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Abstract of Thesis

Vibration-based condition monitoring is a technique that contributes to the reliability
of rotating machinery. Wireless sensor nodes can be used for continuous machine
health monitoring in automotive, industrial or aerospace sectors. Consider that ran-
dom packet loss and signal recovery are common issues in wireless sensing, especially
under these types of scenarios. Conventionally, to compensate for these issues, lost
data packets are retransmitted, the signal is boosted or the communication channel is
changed. However, these techniques may not be enough or convenient to alleviate the
packet loss problem as energy conservation in sensor nodes is a critical aspect to face
as they are generally powered by batteries or energy harvesters. More importantly,
the signal recovery problem needs to be addressed as wireless retransmissions may
be limited in aerospace applications. Hence, a different approach is desirable.

This thesis presents a framework that mitigates the random packet loss problem,
performs data compression, recovers the signal and increases energy savings at the
sensor nodes. The focus is on energy conservation and increased signal recovery per-
formance in wireless vibration sensing systems directed to support equipment health
management in aero-engines. The presented framework is divided into vibration
data encoding and vibration data decoding. In the former, local signal processing in
the frequency domain and compressive sensing occurs at the wireless sensor nodes.
For the latter, a novel signal recovery algorithm is used to decode the signal at the
base station. The proposed algorithm enhances the performance of the standard
orthogonal matching pursuit algorithm for recovery of sparse vibration signals.

The wireless vibration sensing system was successfully demonstrated on an active
Trent 1000 gas turbine engine running on a testbed to collect real vibration data. This
data was used as prior frequency support for the proposed signal recovery algorithm.
The inclusion of prior information improves system performance by reducing the
number of samples required for signal recovery. Energy is conserved at the wireless
sensors by reducing the amount of data to be sent for vibration signal recovery.
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Chapter 1

Introduction

1.1 Motivation

Vibration-based condition monitoring is a technique that contributes to the reliability
of industrial rotating machinery. It can help prevent unforeseen machinery failure
and reduce the risk for workers. Traditional vibration monitoring is based on the
deployment of wired sensors on the static housing of machinery [1]. However, the in-
stallation and maintenance of these wired sensors result in added weight, complexity
and cost [2]. Wireless Sensor Networks (WSN) make it possible to overcome wired
sensors limitations such as weight and cost derived from wiring, connectivity issues
and deployment in rotating machinery [2]. Wireless sensors have been identified as
an attractive alternative for industrial and factory automation, automotive systems,
distributed control systems and networked embedded systems [3]. Important benefits
include weight reduction, mobility, scalability, reduced cabling and installation costs
[4].

Wireless sensor nodes can be used for continuous machine health monitoring in noisy
propagation environments such as those found in the automotive sector, oil and gas
industry or gas turbine engines. However, random packet loss is likely to occur
under these types of noisy scenarios due to interference, obstacles and multipath
propagation among others [5]. Furthermore, wireless sensor nodes are severely con-
strained in terms of computational capabilities, storage resources, communication
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bandwidth and power supply [6]. Sensor nodes are often battery powered or a type
of energy harvester is used as a main source of power. Even when using energy
harvesting, it is necessary to use techniques involving power management since the
available energy differs over time and in function of the sensor nodes location [7].
Hence, data reliability and energy conservation through low power consumption are
fundamental requirements for wireless sensor nodes in long-term and continuous
vibration based condition monitoring. If the wireless sensors are to be installed
within a gas turbine engine it is useful to identify the main sources of vibration from
an aircraft and understand the principles of condition monitoring based on vibration.
Then, techniques to perform signal processing on wireless sensors for data encoding
and signal recovery methods for data decoding are explored.

In summary, wireless vibration sensors were deployed on an active gas turbine engine
to collect vibration data. During this test, it was noted that the wireless commu-
nication was affected by random packet loss causing several packet retransmissions,
unexpected time delays, affected data integrity and wasted energy resources from
the sensor nodes. This was the main motivation for proposing a framework to
mitigate the packet loss problem and signal recovery problem. For the former, current
practical approaches involve using the resources of the transceiver. For instance,
increasing the output transmission power, migrating to different channels or allowing
data retransmissions. This situation is undesirable, especially in autonomous sensors
where the energy is severely limited. The desired scenario is to encode the data in
a way that the vibration signal can be recovered even after suffering from random
packet loss. For the signal recovery problem, there are sophisticated methods to
recover signals from compressed sensing measurements. However, they are compu-
tationally expensive and information about the application is not considered. The
desired situation is to capture the signal characteristics of the application or use prior
information that can help the recovery algorithm to look in the frequency regions of
interest where most of the energy is expected to be located. By dealing with these
two problems will result in increased energy savings and improved performance in
the wireless vibration sensing system.
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1.2 Airplane Vibration

Some types of vibration on airplanes can be expected occasionally and are con-
sidered normal. However, cases of abnormal vibration require prompt detection and
subsequent timely maintenance action.

Normal and abnormal vibrations may happen for several reasons. For instance,
mechanical malfunctions, aerodynamics and external factors such as atmospheric
turbulence may cause airplane vibration. All vibrations have associated frequencies
and magnitudes that may be detected through vibration sensors [22].

Normal vibration: Each airplane has a characteristic signature of normal vibration.
This is because of mass distribution and structural stiffness which results in vibration
modes at certain frequencies. Very low-level vibrations result when external forces
act on the airplane, such as normal airflow over the surfaces. Typically, this is known
as background noise. Also normal but more noticeable, is the reaction of the airplane
to turbulent air.

Abnormal vibration: This type of vibration typically has a sudden start and may be
accompanied by noise. The vibration may be steady or intermittent with a distinct
frequency. When the start of abnormal vibration can be associated with a previous
event, the source may be evident. However, some vibrations are subtle and require
diagnostic methods to determine their probable causes.

Abnormal vibration usually is associated with causes such as engine rotor imbalance,
mechanical equipment malfunction, airflow disturbances or control surfaces that have
excessive wear among others [22]. The use of vibration sensors for condition monit-
oring allows the detection of abnormal vibrations and enable preventive maintenance
to preserve assets and reduce downtime.

1.3 Vibration-based Condition Monitoring

Many deviations from normal conditions in rotating machinery such as an unbalanced
rotor, shaft bending, and ball bearing faults can be detected and diagnosed by
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measuring its vibration. Vibration-based condition monitoring is a technique that
involves sensing and analysis of the system characteristics in a given domain such as
time or frequency. The purpose is to detect changes with respect to the characteristic
vibration signatures that machinery exhibits during normal operation. The machine
structure and its internal components contribute to the overall vibration signature
which is unique among machines [33]. Moreover, the machinery vibration reflects
changes on which the condition of one of its components changes. A vibration
condition monitoring procedure typically consists of three main steps [10-12] as shown
in Figure 1.1. The procedure starts by collecting vibration data from the vibration
source, this data is then processed to extract meaningful information. Finally, the
extracted features are compared to known signatures [13-14] for fault diagnosis. The
remaining useful life of the machine can be estimated using an additional prognosis
step [15].

����������	���
� ������
��		��� �����������
	�	
������
��
�
���

Figure 1.1: Block diagram of a typical condition monitoring system.

Traditionally, vibration is measured indirectly. For instance, to measure shaft vi-
bration, the sensor is placed on a plummer block or house bearing unit as shown in
Figure 1.2, this pedestal provides support for a rotating shaft. There are cases on
which the vibration is measured directly from the shaft itself. Mitchell [16] discusses
arrangements for measuring vibration on frequently monitored machinery such as
centrifugal pumps, fans, axial compressors, generators and so on. The summary of
his major guidelines are as follows:

1. Indirect shaft vibration in machinery may be captured efficiently by placing an
accelerometer on the bearing as shown in Figure 1.3a. In machines supported
by flexible foundations, the rotor generates dynamic force, much of it is trans-
mitted to the supporting structure through the bearings and then dissipated
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Figure 1.2: Structure of a plummer block [16].

in the form of structural vibration. The indirect measurement should follow
the ISO-10816 standard [17].

2. Direct rotor vibration in machines may be measured by a proximity probe
mounted on the bearing pedestals as shown in Figure 1.3b. For machinery with
relatively large casing-to-rotor weight ratios supported on rigid foundations, the
energy is expected to be dissipated by the rotor vibration itself and a minimal
amount is transferred to the bearing [17].

3. Combined vibration measurements may be performed by proximity probe and
accelerometer together. If the vibration quantity is equally divided into bear-
ing and shaft vibrations, both can be measured and combined. The dir-
ect/combined measurement should follow the ISO-7919 standard [17].

The vibration condition monitoring method, as described, is a reliable tool for
condition monitoring. However, some limitations are identified:

• Experienced personnel are required for data collection and analysis.

• On-bearing sensors are typically subjected to structural noise that propagates
through the machine hull.

• The number of sensors can be increased to enhance fault diagnosis [18]. How-
ever, exhaustive signal processing work would be required.

• Cost, maintenance and space needed for system components and cabling.
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Figure 1.3: Indirect (a) and direct (b) vibration measurement arrangements.

Due to these reasons, an ideal scenario for vibration analysts would be to use a
method to capture shaft vibration directly without being affected by bearings and
structure imperfections, bearing damping, structural noise and so on. Another
objective is to reduce the number of sensors to minimise system maintenance cost
and exhaustive signal processing.

Vibration can also be measured on-shaft, acquiring vibration at its source. Sensors
may be placed at the rotor where the amplitude is maximum and fault symptoms
may be more identifiable.

The advances in wireless technology and sensing capabilities enables to attach a
wireless vibration sensor on the rotor [19] as shown in Figure 1.4 (right) which may
help to detect a wider range of faults and replace two wired sensors per bearing as
opposed to the case shown in Figure 1.4 (left).
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Figure 1.4: Sensor position in on-bearing vibration measurement and on-shaft vibration
measurement with a wireless sensor.

1.4 Research Objectives

A Gas Turbine Engine (GTE) is one of the most important aviation components.
The core of this propulsion system is the gas producer that turns fuel into mechanical
energy. However, several LRUs (Line Replaceable Units) contribute to the remaining
useful life of the propulsion system and overall health. LRUs such as fuel and oil
pumps, starters, actuators, sensors, gearbox, etc. do not directly form part of the core
engine but are necessary to support its operation. The use of wireless sensor nodes
with vibration-based condition monitoring can be used to monitor machine health
on different LRUs or accessories within a GTE. After the deployment of wireless
sensor nodes on an active gas turbine engine test, it was noted that during wireless
data transmission, the data integrity, energy efficiency and availability of data was
affected by random packet loss, causing multiple data packet retransmissions and
unexpected time delays. To bridge these issues, this research presents a suitable
framework for Wireless Vibration Sensing ( WVS) systems considering the following
objectives:

1. Meet system requirements: Investigation of the wireless vibration sensing pro-
cess. Demonstrate that the selected hardware meets the specific requirements
for the wireless sensor infrastructure through research, simulation and experi-
mental analysis.

2. Collection of real vibration data from a gas turbine engine and capture signal
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characteristics from the application: Identification of issues and limitations in
WVS in noisy environments and development of adequate solutions. Conduct
experimentation in a Laboratory environment and in a Gas Turbine Engine to
identify potential flaws, conduct simulations based on real data and capture
the frequency structure from the application to use it as prior information to
improve system performance.

3. Signal encoding at the sensor nodes to compress data, promote energy savings
and mitigate random packet loss: Energy efficiency is fundamental in WVS
systems because the available energy is limited and varies over time because
batteries and/or energy harvesting are used as the main power supply source.
Develop a solution that considers the available energy at the sensor node,
incorporates local signal processing and compressed sensing prior to wireless
transmission.

4. Efficient signal decoding at the base station and minimisation of the number of
measurements required for vibration signal recovery: Stability and performance
in a WVS system for machine health monitoring are affected by time delays and
wasted resources which may be derived from unexpected wireless retransmis-
sions and prolonged signal recovery of vibration signals at the fusion centre.
Propose a signal recovery algorithm that improves system performance and
energy savings from the sensor nodes by reducing the number measurements
required to recover the vibration signal.

1.5 Contributions to Knowledge from this Research

The developed framework mitigates the effect of random packet loss, performs data
compression, and increases signal recovery performance in wireless vibration sensing
systems to support Equipment Health Management (EHM). It is divided into two
main procedures: vibration data encoding and vibration data decoding. In the
former, the vibration data is encoded at the wireless sensor node through local signal
processing and compressive sensing. In the latter, the vibration data is decoded at
the base station using an enhanced signal recovery method for compressive sensing
measurements.
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The novel contributions contained within this thesis are as follows:

1. Wireless vibration data collection within a running gas turbine engine and es-
timation of energy distribution across the frequency spectrum from the applica-
tion: It was demonstrated that the proposed wireless sensing system is capable
of meeting the specific requirements of a system requirements document gen-
erated by Rolls-Royce for the wireless sensor infrastructure, achieved through
a set of experiments conducted in sensor nodes using professional equipment
provided by Rolls-Royce (Objective 1). To our knowledge, this is the first time
self-powered wireless vibration sensors have been successfully demonstrated on
an active civil gas turbine. The wireless vibration sensing system was tested
on a Trent 1000 aero-engine running on a testbed to collect real vibration data
and then capture signal characteristics from the application (Objective 2). This
information is then used as frequency support in the proposed signal recovery
algorithm mentioned in contribution 2. The signal encoding strategy for local
signal processing at the wireless sensor nodes (Objective 3) presented in [21]
includes frequency domain analysis, automatic signal sparsity adjustment and
compressed sensing.

2. The second main contribution is a novel algorithm that enhances the standard
Orthogonal Matching Pursuit method used for signal recovery of compressed
vibration data (Objective 4). The improvement in the performance of this
signal recovery algorithm is achieved by including prior information in the
form of frequency support structure. This additional input to the recovery
algorithm in the form of prior corresponds to the estimated probability density
function (energy distribution in the frequency domain) from real vibration data
collected during the active Gas Turbine Engine test mentioned in contribution
1. The proposed algorithm uses fewer measurements than the standard OMP
for signal recovery. This results in energy savings at the sensor nodes as the
data transmitted via wireless is reduced. Also, this situation reduces time
delays and increases reliability in the wireless vibration sensing system. This
work has been submitted to peer review to the IEEE Industrial Electronics
Journal.
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1.6 Thesis Layout

The remainder of this thesis is structured as follows:

In Chapter 2, a literature review from vibration sensing technologies and its inclusion
in Wireless Sensor Networks (WSN) is presented. The design objectives, related work
and challenges of WVS systems applied in industrial environments are also described.
The concept of compressive sensing, its relevance in WSN and method selection for
signal recovery using CS are also introduced.

In Chapter 3, the signal encoding strategy is presented. The selected hardware for
vibration sensing, wireless communication and the system architecture is described.
The method used for local signal processing at the sensor node through the Fast
Fourier Transform is presented. The selection and implementation of the random
sensing matrix used for compressive sensing are shown. Also, an algorithm that
increases power efficiency is described, it adjusts signal sparsity dynamically in
function of the available power at the sensor node. Furthermore, the power savings
from using this algorithm in conjunction with compressive sensing are discussed.

In Chapter 4, the signal decoding method is presented. The set of vibration signals
collected during the running aero-engine test are presented. The procedure to es-
timate the Probability Density Function (PDF) from this set of signals is described
and the PDF output is illustrated. The estimated PDF was used to produce a set of
1000 synthetic signals with the same frequency support as the real data for packet
loss simulation and experimentation during signal reconstruction procedures. More
importantly, this PDF was used as frequency support structure and given as an
additional input to the widely used Orthogonal Matching Pursuit (OMP) algorithm.
The description and procedure of this Enhanced-OMP (E-OMP) algorithm is shown
in this chapter. The E-OMP meets a given recovery percentage using a reduced
number of compressive sensing measurements in comparison to the standard OMP
method.

Chapter 5, presents the experimental setup. Also, the power consumption savings de-
rived from using compressive sensing and adaptive sparsity adjustment at the sensor
nodes prior to wireless data transfer are highlighted. Moreover, the reconstruction
results from the received measurements at the receiver side when using the standard
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and modified OMP algorithm are compared and presented. The performance and
accuracy of the enhanced OMP algorithm are illustrated and discussed.

Finally, in Chapter 6, the findings from previous chapters are discussed, and final
conclusions presented. Also, avenues of future work identified from the current
research work are outlined.





Chapter 2

Literature Review and Technical
Background

2.1 Introduction

Condition monitoring evaluates the internal condition of machinery to increase the
useful life and prevent faults [22]. Vibration analysis is recognised as the most wide-
spread method to perform machine condition monitoring [22]. Through vibration
analysis, the machine health condition may be evaluated by tracking changes with
respect to the characteristic vibration signature that the machine exhibits during
normal operation. Vibration-based condition monitoring contributes to the reliability
of rotating machinery. Wireless vibration sensing allows remote condition monitoring
and overcomes the constraints of wired sensors in terms of added weight, installation
risks in rotating components, complexity and cost [2]. For instance, wireless sensors
can be used for continuous machine health monitoring in noisy environments such
as in the automotive sector, oil and gas industry or gas turbine engines. Packet
loss is likely to occur randomly during wireless transmissions under these types of
conditions. The data integrity, energy efficiency and availability of data can be
affected by random packet loss, causing multiple data packet retransmissions, wasted
energy and unexpected time delays. A suitable framework for wireless vibration
sensing can provide the means to help mitigate the random packet loss effect through

13
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vibration data encoding and increased energy savings by using an efficient signal
recovery method that exploits the application characteristics.

This chapter presents the literature review and technical background related to the
work developed in this thesis. This chapter is structured as follows:

• Section 2.2 presents the reliability challenges when using wireless vibration
sensing in harsh environments and related work. Furthermore, previous studies
about local signal processing in wireless sensor nodes and characteristics of
existing hardware for wireless vibration monitoring are presented. The com-
pressed sensing technique is described including foundations, current research
studies, applications and requirements. The available signal recovery methods
to recover the signal from compressive sensing measurements are also presented
in this section.

• Section 2.3 presents the technical background to understand the wireless vi-
bration sensing system analysed in this thesis. In summary, this section
presents the concept and importance of Machine Health Monitoring (MHM),
an analysis of vibration sensing technologies including characteristics and types
of accelerometers, an overview of wireless sensor networks including network
characteristics, applications and main design objectives.

2.2 Literature Review

The following section presents the benefits and drawbacks of using wireless sensing
for machine health monitoring in harsh environments. Next, previous research
work on local signal processing in wireless sensor nodes is presented along with
assumptions, weaknesses and conditions not considered in their methodology. The
principles and related work behind the encoding and decoding strategies for the wire-
less vibration sensing system are presented including compressive sensing and signal
recovery methods and requirements. Finally, the major challenges, critical factors
for wireless sensing in rough environments and approaches taken by previous studies
are analysed in order to identify gaps in the literature. The literature review and
technical background presented in this section helped to define a suitable framework
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for wireless vibration sensing systems capable to perform condition monitoring in
harsh environments considering data integrity, power savings and efficient signal
recovery.

2.2.1 Vibration Sensing for Machine Health Monitoring

Machine Health Monitoring (MHM) provides efficient methods to preserve equipment
and minimise downtime. Vibration monitoring enables preventive maintenance on
almost any type of machine in applications such as aerospace, civil engineering, oil &
gas, rail, robotics, unmanned vehicles, etc [57-62]. To perform condition monitoring,
the sensors are fixed to the mechanical parts of the machines to track failures and
malfunctions.

In industry and aero-engines, sensors may be mounted on machinery and/or Line-
Replaceable Units (LRU). An LRU is a modular component of an airplane or space-
craft designed to be replaced quickly at an operating location [63]. LRUs include
parts that do not directly form part of the core engine but that are required to sustain
its operation, such as starters, fuel and hydraulic pumps, fuel/oil heat exchangers,
valves, actuators, gearbox and so on [63].

Vibration sensing technologies

An accelerometer is a device that measures changes in gravitational acceleration in
the device or machine it may be installed in. Accelerometers are used to detect and
monitor vibration in rotating machinery. Single and multi-axis models of accelero-
meters are available to detect direction and magnitude of acceleration, as a vector
quantity, and can be used to sense orientation, coordinate acceleration, vibration,
shock and falling. To sense motion in multiple directions, the accelerometer requires
to be designed with multi-axis sensors or multiple linear axis sensors. To measure
movement in three dimensions, three linear accelerometers are adequate.

Accelerometers have multiple applications in industry and science. For instance, high
sensitive accelerometers are components of inertial navigation systems for aircraft
and missiles [81-82]. Other applications include the measurement of vehicle accel-
eration, structural monitoring, medical applications and machine health monitoring
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[83-85]. Here, the accelerometers are used to report vibration and its changes in
time of shafts at the bearings of rotating equipment such as turbines, pumps, fans,
compressors or faults on bearings. The selection of the most appropriate sensor for
an application is based on requirements.

MEMS Accelerometers

Micro-electromechanical System (MEMS) Accelerometer or microelectromechanical
system is a technique of combining mechanical and electrical components together
to form small structures. Miniaturization reduces cost by decreasing material con-
sumption. Furthermore, it increases applicability by reducing size and mass allowing
to place MEMS in areas where a traditional system doesn’t fit.

MEMS accelerometers are extensively used in applications such as shock detection,
tilt control and vibration monitoring among others [86]. MEMS accelerometers
feature small size, negligible weight and onboard signal conditioning. For instance,
Kok et al [87-88] integrated a complete wireless data acquisition system containing a
MEMS accelerometer, a microcontroller and an RF transceiver. They demonstrated
that its overall weight is virtually negligible.

One may question the efficiency of MEMS accelerometers. For instance, Ratcliffe
et al. [89] demonstrated their capability for machine health monitoring applica-
tions. Thanagasundram et al. [90] evaluated MEMS technology conducting analysis
techniques to evaluate the properties of these sensors without causing damage, also
known as nondestructive testing. They also conducted spectral analysis of vibration
signals from a dry vacuum pump, obtaining satisfactory results.

