Observations of radicals in the atmosphere: measurement validation and model comparisons

Robert Woodward-Massey

Submitted in accordance with the requirements for the degree of
Doctor of Philosophy

The University of Leeds

School of Chemistry

September, 2018
Acknowledgements

I’d like to thank all the members of the FAGE group for their constant support, and for making this PhD a thoroughly enjoyable experience (for the most part…), in particular, Dwayne, Paul, Lisa and Trev. Special thanks of course to workshop staff, Mat and Phil, without whom I don’t think anything would have worked properly. Jack, you gave me a lot of motivation to see this through, and yeah cheers for the job mate. Thanks to the ICOZA and AIRPRO teams, with special mentions to Roberto and Archit.

Of course, none of this would be possible without my family, thanks for bearing with me and reminding me to not take things so seriously. Mum, Dad, Diane, Bacon, Patrick, Auntie Kathryn and the ‘Seels’, Grandma and Grandad Woodward, I can’t thank you enough. I think the same could be said of friends in Leeds, so to Dan, James, Laura, and Crinall in particular, nice one (and thanks for the sofas/beds and your general hospitality when I’ve been constantly crashing in Leeds).

Hans in Calgary, special thanks to you for starting this all off, and for my apprenticeship in IGOR.

This work is dedicated to my Mother, for her unwavering support in my education over three decades, and is in memory of my late Grandfather, Keith Massey.
Abstract

Comparisons of the levels of radicals observed during field campaigns to the results of detailed chemical box models serve as a vital tool to assess our understanding of the underlying chemical mechanisms involved in tropospheric oxidation. Recent measurements of OH radicals are significantly higher than those predicted by models in certain environments, especially those at low NO\textsubscript{x} influenced by high emissions of biogenic compounds. Other studies have suggested that fluorescence assay by gas expansion (FAGE) instruments may be susceptible to an unknown interference in the measurement of OH.

The interference hypothesis can be tested through the implementation of an alternative method to determine the OH background signal, whereby OH is removed by the addition of a chemical scavenger prior to sampling by FAGE (known as OHchem). The more established method to determine the background is to move the laser excitation wavelength to a value where OH does not absorb (OHwave). The Leeds FAGE instrument was modified to facilitate OHchem by the construction of an inlet pre-injector (IPI), where OH is removed through reaction with propane. Following optimisation, the modified instrument was deployed at a coastal location in Norfolk, England during summer 2015 as part of the ICOZA (Integrated Chemistry of OZone in the Atmosphere) campaign, and in the highly polluted megacity, Beijing, in winter 2016 and summer 2017 as part of the AIRPRO (An Integrated Study of AIR Pollution PROcesses in Beijing) project. An automated analysis procedure was written in IGOR to facilitate data workup and to provide quality assurance and control, ensuring valid comparisons of the two OH measurements, and between observed and simulated radical concentrations.

The IPI was characterised in terms of sensitivity (virtually identical to traditional FAGE sampling) and scavenging efficiency (>99% removal). For all three field campaigns, measurements of OH made using the alternative background technique were in very good agreement with the traditional method, with intercomparison slopes (OHwave vs OHchem) of 1.05–1.16, providing confidence in previous measurements of OH made using the Leeds FAGE instrument. However, a significant interference was observed at night during the ICOZA campaign, accounting for ~40% of the total OHwave signal on average, although the chemical identity of the species responsible could not be determined.
The ICOZA measurements were compared to radical levels predicted using the explicit Master Chemical Mechanism. For a model constrained to HO$_2$, OH concentrations were in agreement with FAGE observations to within instrumental uncertainty (~26%) during the daytime, for which the rate of OH production from the photolysis of HONO was equal to that from the reaction of O(1D) with water vapour. However, OH levels were underpredicted by approximately a factor of ~3 at night, which cannot be explained by OH measurement interferences alone. In contrast, HO$_2$ observations were overestimated by ~40% during the daytime and significant concentrations were also observed at night (~2–3 × 107 molecule cm$^{-3}$), which were underpredicted by up to an order of magnitude. The daytime HO$_2$ discrepancy was most severe at low NO levels, with measurement-to-model ratios of <0.5 for NO mixing ratios below 0.1 ppbv.

Total organic peroxy radical (RO$_2$) concentrations were also measured during ICOZA, representing one of the first few FAGE datasets of RO$_2$. Severe measurement-model discrepancies were found for both day and nighttime periods, with RO$_2$ concentrations underpredicted by a factor of ~9 on average. In contrast to HO$_2$, the model could capture daytime RO$_2$ observations reasonably well at low NO but the discrepancy was most severe in the high NO regime, reaching a factor of ~20 for NO levels above 3 ppbv. This result is consistent with previous studies and suggests that our understanding of atmospheric oxidation chemistry under high NO$_x$ conditions is incomplete.
Table of Contents

Acknowledgements .. i
Abstract .. ii
Table of Contents .. iv
List of Tables .. vi
List of Figures .. vii
List of Abbreviations .. xiv

1. Introduction ... 1
 1.1 Atmospheric Chemistry ... 1
 1.2 Photochemistry in the Troposphere ... 2
 1.2.1 Hydrogen Oxides (HOₓ) .. 3
 1.2.2 Other Oxidants ... 7
 1.3 Measurement of HOₓ using FAGE ... 10
 1.3.1 Overview ... 10
 1.3.2 Interferences .. 14
 1.3.3 Other OH, HO₂ and RO₂ Measurement Techniques .. 29
 1.3.4 Instrument Comparisons .. 31
 1.3.5 Utility of Measurements of OH for Chemical Mechanism Evaluation 33
 1.3.6 Measurement of OH Reactivity .. 35
 1.4 HOₓ Measurements and Model Comparisons .. 36
 1.4.1 Box Model Mechanisms .. 36
 1.4.2 HOₓ Measurement-Model Comparisons in Different Environments 38
 1.5 Summary .. 68
 1.6 Structure of Thesis ... 68
 1.7 References .. 69

2. Measurements of OH, HO₂, and RO₂ radicals: the Leeds ground-based FAGE instrument .. 97
 2.1 Overview of the Leeds Ground-Based FAGE Instrument 98
 2.1.1 Laser System ... 98
 2.1.2 Fluorescence Cells .. 99
 2.1.3 Photon Counting and Timing Control .. 103
 2.1.4 Reference Cell and Data Acquisition Cycle ... 105
 2.2 FAGE Calibration ... 108
 2.2.1 Radical Generation and Instrument Sensitivity .. 108
 2.2.2 Actinometry ... 115
5. The Integrated Chemistry of OZone in the Atmosphere (ICOZA) project: radical measurements and model comparisons ... 215

5.1 Introduction .. 215

5.1.1 Background to ICOZA ... 215

5.1.2 Instrumentation .. 219

5.1.3 FAGE Operating Parameters ... 219

5.1.4 Meteorological and Chemical Conditions .. 222

5.1.5 Model Descriptions .. 225

5.2 Results ... 228

5.2.1 Overview ... 228

5.2.2 OH – Dependence on J(O¹D) and Budget Analysis .. 238

5.2.3 Impact of Uncertainties in Relative IPI Sensitivities ... 241

5.2.4 Dependence of Measured and Modelled Radical Concentrations on NO 243

5.2.5 Ozone Production Rate ... 252

5.2.6 Case Study: Heatwave and High-Ozone Event (1st July) 256

5.3 Discussion .. 259

5.3.1 Comparison to TORCH 2 and other coastal campaigns 259

5.3.2 Underprediction of RO₂ under high-NOₓ conditions ... 261

5.4 Conclusions and Future Work ... 262

5.5 References .. 265

6. Conclusions and Future Work ... 276

Appendix – Custom IGOR Program for the Automated Analysis of ground FAGE Data .. 281

Overview ... 281

Calibration analysis ... 282

Ambient data workup .. 282

Additional analysis tools ... 286

List of Tables

Table 1.1: Summary of studies of ambient measurements of OH interferences, demonstrating the average contributions of the OH chemical background to the total OH signal. .. 16

Table 1.2. Summary of selected HOₓ measurement-model comparisons in remote marine and coastal environments. All measurements were made using the LIF technique. *Unless otherwise stated. ²ROx measured using PERCA. ... 39

Table 1.3. Summary of selected HOₓ measurement-model comparisons in low NOₓ, biogenic environments. NO and C₅H₈ mixing ratios given as mean, ranges or upper limits where appropriate. ³GABRIEL results correspond to concentrations measured in the boundary layer over the forest. ... 49
Table 1.4: Summary of selected HO\textsubscript{x} measurement-model comparisons in polluted, urban environments. All measurements were made using the LIF technique, and all campaigns were ground based except the RONOCO aircraft study... 59

Table 2.1. Comparison of median limits of detection (LOD, SNR = 2) and their contributing factors (equation (E2.17)) for the field campaigns featured in this work, and the preceding campaign, ClearfLo. LP = laser power; full units of C_{X}: counts s$^{-1}$ mW$^{-1}$ cm3 molecule$^{-1}$; data are only included for measurements with consistent integration times: 5 min online (4 min OH, 1 min HO\textsubscript{2}/RO\textsubscript{2}), 30 s offline. 122

Table 3.1. Relative sensitivities (IPI on/off, ± 2σ) for OH and HO\textsubscript{2} when sampling through the IPI. aHO\textsubscript{2} data considered unreliable due to problems regulating NO flow in this experiment. bNot quantitative, based on sequential sampling (see text for details). ... 140

Table 3.2. Internal removal of OH (% , ±2σ) as a function of propane mixing ratio in the IPI flow tube, determined as shown in Figure 3.12 (see text for details). ... 153

Table 3.3. Summary of interference tests with O\textsubscript{3} and isoprene (ISO) in the presence of propane (PROP), based on the data in Figure 3.13. aCorrected using equation (E3.5). bO\textsubscript{3} = 10 ppbv, ISO = 3.5 ppbv. 156

Table 4.1. Overall meteorological and chemical conditions encountered during each field campaign, including example VOCs. Values are given as the median of all points that coincide with IPI sampling periods, except for J(O1D) and O\textsubscript{3}, which are reported as diurnally-averaged maxima. 168

Table 4.2. Overall statistics of the comparison of OHwave and OHchem measurements (15 min) to the predictions of a steady-state model for the IPI sampling periods of the ICOZA campaign. The slopes, intercepts and correlation coefficients (R^{2}) correspond to the plot shown in Figure 4.16. MB = mean bias, NMB = normalised mean bias; RMSE = root-mean-square error. To help assess whether the IPI sampling periods were representative of the overall conditions encountered during ICOZA, the measurement-model agreement for the full campaign, including IPI sampling periods (using OHchem data), is also shown. 189

Table 4.3. Average contributions of FAGE background signals to the total OH measured during ambient air studies where a chemical modulation technique was employed, reproduced from Chapter 1.3.2.1 and updated with the field campaigns featured in this work. aNighttime OHwave:OHchem ratios of <1 suggest that the O\textsubscript{3}/H\textsubscript{2}O interference has been overestimated and thus the contribution of the background signal cannot be determined. ... 200

Table 5.1. List of species observed and their corresponding measurement techniques for the ICOZA campaign. For descriptions of simple and complex RO\textsubscript{2}, see Chapter 2.3. For some species (e.g., NO, NO\textsubscript{2}, HONO, HCHO) more than one measurement technique was available. .. 220

List of Figures

Figure 1.1. Simplified diagram of the HO\textsubscript{x} reaction cycle. Modified from Smith (2007). 3

Figure 1.2. Schematic diagram of a typical FAGE instrument for ground level measurements of OH and HO\textsubscript{2} radicals. Reproduced from Kanaya and Akimoto (2002). Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission. This permission does not include the right to grant others permission to photocopy or otherwise reproduce this material except for accessible versions made by non-profit organizations serving the blind, visually impaired and other persons with print disabilities (VIPs)... 11

Figure 1.3: Diurnal cycle of measured and modelled OH during BEARPEX-09, showing improved model agreement when using the chemical background method (black line). Taken from Mao et al. (2012). 18

Figure 1.4: Observation of a high OH background signal during the ozonolysis of propene (see text for details). Taken from Novelli et al. (2014a). ... 18

Figure 1.5. Linear correlation between OH interference signals and alkene turnover rates, using a FAGE cell with a long (aeroplane) inlet (see text for details). Abbreviations: var. = varied; prop. = propane; const. = constant; lim. = limonene. Taken from Fuchs et al. (2016). ... 22

Figure 1.6. Time series of trace gas and radical concentrations observed during an NO\textsubscript{3} interference test in the dark SAPHIR chamber, using a FAGE cell with a short (ground-based) inlet (see text for details). RO\textsubscript{x} cell (HO\textsubscript{2}); only CO added to flow tube; RO\textsubscript{b} cell (RO\textsubscript{b}); both CO and NO added to flow tube (see Chapter 2.1.2.2 for further details). UTC = Universal Time Coordinated. Taken from Fuchs et al. (2016). 22
Figure 1.7. Observed (yellow markers, ±2σ standard deviation) and modelled (lines and markers) OH (left) and HO₂ (right) concentrations during a six day period of the 2002 NAMBLEX campaign. The various model scenarios correspond to different levels of complexity (full oxy = constrained to OVOC measurements; io = constrained to halogen measurements; het_ho2 = ηHO2 increased from 0.006 (at 298 K) to the maximum theoretical value of 1; het_hoi = ηHOI decreased to from 0.6 (Wachsmuth et al., 2002) to 0.06 (Mössinger and Cox, 2001)). Taken from Sommariva et al. (2006). ...41

Figure 1.8. GEOS-Chem model simulation of OH concentrations in the lowest 300 m of the atmosphere for July 2005. Black circles show regions where OH is depleted due to high BVOC emissions. Taken from Edwards (2011). ...48

Figure 1.9. Observed to modelled ratio as a function of isoprene for measurements of OH made during the GABRIEL campaign in 2005. Taken from Kubistin et al. (2010). ...50

Figure 1.10. Schematic of the initial steps in the Leuven Isoprene Mechanism (1-OH addition), with calculated reaction rates and the energies (stabilities) of each species. Taken from Peeters et al. (2009). ...56

Figure 1.11. Median daytime rates of radical production and loss, in units of 10^6 molecule cm^-3 s^-1, for the 2006 MILAGRO campaign. The percentages shown in boxes represent the contribution of each process to the overall rate. Taken from Dusanter et al. (2009b). ..58

Figure 1.12. Mean ozone production rates calculated from observed (red circles) and MCM modelled (black circles) daytime (0600–1900) RO₂ concentrations as a function of NO during the summer 2012 ClearfLo campaign. Patterned areas represent the 25/75th percentiles. Bin widths are 1 and 5 ppbv for [NO] between 0–20 and 20–45 ppbv, respectively; lower graph shows the number of RO₂ measurements in each NO bin. Taken from Whalley et al. (2018). ..64

Figure 2.1. Schematic of the Leeds Atmospheric Research shipping container (not to scale), showing all key features. MFC = mass flow controller, PD = photodiode, MCP = micro-channel plate, GB = MCP gating box, Amp. = MCP signal amplifier, A/C = air conditioning. ...97

Figure 2.2. Schematic of the laser system used in the Leeds ground-based FAGE instrument. WP = half-wave plate, M = mirror, L = lens, SHG = second harmonic generation (LBO), THG = third harmonic generation (BBO), DWP = dual wavelength half/full-wave plate. Colour code: green – λ = 532 nm; red – broadband IR and λ = 924 nm; blue – λ = 308 nm. ...99

Figure 2.3. Top-down schematic of the fluorescence cells. Modified from a figure originally created by Dr. Shona Smith. ...100

Figure 2.4. Schematic of the HO₂ cell design. The flat turret inlet pictured has since been replaced with one with a similar but conical design, for use with a newly constructed inlet pre-injector (IPI) system (Chapter 3). Modified from Whalley et al. (2013). ...100

Figure 2.5. Schematic of the RO₂,LIF cell design. Taken from Whalley et al. (2013) ...102

Figure 2.6. Diagram of the timings of the MCP detector gain state (middle trace) and photon counting windows (bottom) relative to t₀ and the temporal position of the laser pulse (top) during one 200 μs duty cycle. For details see text, diagram not to scale. ...104

Figure 2.7. Time series of HO₂ (red line and circles, normalised to laser power) and reference cell (black line) signals during a calibration to illustrate the data acquisition cycle of the FAGE instrument. Areas of the figure are colour coded according to their position in the cycle (see text for details) ...106

Figure 2.8. Example OH calibration plot (see text for experimental details). Error bars are 1σ standard deviations (SD, error propagation described in Section 2.2.3), where x-errors represent the sum in quadrature of precision (i.e., lamp variability) and systematic uncertainty (from actinometry experiments, see Sections 2.2.2 and 2.2.3). Best fit line (black) obtained by orthogonal distance regression (ODR), grey shaded area represents the 1σ (68.3%) confidence interval (CI) bands. ...110

Figure 2.9. Example HO₂ calibration plot (see text for experimental details). Error bars are 1σ SD, where x-errors represent the sum in quadrature of precision and systematic uncertainty. Best fit line (black) obtained by ODR, grey shaded area represents the 1σ CI bands. ...110

Figure 2.10. Time series of the RO₂ cell signal during a calibration experiment (see text for details); the gas mixing ratios (brown and purple text) are those calculated in the RO₂,LIF flow tube. Top: no hydrocarbon added, only HO₂ is formed in the flow tube; the decrease in signal upon addition of NO is used to quantify the sensitivity ratio, A. Bottom: addition of a hydrocarbon (methane) results in 1:1 concentrations of HO₂ and CH₃O₂; SRO₂ is the signal due to CH₃O₂ only. ...112
Figure 2.11. Example HO$_2$* (HO$_2$ measured in RO$_x$LIF cell) calibration plot (see text for experimental details). Error bars are 1σ SD, where x-errors represent the sum in quadrature of precision and systematic uncertainty. Best fit line (black) obtained by ODR, grey shaded area represents the 1σ CI bands. 114

Figure 2.12. Example RO$_x$ calibration plot, using methane to generate methylperoxy (CH$_3$O$_2$) radicals (see text for experimental details). Error bars are 1σ SD, where x-errors represent the sum in quadrature of precision and systematic uncertainty. Best fit line (black) obtained by ODR, grey shaded area represents the 1σ CI bands .. 114

Figure 2.13. Typical MFC calibration plot (N$_2$ gas, 0–5 slm). Best fit line obtained using a least squares fit (errors at 1σ). .. 116

Figure 2.14. NO$_x$ instrument calibration at ~5.5% N$_2$O. Best fit line obtained using a least squares fit (errors are 1σ SD). .. 116

Figure 2.15. Thermo 42C instrument sensitivity to NO as a function of N$_2$O mixing ratio. Best fit line (black) obtained using a least squares fit, grey shaded area represents the 1σ CI bands. 118

Figure 2.16. Lamp flux as a function of lamp current. Error bars are 1σ and represent: y – uncertainty combined from the sum in quadrature of NO variability (~14%), and errors in rate constants (total ~20%); C$_{NO}$ (–6%) and the concentration of the NO standard (~4%); x – variability in lamp current (~4%). Best fit line (black) obtained by ODR (errors at 1σ), grey shaded area represents the 1σ CI bands. 118

Figure 2.17. Comparison of lamp flux gradients (±σ) and C$_{NO}$ obtained during N$_2$O actinometry experiments for the same lamp over the last four years. Median flux gradient = 9.0 × 10$^{-2}$, mean (pink dashed line) ± 2σ = (9.4 ± 5.4) × 10$^{-2}$ photons cm$^{-2}$ s$^{-1}$ m$^{-1}$ (~60% relative error). The lilac dashed line denotes the NO sensitivity derived from an NO standard cylinder supplied by the University of York during the July 2015 ICOZA field campaign (Chapters 4 and 5). Some experiments performed by Dr. Lisa Whalley (Sep-14, Jul-16, Aug-16), Graham Boustead (Nov-16) and Eloise Slater (Oct-17). 120

Figure 2.18. Mechanisms for the fast formation of HO$_2$ from alkene-derived (ethene, top) and ≥C$_2$ alkane-derived (n-butane, bottom) RO$_x$ in the presence of NO. Despite the low O$_2$ pressure (~1.5 Torr), the reactions proceed swiftly enough such that HO$_2$, and hence OH, formation occurs. Consequently, these organic peroxy radical types cause interferences in the FAGE detection of HO$_2$. 125

Figure 2.19. Example of ambient data workup, with measurements made during the ICOZA campaign on 1st July 2015: (A) Time series of raw 1 s HO$_x$ (top panel) and RO$_x$ (bottom panel) signals over two measurement cycles (~6 min), with the various signals denoted by arrows; (B) 3 h time series of J(O1D) (Section 2.6) and FAGE observations of radical species (units – all molecule cm$^{-3}$), error bars are 2σ and correspond to the sum in quadrature of accuracy (26%) and the propagated standard errors (SE, error propagation described in Section 2.2.3) for each measurement cycle (not shown for HO$_2^*$ and total RO$_x$ for clarity). UTC = Universal Time Coordinated. .. 127

Figure 2.20. Demonstration of the methyl peroxy nitric acid (MPNA, CH$_3$O$_2$NO$_2$) interference in measurements of simple RO$_x$ using median hourly diurnal profiles from the ICOZA campaign. Left axis: concentrations of measured simple RO$_x$ (sRO$_x$), MPNA calculated from [sRO$_x$] using equation (E2.21), and sRO$_x$ after the MPNA correction has been applied. Right axis: estimated fractional contribution of MPNA to the total sRO$_x$ signal. .. 128

Figure 2.21. Schematic of the laser flash photolysis-LIF instrument for the measurement of total OH reactivity (k'OH). Taken from Stone et al. (2016). .. 130

Figure 3.1. Labelled SolidWorks model of the Leeds IPI (provided by Dr. Trevor Ingham). The scavenger is injected into the centre of the PFA flow tube via four 0.25 mm ID needles. The thick yellow arrows indicate the direction of the sheath flow. .. 137

Figure 3.2. Side (A) and top (B) view photographs of the IPI system, mounted on the HO$_x$ fluorescence cell. .. 138

Figure 3.3. Diagram of the gas flows involved in IPI scavenger injection (not to scale). The two mass flow controllers (MFCs) are housed in the roof box (see Figure 2.1), where the scavenger MFC (0–50 sccm) and injection valve (in a weatherproof housing on top of the roof box) are controlled using the main FAGE PC situated in the container laboratory. .. 139
Figure 3.4. Determination of IPI OH losses from ambient measurements: comparison of OH concentrations measured using two adjacent fluorescence cells configured in HO$_2$ mode, where the IPI was mounted on cell 1 (y-axis). Errors are 2σ and correspond to the sum of precision (standard error, SE) and systematic uncertainty (26%). Fit (solid blue line, error at 2σ) obtained by orthogonal distance regression (ODR), blue shaded area represents the 95% confidence interval (CI) bands. The 1:1 line of agreement is also shown (dotted red line) for comparison. ... 141

Figure 3.5. Example OH multi-point calibration when sampling through the IPI. Error bars (1σ): vertical – propagated error in signal differential; horizontal – systematic uncertainty in radical concentrations from actinometry (13%), plus lamp variability. The solid line and grey shaded area represent the ODR fit to the data, and the 68% CI of the fit, respectively. cps = counts per second. ... 143

Figure 3.6. Example HO$_2$ multi-point calibration when sampling through the IPI. Error bars (1σ): vertical – propagated error in signal differential; horizontal – systematic uncertainty in radical concentrations from actinometry (13%), plus lamp variability. The solid line and grey shaded area represent the ODR fit to the data, and the 68% CI of the fit, respectively. ... 143

Figure 3.7. Results of repeat OH (A) and HO$_2$ (B) calibrations when sampling with the IPI off and on. Error bars represent the 2σ uncertainty in the ODR fits to individual multi-point calibrations. Error-weighted averages of equivalent sensitivities are shown as dashed lines and given in the captions along with their respective 2σ uncertainties. ... 144

Figure 3.8. Time series of OH concentrations for a day of sequential IPI/non-IPI sampling during the summer 2017 AIRPRO campaign (data collected and figure provided by Dr. Lisa Whalley and Eloise Slater). If a 40% reduction in sensitivity is applied to C$_{OH}$ for the IPI sampling periods (red line), OH concentrations are much higher than those observed during adjacent conventional sampling periods (light blue line). If no correction is applied to the IPI data (dark blue line), the two datasets exhibit improved agreement. ... 149

Figure 3.9. Proportion of the OH signal remaining after addition of increasing concentrations of propane and C$_3$F$_8$ scavengers to the IPI flow tube, converted to equivalent OH reactivities (k'(OH)) to account for the different rate constants for the reaction of each scavenger with OH. Error bars denote the 2σ standard deviation of repeat experiments. The blue curve corresponds to the theoretical scavenging efficiency assuming perfect mixing, using the estimated residence time, $\tau \sim 20$ ms. ... 149

Figure 3.10. OH signal spike due to pressure build-up following scavenger injection. Yellow shaded area corresponds to period of propane addition, note log scale. ... 150

Figure 3.11. Improvement in time response of scavenger injection following optimisation of relative MFC and solenoid valve switching times. Yellow shaded area corresponds to injection of propane, note log scale. ... 150

Figure 3.12. Time series of the LIF signal during an internal removal experiment, expressed as equivalent OH concentrations. The raw 1 s data is given by the grey line. Points where various gases are added to the wand (CO), IPI flow tube (propane) and FAGE cell (NO) are indicated by the shaded panels, with the corresponding signal averages (±2σ) shown as markers (see text for details). The inset shows more clearly the loss of atmospheric OH (note log scale) after addition of propane, which is not observed for internal OH. ... 153

Figure 3.13. OH interference testing examples: (A) O$_3$/H$_2$O only, (B) O$_3$ and isoprene (ISO) under dry conditions, (C) O$_3$ and isoprene with H$_2$O added, and (D) O$_3$ and isoprene under dry conditions, but with a higher concentration of propane (PROP) to remove any steady-state generated OH. Shaded areas are periods of propane addition, and the light blue lines correspond to the calculated signals from O$_3$/H$_2$O only (for experiments with isoprene present). The interference signals ("OH #2" – "offline") were used to derive equivalent OH concentrations (OH$_{eq}$), which are on the order of \sim1–2 x 104 molecule cm$^{-3}$. ... 157

Figure 4.1. Location (pink dot) of the WAO site and clustered four day back-trajectories for the entire duration of the ICOZA campaign (1st–25th July 2015, 3 h intervals), showing the dominant air mass types. Blue – Local European air; brown – North Sea air; red – Atlantic air. Modified from Cryer (2016). 169

Figure 4.2. Time series of OHwave, OHchem and their difference, the calculated OH interference from O$_3$/H$_2$O (subtracted from OHwave) and J(O' D) during the first (top panel) and second (bottom panel) IPI sampling periods of the ICOZA campaign. Blue, black and pink markers represent raw data (4 min), while hourly average OH data are shown by the solid blue and black lines, and four-hourly differences (±2 SE) by the red markers. UTC = Universal Time Coordinated (= GMT = BST – 1). ... 172
Figure 4.3. Statistical distribution of the (OHwave – OHchem) differences during ICOZA visualised using: (A) a box plot, showing the 10th, 25th, 50th (median), 75th and 90th percentiles, and the mean (blue circle); and (B) a histogram, with 48 bins of width 2.5 × 10^3 molecule cm^{-3}, a four-point binomial smooth (blue line, FWHM ~ 2 × 10^3 molecule cm^{-3}), and the box plot from (A) superimposed. 174

Figure 4.4. Overall intercomparison of OHwave and OHchem observations from the ICOZA campaign. Grey markers represent raw data, with 1 h averages (±2 SE) in red. The thick red line is the orthogonal distance regression (ODR) fit to the hourly data, with its 95% CI bands given by the thin red lines; fit errors given at the 2σ level. For comparison, 1:1 agreement is denoted by the blue dashed line. 175

Figure 4.5. ICOZA OHwave binned over 11 OHchem bins of width 1 × 10^5 molecule cm^{-3}, with a least squares fit to the medians (grey line, fit errors at 2σ). The number of points in each bin is shown in the lower panel (note, log scale). .. 176

Figure 4.6. Hourly median diurnal profiles of OHwave, OHchem, PSS model-predicted OH (Section 4.1.6) and J(O{\dagger}) (right axis) during ICOZA. The variability (interquartile range, IQR) in OHchem measurements is denoted by the grey dashed lines, not shown for others for clarity. 177

Figure 4.7. Three-hourly median diurnal profiles of OHwave and OHchem, generated from 1 h average data. The variability (IQR) in OHchem measurements is denoted by the grey dashed lines, not shown for OHwave for clarity. .. 177

Figure 4.8. Three-hourly median diurnal profile of the (OHwave – OHchem) difference (red line and markers) and its variability (red dashed lines) during ICOZA. Individual 1 h differences are shown by the grey markers. For comparison, the estimated campaign-median 1 h LOD is given by the thick blue line. The difference calculated from the diurnal profiles in Figure 4.7 is also shown (purple line and markers). .. 179

Figure 4.9. Three-hourly median diurnal profile of the relative contribution of interferences to the total signal, i.e., (OHwave – OHchem)/OHwave, obtained from the diurnal profiles in Figure 4.7. 179

Figure 4.10. ICOZA OHwave (mean, median, 10–90th percentiles) and OHchem (median only for clarity, green circles) binned over eight J(O{\dagger}) bins of width 3 × 10^6 s^{-1}. The number of points in each bin is shown in the lower panel. ... 181

Figure 4.11. ICOZA OHwave and OHchem binned against NO, using eight natural log bins of width ∆ln(NO/ppmv) = 0.5. The ratio of the two medians (OHwave/OHchem) is shown in the middle panel. 182

Figure 4.12. ICOZA OHwave and OHchem binned over six k{VOC} (= measured k{\textsubscript{OH}} − k{\textsubscript{NOx}} − k{\textsubscript{CO}} − k{\textsubscript{O{\dagger}}}) bins of width 1 s^{-1} ... 184

Figure 4.13. ICOZA OHwave and OHchem binned over six temperature bins of width 2 °C. 184

Figure 4.14. ICOZA OHwave and OHchem binned over ten ozone bins of width 5 ppbv. 187

Figure 4.15. ICOZA OHwave and OHchem binned over eight 45° wind sectors (radial concentration units: molecule cm^{-3}) ... 187

Figure 4.16. Measurement-model comparison of 15 min OHwave (blue circles) and OHchem (black squares) for IPI sampling periods during ICOZA. The least squares fits (errors at 2σ) are given by the solid lines, with 1:1 agreement denoted by the red dashed line. ... 189

Figure 4.17. ICOZA background OH (OHwave – OHchem) binned against the absolute PSS underprediction of OH (OHwave – sSOH), using eight natural log bins of width ∆ln(OH/cm^{-3}) = 1. The red dashed line corresponds to the scenario in which the model underprediction of OH can be explained entirely (i.e., 1:1) by measurement interferences. ... 191

Figure 4.18. Three-hourly median diurnal profiles of the OHwave and OHchem measurement-to-model ratios, calculated from OHwave, OHchem, and PSS model diurnals (averaged to 3 h). The red dashed line corresponds to agreement within a tolerance of +50%, i.e. the estimated combined measurement-model uncertainty. ... 191

Figure 4.19. Time series of OHwave, OHchem and their difference, the calculated OH interference from O_3/H_2O (subtracted from OHwave) and J(O{\dagger}) during the IPI sampling period of the winter 2016 AIRPRO campaign. Blue, black and pink markers represent raw data (4 min), while hourly average OH data are shown by the solid blue and black lines, and four-hourly differences (±2 SE) by the red markers. CST = China Standard Time (± UTC + 8) ... 196
Figure 4.20. Overall intercomparison of OHwave and OHchem observations from the winter 2016 AIRPRO campaign. Grey markers represent raw data, with 1 h averages (±2 SE) in red. The thick red line is the ODR fit to the hourly data, with its 95% CI bands given by the thin red lines; fit errors given at the 2σ level. For comparison, 1:1 agreement is denoted by the blue dashed line. ...197

Figure 4.21. Hourly median diurnal profiles of OHwave, OHchem and J(O1D) (right axis) during the winter 2016 AIRPRO campaign. The variability (IQR) in OHchem measurements is denoted by the grey dashed lines, not shown for OHwave for clarity. The single red marker corresponds to the mean (±2 SD) difference between OHwave and OHchem (calculated from diurnally-averaged hourly differences) of (-0.6 ± 3.5) x 10^3 molecule cm^-3. ...197

Figure 4.22. Overall intercomparison of OHwave and OHchem observations from the summer 2017 AIRPRO campaign. Grey markers represent raw data, with 1 h averages (±2 SE) in red. The thick red line is the ODR fit to the hourly data, with its 95% CI bands given by the thin red lines; fit errors given at the 2σ level. For comparison, 1:1 agreement is denoted by the blue dashed line. Data provided by Dr. Lisa Whalley and Eloise Slater...217

Figure 5.1. Isopleths of P(O2) (ppb h^-1) as a function of VOC (ppbC = ppb x carbon number) and NOx (ppbv) concentrations. The dashed blue line corresponds to the transition between NOx-base (region below the line) and VOC-limited (above the line) regimes, and the black arrows show typical changes in the VOC and NOx levels in an urban air mass as it undergoes photochemical aging. Adapted from Sillman (1999). ...217

Figure 5.2. Photograph from the top of the Leeds container, looking east towards Weybourne beach with approximate position of Weybourne village indicated. Annotations show positions of the FAGE and OH reactivity inlets, as well as the positions of spectral and filter radiometers and the WAO building. 221

Figure 5.3. Time series of meteorological parameters (wind speed and direction, temperature, RH, photolysis frequencies) and trace gases (NO, NO2, CO, O3, HONO) measured during ICOZA (29th June – 23rd July 2015). Leeds HCHO and OH reactivity measurements (Dr. D. R. Cryer) are also shown, including the reactivity from VOCs only (VOC kOH, obtained by subtraction of inorganic loss rates, see text for details). All data presented are 15 min averages. UTC = Universal Time Coordinated..223

Figure 5.4. Time series of 15 min FAGE radical observations and corresponding model predictions during ICOZA: top panel – OH (blue circles), middle – HO2 (red squares), lower – total RO2 (green triangles). Inlet pre-injector (IPI, OHchem) sampling times are denoted by the grey shaded areas. MCM-base model results (modelling conducted by Dr. Roberto Sommariva, University of Birmingham) are shown by the black lines. The orange markers in the top panel correspond to photostationary steady-state (PSS) predicted OH concentrations. Error bars omitted for clarity. ...229

Figure 5.5. Overall measurement-model comparisons: (A) OH vs MCM-base, (B) OH vs PSS, (C) HO2 vs MCM-base, and (D) total RO2 vs MCM-base. The insets give the slope (m), intercept (c), and correlation coefficient (R^2) for the least squares linear fits (black lines), with errors at 2σ, along with the model mean bias (MB) and normalised mean bias (NMB) for each species (defined in Chapter 4.1.6). Blue dashed lines correspond to 1:1 agreement, with ±50% limits given by the blue shaded areas. In panel (D), the green dotted line was obtained from a least squares fit with the intercept fixed to zero. ...231

Figure 5.6. Hourly median diurnal profiles of observed and modelled radical concentrations (left) and supporting measurements (right), averaged for overlapping periods. For radicals, the different models (PSS, MCM-base, MCM-carb, and MCM-hox, see text for details) are distinguished by colour (see legends); measurement-to-model ratios, obtained from the ratios of each pair of diurnal profiles, are shown in the lower panel of each graph on a log scale (some negative values missing). Shaded areas (J(HONO); dashed lines) correspond to day-to-day variability (interquartile range, IQR), omitted for model results for clarity. ..234

Figure 5.7. Hourly median diurnal profiles of simple (left, defined in Chapter 2.3) and complex RO2 radicals (right) and comparison to model results (black lines) for overlapping periods. Measurement-to-model ratios are given by the solid lines in the lower panels of each graph (log scale), where the dashed lines show the average ratios. Shaded areas correspond to day-to-day variability (IQR). ..237

Figure 5.8. Hourly median diurnal profiles of the measured and modelled complex RO2 fraction (fcomplex = cRO2 / total RO2) for overlapping periods. The shaded area corresponds to the day-to-day variability (IQR). ...238

Figure 5.9. Correlation of measured (left), base-modelled (middle), and PSS-predicted OH (right) with J(O1D), where the solid lines show least squares linear fits to the data..239
Figure 5.10. Hourly median diurnal profiles of PSS OH production (P_{OH}, calculated from measured quantities only) and observed OH destruction ($D_{OH} = [OH] \times k_{OH}$) rates on linear (left) and log scales (right) for overlapping periods (number of points, $N = 1257$). The different production terms are distinguished by colour, and error bars (2σ) are only shown for measurements ($\pm 26\%$) for clarity. 240

Figure 5.11. Diurnal profiles of the balance of OH production and loss ($D_{OH} - P_{OH}$, left) and the corresponding ratio (D_{OH} / P_{OH}, right) calculated from the data in Figure 5.10 ($N = 1257$). Errors (2σ) were obtained from the sum in quadrature of measurement ($\pm 26\%$) and model uncertainty ($\pm 40\%$). 240

Figure 5.12. Comparison of OH (top) and HO$_2$ (bottom) observations to MCM-base model predictions using original ($C_{OH, IPI} / C_{OH} = C_{OH2, IPI} / C_{OH2} = 1$) and lower limit ($C_{OH, IPI} / C_{OH} = 0.6$ and $C_{OH2, IPI} / C_{OH2} = 0.79$) IPI calibration factors, shown as hourly median diurnal profiles. 242

Figure 5.13. Measured OH (mean, median 10–90th percentiles), MCM-base modelled OH (median only, green circles), and PSS predicted OH (median only, orange crosses) binned against NO for daytime (i.e., $J(O^1D) > 5 \times 10^{-7}$ s$^{-1}$) overlapping points (15 min data, $N = 650$), using seven natural log bins of width $\Delta \log$ NO/ppbv = 1.0. The number of points in each bin (left axis, log scale) is shown in the lower panel, along with the ratios of the medians (i.e., measurement-to-model ratios, right axis): solid red line and circles – relative to MCM-base, orange dashed line and crosses – relative to PSS. 244

Figure 5.14. Measured, MCM-base (green circles), and MCM-carb (purple crosses) HO$_2$ as a function of NO for daytime overlapping points ($N = 383$). Median measurement-to-model ratios are shown in the lower panel: solid red line and circles – relative to MCM-base, purple dashed line and crosses – relative to MCM-carb. 244

Figure 5.15. Measured, MCM-base, and MCM-carb HO$_2$-to-OH ratio as a function of NO for daytime overlapping points ($N = 341$). Median measurement-to-model ratios are shown in the lower panel. Colours are analogous to those used in Figure 5.14. 245

Figure 5.16. Measured and MCM-base (green circles) simple RO$_2$ (sRO$_2$) as a function of NO for daytime overlapping points ($N = 207$). sRO$_2$ measurements corrected for the interference from MPNA (methyl peroxy nitric acid, see Chapter 2.3.1) are also shown (gold squares). Median measurement-to-model ratios are shown in the lower panel: solid red line and circles – uncorrected sRO$_2$ measurements, gold dashed line and squares – MPNA-corrected sRO$_2$. 247

Figure 5.17. Measured and MCM-base (green circles) complex RO$_2$ (cRO$_2$) as a function of NO for daytime overlapping points ($N = 207$). The median measurement-to-model ratio is shown in the lower panel. 247

Figure 5.18. Measured and MCM-base (green circles) total peroxy radicals (i.e., ΣRO$_2$ + HO$_2$) as a function of NO for daytime overlapping points ($N = 229$). Median measurement-to-model ratios are shown in the lower panel: solid red line and circles – uncorrected measurements, gold dashed line and squares – MPNA-corrected (RO$_2$ + HO$_2$). 249

Figure 5.19. Expanded view of the RO$_2$ median measurement-to-model ratios presented in Figures 5.16, 5.17, and 5.18, visualised in log-log space to highlight that significant discrepancies persist at low-to-moderate NO levels (i.e., the ~0.05–0.50 ppbv range). The NO bin ranges are denoted by the vertical grey lines. 249

Figure 5.20. Median observed concentrations ($\pm 26\%$) and measurement-to-model ratios for OH, HO$_2$ (one negative ratio missing), and total RO$_2$ (with correction for the MPNA interference) as a function of NO during nighttime (i.e., $J(O^1D) < 5 \times 10^{-7}$ s$^{-1}$). 252

Figure 5.21. Hourly median diurnal profiles of the net ozone production rate, $P(O_3)$, calculated from measured (blue line and diamonds) and modelled peroxy radicals for overlapping periods ($N = 552$). The measurement-to-model ratio is given by the grey circles in the lower panel (log scale), where the solid black line is a third-order polynomial fit to guide the eye only. The shaded area corresponds to the day-to-day variability (IQR). 253

Figure 5.22. $P(O_3)$ calculated from measured and MCM-base peroxy radicals (green circles) as a function of NO for daytime overlapping points ($N = 239$). The inset shows the behaviour of the model more clearly. The median measurement-to-model ratio is shown in the lower panel. 253

Figure 5.23. Natural logarithm of the gross ozone production rate ($\ln(P(O_3))$, i.e., O$_3$ loss not subtracted) calculated from measured (blue diamonds) and MCM-base peroxy radicals (grey circles) vs ln(NO/ppbv). Least squares fits to the data are denoted by the solid lines, with fit coefficients ($\pm 2\sigma$) shown in the insets. For comparison, the analogous trend (solid red line) in $P(O_3)$ calculated from PERCA ΣRO$_2$ + HO$_2$ measurements made during a previous campaign at the WAO in September 2002 is also given (Fleming et al., 2006). 256
Figure 5.24. Case study of the heatwave and high-ozone event that occurred on 1st July 2015: (A)-(C) FAGE radical observations and model results, (D) $P(O_3)$ calculated from FAGE-measured and model-predicted HO$_2$ and RO$_2$ concentrations, and (E) temperature, VOC $k'$$_{OH}$ (note ×2, obtained by subtraction of inorganic loss rates, see text for details), and NO (right axis). Also shown in panel (D) is the integrated ozone production (06:00–18:00 UTC) calculated from FAGE observations, along with measured ozone mixing ratios (right axis). Colours are analogous to those used in Figures 5.3 and 5.4. In panel (C), the measured contributions from complex and simple RO$_2$ radicals are shown by the red and green shaded areas, respectively, but only modelled total RO$_2$ is shown for clarity. Error bars (2σ) in panels (A)-(C) include both accuracy (26%) and precision (15 min standard error, SE) terms; errors in $P(O_3)$ were estimated at 40%.

List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRLESS</td>
<td>Effects of air pollution on cardiopulmonary disease in urban & peri-urban residents in Beijing</td>
</tr>
<tr>
<td>AIRPOLL-Beijing</td>
<td>Sources and emissions of air pollutants in Beijing</td>
</tr>
<tr>
<td>AIRPRO</td>
<td>an integrated study of AIR pollution PROcesses in Beijing</td>
</tr>
<tr>
<td>AMAZE</td>
<td>Amazonian Aerosol Characterisation Experiment</td>
</tr>
<tr>
<td>APHH China</td>
<td>Atmospheric Pollution and Human Health in a Chinese Megacity</td>
</tr>
<tr>
<td>APIC-ESTEE</td>
<td>Air pollution impacts on cardiopulmonary disease in Beijing: An integrated study of exposure science, toxicogenomics & environmental epidemiology</td>
</tr>
<tr>
<td>ARCTAS</td>
<td>Arctic Research of the Composition of the Troposphere from Aircraft and Satellites</td>
</tr>
<tr>
<td>ATHOS</td>
<td>Airborne Tropospheric Hydroxides Sensor</td>
</tr>
<tr>
<td>AVOC</td>
<td>Anthropogenic Volatile Organic Compound</td>
</tr>
<tr>
<td>BBCEAS</td>
<td>Broadband Cavity-Enhanced Absorption Spectroscopy</td>
</tr>
<tr>
<td>BBO</td>
<td>β-barium borate</td>
</tr>
<tr>
<td>BEARPEX</td>
<td>Biosphere Effects on AeRosols and Photochemistry Experiment</td>
</tr>
<tr>
<td>BEST-ONE</td>
<td>Beijing winter finE particle STudy – Oxidation Nucleation and light Extincctions</td>
</tr>
<tr>
<td>BVOC</td>
<td>Biogenic Volatile Organic Compound</td>
</tr>
<tr>
<td>CalNex-LA</td>
<td>California Research at the Nexus of Air Quality and Climate Change – Los Angeles</td>
</tr>
<tr>
<td>CalNex-SJV</td>
<td>California Research at the Nexus of Air Quality and Climate Change – San Joaquin Valley</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence Interval</td>
</tr>
<tr>
<td>CI</td>
<td>Criegee Intermediate</td>
</tr>
<tr>
<td>CIMS</td>
<td>Chemical Ionisation Mass Spectrometry</td>
</tr>
<tr>
<td>ClearfLo</td>
<td>Clean air for London</td>
</tr>
<tr>
<td>COBRA</td>
<td>Combined iodine and BRomine release on the Arctic atmosphere</td>
</tr>
<tr>
<td>COMEAP</td>
<td>Committee on the Medical Effects of Air Pollutants</td>
</tr>
<tr>
<td>CPM</td>
<td>Channel Photomultiplier</td>
</tr>
<tr>
<td>CRDS</td>
<td>Cavity Ring Down Spectroscopy</td>
</tr>
<tr>
<td>cRO2</td>
<td>"complex" RO2</td>
</tr>
<tr>
<td>CVAO</td>
<td>Cape Verde Atmospheric Observatory</td>
</tr>
<tr>
<td>CYPHEX</td>
<td>CYprus PHotochemistry EXperiment</td>
</tr>
<tr>
<td>DFT</td>
<td>Density Functional Theory</td>
</tr>
<tr>
<td>DMS</td>
<td>Dimethylsulfide</td>
</tr>
<tr>
<td>DOAS</td>
<td>Differential Optical Absorption Spectroscopy</td>
</tr>
<tr>
<td>DOMINO</td>
<td>Diel Oxidants Mechanisms In relation to Nitrogen Oxides</td>
</tr>
</tbody>
</table>
DSMACC Dynamically Simple Model of Atmospheric Chemical Complexity
EUPHORE EUropean PHOtoREactor
FAGE Fluorescence Assay by Gas Expansion
FIXCIT Focused Isoprene eXperiment at the California Institute of Technology
FWHM Full Width at Half Maximum
FZJ Forschungszentrum Julich
GABRIEL Guyanas Atmosphere Biosphere exchange and Radicals Intensive Experiment with the Learjet
GAW Global Atmospheric Watch
GCxGC two-dimensional Gas Chromatography
GEOS-Chem Gooddard Earth Observing System (Chemical transport model)
GHG Greenhouse Gas
GTHOS Ground-based Tropospheric Hydrogen Oxides Sensor
HCCT Hill Cap Cloud Thuringia
HIRAC Highly Instrumented Reactor for Atmospheric Chemistry
HOOVER HOx Over EuRope
HOPE Hohenpeissenberg Photochemistry Experiment
HORUS HydrOxyl Radical measurement Unit based on fluorescence Spectroscopy
HPALDs Hydroperoxy-aldehydes
HUMPPA-COPEC Hytt"ai" United Measurements of Photochemistry and Particles in Air-Comprehensive Organic Precursor Emission and Concentration study
IAP Institute of Atmospheric Physics
ICOZA Integrated Chemistry of OZone in the Atmosphere
IDR Interdecile Range
INHANCE Integrated assessment of the emission-health-socioeconomics nexus & air pollution mitigation solutions & interventions in Beijing
INTEX Intercontinental Chemical Transport Experiment
IPCC Intergovernmental Panel on Climate Change
IPI Inlet Pre-Injector
IQR Interquartile Range
ISOPO$_2$ Isoprene-peroxy radical
ISOPOOH Isoprene-hydroxyhydroperoxides
LaRC Langley Research Center
LBO lithium triborate
LIF Laser-Induced Fluorescence
LIM Leuven Isoprene Mechanism
LOD Limit Of Detection
MACR Methacrolein
MBL Marine Boundary Layer
MBO 2-methyl-3-buten-2-ol
MCM Master Chemical Mechanism
MCMA Mexico City Metropolitan Area
MCP Microchannel Plate
MECCA Module Efficiently Calculating the Chemistry of the Atmosphere
MFC Mass Flow Controller
MIESR Matrix Isolation Electron Spin Resonance
MILAGRO Megacity Initiative: Local and Global Research Observations
MIM Mainz Isoprene Mechanism
MOPS Measurement of Ozone Production Sensor
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOZART</td>
<td>Model for Ozone And Related Tracers</td>
</tr>
<tr>
<td>MPIC</td>
<td>Max Planck Institute for Chemistry</td>
</tr>
<tr>
<td>MPNA</td>
<td>Methyl Peroxy Nitric Acid</td>
</tr>
<tr>
<td>MVK</td>
<td>Methyl Vinyl Ketone</td>
</tr>
<tr>
<td>NAMBLEX</td>
<td>North Atlantic Marine Boundary Layer EXperiment</td>
</tr>
<tr>
<td>NaN</td>
<td>Not-a-Number (i.e., missing data/blanks)</td>
</tr>
<tr>
<td>NCP</td>
<td>North China Plain</td>
</tr>
<tr>
<td>ODR</td>
<td>Orthogonal Distance Regression</td>
</tr>
<tr>
<td>OOMPH</td>
<td>Ocean Organics Modifying Particles in both Hemispheres</td>
</tr>
<tr>
<td>OP3</td>
<td>Oxidants and Particle Photochemical Processes</td>
</tr>
<tr>
<td>OPALE</td>
<td>Oxidant Production in Antarctic Lands and Export</td>
</tr>
<tr>
<td>OPR</td>
<td>Ozone Production Rate</td>
</tr>
<tr>
<td>OVOC</td>
<td>Oxygenated Volatile Organic Compound</td>
</tr>
<tr>
<td>PACALDs</td>
<td>Peroxy-acid-aldehydes</td>
</tr>
<tr>
<td>PANs</td>
<td>Peroxy Acyl Nitrates</td>
</tr>
<tr>
<td>Penn</td>
<td>Pennsylvania (State)</td>
</tr>
<tr>
<td>PERCA</td>
<td>PEroxy Radical Chemical Amplification</td>
</tr>
<tr>
<td>PeRCIMS</td>
<td>Peroxy Radical Chemical Ionisation Mass Spectrometry</td>
</tr>
<tr>
<td>PFA</td>
<td>perfluoroalkoxy</td>
</tr>
<tr>
<td>PKU</td>
<td>Peking University</td>
</tr>
<tr>
<td>PM</td>
<td>Particulate Matter</td>
</tr>
<tr>
<td>PNA</td>
<td>Peroxy Nitric Acid</td>
</tr>
<tr>
<td>POPR</td>
<td>Perturbed Ozone Production Rate</td>
</tr>
<tr>
<td>prf</td>
<td>pulse repetition frequency</td>
</tr>
<tr>
<td>PRIDE-PRD2006</td>
<td>Program of Regional Integrated Experiments of Air Quality over the Pearl River Delta, 2006</td>
</tr>
<tr>
<td>PSS</td>
<td>Photostationary Steady State</td>
</tr>
<tr>
<td>PSU</td>
<td>Power Supply Unit</td>
</tr>
<tr>
<td>PTR-MS</td>
<td>Proton Transfer Reaction-Mass Spectrometry</td>
</tr>
<tr>
<td>RACM</td>
<td>Regional Atmospheric Chemistry Mechanism</td>
</tr>
<tr>
<td>RH</td>
<td>Relative Humidity</td>
</tr>
<tr>
<td>RHaMBLe</td>
<td>Reactive Halogens in the Marine Boundary Layer</td>
</tr>
<tr>
<td>RONOCO</td>
<td>Role of Nighttime chemistry in controlling the Oxidising Capacity of the Atmosphere</td>
</tr>
<tr>
<td>SAPHIR</td>
<td>Simulation of Atmospheric PHotochemistry in a large Reaction chamber</td>
</tr>
<tr>
<td>SARs</td>
<td>Structure Activity Relationships</td>
</tr>
<tr>
<td>sCI</td>
<td>stabilised Criegee Intermediate</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SE</td>
<td>Standard Error</td>
</tr>
<tr>
<td>SHARP</td>
<td>Study of Houston Radical Precursors</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-Noise Ratio</td>
</tr>
<tr>
<td>SOAPEX</td>
<td>Southern Ocean Atmospheric Photochemistry EXperiment</td>
</tr>
<tr>
<td>SOAS</td>
<td>Southern Oxidant and Aerosol Study</td>
</tr>
<tr>
<td>SOS</td>
<td>Seasonal Oxidant Study</td>
</tr>
<tr>
<td>sRO2</td>
<td>"simple" RO2</td>
</tr>
<tr>
<td>TOR</td>
<td>Turnover Rate</td>
</tr>
<tr>
<td>TORCH</td>
<td>Tropospheric ORganic CHemistry experiment</td>
</tr>
<tr>
<td>TRAMP</td>
<td>Texas Air quality study – Radical and Aerosol Measurement Project</td>
</tr>
<tr>
<td>TMB</td>
<td>Trimethylbenzene</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>TME</td>
<td>Tetramethylethene</td>
</tr>
<tr>
<td>TUV</td>
<td>Tropospheric Ultraviolet and Visible radiation model</td>
</tr>
<tr>
<td>UEA</td>
<td>University of East Anglia</td>
</tr>
<tr>
<td>UPS</td>
<td>Uninterruptable Power Supply</td>
</tr>
<tr>
<td>UTC</td>
<td>Universal Time Coordinated</td>
</tr>
<tr>
<td>VOC</td>
<td>Volatile Organic Compound</td>
</tr>
<tr>
<td>WAO</td>
<td>Weybourne Atmospheric Observatory</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
</tbody>
</table>
1. Introduction

1.1 Atmospheric Chemistry

Over the course of the last two centuries the composition of the Earth’s atmosphere has changed dramatically, with atmospheric concentrations of the greenhouse gases (GHGs) CO₂, CH₄ and N₂O unprecedented in the last 800,000 years at least. The most recent Intergovernmental Panel on Climate Change (IPCC) report concluded that anthropogenic GHG emissions are the dominant cause of climate change with >95% certainty (IPCC, 2014). The impact of human activities on the Earth system has been so severe that some academics, including Nobel laureate Paul Crutzen, have called for the establishment of a new geological epoch, the “anthropocene” (Crutzen and Stoermer, 2000; Waters et al., 2016).

Another major motivation for studying atmospheric chemistry is air pollution and its associated impacts on human health. While mitigation strategies implemented over recent years have led to considerable improvements in air quality in many regions, air pollution is still a severe problem. Worldwide, the combined effects of all forms of pollution (ambient and household air, water, occupational, etc.) could be attributed to 9 million premature deaths in 2015, accounting for 16% of all deaths (Landrigan et al., 2017). Diseases caused by air pollution made the largest contribution of 6.5 million deaths, consistent with a previous estimate (WHO, 2014). This figure is similar to the number of deaths from tobacco smoking (~7 million), and over two times more than AIDS, tuberculosis and malaria combined (~3 million). The deaths from air pollution were dominated by ambient particulate matter¹ exposure (4.2 million), with a small contribution from ambient ozone (O₃) exposure (0.3 million). For the UK, an estimated 29,000 premature deaths (~5% of all deaths) were caused by outdoor air pollution, which again was consistent with a previous estimate (COMEAP, 2010), and dominated by PM₂.₅ exposure (~28,000 deaths, 96%). Recently, air pollution was brought firmly into the public eye as a result of the 2015 Volkswagen emissions scandal, in which emissions of nitrogen oxides (NOₓ = NO + NO₂), key precursors to ozone and PM₂.₅, were shown to

¹ Specifically, particles with diameters of <2.5 μm (fine particulate matter, PM₂.₅), which are able to penetrate deeply into the respiratory tract and reach the lungs. Coarse particulate matter, with diameters of 2.5–10 μm (PM₁₀), penetrates into the airways less but is still associated with adverse health effects.
be much higher under real-world operating conditions than during regulatory laboratory tests. It has been estimated that the excess NO\textsubscript{x} emissions from diesel vehicles alone (including but not limited to those manufactured by Volkswagen) were associated with about 38,000 premature deaths from PM\textsubscript{2.5} and ozone exposure worldwide in 2015 (Anenberg et al., 2017). Other key issues include stratospheric ozone depletion and acid rain, which can both be attributed to human influence.

Atmospheric chemistry research can be broadly divided into three main areas: field, laboratory, and modelling studies. These three elements are essential to understand the complex and dynamic processes occurring in ambient air. Field measurements give insight into the emission, formation, and loss of different trace gases and aerosols. Laboratory studies allow more detailed investigation of chemical transformations, as well as the determination of key physical parameters such as reaction rate constants and product branching ratios. Environmental simulation chambers bridge the gap between simple laboratory and field studies, allowing investigation of processes under simplified but more atmospherically relevant conditions. Numerical models are often used for future predictions (e.g. the impact of climate change on atmospheric composition), but are also routinely employed to test theoretical understanding of atmospheric processes by comparison to observations. When field and model concentrations disagree this suggests that the model, and hence our understanding is incomplete, prompting further laboratory and modelling studies until the measurements can be reconciled. However, it should be noted that disagreement may also occur because of an incomplete set of measurements, or poor quality observations.

1.2 Photochemistry in the Troposphere

Anthropogenic and biogenic emissions of CH\textsubscript{4}, CO, SO\textsubscript{2}, NO\textsubscript{x} and volatile organic compounds (VOCs) are processed in the troposphere through photochemical oxidation reactions, mediated by short-lived radicals such as the hydroxyl radical, OH. Tropospheric oxidation chemistry controls the atmospheric lifetime of primary emitted species, and their transformations into secondary pollutants. As such, tropospheric oxidation has implications for climate change, as the lifetimes of GHGs such as CH\textsubscript{4} determine their long-term contributions towards radiative forcing. Similarly, photochemical reactions involving NO\textsubscript{x} and VOCs lead to the production of tropospheric ozone (a component of photochemical smog), which is harmful to humans, damages vegetation and is another greenhouse gas. These reactions also lead to the formation of
low-volatility oxygenated VOCs (OVOCs) which are precursors to secondary organic aerosol (SOA), a component of PM$_{2.5}$ (Barsanti et al., 2017).

Tropospheric oxidation chemistry, summarised in Figure 1.1, is dominated by reactions of hydrogen oxides (HO$_x$ = OH + HO$_2$), but other radicals are also important, namely atomic chlorine (Cl), nitrate (NO$_3$) and halogen oxide (XO, X = Br, I) radicals. Non-radical oxidants include O$_3$ (alkene oxidation) and H$_2$O$_2$ (aqueous phase particle reactions).

1.2.1 Hydrogen Oxides (HO$_x$)

In the troposphere, OH formation is mainly initiated by the photolysis of O$_3$ at short wavelengths (R1.1):

\[
O_3 + h\nu \rightarrow O + O_2 \quad (R1.1)
\]

The atomic oxygen product may be formed in either the O(3P) electronic ground state or an excited electronic state, where the first excited electronic state, O(1D), results in OH formation. Spin conservation suggests that the dioxygen product must also be in a singlet electronic state if O(1D) is formed (R1.1a):

Figure 1.1. Simplified diagram of the HO$_x$ reaction cycle. Modified from Smith (2007).
\[\text{O}_3 + h\nu (\lambda < 310 \text{ nm}) \rightarrow \text{O}(^1\text{D}) + \text{O}_2(^1\Delta_g) \]
(R1.1a)

However, photolysis can also occur through a spin-forbidden channel at longer wavelengths (R1.1b):

\[\text{O}_3 + h\nu (310 \text{ nm} < \lambda < 410 \text{ nm}) \rightarrow \text{O}(^1\text{D}) + \text{O}_2(^3\Sigma) \]
(R1.1b)

The photolysis rate of \text{O}_3 to form \text{O}(^1\text{D}), \(J(\text{O}(^1\text{D})) \), is given by:

\[J(\text{O}(^1\text{D})) = \int \sigma_{\text{O}_3}(\lambda, T) \phi_{\text{O}(^1\text{D})}(\lambda, T) F(\lambda) \ d\lambda \]
(E1.1)

where \(\sigma_{\text{O}_3}(\lambda, T) \) and \(\phi_{\text{O}(^1\text{D})}(\lambda, T) \) are the \text{O}_3 absorption cross-section and \text{O}(^1\text{D}) quantum yield, respectively, which are both temperature- and pressure-dependent, and \(F(\lambda) \) is the spectral actinic flux. The actinic flux in the troposphere is much higher at longer wavelengths, by a factor of more than ten between 300 and 320 nm (Wayne, 2000). Thus the spin-forbidden channel (R1.1b) is significant, despite the fact that both \(\sigma_{\text{O}_3} \) and \(\phi_{\text{O}(^1\text{D})} \) fall off dramatically with wavelength above 310 nm. This is especially important at low solar zenith angles (SZA), i.e., dawn and dusk, where the spectral actinic flux is red-shifted because the scattering efficiency of radiation through the atmospheric column is proportional to \(1/\lambda^4 \) (Hofzumahaus et al., 2004).

\[\text{OH} \] is then formed through the reaction of \text{O}(^1\text{D}) with water vapour:

\[\text{O}(^1\text{D}) + \text{H}_2\text{O} \rightarrow 2\text{OH} \]
(R1.2)

Only a small fraction (typically \(~10\%\)) of the initially formed \text{O}(^1\text{D}) atoms react with water to form \text{OH}, as most are quenched to the \text{O}(^3\text{P}) electronic ground state \textit{via} collisions with other gas molecules (see Section 1.3.5); the \text{O}(^3\text{P}) atoms recombine with molecular oxygen to form \text{O}_3. Additional routes to \text{OH} formation from closed shell species include alkene ozonolysis and the photolysis of nitrous acid (\text{HONO}, \(\lambda < 400 \text{ nm} \) (Finlayson-Pitts and Pitts Jr, 2000)\(^1\)), hydrogen peroxide (\text{H}_2\text{O}_2, \(\lambda < 335 \text{ nm} \)) and organic peroxides (\text{ROOH}, \(\lambda < \sim320 \text{ nm} \)), which may dominate primary \text{OH} production (\(P_{\text{OH}} \)) under some conditions. The majority of trace gases emitted in the troposphere are removed by reactions initiated by \text{OH}, making it the most important daytime oxidant (Levy, 1971). These reactions are summarised in Figure 1.1. The short lifetime of \text{OH}, from \(~1 \text{ s} \) in clean air to \(~10 \text{ ms} \) in polluted air (Heard and Pilling, 2003), results in very low

\(^1\) Hereinafter, cut-off wavelengths are expressed as the wavelength at which \(\phi(\lambda, 298 \text{ K}) < 0.5 \), or if quantum yields are not available, \(\sigma(\lambda, 298 \text{ K}) < 10^{-21} \text{ cm}^2 \text{ molecule}^{-1} \) (i.e., they do not correspond to thermodynamic bond dissociation thresholds).
concentrations, typical daytime values are on the order of 10^6 molecule cm$^{-3}$ (equivalent to 0.04 pptv at sea level).

Oxidation of CH$_4$ and other alkanes proceeds initially via hydrogen abstraction, forming alkylperoxy radicals (RO$_2$) in the presence of O$_2$:

$$\text{RH} + \text{OH} \rightarrow \text{R} + \text{H}_2\text{O} \quad \text{(R1.3)}$$

$$\text{R} + \text{O}_2 + \text{M} \rightarrow \text{RO}_2 + \text{M} \quad \text{(R1.4)}$$

where M is a third body, usually N$_2$ or O$_2$, which energetically stabilises the chemically activated RO$_2$ product through collisional quenching. Oxidation of alkenes and other unsaturated compounds proceeds through OH addition, leading to the formation of β-hydroxyperoxy radicals:

$$\text{OH} + \text{CHR} = \text{CHR} \rightarrow \text{CH(OH)R-CHR} \quad \text{(R1.5)}$$

$$\text{CH(OH)R-CHR} + \text{O}_2 + \text{M} \rightarrow \text{CH(OH)R-CH(O}_2)\text{R} + \text{M} \quad \text{(R1.6)}$$

In the presence of NO, RO$_2$ radicals produce hydroperoxy radicals (HO$_2$) and carbonyl species:

$$\text{RO}_2 + \text{NO} \rightarrow \text{RO} + \text{NO}_2 \quad \text{(R1.7)}$$

$$\text{RO} + \text{O}_2 \rightarrow \text{R'CHO} + \text{HO}_2 \quad \text{(R1.8)}$$

resulting in radical propagation. The formation of alkoxy radicals (RO) and NO$_2$ is the major branch (~70–95%) of reaction (R1.7), but a minor termination channel results in alkylnitrate (RONO$_2$) production (via an insertion mechanism); the nitrate yield increases with the number of carbon atoms, and decreases with temperature (Orlando and Tyndall, 2012).

Lifetimes of HO$_2$ range from about 5 to 100 s, with concentrations of $\sim 10^8$ molecule cm$^{-3}$. HO$_2$ is also formed via reactions of OH with CO and O$_3$:

$$\text{OH} + \text{CO} \rightarrow \text{H} + \text{CO}_2 \quad \text{(R1.9a)}$$

$$\text{H} + \text{O}_2 + \text{M} \rightarrow \text{HO}_2 + \text{M} \quad \text{(R1.9b)}$$

$$\text{OH} + \text{O}_3 \rightarrow \text{HO}_2 + \text{O}_2 \quad \text{(R1.10)}$$

and through formaldehyde (HCHO) photolysis (Terentis and Kable, 1996; Tatum Ernest et al., 2012) and OH-oxidation (Sivakumaran et al., 2003), via H and HCO radicals:

$$\text{HCHO} + \text{hv} (\lambda < 361 \text{ nm}) \rightarrow \text{H}_2 + \text{CO} \quad \text{(R1.11a)}$$

$$\text{HCHO} + \text{hv} (\lambda < 330 \text{ nm}) \rightarrow \text{H} + \text{HCO} \quad \text{(R1.11b)}$$
H + O₂ + M → HO₂ + M \hspace{1cm} (R1.9b)

OH + HCHO → HCO + H₂O \hspace{1cm} (R1.12)

HCO + O₂ → HO₂ + CO \hspace{1cm} (R1.13)

where further oxidation of CO via reaction (R1.9) produces additional HO₂. OH may be reformed from HO₂ by reactions with O₃ and NO (radical propagation):

\[\text{HO}_2 + \text{O}_3 \rightarrow \text{OH} + 2\text{O}_2 \] \hspace{1cm} (R1.14)

\[\text{HO}_2 + \text{NO} \rightarrow \text{OH} + \text{NO}_2 \] \hspace{1cm} (R1.15)

Reaction (R1.15) can often be the main source of OH, especially in polluted urban environments (Section 1.4.2.3). The photolysis of NO₂ (λ < 400 nm (Finlayson-Pitts and Pitts Jr, 2000)) after production via reactions (R1.7) and (R1.15) results in O₃ formation.

The conversion of HO₂ to OH via halogen oxides (XO, where X = Br, I) is another important process, particularly in the marine boundary layer (e.g. Sommariva et al. (2006)):

\[\text{HO}_2 + \text{XO} \rightarrow \text{HOX} + \text{O}_2 \] \hspace{1cm} (R1.16)

\[\text{HOX} + h\nu \rightarrow \text{OH} + \text{X} \] \hspace{1cm} (R1.17)

Hypohalous acids (HOX) may also be removed by heterogeneous chemistry, reducing the efficiency of OH formation through reactions (R1.16–R1.17). Figure 1.1 shows that the concentrations of OH and HO₂ are closely coupled, necessitating the use of HOₓ as a collective term. HO₂ may be lost through reaction with itself or other peroxy radicals (termination):

\[\text{HO}_2 + \text{HO}_2 (+ \text{M}) \rightarrow \text{H}_2\text{O}_2 + \text{O}_2 (+ \text{M}) \] \hspace{1cm} (R1.18)

\[\text{HO}_2 + \text{RO}_2 \rightarrow \text{ROOH} + \text{O}_2 \] \hspace{1cm} (R1.19)

While the peroxide products may photolyse to produce OH, they have short lifetimes with respect to deposition, resulting in overall loss of HOₓ. Reactions (R1.18–R1.19) dominate peroxy radical losses and suppress O₃ formation in regions where NO concentrations are low, such as remote forested areas and the open ocean. RO₂ radicals may also react with themselves (self-reaction) and other RO₂ species (cross-reaction), to yield alkoxy radicals, alcohols and carbonyls (Orlando and Tyndall, 2012).

