertain and nominal dynamics (4.2c) of mode m for a given stabilizing Km

according to Definition 2.2.
The cost function is, again, designed to approximate the infinite horizon

LQR cost

JNm (ū, x̄0) =
Nm−1∑
k=0

(
||x̄k||2Qm + ||ūk||2Rm

)
+ ||x̄N ||2Pm ,

with Qm, Rm > 0 and Ā>mPmĀm + Qm + K>mRmKm − Pm = 0, where Ām =

(Am +BmKm). Note that the matrix inequality in Proposition 2.1–(c) is now
replaced by an equality, hence the unconstrained infinite horizon LQR cost is
not only approximated but exactly met. This is done to guarantee that the
MPC control law is linear and time invariant when inside the terminal set X̄f,m,
a feature that is needed for subsequent developments. Define, as in (2.9),

(
ū∗(x(t)), x̄∗0(x(t))

)
= argPNm(x(t))

VNm(x(t)) = JNm
(
ū∗(x(t)), x̄∗0(x(t))

)
,

set the nominal input to the associated receding horizon control law ū(t) =

κ̄m(x(t)) = ū?0(x(t)) and let the nominal trajectories be updated with x̄(t) =

x̄?0(x(t)). Furthermore, let X̄Nm be the set of all the states for which PNm(x) is
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feasible when constraint (4.2b) is replaced by x̄0 = x(t), then Proposition 2.1
can be recast as follows.

Proposition 4.1. If (a) Assumption 2.1 holds with a certain Km, (b) the sets
Sm and X̄f,m are, correspondingly, admissible RPI and PI sets for Ām with
respect to constraints (4.1b) and (4.1c), disturbance set Wm and tightened
constraint (4.2d), (c) the sets Sm and X̄f,m are PC-polyhedrons, (d) the loop
is closed with u(t) = κm(x(t)) = κ̄m(x(t)) + Km (x(t)− x̄∗0(x(t))), then (1)
the optimization problem (4.2) is recursively feasible with feasibility region
XNm = Sm ⊕ X̄Nm , (2) the sets X̄Nm and X̄Nm−1 are PC-polyhedrons and
invariant under ū∗0(x(t)), (3) state and input constraints are met at all times
despite the disturbances, and (4) there exist constant scalars bm, dm, fm > 0

such that for all x ∈ XNm and w ∈Wm it holds that:

bm|x̄∗0(x)|22 ≤VNm(x) ≤ dm|x̄∗0(x)|22 (4.3a)

VNm (Amx+Bmκm(x) + w)−VNm(x) ≤ −fm|x̄∗0(x)|22. (4.3b)

Analogously, a corollary is provided to explicitly establish the exponential
stability result arising from Proposition 4.1.

Corollary 4.1. The system of inequalities (4.3) implies that there exist con-
stant scalars cm > 0 and λm ∈ (0, 1) such that for all x(0) ∈ Sm⊕X̄Nm , it holds
that

|x̄(t)|2 ≤ cmλ
t
m|x̄(0)|2. (4.4)

Therefore the origin is exponentially stable for the nominal trajectories of mode
m when in closed-loop with ū∗0(x(t)).

Proofs for Proposition 4.1 and Corollary 4.1 are again omitted and can be
found in [1, 2]. A proof for the additional claim about the polytopic shape of
the feasibility regions can be found in [99,137]. In the subsequent developments
specific values of the exponential stability constants are considered, in particular
cm =

√
dm/bm and λm =

√
1− fm/dm. Furthermore, although not stated, the

linear gain employed to compute the terminal cost matrix Pm needs not to
be equal to the tube gain employed in the composite control law κm(·). Both
are identified as Km to simplify notation, however they could be designed
independently to pursue different objectives.

In what follows MDTs are computed such that the switching control law

κ(x(t)) = κσ(t) (x(t)) (4.5)
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(robustly) stabilizes the origin for the constrained switching system (4.1). This
selection of control law implies that at any given time instant, the control
action is entirely governed by the MPC designed for the currently active mode,
instead of a governing MPC that spans all modes such as in [122,124].

4.3 Disturbance-free switching linear systems

The disturbance-free case is analysed first, thus Wm = {0} for all m ∈ M.
The standard MPC optimization problem for undisturbed systems can be seen
as a special case of (4.2) with constraint (4.2b) reduced to x̄0 = x(t), given
Sm = {0}. In the following, and in order to ensure the results presented
here remain notation-wise valid for the perturbed case, the true state of the
undisturbed plant is referred to as x̄(t). The latter owns to the definitions
in Section 4.2.1 that, provided Sm = {0}, result in x̄(t) = x̄∗0(x(t)) = x(t).
The problem of guaranteeing admissible switching between the independently
designed MPCs is addressed first, since the overall stability of the switching
closed-loop depends heavily on the feasibility of the optimization problems.

4.3.1 MDTs for admissible switching

To determine if a certain state x̄(t) is a feasible initial state for an MPC
controller it is necessary and sufficient to test whether said state belongs to the
MPC’s feasibility region. The latter, however, might not be available during
the design process owing to computational tractability reasons that are further
discussed subsequently. In what follows the problem of admissible switching
is analysed in both cases, and dwell-times that avoid constraint violation are
computed even if the feasibility regions are unknown.

4.3.1.1 Known feasibility regions

Consider any pair of neighbouring modes m, l ∈M and assume the feasibility
regions of each are known. A switch from mode m to mode l is feasible at time
tk if and only if x̄(tk) ∈ X̄Nl . However, the different modes of the switching
system (4.1) are allowed to be highly heterogeneous, thus it is likely that
X̄Nm 6= X̄Nl . It is also non-trivial to guarantee X̄Nm ⊆ X̄Nl simultaneously for
all pairs of neighbouring modes without incurring in stringent design conditions
that ultimately couple the design process. Therefore it can be safely assumed
that x̄(tk − 1) ∈ X̄Nm does not guarantee x̄(tk) ∈ X̄Nl , hence a switch at time
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tk might render the control law (4.5) infeasible.

However, provided there is no switching, the individual MPC controllers do
guarantee closed-loops that converge exponentially fast to the origin. In fact,
it follows from (4.3b) that for any x̄(0) ∈ X̄Nm , the closed-loop trajectories are
continuously contained inside sub-level sets of the value function that follow a
backwards inclusion condition [108,127] (that is, the sub-level set that contains
x̄(t) is a strict superset of the sub-level set that contains x̄(t+ 1)). It follows
then that, if mode m is active for enough time steps, the sub-level set that
contains the state will be a subset of any neighbouring feasibility region, thus
allowing for an admissible switch.

In [114] an even more precise account of where the closed-loop trajectories
are is employed by exactly characterising the one-step ahead reachability sets.
This provides the exact number of time steps required for the inclusion to be met,
however it also demands for the explicit characterization of the non-linear MPC
control law, which in turn requires the implementation of multi-parametric
programming tools [134]. The computational complexity of the latter can
be prohibitively large, especially for systems of large dimension. In order to
keep the computational complexity low, the exponential stability result of
the m-MPC controller is hereafter leveraged to compute a time-varying set,
characterised by a decreasing Chebyshev radius, that contains them closed-loop
at all time instances and for any initial state within X̄Nm . The proposed set is
a PC-set, it can be computed off-line, and its computation does not require
the explicit knowledge of the MPC control law. The MDTs for admissible
switching then follow in a straightforward manner: whenever this set is inside
the feasibility region of a neighbouring mode, a switch is admissible.

The exponential convergence result in Corollary 4.1 bounds the 2-norm of
the nominal state trajectories. Hence, it is trivial to define a time-dependent
2-norm ball with exponentially decreasing Chebyshev radius that is guaranteed
to contain the m closed-loop at any given time. However, within the collection
of p-norms the 1 and ∞ norms produce balls that are not only PC-sets, but
also polyhedrons, hence completely characterised by a finite number of defining
half spaces. This results in the set operations needed in the subsequent steps
of this approach (for example the intersection of two convex sets) being greatly
simplified. Furthermore, since for equal radii the 1-norm ball is contained
inside the 2-norm ball and the ∞-norm ball contains both, the 1-norm ball
is considered as a less conservative choice. The exponential stability result in
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(4.4) is now recast to account for the 1-norm.

|x̄(t)|1 ≤
√
nxcmλ

t
m|x̄(0)|2 (4.6)

A drawback of employing a 1-norm bounding ball is that its associated radius
is larger than that of the corresponding 2-norm ball for any system with more
than two states (since

√
nx > 1 for all nx > 1). This adds conservativeness as

it implies that the admissibility inclusion may require a larger number of time
steps to be verified. However, a 1-norm ball of radius r does not necessarily
contain a 2-norm ball of radius r/√nx. Furthermore, the difference between both
radii decreases exponentially fast following the exponential convergence.

A shortcoming of the bound offered by (4.6) is that it depends on a specific
value of initial state, hence a 1-norm ball with decreasing radius defined by the
right hand side of (4.6) can only guarantee admissible switching if the system
is initialized at that particular state. In order to generalize for any feasible
state compute

αm = max
x∈X̄Nm−1

|x|2. (4.7)

and define the time-varying set

Brm(τ) = X̄Nm−1 ∩Brm(τ). (4.8)

with rm(τ) =
√
nxcmλ

τ
mαm. Then, the following result holds for any k ∈ N0.

Proposition 4.2. If mode m became active at the last switching instant tk−1

(feasibly), and the loop is closed with the m-MPC control law κ̄m(·), then the
nominal state trajectory of the switching system fulfils x̄(t) ∈ Brm(t−tk−1−1) for
all t ≥ tk−1 + 1.

Proof. If x̄(tk−1) ∈ X̄Nm and the loop is closed with κ̄m(·), then for all t ≥ tk−1+1

it holds that x̄(t) ∈ X̄Nm−1 and

|x̄(t)|1 ≤
√
nxcmλ

t−tk−1
m |x̄(tk−1)|2

=⇒ |x̄(t)|1 ≤
√
nxcmλ

t−tk−1−1
m |x̄(tk−1 + 1)|2

=⇒ |x̄(t)|1 ≤
√
nxcmλ

t−tk−1−1
m αm

=⇒ x̄(t) ∈ Brm(t−tk−1−1),

where the second inequality follows from (4.4) and (4.6), the third inequality
follows from (4.7) and the last one from the definition of a 1-norm ball. Hence,
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for all t ≥ tk−1 + 1, it holds that x̄(t) ∈ X̄Nm−1 and x̄(t) ∈ Brm(t−tk−1), which
given (4.8) completes the proof. �

A couple remarks are in order. First note that the maximum in (4.7) is
taken over XNm−1 rather than XNm ; this is done to reduce conservativeness.
Indeed, it follows by the invariance of the feasibility regions that if x̄(t̄) ∈ X̄Nm
then x̄(t) ∈ X̄Nm−1 for all t ≥ t̄+ 1. Since XNm−1 ⊆ XNm and the dwell-times
are at least 1 time instance long, taking the maximum over XNm−1 reduces the
overall admissibility MDTs. Similarly, the 1-norm ball provided by the bound
in (4.6) is intersected with XNm−1 in (4.8) since by the latter’s invariance,
x̄(t̄) must be inside it for all t ≥ t̄ + 1. Proposition 4.2 still holds if this
intersection is omitted, however note that given a cm > 1 it could happen that
Brm(0) ⊇ XNl , but XNm−1 ⊆ XNl , which may result in unnecessarily long waits
for the admissibility inclusion to be verified.

Certainly, rm(t− tk−1− 1) is a conservative radius for the ball that contains
the state at time t because it is computed with αm instead of using the norm
of the current state |x̄(tk−1 + 1)|2. However, as previously discussed, this allows
a Proposition 4.2 that is entirely independent of the initial state, but more
importantly, of the specific switching times. Such dependency is allowed in [114]
yielding sequences of feasibility MDTs that depend on the stage of switching
(i.e., on the number of switches that have taken place previous to the current
one). The same results are attainable with the approach presented here, but
are not pursued given that employing such MDTs would require knowledge of
the switching trajectory.

Proposition 4.2 ensures that the time varying set Brm(τ), with decreasing
Chebyshev radius, contains the state trajectories of the m closed-loop at all
time instances. The MDT that allows for feasible switching among neighbouring
closed-loops follows then in a straightforward manner.

Theorem 4.1. Consider any pair m, l ∈ M with m 6= l, σ(tk−1) = m and
l ∈ Mm. Furthermore, assume that mode m became active (feasibly) at the
previous switching instance tk−1. If τ fm,l ≥ 0 is such that Brm(τfm,l)

⊆ X̄Nl but
Brm(τfm,l−1) * X̄Nl , then a switch to mode l is feasible at any time tk that fulfils

tk − tk−1 − 1 ≥ τ fm,l.

Proof. According to Proposition 4.2, if mode m became active feasibly at time
tk−1 then x̄(tk) ∈ Brm(tk−tk−1−1) for all tk ≥ tk−1 + 1. It follows from (4.8) that
if tk − tk−1 − 1 ≥ τ fm,l then Brm(tk−tk−1−1) ⊆ Brm(τfm,l)

, hence x̄(tk) ∈ Brm(τfm,l)
.

Then, by assumption, x̄(tk) ⊆ X̄Nl which guarantees feasibility of PNl(x̄(tk)).
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Finally note that τ fm,l is such that Brm(τfm,l−1) * X̄Nl , hence feasibility cannot

be guaranteed for tk < τ fm,l + tk−1 + 1. �

Theorem 4.1 establishes the minimum amount of time that mode m needs
to be active before a switch into mode l is feasible. The following corollary to
Theorem 4.1 properly defines the MDTs given a set of modesM and a CSS.

Corollary 4.2. Assume σ(·) is a CSS. If for all m ∈M the MDTs are set to
τ fm defined by

τ fm = 1 + max
l∈Mm

τ fm,l,

then the switching control law (4.5) guarantees constraint satisfaction for the
switching linear system (4.1).

Proposition 4.2, Theorem 4.1 and Corollary 4.2 provide a simple, yet
comprehensive approach to the computation of MDTs that guarantee admissible
switching among independently designed MPC controllers for heterogeneous
modes. Nevertheless, 1-norm balls are a conservative bound for the state
trajectory when compared to sub-level sets of the value function [127] or
exact MPC-reachable sets [114], therefore longer (more conservative) feasibility
MDTs are expected. This, however, represents a trade-off between accuracy
and complexity, since the computation of sub-level sets of the MPC value
function usually requires a numerically exhaustive approach [1], while the
characterization of exact MPC-reachable sets demands the knowledge of the
implicit and non-linear MPC control law. Theorem 4.1, on the other hand,
only requires:

• Computation of the exponential stability constants in (4.7)

• Computation of the feasibility regions X̄Nm and X̄Nm−1

• Intersection operations and inclusion tests among C-polyhedrons

Computing the exponential stability constants is simple [1], however the
bounds obtained for the value function are not necessarily tight. The impact
that this has on the MDTs is discussed in more depth in Section 4.7. More
important is to note that the exponential stability result, and thus the decay in
(4.4), can only be guaranteed when the MPC optimization problem is solved
to optimality. Suboptimal MPC can also shown to be stable, albeit only
asymptotically. Nevertheless, the proposed cost function, polytopic constraints
and polytopic invariant sets result in the corresponding optimization being a
convex QP problem, for which efficient algorithms exist.
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4.3.1.2 Unknown feasibility regions

Computing the feasibility sets, on the other hand, can be challenging. The
feasibility region of mode m can also be referred to as the Nm-step stabilizable
set to X̄f,m, as it contains all the states that can be driven into the terminal
region in Nm steps or less. This set can be computed by the recursive application
of the backwards reachability operation [97,137]. In the case of LTI systems,
if the constraint sets and the terminal set Xf,m are convex polyhedrons with
known H-representation, computing the im-step stabilizable set requires the
iteration of several simple operations. These include the Pontryagin difference
and intersections between polyhedrons, with fairly low complexity even for
large Nm (see for example Algorithm 2.1 and the corresponding discussion in
Section 3.3 of [97], and also the seminal results in [96, 98]).

It is still the case, however, that high-dimensional plants with complex
constraint sets (i.e. with a large number of defining half-spaces) may result in
that the corresponding feasibility sets are prohibitively complex to compute.
Given the invariance of the terminal set, it can be shown [137] that the im-
step stabilizable sets to X̄f,m are consecutively inclusive, hence any X̄im with
im ∈ [1, Nm) represents a set of feasible states for PNm(·), albeit not necessarily
invariant under the m-MPC control law. Furthermore, if X̄Nm is not tractable,
then the computation of X̄im may also not be.

Nevertheless, MDTs that guarantee admissible switching can still be com-
puted even if the corresponding feasibility regions are unknown. In order to do
so first note that PNm(x̄(t)) is feasible for any x̄(t) ∈ Θm if Θm ⊆ X̄Nm . The
set Θm needs no other particular consideration, although if Θm is not invariant
under the m-MPC control law, then for any x̄(t) ∈ Θm the subsequent state
is only guaranteed to be inside the unknown X̄Nm . In order to overcome this
issue, and ensure admissible switching, define

ᾱm = max
x∈Θm

|x|2, (4.9)

and the corresponding time-varying set

B̄r̄m(τ) = X̄m ∩Br̄m(τ). (4.10)

with r̄m(τ) =
√
nxcmλ

τ
mᾱm. Then, the following result holds for any k ∈ N0 if

Θm ⊆ X̄Nm .

Proposition 4.3. If mode m became active at the last switching instant
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tk−1 with x̄(tk−1) ∈ Θm, and the loop is closed with the m-MPC control
law κ̄m(·), then the nominal state trajectory of the switching system fulfils
x̄(t) ∈ B̄r̄m(t−tk−1) for all t ≥ tk−1.

Proof. The proof is analogous to the proof of Proposition 4.2. Indeed, note that
Θm is not invariant like X̄Nm−1, however by construction the m-MPC controller
guarantees constraint satisfaction and so the state trajectories must remain in
X̄m. If x̄(tk−1) ∈ Θm ⊆ X̄Nm and the loop is closed with κ̄m(·), then x̄(t) ∈ X̄m

for all t ≥ tk−1. For any t ≥ tk−1, it follows from (4.6) that

|x̄(t)|1 ≤
√
nxcmλ

t−tk−1
m |x̄(tk−1)|2

=⇒ |x̄(t)|1 ≤
√
nxcmλ

t−tk−1
m ᾱm

=⇒ x̄(t) ∈ Br̄m(t−tk−1−1),

where the second inequality follows from (4.9) and the last one from the
definition of a 1-norm ball. Hence, for all t ≥ tk−1, it holds that x̄(t) ∈ X̄m and
x̄(t) ∈ Br̄m(t−tk−1), which given (4.10) completes the proof. �

Analogously to Proposition 4.2, Proposition 4.3 ensures that the time varying
set B̄r̄m(τ), with decreasing Chebyshev radius, contains the state trajectories of
the m closed-loop at all time instances; in this case, even if the corresponding
feasibility regions are not known. The MDT that allows for feasible switching
among neighbouring closed-loops is again defined in a straightforward manner.

Theorem 4.2. Consider any pair m, l ∈ M with m 6= l, σ(tk−1) = m and
l ∈ Mm. Furthermore, assume that mode m became active (feasibly) at the
previous switching instance tk−1 with x̄(tk−1) ∈ Θm ⊆ X̄Nm . If τ̄

f
m,l > 0 is such

that B̄r̄m(τfm,l)
⊆ Θl ⊆ X̄Nl but B̄r̄m(τfm,l−1) * Θl, then a switch to mode l is

feasible at any time tk that fulfils tk − tk−1 ≥ τ̄ fm,l.

Proof. The proof is identical to the proof of Theorem 4.1. �

Similarly, given a set of modes M and a CSS, the following corollary
establishes the MDTs for feasible switching.

Corollary 4.3. Assume σ(·) is a CSS. If for all m ∈M the MDTs are set to
τ fm defined by

τ̄ fm = max
l∈Mm

τ̄ fm,l,

then the switching control law (4.5) guarantees constraint satisfaction for the
switching linear system (4.1).
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Note that Theorem 4.2 provides the minimum required time to reach the set
Θl, which is a subset of the true feasibility region of the l-MPC optimization.
Nevertheless, this does not necessarily lead to longer feasibility MDTs because
the starting point of this reachability problem is Θm, also a subset of X̄Nm . The
collection of sets Θm is not invariant, but returnable and contained inside the
collection of feasibility sets, hence the overall region that contains the state at
any given time remains as X̄ =

⋃
m∈M X̄Nm . However, this approach can only

guarantee feasible switching when the plant is initialized inside Θσ(0), hence
reducing the size of the allowable initialization region to

⋃
m∈MΘm ⊆ X̄ . The

same trade-off is observed in the set-based approach presented in [108], except
that the sets Θm are computed invariant.

The full region of attraction of the initial mode, however, can be recovered
if the initial state is known before initializing the plant. Indeed, even if x̄(0) is
not contained inside Θσ(0), whether it is contained inside X̄Nσ(0)

can be easily
determined by solving a single LP. Assume then x̄(0) /∈ Θσ(0) but x̄(0) ∈ X̄Nσ(0)

and define rm,0(τ) = cmλ
τ
m|x̄(0)|2 with an associated time-varying set

B̄rm,0(τ) = X̄m ∩Brm,0(τ).

If τm,0 is the smallest positive scalar such that B̄rm,0(τm,0) ⊆ Θm, then τm,0 is the
minimum MDT required to guarantee x̄(τm,0) ∈ Θm. Thereafter, the feasibility
MDTs computed by Theorem 4.2 and Corollary 4.3 guarantee admissible
switching, thus practically recovering the full size of the region of attraction.
If the initial mode is unknown, then a generalized initialization MDT can be
computed by taking the maximum over the set of modes, that is

τ0 = max
m∈M

τm,0.

It is left to discuss how the collection of sets Θm can be computed. Any
subset of the corresponding RoA is a feasible choice, however the latter are
unknown. A simple candidate would be the collection of terminal sets X̄f,m,
however this is a trivial choice because X̄f,m is nothing more than the 0-step
stabilizable set to X̄f,m. Furthermore, this choice would confine the switching
to possibly small subset of the X̄ , yielding a larger τ0.

In order to obtain a larger collection of sets Θm note again that x̄(t) ∈ X̄m
if and only if Pm (x̄(t)) is feasible, which gives way for the following result.

Proposition 4.4. Define the vertices of X̄m by {vim} for i = 1, . . . , nm. For
all i = 1, . . . , nm there exist β̄im ∈ (0, 1] such that PNm (βimv

i
m), with constraint
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(2.1a) replaced by x̄0 = βimv
i
m, is feasible for βim ∈

(
0, β̄im

]
but infeasible for

βim > β̄im. Furthermore, Θm

(
X̄m

)
= conv

{
β̄imv

i
m

}
⊆ X̄Nm .

Proof. First note that according to Proposition 4.1 the set X̄Nm has a non-
empty interior, hence there exists r > 0 such that Br ⊆ X̄Nm . It then follows
from the compactness of X̄m that there exists β > 0 such that βX̄m ⊆ Br.
Finally, since X̄Nm ⊆ X̄m, then β ≤ 1, which completes the proof. �

According to Proposition 4.4 then, a feasible subset of X̄Nm can be computed
from the vertices of the true state constraint set. The purpose of employing
such a subset is to avoid the computational complexity involved in computing
the exact feasibility regions, and indeed computing β̄im is tractable even for
high-dimension plants. To make this clear first note that to decide whether
β̄imv

i
m belongs to X̄Nm it is not necessary to solve PNm

(
β̄imv

i
m

)
to optimality,

but only test whether it has a feasible solution. The exact values of β̄im in
Proposition 4.4 can then be easily found by solving, for each vertex, the linear
program

β̄im = arg max
ū,βim

βim

subject to constraints (2.2)–(2.4) and x̄0 = βimv
i
m, which can be done in

polynomial time (see Section 3.5). Furthermore, if the vertices of X̄m are
not available, any convex polyhedron in Rnx can be used take its place in
Proposition 4.4, while maintaining the validity of Theorem 4.2 and Corollary 4.3.

The level of conservativeness of the collection of sets Θm produced by
Proposition 4.4, i.e. how smaller is

⋃
m∈MΘm when compared to X̄ , depends

solely on the amount of vertices of the starting polyhedrons. Indeed, define
X̄pm
m as a representation of X̄m with pm ≥ 0 redundant vertices placed along the

original facets of X̄m. It is easy to show that Θm

(
X̄pm
m

)
⊆ Θm

(
X̄qm
m

)
for any

0 ≤ pm ≤ qm, thus better approximations of the true RoA of each mode can be
obtained by increasing the number of redundant vertices in the representation
of the chosen initial polyhedron.

4.3.2 MDTs for stabilizing switching

An MDT greater than or equal to τ fm (or τ̄ fm) ensures that the optimization
associated to the MPC controller of the destination mode is feasible, thereby
ensuring recursive constraint satisfaction of the overall-switching system under
the control law (4.5). In [114] an additional contraction demand is imposed
over the dwell-time computation, which ultimately guarantees convergence
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of the state trajectories to an MDT-contractive set [131], and hence to the
origin. This is not the case of the MDTs proposed by Theorems 4.1 and 4.2,
hence although feasible, the state trajectories could be oscillating close to the
boundaries of the feasibility regions, and never approach the origin. In order
to ensure stability of the switched closed loop explicit stability demands must
be placed on the MDTs.

The exponential stability result provided by Corollary 4.1 relies, primarily,
on the value function VNm (·) being a Lyapunov function for the closed loop
trajectories (4.3). However, the proposed control law (4.5) results in a different
controller becoming active at the time of a switch. Although x̄(tk) is the result
of the continuous application of the κ̄σ(tk−1) control law, the control action at
tk is defined by κ̄σ(tk) hence Vσ(tk−1) (x̄(tk)) is never evaluated. At the time of a
switch then, different value functions must be compared and hence the upper
bound on the rate (4.3a) does not necessarily hold. Nevertheless, exponential
stability in the sense of Lyapunov can still be guaranteed throughout the
switching intervals, rather than the specific switching times (similar to the
approaches in [116, 117, 125]). In what follows it is shown that, provided
sufficiently long MDTs are guaranteed, the function V (x̄(t)) = VNσ(t)

(x̄(t))

is a Lyapunov-like function for the closed-loop trajectories and its existence
guarantees exponential stability of the origin for the switching closed-loop.

Proposition 4.5. Consider any pair m, l ∈M with m 6= l and l ∈Mm. For
any two switching instances (tk, σ(tk) = m) and (tk+1, σ(tk+1) = l) that fulfil
the associated feasibility MDT, if there exists scalars b̄m,l, d̄m,l, f̄m,l > 0 such
that for V (x̄(t)) = VNσ(t)

(x̄(t)) fulfils

b̄m,l|x̄(t)|22 ≤V (x̄(t)) ≤ d̄m,l|x̄(t)|22 ∀x̄(t) ∈ X̄Nm ∪ X̄Nl (4.11a)

V (x̄(tk+1))−V (x̄(tk)) ≤ −f̄m,l|x̄(tk)|22 ∀x̄(tk) ∈ X̄Nm x̄(tk+1) ∈ X̄Nm ∩ X̄Nl .
(4.11b)

for all t ∈ [tk, tk+1], then it holds that

|x̄(tk+1)|2 ≤ c̄m,lλ̄m,l|x̄(tk)|2

for all k ∈ N0 with c̄m,l =
√

d̄m,l/̄bm,l > 0 and λ̄m,l =
√

(1− f̄m,l/d̄m,l) ∈ (0, 1).

Proof. The proof is identical to the proof of exponential stability for standard
MPC implementations (see [1, 2]). �

In view of Proposition 4.5. exponential stability of the origin across the
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switching intervals follows.

Theorem 4.3. If Proposition 4.5 holds for all (m, l) ∈ E with m 6= l, then
there exist scalars c̄ > 0 and λ̄ ∈ (0, 1) such that

|x̄(tk̄)|2 ≤ c̄λ̄tk̄−tk |x̄(tk)|2

for any pair of switching instances k̄, k ∈ N0 such that tk̄ > tk.

Proof. First note that for any three switching instances (tk, σ(tk) = m), (tk+1, σ(tk+1) = l)

and (tk+2, σ(tk+2) = n) with l ∈Mm, n ∈Ml and such that the admissibility
MDTs are fulfilled, it follows directly from Proposition 4.5 that

|x̄(tk+2)|2 ≤ c̄m,nλ̄m,n|x̄(tk)|2

with c̄m,n =
√

d̄m,l/̄bl,n > 0 and λ̄m,n = λ̄m,lλ̄l,n ∈ (0, 1). It follows then by
induction that for any k̄, k ∈ N0 with k̄ > k it holds that

|x̄(tk̄)|2 ≤ c̄λ̄tk̄−tk |x̄(tk)|2

with

c̄ =

√√√√√ max
(m,l)∈E

d̄m,l

min
(m,l)∈E

b̄m,l

λ̄ = max
(m,l)∈E

λ̄m,l.

�

Theorem 4.3 guarantees a single, unified, convergence rate by choosing the
slowest one amongst the mode-dependent rates provided by Proposition 4.5.
The true convergence rate, however, remains dependent on the switching
sequence and is expected to be considerably faster. Furthermore, convergence
and boundedness throughout the switching interval, that is for all t ∈ [tk, tk+1),
is readily guaranteed by the exponential stability result available for each
independent MPC controller.

It has not yet been discussed how to compute the positive scalars that define
the bounding functions in (4.11). The upper and lower bounds in (4.11a) are
trivially fulfilled by setting b̄m,l = minj∈{m,l} bj and d̄m,l = maxj∈{m,l} dj. To
compute a suitable f̄m,l, however, it is first necessary to establish a relation
between the value functions of modes connected by an edge. For any pair of
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neighbouring modes m, l ∈ M then, define ηl,m ≥ dl/bm > 0, where dl and bm
are those in (4.3). It follows that

VNl(x̄) ≤ ηl,mVNm(x̄) ∀x̄ ∈ X̄Nm ∩ X̄Nl . (4.12)

Depending on the cost matrices employed, it may happen that ηl,m > 1,
however it will always be finite, hence there exists a finite bound on how much
larger the value function of a destination mode can be when compared to that
of its source mode. The multiplicative bound in (4.12) is the discrete-time,
linear analogous to the bound proposed in [127], and although valid for the
subsequent developments, a tighter one exists. Indeed, note that (4.12) implies
VNl(x̄)− VNm(x̄) ≤ (ηl,m − 1) dm|x̄|2, however it also follows from (4.3) that

VNl(x̄)− VNm(x̄) ≤ µl,m|x̄|22 ∀x̄ ∈ X̄Nm ∩ X̄Nl . (4.13)

with µl,m ≥ dl − bm. Since µl,m ≤ (ηl,m − 1) dm, (4.13) represents a tighter
bound on the difference of neighbouring value functions. In view of (4.13) then,
the following result holds for all k ∈ N0.

Theorem 4.4. Consider any pair m, l ∈M with m 6= l and l ∈Mm. For any
two switching instances (tk, σ(tk) = m) and (tk+1, σ(tk+1) = l) that fulfil the
associated feasibility MDT, if tk+1 − tk ≥ τ sm,l with τ sm,l > 0 such that

µl,mc
2
mλ

2τsm,l
m

dm
< 1− λ2τsm,l

m , (4.14)

then there exists a scalar f̄m,l > 0 such that

V (x̄(tk+1))− V (x̄(tk)) ≤ −f̄m,l|x̄(tk)|22 (4.15)

with V (x̄(t)) = VNσ(t)
(x̄(t)).

Proof. First note that, since VNm(·) is a Lyapunov function for all m ∈M, it
must happen that fm < dm, otherwise the rate inequality in (4.3b) does not
hold. It follows then that fm/dm ∈ (0, 1) and so the right hand side of (4.14) is
positive, monotonically increasing on τ sm,l and bounded above by 1. If µl,m < 0,
the left hand side of (4.14) is negative and fulfilling (4.15) is trivial. If µl,m > 0,
the right hand side of (4.14) is positive but monotonically decreasing on τ sm,l
and bounded below by 0. This implies that there exists a finite τ sm,l such that
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(4.14) holds, and that

µl,mc
2
mλ

2(tk+1−tk)
m

dm
< 1− λ2(tk+1−tk)

m , (4.16)

holds since tk+1 − tk ≥ τ sm,l by assumption. Secondly note that (4.3b) and the
upper bound in (4.3a) result in

VNm(x̄(tk+1)) ≤ λ2(tk+1−tk)
m VNm(x̄(tk)).

It follows then, from the upper bound in (4.3a), that

VNm(x̄(tk+1))− VNm(x̄(tk)) ≤ −
(
1− λ2(tk+1−tk)

m

)
dm|x̄(tk)|22 (4.17)

From (4.17), and the additive bound (4.13) evaluated at time tk+1, it follows
that

VNl(x̄(tk+1))− VNm(x̄(tk)) ≤−
(
1− λ2(tk+1−tk)

m

)
dm|x̄(tk)|22

+ µl,mc
2
mλ

2(tk+1−tk)
m |x̄(tk)|22.

