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Abstract

Dysarthria is a neurological speech impairment which usually results in the loss of motor

speech control due to muscular atrophy and poor coordination of articulators. Dysarthric

speech is more difficult to model with machine learning algorithms, due to inconsistencies

in the acoustic signal and to limited amounts of training data. This study reports a new

approach for the analysis and representation of dysarthric speech, and applies it to improve

ASR performance.

The Zeros of Z-Transform (ZZT) are investigated for dysarthric vowel segments. It

shows evidence of a phase-based acoustic phenomenon that is responsible for the way the

distribution of zero patterns relate to speech intelligibility. It is investigated whether such

phase-based artefacts can be systematically exploited to understand their association with

intelligibility.

A metric based on the phase slope deviation (PSD) is introduced that are observed in

the unwrapped phase spectrum of dysarthric vowel segments. The metric compares the

differences between the slopes of dysarthric vowels and typical vowels. The PSD shows

a strong and nearly linear correspondence with the intelligibility of the speaker, and it is

shown to hold for two separate databases of dysarthric speakers. A systematic procedure

for correcting the underlying phase deviations results in a significant improvement in ASR

performance for speakers with severe and moderate dysarthria.

In addition, information encoded in the phase component of the Fourier transform of

dysarthric speech is exploited in the group delay spectrum. Its properties are found to rep-

resent disordered speech more effectively than the magnitude spectrum. Dysarthric ASR

performance was significantly improved using phase-based cepstral features in comparison

to the conventional MFCCs. A combined approach utilising the benefits of PSD correc-

tions and phase-based features was found to surpass all the previous performance on the

UASPEECH database of dysarthric speech.
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Chapter 1

Introduction

Dysarthria is the collective name for a group of neurological speech disorders which result

from damage to the central or peripheral nervous system. Dysarthric speech is usually

characterised by changes such as reduced stress, slow speech rate, hypernasality, muscular

rigidity, spasticity, monopitch and limited range of speech movements (Darley, Aronson, and

Brown, 1969a; Duffy, 2005). It can have debilitating effects on speech production and can

affect the subglottal, laryngeal and articulatory systems. The most prevalent causes of such

motor speech disorders in the UK are stroke, cerebral palsy and Parkinson’s disease (RCSLT,

2006). Reports suggest that there is an ever growing need to improve human-to-machine

interaction for people with dysarthria in order to promote overall wellbeing and indepen-

dence (Enderby et al., 2013). People with dysarthria can often have physical impairment

making usual input methods (typing, touchscreen, etc.) difficult to use, so speech could

provide an attractive interface for a natural and faster mode of interaction (Hawley, 2002).

1.1 Motivations

The automatic recognition of dysarthric speech has been pursued as a research problem for

more than three decades (Coleman and Meyers, 1991; Fried-Oken, 1985; Roberts, 1985),

but performance is still far behind that for typical speech, which has potentially reached

human performance, especially under controlled conditions (Xiong et al., 2016). To date

there is no commercially available system that can reliably recognise dysarthric speech. In

addition, there is also a huge gap between listener and machine recognition of such material.

The carers and close family members of a person with dysarthria can be regarded as the
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1. Introduction

oracle in comprehending their speech with highest accuracy, as listener familiarisation to

dysarthric speech is shown to significantly increase performance (Tjaden and Liss, 1995).

The prime objective of this thesis is an attempt to bridge the gap between human and

machine performance by having a wider understanding of such material and consequently

increasing the performance of ASR systems for dysarthric speech. This will improve the

overall acceptability of speech based communication or control devices for people with

dysarthria, that can potentially increase their participation. Some of the difficulties in

recognising dysarthric speech are often associated with the high degree of inter and intra

speaker variations, data sparsity issues and malformed phonetic space (Blaney and Wilson,

2000; Kent et al., 2000; Morris, 1989). Hence, it is imperative to ask questions to find the

gaps in our knowledge of dysarthric speech and to maximise the usage of the available data

by searching for additional discriminatory information within the available acoustic space.

This thesis attempts to answer some basic questions as stated below:

• Is there any additional information in the acoustics of dysarthric speech that can give

cues about the underlying nature of the disorder?

• Can functional links be formed between such information and the underlying severity

of impairment?

• Is there any alternate feature encodings that can characterise dysarthric speech more

effectively than standard magnitude based spectral representations?

• Can such representations of dysarthric speech be utilised by machine learning algo-

rithms to improve ASR performance?

1.2 Scope of the thesis

This thesis aims to systematically address each of the above questions in a quest to im-

prove feature representations and ASR performance on dysarthric speech. It is generally

a misconception that the success of any speech recognition system relies only on designing

efficient classifiers that require a lot of data for optimal performance. This leads researchers

to focus on the design of the classifier rather than understanding the data that must be

modelled. The task is even more difficult for dysarthric speech recognition, where data

sparsity is an issue and design of an optimal classifier is further restricted by the limited
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1. Introduction

understanding of “what makes the acoustics of dysarthric speech different?”. To the best of

our knowledge, to date any attempt to understand the nuances of the dysarthric acoustics is

limited to the search for information encoded within the magnitude spectrum. This thesis

introduces a novel approach to the analysis and characterisation of dysarthric speech that

looks beyond the magnitude spectrum. We explore the phase spectrum for the analysis

and better representation of dysarthric speech. It shows how the information encapsulated

in the phase of a signal can be extremely useful for functionally discerning the underlying

dysarthric intelligibility and improve the automatic recognition of various speech systems.

Unlike the magnitude domain, where the spectral structure has been studied extensively

to exhibit a more direct relation to the understanding of speech, the phase spectrum is

much more difficult to interpret, especially for dysarthric speech. However, as will be seen

that despite such impediments, the phase spectrum is extremely beneficial for the better

representation and recognition of dysarthric speech signals. This thesis will not attempt to

improve the quality of dysarthric speech from a perceptual standpoint. It will provide a

series of coherent phase based approaches that will utilise the same amount of given data

for statistically improving the machine performance of various dysarthric speech recogni-

tion systems. It will further give an alternate perspective to the analysis of such speech for

quantitatively interpreting the underlying intelligibility of a signal.

1.3 Structure of the thesis

The thesis begins in Chapter 2 giving a physiological description about the types and causes

of dysarthria. Chapter 3 provides the background on the basic fundamentals of an ASR

system and how research has progressed for the automatic recognition of dysarthric speech.

Chapter 4 is divided into two parts. The first part extends the work of earlier researchers and

exploits advanced adaptation methods for giving the best results for our baseline system.

The second part gives an account on the acoustic analysis of dysarthric speech. The last

sections of Chapter 4 and Chapters 5 and 6 contain the novel contribution of the thesis

and Chapter 7 summarises the main outcomes and gives a purview for future research. An

overview of the content of each chapter is given below.

Chapter 2

The chapter provides a background of dysarthria from an anatomical perspective. It will

discuss the causes and types of dysarthria and how such conditions can be managed or
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1. Introduction

treated using various medical and non-medical interventions. The chapter also gives a brief

overview on the effects that dysarthria can have on the underlying acoustics or intelligibility.

Chapter 3

The chapter gives a literature survey on the ASR architecture in general. It will cover

some important components like front-end processing, acoustic modelling and adaptation

techniques and conclude by discussing its impact on dysarthric ASR research.

Chapter 4

The chapter is covered in two parts. The first part will extend the work of earlier researchers

and explore various adaptation approaches to model dysarthric variabilities. It will also

explore adaptive training techniques and test its efficacy. The collective results will form

our baseline systems for further research. The second part of the chapter will deal with the

acoustic analysis of UASPEECH database and explore a novel investigation strategy that

is based on the analysis of the zeros of the Z-transform (ZZT) of dysarthric vowel segments.

Chapter 5

This chapter will extend the idea of ZZT analysis of dysarthric vowel segments and introduce

a new metric based on phase slope deviations (PSD) that are observed in the unwrapped

phase spectrum. It will explore the possibility of a functional associations between the PSD

of dysarthric vowel segments and the underlying intelligibility. The later part of the chapter

will develop a systematic approach for correcting the effect of such PSD aberrations that

eventually results in significant ASR gains across varied dysarthric speech systems.

Chapter 6

This chapter will study the phase based feature representations of dysarthric signals. It

will explore the properties of such phase representations from a theoretical and practical

viewpoint. The efficacy of the features will be tested by measuring the ASR performance.

The chapter will also explore if such phase based speech features can be supplemented with

the benefits of PSD corrections to improve ASR results.

Chapter 7

It will give a collective discussion of the main contributions in the thesis and outline some

of the potential areas for future research.
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Chapter 2

Background on Dysarthria

This chapter will give a background summary of dysarthria from a physiological perspec-

tive. It will discuss the prime causes of dysarthria and enumerate categorical descriptions

under which various types of dysarthria are medically classified. The chapter also discusses

broad level effects that such neurological speech impairments can have on the acoustics.

Towards the end of the chapter, a short summary is given on how the severity factors in

dysarthria affects speech intelligibility followed by an overview of the common treatment

and management approaches for motor speech disorders.
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2. Background on Dysarthria

2.1 Dysarthria and its causes

Human speech results from the highly coordinated functioning of several components that

make up the human vocal apparatus. The apparatus can be broadly conceptualised as being

composed of three major components (Stevens, 2000): (1) parts below the larynx forming

the subglottal structure, (2) the larynx and its surrounding structure which comprises the

vocal folds, and (3) the parts above the larynx forming the supraglottal structure.

Figure 2.1: Schematic diagram for human speech production at the sub-glottal, glottal and

supra-glottal levels. The process is exhibited for a fundamental frequency of 250 Hz.

Speech production is initiated by a stream of pulmonic air flowing from the subglottal

structure, which acts as the source of sound energy that moves up to the larynx where it

passes through the glottis. The intended speech can make the vocal folds vibrate to produce

the fundamental frequency and its corresponding harmonics. This is the glottal pulse whose

spectrum has a slope of approximately -12 dB per octave (Ladefoged, 1996; Stevens, 2000).

The pulse train moves to the supraglottal structure in the vocal tract which comprises of the

oral cavity, nasal cavity, hard palate, soft palate, velum, lips and tongue (Ladefoged, 1993;

Stevens, 2000). The vocal cavity acts as a resonator which filters the waveform of the glottal

pulses, and passes some frequencies better than others depending on the configuration of the
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2. Background on Dysarthria

articulators at a given instant. This resonant function shapes the spectrum of the speech

waveform. Figure 2.1 shows a schematic diagram for the three stages of speech production.

The initiation of speech production originates in various centres of the brain, where the

coordinated process of programming, planning and sequencing for the implementation of

the anticipated speech takes place (Kent et al., 2000). These processes are carried out by

a neural activation that directs a timed and coordinated message to the musculoskeletal

structure responsible for speech production. However, the musculoskeletal structure can

work in an uncoordinated fashion if there is a damage to the central nervous system (CNS)

or peripheral nervous system (PNS). Such a damage can result in a group of motor speech

disorders (MSD), caused by weakness and incoordination in the speech musculature (Dar-

ley, Aronson, and Brown, 1969b; Duffy, 2005). MSD’s resulting from such neurological

impairments often leads to the condition of dysarthria. The condition of dysarthria is not

localised to only the impairment in the musculoskeletal structure resulting from neural

damage, but it can also have a wider effect on multiple parts of the supraglottal, laryngeal

and the subglottal system depending on the extent and severity of dysarthria (Kent et al.,

2000).

More formally dysarthria can be defined as:

”a collective name for a group of neurologic speech disorders resulting from abnor-

malities in the strength, speed, range, steadiness, tone, or accuracy of movements required

for control of the respiratory, phonatory, resonatory, articulatory, and prosodic aspects of

speech production.” (Duffy, 2005, p. 5)

2.1.1 Neurological basis of dysarthria

Dysarthria is a result of single or multiple lesions inside the structures of the central or

peripheral nervous system which might result in the loss of motor speech control due to

muscular atrophy and lack of coordination. In order to understand the causes and types

of dysarthria it is necessary to demarcate the regions of the central and peripheral nervous

system at an anatomical level that are broadly divided in four categories:

• Anterior and Middle brain: The anterior and middle brain constitutes the largest
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2. Background on Dysarthria

part of the brain, the cerebrum, initial cranial nerves (CN), designated CN-I and CN-

II, important speech motor control structures1 of the cerebral cortex and the basal

ganglia residing inside the anterior brain and connected to the cerebral cortex.

• Posterior Brain: The brainstem and ten pairs of cranial nerves emerging from

it designated as CN III - CN XII and the cerebellum. Out of ten pairs of cranial

nerves, six are involved in controlling and innervating the motor speech system in

some way. For example, trigeminal (CN V) and facial (CN VII) nerves control all

the facial, mouth and jaw movements. glassopharyngeal (CN IX) and vagus (CN

X) nerves contribute to control the movements of the pharynx, larynx and palatal

regions. The accessory (CN XI) nerve control the shoulder and neck movements and

the hypoglossal (CN XII) nerve is responsible for tongue movements (Duffy, 2005).

All the above structures act as important articulators in the speech production process

and damage or weakness in any of these can result in one or more forms of dysarthria.

• Spinal Nerves: A collection of 31 pairs of nerves connected to the spinal cord via

posterior and anterior nerve roots. It is responsible for carrying motor and sensory

messages to the various organs (Duffy, 2005).

• Peripheral Nervous System: The cranial nerves emerging from the brainstem

and the spinal nerves, which innervates various muscle groups.

The anterior, middle and posterior parts of the brain contain specialised nerve fibers

known as tracts or pathways. These pathways extend from the pyramidal system (Direct

Motor System), which is composed of the corticobulbar tract that connects the cortex to the

brainstem and the corticospinal tract. The pathways are also found in the extrapyramidal

system (Indirect Motor System), which is mainly composed of the basal ganglia, red nucleus,

substantia nigra and the cerebellum. The pyramidal and extrapyramidal system together is

known as the Upper Motor Neuron (UMN) system2. The pairs of cranial nerves emerging

from the brainstem along with the spinal nerves are collectively referred to as the Lower

Motor Neuron (LMN) system.

1The cerebral cortex houses these structures in each of its hemisphere, which is responsible for its role in
speech production. The components include Primary Motor Cortex, Brocas Area, Insula and Supplementary
Motor Area. (Duffy, 2005; Kent et al., 2000)

2It should be noted that the UMN does not include the basal ganglia and the cerebellum parts of the
extrapyramidal system (Duffy, 2005)
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2. Background on Dysarthria

The UMN is responsible for direct voluntary and skilled movements and also controls

posture and tone. The LMN, on the other hand, is responsible for producing muscle reflex,

tone, and carrying out UMN commands for voluntary movements (Duffy, 2005). However,

the coordinated and skilled muscle movements directed by the upper and lower motor

neurons are a result of a pre-processing stage which comprises of programming, planning

and sequencing of internal gestures of speech for carrying out respective motor actions. The

intention to speak activates the core structures inside the central nervous system, which

initiates the building of these internal models. For example, the cerebellum is responsible

for creating internal models that simulate the dynamics of the musculoskeletal system,

which is then used by the cortex directly to carry out the actions, rather than using the

musculoskeletal system directly and the insular cortex plays a crucial role of sequencing

speech segments (Kent et al., 2000). Hence, the critical steps of carrying out any linguistic

plans, setting up prosodic constituents and timing of various syllables to produce phonetic

segments is used implicitly by the upper and lower motor neuron systems to produce the

desired output.

Motor speech disorders can be characterised by damage inside the central and peripheral

nervous systems. The damage can either be acute or chronic and the extent of damage can

be on a single structure, multiple structures or can be symmetrically spread across the

central and peripheral nervous system (Duffy, 2005). Dysarthria can either be congenital

in nature, such as cerebral palsy (CP), or acquired, where it develops preceding a phase of

typical speech, as it can occur in stroke. The principal manifestations of dysarthria can be

a result of the following disorders:

Degenerative Disorder is a motor neuron disease often characterised by a gradual

decline and death of neuronal activity, as in amyotrophic lateral sclerosis (ALS).

Traumatic Disorder results from a head injury, as in traumatic brain injury (TBI).

Vascular Disorder is a cerebrovascular disease often characterised by obstruction of

blood supply to the neurons resulting in oxygen and nutrient starvation, as in stroke.

Neurochemical Disorder often results from deficiencies and imbalance in the neu-

rochemical system. Examples include Parkinson’s Disease (PD) due to death in

dopamine cells, myasthenia gravis due to death in acetylcholine cells.
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2. Background on Dysarthria

Inflammatory and Neoplastic Disorders, which often results from attack to the

nervous system due to toxins, micro-organisms and tumours.

Irrespective of the cause of a specific disorder, the prognosis for dysarthria is assessed

by monitoring its developmental pattern over a period of time. For example, Progressive

symptoms of dysarthria can exacerbate by presenting new symptoms over a course of time,

hence making it difficult for treatment by failing to localise it. Parkinson’s disease is an

example of a progressive disorder. Recovering symptoms refer to a reduced effect of severity

over time, as in stroke, but fails to recover completely. Stable symptoms are those that

persist and do not show any further signs of deterioration over prolonged periods of time,

as in cerebral palsy. Recurring symptoms are those that show initial phases of improvement

followed by a sudden deterioration, and lastly Transient symptoms are less common but,

usually heal completely over due course (Duffy, 2005).

2.2 Types of dysarthria

The types of dysarthria described below are more commonly referred to for diagnosis and

treatment, and were originally formalised by Darley, Aronson, and Brown (1969a,b).

2.2.1 Flaccid dysarthria

Flaccid dysarthria is caused by damage to the lower motor neurons. It is sometimes re-

ferred to as bulbar palsy and it is characterised by hypotonia, weakness in muscle move-

ment and poor reflexes. It can be caused by either unilateral or bilateral damage to the

cranial or spinal nerves. It results in speech that is characterised by hypernasality, breathy

voice, monopitch and imprecise consonant production. The most common causes of flaccid

dysarthria result from stroke, surgical trauma, degenerative disease and muscular dystro-

phy. (Darley, Aronson, and Brown, 1969b; Duffy, 2005)

2.2.2 Spastic dysarthria

Spastic dysarthria is caused by damage to the upper motor neurons. It is sometimes re-

ferred to as pseudobulbar palsy and it is characterised by spasticity, hyperreflexia and
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2. Background on Dysarthria

Babinski sign3. It results in speech that is characterised by imprecise consonant produc-

tion, monopitch, reduced stress, slow rate, harsh and strained voice and hypernasality. The

most common causes of spastic dysarthria result from degenerative disorders, with the most

common being due to ALS. Multiple stroke and TBI are other common causes. (Darley,

Aronson, and Brown, 1969b; Duffy, 2005)

2.2.3 Ataxic dysarthria

Ataxic dysarthria is caused by damage to the cerebellum. Ataxia (”lack of order”) induces

errors in range, force, timing and direction of the speech muscle movements. It is charac-

terised by slowness, hypotonia, jerky & dysrythmic movements, incoordination and lack of

smoothness. It affects the respiratory, phonatory and articulatory aspects of speech produc-

tion. The most common causes of ataxic dysarthria results from cerebellar degeneration as

evident in Friedreich’s ataxia (Eigentler et al., 2011), which is hereditary in nature (Delaty-

cki, Williamson, and Forrest, 2000), and by damage to the myelin sheath of the neurons, as

seen in multiple sclerosis (Darley, Aronson, and Brown, 1969b; Duffy, 2005).

2.2.4 Hypokinetic dysarthria

Hypokinetic dysarthria is caused by damage to the extrapyramidal system’s basal ganglia

circuitry. It occurs when the neurons in the substantia nigra component of the basal ganglia

are destroyed that leads to the death of dopamine cells. It is characterised by rigidity in

muscles, slowness and limited range in speech movements with low frequency termors of

around 3-8 Hz. It results in speech with reduced stress, imprecise consonant production,

monopitch, monoloudness and phases of inappropriate silences. The most common causes

of hypokinetic dysarthria are an outcome of hypokinesia, which are a result of mostly

Parkinson’s disease and parkinsonism (Darley, Aronson, and Brown, 1969b; Duffy, 2005).

2.2.5 Hyperkinetic dysarthria

Hyperkinetic dysarthria is caused by damage to the extrapyramidal system’s basal gan-

glia component or portions of the cerebellar circuitry. It is characterised by hyperkinesia,

where there is a presence of abnormal and usually unexpected involuntary movements. The

3It is a reflex which is characterised when the big toe moves toward the top surface of the foot and the
other toes fan out after the sole of the foot has been firmly stroked.
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movement disorders evident in hyperkinetic dysarthria are exhibited in dyskinesia (abnor-

mal involuntary movements), dystonia (slow hyperkinesia), chorea (fast hyperkinesia) and

tremors (Duffy, 2005). Some of the common causes of hyperkinetic dysarthria are seen in

degenerative disorders such as Huntington’s disease, where the neurons in the caudate and

putamen structures of the basal ganglia component are destroyed (Walker, 2007).

2.2.6 Mixed dysarthria

Mixed dysarthria is usually a combination of any of the above forms. For example Spastic-

Flaccid dysarthria is caused by damage to both the upper and lower motor neurons. Ataxic-

Spastic dysarthria is another common type of mixed dysarthria. The most common causes

of mixed dysarthria results from degenerative (ALS, PD) and vascular disorders (stroke).

By far ALS is seen as one of the major contributors to the mixed dysarthric types (Darley,

Aronson, and Brown, 1969b).

2.3 Statistics of dysarthric etiologies

There are no official figures that gives an estimate of incidence and prevalence of various

types and etiologies of dysarthria in the UK. It is roughly estimated that around 1% of

UK population is diagnosed with a neurological disorder each year, which includes both

progressive and non-progressive disorders, and not necessarily all the conditions lead to

dysarthria (RCSLT, 2006, 2009).

Figure 2.2 gives an approximation of the incidence and prevalence of various dysarthric

etiologies. The incidence is the newly diagnosed cases of an etiology within a period of time

and prevalence refers to the actual number of cases that lead to dysarthria during a period

of time or a particular date in time when the data was recorded. Stroke has the highest

prevalence of dysarthria in the UK with around 416 per 100,000 individuals affected by the

condition. It is followed by cerebral palsy with a prevalence of 200-300 per 100,000. The

etiologies from motor neuron disease down to multiple system atrophy in figure 2.2 can be

collectively termed under progressive neurological disorders. They are the least affected

groups of dysarthria in UK.
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Figure 2.2: Incidence and prevalence of some major dysarthric etiologies. All estimates are

based on the current UK population of approximately 60 million.

2.4 Effects of dysarthria

Dysarthria can simultaneously affect one or more components of the speech production

system where an individual can have an impaired respiratory system, laryngeal or velopha-

ryngeal dysfunction or imprecise articulation due to weakness, abnormal muscle tone and

incoordination (Kent and Kim, 2003a). An individual can show laryngeal deficiency as evi-

dent in flaccid dysarthria due to the affected vagus nerve (CN-X) or exhibit multilevel system

failure as its more evident in hypokinetic dysarthria associated with PD or stroke (Kent

et al., 1999a).

The complexity that is associated with the classification of neurological speech disorders

based on etiology, type or severity is a challenging task (Kent and Kim, 2003a; Kim, Kent,

and Weismer, 2011a). Since the introduction of the first classification system by Darley,

Aronson, and Brown (1969a,b), researchers have used this classification system for both
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research and clinical purposes. However, there has been uncertainty in regard to the degree

of accuracy, validity and reliability of the perceptually motivated classification system (Van

Der Graaff et al., 2009; Zyski and Weisiger, 1987). This can give sub-optimal classification

accuracy that might not be clinically acceptable for a robust management and treatment

plan for dysarthria. The failure of perceptual methods alone to give accurate dysarthric

classification results can be attributed to the following measures:

• Judgement Inconsistency resulting from inter and intra judgement scoring vari-

ations, which can be further affected by lack of skilled and experienced judges. For

example, one way to increase the robustness of the perceptual assessment process is

to get an affirmation that the judges will describe similar type and degree of errors,

which is not often the case. One way to achieve sensitivity and increase inter-judge

reliability could be to use a broad scoring system (Enderby, 1988).

• Inaccurate Detection of concurrent neurological impairments occurring in two or

more components of the speech production system is another shortcoming of per-

ceptual analysis. This is likely to happen because different judges might not have

sufficient training (Kent and Kim, 2003a; Kent et al., 1999a).

• Lack of Quantification of perceptual features might result in inconsistency of speech

dimensions. For example, manifestation of critical frequency bands depicting long-

term phonatory instability are termed as wow (1-2 Hz), tremors (2-10 Hz) and flutters

(10-20 Hz) of dysarthric speech (Hartelius, Buder, and Strand, 1997). These could

act as one of the unique distinguishing feature to identify the neurological disorder.

Ataxic dysarthria associated with cerebellar lesions, usually exhibit a low frequency

tremor of around 3 Hz during a sustained vowel phonation task (Ackermann and

Ziegler, 1991). A similar experiment showed a higher frequency tremor on individuals

with amyotrophic lateral sclerosis (Aronson et al., 1992). The detection of such a

delineating feature is very difficult to be assessed by perceptual judgement alone and

the exact frequency level of these disturbances need a closer inspection.

• Overlapping Features is another persistent problem in perceptual analysis, which

makes it extremely difficult to classify various neurologic disorders. In the original

classification system by Darley, Aronson, and Brown (1969b), imprecise consonant is

one of the deviant speech dimension, which is common across all dysarthric types.
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Hence, it cannot act as an indicator for discerning any particular dysarthria, and

is rendered ineffective for this purpose. One way to make imprecise consonant as a

useful indicator could be to map its acoustic correlates which might give a clear and

quantifiable description of its worthiness in distinguishing across dysarthria types.

In order to overcome the limitations of the perceptual assessment process and to increase

the reliability of identifying dysarthria types, and assessing intelligibility, an instrumental

approach can be followed. As an example, the objective and quantitative process of acoustic

analysis can act as one such tool, either in addition to the perceptual assessment or as a

standalone process.

As an example, figure 2.3 shows a spectrogram comparison for typical and dysarthric

speakers with varying severity. The spectrogram is plotted for the word backspace, which

is one of the command words in the UASPEECH database (Kim et al., 2008). It can be

seen in part-(a) that the typical production of the utterance is around 650 ms with well

defined temporal and spectral structures for the expected vowels, stops and the fricatives.

The part-(b), which exhibits a dysarthric speaker with high intelligibility is seen to be very

similar to the typical speech. However, it is about 20% slower than a typical utterance of

the same word and the temporal delay is noticeable at the intra syllabic level. Lastly, part-

(c), which shows the same utterance for a dysarthric speaker with very low intelligibility

shows both temporal and spectral disfluencies. It is around 2.5 times slower than the typical

speech production. There is also marked difference between the production of the vowels.

The second vowel is about twice as long as the first one, possibly due to fatigue. Lastly, the

sibilant at the end of the word backspace is generally characterised by concentration of high

frequency energies (Ladefoged, 1993), which seems to be less prominent in low intelligibility

speaker in comparison to the typical. This might possibly hint towards respiratory insuffi-

ciency and lack of muscle coordination. Although, figure 2.3 presents information only for

a single typical and dysarthric speaker with very-low and high intelligibility, it gives some

informative cues about the underlying acoustic realisation of the observed phonetic tokens.

In addition, instead of a broad acoustic examination (as in spectrogram), a more fine

tune approach can also be followed, where a single or a small group of acoustic variables are

examined. For example, it has been shown that a reduced F2 slope is usually found to be

proportional to intelligibility (Kent et al., 1989; Rong et al., 2012a). As a demonstration,

figure 2.4 shows the F2 plot comparison of multiple utterances of the word ”alpha” for a

typical and dysarthric speaker with cerebral palsy. It is evident that the F2 trajectories
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2. Background on Dysarthria

tend to overlap each other for the typical speech and shows a more consistent pattern across

utterances. On the other hand, dysarthric speech shows a flat and skewed F2 pattern across

the utterances.
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Figure 2.3: Spectrogram comparison of the word backspace for a (a) typical speaker, (b)

dysarthric speaker with high intelligibility and (c) dysarthric speaker with very low intelli-

gibility.