Other important HOₓ loss processes include uptake onto aerosol surfaces (HO₂ only, as the lifetime is OH is too short for physical loss to be significant), and the reactions of OH with NO, NO₂ and SO₂, as shown in Figure 1.1. For HO₂ and RO₂ radicals, termination
may also occur via reactions with NO\textsubscript{2} to form peroxynitric acid (HO\textsubscript{2}NO\textsubscript{2}), peroxyalkyl nitrates (RO\textsubscript{2}NO\textsubscript{2}), or peroxycetyl nitrates (PANs, R(O)O\textsubscript{2}NO\textsubscript{2}) in the case of α-carbonyl peroxy radicals (acylperoxy radicals, R(O)O\textsubscript{2}). These species can decompose thermally to reform peroxy radicals and NO\textsubscript{2}, and thus they are often referred to as radical reservoirs.

1.2.2 Other Oxidants

The nitrate radical (NO\textsubscript{3}) is an important oxidant at night but photolyses (λ < 610 nm (Finlayson-Pitts and Pitts Jr, 2000)) rapidly during the daytime. NO\textsubscript{3} is formed in the reaction of NO\textsubscript{2} with O\textsubscript{3} and is in rapid thermal equilibrium with N\textsubscript{2}O\textsubscript{5}:

\[
\text{NO}_2 + \text{O}_3 \rightarrow \text{NO}_3 + \text{O}_2 \quad \text{(R1.20)}
\]

\[
\text{NO}_3 + \text{NO}_2 + \text{M} \rightleftharpoons \text{N}_2\text{O}_5 + \text{M} \quad \text{(R1.21)}
\]

where higher temperatures favour the reverse reaction (dissociation). N\textsubscript{2}O\textsubscript{5} may also be hydrolysed to nitric acid (HNO\textsubscript{3}) on aerosol particles:

\[
\text{N}_2\text{O}_5(g) + \text{H}_2\text{O}(aq) \rightarrow 2\text{HNO}_3(aq) \quad \text{(R1.22)}
\]

Unlike OH, hydrogen abstraction reactions of NO\textsubscript{3} with saturated hydrocarbons, equivalent to reaction (R1.3), are typically slow (Brown and Stutz, 2012). Addition of NO\textsubscript{3} to unsaturated hydrocarbons, analogous to reaction (R1.5), is relatively fast, particularly for biogenic compounds such as terpenes (Atkinson and Arey, 2003; Ng et al., 2017). NO\textsubscript{3} also reacts efficiently with aldehydes (RCHO), dimethyl sulfide (DMS, CH\textsubscript{3}SCH\textsubscript{3}) and phenolic compounds via hydrogen abstraction. Typical nighttime NO\textsubscript{3} mixing ratios are on the order of 10 pptv (Brown and Stutz, 2012). NO\textsubscript{3} radicals are lost efficiently to surfaces and react rapidly with NO:

\[
\text{NO}_3 + \text{NO} \rightarrow 2\text{NO}_2 \quad \text{(R1.23)}
\]

and as a result NO\textsubscript{3} levels are generally lower at ground level and close to NO emission sources.

Chlorine atoms (Cl) are highly reactive and may contribute significantly to the tropospheric oxidation of VOCs, particularly in marine regions owing to the abundance of particulate chloride which results in the formation of photolabile Cl precursors such as Cl\textsubscript{2}, HOCl and CINO\textsubscript{2}. Cl atoms may also be formed from the reaction of OH with HCl.
While Cl concentrations\(^1\) are very low, \(10^{3} \text{ to } 10^{4} \text{ molecule cm}^{-3}\) (Saiz-Lopez and von Glasow, 2012), their reactivities towards VOCs are generally much higher than OH (Young et al., 2014). For example, the hydrogen abstraction of CH\(_4\) proceeds about 14 times faster with Cl than OH (Sander et al., 2006), and as such Cl oxidation contributes 3–15% of overall CH\(_4\) loss (Platt et al., 2004; Lawler et al., 2011).

In polluted air, ClNO\(_2\) may be formed when the nocturnal NO\(_x\) reservoir N\(_2\)O\(_5\) reacts with chloride on aerosol particles:

\[
\text{N}_2\text{O}_5(g) + \text{Cl}^-(aq) \rightarrow \text{ClNO}_2(g) + \text{NO}_3^-(aq) \quad \text{(R1.24)}
\]

The resultant ClNO\(_2\) accumulates overnight and photolyses (Sander et al., 2011a) rapidly in the morning:

\[
\text{ClNO}_2 + h\nu (\lambda < 400 \text{ nm}) \rightarrow \text{Cl} + \text{NO}_2 \quad \text{(R1.25)}
\]

Reactions (R1.24–R1.25) represent a major source of Cl under high NO\(_x\) conditions, in both marine (Osthoff et al., 2008) and continental (Thornton et al., 2010; Mielke et al., 2011) regions, where ClNO\(_2\) was measured using iodide ion chemical ionisation mass spectrometry (CIMS). Chlorine chemistry can therefore contribute to peroxy radical formation and hence O\(_3\) production in the morning, however these routes may only be significant (in comparison to OH-oxidation) following elevated levels of ClNO\(_2\) during the previous night (Bannan et al., 2015).

Alkenes also react with the non-radical oxidant O\(_3\), termed ozonolysis reactions. In the case of propene, for example, the reaction proceeds through two branches (Wayne, 2000):

\[
\text{O}_3 + \text{CH}_2=\text{CHCH}_3 \rightarrow \text{CH}_3\text{CHOO}^* + \text{HCHO} \quad \text{(R1.26a)}
\]

\[
\rightarrow \text{CH}_2\text{OO}^* + \text{CH}_3\text{CHO} \quad \text{(R1.26b)}
\]

The products CH\(_2\)OO and CH\(_3\)CHOO are Criegee biradicals, often denoted as C1 and C2 Criegee intermediates (CI), respectively. Ozonolysis reactions are orders of magnitude slower than the radical oxidations described above, but with much higher concentrations of O\(_3\) (tens of ppbv), these reactions can contribute significantly to the overall loss of VOCs. This is especially important in biogenic, low NO\(_x\) environments at night, owing

\(^1\) It should be noted that Cl concentrations have not been measured directly but inferred from other measurements, e.g. Cl atom precursors such as ClNO\(_2\), or hydrocarbon ratios away from source regions.
to high levels of biogenic VOCs (BVOCs), for which the dominant species often contain (di-)alkene moieties (e.g. isoprene, monoterpenes), and low NO3 and OH concentrations.

The CIs are formed with excess energy and are therefore prone to decomposition:

\[
\text{CH}_3\text{CHO}^+ \rightarrow \text{CH}_3 + \text{CO} + \text{OH} \quad \text{(R1.27a)}
\]
\[
\rightarrow \text{CH}_3 + \text{CO}_2 + \text{H} \quad \text{(R1.27b)}
\]
\[
\rightarrow \text{CH}_4 + \text{CO}_2 \quad \text{(R1.27c)}
\]

These reactions are another important source of HOx, particularly at night when primary OH production through reactions (R1.1–R1.2) and other photolytic processes are not possible. OH production has been observed after IR excitation of CIs (Liu et al., 2014b; Newland et al., 2015). The CIs may be collisionally stabilised (sCI), isomerising to carboxylic acids (RCOOH) or forming aldehydes and hydroperoxides through reaction with water vapour (or (H2O)2, see below). Other routes to sCI formation include alkyl iodide photolysis followed by oxidation (Welz et al., 2012; Stone et al., 2013; Liu et al., 2014a), which is likely to be important in marine environments. The reaction of OH with CH3O2 may potentially be important in remote atmospheres (Bossolasco et al., 2014; Fittschen et al., 2014), although the reaction rate constant was determined to be almost a factor of two lower after a subsequent study (Assaf et al., 2016). A more recent modelling study (Assaf et al., 2017) incorporating the new rate constant suggested that while the impacts of this reaction were still significant, with up to 30% decreases in CH3O2 concentrations in a remote marine environment, they may have been overstated initially. The reaction has also been suggested to be a major source of atmospheric methanol, with an estimated overall yield of ~30% (Müller et al., 2016), although more recent work does not support this (Ferracci et al., 2018).

sCIs have also been suggested as important oxidants in themselves, for SO2 and potentially other species (Mauldin et al., 2012). However, recent studies have shown that these impacts may have been overstated, owing to fast reaction of the C1 sCI (CH2OO) with the water vapour dimer (Chao et al., 2015; Lewis et al., 2015), which therefore dominates its removal in the troposphere, although this reaction shows a strong negative temperature dependence (Smith et al., 2015). Similarly, the syn- and anti-conformers of the C2 sCI, CH3CHOO, also show high reactivity towards water vapour (Taatjes et al., 2013; Sheps et al., 2014).

However, it has been shown (Huang et al., 2015) that sCI removal by SO2 dominates over reaction with water vapour and its dimer for the C3 dimethyl substituted sCI, (CH3)2COO,
under typical atmospheric conditions \((\text{SO}_2 = 50 \text{ ppbv}, \text{relative humidity (RH)} = 70\% \text{ at } 298 \text{ K and } 1 \text{ atm})\). This suggests that larger di-substituted sClIs, such as those derived from BVOCs, may still be efficient oxidants of \(\text{SO}_2\). Based on relative rate studies of isoprene ozonolysis in the EUPHORE (EUropean PHOtoREactor) simulation chamber, Newland et al. estimated a steady-state boundary layer isoprene-sCl concentration of \(4.1 \times 10^2\) molecule cm\(^{-3}\) (Newland et al., 2015), assuming isoprene and ozone mixing ratios of 1 and 40 ppbv, respectively, several orders of magnitude lower than typical OH concentrations.

1.3 Measurement of HO\(_x\) using FAGE

1.3.1 Overview

The most common method for the tropospheric detection of OH and HO\(_2\) radicals is the laser-induced fluorescence (LIF) at low pressure (fluorescence assay by gas expansion, FAGE) technique, pioneered by Hard and co-workers in 1979 (Hard et al., 1979). LIF has been applied to the measurement of many other trace gases, including NO, NO\(_2\), alkyl nitrates (after thermal decomposition to NO\(_2\)), IO and HCHO (Heard, 2006; Whalley et al., 2007; Hottle et al., 2009). FAGE is a highly sensitive and selective in situ measurement technique, with OH detection limits on the order of \(10^5\) molecule cm\(^{-3}\) for <1 min integration time (Hofzumahaus and Heard, 2016). The in situ nature of the method is a major advantage, as the high reactivity of OH, and to a lesser extent HO\(_2\), means that it is lost quickly to instrument surfaces, and concentrations often fluctuate significantly on short spatial and temporal scales (e.g. changes in NO\(_x\) and VOC levels, variations in photolysis rates due to intermittent cloud cover). A typical FAGE design is shown in Figure 1.2.

In FAGE, ambient air is expanded through a critical orifice (~1 mm diameter) into a low pressure (0.7–4 Torr) detection cell and the \((A^2\Sigma^+ \leftarrow X^2\Pi)\) electronic transition of OH is pumped using an intense, high pulse repetition frequency (prf) laser (Figure 1.2). Early instruments for OH measurements used 282 nm light to excite the \((v' = 1) \leftarrow (v'' = 0)\) vibronic transition, so that fluorescence at longer wavelengths \((\lambda = 315–308 \text{ nm, via the (1,1) and (0,0) bands})\) could be easily discriminated from the more intense, laser scattered light (Hard et al., 1984). However, this resulted in a significant interference from laser generated OH via reactions (R1.1–R1.2), despite the substantial reduction in the rate of the bimolecular reaction (R1.2) due to operation at low pressure. All current FAGE
Figure 1.2. Schematic diagram of a typical FAGE instrument for ground level measurements of OH and HO₂ radicals. Reproduced from Kanaya and Akimoto (2002). Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission. This permission does not include the right to grant others permission to photocopy or otherwise reproduce this material except for accessible versions made by non-profit organizations serving the blind, visually impaired and other persons with print disabilities (VIPs).

Setups now use 308 nm light to excite the \((\nu' = 0) \leftrightarrow (\nu'' = 0) \) transition, with fluorescence also collected at 308 nm (on-resonance fluorescence). This reduces the interference by a factor of ~30, due to a combination of the lower \(\mathrm{O}_3 \) absorption cross-section and the lower quantum yield of \(\mathrm{O}(^1\mathrm{D}) \) at this wavelength. Sensitivity is also improved as the OH absorption cross-section at 308 nm is approximately six times higher than at 282 nm (Heard and Pilling, 2003).

At constant laser power, the resultant fluorescence from the \(\mathrm{A}^2\Sigma^+ \) excited state is directly proportional to the OH concentration. After collimating then re-focussing, fluorescence photons are collected perpendicular to both the laser axis and gas flow (Figure 1.2) by a detector, such as a channel photomultiplier (CPM), and the signal analysed by a photon counter. The laser may cross the detection volume once (single-pass), or many times.

1 More recently, highly sensitive microchannel plate (MCP) detectors have been adopted by several groups.
(multi-pass) with the use of a White cell, which improves sensitivity for a given laser power but may increase the severity of photolytic interferences (Section 1.3.2). A disadvantage of on-resonance fluorescence at 308 nm is that fluorescence must be effectively discriminated against the more intense Rayleigh, Mie and wall scattered light from the laser pulse, achieved by temporal electronic gating of the detector. To accomplish this, and to avoid damage to the detector, it is switched to a low gain state for the duration of the laser pulse. However, some of the OH fluorescence is gated out, as it overlaps with the laser pulse (duration ~20–40 ns (Hofzumahaus and Heard, 2016)), reducing sensitivity. Two photon collection windows are used to measure the contributions of detector “dark” counts and solar light (entering through the pinhole) to the total signal, in order to determine the signal from OH fluorescence by subtraction. This process is described in detail for the Leeds ground-based FAGE instrument in Chapter 2.

Low pressure is required as the fluorescence lifetime of OH is extended beyond the duration of the laser scattered light due to an increase in the OH fluorescence quantum yield (as a consequence of reduced collisional quenching of the \(\text{A}^2\Sigma^+ \) state); the fluorescence lifetime is \(~1\) ns at 760 Torr, compared to several hundred nanoseconds at 0.7–4 Torr (Heard and Pilling, 2003). However, this is partially offset by the reduced number density of OH at low pressures.

In FAGE, \(\text{HO}_2 \) is not detected directly but is first chemically titrated to OH via injection of a sufficient quantity of NO immediately downstream of the pinhole (Figure 1.2). 100% conversion efficiency is not possible due to the competing termolecular reaction:

\[
\text{OH} + \text{NO} + \text{M} \rightarrow \text{HONO} + \text{M}
\]

(R1.28)

Conversion efficiency is also limited by incomplete mixing of NO into the inlet gas flow. The fluorescence signal is due to the sum of ambient OH and \(\text{HO}_2 \), and therefore \([\text{HO}_2]\) must be determined by subtraction of the OH signal. Fluorescence cells may be mounted in series or parallel for simultaneous OH and \(\text{HO}_2 \) detection, or alternatively one fluorescence cell may be used to measure the two species sequentially, as in the case of the FAGE setup shown in Figure 1.2. In FAGE, the background is usually obtained by tuning the excitation laser wavelength off-resonance of a narrow rotational transition in OH, typically by only a few picometres, in order to correct the \(\text{HO}_x \) signals for residual laser scatter. These subtractions are described in detail in Chapter 2.
1.3.1.1 Calibration

Whilst in principle it is possible to calculate the instrument response (S_{HOx}) to [HOx] through detailed knowledge of many instrumental parameters (Holland et al., 1995), such as the quantum efficiency of the detector, this is difficult in practice (Heard, 2006). Instead, FAGE instruments are calibrated by adding known concentrations of OH and HO$_2$ to the inlet. The FAGE signals are proportional to radical concentrations:

$$S_{HOx} = C_{HOx} \times [HOx]$$ \hspace{1cm} (E1.2)

where C_{HOx} is the calibration factor for either OH or HO$_2$. Calibration also accounts for the losses of OH and HO$_2$ on inlet walls, which are significant due to their highly reactive nature (particularly OH).

The most common calibration method, and the only one currently used during field measurements, relies on the photolysis of water vapour in a flow of humidified synthetic (zero) air delivered directly to the instrument inlet (Stevens et al., 1994). The 184.9 nm (vacuum UV) output of a mercury lamp is used to generate equal, near-ambient concentrations ($\sim 10^6$–10^9 molecule cm$^{-3}$) of OH and HO$_2$ via:

$$H_2O + h\nu (\lambda = 184.9 \text{ nm}) \rightarrow H + OH$$ \hspace{1cm} (R1.29)

$$H + O_2 + M \rightarrow HO_2 + M$$ \hspace{1cm} (R1.9b)

The concentrations of OH and HO$_2$ are given by:

$$[OH] = [HO_2] = [H_2O] \times \sigma_{H_2O, \text{ 184.9 nm}} \times \phi_{OH} \times F_{184.9 \text{ nm}} \times t$$ \hspace{1cm} (E1.3)

where $\sigma_{H_2O, \text{ 184.9 nm}}$, ϕ_{OH} (= 1), and $F_{184.9 \text{ nm}}$ are the absorption cross-section of water vapour, the quantum yield of OH from reaction (R1.29), and the photon flux of the mercury lamp at 184.9 nm, respectively, and t is the photolysis exposure time in the flow tube. Of these quantities, $\sigma_{H_2O, \text{ 184.9 nm}}$ and ϕ_{OH} are known quantities, and [H$_2$O] must be measured (e.g. using a hygrometer). $F_{184.9 \text{ nm}} \times t$ is determined indirectly by chemical actinometry, which relies on the photolysis of O$_2$ (laminar flow method (Aschmutat et al., 1994)), or more recently N$_2$O (turbulent flow method (Edwards et al., 2003; Faloona et al., 2004)). The assumption that this method generates equal [OH] and [HO$_2$] concentrations was verified experimentally (Fuchs et al., 2009; Fuchs et al., 2011).

Uncertainty in FAGE measurements, with typical 2σ values of \sim15–50% (Heard and Pilling, 2003; Hofzumahaus and Heard, 2016), stems largely from the accuracy of the flux measurement (Chapter 2). FAGE instruments can also be calibrated with the steady-state OH generated from alkene ozonolysis, i.e. reactions (R25–R26) (Hard et al., 2002;
Dusanter et al., 2008). However, owing to significant uncertainties in the mechanisms of gas phase alkene ozonolysis, the accuracy of this method is much lower, ~88% at 2σ (Dusanter et al., 2008).

An alternative, indirect calibration method involves following the temporal decay of a hydrocarbon, with a known rate constant for reaction with OH (Bloss et al., 2004; Winiberg et al., 2015). From this an OH concentration can be inferred for comparison with that obtained by FAGE, where the 2σ accuracy of the alternative calibration method, ~28%, is comparable to the conventional method described above. The sensitivity towards HO₂ may be determined (2σ accuracy ~41%) in a similar manner by observing the loss of HO₂ via the second order self-reaction (R1.18) (Winiberg et al., 2015).

1.3.2 Interferences

Recent measurements of OH and HO₂ radicals are significantly higher¹ than those predicted by models in some environments, especially those influenced by high emissions of biogenic VOCs such as isoprene, prompting intense laboratory research to explain such discrepancies. While current chemical mechanisms are likely incomplete, it is also possible that, at least in part, these elevated radical observations have been influenced by instrumental biases from interfering species. Interferences have been reported in both OH and HO₂ measurements, and are summarised below.

1.3.2.1 OH interferences – chemical background determination

As described in Section 1.3.1, early measurements of OH suffered from significant interferences due to ozone photolysis (Hard et al., 1984). While this effect has been reduced in going from 282 to 308 nm detection, it may still be significant, especially at night or with the use of multi-pass laser setups (e.g.² up to ~4 × 10⁶ molecule cm⁻³ in (Griffith et al., 2016)). Laboratory experiments conducted by Ren and co-workers using the Pennsylvania State University (Penn State) LIF instrument showed negligible interferences in OH detection for a range of suspected species: H₂O₂, HONO, HCHO, HNO₃, acetone and various RO₂ radicals (Ren et al., 2004).

¹ This is not always the case for HO₂, as in some environments it has frequently been overpredicted by models. Such studies often incorporate additional mechanisms to reduce modelled HO₂ concentrations, for example halogen chemistry and aerosol uptake.

² ~9 × 10⁷ molecule cm⁻³ on average, for campaign mean O₃ = 33 ppbv, H₂O = 1.4% and laser power = 2.5 mW.
Recent LIF measurements of OH in forested environments are much higher than those predicted by models (Lelieveld et al., 2008; Ren et al., 2008; Hofzumahaus et al., 2009; Stone et al., 2011; Whalley et al., 2011; Wolfe et al., 2011a), discussed in more detail in Section 1.4.2. One hypothesis is that these measurements, at least in part, suffer from an instrumental bias due to interfering species. The usual background method in FAGE, where the laser wavelength is scanned off-resonance from an OH transition (“OHwave”), does not discriminate between ambient (i.e. real) OH and either OH formed inside the FAGE cell, or fluorescence from other species at ~308 nm. However, there is an alternative, chemical method (“OHchem”) for obtaining the OH background signal in LIF instruments. This method involves the addition of a high concentration of an OH scavenger, such as perfluoropropene (C₃F₆), just before the FAGE inlet. Ambient OH is quickly titrated away by fast reaction with the scavenger, but any interference would remain in the fluorescence signal. The use of C₃F₆ as a scrubber was first described by Stevens et al., to assess the level of laser-generated O₃ interference, i.e. reactions (R1.1–R1.2) (Stevens et al., 1994). C₃F₆ is an ideal scavenger for OH in LIF instruments, as it reacts rapidly and selectively with OH ($k_{298K} = 2.2 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Sander et al., 2011a)), and does not contain any hydrogen atoms that could serve as a source of laser-generated OH via reaction with O(1D). Additionally, the presence of strongly bound fluorine atoms suppresses radical regeneration from the OH-C₃F₆ adduct (Dubey et al., 1996). Field campaigns during which OH was measured using a chemical background method are summarised in Table 1.1 and discussed below.

Observations of OH were made during the PROPHET (Program for Research on Oxidants: PHotochemistry, Emissions and Transport) field campaign in summer 1998, located in a mixed deciduous forest in Michigan (Faloona et al., 2001). Nighttime OH measurements were unusually high, with concentrations of $\sim 1 \times 10^6$ molecule cm$^{-3}$. On one night C₃F₆ was injected upstream of the OH detection axis for ~ 1 h around midnight, to determine whether the measurements of OH were valid. The average OH concentration measured during this period was effectively zero ($-1.1 \pm 3.0 \times 10^5$ molecule cm$^{-3}$),

1 Reactive species may form OH inside the FAGE cell by three possible mechanisms: thermal decomposition (promoted by the low-pressure conditions), heterogeneous reaction (i.e. on on clusters or inlet surfaces), and photolytic (i.e. laser-generated).

2 The background must also be corrected for reaction of internally generated OH with the scavenger inside the FAGE cell.
Table 1.1: Summary of studies of ambient measurements of OH interferences, demonstrating the average contributions of the OH chemical background to the total OH signal.

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Location</th>
<th>Environment Type</th>
<th>Daytime Contribution (%)</th>
<th>Nighttime Contribution (%)</th>
<th>Notes</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROPHET</td>
<td>1998</td>
<td>N Michigan, isoprene dominated</td>
<td>Forest, isoprene dominated</td>
<td>Not tested</td>
<td>~0</td>
<td></td>
<td>Faloona et al. (2001)</td>
</tr>
<tr>
<td>BEARPEX</td>
<td>2009</td>
<td>NE California, MBO dominated</td>
<td>Forest, MBO dominated</td>
<td>40–60</td>
<td>50</td>
<td>OHchem agreed well with model</td>
<td>Mao et al. (2012)</td>
</tr>
<tr>
<td>CABINEX</td>
<td>2009</td>
<td>N Michigan, isoprene dominated</td>
<td>Forest, isoprene dominated</td>
<td>Not tested</td>
<td>50–100</td>
<td></td>
<td>Griffith et al. (2013)</td>
</tr>
<tr>
<td>SHARP</td>
<td>2009</td>
<td>Houston, Texas, Urban</td>
<td>Urban</td>
<td>30</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CalNex-LA</td>
<td>2010</td>
<td>Pasadena, California</td>
<td>Urban, downwind of LA</td>
<td>33</td>
<td>Not reported</td>
<td>Consistent with known O3/H2O interference</td>
<td>Griffith et al. (2016)</td>
</tr>
<tr>
<td>CalNex-SJV</td>
<td>2010</td>
<td>Bakersfield, California, California</td>
<td>Urban</td>
<td>20</td>
<td>80</td>
<td></td>
<td>Brune et al. (2016)</td>
</tr>
<tr>
<td>DOMINO HOx</td>
<td>2010</td>
<td>El Arenosillo, near Huelva, SW Spain</td>
<td>Coastal, close to petrochemical industry</td>
<td>50</td>
<td>100</td>
<td></td>
<td>Novelli et al. (2014a)</td>
</tr>
<tr>
<td>HUMPPA-COPEC</td>
<td>2010</td>
<td>Hyytiälä, SW Finland</td>
<td>Boreal forest, terpene dominated</td>
<td>60–80</td>
<td>100</td>
<td>OHchem agreed well with model</td>
<td>Novelli et al. (2014a)</td>
</tr>
<tr>
<td>HOPE</td>
<td>2012</td>
<td>Hohenpeissenberg, S Germany</td>
<td>Rural</td>
<td>20–40</td>
<td>100</td>
<td></td>
<td>Novelli et al. (2014a)</td>
</tr>
<tr>
<td>SOAS</td>
<td>2013</td>
<td>near Brent, Alabama</td>
<td>Forest, isoprene dominated</td>
<td>80</td>
<td>>70</td>
<td>OHchem agreed well with model</td>
<td>Feiner et al. (2016)</td>
</tr>
<tr>
<td>Wangdu</td>
<td>2014</td>
<td>North China Plain</td>
<td>Rural, urban influenced</td>
<td>10</td>
<td>Not reported</td>
<td></td>
<td>Tan et al. (2017)</td>
</tr>
<tr>
<td>CYPHEX</td>
<td>2014</td>
<td>Cyprus</td>
<td>Coastal, low-NOx</td>
<td>45</td>
<td>100</td>
<td>OHchem agreed well with model</td>
<td>Mallik et al. (2018)</td>
</tr>
<tr>
<td>BEST-ONE</td>
<td>2016</td>
<td>North China Plain</td>
<td>Suburban, 60 km NE of Beijing</td>
<td>~0</td>
<td>~0</td>
<td>OHwave vs OHchem slope = 0.88</td>
<td>Tan et al. (2018)</td>
</tr>
</tbody>
</table>
suggesting that the high nighttime levels of OH were not due to interferences. Further, indirect support came from the nighttime decay rates of isoprene, which could be explained by the levels of OH observed.

The first, continuous use of a scavenger system for LIF measurements of ambient OH took place during the BEARPEX-09 (Biosphere Effects on Aerosols and Photochemistry Experiment II) field campaign in a California forest (Mao et al., 2012), using the Penn State FAGE instrument (GTHOS: Ground-based Tropospheric Hydrogen Oxides Sensor (Faloona et al., 2004)). OH measurements made using the chemical method (C3F6 scavenger) were on average only 40–60% of those made using the traditional spectral method, and gave much better agreement with a model, as shown in Figure 1.3. The authors concluded that the interference was not laser generated, as the OH signal scaled linearly with laser power (one-photon process), not quadratically (two-photon process), and matched the OH laser excitation spectrum. The difference between the two methods scaled with ambient temperature and was highly correlated ($R^2 = 0.94$) with binned median OH reactivity, suggesting that the interference was related to BVOC oxidation.

The same scavenger system was used during the SHARP (Study of Houston Atmospheric Radical Precursors) campaign in spring 2009, allowing for assessment of interferences in a polluted urban environment (Section 1.4.2.3) (Ren et al., 2013). Background signals were on the order of $\sim 2 \times 10^6$ molecule cm$^{-3}$ OH equivalent during the daytime ($\sim 30\%$ of the total OH signal), and $\sim 6 \times 10^5$ molecule cm$^{-3}$ at night ($\sim 50\%$). The daytime contribution of the interference was smaller than for BEARPEX-09 (Mao et al., 2012), where measurements of OHwave and OHchem were both in agreement with model predictions (within the 2σ measurement uncertainty of 40%). However, at night measurements of OHchem were significantly underpredicted, and thus the levels of OH observed ($\sim 6 \times 10^5$ molecule cm$^{-3}$) cannot be explained by interferences alone.

The Penn State scavenger system was used for GTHOS measurements of OH during another forest field campaign, the Southern Oxidant and Aerosol Study (SOAS) in summer 2013, which took place in Alabama (Feiner et al., 2016). Median diurnal OHwave was larger than OHchem by as much as a factor of four during the daytime, with peak concentrations of $\sim 1 \times 10^6$ and $\sim 4 \times 10^6$ molecule cm$^{-3}$, respectively. At night the background signal was $\sim 5 \times 10^5$ molecule cm$^{-3}$, while OHchem was below the 1 h
Figure 1.3: Diurnal cycle of measured and modelled OH during BEARPEX-09, showing improved model agreement when using the chemical background method (black line). Taken from Mao et al. (2012).

Figure 1.4: Observation of a high OH background signal during the ozonolysis of propene (see text for details). Taken from Novelli et al. (2014a).
GTHOS detection limit ($2–3 \times 10^5$ molecule cm$^{-3}$). Similar to the results in a California forest (Mao et al., 2012), the model was able to reproduce the observed OHchem concentrations (Section 1.4.2.2). The diurnal profile of the background signal exhibited a different shape to that of OHchem, peaking in the afternoon rather than midday, and persisting throughout late-afternoon and into the evening. Similarly, the background signal behaved differently to both OHchem and the model results when binned over isoprene and NO mixing ratios. The background decreased rapidly with increasing NO, while the model and OHchem measurements were virtually constant; the background and OHchem observations both increased almost linearly with isoprene, but the gradient was much larger for the background signal.

Similar results to Mao et al. (2012) were reported by Novelli et al. for measurements of OH made during three separate field campaigns in forested regions of Finland (HUMPPA-COPEC 2010: Hyytiälä United Measurements of Photochemistry and Particles in Air – Comprehensive Organic Precursor Emission and Concentration study), Spain (DOMINO HOx 2010: Diol Oxidants Mechanisms In relation to Nitrogen Oxides) and Germany (HOPE 2012: HOhenpeißenberg Photochemistry Experiment) (Novelli et al., 2014a). The scavenger was added using an “Inlet Pre-Injector” (IPI) system (Chapter 3), interfaced to the MPIC (Max Planck Institute for Chemistry) FAGE instrument (HORUS, HydrOxyl Radical measurement Unit based on fluorescence Spectroscopy). It was found that the background comprised 30–80% of the total OH signal during the daytime, and as high as 60–100% at night. Both propene (which could introduce an interference at high O$_3$ levels, see below) and propane were used as scavengers, with no statistically significant difference in performance. LIF and CIMS observations agreed well (within combined instrument uncertainties) with intercomparison slopes (LIF:CIMS) of 1.31 ($R^2 = 0.4$, poor correlation as a result of reduced sensitivity, due to low laser power and an aged detector) and 0.94 ($R^2 = 0.81$), for measurements made in Finland and Germany, respectively. The observations of OHchem in Finland were in good agreement with box model results (Section 1.4.2.2) (Hens et al., 2014). Again, laser generated interference was ruled out. Laboratory investigations into the nature of the interfering species were conducted, which showed that the reaction between O$_3$ and propene (reaction (R1.26)) generated high concentrations of OH even in the presence of propane scavenger (Figure 1.4). More detailed experiments suggested the likely cause of the interference was the formation of sClis, in this case syn-CH$_3$CHOO generated from propene and $trans$-2-butene ozonolysis, which decompose thermally to produce OH after
they are sampled into the low-pressure FAGE cell (Novelli et al., 2014b). This supports the postulate that the interference is related to oxidation of (alkene-based) BVOCs. However, these laboratory studies do not explain the magnitude of the observed background signal when extrapolated back to ambient O₃ and alkene concentrations (equivalent to ~4 × 10⁴ OH at 30 ppbv O₃, 500 pptv propene). Measurements using the same instrument in Cyprus in summer 2014 showed that interferences accounted for ~45% and ~100% of the total OHwave signal during the daytime and nighttime, respectively (Mallik et al., 2018).

The datasets from HUMPPA-COPEC 2010 and HOPE 2012 were further analysed to investigate the origin of the observed interference signal (Novelli et al., 2017). For the HUMPPA-COPEC campaign, conducted in a monoterpene-dominated boreal forest in Finland, a strong correlation was found between the OH background signal and temperature ($R^2 = 0.64$) for an exponential fit, which is the same as the temperature dependence of terpene emissions. Relatively strong linear correlations were observed with O₃ levels ($R^2 = 0.49$) and the turnover rates of ozonolysis reactions ($\text{TOR} = k_{O3+alkene} [O_3] [alkene], R^2 = 0.42$), and to a lesser extent, missing OH reactivity ($R^2 = 0.25$). In addition, the interference signal was correlated with the unexplained H₂SO₄ production rate ($R^2 = 0.36$), which is defined as the source strength from unknown H₂SO₄ sources¹ required to match observed H₂SO₄ concentrations (in addition to the reaction of OH with SO₂, which accounted for ~50% of the observed production rate). These results further support the hypothesis that the interference is caused by sCIs formed from the ozonolysis of BVOCs. For HOPE 2012, correlations were all much weaker ($R^2 \leq 0.26$), which may be as a result of the increased anthropogenic influence at this site. However, during the campaign, addition of SO₂, which reacts rapidly with sCIs (Taatjes et al., 2014), suppressed the OH background signals to zero within noise, indicating that sCIs were still the source of the interference in this environment. In the same work, steady-state sCI concentrations were estimated by three different approaches: unexplained H₂SO₄ and OH production rates, and missing OH reactivity. This yielded average sCI concentrations of ~5 × 10⁴ molecule cm⁻³, albeit with an order of magnitude uncertainty, for both field campaigns. The authors concluded that sCI chemistry is unlikely to have large impacts in

¹ Suspected to be from sCI oxidation of SO₂ e.g., Mauldin et al. (2012).
the atmosphere, although in certain environments (e.g. boreal forests) they may contribute substantially to the production of H$_2$SO$_4$.

During some of the nights of the CABIEX (Community Atmosphere Biosphere INteractions EXperiment) 2009 campaign (Section 1.4.2.2), which took place at the PROPHET site, a few short OH interference tests were conducted using a prototype scavenger system interfaced to the Indiana University (IU) FAGE instrument (Griffith et al., 2013). C$_3$F$_6$ and CO were used as OH scavengers and, in addition to the known, laser-generated O$_3$ interference, an OH equivalent of 4–9 × 105 molecule cm$^{-3}$ was observed, accounting for 50–100% of the nighttime OH concentrations, in contrast to the PROPHET 1998 results (Faloona et al., 2001). No such tests were performed during the daytime, however.

Subsequently, an automated C$_3$F$_6$ scavenger injector system was added to the IU FAGE instrument for measurements of OH during the CalNex-LA (California Research at the Nexus of air quality and climate change – Los Angeles) field campaign in summer 2010 (Griffith et al., 2016). While a significant background signal was observed, ~33% of the total signal at noon, this was consistent with the known, photolytic interference from ozone (Reactions (R1.1–R1.2)), as the measured and calculated (from laboratory calibrations) interference agreed within combined uncertainties. Measurements of OH were also made by the Penn State group in Bakersfield in the San Joaquin Valley (CalNex-SJV), where interferences contributed ~20% and ~80% to the total OH signal at noon and during nighttime, respectively (Brune et al., 2016). The relative contribution of the interference to OH measurements was similar to that observed in another polluted environment during the SHARP campaign (Ren et al., 2013), but smaller than the contributions measured in forests (Mao et al., 2012; Novelli et al., 2014a; Feiner et al., 2016).

Fuchs et al. (2016) assessed interferences for the Forschungszentrum Jülich (FZJ) FAGE instruments in both laboratory and chamber experiments. Tests were conducted on the short (10 cm between sampling and detection) and long (32 cm) inlets used for ground-based and aircraft measurements of OH, respectively. Based on the results of Novelli et al. (2014b), ozone and various alkenes, along with propane as a scavenger (up to 1000 ppmv, depending on the specific test), were mixed in a flow tube (τ ~ 1 s) that was interfaced to the FAGE cell nozzle. Interferences were indeed observed in these experiments, where the magnitude of the background signal was highly correlated with
Figure 1.5. Linear correlation between OH interference signals and alkene turnover rates, using a FAGE cell with a long (aircraft) inlet (see text for details). Abbreviations: var. = varied; prop. = propane; const. = constant; lim. = limonene. Taken from Fuchs et al. (2016).

Figure 1.6. Time series of trace gas and radical concentrations observed during an NO\textsubscript{3} interference test in the dark SAPHIR chamber, using a FAGE cell with a short (ground-based) inlet (see text for details). RO\textsubscript{x} cell (HO\textsubscript{x}): only CO added to flow tube; RO\textsubscript{x} cell (RO\textsubscript{x}): both CO and NO added to flow tube (see Chapter 2.1.2.2 for further details). UTC = Universal Time Coordinated. Taken from Fuchs et al. (2016).
the ozonolysis TOR, as shown in Figure 1.5. However, this interference is negligible when scaled back to ambient conditions, equivalent to \(\sim 3 \times 10^4 \) molecule cm\(^{-3}\) OH at the maximum TORs of 1.5 ppbv h\(^{-1}\) observed in a boreal forest (Hakola et al., 2012). The magnitude of the interference was larger for the long inlet, increased with cell pressure, and in accordance with the results of Mao et al. (2012) and Novelli et al. (2014a), no laser power dependence was observed. The background signal remained unchanged with increasing flow tube concentrations of H\(_2\)O and SO\(_2\), which are known to react rapidly with sCIs, suggesting that the interference was not caused by sCI decomposition, in contrast to other studies (Novelli et al., 2014b; Novelli et al., 2017; Rickly and Stevens, 2018). During an \(\alpha\)-pinene ozonolysis experiment in the SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction chamber (Karl et al., 2004)) chamber, FAGE OH measurements were in reasonable agreement with differential optical absorption spectroscopy (DOAS, Section 1.3.3) and modelled concentrations, but only after correction for the interference.

Similar interference tests were conducted for the IU FAGE instrument, with the monoterpenes \(\alpha\)-pinene, \(\beta\)-pinene and ocimene and C\(_3\)F\(_6\) scavenger (Rickly and Stevens, 2018). Interference signals were observed at high ozone and alkene concentrations and were correlated with the ozonolysis TOR, but were small when extrapolated back to ambient conditions (\(\sim 4 \times 10^5 \) molecule cm\(^{-3}\) OH equivalent), in agreement with Fuchs et al. (2016). Again, the interference signal was not laser-generated, and increased with inlet length. Addition of acetic acid (CH\(_3\)COOH), another known sCI scavenger (Welz et al., 2014), eliminated the interference, suggesting that sCI decomposition was the source of internal OH for the IU FAGE instrument, consistent with similar tests on the MPIC FAGE instrument (Novelli et al., 2017).

In addition to alkene ozonolysis intermediates, Fuchs et al. (2016) reported the first identification of an interference caused by NO\(_3\) radicals (Section 1.2.2). Figure 1.6 shows the results from an experiment where only NO\(_2\) and O\(_3\) (in dry synthetic air) were injected into the dark SAPHIR chamber, forming a mixture of NO\(_3\) and N\(_2\)O\(_5\), which were measured using cavity ring down spectroscopy (CRDS). Unexpected signals were observed for all radical species measured by FAGE (HO\(_2\) interferences and the measurement of RO\(_x\) are discussed in the next section), and were closely correlated to observed NO\(_3\) mixing ratios, but DOAS OH measurements were always below its detection limit (\(8 \times 10^5\) molecule cm\(^{-3}\)). The OH interference showed no dependence on
inlet length, cell pressure, laser power, or humidity, and the background signal did not change significantly in the presence of CO scavenger, suggesting the OH was indeed being formed internally. However, the mechanism for this process is unclear, as it must involve a hydrogen-containing compound, yet this is inconsistent with the absence of a humidity dependence. It was postulated that the interference may involve heterogeneous reactions on instrument surfaces or clusters formed in the gas expansion. Under atmospheric conditions the interference is small but potentially significant in some environments, equivalent to 1.1×10^5 molecule cm$^{-3}$ at 10 pptv NO$_3$. The known interference from acetone (Blitz et al., 2004; Ren et al., 2004) was also quantified and shown to be insignificant (5×10^4 molecule cm$^{-3}$ OH at 5 ppbv acetone and 10 mW laser power).

A prototype IPI system was used to test for interferences in the Peking University (PKU) LIF instrument (Tan et al., 2017), during a 2014 campaign in Wangdu, a rural site in the North China Plain (NCP). This FAGE instrument was built by FZJ and is similar in design to the instruments described in Fuchs et al. (2016), and would thus be expected to behave similarly in terms of interferences. Several tests were conducted using propane scavenger, revealing small but significant interferences1 of $0.5–1.2 \times 10^6$ molecule cm$^{-3}$, corresponding to 9–35% of the total OH signals. The largest relative interferences (30–35%) occurred in the late afternoon and early evening, and there was no discernible trend with OH reactivity, temperature or mixing ratios of NO, isoprene and ozone (and the product of ozone and isoprene, i.e. the ozonolysis TOR). Longer chemical modulation tests were conducted during the BEST-ONE (Beijing winter finE particle STudy – Oxidation Nucleation and light Exctinctions) field campaign (Jan – Mar 2016) (Tan et al., 2018). No significant interferences were found, with an OHwave vs OHchem intercomparison slope of 0.88 ± 0.02 ($R^2 = 0.80$).

The results outlined above demonstrate that, especially in forested environments, substantial improvement in model-measurement agreement is possible when OH backgrounds are determined chemically, suggesting that understanding of tropospheric oxidation processes in such regions may be better than previously thought (Mao et al., 2012; Hens et al., 2014; Feiner et al., 2016). This is further supported by the positive

1 In addition to the known, laser-generated O$_3$ interference, equivalent to $3–8 \times 10^5$ molecule cm$^{-3}$ for the O$_3$ mixing ratios observed during each test (assuming H$_2$O = 1% and laser power = 20 mW).
identification of two new OH interference candidates in laboratory experiments, namely intermediates in alkene ozonolysis reactions, which may (Novelli et al., 2014b; Novelli et al., 2017; Rickly and Stevens, 2018) or may not (Fuchs et al., 2016) be related to sCIs, and the NO₃ radical (Fuchs et al., 2016), although for all cases the observed interferences cannot explain the magnitudes of the OH background signals under ambient conditions. However, it is not known whether other LIF instruments suffer the same levels of interference, which are likely highly dependent on cell design and operating parameters, especially the residence time of air between sampling and detection (Novelli et al., 2014a; Fuchs et al., 2016; Rickly and Stevens, 2018). Differences in chemistry between environments will also contribute, such as NOₓ and O₃ levels, which are generally lower in tropical rainforests due to the reduced influence of air masses of anthropogenic origin. Interferences are likely dependent on the nature of the dominant BVOC, which is usually isoprene (e.g. (Feiner et al., 2016)), but sometimes 2-methyl-3-buten-2-ol (MBO) (e.g. (Mao et al., 2012)) or monoterpenes (e.g. (Novelli et al., 2014a)). However, it was suggested by Feiner et al. (2016) that, despite the differences in BVOC speciation between these studies, the relative contributions of the background signal were broadly similar, and thus interferences cannot be attributed to a particular chemical system, but must result from chemical processes common to different forested environments. Although, interferences have also been observed in urban environments (Ren et al., 2013; Brune et al., 2016) with similar absolute magnitudes (albeit with smaller relative contributions due to higher OH concentrations), and thus it cannot be ruled out that the interferences do indeed originate from distinct chemical mechanisms.

1.3.2.2 HO₂ interferences – measurement of alkylperoxy (RO₂) radicals

Addition of NO to the ambient air flow inside a FAGE cell results in the possibility of conversion of any RO₂ species present to HO₂ via reactions (R1.7–R1.8), and finally OH by reaction (R1.14). However, until recently it was assumed that while reaction (R1.7) proceeds efficiently, even at the low pressures inside a FAGE cell, reaction (R1.8) is too slow (e.g. k²⁹⁸ K₃CH₃O+O₂ = 1.9 × 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹ (Sander et al., 2011a)) and therefore would result in a negligible interference in HO₂ measurements from RO₂ radicals. Ren et al. showed that this was indeed the case for RO₂ radicals generated from a range of species, including alcohols, C₂-C₄ linear alkanes, propene and isoprene, for the Penn State LIF instrument (Ren et al., 2004).
In 2011, Fuchs et al. showed that RO\textsubscript{2} radicals derived from some organic species lead to substantial interferences in HO\textsubscript{2} measurements at the standard operating conditions (e.g. NO injection flow) of the FZJ LIF instrument (Fuchs et al., 2011). At a cell pressure of 2.6 Torr and a pinhole with a diameter of 0.4 mm, resulting in a 2.7 ms reaction time between NO injection and OH detection, conversion efficiencies (i.e. RO\textsubscript{2} → OH) of \textgreater 80\% relative to HO\textsubscript{2} were reported for alkene (including isoprene) and aromatic derived RO\textsubscript{2} species, with a slight negative dependence on water vapour mixing ratio. For the isoprene oxidation products methyl vinyl ketone (MVK) and methacrolein (MACR), the relative sensitivity was \textasciitilde 60\%. The interference from methane and ethane RO\textsubscript{2} was small (<10\%), but increased to \textasciitilde 50\% for the larger RO\textsubscript{2} derived from cyclohexane. This work showed that previous measurements had suffered from a significant interference, with an estimated (modelled) positive bias of \textgreater 30\% in daytime observations of HO\textsubscript{2} during the PRIDE-PRD2006 (Program of Regional IntegrateD Experiments of air quality over the Pearl River Delta, 2006, Section 1.4.2.2) field campaign (Lu et al., 2012). The total HO\textsubscript{2} concentration measured by FAGE, [HO\textsubscript{2}\textasciitilde], may be corrected for systematic biases from RO\textsubscript{2} species \textit{i} using the following expression:

\[
[\text{HO}_2^\dagger] = [\text{HO}_2] + \Sigma_i (\alpha_{RO2}^i \times [RO2]_i) \tag{E1.4}
\]

where [HO\textsubscript{2}] is the true HO\textsubscript{2} concentration and \(\alpha_{RO2}^i \) is the detection sensitivity (relative to HO\textsubscript{2}) of each RO\textsubscript{2} radical. However, this requires laboratory determination of the relative sensitivities of all, or at least the most significant, interfering species, in conjunction with a detailed chemical box model (Section 1.4) to calculate speciation of the mixture of RO\textsubscript{2} species present at any given time. Fortunately, the interferences could be reduced to below 20\% by lowering the NO concentration or reaction time (by using a smaller pinhole) in the cell. This resulted in a concomitant decrease in HO\textsubscript{2} sensitivity, due to a reduction in the rate of reaction (R14), but under most tropospheric conditions the sensitivity would still be acceptable (i.e. detection limit on the order of \(10^6 \) molecule cm-3 or less, \textasciitilde 1\% of typical concentrations).

The chemical conversion of RO\textsubscript{2} to OH described above has been exploited for measurements of total RO\textsubscript{x} (= OH + HO\textsubscript{2} + RO + RO\textsubscript{2}) in the RO\textsubscript{x}LIF method, first described by Fuchs and co-workers (Fuchs et al., 2008). In RO\textsubscript{x}LIF, ambient air is drawn
into a differentially pumped flow tube (83 cm × 6.6 cm), held at a pressure of 19 Torr,\(^1\) and sufficient NO (0.7 ppmv) is added downstream of the inlet to convert RO\(_x\) to OH via reactions (R7–R8) and (R14). A large excess of CO (0.17%) is also added to reduce radical wall losses, by partitioning almost all HO\(_x\) to HO\(_2\) via reaction (R1.9):

\[
\text{OH} + \text{CO} + \text{O}_2 \rightarrow \text{HO}_2 + \text{CO}_2 + \text{H}_2\text{O} \quad (\text{R1.9})
\]

as OH is lost much more quickly to instrument surfaces than HO\(_2\).

The outlet of the flow tube is sampled by a FAGE instrument (via a larger pinhole, 4 mm diameter), where as usual HO\(_2\) is converted to OH by reaction (R1.14). The relatively long residence time (0.62 s) in the flow tube ensures high RO\(_2\) to HO\(_2\) conversion, with similar sensitivities (limited by wall loss) for RO\(_2\) species derived from C\(_1\)–C\(_3\) linear alkanes, ethene and isoprene. There were no reported interferences, except for NO\(_x\) levels above 20 ppbv, the accuracy was \(\sim 20\%\) (2σ) and for a signal-to-noise ratio (SNR) of 2, the 1 min limit of detection (LOD) was \(\sim 0.1\) pptv.

The relative detection sensitivities for a limited number of RO\(_2\) species were determined (Ren et al., 2012) for the Penn State aircraft-based FAGE instrument (ATHOS: Airborne Tropospheric Hydrogen Oxides Sensor (Faloona et al., 2004)). Despite significant interferences of approximately 60%, this had little effect on measurements of HO\(_2\) during the ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites, Section 1.4.2.4) field campaign, with an estimated bias of \(\sim 4\%\), owing to the relatively low mixing ratios of alkene and aromatic VOCs observed during this polar study.

Whalley et al. conducted experiments on the RO\(_2\) interference for the University of Leeds FAGE instruments, and found that the level of interference suffered was highly dependent on cell design and operating conditions (Whalley et al., 2013). Under the operating parameters of the ground-based FAGE instrument deployed in the OP3 (Oxidants and Particle Photochemical Processes, Section 1.4.2.2) campaign (Hewitt et al., 2010; Whalley et al., 2011) in the Borneo rainforest, where OH loss was dominated by reaction with isoprene (Edwards et al., 2013), an experimental OH yield of 17% was determined for RO\(_2\) radicals derived from ethene and isoprene. This is equivalent to a positive bias with an upper limit of 10% in HO\(_2\) measurements, predicted from model simulations of

\(^1\) The reduced pressure minimises unwanted bimolecular reactions such as RO\(_x\) recombination (reactions (R1.18–R1.19)).
the RO₂ species present. A new ROₓLIF cell, similar in design to that described above (Fuchs et al., 2008), gave an OH yield of 95% from ethene-derived RO₂ radicals, and OH yields from a variety of species agreed well with model calculations. RO₂ radicals generated from large (>C₃) and cyclic alkanes had predicted OH yields that were highly temperature dependent. Whalley et al. showed that by varying the NO flow rate, partial speciation in RO₂ measurements could be achieved, between small (C₁–C₃) alkane-derived RO₂ and large alkane-, aromatic- and alkene-derived RO₂. The Leeds ground-based ROₓLIF cell design and the subtractions required for partially speciated measurements of RO₂ radicals are described in detail in Chapter 2.

Lew et al. (2018) quantified the level of RO₂ interference for the IU FAGE instrument, under the operating conditions of three separate field campaigns, which are discussed in more detail in Section 1.4.2. The relative sensitivities (RO₂ to HO₂ conversion efficiency) exhibited a slight dependence on the instrument sampling flow, determined by the pinhole diameter and the cell pressure, and were similar to those obtained for the Jülich FAGE instrument (Fuchs et al., 2011). A wide range of RO₂ species were tested and, in agreement with previous studies (Fuchs et al., 2011; Whalley et al., 2013), the relative sensitivities were generally larger for RO₂ radicals derived from alkene and aromatic VOCs, and yields increased with carbon number for alkane-based RO₂ species. While the RO₂ interference was known at the time of two of the field campaigns discussed, it had not yet been reported when results were first published from the MILAGRO (Megacity Initiative: Local And Global Research Observations) campaign, which was conducted in the Mexico City Metropolitan Area (MCMA) in 2006 (Dusanter et al., 2009a; Dusanter et al., 2009b). A box model was used to estimate the contribution of the RO₂ interference during this urban study, which was ~35% on average, where alkene-based species contributed ~51% to the total interference.

In addition to those from RO₂ radicals, interferences from NO₃ have been reported in both HO₂ and RO₂ measurements, as discussed in Section 1.3.2.1 and shown in Figure 1.6 (Fuchs et al., 2016). At typical atmospheric NO₃ mixing ratios of 10 pptv, the equivalent HO₂ and RO₂ signals were 1 × 10⁷ and 1.7 × 10⁷ molecule cm⁻³, respectively, where the

¹ This suggests that once αᵣRO₂ (E1.4) for several RO₂ species is known, others can be estimated using a box model (Section 1.4.1).
enhanced interference for RO₂ may be due to the additional surface area of the RO₃LIF flow tube (Fuchs et al., 2008).

1.3.3 Other OH, HO₂ and RO₂ Measurement Techniques

Other HOₓ measurement techniques are not discussed in detail here, but include CIMS, DOAS, Matrix Isolation Electron Spin Resonance (MIESR) and PEROxy Radical Chemical Amplification (PERCA) (Heard and Pilling, 2003). The CIMS method relies on the OH-oxidation of SO₂ to H₂SO₄ with detection of HSO₄⁻ following ionisation by NO₃⁻ (Eisele and Tanner, 1991). Total peroxy radical concentrations may be measured using CIMS (Peroxy Radical CIMS, PeRCIMS) after conversion to OH using NO (Kukui et al., 2008; Elste et al., 2013); similar to the RO₂LIF method (Section 1.3.2.2), speciation between HO₂⁺ and the sum (HO₂ + ΣRO₂) may be achieved with the addition of O₂ to the NO flow, at low and high NO:O₂ ratios, respectively (Hanke et al., 2002; Edwards et al., 2003; Hornbrook et al., 2011). Background signals must be obtained by the addition of an OH scavenger, such as propane (Eisele and Tanner, 1991) or NO₂ (Kukui et al., 2008). A major disadvantage of the CIMS technique is that it can only be used in relatively clean conditions (i.e. low NOₓ), as under more polluted conditions recycling of HO₂ to OH by ambient NO in the SO₂ titration region becomes significant, although this can be estimated from the scavenger addition. Typical detection limits (SNR = 2) for current-generation CIMS instruments are ~1–3 × 10⁵ molecule cm⁻³ for OH and ~0.03–5 × 10⁷ molecule cm⁻³ for HO₂ + ΣRO₂ at time resolutions of ~0.5–5 min, with accuracies of ~30–45% at the 2σ level (Hofzumahaus and Heard, 2016). CIMS has also been used to detect HO₂ directly with Br⁻ ionisation (Sanchez et al., 2016), and measured indirectly by the detection of HO₂NO₂ following ionisation by I⁻, with HO₂ concentrations derived from co-located measurements of temperature and NO₂ (Chen et al., 2017).

Other than FAGE, only the CIMS technique has shown continued success for radical field measurements. However, one DOAS instrument (Dorn et al., 1996; Brauers et al., 2001) is still used for intercomparison purposes in the SAPHIR chamber in Jülich, Germany. A major advantage of DOAS is that it is absolute, i.e. it does not involve external calibration, only knowledge of the optical path length and molecular absorption cross-sections are required. However, DOAS cannot measure peroxy radicals, and spectral retrievals are complex due to the presence of overlapping absorption features. The SAPHIR DOAS is currently the most accurate instrument for measurements of OH, 14% at 2σ, but suffers
from a relatively large detection limit of 1.6×10^6 molecule cm$^{-3}$ (3 min) (Hofzumahaus and Heard, 2016).

Another, indirect method for the measurement of $\text{HO}_2 + \Sigma \text{RO}_2$ is the PERCA technique (Cantrell and Stedman, 1982). In this method, addition of NO converts HO_2 to OH resulting in the formation of NO$_2$, which is detected (e.g. by luminol chemiluminescence, LIF, or cavity-enhanced absorption techniques such as CRDS):

$$\text{HO}_2 + \text{NO} \rightarrow \text{OH} + \text{NO}_2 \quad \text{(R1.15)}$$

The OH is reconverted back to HO_2 by the addition of CO:

$$\text{OH} + \text{CO} \rightarrow \text{H} + \text{CO}_2 \quad \text{(R1.9a)}$$

$$\text{H} + \text{O}_2 + \text{M} \rightarrow \text{HO}_2 + \text{M} \quad \text{(R1.9b)}$$

Similarly, in the presence of oxygen, RO$_2$ radicals result in the formation of NO$_2$ and HO_2:

$$\text{RO}_2 + \text{NO} \rightarrow \text{RO} + \text{NO}_2 \quad \text{(R1.7)}$$

$$\text{RO} + \text{O}_2 \rightarrow \text{R'}\text{CHO} + \text{HO}_2 \quad \text{(R1.8)}$$

The above reactions represent a chain mechanism that results in amplification of NO$_2$ concentrations, as the HO_2 formed in reactions (R1.8–1.9) can go on to react with NO (R1.15) to produce more OH and hence NO$_2$. Typically, ~100–200 NO$_2$ molecules are produced for each initial HO_2 molecule, with lower amplification factors (chain lengths) for RO$_2$ radicals (Hofzumahaus and Heard, 2016). Background NO$_2$ signals are obtained by suppressing the conversion chemistry, either by switching the CO flow with N$_2$ or adding CO downstream of the conversion reactor; this may be performed sequentially by flow modulation (single-channel), or the background may be measured simultaneously in a separate reactor (dual-channel). This background1 corresponds to the sum of ambient NO$_2$, the NO$_2$ generated from the reaction of ambient O$_3$ with reagent NO, plus any NO$_2$ formed in the reactor from non-radical sources, e.g. wall chemistry and the thermal decomposition of HO$_2$NO$_2$ and PANs.

In PERCA, peroxy radical signals are proportional to the difference in NO$_2$ concentrations between the two modes/reactors and the effective chain length, which

1 In single-channel mode, background NO$_2$ signals must be interpolated, which reduces precision (especially if ambient NO$_2$ or O$_3$ are fluctuating rapidly) and time resolution significantly. The technique is thus most accurate under clean air conditions.
must be determined regularly by calibration. The chain length is highly sensitive to ambient RH, which introduces the need for correction and hence additional uncertainty (Mihele and Hastie, 1998; Mihele et al., 1999). However, the strength of this dependence can be reduced if CO is switched for non-toxic ethane, although this is at the expense of sensitivity as the chain lengths are lower overall (Wood et al., 2016). Typical detection limits (SNR = 2) and accuracies (2σ) of PERCA instruments are ~2.5–7.5 × 10^7 molecule cm\(^{-3}\) (20–120 s) and 25–45%, respectively, depending on ambient O\(_3\) and water vapour levels (Green et al., 2006; Horstjann et al., 2014; Hofzumahaus and Heard, 2016).

A new, FAGE-based technique for detection of the CH\(_3\)O\(_2\) radical, which is not currently measured in the atmosphere, was described by Onel et al. (2017b). The method relies on the conversion of CH\(_3\)O\(_2\) to CH\(_3\)O using NO (Reaction (R1.7)), with LIF-detection of CH\(_3\)O at an excitation wavelength of ~298 nm, and fluorescence collection at red-shifted wavelengths of 320–430 nm (off-resonance detection). With an overall uncertainty of 30–34%, the method has a similar accuracy to FAGE measurements of OH and HO\(_2\). The detection limits (S/N = 2) for CH\(_3\)O\(_2\) and CH\(_3\)O were 3.8 × 10^8 and 3.0 × 10^8 molecule cm\(^{-3}\) for 5 min averages. The CH\(_3\)O\(_2\) detection limit was improved to 1.1 × 10^8 molecule cm\(^{-3}\) for 1 h averaging time, which is comparable to typical atmospheric concentrations of ~0.5–6 × 10^8 molecule cm\(^{-3}\), depending on environment (Whalley et al., 2010b; Whalley et al., 2011; Whalley et al., 2018). Therefore, the technique has potential for ambient measurements of CH\(_3\)O\(_2\), for example in low NO\(_x\) environments, or after further improvements to the sensitivity, which could achieved through a higher laser repetition frequency and a shorter inlet.

1.3.4 Instrument Comparisons

Radicals, particularly OH, are difficult species to measure in the troposphere due their low and highly variable concentrations and as such instrument comparisons are essential procedures for quality assurance in ambient measurements. Given the uncertainties associated with LIF interferences reported above, intercomparisons between different measurement techniques, for example between FAGE and DOAS, are of paramount importance. An informal comparison between LIF and CIMS was described briefly in Section 1.3.2.1 (Novelli et al., 2014a).

The most recent formal intercomparison campaign, HO\(_x\)Comp, took place in Jülich in summer 2005 (Schlosser et al., 2009; Fuchs et al., 2010; Kanaya et al., 2012). HO\(_x\)Comp was a formally blind intercomparison, with 3 days of ambient HO\(_x\) observations and 6
days of measurements inside the SAPHIR chamber. A wide range of isoprene and NO mixing ratios (see Section 1.4.2.2) were sampled and in total, 4 LIF instruments, 1 CIMS (ambient only) and 1 DOAS (chamber only) instrument participated in the campaign. For OH (Schlosser et al., 2009), pairwise observations were well correlated ($R^2 = 0.75–0.96$) and generally in good agreement between different instruments and methods, with intercomparison slopes of 1.01–1.13 (chamber) and 1.06–1.69 (ambient, more variable due to inhomogeneous sampling and calibration issues). For HO$_2$ (Fuchs et al., 2010), the Jülich MIESR instrument had failed and comparisons could only be made between different LIF instruments. Again, good correlations ($R^2 = 0.82–0.98$) were reported, but the level of agreement varied significantly, with slopes of 0.69–1.26 (chamber) and 0.46–2.95 (ambient). The variability was associated with an unknown factor related to water vapour. Additionally, interferences from RO$_2$ (Fuchs et al., 2011) and NO$_3$ (Fuchs et al., 2016) radicals (Section 1.3.2.2), which were not known about at the time, may have contributed to disagreements.

An intercomparison between RO$_x$LIF and the well-established MIESR technique (Mihelcic et al., 1985) was also conducted in the SAPHIR chamber in Jülich (Fuchs et al., 2009). Two sets of experiments were performed: photooxidation of CH$_4$ under tropospheric conditions, to generate HO$_2$ and CH$_3$O$_2$, and dark ozonolysis of 1-butene to form HO$_2$ and C$_2$H$_5$O$_2$. The measurements were in good agreement, with slopes of 0.98 ± 0.08 (1σ, $R^2 = 0.98$) and 1.02 ± 0.13 ($R^2 = 0.97$) for measurements of HO$_2$ and the sum of RO$_2$, respectively.

An intercomparison of HO$_x$ measurements using LIF and (PeR)CIMS was performed for the ARCTAS campaign in spring 2008 (Ren et al., 2012). Overall, the concentrations observed were in good agreement, with slopes (CIMS vs LIF) of 0.89 ($R^2 = 0.72$) and 0.86 ($R^2 = 0.72$) for OH and HO$_2$, respectively. However, a significant offset was observed for HO$_2$ (3.9 pptv, equivalent to ~1 × 108 at ground level). In general, most of the measurements were in agreement within combined instrumental uncertainties, of 72% for OH and 59% for HO$_2$ (2σ). The CIMS-to-LIF OH and HO$_2$ ratios decreased and increased with altitude, reaching ~0.4 and ~2 above 9 km, respectively. These discrepancies may be related to water vapour, for example the need for water in the OH-oxidation of 34SO$_2$, as they were most severe at the low water vapour mixing ratios (<3000 ppmv) characteristic of the upper troposphere.
CIMS and LIF measurements of OH, both using a chemical background technique (Section 1.3.2.1), were intercompared for the SOAS campaign in summer 2013 (Sanchez et al., 2017). Regression of the entire dataset yielded a slope (LIF vs CIMS) of 0.65 ($R^2 = 0.80$), indicating an overall negative bias in LIF OH measurements, although this was still within the uncertainty of the CIMS observations (40% at 2σ). On a diurnal basis, the discrepancies were significant in the early morning and late afternoon, corresponding to the times when OH concentrations were below 1×10^6 molecule cm$^{-3}$. The relative differences between the two techniques were most severe at low NO and OH concentrations, and high OH reactivities. The authors could not explain the origin of these discrepancies and suggested that further evaluation was required.

Onel et al., (2017a) described the intercomparison of indirect FAGE HO$_2$ measurements with those made using a direct, CRDS technique, first described by Thiebaud et al. (2007), although this has not yet been used for ambient measurements of HO$_2$ due to its poor detection limit ($\geq 3 \times 10^8$ molecule cm$^{-3}$ for ≥ 30 s averaging time). The comparison was performed in the Leeds Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC) chamber, allowing for an intercomparison of measurements at different pressures. The two methods were in good agreement, with regression slopes (FAGE vs CRDS) of 0.836 ± 0.004 (1σ) and 0.903 ± 0.002 at chamber pressures of 750 and 110 Torr, respectively.

1.3.5 Utility of Measurements of OH for Chemical Mechanism Evaluation

The short lifetime of OH (~0.01−1 s) means that OH (and to a lesser extent HO$_2$) is not affected by transport processes. Consequently, a steady-state OH concentration is reached within seconds in the troposphere, where OH production (P_{OH}) is equal to OH loss (L_{OH}):

$$P_{OH} = L_{OH}$$ \hspace{1cm} (E1.5)

$$L_{OH}/[OH] = \Sigma_n k_{OH+Ln}[L_n] = k'O_{H}$$ \hspace{1cm} (E1.6)

where k_{OH+Ln} is the bimolecular rate constant for the reaction of OH with sinks L_n (CO, NO$_2$, SO$_2$, VOCs etc.), and $k'O_{H}$ is the OH reactivity (inverse of the OH lifetime, τ_{OH}).

P_{OH} is defined by:

$$P_{OH} = P_{OH, primary} + k_{1.14}[HO_2][O_3] + k_{1.15}[HO_2][NO] + \Sigma_i v_i J_i + P'_{OH}$$ \hspace{1cm} (E1.7)

where $P_{OH, primary}$ is the rate of primary OH production through reactions (R1.1–R1.2), $\Sigma_i v_i J_i$ accounts for the photolysis of species i (e.g. HONO, H$_2$O$_2$), and P'_{OH} is the rate of
OH production from other chemical processes (e.g. alkene ozonolysis, reaction (R1.27a)). \(P_{\text{OH, primary}} \) is given by:

\[
P_{\text{OH, primary}} = 2f[\text{O}_3] \times J(\text{O}^{1}\text{D}) \tag{E1.8}
\]

where \(J(\text{O}^{1}\text{D}) \) is the ozone photolysis rate (equation (E1.1)), and \(f \) is the fraction of \(\text{O}^{(1\text{D})} \) atoms that react with water vapour to yield OH:

\[
f = \frac{k_{\text{O}^{1}\text{D}+\text{H}_2\text{O}}[\text{H}_2\text{O}]}{(k_{\text{O}^{1}\text{D}+\text{H}_2\text{O}}[\text{H}_2\text{O}] + k_{\text{O}^{1}\text{D}+\text{N}_2}[\text{N}_2] + k_{\text{O}^{1}\text{D}+\text{O}_2}[\text{O}_2])} \tag{E1.9}
\]

The denominator in equation (E1.9) accounts for the total loss rate of \(\text{O}^{(1\text{D})} \) atoms, for both reactive and collisional quenching (i.e. to the \(\text{O}^{(3\text{P})} \) electronic state) processes, neglecting loss to other, less abundant trace gases.