Continuous research attempt to further develop MEMS accelerometers. For instance,
Badri et al. [91] proposed modifications to the structure of the moving plates of a
variable capacitance MEMS accelerometer to improve the proportionality between
proof mass motion and measured capacitance, and thus improve acceleration meas-
urement. Additional improvements may involve the on-shaft sensor equipped with
an RF antenna to receive power from a close transmitter via wireless [92-93]. The
advances in MEMS accelerometers and wireless technology allow performing wireless
vibration sensing for MHM in harsh environments [67].
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2.2.2 Wireless Sensor Networks for MHM

The deployment of vibration sensors and supporting instrumentation in rotating
machinery requires to guarantee its safe and long-term operation. Therefore, the
harsh conditions inside an engine need to be considered. More importantly, the
deployment of traditional wired sensors on rotating machinery is not the best solu-
tion. The wear of the wiring after continuous machinery rotation may cause wires
to break and cause a short circuit, damage to the machinery or personnel. Besides,
the cabling is used to interconnect devices which lead to costly installation and
maintenance, added weight, high failure rate of connectors, and so on. An early
solution to solve the communication problem for on-shaft vibration measurement
was to use slip rings [64]. A slip ring enables a stationary wire or set of conductors
to transmit power or data signals to one that is rotating [65]. They are widely used
in applications with wind turbines, brushed DC motors, assembly line machines, and
so on [65-66]. However, slip rings are costly and the noise associated encouraged
their replacement by miniaturized WSNs [67-68]. Hence, wireless sensor technology
opens the possibility to mount sensors directly onto rotating components without
needing these expensive and electrically noisy slip-rings.

The availability of WSNs bring a series of advantages over wired solutions including
easier deployment of sensor nodes, this brings an alternative over the use of wired
sensors which are expensive, complex and usually hard to install. Moreover, the use
of wireless sensors brings the opportunity to place them in critical places, to lower
the costs of operation in industrial environments, to deploy in large scale, etc. Addi-
tionally, the capabilities of self-configuration and self-organization in WSNs assures
efficiency in energy services and reliable management [25, 26]. The environment
within a GTE presents harsh conditions. This type of atmosphere may be subject to
noise from machinery rotation, metallic reflections and frictions, noise generated from
nearby equipment, engine vibrations, variations in temperature, channel interference
and obstacles among others [59]. Thus, these severe situations may cause wired
system solutions to be unsuitable in some applications and require cabling isolation.
Reliability in wired systems could be enhanced by adding redundant wires although
it would result in added complexity, weight and cost. Additionally, it is not a
suitable solution if the machinery or equipment connected by these wires need to be
relocated. As a result, using wireless alternatives appears as a viable solution to be
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used in atmospheres under these conditions [23].

The use of wireless sensors for machine health monitoring eliminates physical con-
nectors and wiring that could be exposed to hazardous environments. Hence, they
enable to monitor systems that could not be monitored previously due to high main-
tenance cost or personnel risk exposure to repair these systems. Also, wireless sensors
allow monitoring of systems where external connections are impossible or impractical
[69]. However, this technique requires the collection of a large amount of vibration
data from the machinery or accessory of interest to facilitate accurate fault diagnosis.
This situation is not always practical in a wireless environment due to sensor node
limitations such as limited memory size, lengthy transmission time caused by low
transmission rate and data packet retransmissions derived from random packet loss
when installed in noisy environments. Hence, energy consumption and wireless
transmissions may be minimised through local digital signal processing and data
compression.

In wireless MHM, Fault Diagnosis may occur at the base station after the vibration
signal is acquired, conditioned, processed and transmitted from the sensor node. It
is desirable that signal postprocessing occurs at a dedicated BS because there are
typically no constraints on power consumption to carry out computationally intensive
algorithms and methods to diagnose faults. There exist two main approaches for this
purpose: signal-based and model-based. In the case of the model-based method, a
fault can be detected from continuously comparing the difference between the actual
machine response and the model. The reliability of this method is dependent on the
conformance or match between the real machine and the model, boundary conditions
and the accuracy of materials parameters [70], more details in [71-72].

In the signal-based approach, a vibration signal is used to diagnose faults without
the need to model the machine dynamics. The overall level of vibration is a robust
indicator to determine machinery condition and to decide if a check-up is required
[73]. Later, to determine a fault type, the signal may be analysed in the frequency
domain. Detailed tables about common faults linked to their spectral representation
can be found in [73-74].

Although the fault detection methods are out of the scope of this research, they were
introduced for the interest of the reader with references to literature that cover these
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topics in more detail. The focus of this research work is on energy efficient encoding
procedures for vibration signals acquired from sensors prior to wireless transmission
to increase robustness to random packet loss and data compression to minimise the
number of transmitted samples. Also, the focus is to recover the signal with high
accuracy and speed.

Opportunities and limitations in wireless sensor networks

Wireless Sensor Networks (WSN) have been extensively considered one of the most
important new technologies of the present century [33]. The current evolution in
MEMS and wireless communication technology have allowed the deployment of small
inexpensive smart sensors in a physical area, these sensors networked using wireless
links and Internet have opened opportunities for a variety of military and civilian
applications such as environmental monitoring, battlefield surveillance and process
control in industries [34].

WSNs have received great interest from both industry and academia around the
world. However, WSNs present unique characteristics and constraints that should
be considered when building a model for a specific application, those include limited
power source, small memory space and constrained processing power, those char-
acteristics including higher unreliability on sensor nodes differentiate WSNs from
traditional wireless communication networks such as cellular systems and ad hoc
networks [35]. Extensive research activities have been conducted to attempt to solve
design and application issues, resulting in considerable advances in the deployment
and development of WSNs. It is predicted that in a near future WSNs will be globally
used in diverse civilian and military applications, revolutionizing the way we interact
with the physical world and our quality of life [36].

WSN Network Characteristics

The sensor nodes communicate the sensed data over a short distance through the
wireless medium and cooperate to achieve a common task such as battlefield sur-
veillance, environmental monitoring and industrial process monitoring and control
in remote locations [95-97].

A WSN typically consists of a collection of low cost, low power and multifunctional
spatially distributed sensor nodes (SNs) that monitor and collect data from the
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environment or area of interest in which they are deployed [94]. The SNs are small
in size but incorporate sensors, embedded microprocessors and radio transceivers.
Consequently, WSNs include sensing, data processing and communication capabil-
ities. The sensor nodes communicate the sensed data over a short distance through
the wireless medium and cooperate to achieve a common task such as battlefield
surveillance, environmental monitoring and industrial process monitoring and control
in remote locations [95-97]. A WSN system also includes a manager node or gateway
which provides wireless connectivity back to distributed nodes and the wired world
such as the Internet, a personal computer to display the data on a graphic user
interface (GUI) or an Engine Monitoring Unit (EMU) in the case of a Gas Turbine
Engine. The selected wireless protocol depends on the application requirements [98].

WSN Applications

Wireless sensor networks are typically distributed over a region of interest where
they perform sensing, processing and communication tasks. The sensors can be
used to monitor physical or environmental conditions such as temperature, pressure,
sound, light, and vibration among others. The advantage of not requiring cabling to
communicate and report sensed data within the existing network and the low cost
of available sensors have allowed the creation of a variety of applications such as
environmental monitoring [96], military applications and outdoor surveillance [95],
healthcare monitoring [99], habitat monitoring [100], home automation and indoor
surveillance [101], industrial process control [97] and aircraft health monitoring [102]
among others. The previous applications, as well as many others, benefit from
wireless data acquisition capabilities and deployment in many environments such
as battlefields, outer space, oceans and machinery in remote locations.

2.2.3 Local Signal Processing in WSN

The installation of wireless sensor nodes for vibration monitoring in rotating ma-
chinery such as gas turbines [27], rotating shafts in the industrial sector [28], rotor
blades in helicopters [29] and so on, appears as the only feasible solution. This is
because the installation of wired sensors is unviable or hazardous for that purpose.
Wireless sensors provide potential advantages over wired sensors. The use of WSNs
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help to avoid associated issues regarding wired analogue sensors such as weight reduc-
tion, lower installation cost, increased data acquisition flexibility, scalability, easier
setup processes and reduced complexity. Furthermore, by using WSNs, physical
connectors and wiring exposed in hazardous environments are eliminated [30].

Condition monitoring based on vibration sensing is a technique that allows assessing
the operating conditions of any moving mechanical system or rotating machinery.
Monitoring these vibration signals using WSNs results can help to improve diagnosis,
and therefore, machinery failure can be prevented. Typical vibration monitoring is
performed using low integrated piezo-electric accelerometers [31]. The raw vibration
data acquired from these types of sensors is then transmitted to a Base Station
(BS) for further signal processing. However, the power consumption in wireless
sensor nodes is considerably increased when the radio transceiver is continuously
active to send the raw vibration data to the BS. Moreover, to ease reliable machine
health assessment, sensor nodes should acquire the vibration based signals at a
high sampling rate which generates large data packets. These situations become
impractical in a wireless data transmission due to the characteristic low transmission
rate and prolonged transmission time [32]. For continuous vibration monitoring,
it is fundamental to minimise power consumption on sensor nodes. One way to
reduce power consumption is proposed by Chan et al. [32] where the sensed data
is compressed prior to wireless transmission. A novel data compression algorithm
combining Empirical Mode Decomposition (EMD) and Differential Pulse Code Mod-
ulation (DPCM) is implemented for that purpose. EMD is used to decompose and
identify instant non-linear changes and non-stationary signals caused by abnormal
operation in the machinery. On the other hand, DPCM is applied for further data
compression by using a linear predictor and quantizer before wireless transmission
occurs. However, this study does not consider local signal processing on sensor
nodes, packet loss, interference, security issues during transmission and reliability
reduction due to a high compression ratio. A more suitable alternative is to reduce
the continuous transmission of raw data by analysing the signal locally on the sensor
nodes using signal processing methods.

Other studies, attempt to implement local signal processing through dedicated al-
gorithms for vibration monitoring. However, it is challenging to embed these type of
algorithms on sensor nodes (SNs) due to constraints on processing power, memory
and limited energy source [33]. Additionally, algorithms to monitor vibration can
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be resource intensive and complex depending on the reconstruction requirements
and signal characteristics. For instance, Merendino et al. [34] implement a discrete
wavelet transform and time sample averaging in a microcontroller to detect faults in
gears. Other studies use a Field Programmable Gate Array (FPGA) or a dedicated
Digital Signal Processor (DSP) to run signal processing algorithms [35]. Even if these
processors offer high performance, speed and computational power to perform signal
processing, FPGA or DSP are not the best solutions for local signal processing at
wireless sensor nodes due to their high power consumption, cost and size [36].

Existing commercial wireless vibration monitoring systems found in the literature
do not perform local processing on sensor nodes. The WiMon100 sensor node by
ABB group [37] is used to improve maintenance of electrical motors and rotat-
ing equipment. The transducer type that performs vibration measurements is a
piezoelectric accelerometer, raw vibration data is transferred to the BS to perform
further signal processing. The data received runs own developed software for data
analysis, storage, graphical user interface and decision making [37]. The V-Mon 4000
by Inertia Technology [38] sensor node is used for industrial vibration monitoring,
it transmits the vibration signals to the BS for further processing and condition
monitoring of the machine. This sensor node claims to achieve real-time transmission
of vibration signals due to the powerful ARM Cortex-M4 processor used. Complex
signal-processing techniques such as wavelet transform, time domain averaging and
empirical mode decomposition are carried out on the base station. The VIBConnect
sensor node by Pruftechnik is used for condition monitoring and diagnosis. However
some drawbacks were identified, the radio module and sensors are physically separ-
ated and connected by short cables, in case the sensor node is installed in a hazardous
environment the cabling is exposed to damages. Moreover, the output signal from
the accelerometer is a relative simple output of 35 mV/g, which means that the
sensor does not provide application-specific analysis such as embedded frequency
domain processing or any other type of signal processing. The raw vibration data
acquired by the accelerometer is transmitted to the base station for further analysis,
visualization, reporting and archiving [39]. The WiVib 4/4 Pro by Icon Research
is a battery-powered device with multiple inputs, this device is used to measure
vibration and parameters from machinery and mechanical systems. It allows four
standard integrated circuit piezoelectric accelerometers to be connected to any of the
4 channel inputs. The acquired data is transferred over a wireless standard WiFi
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802.11 to a host computer for processing and display, no local signal processing
is performed at the sensor node [40]. The next subsection presents the current
challenges and approaches to perform wireless sensing for condition monitoring in
harsh environments.

2.2.4 Challenges and Approaches

Manufacturing plants, companies and industry in general, rely on the data collected
from the networks of distributed sensors located in strategic zones. The advantage to
sense, measure and monitor data from hard to reach areas using simple procedures or
infrastructures have made this technology popular nowadays. Many industries such
as power plants, oil and gas pipelines, chemical and industrial companies among
others have deployed wireless networks to monitor different parameters. These
parameters are fuel levels, pipe flow, air pressure, electrical current, temperature,
vibration [41] together with data that represent the machine status. The collected
information allows tracking the effectiveness and efficiency of a given process, factors
that are fundamental for safe operation.

There exist applications of WSNs that have replaced wired sensors to make space for
temperature and vibration sensors, which are used for vibration monitoring in motors
[42-46] this is because of the infeasibility to install wires in some areas. WSNs are
used for condition monitoring on which data is reported periodically regarding the
status of motors and tool performance statics on machines [47]. The sensors support
machine maintenance since they generate alarms when an unexpected event occurs.
Then, the measurements taken are sent to the sink or controller to take immediate
actions. Additionally, WSNs open opportunities to perform in situ or local signal
analysis infeasible using wired sensors, some of the applications that take advantage
of this features include steady state motor analysis and onboard oil analysis [48].

Condition monitoring and machine prognostic analysis using WSNs are becoming a
common area in manufacturing centres and plants involving critical operations. For
instance, Jardine et al. [49] refer to the use of wireless technology in nuclear power
plants to increase the accuracy in multisensory systems for machine prognostics and
health management. There exist similar applications that use WSNs for machine tool
monitoring, Wright et al. [50] use wireless sensors to monitor temperature for end
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mill inserts. In a similar way, Sundararajan et al. in [48] use condition monitoring
based on vibration sensing to avoid breakage of tools.

Reliability can be enhanced through control mechanisms to handle timing and fre-
quency bandwidth efficiently. For example, in [51] Kunert et al. propose control
techniques to improve throughput and enhance reliability. In this study, reliability
is guaranteed by retransmitting messages when necessary, important assumptions in
this study include predictable access to the wireless medium and admission control
in real time. Other approaches to improving reliability include the use of probability
functions and estimation techniques. In [52] an analytical model is proposed to
estimate the probability of failures during wireless data transmission in the industrial
domain. This systematic approach estimates the desired reliability by means of
packet success rate estimation, and a suitable number of message retries is configured
as a result. In [53] an interesting contribution by Fischione at al. involves the
design and implementation of a protocol used to guarantee reliability and delay
requirements in wireless sensor networks for control and actuation applications. This
protocol considers routing, duty cycling, and medium access control all combined to
maximise the network lifetime and improve energy efficiency. The main objective of
this approach is to optimize energy consumption considering factors such as packet
reliability and time delays.

Reliability, timing and accuracy [54] are probably the most critical factors that
should be guaranteed when using wireless sensor networks to transmit data in harsh
environments such as the industrial domain or within a gas turbine engine. It is
essential to ensure that the measurements obtained from the sensors are accurate,
transmitted reliably and received by the base station or the destination node at the
appropriate time. Meeting time deadlines regarding data transmission is a crucial
factor in process automation [55], [56] where unexpected time delays or interrupted
communication may cause failures in the production line, discontinued services,
damage on machinery or even cause a risky situation for the workers. On the other
hand, transmitting inaccurate data due to a faulty sensor or the random packet loss
effect caused by interference or noise in the wireless medium may result in defective
condition monitoring or may cause the actuators to have an unexpected behaviour
since they may respond as a result of the data measured by the sensors. An approach
to meet time deadlines and mitigate packet loss during wireless transmission is
required to increase reliability in the wireless sensing system. These may be achieved



CHAPTER 2. LITERATURE REVIEW AND TECHNICAL
BACKGROUND 25

by implementing a strategy for signal encoding through local signal processing and
compressive sensing in the wireless sensor nodes for data compression and help deal
with random packet loss.

Conventional digital signal processing

In digital signal processing, a real-world signal such as temperature, voice, position,
pressure, vibration, etc. is digitised and then mathematically manipulated. Signals
are processed in order to be displayed, stored, compressed, transmitted or analysed
using advanced signal processing methods available only for data in digital format
[79]. For instance, a continuous signal is converted into a discrete signal that is finite
and equally spaced in time because it is uniformly sampled at or above the Nyquist
rate [80]. Conventional signal processing follows the Shannon- Nyquist theorem
for sampling signals. Many samples are generated using this method because the
sampling rate should be more than twice the maximum frequency present in the
signal. Opposed to this conventional sampling approach, a novel signal acquisition
and recovery method is proposed by Compressive Sensing (CS) theory [80]. This
signal processing technique efficiently acquires a signal using fewer samples than tra-
ditional methods [80]. In summary, CS theory asserts that if a signal is compressible
or sparse in a given basis, the signal can be reconstructed from fewer measurements
in comparison to the conventional Nyquist case, this topic is covered in more detail
in the next section.

2.2.5 Compressive Sensing for Signal Encoding

Conventional signal processing follows the Shannon-Nyquist theorem for sampling
signals [113]. The data is sampled at least twice the highest frequency component
found in the signal, the so-called Nyquist rate. This method generates many samples
as the sampling rate should be more than twice the maximum frequency present in
the signal. In modern compression technology, this signal is compressed for a smaller
representation as shown in Figure 2.1. For example, in image compression, in jpeg,
most of the image components are discarded using the wavelet transform [107].

One may question the utility of acquiring so many measurements if most of them are
discarded in the subsequent processing stage. In contrast, Compressive Sensing (CS)
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Figure 2.1: Conventional signal sampling and compression.

asserts that a signal/image can be sampled at a subnyquist rate (lower than Nyquist
rate) while reducing computational complexity and without affecting signal recovery
[105]. In [106], it is shown that CS achieves higher peak signal-to-noise ratio and
lower reconstruction error in comparison to traditional compression methods such as
Discrete Cosine Transform (DCT) and Joint Photographic Experts Group (JPEG).
Compressive sensing is based on three principles/rules to perform successfully. These
principles include incoherent subsampling, transform sparsity and signal reconstruc-
tion [107] which are presented in the next subsections. In this thesis, compressive
sensing was used for signal encoding in the wireless sensor nodes to help deal with
the packet loss problem and for signal compression.

2.2.5.1 Introduction to Compressed Sensing

Suppose that sampling and compression are required for an application so only the
coefficients of higher magnitude are kept for a given data set. According to Shannon-
Nyquist sampling theory, in order to accurately recover/reconstruct a signal/image
without losses, it should be sampled at a rate of at least twice the maximum frequency
in the signal. It is challenging to reduce the Nyquist rate through undersampled
measurements. Although storage and computational power may be reduced, the
reliability of the reconstructed data can be affected because the recovered signal
may differ considerably from the original one and distortion effects such as aliasing
may occur [108].

Studies in [107, 109, 110] present a promising technique called compressive sampling
or Compressed Sensing (CS) in which the number of samples is reduced significantly
while compression of sparse data occurs. This recent paradigm used for data ac-
quisition and processing was originally developed to efficiently store and compress
digital images. In the proposed theoretical model, it is shown that CS exploits the
sparsity nature of images where most of the energy in the signal is concentrated in



CHAPTER 2. LITERATURE REVIEW AND TECHNICAL
BACKGROUND 27

a few non zero elements/coefficients as shown in [111]. Moreover, it is not required
for the signal itself to be sparse but compressible or sparse in some known transform
domain or basis. For instance, transforming images into Fourier or wavelet basis may
reveal the relevant content or energy concentrated in a few elements, which will be a
suitable sparse representation for CS. In the case of time-based signals, they may not
appear to be sparse in its original domain as shown in Figure 2.6a but they may be
when they are transformed to the frequency domain as shown in Figure 2.6b through
the Fourier Transform. Here, a few frequencies or non-zero elements capture most of
the energy in the signal, this is the case for the current application presented in the
following chapters within this thesis. Subsequently, during the sampling process, CS
compresses the signal using much fewer measurements to represent the complete set
of signals. For instance, in image processing applications [109], this procedure occurs
when the image is projected onto a random subspace through a random sensing
matrix of smaller size in comparison to the size of the image without having any
prior knowledge of the image itself. Furthermore, in WSN, CS enables to execute
simple computations at the encoder side where the battery-powered/energy harvested
wireless sensors are located. Whereas computationally intensive recovery methods
to reconstruct the signal or image occur at the base station which is not typically
constrained by battery usage. In other words, this method reduces the dimensionality
of the image/signal by projecting high-dimensional data onto a lower-dimensional
space while preserving relevant information. In this thesis, we denote the dimension
of high dimensional space by N and the dimension of low dimensional subspace by
M .

Time domain signal x(t)

Measure M samples

(a)

Frequency domain signal X(f)

S nonzero elements

(b)

Figure 2.2: Samples in time domain (a) and frequency domain (b).
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2.2.5.2 Applied Principles in Compressed Sensing

Compressive sensing (CS) states that certain signals and images can be reconstructed
from far fewer samples or measurements than the conventional Nyquist case if the
signal is compressible or sparse in a given basis [107]. For example, if the signal
requires to be sparse in some domain, techniques like the Discrete Fourier Transform
(DFT) or Wavelet transform can be used over the original signal or image. After
transformation, the coefficients or elements in the signal that capture most of the
energy can be identified [107]. This concept is relevant to the application of wireless
vibration sensing for condition monitoring in industrial plants, gas turbine engines
and so on. The electrical noise propagation in these environments affects the wireless
communication producing random packet loss. However, the sparsity in a vibration
signal on a given basis can be exploited to help deal with this problem. This effect can
be minimised through the use of inertial vibration sensors with embedded frequency
domain analysis which outputs a nearly sparse signal that can be used in conjunction
with CS. The received signal at the fusion centre can be recovered from fewer samples
than the conventional case without signal compression through random encoding.

