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Abstract 

The dissolution of carbohydrates in Ionic liquids has received attention for many decades 

and still is to this day. Solutions of xylan and xylose in 1-ethyl-3-methylimidazolium acetate 

[C2mim] [OAc] were individually examined at various temperatures (20 °C-70 °C) using 

NMR spectroscopy, diffusion and the low field spin-lattice and spin-spin relaxation times (T1 

and T2) as well as rheology measurements. The ratio of the diffusion coefficients for the anion 

to the cation remained constant upon the addition of xylan and xylose, showing that the anion 

and cation were equally affected by the presence of the carbohydrate. The activation energies 

for translational diffusion motion of both ions in the xylose solutions were similar to these 

found in published cellobiose. The addition of xylose and xylan individually have affected 

the mobility of the protons, with a decrease occurring with increasing carbohydrate 

concentrations. We are looking at the interactions between plant polymers, such as xylan 

with cellulose, with the aim to form biomimetic materials. A solution of cellulose and 

xylan in the ionic liquid 1-ethyl-3-methylimidazolium acetate [C2mim] [OAc] was 

examined using NMR diffusion, low field relaxometry and rheology measurements at 

various temperatures (20 °C-60 °C). We observed that the dissolving mechanism of xylan 

in the IL [C2mim] [OAc] is close to that for cellulose. The diffusion coefficient of the 

anion is preferentially more reduced by cellulose than by xylan. It is generally agreed that 

the anion is more active in the dissolution of carbohydrates than the cation. The 

dissolution mechanism of cellulose and xylan in the IL [C2mim] [OAc] can be examined 

via the mobility of the ions. We proposed that the number of accessible OH groups 

belonging to the carbohydrates are reduced at certain xylan-cellulose blend compositions, 

showing that at these concentrations there are significant interactions between the two 

biopolymers. 
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Chapter  1  

1 Introduction  

 

1.1 A Brief History of Ionic Liquids 

Ionic liquid (ILS) are organic salts that have a melting point below 100°C with some 

being liquids even below room temperature [1, 2]. ILs can be formed from numerous 

different anions combined with many different cations [3, 4]. The most common cations 

used are imidazolium, pyridinium, ammonium and phosphonium derivatives [5]. The one 

most frequently used for biomass processing, including cellulose itself, is 

imidazolium[6]. Ionic liquids have been employed in many fields, such as solvents, in 

catalysis, separation technology and electrically conducting fluids [7, 8]. In 1934, 

Graenacher proposed the use of molten N-methylpyridinium chloride as a solvent to 

dissolve cellulose, and observed that this salt has a relatively low melting point at just 

118°C [9]. Ionic liquids were employed for dissolution, homogeneous derivatization and 

biomass general processing. Swatloski originally reported on 1-butyl-3-

methylimidazolium chloride [BMIM] [Cl] being the first use of an ionic liquid in the field 

of cellulose technology [10, 11]. The most important reasons to select ILs to process 

biomass are their ‘‘green’’ credentials (low vapour pressure) potential variety (‘‘designer’’ 

solvents), as well as the advanced understanding of the solvents’ properties that have 

developed. Moreover, the use of ILs will allow an increase in solution efficiency and 

reduction of undesirable solvents, coupled with control and flexibility in the processing 

methodology [12-14]. 
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Over the last two decades, ionic liquid 1-ethyl-3-methylimidazolium acetate [C2mim] 

[OAc] has received much attention as an excellent solvent to dissolve green material such 

as cellulose and also non-green like carbon dioxide [7, 15, 16]. This because the IL 

[C2mim] [OAc] has useful properties, such as a lower melting point, vapour pressure and 

viscosity than most ILs, in addition to its good thermal stability and suitable for 

biodegradability [17, 18]. Therefore, IL [C2mim] [OAc] is utilized as the solvent to 

dissolve carbohydrates, such as glucose, cellobiose and xylan. The chemical structure 

with spectrum of the IL [C2mim] [OAc] solvent is shown in Figure 1.1. This solvent 

consists of the imidazolium cation [C2mim] and the acetate, anion [OAc] [5, 18].  

                

 

Figure 1.1: The chemical Structure and spectrum of 1-ethyl-3-methylimidazolium 

acetate, cations [C2mim]+ and anion [OAc]– with the labelling of NMR resonance peaks 

(1-7).  

 

  



 

3 

 

 

 

1.2 Carbohydrates  

Biopolymer carbohydrates are renewable sources for a wide variety of biomass-based 

products and applications, such as food, materials and energy supplies [19, 20]. 

Carbohydrate is a molecular compound made from the elements: hydrogen, oxygen, and 

carbon [21]. Examples are cellulose, xylan (polysaccharides) and xylose 

(monosaccharide). Carbohydrate monosaccharide consists of one sugar unit, while a 

polysaccharide is more than three sugar units bonded together [22, 23]. Recently, the 

dissolution of carbohydrates (polysaccharides and monosaccharides) in ionic liquids has 

attracted much attention, to develop sustainable materials with excellent physical and 

chemical properties [24].  

In 1838, the first research on cellulose was carried out by Anselme [25]. Cellulose is the 

world’s most abundant naturally occurring biopolymer, found in plants, bacteria and 

fungi and is predicted to become the largest source of renewable materials. Cellulose has 

numerous significant applications in the fibres, paper and paint industries [26, 27]. It has 

a hydrogen-bonded supramolecular structure, containing D-anhydroglucopyranose units 

connected by β (1→4) glyosidic bonds [28, 29]. Hydrogen bonds form between the 

hydroxyl group of neighbouring chains and give toughness and strength to the cellulose 

structure [30]. Figure 1.2 present the monomer of cellulose, two glucose units. Cellulose 

is insoluble in most organic solvents and water. Therefore, there has been significant 

effort to find ways to process cellulose using different solvents and reagents [31], such as 

the viscose method that uses carbon disulphide [32]. The procedure of viscose was 

developed by scientists Charles Frederick Cross and Edward John Bevan. In 1892, they 

obtained British Patent no. 8,700 for ‘‘Improvements in Dissolving Cellulose and Allied 

Compounds’’ [33].  
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Figure 1.2: The molecular structure of cellulose(taken from ref [34]). 

 

Xylan is the second most abundant carbohydrate (polysaccharide), on earth after cellulose 

[35]. Xylan is found in the cell walls of plants and comes in a wide range of structures, 

where this diversity in structures is correlated with their functions in plants. Figure 1.3: 

The molecular structure of xylan. shows the structure of xylan. This a polysaccharide and 

consists predominantly of β−(1→4) – linked xylose residues [36]. The differences in the 

xylan backbone structure depend on the extraction procedure and the botanical source.  

 

 

Figure 1.3: The molecular structure of xylan. 

The composition of the xylan backbone commonly contains a galactose, xylose, arabinose 

and mannose, as well as an esterases group (acetyl and ferulic acid). Like cellulose, xylan 

is insoluble in water [36]. Recent studies are interested in employing xylan in numerous 

applications, such as paper, food industry, biofuel, as well as, in pharmaceutical as a 

prodrug. Xylan ester has been employed as a carrier a drug and also sulphate derivatives 

to use as antiviral drugs [37, 38]  
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The structures of three carbohydrates monosaccharides so far described are shown in 

Figure 1.4. Xylose can be derived from hemicellulose such as xylan [39]. Glucose and 

xylose have a variety of industrial applications such as pharmaceutical [40] and food 

production, and in food supplements. Glucose is classified as a simple carbohydrate, a 

monosaccharide, having five OH groups [41]. Glucose is found in plants and in the 

bloodstream of humans. Cellobiose is classified as a disaccharide and consists of two 

D − glucopyranose units connected by a β (1→4) glyosidic bond [39, 41]. These 

carbohydrates are soluble in most organic solvents and water.  

 

(a)                           (b)                            (c)               

Figure 1.4: The chemical structure of D-xylose(a), glucose (b) and cellobiose (c)  (taken 

from refs [42, 43]). 

 

 

1.3 Mixture of Carbohydrates Dissolved in Ionic Liquids  

The blends of two or more carbohydrates, by using ionic liquids, are considered as 

promising materials for applications in biotechnology and medicine [7, 44]. Cellulose and 

xylan are the most abundant natural polymers; therefore they are a desirable target for 

sustainable materials. Ionic liquids have utilisation into biopolymers applications, such 

as to extract, dissolve and mix. For example, ionic liquid N, N‐diethyl‐N‐(2‐

methoxyethyl)‐N‐methylammonium alanine [N221ME][Ala] was utilised to obtain 

cellulose II from cellulose type I [45].  
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These polymers can be dissolved in solvents such as 1-ethyl-3-methylimidazolium acetate 

[C2mim] [OAc], 1 − butyl − 3-methylimidazolium chloride [BMIM] [Cl] and 

N−methylmorpholine-N-oxide [NMMO] [46, 47]. Ionic liquids can be used to extract 

polysaccharides from a plant, by using 1,3 − Dimethylimidazolium methyl 

methylphosphonate [C1mim][(MeO)(Me)PO2] solvent [48]. A natural interaction occurs 

between cellulose and xylan throughout the cell wall assembly in a plant. This interaction 

is one of the primary concerns in this work, and it is relevant to numerous industrial 

techniques [49-52]. The bacterial non-cellulose (this known as cellulosic material) was 

used as a support with Arabinoxylan to produce uniform transparent films, and absence 

of one of these polymers may cause weak mechanical properties of the film [53]. Xylan 

was employed to reinforce a cellulose structure and control the morphology to produce 

new fibres [8]. This is because the hydroxyl groups, OH of xylan have a significant impact 

on the solubility of cellulose [51, 54]. It also is possible to make a hydrophobic film[55] 

with good mechanical properties and thermal stability, from blending xylan and cellulose 

with glycerol as a plasticiser [56]. Paananen et al., studied interaction between xylan and 

cellulose fibres, using the atomic force microscopic technique to measure elastic module 

of these fibres, they found that the addition of xylan can influence cellulose, making the 

fibres have a higher strength [57, 58].  

Recently studies focused on a mixture of carbohydrates in IL[C2mim] [OAc]. An 

interaction happens between OH group of polymers and diffusing particles of solvent, at 

specific stoichiometric ratios [35, 56, 59]. Gordobil et al. found that an interaction 

between the ions of IL [C2mim] [OAc] and molecules of xylan and cellulose system, and 

these gave non-linear behaviours between mechanical property and mixture polymers 

weight fraction (w/w) [56]. Sundberg et al., also reported that the correlation between the 

mixture carbohydrates concentrations and the mechanical properties of the blended films, 

showing this to be not linearly dependent on concentration, which may be due to the 

interaction between cellulose and xylan. These polymers give tensile and stiffness to film 

when they are together [35].  
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Nuclear Magnetic Resonance (NMR) is employed to determine both molecular structure 

and dynamics in a wide range of scientific disciplines. NMR can study the chemical and 

physical properties of molecules in solution and solid state; it can determine crystallinity, 

solubility of a solution [60], phase changes, conformational exchange, diffusion and 

rotational motion [61]. Simmons et al. studied the influence of xylan on cellulose fibres 

by following the chemical shift of molecules using 13C NMR spectroscopy [62]. In this 

study we will explore the interactions between xylan/xylose and IL [C2mim] [OAc], as 

well as between cellulose and xylan in solution, using liquid-state NMR techniques.  

 

 

1.4 Thesis Overview  

This thesis presents an investigation into a number of carbohydrates dissolved into the IL 

[C2mim] [OAc] and how they can influence the diffusivity of ions, using primarily NMR 

diffusion, and low and high field relaxation times, as well as rheology across arrange of 

temperatures 20 ℃ -70℃. The viscosity measurements used a dynamic stress-controlled 

rheometer. An investigation process started with several steps: first of all, Arrhenius 

equation was modelled and applied to data each of diffusion and relaxation times and 

rheology, to calculate the activation energy of ions in a viscous medium. Secondly, The 

Bloembergen, Purcell and Pound (BPP) theory and Stokes-Einstein- Debye equations are 

applied to the experimental data, to understand the relationship between microscopic 

diffusion, relaxation times and macroscopic viscosity. By determining the correction 

term, or also known as the micro-viscosity per-factor, and the size of hydrodynamic radii 

of the ions. Chapter 2 begins with an introduction of the laboratory techniques and the 

basis of nuclear magnetic resonance, NMR and the Bloembergen, Purcell and Pound, BPP 

theories used in following chapters. Chapters 3, 4 and 6 are results based, each consisting 

of experimental results and analysis of data. Chapter 5 is an investigation of the influence 

of different carbohydrates on the diffusivity of ions of IL [C2mim] [OAc]. 
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Chapter 3 studies xylose dissolved in ionic liquid [C2mim] [OAc] using NMR and 

rheology methods and are compared to the cellobiose system. Chapter 4 employs a similar 

approach with xylan dissolved in IL [C2mim] [OAc] using NMR and rheology techniques 

and are compared to a cellulose system. Chapter 5 presents the in-depth analysis of NMR 

and rheology data of five carbohydrates which are glucose, cellobiose, xylose, cellulose 

and xylan each individually dissolved in IL [C2mim] [OAc] and these systems are 

compared to each other. Chapter 6 uses IL [C2mim] [OAc] to dissolve two polymers 

together which are cellulose and xylan and then measured using NMR and rheological 

techniques. This thesis attempts to understand the distinction of the influence of different 

carbohydrates on the ions of ionic liquid [C2mim] [OAc], and an investigation of the 

interaction between blended carbohydrate polymers on the diffusivity of ions in solution. 
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Chapter 2  

 

2 Background Theory and Experimental Method 

 

2.1 Introduction  

Chapter Two begins by laying out the theoretical background for the research, and looks 

at the principles of Nuclear Magnetic Resonance (NMR), including diffusion and 

relaxation times. Experimental techniques were used to investigate transitional diffusion 

and rheological properties of carbohydrate solutions. Nuclear Magnetic Resonance 

(NMR) and rheology measurements will form the experimental data. The carbohydrates 

used were xylose, xylan and cellulose, and the solvent was 1-Ethyl-3-Methylimidazolium 

Acetate [C2mim] [OAc]. 
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2.2 Nuclear Magnetic resonances (NMR) Theory 

NMR exploits the spin and magnetic properties of certain NMR active nuclei. Classically, 

the motion of the internal electrical charge (e.g. nucleus of hydrogen) produces a small 

magnetic field [63]. Hence, this nucleus (proton) possesses a magnetic moment µ that is 

related to its spin 𝐼 of a nucleus: 

                                                                  𝜇 = 𝛾ћ𝐼                                                       (2.1) 

with 𝛾 the magnetogyric ratio, this is a fundamental nuclear constant and ћ is the reduced 

Planks constant. Each hydrogen nucleus with spin (1/2) will have two orientations when 

a magnetic field Bₒ is applied. These spins will align with or against the direction of the 

magnetic field, and the energy states of the nucleus split. 

In the lower energy state, 𝛼, a magnetic moment is parallel to the direction of the field. 

At equilibrium, the population of nuclei in this lower state is greater than that of the higher 

energy state, 𝛽 . Nuclei in the lower state, 𝛼  can be excited using electromagnetic 

radiation, which causes the nuclei to change their energy states. For the higher state, 𝛽 

the magnetic moment is antiparallel to the magnetic field [64, 65]. The energy state can 

be given by: 

                                                           𝐸 = −𝑚𝛾ћ𝐵ₒ                                                        (2.2) 

where m=±1/2 a magnetic quantum number of nuclei. There is a difference in energy 

between the eigenstates ∆E due to the applied field. This difference in energy depends on 

the strength of the external magnetic field and is given by [64, 66] 

                                                                     ∆𝐸 =  𝛾ћ𝐵ₒ                                                            (2.3) 

The angular processional frequency (𝜔) of a nucleus is termed the Larmor frequency and 

is given by 2.4. In case the external magnetic field is applied in the Z- direction, known 

as 𝐵𝑍, [67, 68], given by equation (2.5) 

                                                          𝜔 = 𝛾Bₒ                                                                      (2.4) 

                                                               𝜔𝑒𝑓𝑓  = 𝜔0 + 𝛾𝐵𝑍                                                         (2.5) 
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Figure 2.1: Precession of a nuclear in an external magnetic field. The small arrows 

indicate to when the magnetic moment with or against the applied magnetic field. 

 

Atomic nuclei within a liquid move randomly within the applied external magnetic field 

through a process of diffusion (Brownian motion). If this applied field has a spatial 

dependence, a field gradient, then this causes processional frequencies to vary with time. 

It is this phenomenon that enables NMR to quantify the diffusion of the nuclei through 

the detection of the resultant time dependence of the processional frequencies [69]. 

 

 

2.2.1 Stokes−Einstein Theory 

The diffusion coefficient,𝐷𝑖 known as the self-diffusion coefficient, can be defined by 

equation 2.6, where the position of the molecule or ion in the medium is indicated by the 

diffusion distance of particle, ri, at long time t: 

                                                         D = 𝑙𝑖𝑚
𝑡→∞

1

6𝑡
 〈| 𝑟𝑖(𝑡) − 𝑟𝑖 (0) |² 〉                                          (2.6) 

The average displacement of ions or molecules in three directions is zero, but the mean 

square of the diffusion displacement of particle, i, can be determined by: 
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                                                        〈𝑟𝑖
²〉 = 6𝐷𝑡                                                                    (2.7) 

The value of the diffusion coefficient depends on the shape of ions/molecules, their size, 

and the viscosity of the solution they are within[59, 68]. The relationship between 

translational diffusion of ions/molecules and the thermal energy in a viscous medium can 

be determined by the classical Stokes−Einstein equation. 

                                                     𝐷𝑖(𝑇) =  
1

𝜂
 ×

𝑘 𝑇

4 𝜋𝑓𝑅𝐻    
                                                       (2.8) 

where k is the Boltzmann constant, T is the temperature, η is the viscosity of the solution 

and 𝑅𝐻  is the effective Stokes radius of the ion or molecule. ƒ is a correction term and 

also known as micro-viscosity pre-factor, where ƒ is equal to 1 when the diffusing ions 

sized are greater than the surrounding molecules [70]. It can also be ƒ less than one if ion 

/ molecule is smaller or similar to the size of particles in the viscous medium [59, 71]. 

According to McLaughlin, number 4 can be used instead of 6 in the Stokes-Einstein 

equation, when the size of ions is the same as that of the molecules of a solution [59, 72]. 

At room temperature, the values of diffusion coefficient are typically in the range between 

10−9𝑚2𝑠¯¹  and 10−12  𝑚2𝑠¯¹  for the small and large size of molecules in solution 

respectively [73, 74]. The Stokes effective radius,  𝑅𝐻, of ions can be determined by 

diffusion coefficient and the ratio of temperature to viscosity by using Stokes-Einstein 

equation. The effective hydrodynamic radius,𝑅𝐻,𝑖  can also be calculated through the 

volume or mass of one-mole component i, by the following equation[75]: 

                                                        𝑅𝐻,𝑖 ≈
1

2
 (

𝑉𝑚,𝑖

𝑁𝐴
)

1

3
= 

1

2
 (

𝑀𝑖

𝜌𝑁𝐴
)

1

3
                                             (2.9) 

where  𝑁𝐴 is the Avogadro number, 𝜌 is density,  𝑀𝑖 is the molar mass, and 𝑉𝑚,𝑖 is the 

molar volume. Equation 2.8 is used in many studies and has been shown to give 

reasonable approximate value for the effective radius of ions [59, 74-76]. 
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2.2.2 Bloembergen−Purcell−Pound (BPP) Theory 

The Bloembergen, Purcell and Pound (BPP) theory explain the influence of the thermal 

motion of ions upon spin–spin interactions [77]. In NMR system of nuclei spin, ½ (e.g. 

Hydrogen nuclei) the relaxation times T1 and T2 are related to a rotational correlation 

time,𝜏𝑟𝑜𝑡 at Larmor frequency, 𝜔 the relaxation times can be determined by: 

                                         
1

𝑇1
 = 2𝐴 (

𝜏𝑟𝑜𝑡

1+𝜔2𝜏𝑟𝑜𝑡
2 +

4𝜏𝑟𝑜𝑡

1+4𝜔2𝜏𝑟𝑜𝑡
2)                                          (2.10) 

                                               
1

𝑇2
 = 𝐴 (3𝜏𝑟𝑜𝑡 +

5𝜏𝑟𝑜𝑡

1+𝜔2𝜏𝑟𝑜𝑡
2 +

2𝜏𝑟𝑜𝑡

1+4𝜔2𝜏𝑟𝑜𝑡
2)                               (2.11) 

where the spin-lattice relaxation time is, T1, also termed the longitudinal relaxation and 

T2 is the spin-spin relaxation time, also known as the transverse relaxation time. A is a 

constant defined as follows: 

                                                              A =  
3

20
 𝛾4ħ2(

𝜇0

4𝜋
)2 𝑟𝐻−𝐻

−6                                        (2.12) 

where 𝛾 is the gyromagnetic ratio of protons, ħ is the reduced Planck constant, 𝜇0 is the 

permeability of free space, and 𝑟 𝐻−𝐻 is the distance between two protons [77, 78]. 