As long as the steady-state assumption is valid, the OH concentration can be calculated using measured concentrations of all (longer-lived) species that contribute to OH production and loss. Considering OH reacts with the majority of trace gases present in the atmosphere, it is difficult to measure all sinks \((L_n) \) individually, but recently measurements of the total OH loss rate, \(k'_{\text{OH}} \), have proved valuable as an integrated method to test our knowledge of OH loss pathways (Section 1.3.6).

The equations above describe the photostationary steady-state (PSS) approach to the calculation of OH concentrations. Similar steady-state expressions may be derived for \(\text{HO}_2 \), but this is more complicated than for OH, as it has many more known sources, and its second-order self-reaction must also be taken into account (e.g. (Carslaw et al., 1999; Whalley et al., 2018)). Consequently, \(\text{HO}_2 \) and other radical concentrations are normally calculated using a box model approach, with a more detailed chemical mechanism (Section 1.4.1).

Comparison of modelled and measured radical concentrations allows us to evaluate the performance of the chemical mechanism used within the model. Disagreement may result from inaccurate parameterisation in the model, for example errors in rate constants and product branching ratios, or because of unknown radical sources and sinks. Alternatively, disagreement may arise due to a lack of co-located supporting measurements of known radical sources and sinks, or if some species are measured incorrectly (e.g. due to interferences, Section 1.3.2). Modelling approaches and the comparison of modelled OH and \(\text{HO}_2 \) concentrations to field measurements are discussed in Section 1.4.
1.3.6 Measurement of OH Reactivity

It is estimated that 10^4–10^5 organic compounds have been measured in the atmosphere, but this number may only be a small fraction of the number of compounds actually present (Goldstein and Galbally, 2007). As discussed in Section 1.3.5, it is difficult to measure the concentrations of all species that contribute to OH loss, but the total OH reactivity, k'_{OH}, may be measured instead. Measurements of k'_{OH} may be compared to calculated and modelled OH loss rates to allow insight into the extent of missing reactivity, i.e. the contribution of unmeasured VOCs to OH loss rate. This contribution may be substantial, for example during the OP3 campaign, approximately 40% of the measured OH reactivity could not be accounted for by calculations using co-located measurements of VOCs and other OH sinks (Edwards et al., 2013), where unmeasured intermediates (BVOC oxidation products generated in the model) contributed ~50% of the calculated reactivity. Models help to identify the major unmeasured species that contribute significantly to missing reactivity, and hence measurements of OH reactivity serve as a guide for which species should be measured routinely in field campaigns.

Three methods have been widely reported in the literature for the measurement of k'_{OH} and are briefly described here. The first measurements of OH reactivity were reported by Kovacs and Brune, using the flow tube with sliding injector technique (Kovacs and Brune, 2001; Kovacs et al., 2003; Ingham et al., 2009; Edwards et al., 2013). This method relies on the LIF detection of OH following the injection of artificially high concentrations of OH into a flow tube sampling ambient air. k'_{OH} can be extracted from the pseudo-first-order decay of the OH signal as a function of reaction time, varied by moving the injector position and hence residence time of OH in the flow tube before detection. Similarly, the laser flash photolysis pump and probe technique (Chapter 2) also relies on LIF detection of OH, but here the 266 nm laser photolysis (pump) of O$_3$ is used to generate OH via reactions (R1.1–R1.2), and the OH signal decay (probe) is then observed in real time (Jeanneret et al., 2001; Sadanaga et al., 2004). Finally, the comparative reactivity technique, which does not employ FAGE, is used to measure k'_{OH} indirectly by monitoring1 the change in concentration of a reference compound (pyrrole) in the presence of ambient and synthetic air exposed to high concentrations of OH (Sinha et al., 2008).

1 For example using proton transfer reaction-mass spectrometry (PTR-MS).
1.4 HOx Measurements and Model Comparisons

The inherently complex nature of the atmosphere means that numerical models are routinely used in atmospheric chemistry to simulate the multitude of physical and chemical processes occurring simultaneously. Comparisons of model simulations to observations allow us to assess the current state of our knowledge of atmospheric processes. Models may also be used to predict future trends, for example the effects of changing emissions of various pollutants on greenhouse gas concentrations and hence their contribution towards radiative forcing. The international societal response to the pertinent issues of climate change and air quality is guided by model simulations, and as such models must be sufficiently accurate to allow us to confidently predict the success of mitigation strategies towards these issues.

Models in atmospheric chemistry vary in the complexity of their treatment of different atmospheric processes, from 3D global chemistry-climate models that simulate radiative and dynamic (transport and mixing) effects in detail with simplified chemical processes, through to zero dimensional box models that neglect physical processes (other than deposition) and instead focus on chemistry. The trade-off for reduced complexity, for example by reducing the number of species in a zero dimensional box model, is that the model simulation becomes less computationally expensive (i.e. model outputs are generated more quickly). The short lifetimes of OH and HO2 mean that the physical processes of mixing and transport can essentially be neglected, and a zero dimensional box model, with sufficient chemical complexity, is adequate to model HOx concentrations.

1.4.1 Box Model Mechanisms

Box models used for the calculation of radical concentrations require inputs, or constraints, in the form of physical parameters (temperature, pressure, photolysis rates) and chemical concentrations of long-lived species (O3, H2O, NOx, VOCs etc.). The model then calculates concentrations computationally by solving the sets of kinetic differential equations which determine the rates of transformations between species. Often, many intermediate species (e.g. OVOCs) are not measured, but their concentrations can be estimated in the model by using a “spin-up” period, where the model is allowed to run for several days until their concentrations are approximately equal from one day to the next (diurnal steady-state). Similarly, measurements of OH reactivity can be used to constrain
a model when supporting measurements of VOCs and other sinks are not available. A particularly useful tool in box models is the ability to perform rate of production (and destruction) analyses, which orders the relative importance of different production (and loss) mechanisms for a given species, i.e. to assess the budgets controlling its concentration.

An example of a chemical mechanism that can be incorporated within a box model framework is the Master Chemical Mechanism (MCM), developed in Leeds (Saunders et al., 1997; Jenkin et al., 2003; Saunders et al., 2003; Bloss et al., 2005a; Jenkin et al., 2012; Jenkin et al., 2015). The MCM (current version: MCMv3.3) is a near-explicit chemical mechanism, incorporating thousands of species (~6700) and reactions (~17,000) involved in the complex gas-phase tropospheric chemistry of 143 primary emitted VOCs. However, many parameters in the MCM, such as rate constants, branching ratios and their dependence on temperature and pressure, have not been determined experimentally. This limitation is overcome by using parameterisations predicted from structure activity relationships (SARs). Another chemical scheme commonly utilised in box models of HOx is the Regional Atmospheric Chemical Mechanism (RACM) (Stockwell et al., 1997; Goliff et al., 2013), which is a reduced chemical mechanism that includes 119 species and 363 reactions. Recently, Ren et al. compared the results of five photochemical mechanisms, including MCMv3.1 and RACM2, to HOx measurements made during the SHARP (Study of Houston Radical Precursors) campaign in spring 2009 (Ren et al., 2013). While all 5 mechanisms generally reproduced the measured HOx levels, the MCM resulted in the best agreement with observations of OH, determined using the OHchem method (Section 1.3.2.1).

Within 3D global chemistry-climate models, the chemical schemes used must be vastly reduced in complexity, to mitigate the computational expense of simulating dynamic and radiative processes on a global scale. Emmerson and Evans compared six reduced chemical mechanisms, commonly used in global modelling studies, against the near-explicit MCMv3.1 within a box model framework (Emmerson and Evans, 2009). It was found that in general, the mechanisms agreed well for simulations of OH, O3 and NOx under polluted conditions, and clean environments with low VOC loadings, but exhibited significant differences in biogenic environments.

1 http://mcm.leeds.ac.uk/MCM/
1.4.2 HOx Measurement-Model Comparisons in Different Environments

A summary of the most recent comparisons of modelled HOx concentrations to field observations is given below, separated by the type of region where measurements were made. For details of comparisons to earlier field campaigns, and for a more comprehensive discussion of observations in polar and semi-polluted environments, the reader is referred to the reviews of Heard and Pilling (2003) and Stone et al. (2012).

1.4.2.1 Remote Marine and Coastal

The marine boundary layer (MBL), which accounts for a substantial fraction (71%) of the atmospheric boundary layer, is characterised by clean air with generally low concentrations of NOx and VOCs. Daytime HOx observations have generally been well reproduced in remote marine regions (Stone et al., 2012), although there is still considerable uncertainty surrounding nighttime HOx chemistry. Inclusion of halogen chemistry can be key to reproducing radical concentrations, since XO (X = Br, I) radicals act to convert HO2 to OH (via hypohalous acids, HOX, see Figure 1.1). Model comparisons to HOx measurements from selected field campaigns in both remote and coastal MBL environments are summarised in Table 1.2 and discussed below.

The Southern Ocean Atmospheric Photochemistry EXperiment (SOAPEX-2), held during the austral summer of 1999 at Cape Grim in Tasmania, Australia, allowed for an assessment of radical chemistry under baseline conditions, characterised by extremely low mixing ratios of NO (<2–3 pptv) (Creasey et al., 2003; Sommariva et al., 2004). Measured OH concentrations exhibited a strong linear correlation ($R^2 = 0.90$) with the rate of primary production (Equation (E1.8), Reactions (R1.1–R1.2)), while HO2 observations were proportional to the square root of this production rate, as expected under such low NO conditions (Creasey et al., 2003). Steady-state calculations of OH, with primary production as the sole OH source and loss to CH4 and CO only, overestimated maximum daytime concentrations by ~20%. An MCMv3.0 model constrained to measurements of CH4, CO and 17 VOCs agreed with a simplified model, constrained to CH4 and CO only, to within 5–10% (Sommariva et al., 2004). The full model overestimated OH measurements by 10–20%, and HO2 observations by ~40%, although agreement for HO2 could be reached with inclusion of heterogeneous uptake (using $\gamma_{HO2} = 1$). For the one day with DOAS measurements of IO available (maximum of 0.8 pptv observed), modelled OH concentrations increased by ~10% while HO2 levels decreased by ~10%.
Table 1.2. Summary of selected HOx measurement-model comparisons in remote marine and coastal environments. All measurements were made using the LIF technique. *Unless otherwise stated. ¹ROx measured using PERCA.

<table>
<thead>
<tr>
<th>Campaign</th>
<th>Month(s), Year</th>
<th>Location</th>
<th>Platform</th>
<th>Marine Environment Type</th>
<th>OH Measured (10^6 cm⁻³)</th>
<th>Model Agreement</th>
<th>HOx Measured (10^6 cm⁻³)</th>
<th>Model Agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOAPEX-2</td>
<td>Jan-Feb, 1999</td>
<td>Cape Grim, NW Tasmania, Australia</td>
<td>Ground</td>
<td>Remote</td>
<td>3.5 (average maximum)</td>
<td>10–20% overprediction</td>
<td>2 (average maximum)</td>
<td>~40% overprediction</td>
</tr>
<tr>
<td>NAMBLEX</td>
<td>July-Sep, 2002</td>
<td>Mace Head, Ireland</td>
<td>Ground</td>
<td>Coastal, strong halogen influence</td>
<td>3–8 (noon)</td>
<td>Agreement within 25%</td>
<td>0.9–2.1 (noon)</td>
<td>Overpredicted by up to a factor of 2</td>
</tr>
<tr>
<td>INTEX-A</td>
<td>Jul-Aug, 2004</td>
<td>N America and W Atlantic Ocean</td>
<td>Aircraft</td>
<td>Remote</td>
<td>~0.25 pptv up to 6 km, ~0.86 pptv at 12 km</td>
<td>Median measurement-to-model ratio of 0.95</td>
<td>Decrease with altitude from ~30–8 pptv for 0–12 km</td>
<td>Median measurement-to-model ratio of 1.28</td>
</tr>
<tr>
<td>INTEX-B</td>
<td>Mar-May, 2006</td>
<td>Pacific Ocean</td>
<td>Aircraft</td>
<td>Remote</td>
<td>~2 up to 12 km, no trend with altitude</td>
<td>30% overprediction below 4 km, good agreement above 4 km</td>
<td>Decrease with altitude from ~3.5–0.8 for 0–12 km</td>
<td>Agreement within ~10%</td>
</tr>
<tr>
<td>⁸OOMPH</td>
<td>Mar 2007</td>
<td>S Atlantic Ocean</td>
<td>Ship</td>
<td>Remote</td>
<td>Up to ~6</td>
<td>Agreement within ~10% during daytime (reduced mechanism)</td>
<td>Up to ~4</td>
<td>Overpredicted by up to ~40% (reduced mechanism)</td>
</tr>
<tr>
<td>RHaMBLe</td>
<td>May-Jun, 2007</td>
<td>Cape Verde, Atlantic Ocean</td>
<td>Ground</td>
<td>Remote</td>
<td>~5–6 (noon), up to 9</td>
<td>Agreement within 20%</td>
<td>~2–3 (noon), up to 6</td>
<td>Agreement within 20%, underpredicted in first half of campaign and at night</td>
</tr>
<tr>
<td>⁸DOMINO</td>
<td>Nov-Dec, 2008</td>
<td>El Arenosillo, near Huelva, SW Spain</td>
<td>Ground</td>
<td>Coastal, close to petrochemical industry</td>
<td>Up to ~4 in continental air, ~2.5 in marine air</td>
<td>Reasonable agreement using a reduced-chemical scheme in a mixed-layer model</td>
<td>Up to ~1.5 in continental air, ~0.75 in marine air</td>
<td>Agreement around midday, significantly underpredicted in morning and afternoon</td>
</tr>
<tr>
<td>SOS</td>
<td>Feb-Mar, Jun, Sep, 2007</td>
<td>Cape Verde, Atlantic Ocean</td>
<td>Ground</td>
<td>Remote</td>
<td>9 (middy maximum)</td>
<td>Agreement within 10%, but 52% overprediction when constrained to halogens</td>
<td>4 (middy maximum)</td>
<td>Agreement within 26%, within 21% when constrained to halogens</td>
</tr>
<tr>
<td>CYPHEX</td>
<td>Jul 2014</td>
<td>NW Cyprus</td>
<td>Ground</td>
<td>Coastal</td>
<td>6 (middy maximum)</td>
<td>Agreement within 10%</td>
<td>6 (middy maximum)</td>
<td>Agreement within 17% on average</td>
</tr>
</tbody>
</table>
The North Atlantic Marine Boundary Layer EXperiment (NAMBLEX) took place at Mace Head, on the Atlantic coast of Ireland, in summer 2002 (Heard et al., 2006). In general, Mace Head is characterised by exceptionally clean air conditions, where air masses arriving at the site have frequently spent five days travelling over the Atlantic Ocean, and thus it may be considered to be representative of Northern Hemisphere background conditions. In addition, seaweed beds exposed at low tide represent a significant source of halogen-containing species such as I₂, CH₂I₂ and CHBr₃ (Carpenter et al., 1999; Carpenter et al., 2003; McFiggans et al., 2004).

For NAMBLEX, a steady-state model was able to reproduce the OH measurements with a diurnally averaged measurement-to-model ratio of 0.96 ± 0.35, although there was a systematic tendency to underpredict in the early morning and late afternoon, and overpredict around midday (Smith et al., 2006). A cubic equation used to calculate HO₂ concentrations overpredicted them by a factor of 3.22 ± 0.69, which was reduced to 1.87 ± 0.61 after inclusion of halogen chemistry and heterogeneous loss processes. Increasing IO concentrations by ten times the measured DOAS levels, to reflect the dominance of the inter-tidal region as an iodine source over the DOAS light path (Saiz-Lopez et al., 2006), further reduced the overprediction to 1.29 ± 0.36.

The impact of IO, which was measured during NAMBLEX, on HO₂ concentrations was also investigated by Bloss et al. (2005b). Under low NOₓ conditions (<50 pptv NO), up to 40% of HO₂ was lost to IO (Reaction (R1.16)), for daily maximum IO mixing ratios of 0.8–4.0 pptv (averaged over the DOAS light path). In addition, it was found that up to 15% of OH could be formed from HOI photolysis (Reaction (R1.17)) at midday. While BrO could not be measured with IO simultaneously, due to their different spectral windows, up to 6.5 pptv was observed. Although BrO reacts more slowly with HO₂ than IO (by a factor of 3.8 at 298 K (Sander et al., 2011b)), and the photolysis rate of HOBr is 4.5 times slower than HOI, thus reducing the rate of HO₂ to OH conversion, its faster heterogeneous loss relative to photolysis increased the total loss of HOₓ by almost 60%.

A more comprehensive comparison of measured and modelled OH and HO₂ during NAMBLEX was presented by Sommariva et al. (2006), concentrating on clean days that were characterised by westerly and north-westerly back trajectories and low NOₓ levels (<30 pptv NO and 60–80 pptv NO₂). A time series of measured OH and HO₂ concentrations along with various model scenarios for a six day clean period is shown.
Figure 1.7. Observed (yellow markers, ±2σ standard deviation) and modelled (lines and markers) OH (left) and HO₂ (right) concentrations during a six day period of the 2002 NAMBLEX campaign. The various model scenarios correspond to different levels of complexity (fulloxy = constrained to OVOC measurements; io = constrained to halogen measurements; het_ho₂ = γHO₂ increased from 0.006 (at 298 K) to the maximum theoretical value of 1; het_hoi = γHOI decreased to from 0.6 (Wachsmuth et al., 2002) to 0.06 (Mössinger and Cox, 2001)). Taken from Sommariva et al. (2006).
in Figure 1.7. The MCM (v3.1) base model was able to reproduce OH concentrations to within 25%, but HO₂ was overpredicted by a factor of ~2. Addition of OVOCs (acetaldehyde, acetone and methanol; note, HCHO constrained in all model scenarios) improved the model agreement for OH and HO₂, demonstrating their importance as radical sources and sinks. Further improvement was gained after constraining the model to DOAS-measured IO and BrO, and inclusion of a detailed description of heterogeneous loss processes, taking into account both gas-phase diffusion and mass accommodation; these additions resulted in increases in OH of up to 15% and decreases in HO₂ of up to 30%, as shown in Figure 1.7. The radical concentrations were sensitive to the uptake coefficients used for HO₂, HOBr and HOI. Increasing the HO₂ uptake coefficient to its maximum theoretical value of unity reduced HO₂ and OH concentrations by up to 40% and 30%, respectively, while decreasing the HOI uptake coefficient by an order of magnitude had a negligible impact on HO₂ (<5%) but increased OH concentrations by up to 15%. However, inclusion of both heterogeneous and halogen chemistry was still insufficient to reconcile the radical measurements (Figure 1.7), unless it was assumed that IO concentrations were an order of magnitude greater than those measured by DOAS, to account for the inhomogeneous distribution of halogen species across the DOAS light path (as suggested by Smith et al. (2006), based on the evidence provided by Saiz-Lopez et al. (2006)).

Elevated HO₂ concentrations of 1–3 × 10⁷ molecule cm⁻³ were observed on the one night of the NAMBLEX campaign with nighttime HOₓ data available (Sommariva et al., 2007), while OH levels were always below the instrumental limit of detection (6 × 10⁴ molecule cm⁻³, 20 s). An MCM (v3.1) model overestimated HO₂ concentrations by 30–40%, although this was within the instrumental uncertainty of 50% and in better agreement than the daytime results (Sommariva et al., 2006). PERCA measurements of total peroxy radicals (HO₂ + ΣRO₂) were reproduced to within 15–30% in general, although the agreement was more variable and there was a tendency to underestimate the observations. A base model run, constrained only to inorganic species and physical parameters, underpredicted HO₂ and HO₂ + ΣRO₂, demonstrating that VOCs rather than CO and CH₄ were the main peroxy radical sources. The ozonolysis of light alkenes maintained a slow but steady source of OH, which was compensated by the slow removal of radicals through the reaction of OH with NO₂ and peroxy radical self- and cross-reactions. The model underestimated DOAS NO₃ concentrations by factors of 5–10 or more, but were in
reasonable agreement with CRDS measurements, typically to within 30–50% with a tendency towards underprediction.

Flights over the western Atlantic Ocean (as well as continental North America) were conducted as part of the INtercontinental chemical Transport EXperiment-A (INTEX-A) field campaign, in summer 2004 (Singh et al., 2006), during which the Penn State ATHOS instrument was mounted on-board the NASA DC-8 for measurements of OH and HO$_2$ (Ren et al., 2008). In general, modelled HO$_x$ concentrations (NASA Langley Research Center (LaRC) box model (Crawford et al., 1999; Olson et al., 2004)) were in good agreement with observations, with median measurement-to-model ratios of 0.95 and 1.28 for OH and HO$_2$, respectively. However, the model success for HO$_2$ showed a strong dependence on altitude, with agreement within ~20% below 8 km, but a factor of ~3 underprediction at 11 km. NO mixing ratios were also elevated in this altitude bin, suggesting that an unknown HO$_x$ source of convective origin was missing from the model. The major HO$_x$ sources were also altitude-dependent, with primary production (Reactions (R1.1–1.2)) and HCHO photolysis dominating at low (<7 km) and high altitudes, respectively. Similarly, the major HO$_x$ loss processes were HO$_2$ + RO$_2$ self-reactions at low altitudes (<8 km), but above this level the reactions of OH with NO and NO$_2$ dominated.

A second aircraft campaign, INTEX-B, took place over the Pacific Ocean and the Gulf of Mexico during spring 2006 (Singh et al., 2009), providing the first airborne measurements of OH reactivity (Mao et al., 2009). Again, instruments were housed on-board the NASA DC-8, and the LaRC box model was used to simulate radical concentrations. NO concentrations were generally less than ~109 molecule cm$^{-3}$, equivalent to 41 pptv at ground level. While modelled HO$_2$ concentrations were in excellent agreement with ATHOS measurements, OH was overpredicted at low altitudes, by ~30% below 2 km. The overprediction of OH coincided with underpredictions of OH reactivity (~20% missing on average) and HCHO (not constrained in the model), suggesting that the discrepancy was related to unmeasured, highly reactive VOCs that form HCHO as an oxidation product. OH formation was dominated by primary production (Reactions (R1.1–1.2)) at low altitudes (~60% below 2 km), and recycling from HO$_2$ (Reactions (R1.14) and (R1.15)) at high altitudes (~70% at 11–12 km). OH was lost mainly via reactions with CO (~60%) and OVOCs (~15%).
The OOMPH (Ocean Organics Modifying Particles in both Hemispheres) ship campaign took place over the Southern Atlantic Ocean in March 2007 (Beygi et al., 2011). In general, the air masses encountered were representative of pristine background conditions, during which average NO$_x$ mixing ratios of ~13 pptv were observed, among the lowest ever recorded in ambient air. OH and HO$_2$ concentrations measured using the MPIC HORUS instrument were well captured by the condensed, steady-state MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) box model (Kubistin et al., 2010). Analysis of Leighton ratios, a measure of the deviation from the NO-NO$_2$-O$_3$ PSS (Leighton, 1961), suggested the presence of an unknown NO-to-NO$_2$ oxidant under low NO$_x$ conditions that, based on PERCA measurements (Green et al., 2006), may also have played a role in RO$_x$ chemistry. Halogen monoxide and DMS chemistry were ruled out as the source of this discrepancy due to their low modelled (e.g., BrO ≪ 1 pptv) and measured (DMS ~ 50 pptv) concentrations.

OH and HO$_2$ radicals were measured over the tropical Atlantic Ocean using the University of Leeds ground-based FAGE instrument (Chapter 2) as part of the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) campaign, which took place at the Cape Verde Atmospheric Observatory (CVAO) during summer 2007 (Whalley et al., 2010b). Although the CVAO is located on the island of São Vicente, 500 km off the west coast of Africa, it is considered to be a remote marine site due to the predominant influence of clean air arriving from the North Atlantic, at least during spring and summer (Lee et al., 2010). Unlike for NAMBLEX, the site is not influenced by halogen emissions from seaweed beds, but there is a source of reactive bromine through sea salt aerosol chemistry (Keene et al., 2009). A box model incorporating the MCMv3.1, with additional halogen chemistry and heterogeneous loss processes, was able to simulate the observed OH concentrations within the 1σ measurement uncertainty of 20%. However, while the model captured the HO$_2$ observations within 20% during the later stages of the project, HO$_2$ was significantly underestimated by 39% during the first part of the campaign. It was suggested that elevated concentrations of HCHO, which was not constrained in the model, during the first part of the campaign may have accounted for most of this discrepancy. Similarly, nighttime HO$_2$ was significantly underpredicted, but this could be resolved with the inclusion of 100 pptv of PAN, which was not measured during the campaign but could have been entrained from cooler air aloft before thermally decomposing in the surface layer (to form HO$_2$ via subsequent acetylperoxy radical chemistry). The dominant source of OH was primary production (Reactions (R1.1–1.2), 76%), with small but
significant contributions from the photolysis of the hypohalous acids HOBr and HOI (Reaction (R1.17), 13% total), while it was lost mainly to reactions with CO (Reaction (R1.9a), 28%), acetaldehyde (25%) and CH₄ (~15%). For HO₂, the major sources were the reactions of OH with CO (41%) and of CH₃O with O₂ (16%), and its loss occurred mostly through cross-reactions with RO₂ radicals (Reaction (R1.19), 40%) as well as aerosol uptake and surface deposition (23% total). In addition, despite low levels of the halogen oxides BrO and IO, with maximum observed daytime mixing ratios of 2.5 and 1.9 pptv, respectively, they accounted for 19% of the instantaneous HO₂ loss (Reaction (R1.16)).

The Seasonal Oxidant Study (SOS) at the CVAO over the course of 2009 showed that ~70% of the variation in OH and HO₂ concentrations could be explained by diurnal behaviour, with the remaining 30% due to changes in air mass (Vaughan et al., 2012). High summer OH and HO₂ concentrations were reported, 9 × 10⁶ and 4 × 10⁸ molecule cm⁻³, respectively, approximately double those seen in winter, and HO₂ persisted throughout the night at ~10⁷ molecule cm⁻³. Measurement-model comparisons for SOS were presented by Stone et al. (2018). An MCMv3.2 model was able to reproduce the diurnal trends and absolute levels of OH (model vs obs. slope = 1.09, R² = 0.49) and HO₂ (slope = 1.26, R² = 0.77), although inclusion of halogen chemistry (X = Br, I) resulted in the overprediction of OH by a factor of ~1.5 at noon (through reactions of XO with HO₂ and the subsequent photolysis of HOX). A GEOS-Chem model could reproduce radical diel profiles, but overpredicted their concentrations, which may relate to missing oceanic OVOCs such as formic acid (Millet et al., 2015). In comparison to the MCM, inclusion of halogen chemistry had the opposite effect on OH concentrations, since XO chemistry acted to reduce ozone concentrations and therefore the rate of primary OH production (O¹D + H₂O), highlighting the different timescale effects of the two model approaches. Primary ROₓ production dominated by O¹D + H₂O (~83%) with some contribution from HCHO photolysis (~10%), while ROₓ loss occurred at roughly equal rates through HO₂ + CH₃O₂ (~23%), HO₂ heterogeneous uptake (~21%), and HO₂ self-reaction (~19%).

In contrast to the studies described above that were conducted mostly in remote marine environments, the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) field campaign, which took place at a coastal site in southwest Spain in autumn/winter 2008, was influenced by air from three major wind sectors: urban-industrial (mostly petrochemical), continental (passing over central Spain) and marine (Sinha et al., 2012).
Measurements of OH, HO\textsubscript{2} and OH reactivity were greater for the urban-industrial and continental sectors; observations of OHchem at the same site in 2010 showed that OH interferences were of a similar magnitude for both of these sectors, contributing approximately 50% and 100% of the total signal during day and night, respectively (Novelli et al., 2014a). A case study was performed for one of the days of the campaign, where a mixed-layer model, coupled to MOZART (Model for OZone And Related Tracers) and a reduced chemical scheme, was used to simulate boundary layer dynamics and radical concentrations (van Stratum et al., 2012). The MOZART scheme underpredicted OH while the reduced scheme gave good agreement, within ~10% during the daytime. However, measurement interferences were not accounted for that, if similar between the 2008 and 2010 campaigns, would likely bring the measured OH concentrations closer to the MOZART predictions, which were ~50% of the concentrations obtained using the reduced chemical scheme during the daytime. In contrast, HO\textsubscript{2} concentrations were in good agreement with MOZART simulations around midday, but substantially underpredicted in the morning (NO ~ 0.1–0.15 ppbv) and late afternoon (NO < 0.05 ppbv), while the reduced scheme generally overestimated HO\textsubscript{2} (by up to ~40%), although again interferences were not taken into account. Total peroxy radical (HO\textsubscript{2} + ΣRO\textsubscript{2}) concentrations were also measured using PERCA, with higher levels of peroxy radicals observed during the nighttime of up to 2 × 109 molecule cm-3 (Andrés-Hernández et al., 2013). Nocturnal periods of elevated peroxy radical concentrations were associated with the arrival of VOC plumes from industrial emissions. Using a PSS model based on the Leighton ratio (Leighton, 1961), ~50% of the observed nighttime peroxy radicals could be accounted for with NO\textsubscript{3} chemistry, with the remainder likely formed from the ozonolysis of unmeasured VOCs.

The CYprus PHotochemistry EXperiment (CYPHEX) of summer 2014 was characterised by highly processed marine air masses, with low NO mixing ratios (<100 pptv) and little influence from local anthropogenic and biogenic emissions (Mallik et al., 2018). OH and HO\textsubscript{2} observations were in good agreement (within 10% and 17%, respectively) with a MECCA-based box model, although HO\textsubscript{2} was underpredicted by up to 38% at high monoterpene mixing ratios (>80 pptv). O1D + H\textsubscript{2}O was the main daytime OH source (generally >45%), with HONO photolysis important in the early morning (12% daytime average), while the main OH sinks were CO (35%) and CH\textsubscript{4} (17%).
Field measurements of OH and HO$_2$ radicals in the MBL have shown that in general, models are capable of simulating the observed concentrations to within ~30% or better. The majority of studies were characterised by clean air masses with low NO mixing ratios (Sommariva et al., 2004; Heard et al., 2006; Mao et al., 2009; Whalley et al., 2010a; Beygi et al., 2011; Vaughan et al., 2012; Mallik et al., 2018), where observed OH and HO$_2$ concentrations were generally in the range ~3–8 × 10^6 molecule cm$^{-3}$ and ~1–4 × 10^8 molecule cm$^{-3}$. Radical production is normally dominated by the reaction of O$_1^+$D with water vapour, but HCHO is often an important primary radical source (Ren et al., 2008; Stone et al., 2018). Similarly, owing to low primary VOC levels, OVOCs can account for a significant proportion of OH reactivity (Sommariva et al., 2006; Mao et al., 2009; Whalley et al., 2010a; Stone et al., 2018). HO$_x$ chemistry was shown to be sensitive to halogen chemistry in some studies (Bloss et al., 2005b; Stone et al., 2018), particularly the partitioning between OH and HO$_2$ since BrO and IO radicals act to convert HO$_2$ to OH. Heterogeneous uptake of HO$_2$ on aerosols can be a significant HO$_x$ loss route (Sommariva et al., 2004; Sommariva et al., 2006; Whalley et al., 2010a; Stone et al., 2018), but considerable uncertainty surrounds the treatment of heterogeneous processes such as in the parameterisation of uptake coefficients (γ_{HO2}), which are often set to unrealistically high values to achieve measurement-model agreement.

1.4.2.2 Biogenic, Low NO$_x$

BVOC emissions play an important role in atmospheric chemistry and the climate system (Pacifico et al., 2009). Isoprene is the dominant VOC globally in terms of emissions, with annual emission estimates of ~400–600 Tg of carbon (Arneth et al., 2008), mostly from tropical forests but with smaller contributions from temperate and boreal forests, the latter of which is also an important source of monoterpenes. Thus, detailed knowledge of the atmospheric chemistry of isoprene is of paramount importance for understanding its effects upon air quality and the Earth system. This is especially true considering that isoprene emissions are mostly in regions important for net global CH$_4$ loss.

Isoprene is highly reactive towards radicals, with a lifetime with respect to OH-oxidation of ~1.7 h (for OH = 1.6 × 10^6 molecule cm$^{-3}$), due to the presence of conjugated double bonds (Wayne, 2000). Global model simulations predict substantial depletions of OH concentrations in tropical forest regions, owing to their high emissions of isoprene, as shown in Figure 1.8. However, recent measurements in such environments have shown
Figure 1.8: GEOS-Chem model simulation of OH concentrations in the lowest 300 m of the atmosphere for July 2005. Black circles show regions where OH is depleted due to high BVOC emissions. Taken from Edwards (2011).

substantial model underpredictions in HO\textsubscript{x} concentrations, discussed below and summarised in (Table 1.3).

OH and HO\textsubscript{2} were measured by LIF in Rishiri Island, Japan, in September 2003 (Kanaya \textit{et al.}, 2007b). While comparisons to a RACM box model showed generally good agreement for OH, within 5% during the daytime when constrained to HO\textsubscript{2}, there was a tendency for underprediction at low NO levels (<100 pptv). In contrast, daytime HO\textsubscript{2} was overpredicted by 89% on average, and underpredicted at NO levels above ~800 pptv. While isoprene levels were not reported, it only contributed 8% to modelled OH reactivity as OH was lost mainly \textit{via} reactions with CO and CH\textsubscript{4}. However, total monoterpene mixing ratios reached up to ~1 ppbv, and exhibited correlations with nighttime OH ($R^2 = 0.39$) and HO\textsubscript{2} ($R^2 = 0.60$) observations.

LIF observations of HO\textsubscript{x} over the Amazonian rainforest were made during the GABRIEL (Guyanas Atmosphere Biosphere exchange and Radicals Intensive Experiment with the Learjet) campaign in 2005 (Butler \textit{et al.}, 2008; Lelieveld \textit{et al.}, 2008; Kubistin \textit{et al.}, 2010; Martinez \textit{et al.}, 2010). Simulations using various box models including the condensed MECCA box model, with MCM and MIM (Mainz Isoprene Mechanism) chemistry, showed substantial underpredictions in both OH and HO\textsubscript{2}. The degree of
Table 1.3. Summary of selected HO\textsubscript{x} measurement-model comparisons in low NO\textsubscript{x}, biogenic environments. NO and C\textsubscript{5}H\textsubscript{8} mixing ratios given as mean, ranges or upper limits where appropriate. aGABRIEL results correspond to concentrations measured in the boundary layer over the forest.

<table>
<thead>
<tr>
<th>Campaign</th>
<th>Month(s), Year</th>
<th>Location</th>
<th>Platform</th>
<th>Measurement Technique</th>
<th>NO (ppbv)</th>
<th>C\textsubscript{5}H\textsubscript{8} (ppbv)</th>
<th>OH</th>
<th>HO\textsubscript{2}</th>
<th>Model Agreement</th>
<th>Measured (108 cm-3)</th>
<th>Model Agreement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rishiri Island</td>
<td>Sep, 2003</td>
<td>Rishiri Island, Japan</td>
<td>Ground</td>
<td>LIF</td>
<td>0.01–1.1</td>
<td><10% of OH reactivity</td>
<td></td>
<td></td>
<td>2.7 (noon)</td>
<td>General underprediction for NO < 0.1 ppbv</td>
<td>1.5 (noon)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~2 fold overprediction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aGABRIEL</td>
<td>Oct, 2005</td>
<td>Suriname, South America</td>
<td>Aircraft</td>
<td>LIF</td>
<td>0.02</td>
<td>2.0</td>
<td></td>
<td></td>
<td>5.5 (noon)</td>
<td>12.2 fold underprediction</td>
<td>10.5 (noon)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.1 fold underprediction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRIDE-PRD2006</td>
<td>Jul, 2006</td>
<td>PRD, China</td>
<td>Ground</td>
<td>LIF</td>
<td>≤40</td>
<td>1–6</td>
<td></td>
<td></td>
<td>1.5 (noon)</td>
<td>Underprediction by ~3–5</td>
<td>1.5 (noon)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Good agreement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEARPEX-07</td>
<td>Aug-Oct, 2007</td>
<td>Blodgett Forest, California</td>
<td>Ground</td>
<td>LIF</td>
<td>0.03–0.14</td>
<td>0.1–2.3</td>
<td></td>
<td></td>
<td>~7 (noon)</td>
<td>6 fold underprediction during warm period (29 °C)</td>
<td>~28 (noon)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~2 fold overprediction</td>
<td></td>
<td>25% underprediction during warm period (29 °C)</td>
<td></td>
</tr>
<tr>
<td>OP3-I/II</td>
<td>Apr and Jun, 2008</td>
<td>Borneo</td>
<td>Ground and Aircraft (OP3-II only)</td>
<td>LIF</td>
<td>≤0.4 (ground)</td>
<td>1.2 (aircraft)</td>
<td>5 (ground)</td>
<td>13 (aircraft)</td>
<td>2.5 (noon)</td>
<td>Underpredictions of ~10 fold (ground, constrained to OH reactivity) and ~5 fold (aircraft)</td>
<td>~2 (noon)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~1 fold overprediction</td>
<td></td>
<td>Average underprediction of 1.2 (aircraft)</td>
<td></td>
</tr>
<tr>
<td>PROPHET</td>
<td>Jul, 2008</td>
<td>North Michigan</td>
<td>Ground</td>
<td>LIF</td>
<td>≤0.20</td>
<td>2.5</td>
<td></td>
<td></td>
<td>~1.5–2 (noon)</td>
<td>Poor measurements due to low laser power</td>
<td>~6–12 (noon)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Good agreement</td>
<td></td>
<td>Good agreement (within 2σ model uncertainty)</td>
<td></td>
</tr>
<tr>
<td>CABINEX</td>
<td>Jul-Aug, 2009</td>
<td>North Michigan</td>
<td>Ground</td>
<td>LIF</td>
<td>≤0.15</td>
<td>2.0</td>
<td></td>
<td></td>
<td>~2–4 (noon)</td>
<td>Agreement within 40%, but poor correlation (OHchem used)</td>
<td>~4–8 (noon)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~3 fold overprediction</td>
<td></td>
<td>Overpredicted by −1.3–2.5</td>
<td></td>
</tr>
<tr>
<td>BEARPEX-09</td>
<td>Jun-Jul, 2009</td>
<td>Blodgett Forest, California</td>
<td>Ground</td>
<td>LIF</td>
<td>0.074</td>
<td>1.7</td>
<td></td>
<td></td>
<td>~1.8 at around 15:00</td>
<td>Agreement within 40%, but poor correlation (OHchem used)</td>
<td>~8 (noon)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Good agreement</td>
<td></td>
<td>Good agreement</td>
<td></td>
</tr>
<tr>
<td>HUMPPA-COPEC</td>
<td>Jul-Aug, 2010</td>
<td>Hyytiala, Finland</td>
<td>Ground</td>
<td>LIF and CIMS</td>
<td>≤0.3</td>
<td>Generally ≤0.2</td>
<td></td>
<td></td>
<td>~1.5–2 (noon)</td>
<td>Good agreement apart from periods of high OH reactivity (OHchem used for LIF)</td>
<td>Up to ~8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~1 fold overprediction</td>
<td></td>
<td>~3 fold underprediction</td>
<td></td>
</tr>
<tr>
<td>BEACHON-ROCS</td>
<td>Aug, 2010</td>
<td>Manitou Forest, Colorado</td>
<td>Ground</td>
<td>CIMS and PeRCIMS</td>
<td>0.1–0.6</td>
<td>0.3</td>
<td></td>
<td></td>
<td>~5 (noon)</td>
<td>Agreement within 20% when constrained to HO\textsubscript{2}</td>
<td>~20 (noon)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>~30 total RO\textsubscript{x} underpredicted by up to a factor of ~3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOAS</td>
<td>Jun-Jul, 2013</td>
<td>Talladega Forest, Alabama</td>
<td>Ground</td>
<td>LIF and CIMS</td>
<td>Generally <0.1</td>
<td>1–8</td>
<td></td>
<td></td>
<td>~1 (noon)</td>
<td>Agreement within 15% (OHchem used for LIF)</td>
<td>~7 (noon)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Good agreement</td>
<td></td>
<td>Agreement within 20%</td>
<td></td>
</tr>
</tbody>
</table>
underprediction was found to scale with isoprene concentrations (Figure 1.9), and to reconcile the model with observations, an OH source similar in strength to the isoprene sink was required. It was postulated that isoprene recycles OH efficiently (~40−80%) in low NO\textsubscript{x} environments through RO\textsubscript{2} radicals.

The PRIDE-PRD2006 campaign took place in a rural region in southern China with high BVOC emissions (Hofzumahaus et al., 2009). Comparison of LIF measurements to a RACM model showed a large discrepancy for OH, not apparent under high NO (>1 ppbv) conditions, but good agreement for HO\textsubscript{2}. Good agreement for OH was found when the model included an unknown reactant “X”, which was capable of recycling RO\textsubscript{2} radicals and HO\textsubscript{2} to OH, similar to NO but without the concomitant production of O\textsubscript{3}. To reconcile observations 0.85 ppbv of X was required, assuming a comparable reactivity to NO.

Similar results were reported by Wolfe et al. for the BEARPEX-07 campaign, where again enhanced radical recycling was required to bring a 1D chemical transport model in agreement with LIF observations (Wolfe et al., 2011a). Implementation of the OHchem background technique in BEARPEX-09 resulted in better agreement, with hourly average measurement-to-model (RACM) ratios of 1.4 ± 0.3 and 3.1 ± 0.7 for OHchem OHwave, respectively, suggesting that earlier measurements at the same site had suffered from an
artefact signal (Mao et al., 2012). The model overestimated HO$_2$ by approximately 60% at noon and OH reactivity was marginally underpredicted, which may have contributed to the good agreement observed for OH.

In 2008, the Leeds FAGE group participated in the OP3 project in Borneo, making measurements of OH, HO$_2$ and OH reactivity (Stone et al., 2011; Whalley et al., 2011; Edwards et al., 2013). Comparison of aircraft observations to an MCM model showed substantial disagreement (geometric mean ratio ~5) for OH, while HO$_2$ was simulated reasonably well (within 20% on average) (Stone et al., 2011). The measurement of OH reactivity at ground level allowed for calculation of OH using the Photostationary Steady-State (PSS) approach (Equations (E4–E6), Section 1.3.5), where measurements of OH were greater than those calculated by approximately a factor of 10, despite the inclusion of all known OH sources (Whalley et al., 2011). Various mechanistic changes, on the basis of recommendations from contemporary experimental and theoretical studies (discussed below), were implemented in the models to assess their impact on HO$_x$ levels: OH formation from peroxy radical cross reactions (Dillon and Crowley, 2008); isoprene epoxide formation (Paulot et al., 2009); unimolecular decomposition of isoprene RO$_2$ species (Peeters et al., 2009; Nguyen et al., 2010; Peeters and Muller, 2010); and the incorporation of the unknown species X as mentioned above (Hofzumahaus et al., 2009). However, none of these changes could fully reconcile both OH and HO$_2$ observations simultaneously, except at ground level after incorporating “X” equivalent to 0.74 ppbv NO (Hofzumahaus et al., 2009).

During the July 2008 PROPHET (Program for Research on Oxidants: PHotochemistry, Emissions, and Transport) campaign at a deciduous forest in North Michigan, USA, FAGE measurements of HO$_2$* (with an estimated relative detection sensitivity of 90% for isoprene RO$_2$ radicals) compared well to RACM simulations, with MIM chemistry (Griffith et al., 2013). Unfortunately, no meaningful comparison to OH was available due to instrumental problems.

Measurements at the same site in summer 2009 during the CABINEX campaign gave good agreement for OH in comparison to a RACM-MIM model (average = 0.70 ± 0.31), at average isoprene and NO$_x$ mixing ratios between 1–2 and 0–0.12 ppbv, respectively (Griffith et al., 2013). Error-weighted regression of the measurements to modelled OH yielded a slope of 0.90 ± 0.35 (2σ), although the correlation was poor ($R^2 = 0.12$). The model was not constrained to OH reactivity, which was underpredicted in the afternoon
by a factor of 1.5–2; however, the average change in OH concentrations was only 30% when VOC mixing ratios were increased to match the observed afternoon reactivity. Additionally, HO$_2^*$ was overpredicted, with a regression slope of 0.64 ± 0.05, although the correlation was much stronger ($R^2 = 0.86$). Radical budget analysis showed that ~40% of the OH was formed via the reaction of HO$_2$ with NO (i.e. propagation, reaction (R1.15)), and therefore a model constrained to HO$_2$ (in addition to OH reactivity) would serve to further degrade the level of agreement between measured and modelled OH. Nevertheless, these results are in contrast to other studies in similar biogenic environments where OH is generally underpredicted, although as discussed below, in more recent campaigns good agreement has been observed between modelled OH concentrations and measurements made using a chemical background technique (OHchem LIF and CIMS). The overprediction of HO$_2$ is another disparity, as while in biogenic environments the level of agreement between model and measurements is more variable for HO$_2$ than for OH, there is a general tendency towards underprediction (Table 1.3).

Similar to the results of Mao et al., (2012), adopting the IPI system in the Mainz LIF instrument (Novelli et al., 2014a) gave good measurement-model agreement (1.00 ± 0.16) for observations of OH in a monoterpene dominated boreal forest in Finland during the HUMPPA-COPEC (Hyytiala United Measurements of Photochemistry and Particles in Air-Comprehensive Organic) campaign (Hens et al., 2014). However, when constrained to OH reactivity, OH concentrations were underpredicted by ~40% on average, and by ~70% during periods of high reactivity ($k'_{\text{OH}} > 15 \text{s}^{-1}$). Additionally, OH was underpredicted during nighttime during periods of high OH reactivity by 80%, indicating a source of OH related to NO$_3$ oxidation, or potentially from the ozonolysis of unmeasured BVOCs; these hypotheses are further supported by the substantial underprediction of OH reactivity by 58–89% (Nölscher et al., 2012), although this OH reactivity calculation did not include contributions from unmeasured OVOCs (i.e. model intermediates). HO$_2$ was significantly underpredicted (with an upper limit RO$_2$ interference of 30%) by a factor of ~3, coinciding with an underprediction of OH reactivity, suggesting a HO$_2$ source from missing reactivity.

Measurements of OH, HO$_2^*$ and RO$_2$ radicals were made at the Manitou Forest Observatory in Colorado, during the BEACHON-ROCS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H$_2$O, Organics and Nitrogen – Rocky mountain
Organic Carbon Study) campaign in August 2010 (Wolfe et al., 2014), for which the dominant BVOCs were MBO and monoterpenes. OH was measured using CIMS, while HO\(_2\) and RO\(_2\) were measured using PeRCIMS. The total concentrations of RO\(_x\) measured, of up to 180 pptv (4.5 × 10^9 cm\(^{-3}\)), were amongst the highest ever reported, and a zero dimensional model with MCMv3.2 chemistry underestimated RO\(_x\) by up to a factor of ~3, when constrained to OH observations. Based on the RO\(_x\) diurnal profile it was suggested that missing RO\(_x\) sources were due to alkene ozonolysis reactions, further supported by an improvement in measurement agreement after implementation of additional alkene ozonolysis chemistry in the model (achieved by assuming unidentified, highly reactive VOCs have the same ozonolysis rate constants and product yields as \(\beta\)-caryophyllene, based on the methodology described by Wolfe et al., (2011b)). With the exception of the hours ~1300–1500, relatively good agreement was found for HO\(_2\), but only when the model was constrained to measured OH, which was underpredicted by a factor of ~4; similarly, OH observations were also in good agreement with the model (within 20%) when constrained to measured HO\(_2\).

The SOAS field campaign took place in a dense, mixed (pine/broadleaf) forest in central Alabama during summer 2013 (Feiner et al., 2016). Measurements of OH and HO\(_2\), made using the Penn State GTHOS instrument, which was again equipped with an IPI system (Mao et al., 2012), were compared to box model predictions using MCMv3.2 (augmented with explicit isoprene chemistry) and MCMv3.3.1. Modelled OH concentrations were in agreement with observed OHchem throughout the day within combined uncertainties, with measurement-model comparison slopes of 0.94 \((R^2 = 0.50)\) and 0.86 \((R^2 = 0.52)\) for MCMv3.2 and MCMv3.3.1, respectively, and insignificant intercepts (≤4 × 10^4 cm\(^{-3}\)). Further support was provided from an OH budget analysis, as simultaneous measurements of OH reactivity (Kovacs and Brune, 2001; Mao et al., 2009) allowed for comparison of measured OH production and loss rates (PSS approach, Section 1.3.5), which were in agreement to well within their 1\(\sigma\) uncertainty, as well as in agreement with OH production and loss rates calculated by the two box model mechanisms. Daytime OH production was dominated by primary production from the photolysis of O\(_3\) and subsequent reaction with water vapour (Reactions (R1.1–R1.2), 40–50%) and recycling from HO\(_2\) (reaction (R1.15), ~90% for 0800–1000 and ~30% over the rest of the day). Ozonolysis reactions contributed ~20% and >80% to daytime and nighttime OH production, respectively, and OH loss was dominated by reaction with isoprene (~60% in the afternoon) (Kaiser et al., 2016). For HO\(_2\), the modelled concentrations were in
agreement with observations during the daytime (0800–1800), but the observed nighttime concentrations of ~0.8–1.8 × 10^8 molecule cm^{-3} were underpredicted. Overall, regression of the measured and modelled HO_2 concentrations yielded slopes of 0.95 (R^2 = 0.82) and 0.84 (R^2 = 0.84) for MCMv3.2 and MCMv3.3.1, respectively, and intercepts of 7 × 10^7 cm^{-3}.

The studies described above show severe discrepancies between modelled and observed HO_x concentrations, with disagreements of up to a factor of 12 for OH (Kubistin et al., 2010), suggesting major gaps in our understanding of oxidation chemistry in biogenic, low NO_x environments. The level of agreement for HO_2 has been more variable, but with a general tendency towards underprediction. However, as it is possible that some LIF observations have suffered from substantial biases in both OH and HO_2 measurements (Section 1.3.2), future studies which avoid (or account for) these interferences are required, which may show that our understanding of photochemistry in forested environments is better than previously thought (e.g. (Mao et al., 2012; Hens et al., 2014; Feiner et al., 2016)). In future campaigns, simultaneous measurements of RO_x radicals alongside OH and HO_2 will provide further tests of our understanding of biogenic oxidation chemistry (Wolfe et al., 2014).

The difficulty in simulating radical concentrations in forested environments has prompted recent theoretical, laboratory and chamber studies to help explain the sources of discrepancy, through detailed investigations of the mechanism of isoprene oxidation under low NO_x conditions, as well as other BVOCs such as monoterpenes. In laboratory studies Dillon and Crowley showed that the reactions of certain peroxy radicals with HO_2 form OH in significant yield via an alternative branch of reaction (R1.19), the dominant fate of peroxy radicals under low NO_x conditions (Dillon and Crowley, 2008):

\[
\text{HO}_2 + \text{RO}_2 \rightarrow \text{ROOH} + \text{O}_2 \quad \text{(R1.19a)}
\]

\[
\text{HO}_2 + \text{RO}_2 \rightarrow \text{OH} + \text{products} \quad \text{(R1.19b)}
\]

OH was measured directly by LIF, with an upper limit OH yield from RO_2 radicals structurally similar to isoprene-RO_2 (ISOPO_2) of 0.06. For the equivalent reaction of acetylperoxy radicals, another isoprene oxidation product, the yield was ~0.5. Experiments in the Caltech chamber by Paulot et al. showed that isoprene-hydroxyhydroperoxides (ISOPOOH), formed from the reaction of HO_2 with ISOPO_2, react with OH to form isoprene epoxides (Paulot et al., 2009), which are important precursors to SOA formation (Lin et al., 2013; Xu et al., 2014). This reaction reforms OH...
with >75% yield under low NO\textsubscript{x} conditions. OH radical recycling has also been observed in the OH-oxidation of MACR and MVK in simulation chambers (Crounse \textit{et al.}, 2012; Fuchs \textit{et al.}, 2014; Praske \textit{et al.}, 2014), and other isoprene oxidation products such as glycolaldehyde (Butkovskaya \textit{et al.}, 2006a) and hydroxyacetone (Butkovskaya \textit{et al.}, 2006b) in laboratory studies. OH production has also been observed from the photolysis of ISOPO\textsubscript{2} (Hansen \textit{et al.}, 2017), although after incorporating this novel route into a box model, simulated daytime OH concentrations during the OP3 campaign (Whalley \textit{et al.}, 2011) only increased by an average of 1%, far below the source strength required to resolve the order of magnitude underprediction.

\textit{Ab initio} quantum chemical calculations investigating the mechanism of isoprene oxidation suggest significant radical recycling through the unimolecular decomposition of ISOPO\textsubscript{2} isomers (Peeters \textit{et al.}, 2009; Nguyen \textit{et al.}, 2010; Peeters and Muller, 2010). The Peeters’ mechanism, or Leuven Isoprene Mechanism (LIM), proceeds \textit{via} 1,6-H-shifts to form hydroperoxy-aldehydes (HPALDs), as shown in Figure 1.10. These reactions result in OH and HO\textsubscript{2} yields of 0.03 and 0.7 per isoprene molecule oxidised, respectively, and the HPALD co-products of the HO\textsubscript{2}-forming channels are expected to photolyse rapidly to produce OH with a quantum yield of ~1 (Peeters \textit{et al.}, 2009). Photolysis of HPALDs results in the formation of peroxy-acid-aldehydes (PACALDs), which also photolyse to produce additional OH (Peeters and Muller, 2010). Another channel in the mechanism is the isomerisation of certain ISOPO\textsubscript{2} species through 1,5-H-shifts, which have also been investigated with density function theory (DFT) calculations (Silva \textit{et al.}, 2009), followed by decomposition to form OH, HCHO and either MACR or MVK. This results in an overall OH yield of ~0.25 from the initial reaction of OH with isoprene. The bulk rate of the H-shift isomerisations was predicted to be on the order of 1 s-1 (Nguyen \textit{et al.}, 2010), recently revised down to ~0.004 s-1 after subsequent calculations at a higher level of theory (Peeters \textit{et al.}, 2014). This study predicted that ~28% of ISOPO\textsubscript{2} react \textit{via} the 1,6-H-shift route, but the 1,5-H-shift is negligible.

In chamber studies Crounse \textit{et al.} provided experimental evidence for the formation of HPALDs during isoprene oxidation (Crounse \textit{et al.}, 2011), detected using CIMS with CF\textsubscript{3}O- reagent ion (Crounse \textit{et al.}, 2006). However, the rate of the 1,6-H-shifts was determined to be ~0.002 s-1, a factor of ~50 lower than originally predicted using the Peeters’ mechanism (Nguyen \textit{et al.}, 2010), but similar to the revised value (Peeters \textit{et al.}, 2014). It was estimated that 8−11% of ISOPO\textsubscript{2} react \textit{via} the 1,6-H-shift route (global
Figure 1.10. Schematic of the initial steps in the Leuven Isoprene Mechanism (1-OH addition), with calculated reaction rates and the energies (stabilities) of each species. Taken from Peeters et al. (2009).

average), and up to 20% in tropical regions. In a further chamber study, the ISOPO$_2$ isomer distribution was inferred from speciated measurements of isoprene nitrates (Teng et al., 2017). A total HPALD yield of 25 ± 10% was determined by mass balance, which, if applied to the original study (Crounse et al., 2011), would increase the bulk isomerisation rate to ~0.003 s$^{-1}$, slightly closer to the revised theoretical value (Peeters et al., 2014). Nonetheless, the rate constants for individual 1,6-H-shifts were ~40% lower than the most recent theoretical predictions (Peeters et al., 2014), while the rates of ISOPO$_2$ dissociation (see Figure 1.10) were approximately an order of magnitude faster. Similarly, to reconcile the Peeters’ mechanism with ambient MACR, MVK and hydroxyacetone ratios measured during the AMAZE (AMAZonian aerosol characterisation Experiment) campaign, the 1,6-H-shift rates had to be reduced (Karl et al., 2009). However, the PTR-MS measurements of these OVOCs may have been influenced by biases from ISOPOOH (Rivera-Rios et al., 2014). The photolysis of HPALDs has also been confirmed experimentally in chamber studies by Wolfe and co-workers, where a quantum yield of ~1 over the range 300–400 nm was observed for a C$_6$-HPALD structurally similar to the isoprene-derived C$_5$-HPALD (Wolfe et al., 2012).

Recent experiments of low NO$_x$ isoprene oxidation in the FZJ SAPHIR chamber have shown that the LIM is consistent with the observed levels of OH and HO$_2$ (Fuchs et al.,
2013). However, the predicted rates (Peeters et al., 2009; Nguyen et al., 2010; Peeters and Muller, 2010) of crucial H-shift decomposition reactions were reduced, by factors of 33–50 and 2–35 for the 1,6- and 1,5-H-shift, respectively. The upper limits (LIM-CS, Crounse Silva) in these factors are those reported by Crounse et al. (2011) and Silva et al. (2009), but the lower limits (LIM-FZJ) gave better agreement with observed MACR and MVK, although these measurements may have suffered from interferences (Rivera-Rios et al., 2014). Similarly, incorporation of an unknown oxidant X, as proposed by Hofzumahaus et al. (2009), resulted in good agreement for HOx, MACR and MVK. In this study, an overall OH yield of 76–90% per isoprene molecule oxidised was obtained. Inclusion of LIM-FZJ chemistry produces a factor of 2 increase in OH levels for the GABRIEL campaign in the Amazonian rainforest (Kubistin et al., 2010). However, this still results in a measurement-model discrepancy by factors of up to 6 (Table 1.3), demonstrating that while the LIM does contribute significantly to the oxidising capacity of the atmosphere in biogenic environments, it is still not sufficient to explain field observations.

The oxidation chemistry of MVK alone was studied in further SAPHIR experiments (Fuchs et al., 2018), where it was shown that OH was underestimated by a factor of 2 at low NO (100 pptv) when compared to an MCMv3.3.1 model. LIF and DOAS OH measurements were in good agreement, such that interferences could not be the source of this discrepancy. The simultaneous underprediction of HO2 (for which LIF and CIMS observations were in good agreement) suggested that the missing OH was likely not generated directly from RO2 isomerisation reactions, but indirectly from missing HO2. For similar SAPHIR experiments investigating the oxidation of MBO (Novelli et al., 2018), which is the dominant BVOC in some forested environments (Mao et al., 2012; Wolfe et al., 2014), good measurement-model agreement (within 15%) was achieved for OH, HO2, k’OH, and O3, as well as MBO and its oxidation products (HCHO, acetone). This is consistent with the results of Mao et al. (2012), but suggests that MBO chemistry cannot explain the high OH and HO2 concentrations observed in another previous field campaign (Wolfe et al., 2014).

Another recent chamber study of isoprene oxidation, FIXCIT (Focused Isoprene eXperiment at the California Institute of Technology), took place in January 2014 (Nguyen et al., 2014). This study is expected to further constrain the mechanism of isoprene oxidation under low NOx conditions.
1.4.2.3 Polluted Urban and Suburban

While oceans and forests cover most of the globe, air quality issues are more important in terms of population exposure. As approximately 50% of the world’s population now lives in urban areas, it is imperative to understand the tropospheric chemistry in these regions. Polluted environments are characterised by high levels of NO\(_x\) and VOCs, especially aromatic species (Atkinson, 2000). Model comparisons to HO\(_x\) observations from selected field campaigns in polluted regions are summarised in Table 1.4 and discussed below.

The MILAGRO campaign took place in Mexico City (MCMA) in March 2006 (Dusanter et al., 2009a; Dusanter et al., 2009b). Comparison of a RACM model to FAGE observations showed a significant midday OH overestimate, but good agreement was found after 14:30. In contrast, HO\(_2\) was underpredicted in the morning but the model was able to reconcile the measurements after 11:30. This underprediction coincided with high levels of benzene and toluene, suggesting an unknown source of HO\(_2\) from aromatic

![Figure 1.11](image.png)

Figure 1.11. Median daytime rates of radical production and loss, in units of 10\(^6\) molecule cm\(^{-3}\) s\(^{-1}\), for the 2006 MILAGRO campaign. The percentages shown in boxes represent the contribution of each process to the overall rate. Taken from Dusanter et al. (2009b).
Table 1.4: Summary of selected HO\textsubscript{x} measurement-model comparisons in polluted, urban environments. All measurements were made using the LIF technique, and all campaigns were ground based except the RONOCO aircraft study.

<table>
<thead>
<tr>
<th>Campaign</th>
<th>Month(s), Year</th>
<th>Location</th>
<th>OH</th>
<th>HO\textsubscript{2}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Measured (106 cm-3)</td>
<td>Model Agreement</td>
</tr>
<tr>
<td>MILAGRO</td>
<td>Mar, 2006</td>
<td>Mexico City Metropolitan Area</td>
<td>4.6 (noon median)</td>
<td>Overestimated by a factor of ~1.7 at noon, good agreement after 14:30</td>
</tr>
<tr>
<td>TRAMP</td>
<td>Aug-Sep, 2006</td>
<td>Houston, Texas</td>
<td>~3 (midday maximum)</td>
<td>Underpredicted by ~30−50%</td>
</tr>
<tr>
<td>SHARP</td>
<td>Apr-May, 2009</td>
<td>Houston, Texas</td>
<td>~3−15 (noon)</td>
<td>Good agreement in general, overprediction at midday</td>
</tr>
<tr>
<td>CalNex-LA</td>
<td>May-Jun, 2010</td>
<td>LA, California</td>
<td>~3−5 (noon)</td>
<td>Good agreement on weekdays, overestimated by ~40% on weekends Overpredicted by 30% at midday, agreement at sunrise, sunset and night</td>
</tr>
<tr>
<td>CalNex-SJ</td>
<td>May-Jun, 2010</td>
<td>Bakersfield, California</td>
<td>~7 (noon)</td>
<td></td>
</tr>
<tr>
<td>RONOCO</td>
<td>Jul 2010 and Jan 2011</td>
<td>UK</td>
<td>Below LOD (−0.6−2)</td>
<td>N/A</td>
</tr>
<tr>
<td>ClearlLo</td>
<td>Jul-Aug, 2012</td>
<td>London</td>
<td>~2−3 (noon)</td>
<td>Good agreement when constrained to measured HO\textsubscript{2} and HONO (PSS), ~35% underprediction for NO < 1 ppbv</td>
</tr>
<tr>
<td>Wangdu</td>
<td>Jun-Jul, 2014</td>
<td>Wangdu, NCP</td>
<td>5−15 (daytime maxima)</td>
<td>Good agreement for NO > 0.3 ppbv, underpredicted in afternoon</td>
</tr>
<tr>
<td>BEST-ONE</td>
<td>Jan-Mar, 2016</td>
<td>Huairou, NE of Beijing</td>
<td>2−4 (noon)</td>
<td>Agreement within a factor of 1.5</td>
</tr>
</tbody>
</table>
oxidation under high NO\textsubscript{x} conditions. However, reanalysis of this dataset (Lew et al., 2018) after the discovery of the RO\textsubscript{2} interference in HO\textsubscript{2} measurements (Fuchs et al., 2011) yielded different results, where the measured HO\textsubscript{2}\,* was less severely underpredicted in the morning, in agreement with the model around midday, and overpredicted in the afternoon. The improvement in agreement in the morning is consistent with the efficient conversion of aromatic-based RO\textsubscript{2} species in measurements of HO\textsubscript{2}, but does not change the conclusion that aromatic oxidation is poorly understood under high NO\textsubscript{x} conditions, as the model HO\textsubscript{2}\,* was still lower than the measurements by a factor of three in the morning, when aromatic VOC concentrations were at their highest. In addition, while the measured HO\textsubscript{2}\,*:OH ratio was closer to model HO\textsubscript{2}\,*:OH than HO\textsubscript{2}:OH, it was still underpredicted by a factor of four at high NO levels (>10 ppbv), suggesting that radical propagation is not well understood under such conditions.

Nevertheless, the initial MILAGRO modelling study (Dusanter et al., 2009b) demonstrated that the main radical sources were the photolysis of HONO (35%) and HCHO (24%), and O\textsubscript{3} reactions with alkenes (19%), while the major loss processes were the reactions of OH with NO\textsubscript{2} (60%) and NO (20%), and the formation of alkyl nitrates via NO reactions with RO\textsubscript{2} radicals (14%), as shown in Figure 1.11. This is in contrast to other environments (e.g. rural, marine) where the primary OH source is O\textsubscript{3} photolysis (reactions (R1.1–R1.2)). The ratio of HO\textsubscript{2} to OH was underestimated at high NO levels (NO > 5 ppbv).

HO\textsubscript{x} was measured during the summer 2006 TRAMP (Texas air quality study – Radical and Aerosol Measurement Project) campaign in Houston, Texas (Chen et al., 2010). HO\textsubscript{x} concentrations were modelled using five different chemical mechanisms, including RACM and MCMv3.1. While OH was generally underpredicted by between ~30-50%, depending on the model, HO\textsubscript{2} observations were in good agreement in the morning, but were significantly underpredicted during the afternoon. However, it should be noted that these measurements were made before the implementation of the OHchem method in the same instrument (Mao et al., 2012), and interferences from RO\textsubscript{2} radicals (Fuchs et al., 2011; Whalley et al., 2013) were not considered. Analysis of the OH reactivity budget showed that alkenes (20%) followed by aromatic species (15%) were the most significant contributors to OH loss. Similar to the MILAGRO study, the modelled HO\textsubscript{2}/OH ratio agreed well with measurements at intermediate NO levels (~1 ppbv), but at high and low NO mixing ratios, the modelled ratio was too low and too high, respectively. It was found
that, under heavily polluted conditions, the various chemical schemes gave similar results, likely due to the dominance of reactive nitrogen chemistry. In terms of photochemical activity, assessed by parameters such as the photochemical net ozone production rate (OPR), Houston (Mao et al., 2010b) bared greater resemblance to the MCMA (Dusanter et al., 2009a; Dusanter et al., 2009b) than New York City (Ren et al., 2003a; Ren et al., 2003b; Cai et al., 2008), where regulatory action has reduced VOC emissions.

Radical chemistry in Houston was investigated further during the spring 2009 SHARP campaign (Ren et al., 2013), briefly mentioned in Section 1.4.1. Model-measurement agreement was good in general, but midday OH (measured as OHchem) was overpredicted and during nighttime, both OH and HO2 were underpredicted. HOx production was dominated by O3 (30%), OVOC (29%, including HCHO) and HONO (22%) photolysis, with a smaller contribution from the reaction of O3 with alkenes (13%).

The CalNex-LA campaign took place in Pasadena, at a site 18 km northeast of downtown LA, during summer 2010 (Griffith et al., 2016). OH and HO2* concentrations were higher during weekends (and the Memorial Day holiday), due to lower NOx levels. In comparison to a RACM2 model, daytime (0600–2100) weekend OH concentrations were overpredicted by ~40%, but in good agreement on weekdays (ratio ~ 1). In contrast, daytime HO2* concentrations were underpredicted on both weekdays and weekends, by factors of ~3 and ~1.3, respectively. When constrained to measured OH reactivity, which was underpredicted by ~50%, agreement was observed for OH and weekend HO2* within the model uncertainty (~22 and 35% for OH and HO2, respectively, at 1σ), but weekday HO2 was still significantly underpredicted by a factor of ~2. Consequently, the OPR was substantially underpredicted on weekdays, with only slight improvement after constraining to OH reactivity, and the discrepancy increased with NOx levels. Photolysis of carbonyl species (~40%) and HONO (~30%) dominated radical production, while ozone photolysis (reactions (R1.1–R1.2)) was relatively minor (<20%), and radical termination was dominated by the reaction of OH with NO2. Measurements of HOx were also made in Bakersfield, located in the San Joaquin valley (CalNex-SJV), 180 km north-northwest of LA (Brune et al., 2016). Similar to the results in Pasadena, measured HO2, and consequently the OPR, greatly exceeded model predictions at high NOx levels, by factors of up to ~5–7 at 10 ppbv NO. Unknown HOx-NOx chemistry was postulated as the reason for this discrepancy, for example by the hypothetical reaction of vibrationally excited HONO with molecular oxygen:
\[
\begin{align*}
\text{OH} + \text{NO} & \rightarrow \text{HONO}^* & \text{(R1.30)} \\
\text{HONO}^* + \text{N}_2 & \rightarrow \text{HONO} & \text{(R1.31)} \\
\text{HONO}^* + \text{O}_2 & \rightarrow \text{HO}_2 + \text{NO}_2 & \text{(R1.32)}
\end{align*}
\]

However, a recent kinetic and theoretical study (Fittschen et al., 2017) of this reaction showed that while it could not be ruled out that HO\(_2\) and NO\(_2\) were formed in small yields relative to HONO, this pathway cannot play a major role in atmospheric chemistry.