(4.18)

From (4.16) it follows that the left hand side of (4.18) is negative and so (4.15)
is met with

f̄m,l =
(

1− λ2τsm,l
m

)
dm − µl,mc2

mλ
2τsm,l
m .

�

The central part of Theorem 4.4 is the inequality (4.14), which is formed
by scalar functions of τ sm,l. It follows that a τ sm,l that meets (4.14) can be easily
found by iterating over the set of integers. Furthermore, if τ sm,l is chosen such
that (4.14) does not hold for τ sm,l − 1, then τ sm,l represents the minimum MDT
that guarantees a positive f̄m,l and so stable switching between modes m and
l. In what follows it is assumed that τ sm,l is computed to be minimal. Given
Theorem 4.4, it is straightforward to compute the required f̄m for each mode
by taking the minimum over all allowable switches.

Corollary 4.4. Assume σ(·) is a CSS. If for all m ∈M the MDTs are set to
τ sm defined by

τ sm = max
l∈Mm

τ sm,l,

then the switching control law (4.5) guarantees (4.11b) is met with V (x̄(t)) =

VNσ(t)
(x̄(t)) and

f̄m = min
l∈Mm

f̄m,l,
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hence Proposition 4.5 and Theorem 4.3 ensure that the origin is exponential
stable for the switching closed-loop under control law (4.5).

4.3.2.1 Dynamically adjacent value functions

The implementation of the switching control law (4.5) implies that at any
given switching instance tk there is only one MPC controller active, and so
u(tk − 1) = κ̄σ(tk−1)(x̄(tk − 1)) but u(tk) = κ̄σ(tk)(x̄(tk)). Furthermore, setting
V (x̄(t)) = VNσ(t)

(x̄(t)) results in that VNσ(tk−1)
(x(tk)) is never really part of

the overall Lyapunov equation. Ultimately, this implies that although valid,
the additive bound in (4.13) may result in unnecessarily conservative MDTs
since two value functions are being compared at the same state however only
one is ever evaluated. Figure 4.1 presents a diagram that clarifies this situation.

tk−1 tk − 1 tk tk+1

V
N
σ
(
t
k
)

µ̄l,m µl,m

Mode m Mode l

Figure 4.1: Bound on the increase of the cost function during a switch:
Vm(x(t)), Vl(x(t)).

An alternative, then, is to compare the neighbouring value functions at the
dynamically adjacent states x̄(tk − 1) and x̄(tk). For any pair of neighbouring
modes m, l ∈ M with l ∈ Mm define then µ̄l,m ≥ µl,m − fl. It follows that if
x̄ ∈ X̄Nm , then

VNl(Amx̄+Bmκ̄m(x̄))− VNm(x̄) ≤ µ̄l,m|x̄|2 (4.19)

for all (Amx̄+Bmκ̄m(x̄)) ∈ X̄Nm ∩ X̄Nl . Inequality (4.19) provides an additive
bound on the change of the optimal value functions at dynamically adjacent
states, and allows for an analogous result to Theorem 4.4.

Proposition 4.6. Consider any pair m, l ∈M with m 6= l and l ∈Mm. For
any two switching instances (tk, σ(tk) = m) and (tk+1, σ(tk+1) = l) that fulfil
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the associated feasibility MDT, if tk+1 − tk ≥ τ̄ sm,l with τ̄ sm,l > 0 such that

µ̄l,mc
2
mλ

2(τ̄sm,l−1)
m

dm
< 1− λ2(τ̄sm,l−1)

m , (4.20)

then the origin is exponentially stable for the switched closed-loop, with respect
to the switching instants.

Proof. Follows directly from Theorems 4.3 and 4.4. �

The same arguments presented in the proof of Theorem 4.4 can be used to
guarantee the existence of a finite τ̄ sm,l such that (4.20) is met, and similarly
τ̄ sm,l can be chosen minimal. Corollary 4.4 then, applies without changes to
compute the analogous τ̄ sm. It is not trivial, however, to guarantee τ̄ sl,m ≤ τ sl,m
(or vice-versa). Indeed, a preliminary inspection shows that the right hand side
of (4.20) is upper bounded by the right hand side of (4.14), but µ̄l,m is strictly
smaller than µl,m. Which stability inducing MDT is less demanding depends
then on the particular values of the different bounding constants. In view of
the latter is that it is proposed to compute both and choose the smaller one.

4.3.3 MDTs for admissible and stabilizing switching

A key requirement that is not explicitly stated in Corollary 4.4 (albeit clear
from Theorem 4.4 and Proposition 4.6) is that (4.11b) and (4.13) (or (4.19))
are only valid in the intersection of the corresponding feasibility regions, hence
stable switching cannot be guaranteed independently of admissible switching.
The following corollary then brings both results together to guarantee stable
and admissible switching under the proposed control law (4.5).

Corollary 4.5. If the feasibility regions X̄Nm have been computed and the
minimum MDT for each mode is set to τm defined by

τm = max
{
τ fm,min {τ sm, τ̄ sm}

}
,

the control law (4.5) results in constraint admissible closed-loop trajectories
that converge exponentially fast to the origin (at different rates for each active
mode). Alternatively, if the feasibility regions are not available, the minimum
required MDTs are

τm = max
{
τ̄ fm,min {τ sm, τ̄ sm}

}
,
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and the full region of attraction ca be recovered by enforcing the initialization
MDT τ0.

4.4 Disturbed switching linear systems: inde-

pendent design

The standard tube-based MPC implementation [2] provides robust control
under minimal additional design requirements with respect to standard non-
robust MPC implementations. The only additional design parameters are a
stabilizing linear feedback and a corresponding admissible RPI set Sm to work
as the cross section of the tube. However, the MDT results obtained for the
disturbance-free case, in the previous section, cannot be cast for the robust
case without some additional considerations.

4.4.1 MDTs for robustly admissible switching

The main consequence of accounting for additive disturbances such as w(t) in
(4.1) is that the origin cannot be rendered (exponentially) stable, even in the
non-switching case. The tube-based MPC described in Chapter 2 and recast in
Section 4.2.1 can only guarantee exponential stability of Sm for the true state
(provided mode m remains indefinitely active). Since Sm is an RPI set for the
error dynamics of mode m, once x(t) ∈ Sm it remains inside for all future time
instances as long as mode m continues to be active. It follows that Sm is the
smallest neighbourhood of the origin that can be guaranteed to contain the
state at any given time instance, as opposed to the time-varying set Br defined
in (4.8) that converges, in the limit, to the origin. Ultimately, this implies
that feasible switching between neighbouring modes, say m and l, can only be
guaranteed if Sm ⊆ XNl , thus the following assumption is required.

Assumption 4.1. For all (l,m) ∈ E it holds that Sm ⊂ XNl = Sl ⊕ X̄Nl .

If Assumption 4.1 is met, the approach used to compute admissibility MDTs
for the disturbance-free case can be easily extended to the perturbed case.
Indeed, (4.4) guarantees that the origin remains exponentially stable for the
optimized nominal state trajectories of each independent closed-loop, despite
the perturbation introduced by w(t). This, in turn, implies that the bounding
set provided by Proposition 4.2 remains a valid bound for the nominal state
trajectories in the perturbed case. Intuitively then, Theorem 4.1 could be
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considered for the definition of MDTs in the robust case, however note that
for any given pair of neighbouring modes m and l, it does not necessarily hold
that Sm ⊆ Sl, hence even if the nominal closed-loop of mode m reaches X̄Nl ,
the true state is only guaranteed to be in Sm ⊕ X̄Nl and not necessarily in XNl .
This is why the TMPC approach that optimizes nominal trajectories is selected
over the one that lets them evolve independently. The former allows to easily
overcome this issue by modifying the set inclusion that needs to be tested in
Theorem 4.1.

Theorem 4.5. Consider any pair m, l ∈ M with m 6= l, σ(tk−1) = m and
l ∈ Mm. Furthermore, assume that mode m became active (feasibly) at the
previous switching instance tk−1. If Assumption 4.1 holds and τ fm,l ≥ 0 is such
that Sm ⊕ Brm(τfm,l)

⊆ Sl ⊕ X̄Nl but Sm ⊕ Brm(τfm,l−1) * Sl ⊕ X̄Nl , then a switch

to mode l is feasible at any time tk that fulfils tk − tk−1 − 1 ≥ τ fm,l.

Proof. The proof is identical to the proof of Theorem 4.1. Existence of a finite
τ fm,l is guaranteed by the strict inclusion demanded in Assumption 4.1 and the
decreasing Chebyshev radius of Brm(τfm,l)

as defined in (4.8). �

In view of Theorem 4.5 then, minimum MDTs that guarantee feasible
switching among independently designed TMPC controllers can be defined.

Corollary 4.6. Assume σ(·) is a CSS. If for all m ∈M the MDTs are set to
τ fm defined by

τ fm = 1 + max
l∈Mm

τ fm,l,

then the switching control law (4.5) guarantees robust constraint satisfaction
for the switching linear system (4.1).

Theorem 4.5 and Corollary 4.6 parallel the disturbance-free results and
provide an approach to compute MDTs that guarantee admissible switching,
albeit demanding the knowledge of the nominal feasibility regions. Nevertheless,
the results provided in Section 4.3.1.2 for the disturbance-free case are also
valid for the perturbed case with the appropriate modifications for the set
inclusion that needs to be verified (as in Theorem 4.5).

4.4.2 MDTs for stabilizing switching

In a non-switching scenario an individual TMPC controller can guarantee
exponential stability of the RPI set Sm for the true state trajectories as a
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consequence of the origin being exponentially stable for the nominal optimized
trajectories. It would be expected then that in a switching scenario the set

Os =
⋃
m∈M

Sm (4.21)

can be shown to be (exponentially) stable by readily extending the stability
inducing MDTs computed in Section 4.3.2, yet this is not trivial to achieve.
The main reason is that the RPI sets of neighbouring modes are designed in
an independent fashion hence (m, l) ∈ E does not imply Sm ⊆ Sl. In view of
this, even if x(tk−1) ∈ Sm, it is not possible to guarantee that at the switching
instance x(tk) ∈ Sl, which ultimately results in an increase of the value function
across switching intervals that cannot be countered by any finite dwell-time.

In order to see this first define x̄m(t) = x̄∗0,m(x(t)) as the optimal value of
the predicted nominal state obtained by solving PNm(x(t)). For any pair of
neighbouring modes m, l ∈M, heterogeneity of modes and cost functions will,
almost surely, yield x̄∗0,m(x(t)) 6= x̄∗0,l(x(t)) for all x(t) /∈ Sm∩Sl. It follows then
that a bound like (4.13) depends on both optimized variables,

VNl(x(t))− VNm(x(t)) ≤ dl|x̄l(t)|22 − bm|x̄m(t)|22 ∀x ∈ XNm ∩ XNl . (4.22)

The same chain of arguments employed in Theorem 4.4 would then yield

VNl(x(tk+1))− VNm(x(tk)) ≤ dl|x̄l(tk+1)|22 − dm|x̄m(tk)|22. (4.23)

If x(tk) ∈ Sm, then x̄m(tk) = 0, and so the rate of change is upper bounded by
a positive function, and a decrease cannot be guaranteed. Furthermore, the
rate in (4.23) depends not only on the nominal state at the previous switching
instance, but also at the current one. The value of |x̄l(tk+1)| can be related to
that of |x̄m(tk)|, however through the explicit characterization of the control
law κm (·) (or κl (·)), thus (4.22) does not provide an explicit bound on the rate
of change of V (x(t)) = VNσ(t)

(x(t)) as opposed to (4.18).
Despite these issues, it is still possible to establish stability of a neighbour-

hood of the origin for the switching closed-loop under control law (4.5), albeit
not by directly comparing value functions, but by employing the robust invari-
ance properties of Sm. Indeed, if the admissibility inducing MDTs computed in
Section 4.4.1 are enforced, it holds that for x(0) ∈ O with

O =
⋃
m∈M

(
Sm ⊕ X̄Nm

)
(4.24)
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the closed-loop remains inside O for all future time instances, or in other words,
O is a robust control invariant set for the switching closed-loop. In a similar
way, smaller neighbourhoods of the origin can be rendered invariant provided
long enough MDTs are satisfied. To do so first suppose that a collection of sets
{Ωm}m∈M that meets the following assumption is available.

Assumption 4.2. For all m ∈M the set Ωm is a such that

x̄∗0,m(x(t)) ∈ Ωm =⇒ x̄∗0,m(x(t+ 1)) ∈ Ωm (4.25a)

Ωm ⊆ X̄Nm (4.25b)

Sm ⊂ Sl ⊕ Ωl, ∀l ∈Mm. (4.25c)

It can be shown that if such a collection of sets exists, and given a particular
collection of MDTs, the set

Og =
⋃
m∈M

(Sm ⊕ Ωm) (4.26)

is robust invariant for the switching closed-loop, yet finding such a group of
sets is not an easy task. The property outlined by (4.25a) implies that Ωm is
an invariant set for the optimized nominal state trajectories, but this is not
the same as Ωm being PI for the nominal dynamics. The latter requires that

x̄∗0,m(x(t)) ∈ Ωm =⇒ Amx̄
∗
0,m(x(t)) +Bmκ̄m(x̄∗0,m (x(t))) ∈ Ωm,

yet x̄∗0,m(x(t+ 1)) is defined by the optimization at time t+ 1 and hence is not
necessarily equal to Amx̄∗0,m(x(t))+Bmκ̄m(x̄∗0,m (x(t))). In general any sub-level
set of the corresponding value function, VNm (·) guarantees that (4.25a) is met,
and there exists an infinite number of sub-level sets that meet (4.25b). The
inclusion in (4.25c), however, is not necessarily fulfilled by any sub-level set and
it would be up to the design process to verify this. Additionally, computing
sub-level sets of the constrained m-TMPC value function is not a trivial task.
For unconstrained linear systems stabilized by a linear control law, these sets are
characterized by simple ellipsoids (given the quadratic cost). The MPC control
law, on the other hand, is rendered non-linear due to the state constraints and
implicit due to the optimization, hence its sub-level sets need to be obtained
numerically [1].

There are, however, two simple sets that can serve as candidates to meet
Assumption 4.2. The first option is the trivial choice Ωm = X̄Nm . By As-
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sumption 4.1 and the recursive feasibility property of the individual TMPC
controllers, it is easy to show that X̄Nm fulfils all the requirements of Assump-
tion 4.2. The drawback of such selection is that nothing is gained from the
regulation perspective as Og = O is the largest neighbourhood of the origin
that can be rendered attractive. A second option is Ωm = X̄f,m, which by
definition fulfils (4.25b). In general, X̄f,m does not fulfil (4.25a), however a
specific design choice can guarantee it does.

In Section 4.2.1 the terminal cost is designed to match exactly the infinite
horizon unconstrained LQR cost. If additionally the terminal controller Km

is chosen to equate the optimal LQR gain associated to the cost matrices
Qm and Rm, it follows by optimality that x̄m(t) = x̄∗0,m(x(t)) ∈ X̄f,m and
ūm(t) = ū∗0,m(x(t)) = Kmx̄

∗
0,m(x(t)) for all x(t) ∈ Sm ⊕ X̄f,m. Furthermore, the

composite control law κm(·) results in

x(t+ 1) = Ax(t) +Bκ(x(t)) + w(t)

= Ax(t) +B
(
ūm(t) + K̄m (x(t)− x̄m(t))

)
+ w(t)

= Ax(t) +Būm(t) +BK̄me(t) + w(t)

= Ax(t) +BKmx̄m(t) +BK̄me(t) + w(t) + (Ax̄m(t)− Ax̄m(t))

=
(
A+BK̄m

)
e(t) + w(t) + (A+BKm) x̄m(t)

=⇒ x(t+ 1) ∈ Sm ⊕ X̄f,m

(4.27)
and so x̄m(t + 1) = x̄∗0,m(x(t + 1)) is also contained in ∈ X̄f,m; thereby X̄f,m

also fulfils (4.25a). Note that in (4.27) K̄m and Km are employed to refer to
the tube and the terminal gains correspondingly. This is done to emphasize
that these gains need not to be the same. The terminal gain Km can then
be set to the LQR gain associated to the m-TMPC cost to guarantee that
X̄f,m fulfils (4.25a) while the tube gain K̄m can be designed to guarantee that
X̄f,m meets the inclusion condition (4.25c). Finally, note that provided the
design conditions discussed above are met, any Ωm = εX̄f,m with ε ∈ [0, 1]

fulfils (4.25a) and (4.25b), so if X̄f,m meets (4.25c) with strict inclusion, an
even smaller neighbourhood of the origin can be rendered (exponentially) stable
by appropriate scaling of the terminal set. Nevertheless, if Sm * Sl, then Ωl

must have a non-zero Chebyshev radius.

4.4.2.1 Feasibility implies stability

Independent of how the collection {Ωm}m∈M is computed, its existence guaran-
tees that Og is robust positive invariant for the switching closed-loop, provided
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certain MDTs are enforced. To prove this first define the time-varying set

B̂r̂m(t) = Ωm ∩Br̂m(τ) (4.28)

with r̂m(t) =
√
nxcmλ

τ
m maxx∈Ωm |x|2. Since Ωm is assumed invariant for the

optimized nominal dynamics, the same arguments used in the proof of Propo-
sition 4.2 guarantee that, if mode m became feasibly active at time tk then
x(t) ∈ Sm ⊕ B̂r̂m(t−tk) ⊆ Sm ⊕ Ωm for all t > tk as long as mode m remains
active. In view of this the robust invariance of Og follows.

Proposition 4.7. If Assumption 4.2 holds, there exists τ gm,l ≥ 1 such that

Sm ⊕ B̂r̂m(τgm,l)
⊆ Sl ⊕ Ωl, (4.29)

for all pairs (m, l) ∈ E . Furthermore, if the feasibility MDTs for each mode are
set to τ gm = max

l∈M
τ gm,l, the set Og is RPI for the switched closed-loop dynamics

under the control law (4.14).

Proof. The existence of a finite τ gm,l such that the inclusion (4.29) holds follows
from the strict inclusion requirement in (4.25c) and the fact that the Chebyshev
radius of B̂r̂m(t), as defined in (4.28) is exponentially decreasing. Robust
invariance of Og follows from the invariance of the collection {Ωm}m∈M and the
definition of the required minimum MDT to the maximum over all allowable
switches for each mode. �

Similar to the result observed in Section 4.3.1.2 for unknown feasibility
regions, the MDTs that guarantee invariance of Og are not necessarily longer
than those that guarantee invariance of O. Nevertheless, since there is no
contraction condition imposed in the computation of the feasibility MDTs that
render O invariant, there is no immediate guarantee of convergence to Og.
Indeed, Og is robustly invariant but the states might never reach it. A simple,
yet arguably conservative way of ensuring that Og is robustly exponentially
stable for the switching closed-loop is to impose a long enough MDT over a
single mode, say m̄, such that Sm̄ ⊕ Ωm̄ is reached before another switch. The
following theorem establishes this result formally.

Theorem 4.6. Suppose a collection of sets {Ωm}m∈M that fulfils Assump-
tion 4.2 is known and that τ gm are the MDTs computed for such a collection
of sets following Proposition 4.3. If (a) the MDTs for each mode are set to
τ̂ fm = max

{
τ fm, τ

g
m

}
for all m ∈M, and (b) for at least one m̄ ∈M the MDT
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is further extended to τm̄ = max
{
τ̂ fm̄, τ

s
m̄

}
with τ sm̄ such that Brm̄(τsm̄) ⊆ B̂r̂m̄(τgm̄),

then (1) the overall feasibility region of the switching control law (4.5) is O,
(2) as soon as σ(tk) = m̄ the true state enters Og in finite time posterior to the
switch into mode m̄ and (3) it remains therein for all future time instances.

Proof. First, by the definition of τ̂ fm it holds that τ̂ fm ≥ τ fm and so robust
invariance of O is guaranteed. Second, since rm̄(τ sm̄) is such that Br(t) ⊆ B̂r̂m̄(τgm̄)

for all t ≥ τ sm̄, if mode m̄ became feasible active at time tk, then x(t) ∈ Sm̄⊕Ωm̄

for all t ≥ tk + τ sm̄. Furthermore, since (4.29) holds, then x(t) ∈ Sl ⊕ Ωl for all
l ∈M, hence a switch is feasible, and the state remains inside Og for all future
time instances and switches due to the invariance of Og given τ̂ fm. �

Theorem 4.6 proposes a way to compute MDTs that ensure, not only that
O is the RoA of the proposed switching control law (4.5), but also to guarantee
convergence (in finite time) to a neighbourhood of the origin defined by Og.
The latter is guaranteed to be a superset of the set in (4.21) and will most likely
be a strict superset. This is a shortcoming when compared to non-switching
systems, but an acceptable trade-off given the heterogeneity of the modes and
the independent design approach that results in the several obstacles previously
discussed.

The finite time convergence guarantee provided by Theorem 4.6 requires
that a single mode is fixed for τ sm̄ time steps until Sm̄ ⊕ Ωm̄ has been reached.
Since the objective is to render stable the smallest possible neighbourhood
of the origin, τ sm̄ may be large, and hence translate into a conservative dwell-
time requirement. Nevertheless, conservatism can be reduced by resorting to
sub-optimal solutions. Indeed, for any x(t) ∈ XNm the solution to PNm (x(t))

is a sequence of Nm control actions that, if applied unchanged, guarantee
x(t+Nm) ∈ Sm ⊕ X̄f,m independent of the disturbances. Hence if Ωm̄ = X̄f,m̄

and τ sm̄ � Nm̄, the sub-optimal sequence of inputs can be employed to reduce
the time required to reach Og.

4.5 Disturbed switching linear systems: coupled

design

The MDTs computed in Section 4.4 guarantee that the control law (4.5) results
in a constraint admissible and robustly stable switching closed-loop independent
of the arbitrary switching and the action of the disturbances. The MDTs that
guarantee admissible switching are computed with a straightforward extension
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of the approach proposed for the disturbance-free case, however the same is
not possible for the stability inducing MDTs. The latter is, mainly, due to
the nominal state trajectories being an optimization variable of the proposed
robust controllers, hence allowing for the possibility of a cost increase. This
can be overcome by employing the version of TMPC that allows for inde-
pendently evolving nominal trajectories (described in Section 2.3.2), however
additional considerations are required to guarantee admissible switching under
this architecture.

In what follows all reference to TMPC controllers or control laws is made
assuming the version that does not optimize the nominal trajectories has
been implemented for each mode. If this is the case, the nominal trajectories
still converge exponentially fast to the origin. Thereby Proposition 4.2 and
Theorem 4.1 can again be used to find minimum MDTs that guarantees switches
that are nominally feasible, yet not necessarily robustly feasible.

Indeed, if mode m became feasible active at time tk−1, it ought to be that
x̄(tk−1) ∈ X̄Nm and e(tk−1) ∈ Sm. If the true open-loop is closed with κm(·)
and the nominal one with κ̄m(·), then there exist a finite time t̄ > tk−1 such
that x̄(t̄) ∈ Brm(t̄−tk−1−1) ⊆ X̄Nl where l is any neighbouring mode of m. If a
switch takes place, PNl (x̄(t̄)) is feasible and can be solved, resulting in ū(t̄) =

κ̄l(x̄(t̄)) ∈ Ūl, however the robust invariance property of the corresponding RPI
sets can only guarantee e(t̄) ∈ Sm, hence the composite control law κl(·) results
in

u(t̄) = ū(t̄) +Kle(t̄) ∈ Ūl ⊕KlSm. (4.30)

By definition Ūl ⊕KlSl ⊆ Ul, but Ūl ⊕KlSm is not necessarily a subset of Ul.
The control action that results from the switching control law (4.5) could then
violate the input constraints. Moreover, even if input constraints are respected,
it follows that

e(t̄+ 1) = x(t̄+ 1)− x̄(t̄+ 1) ∈ (Al +BlKl)Sm ⊕Wl, (4.31)

which, again, is not necessarily a subset of Sl. Hence even if the nominal state
at time t̄ is inside the nominal RoA of the l-TMPC controller, the dynamics and
disturbances associated to the newly active mode could result in the violation
of the true (non-tightened) state constraints at time t̄+ 1.

In summary then, employing the version of TMPC that does not optimize
trajectories gives rise to two specific constraint related issues. These are not
present in the approach detailed in Section 4.4.1 because the individual TMPC
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controllers optimize the nominal trajectories to guarantee e(t̄) ∈ Sl; yet this
feature is also the main obstacle in computing simple stabilizability MDTs
using the standard exponential stability result of the independent controllers.
In what follows, solutions are proposed to tackle both constraint challenges,
in an attempt to guarantee feasible switching between TMPC controllers that
do not optimize trajectories, and thereby allow for a simple extension of the
disturbance-free approach to computing stability MDTs.

4.5.1 Invariant multi-sets

In order to tackle the state constraint satisfaction issue that stems from the fact
that the RPI sets are computed independently (4.31), a coupled design approach
is proposed. Particularly, the concept of multi-set invariance, introduced
in [136], is employed. Multi-set invariance has some similarities to the idea of
invariant families of sets [138], however tailored for switching systems rather
than distributed systems. In what follows, the multi-sets are reported as S̄m,
in order to avoid confusion with the standard RPI sets, reported as Sm.

Definition 4.2. Consider an autonomous switching linear system

x(t+ 1) = Aσ(t)x(t) + w(t)

with w(t) ∈ Wσ(t), subject to constraints x(t) ∈ Xσ(t) and with σ(t) a CSS
taking values in the finite setM and represented by a directed graph G (M, E).
A collection of sets

{
S̄m
}
m∈M is called an invariant multi-set if

AlS̄m ⊕Wl ⊂ S̄l

for all (m, l) ∈ E .

Suppose again that independent TMPC controllers are designed for each
mode. Given the switching control law (4.5), as long as the different TMPC
controllers are feasible at the switching instances, it follows that

x(tk + 1) = Aσ(tk)x(tk) +Bσ(tk)κσ(kt)(x(tk)) + w(tk)

x̄(tk + 1) = Aσ(tk)x̄(tk) +Bσ(tk)κ̄σ(tk)(x̄(tk))

=⇒ e(tk + 1) =
(
Aσ(tk) +Bσ(tk)Kσ(tk)

)
e(tk) + w(tk)

= Āσ(tk)e(tk) + w(tk)

=⇒ e(tk + 1) ∈ Āσ(tk)Sσ(tk−1) ⊕Wσ(tk) ⊆ Sσ(tk).

(4.32)
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By definition then, the elements of an invariant multi-set provide a solution to
the state constraint problem depicted in (4.31). Furthermore, since (m,m) ∈ E
for all m ∈ M, every element S̄m of an invariant multi-set computed for the
switching error dynamics (4.32) is also an RPI set for them error mode dynamics.
Thereby if S̄m is used to tighten the m mode constraints, the constraint
satisfaction guarantees provided by the independent m-TMPC controller during
the period mode m is active remain valid. In view of this is that, in order
to achieve feasible switching between TMPC controllers that do not optimize
nominal trajectories, an invariant multi-set will now be employed for constraint
tightening.

There are two drawbacks with using invariant multi-sets. The first one has
to do with the design process which will now be coupled among all modes.
Indeed, even if the graph that defines the CSS is not strongly connected, if
each mode is allowed to switch into at least one other, the computation of all
the elements of

{
S̄m
}
m∈M is coupled. An exception exists if one mode, say

m̄, has no destination nodes. In this case S̄m̄ can be computed independently
as an RPI set for the m̄ dynamics, yet the elements of the invariant multi-set
associated to nodes that are source to m̄ still depend on S̄m̄.

The second drawback has to do with the constraint tightening procedure
that is key in tube MPC implementations. Generally the RPI sets used in tube
MPC are designed to be small. This is done to bring the constraint tightening
to a minimum and allow more freedom to the optimisation-driven part of the
composite control law (the nominal input). If the RPI set is large, most of
the control authority is seized by the linear control law associated to the RPI
set, reducing the overall control capabilities. In [136] a procedure to compute
the minimal invariant multi-set is devised. This is similar in complexity to the
computation of the minimal RPI set for a linear system and approximations
equivalent to those devised in [100] are also provided. Nevertheless, each
element of an invariant multi-set is RPI for its corresponding dynamics, yet
not every RPI set is part of an invariant multi-set, hence it is expected that
Sm ⊆ S̄m, leading to a larger tightening.

4.5.2 MDTs for admissible switching

Suppose now that TMPC controllers are designed for each mode, however
not in an independent fashion but using the corresponding elements of an
invariant multi-set computed for the error dynamics as their tightening set.
Consider again that mode m became feasible active at time tk−1. Proposi-
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tion 4.2 guarantees the existence of a finite time t̄ > tk−1 such that x̄(tk−1) ∈
Brm(t̄−tk−1−1) ⊆ X̄Nl where l is any neighbouring mode of m. It follows that
PNl (x̄(t̄)) is feasible and can be solved, and hence a switch could tentatively
take place. The multi-set invariance of the collection of sets

{
S̄m
}
m∈M takes

care of the possible state constraint violation discussed in (4.31), however the
error switching dynamics only take the form in (4.31) if u(t̄) = κl(x(t̄)) ∈ Ul

which is not necessarily the case according to (4.30).

To guarantee that the input constraint associated to a destination mode is
met when the switch takes place, an auxiliary controller is now proposed. In
principle, the latter can be designed following any technique, but tube-based
MPC is chosen for consistency. The objective of this auxiliary, or transition,
controller is to guarantee input constraint satisfaction during the transition
step, after which the destination TMPC controller becomes feasible due to the
multi-set invariance. It follows then that the transition controller is only used
during one time step, the switching instance. Given the heterogeneity of the
modes, an auxiliary controller is required for each allowable switch, hence for
any pair (m, l) ∈ E an m, l-transition tube-based MPC controller is defined.
Consider the following optimization problem

P̃mNl(x̄(t)) : min
ū
JNl (ū, x̄0) (4.33a)

s.t. (for k = 0, . . . , Nl − 1)

x̄0 = x̄(t) (4.33b)

ū0 ∈ Ũm
l ⊆ Ul 	KlS̄m (4.33c)

x̄k+1 = Alx̄k +Blūk (4.33d)

x̄k ∈ X̄l ⊆ Xl 	 S̄l (4.33e)

ūk ∈ Ūl ⊆ Ul 	KlS̄l (4.33f)

x̄Nl ∈ X̄f,l ⊆ X̄l, (4.33g)

with

ū◦(x̄(t)) = arg P̃mNl(x̄(t))

V m
Nl

(x̄(t)) = JNl
(
ū◦(x(t)), x̄(t)

)
,

and define X̃m
Nl

as the set of all the states for which P̃mNl(x) is feasible. Finally,
the nominal and composite transition control laws are correspondingly

κ̃m,l(x̄(t)) = ū◦0(x̄(t)) (4.34a)
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κm,l(x̄(t)) = κ̃m,l(x̄(t)) +Kl (x(t)− x̄(t)) . (4.34b)

It follows that the optimization problem associated to the transition controller
P̃mNl(·) and the one associated to the destination mode controller PNl(·) differ
solely in that the former has an additional input constraint (4.33c) over the
first element of the optimized input sequence.

Following Proposition 4.2 and Theorem 4.1 it is easy to compute the
minimum MDT, say τ̃ fm,l, that guarantees x̄(t) ∈ X̃m

Nl
for all t ≥ tk−1 + τ̃ fm,l + 1

given x̄(tk−1) ∈ X̄Nm . The following result then holds for all k ∈ N0.

Proposition 4.8. Consider any pair m, l ∈ M with m 6= l and l ∈ Mm.
For any two switching instances (tk−1, σ(tk−1) = m) and (tk, σ(tk) = l) that
fulfil the feasibility MDT τ̃ fm,l associated to the m, l-transition controller, if the
control law (4.34) is used to define the nominal and true inputs at time tk, then
(1) u(tk) ∈ Ul, (2) PNl(x̄(tk + 1)) is feasible and (3) x(tk + 1) ∈ Xl.

Proof. For (1) first note that if mode m became feasible active at time tk−1

it follows that e(tk−1) ∈ Sm and x̄(tk−1) ∈ X̄Nm . Furthermore if the feasibility
MDT associated to the m, l-transition controller is met, it holds that x̄(tk) ∈
X̃m
Nl
, hence P̃mNl(x̄(tk)) is feasible and solving it yields

ū(tk) = κ̃m,l(x̄(tk)) = ū◦0(x̄(t)) ∈ Ũm
l

which then implies

u(tk) = κm,l(x̄(tk)) = ū◦0(x̄(t)) +Kle(tk) ∈ Ũm
l ⊕KlS̄m ⊆ Ul

where the inclusion holds by the definition of Ũm
l in (4.33c).