The longitudinal relaxation depends on the mobility and proximity of nuclei to each 

other[64]. Transverse relaxation can be caused by interactions between nuclei that have 

identical precessional frequencies, but with different magnetic quantum numbers. In this 

case, spin can be mutually exchanged between energy states without a net change in the 

populations of the states. This results in a line broadening in the NMR spectrum and 

contributes to the transverse relaxation. Experimentally, the relaxation time is 

approximately exponential and is governed by Equation 2.18. In the transverse relaxation 

measurement, the magnetization is kept within the XY plane [79]. 
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2.2.3 Stokes−Einstein−Debye Theory 

The relaxation times and the correlation time depend on temperature, resultant that three 

types of systems > Liquid system at a high-temperature limit and when relaxation times 

T1 and T2 are equal, which both of relaxation times increase as temperature increased. The 

second is a solid system at low temperature and T1 ≠ T2, this because T1 rises, while T2 

reduces. A translational system is the point between solid and liquid systems and known 

as a T1 minimum at ωτ = 0.62 [59, 77, 78]. It is possible to calculate the values of the 

effective hydrodynamic radii, 𝑅𝐻 for ions or molecules, using relaxation times when 𝜔𝜏 

≪  1, T1 and T2 reduce to the same simple formula dependent on 𝜏𝑟𝑜𝑡 . Debye and 

Einstein’s equation relates that to viscosity, and putting it all together gives a final 

relationship between NMR relaxation times and viscosity. The rotational correlation 

time, 𝜏𝑟𝑜𝑡can be calculated for spherical molecules/ions. With nuclei spin, ½ is given by: 

                                                𝜏𝑟𝑜𝑡  = 4
3⁄ 𝜋𝑅𝐻

3 𝜂

𝐾𝐵𝑇
                                                              (2.13) 

where η is shear rate viscosity. According to BPP theory, at the high-temperature limit, 

the relaxation time T1 and T2 can be determined following by: 

                                                          
1

 𝑇1
 =

1

 𝑇2
 = 10𝐴𝜏𝑟𝑜𝑡                                                       (2.14) 

with A constant, Equations 2.13 and 2.14 are combined to give the correlation between 

the relaxation times and viscosity by: 

                                                𝑇1 =  𝑇2 =  
3𝑘𝐵

(40𝜋𝐴 ƒ 𝑅𝐻
3)

 𝑇 𝜂⁄                                                       (2.15) 

These equations will be applied to experimental data to determine the correction term, ƒ 

and the hydrodynamic radii, 𝑅𝐻,𝑖 of ions in viscous solutions, in next chapters. 
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2.3 Experimental Technique 

This section will present the methods which were used to study carbohydrate 1-ethyl-3-

methylimidazolium acetate [C2mim] [OAc] solutions. 

 

 

2.3.1 NMR Methods 

A Nuclear Magnetic Resonance Bruker Avance II (400MHz) spectrometer with diffusion 

probe (Diff 50) was used. The measurement of relaxation times T1 and T2 have  been 

performed on a 20 MHz “low” field Maran Benchtop NMR spectrometer. 

 

2.3.1.1 NMR Diffusion 

Diffusion was measured using the method of NMR stimulated echo pulse sequence with 

bipolar gradients [80, 81], which is produced by a combination of magnetic field gradients 

and radiofrequency pulses (PFGSE) [82, 83]. Figure 2.2 displays the NMR stimulated 

echo pulse sequence with bipolar gradients. Bipolar gradients, g is used for dephasing and 

rephasing the magnetization positions during the time is ∆, and 𝛿 is the pulse duration of 

the joint pair of bipolar pulses sequences 𝜋 2⁄  and 𝜋 are indicated to 90° and 180°[83]. 

Experimentally, attenuation of the signal of the intensity of ions in PFGSE is provided by 

Equation 2.16 [84, 85]. 
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Figure 2.2: NMR stimulated echo sequence with bipolar gradients. It taken from ref [82]. 

 

                                   𝑙𝑛(
𝑆𝑖

𝑆𝑖0
⁄ ) = −𝐷𝑖𝛾2𝑔2𝛿2(∆ − 𝛿

3⁄ − 𝜏
2⁄ )                                   (2.16) 

where 𝐷𝑖  and 𝑆𝑖  are a diffusion coefficient and the measured signal intensity of ions 

respectively. 𝑆𝑖,0 is an initial signal intensity, ∆ the time between bipolar gradients, g the 

gradient strength, and  𝜏  is a period separating the starting of each pulse pair. The 

parameters were  ∆ = 60ms and the duration of the gradient pulses, 𝛿 = 2-5ms, and g was 

incremented 20Tm-1 (gradient field strength was confirmed using water at 20 °C) [86] , 

and 𝜏 was kept constant at 2ms [59, 87, 88]. 

 

 

2.3.1.2 Spin Lattice Relaxation Time T1 

The inversion recovery method is given by the pulse sequence 180°𝑥-𝜏-90°𝑥 and is 

utilised to measure the relaxation time T1. Figure 2.3 displays the inversion recovery pulse 

sequence used to measure T1. After the initial 180º pulse the net sample magnetisation M 

points along the negative Z-direction and then during 𝜏 M relax until it returns to the 

original and equilibrium position, pointing parallel to the positive Z-direction.  
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The magnetisation M rotates around the X- direction when, the 90º pulse is applied and 

then M, is transferred to the Y– direction [64, 79], where its size is then measured. This 

is repeated for various tau values and 𝑀𝑧 as a function of 𝜏 is recorded. This function is 

then fitted to a single relaxation time expression given by: 

 

                                                  𝑀𝑍 =  𝑀0 (1 − 2𝑒𝑥𝑝
−𝜏

𝑇1⁄ )                                      (2.17) 

 

 

Figure 2.3: The inversion recovery pulse sequence to measure T1. 

 

 

2.3.1.3 Spin− Spin Relaxation Time T2 

The pulse sequences for measuring spin-spin relaxation time, T2, was developed by Carr 

and Purcell in 1954 [69]. Experimentally, T2 is measured by ‘‘90°x-𝜏/2-(180°x-𝜏/2-

measure-𝜏/2)n’’, which is known as Carr Purcell Meiboom Gill (CPMG) sequence [69, 

79]. Figure 2.4 shows the pulse sequence for the (T2) measurement and its effect on  

 



 

18 

 

 

 

nuclear spins [89]. The value of magnetisation in the y-direction can be calculated by the 

equation: 

                                                 𝑀𝑦 = 𝑀0 𝑒𝑥𝑝
−𝜏

𝑇2⁄                                                           (2.18) 

 

 

Figure 2.4: The  measurement of the transverse relaxation time T2 measurement. ( taken 

from ref [90]) 

 

where M is magnetisation in the applied field 𝐵0 after ‘‘90°’’ pulse sequence applied at 

the echo time, 𝜏. After ‘‘90°’’ the magnetisations in XY plane and will gradually decay 

with decays at the rate of T2*. This decay happened due to the inhomogeneous magnetic 

field, and spin-spin relaxation time. Therefore, the ‘‘180°’’ pulse sequence is employed 

to eliminate the inhomogeneous field [69, 71, 87, 90]. 
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2.3.2 Rheology Method 

A dynamic stress-controlled rheometer (Kinexus Ultra, from Malvern) using equipped 

with a cone-plate geometry (4°- 40 mm) and a temperature control system, using software 

called rSpace. A thin film of low-viscosity silicone oil was added around the edges of the 

plates to prevent moisture-contamination during the viscosity measurements. The Cross 

– Viscosity Equation has been used on a hypothetical basis that there is a change in the 

formation and structure of fluids at different shear rates [91]. The Cross – Viscosity 

equation was used to obtain the zero shear rate viscosity 𝜇0 of a solution. 

                                             𝜇 =  
𝜇0+𝜇∞.𝛼𝛾𝑛

1+𝛼𝛾𝑛
                                                 (2.19) 

where; 𝛾 is shear rate s-1, 𝜇∞ is the viscosity at infinite shear rate, n, is the flow behaviour 

index (from 0 to 1), while α is the consistency index for shear-thinning fluids [91]. The 

intrinsic ability of a salute to raise the viscosity of a solvent at a given temperature is 

quantified by an intrinsic viscosity [η] [92]. There are several steps needed to determine 

an intrinsic viscosity. Starting with Relative viscosity, 𝜂𝑟 can be calculated following by: 

                                                              𝜂𝑟 = 
𝜂

𝜂0
⁄                                                        (2.20) 

where η is the viscosity of polymer solution and 𝜂0 is the viscosity of the solvent. The specific 

viscosity, 𝜂𝑠𝑝 of solutions were extracted from relative viscosity, which  𝜂𝑠𝑝 can obtain by 

                                                              𝜂𝑠𝑝= 𝜂𝑟 – 1                                                       (2.21) 

The specific viscosity uses to measure intrinsic viscosity[η]  by this equation. 

                                                            [η] = lim
𝑐→0

𝜂𝑠𝑝 /𝑐                                                 (2.22) 

where η is the viscosity of the solution, and η0 is ionic liquid viscosity. From intrinsic 

viscosity, one can obtain information about the molar mass and solvent thermodynamic 

property.  
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Wolf approach was developed for carbohydrate in ionic liquids and used to determine the 

intrinsic viscosity [93, 94] and η can be calculated [η] by 

                                               ln  𝜂𝑟= 
𝑐[𝜂]  +𝐵𝑐2[𝜂][𝜂]˙

1+𝐵𝑐[𝜂]
                                         (2.23) 

where B is a constant and c is a concentration of polymer in solution. The part 

[𝐵𝑐2[𝜂][𝜂]˙] of Equation 2.23 can be ignored because it is very small. Then by using the 

Huggins Equation to fit all the data in a single master curve. 

                                          𝜂𝑠𝑝 = [𝜂]𝑐 + 𝑘𝐻([𝜂]𝑐)2 + 𝐴([𝜂]𝑐)𝑛                                 (2.24) 

where A, n and [η] were obtained from least squares analysis to a data point and  𝑘𝐻 is the 

Huggins constant, which is typically in the range of 0.3 to 0.5 [92-95]. 

 

 

2.3.3 Carbohydrates Dissolved in Ionic Liquid [C2mim] [OAc] using NMR 

Spectroscopic 

Nuclear Magnetic resonances (NMR) spectroscopy is used to investigate the interaction 

between the ions and carbohydrate molecules. The NMR chemical shift technique is 

employed to explore the new hydrogen bonds in these systems. The first carbohydrates 

were dissolved in IL [C2mim] [OAc] are cellulose and then glucose. Zhang et al., reported 

that the dissolution of cellulose can be determined by the interaction between cellulose 

molecules and ions of IL [C2mim] [OAc], which is hydrogen bonding interactions, these 

occur when the acetate anions [OAc] bonds to hydrogen atoms of the cellulose hydroxyl 

groups, and also by the imidazolium cations [C2mim] bonding with oxygen atoms of the 

OH groups of cellulose [6, 96]. Youngs et al., studied the interaction between anions 

acetate and hydroxyl groups in glucose solution by using pulse field gradient (PFG 

NMR). It found that the cations interact less with glucose in hydrogen bonding than that 

of the anion [97]. The interaction between ions of the ionic liquid and glucose molecules 

can be determined by measuring diffusion coefficients, activation energy and chemical  
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shift. It found that hydrogen bonds in glucose / IL [C2mim] [OAc] reduced the degree of 

ionic paring [98-100], where the anion prefers to associate with hydroxyl groups of 

glucose. The anions are found to diffuse slower, than unexpected, this might be due to 

anions diffusing as a member of ion aggregations [101, 102]. 

 

 

2.3.4 Material and Samples Preparation 

The ionic liquid 1-ethyl-3-methylimidazolium acetate [C2mim] [OAc] solvent was 

purchased from Sigma-Aldrich (purity ≥ 97%, highest obtainable). This section will 

present the three types of carbohydrates – D-xylose, xylan and cellulose – which were 

dissolved in the ionic liquid [C2mim] [OAc]. D-xylose and cellulose powders were 

obtained from Sigma Aldrich with a purity of ≥  99% for NMR and viscosity 

measurements. Xylan was extracted from pulping of primary birch wood in the form of a 

white powder, and it was obtained from the company Billerud Korsnas. 

The carbohydrate composition of xylan is by dry weight fraction: xylose 88%, glucose 

6%, galactose 4.4%, arabinose 1.4% and mannose 0.3%. There are other components in 

xylan, such as lignin and ash. D-xylose, xylan and cellulose powders were dried in 

vacuum at 50°C for 24h before use. D-xylose and xylan were individually dissolved in 

[C2mim OAc] solvent to prepare two sets of five samples with different weight fraction 

(weight fraction: 1%, 3%, 5%, 10% and 15%). Xylose samples have transparent colour, 

even if increase the weight fraction in solution, whereas the colour of xylan samples start 

with yellow to dark brown on adding a high concentration. Low concentrations of these 

carbohydrates took ~48h to dissolve in [C2mim] [OAc] while high concentrations (5%, 

10% and 15%) approximately one week, these samples were prepared without heating. 

Carboyhdrate solutions were stirred under nitrogen gas in an MBraun Lab Master 130 

Atmospheric chamber preserved at the level of a dew point between -70 ℃ and -40 ℃. 

The NMR tubes of samples were sealed to prevent contamination with water from the 

atmosphere within the chamber. NMR spectroscopy used to check whether there is water  
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in samples by examining the spectrum of IL[C2mim] [OAc] and looking for a resonance 

peak around 5 ppm, the water peak. The blends samples were prepared from two 

carbohydrates in 0.9 ml [C2mim] [OAc] and 0.1g of the total of carbohydrates with 

different concentrations. The carbohydrates consisted of xylan and cellulose, with xylan 

weight fraction ranging from 0-100%. These carbohydrate polysaccharides have different 

crystallinity percentage. For instance, the crystallinity of cellulose has the highest 

between 50% to 75% [19], while xylan has low crystallinity compared to cellulose, it 

could be due to xylan having a variety of structures [36]. The molar mass 𝑀𝐺𝑈  of 

‘‘glucose unit’’ for cellulose and xylan are 162, and 131 g/mol, respectively. 
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Chapter  3  

3 Investigation of the Influence of D-Xylose and Cellobiose on the 

Ionic Liquid 1-Ethyl-3-Methylimidazolium Acetate [C2mim] 

[OAc] 

 

3.1 Introduction 

The ionic liquid. 1-Ethyl-3-Methylimidazolium Acetate [C2mim] [OAc] is commonly 

used to dissolve different types of carbohydrate polysaccharide and monosaccharide, such 

as cellulose, glucose and xylose to investigate their influence on the diffusing particles in 

a viscous medium. This chapter will present the comparison between two carbohydrates 

monosaccharides (xylose and cellobiose) have when dissolving in 1-ethyl-3-

methylimidazolium acetate [C2mim] [OAc]. There are two steps have been done, 1) 

Xylose in IL [C2mim] [OAc] solutions, to understand the dissolution of IL [C2mim] 

[OAc] using ¹H NMR spectroscopy, diffusion (9T / 400 MHz) , and low field NMR (0.5T 

/ 20 MHz) relaxometry, across the temperatures range (20 °C to 70 °C). 2) The diffusion 

data of xylose will be compared to cellobiose data, which is taken from Ries et al. [41], 

to understand the influence of carbohydrate structure, in particular, the number of 

available OH groups, has on that the ions. The zero shear rate viscosity of xylose solution 

was measured. This viscosity data and diffusion, as well as relaxation time data, were 

employed to measure the correction term f and effective hydrodynamic radii, using both 

of Stokes-Einstein-Debye-relationships. The intrinsic viscosity of xylose and cellobiose  
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was calculated using the Wolf approach. It is also interesting to make a comparison 

between two carbohydrates polysaccharides, therefore; next chapter will show the 

dissolution of xylan in IL[C2mim] [OAc] and compared to cellulose data.  

 

3.2 Experimental Methods 

3.2.1 NMR Methods 

NMR diffusion coefficient and low- field relaxation time T1 and T2 were measured using 

the techniques presented with details in Section 2.3.1. The diffusion coefficient of anions 

and cations for xylose and cellobiose solutions with different weight fractions were 

measured across temperatures ranging between 20 °C to 70 °C. The data of diffusion 

coefficients for xylose were compared to cellobiose data. 

 

3.2.2 Viscosity Method 

All rheological measurements were done for all xylose solutions using equipped with a 

cone-plate geometry (4°- 40 mm) and a temperature control system, using software called 

rSpace, as detailed in Section 2.3.2. Steady-state measurements were recorded for 

temperature between 20 °C to 60 °C inclusive in 10 °C steps. The viscosity-shear rates 

were from 0.01 to 200 s-1. Before the experiment was run, a thin film of low-viscosity 

silicone oil was applied around the edges of the plate to prevent moisture contamination 

during the viscosity measurements. Each measurement for each concentration sample was 

repeated several times to get accurate data. 
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3.2.3 Materials and Sample Preparation 

Xylose powder was dried under vacuum at 50°C for 24h before use. Xylose was dissolved 

in [C2mim] [OAc] solvent to prepare five samples with different concentrations (weight 

fraction: 1%, 3%, 5%, 10% and 15%). The resultant volume of each sample was ~ (1g). 

All xylose solutions were prepared in an MBraun Lab Master 130 Atmospheric chamber. 

Low concentrations of xylose took ̴ 24h to dissolve in [C2mim] [OAc] while high 

concentrations (5%, 10% and 15%) approximately 72h. All xylose solutions were placed 

in the NMR tubes with depths less than 1 cm to reduce convection currents on heating in 

the NMR machine. The NMR tubes of samples were sealed within the chamber to prevent 

contamination with water from the atmosphere By doing this, we followed the guidance 

set out by Annat et al [103]. 
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3.3 Results and Discussion 

3.3.1 NMR Diffusion 

¹HNMR spectroscopy, diffusion, and low field relaxometry, across the temperatures 

range (20 °C to 60 °C), were used to examine the influence of xylose on the ions of the 

IL [C2mim] [OAc]. The ¹H NMR spectrum displays seven peaks, each peak corresponds 

to a chemically distinct proton within the ionic liquid molecule, recall Figure 1.1 [18]. 

During measurements of NMR diffusion, it was found that the diffusion coefficients of 

all cations resonances were equal. An Arrhenius type equation was used to model the 

temperature dependence of the self-diffusion coefficients of the ions 𝐷𝑐𝑎𝑡/𝑎𝑛 in 15% of 

cellobiose, CB, and all the xylose weight fractions %. 

                                                    𝐷(𝑐𝑎𝑡,𝑎𝑛)  = 𝐷0 𝑒𝑥𝑝 (
−𝐸𝐴,𝐷 

𝑅𝑇
)
                                      (3.1) 

where EA is the translational activation energy for the ions, R is the universal gas constant, 

T is temperature, and 𝐷0 is the zero activation energy limiting value (sometimes known 

as the high temperature limiting value) of the diffusion coefficients for the ions [41]. In 

Figure 3.1(a, b) the solid lines are the Arrhenius fits. The mobility of anions and cations 

decrease with an increase in xylose weight fraction. The values of diffusion coefficients 

are increased with increase in temperature, as expected. These values indicate the 

diffusivities of anions and cations are similar. At low temperature, the values of diffusion 

decrease gradually with the addition of xylose. From Figure 3.1 both ions diffuse in 15% 

of cellobiose slightly slower than 15% of xylose. For instance 𝐷𝑐𝑎𝑡 are 8.2*10−12m2s-

1and 1.02*10−11m2s-1 𝐷𝑎𝑛 are 5.8*10−12m2s-1 and 7.7*10−12m2s-1 for 15% of cellobiose 

and xylose respectively, at temperature 50 ℃. 
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Figure 3.1: Arrhenius plots for the diffusion coefficients of (a) anions [OAC] and  (b) 

cations [C2mim], for 15% cellobiose and all xylose weight fraction. Solid lines 

represented fits based on equation (3.1)and error bars are within the symbols used. [CB] 

means cellobiose. 
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The values of activation energies of diffusion coefficients of cations and anions for xylose 

and cellobiose solutions were calculated using Equation 3.1. Table 3.1 displays the values 

of activation energies of both ions increased with concentration at low concentrations, but 

for high concentrations of 10% and 15% of xylose solutions, it decreased slightly. The 

activation energies of ions gradually increased with an increase in cellobiose 

concentrations in solution. The values of activation energies of both ions indicated an 

insignificant difference between xylose and cellobiose systems for diffusion 

measurements. 

 

Wt (%)     𝐸𝐴,𝐷 Xylose/kJ mol-1 𝐸𝐴,𝐷 Cellobiose/kJ mol-1 

 E[C2mim]+ E [OAc] ̄ E[C2mim]+ E [OAc] ̄ 

0 41. 5 ±1 43 ±1 42 ± 1 43 ± 1 

1 49.5 ± 2 50 ± 2 41 ± 1 43 ± 1 

3 50 ± 1 51 ± 1 43 ± 2 45 ± 2 

5 59 ± 2 59 ± 2 43 ± 1 44 ± 1 

10 57 ± 2 58 ± 1 49 ± 2 50 ± 2 

15 54 ±1 55 ± 2 58 ± 4 61 ± 2 

Table 3.1: The activation energies values of cations and anions for all xylose and 

cellobiose solutions. 

 

Figure 3.2 presents the ratio of diffusion coefficients of anions to cations as a function of 

temperature for xylose and cellobiose. The ratio of diffusion coefficients of the anion to 

the cations for all xylose and 1% and 15% cellobiose concentrations were calculated from 

the data which is presented in Figure 3.1. As the temperature increased the ratio of anion 

[OAc] to cation [C2mim] diffusivities remained constant, with only a slight dependence 

on the xylose weight fraction. The 1% and 15% cellobiose solution are also shown as a 

comparison with this data displaying a similar temperature dependence. The ratio of anion 

[OAc] diffusion coefficients to that of cation [C2mim] is less than 1. This is known as 

‘anomalous’ diffusion since the anion is geometrically smaller than the cation and 

therefore is expected to diffuse instead faster (i.e. the geometrically larger cation diffuses 

relatively faster than expected). The ratio of diffusion coefficients of the anions to the  
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cations is barely affected by the addition of xylose. Here it can be inferred that both 

carbohydrates have a similar dissolving mechanism. Figure 3.2 shows the data point of 

15% of cellobiose jumped up at 60℃; this may be caused due to the current convection. 

 

Figure 3.2: The ratio of diffusion coefficients of anions to cations as a function of 

temperature for xylose and cellobiose. Solid lines correspond to linear fits and error bars 

within the symbols sizes. 

 

3.3.1.1 The Chemical Shift of Protons Resonances 

The chemical shift of protons was determined during NMR diffusion measurements. The 

resonance frequency, δ, for a proton in parts per million (ppm), and ∆δ is the change of 

these frequencies from the pure IL [C2mim] [OAc] positions caused by the addition of 

xylose. Figure 1.1 shows the labelling of proton resonances in the structure of IL [C2mim] 

[OAc]. The chemical shift ∆𝛿 of protons resonances was calculated using 𝛿 resonance 

peak 5 as the reference position. Protons of imidazolium ring [C2mim] have negative 

values of ∆δ and relatively large movement peak 2, which is the most acidic proton. Peak 

6 belongs to the anion [OAc] and peak 7 to a cation methyl group, and these both display 

positive values of ∆δ. Figure 3.3 shows at 40℃, the movement of peak positions, this 

indicates that the addition of xylose and cellobiose disrupts the associated ions in the IL 

[C2mim] [OAc] and also given is the spectrum of 10% xylose/IL[C2mim] [OAc] 

solutions at 40℃. The reason for this is presumably the formation of H-bonding between  
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the IL and the OH groups in carbohydrates respectively. The anion [OAc] prefers to form 

H-bonds with the hydroxyl groups of carbohydrates, which moves them downfield, rather 

than remain associated with the protons in the imidazolium ring [C2mim]. It is interesting 

to note that the ∆δ on the addition of xylose is almost identical to the chemical shift 

movements on the addition of cellobiose, suggesting that the dissolution process in both 

instances is similar. 