Nocturnal HO\(_x\) measurements were made on flights over the UK, including London as well as semi-polluted coastal and inland regions, during the RONOCO (Role Of Nighttime chemistry in controlling the Oxidising Capacity of the atmOsphere) campaign in July 2010 and January 2011 (Stone et al., 2014; Walker et al., 2015). The DSMACC (Dynamically Simple Model of Atmospheric Chemical Complexity) model (Emmerson and Evans, 2009), with MCM chemistry, was used for comparison to FAGE HO\(_x\) and BBCEAS (BroadBand Cavity-Enhanced Absorption Spectroscopy) NO\(_3\) observations (Kennedy et al., 2011). While OH levels were always below the instrumental detection limit (0.6 and \(2 \times 10^6\) molecule cm\(^{-3}\) for winter and summer respectively), as predicted by the model, HO\(_2^*\) was underpredicted by a factor of \(~2\) on average. Budget analysis showed that the production of HO\(_x\) and RO\(_x\) occurred mainly through VOC reactions with NO\(_3\), while the major HO\(_x\) sinks were peroxy radical cross reactions, heterogeneous loss and the reaction of OH with NO\(_2\). It was postulated that the HO\(_2^*\) underprediction (and NO\(_3\) overprediction) was related to the formation of HO\(_2\) from reactions of NO\(_3\) with higher alkenes that were not included in the model, which were detected (Lidster et al., 2014) by two-dimensional gas chromatography (GC × GC) but could not be quantified at the time of publication. The interference in HO\(_2\) measurements from NO\(_3\) (Fuchs et al., 2016) had not yet been discovered, which, if significant for the Leeds aircraft FAGE instrument, would improve the agreement between measured and modelled HO\(_2^*\).

The first UK measurements of ClNO\(_2\) (Section 1.2.2) were made using CIMS during the ClearfLo (Clean air for London) campaign in summer 2012 (Bannan et al., 2015). Co-located FAGE observations of HO\(_x\) were used to assess the relative importance of OH, Cl atom (from ClNO\(_2\) photolysis) and ozone oxidation as a function of time of day. This showed that Cl atom oxidation did indeed play a role, especially for alkynes, where it accounted for up to 26% of their loss. Subsequent studies have demonstrated the importance of longer-chain, diesel-related hydrocarbons to OH reactivity, and the resultant effects on the formation of ozone and SOA (Dunmore et al., 2015; Whalley et
al., 2016). In addition, analysis of the HONO budget revealed a strong missing daytime HONO source (Lee et al., 2016), as observed\(^1\) in many urban field campaigns. After constraining to measured HONO, daytime modelled OH increased by ~50% and came into agreement with OH measurements.

A full comparison of measured and modelled OH, HO\(_2\) and RO\(_2\) during ClearfLo was presented by Whalley et al. (2018). Measurements of OH were in good agreement with model calculations using the PSS approach (Section 1.3.5) on average, where the main OH sources were HONO photolysis and propagation from HO\(_2\) and NO (Reaction (R1.15)). However, under low NO (<1 ppbv) conditions, OH concentrations were underpredicted, by ~35% on average but up to three-fold. In contrast, MCMv3.2 modelled HO\(_2\) concentrations were overestimated by up to a factor of ten under the same conditions, and could still not be reconciled after the inclusion of both HO\(_2\) aerosol uptake (using \(\gamma_{\text{HO}_2} = 1\)) and a representation of autoxidation chemistry, which occurs readily in the liquid-phase (Bolland, 1949) and is now known to play a significant role in gas-phase BVOC oxidation (Crounse et al., 2011; Ehn et al., 2014; Jokinen et al., 2014; Berndt et al., 2016; Ehn et al., 2017; Zha et al., 2017). The box model was able to capture HO\(_2\) concentrations at moderate NO levels (7–15 ppbv), but was underestimated by ~3 fold at high NO (>15 ppbv).

RO\(_2\) radicals, measured using the RO\(_x\)LIF technique (Fuchs et al., 2008; Whalley et al., 2013), were predicted well for NO mixing ratios less than 1 ppbv, but an increasing underprediction was found as NO levels increased above 3 ppbv, even after applying a correction for the decomposition of methyl peroxy nitric acid (CH\(_3\)O\(_2\)NO\(_2\)) in the RO\(_x\)LIF flow tube (Chapter 2.3.1). The simultaneous model overprediction of HO\(_2\) and agreement for RO\(_2\) suggests a large uncertainty in peroxy radical cycling under low NO conditions, and highlights the importance of autoxidation reactions, which serve to reduce the rate of RO\(_2\) to HO\(_2\) propagation under such conditions. In further support of this, the HO\(_2\) discrepancy was largest under easterly flows (from over central London) and high temperatures, suggesting an influence from complex biogenic and diesel-related VOCs. As a consequence of the measurement-model HO\(_2\) and RO\(_2\) disagreements, the OPR (Chapter 5) was overpredicted by ~3 fold at low NO, and underpredicted by up to an

\(^1\) Summaries of these studies may be found in Kleffmann (2007) and Michoud et al. (2014).
Figure 1.12. Mean ozone production rates calculated from observed (red circles) and MCM modelled (black circles) daytime (0600–1900) RO\textsubscript{x} concentrations as a function of NO during the summer 2012 ClearfLo campaign. Patterned areas represent the 25/75th percentiles. Bin widths are 1 and 5 ppbv for [NO] between 0–20 and 20–45 ppbv, respectively; lower graph shows the number of RO\textsubscript{x} measurements in each NO bin. Taken from Whalley et al. (2018).

Order of magnitude at high NO (>7 ppbv, mostly due to the underprediction of RO\textsubscript{2}), as shown in Figure 1.12. The main sources of RO\textsubscript{x} were the photolysis of HONO (40%), HCHO (20%) and VOCs (~15%), with a daytime average of only 12% from primary production (Reactions (R1.1–R1.2)). Radical destruction was dominated by the reaction of OH with NO\textsubscript{2} (32%) and the net production of PANs (35%).

Observations of OH, HO\textsubscript{2} and RO\textsubscript{2} radicals were made in summer 2014 in Wangdu, using the PKU FAGE instruments (Tan et al., 2017). While this is a rural site in the NCP, back trajectory analysis showed that air masses were often transported from cities, and chemical signatures indicated significant influences from anthropogenic (CO), biomass burning (acetonitrile, CH\textsubscript{3}CN) and biogenic (isoprene) emissions. Measured and RACM2 modelled OH agreed to within their respective uncertainties (10 and 40% at 1\sigma) during the morning and early afternoon when NO mixing ratios were high (>300 pptv), but OH
concentrations were increasingly underpredicted as NO levels dropped, by a factor of 1.4 at 16:00 to 2 at 20:00. The measured OH could be reproduced after inclusion of the additional unknown recycling species “X”, which has previously been invoked to help explain elevated OH concentrations in campaigns in China (Hofzumahaus et al., 2009; Lu et al., 2012; Lu et al., 2013) and other environments with biogenic influence (Whalley et al., 2011), as discussed in Section 1.4.2.2. An NO-equivalent concentration of 100 pptv of “X” was required, which was smaller than that needed for previous campaigns, likely due to the higher NO levels and lower OH reactivity observed in Wangdu. HO2 observations were reproduced within combined uncertainties throughout the day, with a slight tendency for overestimation in the afternoon. In contrast, RO2 concentrations were reproduced in the afternoon, but were significantly underpredicted in the morning when NO levels were high (>1 ppbv), by factors of 3–5 on average, and up to 10 for NO mixing ratios of ~4 ppbv. Consequently, the OPR (Chapter 5) was underpredicted by 20 ppbv (18%) per day. Speciated measurements of RO2 (Whalley et al., 2013) showed that alkene- and aromatic-based RO2 radicals accounted for approximately half of total RO2 concentrations, and were the main cause of the morning RO2 underprediction observed in Wangdu. The main primary radical sources were the photolysis of HONO (38%), HCHO (18%) and ozone (15%).

The BEST-ONE campaign took place in Huairou, a suburban site 60 km northeast of Beijing, in winter 2016 (Tan et al., 2018). High OH concentrations were observed, ~2 × 10^6 and ~4 × 10^6 molecule cm^{-3} for polluted (k'_{OH} ~ 27 s^{-1}) and clean (k'_{OH} ~ 5 s^{-1}) air, respectively, which are a factor of two higher than in other urban wintertime studies (Ren et al., 2003a; Emmerson et al., 2005; Kanaya et al., 2007a). Primary ROx production was dominated by HONO photolysis (46%), with significant contributions from alkene ozonolysis (28%) and OVOC photolysis (24%). RACM2 OH, HO2 and RO2 predictions were in good agreement with observations during clean days, within a factor of 1.5. However, the agreement was poor during pollution episodes, and increasing underpredictions of HO2 and RO2 with NO were found, reaching factors of ~5 (HO2) and ~9 (RO2) at ~6 ppbv NO. Chlorine radical-VOC chemistry was suggested as a partial explanation for the discrepancy, but chlorine radical precursors (Cl2, ClNO2) were not measured during the campaign so this could not be fully assessed.

Measurements of HOx during field campaigns in polluted, urban regions have shown variable agreement with box models, albeit with smaller discrepancies than found in
biogenic environments (Section 1.4.2.2). These studies have highlighted the importance of HONO (e.g. (Lee et al., 2016)) and OVOC (e.g. (Griffith et al., 2016)) photolysis, and alkene ozonolysis (e.g. (Dusanter et al., 2009b)) reactions in HO\textsubscript{x} formation under polluted conditions. While alkenes and O\textsubscript{3} are routinely measured during field campaigns, accurate measurements of HONO and OVOCs are needed to better constrain the sources of HO\textsubscript{x} in models. A common theme of urban studies is the underprediction of peroxy radical concentrations, especially under high NO\textsubscript{x} conditions, leading to faster than expected OPRs (Martinez et al., 2003; Ren et al., 2003a; Kanaya et al., 2008; Ren et al., 2013; Brune et al., 2016; Griffith et al., 2016), although for HO\textsubscript{2} this may be related to interferences from RO\textsubscript{2} radicals (Fuchs et al., 2011; Whalley et al., 2013). However, this finding still holds for more recent campaigns utilising interference-free measurements of HO\textsubscript{2} as well as total RO\textsubscript{2} radicals (Tan et al., 2017; Whalley et al., 2018), and it should be noted that direct measurements (Cazorla and Brune, 2010) of the OPR (Chapter 5) have also been higher than model predictions at high NO\textsubscript{x} levels (Cazorla et al., 2012; Baier et al., 2017). The consistent underprediction of HO\textsubscript{2}/OH ratios at high NO mixing ratios (Dusanter et al., 2009b; Chen et al., 2010; Ren et al., 2013; Griffith et al., 2016) suggests uncertainties in radical propagation chemistry and is another discrepancy that must be addressed, but again this may have been caused, at least in part, by previously unrecognised interferences in HO\textsubscript{2} measurements. A major source of uncertainty in the chemistry in polluted environments is the oxidation of aromatic compounds under high NO\textsubscript{x} conditions, which may be a missing source of HO\textsubscript{2}. The RONOCO project demonstrated the importance of nocturnal NO\textsubscript{3} oxidation chemistry in HO\textsubscript{x} production (Stone et al., 2014; Walker et al., 2015).

While not discussed in detail in this chapter, it should be noted that rural and semi-polluted environments bridge the gap between polluted and pristine regions, allowing us to test our knowledge of the chemistry of OH and HO\textsubscript{2} over a wide range of conditions, for example under various NO\textsubscript{x} and VOC levels (Stone et al., 2012). Long term CIMS measurements of OH were made at the Meteorological Observatory Hohenpeissenberg, a rural site in southern Germany, over 5 years between 1999 and 2003 (Rohrer and Berresheim, 2006). A strong correlation between OH concentrations and the rate of ozone photolysis was observed ($R = 0.985$ for monthly averages), due to reactions (R1.1–R1.2). Comparison of a constrained MECCA box model to observations of HO\textsubscript{x} in the upper troposphere during the HOOVER 2 (HO\textsubscript{x} OVer EuRope) campaign in July 2007 showed good agreement, with median observed to modelled ratios of 0.98 and 0.96 for OH and
HO\textsubscript{2}, respectively (Regelin \textit{et al.}, 2013). Comparison to a global circulation model resulted in poorer agreement, and high OH (up to 3 pptv) and HO\textsubscript{2} (>25 pptv) were measured. Recently, HO\textsubscript{x} measurements were made during the summer 2012 HOPE (HOhenpeissenberg Photochemistry Experiment) campaign (Novelli \textit{et al.}, 2014a). Model comparisons have not yet been reported, but midday maximum OH concentrations of \(\sim 5-6 \times 10^6\) molecule cm-3 were observed using both LIF (OHchem, Section 1.3.2.1) and CIMS, with excellent agreement between the two techniques. FAGE measurements of HO\textsubscript{2} during the Hill Cap Cloud Thuringia (HCCT) 2010 campaign in a mountain range in central Germany demonstrated the importance of cloud chemistry in atmospheric oxidation capacity (Whalley \textit{et al.}, 2015). In clouds, HO\textsubscript{2} concentrations were depleted by as much as 90%, with HO\textsubscript{2} uptake coefficients in good agreement with theoretical parameterisations.

1.4.2.4 Polar

Several field campaigns have also been conducted in polar regions. However, as all of these studies precede the discovery of significant interferences in FAGE measurements of OH and HO\textsubscript{2}, and are not relevant to the coastal and urban campaigns conducted as part of this work, only a brief overview is given here.

The level of measurement-model agreement in polar environments is more variable. For example, during the NASA ARCTAS campaign over Alaska and western Canada in April 2008, FAGE and CIMS measurements of OH and HO\textsubscript{2} gave surface concentrations of \(\sim 5 \times 10^5\) and \(\sim 8 \times 10^7\) molecule cm-3, respectively (Mao \textit{et al.}, 2010a). Comparison with GEOS-Chem (Goddard Earth Observing System), a global 3D chemistry transport model (Bey \textit{et al.}, 2001) showed a 40% underestimate in OH and a HO\textsubscript{2} overestimate of roughly two-fold. However, good agreement could be achieved by including the uptake of HO\textsubscript{2} onto particles (using \(\gamma\text{HO2} = 0.02-0.5\) over the temperature range 275–220 K). In a subsequent box model (NASA Langley Research Center) study, the underprediction of OH exhibited a significant dependence on isoprene mixing ratios, reaching a factor of \(\sim 6\) at 5 ppbv, in agreement with the results presented in Section 1.4.2.2 (Ren \textit{et al.}, 2012).

A box model constrained with MCM chemistry was able to reproduce observed ground level HO\textsubscript{x} during the COBRA (Combined iodine and BRomine release on the Arctic atmosphere) campaign in March 2008 at Hudson Bay, Canada, where approximately 74% of HO\textsubscript{x} production resulted from HCHO (emitted from the snowpack) photolysis (Edwards \textit{et al.}, 2011). This study further highlighted the importance of heterogeneous
HO₂ loss, as well as halogen chemistry and the formation of HO₂NO₂ as a radical reservoir.

More recently, CIMS measurements of OH and the sum of RO₂ radicals were made in the Oxidant Production in Antarctic Lands and Export (OPALE) project, during the austral summer of 2011/2012 at Dome C, East Antarctica (Kukui et al., 2014). Median concentrations of OH and RO₂ radicals were 3.1 × 10⁶ and 9.9 × 10⁷ molecule cm⁻³, respectively, with ~75% of primary radical production through HONO photolysis. At such high HONO levels an MCM model overpredicted both OH and RO₂ by a factor of ~2, but good agreement was found when HONO was reduced by three-fold, suggesting an interference in HONO measurements from HO₂NO₂ (Legrand et al., 2014). The campaigns described above show that, despite the low humidity and solar intensity in polar locations, radical concentrations are close to those found in the marine boundary layer, due to the importance of snowpack emissions of radical precursors.

1.5 Summary

This introduction has outlined the fundamental reactions controlling oxidation chemistry in the troposphere (Section 1.2), and the measurement of HOₓ using the FAGE technique (Section 1.3). Recently reported interferences in HOₓ detection have been described extensively (Section 1.3.2). A summary of HOₓ measurements made during intensive field campaigns in recent years, and their comparisons to detailed chemical box models was presented in Section 1.4, which features summaries of the key results for each type of environment. This section highlighted the uncertainties in tropospheric oxidation chemistry, the most severe of which have been found in biogenic, low NOₓ (Section 1.4.2.2) environments, attributed to uncertainties in the mechanism of isoprene oxidation. Significant discrepancies between modelled and measured HOₓ levels have also been reported in polluted, urban environments (Section 1.4.2.3).

1.6 Structure of Thesis

In the next chapter, details of the experimental procedures conducted as part of this work are given, where the main focus is a description of the University of Leeds ground-based FAGE instrument and its operating parameters. This section includes details of calibration procedures, measurement uncertainties, and the equations used to workup the data collected during field campaigns. A brief description of a custom IGOR program,
developed in this work to automate the analysis of calibration and ambient data, may be found in the Appendix.

In Chapter 3, a newly-constructed inlet pre-injector (IPI) system is described, which was built to incorporate an OH chemical background method in the Leeds FAGE instrument to test for OH measurement interferences. In the IPI, OH radicals are removed by a chemical scavenger prior to FAGE sampling and detection. The results of experiments conducted to characterise the IPI in terms of sensitivity and OH scavenging efficiency are presented, as well as those performed to test for interferences in the ozonolysis of isoprene. The first three deployments of the Leeds IPI for ambient OH measurements are described in Chapter 4, with a focus on the ICOZA (Integrated Chemistry of OZone in the Atmosphere) project, which took place at a coastal UK location in summer 2015. The magnitude of OH interferences observed during subsequent deployments in winter 2016 and summer 2017 field campaigns in Beijing, China, as part of the AIRPRO (an integrated study of AIR pollution PROcesses in Beijing) project are also described briefly.

In Chapter 5, oxidation chemistry during ICOZA is explored in further detail through analysis of OH, HO$_2$, and RO$_2$ radical measurements. The radical observations are compared to the predictions of a highly-constrained box model incorporating MCMv3.3.1 chemistry, and a simple photostationary steady-state (PSS) model was used to examine the experimental OH budget. The dependences of measured and modelled radical concentrations on NO are explored in detail. In addition, in situ ozone production rates ($P(O_3)$, OPR) are calculated, and a high-ozone, heatwave event is presented as a case study. Finally, the overall conclusions of this thesis and suggestions for future work are given in Chapter 6.

1.7 References

Arneth, A., Monson, R., Schurgers, G., Niinemets, Ü., and Palmer, P.: Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes)?, Atmospheric Chemistry and Physics, 8, 4605-4620, 2008.

Bossolasco, A., Faragó, E. P., Schoemaecker, C., and Fittschen, C.: Rate constant of the reaction between CH\textsubscript{3}O\textsubscript{2} and OH radicals, Chemical Physics Letters, 593, 7-13, 2014.

Chen, D., Huey, L. G., Tanner, D. J., Li, J., Ng, N. L., and Wang, Y.: Derivation of hydroperoxyl radical (HO₂) levels at an urban site via measurement of pernitric acid
(HO$_2$NO$_2$) by iodide chemical ionization mass spectrometry (I−-CIMS), Environmental Science & Technology, 2017.

COMEAP: The Mortality Effects of Long-Term Exposure to Particulate Air Pollution in the United Kingdom, 2010.

Dillon, T. J., and Crowley, J. N.: Direct detection of OH formation in the reactions of HO$_2$ with CH$_2$C(O)O$_2$ and other substituted peroxy radicals, Atmospheric Chemistry and Physics, 8, 4877-4889, 2008.

Fuchs, H., Albrecht, S., Acir, I., Bohn, B., Breitenlechner, M., Dorn, H. P., Gkatzelis, G. I., Hofzumahaus, A., Holland, F., Kaminski, M., Keutsch, F. N., Novelli, A., Reimer, D.,

Kanaya, Y., Hofzumahaus, A., Dorn, H.-P., Brauers, T., Fuchs, H., Holland, F., Rohrer, F., Bohn, B., Tillmann, R., and Wegener, R.: Comparisons of observed and modeled OH
and HO$_2$ concentrations during the ambient measurement period of the HO x Comp field campaign, Atmospheric Chemistry and Physics, 12, 2567-2585, 2012.

J. C., Haeffelin, M., and Doussin, J. F.: Study of the unknown HONO daytime source at a European suburban site during the MEGAPOLI summer and winter field campaigns, Atmospheric Chemistry and Physics, 14, 2805-2822, 2014.

Nguyen, T., Crounse, J., Schwantes, R., Teng, A., Bates, K., Zhang, X., St Clair, J., Brune, W., Tyndall, G., and Keutsch, F.: Overview of the Focused Isoprene eXperiment at the
California Institute of Technology (FIXCIT): mechanistic chamber studies on the oxidation of biogenic compounds, Atmospheric Chemistry and Physics, 14, 13531-13549, 2014.

spectroscopy within HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry), Atmospheric Measurement Techniques, 10, 4877-4894, 2017a.

Whalley, L. K., Blitz, M. A., Desservettaz, M., Seakins, P. W., and Heard, D. E.: Reporting the sensitivity of laser-induced fluorescence instruments used for HO2 detection to an interference from RO2 radicals and introducing a novel approach that enables HO2 and certain RO2 types to be selectively measured, Atmospheric Measurement Techniques, 6, 3425-3440, 2013.

WHO: Burden of disease from the joint effects of Household and Ambient Air Pollution for 2012, 2014.

2. Measurements of OH, HO\(_2\), and RO\(_2\) radicals: the Leeds ground-based FAGE instrument

In this work, all data were obtained using instruments located in the University of Leeds Atmospheric Research shipping container, which acts as a mobile laboratory and normally resides at the School of Chemistry except during fieldwork periods. The container is air-conditioned and houses a variety of instruments, mostly rack-mounted, which are described in detail below. A schematic of the layout of the container, as set up for ambient measurements of HO\(_x\), RO\(_x\) and other species (e.g., O\(_3\) and NO\(_x\), Section 2.6) during field campaigns, is shown in Figure 2.1. Several uninterruptable power supplies (UPS) are used to supply power to most of the instruments and apparatus. The bulk of the container, including roof space, is occupied by apparatus required for the functioning of the Leeds ground-based FAGE instrument (Section 2.1). Not shown in Figure 2.1 is the total OH reactivity instrument (Section 2.4). Unless stated otherwise, all gas flows were controlled using Mass Flow Controllers (MFC, MKS Instruments 1179A series).

![Figure 2.1. Schematic of the Leeds Atmospheric Research shipping container (not to scale), showing all key features. MFC = mass flow controller, PD = photodiode, MCP = micro-channel plate, GB = MCP gating box, Amp. = MCP signal amplifier, A/C = air conditioning.](image-url)
2.1 Overview of the Leeds Ground-Based FAGE Instrument

Chapter 1.3 outlined the principles behind the measurement of HO\textsubscript{x} radicals using the FAGE technique. The sections below detail the main components of the Leeds ground-based FAGE instrument.

The University of Leeds ground-based FAGE instrument (Creasey et al., 1997a; Whalley et al., 2010; Whalley et al., 2013) has participated in over 25 intensive field campaigns since its initial deployment in 1996. Measurements of OH, HO\textsubscript{2} and, more recently, RO\textsubscript{2} radicals (Whalley et al., 2013), have been made in a variety of locations, ranging from pristine open ocean (Creasey et al., 2003; Whalley et al., 2010), rainforest (Whalley et al., 2011) and polar (Bloss et al., 2007) environments, to coastal (Smith et al., 2006) and semi-polluted regions (Creasey et al., 2001), as well as urban areas (Heard et al., 2004; Emmerson et al., 2007), including a highly polluted megacity (Lee et al., 2016; Whalley et al., 2018).

2.1.1 Laser System

The key features of the laser system used are summarised in Figure 2.2 and described in detail below. Laser light at 308 nm is provided by an all solid-state laser system, consisting of a frequency-doubled Q-switched Nd:YAG laser (Photonics Industries DS-532-18) at $\lambda = 532$ nm (\sim10 W, prf = 5 kHz) which pumps a Ti:Sapphire cavity to generate broadband near-IR radiation in the range 690–1000 nm. The Nd:YAG rods and pump diodes and the Ti:Sapphire crystal are water cooled to \sim30 °C using a chiller unit, while the Nd:YAG frequency doubling crystal ($\lambda = 1064 \rightarrow 532$ nm) is maintained at \sim50 °C.

After expansion of the beam using a series of prisms, a rotatable diffraction grating is used to select light at \sim924 nm. Following alignment, \sim1.6 W of IR radiation is produced, which is refocused into temperature controlled (\sim50 °C, using a Peltier heater) lithium triborate (LBO) and β-barium borate (BBO) non-linear optical crystals (separated by a dual wavelength half/full-wave plate), to generate 462 nm light (via frequency doubling) and eventually UV radiation at 308 nm (via sum frequency generation of the 462 and 924 nm light). Typical UV power is in the range 50–100 mW. Following this, the UV light is split between the detection cells (HO\textsubscript{x}/RO\textsubscript{x} and OH reactivity) and reference cell (Section 2.1.4) via beamsplitters, and coupled to optical fibres (Oz Optics QMMJ-55-UVVIS-200/240-3-5) using optical fibre launchers (Elliot Gold); the laser power is split in the ratio 71.25:25:3.75 (HO\textsubscript{x}/RO\textsubscript{x} cells, OH reactivity instrument and reference cell,
Figure 2.2. Schematic of the laser system used in the Leeds ground-based FAGE instrument. WP = half-wave plate, M = mirror, L = lens, SHG = second harmonic generation (LBO), THG = third harmonic generation (BBO), DWP = dual wavelength half/full-wave plate. Colour code: green – $\lambda = 532$ nm; red – broadband IR and $\lambda = 924$ nm; blue – $\lambda = 308$ nm.

respectively). The light transmitted through mirror M9 is used to monitor the wavelength of light accurately using a wavemeter (Coherent Wavemaster 33-2650, 1 pm precision), as shown in Figure 2.2. Laser light is directed into the HO$_x$ cell using a collimator (Oz Optics) attached to an entrance arm, then exits through a window into the RO$_x$ fluorescence cell, in series as shown in Figure 2.1; the collimator results in a beam diameter of ~10 mm in the fluorescence imaging region (Section 2.1.2) inside the cells. The power of the laser light (~10–20 mW) exiting the HO$_x$/RO$_x$ and reference cells is measured (after boxcar signal smoothing) using UV sensitive filtered photodiodes (New Focus 2032); an additional, fast photodiode (Timing Corr. PD in Figure 2.1) is used to measure the position of the laser pulse in time (Section 2.1.3).

2.1.2 Fluorescence Cells

As shown in Figure 2.1, the two fluorescence cells (HO$_x$ and RO$_x$) are located on the roof of the shipping container in a (weather-sealed) aluminium box (~1×1×1 m). The two cells are adjacent to one another, separated by a distance of ~50 cm (centre-to-centre). The low pressure inside both cells (~1.2–1.7 Torr, measured using a capacitance manometer (Baratron, MKS instruments) is provided by the same vacuum system, a Roots blower (Leybold RUVAC WAU 1001) backed by a rotary pump (Leybold SOGEVAC SV200), connected via 10 cm ID stainless steel flexible hose (length 5 m). Aside from the dimensions of the two inlets (turret versus flow tube), the cells are virtually identical. They consist of 22 cm ID stainless steel cylinders, where the RO$_x$ cell
Figure 2.3. Top-down schematic of the fluorescence cells. Modified from a figure originally created by Dr. Shona Smith.

Figure 2.4. Schematic of the HOx cell design. The flat turret inlet pictured has since been replaced with one with a similar but conical design, for use with a newly constructed inlet pre-injector (IPI) system (Chapter 3). Modified from Whalley et al. (2013).
has also been sandblasted and coated with black Teflon to reduce contributions to the
detector signal from scattered light.

To demonstrate the optical components present inside the cells, a top-down view is shown
in Figure 2.3. Perpendicular to both the laser axis and the direction of gas flow is an
optical rail which houses a spherical concave mirror (back reflector) and a biconvex lens.
This focuses laser-induced fluorescence light (i.e., from the fluorescence imaging
region) into an exit arm which, after passing through a bandpass filter (Barr Associates,
>50% transmission at 308 nm), is imaged using two touching planoconvex lenses onto
the detector. Both micro-channel plate (MCP, Photek PMT325) and channel
photomultiplier (CPM, Perkin Elmer 993P) detectors are used in this instrument.

2.1.2.1 HO\textsubscript{x} cell

Ambient air is drawn into the HO\textsubscript{x} fluorescence cell at ~8 slm through a 1 mm diameter
pinhole nozzle in a flat stainless steel plate (0.1 mm thickness), which sits on top of a 5
cm tall, 2.54 cm diameter turret as shown in Figure 2.4. Recently, the flat turret was
replaced with one with a conical design in order to facilitate the gas flow around a newly
constructed inlet pre-injector (IPI) system (Chapter 3). Supersonic expansion of the gas
results in a collimated jet that intersects the laser axis in the fluorescence imaging region.
The HO\textsubscript{x} cell is used to make sequential measurements of OH and HO\textsubscript{2} (RO\textsubscript{2} interference
minimised using a small flow of NO). In HO\textsubscript{2} mode, NO (BOC, 99.95%) is injected into
the centre of the cell 7.5 cm below the pinhole via a single 1.6 mm ID stainless steel
injector using a computer-controlled solenoid valve (Metron Semiconductors). Typically
5 sccm is injected, resulting in a conversion efficiency (i.e., HO\textsubscript{2} → OH) of ~20%; the
residence time between NO injection and OH detection is ~0.9 ms (Creasey \textit{et al.}, 1997b).

2.1.2.2 RO\textsubscript{2}LIF cell

The RO\textsubscript{2}LIF cell (Whalley \textit{et al.}, 2013) only differs from the HO\textsubscript{x} cell by the addition of
a differentially-pumped reaction flow tube above the cell, as shown in Figure 2.5. The
flow tube (83 cm length, 6.4 cm ID) is constructed from aluminium, and internally coated
with halocarbon wax to reduce radical wall losses. Ambient air is drawn into the flow
tube, which is held at ~30 Torr, at ~7.5 slm through a 1 mm diameter pinhole (1 mm
thickness) in a flat aluminium plate. The FAGE cell samples air at ~5 slm from the base
of the flow tube via a 4 mm diameter pinhole sat on a 5 cm tall turret, which results in a
cell pressure of ~1.5 Torr.
The RO\textsubscript{x}LIF cell is used to measure HO\textsubscript{x} (OH + HO\textsubscript{2}^*)1 and RO\textsubscript{x} (= OH + HO\textsubscript{2} + RO + RO\textsubscript{2})2 sequentially. In HO\textsubscript{x} mode, 250–500 sccm CO (BOC, 5\% in N\textsubscript{2}) enters the centre of the flow tube, ~2 cm below the pinhole, through 6.4 mm ID stainless steel tubing. As a result, all HO\textsubscript{x} is partitioned to HO\textsubscript{2} as a result of reaction (R2.1):

\[
\text{OH} + \text{CO} + \text{O}_2 \rightarrow \text{HO}_2 + \text{CO}_2 + \text{H}_2\text{O} \quad \text{(R2.1)}
\]

In RO\textsubscript{x} mode, 30 sccm NO (BOC, 500 ppmv in N\textsubscript{2}) is added together with the CO. This converts all peroxy radicals to HO\textsubscript{2} via reactions (R2.2–R2.3):

\[
\text{RO}_2 + \text{NO} \rightarrow \text{RO} + \text{NO}_2 \quad \text{(R2.2)}
\]

\[\approx \text{HO}_2^* \text{ under most ambient conditions, i.e. OH} \ll \text{HO}_2^*.\]

\[\approx \text{HO}_2 + \text{RO}_2 \text{ under most ambient conditions, i.e. OH} \ll \text{HO}_2 \text{ and RO} \ll \text{RO}_2.\]
RO + O₂ → R’CHO + HO₂ \hspace{1cm} (R2.3)

While some OH, which is lost more quickly to the walls of the flow tube than HO₂, is formed through reaction (R2.4):

\[
\text{HO}_2 + \text{NO} \rightarrow \text{OH} + \text{NO}_2 \hspace{1cm} (R2.4)
\]

reaction (R2.1) quickly converts (τ_{OH+CO} < 3 ms) the OH back to HO₂. The residence time in the flow tube is ~0.8 s, ensuring high conversion of RO₂ to HO₂. Inside the fluorescence cell, NO (BOC, 99.95%) is continuously added (100 sccm) to the centre of the cell, 7.5 cm below the pinhole via a single 1.6 mm ID stainless steel injector. This reconverts HO₂ to OH for LIF detection. The high flow of NO in the fluorescence cell means that some RO₂ species also convert to OH in HOₓ mode (see Chapter 1.3.2.2 and Section 2.3).

2.1.3 Photon Counting and Timing Control

In order to discriminate between fluorescence and scattered light, temporal gating of the detector is required, as discussed in Chapter 1.3. A diagram of the timings of the detector gain state and photon counting windows, optimised for use with MCP detectors, is shown in Figure 2.6. Detailed descriptions of the analogous process for CPM detectors can be found in Smith (2007) and Furneaux (2009).

In the Leeds ground-based FAGE instrument, gating is accomplished using two delay generators (Stanford Research Systems SRS-DG535). One of the delay generators is used to define \(t_0 \) and triggers the laser at \(t_0 + 5 \mu s \). A fast photodiode (Hamamatsu, S6468 series), in conjunction with a counter timer (Agilent Technologies, 225 MHz universal counter) is used to measure the actual temporal position of the laser pulse relative to \(t_0 \), which depends on laser power and alignment. This lag time (\(t_l \sim 5.8\text{–}5.9 \mu s \)) is used to automatically correct the temporal positions of the gating and photon counting processes for laser drift. The other delay generator sends signal pulses to gating units which control whether the detector is in a high or low gain state. This delay generator defines the times at which the detector changes gain state. The MCP detector is normally in a low gain state (“normally off” mode, requires a positive gating pulse), for 180 \(\mu s \) of the 200 \(\mu s \)
Figure 2.6. Diagram of the timings of the MCP detector gain state (middle trace) and photon counting windows (bottom) relative to t_0 and the temporal position of the laser pulse (top) during one 200 μs duty cycle. For details see text, diagram not to scale.

duty cycle (i.e., the inverse of the 5 kHz prf). The MCP is switched to a high gain state ~20 ns after the laser pulse ($\Delta t_{MCP} = t_l + 20$ ns) for a duration of 20 μs. A major difference when using CPM detectors is that they are operated in “normally on” mode, where the detector is only in a low gain state for approximately 0.6 μs of the 200 μs duty cycle, before and for the duration of the laser pulse (i.e., a negative gating pulse). The MCP detectors, first acquired in 2014, were operated in an analogous manner to CPMs (i.e., normally on, and with similar timings) in initial laboratory experiments and during the 2015 ICOZA (Integrated Chemistry of OZone in the Atmosphere) field campaign described in Chapters 4 and 5. Detector signal spiking was found to be a major problem during this campaign, presumed to be caused by electrical interference, possibly as a result of high temperatures inside the roof box (Figure 2.1). Following further characterisation to improve their performance, the MCP detectors were operated under the optimised settings described here in subsequent laboratory experiments and the AIRPRO (an integrated study of AIR pollution PROcesses in Beijing) field campaigns in 2016 and 2017 (Chapter 4.2).

The gating units, situated inside the roof box (Figure 2.1), also differ between the two detector technologies. Home-built gating units are used with CPM detectors, which are held at 2900 V (relative to ground) in the high gain state. For MCP detectors, compact gating units (Photek GM10-50B) are used, and the potential is held at 3900 V in the high gain state; the signal was sometimes amplified (Photek PA200-10S preamplifier, 20 dB
gain) when using MCP detectors. Initially, the power for the MCP gating boxes (+5 V DC) and amplifiers (+12 V DC) was supplied from Photek DC power adapters, but is now provided by a home-built low-noise power supply unit (PSU); this was introduced after the ICOZA campaign to help reduce signal spiking.

Following the fast decay of the scattered laser light (full width at half maximum (FWHM) \(\sim 35 \text{ ns} \), \(^1\) measured using the fast photodiode), the photon counter (SRS SR400) measures photons (as electrical pulses) from LIF, solar, remaining laser light and detector dark counts in a 1.0 \(\mu \text{s} \) collection window (A gate), which starts 20 ns (\(\Delta t_1 \) in Figure 2.6) after the MCP detector switches to a high gain state. After 14 \(\mu \text{s} \) (\(\Delta t_2 \)) relative to the MCP switch, by which time fluorescence and scattered light have effectively decayed to zero, a 5 \(\mu \text{s} \) collection window measures the signal from solar light and detector dark counts (B gate). Owing to the faster electronic switching and reduced after-pulsing effects with MCP detectors, which are a more recent detector technology, the A gate starts later when using CPM detectors, approximately 100 ns after the laser pulse (cf. \(\sim 20 \text{ ns} \) for MCPs).

For one measurement period (i.e., one laser pulse), the signal due to OH fluorescence and residual laser scatter only (\(\text{OH}_{\text{sig}} \)) is given by equation (E2.1):

\[
\text{OH}_{\text{sig}} = A - B/X
\]
(E2.1)

where \(A \) is the number of counts measured in the A gate, \(B \) is the counts measured in the B gate and \(X \) is the ratio of the two gate widths (= 5 for the optimised timings described here). This measurement is then integrated over 5000 laser pulses to give a signal in counts s\(^{-1}\). In order to improve signal-to-noise, pulse discriminator levels are applied to the photon counters, of -50 mV and -25 mV (-2 mV) for CPM and amplified (non-amplified) MCP detectors, respectively; only pulses with an amplitude greater than the discriminator level are counted as photons, to distinguish them from electrical noise.

2.1.4 Reference Cell and Data Acquisition Cycle

In the Leeds ground-based FAGE instrument, a reference cell is used to accurately tune the laser wavelength to the peak of the \(Q_1(2) \) branch of the \(A^2\Sigma^+ (\nu' = 0) \leftarrow X^2\Pi (\nu'' = 0) \) electronic transition at \(\lambda \sim 308 \text{ nm} \). Large OH concentrations are produced in the reference

\(^1\) Manufacturer quoted pulse width = 24 ns at prf = 5 kHz for a Nd:YAG pump diode operating current (\(I_{\text{OP}} \)) of 33.00 A (typical \(I_{\text{OP}} = 44–48 \text{ A} \)).
The use of the reference cell for FAGE data acquisition is demonstrated in Figure 2.7, which shows the HO$_x$ and reference cell signals over the course of one data acquisition cycle, obtained during a fieldwork calibration experiment for signal clarity (i.e., high radical concentrations). The cycle proceeds as follows:

1. First, the laser wavelength is scanned over the range 307.995–308.005 nm to find the peak position of the Q$_{1}(2)$ branch (blue shaded area).

Following this, the laser wavelength steps back to 307.995 nm and then scans over the same range again until the reference cell signal (black line) reaches a set percentage (95–98%) of its peak value during step 1.
2. The laser wavelength is held constant and OH (red line and open circles) is measured at 1 Hz for a user set period, typically 30 s (orange shaded area). Generation of a high concentration of HO\textsubscript{x} outside the inlet (i.e., during a calibration experiment, see Section 2.2.1) results in a much higher signal (~103 counts s-1 V-1) than for ambient OH (~101 counts s-1 V-1).

3. The wavelength remains constant, but NO is injected into the HO\textsubscript{x} cell (yellow shaded area). The signal is now due to the sum of OH and HO\textsubscript{2}, which is measured for a set time (30 s). In the RO\textsubscript{x}LIF cell (Section 2.1.2.2), this is the period during which the dilute NO standard is injected into the CO flow (i.e., RO\textsubscript{x} mode, further details in Section 2.2.1.2).

Steps 2 and 3 are referred to as the online period. The laser is then stepped up to a high, offline wavelength (308.005 nm).

4. The wavelength is held constant again and the background (offline) signal is measured (grey shaded area). Typically, this is measured for 30 s and split between 15 s OH background (NO off) and 15 s HO\textsubscript{2} background (NO injected).

OH and HO\textsubscript{2} signals, \(S_{OH}\) and \(S_{HO2}\), can then be expressed using the following equations:

\[S_{OH} = S_{online, NO off} - S_{offline, NO off}\] (E2.2)

\[S_{HO2} = S_{online, NO injected} - S_{online, NO off} - (S_{offline, NO injected} - S_{offline, NO off}) - I_{HO2}\] (E2.3a)

or, if the offline signal is not changed by NO addition:

\[S_{HO2} = S_{online, NO injected} - S_{online, NO off} - I_{HO2}\] (E2.3b)

where each \(S\) term is the signal (i.e., \(A - B/X\)) averaged over the time period indicated by the subscripts; the \(I_{HO2}\) term accounts for the non-zero intercept usually obtained in HO\textsubscript{2} calibrations (i.e., \(S_{HO2} > 0\) when [HO\textsubscript{2}] = 0, see Section 2.2.1).2 In Figure 2.7, the large increase in signal after the NO injection followed by a decay is caused by an increase in

1 The offline signal is often higher when NO is present. This is suspected to be due to impurities formed in the NO cylinder, regulator or gas delivery line, such as HONO and HNO\textsubscript{3}, which may photolyse to produce (excited) OH. This background if often higher when NO has spent considerable time in the gas lines, or an older NO cylinder is used.

2 As a consequence of the impurities described in the above footnote. \(I_{HO2}\) generally decreases with conditioning of the NO gas delivery line, e.g. over the course of an extended field campaign.
the rate of reaction (R2.4) as a result of increased NO flow (due to a pressure spike);¹ these first few points are not incorporated in the signal averaging.

2.2 FAGE Calibration

As mentioned in Chapter 1.3, while it is possible to calculate the response of a FAGE instrument to [HO₅] (Holland et al., 1995), in practice this is difficult. FAGE instruments may be calibrated by supplying known concentrations of OH, HO₂ and RO₂ radicals (Section 2.2.1) to the instrument inlet. The signal response of the instrument to species X (i.e., OH, HO₂ and RO₂) is directly proportional to its concentration:

\[S_X = C_X \times [X] \]

(E2.4)

where \(C_X \) is the calibration factor, a measure of the instrument sensitivity, for species X. \(C_X \) is one of the factors that determine the limit of detection (LOD) of an instrument (Section 2.2.4).

2.2.1 Radical Generation and Instrument Sensitivity

2.2.1.1 HOₓ calibration

OH and HO₂ may be generated in equal amounts (Fuchs et al., 2011) by the vacuum UV photolysis of water vapour in the presence of oxygen (Stevens et al., 1994):

\[\text{H}_2\text{O} + h\nu (\lambda = 184.9 \text{ nm}) \rightarrow \text{H} + \text{OH} \]

(R2.5)

\[\text{H} + \text{O}_2 + \text{M} \rightarrow \text{HO}_2 + \text{M} \]

(R2.6)

For calibration of the Leeds FAGE instrument, radicals are generated in a turbulent flow tube known as the “wand”. This consists of a 30 cm length, square cross-section (1.27 × 1.27 cm) black anodised aluminium tube with a Hg(Ar) pen-ray lamp (LOT LSP035) internally mounted via a Suprasil window at the end. The lamp is maintained at 30–40 °C using a resistance heater and flushed with N₂ (~5 sccm),² and its output at \(\lambda = 184.9 \text{ nm} \) is collimated.

The concentrations of OH and HO₂ may be calculated using equation (E2.5):

1 It is also possible that this is simply due to an increase in laser-scattered light at higher cell pressure. Although not visible in Figure 2.7, the spike is also present when offline.

2 This helps to prevent the build-up of heat and impurities, especially O₃, which has a strong absorption cross-section at 184.9 nm.
\[[\text{OH}] = [\text{HO}_2] = [\text{H}_2\text{O}] \times \sigma_{\text{H}_2\text{O}, 184.9 \text{ nm}} \times \phi_{\text{OH}} \times F_{184.9 \text{ nm}} \times t \] \hspace{1cm} (E2.5)

where \(\sigma_{\text{H}_2\text{O}, 184.9 \text{ nm}} = 7.14 \times 10^{-20} \text{ cm}^2 \text{ molecule}^{-1} \) (Cantrell et al., 1997), \(\phi_{\text{OH}} = 1 \) and \([\text{H}_2\text{O}]\) must be measured during the course of the calibration. \(F_{184.9 \text{ nm}} \) is determined indirectly by chemical actinometry (Section 2.2.2), which relies on the photolysis of \(\text{O}_2 \) (laminar flow method (Aschmutat et al., 1994)), or more recently \(\text{N}_2\text{O} \) (turbulent flow method (Edwards et al., 2003; Faloona et al., 2004)).

Calibrations were performed using the \(\text{N}_2\text{O} \)-based, turbulent flow method, where the flow regime ensures a constant radial distribution of radicals across the flow tube. This is achieved (i.e., \(R_e > 4000 \)) using a fast flow (40 slm) of zero air (BOC, BTCA 178), which is humidified using a water (HPLC grade) bubbler, delivered to the relatively small cross-section wand via \(\frac{1}{4}” \) OD perfluoroalkoxy (PFA) tubing. The fast flow also results in a short photolysis exposure time in the wand \((t \sim 7 \text{ ms})\), minimising radical wall losses. A small portion of this flow \((\sim 2 \text{ slm})\) is sampled by a chilled mirror dew point hygrometer (General Eastern 1311DR sensor and 4×4 Optica, range -65 – +20 °C, error ±0.2 °C) to measure [\(\text{H}_2\text{O} \)].

During calibrations, the wand is held at a \(\sim 45^\circ \) angle\(^1\) to the \(\text{HO}_x \) cell inlet using a custom-built housing, with the pinhole sampling air from close to the centre of the wand exit. The high flow rate \((\sim 38 \text{ slm})\) relative to the inlet flow \((\text{maximum } \sim 8 \text{ slm})\) ensures that the pinhole is “over-flowed”, i.e. no ambient air is sampled alongside the calibration flow. Variation of the lamp current \((0–5 \text{ mA})\) is used to control \([\text{HO}_x]\), which is produced at near-ambient levels in the range \(5 \times 10^7 \text{ to } 1 \times 10^9 \text{ molecule cm}^{-3} \) (depending on humidity).

From equation (E2.4), it follows that \(C_X \) may be determined from the gradient of a plot of \(S_X \) against \([X]\), as shown in Figure 2.8 \((X = \text{OH})\) and Figure 2.9 \((X = \text{HO}_2)\). Here, \(S_X \) has been normalised to laser power \((\text{in mW})\) using the value of \(f^* \), which describes the relationship between the photodiode reading on the roof, \(PD_{\text{cells}} \), and laser power, \(P \):

\[f^* \ (\text{V mW}^{-1}) = \frac{PD_{\text{cells}} \ (\text{V})}{P \ (\text{mW})} \] \hspace{1cm} (E2.6)

\(f^* \) values \((-0.05–0.07 \text{ V mW}^{-1})\) are obtained from photodiode calibrations with a laser

\(^1\) This angle gives the highest sensitivity (although the dependence on angle is fairly weak), likely due to minimisation of the back-sampling of air that has been in contact with instrument surfaces.
Figure 2.8. Example OH calibration plot (see text for experimental details). Error bars are 1σ standard deviations (SD, error propagation described in Section 2.2.3), where x-errors represent the sum in quadrature of precision (i.e., lamp variability) and systematic uncertainty (from actinometry experiments, see Sections 2.2.2 and 2.2.3). Best fit line (black) obtained by orthogonal distance regression (ODR), grey shaded area represents the 1σ (68.3%) confidence interval (CI) bands.

Figure 2.9. Example HO$_2$ calibration plot (see text for experimental details). Error bars are 1σ SD, where x-errors represent the sum in quadrature of precision and systematic uncertainty. Best fit line (black) obtained by ODR, grey shaded area represents the 1σ CI bands.
power meter (Coherent FieldMate). The calibrations shown were performed on the HO$_x$ cell with a 1 mm diameter pinhole conical turret inlet (pictured in Chapter 3.2) and an amplified MCP detector; NO was injected at 25 sccm for HO$_2$ measurements, resulting in a conversion efficiency (i.e., $C_{\text{HO}_2}:C_{\text{OH}}$) of ~40%.1 Figure 2.8 and Figure 2.9 show strong linear relationships, with all points on the best fit line (within error), and hence a relatively small error is obtained in each of the calibration factors (<10%). The statistically significant offset ($I_{\text{HO}_2} = 1.57 \pm 0.69$ counts s$^{-1}$ mW$^{-1}$) in Figure 2.9 is likely due to impurities formed in the NO cylinder or line, as discussed in Section 2.1.4.

2.2.1.2 RO$_x$ calibration

Calibration of the RO$_x$LIF cell (Section 2.1.2.2) is performed slightly differently to HO$_x$ calibrations. A key component of this is quantifying the reduction in sensitivity after addition of NO due to increased partitioning of RO$_x$ to OH (and RO$_2$ losses through RONO$_2$ formation), and hence additional wall losses, via reactions (R2.2–R2.4). Radicals are generated in the wand and delivered to the RO$_x$LIF flow tube in an analogous manner to HO$_x$ calibrations. The same flow rate (~38 slm) is used to ensure that the RO$_x$LIF flow tube inlet (sample flow ~ 7.5 slm) is over-flowed, and the wand is also held at ~45° to the inlet using a custom-made housing. The radical concentrations in the wand are calculated using equation (E2.5); upon entering the flow tube OH radicals are converted immediately ($\tau < 3$ ms, compared to a residence time of ~0.8 s) to HO$_2$ via reaction (R2.1), such that HO$_2$ concentrations are effectively double those calculated using equation (E2.5).

Addition of a hydrocarbon to the wand generates RO$_2$ radicals via reaction with OH:

$$\text{RH} + \text{OH} + \text{O}_2 \rightarrow \text{RO}_2 + \text{H}_2\text{O}$$

(R2.7)

For typical RO$_2$ calibrations, methane is used as the hydrocarbon species, generating CH$_3$O$_2$. High hydrocarbon concentrations ensure quantitative conversion of OH to RO$_2$, such that HO$_2$ and RO$_2$ concentrations are equal and can be calculated using equation (E2.5).

Figure 2.10 shows a time series of a typical RO$_x$ calibration experiment, performed at the start of the ICOZA field campaign. In the first part of the experiment (top panel), no hydrocarbon is added in order to quantify the reduction in sensitivity with the addition of dilute NO (500 ppmv standard cylinder, 2 ppmv in flow tube). For the first 30 s of the

1 Higher than the usual NO flow of 5 sccm for ambient HO$_2$ measurements.
Figure 2.10. Time series of the RO\textsubscript{x} cell signal during a calibration experiment (see text for details); the gas mixing ratios (brown and purple text) are those calculated in the RO\textsubscript{x}LIF flow tube. Top: no hydrocarbon added, only HO\textsubscript{2} is formed in the flow tube; the decrease in signal upon addition of NO is used to quantify the sensitivity ratio, A. Bottom: addition of a hydrocarbon (methane) results in 1:1 concentrations of HO\textsubscript{2} and CH\textsubscript{3}O\textsubscript{2}; S_{RO2} is the signal due to CH\textsubscript{3}O\textsubscript{2} only.

Online period, only CO (500 sccm) is added (5% standard cylinder, 0.3% in flow tube). The HO\textsubscript{2} signal, $S_{\text{HO2}*}$, is given by:

$$S_{\text{HO2}^*} = S_{\text{online, dNO off}} - S_{\text{offline}}$$

(E2.7) where the subscript “HO2*” is used to avoid confusion with measurements from the HO\textsubscript{x} cell (i.e., S_{HO2}), and also because it is this part of the data acquisition cycle that is used to calculate ambient HO\textsubscript{2} concentrations (Section 2.3); the subscript “dNO” is used to distinguish between the dilute NO injected into the flow tube, and the continuous flow (100 sccm) of concentrated NO to the RO\textsubscript{x} fluorescence cell, which converts HO\textsubscript{2} to OH for LIF detection.
After 30 s, dilute NO (30 sccm) is added with the CO flow for another 30 s. The reduced HO$_2$ signal, S_{HO2^+} (NO), is given by:

$$S_{HO2^+} (NO) = S_{\text{online, dNO injected}} - S_{\text{offline}}$$ \hspace{1cm} (E2.7)

The reduction in sensitivity is expressed as the ratio, A_{NO}:

$$A_{NO} = \frac{S_{HO2^+}}{S_{HO2^+} (NO)}$$ \hspace{1cm} (E2.8)

which, for the example shown in Figure 2.10, yields $A_{NO} = 0.714 \pm 0.041$. This ratio is lower than typical values (>0.9), meaning that the instrument was running at reduced sensitivity towards RO$_2$ radicals during the summer 2015 ICOZA campaign. Addition of a capacitance manometer (Baratron, MKS instruments) to the RO$_x$LIF flow tube, to ensure it was at its optimum pressure of ~30 Torr, improved sensitivity for the AIRPRO campaigns (average A_{NO} of 0.98 and 0.94 for winter 2016 and summer 2017, respectively).

In the second part of the calibration (bottom panel), CH$_4$ (500 sccm) is added to the calibration wand air flow (1.2%, $\tau_{OH+CH4} \sim 0.5$ ms, compared to a residence time of ~7 ms in the photolysis region) to generate CH$_3$O$_2$ radicals via reaction (R2.7). For the first 30 s, only CO is added; these points ($S_{HO2^+} (CH_4)$), along with those from the first part of the experiment (i.e., top panel, non-NO points), may be used to determine the RO$_x$LIF cell sensitivity towards HO$_2$, C_{HO2^+}, using equation (E2.4) in an analogous manner to HO$_x$ cell calibrations, as shown in Figure 2.11. The CH$_3$O$_2$ radicals do not undergo any significant reaction and hence make no contribution to the signal during this time period. For the final 30 s of the online period, the addition of dilute NO enables conversion of CH$_3$O$_2$ to HO$_2$ via reactions (R2.2–2.3), where the presence of CO facilitates partitioning of HO$_x$ to HO$_2$ by reaction (R2.1). The signal due to CH$_3$O$_2$ only, S_{RO2}, is given by:

$$S_{RO2} = S_{\text{online, dNO injected}} - A \times S_{HO2^+} (CH_4) - S_{\text{offline}}$$ \hspace{1cm} (E2.9)

1 Similar to HO$_x$ calibrations, an inverse spike is observed when NO is first injected (as a result of increased NO flow due to pressure build-up behind the solenoid valve); these first few points are not incorporated in the signal averaging.

2 As discussed in Chapter 1.3.2.2, some peroxy radicals do convert to HO$_2$ on the timescale of the fluorescence cell NO injection, and thus do contribute to the S_{HO2^+}. The nature of these peroxy radicals, the mechanism of the conversion, and the exploitation of this to discriminate between certain RO$_2$ types in ambient measurements are described in Section 2.3.
Figure 2.11. Example HO$_2^*$ (HO$_2$ measured in RO$_2$LIF cell) calibration plot (see text for experimental details). Error bars are 1σ SD, where x-errors represent the sum in quadrature of precision and systematic uncertainty. Best fit line (black) obtained by ODR, grey shaded area represents the 1σ CI bands.

Figure 2.12. Example RO$_2$ calibration plot, using methane to generate methylperoxy (CH$_3$O$_2$) radicals (see text for experimental details). Error bars are 1σ SD, where x-errors represent the sum in quadrature of precision and systematic uncertainty. Best fit line (black) obtained by ODR, grey shaded area represents the 1σ CI bands.
A plot of S_{RO2}, normalised to laser power, versus RO$_2$ concentrations calculated using equation (E2.5) yields the RO$_3$LIF RO$_2$ calibration factor, C_{RO2}, using equation (E2.4) as shown in Figure 2.12.

2.2.2 Actinometry

$F_{184.9 \text{ nm}}$ is determined via N$_2$O chemical actinometry (Edwards et al., 2003; Faloona et al., 2004), as discussed above. In summary, this involves measuring the NO produced in the photolysis of N$_2$O as a function of Hg lamp current. The NO is measured using a commercial NO$_x$ chemiluminescence instrument (Thermo Environmental Instruments Inc. 42C). The actinometry experiment involves three main parts:

1. Calibration of MFCs to ensure accurate concentration measurements.
2. Calibration of the NO$_x$ instrument as a function of N$_2$O concentration. This is necessary as the NO$_x$ instrument relies on the measurement of fluorescence from NO$_2^*$ formed in the reaction between NO and O$_3$; N$_2$O can collisionally quench NO$_2^*$ back to the ground state, leading to an underestimation in NO concentration.
3. Under the same experimental conditions as a FAGE calibration, the NO produced from N$_2$O photolysis is measured as a function of lamp current. NO concentrations must be corrected using the data obtained in step 2. The flux is then calculated using literature kinetic and photochemical data.

Figure 2.13 shows a typical MFC calibration plot, where flows were measured using a calibrated flowmeter (Bios DryCal DC-Lite Primary Flow Meter M).

Figure 2.14 shows a representative NO$_x$ calibration, at an N$_2$O mixing ratio of 5.54 ± 0.10%. The calibration was performed using a flow (0–100 sccm) of a dilute NO standard (BOC, 450 ± 5 ppbv) in 2 slm N$_2$ (BOC, 99.998%) and 125 sccm N$_2$O (BOC, medical grade 98%).

This process was repeated in the absence of N$_2$O and at a mixing ratio of 12.04 ± 0.21%, to determine the relationship between C_{NO} and [N$_2$O] as shown in Figure 2.15. As expected, the sensitivity decreases slightly with increasing N$_2$O. The low sensitivity, which is <0.6 (ppbv ppbv$^{-1}$) even in the absence of N$_2$O, is likely due to aging of the fluorescence detector and deterioration of the collection optics.

Following this, a turbulent flow of air (40 slm) and N$_2$O (3.7 slm, 8.2%, $C_{NO} = 0.527$) was delivered to the calibration wand. The NO$_x$ instrument sampled from close to the centre of the wand exit, with a (K-type) thermocouple attached to the tip of the inlet,
Figure 2.13. Typical MFC calibration plot (N\textsubscript{2} gas, 0–5 slm). Best fit line obtained using a least squares fit (errors at 1\textsigma).

Figure 2.14. NO\textsubscript{x} instrument calibration at ~5.5% N\textsubscript{2}O. Best fit line obtained using a least squares fit (errors are 1\textsigma SD).
whilst the lamp current was varied between ~0–10 mA.

The chemistry inside the flow tube may be described by reactions (R2.8–R2.12):

\[
\begin{align*}
N_2O + h\nu (\lambda = 184.9 \text{ nm}) & \rightarrow N_2 + O(^1D)
\text{(R2.8)} \\
O(^1D) + O_2 & \rightarrow O(^3P) + O_2
\text{(R2.9)} \\
O(^1D) + N_2 & \rightarrow O(^3P) + N_2
\text{(R2.10)} \\
O(^1D) + N_2O & \rightarrow O_2 + N_2
\text{(R2.11)} \\
O(^1D) + N_2O & \rightarrow 2NO
\text{(R2.12)}
\end{align*}
\]

Collisional quenching of O(^1D) by N_2O is negligible (Commane, 2009). The rate of O(^1D) production is given by equation (E2.6):

\[
\frac{d[O(^1D)]}{dt} = [N_2O] \sigma^{184.9 \text{ nm}} \phi_{O(^1D)} F_{184.9 \text{ nm}}
\text{(E2.10)}
\]

where \(\sigma^{184.9 \text{ nm}} = 1.43 \times 10^{-19} \text{ cm}^2 \text{ molecule}^{-1}\) (Sander et al., 2006), the quantum yield of O(^1D), \(\phi_{O(^1D)} = 1\) (Sander et al., 2006), and \(F_{184.9 \text{ nm}}\) is the lamp flux. After applying the steady-state approximation to O(^1D) to account for its losses, the following expression may be obtained for the lamp flux:

\[
F_{184.9 \text{ nm}} = \frac{[NO](k_{29}[O_2]+k_{30}[N_2]+(k_{31}+k_{32})[N_2O])}{2t(k_{32}\sigma^{184.9 \text{ nm}}\phi_{O(^1D)}[N_2O]^2)}
\text{(E2.11)}
\]

where the photolysis exposure time, \(t \sim 7.4 \text{ ms}\), \(F_{184.9 \text{ nm}}\) as a function of lamp current may therefore be calculated from measurements of NO concentration, as shown in Figure 2.16.²

The actinometry experiment was performed in June 2015, and rate constants were calculated using temperature-dependent equations taken from Sander et al. (2011). The large uncertainty (~13% at 1σ) is a reflection of the high error obtained after propagation of kinetic uncertainties through equation (E2.7).

¹ \(t\) is estimated from the flow properties of the wand, but is used only to calculate \(F_{184.9 \text{ nm}}\) for comparison to other actinometry experiments. For the purposes of FAGE radical calibration, only the product \((F_{184.9 \text{ nm}} \times t)\) is required, as the total gas flow rate (and therefore \(t\)) is the same for actinometry and radical calibration experiments.

² \(F_{184.9 \text{ nm}}\) values must also be corrected to account for N_2O absorption at 184.9 nm using the Beer-Lambert law (not described).
Figure 2.15. Thermo 42C instrument sensitivity to NO as a function of N$_2$O mixing ratio. Best fit line (black) obtained using a least squares fit, grey shaded area represents the 1σ CI bands.

Figure 2.16. Lamp flux as a function of lamp current. Error bars are 1σ and represent: y – uncertainty combined from the sum in quadrature of NO variability (~14%), and errors in rate constants (total ~20%), C_{NO} (~6%) and the concentration of the NO standard (~4%); x – variability in lamp current (~4%). Best fit line (black) obtained by ODR (errors at 1σ), grey shaded area represents the 1σ CI bands.
A comparison of flux gradients obtained from actinometry experiments performed over the last four years is shown in Figure 2.17. All experiments were performed with the same lamp under identical set-ups (i.e., after the lamp collimator tubes were replaced in September 2014). It can be seen that the flux gradients obtained are quite variable, ranging from ~6–14 × 10^{12} photons cm^{-2} s^{-1} mA^{-1}, although this cannot be explained by variations in C_{NO}, which remained at a relatively stable value of ~0.58 ppbv/ppbv. Nonetheless, the gradients are broadly in agreement within their combined 2σ uncertainties, with a mean ± 2σ value of (9.4 ± 5.4) × 10^{12} photons cm^{-2} s^{-1} mA^{-1} (~60% relative error). There is no evidence for any long-term decrease in lamp output due to aging.

The N₂O/NO method has previously been shown to be in good agreement with the laminar, O₂/O₃-based actinometry experiment (Smith, 2007; Furneaux, 2009). In the present work, the flux gradient was also determined using an alternative, methanol-based actinometer as a further check, in which the HCHO produced from CH₃OH photolysis was detected using another LIF instrument, described in Section 2.5 (Cryer, 2016). This yielded a flux gradient of (7.8 ± 1.2) × 10^{12} photons cm^{-2} s^{-1} mA^{-1}, in agreement with the N₂O method. However, there were some systematic issues with the CH₃OH/HCHO method, such as its insensitivity to changing CH₃OH concentrations (T. Ingham, personal communication), which were not pursued any further.

A key limitation of the turbulent, N₂O-based actinometry experiment is that the NO is produced in concentrations that are often below 1 ppbv, which are not far above the NOₓ instrument detection limit of ~50 pptv in 120 s (SNR = 2). Previous work by Brumby (2017) showed that, out of all known sources of error associated with the N₂O actinometry experiment (e.g. uncertainties in kinetic rate constants, gas mixing ratios or temperature), variability in measured NO had the most significant influence (46–99%) on the determined value of F_{184.9 nm}, based on Monte Carlo error propagations.

2.2.3 Accuracy and Precision

For all radical measurements, the accuracy can be determined by the uncertainty in the lamp flux gradient obtained in actinometry experiments, since the ODR fitting method takes into account all uncertainties, of which the uncertainty in kinetic parameters dominates. The relative error in the slope for the data in Figure 2.16 is 13% (1σ), which is consistent with previous estimates of the accuracy of the lamp flux derived using the N₂O actinometry method (Commane, 2009; Furneaux, 2009; Walker, 2013). The
Figure 2.17. Comparison of lamp flux gradients ($\pm 2\sigma$) and C_{NO} obtained during N_2O actinometry experiments for the same lamp over the last four years. Median flux gradient = 9.0×10^{12}, mean (pink dashed line) $\pm 2\sigma = (9.4 \pm 5.4) \times 10^{12}$ photons cm$^{-2}$ s$^{-1}$ mA$^{-1}$ ($\sim 60\%$ relative error). The lilac dashed line denotes the NO sensitivity derived from an NO standard cylinder supplied by the University of York during the July 2015 ICOZA field campaign (Chapters 4 and 5). Some experiments performed by Dr. Lisa Whalley (Sep-14, Jul-16, Aug-16), Graham Boustead (Nov-16) and Eloise Slater (Oct-17).

In terms of precision, the error in OH measurements (σ_{OH}) is obtained from the propagation of uncertainties in the on- and offline signals:

$$\sigma_{OH} = \sqrt{(\sigma^2_{online, NO \ off} + \sigma^2_{offline, NO \ off})}$$ \hspace{1cm} (E2.12)

which, assuming Poisson statistics (i.e., $\sigma_{offline} = \sqrt{S_{offline}}$), equates to:

$$\sigma_{OH} = \sqrt{(\sigma^2_{online, NO \ off} + S_{offline, NO \ off})}$$ \hspace{1cm} (E2.13)

where the S term is the same as that described in Section 2.1.4 (i.e., equation (E2.2)), and the σ term corresponds to the 1σ standard deviation (SD) of the 1 s online OH signal data (counts s$^{-1}$ V$^{-1}$). The precision in HO_2 measurements (σ_{HO_2}) is derived similarly, after taking into account the additional subtractions required to obtain S_{HO_2}:
\[\sigma_{\text{HO}_2} = \sqrt{(\sigma_{\text{online, NO off}}^2 + \sigma_{\text{online, NO injected}}^2 + S_{\text{ offline, NO off}} + S_{\text{ offline, NO injected}})} \]
(E2.14a)

unless the offline signal is not changed by NO addition:

\[\sigma_{\text{HO}_2} = \sqrt{(\sigma_{\text{online, NO off}}^2 + \sigma_{\text{online, NO injected}}^2)} \]
(E2.14b)

and the precision in \(\text{HO}_2^* \) and \(\text{RO}_2 \) measurements is given by:

\[\sigma_{\text{ HO}_2^*} = \sqrt{(\sigma_{\text{online, dNO off}}^2 + S_{\text{ offline}})} \]
(E2.15)

\[\sigma_{\text{RO}_2} = \sqrt{(\sigma_{\text{online, dNO off}}^2 + \sigma_{\text{online, dNO injected}}^2)} \]
(E2.16)

where the \(S \) terms are the same as those described in Sections 2.1.4 and 2.2.1.2 (i.e., equations (E2.3) and (E2.8)) and the \(\sigma \) terms correspond to the 1\(\sigma \) SDs of the 1 s signal data during the time periods indicated by the subscripts.