One can recover certain signals and images from a fewer number of samples or
measurements if two principles are followed during CS: sparsity, which requires the
signal to be sparse in some domain, and incoherence, which refers to the sensing
modality through the measurement/sensing matrix [107].

Sparsity

The concept of sparsity applies to images and signals [107, 109]. For instance, a signal
or image is considered to be sparse when its informational content is reflected in a few
data points. In other words, sparsity describes the density level of a signal or image
on a given basis. Many natural signals in their original domain may seem dense but
when they are transformed to a convenient domain using a suitable basis, the signals
may become compressible or sparse. In simple words, the original signal/image
is transformed into another representation or domain where it is simpler/easier to
distinguish/differentiate between relevant and irrelevant information. For instance,
this can be performed with the Fourier or Wavelet transforms. The new domain
presents a concise summary of the elements contained in the signal. In image
processing, this helps to easily define a threshold and to determine that all pixels



CHAPTER 2. LITERATURE REVIEW AND TECHNICAL
BACKGROUND 29

below that threshold contain information that is irrelevant. Similarly, in this research
work, the original time-domain vibration signal is transformed into the frequency
domain. Here, the frequency components below the defined threshold are discarded
in order to make the signal sparse and to keep the components that capture most
of the energy in the vibration signal. In both cases, either in images or signals,
after transformation, the coefficients or elements capturing most of the energy or
information in the signal/image can be identified and maintained. In the same way,
the elements of lower energy (E.g.: near zero) may be discarded or set to zero without
losing important information in order to increase the sparsity level and convert a
nearly sparse signal into a sparse signal that can then be used in CS. This procedure
typically happens in CS because of the low contribution of these elements/coefficients
towards the signal or because they can represent noise.

Mathematically, a signal f is S-sparse [107] when it has at most S nonzero elements.
We let the vector f ∈ RN be the signal of interest which can be expanded in an
orthonormal basis (such as Fourier or wavelet basis) Ψ = [ψ1ψ2.....ψN ] as follows:

f =
N∑
i=1

ziψi, (2.1)

where z is the coefficient sequence. It is convenient to express f as Ψs, where
Ψ is the NxN matrix containing ψ1, ..., ψN . The idea of sparsity is clear, when
the signal is transformed to obtain a sparse expansion, small coefficients can be
discarded without much loss because the energy that those coefficients capture or
their contribution to the signal is minimal. Consider fs the vector obtained when
the S largest values/coefficients of zi in (3.2) are maintained while the rest are set to
zero. This vector fs is sparse because all elements are zero except for a few nonzero
entries. From now on, S-sparse refers to objects with at most S nonzero elements.
An example of the effect of discarding the vast majority of the coefficients in images
can be observed in [107], the perceptual loss is hardly noticeable between the original
image containing all the coefficients and the sparse image containing only the highest
2.5% coefficients while the rest of the coefficients are discarded. For instance, this
principle is used in the majority of lossy coders such as JPEG-2000 [138].
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Lossyness in Sparse Signals

In practical applications, the acquired CS measurements contain a large amount of
data for storage and transmission. Hence, the lossy compression of CS is necessary for
the CS acquisition process. An efficient lossy compression of CS acquisition requires
to adaptively sparsify the image or signal of interest for better reconstruction [148].
At the stage of CS acquisition, it is known that a sparsity degree of the original
signal is important for reconstruction from CS measurements. If the original signal
is not sufficiently sparse, the reconstruction quality degrades due to the effect of
noise folding. In [149], Arias-Castro et al. studied this problem in a practical
system based on CS. Laska et al. [150] demonstrated that a compressible signal
could only be recovered by part of its main coefficients, and the rest of the coeffi-
cients cause the noise folding effect, which in the end degrades the reconstruction
quality considerably. To reduce that undesirable effect, the simple Discrete Cosine
Transform (DCT) coefficients truncation method [151] was used in CS signal coding
to improve its rate-distortion performance. However, in this study, the sampling
rate variation is not considered which is the principal factor for deciding how many
important DCT coefficients can be recovered from the original signal. In [152],
Mansour et al. present an adaptive CS method which focuses on acquiring the large
coefficients of a compressible signal to reduce the noise folding effect. In the wireless
vibration sensing system presented in this thesis, the large magnitude frequency
components are maintained as part of the signal encoding strategy. At the receiver,
the encoded sparse signal is recovered at the base station, even under random packet
loss. The signal can be recovered provided that enough number of CS measurements
are received. More details in Section 2.2.5.5.

Sensing Matrix

Compressive sensing involves operation by a matrix on the signal or image of interest.
Let x represent the signal of interest, where x ∈ RN with sparsity S. Consider
a system that acquires M linear measurements or samples. This process can be
represented mathematically as

y = Φx, (2.2)

where Φ ∈ RMxN and y ∈ RM . The sensing matrix Φ represents a dimensionality
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reduction as we move from RN to RM . The size of the vector of measurements y is
produced as follows y{Mx1} = Φ{MxN}x{Nx1}. Where the number of measurements
M are much smaller than the complete signal length N or M ≪ N . In the standard
CS framework, it is assumed that the measurements M are non-adaptive [139], this
means that the rows of Φ are fixed and are not dependant on previously acquired
measurements. However, in this research work, the number of measurements M are
dynamic because they are selected based on the available power of the wireless sensor
node, more details are described in Section 3.7.

Additional to sparsity in the signal, compressive sensing requires incoherence between
the sensing matrix Φ and the sparsifying basis, like Discrete Fourier Transform
or Wavelet basis. The sensing matrix Φ should preserve the information in the
original signal or image during orthogonal projection [140]. Also, it should satisfy
the properties shown by Donoho and Candes [113].

To generate a set of compressive sensing measurements, the dimension and type
of sensing matrix Φ play an important role. First for appropriate signal encoding
and subsequently for recovery of sparse signals. The selected measurement matrix
Φ should meet the key properties such as RIP an incoherence sampling described
below.

Restricted Isometry Property (RIP).- This property is fundamental in CS. The RIP
requires a matrix Φ and any submatrix formed with Φ to be nearly orthogonal. In
other words, each column in the sensing matrix Φ is almost orthogonal respect to
the rest of the columns. In compressed sensing, random measurements are taken
(from a sparse signal). This means that random columns of the sensing matrix Φ
are selected to form a submatrix which is used to produce a vector of compressed
measurements y, resulting in signal compression.

A matrix Φ meets the RIP if, for any S-sparse vector x, Φ obeys the following
mathematical relation (3)

(1− δS)∥x∥22 ≤ ∥Φx∥22 ≤ (1 + δS) ∥ x ∥22 (2.3)

where, δS is a particular positive constant, 0 < δS < 1. This means that the matrix Φ
guarantees to only change the magnitude of any vector x to a small degree when signal
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compression occurs. This is possible as long as the vector is S-sparse (containing at
most S non-zero elements). In other words, the restricted isometry constant δS is
the smallest number such that (3) is obeyed. If this occurs, it is said that Φ satisfies
the RIP of order s with constant δS .

In order to reconstruct any S-sparse vectors x from measurements generated from
y = Φx, it is required to be able to distinguish between different measurements.
This allows to identify their origin and be able to recover them. For instance, say
two sparse signals (x1 and x2) are compressed as y1 = Φx1 and y2 = Φx2 The
measurements of any two sparse vectors x1 and x2 are required to be “sufficiently
different”. In case y1 = y2 (after signal compression through sensing matrix Φ) it
would not be possible to distinguish them and reconstruct them uniquely. This
may happen if the columns of Φ are not nearly orthogonal (redundant information
exists) and probably Φ do not meet the RIP property. In simple words, the RIP
property helps to design a convenient sensing matrix Φ such that the information
in any compressible signal is not damaged by the dimensionality reduction as we
move from RN to RM and then to recover the sparse signal from only M compressed
measurements.

In compressed sensing, apart from meeting the RIP property, it is required to sample
the data points randomly (incoherent sampling). When incoherence and subsampling
are combined, they produce potential benefits. Firstly, subsampling increases speed
because the fewer points sampled, the faster the acquisition. Secondly, with incoher-
ence, the sparse signal can be reconstructed accurately with high probability using
the CS framework [107].

In summary, the RIP property must be satisfied by Φ in order to successfully recover
the signal. Given a Φ measurement matrix, it is NP-hard to compute the restricted
isometry constants [118] to verify if that matrix obeys the RIP property. However,
it has been shown that for many random matrices, they satisfy the RIP with high
probability. These matrices include random Gaussian, Bernoulli and partial Fourier
matrices [113]. Both the RIP and incoherence conditions can be met with high
probability by choosing Φ as a random measurement matrix which is the case for the
mentioned matrices [113]. This is achieved by letting the elements in the matrix Φ
to be independent and identically distributed (iid) random variables.

The selected measurement matrix Φ should be fastly computable to encode the signal
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and to recover it. Finally, it should be relatively easy to implement it in hardware
[119].

2.2.5.3 CS Applications

Conventional signal processing techniques used in DSPs and FPGAs involve sampling
data above the Nyquist rate, the generated data can then be sent to a base station
for further signal processing and analysis [112]. Opposed to these typical techniques,
CS theory is proposed as a novel signal acquisition and recovery method [113]. This
signal processing technique efficiently acquires a signal using fewer samples than
traditional methods [113]. The idea of compressed sensing is centred on the data
structure rather than its bandwidth. In summary, CS theory asserts that if a signal
is compressible or sparse in a given basis, the signal can be reconstructed from
fewer measurements in comparison to the conventional Nyquist case. This directly
benefits applications on which the number of measurements or samples are expensive
or limited like in wireless sensor networks.

Compressive sensing allows to sense and to compress a signal simultaneously. This
sensing modality [107] has been researched extensively for a wide range of applic-
ations from medical to military sectors [114, 115]. Fewer samples are used in CS
than in traditional Nyquist case to represent a signal or image. This results in faster
and more efficient signal acquisition methods because the signal is recovered using
a reduced number of compressed sensing samples or measurements. For instance,
applications that require fast sensing such as WSN or Magnetic Resonance Imaging
(MRI) may benefit from CS [116]. The MRI technology allows producing detailed
images of organs and structures inside the body through magnetic fields and radio
waves. However, acquisition speed is a challenge, especially in anxious patients
that cannot stay still or those with limited breath-hold capacity. CS may help
to overcome those challenges because this technology helps to increase speed by
decreasing considerably the acquisition time in MRI without sacrificing the quality
of the image [116].

CS in Wireless Sensor Networks

Compressive Sensing has been used in many areas including wireless sensor networks
[153-154] in static and mobile sensor networks [161]. The sensor nodes can acquire
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a small number of measurements as linear projections of the raw signal and dir-
ectly send these CS measurements via wireless to the fusion centre or base station
without any additional processing at the sensor node [154], [156-157]. Other studies
consider energy dissipation characteristics of WSNs using CS and compare it to
two conventional approaches such as data acquisition without processing and data
acquisition with transform coding. They show that compressive sensing extends
network lifetime considerably compared to conventional approaches provided that
the measured signals are sparse [112]. The work of Liu et al. [18] proposes a
compressive data collection scheme for WSN focusing in a routing strategy without
much computation and overhead to provide robustness for energy-conservation in
practical applications. However, this study uses a convex optimisation method of
traditional compressive sensing theory for signal recovery which can be computation-
ally intensive and may cause unexpected delays. They also introduce conventional
retransmission mechanisms for failed wireless data packets which are not desirable for
data transfer in harsh environments such as in a Gas Turbine Engine. Other studies
[158-159] attempt to reduce the energy spent on wireless transmissions between
sensors in the network, also called distributed compressive sensing. This is developed
to exploit the inter and intra sensor structure or correlation. However, the focus
of this thesis is on a centralised architecture where each node in the network is
independent and reports directly to the base station. In [160], it is shown that CS
achieves great energy efficiency for sensing operations in WSN.

2.2.5.4 Theoretical aspects of CS

Let x be a sparse signal, where x ∈ RN with sparsity S where S ≪ N , that means,
only S coefficients or elements of x are nonzero while the remaining are zero, thus
the S-sparse signal x is compressible. CS asserts that sparse signals or images can
be recovered with high probability from lower measurements in comparison to those
dictated by Shannon-Nyquist theory [107] as long as the number of measurements
meets a lower bound depending on the sparsity of the signal. Therefore, the sparse
signal x can be recovered from a set of measurements of size M , where M ≥
S log(N)≪ N .

It is not required for the signal itself to be sparse in its original domain but compress-
ible or sparse in some known basis or transform domain called Ψ. For instance, some



CHAPTER 2. LITERATURE REVIEW AND TECHNICAL
BACKGROUND 35

signals may be transformed to Fourier or Wavelet basis for a sparse representation
to be used in CS [109, 113].

Suppose x is the sparse signal in Ψ domain, where Ψ is the transform basis used
to sparsify the signal/image. The signal of interest x can be represented with
fewer samples/measurements by computing the inner product between x and a
random sensing matrix Φ. The resulting vector y contains the compressed sensing
measurements. The number of required measurements depends on the sparsity level
and signal length, more details in Section 2.3.4.6.

Regarding the sensing matrix Φ, it maps input vector to the measurement vector
by linear weighted summation of the input. If the input signal is sparse in a given
domain, then a sensing matrix can be used to generate the vector of measurements
y. In other words, the sensing matrix Φ allows signal compression. The sparse signal
x is encoded in the vector y. However, the sensing matrix Φ needs to satisfy the RIP
property described in Section 2.3.4.2.

Mathematically, the encoding procedure can be represented as

y = Φx, (2.4)

where Φ ∈ RMxN and y ∈ RM . The sensing matrix Φ represents a dimensionality
reduction as we move from RN to RM . y1 =< x, ϕ1 >, y2 =< x, ϕ2 >, ..., ym =<

x, ϕm > . The process involved in CS is illustrated in Figure 2.3 [117], where it
can be seen that the vector y contains M measurements resulting from a linear
combination of Φ and elements of x.

2.2.5.5 Signal recovery of sparse signals

Overview

The idea of CS is that if a given signal has a structure or is sparse in a given domain,
then this signal can be reconstructed even from fewer measurements [113]. This
is particularly important for applications on which measurements are expensive or
limited, such as the use of WSN and CS in a gas turbine engine. The received



CHAPTER 2. LITERATURE REVIEW AND TECHNICAL
BACKGROUND 36

���������	�

���������	

�

�

Measurements Random Sensing Matrix

�

S-Sparse Signal

(S nonzero entries)

Figure 2.3: Compressive sensing measurement process with a random measurement
matrix Φ and a sparse signal x with S = 5. The vector of compressed measurements
y is the product of the sensing matrix Φ and the sparse signal of interest x. Here, x
contains only zeros except for 5 nonzero components (S = 5).

measurement vector used for signal reconstruction is given by y = Φx, where x is
the S-sparse signal and Φ ∈ RMxN, the sensing matrix. More specifically, Φ and the
sparse signal x are used at the transmitter to generate y, and at the fusion centre, the
received vector y and Φ are used to recover the sparse signal x using a signal recovery
method. During signal recovery, note that when the number of measurements M in
the vector y is less than the dimensional space N of the signal x, the problem is
an undetermined system of equations with fewer equations than unknowns, and x
lies on an N −M -dimensional subspace which can be a line or a plane. However,
under the assumption that x is likely to have small energy ||x||l2 as possible, the least
squares solution is commonly used as the solving method [141]. Among all possible
x that solve Φx= y , the purpose is to find the x that minimises the energy, the L2
norm or sum of squares of the coefficients given by:

x∗ := argminx:Φx=y||x||2 = ΦT (ΦΦT )−1y, (2.5)

where x∗ is the least squares solution, the “best” guess for x. However, in many
situations and applications, least squares is not satisfactory as it gives very poor
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results, as the solution is almost never sparse. This effect is visible especially in
the reconstruction of sparse signals and images [141], the recovered signal is not
accurate. For instance, the signal reconstruction of a one-dimensional discrete signal
f from a partial collection of Fourier measurements. The least squares solution is
often very different from the original signal f when the number of measurements
M is small compared to the original signal length N in f [125]. To reduce the
noise and improve the signal reconstruction using the least squares method, more
measurements M would be required. However, this is not a practical scenario if the
number of measurements or samples are expensive or limited, such as in applications
using medical resonance imaging or wireless sensor networks [142]. Hence, other
methods are used for compressed sensing and signal recovery.

In summary, when the signal of interest is sparse, compressive sensing may be used
to compress and encode the data [107]. However, a recovery method is required to
decode and recover the original sparse signal. More specifically, in this application,
the original time-domain vibration signal is transformed to the frequency domain to
produce a nearly sparse signal. This signal is then thresholded to produce a sparse
signal that can be used for CS. The threshold used to vary the sparsity level in the
signal is selected in function of the number of allowed wireless transmissions which
are dependant on the energy generated from the energy harvester/batteries at a
given point in time. The produced S-sparse signal, Xs ∈ RN and the random M x N
measurement matrix Φ are used to generate M compressive sensing measurements
which are transmitted to a base station via wireless in multiple data packets. The
sparse signal is then recovered when the required number of CS measurements have
been received at the receiver.

Number of measurements for signal recovery

Given a set of CS measurements, the problem of signal recovery is to determine the
number of CS measurements needed to recover the original sparse signal and the
recovery method to do it.

The number of compressed measurementsM required for signal reconstruction through
CS is determined by the sparsity level or compressibility of the signal, rather than
its “size” or bandwidth [112]. The S-sparse signal (signal with at most S nonzero
entries) can still be recovered if the number of samples/measurements received at
the BS is at least M [107], given by:
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M ≥ C·S log(N/S), (2.6)

where C is a constant value that depends on each instance [107], N is the signal
length of X, S is the number of non-zero entries from the sparse signal and M is
the number of measurements produced after CS. At the BS the M measurements
received are used for signal reconstruction using L1 minimisation or OMP [112].

A sparse signal has a concise representation when expressed in a suitable basis such
as wavelet or Fourier transform [107]. For instance, if a discrete signal is changed
from time to frequency domain through the DFT, relatively few coefficients capture
most of the energy in the signal while most of the coefficients are small in magnitude
[107]. Therefore, when a signal has a sparse expansion, it is possible to keep the large
coefficients and discard small coefficients without significant loss such as the image
reconstruction shown in [107]. In this application, the elements that capture most
of the energy are kept through the proposed Algorithm 3.1 presented in Section 3.5.

The required number of measurements M may be different in real applications.
For instance, in [107] the authors show that in practice, the number of measure-
ments/samples of about 4× the sparsity level are sufficient. This four-to-one practical
rule indicates that four CS measurements for each unknown non-zero term suffice.

Methods to recover sparse signals

For sparse signal reconstruction from compressive sensing measurements, various
techniques can be used. For instance, the sparse signal can be recovered at the
receiver from the compressed measurements using popular numerical optimisation
methods such as L1 norm minimisation [122], basis pursuit [123] or greedy algorithms
such as Orthogonal Matching Pursuit (OMP) [124]. The papers [113], [121], [125]
offer constructive demonstrations of the recovery phenomenon using numerical op-
timisation which can be computationally intensive. The algorithms found in literat-
ure range extensively in computational cost, empirical efficiency and implementation
complexity. Therefore, it is valuable to explore and compare alternative approaches
that are not based on optimisation. OMP is an effective greedy iterative algorithm
that is commonly used to recover sparse signals from fewer measurements. It is
widely used due to its simplicity, speed and ease of implementation [124]. In this
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research work, compressive sensing and a novel algorithm are used to handle the
signal recovery problem. The proposed algorithm is presented in Chapter 4. It
considers the structure of the OMP algorithm and includes prior information in the
form of frequency support structure which intends to improve the accuracy of signal
recovery and to reduce the number of measurements required.

2.3 Technical Background

The framework presented in this thesis considers the signal characteristics of real
vibration data collected from a running gas turbine engine. Prior to deployment, the
available technologies were identified to perform local signal processing at the wireless
sensor nodes. This section presents a brief overview of wireless sensor networks,
vibration sensing for machine health monitoring and analysis of existing vibration
technologies which were considered for the wireless vibration sensing system.

2.3.1 Machine Health Monitoring Architecture

Machine Health Monitoring is set up depending on the fault types to analyse, by
measuring frequency ranges. Generally, spectrum analysis is used to identify different
vibration frequencies. An example of a monitoring configuration is shown in Figure
2.4.

In this example, data acquisition occurs using a vibration sensor placed on a gearbox,
a signal conditioner that amplifies the sensor output, a filter that removes unwanted
frequency components from the signal and enhances wanted ones and an Analogue-
to-Digital Converter (ADC) that converts the analogue sensor output to a digital
form suitable for digital signal processing. For signal processing, the signal output is
transformed by a Digital Signal Processor (DSP), generating a frequency spectrum for
each sampling cycle. Then, this spectrum is compared to the component’s reference
spectrum, given by the component supplier. This operation allows determining
whether a vibration frequency is caused by an actual fault or by the component
monitored. In case the amplitude of a vibration exceeds a given threshold, an alarm
is triggered and corresponding repairs are determined.
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Figure 2.4: Example of a possible condition monitoring architecture.

The example described previously refers to MHM where a sensor or set of sensors are
mounted on the housing of machinery [1]. For rotating machinery, as mentioned in
Section 1.2, an ideal case for vibration analysis is to acquire vibration at the source.
For instance, by placing the sensors directly on the rotor. This helps to capture
shaft vibration at maximum amplitude and to avoid the effect of structural noise,
imperfections in the machinery and bearings, etc. However, using wired sensors for
condition-based monitoring in rotating machinery is not the best solution. The wear
of the wiring after continuous machinery rotation may cause wires to break or ma-
chinery damage. The use of wireless sensors for machine health monitoring eliminates
physical connectors and wiring that could be exposed to hazardous environments.