 

               

 

Figure 3.3: The chemical shift of protons resonances ∆δ (ppm) versus weight fraction of 

xylose and cellobiose, CB, and spectrum of 10%/ IL[C2mim] [OAc] solutions at 40 °C. 

Error bars are within the symbols sizes. 
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3.3.2 Stokes−Einstein Analysis 

Stokes-Einstein theory was employed to obtain an insight into the correlation between 

microscopic (diffusion) and macroscopic (viscosity) properties of ions and molecules. 

Stokes-Einstein Equation 2.8 is applied to experimental data to determine the correction 

term ƒ, also known as the micro-viscosity pre-factor, it works as a key to determining the 

diffusion of ions in xylose and cellobiose systems, as discussed in section 2.2.1. The 

hydrodynamic radius, 𝑅𝐻,𝑖 of ions was calculated by Hall et all using Equation 2.9. The 

values of the effective hydrodynamic radius are for the anion 2.2 Å and the cation 2.8 Å 

[59]. These values of 𝑅𝐻,𝑖 are used in Equation 2.8. 

Figure 3.4 (a, b) shows the correlation between translational diffusion of cations and 

anions and the ratio of temperature (𝐾) to the viscosity (Pa s) to the viscosity of pure IL 

[C2mim] [OAc] and 15% cellobiose and all xylose concentrations. The cellobiose and 

xylose solutions follow the Stokes-Einstein Equation. It is possible to note that these 

carbohydrates have similar behaviour in IL [C2mim] [OAc]. All data of pure ionic liquid, 

15% of cellobiose and all xylose solutions are combined from different temperatures into 

a single master plot. From Figure 3.4 the gradients are used to determine the correction 

term, ƒ, as shown in Figure 3.5. 
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Figure 3.4: NMR diffusion coefficients of cations(a) and anions (b) against the ratio of 

temperature to the viscosity of pure IL [C2mim] [OAc] and 15% cellobiose and all xylose 

concentrations. Dashed lines are provided as visual guide and Error bars are within the 

symbols sizes. 

 

McLaughlin reported that when the sizes of ions are the same as that of the molecules of 

the solution, then ƒ< 1, but ƒ is equal to 1 when the diffusing particle is large compared 

to the molecules of the viscous medium [75]. Figure 3.5 presents the correction term, ƒ, 

of cations and anions as a function of weight fraction of xylose. The result shows the 

correction term of the diffuses anion faster than cation.  
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The ƒ for anions ≥ 1 at high concentrations, this indicates that the anions diffuse close to 

as expected. The cation f is less than one, which means the cations are diffusing faster 

than expected.  

 

Figure 3.5: The correction term, ƒ, of cations and anions as a function of weight fraction 

of xylose. The error bars are in the same size of symbols used  

 

 

3.3.3 NMR Low−Field Relaxometry 

Experimentally, low-Field Relaxation (0.5 T and 20MHz) T1 and T2 of different xylose 

concentrations (1%, 3%, 5%, 10%, and 10% of cellobiose) were measured across the 

range of temperatures 30 °C to 70 °C. The values of T1 and T2 relaxation times increase 

with an increase in temperature, but these values decrease with xylose concentration 

increases in solution.  

Figure 3.6 (a, b) shows T1 is very close to T2 for all xylose, and there is the insignificant 

difference between 10% of cellobiose and xylose. At low field relaxation, xylose is found 

to be in the liquid regime across all selected temperatures. We will discuss this data in 

more details later. 
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Figure 3.6: NMR relaxation times T1 and T2 as a function of temperature at 20 MHz, for 

all xylose concentrations with 10% cellobiose. Error bars are within data size and the 

dashed lines to guide the eye. 

 

  



 

35 

 

 

 

Low field relaxation times T1 and T2 have an inadequate chemical resolution to distinguish 

between ions; therefore, the calculated values of the activation energy, 𝐸𝑇1,𝑇2  is an 

average value of both ions. The activation energy gives essential insight into transport 

characteristics. An Arrhenius equation is modelled to calculate the activation energy of 

relaxations times, 𝐸𝑇1,𝑇2 , which gives the following: 

                                                   𝑙𝑛 𝑇1,2  = 𝑙𝑛 𝑇0 +
𝐸𝑇1,𝑇2 

𝑅𝑇
                                              (3.2) 

Where 𝑇0 is relaxation time at infinite temperature, R is the universal gas constant and T 

is temperature. Table 3.2 displays the values of activation energies of T1 and T2 

relaxations for xylose and cellobiose concentrations (1%, 3%, 5% and 10%). There are 

the insignificant difference between the values of activation energies of relaxation time 

T2 for xylose and cellobiose. 𝐸𝑇2  of 15% of cellobiose was slightly higher than 15% of 

xylose. 

 

Wt% 𝐸𝑇1,𝑇2 Xylose/kJmol-1 𝐸𝑇1,𝑇2 Cellobiose/kJmol-1 

0 31 ± 1 33 ± 1 31 ± 1 33 ± 1 

1 32 ± 1 34 ± 1 30 ± 1 34 ± 1 

3 33 ± 1 35 ± 1 31 ± 1 35 ± 2 

5 33 ± 1 37 ± 2 27 ± 1 38 ± 2 

10 30 ± 1 41 ± 2 30 ± 1 44 ± 2 

Table 3.2: Activation energies of T1 and T2 relaxations for xylose and cellobiose/IL 

[C2mim OAc]. 
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3.3.4 Viscosity–Temperature Analysis 

The viscosity measurements of different xylose concentrations (1%, 3%, 5%, 10% and 

15%) were measured across the range of temperatures 20 °C to 60 °C inclusive. The 

Cross-Viscosity Equation 2.19, was used, to determine the zero-viscosity 
0
of xylose 

solution at selected temperatures.  

Figure 3.7a shows the steady state flow curves of xylose / [C2mim] [OAc] solutions for 

various concentrations at 40 °C. The data from 0 to 10 s-1 had a low signal to noise ratio 

and thus was ignored for 1%, 5%, 10% and 15% of xylose solution, but the low signal 

started from 0 to 1 s-1 for 3% xylose. Figure 3.7b shows the viscosity decreased as 

temperature increased, as expected. The influence of xylose concentration on solution 

viscosity is more significant at low temperatures; than high temperatures. Figure 3.7c 

shows the experimental data for each concentration is plotted as (ln 𝜂0) against inverse 

temperature. Viscosity values increase with xylose weight fractions and decrease with 

temperature. Xylose solutions behave in a remarkably similar way to cellobiose. The 

diffusivity of ions in a viscous medium can be determined through their activation energy, 

using an Arrhenius−type equation as: 

                                              𝑙𝑛 (𝜂 ) = ln(𝜂0 ) +  
𝐸𝐴,𝜂

𝑅𝑇
⁄                                          (3.3) 

Where; 𝜂∞ is the value of limiting viscosity, 𝐸𝐴 is activation energy, T is temperature and 

R the molar gas constant [104]. 

  



 

37 

 

 

 

 

 

 

Figure 3.7:a) The zero viscosity of xylose / [C2mim] [OAc] solutions at different weight 

fractions as a function of shear rate/s. b) Viscosity as function of weight fraction of xylose 

across arrange of temperatures. Dashed line to guide the eye. c) The logarithmic plots of 

the viscosity of pure [C2mim] [OAc] and 15% cellobiose and xylose in IL [C2mim] 

[OAc] solutions versus inverse temperature. Lines are linear approximations. Error bars 

are within the size of the symbols used. 
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The activation energy of viscosity is related to the energy required for molecules to move 

past each other, allowing flow [59]. An Arrhenius Equation 3.3 was applied to the 

experimental data to calculate the activation energy of viscosity for carbohydrates 

solutions. Table 3.3 presents the values of viscosity activation energies of xylose 

compared to cellobiose at similar temperatures. The activation energy of viscosity 

increased with the addition of carbohydrate weight fractions. The 𝐸𝐴,𝜂  of xylose is 

slightly higher than 𝐸𝐴,𝜂 of cellobiose. From Table 3.3, it was found that the values of 

activation energies of ions indicated an insignificant difference between xylose and 

cellobiose systems for viscosity measurements. 

 

Wt% 𝐸𝐴,𝜂 Xylose/kJmol-1 𝐸𝐴.𝜂 Cellobiose/kJmol-1 

0 40 ± 2 40 ± 2 

1 44 ± 6 39 ± 2 

3 46 ± 2 41 ± 2 

5 50 ± 3 44 ± 2 

10 50 ± 3 50 ± 2 

15 63 ± 3 58 ± 2 

Table 3.3: The activation energies of viscosity for xylose and cellobiose solutions with 

uncertainties values. 
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3.3.5 Stokes−Debye−Einstein Analysis 

Low field relaxation times (20 MHz) were measured across temperatures (70 °C - 30 °C). 

Relaxation times T1 and T2 have the inadequate chemical resolution to distinguish 

between ions; therefore, the values of the hydrodynamic radii size, 𝑅𝐻,𝑖 were calculated 

as averaged value over both ions. Stokes- Einstein-Debye Equation was used to consider 

the rotational correlation time of diffusing ions and to calculate the values for the radius 

of ions in a viscous medium, 𝑅𝐻,𝑖, as discussed in Section 2.2.3. 

Figure 3.8 (a, b) displays the correlation between the relaxation time and the ratio of 

temperature to the viscosity for carbohydrates concentrations. Figure 3.8a shows the 

dependence of relaxation times T1 on the ratio of temperature to viscosity for 10% 

cellobiose and D-xylose concentrations. All data collapsed together to form one master 

line, which may be due to them having the same number of OH groups. The gradient for 

each concentration is approximately equal to 1. This helped compare relaxation times T1 

and T2 and viscosity systems at selected temperatures. Figure 3.8b shows that same 

relationship holds almost as well for relaxation time T2. The slope was used to calculate 

the value of the effective hydrodynamic radii for T1 and T2 using Equation 2.15. Figure 

3.9 will display the hydrodynamic radii,  𝑅𝐻,𝑖 values of relaxation time T1.  
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Figure 3.8: The relaxation times T1 and T2 dependence on the ratio of temperature to 

viscosity for 10% cellobiose [CB] and D- xylose concentrations. Error bars are within 

data points. Dashed lines are provided as a visual guide. 
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Figure 3.9 shows the hydrodynamic radius in D-xylose solutions and the hydrodynamic 

radius of the averaged ions (2.5 Å) of pure IL [C2mim] [OAc]. It is visible from that the 

value of the hydrodynamic radius of averaged ions increases for (1%, 3%, 5% and 10%) 

xylose concentrations and are between 3.5 Å to around 4 Å. The size of ions does not 

change, but how they move can be influenced by the interactions with D-xylose. The 

values of hydrodynamic radii for all the xylose concentrations and all the temperatures, 

for T1, is almost equal to or slightly greater than T2 experimentally.  

 

Figure 3.9: The values of effective hydrodynamic of radii against the xylose weight 

fractions and the hydrodynamic radius of the averaged ions of pure IL [C2mim] [OAc] 

and errors are within the size of data points. 

 

 

3.3.6 Intrinsic–Viscosity Analysis 

In this work, the intrinsic viscosity is determined by using the viscosity-shear rate data. 

The intrinsic viscosity, [η] was obtained by processing the data of viscosity at selected 

temperatures through the following steps. First of all, we used the zero viscosity of xylose 

solutions mean Newtonian viscosity values presented in Figure 3.7a. The Second step, 

the calculations were done employing relative viscosity, where 𝜂𝑟𝑒𝑙 of xylose solution 

calculated by applying Equation 2.20, where is the viscosity of each xylose concentration  
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divided by the viscosity 𝜂0 of pure IL[C2mim] [OAc]. Figure 3.10a shows concentration-

dependence of the relative viscosity of xylose solutions. The relative viscosity increases 

with increase in xylose into a solution. The highest values of 𝜂𝑟𝑒𝑙 were at 20 ℃, alongside 

gradual decreases with increase in temperature. The values of  relative viscosity increase 

with an increase in xylose, For instance, 𝜂𝑟𝑒𝑙 for 1% and 15% of xylose are 1.4Pa. s and 

around 13 Pa. s. At high temperatures, such as 60 ℃ , 𝜂𝑟𝑒𝑙 the values for 1, 3, 5, 10 and 

15% of xylose are 1, 1.6, 2, 3 and 4.2 Pa. s, respectively. After that, the specific viscosity 

was determined by applying Equation 2.21.  

 

 

Figure 3.10: Relative viscosity as a function of xylose weight fraction between 20°C to 

60 °C. Error bars within the symbols sizes and dashed lines are to guide the eye. 
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Figure 3.11a shows the specific viscosity, 𝜂𝑠𝑝  as a function of xylose solution across 

arrange of temperature. The 𝜂𝑠𝑝 spreads out with the increase in temperature, the highest 

values of specific viscosity for 10% and 15% of xylose at 20 ℃. Finally, the intrinsic 

viscosity is calculated by using Equation 2.23 (the squared part with constant B was 

ignored in the equation because it is relatively very small) in the Wolf approach, and then 

Equation 2,24 was used to fit the data into a master curve.  

 

The Wolf approach involves plotting the natural logarithm of relative viscosity, 𝜂𝑟𝑒𝑙 

versus the weight fraction of xylose. The weight fraction of xylose multiplied to the 

density of the IL [C2mim] [OAc] is 1.1 g/cm3. This means the numerical values of 

concentrations have used to calculate the intrinsic viscosity are between 0.0121 g/cm3 

and 0.182 g/cm3, which from low to high concentration. Figure 3.11b shows the intrinsic 

viscosity plotted as a function of temperature, alongside data for cellobiose as a 

comparison. The values of xylose intrinsic viscosity [η] are greater than the corresponding 

cellobiose values at the lower temperature. The intrinsic viscosity of cellobiose was 

influenced slightly by temperature, as shown in Figure 3.11b. The intrinsic viscosity [η] 

values significantly reduce with increasing temperature for xylose solutions showing that 

the quality of the solvent reduces with increase in temperature. The intrinsic viscosity of 

cellobiose slightly decreased compared to xylose.  

The values of intrinsic viscosity [η] of xylose were around 22 ml/g at 20 °C and slightly 

decreased with increasing temperature to reach 10 ml/g at 60 °C. The values of intrinsic 

viscosity [η] of cellobiose were around 13 ml/g at 20 °C and slightly decreased with 

increasing temperature to reach 9.97 ml/g at 60 °C. 
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Figure 3.11: a) Specific viscosity as a function of xylose weight fraction between 20°C 

to 60 °C. b) Intrinsic viscosity [η] of cellobiose and xylose solutions as a function of 

temperature / °C. Error bars are within the symbol size. Solid and dashed lines are to 

guide the eye. 
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Figure 3.12 presents the correlation between the relative viscosity and concentration-

intrinsic viscosity, c[η] across temperature 20℃ to 60℃. In Figure 3.12, all the intrinsic 

viscosity data of xylose solutions are combined for different temperatures into a single 

master curve, at selected temperatures.  

 

Figure 3.12:Master plot of relative viscosity against 𝑐[𝜂] for xylose / [C2mim] [OAc] 

solutionsfor temperature from 20 °C - 60 °C and xylose concentrations (1%, 3%, 5%, 

10% and 15%). Error bars within the symbols sizes and dashed line are to guide the eye.  

 

 

3.4 Conclusion 

NMR technique is employed for chemical characterisation and was used to measure 

diffusion properties as well as molecular relaxation dynamics at various temperatures. 

The values of diffusion coefficients of ions reduced with increases in xylose weight 

fractions and decreases in temperature. The ratio of the diffusion coefficient of anions to 

cations was less than 1. This is known as ‘‘anomalous’’ diffusion because the anion is 

geometrically smaller than the cation and so would be expected to diffuse faster not 

slower than the cation. This indicates anions are not diffusing slowly, but it is possible 

these anions diffuse as part of an aggregation of ions. 
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The changes in 1H chemical resonance frequencies ∆δ for proton by adding xylose is 

almost identical to the chemical shift movements of cellobiose, suggesting that the 

dissolution method in both instances is similar.  

The Arrhenius equation was used in both microscopic and macroscopic systems to 

determine the activation energy for ions. Stokes-Einstein equation was used to determine 

the correction term, ƒ and it decreased with increasing xylose concentration by weight. 

Stoke-Debye-Einstein Equation was applied to experimental data.  

Relaxation times (20 MHz) T1 and T2 were measured across a temperature range (70 °C-

30 °C). This work found that for all the xylose concentrations and all the temperatures T1 

is approximately equal to or slightly greater than T2 experimentally. The values of 

activation energy for both relaxation times are similar. The values of hydrodynamic radii 

were determined by using the correlation between the relaxation times T1 and T2 and the 

ratio of temperature to viscosity for all xylose concentrations. The zero shear viscosities 

were obtained for all xylose concentrations. The intrinsic viscosity of homogeneous 

solutions for xylose in the solvent [C2mim] [OAc] was calculated. In overall, it can be 

noted that from diffusion and viscosity measurements and chemical shift technique, 

xylose and cellobiose have a similar dissolving mechanism in IL [C2mim] [OAC]. 
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Chapter  4  

4 Investigation of the Influence of Xylan and Cellulose on the 

Ionic Liquid 1-Ethyl-3-Methylimidazolium Acetate [C2mim] 

[OAc] 

 

4.1 Introductions 

The dissolving of xylan in 1-ethyl-3-methylimidazolium acetate [C2mim] [OAc] 

solutions, were examined at temperatures (20 °C − 70 °C) using rheology, nuclear 

magnetic resonance (NMR) spectroscopy, diffusion, high (9.5T / 400 MHz) and low field 

(0.5T / 20 MHz) relaxometry. The influence of xylan on the ions of IL [C2mim] [OAc] 

is compared a previous study on cellulose / IL [C2mim] [OAc], this cellulose data taken 

from ref [41]. The zero shear rate viscosity of xylan solutions were measured. The 

activation energy of diffusion, relaxation time and viscosity were calculated. The intrinsic 

viscosity of xylan was calculated using Wolf approach. The overlap concentration was 

determined for xylan solutions and compared to cellulose. The main aim of this chapter 

is to understand the interaction of ions in xylan and compared to cellulose solutions. 
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4.2 Experimental Method 

4.2.1 NMR Method 

NMR diffusion coefficient and high and low field relaxation time T1 and T2 were 

measured using the techniques was presented with details in Section 2.3.1. The diffusion 

coefficient of anions and cations for xylan solutions with different weight fractions % 

were measured across temperatures range of 20 °C to 70 °C. All xylan solutions were 

placed in the NMR tubes with depths less than 1 cm to reduce convection currents on 

heating in the NMR machine. By doing this, we followed the guidance set out by Annat 

et al [103]. 

 

4.2.2 Rheology Method 

All xylan viscosity measurements were measured using equipped with a cone-plate 

geometry (4°- 40 mm) and a temperature control system, using software called rSpace, as 

detailed in Section 2.3.2. Steady-state measurements were recorded from 20 °C to 60 °C 

inclusive in 10 °C steps. The viscosity-shear rates were from 0.1 to 100 s-1. Before the 

experiment was run, a thin film of low-viscosity silicone oil was added around the edges 

of the plate to prevent moisture contamination during the viscosity measurements. The 

cross-viscosity equation 2.20 used to get the accurate zero-shear-rate viscosity of xylan 

solution. The Wolf approach used to determine the intrinsic viscosity of these solutions 

and using the Huggins Equation 2.24 to fit all the data into a master curve. 
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4.2.3 Material and Sample Preparations 

Xylan powder was dried under vacuum at 50°C for 24h before use. Xylan was dissolved 

in [C2mim] [OAc] solvent to prepare five samples with different concentrations (weight 

fraction: 1%, 3%, 5%, 10% and 15%). The resultant volume of each sample was ~ (1g). 

All Xylan solutions were prepared in an MBraun Lab Master 130 Atmospheric chamber. 

For more details is in Section 2.3.3. Low concentrations of xylan took~48h to dissolve in 

[C2mim] [OAc] while high concentrations (5%, 10% and 15%) approximately 1 week, 

without heat.  All samples tubes were sealed within the chamber to prevent contamination 

with water from the atmosphere. 

 

 

4.3 Results and Discussion 

4.3.1 NMR Diffusion 

The influence of xylan on the diffusion properties of the ions of the IL [C2mim] [OAc] 

was examined using ¹HNMR spectroscopy, diffusion, and low field relaxometry, across 

the temperatures range (20 °C to 70 °C). The ¹H NMR spectrum displays seven peaks, 

each peak corresponds to a chemically distinct proton within the ionic liquid molecule, 

recall Figure 1.1. Temperature increases both the diffusivity of cations [C2mim] and 

anions [OAc], but an increase in concentrations of xylan decreases them. The reason for 

this is that the viscosity is increased by the presence of xylan and decreased by increasing 

temperature and there is an inverse relationship between diffusion and viscosity, through 

the Stokes-Einstein relationship. Figure 4.1 (a, b) shows the diffusion coefficients of 

cations and anions as a function of the inverse of temperature for all xylan solutions. The 

values of diffusion coefficients of cations appear to be similar to that of the anions. The 

values of diffusion coefficients of the imidazolium cations [C2mim] to those of the acetate 

anions [OAc] are near to 1.  
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Figure 4.1: The diffusion coefficients of cations [C2mim] (a) and anion [OAc] (b) as a 

function of the inverse of temperature for 15% cellulose, [C] and xylan concentrations. 

