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Abstract

The human brain is an extremely powerful pattern recogniser, as well as being

capable of displaying amazing feats of memory. It is clear that human memory is

associative; we recall information by associating items together so that one may be

used to recall another. This model of memory, where items are associated as pairs

rather than stored at a particular location, can be used to implement computer

memories which display powerful properties such as robustness to noise, a high

storage capacity and the ability to generalise. One example of such a memory is

the Binary Correlation Matrix Memory (CMM), which in addition to the previously

listed properties is capable of operating extremely quickly in both learning and recall,

as well as being well suited for hardware implementation. These memories have been

used as elements of larger pattern recognition architectures, solving problems such

as object recognition, text recognition and rule chaining, with the memories being

used to store rules. Clearly, the performance of the memories is a large factor in the

performance of such architectures.

This thesis presents a discussion of the issues involved with optimising the

performance of CMMs in the context of larger architectures. Two architectures

are examined in some detail, which motivates a desire to improve the storage

capacity and generalisation capability of the memories. The issues surrounding the

optimisation of storage capacity of CMMs are discussed, and a method for improving

the capacity is presented. Additionally, while CMMs are able to generalise, this

capability is often ignored. A method for producing codes suitable for storage in a

CMM is presented, which provides the ability to react to previously unseen inputs.

This potentially adds a powerful new capability to existing architectures.
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Chapter 1

Introduction

1.1 Motivation

Correlation matrix memories (CMMs) are neural associative memories which are

able to store a large number of associations between binary patterns, and can store

and recall these patterns at great speed. They are also tolerant to noise on the

input and are capable of reacting appropriately to previously unseen inputs which

bear a similarity to known inputs. The binary weighted form of this network has

been used to great effect in a number of novel architectures in various domains.

These include rule based systems [9] [12], image recognition [21] [71], and graph

matching [56]. The capabilities of CMMs in these architectures are very dependent

upon the representations which are used for the data items being stored. There are a

number of difficulties and trade-offs involved in the selection of a data representation.

However, this problem has not always been studied in detail in the production of

these architectures, possibly resulting in sub-optimal performance.

There are two primary areas of performance in CMMs which are focused on in

particular. The first is storage capacity. A binary weighted CMM is capable of

storing a very large number of associations between input and output pairs providing

an appropriate data encoding is chosen. The variation in capacity varies enormously

over the space of possible encodings, so the choice is very important indeed. A sparse

fixed weight representation gives a very good capacity, and a number of algorithms

exist for generating codes of this form. In addition, the thresholding function which

is used to convert from a continuous output activity to a binary code has an effect

on the storage capacity of a CMM. A well chosen threshold will result in fewer errors

21
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on the output of the memory, which allows a larger number of associations to be

stored in the memory before the errors become intolerable.

The second performance area we focus upon is generalisation, the ability of the

CMM to make appropriate recalls when presented with previously unseen inputs.

While other neural networks, such as multi-layer perceptrons, learn an internal

representation which allows for generalisation, in a CMM similar input items must be

assigned similar input codes. The ability to generalise would be extremely beneficial

in the architectures listed above. However, this capability of CMMs has remained

largely unexplored in these pieces of work.

This thesis aims to investigate the storage properties of CMMs, and to develop

new techniques for improving the performance of these memories in terms of both

storage capacity and generalisation. These benefits can then be passed on to any

architecture which utilises CMMs in its structure.

1.2 Chapter overview

In Chapter 2 a discussion of associative memories is conducted. Some background

is given on the theory of “associationism”, which explores the idea that human

memory consists of associations between memories. This theory is the basis

for a computational model of associative memory, which has also been called a

mapping memory. Two contrasting methods of constructing such memories are

discussed: content addressable memories and neural associative memories. A

number of examples of associative memories are described, with particular focus

on the aforementioned correlation matrix memory (CMM).

Chapter 3 contains detailed descriptions of two architectures which use CMMs as

a primary component. These are the Cellular Associative Neural Network (CANN)

and the Associative Rule Chaining Architecture (ARCA). The CANN is an object

recognition architecture based upon ideas taken from cellular automata. It consists

of a regular grid of cells, each of which takes an input from a small subsection of

an image. By exchanging information within a neighbourhood each cell builds up a

local representation of the object to which it belongs. Objects are represented as a

hierarchy of labels, and each cell is able to select an appropriate label through the

use of rules. The rules are stored in CMMs, enabling their quick learning and recall,

as well as allowing partial matching for rules which are not completely fulfilled.
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ARCA aims to solve the problem of forward chaining; applying a set of rules to a

number of symbols, and determining the consequences. While traditional approaches

to this problem involve searching through a tree using a method such as depth-first

search, ARCA is able to process each layer of the tree in parallel. Again, CMMs are

used to store rules in the architecture. An experimental analysis of the architecture

is conducted, examining how the recall performance is affected by the size of the

CMMs.

In Chapter 4 a discussion of the issues involved with determining and maximising

storage capacities of CMMs is presented. A review of theoretical work on the

subject is conducted, identifying some important features which codes to be stored

in CMMs require in order to maximise capacity. Specifically, codes should be

sparsely coded, fixed weight and close to being an orthonormal set. A number

of methods for generating such codes are discussed, along with some appropriate

thresholding techniques. A novel thresholding technique, L-wta, is then presented

for one particular code generating algorithm. Results are presented demonstrating

the improvement in performance provided by L-wta.

Chapter 5 focuses on the idea of generalisation, and how codes might be generated for

CMMs which allow the memory to display this property. Some discussion of how this

property interacts with storage capacity is presented. Existing methods which can

be used to generate codes which are suitable for providing generalisation in a CMM,

and their strengths and weaknesses are examined. A novel method for optimising

suitable codes, Overlapped Binary Code Construction (OBCC), is described. This

method involves finding cliques within a generated graph to minimise the size of the

generated codes, and so a variety of strategies for selecting cliques are discussed. The

method is demonstrated generating codes for examples from a character recognition

dataset.

Finally, Chapter 6 contains a review of the work conducted in the thesis. A summary

of the further work which has been identified is also presented.

1.3 Summary of contributions

The following is a brief list of the contributions made in this thesis:

• The development of a pessimistic view of the prospect of true parallel
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performance in the Cellular Associative Neural Network architecture (Sec-

tion 3.2.6.3).

• An experimental analysis of the Associative Rule Chaining Architecture, the

first such investigation (Section 3.3.9).

• A discussion of a number of methods for generating sets of coprime numbers

suitable for use in the algorithm of Baum et al. [14] (Section 4.4.2.1).

• The use of L-wta thresholding in correlation matrix memories storing fixed

weight codes generated by the algorithm of Baum et al., which increases the

storage capacity of the memory (Sections 4.6 and 4.7).

• The introduction of the Overlapped Binary Code Construction (OBCC)

optimisation technique, which utilises graph theory to produce short codes

which display a predefined degree of overlap with one another (Section 5.7).



Chapter 2

Associative memory

2.1 Introduction

Associations are a concept which we are very familiar with us as humans, since

our memories clearly operate using associations to link events, people and other

concepts together. In this chapter we examine this idea, termed “associationism”,

and explore the possibilities it presents for designing computational models. A

formal definition is given differentiating an associative memory from a traditional

computer memory. We then examine some methods which can be used to implement

associative memories, identifying two major types: Conventional content addressable

memories and neural associative memories. A variety of neural approaches to

implementing associative memories are then explored.

2.2 Associationism

The concept of associative memory is not a new idea. Indeed, the observation that

human memory is associative can be seen as early as 350BC, in Aristotle’s essay

On Memory and Reminiscence [4], when he made the observation that when we

attempt to remember something, we do so by first attempting to recall some other

thing which is associated to it:

Accordingly, therefore, when one wishes to recollect, this is what he will

do: He will try to obtain a beginning of a movement whose sequel shall

be the movement he desires to reawaken.

25
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Based upon our own experience it is clear that our memories are made up of links

between facts, places, people, events and so on. For example, visiting a location

may remind you of a specific person. “Associationism” is the theory of such a model

of memory. Aristotle’s observations were an early example of this idea, and were

compiled into the “Classical Laws of Association”, as given by Kohonen in [60]:

Mental items (ideas, perceptions, sensations or feelings) are connected

in memory under the following conditions:

1) If they occur simultaneously (“spacial contact”).

2) If they occur in close succession (“temporal contact”).

3) If they are similar.

4) If they are contrary.

In other words, items which occur close to one another (either in space or time) are

associated in memory somehow. In addition, our memories are capable of recognising

items which have a high positive or negative correlation with some input ‘key” item.

While the detail of the theories within associationism have varied greatly, a number

of features are universal [3]:

• Ideas, sense data, memory nodes, or similar mental elements are associated

together in the mind through experience. Thus, associationism is connection-

istic.

• The ideas can ultimately be decomposed into a basic stock of “simple ideas.”

Thus, associationism is reductionistic.

• The simple ideas are to be identified with elementary, unstructured sensations.

Because it identifies the basic components of the mind with sensory experience,

associationism is sensationalistic.

• Simple, additive rules serve to predict the properties of complex associative

configurations from the properties of the underlying simple ideas. Thus,

associationism is mechanistic.

We shall see that the associative memories described in this chapter align with the

majority of these ideas. The memories primarily follow a connectionist philosophy,

being examples of artificial neural networks. These memories store a large number

of associations between simple data items, using simple additive rules to learn the
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mappings. A thorough review of associationism is given by Anderson & Bower in

[3].

2.3 Models of memory

When discussing differing methods which can be used to store information, Palm

defines two differing types of memory; listing memories and mapping memories [72].

A listing memory can be defined as follows. If we define the information to be stored

as a set of messages M , then a listing memory can be thought of as storing a sequence

of messages, in which each message is taken from some alphabet A. We can define

this sequence as:

Ml(A) = (s1, . . . , sn) : n ∈ N, s1, . . . , sn ∈ A (2.1)

Groups of messages can be combined by concatenating lists of them together. This

paradigm is very familiar in computing; traditional computer memory works like a

filing cabinet in that there are a series of locations in which data can be stored,

essentially a sequence. We can retrieve these items if we know the address of the

location at which it is stored. A mapping memory is defined very differently, and is

perhaps a less intuitive concept. Rather than the messages being simply elements

of an alphabet, they are elements taken from a mapping between a set of questions

Q and a set of answers A. This means that for a mapping memory, M is defined as

follows, where P is the set of possible questions:

Mm(P,A) = m : Q→ A,Q ⊆ P (2.2)

In this case we can combine groups of messages by joining the mappings m and m′

together so that the appropriate answer is retrieved for a question taken from either

Q or Q′ (so long as the sets of questions are disjoint i.e. Q ∩Q′ = ∅).

In other words, the distinction between a listing memory and a mapping memory is

made by the contents of the messages which it stores and the existence or lack

of any sequential information. A listing memory stores only elements from an

alphabet in sequence, and as mentioned above is a familiar structure in computing.

A mapping memory works differently, building up a mapping between questions and

answers, with the recall operation upon presentation of a known question returning
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Figure 2.1: Kohonen’s model of associative memory

the associated answer. The items are not stored sequentially. Associative memory

is based upon this mapping memory model.

2.4 Associative memory in computing

We can take inspiration from associationism in order to develop memory in

computer systems which conforms with Palm’s idea of a mapping memory. Such

memories display very different properties from traditional computer memory. In

an associative memory, we do not use the concept of an address, as in a listing

memory structure. Instead, data is stored as an association between an input item

A and an output item B. This means that presenting data item A at the input will

result in the data B being retrieved at the output. This is illustrated by the model

proposed by Kohonen [59], shown in Figure 2.1.

For example, imagine that we want to store an association between the data items

“1984” and “Orwell”. We would store these in an associative memory by presenting

“1984” at the input and “Orwell” at the output. In the future, if we wished to

retrieve the data associated with “1984” we would present the value to the input, and

would retrieve “Orwell” at the output. Contrast this with a conventional computer

memory. If we wanted to store the data “1984”, we would get the address of some

available memory, say position 250, and place the data at that address. If we wanted

to retrieve this data at any time in the future, this would be achieved by presenting

the address 250 to the memory. Note the address chosen is completely arbitrary- it

has no relationship with the data stored. In order to maintain associations between

pairs of items we would have to retain some form of lookup table.

Associative memories can serve many useful purposes. They are commonly used for

data caching, and in database engines. Furthermore, they can be utilised in pattern

recognition engines, as we will be exploring. Chapter 3 contains extended examples



2.5. IMPLEMENTING ASSOCIATIVE MEMORIES 29

of some applications of an associative memory.

2.5 Implementing Associative Memories

2.5.1 Conventional Methods

There is more than one way to implement an associative memory, depending upon

the properties which are desired. A conventional method would be to store all the

data items in a normal computer memory system, then create a table with columns

for values, and the addresses of the locations of the associated values. So, if “A” is

associated to “B”, with “B” being stored at memory location 100, we would store

“A” and 100 adjacent to one another in the table. Then, if we wish to recall the item

associated with “A” we look-up “A” in the table, find the address of the associated

item (100), and lookup that memory location to find “B”. However, such a system

is slow to access data, due to the requirement to lookup the initial value in a table,

and then to make an additional access to memory to retrieve the associated item.

While there are methods which can be used to speed up the initial lookup (such as

hashing [57]), the requirement for multiple memory reads remains.

A content addressable memory (CAM) is a memory system which speeds the recall of

associated items. Whereas a conventional memory system stores data by reference,

in a CAM it is stored by value [7]. A simple example of this would be to take

the binary value of the input data and to use that as the address in which to

store the associated value. So, if we were associating 81 to 9 we would use the

address 81 = 01010001, and store the value for 9 there. The success of this method

is clearly largely dependent upon the form which the input data takes, and is

likely to result in an unnecessarily large memory. More commonly, a CAM will

operate using a list of input items paired with specialised hardware which enables

all associated items for a given input to be returned, with the recall for all items in

the list being conducted simultaneously. This hardware can potentially also support

partial matching, allowing the memory to provide some level of generalisation [7] and

fault tolerance. Generalisation is defined as the capability to react appropriately to

previously unseen inputs, and is explored in detail in Chapter 5. However, specialised

hardware solutions are expensive and have a low storage capacity in general.
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2.5.2 Neural Methods

A contrasting method of implementing an associative memory is to use an artificial

neural network. Artificial neural networks are inspired by biological neural networks,

such as the human brain. The cerebral cortex, for example, consists of a huge number

of neurons (approximately 1011), with many connections between them. Each

biological neuron communicates through short pulses of activity, taking input from a

number of neurons and transmitting its own signal to other neurons. By comparing

the speed at which neurons transmit information (in the order of milliseconds) and

the speed of human decisions, it has been calculated that problems such as face

recognition must be achieved using chains of neurons approximately 100 long [28].

For such complex tasks to be achieved in so few “steps”, it follows that some highly

parallel computation must be involved. It is this idea which inspires artificial neural

networks, known simply as neural networks from here onwards.

A neural network consists of a of a number of simple artificial neurons with many

connections between them. As with biological neural networks, they are highly

parallel, with each neuron acting locally and transmitting a signal to those neurons

it is connected to. Each connection between neurons will commonly have a weight

associated with it, and it is these which “store” data. McCulloch & Pitts proposed

a computational model for a neuron, specifically a binary threshold unit. Their

neuron model takes a weighted sum of inputs and will output a “1” if the sum

is above some threshold [67]. Other simple functions can be used in place of the

sum and threshold, such as a piecewise linear function, a sigmoid function or a

Gaussian function. For any of these models, a network is able to exhibit complex

behaviour despite each neuron being capable of performing only simple calculations.

Such behaviour requires the network adjust the weights of the connections, usually

through the presentation of a set of examples, a process known as training or

learning. A thorough introduction to neural networks is given by Jain et al. in

[50].

Neural networks are capable of solving many classes of problem. These include

pattern classification, function approximation, data clustering and control. Any

neural network which can perform pattern recognition can act as an associative

memory. This can be seen in that pattern recognition involves the association of a

data vector with a class. If we view the data as our input, and the class as our output

then the equivalence is clear. However, some types of network are more suited to the

task of acting as an associative memory than others, and some well suited examples

are presented in the remainder of this chapter.
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An important property of neural networks is their ability to generalise. Such a

capability in a conventional memory system requires specialised hardware or a very

expensive search. In general, in a neural based memory responding to a previously

unseen input is no slower than responding to a known input.

In contrast to a conventional memory, in a neural network the stored data is

distributed over the network. This enables increased fault tolerance, as an error

in one part of the network is less likely to have a large effect on the output of the

network for any given input. However, it does also mean that there is the possibility

that data items will interfere with one another. For example, interference may occur

if two very similar inputs are associated with dissimilar outputs. This highlights an

issue with neural based memories; that the storage properties are dependent on the

data being stored. Because of this, data representation becomes very important.

Neural associative memories can be autoassociative or heteroassociative. In an

autoassociative network data items are associated with themselves. Such a network

can be used for cleaning up noisy vectors. For example, if complete pictures are

stored in the associative memory then the presentation of a noisy or incomplete

version of a stored image to the network should result in the recall of the original

picture. In contrast, a heteroassociative network associates an input vector with a

different output vector. For example this might be the an association between book

titles and their authors.

In summary, neural associative memories are able to operate with noisy or

incomplete data (they generalise), they can operate very quickly, and can store

data efficiently [7]. The associative memories which are examined in the remainder

of this chapter are all neural associative memories.

2.6 Hopfield Networks

The Hopfield network [46] is an example of an autoassociative memory. It consists

of a single layer of neurons, which are fully connected and have symmetric weights.

The Hopfield network is known as a recurrent network, which means its outputs

are fed back into its inputs. This can be seen in the example of a Hopfield network

shown in Figure 2.2.

The storage algorithm for the Hopfield network is given in equations 2.3 and 2.6

[15]. In this case we are using a bipolar representation (binary values are either 1
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Figure 2.2: A Hopfield network with four neurons

or −1). The weight matrix W is built from the correlations between all pairs in the

data vector to be learned x.

Wij =
M−1∑
s=0

xsix
s
j where i 6= j (2.3)

Wij = 0 where i = j

This is a form of Hebbian learning. This is a simple paradigm for learning, in which

the strength of correlated synapses (weights) is increased. In this case negatively

correlated synapses are also weakened, although this was not a part of Hebb’s original

rule [41]. This learning rule has the advantage that it is very quick to calculate,

especially when compared to learning methods such as back propagation [77].

Recall of a stored pattern is an iterative process. The pattern is set at the nodes

and the network updates its state until it is stable, using the update rule shown in

equation 2.4. The function fh(x) returns 1 if x > 0 and −1 if x < 0.
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xi(t+ 1) = fh

[
N−1∑
i=0

Wijxj(t)

]
(2.4)

The network is essentially an elegant implementation of the hill climbing local search

algorithm. Equation 2.4 defines a search over an energy landscape of solutions. The

stored patterns represent minima in this landscape. Because of this, the Hopfield

network has properties of local search— it is guaranteed to converge to a solution.

However, this is not guaranteed to be a stored pattern. There may be many local

optima in the energy landscape in which the “search” can become stuck.

A major weakness of the Hopfield network is that is has limited storage capacity. In

his original paper, Hopfield commented that approximately 0.15N items could be

stored before the error in recall was severe, where N is the number of neurons. A

later paper showed that a theoretical maximum was 0.138N [2]. This poor storage

is due to noise in the network caused by crosstalk between the patterns, and the

appearance of spurious states as data is stored in the network [41].

It has already been noted that the Hopfield network can become stuck in local

minima which do not represent stored patterns. A network which attempts to resolve

this weakness is the Boltzmann machine [41]. This uses a stochastic update rule

to help the network “jump” out of local minima. It can be seen as analogous to

simulated annealing, which performs the same function for hill climbing [55].

2.7 Correlation Matrix Memories

Another example of a neural network based associative memory is the correlation

matrix memory (CMM). CMMs are examined extensively in this thesis, and for this

reason we shall describe them in a little more detail than other associative memories

in this review.

2.7.1 Description

The correlation matrix memory [58] is an example of a heteroassociative memory

(although it can also be used in an autoassociative fashion). It is a single layer

network, with the input and output neurons being fully connected. Therefore, the

network can be viewed as a matrix of weights with size equal to the length of the
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Figure 2.3: A correlation matrix memory with continuous weights

input vector multiplied by the length of the output vector, as shown in Figure 2.3.

A CMM is capable of storing a large number of pairs of input and output data

vectors, especially when considering it also offers properties such as fault tolerance

and generalisation.

The weight matrix stores the correlations between input and output pairs which

are stored in the network. There are multiple methods for learning this matrix.

Some possibilities are to calculate the pseudoinverse based upon the input and

output pairs, to use gradient descent to minimise the output error, or to use Hebbian

learning [76] (as described in Section 2.6). Calculating the pseudoinverse is non-

trivial and requires a complete set of input and output pairs, and therefore the

entire weight matrix has to be recalculated in full every time a new pair is added

to the network. This makes it an impractical approach in most cases. The gradient

descent approach does not experience this same problem, but upon the presentation

of any new pair the whole weight matrix will still require some adjustment. While

the Hebbian learning approach does not minimise the error as effectively as the

previously mentioned methods in general, in the case that the inputs are orthogonal

it is no worse. In addition, the Hebbian approach only requires local updates to

the CMM each time a new association is learnt. For this reason, this approach is

commonly used as it enables learning to be performed extremely quickly.



2.7. CORRELATION MATRIX MEMORIES 35

In CMMs Hebbian learning utilises a standard binary representation using 0 and

1. A binary vector is presented at the input and the output of the network. For

each pair of input and output nodes, if both nodes have the value 1, the weight

of the connection which links them is increased by 1. This process is described by

Equation 2.5 where W is the weights matrix, x is the set of input vectors, y is the

set of output vectors, and z is the number of examples to learn.

W =
z∑

k=1

ykx
T
k (2.5)

The recall process is described by Equation 2.6. Essentially we calculate the product

of the input vector and the weight matrix, producing an activity pattern on the

output neurons. It should be noted that the term Wxj is not a binary vector, and

hence a thresholding function f is required to produce a binary output. The nature

of this function will be discussed in a moment.

y = f [Wxj] (2.6)

This type of network has a number of benefits. Firstly, when the training is

performed using simple Hebbian learning it is possible to train a CMM very rapidly.

This is in stark contrast to error correction techniques such as back propagation [77],

which uses an iterative procedure to reduce the output error and suffers from slow

convergence. In addition, the recall operation is also very simple. Furthermore, these

memories are able to display a robustness to noise on the input, enabling accurate

recall for an incomplete input [13], and generalisation to unseen inputs. They also

provide a relatively large storage capacity. These properties are examined in detail

in Chapters 4 and 5.

2.7.2 Crosstalk

Because the data is stored in a distributed manner, when we recall data from the

memory the activity returned is a mixture of the data that we wish to recall and

other data that has been stored. If we attempt to recall the data associated with

the stored vector xj, we obtain the vector shown in equation 2.7.
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y = yj +
m∑

k=1,k 6=j

cos(xk, xj)yk (2.7)

The term yj is the stored vector we are trying to recall, whilst the other term is

crosstalk. The magnitude of this term is defined by the similarity between the input

vector xj and the other stored input vectors. We can clearly see that if the set of

input vectors are an orthonormal set then there will be no noise term, and hence

perfect recall, since this would result in cos(xk, xj) always being 0. However, doing

this would reduce the number of items we are able to store in the memory, and may

even lose the advantage of distributed storage. For example, an orthonormal set

from an input vector of size 3 would be 100, 010, 001. If this input set was used,

each output pattern would be a row of the matrix, and so would not be distributed

across it. In fact, the memory would be essentially acting as a listing memory.