For the purposes of calibration, as discussed in Section 2.2.1 and presented in Figures 2.8–2.9 and 2.12, signal errors (i.e., y-error bars) are calculated from just the precisional uncertainty, at the 1\(\sigma \) level, while radical concentration errors (i.e., x-error bars) are obtained from the propagation (in quadrature) of accuracy (13% at 1\(\sigma \)) and lamp current variability. Calibration sensitivities are derived from the slopes of linear orthogonal distance regression (ODR) fits to the data, which take into account errors in both the y- and x-directions (Boggs et al., 1987). Although the fit uncertainties are not incorporated into ambient measurement uncertainty, they are used to assess the level of agreement between calibrations, for example in the sensitivity comparison described in Chapter 3.3.1.

For ambient measurements, the \(\sigma \) terms in equations (E2.12–E2.16) are replaced by measurement standard errors (SE),\(^1\) to reflect the increase in precision when longer integration times are used. In addition, an accuracy component (26%) is included with this precisional term (by summing in quadrature), yielding a total measurement uncertainty at the 2\(\sigma \) level. As an example, during the ICOZA campaign, the median total error in OH measurements (all points, day and night) was \(9.3 \times 10^5 \) molecule cm\(^{-3} \), mostly from precisional error (\(7.8 \times 10^5 \) molecule cm\(^{-3} \), ~80% contribution to total error), for median campaign measured OH of \(1.7 \times 10^6 \) molecule cm\(^{-3} \) (i.e., ~60% relative error). For \(\text{HO}_2 \), the median total error was \(1.3 \times 10^7 \) molecule cm\(^{-3} \), with lesser contributions from the precision term (\(5.5 \times 10^6 \) molecule cm\(^{-3} \), ~40%), for median campaign measured

\(^1\) i.e., SD divided by the square root of the number of 1 s data points in each time window.
HO₂ of 3.9 × 10⁷ molecule cm⁻³ (~30% relative error); the increase in precision for HO₂ is a result of the much larger signals obtained for HO₂ in comparison to OH, owing to its higher ambient concentrations.¹

2.2.4 Limit of Detection

The limit of detection (LOD) for the measurement of radical X using a FAGE instrument, [X]ₓ, is given by equation (E2.17):

\[
[X]_{\text{LOD}} = \frac{\text{SNR}}{C_X P} \sqrt{\frac{S_{\text{offline}}}{t} \left(\frac{1}{m} + \frac{1}{n} \right)}
\]

(E2.17)

where SNR is the signal-to-noise ratio, Cₓ is the instrument sensitivity to species X, P is laser power, t (= 1 s) is the measurement period, and m and n are the number of on- and offline points (of duration t), respectively. According to Poisson statistics, S_offline is equivalent to the square of the standard deviation of the background signal (σ² offline), and is given by:

\[
S_{\text{offline}} = S_{\text{lb}} + S_{\text{sb}} + S_{\text{dc}} = \sigma^{2}_{\text{offline}}
\]

(E2.18)

where S_lb, S_sb and S_dc are the contributions to the total background signal (S_offline, counts s⁻¹) from laser scatter, solar scatter and detector dark counts, respectively.

Table 2.1. Comparison of median limits of detection (LOD, SNR = 2) and their contributing factors (equation (E2.17)) for the field campaigns featured in this work, and the preceding campaign, ClearfLo. LP = laser power; full units of Cₓ: counts s⁻¹ mW⁻¹ cm⁻³ molecule⁻¹; data are only included for measurements with consistent integration times: 5 min online (4 min OH, 1 min HO₂/RO₂), 30 s offline.

<table>
<thead>
<tr>
<th>Field Campaign</th>
<th>LP (mW)</th>
<th>C_OH (10⁻⁷)</th>
<th>[OH]ₓ,LOD (10⁵ cm⁻³)</th>
<th>C_HO₂ (10⁻⁸)</th>
<th>[HO₂]ₓ,LOD (10⁶ cm⁻³)</th>
<th>C_RO₂ (10⁻⁸)</th>
<th>[RO₂]ₓ,LOD (10⁶ cm⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICOZA</td>
<td>16</td>
<td>0.53</td>
<td>6.1</td>
<td>0.89</td>
<td>4.0</td>
<td>0.51</td>
<td>50</td>
</tr>
<tr>
<td>AIRPRO Winter</td>
<td>11</td>
<td>1.38</td>
<td>7.7</td>
<td>1.96</td>
<td>5.6</td>
<td>3.22</td>
<td>5.0</td>
</tr>
<tr>
<td>AIRPRO Summer</td>
<td>11</td>
<td>1.37</td>
<td>6.9</td>
<td>3.61</td>
<td>2.8</td>
<td>1.16</td>
<td>8.4</td>
</tr>
<tr>
<td>ClearfLo</td>
<td>13</td>
<td>9.0</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

¹ Despite C_OH being a factor of ~6 larger than C_HO₂, and the need for additional subtractions in HO₂ measurements, HO₂ concentrations were ~8–150 (10–90th percentiles) times higher than OH during ICOZA.
Median campaign detection limits for the measurements featured in this thesis are compared in Table 2.1, alongside those from the last major field campaign during which the Leeds FAGE instrument was deployed, ClearfLo (Clean air for London) in summer 2012 (Whalley et al., 2018). For OH and HO₂, the detection limits were generally consistent between the various campaigns, with LODs on the order of ~7 × 10⁵ and ~4 × 10⁶ molecule cm⁻³ (5 min online, SNR = 2), respectively. This is despite the instrument sensitivity being a factor of ~3 lower on average during the ICOZA campaign, as it was offset by higher laser powers and lower background signals. The slight improvement in detection limits for the fieldwork conducted as part of this thesis relative to the ClearfLo campaign may be attributed to switching to MCP from CPM detectors; the MCP detectors have faster electronic switching times and reduced after-pulsing effects, leading to increased sensitivity and lower background signals.

The detection limits for RO₂ were more variable, on the order of ~1 × 10⁷ molecule cm⁻³ under optimum operating conditions, but a factor of ~5 higher during the ICOZA campaign. This was due to a combination of the reduced sensitivity and A factor (RO₂LIF cell pressure not optimised, Section 2.2.1.2), as well as the need to frequently switch to CPM detectors during the ICOZA campaign because of repeated failures of the MCP detector on this cell.

2.3 RO₂ Speciation and Ambient Data Workup

The Leeds ground-based FAGE instrument can provide measurements of two specific radical species, OH and HO₂, and total organic peroxy radical concentrations, Σ[RO₂]. For the latter, partial speciation between small (C₁–C₃) alkane-derived RO₂ (hereinafter referred to as “simple” RO₂) and alkene-, aromatic- and large (≥C₄) alkane-derived RO₂ (“complex” RO₂) may be achieved. As discussed in Chapter 1.3.2.2, simple RO₂ are converted to alkoxy radicals readily by the addition of NO (reaction (R2.2)). However, the resultant reactions with O₂ (i.e., RO + O₂ → R’=O + HO₂, reaction (R2.3)) are too slow, at the reduced pressure inside the FAGE cell (~1.5 Torr), to proceed efficiently on the timescale between NO injection and the LIF detection of OH. In contrast, for complex RO₂, the NO- and O₂-mediated propagation chemistry (RO₂ → HO₂ → OH) is fast enough to allow the formation of OH on the timescale of the NO injection. Mechanisms for the fast formation of HO₂ from these RO₂ types are shown in Figure 2.18. A key feature is the formation of β- and δ-hydroxyalkoxy radicals (in the case of ethane and n-
butane, respectively), which undergo fast unimolecular decomposition and/or reaction with O$_2$ to generate HO$_2$.

Speciation of RO$_2$ radicals is accomplished through the use of different NO flows in each cell, as reported by Whalley et al. (2013) and discussed in Chapter 1.3.2.2. In the HO$_x$ cell, interferences from complex RO$_2$ radicals are suppressed by using a low NO flow (5 sccm, $\sim 3 \times 10^{13}$ molecule cm$^{-3}$ at 1.5 Torr), which effectively yields a “clean” HO$_2$ measurement.1 Interferences from complex RO$_2$ radicals are maximised in the RO$_2$LIF cell, where injection of a high NO concentration into the fluorescence cell (100 sccm, $\sim 1 \times 10^{15}$ molecule cm$^{-3}$) promotes the conversion of these certain RO$_2$ types to OH. The procedure for the workup of ambient radical data is illustrated by Figure 2.19. On the left (Figure 2.19A), time series of raw HO$_x$ and RO$_x$ signals (1 s) over two measurement loops (i.e., peak scan, online, offline) are shown in the top and bottom panels, respectively. The extraction of OH and HO$_2$ concentrations from these data is relatively straightforward: S_{OH} and S_{HO2} (labelled in Figure 2.19A) are calculated from equations (E2.2–2.3), and the signals are converted to concentrations using equation (E2.4) with the appropriate calibration factors (determined regularly during field campaigns). As shown in Figure 2.19B, this yields time series of OH (top panel) and HO$_2$ (middle panel) concentrations, with timestamps given by the midpoint of the OH measurement period (UTC, universal time coordinated); $J(\text{O}^1\text{D})$ is also shown (top panel) to illustrate the general decrease in radical concentrations with photolysis rate over the course of the afternoon.

Determination of $\Sigma[\text{RO}_2]$, and its partial speciation between simple and complex RO$_2$, is slightly more complex (Whalley et al., 2013). In contrast to calibration experiments (Section 2.2.1.2), $S_{\text{HO2}*}$ (Figure 2.19A, calculated using equation (E2.7)) now includes contributions from interfering, complex RO$_2$. $S_{\text{HO2}*}$ may be converted to an equivalent HO$_2$ concentration, [HO$_2^*$], using $C_{\text{HO2}*}$ and equation (E2.4), as shown in the middle panel of Figure 2.19B. The difference between [HO$_2$] and [HO$_2^*$] is proportional to the concentration of interfering RO$_2$ radicals, [RO$_2$]:

$$[\text{HO}_2^*] = [\text{HO}_2] + \sum_i (a'_{\text{RO}_2} \times [\text{RO}_2])$$ \hspace{1cm} (E2.19a)

1 From Figure 4 in Whalley et al. (2013), the conversion efficiency of ethene-derived RO$_2$ is estimated at $\sim 10\%$, well within the instrumental accuracy of 26%. The total contribution of all interfering RO$_2$ species to S_{HO2} measured during the field campaigns described in this thesis is dependent on the composition of the ambient peroxy radical pool. To determine these contributions, box modelling studies would be required.
where α_{RO_2} is the conversion efficiency ($RO_2 \rightarrow HO_2 \rightarrow OH$) for each individual RO_2 species. This conversion efficiency varies between different RO_2, and is dependent on experimental conditions (e.g., residence time between NO injection and OH detection, [NO] and temperature). For the conditions of Whalley et al. (2013), which are similar to those used in this work, α_i ranged from 0.947 to 0.606 for ethene- and cyclohexane-derived RO_2, respectively. The experimental OH yields were in very good agreement with those predicted by MCM (v3.2) chemistry, suggesting that the α_{RO_2} for each RO_2 do not need to be determined in the laboratory, but may be modelled instead. As no further speciation (i.e., between different complex RO_2) can be achieved using the ROxLIF method, this RO_2 class is reported as the total concentration of complex RO_2, $[cRO_2]$, derived using an average conversion efficiency, $\alpha_{avg_{RO_2}}$:

$$\left[HO_2^*\right] = [HO_2] + \alpha_{avg_{RO_2}} \times [cRO_2]$$ \hspace{1cm} (E2.19b)
For ambient measurements, the $\alpha_{\text{avg RO}_2}$ at any given time is dependent on the composition of the peroxy radical pool, and thus its accurate determination requires box modelling studies for each field campaign. In this work, a constant $\alpha_{\text{avg RO}_2}$ of 0.89 (±0.12 at 2σ), based on a recent modelling study (Dr. Lisa Whalley, personal communication), was used to derive cRO$_2$ concentrations. This approximation means that cRO$_2$ measurements come with an inherently large uncertainty and their interpretation must be treated with caution. A time series of cRO$_2$ concentrations is shown in Figure 2.19B (bottom panel); it can be seen that cRO$_2$ scales with the difference between HO$_2^*$ and HO$_2$ (middle panel).

In Figure 2.19A, S$_{\text{RO}_2}$ represents the signal from other RO$_2$ radicals, i.e. non-interfering, simple RO$_2$. It must first be corrected for the decrease in sensitivity when NO is added using equation (E2.9), where A_{NO} is determined by regular calibration. The total concentration of simple RO$_2$, [sRO$_2$], may then be derived from C$_{\text{RO}_2}$ using equation (E2.4). Finally, total organic peroxy radical concentrations, Σ[RO$_2$], are then simply the sum of simple and complex RO$_2$:

$$\Sigma[\text{RO}_2] = [\text{sRO}_2] + [\text{cRO}_2]$$ \hspace{1cm} (E2.20)

Following on from Section 2.2.3, the uncertainty in complex RO$_2$ measurements is obtained from summing in quadrature the errors in HO$_2$ and HO$_2^*$, and likewise the uncertainty in total RO$_2$ from errors in simple and complex RO$_2$.

2.3.1 Methyl Peroxy Nitric Acid Interference

The NO$_x$ reservoir species peroxy nitric acid (PNA, HO$_2$NO$_2$) and methyl peroxy nitric acid (MPNA, CH$_3$O$_2$NO$_2$) have the potential to undergo thermal decomposition in the RO$_x$LIF reactor, forming HO$_2$ and CH$_3$O$_2$, respectively (Fuchs et al., 2008). Since HO$_2$ is measured in the HO$_x$ cell, these measurements are not affected by PNA. However, MPNA and related species may contribute to measurements of sRO$_2$ in the RO$_x$LIF cell (owing to a much longer residence time). As discussed by Whalley et al. (2018), it is possible to estimate the ambient concentrations of MPNA from measured sRO$_2$ and NO$_2$, and thus the contribution of MPNA to sRO$_2$ measurements. Assuming that sRO$_2$ is

1 It should be noted that some RO$_2$ radicals are not able to convert to HO$_2$ in the RO$_x$LIF reactor owing to a lack of abstractable hydrogen atoms, such as those derived from isobutane (CH(CH$_3$)$_3$) and certain monoterpenes. However, these RO$_2$ species are not expected to make significant contributions to the ambient peroxy radical pool for measurements discussed in this work, e.g. during the ICOZA campaign, isobutane accounted for only ~ 0.6% of VOC OH reactivity on average.
Figure 2.19. Example of ambient data workup, with measurements made during the ICOZA campaign on 1st July 2015: (A) Time series of raw 1 s HO$_x$ (top panel) and RO$_x$ (bottom panel) signals over two measurement cycles (~6 min), with the various signals denoted by arrows; (B) 3 h time series of J(O$_1^D$) (Section 2.6) and FAGE observations of radical species (units – all molecule cm$^{-3}$), error bars are 2σ and correspond to the sum in quadrature of accuracy (26%) and the propagated standard errors (SE, error propagation described in Section 2.2.3) for each measurement cycle (not shown for HO$_2^*$ and total RO$_2$ for clarity). UTC = Universal Time Coordinated.
Figure 2.20. Demonstration of the methyl peroxy nitric acid (MPNA, CH$_3$O$_2$NO$_2$) interference in measurements of simple RO$_2$ using median hourly diurnal profiles from the ICOZA campaign. Left axis: concentrations of measured simple RO$_2$ (sRO$_2$), MPNA calculated from [sRO$_2$] using equation (E2.21), and sRO$_2$ after the MPNA correction has been applied. Right axis: estimated fractional contribution of MPNA to the total sRO$_2$ signal.

dominated by CH$_3$O$_2$, and that MPNA undergoes complete dissociation to CH$_3$O$_2$ in the RO$_x$LIF reactor,¹ ambient MPNA concentrations may be estimated using:

\[[\text{CH}_3\text{O}_2\text{NO}_2] = \frac{[\text{sRO}_2]}{1 + (K_{\text{eq}} [\text{NO}_2])^{-1}}\] \hspace{1cm} (E2.21)

where K_{eq} is the equilibrium rate constant for the reaction:

\[\text{CH}_3\text{O}_2\text{NO}_2 \rightleftharpoons \text{CH}_3\text{O}_2 + \text{NO}_2\] \hspace{1cm} (R2.13)

which is equal to 2.2 × 10$^{-12}$ cm3 at 298 K and 1 atm (Sander et al., 2011). The corrected sRO$_2$ is then simply obtained by subtracting MPNA from measured sRO$_2$:

\[[\text{sRO}_2]_{\text{corr}} = [\text{sRO}_2] - [\text{CH}_3\text{O}_2\text{NO}_2]\] \hspace{1cm} (E2.22)

¹ At 30 Torr and 298 K, the rate of MPNA decomposition is 0.76 s$^{-1}$ (Golden, 2005), such that after 1 s (RO$_x$LIF reactor residence time) ~50% dissociates to CH$_3$O$_2$ (decreasing to ~30% at 288 K). However, the pressure of the RO$_x$LIF flow tube was not known for the sRO$_2$ measurements featured in this work. Therefore, since the exact decomposition rate and residence time is not known, 100% conversion was assumed and this interference thus represents an upper limit.
To illustrate the effects of the MPNA interference, using measurements of sRO$_2$ made during the ICOZA campaign as an example, median diurnal profiles of uncorrected sRO$_2$, MPNA (estimated from equation (E2.21)), corrected sRO$_2$ (equation (E2.22)), and the fractional contribution of MPNA to sRO$_2$ measurements are shown in Figure 2.20. During this campaign, the estimated MPNA concentrations varied from 0.7×10^7 molecule cm$^{-3}$, but exhibited a relatively flat diurnal profile, with median values of 3×10^7 molecule cm$^{-3}$ (1×2 pptv). sRO$_2$ radicals follow the expected photochemical profile, with nighttime and daytime levels of $1 \times 2 \times 10^8$ molecule cm$^{-3}$, respectively. As a consequence, the relative contribution of the MPNA interference to the total sRO$_2$ signal is higher during the nighttime ($\sim 40\%$) than the daytime ($\sim 10\% \sim 20\%$). The contribution also displays a dependence on NO, with the largest interferences ($>30\%$) at high NO concentrations ($> \sim 1000$ pptv). The implications of these dependences, in terms of the agreement between measured and modelled RO$_2$ concentrations as a function of NO, will be discussed further in Chapter 5.2.3. For all other analyses in Chapter 5, the sRO$_2$ observations presented have not been corrected for MPNA, as the true fractional contribution of CH$_3$O$_2$ to measurements of sRO$_2$ cannot be determined (in accordance with Whalley et al. (2018)).

2.4 Laser Flash Photolysis-LIF Total OH Reactivity Instrument

The shipping container also houses an instrument used for the measurement of total OH reactivity, k'OH, which is shown in Figure 2.21. Full details may be found in Cryer (2016) and Stone et al., 2016, but the key features are described here. The instrument consists of an atmospheric pressure flow tube (85 cm length, 5 cm ID) coupled to an OH fluorescence cell, which was located on the roof of the container (to the right of the roof box in Figure 2.1) during the ICOZA field campaign, and on the roof of the laser rack during the AIRPRO campaigns. The low pressure in the fluorescence cell (~ 2 Torr) is provided by the same pumping system as the FAGE cells.

The flow tube samples air (via half” PFA tubing) from close to the FAGE inlets at ~ 16 slm using a vacuum pump (Agilent Technologies IDP-3 Dry Scroll Pump). The laser flash photolysis pump and probe technique is used here (Jeanneret et al., 2001; Sadanaga et al., 2004), which involves the 266 nm laser (Quantel USA CFR 200) photolysis (pump) of O$_3$ to generate OH via the reaction of O(1D) with H$_2$O. The OH signal decay (probe) is then observed in real time by LIF (Jeanneret et al., 2001; Sadanaga et al., 2004). Fitting
of the first-order exponential obtained yields k'_{OH}, after subtraction of the physical decay rate. 308 nm probe light is generated using the laser system described in Section 2.1.1; this means that OH reactivity measurements are only available during online points in the FAGE data acquisition cycle (Section 2.1.4).

2.5 HCHO LIF Instrument

For the field campaigns described in this work, formaldehyde (HCHO) was also measured using an LIF instrument developed in Leeds, where full details may be found in Cryer (2016). The instrument is based on the design of Hottle et al. (2009) and uses a pulsed (300 kHz) tuneable fibre laser (TFL3000, Novawave) to generate UV radiation at 353.370 nm, which excites the HCHO $5_{0,5} \leftrightarrow 5_{1,4}$ rotational transition of the $4 \, A^1A_2 \leftrightarrow X^1A_1$ vibronic band. As with FAGE, gas is sampled into a low-pressure detection cell (110–120 Torr), but broadband fluorescence is collected at red-shifted wavelengths ($\lambda \sim 390–550$ nm). The fluorescence detected using a PMT (Sens-Tech P25PC photodetector module) and the signal recorded by gated photon counting (PMS400A, Becker and Hickl). The background is determined by moving the laser wavelength to an offline position ($\lambda = 353.360$ nm). The relatively-compact HCHO instrument is housed in a shock-insulated 19” rack inside a plastic case.
2.6 Auxiliary Measurements

A variety of supporting measurements are available in the FAGE container. These include concentrations of water vapour and nitrogen oxides as discussed in Sections 2.2.1 and 2.2.2. Ozone, photolysis frequencies and meteorological parameters are also measured routinely.

O₃ is measured using a commercial UV absorption instrument (Thermo Environmental Instruments Inc. 49C), which has a detection limit of ~500 pptv for 60 s averaging (SNR = 1). Photolysis rates (J) for a variety of species, including O₃ → O(¹D), NO₂, H₂O₂, HONO and ClNO₂, may be measured using a 2π spectral radiometer; J(O¹D) is also measured using a 2π filter radiometer (Meteorologie Consult GmbH) (Bohn et al., 2008). A wireless weather station (Davis Vantage Vue) is situated on the container roof to collect meteorological data: temperature, humidity, wind speed and direction, pressure, rainfall.

2.7 References

Golden, D. M.: Evaluating data for atmospheric models, an example: \(\text{CH}_3\text{O}_2 + \text{NO}_2 = \text{CH}_3\text{O}_2\text{NO}_2\), International Journal of Chemical Kinetics, 37, 625-632, 2005.

Whalley, L. K., Blitz, M. A., Desservettaz, M., Seakins, P. W., and Heard, D. E.: Reporting the sensitivity of laser-induced fluorescence instruments used for HO\textsubscript{2} detection to an interference from RO\textsubscript{2} radicals and introducing a novel approach that enables HO\textsubscript{2} and certain RO\textsubscript{2} types to be selectively measured, Atmospheric Measurement Techniques, 6, 3425-3440, 2013.

3. The Leeds Inlet Pre-Injector (IPI): Design and Characterisation

3.1 Introduction

Chapter 1.3.2.1 described how FAGE groups have made efforts to validate OH measurements through incorporation of an alternative, chemical background technique, OHchem, which was first applied for continuous ambient OH measurements by Mao et al. (2012). This was motivated by observations of radicals in low-NOx, biogenic environments (Chapter 1.4.2.2) that exceeded corresponding model predictions by up to an order of magnitude (Lelieveld et al., 2008; Ren et al., 2008; Stone et al., 2011; Whalley et al., 2011; Wolfe et al., 2011; Lu et al., 2012). In conventional background determination (OHwave, Chapter 2.1.4), the laser wavelength is moved to an offline position, i.e., where OH does not fluoresce. However, this method is prone to artefacts from species that generate OH inside the FAGE cell, and thus it can overestimate the OH concentrations in ambient air. To determine the chemical background an OH scavenger is injected, where the scavenger should react quickly and selectively with OH, such as perfluoropropene (C₃F₆). This technique, has shown that measurement-model agreement is often improved when model estimates are compared to OHchem rather than OHwave (Mao et al., 2012; Hens et al., 2014; Feiner et al., 2016), which suggests that the earlier discrepancies may have been influenced by OH measurement artefacts.

However, considering the home-built nature of FAGE instruments, those of different groups share the same main features but differ in many aspects, such as inlet size and shape, or whether the laser crosses the detection axis once (i.e., single-pass) or multiple times (multi-pass). As a result, the magnitude of any interference is likely to vary significantly between different instruments. Because of this, a general recommendation of the 2015 International HOₓ Workshop (Hofzumahaus and Heard, 2016) was that different groups should incorporate their own chemical scavenger system for use in ambient OH measurements, and to test interferences in the laboratory.

The Leeds ground-based FAGE instrument has therefore been modified to incorporate a scavenger system, through the addition of an inlet pre-injector (IPI) system. This chapter describes the design of the Leeds IPI (Section 3.2), and its thorough characterisation (Section 3.3) in terms of sensitivity and its capability to scrub OH from the air sampled (i.e., OH removal efficiency). The degree of internal removal, caused by reaction of OH with the scavenger inside the FAGE cell, is also assessed. Finally, in Section 3.4,
Figure 3.1. Labelled SolidWorks model of the Leeds IPI (provided by Dr. Trevor Ingham). The scavenger is injected into the centre of the PFA flow tube via four 0.25 mm ID needles. The thick yellow arrows indicate the direction of the sheath flow.

experiments using the IPI system to investigate interferences from the reaction of ozone with isoprene are described, with conclusions and suggestions for future work given in Section 3.5.

3.2 Design

The Leeds inlet pre-injector (IPI, Figures 3.1 and 3.2) is similar in concept to the design of Mao et al. (2012) and consists of a 4 cm length, 1.9 cm ID perfluoroalkoxy (PFA) cylinder embedded inside an aluminium housing, which seals to the FAGE cell via an O-ring base. The scavenger is injected into the centre of the PFA flow tube via four 0.25 mm ID needles, 4 cm above the FAGE inlet. The low bore capillary tubing increases the pressure inside the needles, which facilitated mixing of the scavenger into the ambient air stream. In this work propane (BOC, research grade 99.95%) was used as the main OH
chemical scavenger, with similar results (Section 3.3.2) obtained for C₃F₆ (Sigma-Aldrich, 99%). Based on previous investigations of OH interferences (Stevens et al., 1994; Dubey et al., 1996; Faloona et al., 2001; Ren et al., 2004; Mao et al., 2012; Griffith et al., 2013), C₃F₆ was used initially as it reacts quickly and selectively with OH ($k = 2.2 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at 298 K (Sander et al., 2011)), and does not contain any hydrogen atoms which could serve as a source of laser-generated OH via abstraction by O($¹\text{D}$) atoms (Stevens et al., 1994; Dubey et al., 1996). However, C₃F₆ must be diluted in an inert gas before it can be flowed through MFCs, and its availability in the UK became limited in 2015. As such, the more available propane was used for most laboratory experiments and all ambient measurements, despite the fact that it reacts more slowly with OH ($k_{298} = 1.1 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Sander et al., 2011)).

As shown in Figure 3.3, the scavenger is diluted in a flow of N₂ (500 sccm, BOC, 99.998%) prior to injection, which is controlled using a solenoid valve (Metron Semiconductors). The valve is housed in a weatherproof box, which sits on top of the roof box (see Figure 2.1) to minimise the length of tubing between the valve and the injectors. Any dead volume after the valve is purged continuously by the N₂ dilution flow, using a narrow-bore injector inserted through the tee after the valve, with the injector tip placed as close to the valve orifice as possible. The enables fast flushing of the system to optimise the response time before and after scavenger injection (Section 3.3.2). The valve state and scavenger flow over the course of the data acquisition cycle are controlled using a custom program nested within the FAGE software (written by Dr. Trevor Ingham).
In order to reduce radical wall losses, excess ambient air is drawn through the IPI to generate a sheath flow, via four ports spaced evenly around the flow tube housing as shown in Figure 3.1. This minimises the FAGE sampling of air from near the walls of the cylinder, housing and turret. The total flow rate through the IPI is 32 slm, of which 7 slm is sampled by the FAGE cell and the remainder of the flow is provided by a vacuum pump (Agilent Technologies IDP-3 Dry Scroll Pump), and measured volumetrically using a rotameter (Brooks 2520, 4–50 L min⁻¹).

3.3 Characterisation

The operating parameters of the IPI were optimised by performing several characterisation experiments in the laboratory. The three main factors to consider here were the sensitivity of the instrument, the scavenging efficiency, and the internal reaction of the scavenger with OH in the low-pressure fluorescence cell (Mao et al., 2012; Novelli et al., 2014a). Most of these experiments were performed by supplying known...
Table 3.1. Relative sensitivities (IPI on:off, ± 2σ) for OH and HO$_2$ when sampling through the IPI. aHO$_2$ data considered unreliable due to problems regulating NO flow in this experiment. bNot quantitative, based on sequential sampling (see text for details).

<table>
<thead>
<tr>
<th>Experiment</th>
<th>OH</th>
<th>HO$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration 2015</td>
<td>0.63 ± 0.15</td>
<td>0.90 ± 0.32</td>
</tr>
<tr>
<td>Ambient 2015</td>
<td>0.56 ± 0.07</td>
<td>a0.60 ± 0.07</td>
</tr>
<tr>
<td>Calibration 2016</td>
<td>0.60 ± 0.11</td>
<td>0.79 ± 0.18</td>
</tr>
<tr>
<td>bAmbient 2017</td>
<td>~1</td>
<td>~1</td>
</tr>
<tr>
<td>Calibration 2018</td>
<td>0.96 ± 0.02</td>
<td>Not determined</td>
</tr>
</tbody>
</table>

$^{Final \ value \ applied}$ 1.00 1.00

centrations of OH and HO$_2$ to the instrument using the calibration wand described in Chapter 2.2. However, in contrast to normal calibration procedures, where the wand is held at 45° to the pinhole (to minimise sampling of pockets of air which may have been in contact with the metal pinhole surface), IPI characterisation experiments were performed with the wand positioned parallel to the direction of flow within the IPI (i.e., 90° relative to the plane of the pinhole), with a distance of ~3 cm between the wand exit and the PFA flow tube. Characterisation experiments were conducted in this way to help minimise perturbations of the normal flow profile (i.e., the flow during ambient sampling) inside the IPI.

3.3.1 Sensitivity

Given the very low ambient concentrations of OH (<1 pptv during the daytime, often <0.01 pptv at night), its measurement is difficult, which makes the sensitivity loss imposed by the addition of the IPI to the FAGE instrument a particularly important consideration for OH, and, to a lesser extent, HO$_2$, detection. The reduction in sensitivity is caused by the presence of additional surfaces, which may remove radicals from the ambient air sampled (Novelli et al., 2014a). It is therefore crucial to minimise these wall losses, which was accomplished using the sheath flow described in Section 3.2. Various experiments were performed to determine the IPI sensitivity losses, for both OH and HO$_2$, which are summarised in Table 3.1 and described in detail below.
Figure 3.4. Determination of IPI OH losses from ambient measurements: comparison of OH concentrations measured using two adjacent fluorescence cells configured in HOx mode, where the IPI was mounted on cell 1 (y-axis). Errors are 2σ and correspond to the sum of precision (standard error, SE) and systematic uncertainty (26%). Fit (solid blue line, error at 2σ) obtained by orthogonal distance regression (ODR), blue shaded area represents the 95% confidence interval (CI) bands. The 1:1 line of agreement is also shown (dotted red line) for comparison.

Preliminary experiments investigating the sensitivity of the instrument as a function of the sheath flow, where high radical concentrations were delivered to the IPI using the calibration wand at 90°, showed a general increase in sensitivity with sheath flow (data not shown). However, above a sheath flow of 25 slm, corresponding to a total flow rate through the IPI of 32 slm, the sensitivity towards OH began to fall off. It was suspected that this was caused by sampling of lab air, containing OH sinks, in addition to the calibration gas flow (i.e., the inlet was no longer supplied with an excess of calibration gas), which was limited to a maximum flow rate of 40 slm. After consideration of the practicalities of supplying large quantities of calibration gas during the frequent calibrations performed in the field, 25 slm was deemed to be the optimum sheath flow rate, despite the fact that gains in sensitivity may be achieved above this. Under these flow conditions, the residence time of air in the IPI flow tube, prior to FAGE sampling, is approximately 20 ms. The Reynold’s number ($R_e \sim 2700$) indicates that the flow is in
between the laminar ($R_e < 2300$) and turbulent ($R_e > 4000$) regimes, but regardless, the entrance length (Bird et al., 1960) of ~2 m (c.f. flow tube length = 4 cm) means that the flow profile is not remotely close to being fully developed (computational fluid dynamics simulations would likely be needed to determine the real flow profile). At the 25 slm optimum sheath flow rate, the preliminary experiments (calibration 2015 in Table 3.1) yielded relative sensitivities of 0.63 ± 0.15 and 0.90 ± 0.32 for OH and HO$_2$, respectively.

In another experiment, the sensitivities were determined using ambient measurements (ambient 2015 in Table 3.1). Here, both fluorescence cells were configured to run in HO$_x$ mode (i.e., no RO$_x$LIF flow tube on the cell normally used for RO$_x$ measurements), where one cell (HO$_x$) was mounted with the IPI. Side-by-side observations of OH (OHwave) and HO$_2$, sampled from the Brotherton courtyard outside the School of Chemistry, were used to derive their relative sensitivities. The results for OH are shown in Figure 3.4, where a linear orthogonal distance regression (ODR) fit, which takes into account errors in both the y- and x-directions (Boggs et al., 1987), yields a slope (0.564 ± 0.072) in agreement with the preliminary experiments. However, the data exhibit a high degree of scatter, and the lack of points at low concentrations (i.e., $<1 \times 10^6$ molecule cm$^{-3}$) meant that the fit had to be forced through zero, which biased the overall slope (from 0.51 to 0.56, intercept if floated $= 2 \times 10^5$ molecule cm$^{-3}$). In addition, the two OH datasets exhibit markedly different diurnal profiles (data not shown) that may relate to light shading effects in the courtyard, which is clearly not the most ideal ambient sampling location. Similarly, HO$_2$ data yielded a slope of ~ 0.60, much lower than in the preliminary experiments. In the ambient case, there were problems with maintaining a stable NO flow, which likely contributed to the discrepancy for HO$_2$.

The ratios from the preliminary experiments were based on single, zero-span calibrations, and since the ambient comparison in 2015 yielded inconclusive results, further experiments were required to assess the linearity of the calibrations and the reproducibility of the derived sensitivities. Therefore, at the optimum sheath flow, back-to-back multi-point OH and HO$_2$ calibrations (using the conventional calibration wand) were performed (calibration 2016 in Table 3.1), alternating between normal (i.e., non-IPI) and IPI sampling. Multi-point calibrations demonstrated excellent linearity between S_{HOx} and $[HOx]$ for both OH (Figure 3.5) and HO$_2$ (Figure 3.6). Back-to-back calibrations were well reproducible for both species, as shown in Figure 3.7. The presence of the IPI results in OH and HO$_2$ losses of $\sim 40\%$ ($C_{OH,IPI} / C_{OH} = 0.60 \pm 0.11$) and $\sim 20\%$ ($C_{HO2,IPI}$...
Figure 3.5. Example OH multi-point calibration when sampling through the IPI. Error bars (1σ): vertical – propagated error in signal differential; horizontal – systematic uncertainty in radical concentrations from actinometry (13%), plus lamp variability. The solid line and grey shaded area represent the ODR fit to the data, and the 68% CI of the fit, respectively. cps = counts per second.

Figure 3.6. Example HO₂ multi-point calibration when sampling through the IPI. Error bars (1σ): vertical – propagated error in signal differential; horizontal – systematic uncertainty in radical concentrations from actinometry (13%), plus lamp variability. The solid line and grey shaded area represent the ODR fit to the data, and the 68% CI of the fit, respectively.
Figure 3.7. Results of repeat OH (A) and HO$_2$ (B) calibrations when sampling with the IPI off and on. Error bars represent the 2σ uncertainty in the ODR fits to individual multi-point calibrations. Error-weighted averages of equivalent sensitivities are shown as dashed lines and given in the captions along with their respective 2σ uncertainties.

$C_{HO2} = 0.79 \pm 0.18$, respectively, which are in agreement with the preliminary experiment-derived sensitivities. These losses were calculated from error-weighted averages of individual multi-point calibrations, where the sensitivities from each calibration were derived from the slopes of linear ODR fits to S^{HOx} against radical concentrations.

During the summer 2017 AIRPRO (an integrated study of AIR pollution PROcesses in Beijing) field campaign (Chapter 4.2), ambient OHwave and OHchem concentrations were initially derived using a relative IPI OH sensitivity of 0.6. However, these levels were significantly underpredicted by a simple model, by approximately a factor of four around midday (Dr. Lisa Whalley, personal communication). It was suspected that some of this discrepancy may be due to inaccurate parameterisation of the OH calibration factor when sampling through the IPI, i.e., that OH losses had been overestimated. Therefore, another ambient experiment (ambient 2017 in Table 3.1) was performed where on one day of the campaign, sequential measurements of OHwave were taken with and without the IPI present. While this was not a formal intercomparison like the ambient 2015 experiment described above, the summer 2017 campaign provided ideal conditions to assess IPI losses, since the very high radicals levels observed (OH frequently $>1 \times 10^7$ molecule cm$^{-3}$) in Beijing gave much better signal-to-noise than the analogous experiment.

1 Data collected by Dr. Lisa Whalley and Eloise Slater.
Figure 3.8. Time series of OH concentrations for a day of sequential IPI/non-IPI sampling during the summer 2017 AIRPRO campaign (data collected and figure provided by Dr. Lisa Whalley and Eloise Slater). If a 40% reduction in sensitivity is applied to C_{OH} for the IPI sampling periods (red line), OH concentrations are much higher than those observed during adjacent conventional sampling periods (light blue line). If no correction is applied to the IPI data (dark blue line), the two datasets exhibit improved agreement.

in Leeds. The results of this experiment are shown for OH in Figure 3.8. It can be seen that if a 40% reduction in sensitivity is applied to the calibration factor for the IPI sampling periods, in accordance with the previous relative sensitivities determined of ~0.6 for OH, the concentrations obtained are significantly higher than those during adjacent non-IPI sampling periods. However, if no sensitivity reduction is applied, the two sets of OHwave data are qualitatively in agreement, implying that the true sensitivity loss is close to zero. Similar results were obtained for HO$_2$ (Eloise Slater, personal communication).

Since this ambient test is not quantitative, as it is based on the temporal interpolation of observed radicals that exhibit strong short-term variability, the sensitivity loss was refined in further calibration experiments (calibration 2018 in Table 3.1).\footnote{Experiments performed by Dr. Lisa Whalley, Eloise Slater, and Jake Allen.} It was hypothesised that the difference between the calibration 2016 and ambient 2017 tests was due to an inappropriate sampling methodology in the calibration case. For the 2016 experiments,
radicals were generated in the conventional calibration wand (Chapter 2.2), where it was thought that positioning the wand parallel to and ~3 cm above the IPI flow tube would minimise flow perturbations inside the IPI (relative to ambient sampling). However, this may not have been sufficient such that increased turbulence in the IPI flow tube, due to the fast wand gas velocity (~10 m s$^{-1}$, c.f. ~2 m s$^{-1}$ in the IPI flow tube), may have resulted in elevated radical wall losses. Thus for the 2018 calibrations, radicals were generated using a mercury lamp placed over the instrument inlet, so that ambient air with elevated radical concentrations was sampled, alternating between IPI and non-IPI sampling. In these experiments, the mercury lamp was placed sufficiently far away from each inlet such that it could be assumed that OH concentrations were uniform in the region the inlet sampled from. Otherwise, the difference in inlet height between IPI and non-IPI sampling may have resulted in different OH concentrations being sampled, e.g., due to differences in O$_3$ absorption at 184.9 nm (O$_3$ has a high cross-section at this wavelength), which would affect the light flux at the point of sampling. Since ambient variability (e.g., in NO$_x$ levels) also affects the atmospheric radical concentrations, the IPI/non-IPI cycle was repeated several tens of times to ensure sufficient averaging power. These experiments yielded a mean ± 2σ relative OH sensitivity of 0.959 ± 0.021 (Eloise Slater, personal communication), i.e., a <5% sensitivity reduction due to the presence of the IPI. While HO$_2$ loss was not tested, the relative sensitivity is assumed to be closer to unity since it is less reactive than OH. In either case, the correction is smaller than the total instrumental uncertainty (~26% at 2σ), and as such no corrections were applied to OH or HO$_2$ calibration factors for the final workup of ambient data collected during IPI sampling periods (Chapters 4 and 5).

The result for OH is consistent with previous studies using similar IPI designs, where no changes in the instrument sensitivity to OH were observed (Mao et al., 2012; Tan et al., 2017). In contrast, Novelli et al. (2014a) reported an OH sampling loss of ~34% based on ambient measurements of OH with and without the use of their IPI. However, it is clear that the 2018 calibration experiment is still not ideal, since it involves sequential sampling, and this should be further refined by performing tests, in a chamber or in the field, in which IPI-derived OH (and HO$_2$) concentrations are compared to an independent reference. For example, the other FAGE cell could be used to measure HO$_x$ simultaneously (analogous to the ambient 2015 test, but in a better sampling location), or
the radical concentrations could be compared to another instrument\(^1\) or an indirect method (e.g., hydrocarbon decay for OH, HO\(_2\) self-reaction (Winiberg et al., 2015)). The implications of the uncertainty in sensitivity are assessed in Chapter 5.2.2.3, where model predictions of radical concentrations are compared to those obtained using the current \(C\) factors (i.e., \(C_{\text{OH, IPI}} / C_{\text{OH}} = C_{\text{HO2, IPI}} / C_{\text{HO2}} = 1\) and their lower limits \(C_{\text{OH, IPI}} / C_{\text{OH}} = 0.6\) and \(C_{\text{HO2, IPI}} / C_{\text{HO2}} = 0.79\)).

3.3.2 OH removal efficiency

The OH removal efficiency in the IPI system is controlled by the injection height, the choice of scavenger (i.e., the rate of the reaction of scavenger with OH), the scavenger and \(N_2\) dilution (delivered to the injectors) gas flows, as well as the sheath flow. A key requirement here is efficient mixing of the scavenger into the ambient air stream, which is difficult considering the fast flow rate and hence short residence time of air in the IPI flow tube. Additionally, it is important to consider that some reaction of the scavenger may occur inside the fluorescence chamber (internal removal, Section 3.3.3). This would give rise to a positive bias in ambient OH concentration measurements made using the OHchem method, as internal removal could result in loss of interfering OH and therefore a reduction in the true background signal. Similarly, to minimise loss of OH measurement data, the scavenger must be switched to a steady flow and back off quickly.

The OH removal efficiency may be calculated from the proportion of OH remaining after injection of the scavenger, obtained from the ratio of the OH signals in the presence (\(S^{\text{OH, scavenger}}\)) and absence (\(S^{\text{OH}}\)) of the scavenger:

\[
\text{OH Remaining (\%)} = 100 \times \frac{S^{\text{OH, scavenger}}}{S^{\text{OH}}} \tag{E3.1}
\]

\[
\text{OH Removal Efficiency (\%)} = 100 - \text{OH Remaining (\%)} \tag{E3.2}
\]

Initial tests included variation of the \(N_2\) dilution flow, however the OH removal efficiency was generally low (data not shown), likely due to poor mixing of the scavenger into the sampled air when the flow rate from the injector is small. As a result, the \(N_2\) dilution was set to the maximum flow of the MFC used (0.5 slm) for all subsequent experiments. Any further dilution of the ambient air stream would result in a loss of sensitivity towards the detection of radicals, however, at 0.5 slm the dilution flow is virtually negligible.

\(^1\) The data are not yet available, but OH and HO\(_2\) were measured using another FAGE instrument (Peking University) during the winter 2016 AIRPRO (AIR pollution PROcesses in Beijing) campaign, which could be used to verify the Leeds IPI \(C\) factors.
compared to the total flow rate in the IPI system (32 slm). The injection height of the scavenger was also varied initially, which affects the scavenging efficiency because of its impact on the residence time of the scavenger inside the flow tube. However, poor OH removal efficiencies were observed when the scavenger was injected close (1 and 2.5 cm) to the FAGE cell pinhole, compared to the injection height (4 cm) used in all other experiments.

The scavenging efficiency was determined for both propane and C$_3$F$_6$, with good agreement between the two scavengers. Figure 3.9 shows the remaining OH signal as a function of the OH reactivity ($k'_{\text{OH}} = k_{\text{OH+scavenger}} [\text{scavenger}]$) calculated in the flow tube, which normalises the scavenger concentrations according to their different reaction rates with OH. The observed removal efficiency is in broad agreement with the theoretical scavenging efficiency, based on the residence time in the flow tube (~20 ms) and assuming perfect mixing, suggesting that in this IPI system the scavenger is well mixed into the gas sampled by the FAGE cell. An optimum removal of virtually 100% (OH remaining ± 2σ = 0.030 ± 0.091%) was observed at $k'_{\text{OH}} \sim 3000$ s$^{-1}$, equivalent to ~110 ppmv (2.7 × 1015 molecule cm$^{-3}$) propane. This scavenger concentration was used for measurements of OHchem during the summer 2015 ICOZA (Integrated Chemistry of OZone in the Atmosphere) project. For the winter 2016 and summer 2017 AIRPRO projects, a ten-fold higher scavenger concentration was used (~1100 ppmv propane), after internal removal experiments revealed no loss of internal OH at this concentration, as discussed in detail in Section 3.3.3.

The near complete titration of OH achieved here is in contrast to the results of Mao et al. (2012), Griffith et al. (2013), and Novelli et al. (2014a), where the highest reported scavenging efficiencies were 94, 95, and >95%, respectively. However, in these IPI-FAGE systems, the larger residence time of air between FAGE sampling and the LIF detection axis, as a result of long fluorescence cell inlets, favours the internal removal of OH. Thus, the scavenger concentrations were reduced to minimise the impact of internal OH removal at the expense of the external scavenging efficiency. Similarly, the prototype IPI device used by Tan et al. (2017) exhibited poorer OH scavenging efficiencies (80–97%), although this was in part due to technical difficulties encountered with the regulation of the scavenger flow.
Figure 3.9. Proportion of the OH signal remaining after addition of increasing concentrations of propane and C$_3$F$_6$ scavengers to the IPI flow tube, converted to equivalent OH reactivities (k'_OH) to account for the different rate constants for the reaction of each scavenger with OH. Error bars denote the 2σ standard deviation of repeat experiments. The blue curve corresponds to the theoretical scavenging efficiency assuming perfect mixing, using the estimated residence time, $\tau \sim 20$ ms.

Another important consideration is the time response of the scavenger injection. The system should stabilise quickly upon switching on the propane flow, and after the injection period the scavenger must be quickly purged from gas lines (see Figure 3.3). The latter was accomplished using a relatively high N$_2$ dilution flow, applied directly to the solenoid valve to minimise dead volume. The former proved more difficult to optimise, as filling of the propane line (between the MFC and valve) over the course of the data acquisition cycle resulted in the build-up of pressure above ambient level from the propane cylinder backing pressure. The effect of this can be seen in Figure 3.10, which shows a time series of the OH signal (produced using the calibration wand) over
Figure 3.10. OH signal spike due to pressure build-up following scavenger injection. Yellow shaded area corresponds to period of propane addition, note log scale.

Figure 3.11. Improvement in time response of scavenger injection following optimisation of relative MFC and solenoid valve switching times. Yellow shaded area corresponds to injection of propane, note log scale.
the course of the scavenger injection. While purging of the lines after stopping the scavenger flow (~14:07:15) results in quick stabilisation to the original OH signal (within seconds), initial injection of the scavenger (~14:05:30) results in a negative spike in the OH signal trace due to the increased scavenging efficiency. It then takes approximately 1 minute for the (background) signal to stabilise, as the pressure in the scavenger line slowly returns to near-ambient level.

This problem may be avoided by careful control, using the FAGE software, of the relative times at which the MFC and solenoid valves switch state. This allows the pressure in the propane line just before the injection period to be optimised. The pressure must be slightly above ambient to fill the gas line and facilitate fast mixing of propane into the N₂ dilution flow, and also because of the use of narrow bore needle injectors. However, the pressure must be low enough to avoid the spiking issues as seen in Figure 3.10. It was found that the optimum time response was achieved if the MFC valve was switched to open for 15 s before the solenoid valve opened. Figure 3.11 shows the improvement in time response after implementing this injection method. Following propane injection, it now takes only ~10 s for the background signal to stabilise. The MFC and valve timings were incorporated into the custom program used to control the valve state and gas flow during interference tests (Section 3.4) and ambient measurements (Chapters 4 and 5).

3.3.3 Internal removal

Internal removal of OH was quantified by Mao et al. (2012) after forming OH inside the Penn. State University (PSU) ground-FAGE cell using a mercury lamp, and comparing the OH signal with and without the presence of the scavenger (C₃F₆), added externally in the IPI system. It was found that most of the internal removal occurred in the instrument inlet, rather than in the OH detection axis, with a total loss of ~20%. Internal removal was not tested in the laboratory by Novelli et al. (2014a) for the Max Planck Institute for Chemistry (MPIC) FAGE instrument, but instead they limited the scavenger (propene and propane) concentration such that the OH removal efficiency was <95%, in order to minimise possible reaction of the scavenger with OH inside the fluorescence cell. However, during ambient, night time tests (constant atmospheric OH concentration assumed), no change in the OH background signal was observed after increasing the scavenger concentration by a factor of seven, providing evidence for a lack of internal removal (Novelli et al., 2014a).
A novel approach was devised to quantify internal removal of OH in the Leeds IPI-FAGE instrument. Here, sufficient CO (75 sccm, 95 ppmv) was added to the calibration wand, such that the OH formed (alongside HO$_2$) from the photolysis of water vapour was almost quantitatively (98.0 ± 0.4%) converted to HO$_2$. Following this, a high flow of NO (50 sccm) was injected inside the FAGE cell, with the injector tip positioned centrally just below the turret pinhole, to reconvert the HO$_2$ back to OH for LIF detection. In this manner, OH was only generated inside the FAGE cell, and not the IPI flow tube, such that any change in the fluorescence signal could be attributed to internal removal, rather than OH losses in the flow tube. The internal removal was quantified in an analogous manner to the external scavenging efficiency, using the total fluorescence signal in the presence ($S^{\text{HO}_x_{\text{scavenger}}}$) and absence of the scavenger (S^{HO_x}):

\[
\text{Internal OH Remaining (\%)} = 100 \times \frac{S^{\text{HO}_x_{\text{scavenger}}}}{S^{\text{HO}_x}} \quad (E3.3)
\]

\[
\text{Internal OH Removal (\%)} = 100 - \text{Internal OH Remaining (\%)} \quad (E3.4)
\]

Figure 3.12 shows a time series of the LIF signal during an example internal removal experiment, expressed as equivalent OH concentrations (i.e., signal divided by C_{OH}). In the first part of this experiment, the external removal was quantified to verify the near complete titration of OH in the IPI flow tube, in a manner analogous to the tests of the scavenging efficiency described previously. After the addition of 110 ppmv propane (first orange shaded area), the OH signal quickly dropped to near-zero (from $\sim 7 \times 10^9$ to $\sim 7 \times 10^6$ molecule cm$^{-3}$, $\sim 99.9\%$ removal). Following this, the propane flow was switched off and NO was added (purple shaded area) to the FAGE cell directly below the turret pinhole, such that the LIF signal represents the sum of signals from OH and HO$_2$, produced in a 1:1 ratio (Fuchs et al., 2011) in the calibration wand. A high flow (50 sccm) of NO was used to optimise the HO$_2$ to OH conversion efficiency, which was approximately 30%.

For the duration of the second part of this experiment, CO (95 ppmv) was added continuously (green shaded areas) to the calibration wand, to titrate OH to HO$_2$ (~98% conversion) before the gas was sampled by the IPI. At the same time, NO was injected constantly into the FAGE cell to reconvert the HO$_2$ back to OH for LIF detection. This
Figure 3.12. Time series of the LIF signal during an internal removal experiment, expressed as equivalent OH concentrations. The raw 1 s data is given by the grey line. Points where various gases are added to the wand (CO), IPI flow tube (propane) and FAGE cell (NO) are indicated by the shaded panels, with the corresponding signal averages (±2σ) shown as markers (see text for details). The inset shows more clearly the loss of atmospheric OH (note log scale) after addition of propane, which is not observed for internal OH.

Table 3.2. Internal removal of OH (% ±2σ) as a function of propane mixing ratio in the IPI flow tube, determined as shown in Figure 3.12 (see text for details).

<table>
<thead>
<tr>
<th>Propane (ppmv)</th>
<th>Experiment no.</th>
<th>Internal removal (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>1</td>
<td>-0.1 ± 4.8</td>
</tr>
<tr>
<td>(used for ICOZA)</td>
<td>2</td>
<td>0.3 ± 7.7</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-0.9 ± 16</td>
</tr>
<tr>
<td></td>
<td>Average ± 2SD</td>
<td>-0.2 ± 1.1</td>
</tr>
<tr>
<td>550</td>
<td>1</td>
<td>1.0 ± 9.6</td>
</tr>
<tr>
<td>1100</td>
<td>1</td>
<td>1.9 ± 12</td>
</tr>
<tr>
<td>(used for AIRPRO)</td>
<td>2</td>
<td>4.2 ± 11</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.5 ± 11</td>
</tr>
<tr>
<td></td>
<td>Average ± 2SD</td>
<td>2.8 ± 2.3</td>
</tr>
</tbody>
</table>
bears resemblance to the procedure for ambient detection of RO$_2$ using the RO$_x$LIF technique, described in detail in Chapter 2.3. Upon addition of the same concentration of propane (second orange shaded area), there was no observable decrease in the LIF signal, indicating no significant internal removal of OH. The average $\pm 2\sigma$ internal OH removal observed for repeat experiments was $-0.5 \pm 1.3\%$ at the optimum propane concentration of ~110 ppmv (ICOZA 2015 conditions). Even at the higher propane concentration used during the AIRPRO field campaigns (~1100 ppmv), the internal removal was still very small, and almost insignificant ($2.8 \pm 2.3\%$, Table 3.2). The internal removal can be compared to that which might be expected theoretically. A flow tube propane mixing ratio of 1100 ppmv equates to $k'_\text{OH} = 30,000$ s$^{-1}$, but this is a factor of 760/1.5 lower in the detection cell, 59 s$^{-1}$ (assuming constant gas density). In normal operation, NO injection occurs 10.5 cm below the pinhole, and 7.5 cm away from the laser axis (i.e., total of 18 cm between the pinhole and detection volume), with a residence time of 0.9 ms between NO injection and OH detection (Creasey et al., 1997; Whalley et al., 2013). The gas likely slows down between pinhole sampling and NO injection, but assuming a constant gas velocity, the residence time between the pinhole and the laser axis is estimated at 2 ms. Based on this, an internal removal of $\sim12\%$ is calculated, which is higher than observed, likely because the assumption of constant gas velocity is invalid (i.e., the real residence time is closer to ~1 ms). However, the calculation also neglects the fact that the density is higher in the jet, or the perturbation to normal flow caused by moving the NO injector close to the pinhole.

The maximum propane concentration here was limited by the range of the MFC. In future experiments, the scavenger concentration should be increased even further to check that $\delta^{\text{HOx}}_{\text{scavenger}}$ does decrease accordingly, in order to prove that this is a valid methodology for the determination of internal OH removal.

3.4 Interference Testing with the IPI

Previous experiments investigated the known interference from ozone in the presence of water vapour, as well as interferences from intermediates (e.g., due to sCI decomposition) generated in the ozonolysis of alkenes, namely tetramethylethene (TEM), isoprene, and methyl vinyl ketone (MVK). All gases were mixed in the calibration wand and delivered

1 Experiments performed by Dr. Lisa Whalley and Maximilien Desservettaz.
directly to the cell pinhole, similar to normal calibration experiments. Ozone/water-only tests showed that, for the Leeds ground-based FAGE instrument, this known interference could be calculated by the following expression (Whalley et al., 2018):

$$\text{OH}_{\text{int}} \text{ (molecule cm}^{-3}\text{)} = 520 \pm 200 \times [\text{O}_3] \text{ (ppbv)} \times [\text{H}_2\text{O}] \text{ (%) } \times \text{LP (mW)}$$

(E3.5)

which is equivalent to an OH signal 5.2×10^5 molecule cm$^{-3}$ for typical instrument laser power ($\text{LP} \sim 10$ mW) and atmospheric concentrations of O$_3$ (50 ppbv) and H$_2$O (2%). The raw signal (i.e., cps, not cps mW$^{-1}$) scaled quadratically with laser power, confirming that the signal originated from a two-photon, laser-generated process (Dr. Lisa Whalley, personal communication).

In alkene ozonolysis experiments, which were performed under high [O$_3$]:[alkene] conditions, it was found that the steady-state OH generated from ozonolysis reactions (i.e., atmospheric OH, not interfering/interiorly-formed OH) lead to high OH signals, even in the presence of a scavenger (C$_3$F$_6$). The scavenger concentration was sufficient to remove OH (>99%) generated from a mercury lamp (point OH source), but to remove the steady-state OH from ozonolysis, higher concentrations were required. In the case of TME, the OH signal decreased to close to zero at high scavenger concentrations, suggesting that the original OH signal was due to atmospheric OH only and that TME ozonolysis intermediates (e.g., sCIs) do not cause an OH interference in the Leeds FAGE. However, for isoprene and MVK, an OH signal remained at high scavenger concentrations, for which a steady-state model predicted OH concentrations close to zero. This suggests that the signals in the isoprene/MVK cases were indeed caused by an interference, although reducing the experimental reaction time improved the measurement-model agreement, suggesting that the discrepancy may relate to the build-up of oxidation products. The remaining OH signal was not laser-generated for both isoprene and MVK, and did not exhibit a pressure dependence, suggesting that sCI decomposition (enhanced at low pressure (Donahue et al., 2011)) was not the cause of the interference signal. Regardless, when extrapolated back to ambient levels of ozone and isoprene/MVK, the interference is negligible ($<1 \times 10^5$ molecule cm$^{-3}$ OH equivalent).

Similar experiments were performed as part of this work using the IPI system, with tests conducted for O$_3$/H$_2$O and O$_3$/isoprene (under wet and dry conditions, Table 3.3). Reagent gases were mixed in the calibration wand as before, but the scavenger (propane, PROP) was injected into the IPI flow tube. The propane concentrations were set to those
Table 3.3. Summary of interference tests with O$_3$ and isoprene (ISO) in the presence of propane (PROP), based on the data in Figure 3.13. aCorrected using equation (E3.5). bO$_3$ = 10 ppbv, ISO = 3.5 ppbv.

Test	O$_3$	H$_2$O	ISO	PROP	OH$_{int}$ (molecule cm$^{-3}$)		
	(ppmv)	(%)	(ppmv)	(ppmv)	*O$_3$/H$_2$O corr.	bOP3 levels	
A	1.64	0.73	0	110	1.0×10^7	0	N/A
B	1.86	0.07	16	110	1.9×10^7	1.8×10^7	21
C	1.83	0.98	16	110	1.6×10^7	8.0×10^5	1
D	1.85	0.07	16	1100	1.4×10^7	1.3×10^7	15

used for ambient OHchem measurements, such that the tests were representative of normal atmospheric sampling (i.e., would an interference signal remain in ambient data). However, to generate sufficient OH signal for quantitative analysis, ozone and isoprene were introduced at concentrations that far exceeded their typical ambient levels (Table 3.3). Unlike previously, low [O$_3$]:[ISO] ratios were used to suppress the signal contribution from the atmospheric OH generated by ozonolysis (i.e., isoprene acted as an additional OH scavenger). To allow sufficient time for steady-state conditions to develop, the IPI did not sample from the calibration wand directly, but instead a 30 cm flow tube (ID ~ 19 mm) was used to extend the IPI (which sampled wand gas at the normal IPI flow rate of ~32 slm, τ ~ 0.15 s).

Time series of the interference testing experiments conducted using the IPI are shown in Figure 3.13. In panel A, no isoprene is added, but due to ozone photolysis in the presence of high [H$_2$O] (0.73%) an interference signal (OH$_{int}$) is observed (i.e., signal in the presence of propane is higher than the offline signal). The magnitude of this signal (OH$_{int}$ ~ 1.0×10^7 molecule cm$^{-3}$) yields a scale factor of 510 ± 270 ppbv$^{-1}$ %$^{-1}$ mW$^{-1}$ when linearly extrapolated down from the measured [O$_3$], [H$_2$O], and LP, in agreement with the 520 ± 200 ppbv$^{-1}$ %$^{-1}$ mW$^{-1}$ in equation (E3.5).

In panel B, ozone and isoprene react under dry conditions, and an interference signal is observed again. The low H$_2$O (0.07%) suppressed the O$_3$/H$_2$O interference, such that this cannot explain the magnitude of OH$_{int}$ (~1.9×10^7 molecule cm$^{-3}$), suggesting that OH was formed internally. Under high-humidity (H$_2$O ~ 1%) conditions (panel C), OH$_{int}$ (~1.6×10^7 molecule cm$^{-3}$) was similar, but in this case the signal can be explained almost
Figure 3.13. OH interference testing examples: (A) O$_3$/H$_2$O only, (B) O$_3$ and isoprene (ISO) under dry conditions, (C) O$_3$ and isoprene with H$_2$O added, and (D) O$_3$ and isoprene under dry conditions, but with a higher concentration of propane (PROP) to remove any steady-state generated OH. Shaded areas are periods of propane addition, and the light blue lines correspond to the calculated signals from O$_3$/H$_2$O only (for experiments with isoprene present). The interference signals (“OH #2” – “offline”) were used to derive equivalent OH concentrations (OH$_{int}$), which are on the order of $\sim 1–2 \times 10^7$ molecule cm$^{-3}$.
entirely by the O$_3$/H$_2$O interference. Under dry conditions but with a ten-fold higher concentration of propane (as used for the AIRPRO campaigns, panel D), the interference signal from panel B was reduced but remained elevated relative to the offline signal ($\text{OH}_{\text{int}} \sim 1.4 \times 10^7$ molecule cm$^{-3}$), where again the contribution from O$_3$/H$_2$O cannot explain the discrepancy. The decrease in OH_{int} between panels B and D may be attributed to the suppression of steady-state OH generated from ozonolysis, but the remaining signal implies that OH was also formed internally in both cases. For the dry, low-propane experiment (panel B), the magnitude of the OH signal is much higher than that calculated from a steady-state model ($\sim 1.4 \times 10^6$ molecule cm$^{-3}$), in accordance with earlier experiments. Provided that internal removal experiments (Section 3.3.3) do not show significant removal at higher propane mixing ratios (>1100 ppmv), the O$_3$/isoprene experiments should be repeated at higher propane to determine whether the OH_{int} signal decreases accordingly.

The suppression of the interference signal attributable to O$_3$/isoprene only (i.e., O$_3$/H$_2$O corrected) by the addition of water vapour (panel C, H$_2$O ~ 1%) suggests that the internal OH may have been formed from sCIs. The simplest C1 and C2 sCIs are known to react quickly with the water vapour dimer ($k \sim 4-7 \times 10^{-12}$ cm3 molecule$^{-1}$ s$^{-1}$ at 298 K for CH$_2$OO (Chao et al., 2015; Lewis et al., 2015)) and monomer ($k \sim 1-2 \times 10^{-14}$ cm3 molecule$^{-1}$ s$^{-1}$ for anti-CH$_3$CHOO (Taatjes et al., 2013; Sheps et al., 2014; Lin et al., 2016)), respectively. Reaction with the water vapour monomer was also shown to be relatively fast ($k \sim 1.2 \times 10^{-15}$ cm3 molecule$^{-1}$ s$^{-1}$, $k_{\text{loss}} \sim 300$ s$^{-1}$ at ~1% H$_2$O) for the ensemble of sCIs, including the C1 sCI, generated from isoprene ozonolysis (Newland et al., 2015). The sCI interference hypothesis could be easily tested by humidifying the high propane experiment (panel D), to see whether OH_{int} remains (after O$_3$/H$_2$O correction). Alternatively, another sCI scavenger could be used, such as acetic acid (CH$_3$OOH), which reacts much more quickly, at least with C1 and C2 sCIs ($k \sim 1-3 \times 10^{-10}$ cm3 molecule$^{-1}$ s$^{-1}$) (Welz et al., 2014). CH$_3$COOH was used during O$_3$/alkene interference experiments with the Indiana University (IU) FAGE instrument, since using water as the sCI scavenger means that OH_{int} must be corrected for the photolytic ozone interference (Rickly and Stevens, 2018). SO$_2$ could also be used as an sCI scavenger ($k \sim 10^{-11}-10^{-10}$ cm3 molecule$^{-1}$ s$^{-1}$ (Welz et al., 2012; Sheps et al., 2014)), but it fluoresces at 308 nm and therefore would raise the background signal and reduce signal-to-noise. Experiments with acetic acid or another sCI scavenger should be performed over a range of propane concentrations.
to ensure any remaining \(\text{OH}_{\text{int}} \) signal (at lower propane) is not due to the steady-state OH generated from ozonolysis.

A review of OH interference experiments conducted on LIF systems can be found in Chapter 1.3.2.1. For experiments conducted with ozone and alkenes, interference signals have been observed that, upon addition of an sCI scavenger (H\(_2\)O, CH\(_3\)COOH, and SO\(_2\)), were generally reduced to near-zero levels, suggesting that the source of the interference was sCIs (Novelli et al., 2014b; Novelli et al., 2017; Rickly and Stevens, 2018). However, for the FZJ LIF instrument, the interference signal was independent of water vapour and SO\(_2\) levels, suggesting that the interference did not originate from sCIs (Fuchs et al., 2016). The results of the present study are inconclusive with regards to the nature of the \(\text{O}_3/\text{isoprene} \) interference, and further experiments are required to assess this.

Regardless of whether the signal observed at high propane is due to internally formed OH, which may have originated from sCIs, the equivalent OH concentrations are negligible when extrapolated back to ambient chemical conditions. Assuming a linear dependence of the interference signal on both ozone and isoprene, the interference (after \(\text{O}_3/\text{H}_2\text{O} \) correction) is equivalent to <100 molecule cm\(^{-3}\) (Table 3.3) at the ozone (10 ppbv) and isoprene (3.5 ppbv) levels measured in a low-NO\(_x\), biogenic environment during the Oxidants and Particle photochemical processes (OP3) campaign in 2008 (Hewitt et al., 2010). The insignificance of the interference signal for atmospherically relevant \(\text{O}_3/\text{alkene} \) concentrations is consistent with the results of previous interference experiments, for which equivalent OH concentrations of \(\sim 3–4 \times 10^4 \) (Novelli et al., 2014b; Fuchs et al., 2016) and \(\sim 4 \times 10^5 \) molecule cm\(^{-3}\) (Rickly and Stevens, 2018) can be derived (further details in Chapter 1.3.2.1).

3.5 Conclusions and Future Work

This chapter has described the Leeds inlet pre-injector, which was based on the design of Mao et al. (2012). Determination of the reduction in sensitivity, due to radical wall losses on the additional surfaces present when sampling through the IPI, proved particularly challenging. After many experiments over several years, it was eventually found that losses of OH and HO\(_2\) radicals in the IPI were effectively zero, such that the calibration factors applied to ambient data required no correction. Because of this and the fact that use of the IPI results in partial shading of the inlet, reducing the solar background signal, instrumental limits of detection (LOD) are actually better for the IPI compared to
conventional FAGE sampling. This of course is in addition to the main advantage of the IPI system: the determination of interferences in ambient OH measurements. It is therefore recommended that the IPI is used near-continuously during HOx field measurements, as was the case for the summer AIRPRO campaign.

The OH removal efficiency was characterised and shown to be virtually 100% for the scavenger concentrations used for fieldwork, with little difference observed between C₃F₆ and propane scavengers when normalised to their respective reaction rates with OH. However, it is possible that the OH removal efficiency has been overestimated, since these experiments were performed in the same manner as earlier calibration experiments, where increased radical losses were observed that were attributed to increased turbulence in the IPI flow tube. The same effect would artificially improve the mixing of the scavenger into the ambient air stream and thus the experiment should be repeated under conditions similar to those used in the final calibration tests, which did not perturb the IPI flow profile. The time response of the scavenger injection was also optimised, where it only takes ~10 s for the OH chemical background signal to stabilise following injection, and a few seconds for the OHwave signal to stabilise after the scavenger flow is switched off.