Dashed lines represent fits based on equation 3.1, uncertainties are shown. 
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The activation energies of the diffusivity of ions are related to the energy required for 

molecules to move past each other, enabling flow [59]. The experimental data for each 

concentration plotted as (ln 𝐷𝑂𝐴𝑐,𝐶2𝑚𝑖𝑚) against inverse temperature, was taken from 

Figure 4.1. The activation energies were extracted from the slope of the linear fits to this 

data using Equation 3.1. Table 4.1 presents the values of activation energies of self- 

diffusion of cations and anions for all samples of xylan and cellulose. 

 

             

Wt% 
𝐸𝐴,𝐷  Xylan / kJmol-1 𝐸𝐴,𝐷 Cellulose /  kJmol-1 

[C2mim]+ [OAc]   ̄ [C2mim]+ [OAc]  ̄

0 41 ± 1 42 ± 1 41 ± 1 42 ± 1 

1 41 ± 2 43 ± 2 40 ± 1 41 ± 1 

3 39 ± 2 41 ± 2 40 ± 1 41 ± 1 

5 43 ± 1 44 ±1 40 ± 1 40 ± 1 

10 45 ± 2 46 ± 2 45 ± 4 45 ± 4 

15 49 ± 2 49 ± 2 51 ± 2 51 ± 2 

Table 4.1: The values of the activation energies of self-diffusion of cations and anions for 

all xylan and cellulose weight fractions solutions. 

 

Figure 4.2 shows that as the temperature is increased the ratio of anion [OAc] to cation 

[C2mim] diffusivities remains constant, with only a slight dependence on the xylan 

concentration. The 1% and 15% cellulose solutions are also shown as a comparison with 

this data displaying a slightly stronger concentration dependence and a similar weak 

temperature dependence. The ratio of anion [OAc] diffusion coefficients to that of cation 

[C2mim] is less than 1. This is known as ‘anomalous’ diffusion since the anion is smaller 

geometrically than the cation and therefore is expected to diffuse instead faster, but is 

found experimentally to diffuse slower. Consequently, the addition of xylan hardly affects 

this ratio. This similar weak concentration dependence suggests a similar dissolving 

mechanism for both carbohydrates, indicating that the reduction in mobility of both ions 

has the same source, presumably a change in the local effective micro-viscosity.  
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If the anion experienced more and/or stronger interactions with the carbohydrate in 

hydrogen - bonding then this would preferentially reduce the diffusivity of the anion. 

 

Figure 4.2: Ratio of the diffusion coefficient of the anion to the cation as a function of 

temperature. Solid lines correspond to linear fits. Error bars are within the symbols sizes 

and [C] indicates cellulose. 

 

 

4.3.1.1 The Chemical Shift of Proton Resonances 

The numbers shown in the structure of the IL [C2mim] [OAc] in Figure 1.1 are used to 

indicate the labelling of proton resonances. The chemical shift ∆𝛿 of protons resonances 

was calculated using 𝛿 resonance peak 5 as a reference position. In Figure 4.3 the results 

are displayed, for 40 ℃, where δ is the resonance frequency for a proton in parts per 

million (ppm), and ∆δ indicates the change of this frequency from the pure IL [C2mim] 

[OAc] positions caused by the addition of xylan. Protons of imidazolium ring [C2mim] 

have negative values of ∆δ and relatively large movements; particular peak 2, which is 

the most acidic proton. Peak 6 belongs to the anion [OAc] and peak 7 to a cation methyl 

group and these both display positive values of The chemical shift ∆𝛿  of protons 

resonances. The movement of peak positions indicates that the addition of carbohydrate 

polymers disrupts the associated ions in the pure IL [C2mim] [OAc]. The reason for this  
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is presumably the formation of H-bonding between the IL and the OH groups of xylan 

and cellulose respectively. 

 

 

Figure 4.3: The chemical shift of protons resonances ∆δ (ppm) versus weight fraction of 

xylan, X and cellulose, C at 40 °C Error bars are within the symbols sizes. The lines are 

guides to eye. 

 

The anion [OAc] prefers to form H-bonds with the carbohydrates, which moves them 

downfield, rather than remain associated with the protons in the imidazolium ring 

[C2mim]. It is interesting to note that the ∆δ on the addition of xylan is identical to the 

chemical shift movements on the addition of cellulose, implying that the dissolution 

process in both instances is similar. 
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4.3.2 Stokes−Einstein Analysis 

Stokes-Einstein theory was used to investigating the interaction between ions of the IL 

[C2mim] [OAc] and the carbohydrate molecules. By using the correction term ƒ, also 

known as the micro-viscosity pre-factor as a key to determining the diffusion of ions in 

xylan and cellulose systems, as discussed in section 2.2.1. The experimental data of the 

correlation between diffusion coefficients of ions and the ratio of the temperature to the 

viscosity is employed to calculate the correction term, ƒ, using Stokes-Einstein Equation 

2.8. The hydrodynamic radius, 𝑅𝐻,𝑖 of ions was calculated by Hall et all using Equation 

2.9. The values of the effective radius are for the anion 2.2 Å and the cation 2.8 Å [59]. 

These values of 𝑅𝐻,𝑖 are used in Equation 2.8. Figure 4.4 (a, b) shows the correlation 

between the diffusion coefficients of anions and cations and the ratio of temperature to 

viscosity values. The diffusion coefficients of cations and anion of IL [C2mim] [OAc] 

are slowly decreased with an increase in carbohydrate polymers concentrations. However, 

this gradual reduction of diffusion coefficients came with a strong increase in viscosity 

and therefore a decoupling of the local micro and larger scale macroscopic viscosities. 
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Figure 4.4: NMR diffusion coefficient of anions (a) and cations (b) against the ratio of 

temperature to the viscosity of pure IL [C2mim] [OAc] and 15% cellulose and all xylan 

concentrations.Solid lines are provided as a visual guide and Error bars are within the 

symbols sizes. 
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Figure 4.5 shows the correction term f for cation [C2mim] and anion [OAc] as a function 

of weight fraction of xylan. According to McLaughlin, when the sizes of ions are the 

same as that of the molecules of the solution, then ƒ≈ 1, but ƒ is equal to 1.5 when the 

diffusing particle is large compared to the molecules of the viscous medium [75]. The 

correction term decreased with increased xylan concentration. It is interesting to note that 

the anions have ƒ~1 so diffuse as expected, but the cations are less than one, this indicates 

the cations diffuse faster than expected. In Figure 4.5 the ƒ drops off with the increase in 

xylan concentration, this due to the decoupling between the macroscopic and microscopic 

viscosities. Macroscopic entanglements are formed at concentrations above the overlap 

concentration and these dramatically increase the sample viscosities, but these large 

structures do not significantly alter the mobility of the ions, being quantified via the 

diffusion coefficients. This difference between what is happening microscopically and 

macroscopically is driving the decrease in f with increase in concentration.  

 

Figure 4.5: The correction term ƒ as a function of weight fraction of xylan. The solid lines 

are provided as a visual guide. Error bars are within the symbols sizes. 
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4.3.3 NMR Relaxometer 

4.3.3.1 High-Field Relaxation Time T1 and T2 

High field (9.5T / 400 MHz) proton spin-lattice relaxation T1 is measured for 1% and 10 

% of xylan in IL [C2mim] [OAc], across temperatures (20 °C to 70 °C). At temperatures 

less than 40 °C at 400 MHz the system is in the solid regime, above this temperature, it 

is in the liquid regime. This is indicated by the observed minimum in T1, which is 

classically taken as the divide between liquid and a solid regime in NMR measurements. 

Figure 4.6 (a, b) shows the high field relaxation time T1 for 1% and 10% of xylan. All the 

proton resonances of 1% xylan solution shown in Figure 4.6a, apart from peak 7, have a 

clear minimum. This minimum indicates a transition from solid to liquid-like behaviour. 

Resonance at peak 7 shows liquid behaviour, in that it monotonically increases with 

increasing temperature. This reveals that the end of the tail attached to the cation in the 

system. The mobility of protons corresponding to peaks 2 and 5 is less than the other 

protons, as their minima occur at the highest temperature, so they are in the solid regime 

right up to the highest temperatures measured in this study. In the temperature range 20 

℃ to 70 ℃, the proton resonances for peak 1, 3 and 6 show a minimum around 40 ℃.  

Figure 4.6b shows the temperature dependence of the high field T1 data for 10 % xylan. 

All the T1 values have been decreased by the addition of xylan, showing that mobility of 

all the protons has been reduced. Notably, peak 2, the most acidic proton has had the 

greatest reduction in its T1 values with the added increase in xylan.  

This is surprising in that it is normally argued that the anion interacts with the 

polysaccharide most strongly and it should, therefore, be this peak that is affected the 

most. Peak 7 displays the proton resonances having the highest mobility which gives the 

highest T1 as compared with the other protons. This means peak 7 goes from a liquid to 

solid response. 
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Figure 4.6: High field relaxation time T1 for (a) 1% and (b) 10% of xylan at various 

temperatures.The solid lines to guide the eyes and error bars are within the data points. 

 

The high field relaxation time T2 for all xylan solutions were measured. This work 

presents 1% and 10% as an example. The values of relaxation time T2 rise with 

temperature increase. Figure 4.7a shows the 1% xylan solution, the Peak 7 is the most 

significant increase as temperature increases. Anion (peak 6) and cation (Peak 7) 

behaviours considerably close. Peak 2 the most acidic proton has the lowest value. The 

values of imidazolium cation ring (Peaks 1 and 3) are the same with an increase in 

temperature.  
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Figure 4.7b shows the diffusing of ions for 10% of xylan in relaxation system. Peak 2 

diffusing slower than other cations ring and anion behaved similarly to rest of cations 

(Peaks 4, 5 and 7). 

 

 

Figure 4.7: High field relaxation time T2 (a) for 1% and (b) for 10% of xylan at various 

temperatures. The solid lines to guide the eyes. Error bars are within the symbols sizes. 
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4.3.3.2 Low-Field Relaxation Times T1 and T2 

Figure 4.8(a, b) show the low-field relaxation time T1 and T2 plotted as a function of 

temperature for 15% of cellulose and xylan concentrations. Here the relaxation T1 and T2 

times are in the liquid regime, as at 20 MHz the system is like a liquid, but at 400 MHz 

it’s solid. They all increase in value with an increase in temperature. At low fields 

(20MHz) it is not possible to chemically distinguish between the cation and anion; 

instead, an average over all the protons is recorded. 

Figure 4.8 (a, b) displays the relaxation time measurements reveal that T2 is slightly less 

than or approximately equal to T1 at 20 MHz. This suggests that rotational motion is the 

dominant mechanism for NMR relaxation [79]. It can see in Figure 4.8a that an increase 

in temperature causes an increase in T1 and conversely an increase in xylan decreases T1. 

The relaxation time T1 is related to the mobility of the protons, with an increase here 

indicating an increase in mobility or, in other words, a decrease in the local micro-

viscosity. The values of T1 for 15% of the cellulose are positioned between the 5% and 

10% of xylan. Therefore, the mobility of the protons at 15% of the cellulose is higher 

compared to 15% of xylan. 

Figure 4.8b shows T2 decreases with increasing xylan concentration in the inverses of the 

temperature range (K-1). The T1 at 0% xylan which is 100% Pure IL [C2mim] [OAc] 

linearly increases with increasing temperature. In contrast, adding the xylan to the 

solutions decreases the mobility of the protons and hence decreases T2. The reason is that 

the viscosity has increased and this has the effect on the T2 through the subsequent 

rotational mobility of the protons. Relaxation time T2 of 15% of the cellulose is between 

the values of 5% and 10% of xylan solutions, as with T1. 
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Figure 4.8: Arrhenius plots for relaxation times T1 (a) and T2 (b) against the inverse of 

temperature, for 15% cellulose and all xylan weight fractions. Solid lines represented fits 

based on Equation (3.2), and error bars within the symbols sizes. 

The data of T1 and T2 relaxations for xylan and cellulose concentrations (1%, 3%, 5% 

10% and 15%) from Figure 4.8 (a, b), were used to determine activation energy, 

employing Equation 3.2. Table 4.2 displays the values of activation energies of T1 and T2 

relaxations for xylan and cellulose concentrations. It can be concluded that the values of 

activation energies of T1 for xylan and cellulose are quite similar. In contrast, there are  
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significant differences between the values of activation energies of relaxation time T2 for 

both carbohydrates. This could be indicative of chemical exchange in NMR relaxation 

systems. This result compared to the activation energy of relaxation time for carbohydrate 

monosaccharides in the previous chapter, it found that there is the slight difference 

between the values of activation energies of relaxation time T2 for xylose and cellobiose. 

 

Wt% 
𝐸𝑇1,𝑇2 Xylan/kJmol-1 𝐸𝑇1,𝑇2 Cellulose/ kJmol-1 

𝑇1               𝑇2 𝑇1               𝑇2 

0 31 ± 1 33 ± 1 31 ± 1 33 ± 1 

1 32 ± 1 33 ± 1 30 ±1 34 ± 1 

3 30 ± 1 32 ± 1 31 ± 1 35 ± 1 

5 32 ± 1 31 ± 1 27 ± 1 35 ± 1 

10 26 ± 1 30 ± 1 30 ± 1 38 ± 1 

15 23 ± 1 31 ± 1 24 ± 1 44 ± 1 

Table 4.2: Activation energies of T1 and T2 relaxations for xylan and cellulose/IL 

[C2mim] [OAc]. 

 

 

4.3.4 Viscosity−Temperature Analysis 

The measurements of viscosity of different xylan concentrations (1%, 3%, 5%, 10% and 

15%) were measured across the range of temperatures 20 °C to 60 °C inclusive. The 

Cross–Viscosity Equation 2.19, has been used on a hypothetical basis that there is a 

change in the formation and structure of fluids at different shear rates [91]. Figure 4.9a 

shows a steady state flow curves of xylan / [C2mim] [OAc] solutions for various 

concentrations at 40 °C. The data from 0.1 to 100 s had low signal to noise ratio and thus 

were ignored. Equation 2.19 was used to model the data in to determine the values of 

zero-shear–rate viscosity of xylan solution. Figure 4.9b shows the viscosity values as a 

function of xylan concentration (the logarithm scale used to make the figure clearer). 
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The viscosity dependence increases with adding this polymer through an increase in 

temperature, however, the largest values of xylan viscosity at 20℃. Figure 4.9c presents 

the experimental data for each concentration is plotted as ( ln 𝜂0 ) against inverse 

temperature (K). The activation energies were extracted from the slope of the linear fits 

to this data using Equation 3.3. 

 

 

Figure 4.9:a) Viscosity-shear rate dependences of all xylan/[C2mim] [OAc] solutions 

recorded at 40 °C. The size of error bars is approximately within the data points. b) The 

natural logarithm of viscosity values as a function of xylan concentration. c) Logarithmic 

plots of the viscosity of pure [C2mim] [OAc] and 15% cellulose and xylan in IL [C2mim] 

[OAc] solutions versus inverse temperature. Lines are linear approximations. Error bars 

are within the symbol sizes. 
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The activation energy, 𝐸𝐴,𝜂 of viscosity is related to the energy required for molecules to 

move past each other, enabling flow [105]. The activation energies of viscosity increase 

with increasing carbohydrates. Table 4.3 presents there is an insignificant difference 

between the activation energies values of viscosity for xylan and cellulose solutions. The 

values of activation energies of viscosity, 𝐸𝐴,𝜂  increased slightly sharper then that 

observed for diffusion. The values of activation energies in viscosity system significantly 

increased from 50 kJ/mol to 71 kJ/mol for concentrations 3% to 15%, as compared to 

diffusion system from 40 kJ/mol to 51 kJ/mol in cellulose and xylan solutions from Table 

4.1. It can be concluded that the values of activation energies of ions indicated an 

insignificant difference between xylan and cellulose systems, even with increase weight 

fractions, for diffusion, relaxation times and viscosity measurements.  

 

Wt (%) 𝐸𝐴,𝜂 xylan /kJ mol-1 𝐸𝐴,𝜂 cellulose /kJ mol-1 

0 40 ± 2 40 ± 2 

3 39 ± 2 44 ± 2 

3 49 ± 1 50 ± 2 

5 54 ± 2 53 ± 2 

10 62 ± 2 63 ± 2 

15 70 ± 3 71 ± 2 

Table 4.3: The comparison of the activation energy of viscosity of cellulose and xylan 

weight fractions into solutions. 
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4.3.5 Stokes−Debye−Einstein Analysis 

Experimentally, relaxation times were measured across the temperature (70 °C - 30 °C). 

Low field (20 MHz) relaxation times T1 and T2 have an insufficient chemical resolution 

to distinguish between ions; therefore, the values of the hydrodynamic radii, 𝑅𝐻,𝑖 

calculated is an averaged value over both ions. Stokes- Einstein-Debye Equation was 

applied to consider the rotational correlation time of diffusing ions and from that calculate 

the values for the radius 𝑅𝐻,𝑖 of ions in the viscous medium. Figure 4.10 (a, b), presents 

that the relationships between relaxation times and the ratio of temperature to viscosity 

(𝑇 𝜂⁄  ). 

Figure 4.10a presents relaxation time T1 between 0.01 to 1s for all xylan weight fraction 

combined from different temperatures into a single master plot, while 15% of the 

cellulose is not connected with them. This is because cellulose is the most effective at 

increasing the viscosity, due to its higher molecular weight as compared with the xylan. 

Figure 4.10b shows that same relationship holds approximately as well for relaxation time 

T2. The slope is used to calculate the value of the effective hydrodynamic radii for T1 and 

T2 using Equation 2.15. The values of hydrodynamic radii for all the xylan concentrations 

and all the temperatures T1 is roughly equal to or slightly higher than T2 experimentally.  

The Stokes-Debye-Einstein equations worked remarkably well. It is only on the addition 

of a polymer (xylan/cellulose) above the critical overlap concentration that they begin to 

fail. The result will display the hydrodynamic radii,  𝑅𝐻,𝑖 values of relaxation time T1 

against xylan weight fractions in Figure 4.11. 
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Figure 4.10: (a) The relaxation time T1dependence on the ratio of temperature to viscosity 

for each xylan, (b) for T2. The error bars are within symbols sizes. The dotted lines are 

provided as visual guide. [C] means cellulose data.  
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Figure 4.11 shows the hydrodynamic radius of the averaged ions of pure IL [C2mim] 

[OAc] 2.5 Å and the hydrodynamic radii,  𝑅𝐻,𝑖 values of relaxation time T1 against xylan 

weight fractions (1%, 3% and 5%) is around 3Å, the values of hydrodynamic radii of ions 

in high concentrations 10% and 15% around 2Å. The values of  𝑅𝐻,𝑖  decreased with 

increasing of xylan concentrations, this due to the entanglement in solution [106]. The 

polymers (xylan/cellulose) structures do not significantly affect the mobility of the ions, 

which is here measured via the NMR diffusion and relaxation times, but due to 

entanglements that form they can support stress that dramatically increases the zero shear 

rate viscosity.  

 

Figure 4.11: The values of effective hydrodynamic radii size against the xylan weight 

fractions and the hydrodynamic radius of the averaged ions of pure IL [C2mim] [OAc]. 

The error bars are within symbols sizes 

 

4.3.6 Intrinsic–Viscosity Analysis 

The intrinsic viscosity was obtained through several steps. Firstly, we used the zero 

viscosity of xylan solutions from the Newtonian viscosity values presented in Figure 4.9a. 

Secondly, the relative viscosity, ηrel of xylan calculated using Equation 2. 20, where the 

viscosity of each xylan concentration divided by the viscosity of pure IL [C2mim] [OAc] 

at the corresponding temperature. Figure 4.12a then the shows concentration dependence  
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of the relative viscosity for the xylan solutions. The relative viscosity increases with 

increase in xylan. The highest values of 𝜂𝑟𝑒𝑙 were at 20 ℃, while this gradually decreases 

with increase in temperature. After that, the specific viscosity determined by applying 

Equation 2.21 to the relative viscosity data. Finally, the intrinsic viscosity is calculated 

by using Equation 2.23 (the squared part with constant B was ignored in the equation 

because it is relatively small), and then Equation 2.24 was used to create a master curve. 

The Wolf approach involves plotting the natural logarithm of relative viscosity, 𝜂𝑟𝑒𝑙 

versus the weight fraction of xylan. The weight fraction of xylan multiplied by the density 

of the IL [C2mim] [OAc] equal to 1.1 g/cm3. This means the numerical values of 

concentrations have used to calculate the intrinsic viscosity are between 0.0121 g/cm3 

and 0.182 g/cm3, which from low to high concentration. Figure 4.12b shows the intrinsic 

viscosity plotted as a function of temperature, alongside data for cellulose as a 

comparison. The values of cellulose intrinsic viscosity [η] are greater than the 

corresponding xylan values. 

The intrinsic viscosity [η] values reduce with increasing temperature for both 

carbohydrates showing that the quality of the solvent reduces with an increase in 

temperature. The cellulose data was taken from ref [41]. The values of intrinsic viscosity 

[η] of xylan solutions are low compared to cellulose, approximately 1/3 the size.  

The values of intrinsic viscosity [η] of xylan were around 38 ml/g at 20 °C and slightly 

decreases with increasing temperature to reach 23 ml/g at 60 °C. It is possible to suggest 

that the main reason for this is that the size of xylan molecules are smaller than those of 

the molecules of cellulose. 
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Figure 4.12: a) Relative viscosity as a function of xylan weight fraction between 20°C to 

60 °C. b) Intrinsic viscosity [η] as a function of temperature / °C for cellulose and xylan 

solutions(cellulose data are taken from ref [105]). Error bars within the symbols sizes and 

the dotted lines are to guide the eye.  
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Figure 4.13 shows the relative viscosity plotted as a function of xylan concentrations 

−intrinsic viscosity c[η] for temperature from 20 °C − 60 °C. All data on xylan solutions 

are combined from different temperatures into a single master curve. The values of 

intrinsic viscosity can be used to determine the overlap concentration of the polymer.  

 

Figure 4.13: Master plot of relative viscosity against c[η] for xylan/ [C2mim OAc] 

solutions for temperature from 20 °C−60 °C and xylan concentrations (1%, 3%, 5%, 10% 

and 15%.  Error bars are within the symbols sizes and dotted lines are to guide the eye. 