When distributing storage across a CMM it is capable of storing more vectors than

the number of input neurons, as detailed in Chapter 4.

In practice then, it is important to use a distributed representation (multiple bits

set to 1 in the input vectors), with the vectors being as close to an orthonormal set

as possible. This reduces the noise on the output, and hence allows a larger number

of pairs to be stored in the memory without error.

2.7.3 Binary CMMs

The learning algorithm given in 2.5 calculates continuous values for the CMM weight

matrix. However, it is possible to make a network with binary weights, and a network

of this type was suggested by Willshaw et al. [89]. In order to achieve this, we would

learn as shown in equation 2.8, where
⋃

is the logical OR function.

W =
z⋃

k=1

ykx
T
k (2.8)

Taking this approach has a number of advantages. Firstly, the storage requirement

for the CMM is hugely reduced, with the exact factor depending on the number

of bits used to represent each weight in the continuously weighted CMM. Secondly,

having binary weights allows for an extremely efficient hardware implementation,

such as in [54]. These benefits come at only a small cost to the efficiency with which

the memory is able to store information, with the continuous weighted and binary
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weighted CMMs being able to store information at 72% and 69% of the efficiency

of a standard random access memory respectively [32] [89]. Unfortunately, because

the use of an OR function rather than an addition effectively clips the weights it

becomes very difficult to remove previously learned associations from the memory,

an operation which is extremely simple in a continuously weighted CMM.

2.7.4 Thresholding and Representation

As previously mentioned, the recall operation in a CMM does not return a binary

vector; the output activity must have a thresholding function applied to it in order

to obtain the output. There are a number of different thresholding functions which

can be used. The choice of function will depend on the application, and upon the

representation used for the data which is being stored in the CMM.

One possible thresholding function for a binary CMM is to take the number of bits

set to 1 in the input (known as the weight of the code), and to set any output which

is equal to this value to 1 [89]. This is known as Willshaw thresholding. The method

gives reliable recall when the input pattern is error free, since the activity in all the

correct positions will equal this value. However, this method fails if the pattern used

in recall differs from that used in learning [13]. This makes this form of thresholding

very vulnerable to noisy input vectors.

A representation which has been used to great success with CMMs is fixed weight

coding. This means that each data vector has a fixed number of elements set to 1.

While this reduces the number of items which can be represented in a given vector

size, it has great advantages for the performance of the CMM. Using this encoding

we can use L-max thresholding [13], setting the l largest values in the output vector

to 1, where l is the fixed weight of the output vectors. This enables improved recall

performance in the presence of noise. However, it should be noted that there is

an implicit assumption here, that each input code is associated with exactly one

output code. In the case that multiple outputs are associated with the same input

the number of bits on the output is unknown (since some bits may have been set in

the same position in multiple output codes), so the value of l cannot be determined.

Not only is a fixed weight coding desirable, but optimal values for the code weights

exist for any given code length. Palm et al. showed that optimal storage efficiency

in a binary CMM is achieved using a sparse coding (a small number of bits set to 1

in a vector) [74]. Using such a coding ensures that the memory becomes saturated
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more slowly than with a more dense coding scheme, although codes which are overly

sparse reduce the degree to which information is distributed across the memory. The

optimal weights of the input and output codes were shown by Palm to be log2 n and

log n respectively, where n is the length of the code [73]. These results are explored

in more detail in Section 4.3.

Another facet to the representation used in CMMs is that in contrast to a

conventional memory system which has a clearly defined limit to the amount of

data it can store, a CMM shows a gradual degradation of performance as the

weight matrix becomes saturated. The weight of the input and output codes has

a significant effect on the storage capacity of a CMM. While there is not a clear

point at which the memory becomes “full”, an understanding of the probability of

recall errors based on the amount of data stored allows us to create memories of the

appropriate size for a given task.

We see then that the capabilities of CMMs are dependant on the data representation

used. It defines many properties of the network, in particular the storage capacity

and the ability of the network to generalise. These ideas are further explored in

depth in Chapters 4 and 5.

2.7.5 Weaknesses

Some weaknesses of correlation matrix memories should be highlighted. Firstly, since

they are single layer networks CMMs are not able of solving linearly inseparable

problems, such as the XOR problem. However, preprocessing methods (such as that

mentioned in Section 2.9) or augmentations to the memory (such as mentioned in

Section 2.10) can be used to overcome this limitation. Secondly, the size of a CMM

is dependent on the size of the input and output data. This can cause practical

difficulties, although again there are methods to overcome this (such as that detailed

in Section 2.10). Another significant problem is the inability to determine when a

CMM is full, since at this point the memory will simply return erroneous results.

This problem is explored in detail in Chapter 4.

2.8 Bidirectional Associative Memory

The Bidirectional associative memory was introduced by Kosko [63], and is very

similar in structure to a CMM as shown in Figure 2.4. The network is a single
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Figure 2.4: A bidirectional associative memory

layer heteroassociative memory, which is fully connected. The learning algorithm is

identical to that for a continuously weighted CMM using Hebbian learning, as shown

in Equation 2.5, although a bipolar representation is used rather than a standard

binary representation. The major difference between the two networks is the recall

operation, which introduces feedback from the output neurons to the input neurons.

When an input is presented to the network, an initial output is produced at the

output neurons using the learned weight matrix W , and a thresholding function.

The values at the output neurons are then used to produce a new set of values

at the input neurons, by passing through the transpose of the weight matrix, W T

and thresholding again. These new values are then returned forwards through the

network using the weight matrix W , and so the process continues until a stable

pair of states at the input and output neurons are reached. Kosko showed that the

network will always converge to such a state.

This method should allow for recall even when there is significant noise on the input.

Consider the case that we have some input x′i, which is a noisy version of a true

learnt input xi. When this value is input to the network the output will be y′i,

and will likely be close to the true output yi. The principal idea in a BAM is that

when y′i is used as an input through the transpose of the weight matrix W T that the

new value on the input neurons x′′i will be closer to xi than x′i was. As the recall

procedure continues the input and output should be “cleaned up” until the correct
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input/output pair are represented at the input and output neurons.

The BAM is similar in principal to the Hopfield network. The network is essentially

performing a minimization over an energy landscape in a very similar way, but

generalised to a heteroassociative case. The storage capacity of the network is not

as large as a CMM, generally being smaller than min(m,n) where m is the number

of input neurons and n the number of output neurons. Clearly a BAM also takes

a greater amount of time to perform the recall process when compared to a CMM.

However, it does offer additional robustness to noise.

2.9 The N-tuple method

The N-tuple method is a preprocessing technique first described by Bledsoe &

Browning [18]. The method produces a fixed weight binary code, and so is suitable

as a preprocessor for CMMs, amongst other networks. It was designed for image

recognition, and was first demonstrated on a character recognition problem in the

original paper.

The method works by grouping pixels in the input array into groups of size N , as

shown in Figure 2.5. Typically, each group of pixels is chosen randomly, and are

connected to an output address group. The address group calculates a mapping

over the group of pixels which results in a single bit being set to 1 on its output.

Each address group has an output of size 2N bits. For example, for a two digit input

code, the following mappings might be used; 00 → 1000, 01 → 0100, 10 → 0010,

11 → 0001. When the image is presented onto the input array, the mapping is

performed at each address group, and the outputs are concatenated to produce the

final code.

Performing preprocessing this way provides a level of generalisation in the system

proposed by Bledsoe & Browning. When a character which is a variation of a

previously seen image is presented to the input array the output should be similar

as for the previously seen image itself, even if the variations include small scale,

rotational or positional variation. This is primarily because the shape of any given

character will ensure certain groups of pixels are in a certain state. The value of N

affects the level of generalisation which is provided. As N increases the capability of

Bledsoe & Browning’s network to learn and recognise a larger number of examples

of a given set of characters increases. However, the size of the vectors also increases,

as well as their sparsity (which is an important consideration with CMMs as we shall
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Figure 2.5: The N-tuple method, with N = 2

see in Chapter 4).

The N-tuple method is a general approach to code preprocessing, applicable to any

form of input pattern. It provides a level of generalisation capability, and some

positional, orientation and scale invariance in image processing. In addition, since

the method performs a non-linear mapping over the input it also enables a CMM to

solve problems which are not linearly separable.

2.10 Advanced Distributed Associative Memory

The Advanced Distributed Associative Memory (ADAM) [5] is primarily used with

the N-tuple method in image processing problems, and was designed to address

some of the weaknesses of the CMM network. Specifically, the size of a CMM is

dependent upon the sizes of the input and output vectors. If these two values are

large then the CMM will be very large also. In addition, the vulnerability of a CMM

to crosstalk means that encodings which are close to orthogonal are required in order

to maximise capacity. The ADAM network provides a capability to overcome these

limitations somewhat.

ADAM essentially consists of two CMMs, connected via a third pattern in the

middle, as shown in Figure 2.6. The additional intermediate pattern is known as the

class pattern. When the input and output codes to be associated are presented to

the network a class pattern is generated. This pattern is both unique and sparse, as

well as being as close to orthogonal as possible from other class patterns. The two

CMMs are then trained appropriately, with the first network learning the association
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between the input pattern and the class pattern, and the second network learning

the association between the class pattern and the output pattern.

Structuring the memory in this way has a number of benefits over a simple CMM.

Firstly, if both the input and output vector lengths m and n were very large then

the number of bits required for the CMM mn would also be very large. However,

by constructing two CMMs with the intermediate class pattern the number of bits

required becomes mc + nc. If c � m and c � n then this value will be much

smaller thanmn, hence greatly reducing the memory requirement for the network. In

addition, because the class patterns are chosen to be close to orthogonal, the storage

capacity should also be increased in cases where the input and output patterns do

not have this property. Because the addition of an intermediate pattern effectively

implements a two layer neural network, ADAM is also capable of distinguishing

between linearly inseparable patterns.

ADAM has been applied to the recognition of features and textures in aerial

photographs [80] and to texture discovery [79].

2.11 Advanced Uncertain Reasoning Architec-

ture

The Advanced Uncertain Reasoning Architecture (AURA) [11] [12] was developed

to provide a fast rule matching capability based upon correlation matrix memories.

It allows the creation of rule based systems which are capable of reasoning with
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uncertain data, which can store a very large number of rules, can store rules very

quickly and can perform very high speed reasoning. AURA allows the association

of a number of preconditions to a number of postconditions, and is able to

generalise when provided with incomplete inputs. Figure 2.7 shows the layout of

the architecture.

Rules take the form of sets of preconditions and postconditions. Values in the

preconditions and postconditions do not simply stand on their own, but are

associated to attributes. This allows wildcard searches for given attributes. So, for

example, a rule which allows the identification of a piece of fruit might be constructed

as in Equation 2.9, with the notation Attribute : value:

Colour : yellow ∧ Type : fruit ∧ Shape : curved→ Object : banana (2.9)

In this example, the rule contains three preconditions. If each of these is represented

by a vector, how do we combine them into a single token to be input to a CMM?

One option would be to concatenate the vectors together, but this means that the

order of the attributes becomes important. A better option is to use superposition.

This essentially means that the vectors are combined using a logical OR function, as

shown in Figure 2.8. This preserves the commutativity of the inputs. So, in order

to store the rules in AURA we take the tokens representing the preconditions and

superimpose them; this is the input vector for the CMM. We then take the vector

for the related postcondition, and associate this with the input vector in the CMM.

Up to this point the method for combining an attribute and a value into a vector

has not been described. The process by which this is accomplished is called binding.
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Binding between attributes and values takes place through a binary tensor product,

which is the cross product of the vectors representing the attribute and the value.

For example, if the attribute 1001 is bound to the value 1100, the resulting matrix

would be:

∣∣∣∣∣∣∣∣∣∣
1 1 0 0

0 0 0 0

0 0 0 0

1 1 0 0

∣∣∣∣∣∣∣∣∣∣
This matrix can then be reshaped into a vector to be stored in the CMM. Using this

process allows values to remain associated to attributes when stored in the CMM.

In addition, if we wish to perform a recall where one of the attributes is unavailable

we can simply bind that attribute to a vector of all ones. This will result in a “don’t

care” recall for that attribute, returning all the appropriate vectors which match the

other attribute value pairs in the input superposition.

There is a further issue which needs to be addressed with the architecture, which

is that if all rules were stored in a single CMM there would be many erroneous

recalls. In order to highlight the problem, Figure 2.9 shows a CMM which has

learnt two rules. If we attempt to recall the input Colour : yellow from this network

we might expect to get the result lemon, because all the preconditions for this

rule have been met. However, the network returns lemon ∧ banana. Whilst this

may seem to be fine on a cursory inspection, note that the rule which results in

banana has the precondition Colour : yellow ∧ Shape : curved. Since the second

part of this precondition has not been met, the rule should not be recalled. This

problem occurs because both of the preconditions have been associated with the

same output postcondition, and the partial match is returned as a full match. In

order to overcome this problem, arity networks are introduced. This simply means
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Figure 2.9: An example of storing different arity rules in one CMM. The network
recalls both lemon and banana superimposed. However, only lemon should have been
recalled, since both preconditions for banana were not met in the input.

that a separate CMM is used for each different rule arity. The arity is defined by the

number of variable/value pairs present in the precondition. For the example given

in Figure 2.9 the recall would be conducted on the arity one network, and would

not make the erroneous recall we have observed. The multiple arity CMMs can be

observed in the architecture shown in Figure 2.7.

The AURA approach does inherit the same limitations which occur for CMMs, in

that the data representation must be carefully chosen and that rules cannot be

easily removed once they have been trained. It does however offer an extremely

powerful and rapid method for performing rule based reasoning, which can also be

implemented efficiently in hardware [10].

2.12 Summary

After a discussion of the idea of associationism, we examined a theoretical

definition of what a computational model of an associative memory would look

like. Two paradigms for implementing associative memories were identified; content

addressable memories and neural associative memories. The neural approach offers

a robust solution which can learn and recall associations very quickly and in

the presence of noise on the input. A variety of neural associative memories

were described, with particular focus on the correlation matrix memory (CMM).

This simple memory offers impressive storage capabilities and robustness to noise,

providing an appropriate data encoding is chosen. In particular, the binary

weighted version of the CMM is capable of a high storage capacity (as shall be

seen in Chapter 4), as well as extremely rapid learning and recall, and efficient

implementation in hardware. This memory is the subject of the remainder of this
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thesis, and from here forward the term CMM shall refer to binary weighted CMMs

specifically.



Chapter 3

Applications of Correlation Matrix

Memories

3.1 Introduction

Having examined a variety of associative memories in Chapter 2, it would now be

instructive to examine examples of how they can be used as part of a more complex

system. In particular we will examine applications of correlation matrix memories

(CMMs). CMMs have been applied to a variety of applications, including graph

matching [56], spell checking [44] and expert systems [47]. In this chapter, two

systems based upon correlation matrix memories will be examined in detail. The

systems aim to solve two different pattern recognition problems; object recognition

and rule chaining. Both systems store a set of rules in CMMs which are used

to perform recognition. By examining these systems, we will gain a greater

understanding of the issues involved with using correlation matrix memories in

practice.

3.2 Cellular Associative Neural Network

3.2.1 Introduction

The Cellular Associative Neural Network (CANN) [8] is a hybrid architecture,

combining elements from cellular automata, syntactic pattern recognition and

47
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associative memory. Associative memory was discussed in Chapter 2, so this section

begins by examining the remaining two elements; cellular automata and syntactic

pattern recognition. The architecture is then examined in some detail, including

extensions which have been applied to incorporate uncertain data.

3.2.2 Cellular Automata

A cellular automaton is a mathematical model of a physical system, introduced first

by von Neumann [87]. It consists of an array of cells, each of which may take a finite

number of states. Often the state will be binary, taking on only the values 1 or 0.

These states update over a series of discrete time steps, according to a number of

rules. These rules are all based on the state of each cell’s neighbourhood, informally

defined as the area around the cell. The cells which define the neighbourhood are

chosen as part of the model. An obvious example for a regular shaped grid might

be the 8 cells immediately adjacent to the current cell. The rules take the form of

a look-up table. Each combination of neighbourhood state values will define a new

state for the cell.

An example of a cellular automaton can be seen in Figure 3.1, based on the famous

Game of Life [33]. The cells which are black are set to 1 and the cells which are

white are set to 0. The neighbourhood is defined as the eight cells surrounding a

given cell. In this case the rules that the automaton follows can be summarised as

follows:

• If the current state is 1:

– If zero or one neighbours are set to 1, the state becomes 0 (as if dying by

loneliness)

– If four or more neighbours are set to 1, the state becomes 0 (as if dying

by overpopulation)

– Each cell with two or three neighbours set to 1 remains as a 1.

• If the current state is 0:

– Each cell with three neighbours set to 1 becomes 1.

– Otherwise, the cell remains as a 0
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Figure 3.1: A single transition of a cellular automaton

Cellular automata are capable of showing complex global behaviours, despite being

controlled through simple local rules. Indeed, it has been shown that they can be

used as general purpose computers [90]. A particular benefit of cellular automata lies

in their close correspondence to “single instruction, multiple data” (SIMD) hardware

[69], a class of parallel computers which contain multiple processing elements that

perform the same operation on different pieces of data at the same time. This means

that it is possible to produce a very efficient hardware implementation of a cellular

automata, enabling extremely rapid operation. For example, field programmable

gate arrays (FPGAs) have been used to implement cellular automata in hardware

[40]. Alternatively, modern graphics cards contain multiple programmable pixel

shaders which can be used to implement such a system. However, designing a cellular

automaton for a given purpose is a challenge, since the global effect of changes to

local rules isn’t immediately obvious. This problem can potentially be solved by

learning the rules through an algorithm though, as we shall see in Section 3.2.4.

Cellular automata (and architectures inspired by them) have been employed for

a variety of applications. Fey and Schmidt propose an architecture for image

processing in which each cell of the automata corresponds to a pixel in the image

[29]. Their architecture is capable of detecting objects and their centre points. This

architecture in fact bears much similarity to the CANN, described in Section 3.2.4.

Another application is particle simulations, as demonstrated by Burstedde et al. [24]

who used cellular automata to model pedestrian dynamics. They have also been used

to perform image compression, data mining and fault diagnosis, demonstrating a low

memory overhead and quick operation [66].
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3.2.3 Syntactic Pattern Recognition

The field of pattern recognition can be broadly separated into three approaches; the

statistical method, the model based (prototype matching) method and the syntactic

method. The former approach uses statistical information in the data to perform

recognition. An example of this would be the use of a multi-layer perceptron to

recognise patterns based on features of those patterns [77]. Prototype matching

uses a database of known examples of patterns, and performs recognition by finding

the closest match to the input pattern in the database. An example of this would

be the use the k-nearest neighbour algorithm [26]. Syntactic pattern recognition,

on the other hand, uses structure which is present in the data in order to perform

pattern recognition. In applying syntactic pattern recognition to an image, the

implicit assumption is that there is there is clear structure to the patterns which

can be recognised.

Syntactic pattern recognition is based on formal language theory, and recognition is

performed by grammars. We would have one such grammar for each object to be

recognised. According to Denning, Dennis and Qualitz [27] a formal grammar G is

a four-tuple:

G = (N,T,P,Σ) (3.1)

In this definition, N is a finite set of non-terminal symbols, T is a finite set of

terminal symbols, P is a finite set of productions and Σ is the sentence symbol (also

known as the starting state). An important fact is that N and T are disjoint:

N ∩T = ∅ (3.2)

The starting state Σ is not a member of either the terminal or non-terminal symbol

sets:

Σ /∈ (N ∪T) (3.3)

The productions P are rules which associate a group of non-terminals and terminals

(with at least one non-terminal) to a new set of non-terminals and terminals. More

formally, a production is an ordered pair of strings (α, β) where:
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α = ϕAψ (3.4)

β = ϕωψ (3.5)

Here, ω, ϕ and ψ are strings in (N ∪T)∗, and A is either Σ or a member of N.

Beginning in the starting state Σ, we can follow a series of these productions in

order to arrive at a sentence of terminals. Any sentence which can be produced from

the starting state Σ is said to belong to the language produced by the grammar.

Recognition using a grammar is the reverse process to the one we have just described.

The process could be termed as recognising the pattern; discovering whether a

pattern belongs to a given grammar. Furthermore, we can attempt to find the

derivation tree which produces the pattern; this is known as parsing. The tree has

the starting state S at the root, and the pattern terminals at the leaves. Parsing

can be top-down or bottom-up; top-down begins with the starting state and works

down the tree to the terminals, while bottom-up parsing works from the terminals

towards the starting state. An example of a parsing tree can be seen in Figure 3.2.

Of course, one of the largest issues in syntactic pattern recognition is how the

grammar is constructed. A grammar can be constructed by hand, although this

would be very difficult for a problem of any complexity. Often, the grammar

is derived from a series of example patterns, potentially positive and negative

examples of patterns which belong to the language. The problem of deriving

the grammar from these examples is known as grammatical inference. This is a

challenging task, and solutions tend to be application specific, sensitive to noise

and computationally complex [83]. Indeed, these weaknesses can be applied to

syntactic pattern recognition as a whole. Tanaka comments that syntactic pattern
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Figure 3.3: An example of the operation of a CANN

recognition suffers from high computational complexity and a lack of “expressive

power” [82], citing the example of a famous chromosome pattern which cannot be

described by a context free grammar [88]. Furthermore, Tanaka points out that non-

terminals and productions in a generated grammar will not necessarily correspond

to visual features or the relations between them. This makes the task of adjusting

the grammar by hand extremely difficult. However, these weaknesses can perhaps

be somewhat overcome by using syntactic pattern recognition as a constituent part

of a hybrid approach, as we shall see in the following section.

3.2.4 The Static Architecture

The Cellular Associative Neural Network (CANN) [8] is a novel architecture for

pattern recognition which has been developed based on cellular automata. The

architecture has been successfully applied to image recognition [71], graph matching

[56] and text processing [21]. As well as taking inspiration from cellular automata,

the architecture incorporates elements from syntactic pattern recognition and

associative memory. The CANN consists of a grid of cells containing associative

processors, which are all identical. Each processor has a state, which at the start

of a recognition would represent a basic feature of the item to be recognised. Each

cell passes information about its contents to its neighbours, and these messages

propagate further through the grid at further time steps. As cells become aware of

the states of the cells around them, the states are updated to represent sub-patterns,

and eventually objects. An example of this process is shown in Figure 3.3.