A novel approach was devised to determine internal OH removal (i.e., reaction of OH with the scavenger inside the fluorescence cell), in which OH was generated inside the FAGE cell only after conversion of sampled HO₂ via reaction with NO. It was found that, at the propane concentrations used for fieldwork, the internal removal was close to zero. However, to confirm that this method is a valid approach for the determination of internal OH loss, the propane concentration should be increased further to show that internal removal is observed at high enough propane. Using another scavenger (e.g., C₃F₆) would give further assurance, or alternatively OH could be generated from a mercury lamp placed inside the FAGE cell, which was how Mao et al. (2012) quantified internal OH removal in the Penn. State University instrument.

Tests of the known photolytic interference from ozone in the presence of water vapour were performed and shown to be in agreement with previous work. Recent experiments¹

¹ Experiments performed by Dr. Lisa Whalley, Eloise Slater, and Jake Allen.
have confirmed the linearity of OH$_{int}$ in ozone, water vapour, and laser power.¹ Experiments were also conducted for the ozonolysis of isoprene, since interferences have been observed previously in O$_3$/alkene systems, postulated to originate from the decomposition of stabilised Criegee intermediates (sCIs) (Novelli et al., 2014b), which is enhanced at low pressure (Donahue et al., 2011). These experiments used low [O$_3$]:[isoprene] ratios to minimise steady-state generated OH (i.e., atmospheric, not internal OH), and were performed using the IPI system to ensure their relevance to ambient measurements. Interference signals were observed in all experiments, but under high-humidity conditions this could be explained entirely by the O$_3$/H$_2$O contribution (i.e., interference signal close to zero after correction), supporting the sCI hypothesis, as these are known to react quickly with water vapour and/or its dimer. Under dry conditions, the interference was reduced at higher propane, suggesting that some of the low-propane signal was due to steady-state generated OH. Overall, the results of these experiments were inconclusive, and it is recommended that future tests should incorporate the addition of a more efficient sCI scavenger (e.g., acetic acid), and assess its effects at various concentrations of propane. Following this, a wider variety of alkenes should be tested under the same experimental conditions, such as isoprene oxidation products (e.g., MVK) or monoterpenes (Fuchs et al., 2016; Rickly and Stevens, 2018).

Fuchs et al. (2016) showed that nitrate radicals (NO$_3$) can also give rise to an interference signal in FAGE instruments. Preliminary experiments have shown that this contribution is negligible (after O$_3$/H$_2$O correction) in the Leeds system for measurements of OH (Eloise Slater, personal communication), but the interference is also known to affect HO$_2$ and RO$_2$ and should be determined accordingly.

The Leeds aircraft FAGE system (Commane et al., 2010) features a much longer inlet (28 cm from the pinhole to the OH detection axis), resulting in a longer residence time, and is therefore likely more prone to measurement interferences (Whalley et al., 2013). Inlet length has been shown to have a considerable effect on the magnitude of the OH interference during previous experiments with ozone and alkenes (Fuchs et al., 2016; Rickly and Stevens, 2018). Interference tests with the aircraft FAGE instrument are

¹ The raw signal (cps) is quadratic due to the nature of the two-photon process, but this becomes linear after normalisation to laser power (cps mW$^{-1}$).
therefore a matter of urgent priority, and it is recommended that a similar IPI system is designed for ambient aircraft measurements.

3.6 References

Whalley, L. K., Blitz, M. A., Desservettaz, M., Seakins, P. W., and Heard, D. E.: Reporting the sensitivity of laser-induced fluorescence instruments used for HO$_2$ detection to an interference from RO$_2$ radicals and introducing a novel approach that enables HO$_2$ and certain RO$_2$ types to be selectively measured, Atmospheric Measurement Techniques, 6, 3425-3440, 2013.

4. Validation of OH Measurements: Field Deployment of the Inlet Pre-Injector (IPI) System

In this chapter, the first three deployments of the Leeds inlet pre-injector (IPI) system for ambient observations of OH are described. The first of these campaigns, and the main subject of this chapter, was the “Integrated Chemistry of OZone in the Atmosphere” (ICOZA) project, at the Weybourne Atmospheric Observatory (WAO) on the Norfolk coast, UK, in June and July 2015. The latter two field campaigns were conducted as part of “An Integrated Study of AIR Pollution PROcesses in Beijing” (AIRPRO), the first in November and December 2016, and the second in May and June 2017. The three campaigns, one in rural, coastal UK in the outflow of a European megacity (London) in summer, and the others in a Chinese megacity over two different seasons, exhibited strong chemical and meteorological differences. This provided an excellent opportunity to investigate the possible influence of interferences in OH measurements made by the Leeds ground-based FAGE instrument over a wide range of chemical space. Although none of the campaigns were conducted in low-NOx, biogenic environments, where, as described in Chapter 1.3.2.1, the most significant OH interferences have been found (see Table 4.3, discussed in later sections) (Mao et al., 2012; Novelli et al., 2014a; Feiner et al., 2016), the summer AIRPRO campaign did bear some resemblance, in that high BVOC (e.g., up to ~8 ppbv of isoprene) and relatively low NO concentrations (~0.5 ppbv) were observed in the afternoon. The meteorological and chemical conditions, including some example VOCs, encountered during each campaign are summarised in Table 4.1 and discussed in further detail in the introductory sections that follow.

For ambient observations, the IPI data acquisition cycle (see Chapter 2.1.4) consisted of 5 min of online and 30 s of offline (spectral background, for OHwave) integration, where the online period was split into 2 min of OH measurements and 2 min of propane addition to the IPI flow tube (chemical background, for OHchem), followed by 1 min of HO2 measurements (by the addition of NO to the FAGE cell). In terms of instrumental operation, the only difference between ICOZA and the AIRPRO campaigns was the use of different propane flows in the IPI. The propane concentration in the IPI flow tube was ~110 ppmv ($k_{OH} \sim 3000 \ s^{-1}$, $\tau_{OH} \sim 0.3 \ ms$) during ICOZA but, after internal removal experiments revealed that the propane level could be increased further (Chapter 3.3.3), a ten-fold higher concentration, resulting in a concomitant reduction in the OH lifetime, was used for both of the AIRPRO campaigns. The propane flow was reduced occasionally...
Table 4.1. Overall meteorological and chemical conditions encountered during each field campaign, including example VOCs. Values are given as the median of all points that coincide with IPI sampling periods, except for $J(O^1D)$ and O_3, which are reported as diurnally-averaged maxima.

<table>
<thead>
<tr>
<th></th>
<th>ICOZA</th>
<th>AIRPRO winter</th>
<th>AIRPRO summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>52º57’02”N, 1º07’19”E</td>
<td>39º58’28”N, 116º22’16”E</td>
<td></td>
</tr>
<tr>
<td>Meteorological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>16</td>
<td>6.1</td>
<td>26</td>
</tr>
<tr>
<td>H$_2$O (%)</td>
<td>1.5</td>
<td>0.4</td>
<td>1.6</td>
</tr>
<tr>
<td>Wind speed (ms$^{-1}$)</td>
<td>5.8</td>
<td>0.9</td>
<td>0.4</td>
</tr>
<tr>
<td>$J(O^1D)$ (106 s$^{-1}$)</td>
<td>16</td>
<td>3.5</td>
<td>19</td>
</tr>
<tr>
<td>Chemical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O_3 (ppbv)</td>
<td>42</td>
<td>15</td>
<td>90</td>
</tr>
<tr>
<td>NO (ppbv)</td>
<td>0.19</td>
<td>22</td>
<td>0.81</td>
</tr>
<tr>
<td>NO$_2$ (ppbv)</td>
<td>2.2</td>
<td>33</td>
<td>17</td>
</tr>
<tr>
<td>CO (ppbv)</td>
<td>100</td>
<td>1120</td>
<td>460</td>
</tr>
<tr>
<td>Propane (ppbv)</td>
<td>0.26</td>
<td>6.2</td>
<td>3.8</td>
</tr>
<tr>
<td>Isoprene (ppbv)</td>
<td>0.02</td>
<td>0.07</td>
<td>0.38</td>
</tr>
<tr>
<td>Benzene (ppbv)</td>
<td>0.03</td>
<td>1.4</td>
<td>0.46</td>
</tr>
<tr>
<td>k_{OH} (s$^{-1}$)</td>
<td>4.4</td>
<td>38</td>
<td>25</td>
</tr>
</tbody>
</table>

to the ICOZA levels, but this had no observable effect on the background signals obtained for either the winter or summer data. All OHwave data presented here have been corrected for the known interference from O_3 in the presence of H$_2$O, using equation (E3.5).

4.1 The Integrated Chemistry of OZone in the Atmosphere (ICOZA) Project

4.1.1 Introduction

The ICOZA field campaign focussed on the chemistry surrounding the production of ozone, which is harmful to human health (Jerrett et al., 2009), damages vegetation (Krupa et al., 1998) and is a potent greenhouse gas (IPCC, 2014). This campaign is the subject of Chapter 5, in which the current scientific understanding of ozone chemistry, and the reasons that motivate its further study, are explored in more detail. A key component of the project was the calculation of in situ (i.e., chemical or local) ozone production rates ($P(O_3)$, OPR) (Cazorla and Brune, 2010; Cazorla et al., 2012) using FAGE measurements of OH, HO$_2$, and RO$_2$ for comparison to various observational and model approaches.
The ICOZA campaign took place at the WAO, which is a Global Atmospheric Watch (GAW) regional station run by the University of East Anglia (UEA). As shown in Figure 4.1, the site is located on the North Norfolk Coast, UK (52°57′02″N, 1°07′19″E), ~40 km NNW of Norwich and ~180 km NE of London. The site is situated 15 m above sea level and is surrounded by grass fields on three sides, with the fourth facing due north towards a gently-sloped pebble beach. The nearest major road is a rural A-road (A147) located ~800 m to the south.

Alongside Leeds observations of radicals (OH/HO$_2$/RO$_2$) (Creasey et al., 1997; Whalley et al., 2010; Whalley et al., 2013), OH reactivity (Stone et al., 2016), HCHO (Cryer, 2016), and the auxiliary measurements described in Chapter 2 (e.g., photolysis rates), a variety of supporting instruments were operated by collaborators from the Universities of Birmingham, Leicester, and York. Observational data were also provided by the WAO/UEA (e.g., CO, NO$_x$, O$_3$, SO$_2$, VOCs, meteorological data). A full list of the measurements made during the ICOZA campaign is given in Table 5.1 of Chapter 5.
The campaign was due to start on 1st July 2015 officially, but radical measurements commenced on the afternoon of 29th June. The last radical observations were made during the early morning of 22nd July, before the campaign end date of 31st July. Overall, OH measurements were made on 22 days, albeit with variable data coverage (see Chapters 5 and 6). Two IPI sampling periods were conducted in the middle of the campaign, separated by a few days (3rd–8th July and 12th–16th July), with a total of nine days where OHchem measurements are available around midday. For other times, only measurements of OHwave are available.

The ICOZA campaign was well-suited to an investigation of measurement interferences owing to the variety of air masses that impact the WAO site. As the site is situated on the coast, it is subject to clean polar air masses that have travelled over the North Sea, as well as more polluted air that has been influenced by emissions from major UK cities (e.g., London, Birmingham) ~12–24 hours before arriving at the site. Polluted continental air, containing aged (by up to 36 hours) anthropogenic emissions from continental Europe, may also be sampled (Lee et al., 2009). In addition, the site is subject to emissions from local roads, as well shipping influences (Cárdenas et al., 1998).

In general, the ICOZA campaign was characterised (Table 4.1) by moderate temperatures (16 °C median), high humidity (RH ~ 80%) and strong wind speeds (~6 m s\(^{-1}\)), as might be expected at a temperate, coastal location in the summertime. The predominant wind sector, based on wind direction measurements at the site, was westerly (~30%), followed by southwesterly (~20%) and southerly (~15%). Back-trajectory analysis was conducted by Cryer (2016), which, similar to the results of Lee et al. (2009) for the 2004 Tropospheric ORganic CHemistry experiment 2 (TORCH-2), showed that the air reaching the WAO site could be defined by three distinct categories: Local European, North Sea and Atlantic (Figure 4.1). During IPI sampling periods, the site was predominantly under the influence of Atlantic air (Cryer, 2016), as reflected in the tendency for wind from the W and SW sectors. These air masses spent a considerable amount of time (~1 day) over the UK (Figure 4.1), often encountering emissions from urban areas, which underwent photochemical aging during their transport to the WAO site.

Overall, the levels of pollution observed at the site were moderate, and the lowest of the three field campaigns discussed in this work (Table 4.1). For example, the OH reactivity (\(k_{\text{OH}}\)) measured during ICOZA (~4 s\(^{-1}\)) was lower than AIRPRO (winter, summer: ~40,
25 s\(^{-1}\)) by factors of \(~6\text{–}9\) and NO (\(~0.2\ \text{ppbv}\)) and NO\(_2\) (\(~2\ \text{ppbv}\)) levels were \(~4\text{–}120\) and \(~8\text{–}15\) times lower, respectively. However, ozone mixing ratios were relatively high, with a diurnally-averaged maximum of \(~40\ \text{ppbv}\), driven in part by strong UV and near-UV radiation.

In terms of the breakdown of OH reactivity, loss occurred mostly to NO\(_x\) (\(~35\%\) of calculated, campaign average) and CO (\(~24\%\) (Cryer, 2016). As a consequence of their low concentrations, anthropogenic VOCs (AVOCs) such as propane (\(~0.3\ \text{ppbv}\)) and benzene (\(~0.03\ \text{ppbv}\)) made only minor contributions (\(<5\%\) total) to \(k_{\text{OH}}\), although it is evident that the site is impacted by photochemically aged air from the relatively high contribution of carbonyl species (\(~15\%\)). The dialkenes 1,3-butadiene and isoprene made small but significant contributions to \(k_{\text{OH}}\) (\(~12\%\)); the related BVOCs, monoterpenes, were measured as a sum during ICOZA but were generally below the PTR-MS (Murphy \textit{et al.}, 2010) limit of detection (LOD, \(~20\ \text{pptv in 15 min}\)). In addition, a significant fraction of \(k_{\text{OH}}\) (\(~44\%\)) could not be accounted for from the co-located measurements, suggesting the presence of unmeasured species, although modelling studies could help close this gap if simulated levels of OVOCs are sufficient.

4.1.2 Time Series

Time series of OHwave and OHchem measurements for both ICOZA IPI sampling periods are shown in Figure 4.2, alongside their differences (OHwave – OHchem, also averaged to 4 h to improve precision) and the calculated interference from O\(_3\)/H\(_2\)O (subtracted from OHwave), as well as filter radiometer measurements of \(J(O_1^1D)\) to highlight day/night differences. The gaps in the time series are due to instrument calibrations, as well as instrumental malfunctions (e.g., due to power cuts) and known operating issues (e.g., cell blockages and reference cell problems, see the Appendix for more details).

It can be seen from Figure 4.2 that OHwave measurements track OHchem very tightly for most of the duration of IPI sampling, and both generally follow changes in \(J(O_1^1D)\). Midday maxima for both OH measurements were in the range \(3\text{–}9 \times 10^6\ \text{molecule cm}^{-3}\) for 1 h averages. However, more significant differences were observed at night, with median nighttime concentrations of \(3.1\) and \(2.2 \times 10^5\ \text{molecule cm}^{-3}\) for OHwave and OHchem, respectively; although, it should be noted that even the 1 h data were highly variable, reaching as far as \(\sim1 \times 10^6\ \text{molecule cm}^{-3}\) below zero for both measurements, much greater than the median 1 h LOD of \(\sim2 \times 10^5\ \text{molecule cm}^{-3}\) (SNR \(= 2\)). Before
Figure 4.2. Time series of OHwave, OHchem and their difference, the calculated OH interference from O$_3$/H$_2$O (subtracted from OHwave) and J(O1D) during the first (top panel) and second (bottom panel) IPI sampling periods of the ICOZA campaign. Blue, black and pink markers represent raw data (4 min), while hourly average OH data are shown by the solid blue and black lines, and four-hourly differences (\pm2 SE) by the red markers. UTC = Universal Time Coordinated (= GMT = BST – 1).
sunrise on the 16th July, both methods observed elevated OH concentrations, comparable to daytime observations, of ~3×10^6 molecule cm\(^{-3}\) at 03:00–04:00 UTC, but this may be related to the increased instrumental noise towards the end of the campaign (e.g., the excessive scatter in OH data on the 15th and 16th July). The data collected on this night are subject to more uncertainty since no instrumental operators were present at the time.

The majority of the 4 h differences (Figure 4.2) observed between OHwave and OHchem are zero within error. Perhaps the most notable counterexample is the daytime of the 13th July, during which a difference of ~2×10^6 molecule cm\(^{-3}\) (OHwave/OHchem ~ 1.6) was sustained over a period of several hours before the measurements come into good agreement once more. It is not clear whether this was a “real”, chemical measurement interference, or a consequence of the instrument pinhole being blocked overnight (00:43–08:34 UTC, estimated from the times of low cell pressure) by an insect. In comparison to periods of good agreement, no trace gas species were elevated at this time, but nonetheless steady-state OH predictions (Section 4.1.6 and Chapter 5) were able to capture the OHchem observations (within 30%), but underpredicted OHwave by a factor of ~2. However, the steady-state model relies on HO\(_2\) measurements (which was the dominant OH source, see Chapter 5.2.2) made using the same cell, for which the data quality may also have been compromised. The significant difference of ~1.4×10^6 molecule cm\(^{-3}\) on the morning of the 7th July also occurred after a period of low (and unstable) cell pressure, although the reason for which is not clear in this case, and was preceded by a power cut during the night before. The remaining 4 h differences are scattered evenly around zero, with a median of 0.23×10^5 molecule cm\(^{-3}\) and a mean ± 1 SD of (0.7 ± 4.7) × 10^5 molecule cm\(^{-3}\).

While the known interference from the laser-photolysis of ozone in the presence of water vapour has been calculated and subtracted from the OHwave data presented in this work, and thus cannot contribute to the remaining disagreement between OHwave and OHchem, the contribution it makes is still worth discussing here. During IPI sampling periods, the median contribution from O\(_3\)/H\(_2\)O was equivalent to 3.4×10^5 molecule cm\(^{-3}\) OH, and ranged from 0.1–1.1×10^6 molecule cm\(^{-3}\) which is of the same magnitude as the (corrected) nighttime OH measurements. At the start of the campaign, before IPI measurements commenced, a pollution event during a heatwave (Chapter 5.2.5) resulted in elevated concentrations of ozone (up to 110 ppbv) giving rise to a peak calculated interference of ~1.8×10^6 molecule cm\(^{-3}\), similar to daytime levels and the highest
4.1.3 Overall Statistics

The overall agreement between the two measurements may be assessed from the statistical distribution of the (OHwave – OHchem) differences, as visualised using the box plot and histogram in Figure 4.3 (both generated from raw 4 min differences). The median and mean differences were 0.3 and 1.1×10^5 molecule cm$^{-3}$, respectively, and the data exhibit a slight positive skewness with an interquartile range (IQR, 25th–75th percentiles) of $(-4.9–6.1) \times 10^5$ molecule cm$^{-3}$ and an interdecile range (IDR, 10th–90th percentiles) of $(-1.2–1.6) \times 10^6$ molecule cm$^{-3}$ (Figure 4.3A). Similarly, the histogram in Figure 4.3B shows a distribution centred around zero, with a full width at half maximum of $\sim 2 \times 10^6$ molecule cm$^{-3}$, and a slightly longer tail-off on the positive side.

The spread of the difference data compares reasonably well to the estimated instrumental precision, which is on the order of $0.5–1 \times 10^6$ molecule cm$^{-3}$ at 2σ (Chapter 2.2.3), and both the mean and median differences are well below this range. This suggests that the interference calculated for ICOZA.
Figure 4.4. Overall intercomparison of OHwave and OHchem observations from the ICOZA campaign. Grey markers represent raw data, with 1 h averages (±2 SE) in red. The thick red line is the orthogonal distance regression (ODR) fit to the hourly data, with its 95% CI bands given by the thin red lines; fit errors given at the 2σ level. For comparison, 1:1 agreement is denoted by the blue dashed line.

majority of the differences can be accounted for by statistical variability, without the need to invoke chemical interferences as an explanation.

The general agreement between OHwave and OHchem can also be seen from the overall intercomparison of their measurements in Figure 4.4. It is evident that the raw data are quite noisy, but averaging to 1 h improves the precision and reveals a tight correlation, with the majority of points scattered around the line of 1:1 agreement. An orthogonal distance regression (ODR) fit (Boggs et al., 1987) to these data yields a slope of 1.16 ± 0.058 (2σ) and a negative intercept on the order of the instrumental precision. In a similar manner, binning the data and (least squares) fitting to the medians reduces the influence of variability, as shown in Figure 4.5, which gives a slope of 1.07, a correlation coefficient (R^2) of 0.992, and a comparable intercept to Figure 4.4. Regardless of the fit method, these results show that on average, the two OH measurements agree within the instrumental accuracy of ~26% at 2σ.
Figure 4.5. ICOZA OHwave binned over 11 OHchem bins of width 1×10^6 molecule cm$^{-3}$, with a least squares fit to the medians (grey line, fit errors at 2σ). The number of points in each bin is shown in the lower panel (note, log scale).

4.1.4 Diurnal Profiles

Median hourly diurnal profiles of OHwave, OHchem and $J(O^1D)$, averaged over both IPI sampling periods, are shown in Figure 4.6. The two OH measurements exhibit virtually identical profiles, with peak values of $\sim 3 \times 10^6$ molecule cm$^{-3}$ slightly before solar noon, and relatively high concentrations (~ 1–2×10^6 molecule cm$^{-3}$) persisting into the early evening despite the concomitant falloff in $J(O^1D)$. Nighttime levels were generally below 5×10^5 molecule cm$^{-3}$. The variability in OH concentrations, shown only for OHchem for clarity, was high during both day and nighttime periods. The OH diurnal profile predicted by a photostationary steady-state (PSS) model (Chapter 1.3.5) is also shown in Figure 4.6. The model captures the shape of the measured profiles reasonably well but there is a general tendency towards underestimation; this is not discussed further until Section 4.1.6.

If the raw OHwave and OHchem time series data are averaged into hourly means before generating a median diurnal profile, there is a slight positive difference between the two
Figure 4.6. Hourly median diurnal profiles of OHwave, OHchem, PSS model-predicted OH (Section 4.1.6) and $J(O^1D)$ (right axis) during ICOZA. The variability (interquartile range, IQR) in OHchem measurements is denoted by the grey dashed lines, not shown for others for clarity.

Figure 4.7. Three-hourly median diurnal profiles of OHwave and OHchem, generated from 1 h average data. The variability (IQR) in OHchem measurements is denoted by the grey dashed lines, not shown for OHwave for clarity.
measurements at night (Figure 4.7), suggesting the presence of an interference(s). However, an interference signal is not apparent in the median diurnal profile of the hourly mean differences between the two measurements (Figure 4.8), which may be related to excessive noise and signal spiking in the data. This analysis was performed to account for the fact that the difference, which is the interference/background OH signal, may arise from a particular chemical species and therefore exhibit its own distinct diurnal profile, independent of atmospheric OH concentrations. The mean ± 2σ difference from Figure 4.8 is \((0.5 \pm 3.6) \times 10^5\) molecule \(\text{cm}^{-3}\) OH equivalents, which is below the instrumental LOD for individual hourly measurements \((-2 \times 10^5\) molecule \(\text{cm}^{-3}\)). If the difference is calculated from the diurnal profiles in Figure 4.7, it is higher on average, \((1.2 \pm 3.8) \times 10^5\) molecule \(\text{cm}^{-3}\) (if calculated from nighttime points only, difference = \((1.5 \pm 1.2) \times 10^5\) molecule \(\text{cm}^{-3}\)).

The contribution of the interference to the total OH signal, \((\text{OH}_{\text{wave}} - \text{OH}_{\text{chem}}) / \text{OH}_{\text{wave}}\), can also be obtained from the diurnal profiles in Figure 4.7, as shown in Figure 4.9. This shows that the interference is negligible during the daytime (ratios scattered fairly evenly around zero), but can comprise up to ~40% of the total OHwave signal at night. In light of this, the measurement-model comparisons presented in Chapter 5 will focus on daytime results. Nonetheless, during the nighttime, the contribution of the interference signal is amongst the lowest of all previous LIF measurements of OH using a scavenger injector; comparisons of the significance of the interference between ICOZA and other field studies, as well as the AIRPRO campaigns featured in this work (Section 4.2), are given in Section 4.3.

The stronger contribution at night suggests that \(\text{NO}_3\) radicals may have been playing a role, which have been shown to cause an interference on the order of ~1 \(\times 10^5\) molecule \(\text{cm}^{-3}\) OH equivalents per 10 pptv \(\text{NO}_3\) in the FZJ FAGE instrument (Fuchs et al., 2016). \(\text{NO}_3\) radicals were measured using BBCEAS (Kennedy et al., 2011; Hollis, 2017) during ICOZA, and although unfortunately there was little overlap with IPI sampling periods (eight 15 min points), campaign median nighttime concentrations were on the order of ~1–2 pptv, equivalent to ~1–2 \(\times 10^4\) molecule \(\text{cm}^{-3}\) OH, lower than the observed OH background of ~0.5–1 \(\times 10^5\) molecule \(\text{cm}^{-3}\) (although the maximum of 26 pptv \(\text{NO}_3\) is equivalent to ~1 \(\times 10^5\) molecule \(\text{cm}^{-3}\) OH). This implies that either \(\text{NO}_3\) radicals were not the source of the nighttime interference signal, or that the \(\text{NO}_3\) interference is more
Figure 4.8. Three-hourly median diurnal profile of the (OHwave – OHchem) difference (red line and markers) and its variability (red dashed lines) during ICOZA. Individual 1 h differences are shown by the grey markers. For comparison, the estimated campaign-median 1 h LOD is given by the thick blue line. The difference calculated from the diurnal profiles in Figure 4.7 is also shown (purple line and markers).

Figure 4.9. Three-hourly median diurnal profile of the relative contribution of interferences to the total signal, i.e., (OHwave – OHchem)/OHwave, obtained from the diurnal profiles in Figure 4.7.
severe in the Leeds FAGE, which seems unlikely considering the similar designs of the Leeds and FZJ instruments (i.e., single-pass detection, short inlet). In fact, preliminary experiments investigating the interference from NO$_3$ radicals have shown that this interference is negligible for measurements of OH using the Leeds ground-based FAGE instrument (Eloise Slater, personal communication).

4.1.5 Dependence on Chemical Conditions

The results presented thus far have shown that, for the most part, the two measurements of OH agree to within instrumental uncertainty and that the differences observed can be attributed to statistical variability, rather than as a result of real, chemical interferences. However, these differences, while small, were still significant at certain times, especially during the night, and therefore require further investigation.

In order to learn more about the possible origin of any chemical interference, the dependences of the two measurements upon various chemical conditions were examined. To achieve this, measurements of OHwave and OHchem were binned as a function of various parameters (Figures 4.10–4.15), including those implicated in OH measurement interferences in previous studies, such as NO mixing ratios (Feiner et al., 2016) and temperature (Mao et al., 2012; Novelli et al., 2017). The first of these dependences is shown in Figure 4.10, where OHwave and OHchem have been binned against equally spaced J(O1D) bins of width 3×10^6 s$^{-1}$. For clarity, only the median value from each bin is shown for OHchem, whereas full statistics (mean, median, IQR and IDR) are presented for OHwave. It can be seen that the two measurements exhibit the same behaviour, with the expected increase in OH concentrations with increasing rates of primary production (reactions (R1.1−R1.2)). This is consistent with the good agreement between the diurnal profiles of OHwave and OHchem shown in Figure 4.6, and provides further evidence that any interference is not generated photochemically. These features are in contrast to the results of the 2013 Southern Oxidant and Aerosol Study (SOAS) (Feiner et al., 2016) in an Alabama forest, for which the OH interference signal displayed a markedly different diurnal profile to that of OHchem and exhibited a strong, positive dependence on J(O1D), although the magnitude of the interference signal was much greater (frequently above 2×10^6 molecule cm$^{-3}$).
In any study of OH measurement interferences, it is of paramount importance to assess the role of NO levels, as the most severe discrepancies between LIF measurements of OH and model predictions have been found under low-NO conditions (Lelieveld et al., 2008; Ren et al., 2008; Hofzumahaus et al., 2009; Stone et al., 2011; Whalley et al., 2011; Wolfe et al., 2011), although these campaigns were also characterised by high BVOC concentrations. Therefore, if chemical interferences were indeed present during ICOZA, they are likely to have been more pronounced during periods with low NO concentrations, as was the case during SOAS 2013 (Feiner et al., 2016). However, it should be noted that, unlike the model OH underprediction, the background OH is not always NO-dependent (see the comment by H. Harder in the discussion of Fittschen et al. (2018): https://www.atmos-chem-phys-discuss.net/acp-2018-441/acp-2018-441-RC1-supplement.pdf; dependences of the interference on NO levels were not found for the three field campaigns featured in Novelli et al. (2017) and Mallik et al. (2018)).

The ICOZA campaign presented a good opportunity to assess the possible role of NO owing to the wide range of concentrations encountered, ranging from <0.01 to 5 ppbv

Figure 4.10. ICOZA OHwave (mean, median, 10–90th percentiles) and OHchem (median only for clarity, green circles) binned over eight J(O1D) bins of width 3 × 10^{-6} s^{-1}. The number of points in each bin is shown in the lower panel.
Figure 4.11. ICOZA OHwave and OHchem binned against NO, using eight natural log bins of width Δln(NO/pptv) = 0.5. The ratio of the two medians (OHwave/OHchem) is shown in the middle panel.

(median 0.2 ppbv, Table 4.1) during IPI sampling periods. OHwave and OHchem measurements as a function of NO, binned logarithmically to spread the data more evenly over such a wide range of NO concentrations, are shown in Figure 4.11. Once again, the two measurements exhibit virtually identical profiles that display the classically-expected\(^1\) trends, i.e. increases with NO as radical propagation (reactions (R1.7–R1.8) and reaction (R1.15)) is enhanced and then decreases once radical termination reactions

\(^1\) This chemistry is discussed in more detail in Chapter 5.
become more significant. There is a more severe discrepancy in the penultimate NO bin, where OHwave measurements are about a factor of two higher at ~1 ppbv NO, but this difference is likely caused by statistical variability considering the spread of the data, as well as the good agreement between OHwave and OHchem in the two adjacent bins. The agreement between the two measurements is excellent even at very low NO levels of below 0.1 ppbv.

Of course, another major feature linking the field campaigns referenced above, for which severe OH measurement-model discrepancies were reported, was the presence of high concentrations of isoprene. Similarly, previous studies of interferences have implicated the role of other reactive BVOCs such as 2-methyl-3-buten-2-ol (MBO) (Mao et al., 2012) and monoterpenes (Novelli et al., 2014a; Novelli et al., 2017). During ICOZA, concentrations of isoprene (measured using GC-MS or PTR-MS (Murphy et al., 2010), see Table 5.1 for more details) were low, ranging from below instrumental detection limits to a maximum of 250 pptv (median 20 pptv, Table 4.1) for IPI sampling periods.¹ Likewise, total monoterpene mixing ratios exhibited a maximum of 80 pptv but were generally below the PTR-MS LOD (~20 pptv in 15 min), and measurements of MBO were not available. These low reactive BVOC concentrations are not surprising considering that the campaign took place at a coastal site surrounded by grassland, from which the major emissions are light (≤C₃) OVOCs such as ethanol (Kirstine et al., 1998; Kirstine and Galbally, 2004).

As an alternative, the integrated effects of VOC levels upon the two OH measurements were assessed by binning these data against total VOC OH reactivity, as shown in Figure 4.12. Total VOC reactivities were calculated from measured reactivity by subtraction of the reactivity due to inorganic species (NOₓ, CO and O₃), in order to remove their influence on account of their overall domination of (known) OH reactivity (Cryer, 2016). It can be seen that, once again, OHwave and OHchem exhibit the same behaviour, with slight decreases in OH with increasing VOC reactivities. Mao et al. (2012) observed a correlation between the interference signal and measured OH reactivities in an MBO-dominated California forest during the 2009 Biosphere Effects on AeRosols and Photochemistry EXperiment (BEARPEX), although the observed reactivities were larger

¹ The roles of isoprene and its oxidation products MVK and MACR (measured as a sum using PTR-MS) were assessed, but OHwave and OHchem measurements followed the same trends (data not shown).
Figure 4.12. ICOZA OHwave and OHchem binned over six $k_{OH}^{VOC} = k_{OH}^{NOx} - k_{OH}^{CO} - k_{OH}^{O3}$ bins of width 1 s$^{-1}$.

Figure 4.13. ICOZA OHwave and OHchem binned over six temperature bins of width 2 °C.
and spanned a much wider range (\(\sim 5–40 \text{ s}^{-1}\)) than those observed during ICOZA (\(\sim 2–10 \text{ s}^{-1}\)).

Novelli et al. (2017) found that the OH background exhibited a weak dependence (\(R^2 = 0.16\)) on missing OH reactivity, i.e. the fraction of reactivity that cannot be accounted for from co-located measurements of OH sinks and model intermediates (Chapter 1), for the 2010 Hyytiälä United Measurements of Photochemistry and Particles in Air-Comprehensive Organic Precursor Emission and Concentration study (HUMPPA-COPEC) campaign in a monoterpene-dominated Finnish forest. This analysis was not performed for the ICOZA campaign, as while \(\sim 44\%\) of the reactivity was missing on average (which will likely decrease further once modelling work has determined the contribution from unmeasured VOC oxidation products), its absolute magnitude was much smaller (\(\sim 1–4 \text{ s}^{-1}\)) than for HUMPPA-COPEC (generally \(\sim 3–15 \text{ s}^{-1}\) but up to \(\sim 65 \text{ s}^{-1}\)). Analysis of the 2012 HOhenpeissenberg Photochemistry Experiment (HOPE) dataset by Novelli et al. (2017) revealed no such correlation (\(R^2 = 0.01\)) for measurements in rural Germany, likely due to lower measured and missing OH reactivities, as well as increased anthropogenic influence, which are all features shared by the ICOZA campaign.

BVOC emission rates are known to exhibit an exponential dependence on temperature (Guenther et al., 1993; Hakola et al., 2003; Duhl et al., 2008). This has previously been invoked to explain observations of missing OH reactivity in a forest environment (Di Carlo et al., 2004), where it was suggested that the unexplained reactivity was due to unmeasured reactive BVOCs. Thus, temperature serves as a useful proxy to assess the possible role of unmeasured reactive BVOCs, such as MBO or sesquiterpenes, during ICOZA. Measurements of \(\text{OH}^\text{wave}\) and \(\text{OH}^\text{chem}\) display the same behaviour as a function of temperature (Figure 4.13), with general increases likely as a result of the correlation between \(J(\text{O}^1\text{D})\) and temperature. This suggests that unmeasured reactive species were either not present, which is supported by the weak correlation between missing reactivity and temperature (Cryer, 2016), or simply had no influence on the OH measurement interference. This is in contrast to results from forested regions (Mao et al., 2012; Novelli et al., 2017), although these studies took place under much higher temperature conditions (up to 33 °C). In addition, divergence of the two measurements was only observed above \(\sim 24 \text{ °C}\) by (Mao et al., 2012), which was the maximum temperature recorded during ICOZA IPI sampling periods. For HOPE 2012 (Novelli et al., 2017), the (exponential) correlation between the interference signal and temperature
was much weaker ($R^2 = 0.26$) than for HUMPPA-COPEC 2010 ($R^2 = 0.64$), despite similar temperatures between the two campaigns.

Many previous studies, both laboratory-based (Novelli et al., 2014b; Rickly and Stevens, 2018) and in the field (Mao et al., 2012; Novelli et al., 2014a; Novelli et al., 2017), have attempted to explain the origin of the LIF OH interference by postulating that stabilised Criegee intermediates (sCIs), formed in ambient air from the ozonolysis of alkenes (Chapter 1, reaction (R1.26)), decompose to generate OH in the low pressure side of the FAGE instrument. As a result, it is expected that the interference signal should increase with ozone concentrations, which has been observed previously in forest environments (Feiner et al., 2016; Novelli et al., 2017). However, as shown in Figure 4.14, this was not the case during the ICOZA campaign, where both measures of OH show the same general increase with ozone levels, suggesting that sCI chemistry was not the cause of the interference. The agreement between OHwave and OHchem across the entire range of ozone concentrations provides confidence in the accuracy of the subtraction (equation (E3.5)) of the known interference from ozone and water vapour, the determination of which is subject to high uncertainty (Whalley et al., 2018).

If sCIs are indeed the origin of the OH interference, the OH background should scale with the ozonolysis turnover rate (TOR), i.e. $\Sigma^i k_{O3+ALK_i}[O_3][ALK_i]$ (where ALK$_i$ is an individual alkene). Despite the reasonable correlation with ozone ($R^2 = 0.49$), no correlation ($R^2 = 0.003$) between the interference signal and ozonolysis TOR was observed during HUMPPA-COPEC (Novelli et al., 2017), which the authors postulated was due to sCIs from unmeasured reactive BVOCs on the basis of the large underprediction of OH reactivity (by 79% on average), as well as the correlation between the OH background and missing reactivity as described above. In contrast, for HOPE observations the correlation was weak with respect to ozone ($R^2 = 0.25$) but stronger for ozonolysis TOR ($R^2 = 0.42$ after omission of some outliers), thus supporting the hypothesis that the interference relates to sCIs. For ICOZA no such correlation was observed (data not shown), which, in addition to the lack of correlation with ozone, provides further evidence that sCI chemistry did not play a role in this case.

As a final approach to investigate the possible cause of the OH interference signal observed during the ICOZA campaign, the dependence of the two OH measurements on wind direction was assessed, as shown in Figure 4.15. It can be seen that there was no obvious discrepancy between OHwave and OHchem, with differences scattered evenly.
Figure 4.14. ICOZA OHwave and OHchem binned over ten ozone bins of width 5 ppbv.

Figure 4.15. ICOZA OHwave and OHchem binned over eight 45° wind sectors (radial concentration units: molecule cm$^{-3}$).
around zero. Similarly, daily-averaged differences showed no dependence (data not shown) on the dominant air mass type (Cryer, 2016), although Atlantic air was sampled for the majority of the IPI sampling periods thus precluding a full assessment.

4.1.6 Comparison to Steady-State Predictions

From the discussion above it is impossible to conclude anything about the origin of the OH interference signal observed during the ICOZA campaign, as the interference does not exhibit a diurnal profile and no significant dependences on chemical conditions have been found. However, since OH measurement interferences have frequently been invoked to help explain LIF measurement-model discrepancies, it makes sense to compare the two measures of OH with respect to model-predicted OH concentrations.

A PSS model (Chapter 1.3.5) was used to calculate OH concentrations. Total OH loss rates were obtained directly from measurements of OH reactivity, and production terms accounted for photolysis of O$_3$ to O$(^1$D) and reaction with water vapour (primary production), photolysis of HONO, reaction of HO$_2$ with NO or O$_3$, and alkene ozonolysis reactions. Thus the PSS OH production rate is given by:

$$P_{\text{OH}, \text{PSS}} = 2J(O^1\text{D})[O_3]f + J(\text{HONO})[\text{HONO}] + k_{\text{HO2+NO}}[\text{HO}_2][\text{NO}] + k_{\text{HO2+O3}}[\text{HO}_2][O_3]$$

$$+ \sum_{i} k_{O_3+\text{ALK}_i}[O_3][\text{ALK}_i]Y_{\text{OH}_{\text{ALK}_i}}$$

where f is the fraction of O$(^1$D) atoms that react with H$_2$O to form OH (equation (E1.8)), $J(\text{HONO})$ is the spectral-radiometer determined HONO photolysis rate, and the final term accounts for the total OH formation from each measured alkene (ALK) i with yield $Y_{\text{OH}_{\text{ALK}_i}}$. The alkenes used in this calculation may be found in Table 5.1. Temperature-dependent rate constants were used where available, taken from Sander et al. (2011).

OH concentrations are then simply obtained from the ratio of production and loss rates:

$$[\text{OH}]_{\text{PSS}} = P_{\text{OH}, \text{PSS}} / k'_{\text{OH}}$$

The comparison of OHwave and OHchem measurements to the steady-state predicted OH concentrations is presented in Figure 4.16 and summarised by the descriptive statistics given in Table 4.2. This includes the model performance statistics mean bias (MB), normalised mean bias (NMB) and root-mean-square error (RMSE), which are defined as:

$$\text{MB} = \frac{1}{n} \sum_{i=1}^{n} (M - O)$$

$$\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (M - O)^2}$$
Figure 4.16. Measurement-model comparison of 15 min OHwave (blue circles) and OHchem (black squares) for IPI sampling periods during ICOZA. The least squares fits (errors at 2σ) are given by the solid lines, with 1:1 agreement denoted by the red dashed line.

Table 4.2. Overall statistics of the comparison of OHwave and OHchem measurements (15 min) to the predictions of a steady-state model for the IPI sampling periods of the ICOZA campaign. The slopes, intercepts and correlation coefficients (R^2) correspond to the plot shown in Figure 4.16. MB = mean bias, NMB = normalised mean bias; RMSE = root-mean-square error. To help assess whether the IPI sampling periods were representative of the overall conditions encountered during ICOZA, the measurement-model agreement for the full campaign, including IPI sampling periods (using OHchem data), is also shown.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>IPI OHwave</th>
<th>OHchem</th>
<th>Full campaign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope</td>
<td>1.16 ± 0.12</td>
<td>1.13 ± 0.10</td>
<td>1.051 ± 0.070</td>
</tr>
<tr>
<td>Intercept (10^6 cm⁻³)</td>
<td>0.48 ± 0.18</td>
<td>0.39 ± 0.14</td>
<td>0.87 ± 0.17</td>
</tr>
<tr>
<td>R^2</td>
<td>0.39</td>
<td>0.48</td>
<td>0.41</td>
</tr>
<tr>
<td>MB (10^6 cm⁻³)</td>
<td>-0.63</td>
<td>-0.51</td>
<td>-0.94</td>
</tr>
<tr>
<td>NMB</td>
<td>-42%</td>
<td>-37%</td>
<td>-42%</td>
</tr>
<tr>
<td>RMSE (10^6 cm⁻³)</td>
<td>1.8</td>
<td>1.4</td>
<td>2.7</td>
</tr>
</tbody>
</table>
\[
NMB = \frac{\sum_{1}^{n} (M - O)}{\sum_{1}^{n} (O)}
\]

\[
RMSE = \sqrt{\frac{\sum_{1}^{n} (M - O)^2}{n}}
\]

While the correlations in Figure 4.16 exhibit a large amount of scatter (i.e., \(R^2 < 0.5\)), likely as a result of low FAGE sensitivity (see Table 2.1 in Chapter 2), both measures of OH are in agreement with model predictions considering that the slopes, which are virtually identical (1.16 and 1.13), lie within the instrumental accuracy (26% at 2\(\sigma\)). However, the slopes increase to 1.44 ± 0.17 and 1.37 ± 0.14 for OHwave and OHchem, respectively, if only daytime data are included (defined as \(J(O^1D) > 5 \times 10^{-6} \text{ s}^{-1}\), corresponds to ~07:30–16:00 UTC), although these slopes are still equivalent within error. The magnitudes of these daytime slopes are consistent with the diurnal profiles in Figure 4.6, where OH was underestimated by ~40–50% during the day (see Figure 4.18 and the related discussion below). Model uncertainty is estimated at ~40% (2\(\sigma\)), based on previous global uncertainty analyses of the RACM2 mechanism (Chen et al., 2012; Griffith et al., 2016), thus the combined measurement-model uncertainty is ~50% at 2\(\sigma\), which is larger than the calculated NMB of ~ ~40% (for both OHwave and OHchem), implying agreement.

By all metrics (Table 4.2), OHchem measurements show slightly better agreement with the model than OHwave. This is perhaps unsurprising if the intrinsic assumptions of this comparison, that the model approach is valid and that OHchem is the more accurate measure of OH, are correct. It is possible that the better agreement for OHchem is a result of an interference(s) in OHwave detection, although it may be due simply to the increased precision from the longer averaging time used to determine OHchem backgrounds.\(^1\)

Of course, considering the generally good, but occasionally poor, agreement between OHwave and OHchem (Figures 4.2–4.15), the overall agreement between both measures and the predictions of a PSS model (Figure 4.16) may obscure the role of

\(^1\) While both OHwave and OHchem measurements have been averaged to 15 min for this comparison, in each individual measurement cycle the OHchem background (2 min) is integrated for four times as long as the OHwave background (0.5 min).
Figure 4.17. ICOZA background OH (OHwave – OHchem) binned against the absolute PSS underprediction of OH (OHwave – ssOH), using eight natural log bins of width $\Delta \ln(\text{OH/cm}^3) = 1$. The red dashed line corresponds to the scenario in which the model underprediction of OH can be explained entirely (i.e., 1:1) by measurement interferences.

Figure 4.18. Three-hourly median diurnal profiles of the OHwave and OHchem measurement-to-model ratios, calculated from OHwave, OHchem, and PSS model diurnals (averaged to 3 h). The red dashed line corresponds to agreement within a tolerance of $+50\%$, i.e. the estimated combined measurement-model uncertainty.
interferences in the model underprediction. To further examine whether the model underprediction of OH was related to interferences in OH measurement, the background signal (i.e., OHwave – OHchem) was plotted as a function of the absolute PSS model underprediction (i.e., OHwave – ssOH), as shown in Figure 4.17. While the background OH does indeed scale with the model underprediction, it is not sufficient to explain it, as illustrated by the deviation from the behaviour expected if one assumes that the sole cause of the underprediction is measurement interferences. In addition, if the background is binned against the model underprediction based on OHchem measurements (i.e., OHchem – ssOH), a flat profile is obtained (data not shown). In other words, considering that OHchem is the more accurate measure of OH, the background does not scale with “real”, missing chemistry. This suggests that the OH background and the missing OH source required to reconcile the ICOZA measurements are unrelated phenomena.

The ratios of the measured-to-calculated OH concentrations (i.e., the relative PSS model underprediction) exhibit strong diurnal profiles as shown in Figure 4.18, although the ratios are highly variable, especially at night. On average, the underprediction is most severe at night (18:00–06:00) and for OHwave (mean ± 2 SD = 6.4 ± 4.6), although similar disagreement is still observed for OHchem (3.9 ± 2.2), suggesting the presence of real, missing OH sources. Measurements of OHchem are in general agreement with the model (i.e., within ~50%) during most of the daytime (06:00–18:00), but not the early morning, whereas agreement is observed for OHwave in the afternoon only; the mean (±2 SD) ratios for the daytime measurements are 1.72 ± 0.94 and 1.65 ± 0.82 for OHwave and OHchem, respectively.

In Chapter 5, OH measurements are compared to model predictions for the entire ICOZA campaign, including non-IPI sampling periods. It is possible that the conditions encountered during the IPI sampling periods were not representative of the full campaign, such that it cannot be ruled out that significant interferences in OHwave were present at times for which OHchem was not measured. To ensure valid comparisons for the non-IPI sampling periods of the campaign, overall statistics for the entire campaign are also given in Table 4.2. It can be seen that all model performance metrics are similar, i.e. the OH underprediction does not become more severe, and in fact the agreement even improves in terms of the overall intercomparison slope (from 1.16 to 1.05). This suggests that significant interferences were not present during non-IPI sampling periods and provides confidence in the measurement-model comparisons for these times.
4.2 An Integrated Study of AIR Pollution PROcesses in Beijing (AIRPRO)

4.2.1 Introduction

The AIRPRO field campaigns were conducted as part of the wider Atmospheric Pollution and Human Health in a Chinese Megacity (APHH China) programme, which is composed of four other research projects in addition to AIRPRO: AIRPOLL-Beijing (Sources and emissions of air pollutants in Beijing), APIC-ESTEE (Air pollution impacts on cardiopulmonary disease in Beijing: An integrated study of exposure science, toxicogenomics & environmental epidemiology), AIRLESS (Effects of air pollution on cardiopulmonary disease in urban & peri-urban residents in Beijing), and INHANCE (Integrated assessment of the emission-health-socioeconomics nexus & air pollution mitigation solutions & interventions in Beijing). The overall aims of the project were to: measure pollutant levels and determine their sources; to quantify personal exposure to pollution; understand the effects on human health; and determine mitigation strategies.

The AIRPRO project is itself divided into seven work packages: oxidation chemistry, nitrogen budgets, aerosol physical and optical properties, secondary aerosols, urban meteorology, feedbacks between haze, photochemistry and dynamics, and integration via multiscale modelling. Ambient observations made by the Leeds group were conducted as part of the oxidation chemistry work package, which aims to identify the dominant oxidation pathways (OH/NO\textsubscript{3}/O\textsubscript{3}) in the Beijing atmosphere, and to assess radical budgets via comparison of measurements to the explicit master chemical mechanism (MCM). A key requirement was to quantify the rates and elucidate the driving mechanisms of secondary pollutant formation. In particular, the focus was on secondary aerosols in the winter, due to their role in haze formation (Wang et al., 2016), and ozone production in the summer, as at this time of year ozone levels in Beijing are generally in excess of the WHO air quality standard (>50 ppbv for an 8 h average) (Wang et al., 2017).

The winter 2016 and summer 2017 campaigns were both conducted at the same urban site, the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (39°58′28″N, 116°22′16″E), located in central Beijing between the north 3rd and 4th ring roads. The site is situated 49 m above sea level (Sun et al., 2012; Zhou et al., 2018) and surrounded on all sides by two- and three-storey buildings (~10–15 m), behind which are major roads and structures of various heights.
Identical to ICOZA, the Leeds participants of AIRPRO made measurements of radicals (OH/\text{HO}_2/\text{RO}_2), OH reactivity and HCHO, as well as the supporting observations described in Chapter 2. With the involvement of over a dozen UK universities and organisations, as well four Chinese research institutes, an extensive suite of gas-phase and aerosol-based instruments were distributed across several shipping containers and the IAP main buildings. The measurements are not discussed in detail here but included standard pollutants (e.g., CO, NO_x, O_3, SO_2), NO_x species (e.g., HONO, NO_3, N_2O_5, ClNO_2) as well as comprehensive observations of (O)VOCs (up to C_{15}) using two-dimensional gas chromatography (GCxGC) (Hopkins et al., 2003; Dunmore et al., 2015).

The AIRPRO winter field intensive took place from 1st November – 9th December 2016, although because of a variety of instrumental problems, only 16 days of OH measurements are available. IPI sampling was conducted for six days near the end of the campaign (2nd – 7th December 2016). The summer campaign was conducted from 21st May – 24th June 2017, with 32 days of OH measurements (23rd May – 24th June 2017). For the majority of the time, the IPI was mounted on the FAGE inlet, such that concurrent measurements of OHwave and OHchem were almost always available.

The AIRPRO campaigns allowed for the assessment of OH measurement interferences under the highly polluted conditions of urban Beijing, situated in the heavily industrialised North China Plain (NCP). In winter, the site is impacted by urban and regional anthropogenic emissions, in particular those from the combustion of fossil fuels for residential heating. During summer, the site is subject to additional biogenic influences, and strong photochemical activity results in high rates of ozone production. For both campaigns, the predominant wind sectors were westerly and southerly/southeasterly, which generally result in higher pollutant concentrations (Chen et al., 2015). Indeed, the two campaigns were subject to high pollutant concentrations, as illustrated by the elevated levels of NO_2, CO, propane, benzene and k_{OH}, many of which were over an order of magnitude higher than ICOZA (Table 4.1). In addition, the biogenic influence during summer is clear from the relatively large isoprene concentrations observed, ~0.4 ppbv on average but reaching up to 7.9 ppbv. Despite similar rates of O(1D) formation between ICOZA and AIRPRO summer, the higher VOC loadings during the latter resulted in increased production of the secondary pollutant ozone (90 ppbv diurnally-averaged maximum). In contrast, AIRPRO winter was characterised by small ozone mixing ratios (15 ppbv diurnal maximum), as a consequence of high NO levels.
(median 22 ppbv) and weak UV radiation. In summer, NO levels were high in the morning (~14 ppbv at 06:00 China Standard Time (CST)) but surprisingly low in the afternoon, with diel-average median levels of ~0.5 ppbv (15:00–18:00 CST).

In winter, OH reactivity was very high (median 38 s⁻¹), likely as a result of strong NOx and VOC emissions into a shallow boundary layer. The main OH loss processes were, in decreasing priority, NO, NO₂, CO and aromatics (Eloise Slater, personal communication), reflecting the dominance of inorganic chemistry. Radical production was initiated almost entirely through HONO photolysis, with primary production (Reactions (R1.1–R1.2)) playing only a minor role. In the summertime, the reactivity was lower (median 25 s⁻¹) and in descending order, the major OH sinks were model intermediates (i.e., unmeasured OVOCs), NO₂, BVOCs (isoprene/monoterpenes), aromatics and CO (Lisa Whalley, personal communication). HONO was still the most important ROx source, but there were significant contributions from the photolysis of VOCs and ozonolysis reactions, particularly in the afternoon and early evening.

4.2.2 Winter 2016 Results

Time series of OHwave and OHchem measured during the six-day IPI sampling period of the winter campaign are shown in Figure 4.19. The two measurements track each other virtually perfectly, and follow changes in J(HONO) as expected. With the exception of one point at the beginning of the period, the 4 h differences were all zero within error (or negative), ranging from -7.1 to 6.4 × 10⁵ molecule cm⁻³ with a median of -0.5 × 10⁵ molecule cm⁻³. As a result of low ozone and water mixing ratios, the photolytic interference was calculated to be low (median 8.2 × 10³ molecule cm⁻³) and thus represents only a minor correction to the OHwave data.

The overall agreement between the two measurements is presented in the correlation plot in Figure 4.20. As with ICOZA (Figure 4.4), a tight correlation is revealed after averaging the data to one hour, and all points are distributed evenly around the line of 1:1 agreement. ODR fitting yields an overall slope of 1.05 and a negative intercept of a similar magnitude to the instrumental precision. A least squares linear fit gives a slope of 0.997 ± 0.040 and an R² of 0.97 (data not shown).

The two measurements exhibit the same profile on a diurnal basis (Figure 4.21), with a diel maximum of ~3 × 10⁶ molecule cm⁻³ occurring in the late morning due to the build-up of HONO overnight. At night, OHchem concentrations were close to the LOD (~2 × 10⁵ molecule cm⁻³), while OHwave measurements were frequently negative, possibly
Figure 4.19. Time series of OHwave, OHchem and their difference, the calculated OH interference from O$_3$/H$_2$O (subtracted from OHwave) and J(O1D) during the IPI sampling period of the winter 2016 AIRPRO campaign. Blue, black and pink markers represent raw data (4 min), while hourly average OH data are shown by the solid blue and black lines, and four-hourly differences (±2 SE) by the red markers. CST = China Standard Time (= UTC + 8).

as a result of over-subtraction of the O$_3$/H$_2$O interference as this is subject to high uncertainty (Whalley et al., 2018). Diurnal averaging of the individual (OHwave – OHchem) differences results in a much noisier profile than for ICOZA (Figure 4.8), due in part to less data being available, but the mean (±2 SD) difference between the two profiles in Figure 4.21 is (-0.6 ± 3.5) × 105 molecule cm$^{-3}$.

Analysis of the relative contribution of the background to the total OHwave signal (i.e., difference/OHwave, analogous to Figure 4.9), is complicated by the presence of negative OHwave concentrations in the diurnally-averaged data (Figure 4.21). This is less of an issue for the daytime, for which the ratio was calculated to be effectively zero (data not shown). However, based on this and the time series of the differences (Figure 4.19), it seems safe to assume that this ratio was indeed zero. In other words, no significant interferences were observed in the Beijing winter, whether at night or during the daytime,
Figure 4.20. Overall intercomparison of OHwave and OHchem observations from the winter 2016 AIRPRO campaign. Grey markers represent raw data, with 1 h averages (±2 SE) in red. The thick red line is the ODR fit to the hourly data, with its 95% CI bands given by the thin red lines; fit errors given at the 2σ level. For comparison, 1:1 agreement is denoted by the blue dashed line.

Figure 4.21. Hourly median diurnal profiles of OHwave, OHchem and J(O1D) (right axis) during the winter 2016 AIRPRO campaign. The variability (IQR) in OHchem measurements is denoted by the grey dashed lines, not shown for OHwave for clarity. The single red marker corresponds to the mean (±2 SD) difference between OHwave and OHchem (calculated from diurnally-averaged hourly differences) of (-0.6 ± 3.5) x 10^5 molecule cm^{-3}.
in contrast to the ICOZA results. This is consistent with the closure of the experimental OH budget (i.e., PSS model agreement) for the winter data (Eloise Slater, personal communication).

4.2.3 Summer 2017 Results

The intercomparison of OHwave and OHchem measurements for the AIRPRO summer campaign is shown in Figure 4.22. Consistent with ICOZA and the winter AIRPRO results, the 1 h data are scattered around the 1:1 line, with an overall ODR slope of 1.10. However, the intercept is much more negative than for the other campaigns, which suggests that the O$_3$/H$_2$O interference has been overestimated, as it is during this campaign that the highest ozone mixing ratios were encountered. Similarly, a least squares linear fit to the data yields a slope of 1.111 ± 0.030 (or 1.066 ± 0.022 if the slope is forced through zero) and an R^2 of 0.92 (data not shown).

Analysis of the OHwave:OHchem ratio on a diel basis revealed daytime ratios of ~1 (data not shown), i.e., significant interferences were not present during the day. Surprisingly, ratios of <1 (~0.7–0.9) were found in the early morning (~02:00–06:00 CST) and evening (~17:00–21:00 CST), which might be attributed to an overestimation of the O$_3$/H$_2$O interference, in agreement with the large negative intercept in Figure 4.22. Therefore, until this issue is resolved, it is difficult to comment on the nighttime contribution of interferences to the total OHwave signal (analogous to Figure 4.9 for ICOZA) in the Beijing summertime.

It can be seen from Figure 4.22 that there is a cluster of points that lie significantly far away from both the 1:1 and ODR regression lines, which are characterised by OHwave $> 1.5 \times 10^7$ molecule cm$^{-3}$. This suggests that in the Beijing summertime, the Leeds FAGE instrument is subject to an interference(s) at high OH levels. The reasons for this discrepancy are subject to ongoing investigation. It is possible that, for high ambient OH production rates, the scavenger cannot react with the sampled OH sufficiently quickly, leading to elevated but spurious OHchem background signals. Although a modelling study of the inlet chemistry would be required to fully assess this hypothesis, it is likely not the case considering that the propane concentration used during AIRPRO results in an OH lifetime of ~0.03 ms in the IPI flow tube, in comparison to a residence time of ~20 ms (i.e., ~700 OH lifetimes).

Despite the excellent agreement observed between the two measurements, a PSS model was unable to reproduce OH observations (Dr. Lisa Whalley, personal communication),
Figure 4.22. Overall intercomparison of OHwave and OHchem observations from the summer 2017 AIRPRO campaign. Grey markers represent raw data, with 1 h averages (±2 SE) in red. The thick red line is the ODR fit to the hourly data, with its 95% CI bands given by the thin red lines; fit errors given at the 2σ level. For comparison, 1:1 agreement is denoted by the blue dashed line. Data provided by Dr. Lisa Whalley and Eloise Slater.

although this calculation did not include OH produced in alkene ozonolysis reactions (production from O¹D/H₂O, HONO and HO₂/NO only). In the morning and around midday, OH levels were underpredicted by a factor of ~2 on a diel-average basis. The underprediction rises to ~3-fold in the afternoon, corresponding to the times when NO was low and BVOC concentrations were at their highest, and up to a factor of ~5 at night, although these discrepancies may be somewhat resolved after inclusion of ozonolysis chemistry, which was most significant at these times.

4.3 Discussion

The results from the three field campaigns that feature in this chapter demonstrate that, on the whole, the Leeds ground-based FAGE instrument does not suffer from substantial interferences in the measurement of OH using the conventional, wavelength-modulation background technique, OHwave. This is illustrated best by the slopes of the overall
Table 4.3. Average contributions of FAGE background signals to the total OH measured during ambient air studies where a chemical modulation technique was employed, reproduced from Chapter 1.3.2.1 and updated with the field campaigns featured in this work. *Nighttime OHwave:OHchem ratios of <1 suggest that the O$_3$/H$_2$O interference has been overestimated and thus the contribution of the background signal cannot be determined.

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Location</th>
<th>Environment Type</th>
<th>Daytime Contribution (%)</th>
<th>Nighttime Contribution (%)</th>
<th>Notes</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROPHET</td>
<td>1998</td>
<td>N Michigan</td>
<td>Forest, isoprene dominated</td>
<td>Not tested</td>
<td>~0</td>
<td></td>
<td>Faloona et al. (2001)</td>
</tr>
<tr>
<td>BEARPEX</td>
<td>2009</td>
<td>NE California</td>
<td>Forest, MBO dominated</td>
<td>40–60</td>
<td>50</td>
<td>OHchem agreed well with model</td>
<td>Mao et al. (2012)</td>
</tr>
<tr>
<td>CABINEX</td>
<td>2009</td>
<td>N Michigan</td>
<td>Forest, isoprene dominated</td>
<td>Not tested</td>
<td>50–100</td>
<td></td>
<td>Griffith et al. (2013)</td>
</tr>
<tr>
<td>SHARP</td>
<td>2009</td>
<td>Houston, Texas</td>
<td>Urban</td>
<td>30</td>
<td>50</td>
<td></td>
<td>Ren et al. (2013)</td>
</tr>
<tr>
<td>CalNex-LA</td>
<td>2010</td>
<td>Pasadena, California</td>
<td>Urban, downwind of LA</td>
<td>33*</td>
<td>Not reported</td>
<td>*Consistent with known O$_3$/H$_2$O interference</td>
<td>Griffith et al. (2016)</td>
</tr>
<tr>
<td>CalNex-SJV</td>
<td>2010</td>
<td>Bakersfield, California</td>
<td>Urban</td>
<td>20</td>
<td>80</td>
<td></td>
<td>Brune et al. (2016)</td>
</tr>
<tr>
<td>DOMINO HO$_x$</td>
<td>2010</td>
<td>El Arenosillo, near Huelva, Spain</td>
<td>Coastal, close to petrochemical industry</td>
<td>50</td>
<td>100</td>
<td></td>
<td>Novelli et al. (2014a)</td>
</tr>
<tr>
<td>HUMPPA-COPEC</td>
<td>2010</td>
<td>Hytiälä, SW Finland</td>
<td>Boreal forest, terpene dominated</td>
<td>60–80</td>
<td>100</td>
<td>OHchem agreed well with model</td>
<td>Hens et al. (2014)</td>
</tr>
<tr>
<td>HOPE</td>
<td>2012</td>
<td>Hohenpeissenberg, S Germany</td>
<td>Rural</td>
<td>20–40</td>
<td>100</td>
<td></td>
<td>Novelli et al. (2014a)</td>
</tr>
<tr>
<td>SOAS</td>
<td>2013</td>
<td>near Brent, Alabama</td>
<td>Forest, isoprene dominated</td>
<td>80</td>
<td>>70</td>
<td></td>
<td>Novelli et al. (2014a)</td>
</tr>
<tr>
<td>Wangdu</td>
<td>2014</td>
<td>North China Plain</td>
<td>Rural, urban influenced</td>
<td>10</td>
<td>Not reported</td>
<td></td>
<td>Fuchs et al. (2017); Tan et al. (2017)</td>
</tr>
<tr>
<td>CYPHEX</td>
<td>2014</td>
<td>NW Cyprus</td>
<td>Coastal, influenced by processed European emissions</td>
<td>45</td>
<td>100</td>
<td>OHwave agreed well with model</td>
<td>Mallik et al. (2018)</td>
</tr>
<tr>
<td>BEST-ONE</td>
<td>2016</td>
<td>North China Plain</td>
<td>Suburban, 60 km NE of Beijing</td>
<td>~0</td>
<td>~0</td>
<td>OHwave vs OHchem slope = 0.88</td>
<td>Tan et al. (2018)</td>
</tr>
<tr>
<td>ICOZA</td>
<td>2015</td>
<td>N Norfolk Coast, UK</td>
<td>Coastal, London outflow</td>
<td>~0</td>
<td>~40</td>
<td>OHchem underpredicted by ~1.7-fold during the daytime, and by ~4-fold at night</td>
<td>This work</td>
</tr>
<tr>
<td>AIRPRO Winter</td>
<td>2016</td>
<td>Beijing, China</td>
<td>Urban</td>
<td>~0</td>
<td>~0</td>
<td>OHwave and OHchem agreed well with model</td>
<td>This work</td>
</tr>
<tr>
<td>AIRPRO Summer</td>
<td>2017</td>
<td>Beijing, China</td>
<td>Urban</td>
<td>~0</td>
<td>Not determined*</td>
<td>OHwave and OHchem underpredicted by factors of ~2–3 during the daytime, ~5 at night</td>
<td>This work</td>
</tr>
</tbody>
</table>
measurement intercomparison plots (Figures 4.4, 4.20 and 4.22), which ranged from 1.05–1.16, well within the instrumental uncertainty of ~26% at 2σ. Significant discrepancies between OHwave and the alternative, chemical background method, OHchem, were only observed consistently during the ICOZA campaign at night.

However, a comprehensive assessment of the nighttime interferences is limited by the uncertainty surrounding quantification of the known interference from laser-induced ozone photolysis in the presence of water vapour. This interference is difficult to quantify, and has previously been suggested to be an upper limit, because any further increase in its magnitude would lead to negative OH concentrations being calculated for nighttime periods of a previous campaign (Whalley et al., 2018). The ICOZA and AIRPRO campaigns present conflicting evidence as to whether the subtractions made to account for the O3/H2O interference were accurate. On the one hand, the agreement between OHwave and OHchem across a wide ozone concentration range (10–60 ppbv) during ICOZA (Figure 4.14) provides confidence in the subtractions performed, consistent with the robust and reproducible calibrations of the interference obtained in laboratory experiments (Chapter 3.4). In contrast, the negative average difference observed during AIRPRO winter (Figure 4.21, although this is zero within error at 1σ), as well as the large negative intercept in the AIRPRO summer intercomparison (Figure 4.22), during which the highest ozone mixing ratios were encountered (Table 4.1), suggest that the O3/H2O contribution has been overestimated.

It is possible that, during the AIRPRO campaigns, there an instrumental problem that lead to a systematic positive bias in offline (i.e., OHwave background) signals. For example, changes in laser alignment during scanning of the wavelength to an offline position can result in increased laser scatter, artificially raising the background signal. However, this should also have been observed during calibrations and therefore it remains a speculative explanation. Another possibility is that the degree of internal OH removal, i.e., via reaction with the scavenger inside the fluorescence cell (see Chapter 3.3.3), has been underestimated for the higher propane flows used during AIRPRO, which would suppress the contribution of the O3/H2O water interference to the chemical background signal and could lead to negative (OHwave – OHchem) differences. Regardless, it is clear that the O3/H2O interference needs reassessing in the laboratory in order to quantify the nighttime AIRPRO interferences accurately. The ICOZA data would also need to be revisited, where any decrease in the magnitude of the O3/H2O correction would only serve to
worsen the agreement between OHwave and OHchem, increasing the significance of unknown interferences. In future campaigns, the O$_2$/H$_2$O uncertainty is less of a concern, since it is OHchem measurements that will be compared to model predictions.