 

The overlap concentration c* is the crossover point between dilute and semi-dilute 

systems. The c* is independent of the concentration of polymer [104] and it can be 

determined by: 

                                                             𝐶∗= 1/ [η]                                                        (4.1) 

where [η] is the intrinsic viscosity of a viscous medium [104, 106, 107]. The overlap 

concentration of xylan system calculated and compared to cellulose is shown in Table 

4.4. The resultant is 𝑐20
∗ = 0.03 and  𝑐60

∗  = 0.04 of xylan weight fraction, whereas for 

cellulose is 𝑐∗ = 0.01 at low and high temperatures. The intrinsic viscosity decreases and 

the overlap concentration increase with an increase in temperature. The overlap 

concentration of xylan is higher than cellulose.  
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This is expected due to the molecular weight differences between the two carbohydrate 

polymers. 

T / ℃ 
Overlap concentration 𝑐∗ 

Cellulose              Xylan 

20 0.01 ± 0.001 0.03 ± 0.002 

30 0.01 ± 0.001 0.03 ± 0.002 

40 0.01 ± 0.001 0.03 ± 0.002 

50 0.01 ± 0.001 0.04 ±0. 002 

60 0.01± 0.001 0.04 ± 0.002 

Table 4.4: The overlap concentration of xylan and cellulose systems at selected 

temperatures. 

 

 

4.4 Conclusion 

NMR spectroscopy is employed for chemical characterisation and was used to measure 

diffusion properties as well as molecular relaxation dynamics at various temperature. The 

values of diffusion coefficients of ions reduced with increasing in xylan weight fractions 

and increasing in temperature. The ratio of the diffusion coefficient of anions to cations 

is less than 1. This is known as ‘‘anomalous’’ diffusion because the anion is geometrically 

smaller than the cation and so would be expected to diffuse faster not slower than the 

cation. 

The changes in 1H chemical resonance frequencies ∆δ for the proton in adding of xylan 

is almost identical to the chemical shift movements of cellulose, suggesting that the 

dissolution method in both instances is similar. High field relaxation time T1 and T2 were 

measured for 1% and 10 % of xylan in IL [C2mim OAc], across temperatures (20 °C to 

70 °C). The T1 at temperatures less than 40 °C at 400 MHz the system is in the solid 

regime, above this temperature, it is in the liquid regime. The values of relaxation time T2 

rise with temperature increases. Relaxation times (20 MHz) relaxation T1 and T2 were 

measured across the temperature (70 °C-30 °C).  
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This work found that for all xylan concentrations and all the temperatures T1 is 

approximately equal to or slightly greater than T2 experimentally. Stokes-Einstein 

equation used to determine the correction term, ƒ and it decreased with increasing xylan 

concentration by weights. Stoke- Debye-Einstein Equation was applied on the 

experimental data, to determine the values of effective hydrodynamic of radii for the all 

xylan concentrations. The values of  𝑅𝐻,𝑖  decreased with increasing of xylan weight 

fraction. 

The Cross- viscosity equation was used to obtain the zero shear viscosity. The Arrhenius 

equation was used in both microscopic and macroscopic systems to determine the 

activation energy for ions. The intrinsic viscosity of homogeneous solutions for xylan and 

cellulose in the solvent [C2mim] [OAc] were calculated. The micro-viscosity of cellulose 

is higher than xylan; this indicated to the size of molecules of cellulose. The overlap 

concentration determined by using Equation 4.1, was applied to both of carbohydrates 

using their intrinsic viscosity values. The overlap concentration of xylan is higher than 

cellulose where c* found of xylan is approximately between 3% and 4%, while for 

cellulose is 1%, across arrange of temperatures (20 ℃ to 60℃). This is expected due to 

the molecular weight differences between the two polymers. 

 

 

 



 

73 

 

 

 

 

 

 

 

Chapter 5 

 

5 Hydroxyl Group of Five Carbohydrates (Glucose, Cellobiose, 

Xylose, Cellulose and Xylan) 

 

5.1 Introduction 

This chapter presents the influence of carbohydrate weight fractions of glucose, 

cellobiose, xylose, cellulose and xylan on the properties of ions of [C2mim] [OAc] from 

20 ℃ to 60 ℃. The data of glucose, cellobiose and cellulose solutions were taken from 

ref [41]. The data of xylan and xylose were measured and compared to this previous data.  

BPP theory was applied on the relaxation time T1 to calculate the correlation time 𝜏, it 

was discussed in section 2.2.2. Stokes–Debye −Einstein Equation 2.13 was used to 

determine the correction terms, ƒ also known as the micro-viscosity pre-factor of anions 

and cations in carbohydrates solutions. The reduction in diffusivity of ions was 

determined by the associated fraction α of ‘‘glucose unit’’ per molecule of IL [C2mim 

OAc], where (‘‘glucose unit’’ involves D − glucose, D − glucopyranose, 

D − anhydroglucopyranose, β − D − xylose) [41]. The activation energy of diffusion 

coefficients and relaxation time T1 was calculated and plotted against the associated 

fraction α of ‘‘glucose unit’’ per molecule of IL [C2mim] [OAc]. 
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5.2 Analysis and Discussion 

5.2.1 NMR Diffusion 

The diffusion coefficients of anion [OAc] and cation [C2mim] as a function of 

carbohydrates concentrations, which are glucose, cellobiose, xylose, cellulose and xylan 

at 40 ℃, is shown in Figure 5.1. The values of diffusion coefficients of anions decrease 

with the increase of carbohydrate concentration in solutions. The most significant 

decrease was with the addition of glucose, and xylan was the least effective. It can be 

observed that the rate of reduction in diffusion coefficients of ions is influenced by 

carbohydrates differently. Xylan and cellulose have 2 and 3 OH groups per ring, 

respectively, these polymers are less effective on the diffusivity of ions, except when the 

cellulose is at a high concentration if compared to other carbohydrates. These 

carbohydrates such as cellobiose and xylose have each one of them 4 of OH group per 

ring work similarly together. Glucose with five OH group per ring has the most significant 

effect on the diffusion coefficients of the ions of IL [C2mim] [OAc]. 

In Figure 5.1 (a, b), the diffusion coefficients of cations appear similar to that of the anions 

for these carbohydrates. The data shows there is an insignificant difference between the 

diffusion coefficients of anion to cations. The results are found similar for all measured 

temperatures. 
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Figure 5.1: The diffusion coefficients of (a) anion [OAc] and (b) cation [C2mim] as a 

function of carbohydrates weight fractions, which are glucose, cellobiose, xylose, 

cellulose and xylan at 40 ℃. Solid lines are provided as a visual guide and error bars are 

shown. 
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5.2.2 The Investigation of the Influence of Hydroxyl Group of 

Carbohydrates on the Diffusivity of Ions of the Ionic Liquid 1-Ethyl-3-

Methylimidazolium Acetate [C2mim] [OAc] 

It is possible to determine the decrease in diffusion coefficients of ions compared to their 

original states in an ionic liquid by the number of Hydroxyl group, OH, per mass of 

carbohydrate. The number of the hydroxyl group can be determined from the carboxylate 

structure, where glucose (C6H12O6 ) is classified as simplest carbohydrates, consisting of 

five OH groups. Cellobiose (C12H22O11) is classified as a disaccharide and consists of two 

D−glucopyranose units connected by a β (1→4) bond, and each D−glucopyranose has 

four OH groups. Cellulose (C6H10O5) is polymer and  consists of 

D−anhydroglucopyranose units correlated with β (1→4) glyosidic bond, where each 

D−anhydroglucopyranose unit has three OH groups [32, 41]. D−Xylose (C5H10O5) is a 

monosaccharide with four OH groups. As for xylan (C6H8O4)  , it is a polysaccharide 

consisting of β−D−xylose units correlated with β (1→4) glyosidic bond and possesses 

two OH groups per ring [24, 43]. This will discuss it in the next section. 

Studies have shown that it is possible to understand the interaction between ions of ionic 

liquid and carbohydrate molecules based on the associated fraction 𝛼 of ‘‘glucose unit’ 

OH groups per molecule of IL [C2mim] [OAc]within the solution. Remsing et al. studied 

glucose and cellobiose dissolved in 1-butyl-3-methylimidazolium chloride [BMIM] [Cl] 

individually, using NMR measurements. It was found that there was a 1:1 ratio of chloride 

anions to the OH groups for glucose and cellobiose [108]. Ries et al. investigated the 

influence of hydroxyl group of carbohydrates, which are glucose, cellobiose and cellulose 

on the diffusing of cations and anions of [C2mim] [OAc] [41]. 

The associated fraction α of ‘‘glucose unit’’ per molecule of IL [C2mim] [OAc], where 

this ‘‘glucose unit’’( involves D-glucose, D-glucopyranose, D-anhydroglucopyranose, 

β−D−xylose) was used instead of weight fraction carbohydrates. In this work, the effect 

of OH group of xylose and xylan on the ions of [C2mim] [OAc] were examined and 

compared to previous data of glucose, cellobiose and cellulose solutions taken from ref 

[41] at 20 ℃ to 60 ℃.  
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An associated fraction, 𝛼 can be calculated following by: 

                                        𝛼 = 𝑁 ×  
𝑀𝐼𝐿

𝑀𝐺𝑈 
 ×

𝜙

100− 𝜙
                                     (5.1) 

where N is the number of hydroxyl group per ring, 𝑀𝐼𝐿 and 𝑀𝐺𝑈 are the molar mass of IL 

[C2mim OAc] and carbohydrates ‘‘glucose units’’. 𝜙 is weight fraction of carbohydrates 

[41, 108]. 

Figure 5.2 (a, b) shows the natural logarithm of diffusion coefficients of cations (a) and 

anions (b) as a function of the associated fraction of ‘‘glucose units’’ per molecule of IL 

[C2mim] [OAc] at 40 ℃. The molar ratio 𝛼 of cations and anions was determined using 

Equation 5.1. The 𝑀𝐺𝑈  of ‘‘glucose unit’’ are 180, 171, 162, 150 and 131 g/mol for 

glucose, cellobiose, cellulose, xylose and xylan, respectively. The N of OH groups for the 

same order of carbohydrates are 5, 4, 4, 3, and 2. The 𝑀𝐼𝐿 of pure IL [C2mim] [OAc] is 

170 g/mol and 𝜙 is the carbohydrates weight fraction. Therefore; N of cellulose used as 

a fixed value of 3, to get the linear fit, the best overlap is calculated by a subsequent least–

squares fit [41].  

The aim of the linear fit is to measure the reducing in the diffusivity of ions with the 

increase in the number of OH groups to molecules of IL [C2mim] [OAc]. The results 

show the numerical values of the mobility of cation (𝐷𝐶2𝑚𝑖𝑚)  and anion (𝐷𝑂𝐴𝑐)  in 

carbohydrate systems are similar, with an uncertainty on all those values ± 0.2 m2 s-1. In 

these semi-log plots, each of the diffusion coefficients of cations and anions for all 

carbohydrates collapsed into a single master curve. Both of cellobiose and xylose are 

having an N of 4 OH groups per ring, where there be four anions around each molecule 

of them, and there was the same number of cations. It can be noted that there is a similar 

influence for each OH group of carbohydrates in decreasing the diffusion properties of 

ions. In Figure 5.2 (a, b) the slopes of the linear fit are -3.3 ± 0.2 and -2.7 ± 0.2 for anions 

and cations, respectively, with their uncertainties. 
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Figure 5.2: a) Diffusion coefficients of the cations 𝐷(𝐶2𝑚𝑖𝑚) and b) anions 𝐷(𝑂𝐴𝑐) at 40 

℃ , as a function of 𝛼  associated fraction, having an N are 5,4,4,3,2 for glucose, 

cellobiose, xylose, cellulose and xylan, respectively. Solid lines indicate to the linear fit 

to the data. Error bars are within the symbols sizes.  

 

The interaction between the ions with molecules surrounded by a viscous medium can be 

understood by determining the activation energy of diffusional dynamics. An Arrhenius 

Equation 3.1 was used on experimental data of carbohydrate systems, where 𝐷0 describes 

a basic property of each ion itself, and it is treated the same for all carbohydrates solutions 

as a global fitting parameter. The values of 𝐷0 for cation is 1.4 *10-3 ± 0.2 m2 s-1 and for 

anion is 1.6*10-3  ± 0.2 m2 s-1 [41]. The results in Figure 5.3 (a, b) shows the activation  
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energy of cations [C2mim] and anion [OAc] against the same associated fraction 𝛼 used 

for glucose, cellobiose, xylose, cellulose and xylan with ratio of OH group 5:4:4:3:2 per 

molecule of IL [C2mim] [OAc]. In Figure 5.3 all the data collapsed into a single master 

plot where the activation energy of cations diffusion is very similar to anion diffusion 

with uncertainties given. The slopes of activation energies for cations and anion 

diffusions are 46.2±0.2 kJ/mol and 46.8±0.2 kJ/mol, respectively. 

 

 

Figure 5.3: The activation energy of diffusion coefficients of cations [C2mim] (a) and 

anions [OAc] as a function of the associated fractions 𝛼 for glucose, cellobiose, xylose, 

cellulose and xylan with ratio of OH group 5:4:4:3:2 per molecule of IL [C2mim] [OAc]. 

The solid lines indicated to a linear fit to the data. The error bars are shown. 
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5.2.2.1 The Chemical Shift of Proton Resonances 

The changes of protons resonances positions ∆𝛿 in parts per million (ppm) are determined 

by using the 𝛿 resonance of each in pure IL [C2mim] [OAc] as a reference point. Figure 

5.4 shows 1H chemical shift of ions of peaks 2 and 6 for all carbohydrate solutions plotted 

as a function of 𝛼, associated fraction at 40 ℃. These carbohydrate solutions are for 

glucose, G, cellobiose, CB, xylose, X, cellulose, C and xylan, XY. Peak 2 is the most 

acidic proton from imidazolium ring cations. Peak 6 is an anion [OAc] and displays a 

positive value of ∆δ. The imidazolium cations’ positions indicate that the addition of these 

carbohydrates with their the ratio of OH group to the molecule of IL[C2mim] [OAc] 

5:4:4:3:2, disrupt the associated ions in the pure IL [C2mim] [OAc]. The anions in all 

carbohydrate solutions followed the same trend with the increase in 𝛼 associated fraction. 

All data of carbohydrate solutions fall onto a single master plot. The other resonances are 

not shown in order to enhance clarity in Figure 5.4. 

 

Figure 5.4: The chemical shift of protons resonances ∆δ (ppm) for glucose, G cellobiose, 

CB, xylose, X, cellulose, C and xylan, XY versus 𝛼 associated fraction at 40 °C. Error 

bars are shown and the lines guide the eyes 
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5.2.3 NMR Low−Field Relaxation Time T1 

The experimental data of Low field (20 MHz) relaxation times T1 plotted against the 

associated fractions 𝛼  of hydroxyl groups of carbohydrate systems. The associated 

fractions 𝛼 was calculated using Equation 5.1 as discussed in section 5.2.2. Here, the 

associated fraction 𝛼 of ‘‘glucose unit’ ’per molecule of IL [C2mim OAc] was used as a 

key to determine the influence of carbohydrates on averaged ions in the relaxation system. 

Figure 5.5a shows the natural logarithm of relaxation time plotted as a function of 

carbohydrate weight fraction at 40 ℃. The values of relaxation time T1 decrease with the 

increase in carbohydrates’ weight fractions as expected. Although there is an overall 

reduction in relaxation time, this proportion is not determined by the number of OH 

groups, unlike the diffusion. It was observed that xylan and cellulose have numbers of 

OH groups per ring, which are 2 and 3, respectively; however, xylan has the most 

significant effect on the relaxation time, while the lowest is cellulose. Carbohydrates such 

as cellobiose and xylose with 4 OH group per ring, work well. Glucose, although it has 

the largest number of OH group, has less effect on the value of relaxation time T1 than 

xylan in [C2mim OAc]. 

Figure 5.5b presents the relaxation time T1 against the 𝛼 associated fraction of hydroxyl 

groups of carbohydrates, having an N as 5,4,4,3,2 of glucose, cellobiose, xylose, cellulose 

and xylan, respectively. In Figure 5.5b the data of carbohydrates, in the order of glucose, 

cellobiose, xylose, cellulose and xylan with the ratio of N 5:4:4:3:2, were lying on the 

linear fit, except the xylan data which worked separately. We speculate that it might be 

caused by the chemical exchange of ions in xylan solution.  
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Figure 5.5: At 40 ℃, a) The natural logarithm Relaxation time T1 as a function of all 

carbohydrate concentrations. b) The natural logarithm of relaxation time against the 𝛼 

associated fraction of hydroxyl groups of carbohydrates, having an N to be 5:4:4:3:2 of 

glucose, cellobiose, xylose, cellulose and xylan, respectively. The solid lines indicated to 

the linear fit and error bars are within the symbols sizes.  
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5.2.4 Stokes−Einstein Analysis 

The influence of carbohydrates on the diffusivity of ions can be determined by the 

associated fraction, 𝛼 of  ‘‘glucose unit’ ’per molecule of IL [C2mim OAc] and also by 

the correction term ƒ, as it discussed in section 2.2.1. Therefore; Stokes-Einstein Equation 

2.8 was applied on experimental data. Figure 5.6 and Figure 5.7 show the correlation 

between diffusion coefficient of anions and cations against the ratio of temperature to 

viscosity for 3% and 10% of each glucose, cellobiose, xylose, cellulose and xylan. We 

used semi-log for clarity in these Figures. The diffusivity of anions increased with an 

increase in the ratio of temperature to viscosity, as expected. The most effective at 

increasing viscosity is cellulose and then xylan, while glucose, cellobiose and xylose have 

relatively low viscosities. In Figure 5.6a the diffusion coefficients of anions for 3% of 

each glucose, cellobiose and xylose are collapsed together into a master curve, while the 

values of diffusion coefficients of anions xylan and cellulose behave independently. In 

Figure 5.6b there is almost the same correlation contains for the cations. 

It is interesting to note how ions behave at high concentrations of various carbohydrate 

systems. Figure 5.7 (a, b) shows the correlation between the diffusion coefficient of 

anions and cations to the ratio of temperature to the viscosity at 10% for cellobiose and 

xylose, which still fall into a master curve. The diffusivity of anions for cellulose and 

xylan increase with the increase in the ratio of temperature to viscosity. There is an 

insignificant difference between the values of diffusion coefficients of anion and cations 

at each weight fraction of carbohydrates.  

The numerical values of diffusion coefficients were affected by the number of OH groups 

of each carbohydrate, but they do not influence the viscosity measurements. For example, 

glucose and cellobiose systems have a similar viscosity, but the difference in diffusion 

coefficient is due to their OH groups. 

The hydrodynamic radius 𝑅𝐻,𝑖 of ions was calculated by Hall et all using Equation 2.9. 

The values of the effective radius are for the anion 2.2 Å and the cation 2.8 Å [59]. These 

values of 𝑅𝐻,𝑖 are used in Equation 2.8. The gradients from the relationship between the 

diffusion coefficient and the ratio of temperature to the viscosity, are obtained from all 

concentrations of carbohydrates solutions, as it will show the results late on. 
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Figure 5.6: NMR diffusion coefficient of cations (a) and anions (b) against the ratio of 

temperature to the viscosity 3% of glucose, G cellobiose, CB, xylose, X, cellulose, C and 

xylan, XY. Solid lines are provided as a visual guide and error bars are within the symbols 

sizes. 
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Figure 5.7: NMR diffusion coefficient of cations (a) and anions (b) against the ratio of 

temperature to the viscosity of  10 % of glucose, G cellobiose, CB, xylose, X, cellulose, 

C and xylan, XY. Solid lines are provided as a visual guide and error bars are within the 

symbols sizes. 

 

The gradients from Figure 5.6 and Figure 5.7 shown as the example of the data used to 

calculate the correction terms ƒ, of different carbohydrates. Figure 5.8 (a, b) shows the 

correction term ƒ of cations and anions as a function of weight fractions of glucose, 

cellobiose, xylose, cellulose and xylan. 
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It is interesting to note that in glucose, cellobiose and xylose solutions, their anions have 

ƒ≈ 1 so they diffuse as expected, but the cations are less than one, this is the known 

anomalous behavior- the cations diffuse faster than expected. In Figure 5.8 there is a large 

drop in ƒ of anion and cation in cellulose and then xylan solutions. This due to the 

decoupling between the macroscopic and microscopic viscosities and cellulose has the 

larger molecular weight and so the larger deviations.  

 

                          

Figure 5.8: The correction term ƒ of cations (a) and anions (b) as a function of weight 

fractions of glucose, cellobiose, xylose, cellulose and xylan. Solid lines are provided as 

visual guide. Error bars are within the symbols sizes. 
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5.2.5 Stokes−Debye−Einstein Analysis 

It is possible to relate two parameters of microscopic NMR relaxation time (20 MHz) and 

macroscopic viscosity by using Stokes −Debye− Einstein Equation 2.15, as discussed in 

section 2.2.3. The technique of relaxation times T1 and T2 has an insufficient chemical 

resolution to differentiate between ions; therefore, the values of the hydrodynamic radii, 

𝑅𝐻,𝑖  calculated is the averaged value over both ions. Equation 2.15 was applied to 

experimental data of the relaxation time T1 for carbohydrate systems in the following 

order: glucose, cellobiose, xylose, cellulose and xylan with concentrations (1%, 3%, 5%, 

10% and 15%) across the temperature (70 °C - 30 °C) to determine the hydrodynamic 

radii.  

Figure 5.9 (a, b) shows the rotational correlation time T1 and the ratio of the temperature 

to the viscosity (𝑇
𝜂⁄ ) for 3% and 10% of glucose, cellobiose, xylose, cellulose and xylan. 

We used logarithm scales for clarity. Figure 5.9a presents the relaxation time T1 between 

0.01 to 1s for glucose, cellobiose, xylose and xylan which increased with the increase in 

the ratio of (𝑇 𝜂⁄ ). These carbohydrates were combined into a single master plot. The 

cellulose is most effective with the increase in viscosity. Figure 5.9b shows the same 

relationship holds for 10% of carbohydrate systems. It is interesting to note that 10% of 

the cellulose is most effective with the increase in viscosity. The relaxation time T1 for 

10% of glucose, cellobiose and xylose behave similarly with an increase in the viscosity. 