Acoustic analysis gives a promising aspect to systematically quantify certain perceptual

aspects of speech. For example, the demonstration in figure 2.3 can tempt us to conclude

that dysarthric speech tends to get slower with decreasing intelligibility or it gives an in-

sight into understanding the relation that intelligibility might have with the distribution of

formants. Also, observations of the F2 trajectory as shown in figure 2.4 gives a convincing

qualitative perspective, but it does not have a simple quantitative measure that can be
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2. Background on Dysarthria

useful from a classification or ASR perspective. Hence, the inter and intra speaker variabil-

ities in the dysarthric speech can make the temporal and spectral analysis a very difficult

process.
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Figure 2.4: F2 trajectory comparisons for a (a) speaker with cerebral palsy and (b) typical

speaker for five utterances of the word alpha. Moving average smoothing was applied on

the F2-slopes with a span of 5.

Despite the challenges in conducting acoustic analysis, it is used as an informative tool

for automatic prediction of dysarthric intelligibility and type. The original Mayo Sys-

tem (Darley, Aronson, and Brown, 1969a,b) hypothesised the classification process accord-

ing to dysarthria type as a better alternative, which has been followed in lot of classification

studies. However, the perceptually driven approaches have been proved otherwise by more

recent acoustically motivated studies. One such comprehensive work was conducted by Kim,

Kent, and Weismer (2011a) on 107 speakers with dysarthria. It covered four broad etiologi-

cal types (Parkinson’s disease, stroke, traumatic brain injury and multiple system atrophy)

and seven different dysarthric types with varying degree of severity. Eight acoustic vari-

ables were used in the study and they achieved an overall score of 68.6% for etiological

classification and 54.9% for severity classification, which was significantly better than the

type classification scheme, which gave a score of 31.7% across all the speakers. In addition

to classification tasks, acoustic enhancement approaches have been exploited for increasing

the overall intelligibility of dysarthric speech (Kain and Santen, 2009; Kain et al., 2007;

Lalitha, Prema, and Mathew, 2010).
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Research still has a long way to go in fully quantifying the differences present in the

dysarthric speech signals. Such variabilities could be exploited to improve the ASR frame-

work for designing better dysarthric speech systems. However, in order to achieve this, a

more detailed understanding of the relationship between the acoustic measures of disordered

speech with its underlying perceptual correlates and the articulatory features is needed.

2.5 Severity and impact on intelligibility

Severity and Intelligibility of dysarthric speech are terms often used as an analogue (Kim

et al., 2008). Severity is broadly operationalised by the speech intelligibility index as Mild,

Moderate or Severe or any condition within, such as, Mild-Moderate etc. An intelli-

gibility rating itself is generated by perceptual judgement, which is based on an objective

scoring scheme. There is no common consensus of how to group speakers with dysarthria

into different intelligibility groups. For example, Kim, Kent, and Weismer (2011a) used a

direct magnitude estimation approach (Gescheider, 1976) conducted by non-expert listeners

to give intelligibility scores as scaled ratios, which were divided into broad severity groups of

mild, moderate and severe based on some operationally selected scoring range. In another

study, a multiple regression modelling approach was followed by De Bodt, Hernndez-Daz

Huici, and Van De Heyning (2002) to quantify intelligibility as a linear combination of

four perceptual global dimensions of speech: voice quality, articulation, prosody and nasal-

ity. The analyses was conducted by expert listeners and articulation was found to be the

strongest predictor of intelligibility.

However, there is often a problem in such perceptual judgements to predict intelligibility.

It is usually a costly and time-consuming process to recruit listeners and conduct tests. Also,

inter-judge and intra-judge variations can often give variable results. An expert can assign

higher intelligibility scores to an otherwise less intelligible person, because of their better

comprehension skills of dysarthric speech (Bunton et al., 2007; Tjaden and Liss, 1995).

Since intelligibility is partially related to the proficiency of the listener to understand the

acoustic signal with accuracy, one of the ways to increase the effectiveness of the perceptual

judgement methods is by presenting supplementary information to the listener. Figure 2.5

shows an example framework that can be adapted by the listeners to increase the efficacy of

perceptual judgements. The block model shows three levels of information (Hustad, 2008)

that can be exposed to the listener:
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2. Background on Dysarthria

• Level 1 (Surface Code): Exact syntax and morphology of the spoken text.

• Level 2 (Propositional Model): This is the intermediate level, which contains the

textbase information, which refers to the propositions or meanings that are extracted

from Level 1 (the semantics of the message).

• Level 3 (Situational Model): This is the highest level of information representation

which contains the assimilation of Level 2 information with the world knowledge. The

external knowledge that can be integrated is usually in the form of comprehension

and contextual cues viz. audio-visual, gesture etc.
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Figure 2.5: A holistic listening model for perceptual judgement of intelligibility.

In practice, for the purpose of quantifying intelligibility in a laboratory setup, only Level

1 (Surface Code) information is ever used by the listener to predict the scores, where the

focus is primarily on phonetic identification accuracy and other higher level information is

either not utilised or ignored. However, in real life, anyone interacting with a person with
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dysarthria will usually use all three levels of information to communicate. If the listener is

able to comprehend other contextual information in addition to the acoustic signal, it can

greatly assist in a meaningful communication exchange. One such study by Hustad (2008)

tried to map a relationship between the listeners comprehension abilities and the intelligibil-

ity scores. Although, in the study they did not find any significant relationship, but it was

observed that listeners were better able to comprehend dysarthric speech rather than just

predict intelligibility scores based purely on orthographic transcriptions. The effect of using

higher levels of contextual information, such as, listener familiarisation with the dysarthric

speech (Hustad and Cahill, 2003; Tjaden and Liss, 1995), audio-visual cues (Hunter, Pring,

and Martin, 1991; Hustad and Cahill, 2003) or letter cueing (Hunter, Pring, and Martin,

1991) has proved to be beneficial for improved intelligibility ratings.

Although, the listener model shown in figure 2.5 forms a more accurate framework to get

improved judgement of intelligibility, it will however come with functional limitations. There

is a need to explore other methodologies which are more suited to give realistic estimates of

intelligibility. One of the ways to address this problem is to explore the acoustic domain to

find a set of variables that could assist in predicting intelligibility by direct signal scanning.

If such a tool can be devised, it can help to minimise the negative effects of perceptual

ratings discussed earlier.

For example, in a study by Kim, Kent, and Weismer (2011a) they predicted scaled

intelligibility scores based on perceptual ratings and used regression analysis for selected

acoustic variables against the scaled perceptual scores. They found out that both F2 slope

and articulation rate exhibited a strong relationship to each other. If articulation rate can

be shown to have a strong association with intelligibility then such acoustic measures can be

utilised to quantify speech intelligibility automatically. In another study, a reduced F2 slope

(typically long and flat in nature), which is indicative of minimum or no articulatory move-

ment, amongst a group of ALS patients was found to be highly correlated with the speech

intelligibility (Kent et al., 1989). Similar findings of reduced F2 slopes amongst speakers

with cerebral palsy was found to have a relationship with reduced intelligibility (Rong et

al., 2012a). The studies mentioned do give a strong indication that F2 slope transitions

could be one of the acoustic measures that can prove to be a strong indicator to quantify

intelligibility. However, there is no exhaustive study to ascertain the efficacy of F2 slope

transitions on other neurological speech disorders or large vocabularies.

Despite the difficulties, researchers have attempted to measure the effectiveness of some

21



2. Background on Dysarthria

common acoustic variables for intelligibility estimation. For example, the PEAKS sys-

tem (Maier et al., 2009) was designed to analyse voice and speech disorders and automat-

ically predict intelligibility. It uses a forward acoustic feature selection approach based on

multiple linear regression that selects the best weighted combination of acoustic features.

The experimental setup of PEAKS system predicted intelligibility scores of 41 laryngec-

tomees and 31 children with cleft lip/palate in agreement to five expert listeners rating

within 95% confidence interval. A similar sequential forward feature selection approach was

adapted to sift the best acoustic features by Paja and Falk (2012). They managed to select

the 9 most salient acoustic features out of the extracted 50. It showed a 13% improved

intelligibility prediction using discriminant analysis on 10 speakers with spastic dysarthria

from the UASPEECH database (Kim et al., 2008). Another novel approach for predicting

intelligibility was conducted by Kim and Kim (2012) that used an iterative feature selec-

tion approach. It minimised prediction errors and kept low mutual dependency amongst

the selected features at each incremental step to select the best feature sets.

Despite some of the recent advances, it can be said that it is generally difficult for a

single acoustic measure to give a reasonable estimate on intelligibility and if more than one

acoustic variable is used, we can run into data sparsity issues manifest in dysarthric speech.

Hence, there is a need to explore such variable(s) that are independent of speech material

and are more robust to data sparseness problems. The study conducted in this thesis will

attempt to explore one such acoustic measure in the later chapters that will be effective at

predicting intelligibility on different datasets.

2.6 Treatment and management of dysarthria

A complete discussion of the treatment and management approaches is outside the scope

of the thesis, but it is important to conclude the chapter by giving a brief summary. It

will not only shed light into the wide range of interventions that are applied for alleviating

the symptoms of dysarthria, but it will also show the importance of using computer aided

devices for long-term management of severe cases of dysarthria. Since, speech can be a

natural interface for such computer aided devices, it will re-emphasise the importance of

improving dysarthric speech recognition in the future.

The goal of managing motor speech disorder is to effectively increase the efficiency and

naturalness of the intended communication. However, this is not easy, because a single
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etiology can be responsible for various kinds of dysarthric conditions and the severity of

dysarthria can further make the management process difficult. Other factors such as societal

limitations and specific communication needs add to the difficulty in reaching a consensus on

management and treatment of various dysarthrias (Duffy, 2005). Despite such challenges,

constant effort has been put in the last five decades to formalise the foundations for an

effective management and treatment plan for various motor speech disorders. This section

will give a brief overview of various management and treatment approaches.

2.6.1 Directions for management of speech disorders

The approaches for the management of disordered speech is mainly intended to work in

three main directions as shown in Duffy (2005):

• Restoration: Aims to reduce the effect of impairment and is dependent on the under-

lying etiology and severity of the speech disorder.

• Compensation: Aims to promote the usage of prosthetic and alternative communica-

tion devices to increase the overall intelligibility and communication efficacy. Com-

pensation is usually applied when full recovery of speech is not possible.

• Adjustment: This approach is followed when it becomes known that the underlying

speech will be difficult to manage through restoration and compensation. For example,

a degenerative dysarthria will have a regular deterioration of speech over a period of

time and can often be adjusted by gradually changing the lifestyle and environment.

2.6.2 Approaches for management of speech disorders

Management approaches can be categorised into five major categories: Medical Intervention,

Prosthetic Management, Behavioral Management, Augmentative and Alternative Commu-

nication and Counselling & Support (Duffy, 2005). Since there is no single approach for

treating specific motor speech disorder, the management and treatment approaches tend

to overlap with each other. It facilitates a multidisciplinary approach that can be effective

in treating a variety of dysarthric etiologies like PD (Marck et al., 2009; Skelly, Lindop,

and Johnson, 2012), stroke (Langhorne, Bernhardt, and Kwakkel, 2011), ALS (Oliveira and

Pereira, 2009) etc. Figure 2.6 shows an overlapping view that any possible combination of

approaches are used for the management and treatment of motor speech disorder.
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Figure 2.6: Management approaches for motor speech disorder.

2.6.2.1 Medical intervention

Medical intervention can follow one of the following approaches:-

Pharmacological Approach is a drug based intervention aimed majorly at treating the

underlying cause of the neurological disorder. For example, to treat Parkinson’s disease,

the drug levodopa remains the main approach of treatment (Katzenschlager and Lees,

2002), and its effectiveness can be enhanced if used in conjunction with inhibitors like

carbidopa (Hussain and Manyam, 1997; Tourtellotte et al., 1982) for improving rigidity

and speed response of upper body extremities. Some other inhibitors like Mestinon have

proved beneficial in maintaining normal phonation activity in flaccid dysarthria (Neiman,

Mountjoy, and Allen, 1975). To minimise the long term side effect of drugs like levodopa (Fe-

dorova and Chigir, 2007; Lieu et al., 2010; Skodda, Visser, and Schlegel, 2010), alternative

medicine approaches are also explored that showed the neuroprotective and therapeutic

utility of natural herbs (Mythri, Harish, and Bharath, 2012). For example, extracts of
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Mucuna Prurien4 seeds have proven to be more effective than the synthetically available

l-DOPA in animals with a reduced risk of drug-induced dyskinesia (Hussain and Manyam,

1997; Lieu et al., 2010) and the herb also showed significant improvement in 23 PD patients

with mild or infrequent side effects (Vaidya et al., 1978).

Surgical Approach involves treating the underlying neurological speech impairment di-

rectly using surgical intervention. Neurosurgery is performed at the part of the brain where

a possible neural defect is detected. For example, Deep Brain Stimulation, which involves

implanting electrodes for sending high-frequency electrical impulses to affected areas of

the brain has proved as an essential surgical treatment in overcoming detrimental effects

of drug-induced dyskinesia and motor fluctuations as evident in parkinsonism, essential

tremors (Halpern et al., 2007) and episodic genetic movement disorders associated with hy-

perkinetic movements (Kaufman, Mink, and Schwalb, 2010). Other surgical approaches like

Thyroplasty and Arytenoid adduction are successfully applied to correct speech disorders

due to glottal insufficiency and vocal fold paralysis. Another beneficial approach is found

in the usage of Botox (botulinum toxin) injections that has shown to improve spasticity,

hyperkinetic movements and tremors (Evidente and Adler, 2010) and damaged muscles in

patients with cerebral palsy (Kalinina et al., 2000).

2.6.2.2 Prosthetic management

Prosthetic management incorporates a number of mechanical and electronic devices to im-

prove specific motor speech functions. For example, dysarthria that results from velopharyn-

geal insufficiencies often lead to the problem of hypernasality. The design of an appropriate

Palatal Lift Prostheses can be implemented for soft palate elevation to enhance voice qual-

ity and articulation (Lang, 1967; Witt et al., 1995) in people with dysarthria (Esposito,

Mitsumoto, and Shanks, 2000; Marshall and Jones, 1971; Ono et al., 2005). Other devices

that has been helpful to increase the intelligibility of speakers with dysarthria (Shimura and

Kakehi, 2011; Van Nuffelen et al., 2009, 2010) include Pacing Boards (Lang and Fishbein,

1983).

4A legume extensively used in Ayurvedic medicine, which contains high concentration of levodopa.
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2.6.2.3 Behavioural management

Behavioural management approaches aim to maximise communication between the speaker

and the listener. It can be Speech-oriented or Communication-oriented. The former

uses physiologic support system or compensation strategies to improve overall speech intel-

ligibility, efficiency and naturalness and the latter uses modification strategies targeted to

maximise the impact of communication even when the speech itself is not improved (Duffy,

2005). Before any approach can be adopted, it is the role of the clinical team to identify any

specific need for the routine to be followed. For example, to use behavioural management

approach for the treatment of deteriorating speech in ALS, the patients must score a 6 or 5

on the speech subscale5 of the ALS severity scale (Yorkston et al., 2012). Behavioural man-

agement approaches encompass a number of strategies to improve inadequacies pertaining

to the respiratory, phonatory, resonatory & articulatory aspects of speech.

Respiration: The techniques focus on improving the subglottal system where the breathing

and respiratory system is compromised and is more common in flaccid dysarthria (Duffy,

2005). It employs non-speech techniques like biofeedback therapy (Thompson-Ward, Mur-

doch, and Stokes, 1997) and pushing-pulling techniques, which are suited for people unable

to generate sufficient subglottal air pressure (Yorkston, Spencer, and Duffy, 2003). An-

other approach that is effective to increase the pulmonary insufficiency and vital capacity

involves imitating “frog breathing (glossopharyngeal breathing)” (Harries and Lawes, 1957;

Johansson, Nygren-Bonnier, and Schalling, 2012; McKeever and Miller, 2002).

Phonation: The techniques focus on improving vocal fold adduction problems that are

either incomplete (hypo) or excessive (hyper). Phonation techniques are more commonly

applied on patients with flaccid, hypokinetic dysarthria for hypoadduction, hyperkinetic

dysarthria for hyperadduction of the vocal folds (Duffy, 2005; Yorkston, Spencer, and

Duffy, 2003). Lee Silverman Voice Treatment (LSVT) is one such approach, which, focuses

on increasing the vocal loudness and reducing breathiness through a structured exercise

programs. The therapeutic efficacy of LSVT has been reported in improving intelligibility,

loudness and phonation, in PD (Ramig et al., 1995, 1996, 2001; Sapir et al., 2002, 2007;

Theodoros et al., 1999; Whitehill et al., 2011), TBI & stroke (Mahler and Ramig, 2012;

Wenke, Theodoros, and Cornwell, 2008, 2011), CP (Fox and Boliek, 2012), ataxia (Sapir

et al., 2003) and multiple sclerosis (Sapir et al., 2001).

5The Speech Subscale assigns a numerical score for speech, swallowing, lower extremity & upper extremity
functions within a range of 10 - 1. (Yorkston et al., 2012)
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Resonance: It is generally believed that resonance effects are not usually benefited from

behavioural management approaches, and prosthetic or surgical methods should be sought.

However, some approaches that are followed in the literature guidelines include modification

of speaking patterns to reduce the effects of velopharyngeal inadequacies, exaggerate jaw

movement for wider oral opening and supine position speaking (Duffy, 2005).

Articulation: The techniques focus on improving the place and manner of articulation

for optimal vowel and consonant production. Strength Training is beneficial for improving

motor control (Smith and Kurian, 2012) and is used to increase the strength of specific

articulatory muscles, e.g. tongue-strengthening program (Dworkin and Hartman, 1979),

orofacial myofunctional therapy to improve the strength and mobility of the buccal, facial,

labial and lingual musculature to improve speech intelligibility (Ray, 2002).

For some speakers, behavioural speech-oriented approaches may be inappropriate and

ineffective due to the severity of the condition or the progressive nature of dysarthria.

In these situations, clinician may focus on communication-oriented approaches to improve

speaker intelligibility for effective message exchange. These are supplemental augmentative

and alternative communication strategies that require an effort on part of the speaker,

listener or both to increase comprehension. For example, a speaker can usually prompt and

alert the listener about their intended mode of communication. The presentation of prompts

like Alphabet & Topic Cues and Iconic Hand Gestures reported a significant increase in the

intelligibility and listener’s attitude towards effective communication (Hustad, 2005; Hustad

and Garcia, 2005; Hustad and Gearhart, 2004; Toy and Joubert, 2008).

2.6.2.4 Augmentative and alternative communication (AAC)

AAC can be defined as:

”Any method of communicating that supplements (augments) or replaces (provides an

alternative to) the usual methods of speech and/or writing where these are impaired or

insufficient to meet the individual’s needs.” (Murray and Goldbart, 2009)
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Mode Example

Unaided no-tech Facial Expressions, Gestures, Sign Languages, Symbols

Aided low/light-tech (me-

chanical/electronic)

Symbols, Communication Boards, Alphabet Supplementa-

tion, Portable Writing System

Aided high-tech (mostly

electronic/computer-based)

Speech generating devices, Voice output and Voice in-

put/output communication devices

Table 2.1: Different modes of AAC strategies and components.

AAC is a mixture of a wide variety of tools ranging from unaided low-cost strategies to

aided high-tech dedicated computer systems. Since technology is changing rapidly with

more robust and effective AAC devices, it is not the intent of the current section to cover

them in detail. We give a very brief summary of some generic tools mentioned in table 2.1

and its potential usage for certain types of dysarthria.

Around 0.05% of the UK population could benefit from power aided communication

devices (Enderby et al., 2013). For example, Yorkston et al. (2012) asserts the usage of

AAC in progressive diseases such as ALS, when the patient’s speech subscale rating drops to

4 or 3 (see section 2.6.2.3). The level of AAC intervention is highly dependent on the degree

of speech deterioration. A collective review (Beukelman et al., 2007) showed the increased

acceptance and usage of AAC for people with ALS and in a study by Ball, Beukelman, and

Pattee (2004), nearly all the ALS patients continued with the usage of AAC devices.

AAC has proved as an effective self-repairing system for potential communication break-

down which is common in acquired progressive dysarthria (Bloch and Wilkinson, 2004). A

review study based on assessment and interventions defined on WHO’s ICF-CY6 framework

for measuring health and disability showed an effective categorisation of the best suited AAC

systems for children with CP (Clarke and Price, 2012). Also, the usage of both low and high

tech AAC devices like Alphabet Supplementation and VOCA has shown limited, though

significant success for PD speakers (Armstrong, Jans, and MacDonald, 2000; Yorkston et

al., 2012). The percentage of people from various dysarthric etiologies who could benefit

from AAC devices is shown in figure 2.7. The percentages are taken as a gross estimation

of the prevalence estimates in figure 2.2.

6International classification of functioning, disability and health for children and youth.
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Figure 2.7: Dysarthric speakers who could benefit from AAC devices (Enderby et al., 2013).

Despite the advent of AAC strategies, there is still a greater need to understand individ-

ual AAC needs and address possible limitations in the current systems. Studies like Dowden

(1997) and Light et al. (2007) elaborate on the functional knowledge needed to re design

better AAC systems in the future, especially for young children, which will be more effec-

tive. Another problem with high-tech AAC devices such as VOCA is its over reliance on

key or switch based interaction, which is slower and does not give a real-time communica-

tion experience. A possible solution for this problem can be envisaged in incorporating a

new form of AAC device, viz., Voice Input Voice Output Communication Aid (VIVOCA)

that recognises disordered speech, builds appropriate messages and coverts it into synthetic

speech, thus facilitating real-time and natural communication (Hawley et al., 2012).
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Chapter 3

ASR and its Applications in

Dysarthric Speech

Speech offers the potential as an effective and natural interface of communication for people

with dysarthria. The design of any dysarthric speech system generally requires careful

customisation and optimisation to various components of an ASR framework. It is thus

imperative to give a general overview of these components and understand its internal

working. The chapter will give a brief explanation of the main component of an ASR

framework with emphasis on the speech components that will be more relevant in context

of the thesis. The chapter will conclude by expanding the discussion of ASR in general to

how research has progressed in the field of dysarthric ASR.

30



3. ASR and its Applications in Dysarthric Speech

3.1 Generic architecture of an ASR System

An ASR system generally comprises of components with pre-defined tasks that combine to

translate the input speech into output text. The components either work individually or in

mutual correspondence with each other to produce the output of the system. The accuracy

of an ASR system is related to the optimal performance of each of these components.

Figure 3.1 shows the architecture of a generic ASR system. It is not mandatory for an ASR

system to have all the components and it can have fewer or even more components catering

to specific tasks. A brief description of each ASR component is given below:

Feature Extraction converts the incoming speech into feature vectors that are used

by machine learning algorithms for modelling the data.

Vocabulary is the domain of words that will be used. It is one of the constraints

under which the ASR system produces its output. For example, isolated digit task

will usually have a vocabulary of less than 10 words and a large vocabulary speech

system can have its vocabulary exceeding 60k words.

Acoustic Models are responsible for representing a relationship between the in-

coming acoustic features to its respective speech units (words, tri-phones etc.) as

constrained by the vocabulary.

Language Models are responsible for assigning estimates to the occurrence of word

or sub-word units in a particular language, which puts a syntactic and semantic con-

straint on the overall recognition task.

Pronunciation Models refine the search hypothesis of ASR systems by feeding

knowledge about the way particular words are spoken.

Adaptation Module is a predecessor layer which adjusts the various components in

the modelling layer. It attempts to reduce the mismatch between the training and

test condition (particular speaker, task, etc.).

Hypothesis Search produces the output hypothesis that best matches the incoming

speech signal, and is constrained by the knowledge of language and pronunciation

modelling components.
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Corpus is a collection of audio, video and text files that are used for training and

adaptation of the ASR systems.
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Figure 3.1: Generic architecture for the ASR systems.
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3.2 Feature extraction

Feature extraction converts the incoming acoustic signals into a particular representation

of feature vectors, which are more suited for the speech recognition process. It starts by

sampling the incoming continuous sinusoidal wave into a set of discrete sample points. It is

important to ensure that the sampling rate is high enough to capture the rapidly fluctuating

speech patterns. Selection of the sampling rate for any system is given by the rule:

fs > 2fn (3.1)

fs is the sampling rate and fn is commonly known as the Nyquist frequency, which is the

highest frequency component in the wave that is being sampled (Oppenheim and Schafer,

1989). Any frequency component above the Nyquist frequency will be incorrectly repre-

sented by the same amount below the Nyquist frequency. This anomaly is often referred to

as aliasing that can be avoided by removing the high frequency components using a low-pass

filter before any further processing. The inequality 3.1 ensures that the sampling frequency

will be high enough to represent the frequencies below fn. The amplitude information of

these sample points are represented by numeric values using a process called quantisation.

The values are determined by the number of bits used for each sample, also called bit-depth.

The signal-to-noise (SNR) ratio is represented in decibels as:

SNRDB = 20 log(2B) (3.2)

where B is the number of quantisation bits used. For example, it can be computed

from equation 3.2 that a 4-bit representation gives a SNR of around 24 dB and a 16-bit

representation results in 96 dB SNR, which is about the full range of intensities that the

human ear can tolerate without pain (Ladefoged, 1996). Hence, bit-depth affects the SNR

and the dynamic range of the signal and lower bit-depth will result in lowered SNR values.

The output spectrum of any speech falls off at a rate of -6 dB/octave. This approxima-

tion is a result of -12 dB/octave fall in the spectrum of the glottal pulse and a boost of +6

dB/octave due to radiation at the lips (Ladefoged, 1996). In order to compensate for this

slope descent in the output spectrum, it is common to apply pre-emphasis on the input

speech signal s[n] as a first order filter (Rabiner and Schafer, 2007):

ŝ[n] = s[n]− λs[n− 1] (3.3)
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where λ is an empirically determined value in the range of 0.9 ≤ λ ≤ 1.0.

Due to the non-stationary nature of speech, the signal is generally divided into a series

of consecutive overlapping ”frames” before applying the above pre-emphasis filter. The

speech within each frame can have discontinuities at the start and end that can give rise

to pseudo high frequency components in the signal. This is avoided by windowing each

speech frame to smooth out the edges. A variety of window functions can be used ranging

from rectangular, triangular to more smoother bell shaped family of curves. For example,

Hamming window is one of the popular choices represented by the cosine sum (Oppenheim

and Schafer, 1989):

w[n] =

0.54− 0.46 cos(2πn/M) 0 ≤ n ≤M

0 elsewise
(3.4)

where M is the number of discrete samples in the window. Due to the non-stationary

nature of speech, it is a common practice to take short overlapping windows, during which

we can assume the signal to be stationary. The size of the window taken is also of relative

importance. Too short windows give poor frequency resolution and long windows give poor

time resolution. A usual trade-off is to set the window size between 20-25 ms with an

overlap window size of around 10 ms (Holmes and Holmes, 2001). In some special cases,

like dysarthric speech, the window size can be greater than 25 ms with an overlap extended

to 15 ms. This is done, because of slow articulation the dynamics of the speech are not

varying rapidly and a reduced frame rate can yield better results (Selouani et al., 2012;

Yakcoub, Selouani, and O’Shaughnessy, 2008).

Any speech signal is generally characterised by its spectral envelope that results from

the vocal tract filter response, which gives rise to dominant frequency component in the

signal and the harmonic structure due to the excitation source. The feature extraction

process aims to encode the spectral shape by conducting short-time spectral analysis of the

windowed frames using Discrete Fourier transform (DFT). For a windowed signal w[n] the

DFT is given by:

X(k) =
N−1∑
n=0

w[n]e

−j2πkn
N 0 ≤ k ≤ (N − 1) (3.5)

where k is the kth frequency bin of N uniformly spaced frequencies and ejθ is the Euler

constant. DFT is a computationally expensive procedure with O(n2) complexity and a Fast

34



3. ASR and its Applications in Dysarthric Speech

Fourier Transform (FFT) with O(n log n) complexity is usually applied that operates

on window sizes that are in multiples of two. FFT is the basis for some common forms of

feature analysis in ASR, like Cepstrum Analysis (Bogert, Healy, and Tukey, 1963) & Linear

Predictive Coding (LPC) Analysis (Atal and Schroeder, 1970; Itakura and Saito, 1970).

The result of cepstral analysis is a cepstrum, which is the inverse Fourier transform of

the log magnitude spectrum (Bogert, Healy, and Tukey, 1963). The logarithm of the first

stage FFT ensures that the source and filter frequency components transform from multi-

plicative domain into an additive domain. The filterbank energies are generally correlated

due to the overlapping filters. The energies are decorrelated using a simplified version of a

frequency transform, usually a Discrete Cosine Transform (DCT)1, to get the actual

components of the source and filter. The DCT equation is given by:

cj =
√

2/N
N∑
i=1

Ai cos (πj(i− 0.5)/N) 0 ≤ j ≤ N (3.6)

where cj is the jth cepstral coefficient and Ai is the log magnitude of the ith chan-

nel (Holmes and Holmes, 2001). The low order cepstrum represents the response of the

vocal tract filter and the high order cepstrum represents the excitation source. As cepstrum

features are orthogonal, all the off-diagonal entries in a covariance matrix of features are

zero. This greatly simplifies the computational load. Since most relevant information is

found in the low order cepstrum features, a truncation procedure known as liftering 2 is

applied to remove the unwanted high order features.