With respect to previous studies during which OH has been measured by a LIF instrument equipped with a scavenger injector, the significance of interferences during the campaigns that feature in this work are amongst the lowest observed, at least during the daytime (Table 4.3). This can likely be attributed to two main factors: environment and instrumental. In terms of the former, none of the studies described in this chapter took place in forested environments, where the most significant interferences have been observed (Mao et al., 2012; Novelli et al., 2014a; Feiner et al., 2016). However, as mentioned previously, the summer AIRPRO campaign did share some characteristics, in that high BVOC and low NO mixing ratios were observed in the afternoon. Despite this, OHwave and OHchem were in good agreement, and both measurements were underpredicted by a PSS model by factors of ~2 to 3 during the daytime. The latter result is most surprising, as it is the first time that OHchem, the more accurate LIF-based measure of OH, has been significantly underpredicted by a model. Together, these findings provide confidence in previous measurements of OH using the same instrument, particularly those in a forested region (Whalley et al., 2011), and support the hypothesis that there are unknown OH sources in the atmosphere (Chapter 1.4.2.2).

The insignificance of daytime interferences during the AIRPRO campaigns, with contributions of effectively zero, are consistent with results of another urban study, CalNex-LA (Griffith et al., 2016). The O$_2$/H$_2$O interference is much higher (up to 4×10^6 molecule cm$^{-3}$ OH equivalent during CalNex-LA) in the Indiana University (IU) LIF instrument (Dusantner et al., 2009), such that the daytime contributions of ~33% can be explained entirely by this known interference. However, measurements made at a nearby site during the same study (CalNex-SJV) showed daytime contributions of ~20% (Brune et al., 2016), although this may be related to instrumental differences as discussed below. On average, interferences were not observed in the daytime during ICOZA, but they were observed in other coastal campaigns, namely DOMINO HO$_x$ (~50%) (Novelli et al., 2014a) and CYPHEX (CYprus PHotochemistry EXperiment, ~45%) (Mallik et al., 2018), as well as in rural regions, HOPE (20–40%) (Novelli et al., 2014a) and a study in the NCP (~10%) (Tan et al., 2017).
The second major reason for the differences in contributions between the studies listed in Table 4.1 is likely instrumental effects. For the campaigns in which the highest OH interferences have been observed (Mao et al., 2012; Novelli et al., 2014b; Feiner et al., 2016), OH measurements were made using the Max Planck Institute (MPI) (Martinez et al., 2010) and Penn. State University (PSU) (Faloona et al., 2004) LIF instruments. These instruments feature laser-multi-pass detection cells (see Chapter 1.3), which give rise to large detection volumes and increased UV fluence, although this may not be relevant considering that the interference signals did not display any laser power dependence. The Leeds instrument also differs in terms of cell geometry, where the HOx cell (Chapter 2.1.2.1) is composed of a short (5 cm) turreted inlet on top of a large fluorescence cell (additional ~8 cm to laser axis, ~13 cm total length). In contrast, the MPI and PSU instruments feature flow tube-like inlets (14–17 cm from the pinhole to laser axis) mounted on small fluorescence cells, facilitating the interaction of sampled gas with the cell walls, which may promote the generation of internal OH. For the measurements listed in Table 4.1, the Peking University (PKU) instrument (Tan et al., 2017) is most similar to the Leeds FAGE (i.e., single-pass detection, ~10 cm total length), for which similar daytime interferences on the order of ~10% were observed.

For the ICOZA campaign, nothing could be inferred about the origin of the OH interference signal, as it did not exhibit any characteristic diurnal profile (Figure 4.8), and showed no obvious dependences on a variety of meteorological and chemical parameters (Figures 4.9 to 4.15). This finding is in contrast to previous studies in which diel profiles (Mao et al., 2012; Feiner et al., 2016) and dependences (Mao et al., 2012; Feiner et al., 2016; Novelli et al., 2017) of the interference have been observed (Section 4.1.5). The occurrence of large background OH signals (i.e., > 1 x 10^6 molecule cm^-3) after instrumental problems (e.g., power cuts, see Section 4.1.2) implies that the differences may have been instrumental rather than as a result of a species present in ambient air, although the data at these times did pass all quality control filters and therefore could not be rejected (Appendix). Nonetheless, these differences are still a concern, regardless of their cause; the IPI system thus serves as an additional check on measurement accuracy, and is perhaps most useful for fieldwork sites where power supplies are unreliable, for example in more remote areas.

It is possible that, even though the background OH had a flat diurnal profile, the species responsible for the interference were different between day and nighttime periods. Thus,
analysis of the day and nighttime data separately, as a function of the same parameters, might reveal more information. Considering the significance of the nighttime interferences, the recent identification of NO$_3$ radicals as an internal OH source in LIF instruments (Fuchs et al., 2016), and that OH concentrations have often been underpredicted at night (Faloona et al., 2001; Mao et al., 2012; Ren et al., 2013; Hens et al., 2014; Lu et al., 2014; Tan et al., 2017), this is perhaps the most interesting period. However, a robust analysis is prohibited by the lack of nighttime data (~200 15 min points) and the poor instrument sensitivity. The summer AIRPRO data may be a useful resource in this context, as this is a much larger dataset obtained with optimised instrumental settings, once the O$_3$/H$_2$O issue is resolved.

In this chapter, there are several key findings that stand out. First, OHwave and OHchem were in good agreement even at the very low NO concentrations of <100 pptv during ICOZA (Figure 4.11), and the moderate afternoon levels (~500 pptv) during the AIRPRO summer campaign. While the role of isoprene could not be assessed for ICOZA, due to the limited range of concentrations observed, it reached high levels during AIRPRO summer (up to 7.9 ppbv) but did not seem to perturb the agreement between the two measurements, although this relationship should be explored further (e.g., by binning of OHwave and OHchem as a function of isoprene). In addition, very high levels of aromatic VOCs were observed during both AIRPRO winter and summer, where the agreement between OHwave and OHchem suggests that the intermediates of aromatic oxidation, such as exotic bicyclic species (Birdsall et al., 2010), do not give rise to OH interferences, which is postulated to be the case for intermediates (sClIs) in the ozone-oxidation of alkenes (Novelli et al., 2014b; Novelli et al., 2017; Rickly and Stevens, 2018). However, the large alkene and ozone concentrations observed during AIRPRO summer should favour the formation of these sClIs, but significant interferences were not observed, consistent with laboratory investigations of the isoprene interference (Chapter 3.4) and casting further doubt on the sCI hypothesis. Although, the AIRPRO sCI concentrations also depend on the magnitude of the sCI loss rates, which could be high if elevated levels of SO$_2$ (Welz et al., 2012; Sheps et al., 2014) or organic acids (Welz et al., 2014) were present.

Considering the success of the first three field deployments of the IPI system, and given that it does not reduce the instrument sensitivity towards OH, it is suggested that the system is adopted for permanent use in ambient studies, although conventional sampling
should still be performed from time-to-time to check for potential artefacts. Another advantage of the IPI system is that it reduces the amount of solar light entering the pinhole, which reduces the variability of daytime background signals and therefore improves signal-to-noise and hence detection limits. It is recommended that the IPI propane concentration is kept the same as the AIRPRO campaigns, as it is possible that the poorer agreement between OHwave and OHchem during ICOZA was because of the lower propane flow used (i.e., it was not sufficient to ensure that OH generated from all steady-state sources was removed), although this cannot be verified.

Future field campaigns using the IPI will allow for the assessment of interferences in the Leeds FAGE instrument for a range of different environments. From these, the contribution of interferences for previous studies in similar environments, where measurements were made prior to the discovery of significant interferences in the LIF measurement of OH, may be inferred. The measurement-model comparisons may then be reassessed in light of any new information regarding the accuracy of OH measurements. Regardless of the reasons for any differences between the two measures of OH (i.e., chemical interferences or instrumental problems such as power cuts), the IPI system serves as an additional check on OH observations, increasing confidence in the validity of the data obtained.

4.4 Conclusions and Future Work

The newly-constructed inlet pre-injector (IPI) described in Chapter 3 was successfully deployed for field measurements of OH, representing the first assessment of OH interferences in ambient air for the Leeds ground-based FAGE instrument. Simultaneous measurements of OHwave and OHchem were obtained during three intensive field campaigns, at a coastal location in Norfolk in summer 2015 (ICOZA), and in the highly polluted megacity, Beijing, in winter 2016 and summer 2017 (AIRPRO). These campaigns encompassed a wide range of chemical and meteorological conditions, providing valuable opportunities for the study of OH interferences in different environments. Overall, the two measures of OH were in excellent agreement, with intercomparison slopes (OHwave vs OHchem) of 1.05–1.16. The best agreement was found for the two AIRPRO campaigns, while for ICOZA, significant interferences were observed at night consistently (~40% of the total signal), and during the daytime occasionally. However, because of the flat diurnal profile of the background OH, and the lack of dependences on any chemical conditions, the reasons for these discrepancies
remain unclear. In comparison to other ambient studies, the average contribution of nighttime interferences during ICOZA (~14%) is still amongst the lowest observed.

The level of measurement-model agreement varied between the campaigns that feature in this chapter. A steady-state model was able to capture both OHwave and OHchem observations throughout the day for AIRPRO winter. Reasonable agreement was only achieved in the daytime for ICOZA (within a factor of ~1.7, slightly higher than the combined measurement-model uncertainty), with similar measurement-to-model ratios for the two measures of OH, whereas nighttime observations of OHwave and OHchem were underpredicted by factors of ~6 and ~4, respectively, indicating the presence of unknown, nocturnal OH sources. In contrast, a significant underprediction of OH was found for the AIRPRO summer campaign, by a factor of ~2–3 during the daytime, despite the excellent agreement observed between OHwave and OHchem.

In terms of future work, efforts in the laboratory should focus on reassessment of the known, photolytic interference from ozone in the presence of water vapour, and the NO₃ radical interference should also be quantified, for both the ground-based and aircraft FAGE instruments (in order to investigate the effect of inlet length). Following this, the datasets described in the present chapter should be revisited, particularly with regards to nighttime observations. In the field, the IPI system should become a permanent fixture to the instrument, at least for the majority of the duration of FAGE sampling. The first priority would be to take measurements in a forested area, where the most significant OH interferences have been found, as well as the most severe model underpredictions of OH. The latter includes OH measurements made by the Leeds group (Whalley et al., 2011), the accuracy of which has been called into question in light of the discovery of LIF interferences in such environments, although the agreement between OHwave and OHchem under the relatively low-NOₓ, high-isoprene conditions in the Beijing summertime does give some degree of confidence in the previous rainforest results. However, studies in other environments (e.g., polar, remote marine, indoor air) and potentially from aircraft platforms would still be valuable, as OH interferences have not yet been investigated in such settings.
4.5 References

Martinez, M., Harder, H., Kubistin, D., Rudolf, M., Bozem, H., Eerdekens, G., Fischer, H., Klupfel, T., Gurk, C., Königstedt, R., Parchatka, U., Schiller, C. L., Stickler, A.,

Whalley, L. K., Blitz, M. A., Desservettaz, M., Seakins, P. W., and Heard, D. E.: Reporting the sensitivity of laser-induced fluorescence instruments used for HO₂ detection to an interference from RO₂ radicals and introducing a novel approach that enables HO₂ and certain RO₂ types to be selectively measured, Atmospheric Measurement Techniques, 6, 3425-3440, 2013.

5. The Integrated Chemistry of OZone in the Atmosphere (ICOZA) project: radical measurements and model comparisons

5.1 Introduction
This chapter describes comparisons of observed radical concentrations to model predictions for measurements made during the ICOZA campaign, which took place at the Weybourne Atmospheric Observatory (WAO) on the north coast of Norfolk, UK, in June and July 2015. The ICOZA field campaign was introduced in Chapter 4.1, which focussed on OH measurement interferences. Previous publications of radical measurement-model comparisons for ambient studies in coastal locations were described in detail in Chapter 1.

The structure of this chapter is as follows. First, an introduction to the ICOZA project and its motivation is given in this section, along with details of instrumentation, the chemical and meteorological conditions encountered, and descriptions of the various models used to compare to radical observations. Time series, correlations, diurnal profiles, and NO-dependences of measured and modelled radical species are described in Section 5.2, as well as analysis of the OH budget and the calculation of ozone production rates. In addition, data from a high-ozone, heatwave event are presented as a case study. Following this, ICOZA results are discussed in the context of previous coastal campaigns in Section 5.3, which includes another study at the WAO in 2004, and the model performance for RO$_2$ under high-NO$_x$ conditions is compared to recent measurement-model comparisons of RO$_2$ radicals. Finally, Section 5.4 presents overall conclusions of this chapter and provides suggestions for future work.

5.1.1 Background to ICOZA
A fundamental goal of atmospheric chemistry research is the accurate prediction of levels of secondary pollutants, such as ozone (O$_3$) and secondary organic aerosols (SOA). While ozone in the stratosphere helps to reduce levels of harmful UV-B radiation at the surface and is therefore beneficial to human and ecosystem health, at ground-level it is a major air pollutant and a key constituent of photochemical smog. Tropospheric ozone is harmful to human health as a known respiratory irritant, where an increase of only 10 ppbv in long-term ozone exposure results in a 3–4% increase in the risk of death from respiratory causes (Jerrett et al., 2009). As a result, WHO (WHO, 2006) and EU (http://ww.eea.europa.eu/themes/air/ozone) air quality guidelines recommend maximum
ozone concentrations of 50 and 60 ppbv (8-hour mean), respectively. Ozone also damages agricultural crops and vegetation (Krupa et al., 1998). In addition, ozone is an important greenhouse gas in the troposphere and thus has significant climate effects. From 1750–2011, ozone contributed the equivalent of approximately one fifth of the radiative forcing caused by CO₂ (IPCC, 2014). However, despite substantial efforts to mitigate ground-level ozone pollution in the last 20–30 years, tropospheric ozone mixing ratios have increased by up to 5 ppbv per decade (Parrish et al., 2009).

Ozone is formed in the troposphere from the photochemical oxidation of volatile organic compounds (VOCs) in the presence of NOₓ (= NO + NO₂). Ozone formation is a complex process, which depends non-linearly on the concentrations of its precursors, and occurs on a timescale such that the physical processes of deposition and advection must also be taken into account. The chemistry of hydrogen oxides (HOₓ), fundamental to the in situ (i.e., chemical) production and loss of ozone, was discussed in detail in Chapter 1.2. Briefly, the OH-oxidation of VOCs in the presence of molecular oxygen generates peroxy radicals (RO₂ and subsequently HO₂), that can react with NO to form NO₂. The photolysis of NO₂ (λ < 400 nm (Finlayson-Pitts and Pitts Jr, 2000)) forms O(³P), which reacts with O₂ to form O₃:

\[
O(³P) + O₂ (+ M) → O₃ (+ M)
\]

(R5.1)

The gross ozone production rate, \(p(O₃) \), may be defined in terms of the rate of NO → NO₂ conversion (Cazorla et al., 2012), i.e., \(p(Oₓ) = O₃ + NO₂)\):

\[
p(O₃) \approx p(Oₓ) = k_{HO2+NO}[HO₂][NO] + k_{RO2+NO}[RO₂][NO]\times(1–α_{RONO₂})
\]

(E5.1)

where \(α_{RONO₂} \) is the yield of alkyl nitrates (RONO₂) in the reaction of RO₂ with NO. Typical values of \(α_{RONO₂} \) and \(k_{RO2+NO} \) at 298 K are ~0.1 and ~9 × 10^{-12} cm³ molecule⁻¹ s⁻¹, respectively (Orlando and Tyndall, 2012). The chemical loss rate of ozone, \(l(O₃) \), may be obtained from the rate of radical-NOₓ termination reactions, approximated by:

\[
l(O₃) \approx l(Oₓ) = k_{OH+NO₂+M}[OH][NO₂][M] + k_{RO2+NO}[RO₂][NO]α_{RONO₂} + k_{HO2+O₃}[HO₂][O₃]
\]

(E5.2)

The net ozone production rate, \(P(O₃) \), is simply obtained from the difference between equations (E5.1) and (E5.2):

\[
P(O₃) \approx P(Oₓ) = p(Oₓ) - l(Oₓ)
\]

(E5.3)

For constant VOC conditions, equations (E5.1–E5.3) allow us to interpret how \(P(O₃) \)
Figure 5.1. Isopleths of $P(O_3)$ (ppbv h⁻¹) as a function of VOC (ppbC = ppbv × carbon number) and NOₓ (ppbv) concentrations. The dashed blue line corresponds to the transition between NOₓ- (region below the line) and VOC-limited (above the line) regimes, and the black arrows show typical changes in the VOC and NOₓ levels in an urban air mass as it undergoes photochemical aging. Adapted from Sillman (1999).

varies with NOₓ concentrations. At low-NOₓ, radical propagation mediated by NO is slow, and the loss of peroxy radicals through self- and cross-reactions (radical termination) results in low peroxy radical concentrations and hence net ozone destruction. As NOₓ levels increase, radical propagation becomes more efficient and $P(O_3)$ becomes positive (i.e., net ozone production) at a point known as the ozone compensation point, before increasing linearly to some maximum positive value. The ozone compensation point occurs at NO mixing ratios in the range ~5–50 pptv (Zanis et al., 2000; Reeves et al., 2002) and is dependent on VOC and O₃ levels. Above this NOₓ level, termination of radicals through OH + NO₂ starts to dominate over radical propagation and $P(O_3)$ then decreases. This threshold corresponds to a transition from NOₓ- to VOC-limited regimes, and is non-linearly dependent on NOₓ levels.

Considering the non-linearity in the response of $P(O_3)$ to NOₓ levels, different $P(O_3)$ regimes are often visualised using ozone isopleths, as shown in Figure 5.1. Here, the solid black lines are the isopleths and correspond to the regions of NOₓ-VOC chemical space for which $P(O_3)$ is constant, and the dashed blue line represents the transition from NOₓ-
to VOC-limited ozone production. In addition, the black arrows show typical changes in the VOC and NO\textsubscript{x} levels in an urban air mass as it undergoes photochemical aging over an 8 h period during the daytime, based on data for US cities (Milford \textit{et al.}, 1994; Sillman, 1999). It can be seen that for several of these trajectories, the air mass switches from VOC- to NO\textsubscript{x}-limited ozone formation, which occurs as a result of the faster chemical loss of NO\textsubscript{x} (to HNO\textsubscript{3} and RONO\textsubscript{2}) in comparison to most VOCs. To devise efficient ozone mitigation strategies, knowledge of the ozone sensitivity regime is required, as this allows policymakers to target the emissions reduction measures (i.e., NO\textsubscript{x} or VOCs) that would be most effective in reducing ozone concentrations. There are several indirect (i.e., indicator) approaches to determine the ozone sensitivity regime, such as total reactive nitrogen (NO\textsubscript{y}) concentrations (Milford \textit{et al.}, 1994), or the ratios of H\textsubscript{2}O\textsubscript{2}:HNO\textsubscript{3} and HCHO:NO\textsubscript{y} (Sillman, 1995).

A key component of the ICOZA project was the direct measurement of $P(O\textsubscript{x})$, using a perturbed ozone production rate (POPR) instrument developed by researchers at the University of Birmingham. This instrument is based on the measurement of ozone production sensor (MOPS), first reported by Cazorla and Brune (2010) of Penn. State University (PSU), with the further capability to add NO\textsubscript{x} to perturb the system and thus assess the ozone sensitivity regime. However, being a relatively new concept, the MOPS technique is known to suffer from several artefacts, such as a strong dependence of NO\textsubscript{2} losses on humidity, which have been reduced in a second-generation PSU instrument (Baier \textit{et al.}, 2015; Baier \textit{et al.}, 2017). During the ICOZA campaign, it was found that Birmingham POPR readings were influenced by J(NO\textsubscript{2}) in a non-linear manner (leading to negative raw measurements for much of the campaign) and as such final data are not yet available (Dr. Leigh Crilley, personal communication). Preliminary POPR data (not shown) yielded $P(O\textsubscript{x})$ values with high scatter in the range -30 to +30 ppbv h-1.

An important role of the Leeds group during ICOZA was to calculate $P(O\textsubscript{x})$ from FAGE-measured peroxy radicals using equations (E5.1–5.3), for comparison to POPR observations as well as model predictions. A major advantage for ICOZA relative to previous field campaigns is the instrumental capability for observations of RO\textsubscript{2} radicals (Chapter 2.3), using the RO\textsubscript{2}LIF technique (Fuchs \textit{et al.}, 2008), as well as interference-free measurements of HO\textsubscript{2} (Fuchs \textit{et al.}, 2011; Whalley \textit{et al.}, 2013). This allows the calculation of $P(O\textsubscript{x})$ from both HO\textsubscript{2} and RO\textsubscript{2}, whereas in many studies it was only possible to determine the HO\textsubscript{2} contribution to $P(O\textsubscript{x})$, which also must either be corrected.
for RO₂ interferences, or compared to model estimates of HO₂* (defined in Chapter 1.3.2.2) (Cazorla et al., 2012; Ren et al., 2013; Brune et al., 2016; Griffith et al., 2016).

To date, only three studies have reported calculations of \(P(O_x) \) from simultaneous FAGE observations of HO₂ and RO₂ radicals, which took place in London during the summertime (Whalley et al., 2018), and rural/suburban locations close to Beijing, China, during summer (Tan et al., 2017) and winter (Tan et al., 2018). A common theme is the increasing model underprediction of RO₂ with NO levels, resulting in the underestimation of \(P(O_x) \) by up to an order of magnitude. These studies are referred to in more detail in subsequent sections.

5.1.2 Instrumentation

A list of the instrumentation involved in measurements of trace gases, aerosols, and photolysis frequencies during the ICOZA campaign is given in Table 4.3. A map of the WAO site location (52°57′02″N, 1°07′19″E; ~40 km NNW of Norwich and ~180 km NE of London) and a description of its surrounding environment can be found in Chapter 4.1. Instruments sampled ambient air from the roofs of individual shipping containers (Universities of Leeds and Leicester), a van (Birmingham), and from either the roof of the main WAO building directly, or via a common glass manifold (glass, ~15 cm ID) located on a tower that reached ~10 m above the roof. Comparisons of NOₓ observations, measured using multiple instruments, indicated no inhomogeneity in the air sampled from different positions of the site.

5.1.3 FAGE Operating Parameters

The Leeds ground-based FAGE (Chapter 2) was operated in two different modes during ICOZA, depending on whether the inlet pre-injector (IPI), which measured the OH chemical background (Chapter 4), was mounted on the instrument’s HOₓ fluorescence cell. For non-IPI sampling, the data acquisition cycle consisted of 30 s of OH (HOₓ cell) and HO₂* (ROₓ cell) measurements, then another 30 s with NO added to the HOₓ cell and ROₓ flow tube to measure HO₂ and total RO₂, respectively, followed by 30 s of offline sampling to determine the spectral background signals. During IPI sampling, OH (HOₓ) and HO₂* (ROₓ) were measured for 4 min (including 2 min of propane addition to the IPI), then HO₂ (HOₓ) and total RO₂ (ROₓ) for 1 min, followed by 30 s of background integration. The periods of IPI sampling are highlighted on Figure 5.4. Further details of the species detected at different points of the measurement cycle, and the subtractions
Table 5.1. List of species observed and their corresponding measurement techniques for the ICOZA campaign. For descriptions of simple and complex RO$_2$, see Chapter 2.3. For some species (e.g., NO, NO$_2$, HONO, HCHO) more than one measurement technique was available.

<table>
<thead>
<tr>
<th>Observation(s)</th>
<th>Technique</th>
<th>Sampling platform</th>
<th>Institution</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH, HO$_2$, "simple" and "complex" RO$_2$</td>
<td>Fluorescence assay by gas expansion (FAGE)</td>
<td>FAGE container roof</td>
<td>Leeds</td>
<td>Whalley et al. (2013)</td>
</tr>
<tr>
<td>J(O1D)</td>
<td>Filter radiometry</td>
<td>FAGE container roof</td>
<td>Leeds</td>
<td>Bohn et al. (2016)</td>
</tr>
<tr>
<td>Photolysis frequencies</td>
<td>Spectral radiometry (two instruments)</td>
<td>FAGE and Leicester containers</td>
<td>Leeds/Leicester</td>
<td>Bohn et al. (2008)</td>
</tr>
<tr>
<td>HCHO</td>
<td>Laser-induced fluorescence (LIF)</td>
<td>WAO manifold</td>
<td>Leeds</td>
<td>Cryer (2016)</td>
</tr>
<tr>
<td>HONO</td>
<td>Long path absorption photometry (LOPAP)</td>
<td>Birmingham van roof</td>
<td>Birmingham</td>
<td>Heland et al. (2001)</td>
</tr>
<tr>
<td>Aerosol surface area</td>
<td>Aerodynamic particle sizer (APS)</td>
<td>Birmingham van roof</td>
<td>Birmingham</td>
<td>Chen et al. (1985)</td>
</tr>
<tr>
<td>CINO$_2$</td>
<td>Chemical ionisation mass spectrometry</td>
<td>Leicester container roof</td>
<td>Leicester</td>
<td>Sommariva et al. (2018)</td>
</tr>
<tr>
<td>NO$_2$/NO$_3$/N$_2$O$_5$ (+ H$_2$O and AOD)</td>
<td>Broadband cavity-enhanced absorption spectroscopy (BBCEAS)</td>
<td>Leicester container roof</td>
<td>Leicester</td>
<td>Kennedy et al. (2011)</td>
</tr>
<tr>
<td>NO (NO$_2$)</td>
<td>Chemiluminescence (LED NO$_2$ converter)</td>
<td>WAO roof</td>
<td>York</td>
<td>Lee et al. (2009a)</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>Cavity-attenuated phase-shift spectroscopy (CAPS)</td>
<td>WAO manifold</td>
<td>York</td>
<td>Kebabian et al. (2008)</td>
</tr>
<tr>
<td>HONO</td>
<td>Differential photolysis with chemiluminescence detection of NO</td>
<td>WAO roof</td>
<td>York</td>
<td>Reed et al. (2016)</td>
</tr>
<tr>
<td>O$_3$</td>
<td>UV absorption</td>
<td>WAO manifold</td>
<td>UEA</td>
<td>-</td>
</tr>
<tr>
<td>CO</td>
<td>MgO reduction with UV detection</td>
<td>WAO manifold</td>
<td>UEA</td>
<td>Robbins et al. (1968)</td>
</tr>
<tr>
<td>HCHO</td>
<td>Hantzsch colourimetry</td>
<td>WAO manifold</td>
<td>UEA</td>
<td>Nash (1953)</td>
</tr>
<tr>
<td>VOCs (up to C$_6$ alkanes/alkenes, acetylene, benzene, toluene)</td>
<td>Gas chromatography with flame ionisation detection (GC-FID)</td>
<td>WAO roof</td>
<td>UEA</td>
<td>-</td>
</tr>
<tr>
<td>VOCs (C$_8$/C$_9$ aromatics, Σmonoterpenes), OVOCs (methanol, acetaldehyde, acetone, acetic acid, MVK+MACR, MEK), acetonitrile, DMS</td>
<td>Proton transfer reaction–mass spectrometry (PTR-MS)</td>
<td>WAO roof</td>
<td>UEA</td>
<td>Murphy et al. (2010)</td>
</tr>
</tbody>
</table>
The OH data presented in this chapter corresponds to OHchem where available, otherwise OHwave is used, which was corrected for the known photolytic interference from ozone in the presence of water vapour using equation (E3.5). This interference is small, equivalent to an OH concentration of 5.2×10^5 molecule cm$^{-3}$ at typical O$_3$ (50 ppbv), H$_2$O (2%), and laser power (10 mW) (Whalley et al., 2018).

The NO (BOC, 99.95%) flows added to the HO$_x$ (NO added in HO$_2$ mode) and RO$_x$ (NO added continuously) fluorescence cells were 5 and 100 sccm, respectively. CO (BOC, 5% in N$_2$) was continuously added to the RO$_x$ flow tube, initially at 500 sccm but later decreased to 250 sccm to reduce the volume of gas consumed. In RO$_x$ mode, NO (BOC, 500 ppmv in N$_2$) was added to the RO$_x$ flow tube at 30 sccm. For determination of the OH chemical background during IPI sampling (Chapter 3), propane was added at 3.6 sccm (diluted in 500 sccm N$_2$), leading to a propane concentration of \sim110 ppmv in the IPI flow tube. This is equivalent to an OH reactivity ($k'$$_{OH}$) of \sim3000 s$^{-1}$, or a lifetime ($\tau$$_{OH}$) of \sim0.3 ms, which is much shorter than the IPI residence time of \sim20 ms. As shown in Chapter 3.3.2, virtually all of the OH sampled is removed in the IPI at this propane concentration.
Multipoint calibrations were performed for all radical species at regular intervals during the campaign, approximately once per week. The calibration factors (i.e., sensitivities) obtained did vary somewhat due to multiple instrumental issues, such as the need to frequently switch detectors because of issues with signal spiking. However, care was taken to ensure that appropriate calibration factors were applied to the raw data such that these differences in sensitivity should not affect the final radical concentrations. As a consequence, limits of detection (LODs) also varied over the course of ICOZA, with campaign-median 5 min LODs of 6.1×10^5, 4.0×10^6, and 5.0×10^7 molecule cm$^{-3}$ for OH, HO$_2$, and total RO$_2$, respectively for a signal-to-noise ratio (SNR) of 2 (see Table 2.1 in Chapter 2).

5.1.4 Meteorological and Chemical Conditions

The overall conditions encountered during the ICOZA campaign are summarised by the time series of meteorological (wind speed and direction, temperature, RH, photolysis frequencies) and chemical ($k'$$_{OH}$ and mixing ratios of NO, NO$_2$, CO, HCHO, O$_3$, HONO) parameters shown in Figure 5.3, which include all available measurements at 15 min time resolution for the period 29th June – 22nd July 2015. Also shown in Figure 5.3 is the OH reactivity from VOCs only, VOC $k'$$_{OH}$, obtained by subtraction of the reactivity due to inorganic species (NO$_x$, CO, and O$_3$), as these generally dominate the fraction of OH reactivity that can be accounted for from other trace gas measurements (Cryer, 2016). A breakdown of the campaign-average calculated OH reactivity was given in Chapter 4.1, where the most significant contribution was loss to NO$_x$ (~35%).

As discussed in Chapter 4.1, the predominant wind sectors were W, SW and S (i.e., ~180°–270° in Figure 5.3). In terms of air mass back-trajectories (Cryer, 2016), the WAO site was generally under the influence of Atlantic air (air mass types defined in Figure 4.1), which had been transported over the UK, likely encountering anthropogenic emissions from major conurbations (e.g., Birmingham, London, Leicester). However,

1. For some species, multiple instruments were deployed (Table 5.1) such that data gaps (e.g., due to calibration or malfunction of one instrument) in the time series could be filled using data from the alternative methods (e.g., WAO HCHO when Leeds HCHO not available).

2. Although VOC $k'$$_{OH}$ is close to total measured $k'$$_{OH}$ in Figure 5.3, this is because there is a significant proportion of missing reactivity (~44%), i.e., inorganic reactions dominate the calculated reactivity but not the measured.
Figure 5.3. Time series of meteorological parameters (wind speed and direction, temperature, RH, photolysis frequencies) and trace gases (NO, NO₂, CO, O₃, HONO) measured during ICOZA (29th June – 23rd July 2015). Leeds HCHO and OH reactivity measurements (Dr. D. R. Cryer) are also shown, including the reactivity from VOCs only (VOC k'_{OH}, obtained by subtraction of inorganic loss rates, see text for details). All data presented are 15 min averages. UTC = Universal Time Coordinated.
there were some exceptions to this on certain days of the campaign. For example at the start of the campaign on 1st July, air that had spent a considerable amount of time over northern mainland Europe was sampled, which coincided with a heatwave and high-ozone event, discussed in detail in Section 5.2.6. Similarly, 11th and 16th July were characterised by a strong Local European influence, while on 9th July the site was subject to air masses originating from the North Sea. Wind speeds were strong, with a median of 5.5 m s⁻¹ and a maximum of 12.7 m s⁻¹, and tended to drop slightly in the morning (see Figure 5.6; diurnal profiles of supporting measurements are discussed in the context of radical profiles in Section 5.2.1.3). Temperatures generally increased through the day from ~15 °C before sunrise to ~20 °C in the late afternoon, with a campaign maximum of 29.8 °C during the heatwave of 1st July; RH varied between ~40–90% and was strongly anticorrelated with temperature.

The dominance of the Atlantic sector is reflected in the overall moderate levels of pollution observed during the ICOZA campaign. For example, the campaign median NO mixing ratio, for periods of overlap with FAGE radical observations, was 160 pptv with a maximum of 4650 pptv (15 min). NO generally peaked in the morning, with median values of ~500–1500 pptv at 08:00–10:00 Universal Time Coordinated (UTC = GMT = BST – 1), ~200 pptv in the afternoon, and <100 pptv at night (see Figure 5.6). NO₂ exhibited median and maximum levels of 2.2 and 10.4 ppbv, respectively, and followed an inverse diurnal profile to that of NO, peaking at night at ~3–4 ppbv and an afternoon minimum of ~1 ppbv. Both NO and NO₂ exhibited significant short-term variability (Figure 5.3).

There is no obvious diurnal profile in CO measurements (see Figure 5.6), with median levels of ~100 ppbv observed throughout the day but a few short-term spikes of up to ~420 ppbv. The diurnal profiles of k'OH and VOC k'OH are similarly flat, with median values of ~5 and ~3 s⁻¹, respectively, although higher reactivities of 18 and 16 s⁻¹ were observed during the pollution episode at the start of the campaign (1st July, Figure 5.3). Mixing ratios of some example VOCs were given in Table 4.1. The flat diurnal profiles observed for CO and k'OH indicate that, for the most part, the WAO site was not strongly impacted by fresh anthropogenic emissions from local traffic during the ICOZA campaign.

The highest ozone mixing ratios of ~110 ppbv were observed on 1st July (Figure 5.3), which as mentioned above, coincided with elevated temperatures and the highest levels
of k'_{OH} (and VOC k'_{OH}) for the entire ICOZA campaign. This ozone episode was used as a case study to assess the effects of rapid changes in temperature and chemical conditions on radical concentrations, and the resultant effects on ozone production (Section 5.2.6). On average (see Figure 5.6), ozone exhibits a classically-expected photochemical diurnal profile, with a minimum of \sim25 ppbv around 06:00 UTC and a maximum of \sim40 ppbv in the late afternoon. The diurnal profile of HCHO is similar to ozone, which is typical for an environment where HCHO production is largely driven by the photochemical oxidation of VOCs (Cryer, 2016), with a diurnal minimum of \sim800 pptv in the late morning and evening, and a maximum around 16:00 UTC in the range \sim1000–1800 pptv. The highest HCHO levels of 3990 pptv were observed during the late morning of 4th July, although unfortunately radical and other measurements are not available for this time (including CO, thus no MCM model results either), owing to instrumental issues caused by a power cut on the preceding night.

Levels of HONO reached a maximum of \sim570 pptv during the night that followed the daytime ozone event discussed previously (1st–2nd July, Figure 5.3). However, in general, HONO mixing ratios tended to peak about six hours after sunrise, with values of \sim100–200 pptv at 09:00–10:00 UTC, decreasing to \sim50 pptv after solar noon (\sim11:30 UTC), a level that persists throughout the afternoon and evening before building up to \sim100 pptv after midnight (see Figure 5.6). $J(\text{HONO})$ peaked at the same time as HONO concentrations at $\sim1.8 \times 10^{-3}$ s$^{-1}$, with a wider profile than $J(\text{O}_1^\text{D})$ (diurnal maximum of $\sim1.7 \times 10^{-5}$ s$^{-1}$) due to the efficient photolysis of HONO at longer wavelengths. Variations in cloud cover are evident from the fast changes seen in the time series of photolysis rates and the interquartile range (IQR, difference between the 25th and 75th percentiles) of diurnally-averaged $J(\text{O}_1^\text{D})$.

5.1.5 Model Descriptions

5.1.5.1 Master Chemical Mechanism (MCM)

In this work, radical concentrations were compared to the predictions of a zero-dimensional box model incorporating a kinetic and photochemical mechanism, the Master Chemical Mechanism (MCM, http://mcm.leeds.ac.uk/MCM) (Saunders et al., 1997; Jenkin et al., 2003; Saunders et al., 2003; Bloss et al., 2005). The current version of the MCM was used, v3.3.1 (Jenkin et al., 2015). The MCM is a near-explicit chemical mechanism, which represents the oxidative degradation of methane and 142 primary emitted VOCs and incorporates \sim17 000 reactions of \sim6700 closed shell and free radical
species. The mechanism was reduced to 4258 species and 12,851 reactions due to the limited suite of VOC measurements during ICOZA (Table 4.3), e.g., no measurements of >C₆ alkanes, limited and poor quality BVOC observations (discussed below).

The MCM model simulations were conducted by Dr. Roberto Sommariva, University of Birmingham, using AtChem2 (https://github.com/AtChem/AtChem2). Three model scenarios were used for the interpretation of radical observations: MCM-base, MCM-carb, and MCM-hox. The base model, MCM-base, was constrained to all measured trace gases listed in Table 5.1, with the exception of radical species, Cl₂,¹ HCHO, MVK+MACR, xylenes, monoterpenes, and DMS. MCM-carb was additionally constrained to measured carbonyl species (HCHO, MVK+MACR), but was otherwise identical to the base model, where MVK and MACR (both C₄H₆O, measured as a sum using PTR-MS) were assumed to be present in a 1:1 ratio. Similarly, MCM-hox was the same as the base model but was additionally constrained to FAGE-measured HO₂. In all simulations, the ratio of trimethylbenzene (TMB) isomers (i.e., C₉ aromatics) was assumed to be 1:1:1. In another model scenario, MCM-voc, xylenes, monoterpenes, and DMS were included as additional constraints. However, these measurements were considered to be unreliable as values were frequently close to instrumental LODs, which created numerical artefacts during the model integration. Therefore, the MCM-voc model was not used for any of the measurement-model comparisons featured in this work. In all simulations, NO and NO₂ were constrained as separate species rather than as total NOₓ.

Temperature, pressure, and RH were also constrained in the MCM models, along with spectral radiometer measurements of photolysis frequencies: O₃ → O(1D), NO₂, HONO, HNO₃, NO₃, HCHO, CHOCHO, CH₃CHO, CH₃COCH₃, CH₃NO₂, C₂H₅NO₃, 1-C₃H₇NO₃, 2-C₃H₇NO₃, and ClNO₂. For species with more than one photolytic decomposition channel, branching ratios were taken from the MCM, with the exception of CHOCHO (glyoxal, three channels) for which values were corrected with those used in the Tropospheric Ultraviolet and Visible (TUV) radiation model (Madronich, 1992). Photolysis rates that were not measured were calculated using the MCM parameterisation, scaled by a factor calculated from measured J(NO₂) to account for cloud cover.

All measurement constraints were used at their original time resolution. Data with a time resolution of less than 1 min (e.g., GC-FID VOCs) were interpolated. First-order physical

¹ Measured, but not constrained, since Cl₂ was rarely above the CIMS LOD.
losses of unmeasured, model-generated intermediates (e.g., unmeasured OVOCs) through dry deposition were taken from (Zhang et al., 2003), where an environment of deciduous trees, long grass, and crops was assumed. The boundary layer height was estimated at 800 m and kept constant for the duration of the simulations. As examples, these constraints lead to deposition velocities of ~6.4, ~2.8, and ~2.3 cm s$^{-1}$, corresponding to first-order lifetimes of ~4, ~10, and ~12 h, for HNO$_3$, H$_2$O$_2$, and HCHO, respectively. The lifetime of these model-generated secondary products was determined by their first-order loss rates of dry deposition, heterogeneous uptake (see below), and photolysis, and bimolecular reactions (e.g., with OH and Cl). The model was run for 48 hours (spin-up time) then reinitialised with the values of all species at the end of this period and rerun for the whole campaign. This allowed radical species and other reactive intermediates to their reach steady-state levels but prevented the build-up of secondary products. The model output data was averaged to 15 min for the comparisons featured in this work.

In addition to dry deposition, physical losses to aerosols (i.e., heterogeneous uptake) were considered in all model scenarios, represented by the following first-order loss rate (Ravishankara, 1997):

$$k'_{\text{loss}} = \omega A \gamma / 4,$$

where ω is the mean molecular speed, A is the aerodynamic particle sizer (APS) measured aerosol surface area, and γ is the aerosol uptake coefficient. Heterogeneous uptake was considered for the following species: O$_3$, OH, HO$_2$, H$_2$O$_2$, HO$_2$NO$_2$, NO, NO$_2$, HONO, HNO$_3$, NO$_3$, N$_2$O$_5$, SO$_2$, SO$_3$, HCl, Cl, and ClNO$_2$. Based on laboratory measurements (Mozurkewich et al., 1987; George et al., 2013; Lakey, 2014; Lakey et al., 2015; Lakey et al., 2016; Moon, 2018), γ_{HO2} was set to 0.1 in all model scenarios, the same value used in analyses of the Clean air for London (ClearfLo) campaign (Whalley et al., 2018).

It has not been possible to determine the MCM model OH reactivity at this stage because of issues with model production and loss rate output files. These output files yielded production and loss rates that were several orders of magnitude higher than those calculated from measured OH destruction ($D_{\text{OH}} = k'_{\text{OH}} \times [\text{OH}]$). This is due to a model bug that corrupts the output of reaction rate data, but this does not affect the calculation of reaction rates or the calculation of radical concentrations (Dr. Roberto Sommariva, personal communication).
5.1.5.2 Photostationary Steady-State (PSS)

OH concentrations can be predicted using a photostationary steady-state (PSS) model, which uses measured quantities only and provides a check on the internal consistency of OH, HO₂, and k'_{OH} observations. The PSS model was described in full in Chapter 4.1.6, in which it was used to assess the level of measurement-model agreement for the two different OH background methods, and thus is only described briefly here. PSS OH concentrations were derived from the ratio of total OH production rates (P_{OH}) to measured k'_{OH} (equation (E4.2)). P_{OH} was obtained from equation (E4.1), where the OH sources included those from ozonolysis, primary production ($P_{OH, primary}$, i.e., O¹D + H₂O) and HONO photolysis, as well as the secondary OH sources from the recycling reactions of HO₂ with O₃ and NO. Where available, temperature dependent rate constants were taken from Sander et al. (2011).

5.2 Results

5.2.1 Overview

5.2.1.1 Time series

Figure 5.4 shows the full time series of OH, HO₂ and total RO₂ radical concentrations (15 min means) observed during ICOZA, covering the period 29th June – 21st July 2015. Also shown are the MCM-base model results for all radical species for periods in which measurements of all key species used to constrain the model were available, and the PSS modelled OH concentrations. The radical observations follow their expected photochemical profiles, with maximum levels around solar noon and low nighttime concentrations, approximately an order of magnitude smaller than during the daytime for OH and HO₂, and frequently scattered around zero. There was less of a day-night contrast for total RO₂, for which nighttime levels were almost always above the RO₂ LOD (~5 × 10⁷ molecule cm⁻³). All radical concentrations were generally lower during IPI sampling times (OHchem measurements shown), although for OH and HO₂ this cannot be due to instrumental sensitivity changes, covered in Chapter 3.3.1. Likewise, based on the similar measurement-model agreement for OHwave measured during the campaign as a whole, and for IPI sampling periods only (Table 4.2), interferences in OHwave measurement (excluding that from O₃/H₂O) are not expected to have contributed significantly to the observed differences in OH levels.
Figure 5.4. Time series of 15 min FAGE radical observations and corresponding model predictions during ICOZA: top panel – OH (blue circles), middle – HO\(_2\) (red squares), lower – total RO\(_2\) (green triangles). Inlet pre-injector (IPI, OHchem) sampling times are denoted by the grey shaded areas. MCM-base model results (modelling conducted by Dr. Roberto Sommariva, University of Birmingham) are shown by the black lines. The orange markers in the top panel correspond to photostationary steady-state (PSS) predicted OH concentrations. Error bars omitted for clarity.
Daily maximum OH concentrations were in the range $(2.6–17) \times 10^6$ molecule cm$^{-3}$ and $(1.8–13) \times 10^6$ molecule cm$^{-3}$ for observations and PSS results, respectively, based on the 90th percentile of the daytime concentrations with daytime defined as $J(O^1D) > 5 \times 10^{-7}$ s$^{-1}$. Similarly, daily maximum observed HO$_2$ and total RO$_2$ levels were in the range $(0.75–4.2) \times 10^8$ molecule cm$^{-3}$ and $(2.3–8.0) \times 10^8$ molecule cm$^{-3}$, respectively, or $(1.0–4.9) \times 10^8$ molecule cm$^{-3}$ and $(0.53–2.8) \times 10^8$ molecule cm$^{-3}$ for MCM-base predictions. It is clear from these features that the PSS model can broadly capture the range in daily maximum OH levels, while the MCM-base model can generally reproduce peak HO$_2$ but significantly underpredicts midday total RO$_2$. Observed nighttime concentrations were on the order of $(1–3) \times 10^5$, $(2–3) \times 10^7$, and $(1–2) \times 10^8$ molecule cm$^{-3}$ for OH, HO$_2$, and total RO$_2$, respectively (see Figure 5.6).

On shorter timescales it can be seen that the level of agreement is more variable. For example, the PSS model tracks OH observations very tightly for extended periods, but severe underpredictions are often found around midday, with smaller but still significant underpredictions on some mornings. The MCM-base predicted OH levels generally follow changes in the measurements, but with a tendency towards overprediction, the reasons for which will be discussed in forthcoming sections. Similar to the PSS model capture of OH measurements, MCM-base modelled HO$_2$ concentrations show excellent agreement with measurements for much of the campaign. However, in contrast to the OH/PSS case, on other days the observations were either under- or overpredicted, with roughly equal examples of each. For total RO$_2$ radicals, the level of agreement is very poor, where the MCM-base model cannot reproduce temporal changes in RO$_2$ concentrations, and generally cannot capture their magnitudes with any reasonable degree of success, consistent with the discrepancy between the predicted and observed ranges in daily maxima. In the next sections, the time series data presented here are used to assess the overall levels of measurement-model agreement for the various radical species, based on analyses of their correlations and diurnal profiles.

5.2.1.2 Overall measurement-model correlations

Scatter plots of observed radical concentrations against their model predictions are shown in Figure 5.5, which includes all available overlapping data (including nighttime). Fit coefficients, namely the slope (m), intercept (c), and correlation coefficient (R^2), for each
Figure 5.5. Overall measurement-model comparisons: (A) OH vs MCM-base, (B) OH vs PSS, (C) HO₂ vs MCM-base, and (D) total RO₂ vs MCM-base. The insets give the slope (m), intercept (c), and correlation coefficient (R²) for the least squares linear fits (black lines), with errors at 2σ, along with the model mean bias (MB) and normalised mean bias (NMB) for each species (defined in Chapter 4.1.6). Blue dashed lines correspond to 1:1 agreement, with ±50% limits given by the blue shaded areas. In panel (D), the green dotted line was obtained from a least squares fit with the intercept forced to zero.

least squares fit are shown in the insets (errors at 2σ). Two metrics commonly used to assess model performance, the mean bias (MB) and normalised mean bias (NMB) defined previously in equations (E4.3–4.4), are also given, for which positive values indicate general overprediction. The level of agreement varies between the different radicals, but all exhibit a high degree of scatter, with R² values of 0.20–0.41. Additionally, different metrics used to assess model performance for the same species give contrasting results in some cases (discussed individually below).

Figures 5.5A and 5.5B show that, on the whole, both the MCM-base and PSS model approaches can capture the observed OH levels, with the majority of points clustered...
around the 1:1 line or within the estimated combined measurement-model uncertainty of ~50% (i.e., points generally lie within the shaded area). Key differences between the two model approaches include the clustering of points around zero for MCM-base when measured OH is non-zero, which is less apparent in the PSS comparison, as well as the general shift in points towards the top left of the plot in going from panel A to B (i.e., a larger cluster of points above the +50% limit for PSS OH). Both comparisons yield significant intercepts ($6\times9 \times 10^5$ molecule cm$^{-3}$) and exhibit virtually the same degree of correlation ($R^2 = 0.39–0.41$). Regardless of whether the slope (0.752, underprediction) or NMB metric (-3%) is used, the overall agreement for the MCM-base comparison is within the 2σ instrumental uncertainty of ~26%. For OH vs PSS, the fit slope (1.063, i.e., a slight overprediction) indicates good agreement but the NMB (-41%) suggests a general underprediction, although this is within the estimated combined uncertainty.

For HO$_2$ vs MCM-base (Figure 5.5C), most data lie within the shaded area, but there is a significant cluster of points below this region. These latter points do bias the overall slope (0.494) to below 1:1 but indicate overall agreement at the limit of the combined uncertainty. However, the positive NMB (7%) suggests a slight overprediction, which is more significant (24%) but still within instrumental uncertainty if only daytime data ($J(O^1D) > 5 \times 10^7$ s$^{-1}$) are included. The correlation coefficient ($R^2 = 0.36$) is similar to that in the two OH comparisons, and a significant intercept (3.4×10^7 molecule cm$^{-3}$) is also present.

The overall agreement of measured total RO$_2$ concentrations with MCM-base results is much worse than for the other radicals, consistent with the time series results in Figure 5.4. It can be seen that almost all of the data lie above the 1:1 line, and the majority are above the +50% limit. The correlation coefficient ($R^2 = 0.20$) is the lowest of the radical species, and relative to the observed range of concentrations in each plot, the intercept (1.7×10^8 molecule cm$^{-3}$) is the most significant (i.e., almost 20% of the maximum observed RO$_2$). However, it is clear that this least squares fit does not adequately represent the data, with a slope (0.78) that suggests a general overprediction. A fit forced through the origin is more appropriate here, which yields a slope (1.72, green dotted line) that is consistent with the NMB (-67%), indicating overall underprediction that cannot be explained by combined measurement-model uncertainty.
5.2.1.3 Diurnal profiles

Campaign median diurnal profiles of OH, HO$_2$, and RO$_2$ radicals, alongside the profiles of relevant supporting measurements, are shown in Figure 5.6. Measurement-to-model ratios for each radical species are shown below the relevant radical profiles, where the ratios were obtained from the median measured and modelled concentrations in each time bin (as opposed to generating diurnal profiles from individual 15 min measurement-to-model ratios, which suffer from excessive noise). All radicals display their characteristic photochemical diurnal profiles, peaking around midday (albeit with strong day-to-day variability), and their qualitative features are generally well-captured by the various model schemes. Smaller but still significant (i.e., above the LOD for each species) concentrations were observed at night that are generally larger than the model predictions, which are likely responsible for the intercepts found for the least squares fits in Figure 5.5. For HO$_2$ and RO$_2$, the median nighttime concentrations are in quantitative agreement with these intercepts. However, the intercepts for OH are a factor of ~4 larger than the measured nighttime levels.

For OH, the median diurnal profile of measured concentrations bears qualitative resemblance to that of J(HONO), peaking at $\sim 2-9 \times 10^6$ molecule cm$^{-3}$ (based on the IQR) around 11:00 UTC, and then again at $\sim 1-7 \times 10^6$ molecule cm$^{-3}$ around 14:00 UTC. However, the MCM-base and MCM-carb models cannot capture the noontime decrease and secondary peak in OH during the afternoon (measurement-to-model ratios of ~0.5–0.8), whereas MCM-box shows excellent agreement for the entire daytime (~0.8–1.1). Similarly, the MCM-base and MCM-carb models overpredict HO$_2$ most severely in the afternoon (ratios of ~0.3–0.7). This suggests that the behaviour of HO$_2$ is the main contributor to the observed OH profile, and that the model inability to simulate HO$_2$ is responsible for the poor OH agreement. This is consistent with the dominance of HO$_2$ + NO (reaction (R1.15)), a secondary OH source, in total OH production (Section 5.2.2.2). The measured diurnal profile yields 24 h and daytime mean OH of 1.5×10^6 and 2.8×10^6 molecule cm$^{-3}$, respectively.

The PSS model, which is also constrained to measured HO$_2$, qualitatively captures the OH features but underpredicts OH levels by a factor of ~1.1–2.2 during most the daytime, and more severely around 06:00 UTC (ratios of ~2–4). At night, none of the model approaches can capture the observed OH concentrations, with measurement-to-model
Figure 5.6. Hourly median diurnal profiles of observed and modelled radical concentrations (left) and supporting measurements (right), averaged for overlapping periods. For radicals, the different models (PSS, MCM-base, MCM-carb, and MCM-hox, see text for details) are distinguished by colour (see legends); measurement-to-model ratios, obtained from the ratios of each pair of diurnal profiles, are shown in the lower panel of each graph on a log scale (some negative values missing). Shaded areas (J(HONO): dashed lines) correspond to day-to-day variability (interquartile range, IQR), omitted for model results for clarity.
ratios in the range ~2–14. The differences in agreement for the PSS and MCM cases could be due to a missing OH source in the PSS model that was included in the MCM schemes, or alternatively from an MCM underprediction of OH reactivity. As mentioned previously, calculated OH reactivity was below the measured reactivity by ~44% on average (Cryer, 2016). The MCM model reactivity should be higher, as the model simulates OVOCs for which measurements were not available. Although the MCM k'_OH cannot yet be calculated, the missing reactivity (i.e., observed k'_OH minus the reactivity from measured trace gases only) is most strongly correlated with the OVOC species for which measurements were available. For the OVOCs listed in Table 4.3, correlation coefficients (R^2) are in the range ~0.20–0.25 (data not shown), and as the values of missing reactivity (generally ~1–4 s$^{-1}$, but up to 12 s$^{-1}$) are close to the instrumental precision (~1 s$^{-1}$) (Stone et al., 2016), the relationships become even more apparent after binning (e.g., $R^2 = 0.96$ for missing reactivity binned against CH$_3$CHO, data not shown). This suggests that the missing reactivity is mostly due to unmeasured OVOCs as opposed to unmeasured hydrocarbons, and as such the MCM reactivity should be closer to the observed reactivity than that calculated from measured trace gases only, assuming their oxidation chemistry is well-represented. However, for the Tropospheric ORganic photoCHemistry experiment (TORCH) 2, which took place at the WAO in May 2004, the missing reactivity was only reduced from 40% to 30% after inclusion of model-simulated OVOCs (Lee et al., 2009b), where there was a similar suite of VOC instrumentation to ICOZA.

Peak HO$_2$ coincided with the secondary maximum observed for OH, reaching ~0.5–2.5 × 108 molecule cm$^{-3}$ (IQR) at around 14:00 UTC. HO$_2$ reached a minimum of ~4–7 × 106 molecule cm$^{-3}$ (slightly above the LOD for 5 min HO$_2$ measurements, ~4 × 106 molecule cm$^{-3}$) around 06:00 UTC, and in general its concentrations were lower in the morning than in the afternoon, likely as a result of its increased loss through reaction (R1.15) due to higher levels of NO in the morning. The shape of the HO$_2$ profile also suggests that HCHO, which was higher in the afternoon, was an important source of HO$_2$, although a full analysis of the HO$_2$ budget (as well as the total RO$_x$ budget) is beyond the scope of this work due to the aforementioned issues with modelled radical production rates.

1 Not including the two points missing at 03:30 and 04:30 UTC, for which median OH concentrations were below zero: -(2–4) × 104 molecule cm$^{-3}$, compared to an estimated 1 h OH LOD of ~2 × 105 molecule cm$^{-3}$.
Similarly, HO\textsubscript{2} formation may have been enhanced by the higher temperatures observed during the afternoon (i.e., through faster OH \rightarrow RO\textsubscript{2} \rightarrow HO\textsubscript{2} turnover).

The MCM models show reasonable agreement with HO\textsubscript{2} observations during the morning and around midday (ratios of ~0.6–1.4) but there is more of a discrepancy for the afternoon (~0.3–0.7). The base model predicts more HO\textsubscript{2} than MCM-carb, particularly during the afternoon. This is likely due to the base model overprediction of HCHO, an important HO\textsubscript{2} source, by a factor of ~2 on average (data not shown). MCM-carb still overpredicts afternoon HO\textsubscript{2}, but with the exception of one point at 15:30 UTC, the measurement-to-model ratios are above 0.6, indicating agreement within combined uncertainty. At night, HO\textsubscript{2} is underpredicted by approximately an order of magnitude by both model approaches.

The observed diurnal profile of total RO\textsubscript{2} radicals is qualitatively similar to HO\textsubscript{2}, i.e., peak levels ($\sim 3–5 \times 10^8$ molecule cm-3, IQR) around 14:00 UTC, smaller concentrations during nighttime, and a minimum in the early morning (~06:00 UTC). However, compared to HO\textsubscript{2}, the early morning drop in RO\textsubscript{2} levels was less severe. In contrast to the variable measurement-model agreement for OH and HO\textsubscript{2}, for which reasonable agreement is found at least in the daytime, total RO\textsubscript{2} concentrations are substantially underpredicted for both day and nighttime periods by a factor of ~9 (± 14) (MCM-base) on average (± 2σ). The three MCM models predict virtually the same RO\textsubscript{2} concentrations but severely underpredict the observations, even when constrained to HO\textsubscript{2} (i.e., MCM-hox, which shows excellent agreement with respect to daytime measured OH). This suggests that the discrepancy for RO\textsubscript{2} may be related to a model underestimation of k'_{OH}, which cannot be determined at this stage, but on the other hand it may stem from a missing primary RO\textsubscript{2} source (e.g., from Cl + VOCs, although the models were constrained to ClNO\textsubscript{2}, and Cl\textsubscript{2} was rarely above the CIMS LOD), or a model overestimation of RO\textsubscript{2} loss rates (Tan \textit{et al.}, 2017; Tan \textit{et al.}, 2018; Whalley \textit{et al.}, 2018).

The model inability to simulate total RO\textsubscript{2} was further analysed by comparing the measured and modelled diurnal profiles of the two RO\textsubscript{2} classes, i.e., simple and complex (Figure 5.7, defined in Chapter 2.3). The fraction of cRO\textsubscript{2} ($f_{\text{complex}} = c\text{RO}_2 / \text{total RO}_2$), obtained from individual 15 min measurement and model data, is also shown in Figure 5.8. At present, RO\textsubscript{2} speciation is not available for the MCM-carb and MCM-hox models so observations are compared to MCM-base only. Since sRO\textsubscript{2} dominates the total peroxy radical pool (~70–100%, Figure 5.8) in both the observations and model results, the
Figure 5.7. Hourly median diurnal profiles of simple (left, defined in Chapter 2.3) and complex RO2 radicals (right) and comparison to model results (black lines) for overlapping periods. Measurement-to-model ratios are given by the solid lines in the lower panels of each graph (log scale), where the dashed lines show the average ratios. Shaded areas correspond to day-to-day variability (IQR).

diurnal profiles of the measured and modelled sRO2 concentrations, and therefore measurement-to-model ratios, closely resemble those of total RO2 (Figure 5.6). Measured midday and nighttime sRO2 concentrations were ~2–3 × 10^8 and ~1.0–1.5 × 10^8 molecule cm^{-3}, respectively. However, the MCM-base model predicts nighttime levels (up to ~0.7 × 10^8 molecule cm^{-3}) similar to the daytime (up to ~1 × 10^8 molecule cm^{-3}), and a significant decrease just after sunrise (~03:00 UTC), both of which are features not seen in the observed profile. As a result, there is a lot of structure in the measurement-to-model ratio profile, ranging from ~1.4–30 with a mean value of 10, where the most significant discrepancies are seen throughout the morning.

The measured cRO2 profile is similar to that of sRO2, but cRO2 concentrations were scattered around zero in the early morning (~06:00 UTC), as predicted by the MCM, and they show a steeper rise than sRO2 during the late morning to early afternoon. In contrast to modelled sRO2, the MCM predicts little cRO2 at night (<1 × 10^7 molecule cm^{-3}), despite measured concentrations of ~2–4 × 10^7 molecule cm^{-3}. The diurnal profile of the measurement-to-model ratio is therefore markedly different to that of sRO2, with good agreement around 06:00 UTC and the most significant discrepancies seen at night. Nonetheless, the range (~1–27) and mean (~8) of the measurement-to-model ratios are similar to those for sRO2.
Despite the model difficulty in simulating the magnitudes of the observed sRO₂ and cRO₂ concentrations (Figure 5.7), it can be seen in Figure 5.8 that their balance (i.e., the ratio of cRO₂ to total RO₂, f_{complex}) is captured reasonably well throughout the day. In fact, from midday ($f_{\text{complex}} \sim 0.2–0.3$) through to just before midnight (\sim0.1), the measurement-model agreement is excellent. However, the model cannot capture the increased fraction around midnight (measured $f_{\text{complex}} \sim 0.1–0.3$), nor the values scattered around zero at ~06:00 UTC.

5.2.2 OH – Dependence on J(O¹D) and Budget Analysis

5.2.2.1 Correlation of OH with J(O¹D)

Figure 5.9 shows the dependences of measured, MCM-base, and PSS OH on observed J(O¹D), along with least squares linear fits to each set of data. While the correlation between OH and the measured photolysis frequencies is clear in each plot, the measured data exhibits a high degree of scatter ($R^2 = 0.49$), which is less pronounced for the two model cases ($R^2 \sim 0.6$). The slope of the fit is identical for the measured and MCM-base OH (3.6×10^{11} s cm⁻³), while for PSS OH this is ~40% lower (2.3×10^{11} s cm⁻³). Likewise for the intercepts, which reflect the importance of nighttime and early morning radical
Figure 5.9. Correlation of measured (left), base-modelled (middle), and PSS-predicted OH (right) with \(J(O^1D) \), where the solid lines show least squares linear fits to the data.

sources, are similar for measured and MCM-base OH (~5 \times 10^5 cm\(^{-3}\)), but the PSS OH intercept (2.3 \times 10^5 cm\(^{-3}\)) is a factor of ~2 smaller.

5.2.2.2 Photostationary steady-state budget

Figure 5.10 summarises the experimentally-determined OH budget for the ICOZA campaign, where measured OH loss rates (\(D_{OH} = [OH] \times k'_{OH} \)) are compared to OH production rates (\(P_{OH} \)) calculated in the PSS model. The individual source contributions are given by the shaded panels, expressed as cumulative production rates. Some of the sources appear to contribute virtually nothing to the total OH source strength (left panel), but although small, their contributions become apparent when plotted on a log scale (right panel). The daytime-averaged (06:00–18:00 UTC) calculated contributions from the various sources were as follows: ozonolysis (reaction (R1.26)) = 0.4%; primary production (i.e., \(O^1D + H_2O \)) = 14.7%; HONO photolysis = 16.9%; HO\(_x\) recycling (i.e., radical propagation) – \(\text{HO}_2 + O_3 = 1.7\% \), \(\text{HO}_2 + NO = 66.3\% \).

\(P_{OH} \) and \(D_{OH} \) exhibit similar diurnal profiles, and are qualitatively similar to that of measured OH concentrations, which may be expected on the basis of the flat diurnal profile observed for \(k'_{OH} \). \(P_{OH} \) and \(D_{OH} \) peak around the same time (~9:30–11:30 UTC) at \~15 \times 10^6 \) and \~20 \times 10^6 \) molecule cm\(^{-3}\) s\(^{-1}\), respectively, and \(D_{OH} \) is almost always higher than \(P_{OH} \), although they do often overlap within measurement uncertainty (~26%).

The balance of production and loss is shown in Figure 5.11, in terms of absolute differences (\(D_{OH} – P_{OH}, \) left panel) and their ratios (\(D_{OH} / P_{OH}, \) right panel). There is a net budget imbalance, as the differences and ratios are almost always above zero and one,
Figure 5.10. Hourly median diurnal profiles of PSS OH production (P_{OH}, calculated from measured quantities only) and observed OH destruction ($D_{OH} = [OH] \times k'_{OH}$) rates on linear (left) and log scales (right) for overlapping periods (number of points, $N = 1257$). The different production terms are distinguished by colour, and error bars (2σ) are only shown for measurements (±26%) for clarity.

Figure 5.11. Diurnal profiles of the balance of OH production and loss ($D_{OH} - P_{OH}$, left) and the corresponding ratio (D_{OH} / P_{OH}, right) calculated from the data in Figure 5.10 ($N = 1257$). Errors (2σ) were obtained from the sum in quadrature of measurement (±26%) and model uncertainty (±40%).

respectively. However, both panels indicate general budget closure during the daytime within combined measurement-model uncertainty (~50%), which demonstrates the internal consistency of FAGE-measured OH, HO$_2$, and k'_{OH}.

At night, D_{OH} is larger than P_{OH} by up to an order of magnitude (Figure 5.11 right), although the absolute differences (~1 x 106 molecule cm$^{-3}$ s$^{-1}$, Figure 5.11 left) are much smaller than during the daytime (generally ~2–8 x 106 molecule cm$^{-3}$ s$^{-1}$). This is
consistent with the measured and PSS OH diurnal profiles (and their associated measurement-to-model ratios) shown in Figure 5.6 and discussed previously in Section 5.2.1.3.

5.2.3 Impact of Uncertainties in Relative IPI Sensitivities

As discussed in Chapter 3.3.1, different experiments yielded different calibration factors for OH and HO₂ radicals when sampling through the IPI (Table 3.1). For the ICOZA analyses presented in this chapter, it was assumed that there was no sensitivity loss ($C_{OH, IPI} / C_{OH} = C_{HO₂, IPI} / C_{HO₂} = 1$) imposed by the additional surface area (i.e., due to radical wall losses) of the IPI system. This was based on ambient tests performed in China, where sequential measurements of OH with the IPI on and off were not consistent with the originally determined, reduced sensitivity ($C_{OH, IPI} / C_{OH} = 0.6$ and $C_{HO₂, IPI} / C_{HO₂} = 0.79$). Further support came from refined calibration experiments, in which the flow regime inside the IPI flow tube was not perturbed from that during ambient sampling. It was thought that the original, low sensitivities obtained in earlier experiments were a result of flow perturbations (due to the use of the “wand”, see Chapters 2 and 3 for more details) causing increased radical wall losses and thus biasing the true sensitivities.

However, considering the variability in the calibration factors obtained, it is worth assessing the impact of these uncertainties on the measured OH and HO₂ concentrations. Figure 5.12 shows diurnal profiles of measured OH and HO₂ radicals, generated using the original and lower limit C factors (applied to IPI sampling periods only, otherwise the data are unchanged), and their comparisons to MCM-base model predictions. For OH, the measurement-model agreement is improved in the afternoon upon using the lower C factor, but worsened in the morning and evening. For HO₂, the agreement is improved throughout most of the day but again this is worsened in the evening. Comparison of OH to the PSS model is not shown, since this requires HO₂ observations, but the underprediction found previously (Section 5.2.2.2) would be made worse since the relative change in measured HO₂ (the dominant OH source) is less than that in OH. Regardless, as discussed in Section 3.3.1, further experiments are required to fully verify the relative OH and HO₂ sensitivities when sampling through the IPI, such as by comparison to independent HOₓ measurements.
Figure 5.12. Comparison of OH (top) and HO$_2$ (bottom) observations to MCM-base model predictions using original ($C_{OH, IPI} / C_{OH} = C_{HO2, IPI} / C_{HO2} = 1$) and lower limit ($C_{OH, IPI} / C_{OH} = 0.6$ and $C_{HO2, IPI} / C_{HO2} = 0.79$) IPI calibration factors, shown as hourly median diurnal profiles.
5.2.4 Dependence of Measured and Modelled Radical Concentrations on NO

As NO is of central importance to peroxy radical cycling (i.e., RO₂ → HO₂ → OH propagation), radical concentrations and their corresponding measurement-to-model ratios often exhibit strong dependences on NO mixing ratios (Kanaya et al., 2007; Dusanter et al., 2009b; Hofzumahaus et al., 2009; Ren et al., 2013; Brune et al., 2016; Feiner et al., 2016; Griffith et al., 2016; Tan et al., 2017; Tan et al., 2018; Whalley et al., 2018). Measured and modelled ICOZA radical data, including OH, HO₂, sRO₂, and cRO₂ concentrations as well as HO₂:OH ratios and the sum of HO₂ + RO₂, were therefore binned against NO mixing ratios, as shown in Figures 5.13 to 5.18. These analyses were restricted to daytime conditions (J(O¹D) > 5 × 10⁻⁷ s⁻¹). Since NO varied over several orders of magnitude, the data were split according to the natural logarithm of NO concentrations, using seven natural log bins of width Δln(NO/pptv) = 1.0, such that the bins covered NO mixing ratios ranging from ~7 pptv to ~8 ppbv. In each plot, full statistics (mean, median, 10th, 25th, 75th, and 90th percentiles) are given for the observations, while only the medians of the model results are shown for clarity. Along with the number of points in each NO bin, measurement-to-model ratios (median observed/median predicted) as a function of NO are shown in the lower panels of the plots.