We saw in Section 3.2.3 that a pattern can be recognised through bottom-up parsing;

that is, taking a group of terminals, applying a series of rules which transform them
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into non-terminals until we eventually arrive at a single non-terminal, the starting

state. The CANN model works in an analogous way. Instead of terminals we begin

with a group of basic features. These features are transformed into intermediate

labels (which can be thought of as the non-terminals) until we eventually arrive at

an object label (the starting state). This represents a three level hierarchy:

basic features→ intermediate labels→ object labels (3.6)

One problem with using a cellular automaton to do pattern recognition is the large

number of rules which are required. This problem becomes worse when using a more

complex rule based system such as that in the CANN. A very large rule set means

that a large amount of memory will be required, and that learning and recalling rules

will be slow. However, the AURA architecture introduced in Section 2.11 provides

an efficient and elegant solution to this problem. Rules can be stored in CMMs,

which means they can be learnt rapidly, and also recalled quickly and reliably. In

addition, the storage capacity of a CMM is potentially very large, as we will see in

Chapter 4.

In Section 3.2.3 it was highlighted that one of the problems with syntactic pattern

recognition is the computational complexity of recognising patterns. Two aspects

of the CANN architecture aim to solve this problem. The first is that the use

of AURA memories to store and recall rules allows the process to be performed

efficiently [6]. Secondly, being based on a cellular automaton, the architecture is

highly parallel. This allows a very efficient hardware implementation, and also

means the architecture can make the most of multiple processors or processor cores.

Another weakness of syntactic pattern recognition is that systems will show a lack of

generality. The use of the AURA memory also helps to solve this problem. CMMs

have an innate ability to generalise, and by careful selection of a threshold function

a great deal of generality can be added to the system.

Each associative processor in the CANN has the same structure, as shown in

Figure 3.4. There are three types of module; the spreader, the combiner and the

passers. Each of these modules is based on an AURA associative memory, and the

rules stored in each of these associative memories are the same in every cell in the

CANN. Their functions are as follows:
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Figure 3.4: The architecture of an associative processor

Spreader The spreader takes the input (the current

cell state) and adds to it information about

where the information is coming from, so

that it is ready to be passed to other cells.

Combiner The combiner takes the previous cell state

and the information received from other cells

and calculates a new state for the cell.

Passer The passer modules combine incoming mes-

sages with the cell state information from the

spreader and pass it to the neighbours of the

cell. They can also filter which messages are

passed.

The architecture is flexible with regard to different neighbourhood definitions. The

cell shown in Figure 3.4 would have four neighbours, but further passer modules

could be added to include more neighbours. Consider the cell labelled 5 in the

following grid:
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Figure 3.5: The spread of information through the CANN when using different
neighbourhoods
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Obvious neighbourhoods might be the cells labelled 2, 4, 6 and 8, or perhaps the

cells labelled 1, 2, 3, 4, 6, 7, 8, 9, but this does not have to be the case. In

fact, a neighbourhood can be defined as any set of surrounding cells, an arbitrary

distance away. The neighbourhood controls the spread of the information through

the network. Figure 3.5 shows the effect of using different neighbourhoods. A

small, regular neighbourhood results in slow but dense information flow through the

network. A larger, less regular neighbourhood results in a faster but sparser spread

of information. Also, with a larger neighbourhood, there will be more routes for the

information to reach a given point. This will increase the possible number of rules

which could be applied.

Learning is performed through the following algorithm. First, the image is presented

to the network as a set of low level features. These low level features must be

obtained from the image through pre-processing. The network then begins to pass

the information around. At each cell, if the input received already matches the

precondition of a rule, then the answer is retrieved as the output. Otherwise a new

intermediate symbol is created and assigned as the output, and a new rule associating

the cell state to the new symbol is learnt. Through this method, new rules are created

only as needed. Importantly, this rule is learnt by the corresponding associative

memory in every cell in the network. This means that intermediate symbols can
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be shared where they represent different parts of the same image. For example,

an object might have two long vertical edges, and both of these can be described

with the same set of rules. This learning process will continue until a predefined

stopping condition is reached, at which point all cells associate their current state to

a label representing the object being learnt. The earlier the learning is stopped, the

more general the learning of the object will be. This is because each cell has only

received information about a subset of the object, but will associate that subset with

the whole object. On the other hand, if the learning continues until all cells have

exchanged information then we will have achieved “rote” learning of the object. In

this case, since each cell has become aware of the whole object, the object label will

only be recalled upon a presentation of the exact object that has been learnt, and

as such the system will be less capable of generalisation. Orovas suggests that a

good strategy is to learn until each cell has a unique state [70], as this is an easily

checked condition. Since high speed of operation is key to this system, this is a

very important consideration. This method of learning certainly mitigates one of

the concerns Tanaka [82] had with syntactic pattern recognition in general; namely

that terminals and productions may do not correspond to visual features. Rules in

the CANN directly express the relationships between features that are local to one

another.

The recall process is similar to the learning process, except in the case that no

matching rule is found we replace the learning of a new rule with a process of

relaxation. Again, the image will be presented to the network as a set of low level

features. At each iteration of the network, the inputs to the modules are checked

to see if the preconditions of any rules are met. If a rule matches, then the output

of the cell is set to be the postcondition of that rule. If no rules match then at

this point the AURA memories may relax, depending on how much relaxation the

user has allowed. Relaxation is achieved through a lowering of the thresholds of the

CMMs, allowing matches to be achieved even in cases where the full conditions of a

rule precondition have not been met. Essentially, the tolerance of the network can

be gradually increased to whatever level the user has set as a maximum until a rule

matches. If no rule can be found after relaxation, the output of the module remains

as it was at the previous iteration. This recall process continues until a stopping

condition is reached. This might be that there are no changes in the network after

an iteration, that the number of changes in an iteration is below some threshold, or

that a maximum number of iterations has been reached.
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3.2.5 Incorporating Uncertainty

In the initial CANN model, a symbol was either present or not present. The

CANN was further developed by Brewer [21] to deal with uncertain inputs. Spiking

neural network memories were used to accomplish this, creating the Spiking Cellular

Associative Neural Network (SCANN).

Information in the brain is not encoded as numeric values, as it is in traditional

artificial neural networks. Bursts of energy are periodically emitted from each

neuron, called spikes. Information is encoded in the rate of these spikes, or in

the relative positions of the spikes. The model used in the SCANN is the Leaky

Integrate and Fire (LIF) Neuron. This model uses an activity value, which increases

whenever a spike is received at the input. The activity value gradually drains away

over time. If the activity value goes over a set threshold, then the neuron will fire.

Such neurons can model uncertainty by relating firing rate to confidence. If a symbol

is more likely then the neuron will fire very frequently. If it is unlikely then the neuron

will fire only occasionally. By incorporating this type of neuron into the CMMs used

in the architecture, a new model of operation is achieved. An example of a spiking

CMM is given in [65].

A stream of low level symbols are input to each cell, and each cell then passes

information to its neighbours in the form of streams of higher level symbols. As

these symbols are received even higher level labels can be applied and so on. With

this architecture there is no clear stopping point when recognising an object; the

system can be run for any length of time. The accuracy of the output should stabilise

and become more accurate over time. Also, if the input changes during operation,

the system will adapt to the new input over time.

In order to apply the system to real images, a pre-processor is required. For this

to work with the SCANN, the output of the processor needs to be in the form of

spike trains. Brewer created a spiking edge detector for this purpose [20]. The

system checks for a variety of edge profiles in each cell, and produces a spike rate

for each. Areas which have a high contrast between pixel intensities (a strong edge)

will provide high spike rates, and areas of constant contrast (no edge) will produce

a low spike rate. The system has been shown to produce the expected results on

real images.
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3.2.6 Further work

This architecture is not without fault, and there are a number of remaining issues

with the CANN architecture which require further work. We now examine some of

these which have been identified:

3.2.6.1 Invariance

Ideally, object recognition systems should be translation, rotation and scale

invariant; that is, objects should be recognised no matter where they are in the

image, whatever their orientation and whatever size they are. While the CANN

provides translation invariance, it is not scale or rotation invariant. While this

problem could partially be solved by learning multiple copies of an object at different

sizes and rotations, this would quickly become a very impractical solution.

3.2.6.2 Limitations in Learning

Although the SCANN is able to operate on uncertain data when performing a recall

operation, the learning process can not. Real training data is likely to take the form

of objects with a pre-processor applied to them (such as the edge detector we have

just seen), and so an improved learning process would be able to incorporate this

data. In addition, the learning process is not capable of learning multiple instances

of the same object class. Incorporating this capability would potentially provide a

system which was capable of improved generalisation.

3.2.6.3 Parallelism

There is also a serious problem with CANN architecture which has been “glossed

over” up to this point. One of the largest benefits of the CANN architecture is that is

is designed to operate in parallel. Each cell should be able to operate independently

of all other cells, allowing them to execute on different hardware, giving truly parallel

performance. In the case of recall, the architecture as described is indeed capable of

this. However, there is an issue when learning is performed.

Firstly, recall that the rules stored in all the associative memories in the network

are to be in common between all cells. This can be achieved in practice either by

sharing a single version of each of these memories between cells, or by copying new



3.2. CELLULAR ASSOCIATIVE NEURAL NETWORK 59

rules between all cells at the end of each iteration of the system. In the case of

the former solution we cannot perform in parallel, because each memory can clearly

only be in use by a single cell at any given time. In the latter case a more subtle

problem presents itself. Consider the case in which two cells have the same state, and

observe the same set of inputs from their neighbourhood during a single iteration of

the system. If this combination of inputs has been previously unseen, then both cells

will attempt to create a new intermediate symbol and to learn a rule with this symbol

as the output. The question now arises; how is the code for this new intermediate

symbol chosen? If it is taken from a central source then the system cannot operate

fully in parallel, since all cells in the CANN will be attempting to access the same

memory at the same time. However, if the source is local to the cell, how can it be

guaranteed that the two cells choose the same code for this intermediate symbol?

Either the symbol would need to be generated locally in a fashion that guarantees

that the same code would be used for any two cells having the same state, or all

cells must communicate with one another, greatly slowing down the operation of the

system.

In fact, we can show that any solution to this problem which does not involve

communication between the cells is doomed to failure. For the cell to operate entirely

in isolation, we require a code to be generated for the intermediate symbol which

will always be the same given a certain set of inputs to the memory. The state of

the cell is defined as the set of all inputs to the memories in the cell at a given time

step. Let us say that the number of inputs is defined as J . Furthermore, we require

this operation to be undertaken in isolation from all other cells. In other words, we

require a code generator in which the generated codes are a function of a given set

of input codes. This function would also need to be injective, with each possible

code being produced only by a single set of inputs. This is to avoid the problem

in which two different symbols are assigned the same code. The size of the domain

of this function is defined by the number of input codes which define the state of a

cell. If the number of unique codes is defined as U , then the size of the input space

is UJ . The size of the range of the function, however, is defined only by the number

of codes which can be generated, in other words it is simply U . Clearly, we can

see that such a function cannot exist for J > 1; there are not enough elements in

the range for a full mapping from the domain. Since the combiner requires multiple

inputs (the current cell state and at least one neighbour), it will always be the case

that J > 1, and hence the function we require cannot exist.

Taking this into consideration, any possible solution to the parallelism problems
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in the CANN needs to be focused on mitigating the problems with either sharing

memories, or passing messages between cells.

3.3 Associative Rule Chaining Architecture

3.3.1 Introduction

The problem of rule chaining is one which is of particular interest in the field

of neural networks, since it is a process which the brain must routinely perform.

The Associative Rule Chaining Architecture (ARCA) presented in this section, put

forward by Austin [9], attempts to perform rule chaining using CMMs to store and

recall rules in a recursive fashion. The data uses a distributed representation, making

use of tensor products and superposition to maintain very efficient use of space in

the network, with the space required remaining constant. Learning is performed

using simple Hebbian learning, as previously seen with CMMs.

3.3.2 Rule Chaining

Rule chaining is a common problem in artificial intelligence; that of applying a set

of rules to a number of symbols in order to determine if any consequences can be

applied. In this case we are only considering a very reduced logic, in which a state

consists of a set of symbols which are asserted to be true. Rules take the form of

one or more precondition symbols, paired with one or more consequence symbols.

In this simple case, negation is not supported.

There are two forms of inference which can be applied in rule chaining; forward

chaining and backward chaining. In forward chaining a set of symbols are defined

as the starting state, and the rules of the system are searched. If the symbols in the

precondition of any rules are all present in the current state of the system then the

symbols in the consequence of the rule are added to the state, and the system then

iterates. In addition to the rules, one or more symbols are defined as a goal state.

If a goal state is reached then the search is complete. If the system reaches a state

in which no further rules can be applied, and that state is not a goal state, then the

search finishes in failure.

The alternative method for rule chaining is backward chaining. This method takes

the desired goal state and searches for matching symbols in the consequences of the
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X

R

r1: P -> Q
r2: P -> R
r3: Q -> S T
r4: Q -> U
r5: R -> V
r6: R -> W
r7: V -> X

Figure 3.6: An example set of single arity rules, and the resulting search tree

system rules. The system state is then updated to include the preconditions of those

rules. This process continues iteratively until either no further rules can be applied,

or the state reaches a set of symbols which are known to be true.

The decision as to which chaining method should be used is application specific,

with both methods having advantages and disadvantages. A discussion of this is

beyond the scope of this work, but further information on this subject can be found

in Russell & Norvig [78]. The implementation given here is of forward chaining,

although there is no reason that the same techniques could not be used to implement

backward chaining. What is important is that both forward and backward chaining

are implemented through a depth-first search [78], as we shall see in a moment.

We will examine the case in which all rules are single arity; that is, each rule has

exactly one precondition symbol. We will focus on rules of this type because it

slightly simplifies the required system architecture (The reasons for this are explained

in Section 3.3.11.2). Figure 3.6 contains a simple example of a set of rules of this

type. If at any point in the search the symbol at the head of any rule exists in the

current system state, it is replaced by the consequence symbols given at the tail of

all rules for which it is a precondition. So, for example, if the symbol P is in the

current state, it will be replaced in the subsequent state by the symbols Q and R.

This results in a search tree such as that given in Figure 3.6. We wish to apply

these rules to an initial system state in order to determine if any goal state can be

reached.

For example, given the rules in Figure 3.6, imagine a starting state of P , with a
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desired goal state of X. Determining if this is possible via a depth first search would

involve finding first that P entails Q, which in turn leads to the states S + T and

U . Next we would search down the other subtree, finding first R, then V and finally

our desired goal state X. The ARCA architecture is able to perform a search of this

type, except it can search down these multiple subtrees in parallel.

3.3.3 Parallel Distributed Computation

Parallel distributed computation (PDC) is an idea presented by Austin, whereby a

number of computations are distributed over a single neural network, without those

computations being localised to any part of the network [6]. This idea is central to

the implementation of ARCA. PDC is made possible in a correlation matrix memory

due to the unique properties of the recall operation in the network; specifically, if we

have a memory in which A→ C and B → D, a presentation of A and B (combined

with logical OR)at the input will result in the recall of C and D at the output (also

combined with logical OR). Exploitation of this fact allows multiple computations

to be performed in a constant time operation.

A simple example of PDC can be demonstrated with a single CMM; the CMM has

feedback from the output to the input of the network. In addition, the output can

be tested to see whether any final condition has been reached. Consider a state

machine, implemented using this simple architecture as shown in Figure 3.7. The

state transitions are stored in the memory as associations, from one state to the

subsequent states. For example in this case, the following associations will be stored

in the network: A → B, A → C, B → D, C → B and C → C. The machine is

initialized by presenting the starting state to the input of the network, in this case A.

Since A has transitions to both B and C, both of these symbols are recalled by the

network, combined in the output vector by a logical OR. This vector is then fed back

to the input of the network, resulting in the recall of the symbols associated with B

and C; in this case B, C and D. Hence, we see that the processing is indeed parallel,

with multiple state transitions being traversed in a single constant time operation.

Since recall from a CMM is a highly parallel operation in itself, which can be

efficiently implemented in hardware, this is potentially a very powerful observation.

Furthermore, the computation is also distributed. Since the representations used in

the CMM are distributed representations, the computation is not performed in a

localised section of the network.

It should be noted that there is nearly always a trade off between time complexity
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Figure 3.7: An example of parallel distributed computation: A state machine
implemented in a correlation matrix memory

and space complexity, and that is no different in the case of PDC. The ability to

perform multiple calculations in parallel requires a CMM large enough to store the

required rules in order to perform PDC as described above. However, for a system

with a rule set small enough to store in a memory this approach shows much promise.

3.3.4 Challenges

ARCA approaches the problem of rule chaining by applying a forward chaining

approach, implementing the rules into correlation matrix memories and performing

PDC on the system state. While this approach brings the benefits of CMMs, in

terms of speed and storage capacity, it also presents its own challenges. Perhaps

the primary challenge in achieving this goal is the representation of the state space.

While in the simple PDC example outlined above there was only a single system

state (the set of current nodes in the state machine), in this case we wish to maintain

multiple branches of the search in parallel. Essentially, multiple nodes of the search

tree must be stored within a single vector to be stored and recalled by correlation

matrix memories, and separation maintained between them. This must be achieved

while maintaining other requirements for the data to be stored in CMMs: in order

for the recall process to be effective the data should be sparse and fixed weight. We

shall see an elegant solution to this problem in Section 3.3.5.

A forward chaining search is not a linear operation in the general case. As we

observed in Section 3.3.2, forward chaining is performed through a depth first search.

Given a search tree with branching factor b (the maximum number of successors of

any node in the search tree) and maximum depth m, depth-first search has modest

space complexity of O(bm). However, the time complexity is O(bm) in the worst case

[78]. This is a potentially significant cost. By storing the entire state of the system
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in a vector, and updating the state through only constant time recall operations,

the ARCA architecture seems to offer the possibility to reduce the complexity of

forward chaining to O(m), eliminating the branching factor from consideration.

The space complexity is a more complicated issue; although the space used by the

system is constant during operation, if insufficient space is pre-allocated then the

memories will become saturated and the system will begin to fail. In other words,

the space complexity could perhaps be defined by the amount of memory required to

perform an error free recall. This is the cost of the ability to perform the rule chaining

in linear time. The storage capacity of a CMM cannot be easily pre-determined,

and will depend on the data that is stored in the network. This is problematic for

a system such as this, because the point at which the system will begin to fail may

be difficult to detect. We shall further examine this issue in Section 3.3.9.

3.3.5 Overview of the Associative Rule Chaining Architec-

ture

ARCA uses two correlation matrix memories to perform rule chaining on the input

symbols, as shown in Figure 3.8. These form a state machine, with the system in

a constant feedback loop until either a goal state is found, or there are no further

states to search. A number of states are entered as input to the precondition CMM.

The output of the CMM is the rules which will fire given the input states. The rules

are then given as input to the postcondition CMM, which outputs the new system

states. If a goal state is found then the search stops, otherwise the new system

states are input into the precondition CMM and the search continues. A defining

feature of ARCA is its ability to maintain multiple system states in a data structure

of constant size, and to search these states in parallel.

Before further describing the architecture, two important concepts need to be

recalled from Section 2.11. The first of these is the idea of superposition, which is key

to the ability of the architecture to process multiple states in parallel. Superposition

involves packing multiple vectors into a single vector, by combining them with a

logical OR. This operation is represented using the “+” operator. For example,

consider the vectors 101000 and 000110. These codes can be superimposed to give

the vector 101110. A CMM can process inputs combined in this way, and will

output an OR of the resulting outputs for each of the constituent vectors in the

input. For example, let us say that we have a CMM which has been trained with

the associations A → X and B → Y . If we input A + B, then the output of the
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Figure 3.8: The Associative Rule Chaining Architecture (ARCA)

CMM will be X + Y .

The second concept to recall is the idea of binding. This term is used to describe the

use of an outer product to combine two vectors together, producing a matrix called

a tensor product. This operation is denoted using “:” as an operator. Hence, A : B

represents the binding of the variables A and B. For example, if A = 1001, and B

= 1100 then:

A : B =

∣∣∣∣∣∣∣∣∣∣
1 1 0 0

0 0 0 0

0 0 0 0

1 1 0 0

∣∣∣∣∣∣∣∣∣∣
Having revisited these concepts, we can proceed to examine ARCA in further detail.

There are two data types in the system, which we will term tokens and rules. Both of

these are represented using fixed weight binary vectors which, as we have previously

seen when using CMMs, allow for improved recall performance when compared to

variable weight codes and for distributed coding within the memories. Following the

example given in Figure 3.6, let us consider a search from an initial state P looking

for a goal state X. In this case, the tokens are P , Q, R, S, T , U , V , W and X.

Each rule also has a vector associated with it, and hence our rules are those labelled

in Figure 3.6; r1, r2, r3, r4, r5, r6 and r7.
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The concept of keeping multiple branches of the search concurrently within a single

matrix warrants further explanation. Figure 3.9 contains a method for visualising

the matrices used within ARCA. We know that the binding between a rule vector

and any other vector will result in a matrix in which the only columns which will

contain non-zero values are those where the rule vector was set to 1. This means

that the number of non-zero columns in the matrix will be equal to the weight of the

rule vector. Since the rule vectors are fixed weight this number is both constant and

known. Assuming a fixed weight of 2 (for the sake of simplicity) we can visualise the

matrices as shown, with each vertical line representing a column of data, labelled

with the contents of that column. The positions of these columns are defined by

the rule vector that they were bound to, and this is labelled at the base of the

columns. The final matrix in Figure 3.9 particularly demonstrates how multiple

states are maintained within a single matrix, with the two tokens Q and R stored as

separate branches of the search. Since they are bound to different rules, the tokens

are separated within the matrix.

The system is initialised with all the initial tokens bound to a rule1. In this case

we initialise the system with P : r1. Each column in this matrix is then input into

the precondition CMM individually, and the outputs are formed into a matrix again

at the output. This gives a matrix of the rules which will fire, bound against a set

of rule vectors. In this case, the output matrix will be r1 : r1 + r2 : r1. That is,

the two rules that fire are r1 and r2, and both of these are bound to the same rule

which P was bound to, r1.

Each column of this matrix is then input in turn into the postcondition CMM. This

CMM outputs a series of tensor products between rules and tokens, each representing

the new tokens in the system, bound to the rule which produced them. These tensors

are then superimposed upon one another. In this example, this means that the tensor

Q : r1 + R : r2 is produced. Note that the produced tokens are bound to the rule

that produced them. This simple fact means that even though the data is all stored

within a single matrix, the separate branches of the search remain separate, allowing

the concurrent processing. The system then loops, with Q : r1 +R : r2 input to the

precondition CMM. Figure 3.10 shows the complete trace of the example we have

been considering.

1In the case of the initial tokens, the rule vector chosen is not important. The reasoning for
this is given in Section 3.3.7
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Figure 3.9: A visualisation of the columns within the matrices in ARCA. The
matrices contain columns of various types bound to rule vectors. These columns are
labelled at the top with the tokens contained within that column, with the remainder
of the matrix containing zeros. The positions of the columns are defined by the rule
token they were bound to (in this case of weight 2, hence each column appearing
twice), and this token is labelled at the base of the column.
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Figure 3.10: An example of ARCA running on the rules given in Figure 3.6, with a
starting token P and a goal state of {X}.
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3.3.6 Learning

The learning algorithm for ARCA is actually very simple. Each rule is labelled

separately, and code vectors are generated for these rules and for the tokens within

the rules. We will call the length of these tokens nr and nt respectively. We

then associate the head of each rule to the corresponding rule vector, storing

these associations in the precondition CMM. This means that the tokens in the

precondition of each rule are associated with the rule which should fire if the tokens

are present.