In contrast, LPC analysis finds the speech parameters by considering the excitation

source and the vocal tract response as a combined system and then applying an inverse

filter to the speech spectrum to obtain a near zero output. It works on the idea that

any sample of speech at time n, say x[n], can be considered as an approximated linear

combination of past p samples (known as pth order LPC analysis). An estimate of x[n] is

given as:

x̂[n] =

p∑
k=1

akx[n− k] (3.7)

where ak is the predictor coefficient. Both cepstral and LPC analysis gives high reso-

lution frequency information. However, they do not take into account the way frequencies

1DCT is a simplified version of the DFT, since the first stage Fourier transform is a symmetric function.
2An anagram for filtering in the frequency-frequency domain.
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Figure 3.2: Schematic diagram for the MFCC generation process.

are perceived by human ear. The ear is more sensitive to changes in absolute pitch at

lower frequencies. The perceived pitch of a tone increases approximately linearly with its

frequency up to 1000 Hz and logarithmically thereafter up to 10000 Hz (Ladefoged, 1996).

This relationship was determined by numerous psychophysical experiments that led to the

development of non-linear scales, which showed the mapping between the actual frequency

and the corresponding pitch percept of the human auditory system. Two commonly applied

scales in ASR are the Mel and Bark scales represented as:

f =

1127 ln(1 + f/700) ,Mel

13 tan−1(0.00076f) + 3.5tan−1((f/7500)2) , Bark
(3.8)

ASR systems usually implement perceptually motivated outputs of the cepstral and LPC

analysis. The most widely used representations of speech include the Mel Frequency Cep-

stral Coefficients (MFCC) (Davis and Mermelstein, 1980) and the Perceptual Linear

Prediction Coefficients (PLPC) (Hermansky, 1990). MFCC feature representation is

used in all the experiments in the thesis. A schematic diagram for MFCC generation is

shown in figure 3.2.

The MFCC representation discussed so far generates the set of static features that

describe the power spectral envelope. In order to boost the performance of ASR systems,

MFCC trajectories are also computed over time. This involves finding additional speech

information of a feature with respect to its neighbouring features. These dynamic feature

sets are the first order regression coefficients (delta) that are appended to the original MFCC

representation. They are computed using the regression formula:
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deltat =

∑θ
w=1w(ft+w − ft−w)

2
∑θ

w=1w
2

(3.9)

where ft is the frame at time t and θ is the total number of adjacent frames (usually 2).

In a similar way second order regression coefficients (delta-delta) are also computed from

the delta coefficients.

3.3 Acoustic modelling

3.3.1 Pre-Statistical approaches

Pattern classification for ASR has changed a lot over last six decades. The earliest methods

included rule based acoustic-phonetic approaches which exploited the properties of speech

signals directly to perform recognition. These were used for isolated unit recognition (Davis,

Biddulph, and Balashek, 1952; Forgie and Forgie, 1959) and in conjunction with other

knowledge based systems (Juneja, Deshmukh, and Espy-Wilson, 2002; Olivier et al., 1996).

However, these approaches were not very successful due to the limited and partial knowledge

the system had about the acoustic properties of various phonetic units, which lead to sub-

optimal selection of features during recognition (Rabiner and Juang, 1993).

The acoustic-phonetic approaches were replaced by pattern recognition methods that

implement the categorical learning of speech classes by direct observation of speech patterns

without incorporating any explicit feature determination knowledge. Such an approach

usually requires sufficient data to learn the acoustic properties associated with the observed

patterns. This process of observation and learning is iterated over all the speech classes that

are relevant for a given task. The pattern learning algorithms deployed are used to generate

acoustic models of speech that are either deterministic or stochastic in their structure. The

former accumulates an average snapshot of all the observed patterns for a particular speech

class, called reference templates, and the latter represents the patterns using an appropriate

probability density function (pdf). In both cases, the classification is made by selecting a

particular template or probability density function that has the best fit with the unknown

speech pattern.

The reference template approach, also known as template matching is a non-statistical

method that measures the distance between an unknown speech unit and a finite set of
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pre-stored speech templates for classification. Due to temporal differences between differ-

ent speech utterances dynamic programming techniques are generally employed (Bellman,

1953). Dynamic Time Warping (DTW) is one such algorithm that models the timescale

differences, as it warps the time-axis between the spoken speech pattern and the underlying

template by non-linear modelling. DTW attempts to find the best cumulative distance at

each time instant and iterates it over the entire speech utterance. Euclidean measure is the

most commonly used distance metric, however other distance estimates based on smoothed

LPC group delay spectrum (Itakura and Umezaki, 1987) and weighted cepstrals (Tohkura,

1986) have been effective in DTW applications. DTW has been used for isolated word recog-

nition (Brown and Rabiner, 1982; Sajjan and Vijaya, 2012; Xu and Ke, 2012; Yang et al.,

2011), speaker verification (Andrei, Paleologu, and Burileanu, 2011; Geppener, Simonchik,

and Haidar, 2007; Wen, Liu, and Liu, 2003) and connected word recognition (Myers and

Rabiner, 1981b; Nakagawa, 1984; Ney, 1984; Rabiner and Schmidt, 1980; Sakoe, 1979).

Details of DTW and its optimisation strategies are discussed in a comparative study report

by Godin and Lockwood (1989) and Myers and Rabiner (1981a).

Despite progress in template matching approaches, it lacked the ability to effectively

model the variations and inconsistencies in the speech patterns. The limitations can be

attributed to factors such as speaking speed, co-articulation, pitch variations etc. In order

to overcome these impediments, template based approaches has been overtaken by more

powerful statistical approaches that use probability distributions to model the variations.

3.3.2 Statistical approaches

The statistical learning paradigm can be divided into three broad categories, viz. Genera-

tive, Conditional and Discriminative modelling approaches.

DiscriminativeConditionalGenerative

Learning Paradigms

Figure 3.3: Statistical learning paradigms.
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For example, the generative approach attempts to model all the input, output and

other unobserved variables in the system by using joint probability distributions. Its goal

is to optimise the model parameters to maximise the likelihood of the observed data and

does not focus on the end classification task. In scenarios where it is possible to explicitly

establish the end task, a conditional distribution can be directly optimised that will be

used for final classificiation or regression instead of optimising the entire generative model.

Discriminative learning follow a more minimalistic approach and do not focus on modelling

any underlying distribution. Its prime goal is to have a robust input, output mapping and

focuses on minimising the classification errors.

3.3.2.1 Generative learning

Generative learning aims to learn about the system or the phenomenon to be observed

by modelling all input, output, observed and unobserved variables through a single joint

probability distribution function. The joint distribution can then be used for classification

by marginalisation and conditioning of the learnt distribution. The generative learning

formalism is usually approached in light of the classical Bayesian Inference theory. It relies

on the principle of Bayes’ rule that states, if φ is a hypothesis and o is an observation, then

the posterior estimate is given by:

P (φ|o)︸ ︷︷ ︸
Posterior

=

likelihood︷ ︸︸ ︷
P (o|φ)

prior︷ ︸︸ ︷
P (φ)

P (o)︸︷︷︸
marginal likelihood

P (φ|o) ∝ P (o|φ)P (φ)

(3.10)

where P (φ) is the prior probability of the hypothesis φ before any data is observed and

P (o|φ) is the likelihood function which gives the power of estimating an observation o, given

the hypothesis φ. Since, P (o) is independent of φ, it can be treated as the marginal estimate

and taken as a normalising factor in Bayes computation (Holmes and Holmes, 2001).

Now, the joint Bayesian estimate for a set of training examples d ∈ D and all permitted

hypothesis/models φ ∈ Φ is given as (Bishop, 1995):
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P (d|D) =

∫
φ∈Φ

P (d|φ,D)P (φ|D)dφ (3.11)

The above estimation depends on the family of pdf’s p(φ|λ), where λ represents the

vector of hyperparameters and the training examples in D are a 2-Tuple sequence of input

vectors and output class labels represented as (x,y). The above integral is often not easy to

compute and a scaled down approach is adopted where the mode of the posterior distribution

is computed as an approximation. Instead of summing over all possible hypothesis φ, the

most probable one is considered. It gives the maximum a posteriori (MAP) and maximum

likelihood (ML) estimates as:

P (d|D) ≈ P (d|φ̃,D)

φ̃ = arg max
φ∈Φ

P (φ|D)

=


arg max
φ∈Φ

P (D|φ)P (φ) MAP

arg max
φ∈Φ

P (D|φ) ML

(3.12)

MAP takes advantage of incorporating prior belief about φ into the system and ML

assumes uniform priors. Logarithms are generally taken in equation 3.12 as it makes the

optimisation process easier due to monotonous nature of the log function and is well suited

for exponential family of distributions.

φ̃ =


arg max
φ∈Φ

( ∑
D

lnP (d|φ) + lnP (φ)
)

MAP

arg max
φ∈Φ

( ∑
D

lnP (d|φ)
)

ML
(3.13)

In case sufficient data is available for modelling, both MAP and ML can efficiently

find the optimal parameters of φ using an exponential class of distribution and show good

convergence. However, the training data is almost always insufficient for producing the

optimal model set. In addition, acoustic models that implement the Gaussian mixture

hidden Markov model (HMM-GMM) framework has additional problems of unknown and

hidden variables. These are the state sequences that correspond to a particular sequence of

observations. The estimates under these constraints are found using an iterative procedure,

known as expectation-maximisation (EM) algorithm (Dempster, Laird, and Rubin, 1977).
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If H is a vector of such hidden variables and L(φ) be the likelihood function that needs

to be optimised, then EM tries to simultaneously formulate the conditional expected value

of the model likelihood with all integrated variables (E-Step) and then maximises this

formulation (M-Step) as:

Θ(•) = L(φ)− L(φn) = ln
(∑
h∈H

P (D|h, φ)P (h|φ)
)
− lnP (D|φn) (3.14)

In the above equation, φ is the updated estimate that needs to optimised and φn is

the current estimate at the nth iteration. Equation 3.14 has a logarithmic sum and the

EM algorithm takes advantage of the concavity of the log function and applies Jensen’s

inequality to create a lower bound for the log-likelihood function which ensures that every

successive iteration will produce at least as good an estimate as the previous one. Both

MAP and ML have been extensively used in the acoustic modelling of ASR systems. A

theoretical and implementation framework of MAP Bayesian learning has been succinctly

provided for HMM model estimation, speaker adaptation and language modelling (Gauvain

and Lee, 1992, 1994).

The generative models using HMM-GMM has been the most popular framework imple-

mented in ASR systems till date. Since the empirical work for the generation of acoustic

models in the current thesis will use the HMM-GMM setup, the next section will briefly

discuss its theory and implementation.

Hidden Markov Models

Any stochastic process that satisfies the Markov property is called a Markov random process

and its model is known as a Markov model. The Markov property asserts that the state

of the system at any time t+ 1 only depends on the state of the system at time t. This

is also called the ”Property of Forgetfulness”, since any predictions for the future state of

the system is only dependent on the present state of the system and not the past. This is

usually called the first-order Markov property. In theory we can have k-order assumptions

that will take into account the past k states of the system to predict the current state.

However, it makes the computations intractable and usually only first-order assumptions

are taken into account.

The simplest Markov model is a Markov chain in which the state sequences are ob-

servable. In case of non-observable or hidden state sequences, it is known as a Hidden
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Figure 3.4: An example of a five state HMM. It is a strictly left-to-right topology due to the

transition probabilities and the output distributions are either discrete or estimated using

a mixture of Gaussian densities.

Markov Model (HMM) which is represented as a stochastic finite state machine with a

fixed number of states. Although the stochastic process of state sequence generation is not

directly observable in HMM, it can be observed through another set of stochastic process

that produce the sequence of observations (Rabiner, 1989).

Figure 3.4 shows a five state HMM with a strict left-to-right topology. The HMM is

fully characterised by the number of states, transition probabilities between the states and

likelihood of a state observing a feature vector. The output probability distribution of

states can either be discrete or continuous depending on the data being modelled. HMM

topology usually also have special non-emitting initial (I) and final state (F) which acts as

place holders for expanding the HMM network by concatenating several HMM’s. This is

usually the basis for continuous HMM based speech recognition systems. The formation of

any HMM system asserts the following fundamental assumptions:

First Order Markov Assumption: If s1s2.....st−1 is the history of system states in the past

(t− 1) time units, then the transition probability of the system at time t is given by

P (st|s1s2.....st−1) = P (st|st−1) (3.15)

Stationarity: Let aij represent the transition probability of going form state i to state j.

Then aij is independent of the time instant at which the actual transition takes place.
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P (st′ = j|st′−1 = i) = P (st′′ = j|st′′−1 = i) t′, t′′ ∈ random time
instants (3.16)

Observation Independence: This asserts that the probability of the observation at time t,

say ot, is only dependent on the state of the system at time t and is statistically independent

of all past observations and states.

P (ot|o1o2.....ot−1, s1s2.....st) = P (ot|st) (3.17)

HMM is widely used in acoustic modelling of speech recognition systems (Jelinek, 1976)

due to its inherent capability to capture temporal variations in a statistical framework.

To formulate an HMM system for speech classification we consider Φ = W1,W2, .....,Wn

as the set of all possible hypotheses or speech units and Y = y1, y2, ....., yT as an unknown

observation of length T . According to Bayes’ rule in equation 3.10, the posterior probability

P (Wi) is given by:

P (Wi|Y ) =

acoustic model︷ ︸︸ ︷
P (Y |Wi)

language model︷ ︸︸ ︷
P (Wi)

P (Y )

(3.18)

The posterior probability for each Wi is estimated and the hypothesis that is most likely

to generate Y is the most probable output. If the HMM passes through a state sequence

s1, s2, ....., sT in observing Y , then the joint probability estimate is given as (Holmes and

Holmes, 2001):

P (y1, y2, ....., yT ) =
∑
state

sequences
of length T

P (y1, y2, ....., yT , s1, s2, ....., sT )

≈ max
state

sequences
of length T

P (y1, y2, ....., yT , s1, s2, ....., sT

︸ ︷︷ ︸
V iterbiApproximation

)
(3.19)

The intractable summation is usually equated by Viterbi approximation for the best

state sequence. If each state output distribution, also called emission pdf’s, are opti-

mally trained, then the best path should give a reasonable probability estimate that will
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be very close to the summed score. For practical setups, the implementation of Viterbi ap-

proximations for a number of competing hypothesis is generally formulated using the token

passing algorithm (Young, Russell, and Thornton, 1989). The success of an HMM-GMM

based system largely depends on generating optimal estimates for the acoustic model sets.

One of the principal approaches for maximum likelihood estimations is the Baum-Welch

algorithm (Baum et al., 1970), which is the motivational basis for the generalised EM algo-

rithm. The method corresponds to the Bayesian generative learning explained earlier and

estimates the optimal parameter set by jointly observing data from multiple dimensions,

both directly observable and hidden.

The Baum-Welch algorithm relies on the computation of a forward-backward procedure,

which recursively computes the probability of partially observing an example and being in a

particular state at a given time instant. The forward and backward scores are then combined

to give the total likelihood of emitting the entire set of feature vectors and occupying a

particular state at any time t. This is called the state occupation probability and is the

most important component in the re-estimation procedure. In its minimal form it is written

as γj(t, e) = P (st = j|y1, y2, ....., yT , φ) for being in state j at time t and emitting the entire

set of feature vectors of length T . This is estimated for a single example e with the current

model parameters φ. The forward, backward and state-occupation scores are used in the

re-estimation of transition probabilities of the HMM and the means and variances of the

emission pdf. In speech recognition the emission pdf’s are usually represented by a mixture

of multivariate Gaussian distribution and the HMM is known as a Continuous Density

Hidden Markov Model (CDHMM). For a state j to emit a feature vector y of dimension D

at time t, the pdf is represented as:

bj(yt) =

M∑
m=1

wjm

(2π)D/2|
∑

jm |1/2
exp

[
− 1

2

D∑
d=1

(yt[d]− µjm[d])2

σ2
jm[d]

]
(3.20)

where M is the total number of mixture components and wjm is the weight associated

with the mth Gaussian mixture of state j such that
∑M

m=1wjm = 1 and |
∑

jm |1/2 is the

determinant of the full covariance matrix. Speech representations like MFCC’s that output

an uncorrelated set of feature vectors allows for the reduction of full-covariance matrix into

a diagonal-covariance matrix (|
∑

jm |1/2 ≈ |ΠD
d=1σ

2
jm[d]|1/2). This greatly improves real

time efficacy of ASR systems by reducing the computational complexity. The means and

variances are re-estimated using the following relationship:
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µ̂jm =

∑
∀e∈E

∑
∀t∈Te

γjm(t, e) yte∑
∀e∈E

∑
∀t∈Te

γjm(t, e)
(3.21)

∑̂
jm

=

∑
∀e∈E

∑
∀t∈Te

γjm(t, e) (yte − µ̂jm)(yte − µ̂jm)T∑
∀e∈E

∑
∀t∈Te

γjm(t, e)
(3.22)

where yte is the observation vector and γjm(t, e) is the state occupation probability of

being in state j at time t and emitting the entire set of feature vectors using the mixture

component m for the example word e. In the above Baum-Welch re-estimations, γjm(t, e)

imposes soft decision boundaries by allowing every state to have some weighted contribution.

If γjm(t, e) is bound to only have values of 0 (not occupied) or 1 (occupied), it leads to Viterbi

training (Holmes and Holmes, 2001; Rabiner and Juang, 1993).

3.3.2.2 Conditional learning

Conditional Bayesian learning is an intermediate approach between the generative and dis-

criminative modelling. Unlike the generative approach where a joint probability distribution

models all the input, output, observed and hidden variables, conditional approach only mod-

els the output provided one knows what inputs to condition it on. In simple symbolic terms

it means:

P (input, output, observed, hidden, ...)

Generative Learning

=⇒
Conditional Learning

P (output|input) (3.23)

Recalling from section 3.3.2.1, where D represented both input and output variables of

a system, one can divide the set separately into input(X) and output(Y). In conditional

domain, instead of jointly learning (X,Y), equation 3.11 modifies to:

P (y|x,X,Y) =

∫
φ∈Φc

P (y|x, φc,X,Y)P (φc|X,Y)dφc (3.24)

This is an important simplification if we know the specific task to be learnt and now

modelling of the distribution only focuses on learning the population of Y conditioned over

X. The parameters of the learnt system φc are effectively independent of the density of X.
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Despite the constraints imposed by the conditional learning, the integral in equation 3.24

is intractable and the mode can be computed to get the most probable model as:

P (y|x) ≈ P (y|x, φ̃)

φ̃ = arg max
φ∈Φc

P (φ|Y,X)

=


arg max
φ∈Φc

P (Y|X, φ)P (φ|X) C-MAP

arg max
φ∈Φc

P (Y|X, φ) C-ML

(3.25)

Conditional Maximum a Posteriori (C-MAP) and Conditional Maximum Likelihood

(C-ML) has been used in various branches of speech recognition. For example, variants of

C-MAP are used in voice activity detection (Choi and Chang, 2012; Kim et al., 2010b; Shin

et al., 2008) and C-ML has shown some performance gains over standard ML optimisation

in HMM and Neural Network based hybrid systems (Krogh and Riis, 1999).

3.3.2.3 Discriminative learning

Generative and conditional learning approaches offer an appealing framework to model the

system and the inter-dependencies between its variables. The former attempts to model the

joint distribution P (X,Y) and the latter models the conditional distribution P (Y|X). In

both cases, the task of optimising a probability distribution exists as an intermediate step

before any classification can be done. This can be difficult, especially when sufficient data is

not available to model all the parameters of the system being observed or if the distributions

representing the system fail to classify an unseen data resulting in a poor classifier.

In discriminative learning the focus shifts from modelling towards classification only.

Unlike generative and conditional approaches, which are oblivious to the end classification

goal, discriminative approach only focuses on adjusting the classification boundaries to

get an optimal input to output mapping. Although, discriminative approach might lack the

elegance of probabilistic modelling of variables and their inter-dependencies, it compensates

by only focusing on producing an optimal classifier. Since the task of discriminative learning

is not on modelling the underlying system, the Bayesian integral optimisation is no longer

the target as seen in sections 3.3.2.1 and 3.3.2.2.
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Some of the commonly used discriminative approaches include Maximum Mutual Infor-

mation (MMI) (Bahl et al., 1986; Chow, 1990; Nadas, Nahamoo, and Picheny, 1988) and

Minimum Classification Error (MCE) (Juang and Katagiri, 1992). The former is based

on principles of information theory that attempts to probabilistically maximise the mu-

tual information between the training data and its corresponding transcripts. The later

optimises the performance of the system by minimising the classification errors through a

smoothed, continuous and differentiable function. The MCE discriminant function defined

for speech recognition tasks is represented using joint log likelihoods (He, Deng, and Chou,

2008; Juang, Hou, and Lee, 1997; Reichl and Ruske, 1995) that are suited for optimsation

tasks such as gradient descent. Another discriminative criteria known as Minimum Phone

Error/ Minimum Word Error (MPE/MWE) was presented by Povey and Woodland (2002).

Unlike MCE, which considers the entire transcript of the utterances for optimisation ob-

jective, MPE/MWE only takes weighted contributions of correctly classified phones/words

between the competing and true hypothesis strings. This flexibility allows the inclusion of

not only the true hypothesis, but also partially true and completely incorrect hypothesis

strings in optimising the discriminative criteria. Another important discriminative crite-

ria is the Large Margin Estimation (LME), which aims to maximise minimum margins of

training data for a generalised approach to classifier design. The margins are basically the

distance between each data in the training set and the decision boundary. The margins

are used to bound generalisation errors which are important to various machine learning

tasks (Mitchell, 1997). LME has been successfully applied for estimation of CDHMM by

maximising the minimum multi-class margins and had been shown to produce better re-

sults than the MMI and MCE approaches for isolated word task (Li, Jiang, and Liu, 2005;

Sha and Saul, 2007). The same concept has been extended to continuous speech recogni-

tion which showed gains over standard MCE approaches (Liu, Jiang, and Rigazio, 2005).

Another novel approach for continuous speech recognition was presented by Kaiser, Hor-

vat, and Kacic (2002), which minimised the overall risk of misclassification on the training

database using the Levenshtein distance metric between the correct and n-best competing

hypothesis.

3.3.3 Advanced learning architectures

The learning paradigms discussed so far can be broadly classified as shallow architectures

that contain a single layer of non-linear feature transformations. However, a family of more
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complex algorithms that fall under the domain of deep learning architecture are gradually

gaining equal prominence. It inherently deploys multiple layers of non-linear interactions

that aim to increase the modelling and representational power of the underlying information.

There is more than a decade of extensive research conducted in the domain of deep learning

from both machine learning and mainstream ASR viewpoint. The reader can refer to the

overview articles by Deng (2014) and Deng and Li (2013) for an exhaustive summary of

the developments. The current section will give a general overview of the deep learning

framework.

V1 V2 Vi VJ 1

H1 H2 Hj HK 1

H1 H2 Hj HK 1

H1 H2 Hj HK 1

H1 H2 Hj HK 1

S1 S2 Sl SL

RBM

... ...

... ...

... ...

... ...

... ...

... ...

Figure 3.5: Illustration of a DBN architecture.

Deep learning is based on the principles of artificial neural networks and it owes its recent

developments and success to the seminal work by Hinton, Osindero, and Teh (2006) and

Hinton and Salakhutdinov (2006) in which an optimised class of networks were introduced,
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known as the deep belief networks (DBN) that forms the foundation for deep learning.

Figure 3.5 shows a schematic illustration of a DBN network. It is constructed by stacking

a series of restricted Boltzmann machines (RBM), where each RBM is a specialised Markov

random field that has a single layer of stochastic hidden units and a single layer of stochastic

visible units. In an RBM construction all the visible and hidden units are connected to each

other with no visible-visible and hidden-hidden connection. The activation units of each

RBM layer are used as the input data for training the visible units of the above layer RBM.

This iterative and efficient layer-by-layer greedy learning process runs bottom up across the

entire network (Hinton, Osindero, and Teh, 2006).

Just like learning paradigms discussed earlier, deep learning also falls into generative, dis-

criminative and hybrid architectures. Out of these, the hybrid deep architecture is of prime

interest in ASR research. In this, the DBN is subject to the process of generative learning

for ”pre-training” the parameters of the network, which is followed by the discriminative

learning process to ”fine-tune” the weights for optimising the entire network performance.

In context of ASR, the discriminative fine-tuning is generally performed by adding a final

layer of expected speech unit labels denoted by S1, S2, ..., Sl, ...SL in figure 3.5 and using the

backpropagation algorithm to adjust the weights in the network. When such a generative-

discriminative DBN setup is modelled, it is also called the deep neural network (DNN).

Since DBN/DNN represent a static architecture with fixed dimensional input/output, it is

natural to extend the DBN/DNN framework with dynamic models that can better capture

the temporal and co-articulatory properties of variable length input/output of speech ut-

terances. The extended architecture of DNN-CRF (Mohamed, Yu, and Deng, 2010) and

DNN-HMM (Dahl et al., 2011; Mohamed, Dahl, and Hinton, 2009) have been successfully

used in large vocabulary ASR tasks.

3.4 Language and pronunciation modelling

Language Models

The language model (LM) is responsible for assigning probabilistic estimates for the oc-

curence of word sequence. It imposes syntactic and semantic constraint on the overall

recognition task. The LM is represented as a prior probability (equations 3.10) in the com-

putation of the posterior estimates. The probability estimate for a hypothesis consisting of

n independently occurring words as H = {w1, w2, w3, ....., wn} is given as:
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P (H) = P (w1, w2, w3, ....., wn) = Πn
m=1P (wm|wm−1, ....., w1) (3.26)

Due to intractable numbers of word sequence combinations, the above equation is usually

approximated by only considering the past (n− 1) tokens. This is the n-gram language

model that is approximated as P (H) ≈ ΠM
m=1P (wm|wm−1, ....., wm−n+1). In trivial cases,

a maximum likelihood estimate is used for the n-gram estimate, which counts the frequency

of a particular sequence as:

P (wm|wm−1, ....., wm−n+1) =
Count(wm−1, ....., wm−n+1, wm)∑
w Count(wm−1, ....., wm−n+1, w)

(3.27)

Due to data sparseness, the above equation can fail to assign any meaningful estimates

for missing n-gram sequences. Such issues are handled by applying discounting and backoff

techniques where the former shifts the probability mass from the non-zero count n-grams to

the zero/low count n-grams, and the later assigns a zero-count n-gram with a scaled factor

of its corresponding lower order n-gram counts (Jurafsky and Martin, 2000).

Some of the common discounting and backoff approaches include the Witten-Bell dis-

counting (Witten and Bell, 1991), Good-Turning discounting (Good, 1953), Katz backoff

smoothing (Katz, 1987) and smoothing via linear interpolation for different n-gram or-

ders (Jelinek and Mercer, 1980). Class based LM models are also commonly applied (Brown

et al., 1992; Shuanghu et al., 1998; Yamamoto, Isogai, and Sagisaka, 2001) for overcoming

the problem of data sparseness by introducing syntactic and semantic matching. For exam-

ple, P (Albert|Hi), P (Peter|Hi) ≈ P (< proper noun > |Hi) since proper name occurrences

can be rare even for a large corpus. LM’s are usually evaluated using its perplexity score 3

over a test corpus where a lower score indicates a better model (Jurafsky and Martin, 2000).

Pronunciation Models

The Pronunciation Model (PM) assists in the search for predicting the best hypothesis

by capturing alternate phonetic realisations for the words in the vocabulary. It can be an

important module in the design of dysarthric speech systems, where the phonetic realisation

of a word can vary considerably from that of a typical pronunciation. An example of this

variation is depicted in figure 3.6, which shows how the pronunciation of a dysarthric speaker

with high degree of severity deviates from a typical pronunciation pattern by addition,

3For a sequence of words of length N , Perplexity(w1, w2, ....., wN ) = 2Entropy(w1,w2,.....,wN )
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substitution or deletion of phones. Limited research has been conducted in the domain of

dysarthric PM (Seong, Park, and Kim, 2012a) and there is no model to predict the most

reliable phonetic target for dysarthric speakers of varying etiologies and severities. Although

this thesis will not use PM in building dysarthric speech systems, it will give informative

cues that further directs towards the potential for future research.