The dependence of measured, MCM-base, and PSS OH on NO is shown in Figure 5.13, where all three display slight positive trends, due in part to the importance of HONO (formed from OH + NO) photolysis and HO₂ + NO as OH sources (Figure 5.10). NO concentrations display a log-normal distribution (lower panel), centred in the range ~0.1–1 ppbv. In each NO bin, the median concentrations for both model approaches lie within the observed variability in terms of the interdecile range (IDR, 10th to 90th percentiles), with most model points within the IQR and generally better agreement for MCM-base. However, the measurement-to-model ratios for the two model approaches exhibit inverse profiles of one another. In the lowest NO bin (midpoint, range: 12, 7–20 pptv), measured concentrations are a factor of ~1.9 higher than MCM-base results, while the PSS predictions are in good agreement (ratio ~1.2, i.e., agreement within uncertainty), although these ratios are based on only 14 points (15 min). Both ratios then display a virtually flat trend with increasing NO, with mean (± 2σ) ratios of 0.94 ± 0.35 (i.e., agreement) and 1.77 ± 0.47 (i.e., underprediction) for the MCM-base and PSS cases,
Figure 5.13. Measured OH (mean, median 10–90th percentiles), MCM-base modelled OH (median only, green circles), and PSS predicted OH (median only, orange crosses) binned against NO for daytime (i.e., $J(O_1D) > 5 \times 10^{-7} \text{s}^{-1}$) overlapping points (15 min data, $N = 650$), using seven natural log bins of width $\Delta \ln(\text{NO/pptv}) = 1.0$. The number of points in each bin (left axis, log scale) is shown in the lower panel, along with the ratios of the medians (i.e. measurement-to-model ratios, right axis): solid red line and circles – relative to MCM-base, orange dashed line and crosses – relative to PSS.

Figure 5.14. Measured, MCM-base (green circles), and MCM-carb (purple crosses) HO_2 as a function of NO for daytime overlapping points ($N = 383$). Median measurement-to-model ratios are shown in the lower panel: solid red line and circles – relative to MCM-base, purple dashed line and crosses – relative to MCM-carb.
respectively. The same trends were found after normalising OH concentrations to $J(O^1D)$ (data not shown). Data for the MCM-hox model scenario are not shown as less points are available for the comparison, but this analysis yielded measurement-to-model ratios close to the MCM-base case, with the exception of the first NO bin, for which a higher ratio of ~3.2 was found.

In contrast to OH, observed and modelled HO$_2$ concentrations display a more obvious dependence on NO (Figure 5.14). Measured HO$_2$ increases with NO up to the 150–400 pptv bin (midpoint: 240 pptv) before decreasing at higher NO. The modelled dependence is qualitatively similar, but the turnaround in HO$_2$ concentrations happens at lower NO (bin midpoint, range: 33, 20–55 pptv), resulting in significant overpredictions at low NO (by up to a factor of ~5 in the lowest NO bin) but excellent measurement-model agreement (within ~20% for MCM-base) above 400 pptv. While MCM-carb always predicts lower HO$_2$ than the MCM-base scenario, measurement-to-model ratios for MCM-carb are a constant ~10% (±5%) higher than MCM-base across the NO mixing ratios encountered.

![Figure 5.15](image)

Figure 5.15. Measured, MCM-base, and MCM-carb HO$_2$-to-OH ratio as a function of NO for daytime overlapping points ($N = 341$). Median measurement-to-model ratios are shown in the lower panel. Colours are analogous to those used in Figure 5.14.
A commonly used metric to test understanding of RO\textsubscript{x} cycling chemistry is the ratio of HO\textsubscript{2} to OH, which exhibits strong dependences on NO levels (Creasey \textit{et al.}, 2002; Martinez \textit{et al.}, 2003; Ren \textit{et al.}, 2003a; Ren \textit{et al.}, 2003b; Emmerson \textit{et al.}, 2005; Dusanter \textit{et al.}, 2009a; Dusanter \textit{et al.}, 2009b; Chen \textit{et al.}, 2010; Sheehy \textit{et al.}, 2010; Ren \textit{et al.}, 2013; Griffith \textit{et al.}, 2016), although some analyses may have suffered from biases due to RO\textsubscript{2} interferences in HO\textsubscript{2} measurements (Fuchs \textit{et al.}, 2011; Whalley \textit{et al.}, 2013).

For ICOZA Figure 5.15, the observed HO\textsubscript{2}-to-OH ratio varied from ~80 in the lowest NO bin, to ~20 at around ~0.7 ppbv NO (bin range: 0.4–1.1 ppbv), with values scattered around zero (median ~5) in the highest NO bin (midpoint, range: 4.9, 3.0–8.1 ppbv) for which measured OH and HO\textsubscript{2} concentrations were at or close to their corresponding LODs. Both model scenarios predict higher ratios at low NO and a much stronger decrease of the ratio as a function of NO, ranging from ~200 to ~13 to ~4 as NO increases from ~0.01 to ~0.7 to ~5 ppbv, respectively, where the largest differences between MCM-base and MCM-carb occur at low NO. Above ~0.15 ppbv NO, the measurements and model predictions are in reasonable agreement (within ~40%) but at lower NO the observed ratios are overpredicted by a factor of ~2. The MCM-carb measurement-to-model ratio is ~20% and ~5% higher than MCM-base at low and high NO, respectively.

For sRO\textsubscript{2} (Figure 5.16), the NO-dependences of measured and modelled concentrations are qualitatively similar to those of HO\textsubscript{2} (Figure 5.14), i.e., increases with NO up until a point and then decreases, where the model predicts turnaround at lower NO than is observed. However, above 400 pptv NO, measured sRO\textsubscript{2} remains constant at (~2 × 108 molecule cm-3) whereas the model predicts concentrations of <2 × 107 molecule cm-3, which are below the RO\textsubscript{2} detection limit (~5 × 107 molecule cm-3). Also shown in Figure 5.16 are the median measured sRO\textsubscript{2} if a correction for methyl peroxy nitric acid (MPNA) is applied, estimated using equations (E2.21–2.22). As discussed in Chapter 2.3.1, the MPNA interference is more significant under high-NO\textsubscript{x} conditions, but this correction is still not sufficient to explain the severe measurement-model discrepancies for sRO\textsubscript{2} at high NO. In addition, the interference is an upper limit since MPNA does not fully dissociate into CH\textsubscript{3}O\textsubscript{2}; taking the conversion into account would worsen the agreement for the corrected measurements. The sRO\textsubscript{2} measurement-to-model ratios display a strong positive dependence on NO, ranging from ~1.4 below 20 pptv, to ~4 around 200 pptv, to ~32 (uncorrected) and ~17 (MPNA corrected) above 3 ppbv NO. The dependences of measured and modelled cRO\textsubscript{2} (Figure 5.17) are much the same as those for sRO\textsubscript{2} (Figure 5.16), with measurement-to-model ratios of ~1.3, ~5, and ~17 for the NO mixing ratios.
Figure 5.16. Measured and MCM-base (green circles) simple RO$_2$ (sRO$_2$) as a function of NO for daytime overlapping points ($N = 207$). sRO$_2$ measurements corrected for the interference from MPNA (methyl peroxy nitric acid, see Chapter 2.3.1) are also shown (gold squares). Median measurement-to-model ratios are shown in the lower panel: solid red line and circles - uncorrected sRO$_2$ measurements, gold dashed line and squares - MPNA-corrected sRO$_2$.

Figure 5.17. Measured and MCM-base (green circles) complex RO$_2$ (cRO$_2$) as a function of NO for daytime overlapping points ($N = 207$). The median measurement-to-model ratio is shown in the lower panel.
stated above. These ratios can be seen more clearly when plotted on a log scale, as shown in Figure 5.19 and discussed in more detail below.

Considering the simultaneous overprediction of HO$_2$ (Figure 5.14) and underprediction of RO$_2$ (Figures 5.16 and 5.17) at low NO (below 150 pptv), as well as the increasing underprediction of RO$_2$ at higher NO, for which good agreement was observed for HO$_2$, it is possible that the MCM-base model can capture total peroxy radical concentrations (i.e., ΣRO$_2$ + HO$_2$) reasonably well, but not their speciation. Figure 5.18 shows the dependences of measured and modelled total peroxy radical concentrations on NO, where measurement-to-model ratios are compared to those for simple and complex RO$_2$ in Figure 5.19. While the measurement-model agreement for ΣRO$_2$ + HO$_2$ is indeed better than that for sRO$_2$ or cRO$_2$ across all NO bins, especially after correcting for the interference from MPNA, a severe discrepancy (i.e., greater than a factor of 2) still remains for NO mixing ratios above 400 pptv, reaching a factor ~7–10 above 3 ppbv NO.

Overall, the level of agreement between observed and modelled radical concentrations with respect to NO varies strongly between the different radical species. Under low-NO$_x$ conditions (<150 pptv NO), OH is generally well-simulated, and sRO$_2$ and cRO$_2$ are underpredicted by the MCM-base model, whereas HO$_2$ and the HO$_2$-to-OH ratio are overpredicted. There are several possible explanations for these results, although without detailed analysis of the RO$_x$ budget, and without incorporation of additional mechanisms or sensitivity tests, these remain qualitative and purely speculative. It is possible that the model underestimates observed OH reactivity, where additional OH reactivity would serve to increase RO$_2$ concentrations in the model, but at the expense of the good agreement seen for OH. Heterogeneous loss of HO$_2$, which is more important at low NO, may have been underestimated in the model. The HO$_2$ uptake coefficient (γ_{HO_2}), currently equal to 0.1, may have been set too low (Dr. Daniel Moon, personal communication) and should be increased in future model runs to assess the model sensitivity to this parameter. However, any reduction in model HO$_2$ concentrations would also worsen the agreement for OH, considering the significant underprediction of OH at low NO (by a factor of ~3) in the MCM-hox case (i.e., constrained to measured HO$_2$), and since HO$_2$ + NO was a strong OH source even at low NO (from PSS model, 7–41% below 150 pptv NO, data not shown).

An additional primary RO$_2$ source could improve the agreement for RO$_2$ and HO$_2$ at low NO simultaneously, due to increased HO$_2$ losses through peroxy radical cross-reactions,
Figure 5.18. Measured and MCM-base (green circles) total peroxy radicals (i.e., ΣRO$_2$ + HO$_2$) as a function of NO for daytime overlapping points ($N = 229$). Median measurement-to-model ratios are shown in the lower panel: solid red line and circles – uncorrected measurements, gold dashed line and squares – MPNA-corrected (RO$_2$ + HO$_2$).

Figure 5.19. Expanded view of the RO$_2$ median measurement-to-model ratios presented in Figures 5.16, 5.17, and 5.18, visualised in log-log space to highlight that significant discrepancies persist at low-to-moderate NO levels (i.e., the ~0.05–0.50 ppbv range). The NO bin ranges are denoted by the vertical grey lines.
some of which can also form OH (Dillon and Crowley, 2008). However, the subsequent chemistry of RO₂ would also generate HO₂, such that it is not clear whether this would resolve the HO₂ overprediction, the success of which depends on the relative rates of radical propagation and termination, i.e., RO₂ → HO₂ conversion (NO-mediated) and HO₂ + RO₂ losses (enhanced at low NO). A missing primary RO₂ source has been invoked previously to help explain a model underprediction of RO₂ (Tan et al., 2017) where it was hypothesised that reactions of chlorine atoms (e.g., from the photolysis of Cl₂ or ClNO₂) with VOCs during the morning were the source of the missing RO₂, although the contribution was not sufficient to explain the magnitude of the RO₂ underprediction (inclusion of Cl chemistry accounted for only ~10–20% of the missing RO₂). However, during ICOZA, Cl₂ (generally below the LOD) and ClNO₂ were both measured and ClNO₂ was constrained in the MCM-base model,¹ and as such no evidence exists for a missing primary RO₂ source, which was also the case for the ClearfiLo campaign (Whalley et al., 2018). Considering that the most severe RO₂ underpredictions are found in the morning for ICOZA (Figure 5.6), when NO levels were also higher, it is possible that a related but unknown primary RO₂ source is the reason for the measurement-model discrepancy. Under moderate and high-NOₓ conditions (>150 pptv NO), the MCM-base model is in excellent agreement with observations of OH (Figure 5.13), HO₂ (Figure 5.14), and HO₂/OH (Figure 5.15), but sRO₂ and cRO₂ concentrations are significantly underpredicted by up to an order of magnitude (Figure 5.19). This may also be explained by a missing primary RO₂ source, although the strength of this source would have to increase with NO levels in order to explain the morning/high-NO underpredictions.

As discussed above, the MCM-base model can capture ΣRO₂ + HO₂ reasonably well, at least at low NO, suggesting that the opposing discrepancies for HO₂ and RO₂ may arise from problems with the interconversion between HO₂ and RO₂ radicals in the model. It is not thought that this is due to an overestimation of the rates of RO₂ + NO reactions (which subsequently form HO₂), as their rate constants are well-constrained by laboratory studies and do not vary substantially between different organic substituents (Orlando and Tyndall, 2012). Similarly, the RO₂ discrepancy is likely not due to artificially-high model HO₂ removing RO₂ too quickly, as the MCM-hox case predicts only modest changes in

¹ Although, since only chlorine atom-alkane chemistry (and inorganic reactions) is included in MCMv3.3.1, the reactions of Cl with other VOCs (e.g., alkenes, OVOCs) cannot be ruled out as an additional primary RO₂ source.
total RO₂ relative to MCM-base, ranging from approximately -20% to +10% at high and low NO, respectively (data not shown as RO₂ speciation only available for MCM-base).

Another possible explanation here is autoxidation chemistry (Crounse et al., 2011; Ehn et al., 2014; Jokinen et al., 2014; Berndt et al., 2016; Ehn et al., 2017; Zha et al., 2017), in which RO₂ radicals undergo intramolecular H-shift reactions with the subsequent addition of O₂ to reform more oxidised RO₂ radicals that do not generate HO₂. Inclusion of a representation of autoxidation chemistry (in MCMv3.2) for the ClearfLo campaign reduced model HO₂ concentrations by ~30%, although this was still not sufficient to explain the observations, and model RO₂ concentrations were also reduced (albeit to a lesser extent than HO₂) (Whalley et al., 2018). ICOZA radical concentrations were simulated using MCMv3.3.1, which includes a representation of autoxidation chemistry, at least for isoprene and its oxidation products (e.g., MACR) (Jenkin et al., 2015), although the autoxidation of other species (e.g., aromatics or unmeasured monoterpenes) cannot be ruled out. Without assessing the role of isoprene autoxidation (i.e., through budget analysis) or the incorporation of an additional autoxidation mechanism (or surrogate) in another model scenario, it is difficult to conclude whether this chemistry contributed to the measurement-model discrepancies for HO₂ and RO₂ during ICOZA.

The above discussion has been limited to daytime chemistry so far. However, similar trends in measurement-to-model ratios as a function of NO hold for nighttime data \((J(O^1D) < 5 \times 10^{-7} \text{ s}^{-1}) \), as shown in Figure 5.20. In contrast to the daytime results (Figure 5.14), the trend in measurement-to-model ratios for HO₂ is relatively flat, where the MCM-base model underpredicts the observations (~2–3 × 10⁷ molecule cm⁻³) by a factor of ~3–5. The dependence for OH is less pronounced than during the daytime (Figure 5.13), but the ratios again decrease with NO, although the observed nighttime OH is underpredicted in the highest NO bin (NO > 0.7 ppbv, ratio ~1.7), whereas excellent agreement was found for the high-NO daytime data. Measured OH concentrations exhibit a general increase with NO from ~1 × 10⁵ to ~3 × 10⁵ molecule cm⁻³, consistent with increasing rates of production from HO₂ + NO, since HO₂ levels were virtually constant. Measurement-to-model ratios for total RO₂ at night show the same dependence on NO as sRO₂ and cRO₂ during the daytime (Figure 5.19), with underpredictions of over an order of magnitude at high NO that cannot be explained by the interference from MPNA. Measurements of total RO₂ show a general decrease with increasing NO from ~1.8 × 10⁸ to ~0.8 × 10⁸ molecule cm⁻³.
5.2.5 Ozone Production Rate

Calculation of $P(O_3)$ ($\approx P(O_\Delta)$) from FAGE observations of HO$_2$ and RO$_2$ radicals, for comparison to POPR measurements and model predictions, was one of the main aims of the ICOZA campaign as discussed in Section 5.1.1. Median diurnal profiles of the net ozone production, $P(O_\Delta)$, calculated from measured and modelled (MCM-base and MCM-carb) OH, HO$_2$, and RO$_2$ radical concentrations are shown in Figure 5.21. Here, $P(O_\Delta)$ was calculated from equations (E5.1–5.3) with average values of k_{RO2+NO} and α_{RONO2} applied to both observations and model predicted concentrations of total RO$_2$ (i.e., model $P(O_\Delta)$ was not calculated from the rate constants and yields for individual RO$_2$ species). k_{RO2+NO} was set to the generic value used in the MCM ($k_{RO2+NO} = 2.7 \times 10^{-12}$ exp(360/T) = 9.0 \times 10$^{-12}$ cm3 molecule$^{-1}$ s$^{-1}$ at 298 K). Organic nitrate yields (α_{RONO2}) are typically in the range 1–35% (Orlando and Tyndall, 2012), where a value of 10% was chosen in this study, which is the same as that used in MCMv3.3.1 as the average α_{RONO2} for isoprene-based RO$_2$ species (Jenkin et al., 2015). The sensitivity of $P(O_\Delta)$ to α_{RONO2} was assessed by scaling it by factors of 0.2 ($\alpha_{RONO2} = 0.02$) and 2 ($\alpha_{RONO2} = 0.2$), which
Figure 5.21. Hourly median diurnal profiles of the net ozone production rate, $P(\text{O}_x)$, calculated from measured (blue line and diamonds) and modelled peroxy radicals for overlapping periods ($N = 552$). The measurement-to-model ratio is given by the grey circles in the lower panel (log scale), where the solid black line is a third-order polynomial fit to guide the eye only. The shaded area corresponds to the day-to-day variability (IQR).

Figure 5.22. $P(\text{O}_x)$ calculated from measured and MCM-base peroxy radicals (green circles) as a function of NO for daytime overlapping points ($N = 239$). The inset shows the behaviour of the model more clearly. The median measurement-to-model ratio is shown in the lower panel.
resulted in changes to mean FAGE-calculated $P(\text{O}_3)$ of only $+8\%$ and -10%, respectively (data not shown).

It can be seen in Figure 5.21 that $P(\text{O}_3)$ calculated from measurements peaks in the morning (10:30 UTC) at ~7–18 ppb h$^{-1}$ (based on the IQR). As a consequence of the significant model underestimation of RO$_2$ (Figure 5.6), both models predict much lower $P(\text{O}_3)$, with maximum values of ~2 ppb h$^{-1}$ after solar noon ($\sim13:30$ UTC) and without much difference between the two model scenarios. $P(\text{O}_3)$ is underpredicted throughout the day, and although the measurement-to-model ratios are quite scattered, they range from ~3–10 in the morning to a minimum of ~2–3 around 15:30 UTC. At night, FAGE-calculated $P(\text{O}_3)$ is small but still positive (~0.1–0.3 ppb h$^{-1}$), which is approximately an order of magnitude higher than the model predictions (<0.03 ppb h$^{-1}$).

The average integrated (cumulative) daytime (06:00–18:00 UTC) FAGE-calculated $P(\text{O}_3)$ was ~60 ppb day$^{-1}$ in comparison to measured ozone rises of ~15 ppb day$^{-1}$, based on the observed diurnal profile of ozone mixing ratios (Figure 5.6), implying that most of the ozone produced locally at the WAO site was removed by transport or deposition. Cryer (2016) estimated ICOZA daily $P(\text{O}_3)$ from measured k'_{OH} and [OH], and [RO$_2$] calculated from a steady state analysis, although this was based on a preliminary daytime average OH concentration of $\sim5 \times 10^6$ molecule cm$^{-3}$ (actual daytime average $\sim3 \times 10^6$ molecule cm$^{-3}$), and the contribution to $P(\text{O}_3)$ from HO$_2$ was not considered. Nonetheless, this yielded an integrated $P(\text{O}_3)$ of 39 ppb day$^{-1}$, similar to the value obtained from measured radicals (~60 ppb day$^{-1}$), where the difference can mostly be accounted for by subtraction of the HO$_2$ contribution ($\sim20\%$ of FAGE-calculated $P(\text{O}_3)$ on average, yielding ~48 ppb day$^{-1}$). The $P(\text{O}_3)$ calculation was repeated using k'_{OH} that could be accounted for from measured trace gases, which yielded a much smaller value of ~12 ppb day$^{-1}$, virtually the same as that calculated from MCM-modelled radical concentrations (~14 ppb day$^{-1}$), i.e., both approaches show that daily $P(\text{O}_3)$ is underestimated by $\sim70\%$. Together, these results suggest that the MCM model underpredictions of RO$_2$ and $P(\text{O}_3)$ are due to unmeasured VOCs, although no conclusion can be drawn as to whether these are primary VOCs, or OVOCs that are not well-simulated in the model.

The dependence of $P(\text{O}_3)$ calculated from measured and modelled radical concentrations on NO is shown in Figure 5.22. At very low NO (<55 pptv), $P(\text{O}_3)$ calculated from both FAGE measurements and MCM-base peroxy radicals are close to zero. It is possible that
ozone loss rates have been underestimated in both cases, as equation (E5.2) does not consider chemical ozone losses through photolysis and reaction with alkenes, or reactions involving halogen species. As NO increases, both FAGE- and model-calculated $P(O_3)$ increase, but the NO-dependence is much stronger for the observations, resulting in a linear increase in the measurement-to-model ratio with NO (note, NO shown on log scale so dependence does not appear linear in Figure 5.22). This is mostly due to the increasing model underprediction of RO$_2$ radicals with NO (Figure 5.19). For NO mixing ratios above 3 ppbv, $P(O_3)$ reaches \sim25–35 ppbv h$^{-1}$ (IQR) for the observations, but only \sim2 ppbv h$^{-1}$ for the model, i.e., a factor \sim16 discrepancy.

Peroxy radicals have previously been measured at the WAO, using the PERCA (PEroxy Radical Chemical Amplification, Chapter 1.3.3) technique, in September 2002. These results were reported by Fleming et al. (2006), in which the NO-sensitivities of gross ozone production rates, $p(O_3)$ (i.e., equation (E5.1)), observed in different locations were compared. For consistency, ICOZA data were analysed in the same manner, by plotting ln($p(O_3)$) vs ln([NO]), with the results shown in Figure 5.23. The FAGE-calculated data show a strong linear correlation ($R^2 = 0.84$), with a least squares gradient (\sim1) in agreement with that of Fleming et al. (2006) and a comparable intercept. However, care must be taken when comparing RO$_3$LIF to PERCA data, as while both techniques rely on the indirect detection of RO$_2$ via chemical conversion (to OH or NO$_2$), the PERCA radical chain length (equal to one for RO$_3$LIF) must be corrected for ambient RH, which introduces additional uncertainty (Mihele and Hastie, 1998; Mihele et al., 1999). Regardless, the ICOZA MCM-base data exhibit weaker correlation ($R^2 = 0.49$), and yield a slope significantly different from both sets of observational data (\sim20% lower), although the intercept is in agreement with the 2002 data (Fleming et al., 2006).

A full assessment of the ICOZA ozone production sensitivity regime is beyond the scope of this work, but the strong correlation between ln($p(O_3)$) and ln([NO]) (Figure 5.23, $R^2 = 0.84$), as well as the lack of correlation between $p(O_3)$ and $k'$$_{OH}$ ($R^2 = 0.05$, data not shown), suggest that ozone production was in the NO$_x$-limited regime. Further evidence is provided by the even stronger linear correlation of binned $P(O_3)$ data with NO (Figure 5.22, $R^2 = 0.996$ for a linear fit to medians), and the fact that no turnaround in $P(O_3)$ was found.
5.2.6 Case Study: Heatwave and High-Ozone Event (1st July)

The highest ozone levels of up to ~110 ppbv were observed at the start of the ICOZA campaign on 1st July 2015. This day was also characterised by the highest temperatures of the campaign, reaching ~30°C around midday. Back-trajectory analysis (Cryer, 2016) for this period showed that sampled air masses had spent a considerable amount of time over land, including both the UK as well as northern continental Europe (the Netherlands/NW Germany). Time series of radical and trace gas concentrations and meteorological parameters for the 1st July are shown in Figure 5.24. PSS model OH predictions (orange line) are available for the entirety of this period, but unfortunately comparison to MCM-base predictions is not possible until the afternoon as this corresponds to the start of GC-FID VOC measurements.\(^1\) Measured RO\(_2\) concentrations are split into simple (green line and shaded area) and complex (red) RO\(_2\), but only model

![Figure 5.23](image)

Figure 5.23. Natural logarithm of the gross ozone production rate \(p(O_3)\), i.e., \(O_3\) loss not subtracted) calculated from measured (blue diamonds) and MCM-base peroxy radicals (grey circles) vs ln(NO/ppbv). Least squares fits to the data are denoted by the solid lines, with fit coefficients \((\pm 2\sigma)\) shown in the insets. For comparison, the analogous trend (solid red line) in \(p(O_3)\) calculated from PERCA \(\sum RO_2 + HO_2\) measurements made during a previous campaign at the WAO in September 2002 is also given (Fleming *et al.*, 2006).

\(^1\) Similarly, for the PSS model, the contribution to OH production from alkene ozonolysis reactions is not available until this time. The PSS OH is therefore a lower a limit, although at most other times ozonolysis OH sources were negligible (Figure 5.10).
Figure 5.24. Case study of the heatwave and high-ozone event that occurred on 1st July 2015: (A)-(C) FAGE radical observations and model results, (D) $P(O_3)$ calculated from FAGE-measured and model-predicted HO2 and RO2 concentrations, and (E) temperature, VOC k'_{OH} (note ×2, obtained by subtraction of inorganic loss rates, see text for details), and NO (right axis). Also shown in panel (D) is the integrated ozone production (06:00–18:00 UTC) calculated from FAGE observations, along with measured ozone mixing ratios (right axis). Colours are analogous to those used in Figures 5.3 and 5.4. In panel (C), the measured contributions from complex and simple RO2 radicals are shown by the red and green shaded areas, respectively, but only modelled total RO2 is shown for clarity. Error bars (2σ) in panels (A)-(C) include both accuracy (26%) and precision (15 min standard error, SE) terms; errors in $P(O_3)$ were estimated at 40%.
total RO\textsubscript{2} is shown. \(P(\text{O}_x) \) calculated from measured and modelled radical concentrations is also given for this period, along with the integrated daytime (06:00–18:00) \(P(\text{O}_x) \) calculated from observed radicals.

At midnight, OH concentrations were scattered around zero, but there were small but significant concentrations of HO\textsubscript{2} (\(\sim 4 \times 10^7 \) molecule cm-3) and RO\textsubscript{2} (\(\sim 1 \times 10^8 \) molecule cm-3, \(\sim 100\% \) sRO\textsubscript{2}). As NO mixing ratios started to increase at sunrise (~04:00 UTC), HO\textsubscript{2} was depleted at the same time \(J(\text{HONO}) \) started to rise (see Figures 5.3 and 5.5), leading to elevated concentrations of OH (\(\sim 5 \times 10^6 \)) that are not captured by the PSS model. There was no observable effect on RO\textsubscript{2} as its increased loss to NO was compensated by the high OH levels, and as such FAGE-calculated \(P(\text{O}_x) \) increased by an order of magnitude during the NO rise.

Following this, OH concentrations responded to changes in NO but show a general increase, while HO\textsubscript{2} and RO\textsubscript{2} concentrations remained low and fairly constant. The PSS model generally underpredicts the observed OH concentrations around this time. At ~11:00 UTC there was an obvious change in air mass, during which the wind direction changed from ~120° to 180° (i.e., ESE to S, sea to land). The chemical conditions before and after this event are strongly contrasting. Over the course of just one hour, the temperature rose by over 10°C, while NO mixing ratios dropped from ~3000 to ~800 pptv and VOC \(k'_{\text{OH}} \) increased by \(\sim 50\% \). Peroxy radicals increased sharply in response, reaching up to \(5 \times 10^8 \) and \(8 \times 10^8 \) molecule cm-3 for HO\textsubscript{2} and total RO\textsubscript{2} respectively, and \(f_{\text{complex}} \) also increased from effectively zero to \(\sim 20–40\% \). OH concentrations doubled to \(\sim 1 \times 10^7 \) molecule cm-3 then further increased to \(\sim 1.2–1.8 \times 10^7 \) molecule cm-3 as NO continued to decrease, where the latter feature was not captured by the PSS model, which predicted much lower OH of \(\sim 2–6 \times 10^6 \) molecule cm-3.

At the time at which MCM-base model predictions become available, when radical levels are starting to decrease through the afternoon, the model simulates OH reasonably and HO\textsubscript{2} very well, but RO\textsubscript{2} concentrations are underpredicted by approximately a factor of three. As a result \(P(\text{O}_x) \) is underestimated, with a mean ± 2\(\sigma \) measurement-to-model ratio of 3.0 ± 1.6 (range: 1.3–4.6) during the afternoon (before 18:00 UTC). The integrated daytime \(P(\text{O}_x) \) calculated from the measurements is 124 ppbv, which is a substantial fraction of the observed rise (76 ppbv). The high ozone levels persist throughout the rest of the day and evening (still ~80 ppbv at midnight), leading to significant peroxy radical concentrations, presumably formed via alkene ozonolysis or NO\textsubscript{3} radical chemistry
(MCM-base predicts ~20–35 ppt NO\textsubscript{3} on this night). However, OH was scattered around zero, likely as a result of limited radical propagation under the low-NO conditions. Observed HO\textsubscript{2} concentrations of \(\sim 1 \times 10^8 \) molecule cm\(^{-3} \) were a factor of \(\sim 2–3 \) higher than model predictions, while RO\textsubscript{2} (\(\sim 3 \times 10^8 \) molecule cm\(^{-3} \)) is captured reasonably well around 21:00 UTC but otherwise underpredicted. During this night, \(f_{\text{complex}} \) was as high as \(\sim 60\% \).

5.3 Discussion

5.3.1 Comparison to TORCH 2 and other coastal campaigns

OH and HO\textsubscript{2} have previously been measured at the WAO using FAGE, most recently in May 2004 as part of the TORCH 2 campaign (Smith, 2007). The modelling work for TORCH 2 used measurement constraints from a very similar suite of instruments to the ICOZA campaign, although aerosol data were not available for the treatment of HO\textsubscript{2} heterogeneous uptake. On a diel-average basis, OH peaked at similar levels (\(\sim 4 \times 10^6 \) molecule cm\(^{-3} \)) to ICOZA, but slightly later in the day (\(~12:00\) UTC, cf. \(~10:30\) UTC for ICOZA, Figure 5.6). However, much higher nighttime OH was measured during TORCH 2 (\(\sim 1–2 \times 10^6 \), cf. \(\sim 1–3 \times 10^5 \) molecule cm\(^{-3} \) for ICOZA), although it is suspected that these data were affected by laser-timing drifts and are therefore considered to be anomalous (Prof. Dwayne Heard, personal communication).\(^1\) Despite this, the OH measurement-to-model ratios are similar for the two campaigns, with mean ratios of \(\sim 1.2 \) (cf. \(\sim 0.9 \)) and \(\sim 8 \) (\(\sim 6 \)) for day and nighttime TORCH 2 data, respectively. For a linear fit (intercept forced to zero) of OH to \(J(\text{O}(^1\text{D})) \), TORCH 2 data yield a slope (\(3.7 \times 10^{11} \) s molecule cm\(^{-3} \)) virtually identical to ICOZA (\(3.6 \times 10^{11} \) s molecule cm\(^{-3} \), Figure 5.9). In terms of OH sources the two campaigns bear close resemblance, where a rate-of-production analysis for a polluted period of TORCH 2 revealed that the dominant source was HO\textsubscript{2} + NO (67\%, cf. 66\% for ICOZA, Figure 5.10), followed by O(\(^{1}\text{D}) + \text{H}_2\text{O} (21\%, cf. 15\%), and HONO was also important (contribution not given).

Measured HO\textsubscript{2} levels were also very similar, peaking in the afternoon (\(~14:00\) UTC) at \(\sim 8 \times 10^7 \) molecule cm\(^{-3} \) (cf. \(1 \times 10^8 \) molecule cm\(^{-3} \) for ICOZA, Figure 5.6), with levels of

\(^1\) These data were collected before the Leeds FAGE was modified to incorporate a fast photodiode to measure the position of the laser pulse in time, to enable automatic temporal correction of detector gating (Chapter 2.1.3).
260

~2–3 × 10^7 molecule cm^{-3} at night (Smith, 2007). For TORCH 2, modelled HO_2 peaked
slightly later at ~16:00 UTC, with a daytime measurement-to-model ratio (~0.5) that is
similar but slightly lower than ICOZA (~0.8). However, at night, TORCH 2 HO_2 was still
somewhat overpredicted (ratio ~0.8) whereas ICOZA HO_2 was significantly
underpredicted (~7). The differences in day and nighttime ratios between the two
campaigns may be due in part to the TORCH 2 model not considering HO_2 losses to
aerosols.

A summary of HO_x measurements during previous remote marine and coastal field
campaigns can be found in Table 1.2, discussed in detail in Chapter 1.4.2.1. For ground-
and ship-based campaigns, measured noontime OH concentrations were mostly in the
range ~4–6 × 10^6 molecule cm^{-3}, and generally the observations have been found to agree
with model predictions within ~25% (Sommariva et al., 2004; Sommariva et al., 2006;
Whalley et al., 2010; Beygi et al., 2011; van Stratum et al., 2012), both of which are
features shared by ICOZA (Figure 5.6).

For HO_2, the observed concentrations and levels of measurement-model agreement have
generally been more variable. In terms of HO_2, ICOZA is most similar to the North
Atlantic Marine Boundary Layer EXperiment (NAMBLEX), which took place at Mace
Head, Ireland, in summer 2002 (Heard et al., 2006). During NAMBLEX, noontime HO_2
concentrations were in the range 0.9–2.1 × 10^8 molecule cm^{-3} and were overpredicted by
up to a factor of 2 (Sommariva et al., 2006). These results are almost identical to the
findings of ICOZA despite the substantial differences in chemical conditions (e.g., the
much lower anthropogenic influence and the role of halogen species during NAMBLEX).

During the Diel Oxidants Mechanisms In relation to Nitrogen Oxides (DOMINO)
campaign in SW Spain in Nov–Dec 2008, similar HO_2 levels of up to ~1.5 × 10^8 molecule
cm^{-3} were observed (in continental air, analogous to the dominance of UK air during
ICOZA). However, model calculations were only performed for one day, using a mixed-
layer model, which showed significant morning and afternoon underpredictions (van
Stratum et al., 2012). This may be due in part to interferences from RO_2 radicals (Fuchs
et al., 2011; Whalley et al., 2013), which were not known about at the time. For other
campaigns, HO_2 concentrations were generally above ~2 × 10^8 molecule cm^{-3}
(Sommariva et al., 2004; Whalley et al., 2010; Beygi et al., 2011), higher than the range
observed during ICOZA (~0.5–2 × 10^8 molecule cm^{-3}), although the observations have
mostly been underpredicted.
5.3.2 Underprediction of RO₂ under high-NOₓ conditions

As discussed in Section 5.2.4, under moderate and high-NOₓ (>150 pptv NO), excellent measurement-model agreement is found for OH, HO₂, and the HO₂-to-OH ratio (Figures 5.13–5.15) within instrumental uncertainty (~26%). However, both simple and complex RO₂ concentrations are significantly underpredicted, by as much as a factor of ~30 (sRO₂, see Figure 5.19) at the highest NO levels encountered (~3–8 ppbv). It was also discussed previously that the discrepancy is reduced if a correction for MPNA (Chapter 2.3.1) is applied to the data, although this is still not sufficient to resolve the underprediction (factor of ~20 remaining), even when considering only total peroxy radicals (ΣRO₂ + HO₂, ~7). Consequently, P(Oₓ) is underpredicted by up to a factor of ~16 under high-NOₓ conditions (Figure 5.22). Since ClNO₂ (Sommariva et al., 2018) was measured during ICOZA and constrained in all model scenarios, ClNO₂ photolysis to form Cl and the subsequent reactions of Cl with VOCs is not thought to be the source of the missing RO₂. However, as the organic chlorine chemistry in MCMv3.3.1 is limited to reactions with alkanes, additional chlorine chemistry (e.g., reactions with alkenes, OVOCs, etc.) should be included in future model runs to fully assess the role of chlorine during ICOZA.

The underprediction of RO₂ and hence P(Oₓ) at high NO has been seen in all of the previous studies for which RO₂ radicals were measured using the ROₓLIF technique, although as these were mostly performed in urban/suburban environments, NO levels were generally higher. During the ClearLo campaign in London, summer 2012, total RO₂ and cRO₂ radicals were both underpredicted by approximately an order of magnitude for NO mixing ratios above 10 ppbv (Whalley et al., 2018). While both RO₂ classes showed an increasing divergence from model predictions with NO, this was more pronounced for total RO₂, with median measurement-to-model ratios of ~4 and ~5 at 3–4 and 7–8 ppbv NO, respectively (cf., ~30 for ICOZA sRO₂ at 3–8 ppbv NO). The analogous ratios observed during a summer 2014 campaign in Wangdu, a rural site in the North China Plain (NCP), are closer but still somewhat smaller than for ICOZA, with average values of ~3–5 (total RO₂) for NO above 1 ppbv, but reaching a factor of ~10 at 4 ppbv NO (Tan et al., 2017). Similarly, for the Beijing winter finE particle STudy – Oxidation, Nucleation and light ExcitPhoenix (BEST-ONE) campaign during Jan–Mar 2016, total RO₂ radicals were increasingly underpredicted with NO for values above 1 ppbv, by a factor of ~9 at ~6 ppbv (Tan et al., 2018). HO₂ was also underpredicted under high-NOₓ conditions for both campaigns in China. Preliminary, unpublished RO₂ measurement-model
comparisons for the AIRPRO campaigns (Chapter 4.2) show similar dependences on NO during both summer and winter, with ratios of up to ~30 for NO above 10 ppbv in the wintertime (Eloise Slater, personal communication). Currently, there is no reasonable explanation for the RO$_2$ discrepancy under high-NO$_x$ conditions, consistently seen in previous field campaigns and now observed for ICOZA.

5.4 Conclusions and Future Work

OH, HO$_2$, and RO$_2$ radicals were measured using the FAGE technique in summer 2015 as part of the ICOZA project, which took place in Weybourne on the north Norfolk coast, UK, and aimed to improve our understanding of ozone chemistry in the troposphere. Measured OH peaked in the morning, when NO (~1 ppbv) and HONO (~180 pptv) mixing ratios were at their highest, with a diel-average maximum value of $\sim 5 \times 10^6$ molecule cm$^{-3}$ and daily maxima in the range $3-17 \times 10^6$ molecule cm$^{-3}$. MCM model predictions were in good agreement with OH observations during the daytime, with measurement-to-model ratios of ~0.8–1.1 for the model constrained to HO$_2$. However, a photostationary steady-state (PSS) model, which was based on measured quantities only, significantly underpredicted the measurements by a factor of 1.6 ± 0.6, suggesting that OH reactivity was underestimated in the MCM model. After correcting OH measurements for the estimated contribution from interferences this ratio was reduced to 1.5 ± 0.6, indicating measurement-model agreement at the limit of their combined uncertainties, although any difference cannot be explained by measurement interferences alone. The PSS model was used to assess the experimental OH budget, which showed that the reaction of HO$_2$ with NO was the main OH source (daytime average ~70%), with roughly equal contributions from HONO photolysis and the reaction of O1D with water vapour (~15% each). Nighttime OH levels of $\sim 1-3 \times 10^5$ molecule cm$^{-3}$ were underestimated in all model scenarios, by up to a factor of ten.

HO$_2$ levels peaked in the afternoon, corresponding to the time when NO mixing ratios were low (~200 pptv) and HCHO concentrations were at their highest (~1.5 ppbv), with a diel-average maximum value of $\sim 1 \times 10^8$ molecule cm$^{-3}$ and daily maxima in the range 0.8–4 $\times 10^8$ molecule cm$^{-3}$. MCM simulations were able to reproduce the observed HO$_2$ in the morning and around midday, with measurement-to-model ratios of ~0.6–1.4, but significant overpredictions of up to a factor of ~3 were found in the afternoon. At night, measured HO$_2$ concentrations were in the range $\sim 2-3 \times 10^7$ molecule cm$^{-3}$ and were
underestimated by approximately an order of magnitude. Total RO₂ radical concentrations exhibited daily maxima in the range 2×10^8 molecule cm$^{-3}$ and also peaked in the afternoon, with diel-average maximum values of 2.5×10^8 and 1.5×10^8 molecule cm$^{-3}$ for simple and complex RO₂, respectively. For both RO₂ classes, the MCM models underpredicted the observations throughout most of the day, with average measurement-to-model ratios of $\sim 8–10$, although the balance of simple and complex RO₂ species was captured well for much of the daytime.

The simultaneous measurement of HO₂ and RO₂ allowed for calculation of the chemical, *in situ* ozone production rate, $P(O_x)$. On a diel-average basis, $P(O_x)$ peaked in the morning at ~ 14 ppbv h$^{-1}$ due to the higher NO levels at this time. However, as a consequence of the model underprediction of RO₂ radicals, daytime $P(O_x)$ calculated from modelled peroxy radical concentrations was a factor of $\sim 3–10$ lower. As a result, the daily integrated ozone production was underestimated by $\sim 70\%$.

With the exception of OH, the model success in simulating radical concentrations displayed strong dependences on NO$_x$ levels. PSS model predictions were in reasonable agreement with OH observations at low NO, such that there is no evidence for a missing OH source under low-NO$_x$ conditions during ICOZA. However, HO₂ was significantly overpredicted at low NO, by up to a factor of ~ 5 for NO < 20 pptv, which could relate to the treatment of heterogeneous HO₂ losses, or autoxidation chemistry. In contrast, RO₂ concentrations were increasingly underestimated with increasing NO, reaching factors of $\sim 20–30$ for NO above 3 ppbv, which cannot be explained by the measurement interference from MPNA alone. A missing primary RO₂ source from the reactions of chlorine atoms with VOCs seems an unlikely explanation for the RO₂ discrepancy, but this cannot be explicitly ruled out until additional organic chlorine chemistry is included in the MCM model. The underprediction of RO₂ at high NO resulted in the underestimation of $P(O_x)$ under high-NO$_x$ conditions.

At the start of the ICOZA campaign, the WAO site was subject to a high-ozone (up to 110 ppbv), heatwave (temperatures of up to 30°C) event, where air masses had spent a considerable amount of time over the UK and northern continental Europe. OH and RO₂ concentrations were significantly underpredicted, such that $P(O_x)$ values were also underestimated by a factor of ~ 3 on average. The high-ozone event could not be predicted even when using a highly-constrained box model with an explicit chemical mechanism,
which presents an even greater challenge for regional modelling studies and therefore policymakers seeking to mitigate ozone pollution events.

Future modelling work should first seek to resolve the issues with production and loss rate files, so that MCM OH reactivity can be compared to measured OH reactivity, as well as the reactivity calculated from trace gas observations only to assess the role of model-generated intermediates (i.e., OVOCs). Following this, budget analysis may be conducted for total ROx radicals (= OH + HO2 + RO2), as well as the rates of interconversion between the different radical species, i.e., turnover rates of OH \rightarrow RO2/HO2, RO2 \rightarrow HO2, and RO2/HO2 \rightarrow OH. A model scenario constrained to both measured HO2 and OH reactivity should be compared to observations and PSS predictions, in order to test whether additional MCM OH sources (e.g., RO2 isomerisation, HO2 + RO2 reactions) can help to reduce the degree of OH underprediction. A model constrained to measured OH reactivity should also help to close the gap for RO2. The discrepancies found for HO2 under low-NOx conditions may be investigated by performing model sensitivity runs in which the HO2 uptake coefficient (\(\gamma_{HO2}\), set to 0.1 here) is varied (e.g., up to its maximum theoretical value of unity); aerosol composition data could be used to determine a more appropriate value for \(\gamma_{HO2}\). A representation of autoxidation chemistry could also be included to determine the effects of unimolecular peroxy radical reactions on HO2 and RO2 at low NO (Whalley et al., 2018). The chlorine chemistry scheme in the MCM should be extended to include the reactions of chlorine atoms with alkene, aromatic, and oxygenated VOCs.

The RO2 measurement-model discrepancy could be explored by further speciation of model RO2 radicals, such as into a few of the most relevant individual RO2 species, or into different subclasses (e.g., short alkane, long alkane, alkene, aromatic, NO3-based, etc.). This could be particularly interesting for nighttime chemistry, i.e., NO3-VOC reactions, since high nighttime RO2 levels were observed and the MCM models predicted relatively high RO2 concentrations before sunrise. In addition, the most severe underpredictions of OH and HO2 were found at night, suggesting missing radical sources that may also relate to NO3 chemistry. However, interferences in FAGE HO2 and RO2 measurements from O3/H2O (known for OH) and NO3 radicals (negligible for OH) (Fuchs et al., 2016) will need to be quantified before nighttime chemistry can be evaluated in detail.
At the start of this chapter, the chemistry of ozone in the troposphere was discussed in terms of the different sensitivity regimes of in situ ozone production, i.e., NO\textsubscript{x}- or VOC-limited. The ozone production sensitivity regime can be determined from a simple metric, the ratio \(L_n/Q \), where \(L_n \) is the rate of radical-NO\textsubscript{x} termination reactions, and \(Q \) is the total radical initiation rate (Kleinman et al., 1997; Kleinman et al., 2001). A ratio above 0.5 suggests that ozone production is VOC-limited, while values below this indicate that ozone production is in the NO\textsubscript{x}-limited regime. This metric has been used to assess ozone sensitivity in previous urban campaigns (Mao et al., 2010; Griffith et al., 2016), and is an analysis that should be performed for ICOZA. Considering the strong correlation between \(p(\text{O}_3) \) and NO, it is expected that \(L_n/Q \) analysis would show that ozone production was generally in the NO\textsubscript{x}-limited regime.

5.5 References

comparison within the ACCENT project, Atmospheric Chemistry and Physics, 8, 5373-5391, 2008.

Dillon, T. J., and Crowley, J. N.: Direct detection of OH formation in the reactions of HO2 with CH2C(O)O2 and other substituted peroxy radicals, Atmospheric Chemistry and Physics, 8, 4877-4889, 2008.

Sommariva, R., Hollis, L., Sherwen, T., R Baker, A., M Ball, S., J Bandy, B., G Bell, T., N Chowdhury, M., Cordell, R., Evans, M., D Lee, J., Reed, C., E Reeves, C., M Roberts,

Whalley, L. K., Blitz, M. A., Desservettaz, M., Seakins, P. W., and Heard, D. E.: Reporting the sensitivity of laser-induced fluorescence instruments used for HO$_2$ detection to an interference from RO$_2$ radicals and introducing a novel approach that enables HO$_2$ and certain RO$_2$ types to be selectively measured, Atmospheric Measurement Techniques, 6, 3425-3440, 2013.

6. Conclusions and Future Work

Chapter 1 outlined the fundamental chemistry controlling tropospheric oxidation in terms of the reaction cycles of OH and HO₂ radicals, collectively known as HOₓ. An overview of the measurement of OH and HO₂ radicals using the fluorescence assay by gas expansion technique (FAGE) was given, with a particular focus on interferences in OH and HO₂ detection. Previous comparisons of HOₓ observations to the radical concentrations predicted by detailed chemical box models were explored in detail. It was shown that the most severe measurement-model discrepancies have been found in low-NOₓ, biogenic environments, although these studies may have been biased by measurement artefacts. Chapter 2 described the features of the Leeds ground-based FAGE instrument and the methods used to calibrate its response to radical concentrations. Operation of the FAGE instrument in the field, including the procedures used to workup ambient data in order to obtain OH, HO₂, and (partially) speciated RO₂ radical concentrations, was covered in detail.

Chapter 3 introduced the Leeds inlet pre-injector (IPI), which was constructed to test for OH measurement interferences and features a chemical scavenger system that removes ambient OH radicals (through reaction with propane) prior to FAGE sampling. In normal FAGE operation, background signals are determined by moving the laser excitation wavelength to a value where OH does not absorb, known as OHwave. However, this method cannot discriminate between real, atmospheric OH, and any OH formed artificially inside the FAGE cell. The IPI system allows the OH chemical background to be determined, yielding measurements of OHchem, which are free from interferences caused by internally-formed OH. The IPI was characterised in terms of sensitivity, where despite the presence of additional surfaces when sampling through the IPI, and thus the possibility of increased OH and HO₂ wall losses, it was found that the sensitivity was virtually identical (within ~5%) to conventional FAGE sampling. Since the use of the IPI results in partial shading of the FAGE inlet, which reduces solar background signals, but the sensitivity is unchanged, instrumental limits of detection are actually better than for conventional FAGE sampling. This is in addition to the main advantage of the IPI system, namely the determination of interferences in ambient OH measurements, and it is therefore recommended that the IPI is used near-continuously during future field campaigns.
The IPI was also characterised in terms of the OH removal efficiency, which was shown to be ~100% at the propane concentrations used for fieldwork. Internal removal, i.e., reaction of OH with the scavenger inside the FAGE cell, was shown to be negligible (<5%) at the same scavenger concentrations. However, further experiments are required to validate this methodology, by increasing the scavenger concentration to ensure significant internal removal is eventually observed. Alternatively, internal OH could be generated in a different manner, such as from a mercury lamp placed inside the FAGE cell. The IPI system was used to test for OH interferences in the ozonolysis of isoprene, since interferences have been observed previously in O₃/alkene systems, postulated to originate from the decomposition of stabilised Criegee intermediates (sCIs). Interference signals were observed, which could be reduced by the addition of water vapour (a known sCI scavenger) or increasing the propane concentration (to remove steady-state generated OH), although in all cases the magnitude of the interference was negligible when extrapolated back to ambient ozone and isoprene mixing ratios (<100 molecule cm⁻³). Overall, the results of these experiments were inconclusive as to the nature of the interference, and it is recommended that future tests should incorporate another sCI scavenger (e.g., acetic acid) and assess its effects over a range of propane concentrations. Different alkenes should be tested, such as isoprene oxidation products (e.g., MVK) and monoterpenes. Following this, interferences in HO₂ and RO₂ detection from NO₃ radicals should be determined, since at present these are only known for OH. Interference tests should also be conducted for the Leeds aircraft FAGE system, which is likely more prone to measurement interferences since it features a much longer inlet and therefore a longer residence time between sampling and detection.

The newly-constructed IPI system was successfully deployed during three intensive field campaigns, as described in Chapter 4, as part of the ICOZA (Integrated Chemistry of OZone in the Atmosphere) and AIRPRO (an integrated study of AIR pollution PROcesses in Beijing) projects. These campaigns took place at the Weybourne Atmospheric Observatory (WAO) on the north Norfolk coast, UK, in summer 2015, and in Beijing, China, during two separate intensives in winter 2016 and summer 2017. The studies allowed for the measurement of OH interferences in very different environments and thus under a wide range of chemical conditions, providing ideal tests of the susceptibility of the Leeds FAGE instrument to measurement artefacts. Overall, the chemical background method (OHchem) was in excellent agreement with conventional OH measurements (OHwave), with intercomparison slopes (OHwave vs OHchem) ranging from 1.05 to 1.16
for the various campaigns, where the best agreement was found for AIRPRO observations. However, for ICOZA, interferences were consistently observed at night (\(~40\% \) of the total OH signal), and occasionally during the daytime, although the nighttime contribution is amongst the lowest observed previously. No obvious diurnal profile was found for the background OH signal and it displayed no dependence on chemical conditions (e.g., NO and O\(_3\) levels), which makes ascribing the interference to a particular chemical species difficult. Perhaps the most surprising result of this chapter is that for AIRPRO summer, a photostationary steady-state (PSS) model underestimated OHchem observations by a factor of \(~2–3\) during the daytime, as this is the first time that an interference-free LIF measure of OH has been significantly underpredicted by a model.

The results of Chapter 4 present conflicting evidence as to whether OHwave data have been accurately corrected for the known interference from ozone, where AIRPRO results indicate that the O\(_3\)/H\(_2\)O contribution may have been overestimated. Therefore, along with further investigations of interferences from the intermediates of alkene ozonolysis reactions, the interference from O\(_3\)/H\(_2\)O should be reassessed in the laboratory. In terms of future ambient measurements, the IPI should be used near-continuously during fieldwork periods, as stated above. The priority would be to measure OH in a low NO\(_x\), biogenic environment, where the most significant OH interferences and model underpredictions have been found. Studies in other environments would also be useful, for example in polar regions, and vertically-resolved measurements (i.e., from aircraft platforms) could help to provide further information on the nature of OH interferences.

Chapter 5 described measurement-model comparisons for FAGE observations of OH, HO\(_2\), and RO\(_2\) radicals during the ICOZA project. This project aimed to help improve understanding of tropospheric ozone chemistry, where a key component was the calculation of \textit{in situ} ozone production rates, \(P(O_3) \approx P(O_3)\), from FAGE-measured HO\(_2\) and RO\(_2\). On a diel-average basis, OH peaked in the morning at \(~5 \times 10^6\) molecule cm\(^{-3}\), coinciding with high NO (~1 ppbv) and HONO (~180 pptv) mixing ratios. A box model constrained to the Master Chemical Mechanism version 3.3.1 (MCMv3.3.1) was able to reproduce the observed OH concentrations during the daytime, with measurement-to-model ratios of \(~0.8–1.1\) for a model constrained to HO\(_2\). However, a PSS model, based on measured quantities only, underpredicted daytime OH levels by a factor of \(~1.6\), suggesting the presence of missing OH sources or that OH reactivity was underestimated in the MCM model. Analysis of the OH budget showed that its main daytime source was
the reaction of HO2 with NO (~70%), with virtually equal contributions (~15%) from the reaction of O1D with water vapour (i.e., primary production) and HONO photolysis. At night, observed OH concentrations of ~1–3 × 10^5 molecule cm^{-3} were underpredicted by all model approaches, by up to a factor of ten, although the discrepancy was less severe when the model was constrained to HO2 (~3-fold underprediction).

HO2 concentrations peaked in the afternoon at ~1.0 × 10^8 molecule cm^{-3}, when NO mixing ratios were generally lower (~200 pptv). The MCM models overpredicted HO2 levels by up to a factor of ~3 at this time, but good agreement was observed in the morning and around midday, with measurement-to-model ratios of ~0.6–1.4. Similar to OH, nighttime HO2 levels of ~2–3 × 10^7 molecule cm^{-3} were significantly underpredicted by approximately an order of magnitude. Total RO2 levels peaked at the same time as HO2, with a diel-average maximum of ~4 × 10^8 molecule cm^{-3}. MCM simulations substantially underpredicted RO2 concentrations throughout the day and nighttime by a factor of ~9 on average, where the measurement-model discrepancy displayed a strong dependence on NO mixing ratios, reaching a factor of ~20 for NO > 3 ppbv. As a consequence of the underprediction of RO2, integrated daily P(O3) was underestimated by ~70% when calculated using model-derived peroxy radical concentrations. A heatwave event occurred at the start of the ICOZA campaign, which was characterised by air masses that had spent a considerable amount of time over the UK and northern Europe and resulted in high pollution levels. Measured ozone mixing ratios reached up to 110 ppbv, however, P(O3) values were underpredicted by a factor of ~3 on average during this event.

The main priority for future modelling work is to obtain outputs of production and loss rates. The MCM model OH reactivity can then be compared to that observed, and full analysis of the ROx budget can be performed. An MCM model constrained to measurements of both HO2 and OH reactivity should be compared to the PSS model, to assess the contributions of additional MCM OH sources (e.g., RO2 isomerisation) to the OH budget. Similarly, a model constrained to OH reactivity may also help to reduce the discrepancy found for RO2. Missing organic chlorine chemistry, i.e., reactions not included in the MCM, may be another reason for the underestimation of RO2, which could be tested by including additional chlorine atom-VOC reactions (e.g., for OVOCs) in the model. Under low-NOx conditions, HO2 was overpredicted, which could be due to the underestimation of HO2 heterogeneous loss rates and therefore model sensitivity runs should be performed in which the HO2 uptake coefficient (γHO2) is varied. The strong
correlation between $P(\text{O}_3)$ and NO suggests that ozone production during ICOZA was mostly in the NO$_x$-limited regime, but a more thorough analysis should be performed to determine the ozone sensitivity regime, for example using the common metric, L_n / Q.
Appendix – Custom IGOR Program for the Automated Analysis of ground FAGE Data

Overview

The majority of the data workup conducted for this thesis was performed in IGOR Pro (WaveMetrics Inc.), using a custom-written macro developed over the course of this work. Its key features are summarised in the screenshot of the graphical user interface (GUI) shown in Figure A1. The main functions of the program are described briefly here, and a full copy of the code (4038 lines) has been submitted as supplementary material. For the analysis program to work, the file (RWM_ambient_cal_ICOZA_final.ipf) must be stored in the following directory: C:\WaveMetrics\Igor Pro 6 User Files\Igor Procedures.

FAGE data files for the Leeds’ ground-based instrument (file type: “.dat”) are loaded using the buttons (“Load FAGE Data” box) in the top left (“Load first file” then “Append new data” for any additional files). The “Calculate‼‼‼‼” function (“Data Averaging”

![Figure A1. Graphical user interface (GUI) of the analysis program, summarising its main features.](image-url)
box) averages the raw data (1 s) to generate averages of different points of the data acquisition cycle, such as the online signals for OH and HO₂ (see Chapter 2.1.4). The same is done for J(O₁D) (measured using the filter radiometer) and instrumental “housekeeping” data, e.g., cell pressures, gas flows, photodiode signals (i.e., laser power). Errors (standard deviations, SD) are also computed for all averages. There is a pop-up menu to choose from common averaging times, such as those normally used for non-IPI (60 s online) and IPI (300 s) sampling.

Calibration analysis

After loading and averaging of FAGE data, calibration analysis simply requires inputs (“Calibration” box) in the form of \(f' \), lamp flux, and dew points (measured using the hygrometer). LIF signals are processed and radical concentrations are calculated according to the equations in Chapter 2.2. For ROₓ calibrations, there is a pop-up table to define the points at which a hydrocarbon (e.g., CH₄) was added. When the calibration data is plotted (signal vs concentration), an orthogonal distance regression fit yields the slope and intercept required for the workup of ambient data. For RO₂, the “A-factor” is also calculated. The plots generated are very similar in appearance to those shown in Chapter 2.2.

Ambient data workup

After loading and averaging of FAGE data, there is an option to input calibration factors (“Ambient Inputs” box), intercepts, and the RO₂ A-factor (or these can be left at their default values). The time series of \(f' \) is a required input, although this can be set to a constant value if it is appropriate. There are additional options in this section to load IPI autolog data (logged in a separate file to the main FAGE data), or auxiliary data (O₃, NOₓ, and H₂O).

The rest of the ambient data workup is performed sequentially using functions 1–9 in the “Ambient Data Workup” box. Signal differentials and concentrations are derived using the equations in Chapter 2.3. The “6. Manual filtering” function allows the user to remove points known to be anomalous, which must be written into the main code by setting these

¹ Before averaging, signal spikes are first removed from the FAGE count rate data, by filtering data outside the 1st–99th percentiles.
points to NaN (not-a-number, i.e., blanks). Automatic filtering of points is performed (flagged with an identifying number) as part of functions 2, 4, and 7, with the filters and their thresholds (for ICOZA data) summarised in Table A1. “7. Error calculations” calculates the errors for all radicals at 2σ, based on the sum in quadrature of their standard error (SE) and systematic uncertainty ($\sim 13\%$ at 1σ). “8. RO2 speciation” separates RO$_2$ data into simple and complex RO$_2$ (Chapter 2.3) and outputs a time series of their concentrations in the form of a stacked plot (Figure A2). Functions 5 and 9 output time series of all radical data and J(O$_1^D$) as one plot. Function 7 outputs time series plots for individual radical measurements, and also generates a histogram (Figure A3) that shows the number of points removed for each of the filters in Table A1. Since some of the filters need to be optimised for each field campaign, e.g. for cell pressure and offline signals that vary slightly between campaigns, the filters can be changed to less restrictive thresholds if too much data are removed.

Finally, the data can be exported using the two lower functions. “Edit all + Export!” generates a pop-up table of all radical data (concentrations, errors, detection limits, averaging start/mid/end timestamps, NaN flags, calibration factors and intercepts) and J(O$_1^D$), as well as various housekeeping data (f^*, laser power, cell pressure), and allows the data to be exported as a “.csv” file. “Export concs only” does the same but only includes J(O$_1^D$) and radical concentrations, errors, and timestamps.

Figure A2. Example time series generated from the “8. RO2 speciation” function, for data collected during IPI sampling periods of the 2015 ICOZA field campaign.
Table A1. List of FAGE data filters, with thresholds and the number of points removed (N_{filt}, expressed as an average across the measured radical species, see Figure A3) for the 2015 ICOZA field campaign (IPI data only, total $N = 1108$). LOD = limit of detection, SD = standard deviation, $LP =$ laser power, cps = counts per second, SNR = signal-to-noise ratio, conc. = concentration.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Filter</th>
<th>Threshold</th>
<th>N_{filt}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Low cell pressure</td>
<td>$< 1.4 \text{ Torr}$</td>
<td>61</td>
</tr>
<tr>
<td>2</td>
<td>Unstable pressure</td>
<td>SD > 0.01 Torr</td>
<td>31</td>
</tr>
<tr>
<td>3</td>
<td>Near laser tune-ups</td>
<td>$(LP_{\text{after}} - LP_{\text{before}}) > 5 \text{ mW}$</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Unstable reference cell</td>
<td>Ref. cell online SD > 20%</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Not online properly #1</td>
<td>(Ref. cell online average – ref. cell peak height during scan) > 20%</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Negative background</td>
<td>$<-0.02 \text{ cps mW}^{-1}$</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>Delays in going offline</td>
<td>>30 s time difference between last online and first offline point</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>IPI injection problems</td>
<td>Based on IPI autolog gas flow flags</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>High background</td>
<td>$>2 \text{ (HO}_3\text{) and } >6 \text{ (RO}_3\text{) cps mW}^{-1}$</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Noisy online</td>
<td>SD > 2 cps mW$^{-1}$ (OH only)</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>OHwave outlier</td>
<td>$> 1 \times 10^8 \text{ or } < 1 \times 10^7 \text{ cm}^{-3}$</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>OHchem outlier</td>
<td>$> 1 \times 10^8 \text{ or } < 1 \times 10^7 \text{ cm}^{-3}$</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>HO$_2$ outlier</td>
<td>$> 1 \times 10^{10} \text{ or } < 1 \times 10^9 \text{ cm}^{-3}$</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>HO$_2^*$ outlier</td>
<td>$> 1 \times 10^{10} \text{ or } < 1 \times 10^9 \text{ cm}^{-3}$</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>RO$_2$ outlier</td>
<td>$> 1 \times 10^{10} \text{ or } < 1 \times 10^9 \text{ cm}^{-3}$</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>Not online properly #2</td>
<td>$\lambda < 461.997 \text{ nm or } \lambda > 462.001 \text{ nm}$</td>
<td>10</td>
</tr>
<tr>
<td>17</td>
<td>Not offline properly</td>
<td>$(\lambda_{\text{offline}} - \lambda_{\text{online}}) < 2.05 \text{ pm}$</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>Offline early</td>
<td>Based on FAGE online/offline flags</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>Noisy offline</td>
<td>SD > 0.8 (HO$_3$) and SD > 2 (RO$_3$) cps mW$^{-1}$</td>
<td>0</td>
</tr>
</tbody>
</table>

Error filters (2σ)

30	OH	(error / conc.) > 4 (conc. > 2 $\times 10^6 \text{ cm}^{-3}$)	2
31	OHchem	(error / conc.) > 4 (conc. > 2 $\times 10^6 \text{ cm}^{-3}$)	0
32	HO$_2$	Error $> 2 \times 10^8 \text{ cm}^{-3}$ (day), $> 5 \times 10^7 \text{ cm}^{-3}$ (night)	6
33	HO$_2^*$	Error $> 2 \times 10^8 \text{ cm}^{-3}$ (day), $> 1 \times 10^8 \text{ cm}^{-3}$ (night)	2
34	RO$_2$	Error $> 3 \times 10^8 \text{ cm}^{-3}$ (day), $> 1.5 \times 10^8 \text{ cm}^{-3}$ (night)	14

LOD filters (SNR = 2)

35	OH	$> 2 \times 10^6 \text{ cm}^{-3}$	29
36	OHchem	$> 2 \times 10^6 \text{ cm}^{-3}$	29
37	HO$_2$	$> 1.4 \times 10^7 \text{ cm}^{-3}$	29
38	HO$_2^*$	$> 6 \times 10^7 \text{ cm}^{-3}$	0
39	RO$_2$	$> 1 \times 10^8 \text{ cm}^{-3}$	0
40	Lone point #1	If two points either side are NaNs	2
41	Lone point #2	Time difference either side > 30 min	0

Total for OH

| % OH data removed | 17% |

Figure A3. Histogram of the number of data points removed for each radical measurement (note log scale), for data collected during IPI sampling periods of the 2015 ICOZA field campaign. The different filters are defined in Table A1.
Additional analysis tools

The IGOR program also features tools to automate common data analysis procedures: diurnal generation, binning, and filtering. “10. Generate diurnals” requires only input waves\(^1\) of the data to be averaged and its corresponding timestamps. After setting the required averaging time (default = 15 min), a plot is produced like the one shown in Figure A4 for \(J(O^1D)\) data. The raw data, means (± 1 SD), and medians are shown as default, but percentiles (10/25/75/90) are also computed.

“11. Bin over data” simply requires inputs in the form of y-data (i.e., the data to be binned) and x-data (i.e., the data to bin over). The start of the first bin, the bin width, and the number of bins can all be specified, where the default option is to separate the x-data into eight bins, equally-spaced between the minimum and maximum x-values. The plot shows the same statistics as for diurnal generation, in addition to percentiles and the number of y-data points in each bin, as shown in the example of OH binned against \(J(O^1D)\) in Figure A5. A useful extension of the binning function is to use a time wave as the x-data, e.g., to compute daily average or maximum values of a given species.

The final function, “12. NaN points”, allows for additional data filtering in terms of the following criteria:

1. Consistent NaNs with another wave (e.g., to ensure measurement-model comparisons are performed for periods of mutual data overlap).
2. High-pass filter (e.g., to remove points below the LOD)
3. Low-pass filter
4. High-pass over another wave (e.g., radical data can be filtered over a \(J(O^1D)\) threshold to restrict an analysis to daytime conditions)
5. Low-pass over another wave
6. Mid-98% only, i.e., data outside the 1st–99th percentiles excluded (e.g., to remove spikes from particularly noisy data)

\(^1\) IGOR terminology, analogous to a column of data.
Figure A4. Example 15 min diurnal profile plotted using the “10. Generate diurnals” function, for measurements of $J(\text{O}^1\text{D}) \ (s^{-1})$ during the 2015 ICOZA field campaign. Error bars on the means correspond to ± 1 SD.

Figure A5. Example of a plot generated using the “11. Bin over data” function, in this case OH (molecule cm$^{-3}$) binned against $J(\text{O}^1\text{D}) \ (s^{-1})$ measured during the 2015 ICOZA field campaign.