Similar results are found for all concentrations measured.  

The gradients from the correlation between relaxation time T1 and ratio of (𝑇 𝜂⁄ ) are used 

to calculate the values of hydrodynamic radii, 𝑅𝐻,𝑖  for all carbohydrate systems by 

employing Equation 2.15. The results of all carbohydrate systems can be seen in Figure 

5.10. 
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Figure 5.9: Relaxation time T1 versus the ratio of the temperature to the viscosity of 

carbohydrate systems for 3% (a) and 10%  (b) of glucose, G cellobiose, CB, xylose, X, 

cellulose, C and xylan, XY. The solid lines to guide eyes and the error bars within the 

symbols sizes. 
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Figure 5.10 displays the values of hydrodynamic radii, 𝑅𝐻,𝑖  against all carbohydrate 

weight fraction at selected temperatures. The sizes of the ions are not in reality changing. 

Carbohydrates influence the values of 𝑅𝐻,𝑖, this results in a reduction of the diffusion of 

ions [106]. The size of the effective radius has the most considerable reduction in xylan 

solutions. The comparison between carbohydrates of glucose, cellobiose xylose and 

cellulose, shows values of 𝑅𝐻,𝑖 remained the same with an increase in the concentration 

of carbohydrates. However, the values of 𝑅𝐻,𝑖, gradually decreased at high concentrations 

of these carbohydrates, except glucose. This is possible due to the decoupling between 

macroscopic and microscopic viscosity once entanglements have started to form. 

 

Figure 5.10: The values of effective hydrodynamic of radii versus carbohydrate weight 

fractions. The dashed points are used to guide the eyes, and errors are within the symbols 

sizes. 
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The basic of BPP theory as was discussed in Section 2.2.2, was applied to the 

experimental data of relaxation time T1 to calculate the correlation time, 𝜏 using Equation 

2.10, at 20 MHz. After that, the value of correlation time, 𝜏 was used to determine the 

activation energy for all carbohydrates systems. Arrhenius Equation is modelled to 

calculate the activation energy of correlation time, 𝐸𝑎,𝜏 , as follows: 

                                              𝑙𝑛 𝜏 = 𝑙𝑛 𝜏0 +
𝐸𝑎,𝜏 

𝑅𝑇
                                      (5.2) 

where 𝜏0 is the correlation time at infinite temperature, and it is global value 3.23*10-15s 

and R is the universal gas constant, and T is temperature. Figure 5.11 shows the activation 

energies of correlation times plotted as a function of associated fraction α. The values of 

activation energies increased with an increase in the associated fraction 𝛼 of ‘‘glucose 

unit’’ per molecule of IL [C2mim OAc], with uncertainties on all these values ± 0.1. The 

data of these carbohydrates fell on the straight line, except data of xylan/IL [C2mim] 

[OAc]; this system works differently when the associated fraction increases. 

 

 

Figure 5.11: The activation energy of correlation time 𝜏  as a function of associated 

fraction 𝛼 as defined by Equation 5.1. The solid line indicated to a linear fit to the data. 

The Error bars within the symbols sizes. 
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5.2.6 Intrinsic−Viscosity Analysis 

This section presents the intrinsic viscosities of glucose and cellobiose. The intrinsic 

viscosity of cellulose was published,  and for more information see ref [105]. The zero 

shear rate of viscosities of glucose and cellobiose in IL[C2mim] [OAc] employed to 

determine the intrinsic viscosities, using Equations 2.23 and 2.24 to fit the data. Figure 

5.12a presents the specific viscosity as a function of glucose weight fractions across 

temperatures 20 ℃ to 60 ℃. The specific viscosity was determined from the relative 

viscosity using Equation 2.21. The specific viscosity of glucose / IL [C2mim] [OAc] 

increased as temperature decreased, as expected. Figure 5.12b shows the relative viscosity 

as a function of glucose concentrations − intrinsic viscosity multiplied by the 

concentration c[η]. All data of glucose solutions are combined from different 

temperatures into a single master curve. 

 

 

Figure 5.12 : a) The relative viscosity as a function of glucose weight fraction between 

20°C to 60 °C. b) Intrinsic viscosity [η] as a function of temperature / °C for glucose.  The 

error bars within the symbols sizes. 
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Figure 5. 13a shows the specific viscosity plotted against the weight fraction of cellobiose 

at selected temperatures. The specific viscosity reduced with the increase in temperature 

and addition of cellobiose in solution. Figure 5. 13b presents the relative viscosity as a 

function of xylan concentrations − intrinsic viscosity c[η]. Cellobiose data are also 

combined from different temperatures into a single master curve. The relative and 

intrinsic viscosities of glucose and cellobiose are much similar, as demonstrated in Figure 

5.12 and Figure 5. 13. 

 

 

Figure 5. 13: a) The relative viscosity as a function of cellobiose weight fraction between 

20°C to 60 °C. b) Intrinsic viscosity [η] as a function of temperature / °C for cellobiose.  

The error bars within the symbols size.  
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In Figure 5.14 displays the effect of temperature on five carbohydrate solutions, reducing 

the intrinsic viscosities. This is indicative of the quality of IL[C2mim] [OAc] decreased 

[105]. The cellulose solution obtained the large values of intrinsic viscosity, however, it 

decreased with temperature increases. After xylan, glucose, xylose and cellobiose have 

similar intrinsic viscosity values.  

 

Figure 5.14: Intrinsic viscosity [η] as a function of temperature / °C for xylan and xylose 

solutions with glucose, cellobiose and cellulose, cellulose data taken from ref [105]. Error 

bars within the symbols sizes and dotted lines are to guide the eye. 
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5.3 Conclusion 

The influence of carbohydrates on the diffusion coefficients of ions was determined by 

using the associated fraction, as shown in Figure 5.1. The associated fraction is calculated 

using Equation 5.1 for glucose, cellobiose, xylose, cellulose and xylan, respectively.  

The diffusion coefficient of cations and anions was plotted as a function of the associated 

fraction of OH groups for all carbohydrate systems. All data of carbohydrate systems 

were lying on the straight line. The number of OH group of cellulose used as a fixed value 

to calculate the linear fit. The values of diffusion coefficients were affected by the ratio 

of OH group 5:4:4:3:2 per a molecule of IL[C2mim] [OAc].  

The activation energy of cations and anions determined these carbohydrates, using the 

fixed values of 𝐷0 for cation is 1.4 *10-3 ± 0.2 m2 s-1 and for anion is 1.6*10-3  ± 0.2 m2 

s-1 [41] in Arrhenius Equation. 

The chemical shift of peaks imidazolium cation and anion for all carbohydrates solution 

was plotted as a function of  the associated fraction. It shows that the anions are collapsed 

into a single line, while cations are disturbed by adding polymer. The correction term was 

determined using Stokes−Einstein Equation. It found that in glucose, cellobiose and 

xylose, the anions diffuse in a very similar way to cations. The correction term dropped 

off at high concentrations for xylan and cellulose. Stokes – Debye – Einstein Equation 

was also applied to the correlation between the relaxation time and the ratio of 

temperature to the viscosity. This was to determine the size of hydrodynamic radii of ions. 

Xylan obtained the lowest values of the effective radius.  

The associated fraction of OH group was employed as a function of relaxation time T1. It 

can be noted that xylan works individually with increase in the associated fraction. The 

BPP Equations was applied on the experimental NMR data using 20MHz, to measure the 

correlation time. Furthermore, Arrhenius Equation was modelled to calculate the 

activation energy. The intrinsic viscosity of glucose and cellobiose were determined using 

Wolf approach and Huggins Equation employed to fit all the data in a single master curve.  
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It found that the intrinsic viscosities of glucose and cellobiose have the smallest and 

similar values. The cellulose solution obtained the significant values of intrinsic viscosity; 

however, it decreased with temperature increases. After that xylan, and the intrinsic 

viscosity value of xylose is close glucose and cellobiose values. 
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Chapter 6 

 

6 Investigation of the Effect of Xylan and Cellulose Blends on 

Diffusivity of the Ions of 1-Ethyl-3-Methylimidazolium Acetate 

[C2mim] [OAc] 

 

6.1 Introduction 

The purpose of this chapter is to investigate the interactions between xylan and cellulose 

mixtures in IL [C2mim] [OAc], as well as the mobility of ions in the carbohydrate 

solution with the use of primarily NMR diffusion, relaxation times (0.5 T/ 20MHz) and 

rheology methods, across a range of temperature, 20 ℃ to 60 ℃. The diffusion coefficient 

of anions and cations for the mixture of xylan and cellulose solutions with different 

weight fractions % were measured. The zero shear viscosity was determined using Cross 

− Viscosity equation 2.19. The viscosity data is plotted versus the composition of 

carbohydrates and inverse of temperature. An Arrhenius equation is modelled to calculate 

the activation energy of the diffusivity of ions in the viscous medium. The ideal mixing 

law is applied to diffusion and viscosity data. 
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6.2 Experimental methods 

6.2.1 NMR methods 

NMR diffusion coefficient and low- field relaxation time T1 and T2 were measured across 

temperatures range of 20 °C to 70 °C, using the techniques presented with details in 

Section 2.3.1. All mixture carbohydrates solutions were placed in the NMR tube with 

depths less than 1 cm to reduce convection currents on heating in the NMR machine. By 

doing this, we followed the guidance set out by Annat et al [103]. 

 

6.2.2 Viscosity method 

All viscosity measurements of the mixtures carbohydrates solutions were measured using 

equipped with a cone-plate geometry (4°- 40 mm) and a temperature control system, using 

software called rSpace, as detailed again in Section 2.3.2. Steady-state measurements 

were recorded from 20 °C to 60 °C with a 10 °C step. The shear rates were from 0.1 to 

100 s-1. Before the experiment was run, a thin film of low-viscosity silicone oil was added 

around the edges of the plate to prevent moisture contamination during the viscosity 

measurements. A nuclear magnetic resonance (NMR) Bruker Avance II (400 MHz) 

spectrometer with pulsed field gradient ¹H NMR technique was used. A Benchtop NMR 

(20 MHz) was used to study low-field relaxation times T1 and T2 of carbohydrates 

solutions. 
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6.2.3 Materials and Sample Preparation 

Xylan and cellulose powders were dried in vacuum at 50°C for 24h before use. NMR 

diffusion and viscosity measurements on 13 mixtures of the samples that were prepared 

from these carbohydrate polymers with 0.9 ml of IL [C2mim OAc] and 0.1g of the total 

of carbohydrate.  

Table 6.1 shows the carbohydrate concentrations added to the solution, with xylan weight 

fraction ranging from 0-100%. The 0% corresponds to 100% of cellulose weight fraction. 

The 100% cellulose sample and 100% xylan were separately prepared. The polymers 

were mixed in to the IL [C2mim] [OAc] at the same time. Each sample took between 72 

h to one week and was prepared without heating. Xylan concentrations were responsible 

for changing the colour of the samples (from transparent 0% to dark brown for 100% 

xylan).  

The blends samples were stirred under nitrogen gas in an MBraun Lab Master 130 

Atmospheric chamber preserved at the level of a dew point between -70 ℃ and -40 ℃. 

The NMR tubes of samples were sealed to prevent contamination with water from the 

atmosphere within the chamber. Five samples were prepared for each concentration of 

composition xylan and cellulose, and the measurements have repeated several times to 

obtain accurate data by reducing the percentage of error. 

Table 6.1: The carbohydrate concentrations added to the solution, with xylan weight 

fraction ranging from 0-100%. 

 

  

CONC % 0 5 10 20 30 40 50 60 70 80 90 95 100 

Xylan 0 0.005 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.095 0.1 

Cellulose 0.1 0.095 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.005 0 
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6.3 Results and discussion 

6.3.1 NMR Diffusion 

NMR Diffusion measurements are used to determine the mobility of ions in each mixture 

and from this investigate the interactions between xylan and cellulose in solution. The 

diffusion coefficients of all cation resonances were equal. The Arrhenius equation was 

applied to NMR diffusion data. Figure 6.1a the natural logarithms of the diffusion 

coefficients of anions for nine composition concentrations are plotted versus the inverse 

temperature. The anion diffusion increase with the increase in temperature. The data of 

ln 𝐷𝐶2𝑚𝑖𝑚  and ln 𝐷𝑂𝐴𝑐 have a slight concave dependence in the Arrhenius plot. Figure 

6.1b shows the same relationship holds almost for cation diffusion. 

From Figure 6.1 (a, b) the diffusion values of the cations and anions for the composition 

solutions are approximately the same, with uncertainties on all these diffusion values of 

±0.2 m2 s-1. The values of diffusion coefficients for 30% and 50% have lower values 

during temperatures increase. It can note that the concentrations of mixture polymers 

solutions are not in regular order in Figure 6.1 (a, b), as might be expected. Figure 6.2 (a, 

b) displays the diffusion of ions are behaving differently at the concentrations of blends 

polymers. 
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Figure 6.1: Natural logarithm of the diffusion coefficients for the anions (a) and cations 

(b) for the weight percentage of the xylan-cellulose mixture in [C2mim OAc]. The solid 

lines provided as a visual guide. Error bars are within the data points. 
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Figure 6.2 (a, b) shows the diffusion coefficients of anions as a function of the 

composition of polymers solutions at 40 ℃. It is found that the diffusion values of the 

anions compared to cation diffusion are approximately the same. These values fluctuated 

with an increase in xylan from 10 to 100 mg/l and decreased cellulose concentrations, 

that is kept fixed at 10% in total of concentration into solution. These fluctuations indicate 

to there is an interaction between the ions and the molecules of two compounds in 

solution, as it seems in peaks at particular concentrations. 

The diffusion coefficients of anions and cations of the blends samples have unexpected 

behaviours, and this may indicate there are interactions due to the specific cellulose-

cellulose, cellulose-xylan and xylan-xylan arrangements taking place particular 

stoichiometric ratios. The diffusion coefficients of ions were higher in the 10%, 70% and 

90% xylan concentrations, whereas they were lower in the 0%, 30% and 50% 

concentrations, as shown in Figure 6.2 (a, b). In the xylan-cellulose mixture, interactions 

at 20% and 80% or 80% and 20% of weight fraction respectively, appeared lower for 

diffusion coefficients of both ions, which means that ions may have interacted with a 

higher number of OH groups in these mixtures. The same results are obtained for all 

temperatures measured. The diffusion measurements were repeated several times before 

starting the analysis of the data. So far, we do not have any idea why these peaks happened 

at these ratios, therefore; further analysis is required, it would be useful to use a computer 

simulation to give some insight on these interactions and possible polymer-polymer 

arrangements. The ideal mixing law was then applied to the diffusion data of complex 

solvent and polymer combination [41, 109]. The result will be discussed in detail later. 
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Figure 6.2: Diffusion coefficients for the anions (a) and cations (b) for the weight 

percentage of the xylan-cellulose mixture in [C2mim OAc] at 40 ℃.  Dashed lines are 

provided as a visual guide. Error bars are within the data points. 
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The ratio of the anion to that the cation fluctuates between 0.8 and less than 1 with an 

increase in the composition of polymers in solution. Figure 6.3 presents the ratio of the 

anion diffusion coefficients to those of the cations as a function of composition (xylan 

and cellulose) concentrations and is less than 1 (𝐷𝑂𝐴𝑐/𝐷𝐶2𝑚𝑖𝑚< 1). This diffusion is called 

‘anomalous’ diffusion since the anion is smaller geometrically than the cation and so is 

expected to diffuse instead faster. 

 

Figure 6.3: Ratio of the diffusion coefficients of the anions to the cations as a function of 

varying the concentrations of composition (xylan-cellulose).  Error bars are displayed 

with symbols. The solid lines to guide the eyes. 

 

 

6.3.1.1 1H Chemical Shift of Proton Resonances 

The composition altered the positions of IL [C2mim OAc] proton resonances 1-7, as 

shown in Figure 1.1. Figure 6.4 displays the chemical shift, ∆δ (ppm) versus weight 

fractions of composition (xylan-cellulose) at 30 °C. The chemical shift ∆𝛿 of protons 

resonances was calculated using 𝛿 resonance peak 5 as a reference position. The protons 

in the cation ring have negative values of ∆δ with four peaks, while anion also has peak 

with positive values at 30ºC. The largest movement is in peak 2, which is the most acidic 

proton of the imidazolium ring. The chemical shift of both ions shown there 4 peaks,  
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which coincides with the peaks in the diffusion of cations and anions. This is independent 

evidence of interactions between cellulose and xylan, complementing the diffusion data. 

The chemical shift of proton peaks in composition solutions changed compared to the 

chemical shift of each polymer in IL [C2mim OAc] individually. 

 

 

Figure 6.4: The chemical shift of protons resonances ∆δ (ppm) plotted versus xylan-

cellulose weight fractions at 30 °C.  The lines provided as a visual guide. The error bars 

within the symbols size. 
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It is possible to investigate the influence of two polymers dissolved in IL [C2mim OAc] 

by determining the activation energies of anion and cation. The activation energies of 

both ions were obtained from the data in Figure 6.1, using an Arrhenius Equation 3.1. 

The values of activation energies of anion and cation are shown in Table 6.2. It can be 

observed that the activation energies, 𝐸𝐴,𝐷  for anion diffusion are similar to cation in this 

viscous medium. 

 

     Wt% 𝐸𝐴,𝐷 /kJ mol-1 

[C2mim]+                [OAc]  ̄ 

0 48.1± 0.1 48.3± 0.1 

5 52.1± 0.1 51.1± 0.1 

10 48.2± 0.1 47.7± 0.1 

20 51.6± 0.1 49.9 ± 0.1 

30 44.6± 0.1 45.1± 0.1 

40 53.3± 0.1 50.7± 0.1 

50 47.8± 0.1 47.8± 0.1 

60 47.2± 0.1 45.6± 0.1 

70 50.2± 0.1 51.5± 0.1 

80 51.0± 0.1 51.5± 0.1 

90 46.4± 0.1 45.9± 0.1 

95 51.1± 0.1 48.4± 0.1 

100 46.8± 0.1 47.4± 0.1 

Table 6.2: The values of activation energy of anion and cations for the concentrations of 

blend polymers solutions with the uncertainties values. 

  



 

106 

 

 

 

6.3.2 Ideal Mixing Law of Diffusion coefficients 

Ideal mixing law is applied to determine to quantify the interactions between the ions of 

IL [C2mim OAc] and molecules of the mixture of carbohydrates (cellulose and xylan) 

solutions. The ideal mixing rule for diffusion derives from the viscosity ideal mixing law, 

and it was applied for diffusion coefficients of both ions at constant temperature [59, 109]. 

 

                                                    𝑙𝑛𝐷𝑖 = 𝑥1𝑙𝑛𝐷1 + 𝑥2𝑙𝑛𝐷2                                                  (6.1) 

where 𝐷𝑖  is the of self-diffusion coefficient of ions in mixture liquid and 𝑥1 and 𝑥2 are the 

weight fraction of cellulose and xylan in solution, where 𝑥1+𝑥2=1 [109-111] As well as 

𝐷1  and 𝐷2  are diffusion coefficients of cations with cellulose and xylan solutions, 

respectively. We used concentrations scale from 0 to 100% with total for each 

concentration 10%, for ideal mixing analysis. 

Figure 6.5 (a, b) shows the natural logarithm of the diffusion coefficients for the anions 

and cations are plotted versus the mixture of carbohydrate concentrations at 30 °C. Figure 

6.5a, is displayed the linear dependence calculated according to an ideal mixing law, 

deviations of the diffusion values from this linear dependence indicate interactions 

between the polymers.  

Three peaks are shown at 10:90, 70:30 and 90:10 weight fractions of xylan to cellulose. 

Our hypotheses are the number of available OH groups is reduced at the concentrations 

where these peaks are seen in Figure 6.5 (a, b) as it is the OH groups that slow down the 

diffusion of the ions [51].  

When the weight percentages of carbohydrates were (i.e. at 30:70 and 50:50 xylan to 

cellulose) this lead to a minimum point. Figure 6.5b shows the same result is found for 

cation diffusion. 
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Figure 6.5: Natural logarithm of the diffusion coefficients for the anions (a) and cations 

(b) as a function of the mixture of carbohydrate weight fractions at 30 °C.  The error bars 

are shown with the data. Dashed lines are provided as a visual guide.   
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The diffusion difference (∆𝐷%) between the measured values of diffusion of the cations 

and anions in (cellulose and xylan) solution concentrations and that predicted from ideal 

mixing, is given by: 

                                  ∆𝐷 =
𝐷(𝑐)−𝐷(𝑖𝑑𝑒𝑎𝑙 𝑚𝑖𝑥𝑖𝑛𝑔)

𝐷(𝑖𝑑𝑒𝑎𝑙 𝑚𝑖𝑥𝑖𝑛𝑔)
∗ 100                                          (6.2) 

where D(𝑐) is the experimental value of diffusion and 𝐷(𝑖𝑑𝑒𝑎𝑙 𝑚𝑖𝑥𝑖𝑛𝑔) was calculated 

from ideal mixing law. Figure 6.6 (a, b) shows the difference in diffusion coefficients of 

anions and cations as a function of the mixture of polymers with different concentrations. 

The result shows that the anions diffuse faster than the cations and the difference of 

diffusion coefficients of anions is approximately 100% and ∆𝐷 for cations is around 80%. 

The difference of dissolving mechanism of cellulose and xylan in IL [C2mim OAc] has 

effected on the mobility of both ions. 

 

 

Figure 6.6: The differences in diffusion coefficients of the anions (a) and cations (b) are 

plotted against the mixture of polymers concentrations in solution, at various 

temperatures (20 ℃ - 60 ℃). The uncertainties are within the size of the symbol to avoid 

overlap. The solid lines provided as a visual guide. 
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6.3.3 Viscosity–Temperature Analysis 

As discussed in section 2.3.2, the viscosity technique is used to measure the zero shear 

rate viscosity of composition polymers (cellulose and xylan) in IL [C2mim] [OAc] 

solutions with different concentrations, which are 0%, 10%, 20%, 30%, 40%, 50%, 60%, 

70%, 80%, 90%, 95% and 100%, at various of temperatures from 20℃ to 60℃. Figure 

6.7a shows xylan- cellulose solutions for different concentrations as a function of shear 

rate at 50 ℃. The data from 0 to 0.1 s-1 had low signal to noise ratio and thus were ignored 

for all composition of polymer solutions. 