For (2) note that the nominal state is not subject to disturbances thus the
nominal control law (4.34) results in that x̄(tk + 1) matches the prediction
made at the previous time instant x̄1(x̄(t)). It follows that x̄(tk + 1) ∈ X̄l, but
more importantly, that there exists a sequence of Nl−1 control actions, namely{
ū◦1(x̄(t)), . . . , ū◦Nl−1(x̄(t))

}
, that drive the nominal state to the terminal region

while satisfying the l-mode constraints. The latter implies x̄(tk + 1) ∈ X̄Nl−1 ⊆
X̄Nl which guarantees feasibility of PNl(x̄(tk + 1)).

For (3) define Āl = (Al +BlKl) and note that

x(tk + 1) = Alx(tk) +Blu(tk) + w(tk)

x̄(tk + 1) = Alx̄(tk) +Blū(tk)
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=⇒ e(tk + 1) = (Al +BlKl) e(tk) + w(tk) = Āle(tk) + w(tk)

=⇒ e(tk + 1) ∈ ĀlS̄m ⊕Wl ⊆ S̄l
=⇒ x(tk + 1) = e(tk + 1) + x̄(tk + 1) ∈ S̄l ⊕ X̄Nl ⊆ S̄l ⊕ X̄l ⊆ Xl,

where the first implication follows from the definition of the error dynamics, the
second one from the definition of the tightening sets as elements of an invariant
multi-set and the last one from the feasibility of PNl(x̄(tk + 1)). �

In view of Proposition 4.8, it is easy to establish minimum MDTs that guar-
antee admissible switching between independently designed TMPC controllers
that do not optimize trajectories, provided transition controllers have been
defined.

Theorem 4.7. Assume σ(·) is a CSS. If for all m ∈ M the MDTs are set to
τ̃ fm defined by

τ̃ fm = 1 + max
l∈Mm

τ̃ fm,l,

then for all k ∈ N0 the switching control law

κ(x(t)) =


κσ(t)(x(t)) t = 0

κσ(t)(x(t)) t ∈ (tk−1, tk)

κ̃σ(tk−1),σ(tk)(x(t)) t = tk,

(4.35)

guarantees constraint satisfaction for the switching linear system (4.1).

Proof. Follows directly from Proposition 4.8. �

There are two important things to remark. First note that such an approach
is only applicable because the switching sequence is assumed to be instantly
known, hence at a switching time instance tk the mode that became active is
available and the appropriate transition controller can be employed. Secondly,
note that the minimum MDTs computed in Section 4.4.1 guarantee x(tk) ∈
XNl ⊆ Xl. That is the state constraint of the destination mode is met at
the switching instant tk. The approach depicted in this section, however,
only guarantees x(tk) ∈ S̄m ⊕ X̃m

Nl
⊆ S̄m ⊕ X̄l, which is not necessarily a

subset of the true state constraint set Xl. This is not necessarily seen as a
drawback for two reasons. First, x(tk) is a result of the m-TMPC controller,
thus demanding x(tk) ∈ Xl for all l ∈Ml might be unnecessarily conservative
for an a-priori unknown switching sequence. Secondly, x(tk + 1) ∈ Xl is
guaranteed. Furthermore, x(tk) ∈ Xl can be easily enforced by extending
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the feasibility MDTs τ̃ fm,l so that it not only guarantees Brm(τ̃fm,l)
⊆ X̃m

Nl
but

also S̄m ⊕ Brm(τ̃fm,l)
⊆ Xl, which is guaranteed to happen at a finite τ̃ fm,l given

Assumption 4.1. Finally, note that if the RoA of the different controllers
are intractable to compute, the approach devised in Section 4.3.1.2 is readily
applicable for this case.

4.5.3 MDTs for stable switching

The primary objective of employing the TMPC variant that does not optimize
trajectories is to achieve an stability result similar to that developed for the
disturbance-free case. The latter hinges on comparing value functions of the
neighbouring controllers at the time of a switch. In this case, however, three
controllers come into play at every switching instance.

There are certain cases in which the transition controller can be replaced
by the destination controller, and hence the stability analysis depicted in
Section 4.3.2 can be applied without changes for the nominal trajectories.
Indeed, for any pair (m, l) ∈ E such that Ūl ⊆ Ũm

l , it holds that

Ūl ⊕KlSm ⊆ Ũm
l ⊕KlSm

=⇒ Ūl ⊕KlSm ⊆ (Ul 	KlSm)⊕KlSm
=⇒ Ūl ⊕KlSm ⊆ Ul

where the first implication follows from (4.33c) and the second one from the
Pontryagin difference properties. It holds then that by solving PNl(x̄(tk)) the
input constraints are met and the invariant multi-set guarantees the state
constraint satisfaction

Nevertheless, verifying such inclusion for all pairs of neighbouring modes
is not trivial and requires a design process considerably more complex than
simply resorting to invariant multi-sets. However, it is still possible to employ
the approach proposed in Section 4.3.2 to guarantee exponential stability of the
origin for the nominal trajectories of TMPC controllers. In order to demonstrate
so, consider the following result.

Proposition 4.9. For all x̄(t) ∈ X̃m
Nl

it holds that

VNl(x̄(t+ 1))− V m
Nl

(x̄(t)) ≤ −fl|x(t)|22,

with fl > 0 from (4.3b).
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Proof. The proof follows from the concept “feasibility implies stability” usually
employed in establishing stability of MPC controllers. First note that if
x̄(t) ∈ X̃m

Nl
, then P̃mNl is feasible with solution

ū◦(x̄(t)) =
{
ū◦0(x̄(t)), . . . , ū◦Nl−1(x̄(t))

}
with ū◦j(x̄(t)) ∈ Ūl for all j ∈ [0, Nl − 1], and associated predicted nominal
state trajectory

x̄◦(x̄(t)) =
{
x̄◦0(x̄(t)) = x̄(t), . . . , x̄◦Nl(x̄(t))

}
with x̄◦j(x̄(t)) ∈ X̄l for all j ∈ [0, Nl − 1] and x̄◦Nl(x̄(t)) ∈ X̄f,l. Since the nominal
system is not subject to disturbances it follows that x̄(t+ 1) = x̄◦1(x̄(t)) and so

ū4 =
{
ū◦1(x̄(t)), . . . , ū◦Nl−1(x̄(t)), Klx̄

◦
Nl

(x̄(t))
}

is a feasible solution to PNl(x̄(t+1)). Since the cost function of both optimization
problems is the same, it follows that

VNl(x̄(t+ 1))− V m
Nl

(x̄(t)) ≤ −
(
||x̄◦0(x̄(t))||2Qm + ||ū◦0(x̄(t))||2Rm

)
which is the same bound found for VNl(x̄(t+ 1))− VNl(x̄(t)) during the proof
of Proposition 4.1 (see [1]). �

It follows from Proposition 4.9 that, given the proposed auxiliary controller,
the decrease rate of the corresponding value functions when leaping from the
m, l-transition controller to the l-TMPC is the same as if the latter had been
active at the switching instant tk. It follows then that the exponential stability
result available for the independent TMPC controllers is valid for the entirety
of the interval [tk, tk+1) and so the same arguments employed in Section 4.3.2
also guarantee exponential stability of the origin for the switching closed-loop
trajectories given the individual TMPCs considered in this section and the
control law (4.35). A direct consequence of this is that the set Ōs, defined
analogously to (4.21) as

Ōs =
⋃
m∈M

S̄m, (4.36)

is exponentially stable for the true switching closed-loop, a result that follows
from Corollary 2.2 and Proposition 2.2.
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Table 4.1: Summary of proposed MDTs

Dwell-time Feasible switching Stable Switching
Disturbance Design Known RoA Unknown RoA

No I
(
τ fm
)
§ 4.3.1.1

(
τ̄ fm
)
§ 4.3.1.2 (τ sm) § 4.3.2

Yes I
(
τ fm
)
§ 4.4.1

(
τ̄ fm
)
§ 4.3.1.2 (τ gm, τ

s
m̄) § 4.4.2

Yes C
(
τ̃ fm
)
§ 4.5.2

(
¯̃τ fm
)
§ 4.3.1.2 (τ sm) § 4.5.3

4.6 Summary of MDTs

Throughout this chapter several approaches to computing MDTs have been
proposed. The common objective in all of them is to compute minimum MDTs
such that the control law (4.5) (or (4.35)) is able to stabilize the switching
system (4.1) while respecting state and input constraints independent of external
perturbations. The applicability of each MDT depends on whether disturbances
are considered, the feasibility region of the independent controllers is known,
and/or a coupled designed of the different tube-based controllers is allowed.
Table 4.1 summarizes all the case for which MDTs were proposed (I stands for
independent and C for coupled).

4.7 Illustrative example

The capabilities of the proposed approach to compute MDTs are now demon-
strated via a numerical example. A system of order two is considered in order
to be able to compute the corresponding feasibility regions X̄Nm , and have
access to all the results discussed in this chapter. The analysed system has
M = 5 different modes and an associated CSS with constraints as shown by
the graph in Fig. 4.2. The dynamics of each mode are reported in Table 4.2,
and the constraints sets in Table 4.3, where the linear map T is defined as
T = [1.5 0; 0 1]. Although of low order, the proposed example incorporates
a high degree of heterogeneity, with no two modes being defined by the same
dynamics, disturbances and/or constraint sets.

The results presented in this chapter do not rely on the heterogeneity of
the modes, nor of the associated cost functions. Nevertheless, for simplicity of
exposition the cost matrices are set to Q1 = 10I2, Q2:5 = I2, R1:5 = 1, and the
MPC horizons to N1:5 = 5. The local tube and terminal gains Km are set to
the corresponding LQR gains, also reported in Table 4.2. Furthermore, recall
that the multi-sets are reported as S̄m, in order to avoid confusion with the
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12

3 4 5

Figure 4.2: Graph representing the switching constraints of σ(·) for the illus-
trative example.

Table 4.2: Dynamics for all modes of the switching system.

Mode 1 2 3 4 5

Am

[
1.5 0
1.5 1

] [
1 1.5
0 1.5

] [
0.7 0.1
0.2 0.4

] [
0.8 0.3
0.4 0.1

] [
0.2 0.1
0.2 0.6

]
Bm

[
1

0.8

] [
1

0.8

] [
1

0.5

] [
0.7
0.8

] [
1.3
0.6

]
−K>m

[
1.6219
0.5669

] [
0.4100
1.4061

] [
0.3959
0.1446

] [
0.5253
0.1782

] [
0.1387
0.2088

]

standard RPI sets, reported as Sm.

4.7.1 Set related results

4.7.1.1 Nominal MPC

Figure 4.3 shows, for mode 1, the true RoA X̄Nm and the auxiliary set Θm

used for feasibility purposes in case the former is not available. The latter
is computed following the discussion in Section 4.3.1.2, but without adding
redundant vertices in the description of Xm. The sets for the other modes
are not reported because X̄Nm = Xm for m = 2, . . . , 5, hence the approach
discussed in Section 4.3.1.2 yields Θm = Xm = X̄Nm . For mode 1, however, the
auxiliary set is such that Θ1 ⊂ X̄N1 , resulting in a smaller overall RoA for the
switching controller when the feasibility regions cannot be exactly computed.
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Table 4.3: Constraints for all modes of the switching system.

Mode 1 2 3 4 5
Xm {|x|∞ ≤ 2} 1/2X1 X1 TX1 TX1

Um
3/2U2 {|u|∞ ≤ 2} 2U2

3/2U2
3/8U2

Wm
1/10W3

1/10W3 {|w|∞ ≤ 1} 1/2W3
7/10W3
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−3

−2

−1

0

1

2

3

x1

x
2

Figure 4.3: Feasibility regions used to compute the feasibility MDT for mode 1
in the undisturbed case: X̄N1 and Θ1.

4.7.1.2 Tube MPC: independent design

The sets Ωm, required to characterize the robustly stable set for the switching
closed-loop dynamics, are computed following the discussion in Section 4.4.2.
In this particular case, said sets are defined by Ωm = εmX̄f,m with the values
of εm reported in Table 4.4. It follows that Ωm = {0} for m = 2, 3, but has a
non-zero volume for modes 1, 4 and 5.

Figure 4.4 compares the size of the tightening set Sm, which is robustly
stable for each mode in a non-switching scenario, to that of the augmented set
Sm ⊕ Ωm required to guarantee stability given the switching sequence. The
largest difference is observed for mode 1, given that a the CSS allows a switch
from mode 5 to 1 and so S5 ⊂ S1 ⊕Ω1 is required, but S1 is much smaller than
S5. Figure 4.5 compares the exponentially stable region of the switching system
Og (see (4.26)) with the union of robustly stable sets in a non-switching scenario
Os (see (4.21)). For this particular example S3 ⊇ Sm and S4 ⊕ Ω4 ⊇ Sm ⊕ Ωm

for all m ∈M, so Os = S3 and Og = S4 ⊕ Ω4.

As expected, given that Ωm 6= {0} for some modes, Og is larger than Os
(by a 55% in volume). This represents the trade-off between complexity and
control performance when designing controllers for switching systems. Indeed,
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Og is considerably larger than Os, however it is guaranteed to be robustly
stable for the switching system when in closed-loop with simple, off-the-shelf,
tube MPC controllers designed for each mode.

Table 4.4: Value of the scaling factor εm used to compute Ωm = εmX̄f,m.

Mode 1 2 3 4 5
εm 0.69 0 0 0.66 0.11

−2 −1 0 1 2
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2
m = 1

x
2

−3 −2 −1 0 1 2 3

m = 4

x1

−1.4 −0.7 0 0.7 1.4

m = 5

Figure 4.4: Convergence regions for tube MPC with independent design:
Sm ⊕ Ωm and Sm.
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Figure 4.5: Convergence regions for tube MPC with independent design:
Og and Os.

4.7.1.3 Tube MPC: coupled design

Figure 4.6 compares the minimal RPI set Sm and the minimal multi-set S̄m for
all modes except 3, since for the latter both sets are equal. As expected, the
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minimal multi-set, being more demanding in its properties, can be larger that
the minimal RPI set (Figure 4.6). In turn, this has an adverse effect in the size
of the independent feasibility regions of each controller, resulting in smaller
RoAs for modes 1,2 and 4 (see Figure 4.7).

−1.2 −0.6 0 0.6 1.2
−1.2

−0.6

0

0.6

1.2
m = 1

x
2 −1 −0.5 0 0.5 1
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0.5

1
m = 2

−1.6 −0.8 0 0.8 1.6
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0

0.5

1
m = 4

x1

−1.4 −0.7 0 0.7 1.4
−2

−1

0

1

2
m = 5

Figure 4.6: Convergence regions for tube MPC with coupled and independent
design: minimal RPI set Sm and minimal multi-set S̄m.

The tightening sets, when computed as multi-sets, are at least as large
as when computed as simple RPI sets for the local dynamics. However, this
does not necessarily imply that the neighbourhood of the origin shown to
be robustly stable is also larger than the one obtained with independently
designed tube-based MPC controllers. Indeed, the latter can only guarantee
robust stability of Og defined as in (4.26), however the multi-set approach
guarantees robust stability of Ōs defined by (4.36). For this particular example,
it holds that S̄3 ⊇ S̄m for all m ∈ M and so Ōs = S̄3. Furthermore, it also
holds that S̄3 = S3, hence Ōs = Os, and so robust stability of the collection
of independently computed RPI sets is achieved. This is, however, not the
norm, and the relation between Os, Og and Ōs is heavily dependent on the
characteristics of the problem. In this particular example, Ōs = Os follows
from the fact that mode 3 is subject to the largest disturbances, resulting in a
large minimal RPI set S3.
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Figure 4.7: RoA of tube MPC with coupled and independent design XNm :
XNm (Sm) and minimal multi-set XNm

(
S̄m
)
.

4.7.2 Minimum mode-dependent dwell times

To compute the MDTs that guarantee feasible and stable switching, it is first
necessary to compute the exponential stability constant cm and λm associated
to each MPC controller. These two constant are, as discussed in Section 4.2.1,
a function of the Lyapunov bounds bm, dm and fm. It is shown in the proof of
Theorem 3.3 that bm = fm = ξm(Qm) fulfils the required inequalities, however
computing an appropriate dm is not trivial. In [1, Section 2.4] it is shown that,
if X̄f,m is compact, then there exists dm > ξM (Pm) such that the corresponding
inequality holds, and moreover, a procedure is provided to compute it. Said
approach relies on the size of the nominal feasibility regions X̄Nm , and hence
yields a different result depending on whether disturbances are considered,
and on which type of tightening set is used. Table 4.5 show the values of
the exponential stability constants for all three cases, when dm is computed
following the guidelines in [1, Section 2.4]. In all cases cm is greater than 2.5

and λm ≈ 1, resulting in slow convergence rates an hence a slow shrinkage rate
of the set Brm(τ) in (4.8) (or its corresponding parallels).

Table 4.6 contains the feasibility MDTs computed following the different
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Table 4.5: Convergence constants computed according to [1].

Nominal MPC Tube MPC Multi-set
Mode cm λm cm λm cm λm
1 4.0354 0.9688 4.0929 0.9697 3.3640 0.9548
2 3.3090 0.9532 3.3050 0.9531 3.2051 0.9501
3 2.5648 0.9209 2.5635 0.9208 2.5635 0.9208
4 2.6716 0.9273 2.6698 0.9272 2.6667 0.9270
5 4.3179 0.9728 7.6055 0.9913 7.6055 0.9913

Table 4.6: Feasibility MDTs (with (cm, λm) computed according to [1]).

Nominal MPC Tube MPC Multi-set
Mode τ fm τ̄ fm τ fm τ̄ fm τ̃ fm ¯̃τ fm

1 89 88 97 96 77 75
2 1 1 1 1 1 1
3 1 1 1 1 1 1
4 27 26 31 30 39 38
5 89 90 392 459 447 445

approaches devised in this chapter, and employing the exponential stability
constants reported in Table 4.5. As expected, given the slow convergence rate
guaranteed by the constants in Table 4.5, most of the minimum dwell-times
required to guarantee feasibility are unnecessarily long. Consider, for example,
the tube MPC case with known feasibility regions. If mode 5 became feasibly
active at a certain time instant, it must remain active for at least 392 future
time steps before a switch into modes 1 or 3 is guaranteed to be feasible.

The MDTs in Table 4.6, although feasibility inducing, are not practical.
This, however, is not attributable to the particular approach proposed here
to compute them, but to the conservativeness with which the upper bound
for the Lyapunov functions dm is computed. Indeed, the approach in [1] is
mostly concerned with guaranteeing existence of such a bounding constant,
rather than finding a tight one. In order to demonstrate the practicality of the
approach proposed in this chapter to compute MDTs, a tighter bound needs
to be obtained. The latter is not a trivial task, and is out of the scope of this
chapter. In what follows, a tighter bound is estimated through Monte Carlo
simulations. In order to obtain said estimate, the corresponding optimization
problem (depending on the case) is solved for 1000 randomly selected, albeit
feasible, values of the state. A less conservative upper bounding scalar dm
can then be obtained by comparing VNm(x(t)) and dm|x̄∗0(x)|22 at the randomly
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Table 4.7: Convergence constants computed with numerically obtained dm.

Nominal MPC Tube MPC Multi-set
Mode cm λm cm λm cm λm

1 1.4094 0.7047 1.4092 0.7046 1.4087 0.7043
2 1.9011 0.8505 1.9019 0.8506 1.9013 0.8505
3 1.1402 0.4805 1.1408 0.4813 1.1408 0.4813
4 1.2873 0.6298 1.2879 0.6302 1.2879 0.6302
5 1.1863 0.5380 1.1863 0.5380 1.1863 0.5380

Table 4.8: Feasibility MDTs (with (cm, λm) computed numerically).

Nominal MPC Tube MPC Multi-set
Mode τ fm τ̄ fm τ fm τ̄ fm τ̃ fm ¯̃τ fm

1 6 5 7 6 9 8
2 1 1 1 1 1 1
3 1 1 1 1 1 1
4 4 3 5 4 6 5
5 3 2 5 4 5 4

selected point.

Table 4.7 shows the convergence constants resulting from these numerically
obtained bounds and Table 4.8 presents the feasibility MDTs that result from
using these tighter bounds. It can be observed that cm is closer to 1 and λm � 1

in all cases, which result in a faster convergence rate for the radius of the set
Brm(τ). This, in turn, yields considerably shorter feasibility inducing MDTs.
Consider the same example than before; a switch out of mode 5 into modes
1 or 3 is guaranteed to be feasible only after 5 time steps, which represents
less than 2% of the MDT computed with the analytically obtained bounds. In
view of these results it is possible to conclude that the approach proposed in
this chapter can produce practical feasibility inducing dwell-times, given tight
bounds on the optimal value function.

Finally note that, although Θm = X̄Nm = Xm for all m = 2, . . . , 5, the
feasibility MDTs do not fulfil τ fm = τ̄ fm for m = 4, 5. This is particular to this
example in which X̄Nm = X̄Nm−1 for all m ∈M.

Finally, Table 4.9 presents the stability MDTs obtained using the numerically
estimated bounds. Recall that in the TMPC case the stability guarantee relies
on feasibility (Theorem 4.6), therefore the MDTs are generally larger when
compared to the Multi-set case. The value τ sm represents the time it takes
to reach the extended neighbourhood Ωm from X̄Nm , and the value τ̄ sm is the



4.8. SUMMARY 155

Table 4.9: Stability MDTs (with (cm, λm) computed numerically).

MPC TMPC Multi-set
Mode τ sm τ gm τ sm(τ̄ sm) τ sm

1 1 15 19(18) 1
2 14 1 95(94) 13
3 2 1 21(20) 2
4 3 16 19(18) 4
5 4 6 12(11) 4

analogue for when X̄Nm is unknown and replaced by Θm. In the multi-set or
nominal MPC cases, on the other hand, the stability MDT depends on the
behaviour of neighbouring value functions. In these two cases the stability
MDT of mode 2 is larger than for other modes. This can be explained by the
cost functions; indeed, mode 2 is allowed to switch into mode 1 (see Fig. 4.2)
however Q1 = 10Q2, therefore a longer time is needed in mode 2 to guarantee
a cost decrease before switching to mode 1.

4.8 Summary

This chapter examined the current algorithms for switching MPC and proposed
a novel approach to guarantee feasible and stable switching based on the com-
putation of minimum dwell-times. Several avenues where explored, including
nominal and disturbed dynamic and independent or coupled designed of the
MPC controllers for each mode. The technique proposed to compute the mini-
mum dwell-times relies on the exponential stability result available for MPC
when the cost is quadratic, the constraints are linear, and the optimization
problem is solved to optimality at each time instant. The latter is, evidently, a
drawback since suboptimal MPC (due to early termination of the optimization
algorithm) can only guarantee asymptotic stability. Nevertheless, the proposed
set-up results in the optimization being a convex QP problem, which can be
efficiently solved to an arbitrary accuracy.

An illustrative example was put forward, consisting of a switching system
with highly heterogeneous modes (both in dynamics and constraints). The
results showed that the quality of the obtained minimum dwell-times is highly
dependent on the tightness with which the Lyapunov bounds are computed.
Nevertheless, the proposed approach requires only off-the-shelf MPC controllers,
being the computation of multi-sets the most complex design step. This is op-
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posed to other approaches such as [114,122,124,130,133], which require several
different design steps such as the implementation of multi-parametric program-
ming tools to characterize the MPC feedback-law and the implementation of
several additional consistency constraints.

One of the main assumptions of the proposed approach is that the switch,
although a-priori unknown, is detected immediately. This allows for the cor-
responding MPC controller to be solved, and hence secures feasibility and
stability provided the appropriate dwell-time has taken place. If the switch is
not instantaneously detected, the control input will be set by an MPC controller
fitted with an inaccurate prediction model and constraints, most likely leading
to constraint violations. An avenue for future work is then the inclusion of
neighbour to neighbour robustness, as in [127], in order to allow for a delayed
detection of the switch, possibly through analysis of the input-output data.

Another direction for future work is, of course, the computation of a
guaranteed tighter upper bound dm. This parameter has, possibly, the highest
impact in the quality of the MDTs that the proposed approach provides, hence
obtaining a guaranteed value, rather than a numerically estimated one, is
necessary.



Chapter 5

Distributed MPC for dynamically
coupled systems: a chain of tubes

5.1 Introduction

The past decade has seen a rapid increase in the demand for more efficient,
reliable and safer providing of services [139], particularly in fields such as power
and transportation, where the lack of coordination can cause large economic
losses [140]. This need has been met with considerable improvements in the
fields of computational capabilities, data acquisition and wireless communication
[141–143], which have allowed the implementation of several concepts of process
control and systems engineering in order to cope with an ever increasing demand
on performance and coordination of such large-scale systems.

A particularly important challenge, in the pursue of efficiency and reliability,
is the size of these systems, both physical and digital (data). Power networks, for
example, are composed by several generating, distributing and consuming agents
that are spread over a wide physical area (possibly continents) [144]. The control
and coordination required to meet the power demand then requires a large
amount of information to be transmitted over large distances. Communicating
all this data to a central hub may be prohibitively expensive, slow, and prompt
to data loss [145], which is why a centralized coordinator (controller) may not
be a feasible solution in terms of of safety and reliability.

Some of these issues are particularly aggravating in the context of control via
MPC. Although MPC is implemented in a receding horizon fashion and hence
could account for some uncertainty introduced by data miscommunication, large
data losses would render the predictions unreliable. Furthermore MPC needs
to solve an optimization problem at each time instant a new control action is to

157
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be applied, and although the MPC optimization can be posed as a QP problem,
the latter may not be solvable fast enough if a large amount of actuators
and constraints are considered (which would be the case of large service-
providing networks). Finally, and possibly more importantly, invariant sets
are considerably complex to compute for high-dimensional plants, resulting in
that many of the theoretical guarantees associated to (robust) MPC controllers
might not be available when controlling a large-scale system.

Nevertheless, “the primary challenge to implementing centralized MPC is
not computational, but organizational ” [1]. A large-scale network might already
have several local MPC controllers in place that are able to cope with the
size of their local tasks, hence to improve performance it is not necessary
(or feasible) to design a centralized controller, but to properly coordinate the
existing agents. In this context, another paradigm in which centralized control
may not be a feasible solution is the coordination of a network composed by
several independent subsystems with clearly defined physical boundaries and
concurrent objectives. Consider for example the problem of coordinating a
platoon of vehicles within a transport network [146]. Platoons may form at any
location in the network and comprise any number of concurring vehicles, hence
a centralized coordinator may need to be unnecessarily complex to account for
all the different possibilities. Another example can be found in the coordination
of a swarm of robots. Such architectures usually comprise a high number of
independent agents yet the interactions only happen between a few of them at
a time. Furthermore, the task assigned to a robot may be different to that of
its neighbour, hence resulting in a possibly complex centralized controller.

A natural approach to overcome some of these challenges is to take into
account the pre-existing partition of the network or proceed to partition it in
a number of smaller subsystems, and then to design a controller for each one
of the resulting elements. How to perform the partition is not a trivial task,
yet depending on the system a pre-existent partition might already be in place
(in a swarm of robots, for example, each robot would become a subsystem).
Nevertheless, regardless of the partition, the subsystems are still part of a larger
network, hence their local behaviour will influence and be influenced by the
behaviour of its corresponding neighbouring subsystems. Depending on the
type of plant/process being studied, and on how the splitting is performed,
the subsystems may interact through their dynamics (dynamic coupling) or
through their constraints (constraint coupling) [139]. Consider for example a
transport network in which the different agents are independent freight hubs
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or destinations [147]; the outgoing cargo of the different subsystems becomes
the incoming cargo for its neighbours, hence there exists a coupling in the
storage dynamics. Alternatively, in the case of fleets of unmanned vehicles all
subsystems are dynamically independent, yet to avoid collisions it is necessary
to impose constraints on trajectories depending on the trajectories of the
neighbour [148,149].

If disregarded, these interactions may act as unexpected disturbances af-
fecting the local dynamics of each subsystem, and so they must be taken into
account if theoretical guarantees are to be provided. Furthermore, it is most
likely that communication between the different agents needs to take place, in
order to properly coordinate and achieve network-wide efficient performances.
If the controller for each individual subsystem is designed as an MPC, the
overall network controller can be filed under the label of non-centralized MPC.
Non-centralized MPC architectures can be classified under several subcategories
depending on whether the coupling is acknowledged or not, the type of coupling
that is considered, the level of communication established between the different
controllers (also called agents from now on), and whether these cooperate
to achieve a network-wide goal or strive for their own local objectives in a
selfish manner. A comprehensive description of these categories and the several
algorithms that have been proposed to date can be found in [139,143,150].

If the interaction is entirely neglected, the overall architecture is usually
referred to as decentralized. The latter suffer from a number of disadvantages
that originate precisely from neglecting the interaction between sub-systems.
As an example, a brief analysis about the effect that closing the loop of one
sub-systems has on the rest is made in [151]. Results show that zeros of the
transfer function of the other subsystems may be moved into the right hand
plane, causing instability. Preliminary results on the implementation of a
decentralized MPC controller are shown in [152]. A large unconstrained linear
system is divided into three smaller sub-systems in such a way that there is a
residuary state coupling. This interaction, however, is entirely neglected and a
standard MPC is implemented for each one of the agents. The results are meant
to be just illustrative, yet the applicability of such a scheme is demonstrated.

In what follows some of the most relevant non-centralized MPC proposals
are discussed in order to contextualize the approach presented in this chapter.
The focus is placed on Distributed MPC (DMPC) architectures for dynamically
coupled networks, which is the type of network addressed in this chapter. The
latter acknowledge the possible interaction between neighbouring subsystems
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and therefore its coordination requires a certain level of on-line communication
between the agents. Within DMPC two subcategories are observed:

• Non-cooperative DMPC: Each local controller tries to optimise its own
selfish objective, and does not account for the effect this may have on its
neighbours’ performance.

• Cooperative DMPC: Each local controller tries to optimise a wider perfor-
mance measure that takes into consideration its neighbours’ objectives.

Generally speaking, the network performance achieved by non-cooperative
implementations is expected to be lower than that of cooperative ones given that
the former are characterized by the optimization of local selfish objectives [150].
Nevertheless, cooperative architectures may still result in lower performance
than centralized control implementations due to lack of information or time to
converge [150]. This is the trade-off that exists when distributing the problem.

Cooperative DMPC implementations strive for an improved plant-wide
performance, and so are often posed as a distributed implementation of a
centralized MPC controller requiring distributed optimizations. Furthermore,
since each agent accounts for the impact of its own actions on its neighbours,
each agent in a cooperative DMPC architecture usually requires knowledge
of its neighbours’ entire dynamics in order to make the necessary predictions.
Non-cooperative DMPC algorithms, on the other hand, usually need knowledge
of the interacting dynamics only, since each agent only cares about how these
may affect local objectives. Nevertheless, the design of most DMPC algorithms
requires the coordination of and communication between groups of neighbours,
at least in order to share constraint and coupling information at the design
stage.

In view of the above, an important feature of the various DMPC algorithms is
the number of steps involved in obtaining a feasible and stabilizing control action
for each subsystem at each time instant. Cooperative and non-cooperative
DMPC architectures usually employ some form of online communication so
that agents can inform neighbours of their plans. Each agent then takes this
information into account to solve its own optimization (cooperative or not),
yet if this is done simultaneously by many agents the information previously
shared becomes instantaneously inaccurate. Several options exist to account for
this, but most DMPC architectures employ robustness, converging iterations,
or a combination of both.

The idea of allowing different MPC agents to communicate during operation
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was first introduced in [153]. Initially the problem is presented in a very general
set-up allowing for different types of interaction between the subsystems (which
are assumed linear and constrained). Each local agent minimizes a local cost
that may depend on the state and inputs of other subsystems (due to dynamical
coupling) hence neighbouring agents need to communicate. It is shown in [153]
that, provided the overall objective (cost function) of the large-scale system
can be exactly decomposed and associated to the different subsystems resulting
from the partition, then an iterative approach to solving the local optimization
problems results in a solution to the global problem. The iteration follows a
standard iterative communication protocol:

1. Agent i computes a solution to its local control problem by assuming
fixed values for its neighbours’ variables.

2. The solution is broadcast to all the agents whose dynamics are influenced
by agent i. Analogously, agent i receives updated values for the variables
that were first assumed fixed.

3. The optimisation problem is solved iteratively until convergence is reached.

The drawback of the first proposal in [153] is the necessity of iteration until
convergence. Note that this iteration takes place within a single sampling time,
and hence the time required to achieve convergence may be prohibitively high
albeit each independent optimization is of reduced size due to the partition. A
tentative solution is put forward in [153] that allows to stop iterations at any
time and still guarantee stability of the network-wide closed-loop. This proposal
is based on the inclusion of a Lyapunov type constraint at the beginning of the
prediction horizon [154], however stability is only attainable for unconstrained
linear systems with loose dynamical coupling.