The training of the postcondition CMM is slightly more complex, and for each

rule the following must be accomplished. Firstly, we create a tensor of the rule

vector, and the tokens in the postcondition of the rule. This involves performing a

superposition of the postcondition tokens, and forming the tensor product of this

and the rule vector. This matrix is then considered as a vector with length ntnr, and

is associated with the rule vector in the postcondition CMM. It should be noted that

what is happening here is that the rule vector is being associated with a “pre-bound”

tensor of the postcondition tokens bound to the rule vector itself. This means that

when the precondition CMM determines that a rule should fire, the postcondition

CMM will produce the tokens which will result from that rule, bound to the rule

that fired them.

3.3.7 Recall

The recall process is initialised with one or more initial tokens, input by the user,

alongside one or more goal tokens. The initial tokens are bound to a rule vector; the

choice of rule vector here is not important. Recall that the purpose of the binding

to rule vectors is to maintain separation between different concurrent branches of

the search; since in the case of the initial tokens we have only a single state of the

search to be concerned with, the binding is not important. After performing this

binding, we are left with a tensor of size nt×nr. We will use a very simple example

to illustrate the recall process, which is illustrated in Figure 3.11 The example has

three tokens, which are defined as follows:

A = 101000

B = 010010

C = 100001

Furthermore, the system has two rules, labelled r1 and r2:
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r1 : A→ B = 10001

r2 : A→ C = 01010

So, in this case nt = 6 and nr = 5. Taking the vectors which we have just defined, if

we initialise the system with the starting token A, and choose (arbitrarily) to bind

it to r1, we bind A and r1 to achieve this input matrix:

1 0 0 0 1

0 0 0 0 0

1 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

The next stage in the recall process is to find which rules have heads matched by

tokens in the current state of the system. In order to accomplish this, each column

of the tensor is input to the precondition CMM in turn. The CMM will output a

vector of size nr. Since there are nr columns in the tensor, this means that at the

output of the precondition CMM we will have nr columns of size nr, giving us a

new matrix of size nr × nr. Since data is distributed across the input tensor, each

column does not simply contain a single token, but the superposition of potentially

many tokens. However, since a superposition of inputs input to a CMM produces

a superposition of their associations at the output, each new column is simply the

superposition of all the rules which match the tokens in the input column. Now,

since the order of these columns in maintained from input to output, the bindings

are also maintained. This means that the process we have just outlined results in a

matrix of rules, with rules which originated from separate paths of the search bound

against different rule vectors.

Let us make this clearer by continuing the example. Taking each column of

the matrix given previously, and inputting it to the precondition CMM gives the

following matrix:

1 0 0 0 1

1 0 0 0 1

0 0 0 0 0

1 0 0 0 1

1 0 0 0 1
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In this case, since both rules r1 and r2 match the token A both columns 1 and

5 contain the superposition of the matching rules r1 and r2. Each column from

this intermediate matrix is now input into the postcondition CMM. Recall that

the postcondition CMM has an output size of ntnr, outputting what is effectively

a reshaped matrix of tokens bound against rule vectors. We input each of the

columns from our intermediate matrix, giving a new matrix of size ntnr×nr. In this

matrix each column is the superposition of potentially many pre-bound tensors of

tokens, bound to the rules which fired to produce those tokens. This is perhaps best

illustrated by continuing the example (the following matrix is shown transposed, for

ease of display):

0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0

We now wish to reduce this matrix to a single binary column vector, containing

all the bindings which are present in the columns in the matrix. There are two

obvious methods which could be used to achieve this; a logical OR, or a sum and

threshold approach. The latter approach was suggested by Austin [9], and has been

demonstrated to be the superior alternative [23]. In this case the threshold will be

equal to the weight of the rule vectors since we want to preserve anything which

has been bound to a rule vector. Anything which has been bound to a rule vector

will appear in the matrix a number of times equal to the weight of the rule vector.

So, in our example, a sum across the columns produces the following vector (again,

transposed for ease of display):

0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0

This vector can now be reshaped into a matrix of size nt×nr, which in our continuing

example results in the following matrix:
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Figure 3.11: A single iteration of a recall operation in ARCA

0 1 0 1 0

1 0 0 0 1

0 0 0 0 0

0 0 0 0 0

1 0 0 0 1

0 1 0 1 0

Note that in the above matrix we can observe that we have B : r1 and C : r2,

precisely the result we would expect.

Before the system iterates, there are two conditions which must be checked. Firstly,

we must check whether any rules have been matched, and therefore whether the

search needs to continue. Secondly, we must check whether a goal state has been

reached. The former is achieved by observing whether the matrix above contains

any non-zero values. If the matrix consists of all zeros then no patterns have been

recovered, and so the search is completed, with no goal state reached.

The latter can be achieved by treating the above matrix as a CMM, with a

superposition of all the goal tokens treated as an input, and the threshold set to

the product of the number goal tokens and weight of those tokens. If the resulting

binary vector contains any rule token then we can conclude that the goal state has

been reached. This works because it indicates that the rule token was bound to the

goal token.



72 CHAPTER 3. APPLICATIONS OF CMMS

3.3.8 Robustness

As has been previously mentioned in Section 3.3.4, one of the issues with ARCA is

that the use of CMMs means that the point at which the system fails is difficult

to determine. As the precondition and postcondition CMMs become increasingly

saturated, the amount of crosstalk on the output increases. This eventually means

that thresholding of the output activity regularly results in an incorrect recall, and

the system begins to fail. The point at which this becomes a serious problem is

difficult to define, and depends on a number of factors. Firstly, the point at which

the CMMs will become saturated is difficult to determine, and will depend upon the

representation used and the rules stored. Secondly, even as the memories begin to

produce errors, the system may continue to operate correctly. Let us examine the

reasoning behind this.

Willshaw thresholding is used in both the precondition and postcondition CMMs.

Since more than one fixed weight code can be associated with a given input, L-

max thresholding is unsuitable as outlined in Section 2.7.4. Willshaw thresholding

has the benefit that the bits associated with the input code are guaranteed to be

set in the output. However, further bits may also be set. This means that as the

memories become saturated, an increasing number of incorrect bits will be set in

addition to the correct output bits. These codes will then be used as input to the

subsequent memory (be that either the precondition or the postcondition CMM).

Because the extra bits which have been set are unlikely to fully correlate with any

particular input code, these extra input codes are unlikely to produce extra bits

at the output. Essentially, the feedback system between the memories should be

capable of “cleaning” the erroneous output codes which begin to occur, at least

up to a point. Clearly as the memory becomes very saturated and the number of

incorrect bits set becomes large the chances of the extra bits corresponding to an

input code on the subsequent memory increase.

All of this means that the robustness of ARCA is extremely challenging to analyse.

For this reason, Section 3.3.9 focuses on performing simulations to examine the

capabilities of the system in practice.

3.3.9 Experiments

In order to better understand the performance of ARCA in practice, a number of

experiments have been performed. A simulation of the ARCA architecture has been
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implemented in MATLAB, and applied to a variety of problems. The experimental

methodology involved generating a set of rules which form a tree with a given depth

m and maximum branching factor b. This allows some comparison between the

system and depth first search. These rules were then trained into the architecture,

and rule chaining was performed upon them.

The experiments have been performed for a range of values for the depth m and

branching factor b of the search tree, and for the memory required to implement

the CMMs in ARCA. This allows an examination of the required memory usage of

the system, and how it alters as m and b are varied. It should be noted at this

point that the fact that a MATLAB implementation was used in the experiments

has limited the sizes of CMM which can realistically be operated upon, due to

restrictions in terms of memory requirements and running time. This means that

the largest CMMs used in the experiments would require only 2MB of memory if

they were optimally implemented, with each weight represented by only a single bit.

Nonetheless, the experimental results give a good idea of the relationship between

m, b and the memory required by the architecture.

The specifics of the generation of the rule sets in the experiments is important. Trees

were constructed in an iterative manner, beginning with the root symbol, which was

also defined as the starting token for the recall process. Further layers of the tree

were then added, with the total number of layers being equal to m. In the simple

case of b = 1 this simply produces a chain of rules A → B, B → C, C → D etc.

In the case of a value of b greater than one, the decision was taken to randomly

select the number of children which any given node has, sampling uniformly from

the range [1, b]. This gives a tree with a maximum branching factor of b which should

be more realistic than one in which all nodes have exactly b children. In addition,

this method produces trees which are of a more reasonable size.

A range of values of m and b were selected for examination, along with a range

of values of memory demands for ARCA E. E is defined by the token and rule

vector lengths nt and nr, with the required memory in bits being nrnt + nr
2nt. In

order to simplify the experiment, the weight of the token and rule vectors was set

to log2 n (rounding down), where n is the vector length. This value gives a sparse

representation which should provide good performance in the CMMs. For each

selected value of m, b and E the following experiment was performed:

1. Generate a rule tree with depth m and maximum branching factor b.

2. Train ARCA with the generated rules.
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3. Take the root of the rule tree as the starting token and a token in the bottom

layer of the tree as the goal token.

4. Perform recall in ARCA with the given starting and goal tokens.

5. Note whether the recall was successful.

6. Iterate the previous steps 100 times.

This process then gives a success rate for recall in ARCA for a given combination of

m, b and E. Determining whether the recall is successful is not a trivial task, since

the system does not “fail” in a traditional manner. In many cases, the system will

arrive at the required goal erroneously, due to over-saturation of the CMMs causing

“ghost” recall values. In these cases the system could be viewed as providing the

right answer for the wrong reasons. In this experiment a recall was defined as

successful if and only if the goal token was found at the correct depth (i.e. after m

iterations of the system).

3.3.10 Results

The graphs in Figures 3.12 and 3.13 are contour plots showing the recall error rates

for the ARCA architecture for a given depth of search tree and memory requirement.

Figure 3.12 shows the cases where the maximum branching factor is 1 and 2, and

Figure 3.13 shows the cases where it is 3 and 4. As an initial observation, note that

once the system begins to fail the performance falls off extremely rapidly as the

depth of the tree increases. Even in the case where the branching factor is only 1 it

only takes a very small increase in the depth of the search tree to take the method

from experiencing only a tiny level of error to over 90% error. This suggests that

there is a clear “breaking point” for the method, which is in contrast to the more

general case of CMM storage in which performance decreases very gradually (as we

shall see in Chapter 4).

Examining the case where the branching factor is 1 (Figure 3.12, top) the

first observation one might make is that there is considerable structure in the

performance changes, in particular a sudden fall in performance just above the

memory requirement of 0.2MB. This can be attributed to the method chosen for

selecting code weights, which was to take log2 n (rounding down) as the weight for

a code of length n. The decrease in performance occurs as the weight of the code

increases, moving to a code length of 64 and therefore a weight of 6. The previous
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code had weight of 5 whilst only being very slightly shorter, and therefore was a

more sparse code. It would seem that the less sparse code has caused a slight drop

in performance at this point. Moving onto a more general analysis of the graph,

a disappointing result is that the the memory required to achieve correct recall

appears to increase slightly more rapidly than linearly with respect to the depth of

the tree. This can likely be attributed to the size of the post-condition CMM, and

the choices made in the design of this experiment. Specifically, for a token code

length of nt and a rule code length of nr the number of bits required to represent

the post-condition CMM is ntnr
2. As such, it is heavily dependent upon the value

of nr. It may be the case that better results are possible if nt is increased and nr

is decreased. The relationship between these values currently remains unexplored.

In this experiment nr and nt were simply given the same value, which may have

resulted in a less efficient use of space than possible.

In addition, the weight chosen may not be optimal, which could also cause the

slightly worse than expected performance. As mentioned in Section 2.7.4, when

attempting to maximise storage capacity of a CMM the optimal weight for an input

code is log2 n, but for an output code it is log n (The theoretical results behind this

are examined in more detail in Chapter 4). In a system such as ARCA where codes

are used as both input and output codes, this is problematic. It would seem to be a

reasonable hypothesis that optimal value will lie between log2 n and log n. In work

by Graham & Willshaw [37] the relationship between these values is explored for a

large CMM, with input and output code size m = n = 218. It can be observed in

this case that storage capacity falls off particularly quickly with increasing output

weight, more-so than with decreasing input weight. This might suggest that the

optimal weight for this case may lie closer to log n than log2 n, and that perhaps

this offers a better starting point for future investigations.

The results for the branching factors 2, 3 and 4 (Figure 3.12, bottom and Figure 3.13

top and bottom) show the massive decrease in performance which occurs as the

branching factor increases. This is to be entirely expected given the explosion in the

number of rules and tokens which occurs. The exponential nature of this increase is

very visible in the increase of the incline of the 1% error contour as the branching

factor increases. By the time the branching factor reaches 4 we are only able to

achieve reasonable results for trees of depth 4 for the ranges of code lengths used

in these experiments, simply due to the huge numbers of tokens and rules which

are produced even at this depth. This problem is similar to that experienced by

traditional methods such as depth first search, as seen by the time complexity of
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that method, O(bm). In this case, however, the explosion in the number of rules

results in extreme memory requirements rather than running time.

3.3.11 Further work

There are a number of unanswered questions and potential extensions to ARCA

which have been identified. These are outlined below:

3.3.11.1 Effect of rule and token sizes and weights

The choices of the length of the codes used to represent rules and tokens (nr and

nt respectively) are very important in the use of ARCA. In particular, the memory

requirement of the system is defined by these values as nrnt + nr
2nt bits. This

memory requirement is dominated by nr so ideally this value in particular should

be kept as small as possible. While both of these values must be large enough so

that the tokens and rules in the system can be represented, further work is required

to understand the effect that varying these lengths relative to one another has on

recall performance.

In addition, the choice of weights when codes are used as both input and output

codes, as they are in ARCA, is problematic. This is because the optimal weight

for input and output codes in CMMs are different, as will be further explored in

Chapter 4. In ARCA the output to the postcondition CMM is the tensor of rule

and token vectors, further complicating the issue. Investigations into the optimal

choices of weights in the case of ARCA should be conducted.

3.3.11.2 Dealing with multiple preconditions

In this examination of ARCA we have only considered the case where each rule

has only a single symbol as the precondition; arity one rules. This enabled a clear

and simple examination of the architecture, but there is no reason why the system

cannot handle rules with more than one symbol at the head of the rule, so long as

a maximum number is predefined.

In order to implement this extension to the system, the introduction of “arity

networks” is required. As discussed in Section 2.11, it is not possible for a CMM to

perform recall correctly if rules of multiple arities are stored in the same network.
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Figure 3.12: Contour plots showing the recall error performance for ARCA where
the branching factor is 1 (top) and 2 (bottom)
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the branching factor is 3 (top) and 4 (bottom)



3.3. ASSOCIATIVE RULE CHAINING ARCHITECTURE 79

Precondition

CMM

Arity 1

Precondition

CMM

Arity 2

Precondition

CMM

Arity 3

OR

R+S R+SQQ

r2

r1

r4r4

r1

r6 r6

r2

r6 r6r4r4

r2

r1

Figure 3.14: The implementation of multiple arity CMMs in place of the precondition
CMM in ARCA. Each CMM matches rules with the appropriate arity, and the results
are combined with a logical OR.

This is because rules which have multiple preconditions will be recalled if only a

subset of those preconditions are met. However, by using a separate network to

store rules of each arity this problem is overcome. In the case of ARCA this would

involve replacing the precondition CMM with a set of CMMs, one for each required

rule arity. When performing training, each rule is trained into only the CMM which

corresponds to the arity of that rule. On recall, each vector is presented to every

network, thresholded, and the results superimposed.

An example of arity networks is shown in Figure 3.14. In this case the arity 1 CMM

matches a rule with Q as a precondition, the arity 2 CMM matches a rule with R+S

as a precondition while the arity 3 CMM finds no matching rules. These results are

superimposed (combined with logical OR), giving a single tensor product containing

the two matched rules bound correctly to the appropriate rule tokens.

Any further effects of implementing this addition to the architecture are currently

unknown, and warrant further investigation.
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3.3.11.3 Extensions to ARCA logic

Further work is required to extend this system to operate with more complex logics.

Firstly, the system as described here has no ability to deal with logical negation

in either the rules or the system state. Implementation of this would allow full

representation of basic propositional logic [78]. Furthermore, in order to perform

more complex rule systems, an implementation of a rule chaining system supporting

first-order logic would be required. First-order logic is described by Russell &

Norvig as “sufficiently expressive to represent a good deal of our common sense

knowledge”. However, this is a significantly more complex logic, and to undertake

this is a considerable task.

3.3.11.4 Application to real problems

Up to this point ARCA has only been tested on synthetic problems, and so the many

potential issues which may occur when it is applied to a real problem have not been

investigated. In particular, the structure of rules in a real problem is likely to deviate

from those which have been examined in the experiments in this work. While we

have examined theoretical limits to performance using large trees of unique rules,

a real system may well have tokens appearing at multiple points in such a tree, as

well as multiple trees. Performance in these cases would be of great interest.

3.4 Performance and Data Representation

Although they solve very different problems, both of the architectures examined in

this chapter rely on correlation matrix memories to perform pattern recognition.

The memories define the performance of the systems to a large extent. The benefits

of CMMs, specifically speed and robustness to noise, allow the methods to perform in

a very different way to many traditional methods of solving the respective problems

of object recognition and rule chaining. On the other hand, the weaknesses of CMMs

need to be acknowledged. The data representation needs to be very carefully chosen,

and the point of failure is difficult to determine.

Of particular interest is the data representation used in these networks. As

mentioned in Section 2.7.4, the data representation defines the performance of a

CMM. Yet, this is something that previous work on these architectures has largely
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not addressed. Through careful selection of a data representation, and corresponding

thresholding function, it may be possible to improve the performance of these

systems.

This observation motivates the remaining work in this thesis. While performance can

be defined in many ways, here we choose to focus on two aspects; the storage capacity

of CMMs, and the ability of CMMs to generalise. Chapter 4 examines a novel method

for improving the storage capacity of correlation matrix memories, based on a specific

data representation and thresholding function pairing. Chapter 5 then gives an

overview of a novel method for generating codes that allow a correlation matrix

memory to better respond to previously unseen inputs, and to perform generalisation

on the output. It is hoped that by implementing these techniques into existing

architectures such as those outlined in this chapter, increased performance will be

observed.

3.5 Summary

We have examined two architectures which use correlation matrix memories to store

rules. The CANN (Cellular Associative Neural Network) architecture is able to

perform object recognition using an array of associative processors, using ideas

inspired by cellular automata. ARCA (Associative Rule Chaining Architecture)

is able to perform forward chaining upon large sets of rules. The performance of

ARCA was examined experimentally with regard to its memory usage for trees of

various depth and branching factor. The lack of study into data representation

for both of these architectures was highlighted, and this observation motivates the

remaining work in this thesis.
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Chapter 4

Storage Capacity of Correlation

Matrix Memories

4.1 Introduction

The storage capacity of a correlation matrix memory (CMM) is difficult to define in

advance. As a result, considerable work has been conducted to attempt to explore

this issue. In this chapter a review of such methods is undertaken, giving a variety of

techniques which can be used to evaluate the storage capacity of CMMs. This leads

on to a discussion of thresholding and data encoding in CMMs, and the benefits and

drawbacks of various methods which can be employed.

In particular, we explore the use of fixed weight codes generated using the algorithm

of Baum et al. [14]. This method has the benefit of generating unique codes which

are well separated in pattern space, which makes them well suited for storage in a

CMM. We will subsequently term the codes generated from this algorithm Baum

codes, for ease of reference. While existing thresholding techniques can be applied

to Baum codes, we present a novel method which improves the storage capacity of

a CMM when using these codes.

4.2 Motivation

In Chapter 3, two architectures which utilise CMMs to store rules were described.

In previous work on these architectures, the issue of data encoding has been largely

83
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unexplored. If a data encoding is chosen such that the storage capacity of the

CMMs is maximised, then the performance of the previously described architectures

is improved. Therefore, an understanding of the issues involved with representation

in CMMs in regards to storage capacity is important, as well as the implementation

issues which are faced when applying these techniques to CMMs in a real system.

4.3 Theoretical results

It is impossible to exactly define the storage capacity of a CMM of a given size

in advance, even if the data encoding is known. This is because the capacity will

depend upon the pairs of data which are associated with one another. In addition,

a CMM does not reach a clear point at which it has become “full”, but rather the

probability that a recall will contain an error becomes larger as the memory becomes

increasingly saturated. However, previous results have been achieved which aid our

understanding of the storage capacity of CMMs, as well as informing appropriate

choices for the length and weight of the codes used.

When recalling data associated with an input vector in a CMM, the output activity is

a sum of any vectors associated with the input vector, as well as a noise component.

This noise comes from associations between similar input items and various outputs,

and is known as crosstalk. A discussion of crosstalk for continuously weighted CMMs

was given in Section 2.7.2. The problem is similar in the binary weighted case, in

that the angle between input codes is the defining factor in the amount of crosstalk,

and therefore very important to the storage capacity of the network. The problem

cannot be as simply expressed as in Equation 2.7 due to the fact that weights are

clipped, but the principal is similar. In order to minimise the noise, the input codes

should be an orthonormal set, although as we shall see this is not an optimal choice

for other reasons. The issues associated with generating orthogonal sets of codes

will be examined in Section 4.4. In addition, the choice of threshold function will

also relate directly to the representation used. Threshold functions will be examined

in detail in Section 4.5.

Willshaw et al. examined the information capacity of CMMs, and found that the

theoretical maximum information per weight is ln 2 ≈ 0.69 bits [89]. This means

that a CMM is capable of storing approximately 69% of the maximum amount of

information which could possibly be stored in a traditional random access memory

of that size, i.e. an information efficiency of 69%. This value is high considering
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the distributed nature of the storage, and the associative properties of the memory.

The information efficiency is important to consider as it defines a slightly different

property to storage capacity. A memory may be able to store a large number of

items whilst being very inefficient in terms of how the storage has been used, in

which case the storage capacity would be high but the information efficiency would

be low, suggesting that the information content of the codes stored was also low.

Palm [72] [73] took this information theoretic approach further, applying it to

choosing an encoding which would maximise the storage capacity of a correlation

matrix memory. His method involves maximising the average information which can

be retrieved from a CMM by choosing a fixed weight encoding appropriate to the

number of input and output neurons. Firstly, let us define the size of the input and

output codes as n (giving an n×n CMM), the input weight as k, the output weight

as l and the number of stored pairs as z. Then, we can define the information I

stored in a CMM by the following equation, where Nt is the number of incorrect

“ones” set on the output t:

I =
z∑
t=1

[
log2

(
n

l

)
− log2

(
l +Nt

l

)]
(4.1)

Equation 4.1 gives the sum of the information for all input/output pairs, using two

terms. The first term, log2

(
n
l

)
gives the information in a fixed weight output code

using a l of n encoding, since
(
n
l

)
different codes can be represented using such

an encoding. However, simply summing this term over all the pairs of data does

not give the information stored in the CMM, since not all outputs will be recalled

perfectly. Assuming a Willshaw threshold is applied, outputs may have extra bits

set. Therefore, the second term in the sum reduces the information accordingly,

being the information lost in the selection of l bits to set to one from l +Nt. Palm

goes on to give the following theorem in [73].