The concentrations 0%, 10%, 20%, and 30% are indicated to 100% of cellulose and 10:90, 

20:80 and 30:70 of weight fractions of xylan to cellulose, respectively. In these 

concentrations, cellulose is higher weight fractions than xylan, and their viscosity values 

are similar at 50 ℃, as shown in Figure 6.7a. 

The Cross-Viscosity Equation 2.18, was applied to experimental data, to determine the 

zero-viscosity 𝜂0 of  blends xylan and cellulose solution at selected temperatures. The 

result presents in Figure 6.7b, where the viscosity of component polymers in IL [C2mim] 

[OAc] solutions plotted as a function of inverse temperature. The viscosity values of all 

compositions of polymers solutions decrease as temperature increases, as expected. The 

viscosity values of solutions of varying concentrations gradually decrease with increase 

in weight fractions of the mixture of polymers. 100% of xylan has the lower value of 

viscosity, as compared to 100% of cellulose. The same results found for all temperature 

measured. The activation energy of viscosity is calculated using the data is shown in 

Figure 6.7. 
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Figure 6.7: a) The zero viscosity of composition polymers (cellulose and xylan) /IL 

[C2mim] [OAc] solutions at different weight fractions as a function of shear rate/s. b) 

The logarithmic plots of the viscosity of blends polymers in IL [C2mim] [OAc] solutions 

versus inverse temperature. Lines are linear approximations. Error bars within the 

symbols size. 

  



 

111 

 

 

 

An Arrhenius Equation 3.3 is modelled and applied to the viscosity data to calculate the 

activation energy. Table 6.3 displays the values of activation energies of viscosity for the 

mixture of polymers. The values of 𝐸𝐴,𝜂 are slightly varying between the compositions of 

polymers solutions but not in any significant way. 

 

    Wt % 𝐸𝐴,𝜂/kJ mol-1 

0 63.6 ±  0.5 

10 64.4 ± 0.5 

20 65.8 ± 0.5 

30 64.3 ± 0.5 

40 57.2 ± 0.5 

50 61.7 ± 0.5 

60 63.5 ± 0.5 

70 60.8 ± 0.5 

80 62.4 ± 0.5 

90 62.0 ± 0.5 

95 59.4 ± 0.5 

100 61.3 ± 0.5 

Table 6.3: The activation energies of viscosity for mixture of the carbohydrate polymer 

solutions. 

 

 

6.3.3.1 Viscosity Ideal Mixing Rule 

It is possible to determine to quantify the interaction between two polymers mixtures in 

IL [C2mim] [OAc] using the viscosity ideal mixing law at constant temperature [59, 110]. 

                                                 𝑙𝑛𝜂𝑚𝑖𝑥 = 𝑥1𝑙𝑛𝜂1 + 𝑥2𝑙𝑛𝜂2                                                    (6.3) 

where 𝜂𝑚𝑖𝑥is the measured viscosity and 𝑥1 and 𝑥2 are the weight fraction of cellulose 

and xylan in solution, where 𝑥1+𝑥2=1. As well as 𝜂1 and 𝜂2 are the viscosity of cellulose 

and xylan solutions, respectively [109, 110, 112]. The concentrations scale plotted for 

ideal mixing analysis, from 0 to 100% with the total for each concentration 10%. 
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Figure 6.8 presents natural logarithm of the viscosity as a function of the mixture of 

carbohydrate weight fractions at 40 °C. The linear dependence calculated according to an 

ideal mixing law deviations of polymer and solvent. The viscosity values from the straight 

line indicate there are interactions between the two polymers in solution. The viscosity 

data dropped at 40% and 90% weight fraction of xylan across temperatures 20 ℃ to 60℃. 

 

 

Figure 6.8: Natural logarithm of the viscosity as a function of the mixture of carbohydrate 

weight fractions at 40 °C. The error bars are shown with the data points. Solid is the linear 

fit and dashed lines are provided as a visual guide. 

 

The viscosity difference (∆𝜂 %) between the measured values viscosity in (cellulose and 

xylan) solution concentrations and that predicted from ideal mixing, is given by: 

                                 ∆𝜂 =
𝜂(𝑐)−𝜂(𝑖𝑑𝑒𝑎𝑙 𝑚𝑖𝑥𝑖𝑛𝑔)

𝜂(𝑖𝑑𝑒𝑎𝑙 𝑚𝑖𝑥𝑖𝑛𝑔)
∗ 100                                          (6.4) 

where 𝜂(𝑐)  is experimental value of viscosity, and 𝜂 (𝑖𝑑𝑒𝑎𝑙 𝑚𝑖𝑥𝑖𝑛𝑔)  was calculated 

from viscosity ideal mixing law. In Figure 6.9 the result shows the difference of viscosity 

values of polymers mixtures in solutions at different temperatures. All viscosity data are 

followed the same trend during the concentrations of mixture polymers. It can be noted 

that the difference in viscosity ∆𝜂 shows there are peaks.  
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These three peaks in viscosity data correspond to the three peaks of diffusion 

measurements at the same temperatures indicate there is a real interaction between 

components in these solutions. 

 

Figure 6.9: The viscosity difference against the compositions of polymers mixtures in 

solution across temperatures from 20 ℃ to 60 ℃. The error bars within the symbols size 

to avoid overlap. Dashed lines are provided as a visual guide. 

 

 

6.3.4 Stokes−Einstein Analysis 

Stokes-Einstein theory can also be applied on the blends of carbohydrate polymers 

solutions, to measure the micro-viscosity per-factor or as known the corrections term, ƒ. 

Figure 6.10 (a, b) shows the correlation between the diffusion coefficients of anion and 

cations and the ratio of temperature (𝐾) to the viscosity (Pa s) for all compositions of 

polymers solutions, with xylan weight fraction ranging from 0-100%, where 0% indicates 

to 100% cellulose solution. The NMR diffusion data of Figure 6.10 (a, b) was employed 

to investigate the influence of these compositions on the diffusing of ions in viscous 

solution, by determining the correction term ƒ. The hydrodynamic radii 𝑅𝐻,𝑖of ions was 

calculated by Hall et all using Equation 2.9, the effective radii values are for the anion 

2.2 Å and the cation 2.8 Å [59]. These values of 𝑅𝐻,𝑖 are employed with the gradient of 

the ratio of D to 𝑇 𝜂⁄ , to calculate the correction term, ƒ for anions and cations, using  
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Stokes−Einstein Equation 2.8. In Figure 6.10a the diffusion coefficients of anion increase 

with the increase in the ratio of temperature to the viscosity for all concentrations of the 

composition. Figure 6.10b is presented the same result found for diffusivity of cations. 

The result indicates there is a new structure (complex) occurred between 100% cellulose 

and 100% xylan in solution. It can see in this result the anion behaves differently than 

ideal mixing diffusion. The same result is found for cation diffusion. 

 

 

 

Figure 6.10: NMR diffusion coefficients of anions (a) and cations (b) against the ratio of 

temperature to the viscosity of pure IL [C2mim] [OAc]for the composition of 

carbohydrates concentrations (from 0% to 10%). Dotted lines are provided as visual guide 

and error bars within the symbols sizes.  
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Stokes-Einstein Equation 2.8 is applied to the experimental data from in Figure 6.10 (a, 

b) and  the result presents in Figure 6.11.  The correction term for anions and cations 

plotted against the composition of polymers. The result is shown the correction term ƒ for 

anion and cation is ƒ< 1. It can note that in low concentration composition, the value of 

correction term, ƒ decreases, this because the microscopic viscosity is smaller than 

macroscopic viscosity. The value of correction term, ƒ increases as concentrations of 

composition polymers in solution increase. These values of correction term indicate the 

new complex structure of these polymers solutions. The diffusion coefficient of anions 

and cations is preferentially more reduced by high concentrations of cellulose, which are 

0%, 90% and 70% in these blend solution. It is interestingly to note that the result 

indicates the anomalous behaviour, which means the cations diffuse faster than expected.  

 

 

Figure 6.11: The correction term ƒ as a function of weight fractions composition 

(cellulose and xylan) in solution. Error bars are within the symbols sizes.  
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6.3.5 Stokes−Debye–Einstein Analysis 

The relaxation time T1 was measured across arrange of temperatures (70 °C - 30 °C). 

These experimental data used to determine the hydrodynamic radii of averaged ions in 

viscous medium, using Stoke − Debye − Einstein Equation. Figure 6.12 presents the 

correlation between relaxation time T1 and the ratio of the temperature (T) to the viscosity 

( 𝜂 ) for several concentrations of the blend polymers. The relaxation time T1 for 

concentrations from 10% to 100% increase when the ratio of (𝑇
𝜂⁄ ) increases. It can be 

noted that the values of T1 is higher at 0% which is the cellulose/ [C2mim] [OAc] solution. 

 

 

Figure 6.12: The relaxation times T1 dependence on the ratio of temperature to viscosity 

for the composition of polymers concentrations.  Error bars size is within data points. 

Dashed and solid lines are provided as a visual guide.  

 

As discussed in section 2.2.3, Stokes− Debye – Einstein Equation 2.15 is also applied to 

the experimental data of blends polymer solutions, to determine the effective 

hydrodynamic radii,  𝑅𝐻,𝑖. Figure 6.13 shows the values of the effective hydrodynamic 

radii,  𝑅𝐻,𝑖  against the composition of polymer concentrations, with xylan weight 

fractions in solution. The values of  𝑅𝐻,𝑖  increase with the increase in xylan weight 

fractions in mixture solution. A comparison between the values of correction terms from 

Figure 6.11 and hydrodynamic radii values in Figure 6.13, it can be noted that there are  
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similar results found, indicate to the complex structure of this system influences the 

effective size of ions IL [C2mim] [OAc]. The values of the hydrodynamic radii of ions in 

all the blends polymers concentrations and all the temperatures, for T1, is almost equal to 

or slightly greater than T2 experimentally. 

 

 

Figure 6.13: The values of hydrodynamic radii,  𝑅(𝐻,𝑖)  against the polymers 

concentrations, with xylan weight fractions in solution and error bars are within the 

symbols sizes. 
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6.4 Conclusion  

The NMR diffusion coefficients of cations and anions for a mixture of carbohydrate 

solution were measured and plotted against inverse temperatures, analysed using 

Arrhenius equation. The ratio of the anion diffusion coefficients to that of the cations as 

a function of the xylan-cellulose concentrations was less than 1. Cellulose preferentially 

more reduces the diffusion coefficient of the anion than does xylan.  

It is generally agreed that the anion is more active in the dissolution of polymers than the 

cation. The dissolution mechanism of cellulose and xylan in [C2mim] [OAc] can be 

examined via the mobility of the ions. It can be proposed that the number of accessible 

OH groups belonging to the carbohydrate polymers be reduced at certain xylan-cellulose 

blend compositions, showing that at these concentrations there are significant interactions 

between the two biopolymers. There are peaks shown when the diffusion coefficients of 

ions as a function of the composition of concentration. The minimum points were at point 

30:70 and 50:50  xylan to cellulose. Ideal mixing of diffusion was used for both ions to 

quantify the interactions between components in solution. 

The chemical alteration of protons resonances displayed four peaks of proton resonance 

correlated with cations of imidazolium ring. The ∆δ of anion peak is in range of 0.02 to - 

0.02 ppm. The chemical shift showed that the positions of ions in mixture solution were 

altered when compared to the chemical shift of ions in cellulose or xylan in IL [C2mim] 

[OAc]. These peaks matched where the diffusion differences from ideal mixing were the 

greatest.  

The viscosity values of all compositions of polymers solutions decrease as temperature 

increases, as expected. The viscosity values of solutions of varying concentrations 

gradually decrease with increase in weight fractions of the mixture of polymers. The ideal 

mixing of viscosity shows there is an interaction between cellulose and xylan in the 

mixture solution. 
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Chapter 7  

 

7 Conclusion and Future Works 

 

7.1 Conclusion  

This work presents an investigation into carbohydrates (glucose, cellobiose, xylose, 

cellulose and xylan) dissolved into the IL [C2mim] [OAc] and how they can influence 

the diffusivity, relaxometry time and rheological properties, as well as the chemical shift 

of ions. Using primarily NMR diffusion and low and high field relaxation times, as well 

as rheology via a dynamic stress-controlled rheometer, across arrange of temperatures 20 

℃ −70 ℃. 

In chapter 3, xylose / IL [C2mim] [OAc]. The self−diffusion coefficients of anions and 

cations decrease with an increase in xylose weight fraction. The values of diffusion 

coefficients of anions and cations are increased with increase in temperature, as expected. 

These values showed the diffusivities of anion and cation were similar. The ratio of the 

diffusion coefficient of anions to cations was less than 1. This is known as ‘‘anomalous’’ 

diffusion because the anion is geometrically smaller than the cation and so would be 

expected to diffuse faster not slower than the cation. It is possible this anion is diffusing 

as part of an aggregation of ions. Xylose data were compared to cellobiose to compare 

the influence of each on ions. It was found that the values of activation energies of ions 

indicated an insignificant difference between xylose and cellobiose systems for diffusion, 

relaxation times and viscosity measurements.  
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The changes in 1H chemical resonance frequencies ∆δ for protons in the presence of 

xylose is almost identical to the chemical shift movements of cellobiose, which indicates 

that these carbohydrates have a similar dissolving mechanism. The correction term, ƒ was 

extracted from the Stokes-Einstein relationship. It is interestingly to note that cations 

diffuse faster than expected. At low field relaxation (20MHz) xylose found to be in the 

liquid regime across all temperatures (70 °C−30 °C). The viscosity measurements and 

relaxation time data were used to measure the effective hydrodynamic radii, using the 

Stokes-Debye-Einstein relationship. The value of the hydrodynamic radii of averaged 

ions was between 3.5 Å to 5 Å in xylose solutions. The values of the hydrodynamic radii 

of ions in all the xylose concentrations and all the temperatures, for T1, is almost equal to 

or slightly greater than T2 experimentally.  

The viscosity dependence increases with adding xylose through an increase in 

temperature. The viscosity-shear rate was used to determine the intrinsic viscosity of 

xylose/IL [C2mim] [OAc] solution. All data of the intrinsic viscosities of xylose solutions 

are combined for different temperatures into a single master curve. The values of xylose 

intrinsic viscosity [η] are greater than the corresponding cellobiose values at the lower 

temperature. The intrinsic viscosity of cellobiose was influenced slightly by temperature. 

The intrinsic viscosity [η] of both carbohydrates reach the same point of 10 ml/g at 60 ℃. 

In chapter 4, the dissolution of xylan in IL [C2mim] [OAc] was determined. The mobility 

of ions in xylan solutions decreased, this due to the viscosity is increased by the presence 

of xylan and decreased by increasing temperature. The diffusivity of the anion is similar 

to that the cation, this indicates an anion is joined with other diffusing particles [101]. 

The ratio of the diffusion coefficient of anion to cation is less than 1. The results of the 

chemical shift of proton resonances in xylan system compared to cellulose / IL [C2mim] 

[OAc], this indicated that in both systems the dissolution mechanism is similar. The 

influence of xylan on the ions of IL[C2mim] [OAc] is found to be similar to that as found 

for cellulose; in the case of xylan dissolution, the cation and anion are though more 

equally affected by the addition of this carbohydrate than they were by the addition of 

cellulose.  
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At high field, the relaxation times for all the proton resonances in xylan solutions move 

between two regimes (solid and liquid) and so have a minimum in T1. At 20MHz low 

field, xylan is also found to be in the liquid regime across all temperatures (70 °C−30 

°C). Activation energies of cation and anions of xylan system were measured and 

compared to cellulose, and it found that both ions have similar activation energies in 

diffusion, relaxation time and viscosity measurements. 

The viscosity data was used with diffusion to measure the correction term, and with 

relaxation time to calculate hydrodynamic radii, as well as being utilised to determine the 

intrinsic viscosity. The Stokes–Einstein relations used to determine the micro-viscosity 

per-factor or as known the correction term.  

In xylan system, it was found that the correction term ƒ dropped off with addition xylan 

in solution, this is because of the decoupling between the macroscopic and microscopic 

viscosities. 

The values of hydrodynamic radii of ions were calculated from the correlation between 

the viscosity and the relaxation times using Stokes-Debye-Einstein Equation. These 

values found between 3Å and 2Å in xylan solutions. In fact, the size of the hydrodynamic 

radius of ions are not changed, but due to the structure and the size of molecular weight 

of carbohydrate polymer, it can influence on the effective size of ions, during their 

movement in solution. The values of the hydrodynamic radii of ions in all the xylan 

concentrations and all the temperatures, for T1, is almost equal to or slightly greater than 

T2 experimentally. 

The intrinsic viscosities of all xylan solutions and for all temperatures were calculated 

using Wolf approach, and all samples data were fitted into a master curve by Huggins 

Equation. The values of intrinsic viscosity [η] of cellulose solutions are higher compared 

to xylan. The intrinsic viscosity data was used to determine the overlap concentrations of 

xylan and cellulose. It found that xylan system has overlap concentration at 3%, whereas 

overlap concentration of cellulose system at 1%.  
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In chapter 5, the influence of carbohydrates (glucose, cellobiose, xylose, cellulose and 

xylan) on the diffusivity of ions was investigated by using the associated fraction α of 

‘‘glucose unit’’ per molecule of IL [C2mim] [OAc]. The ratio of OH group to the 

molecule of IL [C2mim] [OAc] was key to determining the diffusion of ions in these 

carbohydrates systems.  

The diffusion coefficients of anions and cations for all carbohydrate- IL [C2mim] [OAc] 

systems collapsed onto a single master for all temperatures measured. The numerical 

values of diffusion coefficients were affected by the number of OH groups of each 

carbohydrate. The chemical shift of protons resonances ∆𝛿 in these carbohydrate systems 

shown that the ratio of OH group to the molecule of IL [C2mim] [OAc] disrupt the 

associated ions in the pure IL [C2mim] [OAc]. The anions in all carbohydrate solutions 

followed the same trend.  

The correction terms were calculated from the correlation between the diffusion and the 

ratio of the temperature to the viscosity for all carbohydrate system. It found that in 

glucose, cellobiose and xylose, the correction term of anions is ƒ~1, so they diffuse as 

expected, but the cations are less than one, this indicates the cations diffuse faster than 

expected. In carbohydrate polymers (xylan and cellulose) systems, the correction term 

dropped off; this is because of the decoupling between the microscopic and macroscopic 

viscosities. 

From the ratio of the temperature to the viscosity and relaxations times, the effective 

hydrodynamic radius of ion was determined using Stokes-Debye-Einstein Equation. The 

values of hydrodynamic radii 𝑅𝐻,𝑖, gradually decreased at high concentrations. This is 

possible due to the size of molecular weight of carbohydrates and the decoupling between 

macroscopic and microscopic viscosity. The equations of BPP theory were applied to data 

of the relaxation time T1 to calculate the value of correlation time, 𝜏. Arrhenius Equation 

was used to determine the activation energy for all carbohydrates systems.  

It was found the data of these carbohydrates fell on the straight line in 𝛼, except data of 

xylan / [C2mim] [OAc], this system works differently. The values of the activation energy 

of ions in all the carbohydrate- IL [C2mim] [OAc] systems and all the temperatures, for 

T1, is almost equal to or slightly higher than T2 experimentally. 
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 The intrinsic viscosity of glucose is similar to the intrinsic viscosity of cellobiose, and 

xylose is very close to them, whereas cellulose obtained the highest values of intrinsic 

viscosity and then xylan.  

In chapter 6 the dissolution of mixed xylan and cellulose in solvent solution was 

determined by the interaction between the ions of IL [C2mim] [OAc]. It found there are 

three peaks at particular concentrations, where interesting effects were at around 10:90, 

70:30 and 90:10 weight fractions of xylan to cellulose. Ideal mixing law is applied to 

determine and quantify the interactions between the mixtures of carbohydrates in 

solutions. We suggest that the number of available OH groups was reduced at the 

concentrations where these peaks take place.  

The difference of diffusivity of ions was measured. The result has shown that the 

difference of diffusion coefficients of anions was approximately 100% and ∆D for cations 

was around 80%. The ratio of the anion diffusion coefficients to that of the cations as is 

less than 1. The chemical shift, ∆δ of anions and cations for composition solutions is 

independent evidence of interactions between cellulose and xylan, complementing the 

diffusion data. The activation energies for anions and cations are very similar. 

The zero shear rate viscosity of solutions with different compositions were measured. The 

viscosity values from the straight line of ideal mixing law indicated there are interactions 

between the two polymers in solution. These interactions appeared in three peaks of 

viscosity data correspond to the three peaks of diffusion measurements at the same 

temperatures. This indicates there is a real interaction between components in these 

solutions. The correction term and the effective hydrodynamic radii of ions were 

determined, using Stokes-Debye-Einstein Equations. 

The value of correction term, ƒ increases as composition concentrations in solution 

increase. This indicates an exchange between the ions. The values of  𝑅𝐻,𝑖 increase with 

the increase in xylan weight fractions in mixture solution. From the values of correction 

terms and hydrodynamic radii values, there are similar results found and indicate to the 

complex structure of this system. 
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7.2 Future Work 

Recently, there is much research and interest to study cellulose blends. Therefore, chapter 

6 which is an investigation of the effect of xylan and cellulose blends on the ions of IL 

[C2mim] [OAc] at different temperatures, was a first step and a novel approach, using 

diffusivity of ions in these highly viscous solutions as a probe. 

We found the influence of OH group on the diffusion of ions in mixed xylan and cellulose 

solution needs more investigation, to understand how the ions of IL [C2mim] [OAc] 

interact with these carbohydrates. Other ionic liquids such as 1-ethyl-3-methylimidazolium 

octanoate [C2MIM][OOct], 1-butyl-3-methylimidazolium chloride [BMIM] [Cl] and N-

methylpyridinium chloride could also be used to dissolve these polymers (cellulose and 

xylan), to study the interactions. The results from that can be compared to see whether 

there peaks as happened with IL[C2mim] [OAc] are more general. 