(a)

         f    oh           k        s    t    r               oh                 t  

(b)

 b       oh           g         d                  oh

Figure 3.6: The word foxtrot spoken by (a) typical and (b) dysarthric speaker with high

degree of severity. The dysarthric pronunciation [b oh g d oh] shows a greater degree of

variation from the typical pronunciation [f oh k s t r oh t].

The pronunciation models are largely categorised as Knowledge-base or Data-driven.

The knowledge-base models (Bartkova and Jouvet, 2006; Tjalve and Huckvale, 2005) use

phonological rules to generate pronunciation variants and the lexicon can be handcrafted for

specific ASR task. Data-driven models (Kessens, Cucchiarini, and Strik, 2003; Kim, Oh, and

Kim, 2007) attempts to derive pronunciation variations directly from the acoustic signals. It

uses phone level recognitions and smoothing techniques such as decision trees to get reliable

estimates (Humphries, Woodland, and Pearce, 1996; Humphries and Woodland, 1998; Strik

and Cucchiarini, 1999; Wester, 2003). The kind of model to use is generally dependent on

factors such as time, linguistic expertise, quality of training data and vocabulary. Although

knowledge-based models are refined through years of research and expert knowledge, it

might miss some unexpected variations that are more likely to be captured by data-driven

approaches. Data-driven models however come with additional problems of encoding noise

within the pronunciations (Fosler-Lussier, 2003). The posterior probability estimates for a

speech system can be easily expanded to include the pronunciation models. For a set of

model parameters φ, observation vector O and a pronunciation model Pw, equation 3.12

can be modified as:
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arg max
φ

P (φ|O,Pw) = arg max
φ

∑
Pw

P (O|φ, Pw)P (φ, Pw)

= arg max
φ

∑
Pw

P (O|φ, Pw) P (Pw|φ)︸ ︷︷ ︸
Pronunciation

Model

P (φ)
(3.28)

Researchers have explored various techniques to generate optimal pronunciation variants

and reduce lexical confusions. These include the use of Bayesian framework (Sakti, Markov,

and Nakamura, 2008; Sakti et al., 2010), discriminative techniques like MCE (Adde and

Svendsen, 2011; Adde et al., 2010), maximum likelihood estimation (Holter and Svendsen,

1999), HMM’s (Magimai-Doss and Bourlard, 2005; Saralar, Nock, and Khudanpur, 2000;

Seong-Jin, Yung-Hwan, and Gyung, 1997) and the use of Finite State Transducers (Fosler-

Lussier, Amdal, and Kuo, 2005; Hazen et al., 2005). In addition, pronunciation models have

also been useful for speaker verification tasks (Leung et al., 2005), phone-to-articulatory

mapping (Bowman and Livescu, 2010) and searching pronunciation alternatives at syllable

level (Ng and Hirose, 2012).

3.5 Adaptation and adaptive training

The training of ASR systems aim to generate acoustic models that can be speaker dependent

(SD), which is modelled to recognise only a particular speaker or speaker independent (SI),

which is a generic model to recognise a range of speakers including the ones who have not

engaged during the training process. SD systems on average produce a word error rate

(WER), which is two to three times lower than an SI system trained using same amount

data (Woodland, 2001). It is desirable for an ASR system to reduce the gap between

SI and SD models, however, due to highly variable and dynamic nature of speech, the

modelling of SI systems is a very challenging task. The speech variations can be either

a direct result of speakers age, gender, health, intonation, speaking rate, accent, etc. or

have an indirect impact through environmental conditions and effects of microphone and

transmission channel. Moreover, desirable SD systems are also difficult to build, due to

lack of sufficient training data available for individual speakers. This problem is further

exacerbated for dysarthric speech, where sufficient data is usually unavailable due to various

physical and social constraints.
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The aim of speaker adapted (SA) methods is to compensate for these shortcomings

by reducing the mismatch between a generic baseline SI acoustic model and a target test

speaker. Adaptation process can be carried out in the signal domain to reduce the speaker or

environmental induced variations and is referred to as feature-based adaptation. The other

technique called model-based adaptation transforms the acoustic models in the SI system into

a set of adapted models which has more SD-like characteristics using the adaptation data.

The process of speaker specific adaptation can be either supervised or unsupervised, based

on whether the adaptation transcripts are available or not. Further, the adaptation data

used to prepare SA systems can either be used all at once (static) or iteratively (dynamic)

over a period of time. The remainder of this section will present a brief overview of some

of the commonly used state-of-the-art adaptation techniques.

3.5.1 Feature based adaptation

Feature based adaptation, also known as feature normalisation, aims to reduce speaker or

environmental induced variations by directly adjusting the speech features in the acoustic

domain. The most common techniques used in ASR systems are given below.

Vocal Tract Length Normalisation (VTLN)

Robust generation of SI acoustic models require steps to compensate for the anatomical

differences between the vocal tract lengths of various speakers. For example, the females

have shorter vocal tract producing higher formant frequencies as compared to the longer

vocal tracts of males producing lower formant frequencies (Lin and Che, 1995). One of the

methods to overcome this was suggested by Lee and Rose (1996), in which linear frequency

warping was applied by modifying the filter-banks in the MFCC analysis as:

fw = αf (3.29)

where fw and f are the warped and original frequencies and α is the scaling factor. The

study conclusively suggested formant frequency compression for shorter vocal tracts and

expansion for longer vocal tracts. The speaker specific warping factor α for the frequency-

axis normalisation is determined empirically by applying a grid search over a range of

warp factors which maximised the likelihood of the warped observations and it reflects the
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approximate 25% range in the vocal tract length differences of humans. A value of α < 1.00

indicates frequency compression and α ≥ 1.00 indicates frequency expansion.

Other VTLN methods include selective non-warping schemes which directly attempts to

manipulate the upper frequency limits in the FFT spectrum before feature extraction (Lin

and Che, 1995), bilinear transforms (McDonough et al., 1998; Wang, Bing-xi, and Qi, 2004),

applying linear transformation in the cepstral space (Pitz et al., 2001), or using a linear

warping matrix (Claes et al., 1998) to determine the optimal warping factor.

Cepstral Mean and Variance Normalisation

For the MFCC generation process, the convolution of the signal in time-domain is additive

in the log-magnitude domain (figure 3.2). Hence, the effect of any convolved noise in the

signal due to channel distortion or microphone characteristics can be reduced by simply

subtracting it from the cepstral features. Such distortions are generally uniform over the

entire length of the speech utterance. Cepstral Mean Normalisation (CMN) or Cepstral

Mean Subtraction (Atal, 1974) is one of the technique used to remove such channel noise

from the signal without removing any useful speech information. It simply subtracts the

mean of the observation feature vectors from each frame in the observation so that the

transformed cepstral feature vectors have zero mean. It is applied as:

ôt[d] = ot[d]− 1

T

T∑
t=1

ot[d] (3.30)

where d is the dimension of the feature vector and T is the total number of frames in

the observation. Another form of CMN, called the Tied Mixture Normalization (TMN) was

implemented by Anastasakos et al. (1994) to reduce the microphone mismatch by mapping

vector quantised (VQ) codebook entries between the adaptation data collected over the

training and test microphones respectively and using the VQ maps to compute the altered

means and covariances of the Gaussian distributions.

Similarly, Cepstral Variance Normalisation (CVN) is applied in conjunction with CMN

to reduce the variance induce by the channel state. CVN transformation ensures that each

dimension of the observation vector has a variance of unity. It is estimated as:

54



3. ASR and its Applications in Dysarthric Speech

ôt[d] =
ot[d]√
σ2
d

σ2
d =

1

T

T∑
t=1

o2
t [d]

(3.31)

Both CMN and CVN are computationally inexpensive operations which are effective in

reducing the environmentally induced variations.

3.5.2 Maximum a Posteriori (MAP) adaptation

Maximum a posteriori (MAP) estimation was discussed in section 3.3.2.1 and it was defined

at the mode of the posterior distribution (equation 3.12). Thus, for a given adaptation data

A and its related transcription AT , MAP maximises the posterior probability of the model

parameters φ, as:

φMAP = arg max
φ

P (φ|A,AT ) = arg max
φ

P (A|φ,AT )P (φ|λ) (3.32)

where λ is the vector of hyperparameters for the prior distribution P (φ|λ). The inclusion

of the prior distribution in the training process aids towards robust model estimation in

the presence of limited data, which is often the case in speaker adaptation. It should be

noted that model estimation can be formulated in a convenient way if the prior and posterior

distributions are same, i.e., the prior forms a conjugate prior to the corresponding likelihood

function. In the MAP setup the likelihood function is usually represented by an HMM with

mixtures of Gaussians which has no well defined conjugate prior. An alternate approach

suggested that the choice of prior densities for the given HMM parameters was adequately

represented as the product of the Direchlet and normal-Wishart densities (Gauvain and

Lee, 1994). It was shown that SA models using MAP outperforms the SD models for small

amounts of available data (Gauvain and Lee, 1994). As the data increases it was shown

that the MAP adapted models converged to the maximum likelihood estimated SD models.

One of the disadvantages of MAP adaptation is that it only updates parameters that

are observed in the adaptation data, which makes the MAP estimates very slow and cum-

bersome, especially if large number of Gaussians are left unadapted. One of the technique,
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known as regression-based model prediction (Ahadi and Woodland, 1997) uses linear regres-

sion of the adapted parameters to update the poorly adapted or unobserved parameters.

Another approach known as Structural MAP was implemented by Shinoda and Chin-Hui

(1997) to increase the speed of standard MAP adaptation. It uses bias and scaling vectors

to update the means and variances of the Gaussian pdf’s, while arranging the Gaussians in

a hierarchical tree structure.

3.5.3 Linear transformation

This is an alternative approach that applies a linear transform to adapt the means and

variances of the Gaussian mixture components that represent the output distributions of

say an HMM system. The linear transformation allows Gaussian parameters to be adjusted

for the target speaker with minimal data. It also has the advantage of sharing the same

linear transform across multiple Gaussians or even all (global transform) the Gaussian.

Some commonly used linear adaptation approaches are discussed below.

3.5.3.1 Maximum Likelihood Linear Regression (MLLR)

MLLR (Leggetter and Woodland, 1995b) is the most successful linear transformation ap-

proach. The adaptation of the mth Gaussian component of dimension d is given by:

µ̂m = Amµm + b

=
[
Am b

]µm
1


= Ŵmξm

(3.33)

where µ̂m is the adapted mean, Ŵm is the d× (d+ 1) regression matrix which performs

the linear affine transform and ξm represents the extended mean vector. The affine trans-

form ensures that the point-space ratio and collinearity of the mean vector is preserved in

the affine space after the transformation. The transformation matrices Ŵm are calculated to

maximise the likelihood of the adaptation data using the expectation-maximisation frame-

work. If A is the adaptation data of length T , then it maximises the objective function

P (A|φ) by defining an auxiliary function of the form (Gales and Woodland, 1996; Leggetter

and Woodland, 1995b):
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Q(φ, φ̂) = K̂ − 1

2
P (A|φ)

M∑
m=1

T∑
t=1

γm(t)
[
Km + log(|Cm|) + (at − Ŵmξm)Cm

−1(at − Ŵmξm)′
]

(3.34)

where K̂ is the constant term that is independent of state sequences and time, Km is

the normalisation constant associated with mixture m, γm(t) is the occupation probability

for the component m at time t and A = (a1, a2, ...aT ) is the adaptation data. Equation 3.34

is expanded and differentiated to maximise the auxiliary function and get the general form

for Ŵm as:

T∑
t=1

γm(t)Cm
−1atξ

′
m =

T∑
t=1

γm(t)Cm
−1Ŵmξmξ

′
m (3.35)

The transformation Ŵm can be either applied to a single Gaussian component or it

can globally transform all the Gaussian components in the system. In practice though, a

single transformation is usually shared with multiple Gaussian components. This allows

for the generation of regression classes, which contains a cluster of associated or similar

Gaussian components updated by a particular regression matrix. This not only allows

precise adaptation of specific clusters of Gaussians, but also overcomes the problem of

adapting with less data by tying regression matrices across clustered mixture components.

If the covariance matrix in equation 3.35 is restricted to the diagonal, then the kth row

of the transform ŵk is given as (Leggetter and Woodland, 1995b):

ŵk = (Gk)
−1zk (3.36)

Gk =

T∑
t=1

∑
m∈

shared
compo
-nents

γm(t)

σ2
mk

ξmξ
′
m (3.37)

zk =
T∑
t=1

∑
m∈

shared
compo
-nents

γm(t)atk
σ2
mk

ξm (3.38)

In the above equations atk is the kth element of the observation vector at and σ2
mk is the

kth diagonal element of Cm.
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The construction of regression classes mentioned earlier is achieved by putting to-

gether mixture components that belong to similar phonetic classes (e.g. stops, fricatives

etc.) (Leggetter and Woodland, 1995b) or by using more robust hierarchical sorting tech-

nique, such as Regression Class Trees (Leggetter and Woodland, 1995a,b). In regression

trees, the mixture components are arranged in a top-down tree structure, with root node

containing all the mixture components in the ASR system and the individual leaf nodes cor-

respond to specific Gaussian mixtures. The mixtures at the leaf nodes are then clustered

together based on their likelihood similarity to generate intermediate higher level regression

classes, also known as base classes. Depending on the quality and quantity of adaptation

data available, any number of intermediate levels can be constructed to generate higher

level regression classes. The rationale is to apply similar transformation to the components

clustered in these higher level regression classes. If any regression class in the tree is inad-

equate for adaptation purpose, the tree allows a flexible structure of bubbling up to higher

levels, all the way to the root node, for optimal transform application.

Although, the most important speaker specific information is believed to be characterised

by the Gaussian means (Leggetter and Woodland, 1995b; Woodland, 2001), the linear

Gaussian variance transform can also be applied. The transforms can be applied to the

matrix in full, diagonal or block-diagonal modes, depending on the adaptation data (Gales,

Pye, and Woodland, 1996; Gales and Woodland, 1996). The transform for adapting the

covariance matrix of the kth Gaussian component is given by

Σ̂k = LTk ĤkLk (3.39)

where Ĥk is the linear transform to be estimated and Lk is the inverse of the Cholesky

factor of Σk
−1, such that Σk

−1 = CkC
T
k and Lk = C−1

k . Cholesky decomposition involves

high computational complexity of the order O(n3) (Hammerlin and Hoffmann, 1991). An

alternative method is proposed by Gales (1998b) that modifies the mean and observation

vector for the transformation in the following form.

Σ̂k = HkΣkH
T
k (3.40)

For the diagonal covariance case, this simple mean and observation vector modification

reduces to matrix-vector multiplication and an addition operation.

58



3. ASR and its Applications in Dysarthric Speech

3.5.3.2 Constrained MLLR (CMLLR)

In the previous section, the linear transforms were applied independently on the means and

variances. However, in a constrained case the same transform is applied to both means and

variances. It is depicted as

µ̂p = Acµp + bc (3.41)

Σ̂p = AcΣpA
cT (3.42)

where Ac is the constrained linear transform and bc is the bias for the mean vector. The

constrained MLLR was first introduced for the diagonal covariances (Digalakis, Rtischev,

and Neumeyer, 1995) and was later extended to full covariance (Gales, 1998b). The con-

strained MLLR leads to a simplification which is primarily equivalent to transforming the

observation vector as

ôt = Ac−1ot +Ac−1otb
c (3.43)

•

Both variants of MLLR described above give reliable estimates for the adaptation, however

if sufficient statistic is not available the MLLR transformations can be even poorer than

the SI models (Woodland, 2001). In order to overcome this problem extended combined

approaches has been timely suggested to increase the practical viability of MLLR. A MAP-

like weighting scheme was suggested (Goronzy and Kompe, 1999) for rapid, unsupervised

MLLR speaker adaptation which transforms the means as weighted linear combinations of

the MLLR predicted means. The weighted scheme was applied both in static and dynamic

modes. Another approach known commonly as MAP-Linear Regression (MAPLR) (Chesta,

Siohan, and Lee, 1999) uses the prior distribution of the mean transformation matrix, which

acts like a constraint to avoid getting poor estimates in the underlying structure of the

acoustic space.

3.5.4 Adaptive training

SI modelling is intrinsically difficult due to inter and intra speaker variabilities which are

accentuated by the presence of varied acoustic environments in which the data was collected.
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The speaker variations is largely attributed to the differences in the vocal tract, accents,

dialects etc. In case of dysarthric speech the problem is further aggravated due to the

underlying neurological impairment causing atrophy of the musculoskeletal structure.

As detailed in section 3.5.1 some feature normalisation techniques like VTLN, CMN,

CVN are used to reduce the speaker and channel induced variations to some extent, but it

often fails to completely remove the underlying effects. Moreover, it also lacks the modelling

framework to deal with a wide variety of speaker variations. Adaptive Training (Anastasakos

et al., 1996) provides such a framework in which it attempts to model the speaker and non-

speech variations separately.

3.5.4.1 Speaker Adaptive Training (SAT)

One of the most commonly used adaptive training method is the Speaker Adaptive Train-

ing (SAT) (Anastasakos, McDonough, and Makhoul, 1997; Anastasakos et al., 1996). It

provides a common framework to explicitly model the speaker induced variations and pa-

rameter estimation of the canonical HMM models in a single unified training regime. The

speaker specific characteristics are modelled using a linear transformation of the Gaussian

means (Leggetter and Woodland, 1995b) and the canonical HMM models are updated from

these speaker specific transforms. The integrated training phase is iteratively estimated us-

ing the EM algorithm (Baum et al., 1970; Dempster, Laird, and Rubin, 1977), which jointly

estimates the parameters of the canonical HMM and the speaker specific transforms. SAT

provides a natural framework for implicitly annihilating the inter-speaker variations in a

corpus. This might be beneficial for testing the efficacy of dysarthric speech systems, where

such variabilities are more prominent.

An overview of the SAT framework is shown in figure 3.7. The speaker induced variations

are modelled by using linear regression transformations that generates a set of speaker

specific transforms as W = {W (1),W (2), .....,W (S)} for the S speakers in the system. The

regression matrix for the transformation can either be limited to a single transform for

a speaker or it can have multiple transforms through regression classes. Finally, given

the current set of transforms W, an auxiliary function can be defined for estimating the

canonical model parameters as:

Q(φ, φSAT ) =
∑
Θ

P (O,Θ|W, φ) logP (O,Θ|W, φSAT ) (3.44)
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Figure 3.7: An overview of the SAT framework.

where O = (O(1), O(2), ....., O(S)), is the set of transcribed speech data from each speaker

in the system and Θ is the set of all possible state sequences. The auxiliary function is

expanded to maximise the likelihood of the data from all the speakers in the system in

an iterative fashion. The details of the estimation process are given in Anastasakos et al.

(1996) and Leggetter and Woodland (1995b).

SAT can be applied using the MLLR and CMLLR transforms. SAT based on MLLR

transforms generates robust canonical model estimates, but it comes with computational

and memory overheads (Spyros et al., 1997), making it less practical for implementation.

This can be avoided by applying constrained MLLR (CMLLR) (Digalakis, Rtischev, and

Neumeyer, 1995; Gales, 1998b) that applies a common transform for both means and vari-

ances. SAT with CMLLR results in a kind of feature normalisation during model training

and has the same computational overhead as any other standard HMM update.

3.5.4.2 Cluster adaptive training and eigenvoices

Other important adaptive approaches are the Cluster Adaptive Training (CAT) (Gales,

1998a, 2000) and Eigenvoices Method (Kuhn et al., 1998). Both the approaches aim to
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estimate speaker specific parameters as a weighted combination of different speaker clusters

that form the canonical model sets. The Gaussian variances, weights and the transition

matrices are assumed similar across all the clusters and only the Gaussian mean compo-

nents are adapted. Unlike SAT, where only a single set of canonical model is used, CAT

and eigenvoices use multiple canonical models derived from each cluster. It should be noted

that the eigenvoices method finds the canonical models or clusters (eigenvoices) by apply-

ing Principal Component Analysis (PCA) (Jolliffe, 2002) on a set of supervectors that is

constructed from all mean values in a set of speaker-dependent HMM systems (Kuhn et al.,

1998, 2000). These principal components are representative of important variations between

the training speakers.

To symbolically define the parameter update process, let us consider C distinct clusters.

Then in context of the CAT approach we can define:

Υm =
[
µ(1)
m , µ(2)

m , ..., µ(C)
m

]
λ(s) =

[
λ

(1)
(s), λ

(2)
(s), ..., λ

(C)
(s)

]T
(3.45)

where µ
(c)
m is the mean associated with the component m of the cluster c and λ

(c)
(s) is

the interpolation weight associated with speaker s for the cluster c. The adapted mean for

speaker s is then given by

µ(s)
m = Υmλ(s) (3.46)

The CAT approach is generally described as ”model-based”, where there is a separate

mean for each component of every distinct cluster or ”transform-based” that represents

clusters as cluster-specific MLLR transforms of a common set of canonical model means.

Also, extensions of eigenvoice based methods have been suggested, which include MLLR

transformations (EMLLR) to form supervector for eigenvoice based adaptation (Chen et al.,

2000), Segmental Eigenvoice Method (SEV) (Tsao, Lee, and Lee, 2005), and a hybrid ap-

proach between eigenvoices and SEV called Hierarchical Eigenvoice Method (HEV) (Onishi

and Iso, 2003) that works through Gaussian component clustering to control the complexity

of the adaptation process.

3.5.5 Discriminative adaptation

The first category of discriminative adaptation techniques is know as the Discriminative

Linear Transform (DLT). It is similar to the MLLR, but instead of optimising a likelihood
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function, it aims to optimise one of the discriminative criteria like MCE (He and Chou,

2003), MMI (Gunawardana and Byrne, 2001) or MPE (Wang and Woodland, 2004). DLT

has proven to be effective under sparse data conditions and has been formulated for both

supervised and unsupervised adaptations. In addition, hybrid DLT approaches have also

been presented (Uebel and Woodland, 2001) that uses a linear interpolation of the maximum

likelihood criteria and the MMI objective function for linear transform estimation.

It should be noted that all the above discriminative adaptation methods showed supe-

rior performance over the standard MLLR techniques under supervised adaptation modes.

Unsupervised adaptation is usually modelled more effectively using the ML estimation pro-

cedure. It is because discriminative optimisation criteria are more sensitive to errors in the

hypothesis, as they are based on phone or word errors (Yu, Gales, and Woodland, 2008). In

order to overcome this issue a Discriminative Mapping Transform (DMT) (Yu, Gales, and

Woodland, 2008) method was proposed. It obtains a discriminative speaker-independent

mapping transform from a speaker-specific ML transform, which ensures that the sensitivity

to the underlying hypothesis will be reduced. The basic idea behind DMT is to define a

speaker-independent criteria mapping function to obtain an indirect estimate of the final

speaker-specific discriminative transform. The details of estimation procedure are given

in Yu, Gales, and Woodland (2009).

The above discriminative adaptation approaches have been further extended to accom-

modate the adaptive training schemes. For example, discriminative-SAT estimates ML

based speaker transforms and updates the canonical models in a discriminative fashion

using criteria like MPE (Wang and Woodland, 2003) and MMI (Mcdonough, Schaaf, and

Waibel, 2002; Tsakalidis, Doumpiotis, and Byrne, 2003). A similar approach has also

been extended to the case of canonical models derived from multiple clusters known as

discriminative-CAT (Yu and Gales, 2006).

•

3.6 Automatic recognition of dysarthric speech

The use of ASR to control assistive technology has been discussed for more than 30 years (Co-

hen and Graupe, 1980; Noyes, Haigh, and Starr, 1989). Speech is a potentially attractive
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input medium for people with physical impairments who find keyboard, mice and touch-

screens difficult to use. However for a significant minority of people with physical impair-

ments, especially with motor speech disorders resulting in dysarthria, speech recognition

technology has been able to enhance human-human & human-computer interaction and

provides an effective medium for controlling environmental systems (Noyes and Frankish,

1992). For example, the integration of ASR with assistive technology can enable speakers

with dysarthria to control standard devices at home through speech commands (Hawley et

al., 2007) or engage in communication via voice-input-voice-output communicators (Hawley

et al., 2012). Such use of speech driven assistive devices could enable users to participate

in social situations where they can interact with non-familiar communication partners.

Speech as an interface can also be quicker for people with dysarthria than other in-

puts. For example, it was found in a study that a 100 word delivery task takes around

44 minutes to be conveyed using a combination of ASR and switch scanning, in compari-

son to 100 minutes taken by switch-scanning alone (Hawley, 2002). Another study showed

that when ASR was integrated in an environmental control system, it resulted in a mean

task completion time of 7.7 seconds for ASR only versus 16.9 seconds for switch-scanning

alone (Hawley et al., 2007). Although the studies showed the fact that ASR accuracy was

generally lower than switch-scanning, but the final message transfer was much faster even

with mis-recognitions followed by corrections.

Instead of giving an exhaustive summary, the remainder of this section will review some

key findings on the current state of ASR for speakers with dysarthria under some broad

application domains. A good historical overview of speech recognition of mild, moderate

and severely dysarthric speech is detailed in Patel (2000).

3.6.1 Commercial speech recognition

Commercial speech recognition systems are intended for typical speakers and may suc-

cessfully be applied to large vocabulary with continuous speech. Commercial applications

sometimes require an enrolment phase, where a user adapts with some pre-defined text that

enables the system to become more representative of that particular speaker. The usage of

such commercial systems has been applied within the research domain for dysarthric speech

with some moderate levels of success.

One of the earliest reports of such systems was reported by Roberts (1985), where

the IBM and Dragon Naturally Speaking v5 commercial packages were evaluated by 11
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speakers with dysarthria. Only 6 speakers with mild and mild-moderate dysarthria were

able to use the system with an accuracy ranging from 30%-80%. The remaining 5 speakers

with moderate to severe dysarthria failed to complete the enrolment phase. Another study

conducted on 10 speakers with cerebral palsy using the Shadow VET/2 system (Coleman

and Meyers, 1991) also reported lower recognition performance for speakers with dysarthria.

The use of commercial packages was also employed to understand the effect of a speech

training program on the user performance. A study by Kotler and Stonell (1997) with a

single user who had cerebral palsy and mild dysarthria using the IBM VoiceType version

1.0 system had a 57% reduction in errors after an effective speech training programme was

implemented. The speech training consisted of practice sessions for the speaker to improve

upon initial consonant production (e.g. fair vs air) and the final consonant production (e.g.

steak vs state). In a similar study on 3 speakers with CP and 3 speakers with TBI using the

same IBM system, Stonell et al. (1998) reported an absolute mean increase of recognition

score from 27% to 80% after five training sessions. The training sessions were also found

to be effective for mild/moderate dysarthric users using other commercial systems like the

DragonDictate (Ferrier et al., 1992). The studies showed that the acquisition learning curves

for both typical and dysarthric speakers had similar slopes despite low recognition accuracy

for the speakers with dysarthria. A common consensus from these studies is that the ASR

system performance was directly associated with the underlying severity of dysarthria.

As commercial speech systems improved, researchers have continued to investigate the

utility of them for people with dysarthria. A comparative study of three ASR systems (Mi-

crosoft Dictation, Dragon Naturally Speaking (3.0) and Voicepad Platinum) was reported

for a speaker with mild dysarthria. The Dragon system was around 13% more accurate

when averaged across five sessions of read and spontaneous speech (Hux et al., 2000). De-

spite this, the accuracy reported using the Dragon system for the speaker with dysarthria

was around 26% less than the control speaker.

Another study conducted on four speakers with dysarthria of varying severity compared

a speaker-adaptive and a speaker-dependent system (Raghavendra, Rosengren, and Hunni-

cutt, 2001). The former was a phoneme based Prototype Swedish Dragon Dictate (PSDD)

system that was adapted from the English variant of Dragon Dictate (Bamberg, 1990) and

the later was the Infovox RA unit (Elenius and Blomberg, 1986). The PSDD was better

at adapting and recognising the mild/moderate dysarthric speech. Despite the baseline

accuracy for the most severely affected speaker being less than 30% in both the systems,
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the PSDD was able to adapt better than the speaker-dependent Infovox system after only

three sessions that increased the accuracy to 75% for the most severe user.