A similar approach is taken in [155], where an MPC algorithm that relies
on a contractive constraint [156] is employed for the design of each agent in
a network composed by non-linear subsystems subject to input constraints
and state coupling. A key difference, however, is that the interaction between
subsystems is considered as bounded decaying disturbances. This is an implicit
way of addressing the interaction since it requires no on-line communication
between agents, just the knowledge of an initial bound on the interacting effects
and an expected decay rate which is also computed off-line. This type of
disturbance is readily handled by the MPC approach in [156], which allows to
guarantee asymptotic stability of the origin given a possibly open-loop unstable
plant.
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If the dynamical interactions are not assumed decaying, it is not possible to
guarantee stability of the origin. This issue is addressed in [157], where state
constraints are included in the analysis. The dynamical interaction is now seen
as a bounded disturbance and input-to-state stability (ISS) is guaranteed for
each system provided that the interaction does respect these bounds and a
terminal invariant set exists for the local dynamics of each subsystem. Recursive
feasibility of each optimization is ensured by tightening the state constraint of
each subsystem (similar to the tube approach but without a properly defined
tube or gain), after which ISS of the whole network follows from ISS of each
subsystem.

5.1.1 Cooperative DMPC

A cooperative approach based on the truncated infinite horizon implementation
depicted in [8] is developed in [158, 159] for a network of undisturbed LTI
systems coupled through their inputs. First, an iterative non-cooperative
implementation in which each agent minimizes an individual cost is shown
to result in a Nash equilibrium [160–162]. A cooperative approach, in which
each agent minimizes a plant-wide cost, is then proposed in order to achieve a
Pareto optimal solution; that is a plant-wide optimum. Plant-wide optimality
is sufficient to guarantee stability (given the lack of state constraints), yet it
can only be obtained if the distributed optimization is allowed to converge
at each time instant. If the iterations are terminated early, the resulting
controller is not necessarily stabilizing. This issue is solved by including a
convex combination step in the iteration. At each step the local agents optimize
their input sequences given past values of their neighbours plans, yet this new
optimal trajectory is not directly informed to their neighbours. Instead, it is
averaged with the previous broadcast solution, and the resulting sequence is
communicated. Provided an adequate initialization, this additional step ensures
that early termination of the distributed algorithm results in stable closed-loop
for the network.

A quasi-cooperative DMPC architecture is presented in [163,164] for con-
trolling a pair of constrained linear subsystems coupled through their inputs.
The overall scheme only requires two steps of communication and two steps of
optimization at each sampling instant, however system-wide optimality is not
guaranteed. Each agent is fitted with its own selfish objective, yet the prediction
throughout the horizon is done with explicit account of its neighbours’ plan;
the algorithm can be summarized in four steps. First each agent optimizes its
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local input with respect to its own objective and assuming its neighbours’ plans
fixed. Then each agent optimizes its neighbours’ input with respect to its own
objective again, while fixing its local input to the recently obtained optimal.
After these values are computed they are shared and each agent evaluates its
own cost with all possible sequence combinations. These values are then shared
after which each agent chooses the combination that minimizes the plant-wide
cost (defined as the sum of each individual one).

An evident drawback of this implementation is the exponential increase
on complexity with the addition of new subsystems. It is not clear what the
strategy would be, yet at least a total of MM optimisations must be performed
and (M + 1)(M+1) combinations evaluated, where M is the number of agents.
In [164] state and input constraints are included and stability is guaranteed by
usual terminal conditions. Given the distribution of the problem, however, the
latter cannot be computed using standard approaches. Instead a jointly robust
collection of terminal controllers and constraints are computed through a set
of LMI optimization problems, which results in an overall centralized design
process, as opposed to the decentralized approach achieved in [158] allowed by
the lack of state constraints.

The same authors proposed another approach in [165] to provide a solution
that is less computationally demanding in the case of more than two subsystems.
The distributed control algorithm is different to [164] in that only one agent is
allowed to optimize at a time (or several non-concurring ones). Furthermore,
the optimization is done simultaneously over a subset of input trajectories that
affect its dynamics (not sequentially as in [164]). These tentative new solutions
are then broadcast and evaluated by the agents of all other affected subsystems.
The resulting difference in cost (with respect to continuing with a previously
feasible solution) is then communicated back to the optimizing agent, which
makes a decision to update only if the overall cost has decreased (infeasibility
is assigned an infinite cost increase). The second contribution of this proposal
is in the stability result. In [164] a decentralized linear controller is sought to
fulfil the standard terminal conditions in MPC implementations. This choice is
simple but it can yield conservative results, hence it is replaced in [165] by a
distributed linear terminal controller (i.e. one that is not block-diagonal). The
corresponding gains and terminal sets are again computed as a jointly robust
collection through a larger LMI problem.

A finite horizon MPC is proposed in [166] to control each subsystem within
a network of input coupled LTI subsystems subject to input constraints. The
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overall communication and iteration procedure is analogous to that in [158],
including the convex combination step; the main difference between both
approaches lies in the optimization associated to each MPC agent. The stability
induced by considering infinite horizons in [158] is achieved in the finite horizon
framework considered by [166] through the inclusion of a Lyapunov type
constraint in the optimization. The same approach is extended to non-linear
subsystems possibly coupled through their states in [167], yet no state constraint
is considered. Similarly to [158] then, the design procedure is entirely distributed
and simpler than that of [164,165], yet this is only possible due to the lack fo
state constraints.

A generally different framework is tackled in [168], where each subsystem
is considered to have an independent input but they all share the exact same
state vector. In this context each agent optimizes a single input, yet it requires
knowledge of the overall network dynamics and planned inputs to make pre-
dictions (as opposed to [158,164–166]). Two architectures of Lyapunov based
MPC controllers [17] are proposed. First a sequential one, in which each agent
optimizes its trajectories in a cascade, and so the currently optimizing one only
knows what the previously optimized ones will do. The not yet optimized plans
are supposed to follow a Lyapunov-based control law defined off-line. The latter
is assumed to be capable to stabilize the non-linear plant in a decentralized
fashion (as in [164]). The second architecture allows simultaneous optimization,
and hence it resorts to iteration in order to eliminate (or reduce) the uncertainty
introduced. State constraints are not considered, and ultimate boundedness, in
the presence of disturbances, is guaranteed for both architectures.

An approach similar to that in [166] is presented in [169], but in this case
the subsystems are assumed to be coupled through their states, and state
constraints are accounted for. Local terminal conditions are employed to
guarantee asymptotic stability of the origin for the network, and a similar
approach to that in [164] is proposed for structuring the terminal feedback gain
and its corresponding terminal cost function. However, the requirements are
relaxed to allow for a local cost increase in benefit of a global cost decrease.
The terminal constraint sets, then, are allowed to be time-varying in order
to account for a possible local increase in the terminal cost. An important
contribution of [169] is that sufficient conditions are found to meet the design
requirements in a distributed fashion, by finding a distributed upper bound
to the globally coupling LMI that appears in the process of computing the
terminal gains (same constraint that appears in [165]).
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5.1.2 Non-cooperative DMPC

A non-cooperative framework for non-linear systems with state coupling and
subject to input constraints is presented in [170]. Each subsystem is linearised
around the origin in order to compute a decentralized linear gain that stabilizes
each local dynamics and the overall network dynamics as well. The latter implies
that a weak coupling in the linearised network is required. This decentralized
gain (valid only around the origin) is employed to compute an invariant set for
the network, from which local terminal constraints are derived and included
in the optimization problem of each agent. As opposed to standard MPC
implementations, this terminal controller is not used to prove stability over the
whole RoA of the local controller, but to actually control the network once the
closed-loop has reached the terminal region (mode-2 controller). Convergence
to the terminal region is guaranteed by the inclusion of a contractive constraint
which forces the current state predictions to be smaller (in some sense) than
those from the previous step.

Coordination between the different agents is achieved in [170] by a single
step of on-line communication (at each sampling instant) in which predicted
state trajectories from the previous time-step are shared. Since all agents are
allowed to optimize simultaneously, the shared information is outdated. The
ensuing prediction mismatch is dealt with by including a consistency constraint
in each optimization, which forces the current predicted trajectories to remain
close to those previously informed to neighbours. This is done to ensure a
bounded prediction mismatch, and so the existence of a feasible solution at
each time instant (indeed, that the tail of the previous solution concatenated
with the terminal controller is feasible). This approach is comparable to the
tightening of the state constraints in [157], yet in a more comprehensive manner
since the tightening is done around a previously feasible and converging optimal
trajectory.

A network of LTI subsystems coupled through constraints and subjected
to independent persistent bounded disturbances are studied in [171]. Each
local controller is designed following the tube approach in order to guarantee
constraint satisfaction and robust stability despite of the local disturbances
acting on the subsystems (the coupled constraints are also tightened). The
coupling is explicitly tackled by augmenting the standard tube-based MPC
optimization of each agent with the set of coupled constraints in which the
agent takes part. To guarantee recursive satisfaction of such constraints only
a single agent is allowed to optimize its control sequence during a time step,
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as opposed to [170] where all agents optimize simultaneously. The remaining
agents define their current control action by falling back to a previously feasible
sequence. Each time an agent is allowed to update its optimal control sequence
it is also required to broadcast it among its neighbours, hence the optimizing
agent knows exactly what its neighbours will do and constraints can be met
accordingly.

A plant-wide feasible and stabilising control plan is necessary for initialising
the distributed sequential algorithm in [171], however this is an assumption
found in several DMPC algorithms. Recursive feasibility of the optimization
follows from standard terminal controller arguments and the fact that the
neighbours plans are supposed to be exactly known. Robust stability then
follows by the same arguments than in standard centralized tube MPC [2].
In [31] an extension is proposed to allow for the optimization of multiple
subsystems with concurrent constraints. The general idea is to further tighten
the coupled constraints in order to account for the uncertainty arising from
simultaneous optimization. The second tightening is done in a time dependent
fashion, similar to [23], in order to reduce the conservativeness introduced.

The sequential non-cooperative scheme depicted in [171] is extended to
a single-iteration cooperative framework in [172]. To promote cooperation
each local controller minimises a cost function that depends not only on its
local objective, but also on a weighted sum of the objectives of neighbouring
subsystems. Said agent optimises w.r.t its own input and that of this subset
of neighbours. To this effect the MPC optimization problem is augmented
with the (tightened and coupled) constraints corresponding to the considered
neighbours. The ultimate purpose of optimizing neighbours’ plans is to account
for what they may do, and hence improve plant-wide performance, but not
to tell other agents what to do. In view of this the resulting local optimal
sequence is used to update previous local plans, while the optimized plans of
neighbours’ inputs are discarded given that only one agent is allowed to update
at any single time. Since several objectives are optimized simultaneously, an
increase in local cost could take place at any given time instant, hence an
additional cost decrease constraint is employed to guarantee stability with the
usual arguments.

The tube-approach to robust MPC has also been employed in the context
of non-cooperative DMPC for networks of dynamically coupled subsystems.
Indeed, as shown in [30,33–35,173], exact knowledge of the dynamical coupling
between neighbouring subsystems allows to treat the whole interaction as
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an external perturbation affecting the local dynamics. This disturbance can
be bounded on the basis of constraint satisfaction assumptions, after which
standard tube MPC implementations can be readily implemented to guarantee
robust constraint satisfaction and stabilizability (for the local and global closed-
loop systems). The resulting controller does not need on-line communication
with its neighbours, yet at the expense of a high degree of conservatism
(large disturbance sets resulting in small RoAs). In order to decrease this
conservatism, several additional control elements and communication steps
have been proposed.

In [33] the tube approach is implemented twice, in series, for each subsystem
in the network. It is assumed that each agent receives, at the beginning of
a time step, information of what its neighbours plan to do, hence the first
instance of tube MPC aims to introduce robustness against the uncertainty
on such plans. The latter exists because all agents optimize at the same time,
hence the informed plans are not necessarily followed. The second instance
of tube MPC is employed to introduce robustness against the entirety of the
neighbours’ plans (not just their uncertainty), in order to eliminate external
inputs from the local dynamics, and simplify the task of controlling each
subsystem. The second tube also serves the purpose of an explicit bound on
the allowable change between previous and current planned trajectories. The
overall goal of this series of tubes is to reduce the conservativeness and improve
performance by using the information provided by neighbours to specialize the
robust control action, yet several drawbacks appear. For example, it is not
clear whether this architecture results in an overall larger RoA when compared
to the decentralized tube approach. Furthermore, the several tightening tubes
depend on the tightened constraint sets in a circular way, which results in an
iterative and centralized design procedure.

A similar tube-based implementation is devised in [34] to deal with constraint
and dynamic coupling in a network of LTI subsystems. It is assumed that
each agent will try to follow a reference trajectory defined off-line (both in the
state and the input). These references are accompanied by a-priori defined
bounds which gives agents some extra freedom to improve performance by
locally modifying their predefined trajectories. At each time instant agents
optimize local trajectories around the original ones. The optimized ones are not
used to replaced the entire original reference as in [33], but only to add to the
tail of it in order to guarantee feasibility (similarly to the rationale employed
in [65]). Even so, the true state trajectories will be different from the planned
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ones due to the simultaneous updating of agents. To deal with this uncertainty
tube MPC is employed and a corresponding RPI set is used to tighten the local
constraints. The overall disturbance is computed by employing the off-line
defined bounds for performance improvement and overall feasibility is achieved
by an additional constraint on the change between original plans and local
optimized plans (similar to the consistency constraints in [170]).

Similarly to [33], only one step of communication is required at each time-
step, however the amount of information is decreased from a whole planned
trajectory (over the horizon), to a single additional element. Stability of the
origin is guaranteed for the network through the usual terminal conditions
based on the same type of weak linear coupling assumption used in [33,170,171],
and the approach is extended for output tracking in [174] and continuous time
systems in [175]. Albeit [34] implements only one step of robust control, a
reduction in the overall conservativeness of the approach is not immediate.
The size of the disturbances affecting each subsystem is readily defined by the
off-line selection of the allowable innovation on its neighbours. If these sets are
small, the overall disturbance is small, leading to small tightening, yet this also
reduces the freedom of the controller to deviate from the predefine trajectory,
possibly reducing the overall space of the RoA used (even if it is larger), and
putting a bound on performance. Furthermore, this architecture introduces
several additional design parameters such as the allowed response variability
size and the planned trajectories for initialization, both having a direct impact
on the size of the feasibility region of the algorithm.

An approach similar to [34], but for non-linear subsystems, is presented
in [176]. Each agent is designed as an MPC controller for a constrained set-
difference equation, in order to embed robustness against the possible change
in the planned trajectory of neighbouring subsystems. This variability is called
a contract and is shared at every time step among neighbouring agents after
predictions have been made. Contracts are computed as the k-step ahead
reachability sets by considering the contracts that were informed by neighbours
in the previous step as external inputs. This is, possibly, the biggest drawback
of this proposal since contracts need to be computed at each time instant
and reachability sets of non-linear closed-loops are not trivial to compute.
Furthermore, this architecture requires a centralized initialization in order to
obtain contracts that are jointly feasible. Finally, as in [33,34,170] a consistency
constraint is required to guarantee that no agent will violate the contract that
communicated to its neighbours the previous step.
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A quasi-distributed approach is presented in [173] for output-feedback
and to account for both constraint and dynamical coupling. It is assumed
that each subsystem measures its outputs locally with some error, and a
Luenberger observer is employed for a decentralized state estimation. The
latter induces a prediction error, which is lumped with the prediction mismatch
arising from ignoring the dynamical coupling and a doubly robust tube-based
controller is proposed. The latter guarantees constraint satisfaction of every
constraint except the coupled ones, since these are evaluated with outdated
information provided by neighbouring subsystems which are allowed to optimize
new trajectories simultaneously. In [31] this is dealt with a further tightening
of the constraints, yet the inclusion of state estimation error already results
in reduced RoAs, hence in [173] another solution is explored. After each
(coupled) agent has optimized, the planned trajectories are shared and the
coupledconstraints evaluated. If violation takes place, the new optimized plans
are averaged (in a convex combination) with the previously feasible ones, which
results in feasibility.

In [35] a succession of MPC controllers is employed in series to guarantee
stabilizability and constraint satisfaction in a network of LTI subsystems that
are dynamically coupled. The approach is similar to [33] in that the resulting
control law is formed by three different terms acting on different representations
of the plant, yet the overall architecture is considerably more complex. The
first step is a standard tube MPC implementation that is robust against the
entirety of the dynamical interaction. The second step is again a tube-inspired
MPC implementation used to replace the linear control law usually employed
to reject disturbances. The later gives way to an implicit non-linear control
law that regulates the error between real and predicted trajectories taking into
account previously obtained plans of what the neighbours may do. As opposed
to standard tubes, constraint satisfaction cannot be readily guaranteed because
all agents are allowed to optimize at the same time, and so the plans accounted
for are not accurate.

In [34,170,176] the issue of inaccurate information of what the neighbours
may do is dealt with by explicitly including consistency constraints in one of
the optimization problems. In [35] these are implicitly introduced by the third
term in the control law, which is defined to be invariant inducing given the
uncertainty on the neighbours plans. Furthermore, [35] proposes a tightening
of the constraint sets in the different optimization problems based on scaling
factors and not on explicitly computed invariant sets, which is an advantage
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given the complexity involved in obtaining the latter. Nevertheless, a drawback
of this nested approach, when compared to [31,33,34,173], is that each agent
needs to solve an additional optimization problem at each time instant.

A conceptually different approach is proposed in [30, 177] to reduce the
conservativeness introduced by decentralized tube-based MPC. The driving
argument is that MPC-controlled systems do not necessarily use their whole
constraint space, particularly the state constraint and specially when the state
is already close to the origin. This notion is formalized by parametrizing
polytopic constraint sets by scalars on the right hand side of the defining half
spaces. These scalars are then included in the MPC optimization, so as to force
their minimization, and so the overall space that state and input trajectories
use. Ultimately this means that the overall disturbance neighbours need to
account for is decreasing over time, hence allowing for looser a tightening and
an overall larger RoA for each tube MPC. In order to take advantage of this,
one step of communication is required, as well as the on-line computation of
robust invariant sets. The latter might render the whole approach inapplicable,
yet several solutions exist that allow to obtain (coarse) invariant sets with
low computational demand [100,101]. Recursive feasibility under continuous
modification of constraints is guaranteed by forcing the parametrizing scalars
to be non-increasing, resulting in a standard proof of exponential stability of
the origin for the overall network.

5.1.3 DMPC using a chain of tubes

In this chapter a new non-cooperative DMPC approach is presented. The
object of study is a network of LTI subsystems subject to state and input
constraints and dynamically coupled through their states and inputs. The
general modelling structure of each subsystem is as outlined in Section 2.2,
nevertheless the interacting network dynamics are introduced in Section 5.2
to provide the necessary notation for the chapter. The overall approach to
distribution is based on robustness, as in most of the non-cooperative DMPC
algorithms presented up to date, and it only requires one step of communication
and two steps of optimization solving at each sampling time (i.e. a non-iterative
approach). The controlling agent for each subsystem is designed as a two-step
robust controller, in which each step is driven by a tube-based MPC controller
as described in Section 2.3.1. The tube technique is chosen given its negligible
added complexity, when compared to standard MPC, which allows to focus the
design efforts in the additional elements required for coordination.
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The inner robust control step, presented in Section 5.3.1, considers the
entire interaction with its neighbours as a disturbance. The latter is bounded
in view of network-wide constraint satisfaction assumptions and knowledge
of the interacting models, which then allows for an off-the-shelf tube MPC
controller to be designed (similar to [157]). This step represents, possibly, the
main drawback of the proposed approach, since large interactions may render
impossible to compute admissible RPI sets for tightening. This issue can be
dealt with by pre-tightening the allowable constraint space of certain elements
of the network, yet this will result in a reduced RoA of the plant when compared
to a hypothetical iterative scheme. Feasibility provided, the results from the
inner step of robust control are a set of predicted optimal (nominal) trajectories
for both state and input and a nominal input that can be used in the standard
disturbance rejection policy of tube MPC to feasibly control each subsystem.

In the proposed algorithm, however, the latter is disregarded, and the
predicted state and input trajectories are broadcast in full between neighbouring
subsystems. The receiving agent sees this information as the intended plans of
its neighbours, that is, what they would do if they were not being disturbed, and
a second (outer) step of robust control is employed to obtain a refined optimal
input trajectory given this new information. At this stage the interacting
models are used to include the effect of the neighbours’ plans as uncontrolled
external inputs in the prediction. This second step also needs to be robust
because, in principle, all agents are allowed to run the inner step simultaneously
at each time instant, hence nominal reference trajectories informed between
neighbours become instantaneously inaccurate (as in [31,33,35,170,173]). In
order to define the amount of robustness needed for the outer controller, the
optimization associated to the latter is fitted with an additional constraint
which allows for a comprehensive design and a guarantee on recursive feasibility
of the overall scheme.

The outer controller is presented in Section 5.3.2. Structurally, this step is
equivalent to the robust controller proposed in [34], however there are several
design and implementation differences. First of all, the reference trajectories
proposed in [34] need to be computed off-line and are only updated one element
at a time by adding a step of the terminal control law at the end. This approach
results in that the reference trajectories become critical tuning parameters
that have a direct impact in the overall RoA of the controller. Furthermore,
the updating scheme implicitly induces suboptimality by forcing the predicted
trajectories to be close to the terminal set after a number of time steps equal
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to the prediction horizon. Alternatively, the algorithm proposed here not only
computes the reference trajectories during operation, but does it in an optimal
way at each time instant, favouring a reduction in structural conservatism and
an increase in performance at the cost of an additional optimization step.

The inner-outer architecture resembles that of the approach in [33], but there
are several differences. First, and more evidently, the approach in [33] considers
only state coupling, while in this chapter coupling through the inputs is also
analysed. Secondly, the tube-based approach proposed in [33] corresponds
to the one described in Section 2.3.2, while here the initial nominal state is
optimized at each time instant.

More specific differences are that the robust steps of control in [33] are
applied in series, that is the overall control law of each agent is composed by
an independent (nominal) term and the rejection policies of both tubes. In
the approach proposed here the steps of robust control are applied in parallel.
The control law of each agent then depends on an independent (nominal) term
and a single tube rejection policy (although the independent term depends
implicitly on the results of the inner step of robust control since the predicted
trajectories associated to it are used in the predictions of the outer step). It is
expected that this favours an increase in performance, since the tube policy
arising from the more conservative tightening is entirely disregarded, allowing
for more freedom in the control law definition. It is the case, however, that
if the gains of both tubes are chosen to be the same, the control laws of [33]
and that proposed here equate in structure, yet the steps of robust control are
applied in an inverse manner and so the true control action will ultimately be
different.

The additional constraint incorporated to the outer optimization fulfils, in
essence, the same role as the consistency constraints in [170], the allowable
innovation constraints in [33,34] and the second step of tightening in [31,176].
The main difference with [34] is that the constraints proposed here are not
arbitrarily defined, but constructed following invariance requirements to ensure
the overall feasibility of the two-step controller. The latter is similar to [33],
but does not require the computation of global RPI sets for the entire network,
which is usually computationally intractable for large-scale plants.

Most of the DMPC algorithms presented up to date enjoy strong theoretical
guarantees on stability and constraint satisfaction, and the trade-off is present
in the overall performance achieved and the computational capabilities required
at each time step to compute the corresponding control action. Neverthe-
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less, several DMPC algorithms may not be easily implementable due to the
complexity of their design procedures, particularly when there is a need for
computing centralized elements as in [33]. The features of most algorithms
proposed to date rely, either explicitly or implicitly, on the existence of a
linear stabilizing feedback for the overall network with a particular structure
associated to the interaction pattern of the plant. It is seldom the case, however,
that guidelines for computing such feedback are provided, or even its existence
shown [30,33–35,170,176]. In [164,165,169] this issue is explicitly tackled and
a suitable gain is shown to be obtainable from the solution of a set of LMIs,
yet only in [169] this procedure is non-centralized.

The stability features of the non-cooperative DMPC algorithm proposed
in this chapter also rely on such an assumption. The latter cannot be easily
relaxed, however sufficient conditions that guarantee the existence of an appro-
priate linear gain are provided; furthermore, one such feedback is presented.
The arguments that allow for such sufficient conditions follow the analysis
of a fundamental relationship that exists between this type of stabilizability
assumption and the various concepts of invariance used in tube-based DMPC
approaches. The design of each agent is discussed in Section 5.4, placing
particular attention in how to guarantee recursive feasibility of the overall
DMPC algorithm, while Section 5.5 discusses how to meet the corresponding
stabilizability assumption made over the network.

5.2 Network of dynamically coupled linear sys-

tems

First consider the problem of regulating a large-scale system for which a discrete
time state space representation is available. Consider such a model to be

x(t+ 1) = Ax(t) + Bu(t)

where x ∈ Rn is the state vector, u ∈ Rm is the input vector and (A,B) are
the state and input matrices of corresponding dimension. Now, assume that
this system is composed by M dynamically coupled previously partitioned
subsystems, such that their driving states and inputs are not overlapping (as
opposed to [168], for example, where all subsystems share the same state vector).
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The network’s state and input vectors can then be rewritten as

x =
(
x>1 , x

>
2 , . . . , x

>
M

)>
u =

(
u>1 , u

>
2 , . . . , u

>
M

)>
where (xi, ui) ∈ Rni ×Rmi are the state and input pair associated to subsystem
i and the non-overlapping requirement implies

(n,m) =

(
M∑
i=1

ni,

M∑
i=1

mi

)
.

The dynamics of each subsystem can then be cast as

xi(t+ 1) = Aiixi(t) +Biiui(t) +
∑

j∈M/{i}

(Aijxj(t) +Bijuj(t)) (5.1)

where M = {1, . . . ,M}, and for all i, j ∈ M the matrices (Aij, Bij) are
the corresponding block elements of (A,B) of appropriate dimension. The
summation term in (5.1) represents the coupled dynamics that arise from
partitioning the system and lumps the effect that all other subsystems in the
network have over subsystem i. However, it is usually the case that the direct
interactions within a network can be represented by a strongly connected graph,
rather than a complete one. Thereby each subsystem i will only be coupled
with a subset of the entire network. To properly represent these interactions
three sets are now introduced

N u
i = {j ∈M \ {i} | [Aij Bij] 6= 0}

N u
i+ = N u

i ∪ {i}

N d
i = {j ∈M \ {i} | [Aji Bji] 6= 0} .

N u
i is the set of upstream neighbours of subsystem i and contains the indices

of all the subsystems in the network whose dynamics affect those of subsystem
i. The set N u

i+ is the same as the former, but including the sub-index i. On
the other hand, N d

i is the set of downstream neighbours of subsystem i and
contains the indices of all subsystems whose dynamics are affected by subsystem
i. Note that for any pair i, j,∈ M, j ∈ N u

i is equivalent to i ∈ N d
j , but does

not imply j ∈ N d
i . In fact, for any i ∈M it could happen that N u

i ∩N d
i = ∅.
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In view of this the local state space representation can be simplified to

xi(t+ 1) = Aiixi(t) +Biiui(t) +
∑
j∈Nui

(Aijxj(t) +Bijuj(t)) (5.2)

In what follows it is assumed that each subsystem is subject to local
constraints of the form

xi(t) ∈ Xi ⊂ Rni

ui(t) ∈ Ui ⊂ Rmi

where Xi and Ui are assumed to be PC-sets, as in Chapter 2. At this point an
assumption on the decentralized stabilizability of the system is made.

Assumption 5.1. The pairs (A,B) and (Aii, Bii) are stabilizable. Further-
more, there exists a collection of linear gains Ki such that F = A + BK and
Fii = Aii +BiiKi are Schur for all i ∈M with K = diag (K1, . . . , KM).

Assumption 5.1 is an specialization of Assumption 2.1 for the case of a block-
diagonal feedback gain. Such an assumption, or a similar one, appears in several
DMPC algorithms proposed to date [30,33,34,165,169,173], and its necessity will
be made clear in subsequent sections. Section 5.5 presents sufficient conditions
to guarantee that a particular feedback meets Assumption 5.1.

5.3 Distributed MPC using a chain of tubes

5.3.1 Inner step of robust control

The first step of robust control is performed considering the entire dynamical
interaction in the network as an unknown disturbance affecting the local
dynamics of each subsystem. This step of decentralized control is performed
not to robustly control each subsystem, but to define a reference trajectory
that serves the purpose of informing neighbours of local planned actions.
Nevertheless, this is not the true trajectory that each subsystem will follow
since it will be modified in the second step of robust control to account for the
information received. For simplicity, and unless otherwise stated, the following
analysis and developments are performed for a single subsystem/agent i but
are valid for all subsystems/agents in the network.



176 CHAPTER 5. DISTRIBUTED MPC

Consider the local dynamics in (5.2) and define

wi(t) =
∑
j∈Nui

(Aijxj(t) +Bijuj(t)) .

It follows that if constraints are satisfied by all subsystems j ∈ N u
i at time t,

then wi(t) ∈Wi with

Wi =
⊕
j∈Ni

(AijXj ⊕BijUj) . (5.3)

The local dynamics of each subsystem can then be simplified to a constrained
linear state space model subject to additive bounded disturbances

xi(t+ 1) = Aiixi(t) +Biiui(t) + wi(t) (5.4a)

xi(t) ∈ Xi (5.4b)

ui(t) ∈ Ui (5.4c)

wi(t) ∈Wi. (5.4d)

In view of (5.3) and (5.4) then, tube MPC as described in Section 2.3.1 is
readily applicable to robustly control each subsystem independently. Define
then an undisturbed nominal model

x̂i(t+ 1) = Aiix̂i(t) +Biiûi(t)

with associated trajectory error zi(t) = xi(t)− x̂i(t) and an admissible RPI set
Zi for the error dynamics with associated linear gain K̂i resulting in nominal
tightened constraints

x̂i(t) ∈ X̂i ⊆ Xi 	 Zi
ûi(t) ∈ Ûi ⊆ Ui 	 K̂iZi.

The optimal control problem (OCP) associated to the inner step of robust
control is

P1
N,i(xi(t)) : min

ûi,x̂i,0
J1
N,i (ûi, x̂i,0) (5.5a)

s.t. (for k = 0, . . . , N − 1)

xi(t)− x̂i,0 ∈ Zi (5.5b)

x̂i,k+1 = Aiix̂i,k +Biiûi,k (5.5c)
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x̂i,k ∈ X̂i (5.5d)

ûi,k ∈ Ûi (5.5e)

x̂i,N ∈ X̂f,i ⊆ X̂i, (5.5f)

with (x̂i,k, ûi,k) representing the nominal predictions at prediction time k for
subsystem i.

If only this step of robust control is implemented, standard arguments
can be employed to guarantee feasibility and stability of the local and global
dynamics. Nevertheless, a second step of robust control is to be defined, hence
proper guarantees are provided in the subsequent sections, once the overall
distributed controller has been introduced.

Nevertheless, several elements are defined in a similar way to the non-
distributed case presented in Section 2.3, such as the admissible RPI set Zi and
the terminal constraint set X̂f,i. The latter, in particular, is assumed to be PI
for the local undisturbed dynamics (Aii, Bii) when in closed-loop with a linear
stabilizing gain K̂f,i and admissible with respect to the tightened constraints
X̂i and Ûi. Furthermore, the feasibility region of the OCP (5.5) is defined as
X 1
N,i = X̂N,i ⊕ Zi where X̂N,i is the feasibility region associated to constraints

(5.5c)–(5.5f) (as in (2.8)). Finally, the optimum and optimal value of the cost
function associated to (5.5) are defined by

(
û?i (xi(t)), x̂

?
i,0(xi(t))

)
= argP1

N,i(xi(t))

VN,i(xi(t)) = J1
N,i(û

?
i (xi(t)), x̂

?
i0(xi(t)))

with û?i (xi(t)) =
{
û?i,0(xi(t)), . . . , û

?
i,N−1(xi(t))

}
and associated optimal state

trajectory x̂?i (xi(t)) =
{
x̂?i,0(xi(t)), . . . , x̂

?
i,N(xi(t))

}
.

The objective of this first step of robust control is not to generate a control
action that will be fed to the plant, but to obtain reference trajectories that
will be communicated among neighbours. In general terms, this information is
nothing more than the optimal input and state trajectories that form a solution
to the inner OCP, but in what follows the shared information will be depicted
in a simplified manner as

ûsi (xi(t)) =
{
ûi,0/t, . . . , ûi,N−1/t

}
(5.6a)

x̂si (xi(t)) =
{
x̂i,0/t, . . . , x̂i,N/t

}
. (5.6b)

The super-index s is used to replace the optimality super-index of the sequences
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in order to allow the inner step of robust control to be solved at a lower
frequency than the outer step. The goal of this is to allow for a reduced
computational complexity of the overall scheme. When the inner OCP is not
solved, the informed trajectories are constructed to remain feasible but not
necessarily optimal (hence the replacement of the super-index). Furthermore,
all super-indices are dropped from the elements of each sequence and the
explicit dependency of each element on the current state is replaced by a
sub-index time dependency /t in order to reduce notational complexity. Also
note that the horizon is set to N for all agents, however the cost functions
are allowed to be different. This obeys the outset of the problem which is a
non-cooperative implementation in which each agent tries to improve its own
measure of performance.