Digital Signal Processing

Signal processing refers to an operation over a signal of interest. The signal is
converted from its physical form into a form on which it can be recorded and
analysed. Signal processing is used in almost all disciplines of applied sciences such
as electronics, mathematics, industry and engineering [75-77]. Analog signals found
in nature may be present in different forms such as speed, acceleration, temperature,
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resistance, voltage and so on. These analog signals need to be transformed in digital
form in order to be processed by computers and digital microprocessors [78]. Unlike
an analog signal, which is a continuous signal that contains time-varying values, a
digital signal contains a discrete value at each sampling point. Therefore, a digital
signal is easily represented using a computer because each sample can be defined with
a series of bits that can take one of two possible states: 1 (on) or 0 (off). The signal
precision is determined by the number of samples recorded per unit of time. Figure
2.5 shows an analog pattern which is represented as the curve, and the corresponding
digital pattern, represented by discrete levels.
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Figure 2.5: Example of an analogue pattern represented in digital form.

In digital signal processing, a real-world signal such as temperature, voice, position,
pressure, vibration, etc. is digitised and then mathematically manipulated. Signals
are processed in order to be displayed, stored, compressed, transmitted or analysed
using advanced signal processing methods available only for data in digital format
[79].

In digital signal processing, a continuous signal is converted into a discrete signal
that is finite and equally spaced in time because it is uniformly sampled at or
above the Nyquist rate [80]. Conventional signal processing follows the Shannon-
Nyquist theorem for sampling signals. Many samples are generated using this method
because the sampling rate should be more than twice the maximum frequency present
in the signal. Opposed to this conventional sampling approach, a novel signal
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acquisition and recovery method is proposed by Compressive Sensing (CS) theory
[80]. This signal processing technique efficiently acquires a signal using fewer samples
than traditional methods [80]. In summary, CS theory asserts that if a signal is
compressible or sparse in a given basis, the signal can be reconstructed from fewer
measurements in comparison to the conventional Nyquist case, this topic is covered
in more details in Section 2.3.4.

2.3.2 Types of accelerometers

An accelerometer is a device that measures changes in gravitational acceleration
in the device or machine it may be installed in. Accelerometers are used to de-
tect and monitor vibration in rotating machinery. Single and multi-axis models
of accelerometers are available to detect direction and magnitude of acceleration
(or g-force), as a vector quantity, and can be used to sense orientation, coordinate
acceleration, vibration, shock and falling. To sense motion in multiple directions,
the accelerometer requires to be designed with multi-axis sensors or multiple linear
axis sensors. To measure movement in three dimensions, three linear accelerometers
are adequate.

Accelerometers have multiple applications in industry and science. For instance, high
sensitive accelerometers are components of inertial navigation systems for aircraft
and missiles [81-82]. Other applications include the measurement of vehicle accel-
eration, structural monitoring, medical applications and machine health monitoring
[83-85]. Here, the accelerometers are used to report vibration and its changes in
time of shafts at the bearings of rotating equipment such as turbines, pumps, fans,
compressors or faults on bearings. The selection of the most appropriate sensor for
an application is based on requirements. The different types of accelerometers are
as follows.

There are three main types of accelerometers:

1. Piezoelectric (PE) Accelerometer. – This device makes use of the piezoelectric
effect to measure dynamic changes in vibration, acceleration and shock. Most of
this PE accelerometers are made of quartz crystals which produce an electrical
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charge when they are exposed to a change in mechanical loading associated
with a deformation in the crystal.

2. Piezoresistive (PR) Accelerometer. - This device also known as a strain gauge
accelerometer is based on the piezoresistive effect. This effect describes the
resistivity change of a semiconductor due to applied mechanical stress. In
comparison to PE accelerometers, PR accelerometers use a piezo resistive sub-
strate instead of a piezoelectric crystal, the force applied by the mass changes
the resistance of the material, then a whetstone bridge network detects this
change or deflection. PR accelerometers are chosen in high shock applications,
they can also measure acceleration down to 0 Hz. Nevertheless, they have
limited high-frequency response.

3. Variable Capacitive (VC) Accelerometer. – These devices sense a change in
electrical capacitance, with respect to acceleration, this way varying the output
of an energised circuit. Two parallel capacitors in differential mode are used
as the sensing element. The peak voltage generated by an oscillator is altered
when the structure is subjected to acceleration. A circuit detects and captures
the peak voltage, a summing amplifier receives this as an input signal and
outputs a final processed signal.

MEMS Technology

Micro-electromechanical System (MEMS) Accelerometer combines mechanical and
electrical components to form small structures. This technology is now being used
to manufacture state of the art MEMS-based accelerometers. MEMS-based accel-
erometers are available with different technologies. The most common one is based
on capacitors such as the Analog Devices vibration sensor ADIS16227 used in this
applied research work. MEMS-based accelerometer using capacitors is typically a
structure that uses two capacitors composed by a movable plate held between two
plates that are fixed. If zero net force is applied, the two capacitors are equal. A
change in force displaces the moving plate closer to one of the fixed plates which
increases capacitance. Conversely, when the moving plate is displaced away from
the fixed plate causes a reduction in capacitance. After detecting the difference
in capacitances, the signal is amplified to produce a voltage proportional to the
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Figure 2.6: Functional block diagram of the ADIS16227 vibration sensor based on
spec sheet.

acceleration sensed. An example of the internal structure of this type of MEMS VC
accelerometer is shown in Figure 2.6.

MEMS accelerometers are extensively used in applications such as shock detection,
tilt control and vibration monitoring among others [86]. MEMS accelerometers
feature small size, negligible weight and onboard signal conditioning. For instance,
Kok et al [87-88] integrated a complete wireless data acquisition system containing a
MEMS accelerometer, a microcontroller and an RF transceiver. They demonstrated
that its overall weight is virtually negligible.

One may question the efficiency of MEMS accelerometers. For instance, Ratcliffe
et al. [89] demonstrated their capability for machine health monitoring applica-
tions. Thanagasundram et al. [90] evaluated MEMS technology conducting analysis
techniques to evaluate the properties of these sensors without causing damage, also
known as nondestructive testing. They also conducted spectral analysis of vibration
signals from a dry vacuum pump, obtaining satisfactory results.

Continuous research attempt to further develop MEMS accelerometers. For instance,
Badri et al. [91] proposed modifications to the structure of the moving plates of a
variable capacitance MEMS accelerometer to improve the proportionality between
proof mass motion and measured capacitance, and thus improve acceleration meas-
urement. Additional improvements may involve the on-shaft sensor equipped with
an RF antenna to receive power from a close transmitter via wireless [92-93].
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2.3.3 Overview of Wireless Sensor Networks

The sensor nodes are small in size but incorporate sensors, embedded microprocessors
and radio transceivers, consequently, WSNs include sensing, data processing and
communication capabilities. A WSN system typically includes wireless sensor nodes
and a manager node which provides wireless connectivity back to distributed nodes
and the wired world such as Internet, a personal computer to display the data on a
graphic user interface (GUI) or an Engine Monitoring Unit (EMU) in the case of a
Gas Turbine Engine as shown in Figure 2.7. The selected wireless protocol depends
on the application requirements [98].
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Figure 2.7: WSN Components, Gateway, Distributed Nodes and possible data
outputs.

2.3.3.1 WSN Design Objectives

The majority of WSN applications are application specific and have specific require-
ments. Hence, it may be required by the application to meet some or most of the
following main design objectives since it is not essential or practical to implement all
of them in a single network [103].

• Low cost and small sensor nodes: Compact and low-cost sensor devices are
primary design objectives to achieve large-scale deployment of WSN. Reducing
the nodes size reduces cost, power consumption and facilitate node deployment.
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• Low power consumption: It is essential to reduce the power consumption of
sensor nodes since they are usually powered by batteries or by a type of energy
harvester as the main power source. Hence, it is often impractical or impossible
to charge or change the batteries, by reducing power consumption on sensor
nodes, the lifetime of individual nodes and the complete network is extended.

• Scalability: Tens or even thousands of sensor nodes may exist in a sensor
network, therefore the protocol of the network should be scalable to different
dimensions of the network.

• Reliability: To ensure reliable delivery of data from sensor nodes it is important
to implement a type of error control and correction techniques in the network
protocol design.

• Fault tolerance: The installation of sensor nodes in harsh environments may
cause the sensors to fail due to existing conditions and lack of maintenance.
Hence, the sensor nodes should be tolerant to failures and should incorporate
abilities for self-testing, self-calibrating and self-recovering [104].

• Channel Utilization: The narrowness of communication bandwidth in WSN de-
mand improve channel utilization by using the available bandwidth efficiently.

• Quality of Service Support: The quality of service requirements in WSN applic-
ations may vary from one to another in relation to allowed tolerance to packet
loss and data delivery latency. Hence, the network protocol design should
consider the requirements of quality of service for a particular application.

• Security: A WSN is often vulnerable to security threats that can adversely
affect the proper functioning of the network. This aspect is particularly import-
ant if the network is going to be used in highly critical systems. Hence, a WSN
should implement security mechanisms to effectively prevent unauthorized
access and external attacks.

For this research work, the focus is on low power consumption, reliability and
quality of service support. The next sections present how these design objectives
are considered to solve the packet loss and signal recovery problems considering
energy conservation in the wireless sensor nodes.
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2.4 Chapter Summary

In this chapter, the availability of vibration sensing technologies to perform wireless
condition monitoring was shown, highlighting the importance and benefits of using
MEMS accelerometers. In addition, a summary of wireless sensor networks was
presented including its characteristics, objectives, challenges, applications in harsh
environments and current research involving local signal processing in sensor nodes.
The theoretical foundations of CS show that this method is a promising candidate to
achieve the presented objectives in this research work. In summary, the CS paradigm
is divided into three major parts: sparse signal representation, random measurement
matrix and signal reconstruction method. Using CS enables high compression rate
through simple computations at the sensor nodes. All the complex computation
regarding signal reconstruction is performed at the receiver, where typically there
are no power constraints due to a constant energy source. To sum up, the scope
of this research work is to design an adaptive vibration sensing framework based
on compressive sensing that can mitigate the random packet loss problem during
wireless transmission, presented in Chapter 3. More importantly, to improve signal
recovery performance by exploiting prior information from the application, presented
in Chapter 4.

In the next chapter, the selected hardware for vibration sensing and wireless data
transmission is introduced. Also, the architecture of the system is illustrated and all
the phases involving local signal processing at the sensor node are presented such as
onboard frequency domain analysis and compressive sensing. Moreover, the domain
selected to identify the main frequency components, the generated and implemented
random sensing matrix and the selected signal recovery method are described.





Chapter 3

Local Signal Processing for Wireless
Vibration Sensing Systems

3.1 Introduction

A wireless sensor network is composed of sensor nodes deployed with the inten-
tion to monitor and record conditions at different locations [126]. These sensor
nodes initialise a cooperative network and perform three basic functions: sensing,
computation and communication [126]. As the sensor nodes are devices generally
powered by batteries or through energy harvesting, a critical aspect is the energy
consumption in sensor nodes to extend network lifetime [127]. Hence, there is the
need to use techniques for energy efficient data acquisition and energy conservation.
For wireless vibration sensing, effective utilization of limited power resources may
include data encoding through frequency domain analysis and compressive sensing
at the sensor nodes [128]. The former may be used to select a frequency bandwidth
of interest, event detection and as a basis for compressed sensing [128]. Compressive
sensing can be used for data compression and to help mitigate the packet loss
effect during wireless data transfer [129]. The reduction in the amount of data
transmitted via wireless and the minimisation of wireless retransmissions increases
energy conservation in the sensor nodes [130].

This chapter presents the architecture of the system for vibration data encoding

49
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at the wireless sensor node, including instrumentation used and its specifications.
Local signal processing occurs at the sensor node by combining frequency domain
analysis and compressive sensing. In compressive sensing, a sparse signal and a
suitable sensing matrix are required [107]. Hence, an algorithm is proposed and
presented in this chapter which reduces the dimensionality of the vibration signal
(after transformation to the frequency domain) to induce sparsity while maintaining
the main spectral components. For the case of the sensing matrix, a Bernoulli matrix
was generated by sampling independent identically distributed binary entries with
equal probability. This matrix was stored in the sensor node as part of the wireless
vibration sensing strategy for signal encoding.

The proposed wireless sensor network presented in this chapter was used in a set of
experiments to demonstrate that the selected hardware is capable of meeting specific
requirements (see Appendix A) of a system requirements document generated by
Rolls-Royce for the wireless sensor infrastructure [131]. This document defines the
system level requirements considered to be fundamental for a WSN to ease wireless
transmission of vibration and temperature data from a network of distributed “Smart
Sensors” within a Gas Turbine Engine to support Equipment Health Management.
It is important to note that the work presented throughout this thesis focusses on a
single wireless sensor node transmitting vibration data directly to the base station.
Although the strategies proposed could potentially be applied to a wireless sensor
network.

This chapter is structured as follows:

• Section 3.2 presents the target board used for the wireless vibration sensing
system.

• Section 3.3 presents the selected vibration sensor and its features.

• Section 3.4 presents the system architecture including the data flow description
from the sensor node to base station.

• Section 3.5 presents a proposed algorithm to induce sparsity in the frequency-
domain vibration signal while keeping the principal frequency components, this
algorithm outputs a sparse signal ready for CS.



CHAPTER 3. LOCAL SIGNAL PROCESSING FOR WIRELESS VIBRATION
SENSING SYSTEMS 51

• Section 3.6 presents the selection, generation and implementation of the sensing
matrix stored in the sensor node as part of the signal encoding strategy.

• Section 3.7 presents the summary of this chapter which essentially covers the set
of processes and signal processing that occurs at the wireless sensor nodes. This
section connects with Chapter 4 which presents the signal decoding at the base
station to recover the vibration signal from compressed sensing measurements.

3.2 Wireless Target Board

The performance of the WSN was developed and evaluated using the eZ430-RF2500
development tool by Texas Instruments [132]. The eZ430-RF2500 is a wireless
development tool that features a target board that can be either programmed to
be used as an End Device (ED) or an Access Point (AP) commonly referred as
the manager node. The Target Board including several key components is shown
in Figure 3.1, the TB features an ultra-low power MSP430F2274 microcontroller to
perform general processing tasks [133], a CC2500 2.4 GHz radio frequency transceiver
chip to handle sent and received data packets [134], a Wurth chip antenna to transmit
and receive wireless data [135] and a very low power crystal oscillator to handle
Interrupt Service Routines and wake up the microcontroller when using low power
modes. The target board can be connected to either a battery pack or a USB
debugging interface which serves as a link between the PC and the AP target board,
the possible connections as an ED or AP are shown in Figure 3.2.
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Figure 3.1: The eZ430-RF2500 target board.

Figure 3.2: Connections on eZ430-RF2500 target board to be used as an ED or AP.

3.3 Choice of Vibration Sensor

The vibration sensor ADIS16227 developed by Analog Devices is a type of variable
capacitance accelerometer [136]. This complete vibration sensing system incor-
porates wide bandwidth, tri-axial acceleration sensing with advanced time domain
and frequency domain signal processing. Time domain signal processing includes
a programmable decimation filter and selectable windowing function. Frequency
domain processing converts a 512 point real-valued time domain signal into 256
point spectral domain data for each axis. The 16-record FFT storage system offers
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the ability to track changes over time and allow to capture FFTs with multiple
decimation filter settings.

The 22 kHz sensor resonance and 100.2 kSPS sample rate provide a frequency re-
sponse that is suitable for machine-health applications. The aluminium core provides
excellent mechanical coupling to the Micro-Electro-Mechanical Systems (MEMS)
acceleration sensors. An internal clock drives the data sampling and signal processing
system during all operations, which eliminates the need for an external clock source.
The data capture function has three modes that offer several options to meet the
needs of many different applications.

The ADIS16227 utilises an SPI interface and also includes a digital temperature
sensor and digital power supply measurements. It has an extended operating tem-
perature range of −40°C to +125°C.

Figure 3.3: ADIS16227 Vibration Sensor [136].

The analog-to-digital converter (ADC) samples each accelerometer sensor at a rate of
100.2 kSPS. Four different sample rate options are provided for FFT analysis, SR0
(sampling frequency-fs), SR1 (fs/8), SR2 (fs/64), and SR3 (fs/512). The reduced
rates are due to a decimation filter, which reduces the bandwidth and bin widths.
The performance trade-offs related to each sample rate setting is shown in Table 3.1.
For instance, SR1 was selected for this research work. This setting was determined to
be appropriate for this application because the frequency target for this application
is up to 3 KHz. Under SR1, frequencies of up to 6.262 KHz could be captured with
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a ~25 Hz bin resolution. On the other hand, if finer resolution is required, SR2 can
be selected, providing a 3.1 Hz bin resolution, however the bandwidth is reduced to
under 1 KHz.

Table 3.1: Sample rate settings and filter performance [136].

Setting Sample Rate

(SPS)

Bin Width

(Hz)

Bandwidth

(Hz)

Noise (mg)

SR0 100189 196 26000 467

SR1 12524 25 6262 260

SR2 1566 3.1 783 100

SR3 196 0.38 98 38

The vibration sensing system ADIS16227 performs sampling, processing and storage
of tri-axial vibration data into a buffer. When manual time mode is selected, each
axis record contains 512 samples per axis. Otherwise, each record contains the 256-
point FFT result for each accelerometer axis. Since the size of each data sample is
two bytes long, a single vibration measurement will consist of 1536 bytes of data
(1.5 kB), which corresponds to 0.5kB per axis. The next section presents the system
architecture showing the functionality of the vibration sensor and the wireless target
board for the wireless vibration sensing system.

3.4 System Architecture

WSN may consist of several end devices. A typical End Device (ED) consists
of one or more sensor transducers, a microprocessor, an RF interface and a local
power source (batteries or energy harvester) such as the eZ430-RF2500 end device
presented in Section 3.2. The function of an ED is to measure a particular parameter
(e.g. temperature or vibration) and convert that data into a format that can be
transmitted wirelessly in short bursts. The ED may also optionally carry out some
pre-processing of that information prior to transmission to reduce the amount of
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data sent over the wireless channel (e.g. using a Fast Fourier Transform (FFT) to
convert vibration data from the time domain into the frequency domain and then
discretise that data into bins). Since the power resources of EDs are limited, they
enter a low power mode to conserve power when they are not measuring, processing
and transmitting data. An interrupt service routine wakes the ED periodically to
carry out a measurement cycle.

An AP acts as a gateway or data concentrator. There is usually just one AP in
a WSN. It is intended to be located at the site of the Engine Monitoring Unit
(EMU) and is directly wired connection to it by way of an Ethernet or CAN port.
The function of an AP is to establish a connection with any EDs that wish to join
the WSN. It then remains constantly awake to receive transmissions from the EDs.
Incoming data is handled and sent to the EMU. The AP may also be responsible for
other tasks such as reporting node failure, choosing a suitable wireless channel and
managing the power resources of EDs.

The architecture of the wireless vibration sensing system with a single sensor node
is illustrated in Figure 3.4 and the data flow from the sensor node to base station
in Figure 3.5. In a wireless sensor network, each sensor node may incorporate the
signal encoding described. At the sensor node, the onboard Application-Specific
Integrated Circuit (ASIC) (Figure 3.4B) integrated inertial sensor with embedded
frequency analysis described in Section 3.3, computes the spectral representation of
the measured vibration signal using the Fast Fourier Transform (FFT). The obtained
frequency analysis of the signal is transmitted from the ASIC to the microcontroller’s
SN (Figure 3.4C). The DFT of the signal can be considered sparse in comparison to
its time domain representation; using the CS framework the signal’s sparsity is ex-
ploited by making random measurements of the signal, this is where the compression
happens. All the CS processing occurs physically in the microcontroller’s sensor node.
A sensing matrix Φ (Figure 3.4A) was formed by sampling independent identically
distributed (i.i.d.) binary entries from a symmetric Bernoulli distribution with equal
probability, this matrix Φ was then stored in order to perform data compression.
The compressed version of the DFT is then transmitted wirelessly using the board’s
transceiver. The data is received at the access point and can be transferred to an
Engine Monitoring Unit (EMU) in an aeroengine or to a base station to reconstruct
the signal using a signal recovery method such as the enhanced orthogonal matching
pursuit presented in Chapter 4.
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Figure 3.4: Wireless vibration sensing system architecture showing a random sensing
matrix(A), ASIC (B), microcontroller’s sensor node(C), wireless transmission(D), signal
recovered at BS(E).
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Figure 3.5: Data flow description from Sensor Node to Base Station.

The next section shows how the vibration signal was prepared to be used with Com-
pressed Sensing (CS). In summary, the vibration signal is acquired and transformed
to the frequency domain at the sensor node (a suitable basis for CS). Moreover, a
proposed algorithm is used to induce sparsity in the vibration signal while main-
taining the main frequency components. These procedures form part of the signal
encoding strategy presented in this chapter.
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3.5 Dynamic sparsity adjustment algorithm

In this application, the original vibration signal is transformed to a suitable domain
for CS using the DFT which is defined as:

X [ω] =
1√
N

N−1∑
n=0

x[t]e−2πiωt/N, ω = 0, 1, 2, ...,N− 1 (3.1)

where x[t] is a discrete-time signal of length N and X[ω] is the Fourier coefficients
sequence in the frequency domain. Once all the N Fourier coefficients are obtained, it
is straightforward to locate the non-zero frequencies and their coefficients. However,
it may be required to compute a large number of zero coefficients or coefficients of
low magnitude caused by noise in the application. In the scenario described, the
DFT is computed by an inertial sensor with embedded frequency analysis described
in Section 3.3. In a conventional scenario, the signal X may be compressed by
identifying the S coefficients that capture most of the energy and their locations.
This data can then be encoded and transmitted wirelessly to a base station [112].
However, this procedure requires knowledge of all N coefficients of X because the
locations of the coefficients of higher magnitude may not be known in advance as
they are signal-dependent [107]. An efficient signal compression technique should
be used to reduce the amount of data sent via wireless and consequently increase
energy savings. It is important to consider that in a real application, the wireless
sensor nodes may be deployed in a noisy environment and the random packet loss
effect may cause multiple data packet retransmissions which affects energy efficiency,
produces unexpected time delays and reduction of SNs lifetime.