The commercial systems seem to perform reasonably for speakers with mild to moderate

dysarthria, but the performance of the these systems tend to degrade substantially with

increasing severity, possibly due to high degree of variabilities. Also, the results reported

using the commercial systems are mostly conducted in control conditions, and its usage

in more practical setups is unknown. Another difficulty in using such systems might be

the inadequacy of the user to successfully complete the enrolment sessions due to physical

constraints. Although these commercial systems are constantly evolving with the most up-

to-date ASR technology, it still lacks the sophistication to cater to the variabilities manifest

in dysarthric speech, especially with increasing severity.

3.6.2 Modelling approaches

Dysarthric speech recognition has also been pursued as a research problem for more than

three decades. Instead of using commercial speech software, researchers have attempted to

improve the modelling techniques to overcome the problems associated with variabilities

in dysarthric speech. One of the earliest known attempts used the traditional template-

matching approach for the isolated word task on two speakers with spinal cord injury, who

acquired dysarthria as a secondary symptom (Fried-Oken, 1985). They got an average

accuracy of 80% for the two speakers in controlling a computer-based educational software

package for rehabilitation.

Template based approaches were soon replaced by more robust statistical methods. In

an isolated word recognition study by Deller, Hsu, and Ferrier (1991), discrete HMM’s were

used to explore the effects of phonemic transitions in dysarthric speech. A transition clipping

scheme was implemented in an ergodic HMM topology to remove the inconsistent transitions

in the linear prediction feature space. When the setup was tested for 3 speakers with CP

with intelligibility ranging from 22%-65%, an absolute accuracy of 88% was reported. This

was found to be significantly better than other HMM topologies (ergodic (72%), bakis

(50%)) with no transition clipping. Discrete HMM’s have also been utilised to evaluate

the effect of multiple training sessions on the recognition performance (Chen and Kostov,

1997).

Discrete HMM’s were replaced by continuous density HMM approaches in nearly all
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of the more recent studies of dysarthric ASR. Rudzicz (2007) used a CDHMM mod-

elling framework for adaptation of speakers with mild and moderate dysarthria. They

showed a relative error reduction of 23.1%-4.9% on the Nemours database of dysarthric

speech (Menendez-Pidal et al., 1996). The finding were similar to those reported by Raghaven-

dra, Rosengren, and Hunnicutt (2001) that also showed the efficacy of adaptive approaches

for speakers with mild to moderate dysarthria. They also showed that speakers with se-

vere dysarthria were better recognised using SD modelling. SD systems can however prove

as a viable option for mild dysarthric users in high perplexity tasks with increased lexicon

size (Sanders et al., 2005). Another finding reported in several studies showed some benefits

in using complex HMM topologies like ergodic over standard left-to-right models (Deller,

Hsu, and Ferrier, 1991; Polur and Miller, 2005a,b) for handling dysarthric variabilities.

Discriminative modelling has also been used as an alternative to the standard HMM

technique. One of the earliest study was reported by Jayaram and Abdelhamied (1995)

that used Artificial Neural networks (ANN) for isolated word recognition. They tested

the neural network on a single participant with CP. The network was trained using FFT

and formant features as two separate input vectors and the results were compared against

the perceptual scores of five expert listeners and a commercial Intervoice speech system.

FFT feature vectors were reported to give the best recognition score of 76.3%, and was

significantly better than formant features (42.5%), listener test (42.4%) and the commercial

system (37.5%). Other discriminative approaches for isolated word recognition include the

use of Support Vector Machines (SVM), which performed better (Wan and Carmichael,

2005) or comparable (Hasegawa-Johnson et al., 2006) to the standard DTW and HMM

based recognition.

In a more comprehensive study, a comparative report of the ANN and SVM techniques

was reported (Rudzicz, 2009). It tested four separate discriminative classifiers using both

acoustic and articulatory features (manner and place of articulation, tongue height, voicing

etc.) on the Nemours database. The discriminative classifiers were based on feed-forward

and recurrent Elman neural networks, and the two SVM variants were based on the radial

basis and the polynomial-DTW sequence kernels (Wan and Carmichael, 2005). In general,

SVM methods were reported to outperform the neural network based methods in classifying

the articulatory features from MFCC acoustic vectors on an average between 4.9% to 9.3%

with a relative error reduction of 19.8% across all the speakers. On the phone-classification

task, SVM reduced the frame-level error relatively by 6.9% to 8.8% when only MFCC’s
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were used, and between 1.5% to 10.9% when MFCC’s were augmented with articulatory

features.

In addition to the individual generative and discriminative methods, hybrid approaches

have been used for dysarthric ASR. An isolated word recognition task that uses the HMM-

ANN system, implemented a multi-layered feed-forward neural network linked to an ergodic

HMM framework. The hybrid approach gave a relative 5% improvement over the standard

HMM system for three speakers with CP (Polur and Miller, 2006). Another hybrid system

proposed by Selouani et al. (2012) suggested the usage of a new activation function based on

class posterior distributions for the hierarchical multi-layer perceptron network. This con-

nectionist approach was used to classify severity of the dysarthria prior to any recognition.

The paper also suggested the usage of rhythm metric in addition to the standard MFCC’s4.

For the assessment of severity, the hybrid system was more than 3% better than the baseline

GMM system, and the inclusion of rhythm features further boosted the performance from

3% to 6% absolute. The speech recognition task was conducted on three speakers of vary-

ing severity from the Neumors database using either (i) speaker-specific SD-system or (ii)

severity-specific SD-system prepared from clusters of speakers under same severity levels.

The former system gave an average accuracy of 64.5% and the later system gave an accuracy

of 60% after the prior classification of severity was performed using the proposed connec-

tionist approach. Although the proposed hybrid system gave lower recognition accuracy,

it had the advantage of sharing data across speakers to build the models. More recently,

specialised forms of HMM, based on Kullback-Leibler divergence (KL-HMM) (Rasipuram

and Magimai.-Doss, 2013) have been successfully implemented within a DNN-HMM frame-

work for dysarthric ASR. In one such study the KL-HMM framework was evaluated for 30

native Korean speakers with mild and moderate dysarthria (Kim et al., 2017). In order

to minimise the effect of imprecise articulation in dysarthric speech, KL-HMM provides

a natural framework where the HMM emission probabilities were modelled as categorical

distributions using phoneme posteriors from a DNN system. The speaker-specific phonetic

variations were further adapted using a combination of L2 and lexical confusion-reducing

regularisation methods. The proposed methods in the study concluded with significant

gains over the conventional GMM-HMM and DNN-HMM setups.

4Rhythm metric components include features such as vocalic and consonantal durations, voiced and un-
voiced regions etc. For details of all the rhythm measures used in the study please refer to the paper (Selouani
et al., 2012).
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Researchers have also attempted to improve the dysarthric ASR performance by employ-

ing methods targeted to maximise the usage of available data. One such novel approach was

presented in a study by Ons, Gemmeke, and Van hamme (2014) that learnt the recurrent

acoustic patterns in spoken command and control type of sentences by using binary semantic

frame descriptors. The method was based on the decomposition of the non-negative matrix

factorisation (NMF) technique and it showed high accuracy gains even after training was

performed using a single utterance. When the study was evaluated against a word based

speaker dependent HMM-GMM system (Gemmeke et al., 2014), it showed absolute gains

in the range of 5-40% for the isolated word recognition task when relatively less data was

used. The ASR performance for both the systems was however comparable as the amount

of training data increased and the HMM-GMM systems were better for handling complex

grammar network even with lesser training data than the NMF approach. Recently DNN

based modelling approaches have also gained prominence over the classical HMM-GMM

framework in mainstream ASR for typical speech. These approaches are extended to the

dysarthric domain also and it is believed that the optimisation of the complex network struc-

ture might be able to handle the dysarthric variabilities and sparseness problems (Yilmaz

et al., 2016, 2017) more robustly.

More recently, DNN framework has been applied to some of the common open databases

of dysarthric speech. In one such study (Espaa-Bonet and Fonollosa, 2016) the hybrid DNN-

HMM models outperformed the HMM-GMM systems on the TORGO database (Rudzicz,

Namasivayam, and Wolff, 2012) of dysarthric speech. The authors employed a wide variety

of feature and model parametrisations for the experiments. For example, the generation

of MFCC’s was refined by applying Maximum Likelihood Linear Transform (MLLT) for

a unique transformation of each speaker, and speaker-specific feature space normalisation

was derived by using feature-space MLLR (fMLLR) (Gales, 1998b). The standard mono-

phone/triphone GMM-HMM systems were further tested using subspace GMM (Povey et

al., 2011) that makes it possible to optimally train under sparse data conditions. The DNN

networks were prepared using cross-entropy measures and discriminative minimum Bayes

risk was applied at state-level. In addition time delayed and Long-term Short-Term memory

networks were also tested. In summary, the DNN-HMM systems improved the word error

rate (WER) by 3% for control and 13% for dysarthric speakers relative to the best classical

GMM-HMM architecture. The study was further extended by other researchers to improve

the baseline accuracy on the TORGO database (Joy and Umesh, 2018). They suggested
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further refinement and optimisation to improve the relative WER by 17.6% compared to the

earlier study by Espaa-Bonet and Fonollosa (2016). In addition to refining basic parameters

like frame rate, number of context-dependent states, the authors also suggested the usage

of dropout and sequential discriminative strategies and generalised distillation framework.

The performance of DNN have also been reported on the UASPEECH database. In a

study by Bhat, Vachhani, and Kopparapu (2016b) DNN-HMM performed slightly better

(2% absolute) than the GMM-HMM systems on task specific recognition of a smaller vo-

cabulary of digits and computer commands in the UASPEECH corpus. In another recent

study on hybrid paradigms, representational learning framework has been explored that

proposes an HMM-SVM modelling schema for classification (Chandrakala and Rajeswari,

2017). It builds generative sub-models for each phonetic class, which are termed as example

specific HMMs (ESHMM). The log-probability of an utterance being generated by each of

the ESHMM gives a score vector that is fed as an input to the SVM discriminative classi-

fier. The authors reported that the proposed method outperformed the conventional HMM

and DNN-HMM systems by approximately 66% and 21% respectively for small vocabulary

(digits and computer commands from UASPEECH) ASR tasks with a 3/4 − 1/4 split for

the training and test data. Although, it is worth highlighting that some of the earlier stud-

ies (Christensen et al., 2012; Sehgal and Cunningham, 2015) that used a 2/3− 1/3 split for

the training and test data had reported better results using conventional HMM systems on

a bigger UASPEECH test vocabulary of 255 words instead of 19.

3.6.3 Acoustic features and enhancement

Acoustic features and their properties have been exploited for increasing recognition per-

formance and perceptual intelligibility of speakers with dysarthria. In a study by Polur

and Miller (2005b), three different representations of speech signals, viz. FFT, LP and

MFCC coefficients were compared for three speakers with CP that used an ergodic HMM

topology for an isolated word recognition task. MFCC coefficients gave the best recognition

output at 92%, which was around 3%-12% higher for the models trained with LP and FFT

coefficients. The effect of window size for generating speech frames has also been inves-

tigated for speakers with dysarthria, where it was found that a window greater than 25

ms worked on an average 8%-10% better than the smaller windows (Selouani et al., 2012;

Yakcoub, Selouani, and O’Shaughnessy, 2008). In another acoustic study, the effective limit

in the high frequency spectral regions were investigated. It was reported that no significant
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information was available for dysarthric speech above 5.5 kHz (Polur and Miller, 2005a).

Some studies have focussed on the modification to the dynamics of the incoming speech

signal with a view of making the disordered speech signal more intelligible and more

amenable for ASR. For example, a study by Rudzicz (2013) applied signal transforma-

tion routines to dysarthric speech and were able to increase the perceptual intelligibility by

around 20% and ASR scores by 15% absolute on the TORGO database (Rudzicz, Namasi-

vayam, and Wolff, 2012). The signal transformation included: (i) devoicing of improperly

voiced regions by using a high-pass filter, (ii) correcting pronunciations by the insertion of

deleted sounds and deletion of repeated sounds using Levenshtein metric between the ac-

tual and expected phone sequence, (iii) tempo contractions for spuriously longer phoneme

sequences identified as sonorants and (iv) adjusting the formant trajectories by using an

anchor based frequency morphing of the spectrum. It was also found in the study that the

intelligibility ratings were largely influenced by the apparently inappropriate insertion and

deletion of phonemes and intelligibility improved after the corrections were applied. This

highlighted the importance of lexically correct phoneme sequences from human comprehen-

sion viewpoint. Another study that aimed to increase the intelligibility and recognition of

dysarthric speech was conducted by Tolba and El Torgoman (2009). The first two formants

of speech from 11 Arabic speakers with dysarthria were transformed to approximate values

more closely associated with typical speakers. The average intelligibility assessed by 12

naive listeners was increased from 7% on the original speech to 84% on the formant modi-

fied. The re-synthesis further increased the quality of dysarthric speech and improved the

recognition scores from 28.5% to 71.4% for a group of seven words extracted from short

Arabic sentences.

In more recent studies researchers have attempted to adjust particular dysarthric id-

iosyncrasies for signal and feature enhancement. For example, severity based tempo adap-

tion of the sonorants in dysarthric speech (Bhat, Vachhani, and Kopparapu, 2016a), and

generating multi-tapered MFCC’s that are appended with important pathological voice pa-

rameters (jitter, shimmer, F0 etc.) (Bhat, Vachhani, and Kopparapu, 2016b) have been used

for the evaluation of dysarthric ASR systems. Both the studies reported improvements to

the GMM-HMM and DNN-HMM based speech systems on small vocabulary tasks of dig-

its and commands from the UASPEECH database. In addition, the enhancement of the

MFCC’s using belief networks like deep autoencoders have proved effective to model speech

with mild to severe dysarthria for very small vocabulary tasks (Vachhani et al., 2017).
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3.6.4 Adaptation of dysarthric speech

The fundamental approach of any adaptation process is very appealing when modelling a

process with sparse data. This is especially the case for speakers with dysarthria who are

unable to record large amounts of data due to physical constraints, fatigue and muscular

atrophy. Although, little work has been done in the field of dysarthric speech adaptation,

some novel attempts have paved the path for further research and investigation.

Some of the earlier research seems to have reached a common consensus that adaptation

techniques were more suited to model mild/moderate dysarthric speech and speakers with

severe dysarthria were better represented using SD models (Raghavendra, Rosengren, and

Hunnicutt, 2001; Rudzicz, 2007). However, more recent studies reported contrary results,

which suggests severity as not a good indicator for an optimal selection of modelling ap-

proaches. This was established in a study by Sharma and Hasegawa-Johnson (2010), where

they tested a SA system based on MAP, SD left-right HMM system and an ergodic HMM

model that was prepared using linear interpolation of transition probabilities between fully

ergodic and left-right topologies. In this study the SI HMM systems for MAP adaptation

were prepared from typical speech in the TIMIT database (Garofolo et al., 1993) and seven

speakers with spastic dysarthria were taken from the UASPEECH database (Kim et al.,

2008). The results showed that the SA systems with or without transition matrix interpo-

lation were better than SD systems for 5 out of 7 tested speakers. The other two speakers

who benefitted from SD models had an average absolute gain of around 1.6% over the best

SA systems. A relative accuracy gain of around 25.1% and 71.2% was reported for the two

least and two most-severe speakers. MAP adaptation has been investigated further with

all 15 speakers with dysarthria from UASPEECH and it was found that for most of the

speakers MAP based adaptation outperformed SD systems (Christensen et al., 2012). Their

reported results were on average 34.5% relatively better than the earlier published result

on a similar kind of study (Sharma and Hasegawa-Johnson, 2010).

More recently, MAP adaptation has been explored in a completely novel framework,

developed especially for dysarthric speech, known as Background Interpolation MAP (BI-

MAP) (Sharma and Hasegawa-Johnson, 2013). The idea behind BI-MAP is to obtain an

intermediate prior acoustic model which will narrow the gap between two disparate SI

systems, viz. one trained on dysarthric speech and the other trained on typical speech.

This intermediate model then provides as an optimal starting point for a base model on

which adaptation techniques like MAP can be applied. This interpolation is described as:
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ΦBIM︸ ︷︷ ︸
Background

Interpolated Model

= ∆

Unimpaired
SI Model︷ ︸︸ ︷
ΦNSI +(I −∆) ΦDSI︸ ︷︷ ︸

Dysarthric
SI Model

(3.47)

where ∆ = diag(δi)i is a P × P diagonal matrix such that 0 ≤ δi ≤ 1 ∀i, P is the

dimensionality of the acoustic model parameter space and I is a P -dimensional identity

matrix. The ΦNSI models were prepared from the TIMIT corpus and the ΦDSI models were

prepared from UASPEECH. Once the ΦBIM is determined, a MAP adaptation is applied

to it as a second stage process. It was found that the interpolation technique improved the

recognition accuracy of the BI-MAP system by an absolute of 8% (40% relative) over the

standard SI (typical speech data) adapted MAP system for all the dysarthric speakers in

the UASPEECH database.

The application of adaptation techniques was further explored by Mengistu and Rudzicz

(2011), who in addition to constructing a robust baseline system also presented a compar-

ison between the MLLR and MAP adaptation methods. The baseline system used both

dysarthric and typical speech for the SI models, which gave an absolute gain of around

13% and 18.5% in comparison to typical-only and dysarthric-only SI models. It was one

of the first studies conducted on a relatively large vocabulary task of around 1500 words

of the TORGO database. The MLLR transformed both means and variances and gave an

absolute 16.24% WER reduction. A pass of MAP adaptation on the MLLR transformed

models further reduced the absolute WER by 3.9%. In addition to acoustic adaptation,

the study also investigated the effects of a speaker-dependent lexical adaptation by adding

alternate word pronunciations to the dictionary. The speaker specific pronunciation lexicon

boosted the recognition accuracy in both SD and SA systems. It was also reported that

when acoustic and lexical adaptation was used together, they managed to get an overall

22.87% absolute (42.11% relative) WER reduction.

3.6.5 Other approaches

The acoustics of dysarthric speech are highly variable and often lacks the presence of robust

cues for a particular phonetic token. In lieu of this, attempts have been made to harness

alternative source of knowledge in the speech production process. One such additional

source of information is present in the estimates of articulatory parameters, which might

compensate for any partial or missing acoustic data or provide additional information that
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can be utilised for building robust dysarthric speech systems. The feasibility of articulatory

knowledge for dysarthric speech was demonstrated by Rudzicz (2010), where the author

managed to reduce the ambiguities in the acoustics of dysarthric speech by reducing the

average relative differential entropy by 18.3% for three speakers with cerebral palsy. The

paper suggested that dysarthric speech should not be considered as a deviation from typical

speech, but rather a noisy channel distortion of an abstract representation of articulatory

goals. An elaborate practical demonstration for the usage of articulatory knowledge for

improving dysarthric speech recognition was given in a study by Rudzicz (2011), where

five different modelling techniques, viz. HMM, DBN, Latent-Dynamic Conditional Ran-

dom Fields (LDCRF), ANN and SVM were explored. The methods were used to classify

articulatory features (AF) from the given acoustic signals and for phone level classification

using ”acoustic/articulatory only” and ”acoustic/articulatory augmented” feature vectors.

LDCRF gave the best average AF classification output which had an approximate mean of

around 64% across seven separate dimensions of articulatory features5. When the LDCRF

predicted articulatory features were augmented to the acoustic MFCC feature vector, it

reduced the relative error between 0.5% and 7.1%, when compared to acoustic-only pre-

dictions. LDCRF and SVM techniques were the most successful for phone classification

accuracy and the study showed advantages of using articulatory features in addition to

acoustics only.

This work was extended by integrating it within a framework of a dynamical system,

known as task-dynamics, which represents a combined model of skilled articulator motion

and the planning of abstract vocal tract configurations. Task-dynamics tends to encap-

sulate the dynamic patterns of speech as overlapping gestures, which are treated as high

level abstractions of reconfigurations of the vocal tract. Each gesture is represented as

tract variables, such as lip aperture, tongue tip constriction etc. that are modelled using

non-homogeneous second-order differential equations (Rudzicz, 2012). In this work, the

acoustic-to-articulatory inversion was based on the theory of task-dynamics and used the

MOCHA (Wrench, 1999) and TORGO (Rudzicz, Namasivayam, and Wolff, 2012) corpora.

It used the kernel canonical correlation analysis (KCCA) and mixture density network

(MDN) to estimate the task-dynamic features of the vocal tract from the given acoustics.

Once the acoustic-articulatory inversion was established, it was integrated within an ASR

5The seven articulatory features used in the study included manner and place of articulation, high/low &
front/back positions of the tongue, voicing, lip-rounding and static/dynamic nature of the articulators (Rudz-
icz, 2011)
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framework, which estimated the best output hypothesis as a weighted combination of the

acoustic likelihoods and the corresponding articulatory realisations in task-dynamics. Both

KCCA and MDN gave an average WER of 34.1% for the dysarthric data.

The articulatory data in Rudzicz (2011, 2012) was collected using a procedure known

as electromagnetic articulography (EMA). Other signal forms such as surface electromyo-

graphic (sEMG) signals have also been used in dysarthric speech recognition. A study

by Deng et al. (2009) used MFCC and sEMG signals to develop a multi-modal framework

for isolated word recognition. The experiments were conducted on five dysarthric speakers

with an intelligibility range of 60% to 92%. Their study showed that when acoustic and

sEMG signals were used together in a speaker-dependent system, it gave the best average

recognition score of around 96% in comparison to acoustic-only score of 94%. Although,

when only sEMG signals were used, it gave a low average recognition score of around 62%,

albeit it highlighted some benefits of using sEMG signals which are more immune to back-

ground noise.

Researchers have also focussed on techniques that attempt to model the differences in

pronunciation of dysarthric speech. One such novel approach incorporated a metamodel

of speaker’s phonetic confusion matrix into the ASR framework (Morales and Cox, 2007;

Morales and Cox, 2009). The basic idea of such a framework is to resolve the confusion

between the decoded and the postulated phone sequences. For example, if the decoded

sequence of phones is given by SD and the postulated sequence is given by SP , then the

aim is to jointly estimate the probability:

P (SD,SP ) = P (SD|SP )P (SP ) (3.48)

The LHS of equation 3.48 is usually estimated by combining a confusion-matrix model

that estimates P (SD|SP ) with a language model. However, using only confusion-matrix can

be too restrictive in practice as it is unable to optimally resolve the phone insertion errors.

Instead, more flexible discrete density HMM models are used for every phoneme in the sys-

tem and are termed metamodels. Results reported using the metamodels showed significant

gains (5% absolute) over the standard MLLR adaptation for the dysarthric speakers with

low intelligibility, especially under limited adaptation data. Sometimes metamodels derived

from confusion matrices can prove to be insufficient at modelling some specific phone se-

quences. In order to overcome these limitation refined approaches based on weighted finite

state transducers (WFST) have been developed. In one such study (Morales and Cox, 2009),
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a cascade of WFST at the confusion matrix, word and language levels were generated. The

WFST results were significantly better than both metamodel and MLLR approaches for

speakers within all intelligibility groups. Another study (Seong, Park, and Kim, 2012b)

corrected the errors in the dysarthric speech by using an interpolated context-dependent

confusion matrix to build a WFST framework and integrating it with a dictionary and lan-

guage model. The test results on Nemours database reduced the relative WER by 13.7%

when compared to the MLLR adapted baseline system, and by 5.9% when compared to the

error correction system based on the context-independent pronunciation variation model.
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Chapter 4

Recognition and Analysis of

Dysarthric Speech

The previous chapter gave an overview of various components of a speech recognition system

and its implementation for the recognition of dysarthric speech. Some of the difficulties in

recognising dysarthric speech are due to high degree of inter and intra speaker variations,

data sparsity issues and malformed phonetic space (Blaney and Wilson, 2000; Kent et al.,

2000; Morris, 1989). Broadly categorising, researchers have tried to address these problems

in three ways: (i) Acoustic modelling using both generative and discriminative techniques,

(ii) Speaker adaptation approaches and (iii) Signal transformation and enhancement tehc-

niques. Despite being pursued as a research problem for more than three decades, the

performance is still far behind that for typical speech, which has potentially reached hu-

man like performance, especially under controlled conditions (Coleman and Meyers, 1991;

Fried-Oken, 1985; Xiong et al., 2016). The effectiveness of any commercial speech system

in recognising dysarthric speech has been limited due to reliability and setup constraints

in modelling such material. The implementation of any of the existing techniques have

shown varying levels of success and there still remains a large gap between the human and

machine performance of dysarthric speech. One of the reasons for this difference may be

the inadequacy to explicitly address any of the underlying variabilities in dysarthric speech.

This chapter is divided into two parts. The first part (Part-A) will extend the work of

earlier researchers and use adaptation techniques that might be more suited to implicitly

handle variabilities of dysarthric speech. The efficacy of such techniques will be evaluated
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on the UASPEECH database of speakers with dysarthria (Kim et al., 2008). It is the

largest database of speech of people with cerebral palsy with a vocabulary of 455 distinct

words. The aim is to systematically review the alternative existing adaptation techniques

and compare with the best available results of similar studies done in the past. This will

set a performance benchmark for further research to be measured against. The second part

of this chapter (Part-B) will give a summary of an acoustic analysis performed on the

UASPEECH database. It will cover some key areas like dysarthric phoneme/word timings,

F1-F2 vowel plots, frequency phase response and ZZT (Zeros of the Z-Transform) plots of

dysarthric vowels. The outcome of the analysis will be useful to illustrate specific differences

between typical and dysarthric speech manifest in the acoustic signal.
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4.1 Part-A: Baseline recognition results of dysarthric speech

Acoustic modelling and adaptation techniques primarily aim at producing speaker indepen-

dent (SI), speaker dependent (SD) or speaker adapted (SA) systems. Each of these system

comes with its own strengths to handle variabilities in dysarthric speech and might be bet-

ter suited in certain practical setups than others. For example a good SD system might be

more apt for handling small vocabulary tasks, provided a sufficiently large amount of data

is available for each intended item in the vocabulary. Data sparsity is a persistent problem

for dysarthric ASR. The issue is not likely to be resolved due to physical and ethical con-

straints. There is a growing need to investigate speaker adapted (SA) systems, which can

be trained with less data and aim to achieve SD like performance on small vocabulary tasks.

SA systems also have the potential to be extended to larger vocabulary tasks using the same

limited data. The success of a good SA system usually depends on robust SI models, which

are not too distinct from the target speakers. The focus of the current section will be to

investigate the following questions:

• What is the optimal SI system that can be used as a base to adapt to a dysarthric

speaker?

• Which is the best technique for adapting a set of recognition models to a speaker with

dysarthria?

• Can methods that seek to minimise inter-speaker variability at training time be used

to model a dysarthric speaker?

4.1.1 Experimental setup

4.1.1.1 Data preparation

All the experiments presented in this section used two corpora of typical speech, viz., WSJ0

SI-84 (Paul and Baker, 1992) that consists of read speech from 84 North American English

speakers with texts drawn from a machine-readable corpus of Wall Street Journal news, and,

WSJCAM0 (Robinson et al., 1995) , which is a British English version of WSJ database

The work presented in the current section has already been published in the 6th workshop on Speech and
Language Processing for Assistive Technologies, Model adaptation and adaptive training for the recognition
of dysarthric speech (Sehgal and Cunningham, 2015).
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that consists of data from 92 training speakers. For WSJCAM0, data was also included for

speakers from the development and two evaluation test sets.

The UASPEECH (Kim et al., 2008) corpus was used, which consists of data from 15

speakers with dysarthria and 13 control speakers. The corpus consists of 765 isolated words

(455 distinct words) per speaker collected in three separate blocks, where each block consists

of 10 digits, 26 international radio alphabets, 19 computer commands, 100 common words

and 100 distinct uncommon words, which were not repeated across blocks. In addition,

the corpus also provides an estimate of the intelligibility for each dysarthric speaker by five

naive listeners. The ratings will be used in all the experiments for grouping the speakers

by the severity of the dysarthria.

Corpus Speakers Training Files

WSJ SI-84 84 14377

WSJCAM0 † 136 18537

UA-CTL 13 41819

UA-DYS 15 44277

Table 4.1: A summary of each training corpus in the system. UA-CTL and UA-DYS codes

are used for UASPEECH control and dysarthric speakers. (†) Four evaluation speakers

with no secondary microphone data were excluded from WSJCAM0.