5.3.2 Outer step of robust control

After the information in (5.6) has been shared, agent i knows something about
what its neighbours’ plans are for the next N time steps. Agent i could then
compute a better plan for itself by explicitly taking into consideration what its
neighbours may do. Indeed, after the inner reference trajectories of neighbours
have been received, agent i can use them to predict a part of the disturbances
affecting subsystem i for all k = 0, . . . , N − 1 since

wik/t =
∑
j∈Nui

(
Aijx̂j,k/t +Bijûj,k/t

)
︸ ︷︷ ︸

di,k/t

+

+
∑
j∈Nui

(
Aij
(
xj(t+ k)− x̂j,k/t

)
+Bij

(
uj(t+ k)− ûj,k/t

))
︸ ︷︷ ︸

vi,k/t

.
(5.7)

However, xj(t+ k) and uj(t+ k) are unknown future values expected to not
match the reference trajectories exactly, given that neighbours will also make
amends to their original plans. It follows then that vi,k/t remains uncertain.
Nevertheless, the goal of sharing the reference trajectories among neighbouring
agents is to gather some information about neighbours’ plans and so reduce the
uncertainty associated to considering the whole interaction as a disturbance.
An assumption is made accordingly.

Assumption 5.2. After information has been shared among neighbouring
subsystems, the remaining uncertainty on neighbours plans decreases. More
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specifically, there exists Vi ⊂ int (Wi) for all i ∈M such that vi,k/t ∈ Vi for all
k ∈ [0, N − 1] and t ≥ 0.

Assumption 5.2 is key in achieving the goal of the second step of robust
control which is to improve performance by reducing conservativeness, yet
it is not easy to achieve. In [34] this set is arbitrarily defined off-line. In
this chapter, however, the collection of sets Vi is constructively defined to
meet invariance conditions required to guarantee recursive feasibility of the
optimization problems associated with the DMPC algorithm.

If Assumption 5.2 is met, and each agent assumes that the information
received accurately corresponds to their neighbours plans for the following N
steps, the prediction model (5.4) can be further specialized to

xi(t+ 1) = Aiixi(t) +Biiui(t) + di(t) + vi(t)

di(t) = di,t−t̃/t̃

xi(t) ∈ Xi

ui(t) ∈ Ui

vi(t) ∈ Vi.

where t̃ is the current time instant (during which communication has taken
place) and t ≥ t̃. The outer step of robust control acts over this model and the
argument is that, although uncontrolled, di(t) is known and vi(t) is bounded,
hence a tube-based approach can be implemented again. As before then, a
nominal undisturbed model can be constructed

ˆ̂xi(t+ 1) = Aii ˆ̂xi(t) +Bii
ˆ̂ui(t) + di(t)

with associated trajectory error si(t) = xi(t) − ˆ̂xi(t). Having computed an
admissible RPI set Si for the s(t) error dynamics with associated linear gain
ˆ̂
Ki results in nominal tightened constraints defined by

ˆ̂xi(t) ∈ ˆ̂Xi = Xi 	 Si
ˆ̂ui(t) ∈ ˆ̂Ui = Ui 	 ˆ̂

KiSi.

The OCP associated to the outer step of robust control is

P2
N,i(xi(t),f i(t)) : min

ˆ̂ui,ˆ̂xi,0

J2
N,i

(
ˆ̂ui, ˆ̂xi,0,f i(t)

)
(5.8a)

s.t. (for k = 0, . . . , N − 1)
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xi(t)− ˆ̂xi,0 ∈ Si (5.8b)
ˆ̂xi,k+1 = Aii ˆ̂xi,k +Bii

ˆ̂ui,k + di,k/t (5.8c)

ˆ̂xi,k ∈ ˆ̂Xi (5.8d)

ˆ̂ui,k ∈ ˆ̂Ui (5.8e)

ˆ̂xi,N ∈ ˆ̂Xf,i ⊆ ˆ̂Xi, (5.8f)
ˆ̂xi,k − x̂i,k/t ∈ Hi, (5.8g)

where f i(t) represents the information received at time t and is formed by
the pairs

(
x̂sj(xj(t)), û

s
j(uj(t))

)
for all j ∈ N u

i+. The associated optimum and
optimal value of the cost function are defined by

(
ˆ̂u?i (xi(t)),

ˆ̂x?i,0(xi(t))
)

= argP2
N,i(xi(t),f i(t))

V 2
N,i(xi(t),f i(t)) = J2

N,i(
ˆ̂u?i (xi(t)),

ˆ̂x?i0(xi(t)),f i(t))

with ˆ̂u?i (xi(t)) =
{

ˆ̂u?i,0(xi(t)), . . . , ˆ̂u?i,N−1(xi(t))
}

and associated optimal state

trajectory ˆ̂x?i (xi(t)) =
{

ˆ̂x?i,0(xi(t)), . . . , ˆ̂x
?
i,N(xi(t))

}
.

Again, the architecture of the controller makes it so the arguments employed
in standard tube MPC implementations are not valid to guarantee stability
of the closed-loop and recursive feasibility of the optimization. In particular,
P2
N,i(xi(t),f i(t)) is parametrized by the information received f i(t) and is subject

to constraint (5.8g) which is non-standard in tube-MPC and serves, essentially,
the role of the reference tracking constraints in [34,170].

Analogously to the inner OCP, the horizon is set to N for all agents but
the cost for each agent is allowed to be different from that of its neighbours.
Furthermore, the costs of the inner and outer OCPs for the same agent need
not to be the same, however this might not be consistent since both OCPs are
designed to control the same subsystem, for which a particular performance is
sought.

5.3.3 DMPC algorithm architecture

A schematic of the inner-outer architecture is presented in Figure 5.1. The
dashed lines represent communication between controllers and the solid lines
communication between the plant and the agents (which involves measurement
of local states and information of current optimal input to be applied). At each
time instant each agent produces a reference trajectory by means of the inner
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Inner Step
(Aii, Bii)

x̂?i (xi), û
?
i (xi)

Outer Step(
Aii, Bii, Aij, Bij, ˆ̂x

?
i (xi),

ˆ̂u?i (xi)
) ||

ui

∀j ∈ N d
i

∀j ∈ N u
i

Plant

uj, ∀j ∈M \ i

u x

xi

Figure 5.1: Architecture of the proposed DMPC algorithm (the symbol || stands
for concatenation).

step of robust control. Subsequently, a single step of communication between
agents takes place. Agent i informs all agents j ∈ N d

i of its current nominal
plan and receives information from all agents j ∈ N u

i of their current nominal
plans. Then, the outer step of robust control computes the true local control
action to be fed to the plant taking into account the plans of neighbours.

The overall distributed control algorithm is now presented and in the
subsequent sections it is shown how to design its several elements (including
the sets Hi) in order to guarantee a stable closed-loop and recursive feasibility
of the related optimization problems.
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Algorithm 1
1: λ = 0
2: Measure xt
3: for i ∈M do
4: if t = λT then
5: Solve (5.5) and set

(
ûsi (xi(t)), x̂

s
i (xi(t))

)
=
(
û?i (xi(t)), x̂

?
i (xi(t))

)
6: λ = λ+ 1
7: else
8: Set x̂si (xi(t)) =

{
x̂i,1/t−1, . . . , x̂i,N/t−1,

(
Aii +BiiK̂f,i

)
x̂i,N/t−1

}
and

ûsi (xi(t)) =
{
ûi,1/t−1, . . . , ûi,N−1/t−1, K̂f,ix̂i,N/t−1

}
9: end if

10: end for
11: Broadcast

(
ûsi (xi(t)), x̂

s
i (xi(t))

)
among neighbours

12: for i ∈M do
13: Solve (5.8)
14: Set x̂i(t) = x̂i,0/t and ˆ̂xi(t) = ˆ̂x?i,0(xi(t))

15: Set ui(t) = ˆ̂u?i,0(xi(t)) +
ˆ̂
Ki

(
xi(t)− ˆ̂x?i,0(xi(t))

)
and apply to true plant

16: end for
17: Set t = t+ 1 and go to step 2.

Steps 4–8 of Algorithm 1 define how the reference trajectories are updated.
Each T time instants, the optimization (5.5) is solved and the trajectories are
updated in its whole. At any other time instant, the reference trajectories are
updated making use of the local feedback gain K̂f,i, which renders X̂f,i PI. If
T = 0 the reference trajectories are updated only at initialization, resembling
the update scheme in [34]. After the references have been computed and
broadcast among neighbours, each agent solves (5.8) and computes the true
control action to be fed to the plant following the standard disturbance rejection
control law associated to the outer tube-based controller. Step 14 updates
inner and outer nominal state trajectories for informative purposes. Note that
the outer nominal state trajectories are updated with the optimized value
obtained by solving the outer OCP (Step 14), as is standard in tube-based
MPC controllers with optimizing trajectories. The inner state trajectories,
on the other hand, are updated following the shared information, which will
only match the optimized value for t = λT since at said times the inner OCP
is actually solved. Otherwise the trajectories will be extended following a
previously feasible sequence.
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5.4 Design for feasibility and stability

A detailed account on the properties needed for several elements related to the
outer step of robust control is now provided. The goal in the design of these
elements is to to guarantee that Algorithm 1 is recursively feasible and that
the control law defined in Step 15 results in a stable closed-loop. The focus is
placed in the consistency constraint Hi in (5.8g) and in the terminal constraint
set ˆ̂Xf,i in (5.8f). In what follows, a feasible but not necessarily optimal solution
to the inner OCP (5.5) at time t is depicted as

(
ûfi (xi(t)), x̂

f
i (xi(t))

)
with

ûfi (xi(t)) =
{
ûfi,0(xi(t)), . . . , û

f
i,N−1(xi(t))

}
(5.9a)

x̂fi (xi(t)) =
{
x̂fi,0(xi(t)), . . . , x̂

f
i,N(xi(t))

}
. (5.9b)

Similarly, a feasible but not necessarily optimal solution to the outer OCP (5.8)
at time t is

(
ˆ̂ufi (xi(t)),

ˆ̂xfi (xi(t))
)
with

ˆ̂ufi (xi(t)) =
{

ˆ̂ufi,0(xi(t)), . . . , ˆ̂ufi,N−1(xi(t))
}

(5.10a)

ˆ̂xfi (xi(t)) =
{

ˆ̂xfi,0(xi(t)), . . . , ˆ̂x
f
i,N(xi(t))

}
. (5.10b)

Finally, for any t 6= λT the information f i(t) received by agent i is nothing
more than an extension of f i(t− 1) following Step 8, hence such information
will also be referred to as f+

i (t− 1).

5.4.1 Feasibility of the inner OCP

The frequency with which the inner OCP (5.5) is solved depends on the design
parameter T . If T = 1 then (5.5) is solved at each time instance and hence it
must be shown to be recursively feasible. On the other hand, if T > 1, the
inner OCP will be solved only every T steps and hence its T -step feasibility
must be ensured. The latter depends on the information extension procedure in
Step 8, since this step effectively replaces the execution of the optimization and
drives the inner nominal trajectories following Step 14. Nevertheless, recursive
feasibility for any T > 0 can be guaranteed given recursive feasibility for T = 1

and Steps 8 and 14, which enforce a very particular update for the inner nominal
dynamics.

Suppose then that at time t = λT the inner OCP is feasible with solution
as in (5.9). Given the invariance of the terminal set X̂f,i, it is easy to show that
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the candidate pair
(
û4i , x̂

4
i,0

)
defined by

û4i =
{
ûfi,1(xi(t)), . . . , û

f
i,N−1(xi(t)), K̂f,ix̂

f
i,N(xi(t))

}
(5.11a)

x̂4i,0 = x̂fi,1(xi(t)) (5.11b)

satisfies constraints (5.5c)–(5.5f) at time t + 1. The RPI constraint (5.5b),
however, is not necessarily met. This is because said constraint depends on the
true state measured at time t + 1, and the true plant is controlled following
the disturbance rejection policy associated with outer OCP. Indeed, if (5.5)
was feasible at time t then zi(t) = xi(t)− x̂i(t) = xi(t)− x̂fi,0(xi(t)) ∈ Zi, but
considering Step 15 of Algorithm 1 and the candidate solution (5.11), the future
error is

zi(t+ 1) = Aiizi(t) +Bii

(
ui(t)− ûfi,0(xi(t))

)
+ wi(t),

= Aiizi(t) +Bii

(
ˆ̂
Kisi(t) +

(
ˆ̂ui(t)− ûfi,0(xi(t))

))
+ wi(t),

which is not guaranteed to be inside Zi (note si(t) = xi(t)− ˆ̂xfi,0(xi(t))). This is
not a guarantee on infeasibility of the inner OCP, but it certainly means that
the tail of a previously feasible solution (5.11) cannot be used as a candidate
to provide a proof for recursive feasibility due to the RPI constraint (5.5b) not
being met.

This issue could be overcome by simply adding a verification step to Algo-
rithm 1 to allow the execution of Step 4 only when (5.5) is feasible, but there
would be no guarantee this would ever happen after a feasible initialization.
Alternatively, the consistency constraint (5.8g) can be employed to guarantee
recursive feasibility of the inner OCP.

Assumption 5.3. The consistency constraint set Hi is such that Hi ⊆ Zi	 Si

Proposition 5.1. Assume the outer OCP is feasible at time t and that As-
sumption 5.3 holds. If the inner OCP (5.5) is feasible at time t, then it is also
feasible at time t+ 1.

Proof. Indeed, assume that the inner and outer OCPs are feasible at time t
with solutions as in (5.9) and (5.10) respectively and so the system is controlled
at time t following Steps 15 and 14 of Algorithm 1. It follows that if (5.11) is
used as a candidate solution for the inner OCP at time t+ 1, then

zi(t+ 1) = xi(t+ 1)− x̂i(t+ 1) = xi(t+ 1)− x̂fi,1(xi(t)) (5.12a)
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= xi(t+ 1) +
(

ˆ̂xfi,1(xi(t))− ˆ̂xfi,1(xi(t))
)
− x̂fi,1(xi(t)) (5.12b)

=
(
xi(t+ 1)− ˆ̂xfi,1(xi(t))

)
+
(

ˆ̂xfi,1(xi(t))− x̂fi,1(xi(t))
)

(5.12c)

∈ Si ⊕Hi (5.12d)

where the first equality follows from the definition of the inner trajectory error
and the candidate solution (5.11). The set inclusion in (5.12d) then follows from
the robust invariance of Si, the implementation of the associated control law in
Step 15 of Algorithm 1, and the feasibility of constraint (5.8g) given a feasible
outer OCP at time t. It follows then from Assumption 5.3 that zi(t+ 1) ∈ Zi,
while feasibility of the remaining constraints follows from the standard proof
of recursive feasibility for tube-based MPC implementations [1, 2], and so the
candidate (5.11) is a feasible solution for the inner OCP at time t+ 1. �

The following corollary to Proposition 5.1 establishes recursive feasibility.

Corollary 5.1. Suppose that Assumption 5.3 holds. If the inner OCP is
feasible at time t = 0 and the outer OCP is feasible at time t − 1, then the
inner OPC is feasible at time t.

Proof. At times t 6= λT the shared information is constructed by extending
the information shared at the last time instant with the terminal controller of
the inner OCP (Step 8 of Algorithm 1). Proposition 5.1 shows that, given a
purposely defined consistency constraint of the outer OCP, such an extension
results in a feasible solution for the inner OCP. Step 14 of Algorithm 1 updates
the inner nominal trajectories with the shared information for t 6= λT . It
follows then that feasibility of the inner OCP at time t = λT implies feasibility
at time t = (λ + 1)T provided the outer OCP was feasible throughout. It
follows then that feasibility of the inner OCP at time t = 0 implies feasibility
at all t > 0, again, provided the outer OCP was feasible until t− 1. �

A few remarks are in order. First note that solving the outer OCP at time
t + 1 could result in that ˆ̂x?i,0(xi(t + 1)) 6= ˆ̂xfi,1(xi(t)). This is not an issue,
however, since (5.12) does not depend on the optimal trajectories matching at
subsequent time instances, but only on the existence of an element ˆ̂x ∈ ˆ̂Xi such
that xi(t+ 1)− ˆ̂xi ∈ Si and ˆ̂xi − x̂?i,1(xi(t)) ∈ Hi; in this case such element is
ˆ̂xfi,1(xi(t)).

It is also worth noting that Assumption 5.3 can only be verified if Si ⊆
int (Z)i, however this is not a stringent demand. Indeed, the RPI sets computed
in the context of tube-based MPC controllers are usually (approximations of



186 CHAPTER 5. DISTRIBUTED MPC

the) minimal RPI set. Given then that Assumption 5.2 requires the disturbance
levels affecting the outer OCP to be smaller when compared to those of the
inner OCP, it is expected that Si ⊆ Zi. In fact, a suitable Si could be computed
from Zi, by scaling, or using the method in [101].

Finally, note that Proposition 5.1 guarantees feasibility of the inner OCP
at time t+ 1 given feasibility of the outer OCP at time t, but it will be shown
later that the latter can be established from feasibility of the inner OCP at
time t, which is an assumption of Proposition 5.1 as well.

5.4.2 Feasibility of the outer OCP

The outer OCP is solved at each time instant independently of the frequency
at which the inner OCP is solved, hence it is necessary to show its feasibility at
every time instant given the communication approach proposed in Algorithm 1.
Indeed, the feasibility region of the outer OCP depends on the consistency
constraint (5.8g) and the prediction model (5.8c) and hence is parametrized by
the information received from neighbours. It makes a difference then, whether
this is an entirely new set of predictions as in Step 5 of Algorithm 1, or an
extended version of previously received information, as in Step 8.

5.4.2.1 Recursive feasibility for t+ 1 6= λT

The case in which f i(t + 1) = f+
i (t) is analysed first. Suppose then that at

time t the outer controller receives some information about its neighbours plans
(whether this is completely new or an extension of that received at time t+ 1)
and that the outer OCP is feasible with solution as in (5.10). It is natural then
to attempt to show that the candidate pair

(
ˆ̂u4i ,

ˆ̂x4i,0
)
defined by

ˆ̂u4i =
{

ˆ̂ufi,1(xi(t)), . . . , ˆ̂ufi,N−1(xi(t)), K̂f,i
ˆ̂xfi,N(xi(t))

}
(5.13a)

ˆ̂x4i,0 = ˆ̂xfi,1(xi(t)) (5.13b)

satisfies all constraints at time t+ 1, as it was done with the inner OCP, yet
this is not necessary the case. The main obstacles are in the satisfaction of
the terminal constraint and of the consistency constraint at the last prediction
time, which is why the properties of both sets have been left unstated until
now. Define the error ei(t) = ˆ̂xi(t)− x̂i(t), the set

Df,i =
⊕
j∈Nui

(
Aij +BijK̂f,j

)
X̂f,j, (5.14)



5.4. DESIGN FOR FEASIBILITY AND STABILITY 187

and consider the following assumptions.

Assumption 5.4. The terminal constraint set of the outer OCP is an RPI
set for the closed-loop dynamics

(
Aii +Bii

ˆ̂
Kf,i

)
with respect to disturbances

bounded in Df,i and admissible with respect to tightened constraint sets ˆ̂Xi

and ˆ̂Ui.

Assumption 5.5. There exists a setHf,i ⊆ Hi which is RPI for
(
Aii +Bii

ˆ̂
Kf,i

)
with respect to disturbances bounded in D̂f,i = Bii

(
ˆ̂
Kf,i − K̂f,i

)
X̂f,i ⊕ Df,i.

In view of such design conditions, the following can be stated about the
feasibility of the outer OCP at time t+ 1 6= λT .

Proposition 5.2. Suppose that Assumptions 5.4 and 5.5 hold and that

ei,N = ˆ̂xi,N − x̂i,N/t ∈ Hf,i ⊆ Hi (5.15)

is added as a constraint to the outer OCP (5.8). If the modified outer OCP is
feasible at time t with solution as in (5.10) and f i(t+ 1) = f+

i (t), then (5.13)
is a feasible solution for the outer OCP at time t+ 1.

Proof. For the RPI constraint (5.8b) note that if (5.8) was feasible at time t
then si(t) = xi(t)− ˆ̂xi(t) = xi(t)− ˆ̂xfi,0(xi(t)) ∈ Si, and considering Step 15 of
Algorithm 1 and the candidate solution (5.11), the future error is

si(t+ 1) = Aiisi(t) +Bii
ˆ̂
Kisi(t) + vi(t),

which is guaranteed to be inside Si. It is then straightforward to show that
ˆ̂x4i,k = ˆ̂xfi,k+1(xi(t)) ∈ ˆ̂Xi for all k ∈ [0, N − 1] and that ˆ̂u4i,k = ˆ̂ufi,k+1(xi(t)) ∈ ˆ̂Ui

for all k ∈ [0, N − 2]. Furthermore, since f i(t+ 1) = f+
i (t) it also holds that

ˆ̂x4i,k − x̂i,k/t+1 ∈ Hi for all k ∈ [0, N − 1], so it is only left to show that

ˆ̂u4i,N−1 ∈
ˆ̂Ui

ˆ̂x4i,N ∈
ˆ̂Xf,i

ˆ̂x4i,N − x̂i,N/t+1 ∈ Hf,i.

The candidate terminal control input in (5.13) is ˆ̂u4i,N−1 =
ˆ̂
Kf,i

ˆ̂xfi,N (xi(t)) which
by Assumption 5.4 and feasibility of the outer OCP at time t guarantees
ˆ̂u4i,N−1 ∈

ˆ̂
Kf,i

ˆ̂Xf,i ⊆ ˆ̂Ui. Following the dynamics in (5.8c), and the fact that
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f i(t+ 1) = f+
i (t), it is easy to show that

ˆ̂x4i,N =
(
Aii +Bii

ˆ̂
Kf,i

)
ˆ̂x4i,N−1 + di,N−1/t+1 =

(
Aii +Bii

ˆ̂
Kf,i

)
ˆ̂xfi,N + di,N/t,

with
di,N/t =

∑
j∈Nui

(
Aij +BijK̂f,j

)
x̂j,N/t ∈ Df,i, (5.16)

which again results in ˆ̂x4i,N ∈
ˆ̂Xf,i ⊆ ˆ̂Xi, given Assumption 5.4 and feasibility

of the outer OCP at time t. The latter also guarantees e4i,N−1 = ˆ̂x4i,N−1 −
x̂i,N−1/t+1 = ˆ̂xfi,N(xi(t))− x̂i,N/t ∈ Hf,i and since

e4i,N =
(
Aii +Bii

ˆ̂
Kf,i

)
ˆ̂xfi,N(xi(t)) + di,N/t −

(
Aii +BiiK̂f,i

)
x̂i,N/t (5.17a)

=
(
Aii +Bii

ˆ̂
Kf,i

)
e4i,N−1 +Bii

(
ˆ̂
Kf,i − K̂f,i

)
x̂i,N/t + di,N/t (5.17b)

then by Assumption 5.5 it holds that e4i,N ∈ Hf,i and all constraints of the outer
OCP are met at time t+ 1 by the candidate solution (5.13). �

Note that the issue of guaranteeing feasibility of the consistency constraint
is addressed in Assumption 5.5 by including an additional terminal constraint
on the outer OCP. This makes sense given that the original terminal constraint
is there to guarantee that state constraints are recursively met and that the
consistency constraint is nothing more than another state constraint. Further-
more, the additional requirement on robustness over the the terminal constraint
set ˆ̂Xf,i is similar to the requirement in [34] that demands the collection of
terminal constraint sets to form a PI set for the overall network. Indeed, it can
be shown that each element of such a collection is in fact an RPI set for the
local dynamics (Section 5.5 provides a detailed discussion on this matter).

In summary then, feasibility of the outer OCP at time t+1 can be guaranteed
given a feasible solution at time t exists and that the information received at
time t+ 1 is only an extension of that received at the last time instant. The
following corollary to Proposition 5.2 ensues.

Corollary 5.2. Suppose that Assumptions 5.4 and 5.5 hold and that (5.15) is
added as a constraint to the outer OCP (5.8). If the inner and outer OCPs are
feasible at time t = λT , then Algorithm 1 is feasible for all t̃ ∈ [t, (λ+ 1)T − 1].

Proof. Follows straightforwardly from Proposition 5.2 and Corollary 5.1. �
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5.4.2.2 Recursive feasibility for t = λT

As soon as t = λT , however, f i(t) is not necessarily equal to f+
i (t−1), and hence

feasibility of the outer OCP cannot be guaranteed through Proposition 5.2. A
simple workaround would be to implement a feasibility check step in Algorithm 1
in order to verify whether the new information allows for feasibility of the outer
OCP. If not, f i(t) could be discarded and both inner and outer OCPs would
fall back to f+

i (t− 1), i.e. Step 8 in Algorithm 1. However, there is no a-priori
guarantee on whether the outer OCP would ever be feasible under a complete
revamp of the nominal reference trajectories, hence f i(λT ) might be rejected
for all λ > 0 and the initially optimized nominal sequence would remain as a
reference for all time steps (similar to the approach in [34], albeit without an
arbitrary initialization).

Instead, it is proposed here to modify the RPI constraint of the inner OCP
(5.5b) in order to guarantee that a feasible solution will exist for the outer
OCP at every time instant the former is solved. This shows the symbiosis that
exists between both steps of robust control: the consistency constraint of the
outer OCP was designed to guarantee backwards recursive feasibility while now
the RPI constraint of the inner OCP will be modified to guarantee forward
recursive feasibility. Before, however, a result found in [178] is necessary.

Lemma 5.1. Consider three non-empty convex and closed sets A, B and C in
Rn. It holds that A⊕ (B 	 C) ⊆ (A⊕ B)	 C.

Proposition 5.3. Assume the RPI constraint of the inner OCP (5.5b) is
modified to

xi(t)− x̂i,0 ∈ Si ⊕Hi (5.18)

with Hi satisfying Assumption 5.3. If at time t the inner OCP is feasible
with solution as in (5.9), then there exists si ∈ Si and ei ∈ Hi such that
zi(t) = xi(t)− x̂fi,0(xi(t)) = si + ei. Furthermore, there exists ˆ̂xi ∈ ˆ̂Xi such that

ei = ˆ̂xi − x̂fi,0(xi(t)) ∈ Hi (5.19a)

si = xi(t)− ˆ̂xi ∈ Si. (5.19b)

Proof. For the first part note that since the inner OCP with modified RPI
constraint is feasible at time t, the error zi(t) is contained inside Si ⊕Hi. The
error vector can then be partitioned where it intersects the first of both sets
to obtain scalars α, β > 0 such that si = αzi ∈ Si and ei = βzi ∈ Hi with
α + β = 1. It follows then that si + ei = zi(t). For the second part define



190 CHAPTER 5. DISTRIBUTED MPC

ˆ̂xei = βxi(t) + (1− β) x̂fi,0(xi(t)) and ˆ̂xsi = (1− α)xi(t) +αx̂fi,0(xi(t)). It follows
that ei = ˆ̂xei − x̂

f
i,0(xi(t)) and that si = xi(t)− ˆ̂xsi . Furthermore, it holds that

ˆ̂xei = ˆ̂xsi = ˆ̂xi and so (5.19) holds. Finally, from (5.19a) it holds that

ˆ̂xi ∈
{
x̂fi,0(xi(t))

}
⊕Hi ⊆ X̂i ⊕Hi (5.20a)

=⇒ ˆ̂xi ∈ X̂i ⊕ (Zi 	 Si) (5.20b)

=⇒ ˆ̂xi ∈
(
X̂i ⊕ Zi

)
	 Si (5.20c)

=⇒ ˆ̂xi ∈ Xi 	 Si (5.20d)

=⇒ ˆ̂xi ∈ ˆ̂Xi (5.20e)

where (5.20b) follows by Assumption 5.3, (5.20c) from Lemma 5.1, (5.20d)
from the tightening of the inner OCP and (5.20e) from the definition of the
tightened state constraint set ˆ̂Xi. �

Note that Si ⊕ Hi is not necessarily RPI for
(
Aii +BiiK̂i

)
as Zi is, yet

Proposition 5.1 shows that the candidate solution (5.11) results in zi(t+ 1) ∈
Si ⊕Hi. It follows then that modifying the RPI constraints of the inner OCP
to (5.18) does not break the feasibility guarantee provided by Proposition 5.1.
In view of this, and the following assumption, feasibility of the outer OCP at
time t = λT can be guaranteed.

Assumption 5.6. The set Hi and the gain K̄i (not necessarily equal to K̂i or
ˆ̂
Ki) are designed such that

Hi ⊆ Zi 	 Si (5.21a)(
Aii +BiiK̄i

)
Hi ⊕ Di ⊆ Hi (5.21b)

Ûi ⊕ K̄Hi ⊆ ˆ̂Ui (5.21c)

Hi ⊕ X̂f,i ⊆ ˆ̂Xf,i (5.21d)

with
Di =

⊕
j∈Nui

(
AijX̂j ⊕BijÛj

)
.

Proposition 5.4. Assume that the RPI constraint of the inner OCP (5.5b) is
modified to (5.18) and that Assumption 5.6 holds. If the inner OCP is feasible
at time t with solution as in (5.9), then the pair

(
ˆ̂u4i ,

ˆ̂x4i,0
)
defined by

ˆ̂x4i,0 = (1− α)xi(t) + αx̂fi,0(xi(t)) (5.22a)
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ˆ̂u4i =
{

ˆ̂u4i,0, . . . ,
ˆ̂u4i,N−1

}
(5.22b)

ˆ̂u4i,k = ûfi,k(xi(t)) + K̄i

(
ˆ̂xi,k − x̂fi,k(xi(t))

)
, (5.22c)

is a feasible solution to the outer OCP at time t+ 1.

Proof. In view of (5.21a) and a feasible inner OCP with modified RPI constraint,
Proposition 5.3 guarantees that ˆ̂x4i,0 in (5.22a) is contained in ˆ̂Xi and is such
that

ei,0 = ˆ̂x4i,0 − x̂
f
i,0(xi(t)) ∈ Hi (5.23a)

si,0 = xi(t)− ˆ̂x4i,0 ∈ Si. (5.23b)

The latter guarantees that the RPI constraint (5.8b) is met, while the former
ensures that the initial error between both nominal trajectories is contained
inside Hi. By employing the proposed control sequence (5.22) it holds that

ei,k+1 =
(
Aii +BiiK̄i

)
ei,k + di,k/t, (5.24)

for all k ∈ [0, N − 1], and so the consistency constraint (5.8g) is met throughout
the horizon by (5.21b) and (5.23a). From (5.24) it follows that ˆ̂xi,k/t ∈ X̂i⊕Hi

for all k ∈ [0, N − 1] and so from Lemma 5.1 the tightened state constraint
(5.8d) is also met throughout the horizon. From (5.22) it follows that ˆ̂u4i,k/t ∈
ˆ̂Ui ⊕ K̄iHi which implies the tightened input constraints are also met given
(5.21c). Finally, (5.24) implies that ˆ̂xi,N/t ∈ Hi ⊕ X̂f,i which by (5.21d) in
Assumption 5.6 guarantees that the terminal constraint of the outer OCP (5.8f)
is also met, and hence (5.22) represents a feasible solution for the outer OCP
at time t+ 1. �

Proposition 5.4 guarantees feasibility of the outer OCP at time t independent
of whether the information shared is entirely new or an extension of past data,
albeit by resorting to a feasible solution of a tightened inner OCP at time t,
rather than a solution to the outer OCP at time t − 1 as is usual in MPC
implementations. In view of this the standard approach to guarantee that the
optimal cost function is a Lyapunov function for the closed-loop trajectories
will not be applicable. Proposition 5.2 does allow for such an approach but it
is valid only for t 6= λT . In order to combine both approaches into a single
design procedure, and to pave the way for an stability guarantee, consider the
following assumption.
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Assumption 5.7. Assume K̄ =
ˆ̂
Kf,i with

ˆ̂
Kf,i

ˆ̂Xf,i ⊆ ˆ̂Ui, and that D̂f,i from
Assumption 5.5 is a subset of Di.

The following corollary establishes the link between both recursive feasibility
propositions.

Corollary 5.3. Assume that the RPI constraint of the inner OCP (5.5b) is
modified to (5.18) and that Assumptions 5.6 and 5.7 hold. If the outer OCP is
feasible at time t with solution as in (5.10) and f i(t+ 1) = f+

i (t), then (5.13)
is a feasible solution for the outer OCP at time t+ 1.