An efficient sampling and compression method is proposed by Compressed Sensing
(CS) [107]. However, to use CS the signal is required to be sparse [107]. In other
words, if the signal is dense and contains mostly non-zero elements, a threshold can
be used to increase signal sparsity [137] by setting to zero the low energy components
and maintaining the components of higher energy. However, using a threshold results
in signal distortion. This is because the frequency components above the threshold τ
are maintained while the frequency components below τ are discarded. Therefore, it
is important to condition the S-sparse signal prior to wireless transmission through
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adequate thresholding so that it can be recovered at the base station accurately
with minimal distortion. This adaptive method increases signal sparsity and keeps
only a few sinusoids that carry most of the signal information/energy. The energy
consumption is reduced by sending only the number of measurements required for
signal reconstruction of a particular S-sparse signal which in the end decreases the
number of wireless data packet transmissions. The number of measurements sent by
the wireless sensor node may be further reduced to minimise power consumption at
the expense of increased distortion. In summary, the frequency components that
capture most of the energy in the signal are maintained while most of the low
magnitude components are set to zero. The proposed Algorithm 3.1 outputs a sparse
vibration signal suitable for compressed sensing, it considers the available energy in
the sensor node and a dense vibration signal with mostly nonzero elements as inputs.

Studies found in literature about compressive sensing [107, 109, 113] assume that
the input signal is sparse in some basis. Essentially, this refers to a signal containing
mostly zeros, except for a few nonzero elements. In real applications where the equip-
ment is installed in noisy environments (such as in a gas turbine engine) this is rarely
the case because most of the frequency components, if not all, are nonzeros (as shown
in Section 4.3). In energy-constrained applications, the adaptive threshold Algorithm
3.1 can be used to discard low magnitude frequency components and make the signal
sparse ready for compressive sensing. When the signal sparsity is increased (more
zeros in the signal), the number of CS measurements to be sent are reduced which
derives in less wireless data packet transmissions. In this application, the sensor
node sleeps using low power mode and wakes up periodically to send data packets.
The proposed algorithm presented considers the energy available from the battery
or energy produced by an energy harvester prior to wireless data transmission. The
number of compressed sensing measurements to send is determined and the signal
sparsity is induced dynamically in each transmission using an adaptive threshold.

Motivation

A sparse signal is a requirement for compressed sensing (as explained in Section
2.3.4). However, in many real applications, a signal of interest may not be sparse. For
instance, the signal may be dense even after the time-domain signal is transformed
into the frequency domain. This means the signal in the frequency domain contains
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mainly nonzero elements or even all. This situation may occur in noisy environments
such as in a GTE where the noise is likely to generate components of low magnitude
across the frequency spectrum. Algorithm 3.1 keeps the S frequency components of
higher magnitude and sets the other elements to zero. The power available in the
wireless sensor node is computed to adjust the signal sparsity in the output signal
to increase the probability of successful signal recovery at the receiver.

In brief, the Algorithm 3.1 is proposed as it achieves the objective to output a
sparse signal ready for compressed sensing from a dense input signal considering
power available at the sensor node for sparsity adjustment. It adjusts signal sparsity
dynamically maintaining the main components of higher magnitude and is also simple
and straightforward to implement. Other sophisticated methods for thresholding
[155] may be explored and selected based on application requirements and available
resources.

In the proposed thresholding algorithm, the DFT is used as the basis to transform
the signal into a different domain as the vibration sensor selected by the UTC-RR
outputs the vibration signal in the frequency domain. Signal processing occurs in
the vibration sensor shown previously in Figure 3.4B. Depending on the application,
it may worth to explore other transformation alternatives such as wavelet transform,
discrete cosine transform, etc. However, that would mean using valuable resources of
the wireless sensor nodes to implement the wavelet transform or any other method.
As mentioned throughout this thesis, it is important to use the resources in wireless
sensor nodes efficiently considering their constraints regarding limited energy, storage
capacity and computing power.

The proposed thresholding Algorithm 3.1 is as follows:
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Algorithm 3.1 Adaptive Thresholding Procedure
Inputs:
a. A vibration signal in the time domain x(t) or frequency domain X(f).
b. Number of measurements mp that can be contained in a single data packet.
c. Maximum number of allowed wireless transmissions wt. This number is
determined by the amount of power available at the sensor node.
Output:
A sparse vibration signal XS(f) for compressed sensing.
Procedure:
1. If the input signal is in the frequency domain go to Step 2. If not, compute
the Discrete Fourier Transform (DFT) of the time-domain signal
X(f) = DFT(x(t)).
2. Find the maximum value of the frequency domain signal Xmax = max(X(f)).
3. Calculate threshold step size which is equal to 1% of Xmax.
THsize = Xmax/100.
4. Calculate total number of measurements to be sent. M = wt×mp.
5. Set number of maximum S nonzeros for the sparse signal S ≈M/4.
7. Initialise sparse vibration signal XS(f) = X(f).
8. Obtain number of nonzero elements NZ in the signal Xs(f).
9. If NZ ≤ S go to Step 12. If not, continue to Step 10.
10. Increment threshold TH ← TH + THsize.
11. Threshold signal XS(f) = Threshold (X(f), TH) and go to Step 8.
12. Output XS(f).

Assumptions

The sensor node includes a power supply sensor and the power consumption per
wireless data packet transmission is known so that the number of allowed wireless
transmissions can be defined for each S-sparse DFT signal.

Vibration data encoding/decoding

A flowchart of the vibration data encoding and decoding strategy of this research
work is shown in Figure 3.6 along with the place where the proposed Algorithm 3.1
is used.
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Figure 3.6: Flowchart of vibration signal encoding at the sensor node and vibration signal
decoding at the receiver.

The set of processes of the signal encoding strategy at the sensor nodes are summar-
ised as follows:

1. A suitable random sensing matrix Φ was generated with Bernoulli distribution
as described in Section 3.6. This matrix was then embedded in the micro-



CHAPTER 3. LOCAL SIGNAL PROCESSING FOR WIRELESS VIBRATION
SENSING SYSTEMS 62

controller’s SN. The same sensing matrix was used at the base station for
signal reconstruction. This type of binary sensing matrix helps to reduce
computational cost since the obtained measurement vector y is computed from
Φx using only additions instead of multiplications as is the case with floating-
point matrices.

2. The frequency-domain vibration signal X is obtained from a vibration sensor
with embedded FFT analysis.

3. The magnitude value of the highest frequency component is computed, the
location is not required under this scenario.

4. The sparsity level is modified through an equally spaced threshold (TH) pro-
duced from the dominant peak. The TH ranges from 1%-99% because at 0%
would mean that the signal is not conditioned locally and the compression is
null because none of the coefficients are discarded. In a real application most
of the frequency components, if not all of them, contain non-zero values. In
the case of 100% means that even the highest peak is discarded. According to
[107] the number of measurements/samples of about 4× the sparsity level are
sufficient. This four-to-one practical rule indicates that 4 samples per unknown
non-zero term (S) is sufficient. For instance, if 24 samples are to be sent, then
signal sparsity is adjusted through thresholding so that the S-sparse signal
contains the 6 non-zero S sinusoids/coefficients of higher magnitude.

5. A recursive TH is applied to the original FFT-based signal starting from 1%
and stopping when the current number of S non-zero elements in the vibration
signal is less or equal to the number of maximum S nonzeros for the sparse
signal. The value of S for each FFT spectral measurement is determined by
the power available at the sensor node prior to wireless transmission.

6. The measurements based on CS are encoded in multiple data packets and
transmitted via wireless.

7. The vector of compressive sensing measurements y is received at the base
station and a signal recovery method such as the enhanced OMP presented
in Chapter 4 is used to recover the sparse vibration signal sent by the sensor
node.
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Compressive sensing requires a sparse signal and a sensing matrix [107]. This section
presented how to make a signal sparse from a dense vibration signal in the time or
frequency domain. The next section presents the selection and generation of the
sensing matrix which was implemented in the sensor node for compressive sensing as
part of the signal encoding strategy.

3.6 Selection and Implementation of
Random Sensing Matrix

To generate compressive sensing measurements, a sparse signal and a random sensing
matrix Φ are required [107]. This matrix Φ should satisfy the RIP shown in [113]. In
[125] Candes and Tao define the properties required for random sensing matrices to
be used for signal recovery. For instance, they show that both Bernoulli and Gaussian
matrices satisfy the properties required for compressive sensing with high probability
[107]. From the matrices that satisfy the RIP with overwhelming probability [107],
the Bernoulli matrix was chosen. This matrix was selected, generated and imple-
mented in this thesis as part of the wireless vibration sensing strategy for signal
encoding at the sensor nodes. This matrix was selected and used as the sensing
matrix Φ. It was selected over other matrices because it uses less memory when
embedded in a wireless sensor node, the computation is reduced and the production of
compressed measurements is faster than using floating-point matrices. This sensing
matrix Φ was formed by sampling independent identically distributed binary entries
from a symmetric Bernoulli distribution with probability P=1/2, this matrix Φ is
then stored in the sensor node. The product of this matrix Φ with a sparse signal
x produces a vector of measurements y. The condition for that is M = O(S log
(N/S))≪ N as mentioned in [107]. Hence, as the sparsity increases the number of
measurements M grows but only logarithmically in N, the signal length. An example
of a test vector, corresponding to a single row in the sensing matrix Φ is shown in
Figure 3.7.
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Figure 3.7: Example of a single binary test vector of length N = 125.

A Bernoulli binary generator in Simulink was used to generate all the test vectors for
the sensing matrix Φ as illustrated in Figure 3.8, this function generates Bernoulli
random binary numbers. The following parameters were used: probability of a
zero=0.5, initial seed= from 1 to N (125), output data type: Boolean.
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Figure 3.8: Examples of generated test vectors that form the Bernoulli Random
Sensing Matrix Φ. Each binary test vector was embedded in the sensor node as
binary entries as shown in Figure 3.9.

After the generation of the N × N sensing matrix Φ, it was then embedded in the
microcontroller’s flash memory of the sensor node to allow on-board compressive
sensing. An example of a portion of the sensing matrix stored in the sensor node is
shown in Figure 3.9.



CHAPTER 3. LOCAL SIGNAL PROCESSING FOR WIRELESS VIBRATION
SENSING SYSTEMS 66

1 0 0 1 0 0 1 0

1 0 0 0 0 1 1 0

1 1 0 1 1 0 1 1

0 0 1 1 0 1 1 0

0 0 1 0 1 0 0 0

1 1 0 0 1 1 1 1

0 1 1 0 1 1 1 0

0 0 0 1 0 0 1 0

�

�

�

Φ �

� � �

�

�

�

1 0 1 1 1 1 1 0

0

1

1

1

0

0

1

1

� � � 0

�

�

�

� � �

� � �

�

�

� � �

� � �

� � �

� � �

� � �

Figure 3.9: A section of the implemented binary matrix in the sensor node.

This section presented the selected and generated random sensing matrix which was
embedded in the sensor node as part of the compressed sensing procedure. This same
matrix is also stored in the base station for signal recovery. To generate compressive
sensing measurements, a sparse signal is required (e.g. the output signal XS of
the proposed Algorithm 3.1 in Section 3.5) and a sensing matrix Φ which can be
generated as described in this section.

The next section presents the use of compressive sensing for signal encoding in the
sensor node including how to generate a vector of compressive sensing measurements
and the number of measurements required for signal recovery. Compressive sensing
generates this vector of measurements y using a sparse signal (Section 3.5) and
a sensing matrix (Section 3.6). This vector contains the encoded vibration signal
which is transmitted by the wireless sensor node to the base station.
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3.7 Chapter Summary

The framework proposed in this research work mitigates the effect of random packet
loss and performs data compression by using local signal processing at the wireless
sensor node through frequency domain analysis, adaptive thresholding and compress-
ive sensing. More importantly, after wireless data transmission, the performance
during signal recovery is increased. More details in Section 4. This thesis may be
divided into two main sections: vibration data encoding which was presented in this
chapter, and vibration data decoding procedures. The vibration data is encoded
at the wireless sensor node (TX) through local signal processing and compressive
sensing. To encode the vibration data at the sensor node, a spectral representation
of the vibration signal through the Fast Fourier transform was used as the basis
for signal compression using compressive sensing. Subsequently, the vibration signal
dimension was reduced via an adaptive thresholding algorithm that induced sparsity
while maintaining the main spectral components. To produce compressive sensing
measurements, a sparse signal and a suitable measurement matrix are required.
Hence, a Bernoulli matrix was generated and stored in the sensor node as part
of the wireless vibration sensing strategy for signal encoding. For signal decoding,
the vibration data received at the base station (RX) is decoded using an enhanced
signal recovery method for compressive sensing measurements which is presented and
described in the next chapter.





Chapter 4

Signal Recovery with
Frequency Support

4.1 Introduction

Mitigating the effect of random packet loss during wireless transmissions is chal-
lenging especially if the data transmission occurs in noisy environments such as
in a gas turbine engine. Chapter 3 presented the encoding procedure. The data
packets are encoded at the sensor node through on-board frequency domain analysis,
dimensionality reduction and compressive sensing prior to wireless vibration data
transfer. These procedure aims to help deal with the packet loss problem through
local signal processing and data compression. At the receiver, the data needs to be
decoded to reconstruct the original signal sent by the transmitter.

The present chapter shows the set of steps for frequency domain sparse signal es-
timation and signal recovery at the receiver. The number of compressed sensing
measurements required for signal recovery is reduced by exploiting prior information
from the application. The methodology to achieve that is as follows:

1. Demonstrate that the selected hardware is able to collect, transmit and recover
vibration data within a Gas Turbine Engine (Section 4.3).

2. Observe and analyse the collected vibration data to help identify patterns and
zones of higher energy within the frequency spectrum (Section 4.3).

69
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3. Propose a method to capture the signal characteristics from the application or
frequency components where most of the energy is concentrated. The idea is to
then use that information to recover the vibration signal accurately and reduce the
number of samples required (Section 4.4).

4. Generate synthetic vibration signals to validate the proposed strategy (Section
4.5).

5. After validation, incorporate the prior knowledge obtained in Step 3 into the
proposed signal recovery algorithm (Section 4.6).

In summary, this chapter presents the signal decoding procedure to recover the
original vibration signal sent by the wireless sensor node is described. More spe-
cifically, the received vector of compressed sensing measurements is decoded using
a proposed signal recovery algorithm. This algorithm is a novel contribution in this
research work. It considers information from the real application and is used as prior
knowledge to enhance signal recovery performance. This prior information refers
to vibration signals collected from wireless sensor nodes deployed on a Trent1000
aeroengine during a running engine test. The structure of these frequency domain
signals is extracted using a novel algorithm which outputs a probability density
function which was used as frequency support for the proposed signal recovery
algorithm.

This chapter is structured as follows:

• Section 4.2 presents the experimental methodology of the wireless vibration
sensing system.

• Section 4.3 describes the deployment of wireless sensor nodes in the active Gas
Turbine Engine and presents the collected vibration data.

• Section 4.4 introduces the properties of a probability density function followed
by a proposed novel algorithm to estimate the Probability Density Function
(PDF) for the frequency spectrum.

• Section 4.5 presents the procedure to generate synthetic vibration signals based
on the same probabilistic structure from the collected data in the aeroengine.
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• Section 4.6 presents a novel algorithm, the Enhanced Orthogonal Matching
Pursuit which increases signal recovery performance including the PDF estim-
ated in Section 4.4.

• Section 4.7 presents final remarks and summarises the impact of the proposed
algorithm to enhance the performance during signal recovery of vibration sig-
nals from compressive sensing measurements.

4.2 Experimental Setup

The experimental setup is described as follows: the sensor node used for exper-
imentation in laboratory and in a gas turbine engine includes the eZ430-RF2500
wireless development tool by Texas Instruments which features an ultra-low power
MSP430F2274 microcontroller and a CC2500 2.4 GHz Radio Frequency transceiver
chip. The vibration sensor used is the ADIS16227 developed by Analog Devices.
This MEMS variable capacitance acceleration sensor was selected because it’s an
application-specific integrated circuit tri-axial sensor with embedded frequency ana-
lysis which computes the spectral representation of the measured vibration signal,
using the Fast Fourier Transform. Moreover, this representation is suitable to be
used in conjunction with compressive sensing [107]. This sensor was placed on top
of an LDS V406 permanent magnet, electrodynamic shaker as shown in Figure 4.1a.
This shaker was selected as it is designed for vibration testing of small components,
laboratory experiments, structural analysis, etc. This shaker produce forces up to
196N (44 pound-force lbf). The purpose of using this shaker was to evaluate the
vibration sensor and replicate vibration amplitudes of gearbox mounted accessories
that are likely to find in GTE or the industrial sector [146]. The sensor nodes were
tested on the LDS shaker before deployment on the gearbox of an active gas turbine
engine as shown in Figure 4.4.

4.3 Data collection in a Gas Turbine Engine

Initially, the sensor nodes with incorporated vibration sensing were tested in Labor-
atory using the electrodynamic shaker provided by RR and described in Section
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Figure 4.1: LDS shaker used to evaluate the vibration sensor (a) and deployment
illustration of the sensor node on a GTE gearbox (b).

4.2. After evaluation, a wireless vibration data collection test was carried out in a
running gas turbine engine at INTA, Madrid. The purpose was to collect data from
a real scenario and evaluate the performance of the wireless sensing system. A set
of wireless sensor nodes were deployed on a Trent 1000 aeroengine (see Figure 4.1)
on different LRUs such as the fuel pump, oil pump, and Fuel-Oil Heat Exchanger
for temperature sensing and on the gearbox for vibration sensing. For instance, the
deployment of a sensor node on the gearbox is illustrated in Figure 4.1b while the
actual installation of sensor nodes on the aero engine are shown in Figures [4.2-4.4].

The availability of energy was limited because the self-powered sensor nodes incor-
porated energy harvesting through a thermoelectric generator. More importantly,
the overall wireless communication was affected by random packet loss which resulted
in multiple data packet retransmissions, unexpected time delays and wasted energy.
The information of each FFT-based vibration signal computed at the sensor node was
distributed in multiple data packets and sent via wireless to the receiver. Each data
packet contained information about a portion of the frequency spectrum. Hence,
under this approach, at the base station, it was required to receive all data packets
for each independent vibration signal in order to reconstruct it. An effort was made
to mitigate the packet loss effect by using features of the transceiver in the sensor
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Figure 4.2: The Rolls-Royce Trent 1000 turbofan engine on which the wireless sensor
nodes were installed.

node. For instance, the output power was automatically increased in case of a poor
received signal strength. Additionally, the sensor nodes migrated among different
channels to avoid channels subject to noise or interference. However, the use of these
techniques was not enough to solve this issue.

An example of a vibration signal affected by poor signal strength resulting in random
packet loss is depicted in Figure 4.5. For this single spectral measurement, about 70%
of the data packets were received at the receiver side while 30% were lost randomly.
The gaps in the image in Figure 4.5b represent a portion of the frequency spectrum
that is missing due to lost data packets. Under this scenario, it is not possible to
infer the information that corresponds to these gaps from the received/available data.
Even if a single data packet is lost for a given vibration signal, it is not possible to
determine the magnitude of the lost frequencies covered by that lost data packet. As
a result, on this GTE test, all incomplete FFTs were discarded. The situation for
these cases is far from ideal because the time and energy spent by the sensor node
for vibration signal acquisition, conditioning, encoding, transmission, reception and
decoding at the base station for all the received data packets are wasted, not counting
any failed wireless retransmissions. As mentioned throughout this thesis, in wireless
sensing applications it is vital to conserve energy and maintain the reliability of the
system. That was the main reason for considering local signal processing at the sensor
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Figure 4.3: A wireless sensor node placed on the fuel pump (a) and on the Fuel-Oil Heat
Exchanger for temperature sensing (b).
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Figure 4.4: Deployment of a wireless sensor node on the gearbox for vibration sensing,
distant view (a) and close-up view (b).
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node to provide signal compression through random encoding and mitigate the effect
of random packet loss. Moreover, the collected real data was used to generate prior
information which was then used as frequency support for the recovery algorithm at
the receiver side for signal decoding as described in Section 4.6. This resulted in an
improvement in performance and reduction in the number of measurements required
for a recovery percentage target.

Some of the complete FFT-based signals acquired by the sensor node and recovered
at the base station are shown in Figures [4.6-4.8]. These vibration signals correspond
to the data received from the wireless sensors at the running engine test for different
levels of thrust. Figure 4.9 presents all the vibration signals received at the base
station.
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Figure 4.6: Example of an FFT collected during the Active Engine Test (low thrust).
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(a)

(b)

Figure 4.5: Example of vibration data acquired from LDS shaker which was recovered at
the base station with all data packets received (a) and incomplete vibration signal under
packet loss effect, packets lost #4, #6, #8 (b).



CHAPTER 4. SIGNAL RECOVERY WITH
FREQUENCY SUPPORT 78

0 500 1000 1500 2000 2500 3000
0

200

400

600

800

1000

1200

1400

Frequency (Hz)

A
c
c
e

le
ra

ti
o

n
 (

m
g

)
Active Engine Test − FFT Vibration Signal (Middle)

 

 

FFT

Figure 4.7: Example of an FFT collected during the Active Engine Test (medium
thrust).
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Figure 4.8: Example of an FFT collected during the Active Engine Test (high thrust).
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Figure 4.9: All FFTs collected in the Active Engine Test.

The vibration signals in Figures [4.6-4.8] are samples of the FFTs computed at the
wireless sensor node and received at the base station during the active engine test
mentioned at the beginning of this section. The thrust was gradually increased
throughout the running engine test (acceleration profile). Figures 4.6-4.8 correspond
to the collected data from the vibration sensor at different points in time when
different levels of thrust were applied to the engine. The difference in increased
acceleration is visible in these figures. The dominant peak is probably the vibration
mode of the shaft (acceleration increases in response to the thrust). However,
the vibration sources are not described in this research work as this proprietary
information was not shared. If that information was available, it would be useful for
fault diagnosis and prognosis. In summary, the objective of the presented figures is
to show how the vibration profile changes depending on the applied thrust and that
the highest amount of energy seems to be concentrated in some frequencies.

As can be seen from Figure 4.9, the dominant peaks from the vibration signals in this
application seem to be concentrated within some frequency regions. Particularly,
approximately around 1.5–2 KHz and in second place around 1 KHz. In other
words, most of the energy is contained in certain areas of the frequency spectrum.
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These characteristics presented an area of opportunity to propose an algorithm that
captures and assigns different weights to each frequency bin considering energy levels.
To achieve it, a probability density function was estimated and used to enhance signal
recovery. This procedure is explained in the next section.