There is a plan to make films from the mixed xylan and cellulose in IL [C2mim] [OAc] 

with different concentrations (from 0% to 100%). These films will need an investigation 

to measure their mechanical, thermal and barrier properties. Some techniques can be used 

such as differential scanning calorimetry, confocal microscopy, FTIR spectroscopy to 

determine the chemical shift of the components and atomic force microscopic (AFM) to 

measure the elastic moduli, tensile and stiffness. One can also use scanning electronic 

microscopic (SEM) to characterise the films and X-ray diffraction and NMR 

spectroscopy to measure their crystallinity. 

 

 

 

 



 

125 

 

 

 

8 References  

1. Wasserscheid, P. and W. Keim, Ionic liquids—new “solutions” for transition 

metal catalysis. Angewandte Chemie International Edition, 2000. 39(21): p. 3772-

3789. 

2. Walden, P., Molecular weights and electrical conductivity of several fused salts. 

Bull. Acad. Imper. Sci.(St. Petersburg), 1914. 1800. 

3. Tokuda, H., et al., Physicochemical properties and structures of room 

temperature ionic liquids. 1. Variation of anionic species. The Journal of Physical 

Chemistry B, 2004. 108(42): p. 16593-16600. 

4. Huddleston, J.G., et al., Characterization and comparison of hydrophilic and 

hydrophobic room temperature ionic liquids incorporating the imidazolium 

cation. Green chemistry, 2001. 3(4): p. 156-164. 

5. Rabideau, B.D., A. Agarwal, and A.E. Ismail, The role of the cation in the 

solvation of cellulose by imidazolium-based ionic liquids. The Journal of Physical 

Chemistry B, 2014. 118(6): p. 1621-1629. 

6. Zhang, J., et al., NMR spectroscopic studies of cellobiose solvation in EmimAc 

aimed to understand the dissolution mechanism of cellulose in ionic liquids. 

Physical Chemistry Chemical Physics, 2010. 12(8): p. 1941-1947. 

7. Heinze, T., et al. Interactions of ionic liquids with polysaccharides–2: Cellulose. 

in Macromolecular Symposia. 2008. Wiley Online Library. 

8. Olsson, C., et al., Effect of methylimidazole on cellulose/ionic liquid solutions and 

regenerated material therefrom. Journal of Materials Science, 2014. 49(9): p. 

3423-3433. 

9. Graenacher, C., Cellulose solution. US Patent, No. 1943176, 1934. 

10. Swatloski, R.P., et al., Dissolution of cellose with ionic liquids. Journal of the 

American chemical society, 2002. 124(18): p. 4974-4975. 

11. Rogers, R.D. and K.R. Seddon, Ionic liquids--solvents of the future? Science, 

2003. 302(5646): p. 792-793. 

12. Kilpeläinen, I., et al., Dissolution of wood in ionic liquids. Journal of agricultural 

and food chemistry, 2007. 55(22): p. 9142-9148. 

13. Bylin, S., et al., Solvation Behavior of Cellulose and Xylan in the MIM/EMIMAc 

Ionic Liquid Solvent System: Parameters for Small-Scale Solvation. 

BioResources, 2014. 9(1). 

14. Sun, N., et al., Complete dissolution and partial delignification of wood in the 

ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chemistry, 2009. 11(5): 

p. 646-655. 

  



 

126 

 

 

 

15. Shiflett, M.B. and A. Yokozeki, Phase behavior of carbon dioxide in ionic 

liquids:[emim][acetate],[emim][trifluoroacetate], and 

[emim][acetate]+[emim][trifluoroacetate] mixtures. Journal of Chemical & 

Engineering Data, 2008. 54(1): p. 108-114. 

16. Vitz, J., et al., Extended dissolution studies of cellulose in imidazolium based ionic 

liquids. Green chemistry, 2009. 11(3): p. 417-424. 

17. Wang, H., G. Gurau, and R.D. Rogers, Ionic liquid processing of cellulose. 

Chemical Society Reviews, 2012. 41(4): p. 1519-1537. 

18. Bowron, D., et al., Structure and dynamics of 1-ethyl-3-methylimidazolium 

acetate via molecular dynamics and neutron diffraction. The Journal of Physical 

Chemistry B, 2010. 114(23): p. 7760-7768. 

19. Wertz, J.-L., J.P. Mercier, and O. Bédué, Cellulose science and technology. 2010: 

EPFL press. 

20. Sundarraj, A.A. and T.V. Ranganathan, A review on cellulose and its utilization 

from agroindustrial waste. Drug Invention Today, 2018. 10(1). 

21. Gyurcsik, B. and L. Nagy, Carbohydrates as ligands: coordination equilibria and 

structure of the metal complexes. Coordination chemistry reviews, 2000. 203(1): 

p. 81-149. 

22. Sonnenburg, E.D., et al., Specificity of polysaccharide use in intestinal 

bacteroides species determines diet-induced microbiota alterations. Cell, 2010. 

141(7): p. 1241-1252. 

23. Titirici, M.-M., M. Antonietti, and N. Baccile, Hydrothermal carbon from 

biomass: a comparison of the local structure from poly-to monosaccharides and 

pentoses/hexoses. Green Chemistry, 2008. 10(11): p. 1204-1212. 

24. Scheller, H.V. and P. Ulvskov, Hemicelluloses. Annual review of plant biology, 

2010. 61. 

25. Payen, A., Mémoire sur la composition du tissu propre des plantes et du ligneux. 

Comptes rendus, 1838. 7: p. 1052-1056. 

26. Siró, I. and D. Plackett, Microfibrillated cellulose and new nanocomposite 

materials: a review. Cellulose, 2010. 17(3): p. 459-494. 

27. O'sullivan, A.C., Cellulose: the structure slowly unravels. Cellulose, 1997. 4(3): 

p. 173-207. 

28. Klemm, D., et al., Cellulose: fascinating biopolymer and sustainable raw 

material. Angewandte Chemie International Edition, 2005. 44(22): p. 3358-3393. 

29. Atalla, R.H. and D.L. Vanderhart, Native cellulose: a composite of two distinct 

crystalline forms. Science, 1984. 223(4633): p. 283-285. 

30. Gross, A.S. and J.-W. Chu, On the molecular origins of biomass recalcitrance: 

the interaction network and solvation structures of cellulose microfibrils. The 

Journal of Physical Chemistry B, 2010. 114(42): p. 13333-13341. 

 



 

127 

 

 

 

31. Luo, M., A.N. Neogi, and H. West, Dissolution of cellulose in mixed solvent 

systems. 2010, Google Patents. 

32. Finkenstadt, V. and R. Millane, Crystal structure of Valonia cellulose Iβ. 

Macromolecules, 1998. 31(22): p. 7776-7783. 

33. Day, L. and I. McNeil, Biographical dictionary of the history of technology. 2002: 

Routledge. 

34. Rebouillat, S. and F. Pla, State of the art manufacturing and engineering of 

nanocellulose: a review of available data and industrial applications. Journal of 

Biomaterials and Nanobiotechnology, 2013. 4(02): p. 165. 

35. Sundberg, J., G. Toriz, and P. Gatenholm, Effect of xylan content on mechanical 

properties in regenerated cellulose/xylan blend films from ionic liquid. Cellulose, 

2015. 22(3): p. 1943-1953. 

36. da Silva, A.E., et al., Xylan, a promising hemicellulose for pharmaceutical use, in 

Products and Applications of Biopolymers. 2012, InTech. 

37. Petzold-Welcke, K., et al., Xylan derivatives and their application potential–Mini-

review of own results. Carbohydrate polymers, 2014. 100: p. 80-88. 

38. Daus, S. and T. Heinze, Xylan‐Based Nanoparticles: Prodrugs for Ibuprofen 

Release. Macromolecular Bioscience, 2010. 10(2): p. 211-220. 

39. Ha, S.-J., et al., Engineered Saccharomyces cerevisiae capable of simultaneous 

cellobiose and xylose fermentation. Proceedings of the National Academy of 

Sciences, 2011. 108(2): p. 504-509. 

40. Xie, H., et al., Capturing CO 2 for cellulose dissolution. Green Chemistry, 2014. 

16(5): p. 2422-2427. 

41. Ries, M.E., et al., Diffusion of 1-ethyl-3-methyl-imidazolium acetate in glucose, 

cellobiose, and cellulose solutions. Biomacromolecules, 2014. 15(2): p. 609-617. 

42. Sgmaaldrich.com, https://www.sigmaaldrich.com/catalog/product. Accessed 

30/01/2018. 

43. Peng, X., et al., Hydrolysis of cellobiose to monosaccharide catalyzed by 

functional Lanthanum (III) metallomicelle. RSC Advances, 2015. 5(13): p. 9348-

9353. 

44. Sescousse, R., R. Gavillon, and T. Budtova, Aerocellulose from cellulose–ionic 

liquid solutions: preparation, properties and comparison with cellulose–NaOH 

and cellulose–NMMO routes. Carbohydrate Polymers, 2011. 83(4): p. 1766-1774. 

45. Ohira, K., et al., Design of cellulose dissolving ionic liquids inspired by nature. 

ChemSusChem, 2012. 5(2): p. 388-391. 

46. Wendler, F., et al., Polysaccharide blend fibres formed from NaOH, N-

methylmorpholine-N-oxide and 1-ethyl-3-methylimidazolium acetate. Fibres and 

Textiles in Eastern Europe, 2010. 18(2): p. Pages 21-30. 

 

 

https://www.sigmaaldrich.com/catalog/product


 

128 

 

 

 

47. Kadokawa, J.-i., et al., Preparation of cellulose–starch composite gel and fibrous 

material from a mixture of the polysaccharides in ionic liquid. Carbohydrate 

Polymers, 2009. 75(1): p. 180-183. 

48. Kuroda, K., et al., 1H NMR evaluation of polar and nondeuterated ionic liquids 

for selective extraction of cellulose and xylan from wheat bran. ACS Sustainable 

Chemistry & Engineering, 2014. 2(9): p. 2204-2210. 

49. Linder, Å., et al., Mechanism of assembly of xylan onto cellulose surfaces. 

Langmuir, 2003. 19(12): p. 5072-5077. 

50. Taylor, J. and C. Haigler, Patterned secondary cell‐wall assembly in tracheary 

elements occurs in a self‐perpetuating cascade. Plant Biology, 1993. 42(2): p. 

153-163. 

51. Jin, L., K. Liu, and Y. Aoki, Interaction of OH− with xylan and its hydrated 

complexes: structures and molecular dynamics study using elongation method. 

Journal of molecular modeling, 2015. 21(5): p. 117. 

52. Yu, J., et al., Cellulose, xylan and lignin interactions during pyrolysis of 

lignocellulosic biomass. Fuel, 2017. 191: p. 140-149. 

53. Stevanic, J.S., et al., Bacterial nanocellulose‐reinforced arabinoxylan films. 

Journal of Applied polymer science, 2011. 122(2): p. 1030-1039. 

54. Aspinall, G., E. Hirst, and R. Mahomed, Hemicellulose A of beechwood (Fagus 

sylvatica). Journal of the Chemical Society (Resumed), 1954: p. 1734-1738. 

55. Larsson, M., et al., Effect of ethanol on the water permeability of controlled 

release films composed of ethyl cellulose and hydroxypropyl cellulose. Eur J 

Pharm Biopharm, 2010. 76(3): p. 428-32. 

56. Gordobil, O., et al., Xylan–cellulose films: Improvement of hydrophobicity, 

thermal and mechanical properties. Carbohydrate polymers, 2014. 112: p. 56-62. 

57. Paananen, A., et al., Interaction between cellulose and xylan: An atomic force 

microscope and quartz crystal microbalance study. 2004, ACS Publications. 

58. Kabel, M.A., et al., Structural differences of xylans affect their interaction with 

cellulose. Carbohydrate Polymers, 2007. 69(1): p. 94-105. 

59. Hall, C.A., et al., Macroscopic and microscopic study of 1-ethyl-3-methyl-

imidazolium acetate–water mixtures. The Journal of Physical Chemistry B, 2012. 

116(42): p. 12810-12818. 

60. Hall, L., Nuclear magnetic resonance, in Advances in carbohydrate chemistry. 

1964, Elsevier. p. 51-93. 

61. Hore, P.J., Nuclear magnetic resonance. 2015: Oxford University Press, USA. 

62. Simmons, T.J., et al., Folding of xylan onto cellulose fibrils in plant cell walls 

revealed by solid-state NMR. Nature communications, 2016. 7: p. 13902. 

63. Cory, D.G., Price, Mark D, and Havel, Timothy F, Nuclear magnetic resonance 

spectroscopy: An experimentally accessible paradigm for quantum computing. 

Physica D: Nonlinear Phenomena, 1998. 120(1-2): p. 82-101. 



 

129 

 

 

 

64. Levitt, M.H., Spin Dynamic, Basic of Nuclear Magnetic Resonance. John Wiley 

& sons, Ltd, 2008(2nd): p. 6-565. 

65. Blümich, B., NMR Imaging of Materials. Newgen Imaging Systems (P). Ltd. 

Oxford University Press Inc., New York., 2000. 

66. Abragam, A., Principles of Nuclear Magantism  Oxford Unversity Press, 1961: p. 

13-71.  

67. Webb, G., Annual Reports on NMR Spectroscopy. Academic Press, 1999. 38. 

68. Le Bihan, D. and P.J. Basser, Molecular diffusion and nuclear magnetic 

resonance. Diffusion and perfusion magnetic resonance imaging, 1995: p. 5-17. 

69. Carr, H.Y. and E.M. Purcell, Effects of diffusion on free precession in nuclear 

magnetic resonance experiments. Physical review, 1954. 94(3): p. 630-638. 

70. Macchioni, A., et al., Determining accurate molecular sizes in solution through 

NMR diffusion spectroscopy. Chemical Society Reviews, 2008. 37(3): p. 479-489. 

71. Price, W.S., Applications of pulsed gradient spin-echo NMR diffusion 

measurements to solution dynamics and organization. Diffusion fundamentals, 

2005. 2(112): p. 1-19. 

72. Boeré, R.T. and R.G. Kidd, Rotational correlation times in nuclear magnetic 

relaxation, in Annual reports on NMR spectroscopy. 1983, Elsevier. p. 319-385. 

73. Callaghan, P.T., Principles of nuclear magnetic resonance microscopy. 1993: 

Oxford University Press on Demand. 

74. Kimmich, R., NMR: tomography, diffusometry, relaxometry. 2012: Springer 

Science & Business Media. 

75. McLaughlin, E., Viscosity and self-diffusion in liquids. Transactions of the 

Faraday Society, 1959. 55: p. 28-38. 

76. Li, J.C. and P. Chang, Self‐Diffusion Coefficient and Viscosity in Liquids. The 

Journal of Chemical Physics, 1955. 23(3): p. 518-520. 

77. Bloembergen, N., E.M. Purcell, and R.V. Pound, Relaxation effects in nuclear 

magnetic resonance absorption. Physical review, 1948. 73(7): p. 679. 

78. Blicharska, B., H. Peemoeller, and M. Witek, Hydration water dynamics in 

biopolymers from NMR relaxation in the rotating frame. Journal of Magnetic 

Resonance, 2010. 207(2): p. 287-293. 

79. Hore, P.J., Jones, J. A., Wimperis, S.,, NMR: The toolkit.: p. 3-6. 

80. Tanner, J.E., Use of the stimulated echo in NMR diffusion studies. The Journal of 

Chemical Physics, 1970. 52(5): p. 2523-2526. 

81. Merboldt, K.-D., W. Hanicke, and J. Frahm, Self-diffusion NMR imaging using 

stimulated echoes. Journal of Magnetic Resonance (1969), 1985. 64(3): p. 479-

486. 

 

 



 

130 

 

 

 

82. Cotts, R., et al., Pulsed field gradient stimulated echo methods for improved NMR 

diffusion measurements in heterogeneous systems. Journal of Magnetic 

Resonance (1969), 1989. 83(2): p. 252-266. 

83. Stejskal, E.O. and J.E. Tanner, Spin diffusion measurements: spin echoes in the 

presence of a time‐dependent field gradient. The journal of chemical physics, 

1965. 42(1): p. 288-292. 

84. Haase, A. and J. Frahm, Multiple chemical-shift-selective NMR imaging using 

stimulated echoes. Journal of Magnetic Resonance (1969), 1985. 64(1): p. 94-102. 

85. Frahm, J., et al., Stimulated echo imaging. Journal of Magnetic Resonance (1969), 

1985. 64(1): p. 81-93. 

86. Green, S.M., et al., NMR and Rheological Study of Anion Size Influence on the 

Properties of Two Imidazolium-based Ionic Liquids. Scientific Reports, 2017. 

7(1): p. 8968. 

87. Price, W.S., Pulsed‐field gradient nuclear magnetic resonance as a tool for 

studying translational diffusion: Part 1. Basic theory. Concepts in Magnetic 

Resonance Part A, 1997. 9(5): p. 299-336. 

88. Cory, D.G., M.D. Price, and T.F. Havel, Nuclear magnetic resonance 

spectroscopy: An experimentally accessible paradigm for quantum computing. 

Physica D: Nonlinear Phenomena, 1998. 120(1-2): p. 82-101. 

89. Iggo, J., A, NMR Spectroscopy in Inorganic Chemistry Oxford University Press 

Inc., New York, 1999: p. 2-30. 

90. Freude, D., Nuclear Magnetic Resonance Spectroscopy, 2006. 1-29. 

91. Xie, J. and Y.-C. Jin, Parameter determination for the Cross rheology equation 

and its application to modeling non-Newtonian flows using the WC-MPS method. 

Engineering Applications of Computational Fluid Mechanics, 2016. 10(1): p. 111-

129. 

92. Rebert, J.Y.a.L., P., A.,, Introduction to Polymers. Taylar &Francis Group, LLC, 

2011(3th): p. 299-304. 

93. Eckelt, J., Knopf, Anja, Röder, Thomas, Weber, Hedda K Sixta, Herbert, and 

Wolf, Bernhard A, Viscosity‐molecular weight relationship for cellulose solutions 

in either NMMO monohydrate or cuen. Journal of Applied Polymer Science, 

2011. 119(2): p. 670-676. 

94. Wolf, B.A., Polyelectrolytes revisited: reliable determination of intrinsic 

viscosities. Macromolecular rapid communications, 2007. 28(2): p. 164-170. 

95. Rudaz, C. and T. Budtova, Rheological and hydrodynamic properties of cellulose 

acetate/ionic liquid solutions. Carbohydrate polymers, 2013. 92(2): p. 1966-1971. 

96. Zhang, J., et al., Understanding cellulose dissolution: effect of the cation and 

anion structure of ionic liquids on the solubility of cellulose. Science China 

Chemistry, 2016. 59(11): p. 1421-1429. 

 



 

131 

 

 

 

97. Youngs, T.G., et al., Neutron diffraction, NMR and molecular dynamics study of 

glucose dissolved in the ionic liquid 1-ethyl-3-methylimidazolium acetate. 

Chemical Science, 2011. 2(8): p. 1594-1605. 

98. Pregosin, P.S., Applications of NMR diffusion methods with emphasis on ion 

pairing in inorganic chemistry: a mini‐review. Magnetic Resonance in Chemistry, 

2017. 55(5): p. 405-413. 

99. Leal, J.P., et al., The nature of ionic liquids in the gas phase. The Journal of 

Physical Chemistry A, 2007. 111(28): p. 6176-6182. 

100. MacFarlane, D.R., et al., On the concept of ionicity in ionic liquids. Physical 

Chemistry Chemical Physics, 2009. 11(25): p. 4962-4967. 

101. D'Agostino, C., et al., Diffusion, Ion Pairing and Aggregation in 1‐Ethyl‐3‐
Methylimidazolium‐Based Ionic Liquids Studied by 1H and 19F PFG NMR: Effect 

of Temperature, Anion and Glucose Dissolution. ChemPhysChem, 2018. 19(9): 

p. 1081-1088. 

102. Burrell, G.L., et al., NMR relaxation and self-diffusion study at high and low 

magnetic fields of ionic association in protic ionic liquids. The Journal of Physical 

Chemistry B, 2010. 114(35): p. 11436-11443. 

103. Annat, G., D.R. MacFarlane, and M. Forsyth, Transport properties in ionic liquids 

and ionic liquid mixtures: the challenges of NMR pulsed field gradient diffusion 

measurements. The Journal of Physical Chemistry B, 2007. 111(30): p. 9018-

9024. 

104. Gericke, M., et al., Rheological properties of cellulose/ionic liquid solutions: from 

dilute to concentrated states. Biomacromolecules, 2009. 10(5): p. 1188-1194. 

105. Sescousse, R., et al., Viscosity of cellulose− imidazolium-based ionic liquid 

solutions. The Journal of Physical Chemistry B, 2010. 114(21): p. 7222-7228. 

106. Burchard, W. and M. Eisele, Cooperative motion and self-diffusion in dilute and 

semidilute poly-vinylpyrrolidone solution. Pure and applied chemistry, 1984. 

56(10): p. 1379-1390. 

107. Ying, Q. and B. Chu, Overlap concentration of macromolecules in solution. 

Macromolecules, 1987. 20(2): p. 362-366. 

108. Remsing, R.C., et al., Mechanism of cellulose dissolution in the ionic liquid 1-n-

butyl-3-methylimidazolium chloride: a 13 C and 35/37 Cl NMR relaxation study 

on model systems. Chemical Communications, 2006(12): p. 1271-1273. 

109. Machefer, S. and K. Schnitzlein, Ideal Mixing Rules for the Viscosity of Complex 

Polymer− Solvent Mixtures: Assessment of Segment-Fraction Approximations. 

Industrial & engineering chemistry research, 2006. 45(21): p. 7293-7300. 

110. Liu, W. and T. Budtova, Ionic liquid: a powerful solvent for homogeneous starch–

cellulose mixing and making films with tuned morphology. Polymer, 2012. 53(25): 

p. 5779-5787. 

 

 



 

132 

 

 

 

111. Machefer, S. and K. Schnitzlein, Simple Determination of Segment Numbers for 

Complex Polymer‐Solvent Systems. Chemical engineering & technology, 2007. 

30(2): p. 193-201. 

112. Bloomfield, V.A. and R. Dewan, Viscosity of liquid mixtures. The Journal of 

Physical Chemistry, 1971. 75(20): p. 3113-3119. 

 