Proof. The proof follows from the proof of Proposition 5.2 and by noting
that Assumptions 5.6 and 5.7 supersede Assumption 5.5 and hence render
unnecessary the additional terminal constraint (5.15). Indeed, the first part of
the proof to Proposition 5.2 holds unchanged so it is left to show that

ˆ̂u4i,N−1 ∈
ˆ̂Ui

ˆ̂x4i,N ∈
ˆ̂Xf,i

ˆ̂x4i,N − x̂i,N/t+1 ∈ Hi.

holds. Again, the candidate terminal control input in (5.13) is ˆ̂u4i,N−1 =
ˆ̂
Kf,i

ˆ̂xfi,N(xi(t)) which by Assumption 5.7 and feasibility of the outer OCP at

time t guarantees ˆ̂u4i,N−1 ∈
ˆ̂
Kf,i

ˆ̂Xf,i ⊆ ˆ̂Ui. Feasibility of the outer OCP at time
t also guarantees e4i,N−1 = ˆ̂x4i,N−1 − x̂i,N−1/t+1 = ˆ̂xfi,N(xi(t)) − x̂i,N/t ∈ Hi and
since (5.17) still holds it follows that

e4i,N ∈
(
Aii +Bii

ˆ̂
Kf,i

)
Hi ⊕Bii

(
ˆ̂
Kf,i − K̂f,i

)
X̂f,i ⊕ Df,i

∈
(
Aii +Bii

ˆ̂
Kf,i

)
Hi ⊕ D̂f,i

=⇒ e4i,N ∈
(
Aii +Bii

ˆ̂
Kf,i

)
Hi ⊕ Di

where the implication follows from Assumption 5.7, and so e4i,N ∈ Hi by
Assumption 5.6, rendering the additional terminal constraint unnecessary.
Finally, note that ˆ̂x4i,N = e4i,N + x̂fi,N/t and so ˆ̂x4i,N ∈ Hi ⊕ X̂f,i which implies
ˆ̂x4i,N ∈

ˆ̂Xf,i by Assumption 5.6. �

In summary, the design conditions in Assumptions 5.6 and 5.7 guarantee
that the outer OCP is feasible at any time instant given a feasible inner OCP at
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time t = 0 and the information sharing procedure defined in Algorithm 1. The
trade-off, when compared to the conditions in Assumption 5.5, is a considerably
more complex design of the controller parameters (particularly of the set Hi,
which not only has to fulfil the inclusion (5.21a) but also conditions (5.21b)–
(5.21d). This is opposed to the requirements of Proposition 5.2 which allow
Hi to be fairly arbitrary, provided the inclusion of an additional terminal
constraint defined by (5.15). Oppositely, Assumptions 5.6 and 5.7 place no
explicit invariance requirements over the terminal constraint set ˆ̂Xf,i, however
(5.21d) places an implicit one, by forcing it to be equal or larger than a sum of
two invariant sets.

Note also that, although Assumption 5.6 requires Hi to be an RPI set for a
given gain K̄i, it does not necessarily force ˆ̂ui,k to follow (5.22), since there exists
infinitely many other invariant inducing control actions for a given ei,k ∈ Hi.
The law in (5.22) provides nothing more than a feasible control action, but the
optimizer is free to chose a more efficient one. It is also interesting to note that,
if (5.22) is employed, the overall control action is

ui(t) = ûi(t) + K̄ (xi(t)− x̂i(t)) +
ˆ̂
K
(
xi(t)− ˆ̂xi(t)

)
,

which equates the structure of the control law in [33] given a particular choice
of gains. Ultimately this implies that the control law proposed in [33] can
be seen as a feasible, yet not necessarily optimal solution to the distributed
controller proposed here.

Nevertheless, the design conditions required to meet Assumptions 5.6 and
5.7 could be difficult to meet. In this case, as previously discussed, a verification
step could be included in the algorithm such that f i(t) is discarded every time
it renders the outer OCP infeasible. This would result in that Proposition 5.2
is enough to guarantee recursive feasibility of Algorithm 1 and the design
requirements over the set Hi are greatly simplified.

5.4.2.3 Computation of the outer uncertainty set

The recursive feasibility guarantees for the outer OCP rely on Assumption 5.6
which can only be met if Si ⊂ int (Z)i. The latter, as previously discussed, is
not necessarily too demanding given Assumption 5.2, however the computation
of an appropriate set Vi such that it is contained in the interior of Wi has not
yet been discussed. The reason for this is that the set Vi can be computed
comprehensively (as opposed to arbitrarily as in [33,34]) only after the recur-
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sive feasibility of Algorithm 1, which depends on Assumption 5.2, has been
established.

Indeed, from (5.7) it follows that

vi,k/t =
∑
j∈Nui

(
Aij
(
xj(t+ k)− x̂j,k/t

)
+Bij

(
uj(t+ k)− ûj,k/t

))
,

so in order to find Vi it is necessary to find sets that bound
(
xj(t+ k)− x̂j,k/t

)
and

(
uj(t+ k)− ûj,k/t

)
. If Assumptions 5.2, 5.6 and 5.7 hold, recursive

feasibility of the inner OCP can be guaranteed, and hence it holds that
xj(t) − x̂j(t) ∈ Sj ⊕ Hj for all t ≥ 0. Bounding the difference between the
control actions, however, is not that simple. Again, recursive feasibility of the
RPI constraint of the inner OCP must mean that uj(t) − ûj(t) is invariant
inducing for the set Sj ⊕Hj, but not necessarily through the linear feedback
gain K̂j.

In fact, the true control action is driven by the tube law associated to the
outer OCP and so

uj(t)− ûj(t) = ˆ̂uj(t)− ûj(t) +
ˆ̂
Kisj(t). (5.25)

Again, given recursive feasibility of outer OCP, and in particular of the consis-
tency constraint that bounds the error between both nominal trajectories to lie
inside Hj, the difference ˆ̂uj(t)− ûj(t) has to be invariant inducing for said set,
yet not necessarily following (5.22c).

Define the set of all (admissible) invariant inducing control actions for the
set Hj as Uj(Hj ⊕ Sj). It is, in general, not a trivial task to characterize such
a set, nevertheless it follows from (5.25) that Uj(Hj ⊕ Sj) ⊆ Ũj with

Ũj =
ˆ̂Uj ⊕ ˆ̂

KjSj ⊕ Û−j ,

where Û−i is the reflection of Ûi through the origin. The sets Vi can then be
outer approximated by each agent using the sets Sj, Hj,

ˆ̂Uj and Ũj. However,
the first three sets actually depend on Vi. In order to overcome this without
resorting to an iterative design procedure as in [33], note that by Assumption 5.6
Sj ⊕ Hj ⊆ Zi and by definition of the tightening ˆ̂Uj ⊕ ˆ̂

KjSj ⊆ Uj. It follows
that if

Vi =
⊕
j∈Nui

(
AijZj ⊕Bij

(
Uj ⊕ Û−j

))
(5.26)

then vi,k/t ∈ Vi for all k, t > 0.
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It is expected, however, that uj(t) − ûj(t) is contained in the interior of
Uj ⊕ Û−j , making (5.26) a conservative estimate of Vi. If Vi computed as in
(5.26) does not meet Assumption 5.2 it is up to the designer to modify the
tube gain K̂j in order to obtain a smaller set Zj or Û−j , depending on which
is stronger, the input or state coupling. Nevertheless, there might not exist
a linear gain that results in Assumption 5.2 being met given that the bound
on the input deviation Uj ⊕ Û−j is conservative. Therefore, although simple,
the definition of Vi as in (5.26) is mostly valid for networks with negligible (or
null) input coupling.

5.4.3 Stability

Similarly to Section 2.3.1, stability of the origin for the closed-loop can be
achieved given a proper design of the cost function, and particularly of the
terminal cost. In the following, as discussed previously, it is assumed that
the cost functions of the inner and outer OCPs can be different, although
consistency might demand them to be equal. Furthermore, it is assumed that:

• The collection of gains K̂i and
ˆ̂
Ki fulfil Assumption 5.1.

• The inner OCP is (5.5) with RPI constraint (5.5b) modified to (5.18).

• The outer OCP is (5.8).

• Assumptions 5.2, 5.6 and 5.7 hold.

In view of the above Algorithm 1, which drives the execution of the inner and
outer OCPs, is guaranteed to be recursively feasible. Furthermore, the state
trajectories are guaranteed to be constraint admissible when the loop of each
subsystem is closed with ui(t) = ˆ̂u?i,0(xi(t)) +

ˆ̂
Ki

(
xi(t)− ˆ̂x?i,0(xi(t))

)
.

5.4.3.1 Stability of the inner nominal trajectories

Setting aside the fact that the RPI constraint of the inner OCP is tightened
to (5.18) in order to guarantee feasibility of the outer OCP, the inner OCP is
entirely independent of the outer step of robust control. Furthermore, the inner
OCP is nothing more than a standard nominal MPC controller in a tube-based
approach. In view of this, its cost function can be constructed following the
design approach depicted in Section 2.3.1 in order to guarantee stability of
the origin for the inner nominal state trajectories. Suppose then that the cost
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function of the inner OCP is set to

J1
N,i (ûi, x̂i,0) =

N−1∑
k=0

ˆ̀
i (x̂i,k, ûi,k) + V̂f,i (x̂i,N)

=
N−1∑
k=0

(
||x̂i,k||2Q̂i + ||ûi,k||2R̂i

)
+ ||x̂i,N ||2P̂i .

and define F̂ii,f =
(
Aii +BiiK̂f,i

)
. The following result holds.

Proposition 5.5. If (a) Q̂i, R̂i > 0, and P̂i fulfils F̂>ii,f P̂iF̂ii,f+Q̂i+K̂
>
f,iR̂iK̂f,i−

P̂i ≤ 0 and (b) the nominal state trajectories x̂i(t) are updated following Step 14
of Algorithm 1, then (i) the origin is exponentially stable for the nominal state
trajectories x̂i(t) for T ∈ [0, 1] and (ii) the origin is asymptotically stable for
the state trajectories x̂i(t) for T > 1.

Proof. (i) follows from the proof of Proposition 2.1 and (ii) from the proof of
stability of suboptimal MPC in [1]. �

Proposition 5.5 makes a difference with respect to T to account for the
fact that the communication procedure results in a feasible yet not necessarily
optimal solution to the inner OCP at each time instant t 6= λT . It is shown in [1]
that the same type of cost decrease is achievable for the case of such suboptimal
solutions but the suboptimal cost cannot play the role of a Lyapunov function
because it is not uniquely determined for a given state xi(t). Ultimately, this
results in that only asymptotic stability of the origin is achievable. Nevertheless,
Proposition 5.5 guarantees that x̂i(t)→ 0 as t→∞ and so ûi(t)→ 0 as well.

5.4.3.2 Stability of the outer nominal trajectories

The same, however, cannot be readily guaranteed for the outer nominal tra-
jectories due to the solution of the outer OCP being parametrized by the
information received from neighbours. The latter, however, is nothing more
than planned inner nominal trajectories, which are bounded and guaranteed to
converge given Proposition 5.5. In view of this, the concept of input-to-state
stability (ISS) is now employed to provide a guarantee on the stability of the
origin for the overall closed-loop controller depicted by Algorithm 1.

First note that, albeit the outer OCP is parametrized by the solution
of the inner OCP, Proposition 5.2 guarantees feasibility of the former given
feasibility of the latter. Furthermore, Algorithm 1 requires the inner OCP to
be feasible at initialization, hence the overall RoA of the two step controller is
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XN,i = X̂N,i⊕Hi⊕ Si with X̂N,i as defined in Section 5.3.1. Given the recursive
feasibility of the inner OCP as in Proposition 5.1 and Corollary 5.1, it follows
that

(x̂si (xi(t)), û
s
i (ui(t))) ∈

N∏
k=0

X̂N,i ×
N−1∏
k=0

ÛN,i

where ÛN,i is the set of control sequences of length N − 1 that fulfil the inner
OCP constraints for at least one x̂ ∈ X̂N,i. It follows then that f i(t) ∈ Fi with

Fi =
∏
j∈Nui+

(
N∏
k=0

X̂N,j ×
N−1∏
k=0

ÛN,j

)
.

As before, and owing to the possible necessity of consistency, define the cost
function for the outer OCP as

J2
N,i

(
ˆ̂ui, ˆ̂xi,0,f i(t)

)
=

N−1∑
k=0

ˆ̂
`i

(
ˆ̂xi,k, ˆ̂ui,k

)
+

ˆ̂
Vf,i

(
ˆ̂xi,N

)
=

N−1∑
k=0

(
||x̂i,k||2ˆ̂

Qi
+ ||ûi,k||2ˆ̂

Ri

)
+ ||x̂i,N ||2ˆ̂

Pi

(5.27)

and consider the following continuity assumptions.

Assumption 5.8. The optimal cost function of the outer OCP V 2
N,i (xi,f i) :

XN,i × Fi → R+ is Lipschitz continuous in the variable f i. That is, for any
pair f i, f̃ i ∈ Fi and xi ∈ XN,i there exists Li > 0 such that V 2

N,i (xi,f i) −
V 2
N,i

(
xi, f̃ i

)
≤ Li|f i − f̃ i|2.

Assumption 5.9. The terminal cost function of the outer OCP ˆ̂
Vf,i

(
ˆ̂xi

)
:

ˆ̂Xf,i → R+ is Lipschitz continuous. That is, for all pairs xi, x̃i ∈ ˆ̂Xf,i there
exists Lf,i > 0 such that ˆ̂

Vf,i (xi)− ˆ̂
Vf,i (x̃i) ≤ Lf,i|xi − x̃i|2.

Assumptions 5.8 and 5.9 may seem demanding however it is easy to show
that any quadratic form is Lipschitz continuous in a bounded domain and it is
shown in [1] that the optimal cost function, as defined in (5.27), also is. Define
now ˆ̂

Fii =
(
Aii +Bii

ˆ̂
Kf,i

)
. In view of Assumptions 5.8 and 5.9 ISS of the

origin can be established for the outer nominal trajectories.

Theorem 5.1. If (a) Assumptions 5.6 - 5.9 hold and (b) ˆ̂
Qi,

ˆ̂
Ri > 0, and ˆ̂

Pi

fulfils ˆ̂
F>ii

ˆ̂
Pi

ˆ̂
Fii +

ˆ̂
Qi +

ˆ̂
K>f,i

ˆ̂
Ri

ˆ̂
Kf,i − ˆ̂

Pi ≤ 0, then the origin is ISS for the outer
nominal trajectories when updated following Step 14 of Algorithm 1.
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Proof. Suppose that at time t the state measured by agent i is xi(t) and
the information received by the outer OCP is f i(t). Suppose also that
the optimal solution is obtained and given by

(
ˆ̂u?i (xi(t)),

ˆ̂x?i,0(xi(t))
)
with

ˆ̂u?i (xi(t)) =
{

ˆ̂u?i,0(xi(t)), . . . , ˆ̂u?i,N−1(xi(t))
}
, associated optimal state trajectory

ˆ̂x?i (xi(t)) =
{

ˆ̂x?i,0(xi(t)), . . . , ˆ̂x
?
i,N(xi(t))

}
and optimal cost V 2

N,i(xi(t),f i(t)).

Consider first the case in which t+ 1 6= λT . It follows from Corollary 5.3
that Assumptions 5.6 and 5.7 guarantee that

ˆ̂u4i =
{

ˆ̂u?i,1(xi(t)), . . . , ˆ̂u?i,N−1(xi(t)), K̂f,i
ˆ̂x?i,N(xi(t))

}
(5.28a)

ˆ̂x4i,0 = ˆ̂x?i,1(xi(t)) (5.28b)

is a feasible solution to the outer OCP at time t+ 1. Define the cost associated
to such a feasible solution as J2

N,i

(
ˆ̂u4i ,

ˆ̂x4i,0,f i(t+ 1)
)
, which simplifies to

J2
N,i

(
ˆ̂u4i ,

ˆ̂x4i,0,f
+
i (t)

)
since t+ 1 6= λT . It is easy to show that

J2
N,i

(
ˆ̂u4i ,

ˆ̂x4i,0,f
+
i (t)

)
− V 2

N,i(xi(t),f i(t)) = −ˆ̂
`i

(
ˆ̂x?i,0(xi(t)), ˆ̂u?i,0(xi(t))

)
− ˆ̂
Vf,i

(
ˆ̂x?i,N(xi(t))

)
+

ˆ̂
`i

(
ˆ̂x?i,N(xi(t)), K̂f,i

ˆ̂x?i,N(xi(t))
)

+
ˆ̂
Vf,i

((
Aii +Bii

ˆ̂
Kf,i

)
ˆ̂x?i,N(xi(t)) + di,N/t

)
(5.29)

with di,N/t defined as in (5.16). By Assumption 5.9 it holds that

ˆ̂
Vf,i

((
Aii +Bii

ˆ̂
Kf,i

)
ˆ̂x?i,N(xi(t)) + di,N/t

)
− ˆ̂
Vf,i

((
Aii +Bii

ˆ̂
Kf,i

)
ˆ̂x?i,N(xi(t))

)
≤ Lf,i|di,N/t|2.

In view of this, and by adding and subtracting ˆ̂
Vf,i

((
Aii +Bii

ˆ̂
Kf,i

)
ˆ̂x?i,N(xi(t))

)
from the right hand side of (5.29) it follows that

J2
N,i

(
ˆ̂u4i ,

ˆ̂x4i,0,f
+
i (t)

)
− V 2

N,i(xi(t),f i(t)) ≤ −
ˆ̂
`i

(
ˆ̂x?i,0(xi(t)), ˆ̂u?i,0(xi(t))

)
− ˆ̂
Vf,i

(
ˆ̂x?i,N(xi(t))

)
+

ˆ̂
`i

(
ˆ̂x?i,N(xi(t)), K̂f,i

ˆ̂x?i,N(xi(t))
)

+
ˆ̂
Vf,i

((
Aii +Bii

ˆ̂
Kf,i

)
ˆ̂x?i,N(xi(t))

)
+ Lf,i|di,N/t|2.

Furthermore, by assumption the terminal cost function fulfils

ˆ̂
Vf,i

((
Aii +Bii

ˆ̂
Kf,i

)
ˆ̂x?i,N(xi(t))

)
− ˆ̂
Vf,i

(
ˆ̂x?i,N(xi(t))

)
≤
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− ˆ̂
`i

(
ˆ̂x?i,N(xi(t)), K̂f,i

ˆ̂x?i,N(xi(t))
)

for all ˆ̂x?i,N(xi(t) ∈ ˆ̂Xf,i and so

J2
N,i

(
ˆ̂u4i ,

ˆ̂x4i,0,f
+
i (t)

)
− V 2

N,i(xi(t),f i(t)) ≤−
ˆ̂
`i

(
ˆ̂x?i,0(xi(t)), ˆ̂u?i,0(xi(t))

)
+ Lf,i|di,N/t|2.

Finally, note that by assumption the pair
(

ˆ̂u4i ,
ˆ̂x4i,0

)
is feasible yet not neces-

sarily optimal and so

V 2
N,i(xi(t+ 1),f+

i (t))− V 2
N,i(xi(t),f i(t)) ≤−

ˆ̂
`i

(
ˆ̂x?i,0(xi(t)), ˆ̂u?i,0(xi(t))

)
+ Lf,i|di,N/t|2.

If t+ 1 = λT it follows that f i(t+ 1) is not necessarily equal to f+
i (t) and

so (5.28) is not necessarily feasible. Nevertheless, in view of Assumption 5.8 it
follows that

V 2
N,i(xi(t+ 1),f i(t+ 1))− V 2

N,i(xi(t+ 1),f+
i (t)) ≤ Li|f i(t+ 1)− f+

i (t)|2,

and so

V 2
N,i(xi(t+ 1),f i(t+ 1))− V 2

N,i(xi(t),f i(t)) ≤−
ˆ̂
`i

(
ˆ̂x?i,0(xi(t)), ˆ̂u?i,0(xi(t))

)
+ Lf,i|di,N/t|2
+ Li|f i(t+ 1)− f+

i (t)|2.
(5.30)

Since V 2
N,i(xi(t),f i(t)) is defined as (5.27) with bounded domain XN,i ×

Fi, it can be upper and lower bounded by appropriate functions such as in
Section 2.3.1. It follows then, from (5.30), that V 2

N,i(xi(t),f i(t)) is an ISS-
Lyapunov function for the outer nominal trajectories when updated following
Step 14 of Algorithm 1, and so the origin is ISS. �

The ISS approach regards the information in di,N/t and f i(t) as bounded
disturbances. Therefore, when in closed-loop with Algorithm 1 the only guar-
antee available is that X̂N,i is invariant for the inner nominal trajectories for
subsystem i and so XN =

∏
i∈N XN,i is invariant for the state trajectories of

the network. However, if Proposition 5.5 holds it follows that di,N/t → 0 and(
f i(t+ 1)− f+

i (t)
)
→ 0 as t→∞. In the limit then, the optimal cost function

of the outer OCP becomes a Lyapunov function for the outer nominal state
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trajectories ˆ̂xi(t), and the origin becomes exponentially stable for ˆ̂xi(t) (in the
limit). In fact, if at time instant t̃ it happens that x(t̃) ∈ S⊕H, then it holds
that di,N/t = 0 and

(
f i(t+ 1)− f+

i (t)
)

= 0 for all t ≥ t̃ + 1. It follows then
that the optimal cost function of the outer OCP becomes a Lyapunov function
for the outer nominal state trajectories for any t ≥ t̃+ 1.

In all the numerical simulations carried out it was observed that the optimal
cost variation in (5.30) becomes bounded by a negative value during the
first few time steps of operation of Algorithm 1, rather than at the limit (see
Section 5.6). Consider then the overall network dynamics, when each subsystem
is in closed-loop with Algorithm 1

x(t+ 1) = Ax(t) + B
(

ˆ̂u(t) + ˆ̂Ki

(
x(t)− ˆ̂x(t)

))
=
(
A + B ˆ̂Ki

)
x(t) +

(
B ˆ̂u(t)− ˆ̂Ki

ˆ̂x(t)
)
,

(5.31)

where ˆ̂x =
(

ˆ̂x>1 ,
ˆ̂x>2 , . . . ,

ˆ̂x>M

)>
and ˆ̂u =

(
ˆ̂u>1 ,

ˆ̂u>2 , . . . ,
ˆ̂u>M

)>
. In practice, The-

orem 5.1 results in ˆ̂xi(t) → 0 as t → ∞ for all i ∈ M and so ˆ̂x(t) → 0 and
ˆ̂u(t)→ 0 as well. This implies that the rightmost summand in (5.31) vanishes
as t→∞.

The overall network dynamics then reduce to x(t) =
(
A + B ˆ̂Ki

)
x(t) at

the limit, which highlights the importance of Assumption 5.1. In particular,
stability of the origin for the overall network can only be attained (and in
practice will be attained) if the collection of gains ˆ̂

Ki satisfies Assumption 5.1.

5.5 Stabilizability assumption

From the discussion in Section 5.4.3.2 it follows that a necessary condition for
stabilizability of the origin is that the collection of gains ˆ̂

Ki, associated to the
outer tubes, satisfies Assumption 5.1. This is because convergence of the outer
nominal trajectories results in a closed-loop network where the loop of each
subsystem is closed independently by ˆ̂

Ki, which is nothing more than locally
stabilizing. Generally speaking, this may result in the overall network to be
unstable [151] (if Assumption 5.1 does not hold). Indeed, consider for example a
pair of coupled integrators with A11 = A22 = 1, A12 = A21 = 0, B11 = B22 = 1

and B12 = B21 = 0.5. The local linear feedbacks K1 = K2 = −1.5 result in
stable local closed-loops with Aii +BiiKi = −0.5, but in a closed-loop network
A + BK with an spectral radius of 1.25. It follows then that the selection of
ˆ̂
Ki, if done naively, could result in an unstable network once the outer nominal
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trajectories have converged.
The gains ˆ̂

Ki, however, are not only required to be locally stabilizing, but
also to render admissible RPI sets Si. In what follows it is shown that the
latter guarantees that Assumption 5.1 is met by the collection of gains ˆ̂

Ki.
There are, however, other ways in which Assumption 5.1 can be met in the
context of designing an stabilizing DMPC controller. Some of the techniques
used to compute these feedbacks also exploit notions of invariance, and hence
are related to the more fundamental result shown in this section. A brief review
of such approaches is presented first, and the following definition is required
for simplicity.

Definition 5.1. The set Y ⊆ Rna is a referred to as a square or separable set
if Y =

∏b
i=1 Yi with Yi ∈ Rni and na =

∑b
i=1 ni.

The design of DMPC controllers (not necessarily tube-based) is generally not
trivial and usually requires some form of centralized computation. Algorithm 1,
for example, not only needs a collection of gains that fulfils Assumption 5.1,
but also the computation of the sets Vi, which means agents must share the
information about their sets Zi, Ui and Ûi with their neighbours. With respect
to the construction of a linear feedback with a particular structure (such as
block-diagonal), it is often the case that the several characteristics that this
gain needs to fulfil (both at local and global level) can be posed in the form
of a set of (coupled) LMIs. In [165] for example, subsystems that are coupled
through the input are studied and a global linear feedback with binary structure
equating that of the input matrix is sought to play the role of terminal controller
often used in MPC implementations [4]. It follows then that some form of
Lyapunov condition must be imposed over the linear gain, both at the local
and global levels. These requirements are translated into a set of M local LMIs
alongside with a single global LMI of dimension 4n× 4n (where n is the overall
dimension of the plant); if such LMIs are verified, the structured gain meets all
requirements and can be partitioned to be used as a terminal controller for the
local optimization problems.

A similar approach is presented in [169] but for subsystems coupled through
the state. Stability of the proposed cooperative DMPC scheme hinges on the
terminal cost of the centralized problem being a Lyapunov function for the
network dynamics when in closed-loop with a linear terminal controller. The
MPC optimization problem, however, is solved in a distributed fashion, hence a
collection of local terminal cost function that result in a network-wide Lyapunov
function is sought. Local feedbacks are associated to each local terminal cost
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and the Lyapunov requirements are again presented as a set of M local LMIs in
presence of a system-wide coupled LMI. The difference with respect to [165] is
that a distributed optimization is proposed to find a collection of local terminal
controllers that fulfils the LMIs, allowing for distributed design even in the
presence of a global LMI.

In the context of tube-based DMPC schemes a similar approach is found
in [34]. Analogously to [169], stability of the origin depends on the terminal
cost of the aggregated problem being a Lyapunov function for the closed-loop
network. The main difference is that the approach in [34] is non-cooperative, as
opposed to the cooperative scheme in [169]. Nevertheless, the properties of the
aggregated terminal cost are again guaranteed by a collection of independent
local terminal costs and gains designed to respect a set of coupled LMIs that
represent the cost decrease requirements required for Lyapunov stability.

An interesting by-product of the block-diagonal structure imposed over
the stabilizing terminal gain in [34] is that the local terminal constraint sets
must not only be PI for the local dynamics when in closed loop with the local
gains, but its Cartesian product be a PI set for the global dynamics when
in closed-loop with the block-diagonal global gain. Such a global PI set is a
square set according to Definition 5.1. A similar result is found in [169], except
that the local terminal sets are allowed to be time-varying rather than PI,
although still resulting in a square global terminal set. It follows then that the
synthesis of a square (or separable) PI set also results in obtaining a collection
of local linear gains that guarantee Assumption 5.1. The synthesis of such sets
is specifically tackled in [179], by posing a set of LMIs that represent the square
invariance requirements. The procedure, however, is centralized, and involves
LMIs of dimension 2n× 2n (where n is the overall dimension of the plant).

The construction of the time-varying square terminal constraint sets in [169]
can be included in the more general notion of positively invariant family
of sets (PIFs) introduced in [138], although the latter propose a different
parametrization. A PIFs is nothing more than a collection of bounded square
sets that contains, at all times, the trajectories of an autonomous system (or
system in closed-loop with a collection of local gains). Each element of the
family is square and not necessarily invariant on its own, but the family as
a whole is. This concept also encompasses the square PI set required by the
DMPC algorithm in [34], since the latter is nothing more than a PIFs with a
single element.

If the goal is just to find a collection of feedbacks that fulfils Assumption 5.1,
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as opposed to one with an associated Lyapunov function as in [34, 165], the
parametrization in [180] presents certain advantages when compared to that
in [169], albeit it resorts to a fully centralized design process. In [180] the
authors present what is called a comparison system which has dimension M
(the number of subsystems) and whose dynamics depends on the dynamics
of the network when in closed-loop with a particularly structured gain. It is
shown that a stable comparison system is a sufficient condition for the true
system to accept a PIFs, and that the latter implies that the network admits a
PI set, hence is stable. It might then prove easier to find a collection of local
gains that renders the comparison system stable and, by construction, stabilize
the true system.

This notion is the driving idea of the approach proposed in [181], where
local LMIs are constructed to find, in a non-centralized fashion, a collection of
local gains with its corresponding PIFs. Nevertheless, although a stabilizing
decentralized gain may be found by exploiting the parametrization in [180],
such a gain will not necessarily have an associated PIFs with a single element,
such as is needed in [34]. It follows that the notions in [180] may provide a
simpler procedure to the design of a gain that fulfils Assumption 5.1 when
compared to solving system-wide coupled LMIs such as in [34, 165, 169], but
the characterization of associated square PI sets remains complex. In [164],
however, a square PI set for the global dynamics is easily computed employing
local RPI sets, rather than PI sets. This is the key aspect of the sufficient
conditions shown in the following to guarantee existence of a block-diagonal
feedback that meets Assumption 5.1.

5.5.1 Computation of a block-diagonal stabilizing gain

In what follows it will be shown that admissibility of the inner OCP is sufficient
to guarantee that the collection of gains K̂i fulfils Assumption 5.1. The
stabilizability result in Section 5.4.3 requires ˆ̂

Ki to meet Assumption 5.1, rather
than K̂i, but by showing that the latter does meet the assumption, existence
of (at least) one such gain is guaranteed.

First define F̂ii = Aii +BiiK̂i and consider the following assumption.

Assumption 5.10. The inner OCP is admissible for all i ∈M. That is, the
tube gain K̂i and the RPI set associated to the inner OCP Zi are such that

F̂iiZi ⊕Wi ⊆ Zi
Zi ⊆ Xi
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K̂iZi ⊆ Ui.

The following result then holds

Proposition 5.6. Assume that the outer OCP is not in place and that the
independent inner OCPs are used to control each subsystem independently
with ui(t) = K̂ixi(t). If for all i ∈ M Assumption 5.10 holds and xi(0) ∈ Zi,
then xi(t) ∈ Xi and ui(t) ∈ Ui for all i ∈M and for all t ≥ 0.

Proof. If the control law is set to ui(t) = K̂ixi(t), it follows that the closed-loop
reduces to xi(t+ 1) = F̂iixi(t) + wi(t) with wi(t) ∈Wi. The rest of the proof
follows from xi(0) ∈ Zi and the robust invariance of Zi for all i ∈M. Indeed,
xi(t) ∈ Zi ⊆ Xi and ui(t) ∈ K̂iZi ⊆ Ui for all t ≥ 0, given Assumption 5.10. �

Proposition 5.6 provides a guarantee of constraint satisfaction in a decen-
tralized design approach where agents have shared only information about
their constraint sets to compute Wi. This is counter-intuitive with respect to
the previous discussion since Proposition 5.6 does not require Assumption 5.1
and, as shown, a naive selection of the local gains could result in an unstable
closed-loop network which then cannot guarantee constraint satisfaction.

Consider, for example, a network of two subsystems and suppose that
Proposition 5.6 holds, but that Assumption 5.1 does not. That is F̂ii is
Schur for i = 1, 2, but the system-wide closed-loop F̂ = A + BK̂, with
K̂ = diag

(
K̂1, K̂2

)
, is not. Since x(0) ∈ Z = Z1 × Z2 ⊂ X, instability of F̂

means that there must exist a time instant t1 > 0 such that, x1(t1 − 1) ∈ Z1

but x1(t1) /∈ Z1. At the core, this implies that the robust invariance of the
set Z1 for the closed-loop F̂11 has been broken, which can only take place if
w1(t1 − 1) /∈W1. This behaviour is summarized in the following result.

Proposition 5.7. Assume that the outer OCP is not in place and that the
independent inner OCPs are used to control each subsystem independently
with ui(t) = K̂ixi(t) such that F̂ is not Schur. If for all i ∈M Assumption 5.10
holds and xi(0) ∈ Zi, then there exists a finite time t̂ > 0 such that xt̂−1 ∈ Z
but xt̂ /∈ X or ut̂ /∈ U.