4.4 Probability Density Function Estimation
using Gas Turbine Engine Data

As mentioned in the previous section, if the signal characteristics of the application
are captured, it can be beneficial for signal recovery. For instance, that information
can be used by the recovery algorithm as prior information to recover the sparse
vibration signal using less measurements. This means performance improvement for
signal recovery and energy savings at the wireless sensor nodes by sending a reduced
number of measurements which translates into less wireless transmissions.

The situation presented in the previous section was the motivation to exploit prior
information from the application to enhance signal recovery. This prior may be
captured by estimating the Probability Density Function from the collected vibra-
tion signals. Hence, the algorithm selected to recover the vibration signal takes
into account this frequency support structure as an additional input. The signal
characteristics are captured from the collected vibration signals through a PDF. The
performance of the signal recovery algorithm may be improved by increasing the
probabilities of an accurate signal approximation. The following section presents
the procedure to estimate the PDF from the collected vibration signals during the
running aeroengine test.

This section introduces the Probability Density Function, followed by a novel al-
gorithm to estimate the PDF from the vibration data collected in the Gas Turbine
Engine. The estimated PDF captures the probabilities that a given random frequency
is contained within the expected frequency regions of higher energy. This PDF is
used as an additional input for the proposed signal recovery algorithm presented in
Section 4.6.
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4.4.1 Properties of a PDF

The Probability Density Function (PDF) P (X) or density of a continuous random
variable X is a statistical function that describes all possible values and likelihoods
that X can take within a given range. In other words, this function links each
outcome of a statistical experiment with its probability that it occurs. All the set
of possible outcomes of the observed random phenomenon are contained within a
sample space. More precisely, the PDF specifies the probability of a random variable
to appear within a range of values. This probability is the result from computing the
integral of this variable’s PDF over that range. A PDF has the following properties:

1. The PDF is always non-negative.

2. The integral over the entire space is always equal to one.

3. The probability of a random variable to take a value between two points a
and b is given by the area under the density function between the lowest and
greatest values of the range.

(1) f(x) ≥ 0

(2)

∫ ∞

−∞
f(x) dx = 1

(3) P (a ≤ X ≤ b) =

∫ b

a

f(x) dx = area under f(x) froma to b (4.1)

4.4.2 PDF based on Collected Vibration Data

After signal compression occurs at the sensor node, the generated compressed vector
is sent via wireless in multiple data packets. At the receiver, the selected signal
recovery method is used to recover the original sparse vibration signal from this vector
of CS measurements. The speed and performance are fundamental for applications
that require fast signal recovery such as wireless vibration sensing to support EHM.
This was the motivation to explore a suitable alternative to enhance the widely used
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OMP signal recovery method. This was achieved by including an additional input
to the algorithm as prior information. This prior was given as frequency support
structure in the form of a probability density function which was estimated from the
collected vibration data presented in the previous Section 4.3.

Kernel Density Estimation

Kernel Density Estimation (KDE) is a nonparametric way to obtain an estimation
of the PDF of a random variable [143]. In other words, the objective of KDE is to
find the PDF for a given dataset, it uses a kernel smoothing function [143]. Unlike
a histogram approach, which places the data values into discrete bins to produce a
discrete PDF, KDE creates an individual density curve using a smoothing function
for each data value and then sums the smooth curves resulting in a single smooth
continuous PDF for the dataset.

Given a discrete dataset, there are ways to know the data distribution by doing a
form of density estimation such as histograms or KDE [143]. However, there are quite
a few well-known problems with histograms [143]. Two of the main problems with
histograms are the bin size (binwidth) and the end points of the bins. Histograms
present challenges as they are not smooth, dependence on end points of bins and
dependence on binwidth. The first two problems can be alleviated by using KDE. The
dependence on endpoints of the bins is removed. Each of the blocks at each data point
is centred instead of fixing the endpoints of the blocks [143]. The density estimate
is continuous and allows to extract the density structure. A smooth kernel is used
as the building block to produce a final smooth density estimate. Unfortunately, in
KDE the problem of dependence on the bandwidth exists (equivalent to a histogram’s
binwidth). In this research work, the bandwidth selected produces a smooth curve
and is theoretically optimal to estimate densities for the normal distribution [147].

In this application, the kernel distribution is estimated at 125 points from the input
data, which refers to the total number of FFT bins that cover a frequency bandwidth
of 3KHz (25 Hz per bin). However, it can be noted from the resulting PDF in Figure
4.10, that this function represents the set of possible values that the random variable
can take in terms of magnitude. In other words, this PDF shows the probability
that a random frequency falls within a given range of magnitude. In this case, the
maximum occurs between a range of 100-200 mG. Therefore, most of the nonzeros are
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contained within this range of magnitude. This PDF would be useful for applications
that require to recover all the frequency components in vibration signals regardless
of its magnitude. However, some frequency components may contain noise floor or
their magnitude/energy may be too low to be of interest for a given application.

In this thesis, KDE is introduced for the interest of the reader as the KDE standard
procedure was not modified. It was used as a tool to estimate the PDF based on
the input data. The novelty of the proposed Algorithm 4.1 lies in the form that the
vibration signals are sparsified (estimating the density distribution of the data in
terms of frequency instead of magnitude) and then how the resulting PDF is used in
the E-OMP recovery algorithm (Algorithm 4.3, explained in Section 4.6) to enhance
performance and recover the vibration signal with less measurements.

PDF estimation in sparse signals based on the frequency spectrum

The final estimated PDF from the real vibration data (non-sparse) is shown in Figure
4.10. As mentioned in Chapter 3, to generate compressed sensing measurements,
the input signal is required to be sparse. Essentially, the frequency components of
higher magnitude in the original signal are kept while most of the components of
lower magnitude are set to zero. In other words, the original signal is thresholded to
make it sparse and suitable for CS.



CHAPTER 4. SIGNAL RECOVERY WITH
FREQUENCY SUPPORT 84

Magnitude (mG)

0 100 200 300 400 500 600 700 800 900

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

0

0.01

0.02

0.03

0.04

0.05

0.06
Probability Density Function (PDF)

PDF

Figure 4.10: The density distribution of the original vibration data collected from
the Trent1000 aeroengine gear box, the x-axis is the acceleration in mG and the
y-axis is the probability density function.

When a signal is made sparse using a threshold, all the components below the selected
threshold τ (distortion level) are not recoverable and as a consequence, they should
not be considered to estimate the PDF. This thresholding procedure may help to
remove noise from the signal. For instance, if the noise floor level is known, the
value of τ may be set at that magnitude level and all frequency components below
τ may be zeroed out to reduce the dimensionality of the signal and increase signal
sparsity. Another case would be for instance to set τ to a level on which the resulting
sparse signal contains S nonzero components. Figure 4.11 illustrates this situation,
the average of the frequency domain vibration signals (from collected real data) in
its original form and the resulting sparse signal (with S = 36 non-zero components)
after using τ = 175mG are shown. The PDF produced based on this sparse vibration
data is shown in Figure 4.12. The resulting PDF is more representative of the sparse
vibration data, most of the components are zero except for S non-zero elements.
However, this distribution function shows the probabilities of a random variable in
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terms of magnitude and not respect to frequency. To exemplify this situation, the
area of the averaged FFT from the real data is presented in Figure 4.13. It can be
observed that most of the energy is concentrated between the frequency range of
1.5-2 KHz. To enhance the standard OMP algorithm, the PDF used as frequency
support should model the true distribution of the signal capturing the zones of higher
energy.
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Figure 4.11: The averaged FFT-based signal from the original vibration data (black)
collected from the Trent1000 aeroengine gearbox and the resulting sparse signal
(blue) after using τ=175 mG (red).
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Figure 4.12: The density distribution of the thresholded sparse vibration data from
Figure 4.11. In contrast to Figure 4.10, this PDF is the resulting distribution after
the same vibration data is made sparse (blue signal in Figure 4.11). All components
of lower magnitude are removed except the nonzero frequencies above the threshold,
where � = 175mG.
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Figure 4.13: Resulting FFT from averaging all FFTs collected in the Active Engine
Test.

The signal recovery algorithm can be enhanced by including an estimated PDF
that captures the energy distribution across all the frequency spectrum. This is
because at the base station, the received data from a wireless sensor node contains
the vibration signal encoded in a vector of compressive sensing measurements. In
CS, a sparse signal and a measurement matrix Φ are used to generate this vector of
CS measurements. Hence, at the receiver, it is important to detect the contribution
of Φ in the received vector. Finding the contribution of Φ, allows recovering the
vibration signal with high accuracy from the received vector. The estimated PDF is
used as prior frequency support to increase the probabilities of finding the right set
of columns in Φ that contributed to the received vector through a weighted selection
(more details in Section 4.6). This results in efficient signal recovery because less
measurements are used to recover a vibration signal in comparison to the standard
OMP signal recovery algorithm. Using less measurements to recover a signal means
fewer wireless transmissions are needed, which results in important energy savings
for the wireless vibration sensing system.
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The proposed iterative Algorithm 4.1 to estimate the PDF from the collected vibra-
tion data is as follows:

Algorithm 4.1 PDF Estimation based on Frequency Spectrum
Inputs:
a. A P × N matrix of collected signals Γ , where the entries are nonzero
elements. P is the number of collected signals and N is the signal length.
b. A desired number of S nonzero elements when the signals are made sparse.
Output:
An estimated probability density function P .
Procedure:
1. Initialise the iteration counter k = 1 and residuals matrix R(k) = Γ.
2. Initialise the selection matrix W (k) =0P×N , where W (k) updates in each
iteration with the selected entry from R(k).
3. Find the maximum in residuals matrix w(k)

k = max(R
(k)
kj ), where

j = 1, 2, ..., N . If maximum occurs for multiple indices, then break the tie
deterministically.
4. Update the selection matrix element Wk jmax = wk jmax, where
jmax = j | max(Rk

k).
5. Set R(k)

k jmax = 0. The chosen column is set to zero to not consider it in next
iterations.
6. Increment k and return to Step 2 if k ≤ P . If not, continue to Step 7.

7. Calculate the average of the rows in W . Consider W =


α1

.

.

.
αP

 to form the

averaged vector Wavg =
1
P

∑P
q=1 αq.

8. Initialise the PDF counter t = 1.
9. Estimate the Probability Density Function Pt with KDE, using Wavg as the
sample data input.
10. Increment t. If t ≤ S, k = 1 and go to Step 2. If not, continue to Step 11.
11. Sum the S estimated PDFs.

∑S
v=1 Pv = P .

12. Normalise and return P .
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Figure 4.14: The estimated PDF of the sparse vibration data collected from the
Trent1000 aeroengine gearbox in terms of frequency. The x-axis is the frequency in
Hertz and the y-axis is the probability density function.

The PDF shown in Figure 4.14 is the resulting density estimate in function of
the frequency. In other words, it represents the probability that a given random
measurement falls within a given frequency. This PDF is representative of the sparse
vibration signals (real data from this application) as it captures the frequency regions
of higher energy. The estimated PDF was used as an additional input to the novel
algorithm presented and described in Section 4.6. Due to the limited number of
collected signals during the Gas Turbine Engine test, a set of synthetic vibration
signals were generated to validate the proposed algorithm. The following section
describes how the synthetic vibration signals were generated.
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4.5 Generation of synthetic signals
based on Active Engine Test data

As presented in Section 4.3, the data collection from the active engine test included
only 15 FFT-based vibration signals. Due to the limited number of real vibration
signals, a set of synthetic signals were produced based on the same probabilistic struc-
ture found in the collected vibration data. The objective was to produce frequency
domain vibration signals which contain most of the energy in the same frequency
regions as the vibration signals obtained from the aeroengine. This increased number
of vibration signals were generated to test signal recovery methods.

Algorithm 4.2 indicates the inputs, outputs and steps in order to generate synthetic
signals.
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Algorithm 4.2 Synthetic Signal Generation Procedure
Inputs:
a. A P × N matrix of collected vibration signals Γ in the frequency domain.
Where the entries are nonzero elements. P is the number of collected signals
and N is the signal length.
b. A number of sinewave components Sc per synthetic vibration signal.
c. Minimum probability threshold value MTH .
Output:
An averaged FFT-based synthetic signal F .
Procedure:
1. Calculate the average of frequency components in Γ to form the averaged

vector xavg. Consider Γ =


η1
.
.
.
ηP

 to form the vector xavg = 1
P

∑P
q=1 ηq.

2. Estimate the Probability Density Function E using KDE as mentioned in
Section 4.4.2 with xavg as the sample data input.

3. Threshold the PDF E as: ETH =

{
E E > MTH

0 E ≤MTH

4. Sum the probabilities in the thresholded PDF PTH =
∑

ETH .
5. Calculate the required size Sv of the set V as: Sv = (100/MTH)× PTH to
accommodate the frequencies above MTH .
6. Generate a vector Vf=[Vz] where z = 1, ...Sv. Where each Vz is repeated
ETH(Vz)× Sv times. The number of times a frequency appears in Vz is given by
the thresholded PDF ETH from Step 3.
7. Initialise the sinusoids counter sel = 1.
8. Select a random frequency f from Vf .
9. Generate a sinusoidal wave sw = A sin(2πft). Where the amplitude A is
given by xavg at frequency f .
10. Increment sel, and return to Step 9 if sel ≤ Sc.
11. Sum the Sc sinusoids

∑Sc
i=1 swi = Savg.

12 Calculate the FFT F from Savg and return F .

The Algorithm 4.2 outputs an averaged FFT-based synthetic signal. Samples of the
generated vibration signals from this algorithm are shown in Figures [4.15-4.17].
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Figure 4.15: Example 1 of an FFT-based vibration signal generated synthetically
using Algorithm 4.2.
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Figure 4.16: Example 2 of an FFT-based vibration signal generated synthetically
using Algorithm 4.2.
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Figure 4.17: Example 3 of an FFT-based vibration signal generated synthetically
using Algorithm 4.2.

As described in Section 4.4.2 and shown in Figure 4.13, in this application most of the
energy is concentrated in frequency regions of the frequency spectrum. The generated
synthetic signals follow the same probabilistic structure as the real vibration signals
which was fundamental to perform simulations and evaluation of signal recovery
methods. The following section introduces the Orthogonal Matching Pursuit (OMP)
algorithm and presents the proposed novel algorithm which outperforms the per-
formance of the standard OMP to solve the signal recovery problem.

4.6 Signal Recovery with Enhanced OMP

To recover sparse signals, sparse approximation algorithms can be selected. The most
popular approaches are Matching Pursuit (MP) [162] and Basis Pursuit (BP) [123].
Mallat et. al [162] introduced MP, which was a pioneering work in greedy pursuit
algorithms. Using MP and Orthogonal MP (one of its variants), the sparse signal is
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built iteratively by selecting an atom that maximally improves the representation at
each iteration step. In the case of BP, it looks for the vector that minimises the L1
norm coefficients, which is computationally expensive to obtain. Various techniques
based on BP are commonly used for sparse signal recovery [123]. Although sparse
signals or images can be recovered with high probability using BP [123], it may
not be the best solution for applications that require fast signal recovery. In this
thesis, OMP [124] was selected as it is simpler, faster, more efficient and easier to
implement [144]. Moreover, the transparency of this algorithm motivated to propose
a novel greedy algorithm named Enhanced Orthogonal Matching Pursuit (E-OMP)
presented in Section 4.6.2.

4.6.1 Introduction to Standard OMP

The OMP is a variant of MP. At each iteration step in MP, the atom with the
strongest correlation with respect to the residual signal is chosen. This is what the
term matching refers to. Note that MP selects atoms among the complete dictionary
at each iteration step. This means that an atom may be selected more than once,
slowing down the convergence.

Orthogonal matching pursuit (OMP) [124] overcomes this problem by projecting the
sparse signal onto the subspace spanned by the chosen atoms. Under this restriction,
OMP implies that no atom is chosen twice. The resulting approximation of the signal
is optimal in the least squares sense. Hence, to converge, fewer steps are required.

Like many methods, OMP presents some drawbacks. It has been demonstrated [124]
that if OMP selects a wrong atom in some iteration step, the original signal may
never be recovered. Moreover, OMP is computationally more demanding than MP
but OMP makes sure that no repeated atoms are selected. Finally, the sparsity level
of the signal is required which may not be known in advance. Despite the mentioned
flaws, OMP is said to be the algorithm with better performance from the complete
family of matching pursuits [124].
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4.6.2 Development of Enhanced OMP

The selection of a wrong atom in some iteration step in conventional OMP is likely
to result in inaccurate signal recovery. To improve the sparse signal recovery and
mitigate this issue, it is proposed an algorithm called Enhanced OMP (E-OMP)
(described in detail in Algorithm 4.3). The OMP and E-OMP are both iterative
greedy algorithms. A greedy algorithm makes a local optimal selection with the
intention to find the global optimum when the algorithm finishes its execution. The
OMP selects at each iteration step, the dictionary element most correlated to the
residual of the signal. Then, it results in a new approximation by projecting the signal
onto the dictionary elements that have already been chosen. The main difference
between OMP and E-OMP is that E-OMP considers prior information from the
application (estimated PDF from Algorithm 4.1) in order to increase the probabilities
of selecting the right column of the dictionary at each iteration step. Then, as OMP
does, a new approximation is produced by projecting the signal onto the dictionary
elements that have already been chosen. The running time of the standard OMP
is dominated by Step 2. The E-OMP includes the estimated PDF in this step but
no additional instructions or steps are added in comparison to conventional OMP.
Hence, the running time is not altered due to the modifications introduced.

E-OMP for recovery of sparse vibration signals

In this research work, this greedy algorithm is used to recover sparse vibration
signals from a vector of compressed sensing measurements y sent by the wireless
sensor nodes. An accurate signal recovery occurs when all the columns from the
measurement matrix Φ that contributed to the vector y are identified. Therefore,
the importance to accurately select the correct columns at each step iteration. In
this research work, vibration data was collected from an active aeroengine (Section
4.3). From this data, the probability density function was estimated (Section 4.4.2)
and given as an extra input to the algorithm to enhance the selection of columns
from Φ.

The steps to implement the algorithm used for the signal recovery problem are
described as follows. Assume the vibration signal is in S-sparse representation. Let
XS be the S-sparse signal of interest in RN, and form an M x N matrix Φ referred
as the measurement/sensing matrix whose rows {x1,..., xM} represent a set of M
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measurement vectors, where each vector lives in RN. The M measurements of the
signal can be collected in an M -dimensional vector of data y = Φ ·XS.

Signal recovery may be seen as a sparse approximation problem. Since XS contains
only S nonzero elements. Through a linear combination of S columns taken from Φ,
the measurement vector y = Φ ·XS is constructed. In sparse approximation, it can
be said that y contains an S-term representation in the dictionary represented by Φ.

In order to find the sparse signal XS, the columns of Φ that are contained in
the measurement vector y, need to be identified. An optimal column from the
measurement matrix Φ is selected at each iteration with the intention to find the
correct set of columns in Φ that contributed to the data vector y (this vector contains
the encoded vibration signal). The vector y contains the encoded vibration signal,
which may be decoded with high accuracy at the receiver when the right set of
columns in Φ that contributed to y are found. For instance, when one or more
columns in Φ are incorrectly chosen by the algorithm, results in an imprecise signal
approximation. Therefore, it is vital to make an accurate column selection. The
performance of the standard OMP algorithm increased because the likelihood of
choosing the precise column at each instance augmented through a weighted column
choice. This was achieved by including frequency support in the form of a PDF in
the OMP algorithm.

The purpose of the OMP algorithm [124] is to pick a column of Φ at each iteration.
The column chosen is the one that reflects the strongest correlation with the remain-
ing part of the vector y. Then this contribution is subtracted from y and iterates on
the residual until all the columns of Φ that participate in the measurement vector
y are identified [124]. It is expected that the algorithm identifies the correct set of
columns after S iterations. By using this algorithm, the original sparse signal can be
recovered. The proposed novel algorithm 4.3 includes frequency support structure, it
outperforms the performance of the standard OMP by allowing a weighted selection
of columns of the measurement matrix which increase the probabilities of successful
signal recovery. The steps to implement the Enhanced OMP (E-OMP) algorithm
are given as follows:
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Algorithm 4.3 E-OMP Algorithm for Signal Recovery
Inputs:
a. An M-dimensional measurement vector y.
b. A measurement matrix Φ of size: M × N .
c. Sparsity level S of the signal to be recovered.
d. An N-dimensional vector containing the Probability Density Function P of
the signal, estimated in Algorithm 4.1.
Outputs:
a. An estimate X̂S in RN for the optimal signal.
b. A set ΛS containing the S indices of selected columns in Φ from {1, ..., N}.
c. An M-dimensional residual r.
Procedure:
1. Initialise the value of the residual r0= y, the index set Λ0= ∅, and the
iteration count c = 1.
2. Select the index λc that solves the optimisation problem λc = arg
maxi=1,...N |⟨rc−1, φi⟩| · P (i). If maximum is found for multiple indices then
break the tie deterministically.
3. Augment the index set Λc = Λc−1 ∪ {λc} and matrix of chosen columns Φc.
4. Acquire the new approximation of the signal by solving the least square
problem: xc = arg minx ∥y − Φcxc∥2.
5. Calculate the new estimate of the data and the new residual: ac = Φcxc and
rc = y − ac.
6. Increment the iteration counter c, and go back to step 2 if c < S, where S is
the sparsity level or number of non-zeros.
7. The estimated sparse signal has nonzero indices at the elements listed in ΛS.
Enhanced OMP: The step 2 is fundamental to enhance the performance in
signal recovery as prior information about the signal in the form of Probability
Density Function (PDF) is included. In other words, the index that solves the
optimisation problem is found. The absolute value of the dot product between
the residual and the columns of the measurement matrix Φ is calculated, the
maximum value is selected which means maximum correlation. This corresponds
to the position of the candidate column. This step was modified to include
the PDF of the signal, this allows to include the frequency support structure,
allowing a weighted selection (expectation) of candidate columns when prior
information is known. The improved performance in signal recovery for signals
with different sparsity levels is shown in the next chapter when using the standard
OMP and Enhanced-OMP (E-OMP) with prior information.
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4.7 Chapter Summary

This chapter has presented the procedure to modify the selected standard OMP
algorithm for sparse signal recovery. Furthermore, samples of vibration signals
collected from sensor nodes installed in an active aerospace gas turbine engine have
been shown. Likewise, the estimated PDF from these signals was presented. It has
been identified that the performance of the standard OMP algorithm was enhanced
by adding frequency support in the form of the estimated PDF. The improvement
in the standard OMP performance was derived from the inclusion of the PDF in the
OMP as an additional input. This prior information allowed a weighted selection
of columns of the measurement matrix that contributed to the vector received from
the wireless sensor nodes. This resulted in a more accurate local optimal selection of
columns which enabled an accurate signal recovery (global optimum, after algorithm
finishes its execution) using a reduced number of measurements in comparison to
the standard OMP without prior support. The next chapter presents the evaluation
and comparison of both OMP and E-OMP algorithms for signal recovery of sparse
vibration signals. The aim is to highlight the benefits of E-OMP in terms of en-
ergy savings and performance improvement when prior frequency support from the
application is included in order to recover sparse signals.