Theorem. For any n ∈ N and any ε > 0, we can find parameters k, l, z such that

I(n, k, l, z)

n2
→ ln 2

1 + ε

and

Information stored per output string

total information of one output string
→ 1
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for n→∞

The parameters are chosen in such a way that k = (1 + ε) log2 n, l = O(log n),

z ∼ ( n
logn

)2

Breaking this down, the term I(n,k,l,z)
n2 represents the information content of each

weight in the memory (the total information divided by the number of weights

in the memory). So, the theorem states that the parameters can always be set

such that the information per bit is close to the theoretical maximum for a CMM,

ln 2 ≈ 0.69. This is in agreement with the value given by Willshaw [89] for the

theoretical maximum information efficiency in a CMM. In addition, the information

stored for each output string will be close to the total information contained in that

string. In order to obtain these results, the values k, l and z are set as given in the

theorem. This gives a series of parameters which define the most efficient use of the

memory as the size of n tends towards infinity.

Palm et al. give further asymptotic results for the storage of randomly generated

pairs of codes in a CMM [74]. In this case, each position in the input and output

codes has an independent probability of being set to 1, with the probability being

p for the input codes and q for the output codes. In these circumstances, a high

memory capacity is achieved when the number of 1s and 0s in the weight matrix are

equal, or equivalently when the memory is 50% saturated. Achieving this means

keeping the product zpq low, where z is the number of patterns being stored.

Therefore, if we wish to store a large number of items in the memory, both p and q

should be small. In other words, the input and output patterns should be sparsely

coded. In fact, the optimal information capacity of ln 2 ≈ 0.69 can be achieved when

the number of 1s in each pattern is O(log n).

Two approaches to defining the storage capacity of a CMM were presented by Austin

[13]. Firstly, a probabilistic approach allows us to define a probability of recall failure

to the memory, P . This gives the chance of a recall which is imperfect (i.e. contains

any error). Defining z as the number of patterns learnt, m as the length of input

code, k as the weight of the input code, n as the length of the output code and l as

the weight of the weight of the output code the value of P can be calculated as:

P = 1−

{
1−

[
1−

(
1− lk

nm

)z]k}n

(4.2)

Equation 4.2 is derived by calculating the number of weights set to 1 in a memory
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which has learnt z associations, which allows the calculation of the probability of

any outputs going above the output threshold (assuming a Willshaw threshold). For

the full derivation see Appendix A in [13].

In addition, an instructive exercise is to calculate the number of patterns which may

be stored in a memory before the probability of a single bit error (and only a single

bit) becomes maximum. This allows an examination of the storage of the memory

without reference to probabilities. This number, z can be defined as follows:

z =
ln
(
1− 1

n1/k

)(
1− lk

nm

) (4.3)

This allows choices to be made for the weights and lengths of the output codes of

a memory based upon the number of items to be stored, although again it assumes

the use of Willshaw thresholding. Of course, at capacity such a memory would be

subject to occasional erroneous recalls, as defined by Equation 4.2.

Graham & Willshaw calculated storage capacity and information efficiency values

for a large CMM, with equal numbers of input and output neurons (n = 218 =

262, 144) [37]. They found that both the storage capacity (defined as the number of

codes which can be stored before there is a one bit error in a recalled pattern) and

information efficiency were highly non-linear functions of the input weight k and

output weight l of the codes. Both the information efficiency and storage capacity

were found to be maximal with an input weight k = log2 n = 18. For a given input

weight, the capacity was found to reduce exponentially with increasing log2 l, with

the information efficiency decreasing linearly. The information efficiency I can be

approximated with the following function, where C is a constant for a given input

weight, in the range 0 < C ≤ 1:

I = C

(
1− log2 l

log2 n

)
ln 2 (4.4)

Interestingly, both the maximum efficiency and storage capacity were found to be

at the same point; with input weight k = 18 and output weight l = 8. This gave an

information efficiency I = 0.58 and a storage capacity of z = 313, 000, 000. Note that

this value of z is orders of magnitude larger than the number of input neurons, n =

262, 144. Comparing these results to the theorem of Palm given in [73] and repeated

above, we see considerable agreement. The value of k is precisely as given by Palm,

and the optimal output weight l = 8 is indeed in the order of log n = 5.42. In terms



88 CHAPTER 4. STORAGE CAPACITY OF CMMS

of the storage capacity Palm gave the value z ∼ ( n
logn

)2 = 2, 340, 000, 000, which is

of a similar order of magnitude to the observed value. The information efficiency

is clearly lower than the maximum possible I = 0.69, though not considerably so.

Given that the storage capacity was defined by Graham and Willshaw to allow for

no error, it is perhaps not surprising that the capacity and information efficiency

are lower than the theoretical maxima.

All the work which has just been described is focused upon the storage capabilities

of a single CMM attempting to recall associated pairs of data. However, when using

CMMs in a more complex architecture, such as AURA [11], the situation becomes

less clear. Turner and Austin [86] developed a probablistic framework for analysis

of AURA memories, which complicate the CMM model we have been examining

by allowing partial matches, one-to-many associations and memories consisting of

multiple CMMs.

One further issue which affects the capacity and coding issues we have discussed is

the connectivity of the CMM. Up to this point CMMs have only been considered to

be fully connected. However, Graham & Willshaw have shown that high information

efficiencies can be achieved with codes which are more densely coded through the use

of a partially connected CMM [36]. Such an approach is more biologically plausible,

due to the connectivity between neurons in the brain. Making such a change to

the connectivity of a CMM also requires different approaches to thresholding when

compared to the fully connected version [35]. In practice their approach is able to

achieve a high information efficiency for codes which are 2-3 times more densely

coded than in the fully connected case.

In summary then, the theoretical work points to the use of sparse coding for both

the input and output codes in a fully connected CMM. Using such codes appears to

maximise both the information efficiency and the storage capacity of the memories.

There appears to be general agreement that input weight should be in the order of

log2m, where m is the number of input neurons. Ideally, output codes are sparser

than this, in the order of log n, where the number of output neurons is n. Using this

form of coding, it is possible to store z � m codes in a CMM, while allowing for a

small possibility of error. In addition, the crosstalk (and output noise) is reduced

through using a set of input codes which are close to orthonormal.
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4.4 Generating Sparse Fixed Weight Codes

As we have observed in Section 4.3, optimal storage capacities in a CMM are achieved

when input and output codes are sparsely coded. The use of fixed weight codes is

also beneficial, meaning that all codes have equal (hopefully optimal) sparsity, and

allowing the use of L-max thresholding. In addition, we wish for the input codes

to approximate an orthonormal set. Therefore, a relevant question is “How do we

generate such codes?”.

Firstly, the concept of orthogonality between sets of codes should be made more

precise. Given binary codes of length n, the dot product between two codes gives

the cosine of the angle between them. When the dot product is 0, the two codes

are orthogonal (cos π
2

= 0). Generating a large number of codes which represent an

orthonormal set is often not possible, since the largest orthonormal set possible for a

binary code of length n is n. Therefore, we are interested in sets of codes which are

close to orthonormal. This means that the average dot product between all codes

is as small as possible.

Perhaps the simplest representation of all would be the use of unary input codes (a

single bit set to 1 in n bits). Such codes are maximally orthogonal and are simple

to generate. This provides a storage capacity for a CMM of exactly n code pairs, as

well as allowing exactly n different codes to be generated. Each output code will be

stored in exactly one row of the matrix, and given a correct input code there will

be no error on recall. However, the fault tolerance capability of the network is lost,

since the storage is no longer distributed. It is necessary to use input and output

codes with more than one bit set to 1 to distribute storage over the network. In

addition, the theoretical results outlined in Section 4.3 suggest that the sparsity of

codes should be in the order of log n or log2 n, so such codes have been shown to be

highly suboptimal in terms of storage capacity and information efficiency.

Another issue which needs to be highlighted is that in some cases, input and output

encodings may be the same. For example, this occurs in both ARCA and the CANN

architecture outlined in Chapter 3. In the CANN rules are stored which associate

between pairs of the same types of data, and in ARCA both the state and token

encodings are involved in the input and output of CMMs. This makes the choice of

an encoding more difficult, since the optimal weights described in Section 4.3 cannot

be applied for both input and output codes.

We will now examine some methods for generating sparse fixed weight codes for
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storage in correlation matrix memories.

4.4.1 Random codes

One obvious method for approaching the problem of generating fixed weight sparse

codes is to randomly select k bits to set to 1 in the n bits of the code. This allows

codes to be quickly generated, but makes no guarantees regarding the orthogonality

of the generated codes. In addition, every new code must be checked against all

existing codes to ensure that it is unique. This not an inconsiderable cost, and only

becomes more expensive as the number of codes to be generated increases. There

is no real reason to generate codes for CMMs this way in practice, since Turner

codes (described in Section 4.4.3) offer superior codes for little additional cost in

comparison to random codes.

Alternatively, codes can be randomly selected from a list of all possible fixed weight

codes for given values of k and n. This is certainly a superior alternative, since

it is trivial to ensure that each code is only selected once from the list, and hence

there is no need to check for uniqueness. However, the problem that there are no

guarantees on the orthogonality between a set of codes generated this way is still an

issue. Other methods exist which allow fixed weight codes to be generated in such

a way that we can be sure that a set of codes are close to orthonormal.

4.4.2 Baum codes

Baum et al. proposed an algorithm which generates fixed weight codes which have a

small amount of overlap [14]. The code is divided into l sections which are relatively

prime (coprime) in length, with each section i having length pi. For example, a code

of length 32 where l = 3 could be divided into sections of length 16, 9 and 7. The

size of l defines the weight of the code. To generate code number c, we set the bit

in position j as follows (where x is the code to output):

xcj = 1 if j −
i−1∑
k=1

pk ≡ c (mod pi)

= 0 otherwise

(4.5)
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1 0 0 0 0 1 0 0 1 0
0 1 0 0 0 0 1 0 0 1
0 0 1 0 0 0 0 1 1 0
0 0 0 1 0 1 0 0 0 1
0 0 0 0 1 0 1 0 1 0
1 0 0 0 0 0 0 1 0 1
0 1 0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 0 0 1
0 0 0 1 0 0 0 1 1 0
0 0 0 0 1 1 0 0 0 1
...

...
...

...
...

...
...

...
...

...

Figure 4.1: An example of the generation of Baum codes. Here, l = 3 and p1 =
5, p2 = 3, p3 = 2, giving a code of length 10

Essentially, what is happening is that a single bit will be set to 1 in each section

of the code. As subsequent codes are generated, the next bit in each section will

be set to 1 instead, wrapping around to the beginning of the section when the end

is reached. For example, Figure 4.1 shows a code with n = 10 and l = 3, taking

p1 = 5, p2 = 3, p3 = 2.

Using this mechanism p1 × p2 × . . . × ps unique codes can be generated, which is

substantially fewer than it is possible to represent with a general fixed weight coding

scheme ( n!
(n−l)!l!). However, the overlap between the codes is guaranteed to be small,

which improves recall accuracy if they are used in a CMM. Since the method is

deterministic, we can be certain about the amount of overlap between generated

codes. With no loss of generality we can consider a Baum code with section lengths

p1 < p2 < . . . < ps. The first p1 codes generated will have no overlap at all. The

first p1p2 overlap by at most 1 bit (a Hamming distance1 of at least 2l − 2). In

their analysis Baum et al. [14] state that if
∏t

i=1 pi codes are used (where t ≤ l), the

minimum Hamming distance between any two codes will be d = 2(l − t + 1). For

this reason, it is beneficial for pi ≈ n/l, since this maximises the product between

the section lengths pi, and hence the number of codes which can be generated with

minimal overlap.

As was mentioned above, when using Baum codes, fewer codes can be generated

when compared to methods which use the full code space available for a binary

fixed weight code (such as random codes or Turner codes). This is reflected in

the information contained in a Baum code of a given size. As Nadal & Toulouse

1The Hamming distance between two codes is the number of bits which differ between them.
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pointed out, the goal of an increased storage capacity cannot be solely based upon

the number of patterns stored, but also on the information contained within those

patterns [68]. The information content of the codes stored in a CMM will affect the

information efficiency I. Since fewer codes can be generated for a given code length,

the information content in a Baum code of a given length is lower than for a random

code (or indeed a Turner code as we shall soon see in Section 4.4.3) of the same

length. Example information contents for Baum codes and random codes of various

lengths are given in Figure 4.2. We see that while the information content for Baum

codes is lower than for random fixed weight codes, the difference is not too huge for

small values of l. Since we are using the algorithm to generate sparse codes, l will

always be a relatively small value. Exactly what effect storing Baum codes has on

the value of I is a question which should be tackled in future.

Having said all of this, an alternative viewpoint is offered when we consider the

number of codes which will practically be stored in a CMM. The theorem of Palm

given in Section 4.3 states that as n tends to infinity the number of stored codes

which maximises information efficiency and storage capacity will tend to ( n
logn

)2 with

the appropriate selection of parameters. Taking this value as the number of stored

pairs z, we can compare it to the number of Baum codes which can be generated

for the appropriate values of n and l. If z associations are stored and the input and

output spaces are different, then we require z unique codes on the input and up to z

unique codes on the output. If the input and output codes are from the same space

then we may require up to 2z unique codes from a single codespace. In other words,

in order to store z associations in a CMM we will need to generate between z and 2z

unique codes. Figure 4.3 shows the number of Baum codes which can be generated

when the sparsity of the codes is set to be (a) log2 n (the optimum sparsity for an

input code) and (b) log n (the optimum sparsity for an output code), with the weight

rounded to the nearest integer. Note that the breaks in continuity of the number of

Baum codes are caused when the sparsity of the code changes. Taking z = ( n
logn

)2

and plotting both z and 2z on the graphs, we see that sufficient codes are generated

for all reasonable values of n when the weight is set to l = log2 n, and for n > 316

(or, more pertinently when l > 2) when the weight is set to l = log n. This suggests

that for practical applications, Baum’s algorithm is capable of producing a sufficient

number of codes to fill a CMM to capacity, provided the entire code space is utilised.
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Figure 4.2: Information content for random fixed weight binary codes and Baum
codes over a variety of code lengths
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4.4.2.1 Generating coprimes for Baum codes

One issue with using Baum codes is that a set of coprime numbers must be generated

before the method can be used. Generating such a set for a given code length n and

weight l is not a trivial task. In addition, the set of numbers chosen should ideally

be optimised such that the product between the numbers E =
∏l

i=1 pi is maximised,

since this ensures the largest possible number of codes can be generated.

The näıve approach is to exhaustively generate all possible combinations of l

coprimes which sum to n, and so select the set with the largest product. Such

an algorithm is simple to write. However, as l increases the search space becomes

extremely large, and the search quickly becomes intractable even for relatively small

values of l. For this reason, this approach is not suitable for practical values of l and

n.

If a set of numbers are prime, they are guaranteed to also be coprime. By using this

fact, an alternative strategy can be devised. There is no need to calculate prime

numbers, since huge lists of primes are readily available, certainly to a large enough

number to be usable for Baum codes of a practical length. In this case, a set of

primes of size l can be selected such that they sum to n. There may not always be

a set of primes which sum to exactly n, but in practice it would seem reasonable to

accept solutions which are close to n. While this technique could operate extremely

quickly, especially when compared to an exhaustive search, the quality of the solution

in terms of maximising the product of the coprimes E is likely to be far from optimal

due to the rarity of primes.

An alternative is to use an approximation algorithm, which might work as follows.

This assumes that sets of coprimes whose sum is close to n are acceptable, as this

enables solutions which provide a much higher value of E. A starting seed p1 is

selected to be the first element of P . This value should be slightly smaller than n
l
.

The next value, p2 is then produced by finding the smallest value larger than p1

which is coprime with it. Each subsequent value in P is produced the same way,

finding a number larger than the previous entry into P which is coprime with all

the existing members of P . Since these numbers will generally be close together,

and the first number was selected to be slightly smaller than n
l
, we should find that∑l

x=1 Px ≈ n. In addition, since all the values of P are close to n
l
, the value of E is

high. If a more precise approximation to n is required, a small local search could be

applied for various values of p1.
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4.4.3 Turner codes

An alternative method for generating fixed weight codes which display high

orthogonality is described by Turner & Austin [85]. The method produces a set

of codes which are closer to an orthonormal set than Baum codes, although at

considerable computational expense.

The heart of the algorithm is that each new code is generated based upon minimising

the dot product with the sum of all previously generated codes. This gives a code

which minimises the average dot product between all pairs of codes C. For example,

consider the case in which the following codes have already been generated, with

code weight 2:

c1 = 100010

c2 = 011000

c3 = 000101

c4 = 010100

c5 = 001001

In this case, the sum over all the codes in C gives the vector 122212. The code

which minimises the dot product with this vector can be determined by finding the

smallest k values in the vector. These are the positions which should be set to 1

in the new code. This means that in this case the code which minimises the dot

product is 100010. However, note that this code is already in the set C, as c1. This

motivates the second key part of the algorithm, which is determining uniqueness.

Note that this is a problem shared in common with randomly generated codes. For

each candidate solution up to #C comparisons must be made. As C becomes larger

and fewer codes are available to use, many such checks may be required each iteration

of the algorithm.

The primary strength of this algorithm is that a set of codes is generated which are

close to an orthonormal set, closer in fact than Baum codes. In addition, a larger

number of codes can be generated. This means that the information content of

Turner codes is larger, and hence fewer bits are required to produce a given number

of codes. In addition, if only a subset of all codes are required, the first codes

generated provide maximal orthogonality. Unfortunately though, the requirement

to check for uniqueness reduces the usefulness of the algorithm, since the running

time increases quickly as the number of codes to be generated increases.
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4.5 Thresholding

The choice of threshold function is an important one, and relates to the encoding

which has been chosen. Two thresholding techniques which can be applied to

sparse codes stored in CMMs are Willshaw thresholding and L-max thresholding, as

mentioned in Section 2.7.4. We will now examine these methods, and their strengths

and weaknesses.

The name Willshaw thresholding refers to the form of thresholding which was

described by Willshaw et al. in [89]. The thresholding function uses the number

of 1s in the input code k as a threshold value, setting any output neuron with

activity equal to k to 1. This form of thresholding has one very important property;

it is guaranteed that no bits set to 1 on the output will be missed, given a correct

input code.

If codes with fixed weight are used, an alternative threshold function is available;

L-max thresholding [13]. This sets the l neurons with the highest output activity to

1 and the rest to 0, where l is the weight of the output code. Casasent and Telfer

[25] experimented with various output encodings, including binary codes, Hamming

codes and fixed weight codes, albeit with analog input codes. They found that in

the presence of noise, fixed weight codes with L-max thresholding gave the greatest

storage capacity for a given code length. This capability to make correct recalls

from noisy input codes is the defining advantage of L-max thresholding.

To illustrate why, consider the recall shown in Figure 4.4. The recall from the CMM

on the left is from a perfect input code. There are three output neurons which

are associated with all three inputs which are set to 1, so these three neurons have

activity 3. Using Willshaw thresholding, only those bits which are associated with

all the inputs set to 1 will be set on the output. In this case this produces a correct

recall. The recall on the right is based upon a noisy input code, with noise which has

resulted in two bits being flipped. Note that the output activity has been reduced

for two of the correct output bits. However, by taking the l = 3 highest output

activities a correct recall is achieved even in the presence of noise.

In the simple case that inputs are noise free and only a small number of inputs have

been stored, both of the described methods will have very similar performance. In

short, with a perfect input L-max and Willshaw thresholds will perform identically

as a memory becomes saturated until “extra” ones appear in the output. At this

time, Willshaw thresholding will return the l correct bits set to 1, as well as an extra
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Figure 4.4: An example of Willshaw and L-max thresholding. The left image shows a
recall using Willshaw thresholding from a perfect input code. The right image shows
a recall using L-max thresholding from a noisy input code.

N erroneous bits, where N is the number of extra bits which have met the threshold.

L-max thresholding will return an arbitrary choice of l bits from the l+N bits set in

the output. So while Willshaw thresholding will guarantee the correct bits have been

set, L-max thresholding will more often get a perfect recall because occasionally the

correct output will be “guessed” from the l +N bits. Which behaviour is desirable

is application dependent.

However, as previously mentioned, the real benefit of L-max thresholding occurs

when there is noise on the input. This benefit can be clearly observed experimentally,

examining the recall abilities of L-max and Willshaw thresholding for a variety of

input noise levels. An input code size of m = 256 was chosen, with an input weight

of k = log2 256 = 8. The selected output code size was n = 256 with an output

weight of l = log 256 ≈ 2. Since the input will contain noise, the number of bits

may be affected. For this reason we define two forms of Willshaw thresholding to

compare. The first is standard Willshaw thresholding, where the threshold is set to

the number of bits set to 1 which appear in the input code. We term the second

“Fixed Willshaw” thresholding, in which the threshold is set to the number of 1s

which were set in all inputs which were trained. In each experiment an empty CMM

was created, and the following steps were then undertaken.

1. Generate a unique fixed weight input code.

2. Generate a random fixed weight output code (this need not be unique).
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3. Train the CMM using the generated input/output pair.

4. Present every input which the CMM has learnt (altered by noise) and compare

the correct output to the actual output using Willshaw, Fixed Willshaw and

L-max. The input is subject to a different level of noise in each experiment.

5. If average error (defined below) exceeds 10% for all thresholding techniques

then exit, otherwise return to 1.

For each experiment the above steps were run with twenty CMMs. A different

integer was used to seed the random generator for each CMM, resulting in differing

output patterns being trained, and differing noise. The noise level represents the

probability that any given input bit will have its value “flipped” (changed from 1

to 0, or from 0 to 1). After each iteration the average error was calculated for all

twenty CMMs. The recall error was defined as the percentage of recalled patterns

which contained an error in any bit.

The results of these experiments can be seen in Figures 4.5, 4.6, 4.7, 4.8 and 4.9 for

noise levels ranging from 0% to 10%. In the case that there is no input noise the

performance of L-max and Willshaw is very similar, as one would expect. This can

be seen in Figure 4.5. As the error increases, there is a small improvement in the

number of perfect recalls when using L-max, caused by the occasions that L-max

happens to “guess” the correct bits from those whose activity is maximal. Since

there is no noise, the performance of Willshaw and Fixed Willshaw is identical.

As the level of noise increases, as seen in Figures 4.6, 4.7, 4.8 and 4.9 we see an

increasing benefit in the use of L-max thresholding. We also see that Fixed Willshaw

is a far superior alternative to standard Willshaw thresholding. Even with only a

small amount of input noise, such as in Figures 4.6 and 4.7, we see that Willshaw

thresholding has considerable error even with very few codes stored, whereas L-max

thresholding enables a number of codes to be stored before errors begin to appear.

This clearly demonstrates that L-max is by far the superior choice in applications

where input noise is to be expected.

One issue with L-max thresholding is that it cannot be used in the case that outputs

are superimposed. An underlying assumption of the method is that all input codes

are associated with exactly one output code. For example, if an input code is

associated with two output codes, and the weight of those codes is l then the correct

output code would have 2l bits set to 1 (assuming that the codes are orthogonal).