All the block one (B1) and block three (B3) data from UASPEECH was used for training

or adaptation purposes and block two (B2) was used solely for testing. Because speakers

with dysarthria can take longer to utter words, the UASPEECH training data had to be

logically resegmented to remove extra silences around approximate word boundaries. 200

ms of silence was left to either side of the word for training. However, test data block B2 was

left untouched to maintain the natural speaking conditions. Data from all the microphones

was used for each corpus for training and adaptation purpose and a summary is given in

Table 4.1.

4.1.1.2 Acoustic modelling

For acoustic modelling, data from all the corpora was processed as 12 dimensional MFCC

features with c0 and cepstral mean normalisation. First and second order time derivatives
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were also appended giving a 39 dimensional feature vector per frame. Speech was analysed

with a 25 ms window with a 10 ms target shift rate. Continuous density HMMs used in all

the experiments are word-internal tied-state triphone models. They use a strict left-to-right

topology with 3 emitting states and 16 Gaussian components used per state. Silence models

used 32 Gaussian components per state. A phonetic decision tree was constructed for state

clustering.

4.1.1.3 Methodology

An objective of these experiments is to determine the best baseline SI models that can be

used as the basis of a SA system. There can usually be a large number of combinations in

which multiple data sources can be mixed together to build SI models. Hence, in context of

the databases that are used in this study, the most appropriate logical combinations of data

sources are used. Table 4.2 summarises the SI systems that were built for future adaptation

experiments.

System Code Training Dataset Used

SI-00 WSJ SI-84 + WSJCAM0

SI-01 UA-DYS excluding target test speaker

SI-02 UA-DYS

SI-03 UA-CTL

SAT UA-DYS

Table 4.2: Summary of baseline systems and the corpus used for its preparation.

The SI systems generate a set of models for a particular kind of speaker (e.g. British

English, typical speech, American English, dysarthric speech etc.). It assumes that the

acoustic realisations of such a speaker group is constant throughout the database. During

typical speaker adaptation, the optimal model set Φ̃, given a set of S speakers in the system

is generally represented as:

Φ̃ = arg max
φ

L(O;φ) = arg max
φ

S∏
s=1

L(O(s);φ) (4.1)

where L(O(s);φ) is the likelihood of the observation sequences from speaker s, given the

current set of model estimates φ.
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A justification for choosing the systems in table 4.2 is given below:

• SI-00: Systems prepared from such a combination of typical speech data represent

an extremum model set, which will be acoustically distant to dysarthric speech. It

will enable our understanding to study the gap between typical and dysarthric speech

from a modelling perspective. It further rules out any peculiarities about regional

accents (which are not strongly exhibited in dysarthric speech) due to data merging

and is independent of any particular dysarthric database vocabulary.

• SI-01, SI-02: The two systems are trained using the entire UASPEECH dysarthric

data. The SI-02 system includes the training data of the target test speaker and

SI-01 system is unbiased towards any particular target test speaker. Since dysarthric

speech has high inter and intra speaker variability, testing the two systems in parallel

will give a good understanding on the importance of speaker specific data in building

models for speaker adaptation.

• SI-03: This system is trained with typical speech data that has the same specific

vocabulary of the target test speakers. The system is prepared from much less data

than the analogous SI-00 system. It will help understand if better modelling for

dysarthric speech adaptation will benefit from large quantities of data or sparse data

with a complementary vocabulary.

• SAT: Systems that use SAT based training routines have the inherent capability to

implicitly reduce the inter speaker variabilities. Thus, SAT is better suited to produce

robust baseline models for speaker adaptation. SAT training splits the data into

blocks, where each block assumes homogeneity of the underlying acoustics, e.g. data

pertaining to a particular speaker is regarded as a homogeneous block for incorporating

particular speaker induced variations. It uses two sets of parameters, a canonical

model φc, usually hypothesised to represent phonetically relevant speech variabilities,

and the set of transforms T (s) to represent the speaker variabilities. This is given as:

(Φ̃c, T̃ ) = arg max
(φc,T )

S∏
s=1

L(O(s); T (s)(φc)) (4.2)

In the above equation speaker variations are modelled by T and the canonical model

is updated, given each transform. The entire SAT paradigm works iteratively in an
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interleaved fashion. Refer to section 3.5.4.1 for details on the SAT framework.

The baseline adaptation results presented in section 4.1.2 for the SI and SAT models will

use the standard MLLR and MAP techniques. In addition a hybrid MLLR-MAP approach

is also presented. SAT canonical models are intentionally trained using only UA-DYS

speakers to minimise the effect of inter-speaker variabilities associated with speakers with

varying degree of intelligibility. The MLLR implemented uses a two-pass static adaptation

procedure. The first pass performs a global transformation and the second pass uses the

global transforms to produce more accurate transforms using a regression class tree with

32 terminal leaf nodes. It should be noted that SAT based on MLLR transforms should be

able generate robust canonical models, however, it comes with computational and memory

overheads (Spyros et al., 1997), making it impractical for implementation. Such issues can

be avoided by applying constrained MLLR (CMLLR) (Digalakis, Rtischev, and Neumeyer,

1995; Gales, 1998b), which uses the same transform for both means and variances. The

transforms are computed for each homogeneous block of data. SAT with CMLLR results

in a kind of feature normalisation during model training and has the same computational

load as any other standard HMM update process. Unlike SI models which can be directly

used for recognition, SAT canonical model sets are not suitable for direct decoding. Both

systems are usually adapted to some target condition.

4.1.2 Experimental results

All the test results presented here were obtained using test set B2 of the UASPEECH corpus

(see 4.1.1.1). Since the database comprises of single word utterances, the decoding grammar

was strictly restricted to only one of the possible test words, preceded and succeeded by

silences. There are 255 distinct competing words in the test block with a total of 22281 files

from all speakers and microphones.

4.1.2.1 SI systems

The first set of experiments involved obtaining recognition scores of all the baseline SI sys-

tems explained in table 4.1. These were then compared alongside the speaker dependent

(SD) performance. Figure 4.1 shows the average baseline accuracy of all the speaker inde-

pendent systems. SI-00 has the lowest baseline result, which would be expected as it was
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trained only on typical speech. The highest accuracy was obtained using the SI-02 system,

which was trained on the largest amount of dysarthric speech data.
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Figure 4.1: Average word accuracy for the baseline SI systems along with the SD result.

4.1.2.2 SI adapted systems

All of the baseline SI systems were adapted for each test speaker. Standard techniques were

used and the results are shown in figure 4.2 and table 4.3. MAP outperforms the MLLR

based adaptation in all cases except SI-00 models that are trained from WSJ0 + WSJCAM0

datasets. Since SI-00 models use only typical speech data, it might not present much useful

information about the parameter distributions of the adaptation and test datasets. This

may be a classic example of non-informative priors that does not assist in reducing the

training and test mismatch.

Following on from this observation a combined approach (MLLR-MAP) was imple-

mented that involves generating MLLR transforms for the target speaker followed by MAP

adaptation. By doing this, MLLR adapted parameters can act as informative priors for the

MAP process. For all the SI systems, the MLLR-MAP combination outperformed all other

adaptation approaches. Intuitively, it may be thought that SI-01 or SI-02 should form an
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Figure 4.2: Adaptation scores for the baseline SI systems.

optimal set of baseline models for adaptation, since they exhibit less difference between the

training, adapted and test conditions. Overall, the best MLLR-MAP scores for dysarthria

and typical speech based SI systems was found to be for SI-02 and SI-03.

The remainder of the thesis will only present results obtained using the MLLR-MAP

adaptation approach.

4.1.2.3 SAT-adapted vs other systems

One of the investigative goals of section 4.1 is to study the effect of SAT based modelling,

which has the inherent capability to minimise the effect of inter-speaker variations during

training time. It is known that such variabilities are present in the acoustics of dysarthric

speech. Figure 4.3 and table 4.3 shows a comparison of the MLLR-MAP based SI and SAT

systems. SAT-adapted model sets outperform all the other tested systems

It should be noted that the SD system performs more poorly than all the adapted

systems. Indeed, it can be seen in table 4.3 that SD system does not perform better
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Figure 4.3: Comparison of SD and MLLR-MAP based SI & SAT systems.

than any of the SA systems (except one speaker) in each of the intelligibility sub-groups.

This gives us a basis to assuming that adaptation can be an effective approach to model

dysarthric speech of varying intelligibilities. A similar finding about the efficacy of SA

systems was also reported in a study by Sharma and Hasegawa-Johnson (2010). However,

the findings are contrary to some of the earlier published results (Raghavendra, Rosengren,

and Hunnicutt, 2001; Rudzicz, 2007), which show better performance with SD systems for

decreasing intelligibility. Christensen et al. (2012) found that SI systems trained with only

dysarthric speech produced better baseline models for adaptation that was beneficial for

most of the speakers.

To the best of our knowledge, all the systems we tested gave significantly better results

than the earlier similar published results in the literature. Please refer to table 4.4 and

section 4.1.3 for a comparative discussion. The findings further suggest that SI systems

like SI-03, prepared from typical speech can also adapt as well as a dysarthric speech

based SI system, especially for speech with increasing intelligibility. In order to test this

interpretation, the effectiveness of all the MLLR-MAP based SAT and SI systems along

with SD system were statistically analysed using Cochran’s Q test (Cochran, 1950; Gillick

and Cox, 1989).
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Cochran’s Q is a non-parametric test to verify whether a group of s different treatments

(speech systems in our case) have identical or different effect in the recognition process.

In this study the null hypothesis for the Cochran’s Q test defines that “different speech

systems are equally effective to model the data”. The outcome of each system is recorded as

a binary response indicating if the recognition of an utterance was successful or not. The

test statistic TS is given by:

TS =
(s− 1)

[
s
∑s

j=1 x̂
2
j −

∑n
i=1

∑s
j=1 x

2
ij

]
s
∑n

i=1

∑s
j=1 xij −

∑n
i=1 x̂

2
i

(4.3)

where

s is the number of speech systems tested

x̂j is the sum of correctly recognised files for the jth speech system

n is the total number of speech files recognised (also called blocks)

x̂i is the total number of speech systems that correctly recognised the ith file

The null hypothesis is rejected if the test statistic is in the critical region (TS > χ2
critical)

of the chi-squared distribution with s − 1 degrees of freedom. For s = 2, the Cochran’s Q

test reduces to a pairwise examination that is equivalent to McNemar’s test.

All the six speech systems were tested for differences across all the test speakers. The

null hypothesis was rejected at α = 0.01 (degrees of freedom = 5), which meant that all

the systems were not equally effective for modelling dysarthric speech in general. Later a

pairwise Cochran’s Q test was conducted between the system with the best absolute average

score (SAT) and all others. The test showed that SAT was significantly different to all other

systems at p < 0.01, except for the SI-03 system in the higher intelligibility group.

4.1.2.4 MLLR-MAP for severity groups

So far the reported findings are averaged across all the test speakers irrespective of intel-

ligibility. However, to have a more informed approach for preparing systems for specific

speakers it is important to study the effect of SD and SA based systems in each of the

intelligibility groups. Figure 4.4 shows an overall picture of how the baseline SI systems

performed for the different intelligibility sub-groups as defined for the UASPEECH corpus.

Figure 4.5 shows the effect of adapting the respective baseline systems along with SAT

estimates. Systems trained or adapted with some dysarthric data or the SAT based system
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Intelligibility
Speaker

(Intelligibility%)
SD

MLLR-MAP

SI-00 SI-01 SI-02 SI-03 SAT

Very Low

M04 (2%) 6.54 8.98 9.5 8.54 8.11 9.68

F03 (6%) 32 27.61 37.49 36.01 36.81 38.36

M12 (7%) 32.24 17.76 35.08 32.31 30.71 32.9

M01 (17%) 16.76 27.03 28.32 28.22 27.46 29.22

Sub Acc. 23.52 20.61 28.82 27.36 26.95 28.71

Low

M07 (28%) 62.33 69.7 69.26 68.89 61.91 66.06

F02 (29%) 61.08 37.62 50.12 54.02 50.93 56.93

M16 (43%) 64.29 68.08 62.76 66.47 65.23 66.55

Sub Acc. 62.48 57.89 60.56 62.92 59.03 62.98

Mid

M05 (58%) 70.48 64.27 69.93 70.6 67.47 71.83

M11 (62%) 58.18 56.57 63.8 66.06 68.1 65.62

F04 (62%) 62.66 76.06 70.57 68.48 74.52 70.57

Sub Acc. 64.44 66.12 68.34 68.51 70.13 69.54

High

M09 (86%) 80.96 83.11 84.43 85.62 87.82 86

M14 (90%) 77.76 80.4 80.09 79.2 85.71 80.84

M10 (93%) 84.28 91.77 86.28 87.21 91.33 88.08

M08 (95%) 85.86 87.96 87.21 86.47 87.4 87.34

F05 (95%) 86.46 92.14 92.01 92.33 90.58 92.08

Sub Acc. 83.07 87.08 86.01 86.17 88.57 86.87

Overall Acc. 61.44 61.63 64.12 64.36 64.67 65.15

Table 4.3: Absolute word accuracy for SD and SI/SAT baseline systems adapted using

MLLR-MAP. The table also shows sub accuracy scores under various intelligibility groups.

The best scores are highlighted in grey for each row.

were the most effective for recognising speakers with lowest intelligibility, while systems pre-

pared from typical speech data resulted in improved recognition for the high intelligibility

group of speakers. Table 4.3 gives a detailed report for all the dysarthric test speakers.

In order to test the differences between the systems, a Cochran’s Q test was again

applied for various intelligibility groups. The summary of the results of this test are shown

in Table 4.4. It shows that SAT system is statistically equivalent to some other systems in

the very-low, low and mid intelligibility group of speakers.
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Figure 4.4: Accuracy for the baseline SI systems for various intelligibility groups.
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Figure 4.5: MLLR-MAP scores for the SAT & SI systems for various intelligibility groups.

For the high intelligibility sub-group, system trained from typical speech data with the

same recording and vocabulary as the test conditions was significantly better than all the

other systems.
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Intelligibility Best performing systems (p < 0.05)

Very Low SAT, SI-01

Low SAT, SD, SI-02

Mid SAT, SI-03

High SI-03

Table 4.4: Cochran’s Q analysis on the tested speech systems for various intelligibility

groups. The best performing systems for each intelligibility group are statistically equiva-

lent.

4.1.3 Discussion of baseline results

The results reported in section 4.1.2 show that it is difficult to train a single system to model

the variabilities in dysarthric speech and to also generalise to speakers of different severities.

For example, when studying the performance of various baseline systems in section 4.1.2.1,

it was interesting to note that SI-03 had similar performance to SI-01 system, despite being

trained from typical speech data. We think that SI-03 models benefit from homogeneous

vocabulary and the same recording conditions in the test data.

The findings also show that SD system were not the most effective to model dysarthric

speech except in the low intelligibility group. This can be partially attributed to the rel-

atively small amount of data per speaker in UASPEECH, especially when compared to

previous studies in the literature (Raghavendra, Rosengren, and Hunnicutt, 2001; Rudzicz,

2007). The test block B2 also comes with many unseen words in the form of 100 unique

”uncommon words” and an SD system is usually only trained to maximise the model fit

for the seen data during training. In contrast, a SA system might overcome this problem

to some extent by using acoustic information present from other speakers in the baseline SI

systems. This might be a contributing factor for all the adapted systems to be significantly

better than majority of SD system.

Another point of interest was reported in section 4.1.2.3. It indicated that to model

dysarthric speech with higher intelligibility, SAT and SI-03 systems were not significantly

different. Hence, it is more flexible to prepare the baseline model sets from disparate data

sources to adapt dysarthric speech with reduced severity.
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The results suggest that the variabilities in dysarthric speech can be better accommo-

dated from modelling both typical and dysarthric domains. One such attempt was reported

by Sharma and Hasegawa-Johnson (2013), where background interpolation MAP was im-

plemented to obtain an intermediate prior acoustic model to narrow the gap between two

disparate SI systems (typical & dysarthric), albeit, the reported results were worse than

those reported by Christensen et al. (2012). Our best overall results were obtained on the

MLLR-MAP adapted SAT systems. It gives an absolute gain of 23% (54% relative) over

results of Sharma and Hasegawa-Johnson (2013) and an absolute gain of 11% (21% relative)

over results of Christensen et al. (2012). In a more recent study, the results for 6 speakers

of UASPEECH was reported using the DNN-HMM framework (Tejaswi and Umesh, 2017).

The author used various methodologies like knowledge distillation, multitask learning and

model adaptation alongside the conventional GMM-HMM systems. Although, the study

reported DNN-HMM to be 13% relatively better than the GMM-HMM systems, the results

did not outperform our SAT based GMM-HMM systems that deployed hybrid adaptation

procedures.

The choice of a particular system for a given target speaker is not completely clear,

even when analysis is carried out at specific intelligibility groups. Table 4.4 shows there

are possible choices in the lower intelligibility group of speakers. Since dysarthric speech

is likely to be more variable in the lower intelligibility group, the presence of SI-01 and

SI-02 speech systems does not come in as a surprise as they will be inherently capable of

modelling some of the common differences. The statistically equivalent performance of SD

system in the low intelligibility sub-group was rather unexpected. Upon closer examination

it was found that group mean was getting biased for the speaker F02 who exhibits a huge

variation in the reported accuracy.

Despite the fact that several alternatives appear to be equivalent for different groups of

speakers, it is noticeable that SAT-based systems are among the best performing for the

very low to mid intelligibility groups. This may be due to the implicit capability of SAT to

remove the speaker induced variations during training. This speaker normalising might be

having a nullifying effect on some complex variabilities present across all the speakers.

Among systems trained with typical speech, both SI-00 and SI-03 were found to the

most effective for higher intelligibility group of speakers. SI-03 is a significantly better

base model for adaptation than SI-00. This is despite being trained with a smaller dataset

and it may suggest that large quantities of typical speech data might not be necessary for
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training models meant for people with dysarthria. In addition to acoustic similarities, SI-03

system also has an additional benefit of homogeneous vocabulary and recording conditions.

It was also observed that SI-03 was the best performing system for speakers with a high

intelligibility. This was expected because high intelligibility dysarthric speech is more similar

to typical speech and table 4.3 clearly shows the inclination of typical speech baseline

systems (SI-00, SI-03 ) to model high intelligibility sub-group of speakers. Finally it was

also noted that SI-00 marginally scored better for two speakers in the low intelligibility

group despite its dissimilarity to the target test speakers relative to the other systems.

However, the difference was noted to be statistically insignificant. Indeed it can be seen

from table 4.4 that SI-00 did not show up as a statistically equivalent system in any of the

intelligibility groups.
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4.2 Part-B: Acoustic analysis of the UASPEECH database

Acoustic studies of dysarthric speech can be very informative in delineating certain as-

pects of the underlying inconsistencies manifest in specific phonetic realisations. However,

widespread variabilities present across various types of dysarthria makes it an extremely

challenging task. There has been a lot of progress made in the past three decades with

a greater understanding of the relationship between specific acoustic variables and their

underlying perceptual correlate.

Broadly speaking, any acoustic analysis carried out on dysarthric speech is intended for

three types of tasks:- (i) Prediction of intelligibility (Feenaughty, Tjaden, and Sussman,

2014; Kent and Kim, 2003b; Kim, Hasegawa-Johnson, and Perlman, 2011; Magnuson and

Blomberg, 2000; Rong et al., 2012b; Weismer et al., 2001), (ii) Classification of various

dysarthric types or etiologies (Kim, Kent, and Weismer, 2011b; Skodda, Visser, and

Schlegel, 2011; Weismer et al., 2001) and (iii) Assessing disordered speech by com-

paring it against the acoustic measures of typical speech (Blaney and Wilson, 2000;

Kent et al., 2000; Morris, 1989). A systematic coverage of acoustic analysis methods and

its applications is detailed in the comprehensive paper by Kent et al. (1999b).

There haven’t been any studies that have looked specifically at the acoustic-phonetics

of the speech with respect to how differences might affect the dysarthric ASR performance.

This might be due to the lack of modelling or correcting any explicit dysarthric anomaly that

is manifest in the acoustic signal. This section will attempt to search for variability in the

acoustic domain, which can help to build a hypothesis for improved signal parametrisation

or modelling. The investigative work can be summarised as:

• Investigate acoustic variables postulated by earlier studies that might show quantifi-

able differences for dysarthric speech.

• Examine the differences between dysarthric and typical speech in the Z-domain. This

will be carried out by conducting a ZZT (zeros of the z-Transform) analysis of the

vowel segments.

• Develop a hypothesis based on the ZZT analysis of dysarthric vowel segments, which

can help to formulate a novel approach for understanding the relationship between

such material and intelligibility.
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The acoustic analysis in this section will use data from the dysarthric and control speak-

ers of the UASPEECH corpus.
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4.2.1 Temporal analysis

The temporal analysis will look at the durational patterns of phoneme and word productions

of control and dysarthric speakers. It will be studied at both the speaker and intelligibility

levels. The aim is to investigate if patterns in the speaking rate can have any potential

associations with intelligibility or other aspects of speaker’s dysarthria. A summary of the

time based analysis, which will be studied in this subsection is shown in figure 4.6.

Temporal Analysis

Control Speakers Dysarthric Speakers

Speech Rate

Words

Syllables

Voice Onset Time

Voiced Stops

Unvoiced Stops

Figure 4.6: Temporal analysis experiments conducted for the UASPEECH database.

4.2.1.1 Speech rate

Since UASPEECH database only consists of word based utterances, the term speech rate

and articulation rate are used interchangeably and hold similar connotations. The word

durations were extracted from forced-aligned label files, which included times for any pauses

and non-speech events within words. The search engine uses the Viterbi process to align

the spoken utterance with its exact transcription. In addition, since UASPEECH database

consists of both mono and poly syllabic words ranging from 1− 6 syllables, the articulation

rate was measured in syllables per second (sypse) to remove any bias for the word

length.

Figure 4.7 shows that dysarthric speakers have a much slower speaking rate at 1.86 sypse

in comparison to 3.0 sypse for the control group. Dysarthric speakers also exhibit more

than twice the degree of variation (σ = 0.80) than the control group (σ = 0.33). When the

analysis was conducted across various intelligibility groups, it showed an association between
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Figure 4.7: sypse for the control and dysarthric speakers averaged across all the words.

slow speaking rate and intelligibility of speaker groups. This is depicted in figure 4.8, where

three out of four intelligibility groups fall below the average dysarthric sypse rate and the

high intelligibility group tends to be similar to the control speaking.
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Figure 4.8: sypse for various intelligibility groups averaged across all the words.
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Figure 4.9: Scatter plot between sypse and intelligibility.

So far we have seen a clear association of sypse with various dysarthric intelligibility

groups. Figure 4.9 further corroborates this observation where the scatter plot shows a

strong positive correlation of r = 0.81(p < 0.01) between sypse and the perceptual intelli-

gibility of various dysarthric speakers.

Despite the strong association of sypse with intelligibility, it does not show a predictable

pattern of speaking rates when it was analysed across speakers within each intelligibility

group as shown in figure 4.10. The ideal expected trend should have followed an upward

staircase pattern for the speakers arranged from left (least intelligible) to right (highest

intelligible). For example, the measured sypse rate for the very-low and low speaker groups

is contrary to the predicted intelligibility and the sypse trend only seems to fall within an

ideally expected range as we move higher up in the intelligibility spectrum. As a specific

example, if we observe sypse readings for the least intelligible speaker (M04), it is falling

within the average range of mid-intelligibility group of speakers. It indicates that the

speaker is not speaking at a substantially slower rate, which could be detrimental from

speech recognition perspective. This can have two possible interpretations:- (i) Intelligibility

might not be a strong indicator of speaking rate patterns in dysarthric speech with reduced

intelligibility and (ii) It is unfeasible to construct a generic framework for modelling the
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underlying temporal disfluencies, and it would be better to handle timing inconsistencies

on a speaker specific basis.
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Figure 4.10: Speaker-wise sypse analysis averaged across all the words. Speakers are

ordered according to their increasing intelligibility from left to right.

In a HMM-GMM based acoustic model, the transition matrix implicitly models the du-

rational information for phones through a prior geometric distribution. However, modelling

such information is mostly avoided in ASR since the standard use of HMM’s cannot opti-

mally model phonetic durations. Multi variate distributions have shown to better model

the durational information at both the phonetic level (Pylkknen and Kurimo, 2004) and

speaking rate of individuals (Samudravijaya, Singh, and Rao, 1998).

Since incorporating any such explicit distributions into the HMM topology to model

durations violates the first-order Markov property, various duration modelling approaches

have been proposed. Some well known techniques involve modifying the HMM topology

by either introducing explicit state duration distributions (hidden semi-Markov models,

HSMM) or splitting specific states into sub-HMM systems (expanded state HMM, ESHMM)
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that implement an optimal state duration distribution with specific topology and transition

probability (Russell and Cook, 1987). These techniques have further been supplemented

with optimisation techniques for improving the real time performance (Bonafonte, Ros,

and Marifio, 1993). More recently, feed-forward neural networks (Rao and Yegnanarayana,

2004) and DNN based systems (Shreekanth, Udayashankara, and Chandrika, 2015) have

been used for explicit duration modelling, albeit, most of the work has been carried out in

the speech synthesis domain.

4.2.1.2 Voice onset time

Another time based feature that has been investigated in the acoustic study of speech is

the voice onset time (VOT). It gives an insight into the production of stop consonants.

It is often used as a quantitative metric for intelligibility preiction and discrimination of

various dysarthric etiologies and types (Lisker and Abramson, 1964; Morris, 1989). For

example in a study of twenty dysarthric speakers, it was found that the VOT measure for

flaccid and ataxic speakers showed significantly greater variability than the VOT measure

for spastic and hypokinetic speakers, with spastic speakers exhibiting the shortest VOT

value (Morris, 1989). A complete VOT study of dysarthric speech is beyond the scope of

this thesis and this section will only focus on some broad level aspects. It will primarily

report on a comparison between dysarthric and control speakers, association of VOT with

the intelligibility of dysarthria and some general qualitative observations.

Voiceless-Voiced Pairs Vowel Context Word Production

/p/ - /b/ /iy/ (Front-High) people, be

/t/ - /d/ /uw/ (Back-High) two, do

/k/ - /g/ /aa/ (Back-Low) copy, golf

Table 4.5: The configuration parameters used for the VOT measurements of the voiceless

and voiced stop consonants. The examples in the ”word production” column was used to

extract the VOT values. The symbolic notation of stops and vowels are taken from the

ARPABET phonetic transcription codes.

For VOT measurements, both the voiceless (/p/, /t/, /k/) and voiced stops (/b/, /d/,
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/g/) are examined. VOT measurements are usually extracted by recording repeated produc-

tions of the type /stop∧/ (Morris, 1989). Since UASPEECH does not have such recordings,

the VOT is measured by studying the voiceless/voiced stops in context of one of the front

or back vowels. Table 4.5 shows a summary of the vowels and words that were examined

in context of various stop consonants for VOT measurements.

(a) (b)

(c) (d)

[   t                  wo               ] [   d     o         ]

[          t                         wo            ] [       d                   o         ]

Figure 4.11: VOT timing spectrograms for English words ”two” and ”do”. The VOT values

are shown by the highlighted area for the voiceless and voiced alveolar stops /t/ and /d/.

The figure shows the (a) VOT value of 93 ms for the phoneme /t/ for a control speaker,

(b) VOT value of 28 ms for the phoneme /d/ for a control speaker, (c) VOT value of 250

ms for the phoneme /t/ for a severe dysarthric speaker, (d) VOT value of 177 ms for the

phoneme /d/ for a severe dysarthric speaker.

101



4. Recognition and Analysis of Dysarthric Speech

The VOT measurements were manually extracted by visual inspection. No uncommon

words were taken from UASPEECH corpus as it does not have repeated utterances across

the three blocks of data. Since there are 3 utterances from all the blocks for each word, in

all 18 utterances were inspected for each speaker to get the VOT scores for all the stops.

This was repeated for both the control and dysarthric speakers.

VOT was measured by hand using the standard procedure described in Lisker and

Abramson (1964). It involves examining the wideband spectrograms and evaluating the

segment between the stop-release and the onset of glottal pulse vibrations. The point of

voicing onset was marked by examining the first instance of the regularly spaced vertical

striations. Figure 4.11 shows an example of how the VOT measurements were taken for the

control and dysarthric group of speakers.