Proof. For the proof consider again a network of two subsystems. As before,
instability of F̂ means there exist a time instant t1 > 0 such that, x1(t1−1) ∈ Z1

but x1(t1) /∈ Z1. The violation of the robust invariance of Z1 implies w1(t1−1) /∈
W1, which can only happen if x2(t1−1) /∈ X2 or u2(t1−1) /∈ U2, where the latter
implies the former given the control law considered. Furthermore x2(t1−1) /∈ X2



5.5. STABILIZABILITY ASSUMPTION 205

implies x2(t1−1) /∈ Z2 and so, if x2(t1−2) ∈ Z2 it must be that w2(t1−2) /∈W2

with the obvious implications on the state constraint satisfaction of subsystem
1 at time t1 − 2. �

Proposition 5.7 states that, if the local gains are chosen without considering
global behaviour, the network-wide state may evolve such that, in a single time
step, it will go from inside Z to outside X. This is irrespective of the particular
K̂, as long as F̂ is not Schur, which is counter-intuitive since for a particular
non-stabilizing K̂ it may happen that F̂Z ⊆ X. This inconsistency owes to the
fact that the local gains K̂i are not only chosen to stabilize the local dynamics
(Aii, Bii), but to fulfil all conditions in Assumption 5.10. The effect that these
additional requirements have on the global properties of K̂ is summarized in
the following result.

Theorem 5.2. If Assumption 5.10 holds, then the collection of local gains K̂i

fulfils Assumption 5.1.

Proof. First define F̂ij =
(
Aij +BijK̂j

)
. For all i, j ∈ M with i 6= j it holds

that

W̃ij = F̂ijZj ⊆ AijZj ⊕BijKjZj
⊆ AijXj ⊕BijUj,

where the first inclusion follows from Minkwoski sum properties and the second
one by Assumption 5.10. It holds then that

W̃i =
⊕
j∈Nui

W̃ij ⊆
⊕
j∈Nui

(AijXj ⊕BijUj) = Wi,

and so F̂iiZi ⊕ W̃i ⊆ F̂iiZi ⊕Wi ⊆ Zi for all i ∈M. It follows then that

F̂iiZi ⊕
⊕
j∈Ni

F̂ijZj ⊂ Zi, ∀i ∈M,

and hence, Z = Z1 × · · · × ZM ⊆ Rn is a square PI set for the closed-loop
dynamics F̂ . In view of this, F̂ is Schur. �

Theorem 5.2 establishes that, in a distributed control set-up, admissibility
of local tubes designed to counter the interaction is sufficient to guarantee
that the associated local gains form a block-diagonal stabilizing feedback
for the overall network. In summary then, Assumption 5.1 is redundant
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in view of the necessity of admissible local tubes, nevertheless, both design
demands are usually found together in the literature of tube-based DMPC
architectures [30,31,33,34,173,174].

Proposition 5.7 sets off with an assumption on unstable global dynamics,
however it has been shown in Theorem 5.2 that this cannot be the case since
this would imply that constraints are not met and hence RPI sets cannot be
computed given unbounded disturbance sets. The behaviour described in the
proof of Proposition 5.7 then is not possible since the corresponding invariant
sets would have not been admissible to start with and so the assumptions that
give way to Proposition 5.7 cannot hold simultaneously.

Theorem 5.2 provides sufficient conditions to find a globally stabilizing
block-diagonal gain that depends on the admissibility of local tubes. However,
if the coupling is large or the constraint sets of some neighbours are larger
when compared to the local ones, there might not exist an admissible RPI
set Zi. This is not a drawback of Theorem 5.2 in particular, and owes to the
fact that dealing with strong coupling between subsystems is complex when
a completely decentralized approach is pursued. Even in a distributed set-up,
such as in [165, 169], there is no guarantee that a collection of gains that fulfils
the corresponding LMIs will exist. This should not be a surprise, given that
the successful synthesis of a non-centralized controller depends greatly on the
size of the interaction between neighbouring subsystems, and how these are
dealt with (communication, iterative optimization, etc.).

The DMPC approach proposed here requires admissibility of such local
tubes, but if the only goal is to compute a global gain that fulfils Assumption 5.1,
then Theorem 5.2 is still a useful tool. Indeed, if a given collection of local
gains does not render all tubes admissible, it is possible to reduce size of certain
constraint sets to ultimately obtain admissible tubes for all subsystems and
hence a guarantee on global stabilizability (as is done in [165]).

Finally, note that a collection of constraint admissible tubes Zi, such as that
required by Assumption 5.10, forms a square PI set, as shown in Theorem 5.2.
Depending on the size of the coupling, however, a system may not admit
such a PI set (excluding the trivial set containing only the origin). This
highlights the conservativeness introduced in DMPC algorithms such as the
one presented in here or the one in [34] when compared to that of [169], which
allows for time-varying terminal sets that are not PI but PIFs [180]. Indeed,
the parametrization of PIFs proposed by [138] results in that a square PI set
is guaranteed to exist only if the chosen gains result in a marginally stable
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comparison system.

5.6 Illustrative example

To test the proposed controller, a slightly modified version of the four truck
system from [34] is employed. Recall that the proposed approach is fitted to deal
with input coupling, however the computation of a comprehensive bounding
set that contains the input trajectory deviation is not trivial. In view of this,
and in order to employ the simplified approach described in Section 5.4.2.3, an
illustrative example without input coupling is considered. The plant is depicted
in Figure 5.2; four trucks represented by point masses mi are dynamically
coupled through springs kij and dampers cij. Each truck is connected only to
its immediate neighbours: truck 1 is connected to truck 2; truck 2 is connected
to trucks 1 and 3, and so on. The control objective is to steer each truck to an
arbitrary equilibrium point with null velocity, using the independent control
inputs ui.

m1 m2 m3 m4

k12

c12c12

k23

c23c23

k34

c34c34

u1 u2 u3 u4

Figure 5.2: Network composed by four subsystems (trucks).

Assuming over damping, the relative displacement between neighbouring
trucks will converge to 0 and all velocities will converge to the same value,
however not necessarily to 0, as the trucks are not fixed to the ground. Indeed,
the system is marginally stable. Table 5.1 reports the values of the different
plant parameters. The coupling between trucks 1 and 2 is purposely higher
than among the other neighbouring trucks, in order to study the behaviour of
the proposed DMPC algorithm under high and low couplings.

The state vector of the plant is x ∈ R8 with 4 pairs of elements representing
the position and velocity of each truck. Given their clearly defined physical
boundaries, and their independent control actions, the overall system is divided
into 4 subsystems, each of them representing a single truck. The continuous
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Table 5.1: Dynamic parameters of the network.

Spring Damper Mass
k12 = 7.50 c12 = 4.00 m1 = 3
k23 = 0.75 c23 = 0.25 m2 = 2
k34 = 1.00 c34 = 0.30 m3 = 3

– – m4 = 6

time dynamics of each subsystem are then defined by

ẋi = Aciixi +Bc
iiui +

∑
j∈Ni

Acijxj

where the upper index c indicates that it is a continuous time representation
and ˙ indicates the time derivative. The local input matrices Bc

ii are a function
of mi while the matrices Acij are a function of the various spring and damper
coefficients involved in the dynamics of each truck.

The state and input constraints are homogeneous for all trucks and defined
by

Xi =

{
xi ∈ R2 | xi ≤

[
2

8

]}
Ui = {ui ∈ R | |ui| ≤ 4} .

The cost functions are also defined in a homogeneous way, both across subsys-
tems and OCPs, with R1:4 = R̂1:4=

ˆ̂
R1:4 = 1 and

Q1:4 = Q̂ =
ˆ̂
Q1:4 =

[
10 0

0 1

]
.

A sampling time of Ts = 0.1[s] is used to discretize the system, and in order
to simplify the design approach, all the different linear gains required are set
to the optimal infinite horizon LQR gain associated to each truck. Table 5.2
reports the gain values. Finally, the terminal costs Pi are set to the solution

Table 5.2: Linear gains for each subsystem Ki = K̂i =
ˆ̂
Ki = K̂f,i =

ˆ̂
Kf,i = K̄i.

Truck 1 2 3 4

−K>i
[
0.7379
0.2992

] [
0.5057
0.1990

] [
0.7478
0.3174

] [
1.2790
0.5631

]
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of the corresponding Lyapunov equation, that is, to approximate exactly the
unconstrained infinite horizon LQR cost.

5.6.1 Set related results

As discussed in Section 5.4.2.3, the recursive feasibility guarantee for Algorithm 1
depends almost completely on Assumption 5.2, however the comprehensive
computation of the sets Vi is not trivial. In this example, there is no input
coupling, and hence Vi is accurately defined by (5.26). Given that by admis-
sibility requirements Zi needs to be in the interior of Xi, Assumption 5.2 is
straightforwardly met. Figure 5.3 shows the different disturbance sets. As
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Figure 5.3: Disturbance sets for inner and outer OCPs: inner OCP Wi,
outer OCP Vi.

expected, the largest disturbance sets are obtained for truck 2, since it has two
neighbours, being the coupling between trucks 1 and 2 the strongest one in the
whole network. The smallest disturbance sets are those associated to truck 4,
which again is expected given its single neighbour and weak coupling.

Figure 5.4 shows the tightening sets for both OCPs, Zi and Si, computed
as the minimal RPI sets associated to the respective disturbance sets. Again,
given the sizes of the corresponding perturbation sets, the largest tightening
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sets are obtained for truck 2, and the smallest ones for truck 4. Furthermore,
the largest difference between the inner and outer tightening set is also observed
in subsystem 4, where S4 represents only 0.05% of the volume of Z4. On the
other hand, the largest outer tightening set, relative to the size of the inner for
the same subsystem, takes place in subsystem 1, where S1 represents 8.1% of
the volume of Z1. The latter is due to two reasons: firstly, the strong coupling
with subsystem 2 and secondly, the fact that subsystem 2 has the largest
inner tightening set Z2, resulting in disturbance set V1 that is not considerably
smaller than W1.
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Figure 5.4: Tightening sets for inner and outer OCPs: inner OCP Zi,
outer OCP Si.

However, the RPI set Zi is not used as a constraint in the inner OCP.
Indeed, in order to guarantee recursive feasibility of the overall scheme the
RPI constraint of the inner OCP is replaced by Si ⊕Hi which needs to be a
subset of Zi. This has an impact on the size of the inner OCP’s RoA, and
hence, on the RoA of the overall distributed controller. It follows that it would
be beneficial to compute Hi as the largest set that fulfils all the requirements
of Assumption 5.6. The sets Hi could be computed as the maximal RPI sets
for
(
Aii +BiiK̄i

)
and disturbance set Di contained inside Zi 	 Si, however this

may result in that conditions (5.21c) and (5.21d) are not met.
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To guarantee that all requirements are met, the sets Hi for this example
where computed as the minimal robust λ-contractive sets for

(
Aii +BiiK̄i

)
and

disturbance set Di (see Definition 3.5). The value of λ for each subsystem was
set to the smallest possible such that all requirements of Assumption 5.6 where
met. Figure 5.5 compares the sizes of Zi and Si ⊕Hi. It can be observed that
the proposed approach to compute Hi results in a minimal loss in the size of
the RPI constrain, and hence on the feasibility region. The largest reduction is
observed for subsystem 1, for the same reasons as before, with a set S1 ⊕H1

that amounts only to a 79% of the volume of Z1.
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Figure 5.5: RPI constraint for inner OCP: standard Zi, modified
Si ⊕Hi.

Finally, the RoAs for each subsystem are shown in Figure 5.6, and compared
to the original state constraint set. As observed, and thanks to the approach
for computing Hi, the feasibility regions of each subsystem account for a
considerable amount of the overall allowable state region. The smallest RoA
is that of subsystem 2, owing to its strong coupling with subsystem 1 and
additional coupling with subsystem 3, which yields the largest RPI set Z2 as
observed in Figure 5.4.
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Figure 5.6: Region of attraction: Xi, Xi = X̂i ⊕ Si ⊕Hi.

5.6.2 Control performance

In order to assess the control performance of the proposed DMPC algorithm,
all four trucks where initialized at a random vertex of their corresponding
controller’s RoA. The total simulated time is T = 50 time instances. Table 5.3
report the initial states and Figure 5.7 shows a phase plot of the trajectories of
each truck.

Table 5.3: Initial state of each truck xi(0).

Truck 1 2 3 4

xi(0)

[
−1.5265
−6.2271

] [
−1.6280
−4.3328

] [
−1.9055
−7.4512

] [
1.5431
7.8579

]

As guaranteed by Theorem 5.1, and the discussion that followed it, the
optimal cost variation (5.30) becomes upper bounded by a negative value
during the first few sampling instants (see Figure 5.8). This results in that
the state trajectories of all subsystems converge to the origin. This is due to
xi(t) ∈ Si ⊆ Zi for all i ∈ M and t ≥ 30, which results in x̂i(t) = ˆ̂xi(t) = 0

for all i ∈ M and t ≥ 30. In turn this implies that the overall network, in
closed-loop with the proposed DMPC controller, reduces to A + BK, which is
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Figure 5.7: Phase plot of the trucks state trajectories: i = 1, i = 2,
i = 3, i = 4.

guaranteed to be stable. The latter is despite the gains Ki being chosen in a
decentralized fashion, given the discussion in Section 5.5 and that the collection
of RPI sets Zi is admissible.

Figure 5.9 shows the input sequences used to control each truck when
in closed-loop with the proposed DMPC algorithm. Again, since the true
state enters the outer OCP’s tightening set fairly fast, the control law of each
subsystem reduces to the linear stabilizing gain Ki, resulting in a convergent
control input.

The main tool used in achieving recursive feasibility of the proposed approach
is the consistency constraint Hi. This, however, reduces the authority of the
outer OCP, and hence raises the question of how much can the outer OCP
achieve. Figure 5.10 shows the inner and outer optimized input sequences for
trucks 2 and 3 at times 1 and 4 and Figure 5.11 shows the optimized state
trajectories. The biggest difference between the optimal sequences of both
OCPs, in state and input, is observed for truck 2, which is expected given that
it is the one with strongest coupling, and hence benefits the most from the
additional outer step of control. Nevertheless, as time passes and the states
and inputs approach the origin, the differences are less important.
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Figure 5.8: Trucks optimal costs V 2
N,i(xi(t),f i(t)): i = 1, i = 2,
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Figure 5.9: Trucks input trajectories: i = 1, i = 2, i = 3,
i = 4.

Finally, in order to properly assess the performance of the proposed DMPC
controller, the same network was simulated in closed-loop with three other
controllers: centralized MPC, decentralized MPC and tube MPC. The first
is standard centralized MPC and hence there is no need for robustness or
communication. The second is decentralized MPC, that is, the loop for each
truck is closed with a standard non-robust MPC controller, completely ignoring
the interactions between subsystems. The last option is a standard robust
approach to distribution, and compared to the DMPC algorithm proposed
in this chapter, it amounts to the inner OCP without modifying the RPI
constraint.

The controller parameters used in these additional simulations are, whenever
possible, the same as those used for the DMPC algorithm proposed in this
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Figure 5.10: Optimized input sequence for inner and outer OCPs: ûi,k,
ˆ̂ui,k.

chapter (i.e. the values reported in this section). This is done to obtain
comparable results, however it is not always possible. In particular, the state
and input cost matrices used for the centralized MPC are built as block diagonal
matrices formed by the individual elements reported in this section, however
the terminal cost and constraint set are computed with respect to the whole
network. This is because the collection of terminal cost matrices Pi, obtained
individually for each subsystem, does not fulfil the Lyapunov equation in the
centralized case.

Figures 5.12 and 5.13 show a phase plot of the state trajectories of trucks 2

and 3 when in closed-loop with the different controllers. As expected, none of
them are exactly the same, although the differences are more clear between
the centralized MPC and the rest. The different trajectories differ more for
truck 2, which is again a expected result given that the latter is the truck that
experiences the higher level of coupling. It is also interesting to note that,
although the decentralized controller completely neglects the interaction, is
able to achieve constraint satisfaction. This is due to the inherent stability of
the state associated to the position of each truck, and the nominal robustness
that standard MPC enjoys [1].

Table 5.4 shows the cost associated to the closed-loop trajectories for each
controller. This was computed as

Ci =
T∑
t=1

(
x>i (t)Qixi(t) + u>i (t)Riui(t)

)
.
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Figure 5.11: Optimized state sequence for inner and outer OCPs: initial
optimized states, x̂i,k, ˆ̂xi,k, final predicted states.

The centralized MPC is, undoubtedly, the controller that achieves the smallest
running cost, due to the accuracy of the information associated to centralizing
the problem. Again, the biggest variations are observed for truck 2, with
Algorithm 1 outperforming both, the decentralized and tube approaches. This
is also the case for truck 1, however the decentralized MPC outperforms
Algorithm 1 in trucks 3 and 4. This is due to the weak coupling that those
trucks are subject to. Nevertheless, the proposed DMPC algorithm yields a
total cost that is smaller compared to the decentralized and tube approaches,
being bested only by centralized MPC.

Table 5.4: Cost of the closed-loop trajectories Ci.

Truck 1 2 3 4
∑M

i=1Ci
Centralized MPC 179.30 155.68 271.38 287.60 893.96
Decentralized MPC 180.60 162.62 271.91 288.68 903.81

Tube MPC 180.64 161.73 272.12 289.16 903.67
Algorithm 1 179.42 156.56 272.13 288.81 896.92
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Figure 5.12: Phase plot of the state trajectory of truck i = 2: Centralized
MPC, Decentralized MPC, Tube MPC, Algorithm 1.
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Figure 5.13: Phase plot of the state trajectory of truck i = 3: Centralized
MPC, Decentralized MPC, Tube MPC, Algorithm 1.
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5.7 Summary

In this chapter a new distributed non-cooperative MPC controller was presented.
The approach is robust based and its architecture is conceptually similar to
other robust based approaches such as [33,34], but more general and possibly
less conservative, particularly in the size of the RoA given the utilization of tube
MPC with optimizing trajectories. As expected, the two-step robust approach
shows larger margins of improvement in performance as the coupling between
neighbouring subsystems is strengthened. The latter however, has a limit, since
feasibility of the overall approach requires the existence of an admissible RPI
set for the local dynamics in presence of the disturbance set Wi, whose size
depends directly on the strength of the coupling.

One of the main sources of conservatism of the proposed DMPC controller
is Assumption 5.1, which requires not only the existence of a block diagonal
feedback gain that stabilizes the network, but knowledge of it. This assumption
is not particular to the implementation proposed here. Indeed, it is at the
core of many DMPC algorithms proposed to date, however it has not received
much attention within the DMPC related literature. This assumption was
investigated in detail in this chapter, concluding that, although necessary, it is
a redundant requirement in many DMPC approaches. Indeed, the existence of
admissible local tubes is sufficient to guarantee that the associated gains form
a network-wide stabilizing feedback, and the former is a common requirement
in robust approaches to DMPC.

Another source of conservatism is the need for additional tightening of
the RPI constraint in the inner OCP. However, the sets Hi need not to be
computed as minimal in any way, and the example put forward shows that
good approximations of Zi can be obtained in a fairly simple manner. On the
other hand, the reduction in conservatism obtained by implementing the outer
OCP is evident from the size of Si when compared to Zi.

Opportunities for future work arise from the main drawback of the proposed
DMPC controller, which is the complexity in accurately computing the sets
Vi. A simple solution is to include an arbitrarily defined input consistency
constraint in the outer OCP. This would allow a straightforward computation of
Vi, but possibly increasing the conservativeness of the approach. On the other
hand, in order to compute the outer’s OCP uncertainty set comprehensively, it
is necessary to characterize the set of inducing control actions associated to an
arbitrary set. This is, to the author’s knowledge, an open problem.
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Concluding Remarks

This chapter briefly summarises the work presented in Chapters 3–5 in order to
highlight the main contributions presented in this thesis, and discuss avenues
for future work.

6.1 Summary and contributions

The main objective of this thesis was to develop a series of MPC controllers to
improve the capabilities of standard MPC in dealing with uncertain, changing
and large-scale plants. The main contributions put forward in this thesis are
now listed.

Adaptive Model Predictive Control

• A dual MPC controller with control and estimation guarantees was
presented to control uncertain linear time varying systems. Under ap-
propriate design, constraint satisfaction, robust stability of the control
target and convergence of RLS estimates are guaranteed.

• The dual control problem was tackled by partitioning the input, an
approach that, to the author’s knowledge, has not been attempted in the
MPC framework. This allowed to tackle both problems independently,
avoiding the modification of the standard MPC control problem, which
enjoys many desirable properties.

• A novel MPC-like receding horizon optimization was proposed to introduce
feedback in the computation of the part of the input used to excite the
system, and hence take into account current plant states and dynamics.

219
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• The concept of persistence of excitation was thoroughly reviewed within
the framework of tube based MPC and linear time varying systems. It
was guaranteed that the required excitation properties can be achieved
through an appropriate design.

• The problem of characterising a single linear gain that stabilizes a set of
models was approached from a robust invariance perspective. It was shown
that admissibility of an RPI set (robust to the parametric uncertainty)
guarantees that the associated gain stabilizes the entire set of models.

Switching Model Predictive Control

• A new approach to compute dwell-times for switched linear systems, that
yields an admissible and stable closed-loop when the loop of each mode
is closed by a different MPC controller, was presented. The proposed
approach relies on the well-known exponential stability result available
for standard MPC controllers, and provides a computationally tractable
way to compute the corresponding mode-dependent dwell-times, even for
large scale systems.

• Both, undisturbed and perturbed systems where studied. For the latter,
two possibilities were explored, independent and coupled design of local
tube-based controllers. A coupled design of the tube based controllers
yields a disturbed closed-loop with stability guarantees that match, in
quality, those available for non-switching systems (i.e., a single mode).
This is thanks to the inclusion of the multi-set invariance concept, that
allows one to enhance the standard robust invariance ideas used in tube
MPC without any major modification to the standard approach.

• The different modes of the switching system are allowed to be highly
heterogeneous, with nothing in common between any two neighbouring
modes. This poses no obstacle to the proposed approach in the non
disturbed case, and in the perturbed case is easily dealt with by enlarging
the region that is shown to be robustly stable, or through the inclusion
of an auxiliary controller. The latter is another tube MPC controller
with a different set of constraints to account for the switching between
two-modes subject to non-matching constraint.

Distributed Model Predictive Control
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• A new robust-based non-cooperative distributed MPC controller for a
network with dynamically coupled subsystems was presented in this
chapter. As with many other DMPC approaches, the proposed algorithm
requires two steps of optimization and one step of communication at each
sampling time, but does not require (centralized) initialization control
strategies nor arbitrarily defined state trajectory targets or constraints.

• The proposed DMPC controller is guaranteed to be input-to-state stable
with respect to the dynamical interaction, which is treated as a dis-
turbance, but examples show that stabilization of the origin is indeed
achieved. This is due to the utilization of the tube MPC variant that
optimizes nominal state trajectories in both optimization stages.

• The second step of optimization (outer OCP) is fitted with a consistency
constraint designed to guarantee recursive feasibility of the overall con-
trol algorithm. The consistency constraint is naturally defined by the
feasibility requirements, rather than arbitrarily chosen. Furthermore, the
concatenation of both OCPs guarantees that optimality, with respect to
the current measurement, is sought at each time instant, as opposed to
tracking an arbitrarily defined feasible trajectory.

• This chapter also studied a particular assumption that is often required
to guarantee stability of DMPC approaches. This is a decentralized
stabilizability assumption, but it can also be seen as a weak coupling
assumption. The issue of finding a decentralized gain that stabilizes each
subsystem, as well as the whole network, is tackled from the robust invari-
ance perspective. Indeed, it is shown in this chapter that the existence of
admissible RPI sets for each subsystem (robust to the entirety of possible
dynamical interaction) guarantees that the collection of associated gains
stabilizes the network. This is, essentially, the same rationale behind the
search for a gain that stabilizes the entirety of models within an uncertain
set in Chapter 3.

6.2 Directions for future work

In view of the results presented in this thesis, there exists several avenues for
possible future work. These are now outlined.

Adaptive Model Predictive Control
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• The proposed AMPC algorithm suffers from the non-convexity of the PE
constraint, and thus the non-convexity of the PE optimization. There
exists several convexification techniques that could be explored in order
to simplify the PE optimization problem to a convex QP problem. This
would allow to improve the optimality of the PE sequence with respect
to the current plant state and prediction model.

• Another important direction of future work is related to improving the
control performance once the parameters have been accurately estimated.
If the latter is indeed the case, and the plant is not experiencing any
immediate change, the exciting sequence loses its purpose, and prevents
perfect regulation to be achieved.

Switching Model Predictive Control

• With respect to the proposed switching systems framework, a direction
for future work lies on the assumption of instantaneous detection of the
switch. This is a key assumption of the proposed approach to compute
MDTs, since the latter can only guarantee admissible and stable switching
if the correct MPC controller is active. Future work then needs to focus
on the case in which the switch is detected with some delay, what are
the effects of this on the closed-loop performance and what can be done
to mitigate them (e.g. robustify the design to account for a maximum
delay).

• Another clear direction for future work is in the estimation of a tighter
upper bound for the MPC Lyapunov function. Indeed, the illustrative
example showed that useful MDTs can be computed only with a tight
upper bound, however the guaranteed one is loose, resulting in real-world
impractical MDTs.

Distributed Model Predictive Control

• When it comes to the design stage of the proposed DMPC controller, the
main open issue is the proper characterization of the disturbance set for
the outer OCP. The set that contains the state trajectory error is easily
defined, but computing the corresponding set for the input trajectory error
is not as straightforward. In order to do so, it is necessary to characterise
the set of control actions that render an arbitrary set invariant, which is
a non-trivial problem.



Bibliography

[1] James B. Rawlings and David Q. Mayne. Model Predictive Control:
Theory and Design. Nob Hill, Madison, Wisconsin, electronic edition,
2014.

[2] D. Q. Mayne, M. M. Seron, and S. V. Raković. Robust model predic-
tive control of constrained linear systems with bounded disturbances.
Automatica, 41(2):219–224, 2005.

[3] Lennart Ljung. System Identification Theory for the user. Prentice Hall,
Upper Saddle River, NJ, 2nd edition, 1999.

[4] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert. Con-
strained model predictive control: Stability and optimality. Automatica,
36(6):789–814, 2000.

[5] Jan M. Maciejowski. Predictive Control with Constraints. Prentice Hall,
Harlow, 1st edition, 2002.

[6] A. M. Lyapunov. The General Problem of the Stability of Motion. Taylor
& Francis Ltd., London, 1992.

[7] S. S. Keerthi and E. G. Gilbert. Optimal Infinite-Horizon Feedback Laws
for a General Class of Constrained Discrete-Time Systems: Stability and
Moving-Horizon Approximations. Journal of Optimization Theory and
Applications, 57(2):265–293, 1988.

[8] James B. Rawlings and Kenneth R. Muske. The Stability of Constrained
Receding Horizon Control. IEEE Transactions on Automatic Control,
38(10):1512–1516, 1993.

[9] Pierre O. M. Scokaert and James B. Rawlings. Constrained Lin-
ear Quadratic Regulation. IEEE Transactions on Automatic Control,
43(8):1163–1169, 1998.

223



224 BIBLIOGRAPHY

[10] David Q. Mayne and Hannah Michalska. Receding Horizon Control of
Nonlinear Systems. IEEE Transactions on Automatic Control, 35(7):814–
824, jul 1990.

[11] Mario Sznaier and Mark J. Damborg. Suboptimal control of linear systems
with state and control inequality constraints. In Proceedings of the 26th
Conference on Decision and Control, volume 26, pages 761–762, Los
Angeles, CA, 1987.

[12] H. Michalska and D. Q. Mayne. Robust Receding Horizon Control
of Constrained Nonlinear Systems. IEEE Transactions on Automatic
Control, 38(11):1623–1633, 1993.

[13] T. Parisini and R. Zoppoli. A Receding-Horizon Regulator for Nonlinear
Systems and a Neural Approximation. Automatica, 31(10):1443–1451,
1995.

[14] G. De Nicolao, L. Magni, and R. Scattolini. Stabilizing Receding-Horizon
Control of Nonlinear Time-Varying Systems. IEEE Transactions on
Automatic Control, 43(7):1030–1036, 1998.

[15] P. O. M. Scokaert, D. Q. Mayne, and J. B. Rawlings. Suboptimal model
predictive control (feasibility implies stability). IEEE Transactions on
Automatic Control, 44(3):648–654, 1999.

[16] L. Magni, G. De Nicolao, L. Magnani, and R. Scattolini. A stabilizing
model-based predictive control algorithm for nonlinear systems. Auto-
matica, 37(9):1351–1362, 2001.

[17] Nael H. El-Farra, Prashant Mhaskar, and Panagiotis D. Christofides.
Uniting bounded control and MPC for stabilization of constrained linear
systems. Automatica, 40(1):101–110, jan 2004.

[18] Prashant Mhaskar, Nael H. El-Farra, and Panagiotis D. Christofides.
Predictive Control of Switched Nonlinear Systems With Scheduled Mode
Transitions. IEEE Transactions on Automatic Control, 50(11):1670–1680,
nov 2005.

[19] Prashant Mhaskar, Nael H. El-Farra, and Panagiotis D. Christofides.
Stabilization of nonlinear systems with state and control constraints
using Lyapunov-based predictive control. Systems & Control Letters,
55(8):650–659, aug 2006.



BIBLIOGRAPHY 225

[20] Shuyou Yu, Marcus Reble, Hong Chen, and Frank Allgöwer. Inherent
robustness properties of quasi-infinite horizon nonlinear model predictive
control. Automatica, 50(9):2269–2280, sep 2014.

[21] Eric C. Kerrigan and Jan M. Maciejowski. Robust feasibility in model
predictive control: Necessary and sufficient conditions. In Proccedings of
the 40th IEEE Conference on Decision and Control, pages 728–733, 2001.

[22] P. O. M. Scokaert and D. Q. Mayne. Min-max feedback model predictive
control for constrained linear systems. IEEE Transactions on Automatic
Control, 43(8):1136–1142, 1998.

[23] L. Chisci, J. A. Rossiter, and G. Zappa. Systems with persistent dis-
turbances: predictive control with restricted constraints. Automatica,
37:1019–1028, 2001.

[24] B. Kouvaritakis, J. A. Rossiter, and J. Schuurmans. Efficient Robust
Predictive Control. IEEE Transactions on Automatic Control, 45(8):1545–
1549, 2000.

[25] D. Q. Mayne and W. Langson. Robustifying model predictive control of
constrained linear systems. Electronics Letters, 37(23):1422–1423, 2001.

[26] Mayuresh V. Kothare, Venkataramanan Balakrishnan, and Manfred
Morari. Robust Constrained Model Predictive Control Using Linear
Matrix Inequalities. Automatica, 32(10):1361–1379, 1996.

[27] Paul J. Goulart, Eric C. Kerrigan, and Jan M. Maciejowski. Optimization
over state feedback policies for robust control with constraints. Automat-
ica, 42(4):523–533, 2006.

[28] L. Imsland, J. A. Rossiter, B. Pluymers, and J. Suykens. Robust triple
mode MPC. International Journal of Control, 81(4):679–689, apr 2006.

[29] D. Q. Mayne, E. C. Kerrigan, E. J. Van Wyk, and P. Falugi. Tube-
based robust nonlinear model predictive control. International Journal
of Robust and Nonlinear Control, 21(11):1341–1353, jul 2011.

[30] Paul A. Trodden and J. M. Maestre. Distributed predictive control with
minimization of mutual disturbances. Automatica, 77:31–43, 2017.



226 BIBLIOGRAPHY

[31] Paul Trodden. Feasible parallel-update distributed MPC for uncertain
linear systems sharing convex constraints. Systems & Control Letters,
74:98–107, 2014.

[32] Christian Conte, Melanie N. Zeilinger, Manfred Morari, and Colin N.
Jones. Robust Distributed Model Predictive Control of Linear Systems. In
Proceedings of the 2013 European Control Conference, pages 2764–2769,
Zürich, 2013. IEEE.

[33] Stefano Riverso and Giancarlo Ferrari-Trecate. Tube-based distributed
control of linear constrained systems. Automatica, 48(11):2860–2865, nov
2012.

[34] Marcello Farina and Riccardo Scattolini. Distributed predictive control:
A non-cooperative algorithm with neighbor-to-neighbor communication
for linear systems. Automatica, 48(6):1088–1096, jun 2012.

[35] Pablo R. Baldivieso Monasterios, Bernardo Hernandez, and Paul A.
Trodden. Nested distributed MPC. IFAC-PapersOnLine, 50(1):11822–
11828, 2017.

[36] Pablo R. Baldivieso Monasterios and Paul Trodden. Low-Complexity
Distributed Predictive Automatic Generation Control with Guaranteed
Properties. IEEE Transactions on Smart Grid, 8(6):3045–3054, 2017.

[37] Sasa V. Rakovic, William S. Levine, and Behcet Acikmese. Discretely
generalized model predictive control. In Proceedings of the 2016 American
Control Conference, pages 616–621, Boston, MA, 2016. IEEE.