However, since there is no way to know that this is the case, L-max will still set l
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Figure 4.5: The performance of L-max and Willshaw thresholds with a noise free
input. Dotted lines show the standard deviation of recall error.
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Figure 4.6: The performance of L-max and Willshaw thresholds with 0.5% input
noise. For clarity, note that the top line is Willshaw thresholding, the middle is
Fixed Willshaw and the bottom is L-max. Dotted lines show the standard deviation
of recall error.
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Figure 4.7: The performance of L-max and Willshaw thresholds with 1% input noise.
Dotted lines show the standard deviation of recall error.
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Figure 4.8: The performance of L-max and Willshaw thresholds with 1% input noise.
Dotted lines show the standard deviation of recall error.
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Figure 4.9: The performance of L-max and Willshaw thresholds with 1% input noise.
Dotted lines show the standard deviation of recall error.

bits to 1. Worse, these bits may not even be those that belong to one of the two

codes, but will be an arbitrary subset of both. For this reason, L-max thresholding

is only suitable in the case where each input code is associated with exactly one

output code.

Another issue with L-max is that a result is always returned, regardless of the

strength of the output activity. In the case of Willshaw thresholding, if there were

no outputs associated with a given input it is likely that a vector of all 0s would

be returned. There may be occasions when using L-max we wish to only return a

result when there is a level of confidence that an output was associated with the

given input. For example, in the CANN architecture [8] (discussed in Section 3.2)

the learning algorithm requires a different course of action when a given input has

an output already associated with it compared to when the input has not previously

been associated to anything. A decision on the likelihood that an input has an

output associated with it can be reached by examining the output activity before

thresholding. If the l highest output activities are close to the input weight k then

we can be reasonably confident that an output code was associated with the input

code being applied.

L-max thresholding requires communication between output neurons. This is in
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contrast to traditional thresholding techniques which are entirely local to each

individual neuron. This means that an efficient implementation of L-max is a slightly

troublesome proposition.

4.6 Improving the Storage Capacity with Baum

Codes

In the AURA library [7] the algorithm of Baum et al. [14] has been used to generate

fixed weight codes, with L-max and Willshaw thresholding often used when recalling

these codes. This represents an oversight, since both of these thresholding functions

may produce output codes which are not possible under the Baum algorithm. By

constraining the threshold so that only the codes generated by the algorithm are

output, an increased storage capacity can be achieved.

It has already been mentioned that the algorithm divides the code into a series

of sections. Baum et al. point out in the appendix to their paper that a useful

property of the algorithm is that there is exactly one 1 in each section of the code

[14]. This means that a winner-takes-all (WTA) threshold can be applied to each

section of the code, rather than taking the l highest values from the whole code, as

we would with L-max. We introduce this concept to thresholding in a CMM. This

thresholding technique incorporates more information about the output encoding

into the thresholding function, and therefore provides a more robust thresholding.

We shall call this thresholding technique L-wta.

4.7 Results for L-wta

To demonstrate the improved storage capacity of a CMM when using L-wta

compared to L-max a series of simulations were conducted. The storage of a CMM

is affected by the size of the input and output codes, and also by the weight of the

coding system used. For this reason the L-wta technique was compared to L-max

for a variety of choices of these values. In each experiment an empty CMM was

created for the appropriate code sizes. The following steps were then undertaken.

1. Generate an input code according to the algorithm of Baum et al. [14] This

code will be unique.
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2. Generate a random output code. This code is a random code from the entire

space of possible Baum codes for the given set of coprimes, and so may not be

unique.

3. Train the CMM using the generated input/output pair.

4. Present every input which the CMM has learnt and compare the correct output

to the actual output using L-max and L-wta.

5. If average error (defined below) exceeds 10% for all thresholding techniques

then exit, otherwise return to 1.

For each experiment these steps were run with twenty CMMs. A different integer

was used to seed the random generator for each CMM, resulting in differing output

patterns being trained. After each iteration the average error was calculated for all

twenty CMMs. The recall error was defined as the percentage of recalled patterns

which contained an error in any bit.

Tables 4.1 to 4.4 summarise the results which were achieved. In order to illustrate

the performance of the thresholding techniques at a variety of error tolerances we

examine the number of codes learnt in each memory before recall error exceeded

0.1%, 1%, 5% and 10%, together with the percentage increase in capacity provided

by the L-wta method. The significance of these results was calculated by performing

a Student’s t-test, and therefore assumes that the values were normally distributed2.

Table 4.1 shows the results when the size of the input was varied, whilst size and

weight of the output code remained constant. Similarly, Table 4.2 shows the results

when the weight of the input code was varied. In both cases it can be seen that the

use of L-wta results in an increase of approximately 15% in storage capacity, and

that this increase is highly statistically significant in the majority of cases. L-wta

appears to provide the largest increase in storage over L-max when the input code

is sparse; that is, when the code size is increased or the weight is decreased. This

advantage appears less pronounced as the amount of output error increases, but the

statistical significance of the results becomes greater.

The case is similar when examining Tables 4.3 and 4.4. The effect of output sparsity

on the effectiveness of the technique is less clear. However, the storage capacity

2Because the experimental results gave a range of output errors rather than number of codes
stored, the standard deviations for the Student’s t-test were approximated by interpolating across
the standard deviations for the output errors. It is important that the significances of the results
in the tables, therefore, are viewed as an approximation.
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64/4 256/4 70 78 11.4 ns 115 129 12.2 * 153 171 11.8 ** 179 207 15.6 ***

128/4 256/4 139 141 1.4 ns 197 234 18.8 *** 289 334 15.6 *** 345 406 17.7 ***

256/4 256/4 259 286 10.4 ns 424 473 11.6 ** 600 696 16.0 *** 719 831 15.6 ***

512/4 256/4 496 589 18.8 * 814 927 13.9 *** 1182 1369 15.8 *** 1416 1630 15.1 ***

Table 4.1: Experimental results for L-wta when varying the size of the input code.
All tables show the number of codes learnt before errors at given levels. Codes are
given in the format length/weight. Note that in some cases the given code lengths
are approximate. This is due to the complexity of generating large sets of coprime
numbers which sum to a given target. Bold numbers show the percentage increase in
storage capacity when using L-wta rather than L-max. * represents significance at
the P < 0.05 level, ** at P < 0.01 and *** at P < 0.001 level. Results labelled ns
have significance P > 0.05.
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512/2 256/4 260 260 0.0 ns 282 304 7.8 ns 482 555 15.1 *** 577 707 22.5 ***

512/4 256/4 496 589 18.8 * 814 927 13.9 *** 1182 1369 15.8 *** 1416 1630 15.1 ***

512/8 256/4 1023 1036 1.3 ns 1453 1603 10.3 *** 1811 1989 9.8 *** 2028 2229 9.9 ***

512/16 256/4 1186 1267 6.8 ** 1408 1512 7.4 *** 1673 1824 9.0 *** 1829 1989 8.7 ***

Table 4.2: Experimental results for L-wta when varying the weight of the input code
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256/4 64/4 91 120 31.9 * 178 203 14.0 * 245 286 16.7 *** 287 337 17.4 ***

256/4 128/4 148 179 20.9 ns 265 289 9.1 * 362 429 18.5 *** 436 508 16.5 ***

256/4 256/4 259 286 10.4 ns 424 473 11.6 ** 600 696 16.0 *** 719 831 15.6 ***

256/4 512/4 373 415 11.3 ns 608 712 17.1 *** 950 1099 15.7 *** 1137 1327 16.7 ***

Table 4.3: Experimental results for L-wta when varying the size of the output code
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256/4 512/2 564 709 25.7 ** 1259 1435 14.0 *** 1932 2138 10.7 *** 2310 2599 12.5 ***

256/4 512/4 373 415 11.3 ns 608 712 17.1 *** 950 1099 15.7 *** 1137 1327 16.7 ***

256/4 512/8 257 267 3.9 ns 353 400 13.3 *** 495 569 14.9 *** 580 677 16.7 ***

256/4 512/16 71 89 25.4 ns 138 157 13.8 * 197 222 12.7 *** 219 266 21.5 ***

Table 4.4: Experimental results for L-wta when varying the weight of the output code
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when using L-wta is consistently a considerable improvement over that achieved

using L-max.

Figure 4.10 and Figure 4.11 show four examples of the performance of the two

thresholding techniques as codes are trained into the memories. It can clearly be

seen that as the memory becomes increasingly saturated, the use of L-wta provides

an ever larger benefit over L-max thresholding. In addition, the error probabilities

predicted by Equation 4.2 are given on these graphs. Note that the use of Baum

codes has resulted in recall errors which are consistently an improvement on those

given by Equation 4.2.

In addition, note that because there is no noise on the input vectors, the performance

of L-max in this case is nigh on identical to the performance of Willshaw thresholding

under the same conditions, as was demonstrated in Section 4.5. Thus we can

also conclude that L-wta thresholding provides a performance gain over Willshaw

thresholding when applied to Baum codes. Further tests are required to discover

the benefits of L-wta thresholding when input codes are subject to noise.

Comparing these results with other theoretical results given in Section 4.3 we see

much agreement. While the values chosen for the lengths and weights of the codes

were not optimal, in general the largest storage capacities appear where the theory

would suggest. For example, when varying the output weight (Table 4.4), we would

expect the largest capacity when the output weight is log10 512 ≈ 3. We observe that

the largest tested capacities occur when the tested weight is 2. When varying the

input weight (Table 4.2) the result is similar. We would expect the largest capacity

to be achieved when the input weight is log2 512 = 9. While at the 0.1% error level

the larger capacity is actually when the weight is 16, the results at this level are the

least significant. As the error increases (and the significance of the results increases

as well) the largest capacity occurs when the weight is 8, as we would expect.

4.8 Further Work

There are two main pieces of work which remain to be undertaken based upon

the work in this chapter. Firstly, while some preliminary investigation into the

information content of Baum codes has been conducted, a more in depth exploration

of the effect storing Baum codes in a CMM has on the information efficiency I

is required. While Baum codes allow codes to be generated which display high

orthogonality to one another, their use results in a lower information content in
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Figure 4.10: Two comparisons of the storage capabilities of a CMM when using L-
max and L-wta. Dotted lines show the standard deviation of recall error between
runs of the experiment. Theoretical probability of recall error calculated using
Equation 4.2.
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Figure 4.11: Two further comparisons of the storage capabilities of a CMM when
using L-max and L-wta. Dotted lines show the standard deviation of recall error
between runs of the experiment. Theoretical probability of recall error calculated
using Equation 4.2
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each code. This means that although a larger number of Baum codes can be stored

in a CMM for a given error tolerance, this may not mean that the information

efficiency is actually higher.

Secondly, while L-wta has been shown to improve the storage capacity of a CMM

storing Baum codes when compared to L-max and Willshaw thresholding, the

performance of the technique in the presence of noise on the input code remains

unexplored. Further work is required to determine how such noise affects the benefit

offered by L-wta thresholding.

4.9 Summary

In summary, a survey of existing methods for exploring the storage capacity of

CMMs was provided. The results given by these pieces of work point the way to

the use of sparse fixed weight codes for storage in CMMs. The question of how such

codes should be generated was addressed, and led to a discussion on the use of Baum

codes.

The benefits of L-max and Willshaw thresholding were discussed, and results

presented demonstrating the improvement in performance offered by L-max thresh-

olding in the presence of input noise. It has been demonstrated that when using

codes generated by the algorithm of Baum et al. [14] a novel technique, L-wta,

provides an increase in storage capacity over thresholding using L-max. This increase

in storage capacity is generally in the order of 15%, but has been observed to be as

high as 30%.
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Chapter 5

Coding for Generalisation in

Correlation Matrix Memories

5.1 Introduction

The ability to sensibly respond to previously unseen inputs is one of the features

which defines neural networks. Correlation matrix memories are able to display

this capability, but in order to do so a coding scheme must be carefully chosen

so that appropriate codes are assigned to input items which are similar. In this

chapter we propose a framework for generating sparse fixed weight binary codes

which exhibit a pre-defined similarity to one another, as determined by an input

matrix of similarities. Two codes are defined to be similar when the Hamming

distance between them is small. This method offers a flexible approach to code

generation for correlation matrix memories in cases where generalisation is required.

5.2 Motivation

It has previously been shown that the use of sparse fixed weight codes allows a

CMM to store a large number of associations, greater than the number of input

neurons, provided a small possibility of recall error is tolerated [42]. This is achieved

through the use of coding systems which produce sparse codes, and maximise

the orthogonality between the codes. This is a very powerful capability, and in

many applications it may be the best choice for the data representation. For

other applications, however, it may be a requirement that the CMM is capable of

111
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responding correctly to previously unseen inputs based upon the known inputs. This

capability is termed generalisation. The question arises, is it possible to generate

codes for input to a CMM which meet such a requirement?

In Section 2.7 it was noted that CMMs are “able to display a robustness to noise

on the input, enabling accurate recall for an incomplete input”. This capability has

been demonstrated [13], but perhaps not fully exploited. Consider the following

definition of generalisation, given by Haykin [41]:

A network is said to generalize well when the input-output mapping

computed by the network is correct (or nearly so) for test data never

used in creating or training the network.

It can be observed that the ability of a CMM to make a correct recall when given

an incomplete input is in fact a form of generalisation. Since the input has been

altered from the code that was originally learnt, the ability to recall the correct

output matches the definition given above.

This capability can actually be taken further, given an appropriate set of codes

used as the input to a CMM. Consider the case that an input code is complete,

yet previously unseen by the network. If that code is sufficiently similar to a code

which has been previously learnt by the network, the CMM may be able to make

a “correct” recall for the code for the same reasons the network is able to respond

correctly to an incomplete input.

Consider the following example. We construct a memory which identifies a few fruits

by their colours, as shown in Figure 5.1. A number of associations have been stored

in the memory: yellow → banana, red → strawberry, purple → plum and orange

→ tangerine. The codes used to represent the colours have been chosen in such

a way that colours which are similar are assigned similar codes (this idea will be

further discussed in Section 5.3). The memory is capable of recalling any of the

fruits it has been taught by presenting the appropriate colour at the input. When

the previously unseen code for green is presented to the memory as shown, the code

for banana is recalled. This occurs because the input code most similar to green is

yellow; hence the output code associated with yellow is recalled. This is an example

of generalisation.

It was mentioned in Chapter 3 that the performance of the ARCA and CANN

architectures was largely dictated by the performance of the CMMs used by the two
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Yellow: 111000000

Red: 000011100

Green: 011100000

Purple: 000000111

Orange: 100011000 

Banana: 101000

Strawberry: 010001
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Figure 5.1: A simple example of generalisation in a CMM. This memory associates
various colours to fruits of that colour. When an unseen input is presented (in
this case green), the memory recalls the fruit associated with the input that is most
similar to green. In this example the most similar input is yellow, hence banana is
recalled at the output.

systems. Therefore, if the codes used in the CMMs in these systems enabled them

to generalise, the two architectures would both gain the ability to respond to unseen

inputs. Specifically, ARCA would be able to perform “fuzzy” rule chaining, making

inferences for a set of symbols which are a close but inexact match to a learnt rule.

In addition, the CANN would be able to recognise low level features which are close

to learnt features, but not identical. Indeed, any architecture which employs CMMs

would potentially benefit from this capability.

5.3 Generalisation and storage capacity

The multi-layer perceptron (MLP) [77] uses back propagation learning to learn

the boundaries between classes of data. In effect, an internal representation is

learnt, which replaces the representation of the original data. The outputs are then

generated from this internal representation. In a CMM, generalisation is performed

based on the similarity between input symbols. This contrasts with the MLP in that

in a CMM we need to choose the data representation carefully.

The requirements for input codes for a CMM which maximise storage capacity and

those which enable generalisation are quite different. When attempting the maximise

the storage capacity of the CMM, as discussed at length in Chapter 4, the input

codes should be (amongst other things) as far apart as possible in the code space.

That is to say, they should be as close to an orthonormal set as possible. This

condition is opposed to the idea outlined in the previous section; that in order to

enable generalisation similar items should be assigned similar codes. Figure 5.2
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Storage Capacity Generalisation

Figure 5.2: Designing codes to maximise storage capacity or to maximise
generalisation require the codes to be arranged differently in code space. In the former
case we desire codes which are far apart in the code space, in the latter case we desire
codes which are close together where items are similar.

gives a visualisation of this concept, considering the problem of generating a set of

input codes representing shapes of various shades. If the storage capacity is to be

maximised the codes will be “pushed” as far apart as possible as shown in the left

image. If we wish the CMM to be able to generalise, the codes for items which are

similar (i.e. the same shade, or the same shape) should also display similarity.

In the case of CMM input codes, this similarity manifests itself as overlaps between

codes; that is, 1s in the same position in both codes. Equivalently, we can consider

the inner product of two codes to represent the level of similarity between them.

For example, the codes 1100 and 0011 are orthogonal (inner product = 0), while

the codes 1100 and 0110 are somewhat similar in code space (inner product = 1).

For use in a CMM we desire a code generation technique that provides a mapping

between the input space and the code space distances that is monotonic, preserving

the order of the distances. Furthermore, an ideal mapping should also have a linear

relationship; as distances increase between items in the input space the distances

between their codes should increase at the same rate. In Section 5.7 we present a

framework and novel optimisation procedure for the generation of such codes, based

upon a predefined matrix of distances (a distance matrix ).

It should be noted that the dynamic range of the Hamming distance in a sparse

fixed weight code is going to be smaller than the input space distance in the general

case. There is a choice therefore in the choice of weight for the code: a code with a

smaller weight will (in general) provide greater storage capacity in the CMM due to
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its sparsity, but there is a trade-off against the dynamic range of the similarity which

can be represented. Additionally, a strictly monotonic mapping over the whole input

space is impossible in most cases; the weight of the code provides a strict limit to the

distances which can be represented by the encoding. However a monotonic mapping

is possible if as the distance between two items in the input space increases and

the dynamic range of the code is saturated, the distance between the codes remains

strictly at the maximum.

Of course, one cannot truly separate the criteria of storage capacity and ability to

generalise in CMMs. Recall that the output of a CMM is a mixture of the correct

output code, and some other activity from other output codes related to similar

inputs (crosstalk). If the input representation is carefully chosen then this “noise”

may be viewed as providing a useful measure of the similarity between the input

vector and other learned vectors, allowing for generalisation to occur. If the data

representation is chosen such that similar inputs are related to similar outputs the

noise will in general contribute only a small amount to the network output. This

should mean that the recall performance of the network is high in cases where this

criteria is met. Thus it may be possible to achieve a high storage capacity in some

cases despite the input codes being far from orthonormal.

In summary, when choosing an input encoding for a CMM we are presented with two

options. If the desired result is that similar inputs are to be associated to similar

outputs then we wish for a code in which similar input codes are assigned codes

with a high overlap. If this is not the case then an encoding such as that presented

in Chapter 4 should be employed, which will maximise the storage capacity, whilst

reducing the generalisation and error tolerance capabilities of the memory.

5.4 Similarity

Before discussing generalisation further, the concept of “similarity” needs to be

addressed. What does it mean to say that two items are similar? And how is

similarity measured? The Merriam-Webster dictionary defines similarity as follows:

adj : having characteristics in common

This natural way to think of the term leads us to a simple method for attempting

to represent the abstract concept of similarity; through comparing a number of
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characteristics, or features. Each feature represents some aspect of the item in

question. A comparison can then be made between the set of features of two

objects, allowing their similarity to be determined by some metric. This technique

is commonly used throughout the pattern recognition domain.

For example, consider the example given in Figure 5.2. These objects can be

represented by a large number of features. Some examples might be brightness,

number of sides, area, perimeter or ratio of perimeter to area. The features chosen

will define the similarity between the objects.

If an object is represented by n different features, and we make the assumption that

each feature is represented by a continuous variable, we can think of each object

as a point in n dimensional space. We can then define the similarity between two

objects through their relationship in this space; specifically the distance between

two objects. For any given application this distance might be calculated differently.

For example, it might be desired that certain features are more heavily weighted,

or that Euclidean or city block distance are used to calculate the distance between

objects. Regardless of the method chosen, two objects with a small distance between

them should be considered to be similar, whereas those which are distant from one

another should be considered dissimilar. A truly general method for code generation

should be flexible to these requirements.

5.5 Existing methods

We now present a discussion of some existing code generation techniques which

are available for CMMs. In order to meet the requirements we have set out the

methods must be able to generate fixed weight codes which maintain the distance

relationship between points in the input space and the code space. In addition, we

require the weight of the codes to be sparse, since such codes are necessary for CMM

performance, as detailed in Chapter 4. Finally, since the memory requirements for

a CMM are based upon the product of the length of the input and output codes, we

wish for as many codes as possible to be represented for a given code length.

There are existing methods which generate fixed weight codes with a defined amount

of overlap between codes: here we examine thermometer codes (as seen in [64]), Gray

codes [38] and CMAC-Gray codes [61]. Each of these methods produces a series of

codes in which adjacent codes are similar in code space. As such, each method is

only suitable for representing a single dimension of the input space, representing a
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Figure 5.3: Examples of (a) thermometer codes, (b) fixed weight Gray codes and (c)
CMAC-Gray codes

single feature. In Section 5.6 we examine how such methods could be applied to an

input space with multiple features.

5.5.1 Thermometer codes

In a traditional thermometer code each subsequent code has an additional 1 added

in the leftmost available position, e.g. 10000, 11000, 11100, 11110 etc. A fixed weight

version of the code, as used by Kustrin [64] has all the bits set to 1 in a single block.

Subsequent codes can be generated by shifting this block along the code, as shown

in Figure 5.3(a). If the codes generated by this method are stored in an ordered

list, the overlap between codes is monotonically decreasing as the distance between

codes in the list increases. This allows a very natural representation for linear lists,

such as the natural numbers. For example, if the codes given in Figure 5.3(a) were

used to represent the numbers 1− 5 then the overlap between 1 and 2 would be 2,

the overlap between 1 and 3 would be 1 and between 1 and 4 or 5 it would be 0.

The weight of the code defines the level of similarity which can be represented

between two objects. If the weight is larger then the distance between codes which

share an overlap will also be larger.

Thermometer codes have the large disadvantage that very few different codes can

be generated for a given code length. For a code of length n and weight k, only

n − k + 1 codes can be generated. This means that to represent a large number

of input items, the code must become very long. This has the effect of making the

CMM very large, increasing memory requirements and processing time.
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5.5.2 Fixed weight Gray codes

Gray codes [38] are binary codes with the property that adjacent codes differ by

exactly one bit. While Gray codes are not fixed weight, it is possible to produce

fixed weight Gray codes by simply generating a series of Gray codes and selecting

only those codes with the desired fixed weight. Furthermore, such codes can be

generated in constant time [17]. Adjacent codes within this new coding differ by

exactly two bits (the minimum possible in a fixed weight code). An example of a

fixed weight Gray code with weight 2 is shown in Figure 5.3(b).

The number of codes which can be generated by a fixed weight Gray code is maximal

for a fixed weight binary code, specifically
(
n
k

)
= n!

(n−k)!k! . However, the distance

between codes does not increase monotonically. For this reason, codes which are not

close in the input space may be assigned codes which are close in the code space.

This property is very undesirable for our purposes.

5.5.3 CMAC-Gray

The Cerebellar model articulation controller (CMAC) [1] is a neural network which

was designed to perform complex control based on many input variables by taking

inspiration from the manipulator control system in the brain. Of interest to us in

this case is the non-linear mapping which is applied on the input to the network.

An input variable x is assigned a C dimensional vector M [m0,m1 · · · ,mC−1]. Each

field position can then be calculated with the following equation [62]:

mi =

[
x+ C − 1− i

C

]
(5.1)

This results in C values in which a single element shifts with respect to its neighbours.