Chapter 5

Experimental Results and Discussion
of WVS Framework

5.1 Introduction

As mentioned throughout this thesis, autonomous wireless vibration sensing systems
require to use techniques for energy conservation and tolerance to random packet
loss, especially if the wireless sensors transmit data within harsh environments such
as in a Gas Turbine Engine. Chapter 3 presented the system architecture and set
of strategies for signal encoding at the sensor nodes through local signal processing
to help mitigate the random packet loss problem and data compression to conserve
energy by reducing the amount of data to be sent to the base station. Chapter
4 presented the proposed strategy to deal with the signal recovery problem and
further promote the conservation of energy at the wireless sensor nodes by reducing
the number of measurements required to recover the vibration signal sent by the
sensor nodes. This was achieved by extracting the signal characteristics of the
application through the estimated PDF which captures the energy distribution across
the frequency spectrum. This information is then included in the proposed algorithm
to recover sparse vibration signals.

This chapter presents the experimental results from the evaluation of the standard
OMP (without frequency support) and E-OMP (with frequency support) to recover

100
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sparse vibration signals from compressive sensing measurements. The purpose of this
chapter is to show the enhancement of signal recovery performance comparing both
algorithms. Energy savings and improved signal recovery are aims that are achieved
through E-OMP. This happens because the number of measurements required at the
receiver to recover a vibration signal using E-OMP is reduced in comparison to OMP
for the same probability of successful recovery for all sparsity levels. More details,
tables and resulting graphs are presented in this chapter.

5.2 Performance Evaluation

The performance is evaluated in terms of Percentage Root mean-squared Difference
(PRD). The recovered signal X̂S is compared against the original sparse signal XS

to verify the reconstruction accuracy using the PRD given by:

PRD =

√√√√∑N
n=1(XS(n)− X̂S(n))2∑N

n=1(XS)2(n)
× 100, (5.1)

where XS(n) ∈ RN represents the original signal, X̂S(n) ∈ RN represents the re-
covered signal and N represents the signal length. If the PRD or error between the
original and recovered signal is less than 1% then it is considered that the algorithm
succeeded. For each triple ( S, M , N ), a total of 1000 independent trials were
performed.

Sparse Signal Recovery using different Algorithms

As presented in Chapter 2, compressive sensing is used in a wide variety of applica-
tions including imaging, radar, wireless sensing and many more. Given a sparse signal
in a high-dimensional space, the objective is to recover that signal accurately and
efficiently from a number of linear measurements much less than the actual dimension
of the signal. This is clearly possible in theory [107]. However, the difficulty lies in
building efficient signal recovery algorithms. There have been two distinct major
approaches to sparse signal recovery: Basis Pursuit and Matching Pursuit, each
presents different advantages and shortcomings. This section presents three different
algorithms for sparse signal recovery from CS measurements.
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• Basis Pursuit (BP): Basis Pursuit or minimisation based on the L1 norm was
one of the first methods suggested for signal recovery in the compressed sensing
problem [123]. This method uses linear optimisation to recover sparse signals.
Although this method provides strong guarantees and stability, it relies on
the use of linear programming, lacks a strong bound on its runtime and is
computationally expensive [145].

• Orthogonal Matching Pursuit (OMP): OMP has been described in Section
4.6.1. OMP is a representative method of the family of greedy algorithms.
This greedy algorithm iteratively finds the solution by correlating the signal
residual with the columns of the measurement matrix. The greedy approach is
quite fast both in theory and in practice, efficient, simple and easy to implement
[124]. However, it requires somewhat more measurements for signal recovery
compared to L1 minimisation [145].

• Enhanced Orthogonal Matching Pursuit (E-OMP): The E-OMP algorithm
proposed in this thesis is a variation of the standard OMP. In contrast to
OMP, E-OMP considers prior information from the application in the form of
frequency support structure which contains the estimated energy distribution
of the frequency spectrum. This additional input allows a weighted selection
of columns from the measurement matrix to the residual which results in
an increased recovery probability in comparison to conventional OMP. From
another perspective, if the recovery probability is fixed, then E-OMP requires a
fewer number of CS measurements to recover the signal compared to standard
OMP without prior frequency support.

The plot in Figure 5.1 shows the signal reconstruction results for different sparsity
levels using the above-mentioned algorithms. It describes the situation in dimension
N = 125 using three signal recovery algorithms. It shows the percentage (out of
the 1000 trial signals) of signals recovered correctly as a function of M , the number
of measurements. It provides a graphical comparison between the standard OMP,
the Enhanced-OMP (E-OMP) (with prior support) algorithm proposed in this thesis
and presented in Section 4.6.2 and L1 minimisation. Each curve denotes a different
sparsity level S. As predicted, more measurements are required to ensure signal
recovery when the number of nonzero elements increases. The performance to recover
sparse vibration signals using the standard OMP, E-OMP and L1 minimisation can
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be compared in Figure 5.1. From the results, the recovery probability is higher
using the proposed E–OMP algorithm in comparison to the standard OMP for all
sparsity levels using the same number of measurements (same conditions for both
scenarios). The improvement in performance is because prior information in the form
of frequency support structure is considered in the proposed E-OMP algorithm. As
described in Section 4.4.2, the regions of higher energy in the frequency spectrum for
a given vibration signal are estimated in the form of a Probability Density Function
(PDF). This PDF estimated from the application is used as prior information for
the proposed E-OMP algorithm (Section 4.6.2) as an additional input, resulting in
improved performance compared to standard OMP without frequency support. Also,
as expected, L1 minimisation (basis pursuit) clearly requires fewer measurements
than OMP and E-OMP. However, as mentioned in this thesis and as shown in the
literature, L1 minimisation is computationally expensive and in many applications,
OMP is preferred over basis pursuit [145]. Hence, a different approach not based
on optimisation was selected. The structure of OMP was chosen for this application
as is widely used due to its simplicity, speed and ease of implementation [124].
Moreover, the transparency of this method presented an opportunity to include
prior information from the application to improve signal recovery performance. The
following plots and tables presented in this chapter compare OMP and E-OMP from
different perspectives to show the benefits of the proposed algorithm.
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Figure 5.1: The percentage of 1000 input signals correctly recovered as a function of
the number of measurements M for different sparsity levels S in dimension N =125.
The signal recovery algorithms used include variations of Matching Pursuit (OMP
and E-OMP) and Basis Pursuit (L1-minimisation).

Table 5.1 presents data extracted from Figure 5.1. It shows the number of meas-
urements required to recover an S−sparse signal with a fixed rate of success. For
instance, to recover a signal with >95% recovery probability, it can be noted that
the number of measurements needed is less for the case of the proposed E-OMP
algorithm (in average, ~5% less measurements) compared to standard OMP for all
sparsity levels.
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Table 5.1: The number of measurements required to recover a S−sparse vibration
signal with >95% recovery probability in dimension N = 125 using standard OMP,
the proposed E-OMP and L1-minimisation.

Standard OMP Enhanced OMP L1-minimisation

Sparsity

Level (S)
Measurements

(M)
Sparsity

Level (S)
Measurements

(M)
Sparsity

Level (S)
Measurements

(M)

4 35 4 28 4 21

12 59 12 53 12 41

20 77 20 71 20 55

28 90 28 85 28 64

36 101 36 95 36 73

Figure 5.2 shows another view of the data. It presents what percentage of signals were
recovered correctly as a function of S, the sparsity level. The recovery probability
increments as more measurements are taken given a fixed sparsity level. This figure
shows a situation that is significant in applications. For instance, assume there is
enough space to save only M = 50 measurements in memory or there is enough time
to collect and process only M = 50 pieces of information. In dimension N = 125

using standard OMP and the proposed E-OMP, we should expect to recover a signal
with 10 nonzero terms in ~90% of instances for standard OMP and ~97% for enhanced
OMP. A signal with 13 terms in ~50% of instances for standard OMP and ~76% for
enhanced OMP.
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Figure 5.2: The percentage of 1000 input signals correctly recovered as a function of
the sparsity level S for different number of measurements M in dimension N=125.

From the experimental results shown in Figure 5.2, given a number of nonzero
terms in the vibration signal (sparsity level), the recovery probability increases using
the proposed E-OMP algorithm in comparison to standard OMP. Or from another
perspective, given a recovery probability, a reduced number of measurements are
required to recover an S−sparse vibration signal using the enhanced OMP (with
prior support) respect to standard OMP as exemplified in Table 5.1. Using less
measurements without adding additional instructions or iterations to the selected
signal recovery algorithm means faster processing time to recover the signal. More
importantly, less measurements to recover a vibration signal means fewer transmis-
sions from the wireless sensor nodes to the receiver which results in energy savings
for the wireless vibration sensing system.
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Table 5.2: The number of nonzero terms that can be recovered using M
measurements (pieces of data) with >95% recovery probability in dimension N = 125
using standard OMP and the proposed E-OMP.

Standard OMP Enhanced OMP

Measurements

(M)
Nonzero

terms (S)
Measurements

(M)
Nonzero

terms (S)

25 3 25 5

50 10 50 12

75 20 75 23

100 33 100 38

The situation shown in Table 5.2 (based on Figure 5.2) highlights the importance
of the enhanced OMP algorithm. For instance, in a given application the number
of measurements to process at the receiver may be fixed to update a monitoring
system at a fixed rate due to application requirements or constraints in memory,
time or processing power. Table 5.2 shows that to recover a vibration signal with
high probability (>95%) given a fixed number of measurements, the number of
nonzero terms that can be recovered in that vibration signal is higher using the
proposed algorithm than the standard OMP. In other words, more information about
the signal (a greater number of frequency components) can be recovered using the
enhanced OMP algorithm compared to standard OMP using the same number of
measurements.

Power Savings

Energy efficiency is fundamental in this application. The power consumption is
optimised when the signal is recovered using a reduced number of data packets. This
occurs when the signal sparsity level ofXS increases at the sensor node at the expense
of incrementing distortion followed by Compressed Sensing (CS). The sparsity level
is induced at the wireless sensor nodes through a proposed adaptive thresholding
algorithm described in Section 3.5 in Chapter 3. For instance, Table 5.3 shows
the impact on power savings using thresholding (TH) and CS at the sensor node.
TH=0% means that CS and TH are not used which implies that all data packets are
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required at the receiver to recover the vibration signal. The results show a trade-off
enabled by CS and TH. When the number of samples M are increased, more data
packets need to be sent. Hence, frequency components of smaller magnitude may
be recovered but power savings are reduced. However, this approach is robust to
random packet loss during wireless transmission, providing the minimum number of
data packets (column 4 in Table 5.3) are received at the base station.

Table 5.3: Power consumption savings using compressed sensing and adaptive signal
thresholding.

TH

(%)

Sinusoids

(S)

Samples

(M)

Data

Packets

Power

(mW )

Distortion

(mg)

Power

Savings (%)

0 125 125 10 28.8 0 0

13 29 116 9 25.92 29.02 10

14 23 92 7 20.16 31.25 30

15 19 76 6 17.28 33.49 40

18 9 36 3 8.64 40.18 70

20 6 24 2 5.76 44.65 80

The situation presented in Table 5.3 essentially gives an insight of the power sav-
ings that are obtained from using compressed sensing and adaptive thresholding
(Algorithm 3.1 proposed and shown in Chapter 3). This is achieved by reducing
the dimensionality of the frequency domain vibration signal. In other words, the
vibration signal is thresholded to maintain the main spectral components while the
components of low magnitude are discarded.

Also, Table 5.3 exhibits a point that is important in applications. For instance,
assume that a wireless health monitoring system requires to perform vibration sensing
and the wireless sensors are deployed in a noisy environment such as in a Gas Turbine
Engine where random packet loss during wireless transmission is likely to occur.
Consider the dimension of the original vibration signal for this scenario is N = 125.
Therefore, assuming that the payload for each data packet contains between 12-13
samples, a total of 10 wireless data packet transmissions would be required to cover
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the complete frequency spectrum for each FFT-based vibration signal. Assume
that the selected wireless sensor node is autonomous and the energy generated
through an energy harvester is only enough to allow 10 wireless transmissions. Or
consider that the condition monitoring application requires to update the system at
fixed intervals and there is only time available to process the data from 10 wireless
transmissions. This scenario would require a 100% rate of success (0% packet loss)
for transmission and reception of all wireless data packets to recover the vibration
signal sent by the wireless sensor node. However, this situation is uncommon in
most applications as random packet loss is likely to occur especially if the wireless
communication occurs in an environment subject to interference, obstacles, electrical
noise and so on. To mitigate this effect, the vibration signal is thresholded and
encoded in compressive sensing samples. Suppose that the wireless transmission
occurs in a harsh environment and there is about 40% random packet loss. For
instance, from 10 wireless transmissions, only 6 are successful. The vibration signal
can be thresholded in the wireless sensor node to contain the main 19 spectral
components (sparsity level S = 19, as shown in row 4 in Table 5.3) and the vibration
signal would still be recovered at the base station even if 4 packets out of 10 are
lost randomly. Depending on the expected/detected packet loss percentage or the
number of frequencies of interest for the application, the vibration signal can be
conditioned and encoded accordingly to mitigate random packet loss effect or increase
energy savings. The next section presents the reconstruction results of vibration
signals from compressive sensing measurements using signal recovery methods after
wireless data packet transmission.
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Signal recovery from CS measurements

In Section 5.2, it was shown experimentally that the E-OMP requires less number
of measurements for signal recovery than the standard OMP. In [124], Troop et. al
demonstrate theoretically and empirically that OMP is an effective alternative to
basis pursuit to recover signals from random measurements and conclude that OMP
may be faster and easier to implement [124]. As shown in Figure 5.1, given a fixed
sparsity level in a vibration signal, the recovery probability increases as more CS
measurements are used for signal recovery.

The fundamental empirical question is to define the number of measurements M
required to recover an S-sparse signal in RN with high probability. It has been
shown empirically [107] that a number of measurements M of about 4×S (sparsity
level) are sufficient for signal reconstruction. This four-to-one practical rule says that
signal recovery can be exact if four incoherent measurements are taken per unknown
non-zero term (S) [107]. However, in a real application, the number of measurements
may vary. An example of signal reconstruction with/without consideration of this
rule is shown in Figure 5.3.
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(a)

(b)

(c)

(d)

Figure 5.3: Signal recovery of an S−sparse signal with different sparsity levels.
Showing a) Original FFT-based signal X from the vibration sensor, b) Thresholded
FFT-based signal XS with S = 19, c) Inaccurate signal reconstruction with M = 24
and S = 19. d) Accurate signal reconstruction with M = 24 and S = 6.
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Under this scenario, the original vibration signal shown in Figure 5.3a (output from
the vibration sensor) is sparsified initially to a level S = 19 to be used for CS
(using the algorithm proposed and presented in Section 3.5). Assume that only
about 25 measurements are used for signal recovery (after wireless vibration data
transmission). It can be seen in Figure 5.3c, that the signal reconstruction is not
accurate (circles and crosses do not match), this is because 25 measurements are
not enough to recover an S-sparse signal Xswith 19 non-zero elements. In Figure
5.3d, the same number of measurements are used for signal recovery. However, the
signal is perfectly recovered because the mentioned practical rule M ∼ 4S was used.
Hence, the signal sparsity S was adjusted accordingly to produce an S-sparse signal
Xs with 6 non-zero elements, resulting in accurate signal recovery.

5.3 Chapter Summary

This chapter presented the experimental setup to evaluate the wireless vibration
sensing system. The hardware, vibration signals and experimental conditions used
for signal recovery were described. Then, the performance of the standard OMP and
the proposed E-OMP was evaluated and compared. Graphs showing the number of
measurements required to recover a sparse signal with high probability for both
algorithms were presented for performance comparison. It was shown that the
proposed E-OMP uses less number of measurements compared to the standard OMP
for a given rate of success. This was achieved by including prior information from
the application as frequency support in the recovery algorithm. On the other hand,
the power savings derived from performing local signal processing at the wireless
sensor nodes were presented. This was achieved through frequency domain analysis,
sparsity induction and compressed sensing at the sensor nodes prior to wireless
transmission. Finally, examples of vibration signal recovery using a different number
of measurements are shown to highlight the importance of using the required number
of compressed sensing measurements to recover a sparse vibration signal with high
accuracy.





Chapter 6

Conclusions and Future Work

6.1 Conclusions

The use of wireless vibration sensing systems allows to remotely monitor equipment
health, perform preventive maintenance and improve system performance. Op-
posed to wired sensors, wireless functionality enables to monitor equipment remotely.
Wireless sensor nodes can be installed into existing machinery infrastructure in
the industrial sector or gas turbine engines to enable continuous wireless condition
monitoring to evaluate equipment performance and conduct predictive maintenance.
However, electrically noisy environments such as those found in gas turbine engines,
affect wireless communication from the sensor nodes. Factors such as interference,
obstacles, multipath propagation, noise from nearby machinery, and so on, contrib-
ute to random packet loss during wireless data transfer. This situation directly
impacts system performance and power consumption in the sensor nodes as wireless
retransmissions are derived from this effect. Moreover, energy conservation is vital in
autonomous wireless sensor nodes as they are battery-powered or an energy harvester
is used as the power source.

It was demonstrated that the proposed wireless sensor network meets specific re-
quirements defined by Rolls-Royce for the wireless sensor infrastructure. More
importantly, self-powered wireless vibration sensors were successfully demonstrated
on a running Trent-1000 aeroengine running on a testbed to collect vibration data.

114
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During this test, the wireless communication was affected by random packet loss
causing multiple data packet retransmissions, unexpected time delays and affected
data integrity. This problem is common on wireless networks, and packet loss is
commonly minimised by boosting the signal, changing the communication channel
or by removing interference. Hence, the features from the transceiver in the sensor
nodes were used during the running aeroengine test in order to try to mitigate this
problem. For instance, the output power was automatically increased in case of
poor signal conditions to improve signal quality and frequency hopping was used to
migrate among different channels to evade channels subject to interference or noise.
However, the use of these techniques was not enough to deal with the packet loss
problem.

A second issue was noted during the active gas turbine engine test, the signal recovery
problem. This happened because the FFT-based vibration signal computed at the
sensor node was distributed in several data packets and transmitted via wireless.
Each data packet contained information about a portion of the frequency spectrum.
At the receiver, it was required to receive all data packets for each independent
vibration signal in order to recover it. Even if a single data packet was lost for a
given vibration signal, it was not possible to determine the magnitude of the lost
frequencies covered by that lost data packet. As a result, all incomplete FFTs were
discarded during this test. These circumstances are not desirable as the resources
of the wireless sensor nodes for vibration signal acquisition, conditioning, encoding,
transmission, reception and decoding at the base station for all the received data
packets are wasted, not counting any failed wireless retransmissions.

As mentioned throughout this thesis, in wireless vibration sensing applications it
is critical to conserve energy and maintain a consistent system performance. That
was the main reason for considering local signal processing at the sensor node. The
spectral representation of the vibration signal through the Fast Fourier transform was
used as the basis for signal compression using compressive sensing. Subsequently,
the vibration signal dimension was reduced via a proposed adaptive thresholding
algorithm presented in Chapter 3, that induced sparsity while maintaining the main
spectral components. This approach resulted in signal compression and mitigation
of the random packet loss problem.

For the signal recovery problem, the collected vibration data from the aeroengine
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was used to generate prior information which was then used as frequency support
for the novel E-OMP recovery algorithm presented in Chapter 4 and implemented
at the receiver side for signal decoding. The characteristics of the collected data
from the application were captured by estimating the probability density function
using a proposed algorithm presented in Chapter 4. This prior was used as an
additional input for the signal recovery algorithm which enhanced the performance
of the standard OMP algorithm by using less number of measurements to recover the
vibration signal sent by the wireless sensor nodes. This resulted in a reduction of data
packet transmissions which maximises the useful life of sensor nodes, power efficiency
and data integrity in the wireless vibration sensing system. Overall, the proposed
framework encoded the data in a way that reduced the effect of random packet
loss during wireless data transmission. Moreover, by including frequency support as
prior information, allowed to reduce the number of measurements required for signal
recovery. This resulted in increased energy savings while improving the performance
of the wireless vibration sensing system for machine health monitoring.