The exact data is examined by repeating the process over all the speakers across all

the stops. It should be noted that during the VOT marking process, there was no subtle

distinction made between voiced and voiceless aspirated and unaspirated plosives. It, thus

rules out the possibility of reporting negative VOT values. It can be seen in figure 4.11 that

dysarthric speakers with lowest intelligibility usually manifests an inflated VOT score.
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Figure 4.12: Voice Onset Times for the

voiceless stops /p/, /t/, /k/
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Figure 4.13: Voice Onset Times for the

voiced stops /b/, /d/, /g/

It is evident from figure 4.12 and 4.13 that speakers with dysarthria have escalated

mean VOT values for both voiceless and voiced stop consonants. The average VOT in ms

for both group of speakers are /p/→ (54C , 87D), /t/→ (82C , 114D) and /k/→ (74C , 85D)
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for voiceless stops and /b/→ (9C , 34D), /d/→ (22C , 64D) and /g/→ (29C , 48D) for voiced

stops. Dysarthric VOT exhibits longer lag times, which is accentuated by greater standard

deviations of /p/→ (21C , 49D), /t/→ (15C , 50D) and /k/→ (20C , 31D) for voiceless stops

and /b/→ (3C , 36D), /d/→ (10C , 69D) and /g/→ (9C , 58D) for voiced stops. On average,

the standard deviation of dysarthric speech across the VOT values of all the stop consonants

is more than 2.5 times greater than control group of speakers.

For the control speakers, a pattern of increasing VOT is observed as the point of occlu-

sion moves posteriorly inside the oral cavity for the voiced stops. A slight dip was however

observed for the voiceless stops. However, an increasing-decreasing pattern is observed for

both voiced and voiceless stops of dysarthric speech with a higher degree of variation across

the mean. It is hard to make any committed judgement about the relationship between

the point of occlusion and the VOT times, since the stop consonants are not observed

within the same vowel context. However, a larger standard deviation with an increasing-

decreasing pattern for dysarthric speakers might indicate lack of muscular control as the

occlusion moves towards the velum.
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Figure 4.14: Voice Onset Times for the

voiceless stops /p/, /t/, /k/ across vari-

ous intelligibility groups

Very-Low Low Mid High
Dysarthric Intelligibility Groups

-50

0

50

100

150

200

250

V
O

T
 (

m
s
)

Phoneme /b/
Phoneme /d/
Phoneme /g/

Figure 4.15: Voice Onset Times for the

voiced stops /b/, /d/, /g/ across various

intelligibility groups

Indeed a similar trend is also evident for the least intelligible (very-low) group of speakers

for all the stop consonants as shown in figure 4.14 and 4.15. It is interesting to note that

the low intelligibility group manifests a decreasing VOT with escalated deviations for the
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voiceless stops. It might be indicative of a lack of muscular coordination as the occlusion

moves towards the lips. In both voiceless and voiced cases, the VOT follows a control like

pattern as it moves high up in the intelligibility spectrum.
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Figure 4.16: Voice Onset Times for various speakers in the UASPEECH database marked

against the average control rating. It shows speakers who fall in (i) very-low (top-left), (ii)

low (top-right), (iii) mid (bottom-left) and (iv) high (bottom-right) intelligibility groups.

In order to be more precise in understanding the relationship between VOT and articu-

latory movements, it is ideal to analyse VOT’s on a per-speaker basis instead of any specific

intelligibility groups. Figure 4.16 gives the VOT of individual speakers grouped within
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their intelligibility domain. The charts also show the average control VOT values with their

standard deviation. Any VOT value that falls outside the control range can be treated as a

deviation from normal stop production. Such anomalies can be predicted to be associated

with certain articulatory insufficiencies.

It is observed that nearly all the VOT timing differences occur for the very-low and

low intelligibility groups for both the voiceless and voiced stops. Most of the mid and high

intelligibility group of speakers fall within the standard deviation of the control range except

a few outliers.

For example, all the speakers in the very-low category have escalated VOT values for the

voiced plosive /b/ and /d/, which might be indicative of an incomplete closure of the lips or

impartial alveolar closure of the tongue. As another example, three out of four very-low and

two out three low intelligibility speakers exhibit velo-pharyngeal insufficiency by exhibiting

deflection on either side of the normal range for the voiceless stop /k/.

It can be concluded that slow speaking rate was found to be a characteristic of speakers

with lower intelligibility. They exhibited reduced sypse and thus increased VOT values

relative to speakers in the control or higher intelligibility group. The VOT also showed a

greater degree of variation for dysarthric speakers for all the observed stop consonants. For

speakers with lower intelligibility, the VOT values were also indicative of some underlying

physiological insufficiency as the production of the stop consonants moved from lips towards

the velum. VOT measurements also exhibited a noteworthy case of phonemic errors, where

VOT values of voiceless and voiced stop tokens are reversed in their expected range. For

example, when the expected VOT values of a voiceless consonant /p/ falls within the

expected VOT range of its voiced counterpart /b/ or vice versa (Morris, 1989). This was

noticed for the laryngeal stop pair of /k/-/g/ for the speaker M04 and M07.

The majority of research into VOT of dysarthric speech mentioned in the literature is

around qualitative assessment of dysarthric speech, intelligibility prediction and dysarthria

classification tasks. However, if such specific timing trends related to VOT can be utilised

as an explicit domain of information, it could inform a new approach to durational or

pronunciation modelling.
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Despite the evidence of temporal dysfluencies in dysarthric speech, no explicit du-

ration modelling will be explored in context of the current thesis. Other areas of

acoustic analysis involving frequency and phase information will be studied to in-

troduce methods for improving ASR performance of dysarthric systems.

106



4. Recognition and Analysis of Dysarthric Speech

4.2.2 Spectral analysis

The frequency analysis will focus on the formant analysis for the vowels and diphthongs

of control and dysarthric speakers. In particular the first two formants are studied across

various speakers and intelligibility groups. A summary of the frequency based analysis,

which will be studied in this subsection is shown in figure 4.17.

Spectral Analysis

Control Speakers Dysarthric Speakers

F1-F2 Space

Vowels

Diphthongs

F1-F2 Quantification

Vowels

Figure 4.17: Spectral analysis experiments conducted for the UASPEECH database.

4.2.2.1 F1-F2 space

The first analysis was conducted for each group of speakers to study the F1-F2 space for all

the vowels and diphthongs. The formant estimation uses all the training data (Blocks B1

+ B3) of the UASPEECH corpus for the control and dysarthric speakers. The data is pre-

segmented using forced alignment to given an approximate location of the phonetic tokens.

The formant trajectories were extracted using the Snack sound toolkit (Sjlander, 2004) that

selects the formant frequencies by solving the roots of the linear predictor polynomial. First

six formants were extracted for each of the vowels and diphthongs using a 25 ms window and

a 10 ms overlap. The order of the LPC analysis was set to 16 for formant extraction. All

the other setting were left to default as provided by the formant command of the toolkit.

Figure 4.18 and 4.19 shows the visual representation of the F1-F2 space for the vowels

and diphthongs. Each data point1 is averaged across all the control and dysarthric speakers.

1Each point in figures 4.18 - 4.22 is averaged across the entire UASPEECH database covering every
phonetic context as constrained by the vocabulary.

107



4. Recognition and Analysis of Dysarthric Speech

130014001500160017001800190020002100
F2

400

450

500

550

600

650

700

750

800
F

1

iy

ih

eh

ae

aa

ao

uh

uw

iy

ih
eh

ae aa

ao

uh

uw

control
dysarthric

Figure 4.18: F1-F2 plot for vowels of con-

trol and dysarthric speakers.
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Figure 4.19: F1-F2 plot for diphthongs of

control and dysarthric speakers.

It is clearly evident that dysarthric speakers have a reduced F1-F2 space. For dysarthric

speech on average, this compression results in an increased F1 for all the vowels and diph-

thongs (except /ay/ and /aw/) and an increased F2 for all the vowels and diphthongs (except

/iy/ and /ey/). As a general rule in the acoustic-phonetic studies, there is an inverse rela-

tionship of the first and second formants with tongue height and advancement (Kent et al.,

1999b), i.e.,

F1 ∝ 1

TongueHeight

F2 ∝ 1

TongueAdvancement

In the F1, F2 findings for UASPEECH, it is observed that on average for dysarthric

speakers, there seems to be reduced horizontal movement of the tongue. This can be

detrimental for speech recognition tasks as it will reduce the phonatory discrimination

between front and back vowels/diphthongs. In order to see the natural variation in the

data, figure 4.20 extends the previous plots to show the deviation of the data represented as

ellipses. The axes of each ellipse define the variation of the data in the F1 and F2 directions.
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Figure 4.20: Standard deviational ellipses for the control and dysarthric speakers. The top

and bottom graphs show the variations for vowels and diphthongs respectively.

It can be seen that the ellipses for the control group are more dense and tend to form

segregated clusters. On the other hand, the ellipses for the dysarthric group show greater

overlap of sounds. These differences may be due to the higher degree of inter- and intra-

speaker variations in dysarthric speech and could be affected by the phonetic context. Fur-

ther investigation, not attempted here, would be required to determine the true significance

of the variations shown in these graphs.

The F1-F2 space analysis was extended across each of the dysarthric intelligibility groups

and the results are shown in figure 4.21 for vowels and 4.22 for diphthongs. The high

109



4. Recognition and Analysis of Dysarthric Speech

intelligibility group of speakers show a greater degree of similarity to the control group and

the very-low intelligibility group of speakers show the contrary that exhibit a highly skewed

mapping of vowels and diphthongs across the F1-F2 plane.

1400160018002000
F2

iy

ih

eh

ae

aa

ao

uh

uw

iy

ih
eh

ae

aa
ao

uh

uw

control
dysarthric (very-low)

1400160018002000
F2

400

500

600

700

800

F
1

iy

ih

eh

ae

aa

ao

uh

uw

iy

ih
eh

ae aa

ao

uh

uw

control
dysarthric (low)

iy

ih

eh

ae

aa

ao

uh

uw

iy

ih eh

ae

aa

ao

uh

uw

control
dysarthric (mid)

400

500

600

700

800

F
1

iy

ih

eh

ae

aa

ao

uh

uw

iy

ih

eh

ae
aa

ao

uh

uw

control
dysarthric (high)

Figure 4.21: F1-F2 plot for the vowels of dysarthric intelligibility groups.

It is indicative that majority of very-low intelligibility speakers appear to have limited

range in their tongue movements. This reduces the differences between the phonetic tokens

as they tend to converge towards a densely packed cluster of vowels with restricted and

overlapping formants. For the low and mid intelligibility group, some discernible patterns

for distinguishing amongst various vowels/diphthongs is still visible, albeit, the positioning

of vowel/diphthong tokens for the low intelligibility group of speakers is more similar to the

control group than the mid group of speakers.
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It is emphasised that the F1-F2 space was not analysed under any specific phonetic

context and the main aim was to highlight the differences that are observed for various

dysarthric intelligibility groups regardless of context.
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Figure 4.22: F1-F2 plot for the diphthongs of dysarthric intelligibility groups.

The standard devaition ellipses for the various intelligibility groups are shown in ap-

pendix D.

4.2.2.2 F1-F2 quantification

This section will look at quantification of some of the vital components of the F1-F2 space.

It will study the Area and introduce two new measures of Shape and Displacement for
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analysis of the F1-F2 vowel quadrilateral.

The notion of computing Area of the F1-F2 space has already been explored in research

on acoustic analysis. It has been a useful quantitative metric in studies on speech intelligi-

bility and to examine acoustic changes due to physiological factors. For example, a reduced

F1-F2 space was found to be a dominant characteristic of speakers with dysarthria (Turner,

Tjaden, and Weismer, 1995; Weismer et al., 1995), and in another study it was found to be

related to the process of ageing (Vorperian and Kent, 2007). The computation of the F1-F2

area in this section is based on the technique described by Turner, Tjaden, and Weismer

(1995), which is roughly explained in the following text.

The total Area can be quantified by measuring the quadrilateral space bounded by the

corner vowels /iy/, /ae/, /aa/ and /uw/. It is computed by splitting the quadrilateral into

two triangles (say ∆1 and ∆2), whose area is computed individually and summed to get

the total area expressed in Hz2.
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Figure 4.23: F1-F2 area computation by splitting the quadrilateral into two triangles.

Figure 4.23 shows a diagramatic representation of the quadrilateral split into two trian-

gles. Each corner vowel is marked with a coordinate point and the total area is computed

using the determinant rule as:
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Area(Quad.) = Area(∆1) +Area(∆2)

1

2
·

{∣∣∣∣∣∣∣∣
x1 y1 1

x2 y2 1

x4 y4 1

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
x4 y4 1

x2 y2 1

x3 y3 1

∣∣∣∣∣∣∣∣
}

(4.4)

where (x1, y1), (x2, y2), (x3, y3), (x4, y4) represent the vertices of the corner vowels /iy/,

/ae/, /aa/ and /uw/.

In order to have an understanding of F1-F2 area of dysarthric speech, it is referenced

with the quadrilateral space for the average control speakers. To measure this effect we

introduce the log compression factor (CF), which will be defined as:

CF = ln

(
(F1F2 Area)control

(F1F2 Area)dysarthric

)
(4.5)

The CF will give a quantitative estimate of the extent to which the vowel discrimination

has been reduced. Greater CF indicates higher area of compression. Since the vowel area

for dysarthric speech generally tends to be less than that for typical speech, CF is expected

to be greater than 0. The analysis in this section is conducted in terms of speaker and

intelligibility groups. Figure 4.24 shows the average CF value for various speakers and

the intelligibility groups. Any compression factor above zero might be an indication of an

atypical vowel space. It can be seen that there is no expected linear relationship between

the intelligibility and CF values. For example, speakers can manifest similar CF scores

even if they fall at different ends of the intelligibility spectrum or ASR performance (see

table 4.3), e.g., M04(very-low)/M11(mid), M12(very-low)/M09(high).

Although CF scores for the expected intelligibility groups (very-low, low, mid) fall above

the control CF threshold of zero, it has not come in as a strong indicator to draw any firm

conclusion about its association with speech intelligibility and ASR scores. There is also an

unexpected CF trend observed within the very-low, low and mid intelligibility groups, which

indicates the presence of inter-speaker variations manifest in dysarthric speech. Increased

CF scores can be seen as altering the dynamics of the F1-F2 space, but the degree to which

this affects the speech from a perceptual or machine processing point of view is still vague.

In addition to computing the CF ratio, the newly introduced notion of Shape of F1-F2

space was also examined. This requires to check if the quadrilateral under consideration is
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Figure 4.24: F1-F2 area compression factor (CF) for dysarthric speakers under different

intelligibility groups. Speakers are ordered according to increasing intelligibility from left

to right. The red line shows the average CF for each intelligibility group and the green line

is the reference CF for a typical speech area.

convex, concave or flipped in presentation. The way quadrilateral presents itself can give

an insight into the placement of vowels in the F1-F2 plane. It can be a useful tool to

understand the range of vowel tokens that are easily discernible for an individual dysarthric

speaker or intelligibility group, and can be helpful to distinguish confusing or overlapping

vowel productions. Figure 4.25 shows the F1-F2 quadrilateral area for an example speaker

from each of the intelligibility groups. The speakers are selected in a way so that it shows

every possible presentation (concave, convex, flipped) of the quadrilateral. For the F1-F2

plot of all the speakers please refer to Appendix D.1.
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Figure 4.25: F1-F2 vowel quadrilateral for speakers with very-low (M04), low (M16),

mid (M05) and high (M10) intelligibility. The red polygon represents the average vowel

quadrilateral for the control speakers in UASPEECH database.

It can be seen from the above figure that except for high intelligibility speaker M10, the

speakers in other intelligibility groups show a reduced F1-F2 space, which generally projects

as a skewed map of the vowels, especially for high CF values. This pattern is evident for

the very-low, low and mid intelligibility groups, which can be easily inferred from the CF

values shown in figure 4.24 and the per speaker F1-F2 vowel space shown in appendix D.1.

The vowel quadrilateral can also give useful cues for understanding the lower number

formant distributions. For example, a convex quadrilateral with low CF value as shown for
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user M10 has a greater degree of similarity to the F1-F2 space for average typical speech.

It indicates that most of the methods for signal processing and modelling for typical speech

can prove equally effective for such low severity dysarthric speech since most of the vowel

tokens have a well quantified presentation in the F1-F2 plane. Such speech can more

or less be regarded as similar to typical speech. However, the other two presentations

(concave, flipped) do not have a straight forward interpretation. A concave (M04, M16)

or a flipped (M05) quadrilateral might indicate unexpected formant frequency for specific

vowels. While a concave presentation will usually result in a group of vowels populating the

F1-F2 space meant to be occupied by other vowels, the flipped presentation might result

in exchanged frequency regions between a pair of vowels. In addition, if the concave and

flipped presentation is accompanied by higher CF value, the vowels will tend to overlap

with other vowels much quicker than a convex presentation. All this eventually results in

reduced phonetic discrimination. The study of CF values along with the shape of vowel

quadrilateral can be a useful tool for (i) better design of user dictionaries, (ii) better design

of phonetic decision trees for acoustic model clustering and (iii) reducing data sparsity issues

by merging vowel tokens with overlapping tendencies.

To complete the investigation of the F1-F2 vowel space, we lastly introduce the measure

of Displacement for the quadrilateral. This will be defined as the distance between the

centres of the dysarthric and control vowel quadrilaterals. The following methodology is

used for computing the centre of different quadrilateral presentations:

• Convex / Flipped: Centroid of the quadrilateral (Cx, Cy) as

(Cx, Cy) = (
4∑
i=1

xi
4
,

4∑
i=1

yi
4

) (4.6)

where (xi, yi) are the coordinates of the quadrilateral vertices.

• Concave Mid-point between the points where concavity is present.

The distance of each quadrilateral centre is measured against the average control quadri-

lateral centre. An exhibit for measuring the centre distance for a convex and concave case

is shown in figure 4.26.
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Figure 4.26: An exhibit of the distance measure between two different presentations (convex,

concave) of the vowel quadrilateral.
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Figure 4.27: Distance between the centres of vowel quadrilaterals of dysarthric speakers

and the average control speaker.

117



4. Recognition and Analysis of Dysarthric Speech

The displacement measure gives a quantitative estimate for the positioning of vowel

space in the F1-F2 plane. In addition to CF scores and the shape of the quadrilateral

space, this added variable can provide useful information about the functional limits for

the lower formants. It can be derived from figure 4.27 that there is no predictable pattern

emerging from the analysis of UASPEECH speakers. To some extent, the very-low and low

intelligibility groups show an increased average quadrilateral displacement than the mid

and high intelligibility groups. The F1-F2 quadrilateral displacement can be regarded more

as a speaker-wise phenomenon rather than something predictable at an intelligibility level.

4.2.3 Relationship of acoustic analysis with the ASR accuracy

One of the purposes of any acoustic analysis of dysarthric speech is to understand the asso-

ciation between the signal properties and the characteristics of dysarthria. This is already a

widely researched topic in the literature as referenced at the start of section 4.2. However,

such properties are hardly explored with an aim to enhance ASR performance. Since im-

provement of dysarthric ASR is a goal of the thesis, this section will attempt to find some

functional understanding between all the acoustic parameters examined so far against the

best baseline ASR system. For this, the SAT recognition results of table 4.3 are correlated

against five quantified acoustic variables, viz, sypse, voiceless-VOT, voiced-VOT, CF & Dis-

placement. It should be made clear that all the acoustic variables observed so far are only

studied with the intention to quantitatively comprehend some of the underlying dysarthric

artefacts and will not be explored any further for improving dysarthric classification or ASR

performance in the current thesis.

In this section we will examine the linear relationship between the five acoustic vari-

ables and the ASR performance. For this the Pearson(r) coefficient will be computed all

throughout. For the correlation analysis, the ideal trend expected between the r and the

ASR results is summarised in table 4.6. The analysis was conducted for the ASR scores of

each dysarthric speaker and intelligibility group and correlated against the various acoustic

parameters.

Figure 4.28 shows the corresponding correlations. The bars marked as red were noted

to be signficant at p < 0.05. The correlation can be observed both for directionality and

strength. In the current study of analysis, directionality plays a much more important

role than strength as the expected correlation trend dictates the behaviour of an acoustic

variable in relation to the ASR performance.
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Variables Expected Correlation

ASR, sypse +

ASR, voiceless-VOT -

ASR, voiced-VOT -

ASR, CF -

ASR, Displacement -

Table 4.6: Expected correlation trend between the ASR score and acoustic variables.
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Figure 4.28: Correlation analysis of five acoustic parameters against the SAT-based ASR

system. The left chart shows the correlation measured across all the speakers and the right

chart shows the correlation measured across various severity groups.

It can be seen from figure 4.28 that for both the categories, ”across speakers” and ”across

intelligibility”, the correlation follows the expected directionality as defined by table 4.6.

For example, both CF and voiceless-VOT tend to have a strong negative correlation as the

ASR accuracy increases. Similarly sypse tends to have a strong positive correlation, which

is expected as the rate of speaking for a dysarthric individual tends to increase with high

intelligibility. Lastly, displacement variable was suggestive that the shift of formant space

is more likely to be associated with lowest intelligibility and tends to balance out around a

typical vowel quadrilateral for high intelligibility speakers.
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Figure 4.29: Correlation analysis of five acoustic parameters against the SAT-based ASR

system for each of the intelligibility groups very-low, low, mid, high.

Although it will be inconclusive to report the correlation analysis for each intelligibility

group due to speaker sparsity, for the sake of completeness the above analysis was also

conducted within each intelligibility group and the results are presented in figure 4.29. The

high intelligibility group of speakers follow the correlation trend dictated in table 4.6. There

was however an exception for the directionality of displacement parameter, but it did not

came up with a high degree of correlation.

On the other hand, there was a range of widespread inter-speaker variabilities observed

in the other intelligibility groups. For example, both displacement and VOT showed strong
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differences in relation to the ASR scores for the very-low and mid intelligibility group of

speakers. The very-low group of speakers also showed a strong association of reduced

speaking rate as the ASR accuracy increased within the group and there was a notable

presence of malformed CF space within the low intelligibility group of speakers. This

shows that for a speaker with dysarthria with reduced intelligibility, it is hard to predict

that any one of the acoustic variables might be a major contributor to reduced ASR scores.

The unexpected deviations in any of the acoustic variables need to be dealt on a speaker

wise basis and there seems to be no methodology at present which can be globally applied

to a group of speakers to reduce the negative effect of any acoustic variable for improved

ASR performance.
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4.2.4 Zeros of the z-Transform (ZZT) analysis for the vowel segments

Previous sections explored some of the standard methods for the analysis of dysarthric

speech. This has given some useful insights into irregularities observed in temporal and

frequency domains. Earlier research has addressed some of these issues to improve dysarthric

ASR, with varying degrees of success. However, the underlying disorder is only implicitly

handled by any modelling technique. Thus, one of the challenges in the analysis of dysarthric

speech is to discover explicit patterns in the acoustic signal which are directly related to

the dysarthric intelligibility, etiology or type. If such patterns can be discovered, this will

help researchers design more structured measures to explicitly deal with such speech for

improved ASR performance.

This section presents a new approach for looking at disordered speech signals, which

will be based on finding the zeros of the z-transformed (ZZT) time-domain vowel segments.

The idea for investigating this approach is not to give a comprehensive account of ZZT

patterns observed in the UASPEECH database, but it is pursued with the aim of identifying

alternate analytical approaches which could be more indicative of the underlying variabilities

in dysarthric speech. It will be seen in the following sections and chapters that ZZT patterns

of dysarthric speech can form the basis for one such investigative approach, based on the

phase component of signal that will be (a) beneficial for robust classification of dysarthric

severities and (b) suggest systematic methods for improving overall ASR performance for

dysarthric speech.

4.2.4.1 ZZT Analysis of a basic signal: An example

In order to analyse the ZZT patterns of a real speech signal, it is important to understand

the basic approach for finding the zeros of the z-transform for any arbitrary time-domain

signal. This section will explain the fundamental approach with the aid of a simple example,

which can be easily extended to real-time windowed signals of disordered speech. The z-

transform of a sequence x[n] is given as

Z{x[n]} =

∞∑
n=−∞

x[n]z−n = X(z) (4.7)

where z is a complex number represented in polar form as z = rejθ, where r is the

magnitude and θ is the phase. For practical analysis the above infinite length sequence is

reduced to a finite length discrete time signal of length N . If the samples are represented
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as {x(0), x(1), x(2), ..., x(N − 1)}, then the z-transform and its corresponding roots (zero)

equation is given by

Z{x[n]} =

N−1∑
n=0

x[n]z−n (4.8)

Roots{x(0), x(1), ..., x(N − 1)} = x[0]z−(N−1)
N−1∏
k=1

(z − zk), x[0] 6= 0 (4.9)

In the above equation, usually the order of N can be around 400 for a 25ms window

sampled at 16 kHz. According to the Abel-Ruffini theorem, there is no algebraic solution

to find the roots of a polynomial of degree five or higher (Abel, 1824). Hence numerical

methods are generally used to compute roots as these methods are independent of the degree

of the polynomial. For the current study the roots() function defined in MATLAB version

R2016b is used for the computation of the polynomial roots in equation 4.9.

Practically the z-transform given in equation 4.7 is useful if the infinite sum is express-

able in a closed form by a simple mathematical formula. For analysing discrete time signals,

the most important and useful z-transforms are those for which X(z) is a rational expression

of the form P (z)/Q(z). The values of z which makes X(z) = 0 or X(z) =∞ are defined as

zeros and poles of X(z), which are used to plot the Region of Convergence (ROC) in the

z-plane for the sequence x[n]. Since a Fourier transform is the z-transform computed on a

unit circle (z = ejω), it only converges for the sequence x[n] if the ROC of the z-transform

includes the unit circle.

The above theoretical explanation can be summarised with an example. Consider an

exponential sequence defined as

x[n] =

a
n, 0 ≤ n ≤ N − 1

0, otherwise
(4.10)

For the above equation we have

X(z) =
N−1∑
n=0

anz−n =
1− (az−1)

−N

1− az−1
=

zN − aN

zN (z − a)
(4.11)

z = 0, a

Poles

Zeros

zk = aej2πk/N , k = 0, 1, 2, ...N − 1
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4. Recognition and Analysis of Dysarthric Speech

The zero at k = 0 cancels with the pole at z = a, thus creating a void in the ZP-plane.

The void is termed “zero-gap” in the literature. The only other pole is at z = 0, which

implies that ROC for the above transform is the complex plane |z| > 0. For the current

analysis we are only interested in plotting the roots of the z-transform and studying the

ZZT patterns. For the above exponential the ZZT plot looks like
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Figure 4.30: ZZT patterns for the exponential function an for varying values of a. The (i)

top chart is the time domain signal and the (ii) bottom chart is the respective ZZT plot in

polar format.

It should be noted that for all the values of a, there is a zero-gap gap created at the 0th

frequency bin due to the pole-zero overlap. The idea of plotting the roots of the z-transform

can now be easily extended to examine real speech segments, which will be covered in the

next sections.
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4. Recognition and Analysis of Dysarthric Speech

4.2.4.2 Relationship between ZZT, phase and articulation

The ZZT representation is completely characterised by the magnitude and phase of the

complex roots. In this section we will explore the effect of phase on the articulation rate

and ZZT patterns of a synthetic speech signal.
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Figure 4.31: The effect of applying phase group delay filter on a time-domain signal. (a)

Synthetic time-domain signal comprising two distinct frequencies at 4-kHz and 2-kHz, (b)

Effect of applying phase group delay filter on one of the frequency components of the

synthetic signal, (c) & (d) represent their magnitude and phase spectra and (e) & (f)

represent the ZZT plot for the input and output time-domain signals.
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4. Recognition and Analysis of Dysarthric Speech

The importance of emphasising phase early in this section is that dysarthric speech

is often characterised by slow and imprecise articulatory movements. Therefore, there is a

greater chance that its acoustics might show a larger degree of delay in the phase components

when compared to typical speech. It will be worth exploring if such delayed phase response

has any relationship to the ZZT patterns of dysarthric speech which provides observable

evidence for the relationship between phase and articulatory delays.

We start by constructing a synthetic signal comprising of two sinusoidal components

with frequencies of say 4-kHz and 2-kHz respectively. The different sinusoids are then

concatenated one after another in time domain as depicted in part (a) of figure 4.31. The

first envelope reflects the 4-kHz signal and the later envelope pertains to the 2-kHz sinusoid

followed by silence.