For use in a binary network it is then necessary to convert these values into binary

codes; in the case of a CMM binary fixed weight codes. For CMAC-Gray codes, a

Gray code is used to make this conversion. For the purposes of use in a CMM, more

precisely, a fixed weight Gray code could be used. These codes are then concatenated

in order to form the final codes. An example of a CMAC-Gray code with C = 2 is

shown in Figure 5.3(c).

The use of the CMAC encoding reduces the issues with the non-monotonically

increasing distances in the Gray code, improving the distance preservation from
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input space to code space. The greater the value of C, the greater the local

preservation of monotonically increasing distances is. Having said this, an overly

large value of C is not desirable for two reasons: the number of codes which can be

generated for a given code length decreases as C increases, and we cannot generate

a sparse code if C is large. The code weight must be spread across the C elements

of the code, and if C is large then the weight of the code must also be large. It is

also still the case that codes which are distant from one another will overlap with

one another, as with fixed weight Gray codes.

The method is very quick in operation, and a large number of codes can still be

generated for a given code length, albeit many fewer than with a fixed weight gray

code. In a similar fashion to Baum Codes (see Section 4.4.2), dividing the code into

sections results in a reduction in the number of codes which can be generated for a

given code length. Compared to
(
n
k

)
codes for the fixed weight Gray code, we can

generate only
( n

C
k
C

)C
. This value becomes increasingly smaller than

(
n
k

)
as the size of

C increases.

5.5.4 Discussion

In summary, the methods discussed in this section provide a trade-off between

code size, the number of items that can be represented and the quality of the

representation. Thermometer codes provide a code in which the overlap between

codes decreases monotonically as the distance between inputs increases. However,

the codes generated by the method are relatively large, since only a small number

of codes can be generated for a given code length. Gray codes allow a much larger

number of codes to be generated for a given code length, but the mapping from input

space to code space is not monotonic, resulting in a poorer quality representation.

The use of CMAC-Gray codes improves the monotonicity of the mapping from input

to code space when compared to fixed weight Gray codes, although the number of

codes which can be generated is lower than with fixed-weight Gray codes (while still

significantly higher than thermometer codes). Thus, it provides the middle-ground

between the first two methods.

Figure 5.4 shows the number of unique codes which can be generated by the discussed

methods for a given code length and two different code weights (16 and 32). In

order to demonstrate the effect of varying the value of C, multiple values are given.

Since CMAC-Gray codes can only be generated where both k/C and n/C are whole

numbers their values are only plotted on the graph at these points. Note that
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the vertical axis has a logarithmic scale. Hence, we see that the number of codes

which can be generated using fixed weight Gray codes is orders of magnitude higher

than the other methods. When using CMAC-Gray codes, the number of codes

which can be generated also decreases by orders of magnitude as C increases. Using

thermometer codes results in the ability to generate only a tiny number of codes for

a given code length when compared to the other methods.

Figure 5.5 shows some visualisations of the similarity between codes generated using

each of the discussed methods for the numbers 1-50. The grey-scale value at each

point in the matrix represents the overlap between the codes generated for that

pair of numbers, with a maximal overlap represented by white (i.e. the codes are

the same) and no overlap being represented by black. An ideal representation will

move smoothly from white down the diagonal to black as the distance from the

diagonal increases. It is clear to see that the thermometer codes provide the best

representation, followed by CMAC-Gray, with Gray codes giving the worst result.

This supports the claims made about the monotonicity of the mapping from code

space into pattern space for each method.

5.6 Multi-dimensional inputs

The code generation methods examined in Section 5.5 only generate codes for a

single continuous variable, which means that they can only represent an input which

consists of a single feature. In order to generate codes in the case where an input

is multi-dimensional (i.e. it has multiple features) we must generate a code for each

dimension individually and concatenate them to create the final code. In this way,

items with similar features will be assigned similar codes.

However, constructing codes in this fashion has an effect on the quality of the

representation of the code; the distance mapping is only monotonic in the case

that the dynamic range of the code is not exceeded in any dimension. In other

words, in the case in which two items have a large distance between them caused by

only a few features being significantly different, the resulting coding will have the

items relatively close in code space.

This problem is perhaps best explained with an example. Consider the case in which

we have three input items, A, B and C. Each of these consists of a three dimensional

feature vector as follows:
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Figure 5.4: A comparison of the number of codes which can be generated for a given
code length using thermometer codes, fixed weight Gray codes and CMAC Gray codes
(for different values of C).
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Thermometer code Fixed weight Gray code

CMAC-Gray code

Figure 5.5: Similarity matrices for codes representing the numbers 1-50 generated
by thermometer codes, fixed weight Gray codes and CMAC-Gray codes.

A = [1, 3, 3]

B = [3, 1, 6]

C = [1, 3, 12]

Observe that the distances between the three possible pairings of the input items (as

measured by city block distance distcity) are distcity(A,B) = 7, distcity(A,C) = 9,

distcity(B,C) = 10.

Consider the simple case in which we choose to represent each of these three

input dimensions with thermometer codes of weight 3. This gives the following

representation:

A = [11100] + [00111] + [00111000000000]

B = [00111] + [11100] + [00000111000000]

C = [11100] + [00111] + [00000000000111]

In terms of Hamming distance (distham) between the generated codes (obtained

through code generating function F ) we observe that the distances are distham(F (A), F (B)) =

14, distham(F (A), F (C)) = 14, distham(F (B), F (C)) = 10. Note that the ordering

of the distances has changed during the mapping. Whereas before the mapping

distcity(A,C) > distcity(A,B), after generating the codes we have the case that



5.7. OVERLAPPED BINARY CODE CONSTRUCTION 123

distham(F (A), F (B)) > distham(F (A), F (C)). Thus we can say that the mapping

between distances in the input space and the code space was not monotonic, since

the ordering of distances has not been maintained.

Furthermore, there are many metrics one might want to use to define the distances

between multi-dimensional input items. The previous example used city block

distance, but one could equally use Euclidean distance or any number of other

distance metrics. When using thermometer codes, Gray codes or CMAC-Gray

codes it is not possible to use an arbitrary distance metric. We now present a

code production framework, Overlapped Binary Code Construction (OBCC), which

allows construction of codes based on a distance matrix of the user’s choosing.

5.7 Overlapped binary code construction

Similar observations to those made above regarding the requirements for the

generation of binary codes which preserve a predefined overlap were made by Palm

et al. in [74]. They presented a method for generating Sparse Similarity Preserving

Codes (SSPC), which meet the requirements of being both binary and sparse,

despite not being fixed weight codes. The Overlapped Binary Code Construction

(OBCC) method presented in this section uses similar techniques as a framework for

generating fixed weight binary codes, together with a novel optimisation procedure

for minimising the length of the codes. We would prefer that the codes were not too

large, since the size of a CMM is the product of the sizes of its input and output

codes.

OBCC is a code construction framework which provides an alternative to the

methods discussed in Section 5.5. Whereas those methods generated codes based on

a multi-dimensional input of features, OBCC allows the generation of fixed weight

codes based directly upon a matrix of distances between the items to be encoded.

It offers a method for the production of codes from this information.

Before summarising the OBCC method, the similar technique, SSPC, given by Palm

et al. should be described. SSPC begins with a matrix of distances between input

items, which is converted into an overlap matrix through a very similar method to

that which will be described in Section 5.7.1. Essentially, the distances are converted

into the desired overlap between each pair of codes. At this point the overlap

matrix is converted into a binary code, using the same procedure which is described

in Section 5.7.2, and shown in Figure 5.7. This simple process produces a code
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which perfectly preserves the similarities described in the similarity matrix, but it

can produce very long codes. Therefore an optimisation procedure is desireable, to

shorten the codes whilst maintaining the overlap between all pairs of codes. The need

for such a process was acknowledged by Palm et al., but no process was described.

OBCC improves on the method with a novel optimisation procedure, as well as an

additional process to ensure the codes have a fixed weight.

The OBCC method proceeds with the following steps:

1. Convert the input distance matrix into a overlap matrix.

2. Optimise the code length by finding groups of items which display mutual

similarity.

3. Generate codes based on the overlap matrix and the groups found.

4. Make the codes fixed weight.

The steps which primarily differentiate this method from the existing SSPC method

are steps 2 and 4. Every stage of the OBCC method will now be explored in detail.

5.7.1 Production of an overlap matrix

The method takes a distance matrix as input. The matrix is of size k × k, where

k is the number of items to be encoded. This matrix is symmetric with 0s along

the diagonal, and represents the distances between all the input items as defined by

the user. These distances can be calculated by any metric the user requires, but

must be positive integer values. In [74] Palm et al. suggested that the values in the

distance matrix could be grouped into classes, with each value in the matrix then

being replaced by an integer representing its class. This allows a distance matrix to

be constructed with real numbers, preserves the order of the values in the matrix and

allows the user to control the degree of similarity which needs to be represented. An

example of a distance matrix can be seen in Figure 5.6. In this example the items to

be encoded are the numbers 1 to 5, as labelled in bold. The distances in the matrix

have been defined for any two items x and y as |x− y|. The first step in the method

is to take the input matrix and to convert it into a matrix of the desired overlap

between codes.

When using binary codes there is a finite level of precision which can be used to

measure similarity, since only a finite number of bits may overlap between pairs of

codes. This limitation can be viewed as the “dynamic range” of the code. If very

distant items are to be considered similar then a very large weight would be required.
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Initial distance matrix Overlap matrix with p = 2

1 2 3 4 5
1 0 1 2 3 4
2 1 0 1 2 3
3 2 1 0 1 2
4 3 2 1 0 1
5 4 3 2 1 0

1 2 3 4 5
1 3 2 1 0 0
2 2 3 2 1 0
3 1 2 3 2 1
4 0 1 2 3 2
5 0 0 1 2 3

Figure 5.6: Construction of an overlap matrix for the numbers 1 to 5

For this reason, we may want to limit the distance between items which is considered

to be “similar”, so that the weight of the code is kept to a reasonable level. We

approach this problem by providing an additional parameter to the method, which

we shall call p, the maximum distance at which items are still to be considered

similar. This parameter affects the maximum weight which the produced code will

have, although it does not directly control it; a larger value of p will tend to produce

codes with a larger weight. The conversion from distance matrix D to overlap matrix

M can then take place as follows:

Mij =

{
1 + p−Dij if (p+ 1) ≥ Dij

0 otherwise

Figure 5.6 shows an example of this conversion with p = 2. This matrix now

represents the desired number of bits which should overlap between all pairs of

input items.

5.7.2 Code size optimisation and generation

The remainder of the OBCC process is dedicated to converting from the overlap

matrix into a fixed weight code in which each pair of codes overlap by the amount

specified in the overlap matrix. At this stage it is possible to generate a code through

a näıve translation from the overlap matrix to a code matrix (the matrix of codes to

be output by the method). All pairs of codes would have overlaps as specified in the

matrix, but the length of the resulting codes would be much larger than necessary.

However, we will examine this process as it informs the remainder of the method.

A näıve conversion is demonstrated in Figure 5.7. We consider all the values below

the diagonal in the overlap matrix. For each of these values we create a number of

columns in the code matrix equal to the value. These columns then have a 1 placed
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1 2 3 4 5
1 3 2 1 0 0
2 2 3 2 1 0
3 1 2 3 2 1
4 0 1 2 3 2
5 0 0 1 2 3

1: 1 1 1 0 0 0 0 0 0 0 0
2: 1 1 0 1 1 1 0 0 0 0 0
3: 0 0 1 1 1 0 1 1 1 0 0
4: 0 0 0 0 0 1 1 1 0 1 1
5: 0 0 0 0 0 0 0 0 1 1 1

Figure 5.7: A näıve translation from overlap matrix to code matrix

in positions in the code matrix corresponding to our current position in the overlap

matrix. For example, the entry in position (2, 1) in the matrix is 2. This would

produce two columns in the new code with a 1 in positions 2 and 1.

As mentioned, this code is longer than is necessary. However, it is possible to reduce

the length of the code, without affecting the number of bits that overlap between

each code. Groups of columns can be merged together to reduce the length of the

codes whilst maintaining the overlap between all pairs of codes. While in some cases

a long code may be acceptable, a shorter code will lead to more compact CMMs.

Note that to start with all columns in the näıvely generated code matrix contain

precisely two bits. Columns from this matrix can be represented, therefore, as two

element sets. Now, for example, examine the code in Figure 5.7. The first, third and

fourth columns contain overlaps between the following pairs of bits; {1, 2}, {1, 3} and

{2, 3}. These columns could all be merged into a single column, with bits {1, 2, 3}
all set. This preserves the amount of overlap between the codes, and reduces the

number of columns in the code, as shown in Figure 5.8. This procedure can also be

applied to further columns in this example.

Having demonstrated that it is possible to merge columns together while maintaining

the overlap between all codes, we need to formalise the rules for such merges. In

order to do this we can use the
(
n
k

)
function, with k = 2 and n as the number of

bits in the new column. We can enumerate all the two element combinations from

a set of bits, and look for columns containing these pairs. For example, to create

a new column with 4 bits set we calculate all
(
4
2

)
= 6 combinations, which gives

the following general result {{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}}. A new 4 bit

column could then be created if a set of columns which matched this pattern could

be found.

Having made the conditions under which columns can be merged precise, we

require a method to quickly find such sets of columns. This can be achieved

through examination of the overlap matrix, represented as a graph. Under this
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1: 1 1 1 0 0 0 0 0 0 0 0
2: 1 1 0 1 1 1 0 0 0 0 0
3: 0 0 1 1 1 0 1 1 1 0 0
4: 0 0 0 0 0 1 1 1 0 1 1
5: 0 0 0 0 0 0 0 0 1 1 1

1: 1 1 0 0 0 0 0 0 0
2: 1 1 1 1 0 0 0 0 0
3: 1 0 1 0 1 1 1 0 0
4: 0 0 0 1 1 1 0 1 1
5: 0 0 0 0 0 0 1 1 1

Figure 5.8: Three columns (top) merging into one (bottom), whilst maintaining code
overlap

Näıve code matrix
Graph
representation

Optimised code matrix

1: 1 1 1 0 0 0 0 0 0 0 0
2: 1 1 0 1 1 1 0 0 0 0 0
3: 0 0 1 1 1 0 1 1 1 0 0
4: 0 0 0 0 0 1 1 1 0 1 1
5: 0 0 0 0 0 0 0 0 1 1 1

1: 1
2: 1
3: 1
4: 0
5: 0

1: 1 0 0 0 0 0 0 0
2: 1 1 1 0 0 0 0 0
3: 0 1 0 1 1 1 0 0
4: 0 0 1 1 1 0 1 1
5: 0 0 0 0 0 1 1 1

1: 1 0
2: 1 1
3: 1 1
4: 0 1
5: 0 0

1: 1 0 0 0 0
2: 1 0 0 0 0
3: 0 1 1 0 0
4: 0 1 0 1 1
5: 0 0 1 1 1

1: 1 0 0
2: 1 1 0
3: 1 1 1
4: 0 1 1
5: 0 0 1

1: 1 0
2: 1 0
3: 0 0
4: 0 1
5: 0 1

1: 1 0 0 1 0
2: 1 1 0 1 0
3: 1 1 1 0 0
4: 0 1 1 0 1
5: 0 0 1 0 1

Figure 5.9: An example of the optimisation of a code matrix by removing cliques
from the graph representation
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representation, each item to be encoded (the labels of the overlap matrix) is a

vertex of the graph, and the values in the overlap matrix are the weights on the

edges. Now, when examining this graph, sets of columns which can be merged will

appear as cliques. A clique C is defined as a subset of the vertices V such that all

the members of C are pairwise adjacent [75].

This is a powerful observation, as it allows the reduction of our problem to the well

understood problem of finding cliques in an arbitrary graph [19]. Furthermore, we

wish to find maximal cliques; cliques which are not a subset of any other clique.

This is because we wish to reduce the size of the code by as much as possible, and

by removing a clique which is not maximal we pass up the opportunity to reduce

the size of the code by a larger amount. Beyond this, the strategy which should

be used to select the clique to remove each iteration is an important and complex

question which will be further examined in Section 5.8. For the remainder of this

example we will simply greedily select the largest clique in the graph.

Having found a clique, we produce the resulting column in the code matrix, and

subtract 1 from each edge involved in the clique (if the weight of an edge is reduced

to 0 the edge is removed). The column created has a 1 set in each position

corresponding to a vertex which was a member of the clique. By iteratively applying

this process the code is gradually optimised. Eventually we are left only with cliques

of size 2, and so columns are generated for these in the same fashion as for the other

cliques. This gives the following optimisation algorithm.

1. Convert the overlap matrix into a graph.

2. Select a maximal clique in the graph

3. Produce a code column from the clique.

4. Subtract 1 from each edge in the clique.

5. If no cliques remain, finish. Otherwise return to 2.

An example of this process can be seen in Figure 5.9. The first column shows a

conversion from the current state of the graph to a code matrix, with the largest

clique highlighted in bold. The second column shows the graph representation of

the overlap matrix, again with the chosen clique in bold. The final column shows

the code as it is built up. In the first step, the largest clique found is {1, 2, 3}.
This produces the first column in the optimised code matrix as shown. This process

continues in the following two steps, as the cliques {2, 3, 4} and {3, 4, 5} are also

found, and corresponding columns placed in the code matrix. In the fourth and

fifth iterations of the algorithm the last two (single edge) cliques are removed and
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1: 1 0 0 1 0 1 0
2: 1 1 0 1 0 0 0
3: 1 1 1 0 0 0 0
4: 0 1 1 0 1 0 0
5: 0 0 1 0 1 0 1

Figure 5.10: Code is made fixed weight with the addition of single bit columns

the appropriate columns added to the code (shown together in the final stage of

Figure 5.9). At this stage the optimisation of the code matrix is complete.

An important note at this point is that it is not essential to find all cliques in order

to generate a legitimate code. Each clique found represents an optimisation of the

code, folding multiple columns into one, and as such reduces the size of the code.

However, if time constraints do not allow for the optimisation process to complete,

it is possible to generate codes based only on those reductions already found. This

would simply involve adding column(s) to the code for each remaining edge in the

graph according to their weight.

5.7.3 Create fixed weight code

Up to this point, the requirement that codes should be fixed weight has been ignored.

The final step in the code generation process is to ensure that codes are fixed weight.

This is accomplished simply by finding the code with the largest weight, and adding

bits to each code to bring it to that same weight, each in an individual column.

This ensures that all codes have the same weight, whilst not affecting the number of

bits which overlap. Continuing with the same example, this process can be seen in

Figure 5.10. In this case, the codes for 2, 3 and 4 have the highest weight, 3, whilst

the codes for 1 and 5 have a weight of only 2. For this reason, we add a column

with a single 1 in position 1, and another column with a single 1 in position 5.

5.8 Clique selection strategy

The strategy which is used to select the next clique to remove each iteration is

extremely important. It will affect both the running time of the optimisation process

and the length of the generated code. Essentially, the strategy is defined by the

algorithm which is used to find the next clique in the graph, and so this section

provides an overview of the available techniques for finding maximal cliques.
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Graph representation
Optimised code ma-
trix
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1: 1 0 0 0 0 0 0 1 1
2: 1 1 1 0 0 0 0 0 0
3: 1 0 0 1 1 0 0 0 0
4: 1 0 0 0 0 1 1 0 0
5: 0 0 0 0 0 0 1 1 0
6: 0 1 0 0 0 0 0 0 1
7: 0 0 1 1 0 0 0 0 0
8: 0 0 0 0 1 1 0 0 0

Figure 5.11: A code optimisation selecting cliques using a greedy strategy

In general, prioritising the selection of larger cliques would appear to be advanta-

geous since it will reduce the size of the code by the largest amount. This results

in a greedy approach to clique selection, as used in the previous example. However,

this may not always be optimal. Consider the example graph given in the first line

of Figures 5.11 and 5.12. Figure 5.11 shows the optimisation of the code represented

by this graph using a greedy strategy to select the next clique to remove. In this

case, the clique {1, 2, 3, 4} is the largest. Having removed this clique, all remaining

cliques are of size 2, so we can quickly remove these, completing the optimisation

process and leaving a code of length 9. However, in Figure 5.12 we see the same code

represented by the same graph optimised using a different clique selection strategy;

the smallest clique of size greater than 2 is selected. This results in the multi-stage

optimisation process shown, which results in a final code of length 6; significantly

shorter than that produced using the greedy strategy.

This raises the question of what the optimal strategy for clique selection truly is. A

step in the right direction might be to remove the largest cliques in the graph,

except in the cases where a certain number of the edges in the clique are also

members of other cliques. This would help to deal with the problem we have just

highlighted. However, there is another issue involved with clique selection beyond
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Graph representation
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7: 0 1 0 0 0 0
8: 0 0 1 0 0 0

Figure 5.12: A code optimisation selecting cliques using a more optimal strategy than
that used in Figure 5.11
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simply finding the strategy which results in an optimal code, which is the complexity

of the clique finding algorithm. In addition to the fact that using a greedy clique

selection strategy is not necessarily optimal, it should also be noted that its use would

require application of the maximum clique problem; that is, finding the largest clique

in an arbitrary graph (note the contrast to a maximal clique, which is a clique whose

vertices are not a subset of any other clique).

The maximum clique problem is known to be NP-Complete [52], and as such has

exponential time complexity in the number of vertices in the worst case. One of

the first exact algorithms for solving the maximum clique problem was the Bron–

Kerbosch algorithm [22], and it is still widely used. Modern versions of the algorithm

apply pruning techniques to improve the performance of the algorithm, and a worst

case time complexity for finding all maximum cliques of O(3
n
3 ) has been achieved

[84].

Even optimised exact algorithms for solving the maximum clique problem such as

these are still subject to the inherent complexity of the problem. Given this, together

with the fact that the strategy of finding the largest clique is not even necessarily

optimal for use in OBCC, we shall consider approximate solutions to the problem

which provide maximal cliques which are not necessarily the maximum. There are

many heuristic algorithms which can be used to achieve an approximate solution to

the maximum clique problem in polynomial time [75] [19]. These algorithms seem

to offer more promise, since iterative application of an exact algorithm would seem

to be impractical.

There are a huge number of heuristic approaches to the maximum clique problem,

which fall within a number of classes. Sequential greedy heuristic methods begin

with a set of vertices which are not a clique and find a clique through either repeated

addition of vertices or repeated removal of vertices. These algorithms differ in the

heuristic which is used to decide upon the vertex to be added or removed, and can

operate very quickly [19]. However, if the running time is to be kept low then the

quality of solutions which are found is generally not of a high standard [51].

An alternative approach is to use local search heuristics. While the sequential

greedy approach only finds a single maximal clique which may or may not be a

maximum clique, local search methods attempt to improve such an approximation

by expanding the search space around the neighbourhood of candidate solutions.

The solution is then improved until some local optimum is reached. An example

of such a method is given by Katayama et al. [53]. One of the weaknesses of local



5.9. ANALYSIS OF OBCC 133

search methods is that any local optimum may be significantly smaller than the

global optimum. Methods such as simulated annealing and tabu search can be used

to at least partially alleviate this problem. Simulated annealing has been shown to

outperform greedy methods and local search methods when applied to the maximum

clique problem [45], particularly in dense graphs. Tabu search has also been applied

to the problem with good results [81] [34].