6.2 Future Work

The framework suggested in this thesis allows handling the packet loss and signal
recovery problem by exploiting the characteristics of the application. The idea
proposed in this thesis about including an estimated probability density function
from the application during signal recovery could be investigated and implemented
in other signal recovery methods. Other avenues of future work identified in this
thesis are presented as follows:

Minimisation of wireless retransmissions.- Decision making at the sensor node may
include a cost function that considers power consumption per bit transmitted, power
available (or generated power if an energy harvester is used), packet loss percentage,
sparsity in the signal, signal dimension, desired recovery probability and the number
of measurements required. This would encode the signal in the best possible way
to increase the probabilities of successful recovery. As part of the communication
protocol, every wireless data packet sent from a sensor node is acknowledged by
the receiver. A notification is sent to the sensor node to confirm successful message
reception. In many applications, the data packets are numbered so that if packet loss



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 117

occurs, then the lost packet can be requested by the receiver. By using compressive
sensing, the order of the data packets is irrelevant. This approach is tolerant to ran-
dom packet loss, the only requirement to recover an S-sparse signal from compressed
sensing measurements is to have received the minimum number of measurements
described in Chapter 3.7.2 regardless of the reception order. Therefore, it may not
be required to acknowledge the reception of each data packet but to send a single
notification from the receiver to the sensor node when enough measurements have
been received to recover the sparse vibration signal. This could potentially increase
power savings in the sensor nodes as they are active after each wireless transmission.
When the sensor nodes transmit a message, they enter into listen mode waiting for a
notification (acknowledgement) from the receiver that the packet was received. For
instance, if an S-sparse vibration signal is to be sent from the wireless sensor node
and an estimate of the number of M measurements needed to recover that signal
is known, then the required transmissions T for that number of measurements M
may be defined. This means that the acknowledgement mode may be deactivated
for T − 1 transmissions to save valuable energy. The impact on power conservation
from this idea can be analysed and reported as future work.

Sensor Node Design.- The proposed framework in this research work did not alter
the current hardware design of the sensor nodes and the vibration sensor selected by
the Rolls-Royce sponsored University Technology Centre. The available features of
the sensor node, the vibration sensor and the application were exploited to increase
the wireless vibration sensing system performance without physical modifications
to existing hardware. However, the speed of the vibration sensing system could be
increased and the cost of the sensor nodes reduced by using a simpler vibration sensor.
For instance, by selecting an accelerometer without embedded FFT analysis and
perform compressed sensing directly without acquiring the complete signal, which
means taking measurements directly over the signal in the time domain. However, a
thorough evaluation of the new scenario would be required to determine if the existing
hardware can be maintained. Moreover, benefits from local signal processing would
not be exploited. Under this scenario, the sensor would not be able to take samples
of a frequency bandwidth of interest as it would not include spectral analysis. Also,
when a vibration signal is available in the frequency domain at the sensor node, event
detection can be incorporated. For example, sending data only when the vibration
signal exceeds a given magnitude. This allows data compression and reduction of
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wireless transmissions, which would not be possible using a simple sensor without
signal processing. These trade-offs are to be considered depending on the application.

Further improvement of the E-OMP recovery algorithm.- Preliminary experiment-
ation suggests that the number of measurements may be further reduced if the
choice of the optimal column in the measurement matrix at each iteration is not
only based in the selection of the maximum correlated column to the residual in step
2. The suggested additional step involves increasing the search space among most
correlated columns. The signal recovery performance is likely to improve when the
search space is augmented. For instance, in the standard OMP, it is expected to
recover an S−sparse signal after S iterations with the final residual close to zero.
The objective of this greedy algorithm is to find the right set of S columns of the
measurement matrix Φ that participated in the measurement vector y. When the
residual or error is not close to zero after S iterations, it means that one or more
columns were incorrectly chosen during the execution of the algorithm. It was noted
that in most cases even if the algorithm fails (error between original and recovered
signal exceed a given value), the recovered signal matches most of the active frequency
components in the original sparse vibration signal, this is because the majority of
the columns were correctly identified. This motivated to increase the search space, it
was observed that this led to an accurate signal recovery in the majority of the cases.
However, this needs to be further explored to define the implications, the cost added
from modifying the recovery algorithm, theoretical proof of optimal search space and
so on. After solving this issue, the performance of that algorithm may be compared
to other signal recovery methods such as L1-minimisation algorithms based on L1

norm. Although these algorithms require a smaller number of measurements than
standard OMP, the computation is intensive as it is based on convex optimisation. As
reported in the literature, OMP is an effective alternative to basis pursuit for signal
recovery of sparse signals and may be faster and easier to implement. Moreover, the
OMP structure is clear and allowed to include prior information from the application
in the form of an estimated PDF as an additional input. It may worth exploring if a
PDF can be included in other signal recovery algorithms. Then, a study comparing
different signal recovery methods in terms of required processing power, the number
of measurements, speed and performance would be valuable as the most suitable can
be selected depending on the requirements of the application.
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Appendix A

System Level Requirements

A set of experiments were conducted to address the system requirements defined by
Rolls-Royce for the WSN infrastructure [131]. A summary of the most relevant to
this research work is shown in Figure A.1. The objective was to demonstrate the
capabilities of the proposed WSN within a Gas Turbine Engine to support Equipment
Health Management. The implementation of WSN in a GTE is of significant interest
to RR because currently it is not possible to carry out measurements on rotating
machinery without making modifications to the actual hardware.
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Requirement Description

1 The WSN shall support multiple nodes
1.1 Each sensor node shall have a local, self-powered sensor

transmitting to a receiver attached to either the EMU or the
EEC via an Ethernet or CAN link

1.2 The WSN should be modifiable and should facilitate rapid
deployment of sensor nodes

1.3 The WSN shall be self-initialising
1.4 The network shall deploy a transmission technique to mitigate

multipath propagation
1.5 Channel sharing should not deteriorate the communications

efficiency below design expectations
1.6 The WSN should be capable of frequency diversity and

intelligent RF power management
1.7 The network shall deploy a communication protocol which

allows operation of many sensor nodes in a concentrated area
on the engine

1.8 The WSN shall consist of multiple sensor nodes and a gateway
node acting as the data concentrator

1.8.1 The gateway node shall be able to recognise signal failure from
individual nodes

1.8.2 The WSN topology for SILOET II demonstration shall be
’star’ topology

2 The WSN should include the option to retransmit data in the
event that it is corrupted or lost during transmission

Figure A.1: List of relevant system level requirements.
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Requirement Description

3 The transmission range of the wireless network shall be large
enough to sensibly facilitate wireless transmission around a
standard civil aerospace fan case

4 The network shall deploy a communication protocol which is
capable of automatically switching to lower data rates, if
encountered poor signal conditions

5 The system should have the option to provide flexibility to
improve communications between the sensor nodes and the
transmitter

6 For local communication around the engine smaller data
packets should be used

7 The gateway node shall be connected to the EMU via a
physical cable link

8 Potential signal leakage to the external environment during
active in-engine wireless communication should be minimised

9 Measures of the performance of the wireless links established
such as Link quality indicator should be used to achieve
optimal performance

10 Application of a signal and data encryption scheme should be
considered to ensure data security

Figure A.1: List of relevant system level requirements.



Appendix B

Communication with
Vibration Sensor

As described in Section 3.2, the sensor node includes a CC2500 2.4 GHz Radio
Frequency transceiver chip to handle data packets sent and received. This radio
and the ADIS16227 vibration sensor described in Section 3.4, both act as slaves and
communicate via Serial Peripheral Interface (SPI) with the microcontroller which
acts as the master. However, the SPI settings for each of the slaves is different in
terms of the maximum allowed SPI clock speed, SPI mode clock phase and/or clock
polarity. Therefore the SPI configuration varies for each one of them.

The combinations of clock polarity (CPOL) and clock phases (CPHA) are often
referred to as modes which are commonly numbered according to the following con-
vention (see Table B.1). The TI target boards from the sensor node were programmed
as SPI mode 3 for the vibration sensor and SPI mode 0 for the CC2500 radio as shown
in Table B.2.
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Table B.1: SPI modes in relation to combinations of clock polarity and phase.

SPI Mode CPOL / UCCKPL CPHA/UCCKPH

0 0 0
1 0 1
2 1 0
3 1 1

Table B.2: Radio and vibration sensor SPI modes considered for programming the
TI boards.

Device SPI mode Max. SPI clock rate CPOL CPHA

ADIS16227 3 2.5 MHz 1 1
CC2500 0 10 MHz 0 0

A set of functions (listed in Table B.3) were programmed in the microcontroller to
interface with the vibration sensor through SPI.

Table B.3: Functions programmed to interface with the vibration sensor via SPI.

SPI programmed functions

1 void spiConfig (void) 9 void spiTX(char value)
2 void radioEnable (void) 10 char spiRX(void)
3 void radioDisable (void) 11 void shutDownSens (void)
4 void sensEnable (void) 12 void delay1ms (void)
5 void sensDisable (void) 13 void spiconfig_srx_acc (void)
6 void clearKPL_KPH (void) 14 void spiconfig_avg_bufpntr (void)
7 void spiVibSensConfig (void) 15 void spitrigger (void)
8 void spiRadioConfig (void) 16 void reset_bufpntr (void)

1. Initial SPI configuration: Function used to configure the ports, clock speed and
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SPI parameters such as clock polarity and clock phase.

2,3. Enable / Disable Radio (CC2500): The pin assigned as CS (chip select) / SS
(slave select) is set low to enable communication or set high to disable communication
from the microcontroller (master) to the radio (slave). Note: The master commu-
nicates only with one slave at a time, therefore when communicating with one slave
all the other slaves must be disabled.

4,5. Enable / Disable Vibration Sensor (ADIS16227): The digital triaxial vibration
sensor is activated or deactivated by changing the state of the assigned CS pin (P4.5).

6. Clear polarity/phase settings on SPI clock signal: Resets UCCKPL (Clock
Polarity) and UCCKPH (Clock Phase) so that the radio can be reconfigured.

7. Configure the digital tri-axial vibration sensor SPI mode: This function allows
the ADIS16227 vibration sensor to be configured as the datasheet indicates.

8. Configure the 2.4 GHz RF Transceiver CC2500: The following function configure
the radio in SPI mode 0 and sets the SPI clock speed rate. Although SPI mode
0 requires CPOL/UCCKPL=0 and CPHA/UCCKPH=0 since the UCCKPH flag is
inverted, UCCKPH is set as a consequence.

9. Write value in TX buffer: After the bus master (microcontroller) configures the
SPI settings required by the slave. The master enables communication with the
desired slave by transmitting a logic 0 to the chip select/ slave select line. Since the
chip select line is active low, hence a logic 0 is transmitted. User control registers
govern several internal operations. The Data In (DIN) bit sequence shown in Figure 1
allows writing to these registers, one byte at a time. Some functions and configuration
changes need only one write cycle. For example, writing DIN= 0xBF08 (Data sent
from the microcontroller to the tri-axial vibration sensor) starts a manual capture
sequence (SPI trigger), for a more detailed description refer to function 16. The size
of the input parameter of the following function is one byte long, as a result, it may
be required to call this function twice for functions that require two write cycles. It
is important to remember that SPI communication is a synchronous protocol that
operates in full duplex mode, hence when a value is written into the TX FIFO buffer,
a value is received simultaneously in the RX FIFO buffer.
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10. Read value in RX buffer: A single register read requires two 16-bit SPI cycles, the
bit assignments are shown in the previous figure 1. The first sequence communicates
the target address (Bits[A6:A0]). Bits [D7:D0] are bits that don’t care for a read
Data In sequence. Data Out (DOUT) clocks out the contents of the requested register
during the second sequence.

11. Shut-down sensor: To power down the tri-axial vibration sensor after performing
data acquisition and processing, it is necessary to set GLOB_CMD[1] = 1 which
is done by writing Data In (DIN) = 0xBE02. The GLOB_CMD register (Address:
0x3E) is a global command register that provides an array of single-write commands
for convenience. To activate each function the assigned bit should be set to 1 (refer
to table A5). The bit restores itself to 0 when the function is completed.

12. Delay 1 millisecond: Delays are required during the program execution. For
example, a small delay after performing functions such as SPI writing ensures that
the data is available to save it or for posterior use in different sections of the program
code. The CPU is a finite state machine whose transitions are triggered by a
circuit and oscillator that periodically generates clock pulses. One pulse duration
is commonly known as a ”clock cycle”. To determine the exact amount of time
generated by delaying ’n’ clock cycles, it is important to know the CPU clock
frequency, in this case, the Master Clock (MCLK) allows the program to run at
8 MHz. Since time = 1 / frequency, 1 second = 8’ 000,000 clock cycles.

13. Sample rate configuration and Acceleration settings (signal range)

Sample Rate Selection: The ADC samples each accelerometer sensor at a rate of
100.2 kSPS. Four different sample rate options are provided for FFT analysis, SR0
(fs), SR1 (fs/8), SR2 (fs/64), and SR3 (fs/512). The reduced rates are due to a
decimation filter, which reduces the bandwidth and bin widths. See table A6 for the
performance trade-offs associated with each sample rate setting.

Acceleration/range selection: The record control register is REC_CTRL, that re-
gister provides controls for the recording mode, record storage, dynamic range,
sample rate and power management.

14. Set buffer pointer: After the completion of an FFT event and updating the data
buffer, the vibration sensor loads the first data samples from the data buffer into the
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buffer registers (X_BUF, Y_BUF and Z_BUF). The index buffer pointer increments
with ever buffer read command (for any of the axis), it causes the next set of capture
data to be loaded automatically into each capture buffer register. This enables a
process-efficient method for reading all 256 samples in a record, using sequential reads
commands, without having to manipulate the buffer pointer register (BUF_PNTR).
Example: After a record acquisition, if the buffer of the x-axis acceleration data
(X_BUF) wants to be recorded/read, then it is just necessary to sequentially read
the same X_BUF address (0x14), the index pointer is automatically incremented
each time. The index pointer determines which data samples load into the Buffer
registers, in this case, data in X_BUF register.

15. SPI trigger: By setting GLOB_CMD [11] =1 (DIN=0xBF08) results in the
initialisation of a manual capture sequence. The manual capture starts immediately
after the last DIN bit received (16th SCLK rising edge).

16. Reset buffer pointer: As mentioned previously in function 15, the index buffer
pointer increments with ever buffer read command, given an application where
essential data is only in the bandwidth of 3 KHz, it is possible to select SR1 as
the sample rate setting (bandwidth: 6.262 KHz, see table A6) and use the index
buffer pointer to read only the first half of the total bandwidth for that sample
rate selection. Since the index buffer pointer moves automatically, it resets when
it reaches 256 since the stored FFT spectral records are 256 (from index pointer 0
to 255). Therefore if we are manipulating the index pointer it is important to reset
the buffer pointer to 0x0000 after recording/handling FFT data so that the index
pointer is in the right place on the start of the next FFT record.
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Table B.4: Set of instructions for ’spiConfig’ function.

Configure Ports
Code Comments
WDTCTL=WDTPW +
WDTHOLD;

// Stop watchdog timer (WDT) to prevent
interrupting program execution.

P3SEL | = 0x0E; // Port/pins active:
P3.1=MOSI, P3.2=MISO, P3.3=CLK.

P4SEL = 0x00; // P4 pins used as general I/O.
P3DIR | = 0x0B; // Port 3 direction: 0000 1011

P3.3 = Output (CLK), P3.2 = Input (MISO),
P3.1=Output (MOSI), P3.0=Output (CS).

P4DIR | = 0xFF; // P4.3 Output direction (P8 -> CS).
Initialise and configure SPI interface
Code Comments
UCB0CTL0 |= UCSWRST; // UCB0CTL0 can be modified only when

UCSWRST=1 UCSWRST =0 (USCI released).
UCB0CTL1 |= UCSWRST; // Allows to modify/configure UCB0CTL1.
UCB0CTL0 |= UCMSB +
UCMST + UCSYNC;

// 3-pin, 8-bit SPI master, MSB first.

UCB0CTL1 |= UCSSEL_2; // Use SMCLK as clock source = 8 Mhz.
UCB0BR0 = 0x04; // Low byte division factor for baud rate ( /4 ) =

8/4 = 2 Mhz.
UCB0BR1 = 0x00; // High byte division factor.
UCB0CTL0 &= ~UCSWRST; // Released (UCSWRST =0)

UCB0 CTL0 configures clock phase, clock
polarity.

UCB0CTL1 &= ~UCSWRST; // Start SPI hardware (UCSWRST =0)
UCB0 CTL1 configures USCI clock source select.
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Table B.5: Bit value changes to enable/disable the radio and vibration sensor

Enable/Disable radio/vibration sensor
Code Comments
P3OUT &= ~0x01; // P3.1 (Low), enables radio
P3OUT |= 0x01; // P3.1 (High), disables radio
P4OUT &= ~BIT5; // P4.5 (Low), enables vibration sensor
P4OUT |= BIT5; // P4.5 (High), disables vibration sensor

Table B.6: Set of instructions for ’clearKPL_KPH’ function.

Clear polarity/phase settings on SPI clock signal
Code Comments
UCB0CTL0 |= UCSWRST; // USCI in reset state (To allow modifications)
UCB0CTL0 &= ~UCCKPL; // Reset Clock polarity - UCCKPL (off)
UCB0CTL0 &= ~UCCKPH; // Reset Clock phase - UCCKPH (off)
UCB0CTL0 &= ~UCSWRST; // Release USCI
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Table B.7: Set of instructions for ’spiVibSensConfig’ function.

Configure the digital vibration sensor SPI mode
Code Comments
UCB0CTL0 |= UCSWRST; // UCB0CTL0 can be modified only when

UCSWRST=1. (This allows to modify/set:
Clock polarity, clock phase) UCSWRST=1, USCI
holds in reset. UCSWRST=0, USCI released.

UCB0CTL1 |= UCSWRST; // UCB0CTL1=1 -> Software reset enable
UCB0CTL0 |= UCMSB +
UCMST + UCSYNC +
UCCKPL;

// 3-pin, 8-bit SPI master, MSB 1st, clock
polarity (UCCKPL=CPOL=1). // UCCKPL =1
-> Data clocks in the falling edge (ADIS16227
inactive state is high). // UCCKPL =0 -> Data
clocks in the rising edge.

UCB0CTL1 |= UCSSEL_2; //UCSSEL_2 -> Uses sub master clock
(SMCLK) as clock source = 8 Mhz

UCB0BR0 = 0x04; //Low byte division factor for baud rate (/4)
SMCLK = 8 MHz/ 4 = 2 Mhz. Note: SCLK
Rate in ADIS16227 <= 2.25 Mhz.

UCB0BR1 = 0x00; //High byte division factor
UCB0CTL0 &= ~UCSWRST; //Released (UCSWRST =0)
UCB0CTL1 &= ~UCSWRST; //Start SPI hardware (UCSWRST =0)

Table B.8: Set of instructions for ’spiTX’ function.

SPI Transmit, input parameter: ’value’
Code Comments
while (!(IFG2 &
UCB0TXIFG));

// USCI_B0 TX buffer ready?

UCB0TXBUF = value; // Write value in TX buffer
while (!(UCB0STAT &
UCBUSY));

// Transmission done

return; // Return statement, function call end
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Table B.9: Set of instructions for ’spiRX’ function.

SPI Receive, output parameter: ’UCB0RXBUF’
Code Comments
while (!(IFG2 &
UCB0RXIFG));

// Wait for RX buffer

return UCB0RXBUF; // Output parameter, the function returns the
contents of the requested register, now stored in
the RX Buffer.

Table B.10: Set of instructions for ’spiconfig_srx_acc’ function.

Sample rate configuration
Code Comments
spiTX(0x9D); // Value to be written to configure sample rate

(Upper byte)
dummyRX = spiRX(); // Receive 1st dummy byte
spiTX(0x02); //0x01 = SR0 Selection, 0x02=SR1 Selection,

0x04=SR2 Selection. (Sample rate configuration
and windowing)

dummyRX = spiRX(); // Receive 2nd dummy byte
delay1ms(); // 1 millisecond delay
spiTX(0x9C); // Value written to configure acceleration range

(Upper byte)
dummyRX = spiRX(); // Receive 1st dummy byte
spiTX(0x30); //0x30 = 70 g , 0x20= 20 g, 0x01= 5g, 0x00=1g

(Manual FFT and Signal Range configuration)
dummyRX = spiRX(); // Receive 2nd dummy byte
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Table B.11: Set of instructions for ’shutDownSens’ function.

Shutdown sensor
Code Comments
spiTX(0xBE); // Command to power down the ADIS16227

(Upper byte)
dummyRX = spiRX(); // Receive 1st dummy byte
spiTX(0x02); // Command to power down the ADIS16227

(Lower byte)
dummyRX = spiRX(); // Receive 2nd dummy byte
delay1ms(); // 1 millisecond delay
sensDisable(); // Set high the CS pin assigned to the sensor to

disable communication with the microcontroller
return;

Table B.12: Set of instructions for ’spiconfig_bufpntr’ function.

Set buffer pointer (BUF_PNTR) to 0x0000
Code Comments
spiTX(0xBF); // Command to set buffer pointer = 0x0000.

Register: GLOB_CMD (Address: 0x3E) Upper
byte

dummyRX = spiRX(); // Receive 1st dummy byte
spiTX(0x04); // Command to set GLOB_CMD=0x0000.

Lower byte
dummyRX = spiRX(); // Receive 2nd dummy byte
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Table B.13: Set of instructions for ’spitrigger’ function.

Start FFT capture
Code Comments
spiTX(0xBF); // Command to start a capture sequence. Upper

byte
dummyRX = spiRX(); // Receive 1st dummy byte
spiTX(0x08); // Command to start a capture sequence. Lower

byte
dummyRX = spiRX(); // Receive 2nd dummy byte
__delay_cycles(3240000); // Wait for data to be ready, delay= 405 msec

Table B.14: Set of instructions for ’reset_bufpntr’ function.

Reset buffer pointer
Code Comments
spiTX(0xBF); // Command to set buffer pointer = 0x0000.

Register: GLOB_CMD (Address: 0x3E) Upper
byte

dummyRX = spiRX(); // Receive 1st dummy byte
spiTX(0x04); // Command to set GLOB_CMD=0x0000.

Lower byte
dummyRX = spiRX(); // Receive 2nd dummy byte

The following Figure C.1 shows the physical Serial Peripheral Interface (SPI) connec-
tion diagram between the microcontroller which acts as the bus master and two slaves
which are the radio transceiver and the vibration sensor. SPI bus uses separated
lines for data (Master Output Slave Input or MOSI, Master Input Slave Output or
MISO) and SPI clock (SCLK) generated by the master which is used to synchronise
full-duplex communication with the slaves. The SPI clock pin and the data lines
(MOSI and MISO) are shared between all existing slaves in SPI communication.
The microcontroller communicates with one single slave at a time via an independent
slave select (SS) line.
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Figure B.1: Vibration sensor and microcontroller SPI connection diagram.