[38] Sasa V. Rakovic, William S. Levine, and Behcet Acikmese. Elastic tube
model predictive control. In Proceedings of the 2016 American Control
Conference, pages 3594–3599, Boston, MA, 2016. IEEE.

[39] Veronica Adetola and Martin Guay. Robust adaptive MPC for constrained
uncertain nonlinear systems. International Journal of Adaptive Control
and Signal Processing, 25(2):155–167, 2011.

[40] Anil Aswani, Humberto Gonzalez, S. Shankar Sastry, and Claire Tom-
lin. Provably safe and robust learning-based model predictive control.
Automatica, 49(5):1216–1226, may 2013.



BIBLIOGRAPHY 227

[41] O. J. Dellar and B. Ll. Jones. Dynamically correct formulations of the
linearised Navier-Stoke equations. International Journal for Numerical
Methods in Fluids, 85:601–629, 2008.

[42] Eva Žáčeková, Zdeněk Váňa, and Jiří Cigler. Towards the real-life
implementation of MPC for an office building: Identification issues.
Applied Energy, 135:53–62, 2014.

[43] Christian A. Larsson, Cristian R. Rojas, Xavier Bombois, and Håkan
Hjalmarsson. Experimental evaluation of model predictive control with
excitation (MPC-X) on an industrial depropanizer. J. Process. Contr.,
31:1–16, 2015.

[44] Premkiran Vuthandam and Michael Nikolaou. Constrained MPCI: A
Weak Persistent Excitation Approach. AIChE Journal, 43(9):2279–2288,
1997.

[45] David Q. Mayne. Model predictive control: Recent developments and
future promise. Automatica, 50(12):2967–2986, nov 2014.

[46] Mayuresh V. Kothare, Bernard Mettler, Manfred Morari, Pascale Ben-
dotti, and Clément-Marc Falinower. Level control in the steam generator
of a nuclear power plant. IEEE Transactions on Control Systems Tech-
nology, 8(1):55–69, 2000.

[47] Xionglin Luo, Xin Zuo, and Dianlin Du. Varying Model Based Adaptive
Predictive Control of Highly Nonlinear Chemical Process. In Proceedings
of the 2005 International Conference on Control and Automation, pages
537–540, Budapest, 2005. IEEE.

[48] M. Fiacchini, T. Alamo, C. Albea, and E. F. Camacho. Adaptive model
predictive control of the hybrid dynamics of a fuel cell system. In Proceed-
ings of the 16th IEEE International Conference on Control Applications,
pages 1420–1425, Singapore, 2007. IEEE.

[49] Guolian Hou, Jinfang Zhang, Junjun Liu, and Jianhua Zhang. Multiple-
model Predictive Control Based on Fuzzy Adaptive Weights and its
Application to Main-Steam Temperature in Power Plant. In Proceedings
of the 5th IEEE Conference on Industrial Electronics and Applications,
pages 668–673, Taichung, jun 2010. IEEE.



228 BIBLIOGRAPHY

[50] P. Falcone, F. Borrelli, H. E. Tseng, J. Asgari, and D. Hrovat. Linear time-
varying model predictive control and its application to active steering
systems: Stability analysis and experimental validation. International
Journal of Robust and Nonlinear Control, 18(8):862–875, 2008.

[51] Akbar Rahideh, M. Hasan Shaheed, and Henry J. C. Huijberts. Stable
adaptive model predictive control for nonlinear systems. In Proceedings
of the 2008 American Control Conference, pages 1673–1678, Seattle, WA,
jun 2008. IEEE.

[52] Vladimir Bobal, Marek Kubalcik, Petr Dostal, and Jakub Matejicek.
Adaptive predictive control of time-delay systems. Computers and Math-
ematics with Applications, 66(2):165–176, aug 2013.

[53] Jerry Mamboundou and Nicolas Langlois. Indirect Adaptive Model
Predictive Control Supervised by Fuzzy Logic. In Proceedings of the 2011
International Conference on Fuzzy Systems, pages 2979–2986, Taipei, jun
2011. IEEE.

[54] N. A. Wahab, R. Katebi, J. Balderud, and M.F. Rahmat. Data-driven
adaptive model-based predictive control with application in wastewater
systems. IET Control Theory and Applications, 5(6):803–812, apr 2011.

[55] Weng Caihao, Zhang Xiaowu, and Sun Jing. Adaptive Model Predictive
Control for Hybrid Electric Vehicles Power Management. In Proceedings
of the 32nd Chinese Control Conference, pages 7756–7761, Xi’an, 2013.
IEEE.

[56] Mouhacine Benosman, Stefano Di Cairano, and Avishai Weiss. Extremum
Seeking-based Iterative Learning Linear MPC. In Proceedings of the 2014
IEEE Conference on Control Applications, pages 1849–1854, Antibes,
2014. IEEE.

[57] Vincent A. Akpan, Ioakeim K. Samaras, and George D. Hassapis. Imple-
mentation of Neural Network-Based Nonlinear Adaptive Model Predictive
Control over a Service-Oriented Computer Network. In Proceedings of
the 2010 American Control Conference, pages 5495–5500, Baltimore, MD,
2010. IEEE.

[58] Avishai Weiss and Stefano Di Cairano. Robust Dual Control MPC with
Guaranteed Constraint Satisfaction. In Proceedings of the 53rd Conference
on Decision and Control, pages 6713–6718, Los Angeles, CA, 2014. IEEE.



BIBLIOGRAPHY 229

[59] Hiroaki Fukushima, Tae-Hyoung Kim, and Toshiharu Sugie. Adaptive
model predictive control for a class of constrained linear systems based
on the comparison model. Automatica, 43(2):301–308, feb 2007.

[60] Veronica Adetola, Darryl DeHaan, and Martin Guay. Adaptive model
predictive control for constrained nonlinear systems. Systems & Control
Letters, 58(5):320–326, may 2009.

[61] Hiroaki Fukushima and Robert R. Bitmead. Robust constrained predictive
control using comparison model. Automatica, 41(1):97–106, 2005.

[62] Guilherme A. A. Gonçalves and Martin Guay. Robust discrete-time
set-based adaptive predictive control for nonlinear systems. Journal of
Process Control, 39:111–122, 2016.

[63] Marko Tanaskovic, Lorenzo Fagiano, Roy Smith, and Manfred Morari.
Adaptive receding horizon control for constrained MIMO systems. Auto-
matica, 50(12):3019–3029, dec 2014.

[64] Xiaofeng Wang, Yu Sun, and Kun Deng. Adaptive model predictive
control of uncertain constrained systems. In Proceedings of the 2014
American Control Conference, pages 2857–2862, Portland, OR, jun 2014.
IEEE.

[65] Stefano Di Cairano. Indirect Adaptive Model Predictive Control for
Linear Systems with Polytopic Uncertainty. In Proceedings of the 2016
American Control Conference, pages 3570–3575, 2016.

[66] Donglei Fan and Stefano Di Cairano. Further Results and Properties
of Indirect Adaptive Model Predictive Control for Linear Systems with
Polytopic Uncertainty. In Proceedings of the 2016 American Control
Conference, pages 2948–2953, 2016.

[67] Y. Cheng, S. Haghighat, and S. Di Cairano. Robust dual control MPC
with application to soft-landing control. In Proceedings of the 2015
American Control Conference, pages 3862–3867, Chicago, IL, 2015. IEEE.

[68] D. Limon, J. Calliess, and J. M. Maciejowski. Learning-based Nonlinear
Model Predictive Control. IFAC-PapersOnLine, 50(1):7769–7776, 2017.

[69] A. H. González, A. Ferramosca, G. A. Bustos, J. L. Marchetti, and D. Od-
loak. Model predictive control suitable for closed-loop re-identification.
Systems & Control Letters, 69:23–33, 2014.



230 BIBLIOGRAPHY

[70] A. Ferramosca, D. Limon, A. H. González, D. Odloak, and E. F. Camacho.
MPC for tracking zone regions. Journal of Process Control, 20(4):506–516,
2010.

[71] Alejandro H. González and Darci Odloak. A stable MPC with zone
control. Journal of Process Control, 19(1):110–122, 2009.

[72] A. Anderson, A. H. González, A. Ferramosca, A. D’Jorge, and E. Kof-
man. Robust MPC suitable for closed-loop re-identification, based on
probabilistic invariant sets. Systems & Control Letters, 118:84–93, 2018.

[73] Matthias Lorenzen, Frank Allgöwer, and Mark Cannon. Adaptive
Model Predictive Control with Robust Constraint Satisfaction. IFAC-
PapersOnLine, 50(1):3313–3318, 2017.

[74] Giancarlo Marafioti, Robert R. Bitmead, and Morten Hovd. Persistently
exciting model predictive control. International Journal of Adaptive
Control and Signal Processing, 28(6):536–552, 2014.

[75] Graham C Goodwin and Kwai Sang Sin. Adaptive filtering, prediction
and control. Prentice Hall, Englewoods Cliffs, NJ, 1st edition, 1984.

[76] Karl J. Åström and Bjorn Wittenmark. Adaptive Control. Dover Publi-
cations Inc., Mineola, NY, 2nd edition, 2008.

[77] Hasmet Genceli and Michael Nikolaou. New Approach to Constrained Pre-
dictive Control with Simultaneous Model Identification. AIChE Journal,
42(10):2857–2868, 1996.

[78] Manoj Shouche, Hasmet Genceli, Premkiran Vuthandam, and Michael
Nikolaou. Simultaneous Constrained Model Predictive Control and Iden-
tification of DARX Processes. Automatica, 34(12):1521–1530, 1998.

[79] Jan Rathouský and Vladimír Havlena. Multiple-step active control
with dual properties. In Proceedings of the 18th IFAC World Congress,
volume 18, pages 1522–1527, Milano, 2011.

[80] Jan Rathouský and Vladimir Havlena. MPC-based approximate dual
controller by information matrix maximization. International Journal of
Adaptive Control and Signal Processing, 27(11):974–999, 2013.

[81] Eva Žáčeková, Samuel Prívara, and Josef Komárek. On dual control for
buildings using persistent excitation condition. In Proceedings of the 51st



BIBLIOGRAPHY 231

IEEE Conference on Decision and Control, pages 2158–2163, Maui, HI,
2012. IEEE.

[82] Eva Žáčeková, Samuel Prívara, and Matej Pčolka. Persistent excitation
condition within the dual control framework. Journal of Process Control,
23(9):1270–1280, 2013.

[83] Eva Žačeková, Matej Pčolka, Sergej Čelikovský, and Michael Sebek.
Semi-receding Horizon Algorithm for "Sufficiently Exciting" MPC with
Adaptive Search Step. In Proceedings of the 53rd IEEE Conference on
Decision and Control, pages 4142–4147, Los Angeles, CA, 2014. IEEE.

[84] Vinay A. Bavdekar and Ali Mesbah. Stochastic Model Predictive Con-
trol with Integrated Experiment Design for Nonlinear Systems. IFAC-
PapersOnLine, 49(7):49–54, 2016.

[85] Tor Aksel N. Heirung, Bjarne Foss, and B. Erik Ydstie. MPC-based
dual control with online experiment design. Journal of Process Control,
32:64–76, 2015.

[86] Tor Aksel N. Heirung, B. Erik Ydstie, and Bjarne Foss. Dual adaptive
model predictive control. Automatica, 80:340–348, 2017.

[87] Jurre Hanema, Mircea Lazar, and Roland Tóth. Stabilizing tube-based
model predictive control: Terminal set and cost construction for LPV
systems. Automatica, 85:137–144, 2017.

[88] D. Q. Mayne, S. V. Raković, R. Findeisen, and F. Allgöwer. Robust
output feedback model predictive control of constrained linear systems.
Automatica, 42(7):1217–1222, 2006.

[89] Michael Green and John B. Moore. Persistence of excitation in linear
systems. Systems & Control Letters, 7(5):351–360, 1986.

[90] E. W. Bai and S. S. Sastry. Persistency of excitation, sufficient richness
and parameter convergence in discrete time adaptive control. Systems &
Control Letters, 6(3):153–163, 1985.

[91] Michael Green and John B. Moore. Persistence of excitation in linear
systems. In Proceedings of the 1985 American Control Conference, pages
412–417, Boston, MA, 1985. IEEE.



232 BIBLIOGRAPHY

[92] Jamal Daafouz, Pierre Riedinger, and Claude Iung. Stability analysis and
control synthesis for switched systems: a switched Lyapunov function
approach. IEEE Transactions on Automatic Control, 47(11):1883–1887,
2002.

[93] Toni Barjas Blanco, Mark Cannon, and Bart De Moor. On efficient
computation of low-complexity controlled invariant sets for uncertain
linear systems. International Journal of Control, 83(7):1339–1346, 2010.

[94] K. I. Kouramas, S. V. Raković, E. C. Kerrigan, J. C. Allwright, and D. Q.
Mayne. On the minimal robust positively invariant set for linear difference
inclusions. Proceedings of the 44th IEEE Conference on Decision and
Control, pages 2296–2301, 2005.

[95] John J. Martínez. Minimal RPI sets computation for polytopic systems
using the Bounded-real lemma and a new shrinking procedure. IFAC-
PapersOnLine, 48(26):182–187, 2015.

[96] Ilya Kolmanovsky and Elmer G. Gilbert. Theory and Computation of Dis-
turbance Invariant Sets for Discrete-Time Linear Systems. Mathematical
Problems in Engineering, 4:317 – 367, 1998.

[97] Eric C. Kerrigan. Robust constraint satisfaction: Invariant sets and
predictive control. PhD thesis, University of Cambridge, 2000.

[98] Elmer G. Gilbert and Kok Tin Tan. Linear Systems with State and
Control Constraints : The Theory and Application of Maximal Output
Admissible Sets. IEEE Transactions on Automatic Control, 36(9):1008–
1020, 1991.

[99] Franco Blanchini. Ultimate boundness control for uncertain discretetime
systems via set-induced Lyapunov functions. IEEE Transactions on
Automatic Control, 39(2):428–433, 1994.

[100] S. V. Rakovic, E. C. Kerrigan, K. I. Kouramas, and D. Q. Mayne. Invariant
approximations of the minimal robust positively invariant set. IEEE
Transactions on Automatic Control, 50(3):406–410, 2005.

[101] Paul Trodden. A One-Step Approach to Computing a Polytopic Robust
Positively Invariant Set. IEEE Transactions on Automatic Control,
61(12):4100–4105, 2016.



BIBLIOGRAPHY 233

[102] Yuanqi Mao, Daniel Dueri, Michael Szmuk, and Behçet Açıkmeşe. Suc-
cessive Convexification of Non-Convex Optimal Control Problems with
State Constraints. IFAC-PapersOnLine, 50(1):4063–4069, 2017.

[103] Ying Jin, Jun Fu, Youmin Zhang, and Yuanwei Jing. Reliable control
of a class of switched cascade nonlinear systems with its application to
flight control. Nonlinear Analysis: Hybrid Systems, 11(1):11–21, 2014.

[104] Iman Nodozi and Mehdi Rahmani. LMI-based model predictive control
for switched nonlinear systems. Journal of Process Control, 59:49–58,
2017.

[105] K. Hariprasad and Sharad Bhartiya. A computationally efficient robust
tube based MPC for linear switched systems. Nonlinear Analysis: Hybrid
Systems, 19:60–76, 2016.

[106] Panos J. Antsaklis and Xenofon D. Koutsoukos. Hybrid Systems: Review
and recent progress. In Software–Enabled Control: Information Technol-
ogy for Dynamical Systems, chapter 14, pages 273–298. IEEE, 1 edition,
2003.

[107] Shuai Yuan, Bart De Schutter, and Simone Baldi. Robust adaptive
tracking control of uncertain slowly switched linear systems. Nonlinear
Analysis: Hybrid Systems, 27:1–12, 2018.

[108] Franco Blanchini, Daniele Casagrande, and Stefano Miani. Modal and
transition dwell time computation in switching systems: A set-theoretic
approach. Automatica, 46(9):1477–1482, 2010.

[109] Nael H. El-Farra, Prashant Mhaskar, and Panagiotis D. Christofides.
Output feedback control of switched nonlinear systems using multiple
Lyapunov functions. Systems and Control Letters, 54(12):1163–1182,
2005.

[110] Patrizio Colaneri and Riccardo Scattolini. Robust Model Predictive Con-
trol of Discrete-Time Switched Systems, volume 40. IFAC, 2007.

[111] Francesco Borrelli, Mato Baotić, Alberto Bemporad, and Manfred Morari.
Dynamic programming for constrained optimal control of discrete-time
linear hybrid systems. Automatica, 41(10):1709–1721, 2005.



234 BIBLIOGRAPHY

[112] Prashant Mhaskar, Nael H. El-Farra, and Panagiotis D. Christofides.
Robust predictive control of switched systems: Satisfying uncertain
schedules subject to state and control constraints. International Journal
of Adaptive Control and Signal Processing, 22(4):161–179, 2008.

[113] Robert Shorten, Fabian Wirth, Oliver Mason, Kai Wulff, and Christopher
King. Stability Criteria for Switched and Hybrid Systems. SIAM Review,
49(4):545–592, 2007.

[114] Lixian Zhang, Songlin Zhuang, and Richard D. Braatz. Switched model
predictive control of switched linear systems: Feasibility, stability and
robustness. Automatica, 67:8–21, 2016.

[115] Qian Sang and Gang Tao. Adaptive control of piecewise linear systems:
The state tracking case. IEEE Transactions on Automatic Control,
57(2):522–528, 2012.

[116] J. C. Geromel and P. Colaneri. Stability and stabilization of discrete time
switched systems. International Journal of Control, 79(7):719–728, 2006.

[117] Graziano Chesi, Patrizio Colaneri, Jose C. Geromel, Richard Middleton,
and Robert Shorten. A nonconservative LMI condition for stability of
switched systems with guaranteed dwell time. IEEE Transactions on
Automatic Control, 57(5):1297–1302, 2012.

[118] Franco Blanchini, Stefano Miani, and Carlo Savorgnan. Stability re-
sults for linear parameter varying and switching systems. Automatica,
43(10):1817–1823, 2007.

[119] Matthew Philippe, Ray Essick, Geir E. Dullerud, and Raphaël M. Jungers.
Stability of discrete-time switching systems with constrained switching
sequences. Automatica, 72:242–250, 2016.

[120] A. P. Molchanov and Ye S. Pyatnitskiy. Criteria of asymptotic stability
of differential and difference inclusions encountered in control theory.
Systems & Control Letters, 13(1):59–64, 1989.

[121] Michael S. Branicky. Multiple Lyapunov functions and other analysis
tools for switched and hybrid systems. IEEE Transactions on Automatic
Control, 43(4):475–482, 1998.



BIBLIOGRAPHY 235

[122] Lixian Zhang, Songlin Zhuang, Peng Shi, and Yanzheng Zhu. Uni-
form tube based stabilization of switched linear systems with mode-
dependent persistent dwell-time. IEEE Transactions on Automatic Con-
trol, 60(11):2994–2999, 2015.

[123] Walter Lucia and Giuseppe Franzè. Stabilization and reference tracking
for constrained switching systems: A predictive control approach. Inter-
national Journal of Adaptive Control and Signal Processing, 31(12):1871–
1884, 2017.

[124] Chong-Jin Ong, Zheming Wang, and Masood Dehghan. Model Predic-
tive Control for Switching System with Dwell-time Restriction. IEEE
Transactions on Automatic Control, 61(12):4189–4195, 2016.

[125] Leila Jasmine Bridgeman, Claus Danielson, and Stefano Di Cairano.
Stability and feasibility of MPC for switched linear systems with dwell-
time constraints. In Proceedings of the 2016 American Control Conference,
pages 2681–2686, Seattle, WA, 2016. IEEE.

[126] Claus Danielson, Leila Bridgeman, and Stefano Di Cairano. Constraint
Satisfaction for Switched Linear Systems with Restricted Dwell-Time. In
Proceedings of the 2017 American Control Conference, pages 3682–3687,
Seattle, WA, 2017. IEEE.

[127] Matthias A. Müller, Pascal Martius, and Frank Allgöwer. Model predictive
control of switched nonlinear systems under average dwell-time. Journal
of Process Control, 22(9):1702–1710, 2012.

[128] Sven Knüfer, Matthias A. Müller, and Frank Allgöwer. Stabilizing Model
Predictive Control without Terminal Constraints for Switched Nonlinear
Systems. IFAC-PapersOnLine, 49(18):65–70, 2016.

[129] Giuseppe Franzè and Walter Lucia. A set-theoretic control architecture
for constrained switching systems. In Proceedings of the 2016 American
Control Conference, pages 685–690, Boston, MA, 2016. IEEE.

[130] Chong-Jin Ong, Zheming Wang, and Masood Dehghan. Characterization
of switching sequences on system with dwell-time restriction for Model
Predictive Control. In Proceedings of the 54th IEEE Conference on
Decision and Control, pages 3657–3662, Osaka, 2015.



236 BIBLIOGRAPHY

[131] Masood Dehghan and Chong-Jin Ong. Discrete-time switching linear
system with constraints: Characterization and computation of invariant
sets under dwell-time consideration. Automatica, 48(9):2175–2181, 2012.

[132] Qian Sang and Gang Tao. Adaptive Control of Piecewise Linear Systems
: the State Tracking Case. In Proceedings of the 2010 American Control
Conference, pages 4040–4045, 2010.

[133] Lixian Zhang and Richard D. Braatz. On switched MPC of a class of
switched linear systems with modal dwell time. In Proceedings of the
IEEE 52nd Conference on Decision and Control, pages 91–96. IEEE, dec
2013.

[134] Alberto Bemporad, Francesco Borrelli, and Manfred Morari. Model
predictive control based on linear programming - the explicit solution.
IEEE Transactions on Automatic Control, 47(12):1974–1985, 2002.

[135] Masood Dehghan and Chong-jin Ong. Characterization and computation
of disturbance invariant sets for constrained switched linear systems with
dwell time restriction. Automatica, 48(9):2175–2181, sep 2012.

[136] N. Athanasopoulos, K. Smpoukis, and R. M. Jungers. Invariant Sets
Analysis for Constrained Switching Systems. IEEE Control Systems
Letters, 1(2):256–261, 2017.

[137] D. P. Bertsekas and I. B. Rhodes. On the minimax reachability of target
sets and target tubes. Automatica, 7(2):233–247, 1971.

[138] Sasa V. Raković, Benjamin Kern, and Rolf Findeisen. Practical Set
Invariance for Decentralized Discrete Time Systems. In Proceedings of
the 49th IEEE Conference on Decision and Control, pages 3283–3288,
Atlanta, GA, 2010. IEEE.

[139] Riccardo Scattolini. Architectures for distributed and hierarchical Model
Predictive Control – A review. Journal of Process Control, 19(5):723–731,
may 2009.

[140] S. Bhattacharyya, J. M. A. Myrzik, and W. L. Kling. Consequences of
poor power quality - An overview. In Proceedings of the Universities
Power Engineering Conference, pages 651–656, 2007.

[141] B. Erik Ydstie. New vistas for process control: Integrating physics and
communication networks. AIChE Journal, 48(3):422–426, 2002.



BIBLIOGRAPHY 237

[142] Panagiotis D. Christofides, James F. Davis, Nael H. El-Farra, Don Clark,
Kevin R. D. Harris, and Jerry N. Gipson. Smart plant operations: Vision,
progress and challenges. AIChE Journal, 53(11):2734–2741, 2007.

[143] Panagiotis D. Christofides, Riccardo Scattolini, David Muñoz de la Peña,
and Jinfeng Liu. Distributed model predictive control: A tutorial review
and future research directions. Computers and Chemical Engineering,
51:21–41, apr 2013.

[144] E. E. Ejegi, J. A. Rossiter, and P. Trodden. A survey of techniques
and opportunities in power system automatic generation control. In
Proceedings of the 2014 UKACC International Conference on Control,
pages 537–542, 2014.

[145] John Baillieul and Panos J. Antsaklis. Control and Communication
Challenges in Networked Real-Time Systems. Proceedings of the IEEE,
95(1):9–28, jan 2007.

[146] Valerio Turri, Bart Besselink, and Karl H. Johansson. Cooperative look-
ahead control for fuel-efficient and safe heavy-duty vehicle platooning.
IEEE Transactions on Systems Technology, 25(1):12–28, 2015.

[147] Le Li, Rudy R. Negenborn, and Bart De Schutter. Distributed model
predictive control for cooperative synchromodal freight transport. Trans-
portation Research Part E, 105:240–260, 2017.

[148] Yoshiaki Kuwata, Arthur Richards, Tom Schouwenaars, and Jonathan P.
How. Distributed robust receding horizon control for multivehicle guid-
ance. IEEE Transactions on Control Systems Technology, 15(4):627–641,
2007.

[149] William B. Dunbar and Derek S. Caveney. Distributed receding hori-
zon control of vehicle platoons: Stability and string stability. IEEE
Transactions on Automatic Control, 57(3):620–633, 2012.

[150] J. M. Maestre and R. R. Negenborn. Distributed Model Predictive Control
Made Easy. Springer Netherlands, 1 edition, 2014.

[151] Hong Cui and Elling W. Jacobsen. Performance limitations in decentral-
ized control. Journal of Process Control, 12(4):485–494, jun 2002.



238 BIBLIOGRAPHY

[152] Levent Acar. Some examples for the decentralized receding horizon
control. In Proceedings of the 31st Conference on Decision and Control,
pages 1356–1359, Tucson, AZ, 1992. IEEE.

[153] Eduardo Camponogara, Dong Jia, Bruce H. Krogh, and Sarosh Talukdar.
Distributed model predictive control. IEEE Control Systems Magazine,
22(1):44–52, 2002.

[154] Xu Cheng and Bruce H. Krogh. Stability-constrained model predictive
control. IEEE Transactions on Automatic Control, 46(11):1816–1820,
2001.

[155] L. Magni and R. Scattolini. Stabilizing decentralized model predictive
control of nonlinear systems. Automatica, 42(7):1231–1236, jul 2006.

[156] Simone Loureiro de Oliveira and Manfred Morari. Contractive model
predictive control for constrained nonlinear systems. IEEE Transactions
on Automatic Control, 45(6):1053–1071, 2000.

[157] D. M. Raimondo, L. Magni, and R. Scattolini. Decentralized MPC of
nonlinear systems: An input-to-state stability approach. International
Journal of Robust and Nonlinear Control, 17(17):1651–1667, nov 2007.

[158] Aswin N. Venkat, James B. Rawlings, and Stephen J. Wright. Stability
and optimality of distributed model predictive control. In Proceedings
of the 44th IEEE Conference on Decision and Control, pages 6680–6685,
Seville, 2005. IEEE.

[159] Aswin N. Venkat, James B. Rawlings, and Stephen J. Wright. Imple-
mentable distributed model predictive control with guaranteed perfor-
mance properties. In Proceedings of the 2006 American Control Confer-
ence, pages 613–618, Minneapolis, MN, 2006. IEEE.

[160] Reinhard Neck and Engelbert Dockner. Conflict and cooperation in
a model of stabilization policies. Journal of Economic Dynamics and
Control, 11(2):153–158, 1987.

[161] Tamer Başar. Asynchronous algorithms in non-cooperative games. Jour-
nal of Economic Dynamics and Control, 12(1):167–172, 1988.

[162] Joel E. Cohen. Cooperation and self-interest: Pareto-inefficiency of Nash
equilibria in finite random games. Proceedings of the National Academy
of Sciences of the United States of America, 95(17):9724–9731, 1998.



BIBLIOGRAPHY 239

[163] J. M. Maestre, D. Muñoz De La Peña, and E. F. Camacho. A Distributed
MPC scheme with Low Communication Requirements. In Proceedings of
the 2009 American Control Conference, pages 2797–2802, St. Louis, MO,
2009. IEEE.

[164] J. M. Maestre, David Muñoz de la Peña, and E. F. Camacho. Distributed
model predictive control based on a cooperative game. Optimal Control
Applications and Methods, 32(2):153–176, 2011.

[165] J. M. Maestre, D. Muñoz de la Peña, E. F. Camacho, and T. Alamo.
Distributed model predictive control based on agent negotiation. Journal
of Process Control, 21(5):685–697, 2011.

[166] Brett T. Stewart, Aswin N. Venkat, James B. Rawlings, Stephen J. Wright,
and Gabriele Pannocchia. Cooperative distributed model predictive
control. Systems & Control Letters, 59(8):460–469, aug 2010.

[167] Brett T. Stewart, Stephen J. Wright, and James B. Rawlings. Cooperative
distributed model predictive control for nonlinear systems. Journal of
Process Control, 21(5):698–704, jun 2011.

[168] Jinfeng Liu, Xianzhong Chen, David Muñoz de la Peña, and Panagio-
tis D. Christofides. Sequential and iterative architectures for distributed
model predictive control of nonlinear process systems. AIChE Journal,
56(8):2137–2149, 2010.

[169] Christian Conte, Colin N. Jones, Manfred Morari, and Melanie N.
Zeilinger. Distributed synthesis and stability of cooperative distributed
model predictive control for linear systems. Automatica, 69:117–125,
2016.

[170] William B. Dunbar. Distributed Receding Horizon Control of Dynamically
Coupled Nonlinear Systems. IEEE Transactions on Automatic Control,
52(7):1249–1263, jul 2007.

[171] Paul Trodden and Arthur Richards. Distributed model predictive control
of linear systems with persistent disturbances. International Journal of
Control, 83(8):1653–1663, 2010.

[172] Paul Trodden and Arthur Richards. Cooperative distributed MPC of
linear systems with coupled constraints. Automatica, 49(2):479–487, feb
2013.



240 BIBLIOGRAPHY

[173] P. R. Baldivieso Monasterios and P. A. Trodden. Output feedback quasi-
distributed MPC for linear systems coupled via dynamics and constraints.
In Proceedings of the 2016 UKACC International Conference on Control,
Belfast, 2016.

[174] Marcello Farina, Giulio Betti, Luca Giulioni, and Riccardo Scattolini.
An Approach to Distributed Predictive Control for Tracking–Theory
and Applications. IEEE Transactions on Control Systems Technology,
22(4):1558–1566, 2014.

[175] Marcello Farina, Giulio Betti, and Riccardo Scattolini. Distributed
predictive control of continuous-time systems. Systems & Control Letters,
74:32–40, 2014.

[176] Sergio Lucia, Markus Kögel, and Rolf Findeisen. Contract-based Predic-
tive Control of Distributed Systems with Plug and Play Capabilities. In
IFAC-PapersOnLine, volume 48, pages 205–211. Elsevier B.V., 2015.

[177] Paul Trodden, P. R. Baldivieso Monasterios, and J. M. Maestre. Dis-
tributed MPC with Minimization of Mutual Disturbance Sets. In Proceed-
ings of the 2016 American Control Conference, pages 5193–5198, Boston,
MA, 2016. IEEE.

[178] Rolf Schneider. Convex Bodies: The Brunn–Minkowski Theory. Encyclo-
pedia of Mathematics and its Applications. Cambridge University Press,
2 edition, 2013.

[179] Petter Nilsson and Necmiye Ozay. Synthesis of separable controlled
invariant sets for modular local control design. In Proceedings of the 2016
American Control Conference, pages 5656–5663, Boston, MA, 2016.

[180] S. V. Raković and R. H. Gielen. Positively Invariant Families of Sets for
Interconnected and Time-Delay Discrete-Time Systems. SIAM Journal
on Control and Optimization, 52(4):2261–2283, 2014.

[181] Benjamin Kern and Rolf Findeisen. Analysis and Constrained Control of
Nonlinear Interconnected Systems exploiting Positively Invariant Family
of Sets. In Proceedings of the 52nd IEEE Conference on Decision and
Control, pages 3806–3811, Florence, 2013. IEEE.


	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Motivation
	Organization of this thesis
	Publications and presentations

	Tube Model Predictive Control for Linear Discrete Time Systems
	Introduction
	Constrained Linear Time Invariant Systems
	Tube Model Predictive Control
	Summary

	Tube-Based Adaptive Model Predictive Control with Persistence of Excitation
	Introduction
	RLS and persistence of excitation
	Tube-based MPC
	PE optimization
	Model Update
	Illustrative example
	Summary

	Robust MPC for switching systems: minimum dwell-time for feasible and stabilizing switching
	Introduction
	Switching linear systems
	Disturbance-free switching linear systems
	Disturbed switching linear systems: independent design
	Disturbed switching linear systems: coupled design
	Summary of MDTs
	Illustrative example
	Summary

	Distributed MPC for dynamically coupled systems: a chain of tubes
	Introduction
	Network of dynamically coupled linear systems
	Distributed MPC using a chain of tubes
	Design for feasibility and stability
	Stabilizability assumption
	Illustrative example
	Summary

	Concluding Remarks
	Summary and contributions
	Directions for future work

	Bibliography