Also of interest are neural approaches to the maximum clique problem. The general

approach is to formulate the problem as an energy minimisation, and then to use

a network to find the minimisers of the function. For example, the well known

Hopfield network [46] has been used to solve the maximum clique problem [48].

Furthermore, Grossman demonstrates that a network based on the Hopfield network

and supplemented with an annealing procedure significantly outperforms greedy

heuristic methods [39]. Further example of neural approaches to the maximum

clique problem can be found in [49], [16] and [31].

In short, there are a number of classes of clique finding algorithms which need

to be evaluated with regard to OBCC. These methods vary from those which take

considerable time to ensure they find the maximum clique in the graph to those which

simply accept the first clique they find but can run extremely quickly. Clearly the

algorithms which run in polynomial time show the greatest promise, since in practice

we are likely to be applying OBCC to large graphs. The primary question is how

much benefit is gained by using a more computationally expensive method which

aims to find a closer approximation to the largest clique in the graph? Experimental

analysis is required to answer this question.

Beyond this, work then needs to be done to refine the clique selection strategy in

order to further improve the performance of OBCC, through techniques such as

avoiding cliques whose removal will reduce the total number of cliques in the graph

by a significant amount. In addition, given that the graph does not alter significantly

between iterations of the optimisation procedure in OBCC, it may be possible to

make improvements to the clique finding algorithms to utilise this in order to improve

performance.

5.9 Analysis of OBCC

In order to analyse the OBCC method it is helpful to have an application, since it is

difficult to represent realistic feature relationships in randomly generated data. One
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Figure 5.13: A similarity matrix showing the distance classes between characters

suitable problem is that of generating codes to represent characters in the alphabet,

represented by a number of features. A character recognition data set was obtained

from [30], which contains examples of capital letters along with 16 features. Each

of these features is scaled to be an integer between 0 and 15. Further details of the

data set are given in Appendix A.

One example of each letter was taken from this dataset (feature values are given in

Appendix A), and a distance matrix created by summing the distances between all

the features for each pair of letters. This gives a wide range of distances, too large

to realistically represent using overlap between binary codes. For this reason, the

distances were grouped into 16 classes, through application of k-means clustering.

This gives 16 distinct distances between letters, represented by the integers 1-16. A

similarity matrix showing the classes to which each distance was assigned is shown

in Figure 5.13, with lighter shades representing shorter distances.

At this point, the OBCC framework was applied to the problem. With a problem of

this scale it is practical to use the Bron–Kerbosch algorithm [22] to find the maximum

clique in the graph in the optimisation process. We used this approach in lieu of

a proven alternative, although a variety of other algorithms should be examined in

future. We applied the method for a variety of values of p, the maximum distance

at which the method considers items to be similar.
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Table 5.1 shows the results which were obtained when varying p between 3 and 10.

The table shows the length of the code which would have been produced before any

optimisation, the length of the code after optimisation has finished, and then the

final length of the code n once it has been made fixed weight. The final weight of the

code is also given. As the value of p increases further distance classes are taken into

account. As one might expect, this also increases the length of the resulting code.

The huge decrease in code length provided by the optimisation procedure should be

noted, providing almost an order of magnitude decrease when p = 10.

One interesting feature of these results is that despite the fact that the unoptimised

code becomes very much larger as p increases, the final code length after optimising

and making the code fixed length plateaus, with only the weight increasingly

significantly after p = 5. It appears that the optimisation procedure is able to

compress the length of the code increasingly efficiently as p becomes larger, which

suggests that many further optimisations are becoming available.

It should also be observed that the final codes are fairly sparse, with the weights

being fairly close to the ideal weight of log2 n for usage as an input code for a CMM

(see Chapter 4 for details of this). This value is shown in the final column. This

fact makes the codes quite suitable for usage in a CMM. The sparsity is largely due

to the procedure which makes the codes fixed weight.

However, it should also be noted that the codes are very long. Despite the fact that

only 26 unique items are being represented, the codes are in the order of 200 bits

in length. In order to store 26 unique input codes a CMM may need fewer than 26

input neurons. This suggests that further optimisation procedures may be necessary

if the codes are to be stored efficiently in a CMM. We shall make further comment

regarding this in a moment.

Figures 5.14, 5.15 and 5.16 show similarity matrices for three of the output codes.

As the value of p increases the increased representation of similarity can be observed.

Note that some very intuitive similarities can be seen. For example, in Figure 5.14

“G” can be seen to be similar to “C”, “O” to “D”, “J” to “I” and “S” to “Z”. In

addition, even once the fidelity of representation is much higher in Figure 5.16 there

is still no similarity represented between “H” and “Q” or “C” and “A”.

The OBCC framework operates in a very different way to the existing methods

which were outlined in Section 5.5. This makes a comparison between OBCC and

these methods very difficult. While codes can be generated using these methods for

the problem examined above through the methods described in Section 5.6, they
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MaxDist Length Before Length After Final Weight Ideal weight
(p) Optimisation Optimisation Length (n) (l) (log2 n)
3 17 13 63 3 6
4 43 26 122 6 7
5 93 46 218 11 8
6 190 63 251 14 8
7 321 80 254 16 8
8 493 101 252 18 8
9 703 109 252 20 8
10 949 129 277 23 8

Table 5.1: Details of codes resulting from application of OBCC to a set of features
respresenting capital letters
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Figure 5.14: A similarity matrix for a code generated for the characters “A” to “Z”
using OBCC, with p = 3



5.9. ANALYSIS OF OBCC 137

 

 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0

1

2

3

4

5

6+

Figure 5.15: A similarity matrix for a code generated for the characters “A” to “Z”
using OBCC, with p = 6
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Figure 5.16: A similarity matrix for a code generated for the characters “A” to “Z”
using OBCC, with p = 10
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are not as flexible as OBCC and the resulting code is less sparse. In the given data

set there are 16 features, and 17 bits must be used to encode each feature in order

to represent them as thermometer codes (in addition, this gives a code length of

16 × 17 = 272, comparable to those given in Table 5.1). Such a code must have a

minimum weight of 32 in order to represent any similarity at all, allowing 2 bits per

feature. This is less sparse than the codes generated using OBCC, making it less

suitable for storage in a CMM.

Generating a multi-dimensional thermometer code with the code length and weights

described, the similarity matrix shown in Figure 5.17 is achieved. While the

representation is reasonable in some ways, the code has a number of disadvantages

compared to those generated by OBCC. Firstly, as mentioned, it is significantly less

sparse. Secondly, almost every pair of characters has at least some overlap, reducing

the ability of a CMM to differentiate between items which are quite different. The

represented similarity between some items is higher than one might expect, with

“P” and “Z” being an example. These characters are quite different in a number

of features, but because a few features are very close the overlap is relatively high.

Regardless, it is the flexibility of OBCC which is most compelling. By varying

the value of p, the degree to which items are considered similar can be determined

optimally for a particular application. This is not so easy to achieve using the

alternatives.

There is a further comment which should be made on the comparison between OBCC

and the existing methods. As mentioned in Section 5.5, the existing methods make

trade-offs between the length of the output code and the quality of the preservation

of distances from input space to code space. It should be highlighted that this

trade-off is inevitable. Put simply, the reason that thermometer codes are able to

preserve distance so well when generating codes for a series of integers, such as seen

in Figure 5.5, is because the code is long. Given that the optimisation technique

used in OBCC has been designed to perfectly preserve distances between input

and code spaces, it also suffers from this problem, with codes becoming quite long.

This has been observed in the experiment we have just presented. Whether this is

regularly the case needs to be investigated further. In Section 5.10 we will discuss

the possibility of a development to the framework which would allow the generation

of shorter codes at the expense of the quality of the distance preservation properties

of the method.
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Figure 5.17: A similarity matrix for a code generated for the characters “A” to “Z”
using thermometer codes

5.10 Further work

There is much further work required to understand the benefits and limitations of

the OBCC optimisation process and framework. As outlined in Sections 5.9 and

5.8, much experimental analysis of OBCC is needed in order to understand both the

effect of using various algorithms to find cliques in the optimisation process, and to

compare the method further with existing techniques. Having accomplished this,

there is a lot of scope for improving the clique finding algorithm, through optimising

it specifically for OBCC. This might involve taking advantage of the fact that the

graph changes only slightly between iterations, and attempting to prioritise cliques

in order to minimise the length of the output code.

In addition to this, there is a further development of OBCC which we alluded to in

Section 5.9; altering the technique so that producing a short code is prioritised above

perfect preservation of distances from input space to code space. Implementation

of this would involve the use of a clique selection strategy which uses methods that

find sets of vertices which approximate cliques (i.e. sets of vertices in which the vast

majority are pairwise adjacent, but not necessarily all). Use of such methods for

finding cliques in the optimisation process would result in the the overlap between
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the eventual output codes to be slightly different to that specified in the overlap

matrix, but it would also result in a shorter code. In many cases, this may be of

benefit. This possibility warrants further investigation.

Finally, the OBCC method should be further applied to real problems in order

to evaluate the benefits of the method to generalisation and storage capacity in

CMMs. The technique should be applied to the storage of associations in a single

CMM in the first instance, but beyond this it should be evaluated on some more

complex architectures such as the CANN and ARCA described in Chapter 3. Such

an investigation will reveal the true benefits of the technique.

5.11 Summary

We have discussed the relationship between storage capacity and generalisation, and

explored the concept of similarity as it relates to the problem of code generation.

A survey of existing methods which are able to generate codes in which adjacent

items are assigned similar codes has been conducted, and the methods examined

and compared. While each method displays its own strength, they do not offer a

large degree of flexibility when applied to multi-dimensional input spaces.

The OBCC framework for generating fixed weight codes based on a distance matrix

has been presented. The method can be used to produce optimised binary codes

in which the overlap between all pairs of codes has been pre-specified in a matrix.

This allows the representation of an input with a multi-dimensional feature space,

in which the similarity between codes is defined by an arbitrary metric defined by

the user. Further work is required in order to experimentally compare OBCC with

existing methods, and to improve the clique finding strategy used in the optimisation

stage of the process.



Chapter 6

Conclusions and Further Work

6.1 Review

This thesis examined correlation matrix memories (CMMs), and their role within

larger architectures. Two architectures were described in detail: the Cellular

Associative Neural Network (CANN) [8] and the Associative Rule Chaining

Architecture (ARCA) [9]. The CANN is an object recognition system which operates

on principles taken from cellular automata. ARCA is capable of performing forward

chaining on a set of rules, moving down each layer of the search tree in parallel. In

both systems CMMs are used to store and recall the rules which are used to make

the various required inferences. The storage properties of CMMs were examined,

including the effect of utilising different encodings and thresholding functions. A

novel method for thresholding codes generated using the algorithm of Baum et al.

[14] was described. Finally, methods for generating codes which enable CMMs to

react appropriately to previously unseen data were examined. A novel technique for

optimising codes which maintain a predefined level of similarity with one another

was presented.

Chapter 3 discussed the Cellular Associative Neural Network (CANN) and Associa-

tive Rule Chaining Architecture (ARCA). The CANN consists of a regular grid

of associative processors, and is able to perform object recognition through an

iterative update procedure. Each iteration every cell exchanges information with

its neighbours, eventually resulting in each cell building up a local representation

of the object to which the cell belongs. One of the major capabilities of the

network is the promise of highly parallel operation. However, there is one issue
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which must be overcome in order to achieve this. Since the rules stored at each cell

are to be the same, the cellular processors must either share memory or somehow

coordinate in order to avoid inconsistent rules being produced in the case that two

processors see the same input during the same iteration. However, both of these

possibilities present barriers to truly parallel operation. A pessimistic view of the

possibility of parallel operation in the CANN was presented, concluding that cells

must have additional communication with one another, or share memory (with all

the additional difficulties which that presents).

ARCA is able to perform forward chaining on a set of rules using a novel

methodology. CMMs are used to store the rules, split across two separate memories

for the rule preconditions and the postconditions. Crucially, separate nodes of the

search tree are kept separate through the use of binding between the tokens and the

system states. This allows each level of the tree to be searched in parallel, in contrast

to depth first search which must explore each branch of the tree individually. The

performance limitations of this architecture had not previously been explored. The

architecture was tested on a number of rule sets which involved search trees with

various depths and branching factors. Each depth and branching factor was tested

on ARCA using a variety of token and rule vector lengths, resulting in a number of

different CMM sizes (and therefore memory requirements). It was found that for any

given branching factor there is a clear tree depth at which the method fails, with the

recall performance falling off extremely rapidly once errors began to appear. While

one might hope that in the case that the branching factor is 1 the performance would

increase linearly with memory requirement, this was not observed to be the case.

It is speculated that this may be due to suboptimal choices of the relative sizes of

the token and rule vectors, or their weight. As the branching factor of the search

tree increases, the performance of the method becomes worse very quickly indeed,

as might be expected due to the huge increase in the number of rules which occurs.

In Chapter 4 the storage capacity of CMMs was considered, with a review of

theoretical results being presented. The theory suggests that the optimal storage

capacity is achieved when the codes to be stored are sparse, and the set of input codes

are close to orthonormal. Specifically, the input weight should be in the order of

log2m and the output weight should be in the order of log n, where m and n are the

input and output vector lengths respectively. A discussion of methods for generating

these codes was presented. The algorithm of Baum et al. for generating sparse fixed

weight codes quickly generates codes with a high orthogonality to one another, but

produces codes with a lower information content than for other methods. However,
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it was shown that a sufficient number of codes can be generated in order to saturate

a CMM in the vast majority of cases, provided the full code space is utilised. This

suggests that the algorithm is a reasonable choice for a variety of applications.

An analysis of the Willshaw and L-max thresholding mechanisms demonstrated the

benefits offered by L-max thresholding in the presence of noise on the input to the

CMM. As the level of noise increases, the benefits of L-max thresholding become

increasingly pronounced. In addition, two interpretations of Willshaw thresholding

were presented, with “Fixed Willshaw” being demonstrated to be the clearly superior

alternative; that is, the threshold should be set to the known fixed input weight of

the network rather than the weight of the current input vector.

The idea of L-wta thresholding in CMMs storing Baum codes was introduced, and

the benefits of the method demonstrated over a variety of input and output vector

sizes and weights. The increase in storage capacity when using L-wta rather than

L-max was shown to be in the order of 15%. The experimental results support

the theoretical results on the storage capabilities of CMMs. In addition, it was

demonstrated that networks storing associations between Baum codes are able to

store a greater number of associations than the theory suggests is possible for

randomly generated codes.

Chapter 5 focused upon the idea of generating codes for storage in a CMM which

maximise the capability of the network to generalise. While there are existing

methods which exist for solving this problem they have significant weaknesses when

faced with the representation of multi-dimensional features spaces. The OBCC

method was introduced, allowing the generation and optimisation of codes suitable

for storage in a CMM with a predefined degree of overlap between them. This

method, therefore, is flexible to feature spaces with any number of dimensions. The

optimisation process uses a graph representation of the code and involves finding

cliques in this graph. Each clique represents an optimisation to be made in the

code, with the size of the clique representing the magnitude of the optimisation. A

number of strategies for finding cliques in the graph were discussed, varying from

exhaustive approaches which are extremely computationally expensive to methods

which find smaller cliques but are able to run extremely quickly. It was speculated

that in general finding larger cliques is preferable, but it is certainly not always

optimal to pursue the largest clique at the expense of everything else. The method

is flexible in that the optimisation need not be completed for the code to be used,

and by varying the strictness with which cliques are accepted (i.e. accepting some

sets of nodes which are close to being cliques) some quality of representation can be
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sacrificed in order to achieve a more compact code. The method was demonstrated

on a character recognition data set.

6.2 Further Work

A number of areas for further work have been identified throughout the thesis. The

following is a summary of these issues.

6.2.1 Cellular Associative Neural Network

A number of problems with the CANN architecture were discussed. Firstly, the

architecture does not display scale or rotational invariance. These are both very

desirable properties in an object recognition system. When an object has been

learnt by the system, that same object should be recognised whenever it appears

regardless of any changes to its size or orientation. Methods for solving this problem

need to be developed.

The learning process of the CANN is also limited. Currently the system is only

capable of learning a single example of each object. This means that the system is

incapable of learning the full gamut of variations within an object class, being only

able to recognise very small deviations from the learnt example. In addition, even

though the architecture was augmented to perform recalls on uncertain data, the

learning process is not capable of using this information. Since real training examples

would require a pre-processor applied to image data, adding this capability would

allow learning based upon the edge detector presented by Brewer [20].

Finally, the issue of parallelism in the CANN requires further investigation. While

a pessimistic view of this possibility was presented, there may be methods which

will allow the architecture to operate in a fairly efficient parallel manner. However,

it is believed that this will require either a system for efficiently sharing memories

between the cellular processors, or a message passing system which ensures that

conflicting rules are not learnt during any iteration of the system.
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6.2.2 Associative Rule Chaining Architecture

The performance capabilities of ARCA have not been previously studied in detail,

so there are many open questions on this subject. There are two different data types

used in the system: rule vectors and token vectors. The former are used to represent

the rules which have been learnt in the system, with the latter representing the

symbols which are used in the rules. The choices made regarding the representations

used for these two data types are crucial, since they define the memory requirements

of the system and the recall capabilities of the CMMs. The observation was made

that the length of the rule vectors nr is particularly important, since the number of

bits required for the two CMMs is nrnt + nr
2nt (where nt is the length of the token

vectors). For this reason it is highly preferable to keep the value of nr as small as

possible. However, clearly reducing the size of the vector will also reduce the size of

the input to the postcondition CMM, and therefore reduce its storage capacity. In

addition, the values chosen should depend upon the number of rules and symbols in

the set of rules. The trade-offs involved need to be thoroughly investigated, so that

appropriate vector lengths can be chosen for any given problem.

An additional problem is that of selecting the weight of the rule and token vectors.

As described in Chapter 4, the optimal weight for an input and output code in a

CMM is not the same. This causes a problem in systems such as this, in which codes

are used as both input and output codes, since the optimal choice is not clear. In

addition, the output of the postcondition CMM is not even simply one of the vectors,

but a tensor product of rule and token vectors. This means that weights need to be

selected very carefully in order to maximise the performance of the system, and an

investigation into how this could be achieved would be very useful.

While the version of ARCA which was discussed and implemented in Chapter 3 was

only capable of operating on rules which had a single symbol in the precondition,

there is no reason that the system could not be extended to operate on rules with an

arity greater than 1. The concept here is basically the same as in AURA, discussed

in Section 2.11. A different precondition CMM would be required for each rule arity,

with the outputs of these CMMs being combined with a logical OR. This prevents

partial matches being returned when only a subset of a rules preconditions have

been met. Of course, making such a change is bound to alter the performance of

the system, and so this is another possibility which should be investigated.

While ARCA is a very interesting and novel system, it is only capable of performing

forward chaining on a very restricted logic. Firstly, the system is not capable of
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processing logical negation. Adding this capability would be sufficient to allow the

representation of basic propositional logic. While this would increase the power of

the system, an even greater improvement would be to extend the system to first-order

logic. First-order logic is considerably more expressive than propositional logic, but

it is also significantly more complex. Thus, this would be a challenging task.

Finally, although ARCA has been implemented and demonstrated to work on

synthetic problems, it has not yet been applied to any real world problems. There

are potentially a number of issues which such an undertaking would reveal. For this

reason, the identification of an appropriate problem should be made a priority.

6.2.3 Usage of Baum codes in CMMs

The usage of Baum codes for generating codes to store in CMMs has been shown

to be effective. However, whether it provides optimal information efficiency is yet

to be determined. Although a larger number of associations between Baum codes

can be stored in a CMM than randomly generated codes, each code contains less

information. This means that the overall information efficiency may be lower, despite

the higher storage capacity. It should be determined whether the usage of Baum

codes is truly more efficient than other choices for generating codes for storage in

CMMs.

In addition, while L-wta was shown to improve the recall capability of a CMM which

stores associations between Baum codes when compared to L-max thresholding, this

was only confirmed in the absence of noise on the input. Further investigations

should be conducted to confirm the benefit L-wta offers when the input is subject

to noise. In the absence of noise the improvement to storage capacity was around

15% on average, but this figure could be larger or smaller in this additional case.

6.2.4 Overlapped Binary Code Construction

The Overlapped Binary Code Construction (OBCC) method was presented, but

many questions remain regarding the benefits and limitations of the technique.

Firstly, there are a wide variety of options available for the clique selection strategy

involved in the code optimisation process. Experimental analysis of a variety of

these methods is required to assess their relative merits in terms of computational

expense, code length minimisation and overlap reproduction accuracy. In addition,
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these techniques need to be compared to existing methods such as thermometer

codes, fixed weight Gray codes and CMAC Gray codes.

In addition, there is the possibility of optimising a clique finding algorithm

specifically tailored for the OBCC method. There are specific properties of the

graph which could be exploited, such as the fact that it only changes in a small way

between iterations of the algorithm. In addition, it may be possible to prioritise

cliques for removal which will result in a code of minimal length.

A further development to OBCC would be to alter the technique to prioritise a

shorter code above the perfect preservation of distances between output codes.

Accomplishing this would involve the selection of sets of nodes which approximate

cliques in the optimisation process, rather than selecting only sets of nodes which

form complete cliques. Combining such sets of nodes would result in greater

optimisations to the length of the code at the expense of the quality of the

representation. The degree to which representation is sacrificed could be controlled

by a parameter of the algorithm. This would enable a large increase in flexibility to

the method.

Finally, the OBCC method should be further evaluated on real problems. In

particular, the effect of the method on storage capacity and generalisation in a

single CMM should be investigated, with further studies being conducted into the

benefits of the method to more complex architectures. The CANN and ARCA

systems described in Chapter 3 would both be suitable for such investigations.
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Appendix A

Character Recognition Data Set

A character recognition data set titled “Letter Recognition Data Set” was obtained

from the UCI Machine Learning Repository [30]. The data set consists of 20, 000

instances of characters, together with 16 features, each of which has been normalised

to be an integer between 0 and 15. The features are shown in Table A.1. For the

experiment shown in Chapter 5, a single instance of each letter of the alphabet was

chosen. Table A.2 gives the feature values for the selected instances.

Name Description
x-box Horizontal position of box
y-box Vertical position of box
width Width of box
high Height of box
nopix Total number of pixels
x-bar Mean x of pixels in box
y-bar Mean y of pixels in box
x2bar Mean x variance
y2bar Mean y variance
xybar Mean x y correlation
x2ybr Mean of x2 × y
xy2br Mean of x× y2
x-ege Mean edge count, left to right
xegvy Correlation of x-edge with y
y-ege Mean edge count, bottom to top
yegvx Correlation of y-edge with x

Table A.1: The 16 features in the character recognition data set
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Nomenclature

I The information efficiency of a CMM.

k The weight of an input code (the number of bits set to 1).

l The weight of an output code (the number of bits set to 1).

m The number of input neurons in a CMM. If the number of input and output

neurons is the same, n is used to represent both.

n The number of output neurons in a CMM.

W The weight matrix of a CMM.

x An input vector to be stored in a CMM.

y An output vector to be stored in a CMM.

z The number of pairs of data stored in a CMM.
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