The effect of phase delays are shown by simulating an arbitrary group delay filter, which

is an all pass filter generally used for correcting phase distortions. For this we have used

the fdesign.arbgrpdelay() function of MATLAB version R2016b. The order of the filter is

set to 20 and the sampling frequency is assumed to be 16 kHz. We intentionally set the

filters phase group delay at 6.25 milliseconds on the higher frequency component of 4-kHz

and observe its effect. The application of the filter on the input signal produces the time-

domain signal represented by part (b) of figure 4.31. It can be easily seen that due to the

phase delay, the higher frequency component has moved back in time. It can also be seen

that if a particular frequency component has a delay when passed through a filter system,

then one of the causes might be related to phase group delays. This is exactly what we

had speculated earlier about slow articulation and phase of dysarthric speech, where these

delays might be greater than that of typical speech.

There were some other noteworthy observations from this simulation, which are high-

lighted below:

• The magnitude spectrum has always been the preferred part of the Fourier output and

is widely used in most of the feature representation (MFCC, PLP etc.) of disordered

speech. It can be seen that parts (c) and (d) of figure 4.31 shows the magnitude and

phase spectrums for the input and output signal with high degree of correspondence.

Both the representations show peaks at the expected frequencies of 4-kHz and 2-kHz.

It is also observed in the later parts of this section that ZZT analysis conducted for

dysarthric vowel segments gives suggestive evidence about the importance of phase

in analysing dysarthric speech. This motivates us to explore if phase-based feature
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4. Recognition and Analysis of Dysarthric Speech

representations of disordered speech are any better for representing dysarthric vari-

abilities than the magnitude based spectrum. Later chapters in the thesis will explore

this aspect from dysarthric ASR point of view and study the effect of different spectral

representations.

• Lastly we will try to interpret the outcome of ZZT plots in parts (e) and (f) of

figure 4.31 due to the application of phase group delay filter on the input signal. For

this, it is important to understand the influence of poles and zeros on the frequency

response of any system. We can recall that the frequency response magnitude of a

system is represented as:

|X(z)| =
∑M

k=0 bkz
−k∑N

k=0 akz
−k

(4.12)

Since the stability of X(z) relies on ROC to contain the unit circle at |z| = 1, the

above equation is substituted with the complex exponential z = ejω, which gives the

frequency response magnitude in pole-zero format as:

|X(ejω)| = |b0|
|a0|

∏M
k=1 |1− cke−jw|∏M
k=1 |1− dke−jw|

=
|b0|
|a0|

∏M
k=1 |ejw − ck|∏M
k=1 |ejw − dk|

(4.13)

In the above equation ck and dk represent the zeros and poles of the system and

|ejw − dk|, |ejw − ck| represent the distance of a particular frequency bin on the unit

circle from the respective zero and pole. Equation 4.13 can be put in a simplified form

as

|X(ejω)| = |b0|
|a0|

”distance of ejω from zeros”

”distance of ejω from poles”
(4.14)

It is now easier to interpret from the above representation that poles near to the unit

circle push the frequency response high and zeros near to the unit circle push the fre-

quency response low. In lieu of the above explanation, we can observe from parts (e)

and (f) of figure 4.31 that more zeros are present near to the unit circle of the output
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4. Recognition and Analysis of Dysarthric Speech

signal due to application of the phase group delay on the input signal. This inadver-

tently introduces a limited passband, which might inhibit the full frequency response

of the system. Hence, for dysarthric speech where phase delays might be influenced

by slow articulation and other physiological insufficiencies, the phase distortions need

a closer examination. This thesis will address one such instance of phase deviation in

the next chapter and show its relationship to the intelligibility of dysarthria and how

the knowledge can be utilised to improve ASR performance.

The remainder of this section will expand the above discussion in examining the ZZT

patterns for disordered speech and corroborate the importance of phase related events in

the analysis of dysarthric signals.

4.2.4.3 ZZT analysis of a typical vowel segment

In order to examine the ZZT patterns for dysarthric speech, the process is first studied for a

typical speech token. It will enable us to draw a reference of comparison for distinguishing

between ZZT plots of varying dysarthric intelligibility.
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Figure 4.32: Analysis for the vowel /iy/ (top) and /uw/ (bottom) for a control speaker. It

shows the (left) waveform representation for a 25 ms vowel segment, (middle) magnitude

spectrum of a hanning-poisson windowed signal and (right) the ZZT plot.
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Figure 4.32 shows the waveform, magnitude spectrum and the ZZT pattern for the

manually selected vowel segments /iy/ and /uw/ for a control speaker. Since windowing

is an essential step for acoustic analysis of any real-life speech data, a variety of window

functions were tried out (not reported) and we have selected the Hanning-Poisson window

for the computation of zero patterns as it gave the best resolution, in accordance with the

expected theoretical output of the ZZT plot. When a ZZT distribution is plotted for the time

domain convolved signal, it exhibits a butterfly like pattern, which is clearly demarcated

into three distinctly visible areas on the z-plane.

A detailed explanation and interpretation of such a kind of ZZT analysis on synthetic

and real speech signals can be found in the work carried out by Bozkurt, Couvreur, and

Dutoit (2007). The authors presented that the the zeros above the unit circle pertain to

the glottal pulse of the signal, the zeros below the unit circle pertain to the vocal tract

filter response and the zeros along the approximate line of the unit circle correspond to the

impulse train zeros. As explained earlier, a ZZT plot also produces void gaps along the

horizontal axis where the poles and zeros coincide. It was presented by Bozkurt, Couvreur,

and Dutoit (2007) that the presence of such void gaps is indicative of spectral dips on the

spectrum that gives rise to the harmonics for the impulse train area, formant presence for

the vocal-tract area, and for the glottal flow void gaps there is no clear understanding in the

literature. Lastly, the authors also put emphasis on choosing particular window functions,

like Gaussian or Hanning-Poisson and the centring of such analysis window at the glottal

closure instant for getting a ZZT plot that closely matches the theoretical expectation.

4.2.4.4 ZZT analysis of a dysarthric vowel segment

In order to examine the ZZT patterns for dysarthric speech, one speaker from each of

the intelligibility groups is selected. The ZZT analysis for each speaker is then conducted

for the front-high vowel /iy/ in the production of the word be. The vowel segments are

manually selected for each speaker’s production, ensuring that the selected speech chunk

is aligned at the glottal closure instants. As mentioned earlier, the aim of this section is

not to conduct a detailed ZZT analysis of disordered speech for every vowel token, but

rather explore any distinguishable cues in the z-plane, which might be representative of

an underlying dysarthric variability or motivate novel ways to look at speech disorders.

Figure 4.33 exhibits some noticeable observations and gives further points for consideration.
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Figure 4.33: ZZT patterns for the front-high vowel /iy/ under various intelligibility groups.

Distribution of Zeros

The ZZT plot of figure 4.33 exhibits a distinguishable pattern for different levels of dysarthric

intelligibility. The expected distribution of the roots for the mildly dysarthric and high intel-

ligibility speakers closely resembles the control speaker representation shown in figure 4.32,

i.e., it has a much clearer delineation between the zero regions related to the glottal pulse,

impulse train and the vocal tract filter response. However, this distinction is skewed for

severe group of speakers as shown in the upper half of figure 4.33. One speculation that

can be drawn from such observations is the basis for establishing a link between articu-

latory, velo-pharyngeal and glottal insufficiencies manifest in dysarthric speech with the
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4. Recognition and Analysis of Dysarthric Speech

ZZT distribution of the signal. For example, the ZZT plot of /iy/ in context with the stop

consonant /b/ for the speaker with very-low intelligibility (top-left of figure 4.33) shows a

skewed mapping of zeros, where the delineation between source and filter is indistinguish-

able. Hence it might give an unexpected region of zero-gaps near the circle below unity,

which is not the expected formant structure for /iy/. This might be happening due to

any physiological factor such as poor VOT due to bilabial insufficiency or poor formant

structure due to a compromised filter system. However, all this is guesswork and there is no

study in the literature which can give a systematic relationship between the ZZT patterns

and articulatory or glottal events, albeit it is an area worth investigating for future research.

This thesis will not look into these relational aspects and will focus on decoding the ZZT

patterns from an ASR performance viewpoint.

ZZT Patterns of another vowel

The front-high vowel /iy/ was examined in figure 4.33 that gives us some expectation about

how the ZZT patterns emerge for dysarthric speakers of varying intelligibility. It is practi-

cally infeasible to analyse every vowel token and speaker of the UASPEECH database for

establishing a more robust understanding of the ZZT patterns of disordered speech. How-

ever, in order to establish a more convincing argument that the ZZT patterns of figure 4.33

is not an artefact for any particular vowel token, we extend the same experiment for the

back-high vowel /uw/ with same speakers, spoken in context of the word do.

It can be seen that the ZZT patterns for the vowel /uw/ in figure 4.34 share a high degree

of resemblance to the ZZT patterns of /iy/ in figure 4.33. It shows a discernible pattern

of zeros for the high intelligible speakers and a more skewed distribution for speakers with

lower intelligibility. It can thus be induced with a reasonable degree of confidence that such

scatter of zero patterns is not by chance and it might be linked to the intelligibility of the

disorder.

Theoretical Expectation for the ZZT distribution

The ZZT plot is completely characterised by the magnitude and phase of the complex

number. From a speech processing perspective, we have less control over the region of

convergence (magnitude), as speech is a mixed phase signal. This suggests that there might

be some phase related acoustic events happening within severely disordered speech signals

131



4. Recognition and Analysis of Dysarthric Speech

0.9

0.95

1

1.05

R

very-low intelligibility low intelligibility

-8000 -4000 0 4000 8000
Frequency (Hz)

0.9

0.95

1

1.05

mid intelligibility

-8000 -4000 0 4000 8000
Frequency (Hz)

high intelligibility

Figure 4.34: ZZT patterns for the back-high vowel /uw/ under various intelligibility groups.

that are producing a skewed map of the zeros in the z-plane. This might be one of the reasons

for the poor recognition and perceptual understanding of speech signals with high degree

of severity. This motivates us to think that if such phase distortions can be systematically

manipulated in a controlled fashion to produce the expected ZZT distribution, it can be

a useful step to reduce variabilities in dysarthric speech and produce a clear demarcation

between source and filter components. As an example, consider the ZZT plot of speakers

with very-low and high intelligibility for /iy/ and /uw/. It is the top-left & bottom-right

charts in the figures 4.33 and 4.34. If we plot the unwrapped phase component of its

complex roots and compare it against the control speaker, the difference is easy to visualise

in figure 4.35. The plot is shown for the four corner vowels and is averaged across all the
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utterances of the UAPSPEECH database for the examined speakers. The vowel segment

is automatically extracted by taking a 25 ms frame from the centre of the vowel, whose

location is derived by the process of forced alignment. It must be noted that the default

ordering defined for the roots() function is used for each plot in figure 4.35. The phase

slopes for the very-low and high intelligibility speakers seem to suggest a huge operational

range within which the ZZT patterns for a variety of dysarthric speakers might fall.
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Figure 4.35: Plots for the unwrapped phase of the complex roots of the four corner vowels

for a control speaker and dysarthric speakers with very-low and high intelligibility. The

plot is averaged across all the utterances in the UASPEECH database for the examined

speakers.
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This range is by no means a generalisation for such phase deviations manifest in the

dysarthric signal, but it rather seems to suggest some relationship between dysarthric speech

signals and phase based acoustic events. This re-emphasises the notion that phase-based

analysis might act as an important tool in understanding some of the speech aberrations,

which are manifest in disordered speech with high degree of severity. We believe that

reducing the aberrations observed in the ZZT distribution for speech with high degree

of severity might not be useful from a perceptual point of view, as both magnitude and

phase play a collectively important role in synthesizing intelligible speech. However, such

phase-based corrections might act as a beneficial step for reducing some hidden artefacts in

disordered speech. Such signals can act as better representatives of data that is easier to

model by speech decoding algorithms.

Although the ZZT observations discussed earlier have given us useful insights into the

importance of phase-based analysis in understanding some aspects of the disordered speech

signals, the analysis will not be further explored in the Z domain in the remainder of

the thesis. This is due to three main reasons. Firstly, since it is still one of the scantily

explored areas in the field of dysarthric ASR, it is believed that more research is needed

to further consolidate our observations and it is beyond the scope of this thesis to look

into those aspects. There is hardly any work in the literature which looks at phase aspects

of the dysarthric signal and if they bear any correlation with severity, etiology or type of

dysarthria. Secondly, as discussed earlier, the plots shown in figure 4.35 are dependent on

the internal ordering of the complex roots as dictated by MATLAB. It is not very clear

at the moment what that internal ordering is and further research would be needed to

understand the effect of the observed deviations in regard to the root order.

Lastly, although the averaging effect of the phase deviations observed in figure 4.35

gives a compelling picture of some underlying phase-based artefact that can be present

in dysarthric speech of varying intelligibilities, it can be influenced by the alignment of

the examined speech segment at the glottal closure instant. As an example, figure 4.36

shows a portion of the vowel segment that was manually extracted for one of the speakers

with very-low intelligibility. The blue dotted area shows the approximate segment that is

manually aligned at the glottal closure instant and the red dotted area shows a misaligned

shift. It can be seen that the phase slope deviation is affected by the improperly aligned

vowel segment at the glottal closure instant.
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Figure 4.36: Effect of the incorrect glottal closure alignment on the unwrapped phase.

In future research, robust automatic methods for the alignment at the glottal closure

instant could be explored to understand the effect of such deviations with a greater degree of

accuracy, which could direct towards a more informed understanding of such a phenomenon.

4.2.5 Summary of the acoustic analysis

In section 4.2 of this chapter, an acoustic analysis was conducted on the UASPEECH

database with the intent of finding an association between the acoustic variable(s) and the

underlying dysarthric intelligibility, type or etiology. The initial investigation was conducted

using several acoustic variables. The temporal disruptions were studied using measures like

syllables per second (sypse) and VOT of voiceless/voiced stop consonants and the frequency

aspect of the dysarthric speech was examined using qualitative and quantitative estimates

in the F1-F2 plane. The investigation has given a better insight into the understanding

of dysarthric speech. Many of the findings were coincidental with other similar studies on

dysarthria and some new quantitative measures were also introduced.

The sypse measure showed a direct relationship between slow speaking rate and the

underlying dysarthric intelligibility. The dysarthric speech in general was measured at

more than 1.5 times slower than typical speech. It was observed that for the very-low

intelligibility, syllable production was about twice as slow as the control group and the

high intelligibility group was closer to typical speaking speed. The relationship between

the syllable production rate and intelligibility were analogous to some other similar studies

reported on dysarthria in general (Kent et al., 2000) and on other types of dysarthria (Blaney
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and Wilson, 2000; Chenausky, MacAuslan, and Goldhor, 2011). However, the analysis also

showed that the sypse trend does not hold between speakers for the lower intelligibility

group, which is indicative of inter-speaker variabilities manifest in the acoustics of severely

disordered speech. This might be one of the reasons that SAT based systems were more

effective at modelling lower intelligibility group of speakers and high intelligibility speakers

gave the best performance using SI-03 system prepared from typical speech with same

vocabulary as the target test speakers.

The VOT measure also tends to exhibit escalated mean values for both voiced and

voiceless plosives as the intelligibility decreases. Dysarthric speech had around 2.5 times

more variability across the VOT estimates of all the stop consonants than the control

group of speakers. Our findings are also in agreement with earlier research on dysarthria

and VOT. For example Kent and Kim (2003a) reported a summary of key VOT studies

that highlighted the link between longer VOT durations and dysarthric intelligibility. In

addition, VOT can also be used as a useful measure for detecting phonemic and phonetic

errors (Morris, 1989). The VOT analysis on UASPEECH exhibited the presence of such

phonemic errors in the lower intelligibility group of speakers. An understanding of such

phonemic distortions can be very important in delineating confusing phoneme pairs to

build a customised user dictionary that will be more appropriate for particular dysarthric

speakers. It can also aid in building robust acoustic models, for example, in the context of

HMM-GMM systems, better phonetic decision trees can be constructed for optimal state

clustering.

If the VOT and sypse measures were taken across various intelligibility groups, then the

broad temporal rule that was evident is described as:

sypse ∝ Intelligibility

V OT ∝ 1

Intelligibility

The above rule depicted by the sypse measure was also evident in the evaluation of

F1-F2 space. The highly skewed plotting of the vowel quadrilateral in the F1-F2 plane was

indicative of flaccid and limited range of tongue movement. The thesis improvised on the

definition of F1-F2-(area) and introduced new measures of F1-F2-(shape, displacement).

These measures were helpful to explicate a quantitative understanding of the F1-F2 plane

and its relation to the underlying dysarthric intelligibility.
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The first measure of F1-F2 area was computed as a compression factor (CF ), which is

the logarithmic ratio of the control and dysarthric formant spaces. It showed a better under-

standing of inter and intra speaker variabilities manifest in the dysarthric speech and showed

no specific association with the perceptual correlate of intelligibility. A higher CF value

was usually indicative of decreased intelligibility and skewed mapping of the vowel tokens.

The second measure of shape gave a geometrical interpretation of the F1-F2 plot, which

was either convex, concave or flipped in its presentation. In particular the concave/flipped

arrangement was indicative of overlapping or confusing vowel tokens with reduced phona-

tory discrimination. Lastly, the F1-F2 displacement was also evaluated as a quantitative

estimate that measured the displacement of dysarthric vowel space relative to typical. Any

displacement observed above the mean central distance of an intelligibility group might be

an indication of a notable formant shift for a particular speaker. Such displacement might

suggest towards designing explicit filters or specific FFT parametrisation to capture the

dynamics of the speech. Since this field of study is not the prime focus of the thesis, this

topic will not be researched any further.

Although the area, shape and displacement are useful measures that highlight some un-

derlying dysarthric phenomena, a more robust understanding can be attained by combining

these variables together. For example, a concave F1-F2 space with high CF and displace-

ment value is most likely indicative of a severe dysarthric speaker who exhibits compromised

phonatory discrimination and has unbounded F1-F2 region. As another specific example, it

was observed in figure 4.21 that the high intelligibility group shows a slight but consistent

shift towards higher F1 and lower F2 that might affect the displacement factor. However,

for the same group of speakers it was also observed that the CF factor remains very low

indicating towards a well-defined F1-F2 region with non-overlapping phonetic tokens. It is

shown in an earlier study that reduced intelligibility is more akin to overlaps of the corner

vowels (Kim, Hasegawa-Johnson, and Perlman, 2011). In context of our analysis, the quan-

titative measures of shape and area can be jointly exploited to understand its relationship

to intelligibility. As a hypothetical example, one can make a reasonable estimate that a

flipped displacement of F1-F2 space with an increased CF value might indicate reduced

intelligibility.

Another encouraging result was the outcome of the correlation analysis between the

key acoustic variables investigated in this study and the corresponding ASR performance.

It was noted that in most cases the results conformed to the expected directionality and
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strength of the correlation measure across various speakers and intelligibility groups. This

is promising as it not only indicates that such acoustic variables are useful from an ana-

lytical perspective, but it can be explored further to devise measures for improving ASR

performance. For example, when observed across speakers, displacement did not come up

as a strong correlating factor for ASR performance and CF showed up as a strong indicator.

This is evident in the ASR results where high intelligibility speakers show better recogni-

tion despite subtle formant shifts as noted in figure 4.21. On the other hand, very-low

intelligibility speakers who have escalated CF factor exhibit poor ASR scores.

Despite the encouraging insight into understanding the patterns of dysarthric speech,

none of the acoustic variables examined exhibited a strong functional association with the

intelligibility of dysarthria. It can be hypothesised that at present the irregularities of

the dysarthric signal in the temporal and frequency domain are implicitly modelled by the

speech systems. In a quest to devise an explicit methodology to rectify a dysarthric spe-

cific acoustic phenomenon, a novel way of comprehending dysarthric signals was explored.

Instead of inspecting the speech signal in the frequency domain, the signal was directly

examined in its original time-domain representation by studying the ZZT (Zeros of the

Z-Transform) patterns of the vowel segments. The patterns in the ZZT plot revealed in-

triguing facts and exhibited a strong relationship to the underlying dysarthric intelligibility.

The analysis shows that a phase based phenomenon was responsible for a skewed distribu-

tion of zeros patterns in speech with degrading intelligibility. It further pointed towards

a functional relationship that might exist between the unwrapped phase component of the

complex roots of ZZT and the underlying dysarthric intelligibility.
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4. Recognition and Analysis of Dysarthric Speech

Concluding Notes
The ZZT analysis conducted here opens some interesting avenues, especially in

the phase domain of dysarthric speech signals. It is compelling to think that if

phase tends to reveal some important underlying dysartrhic artefacts, then it might

also have the potential to encapsulate important acoustic cues that are unique to

a particular dysarthric severity or variability. These aspects are explored in the

remainder of this thesis that will:

• Attempt to develop a theory around the phase component of dysarthric speech

signals and study its association with the underlying speech severity. It will

also investigate whether such phase based artefacts can be systematically

amended for improving the overall dysarthric ASR performance.

• Explore the usefulness of information that might be encoded in the phase

component of speech signals and see if any phase based feature representa-

tion is better suited to model dysarthric variabilities for improving the ASR

performance.
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Chapter 5

Phase-based Analysis of Dysarthric

Speech

In the previous chapter a new method for the analysis of dysarthric speech was explored by

studying the ZZT patterns of its vowel segments. It was evident from the investigation that

there is a relationship between the plots of the ZZT pattern and some underlying phase-

based acoustic event in the acoustics of dysarthric speech. Figure 4.35 revealed that when

the phase of the complex roots of the z-transform of the time domain signal was plotted,

it exhibited a discernible operational range of phase deviations for the dysarthric signals

across varying levels of intelligibility.

In this chapter we will extend the idea of phase deviations to investigate dysarthric

vowel segments using Fourier transform analysis. We will study if phase deviation might

have any relationship to the underlying speech impairment and if such association can be

utilised for improving the overall ASR performance on dysarthric speech.
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5. Phase-based Analysis of Dysarthric Speech

5.1 Phase-slope deviation

We begin by introducing a new metric that will encapsulate a quantitative notion of the

phase slope deviations for analysing the dysarthric vowel segments. For any discrete signal

x[n], the N-point DFT is given by

X(k) =
N−1∑
n=0

x(n)e

−j2πkn
N (5.1)

where k is the kth frequency bin of N uniformly spaced frequencies. The DFT of real

numbers produces complex conjugate pairs at ceil{(N + 1)/2}, so we discard the top half

of the DFT output and use the lower half for processing information up to the Nyquist

frequency. Since X(k) is a complex quantity it can be decomposed into its polar form as

X(k) = |X(k)|ejφ(k) (5.2)

where |X(k)| is the magnitude spectrum and φ(k) = ^X(k) is the wrapped phase

spectrum, which is chaotic in nature. To make any meaningful interpretation from the phase

spectrum it is generally unwrapped by adding multiples of ±2π whenever the alignment

between consecutive frequency bins exceeds π. This was performed using the unwrap()

function defined in MATLAB version R2016b. Based on the definition of continuous phase

spectrum we define a metric called Phase Slope Deviation (PSD) as

PSD(A,B) = F
[
U[φA(·)]

]
− F

[
U[φB(·)]

]
(5.3)

where U[.] is the unwrapped phase spectra, F[.] is the slope of the first degree polyno-

mial that fits the phase spectrum in the least square sense and A,B represents the phase

data points at N discrete frequency bins that are compared for deviation. The range of

PSD(A,B) will lie between (−π/2, π/2).

5.2 PSD analysis of dysarthric vowels

This section will investigate the effect of the phase-slope deviation defined by equation 5.3

between dysarthric and typical vowel tokens. In order to make an independent judgement

in measuring the PSD, the analysis will be averaged across six different vowel groupings as

shown in table 5.1.
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5. Phase-based Analysis of Dysarthric Speech

Category Tokens

front-vowels /iy/ /ih/ /eh/ /ae/

back-vowels /aa/ /ao/ /uh/ /uw/

high-vowels /iy/ /ih/ /uh/ /uw/

low-vowels /eh/ /ae/ /aa/ /ao/

diphthongs /ey/ /ay/ /aw/ /ow/ /oy/

all-vowels front + back + diphthongs

Table 5.1: Vowel categories with the list of phonetic tokens examined under it.

The analysis is conducted using a 512-point FFT with Hamming window applied over

the entire vowel segment, which are pre-segmented using forced alignment. The final rep-

resentation for each vowel grouping is averaged under the intelligibility categories defined

in the UASPEECH corpus, viz., very-low, low, mid and high.

5.2.1 PSD and dysarthric intelligibility

The main steps involved in computing the PSD metric according to equation 5.3 between

dysarthric and typical vowel tokens is given in the pseudo-code listing 5.1 and the slope

differences evaluated for various vowel groupings and intelligibility categories is shown in

figure 5.1. It seems to exhibit a strong association with the underlying dysarthric intelligi-

bility. The plot shows a nearly linear relationship, where higher PSD value is indicative of

lower intelligibility and vice versa. The deviations reported for various intelligibility groups

are derived relative to similar vowel tokens examined for the typical speech data from the

same corpus. The homogeneity of the dysarthric and typical data will ensure that similar

vocabulary and recording conditions are present in both groups of speakers for each vowel

token.

1 . for each d y s a r t h r i c speaker

2 . for each vowel token

3 . for each ut te rance

4 . compute the unwrapped phase

5 . compute the s l ope o f the l i n e that f i t s the phase

6 . end

7 . average s l ope a c r o s s a l l the u t t e rance s
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5. Phase-based Analysis of Dysarthric Speech

8 . end

9 . end

10 . repeat 1−9 for an average c o n t r o l vowel r e p r e s e n t a t i o n

11 . for each d y s a r t h r i c speaker

12 . for each vowel token

13 . compute PSD metr ic

14 . end

15 . end

16 . average a c r o s s examined vowel groups

17 . average a c r o s s examined i n t e l l i g i b i l i t y groups

Listing 5.1: Main steps in computing the PSD metric between dysarthric and typical vowels.

It is also noted that the deviations in figure 5.1 seems to manifest an unbiased trend,

as it appears to be independent of any particular vowel category. All this suggests that

the results as predicted by the PSD metric are representative of some underlying acoustic

artefact, which might be detrimental to dysarthric ASR performance.
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Figure 5.1: PSD analysis for speakers with dysarthria in UASPEECH database. The data

spread is shown for the all-vowels category.
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5.2.2 The behaviour of PSD on a secondary data source (VIVOCA)

It was seen in the last section that the PSD metric shows a linear correspondence with

underlying intelligibility. In order to validate that the effect of the PSD metric is inde-

pendent of any particular database, the same analysis was conducted on a different source

of dysarthric data. The secondary data source was collected as a part of the VIVOCA

project (Hawley et al., 2012; VIVOCA, 2012) at the University of Sheffield. The VIVOCA

database comprises of 13 users with different dysarthric etiologies and varying levels of

intelligibility. Table 5.2 shows a summary of the data for the VIVOCA users.

User Aetiology
Dysarthria

Type

Vocabulary

Size

Total

Files
Intelligibility

V2-1 CP spastic 35 1225 A?

V2-2 TBI spastic + ataxic 14 742 B

V2-3 CP spastic 19 514 A

V2-4 CP spastic 57 2956 A

V2-5 CP spastic 35 1674 A

V2-6 CP spastic 64 2821 A

V2-7 CP spastic 100 4543 A

V2-8 MND flaccid + spastic 28 933 A

V2-9 MND flaccid 11 220 C

V2-10 PD hypokinetic 6 145 A?

V2-7? CP spastic 20 934 A

V2-11 PD hypokinetic 16 712 A

V2-12 MND flaccid + spastic 13 432 A

Table 5.2: Summary of the VIVOCA users. The codes in the last column broadly indicate

the intelligibility as: A(<20%), B(20%-50%) and C(>50%). Starred symbols for intelligi-

bility are the result of informal listening tests and unstarred symbols are measured using

the word-level intelligibility assessment procedure described in Hawley et al. (2012)

The VIVOCA data was collected over a duration of more than 5 years through different

recording mediums (Hawley et al., 2012), viz., PDAs, PC and specialised hardware based
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5. Phase-based Analysis of Dysarthric Speech

on Intel XScale family of processors (PXA270), especially built for the VIVOCA project

by one of the industrial collaborators. All the recorded data was sampled at 8 kHz with

a mono channel input. Since VIVOCA was aimed to provide bespoke speech solutions for

dysarthric speakers with low intelligibility, there was no standard vocabulary used and it

varied across all the speakers according to their individual needs (see table 5.2). Hence,

there is no overlap between the vocabulary of UASPEECH and VIVOCA.

Although total words in the VIVOCA vocabulary is less than half and its speech material

is around four times less than the UASPEECH database1, it still provides a good variety of

speakers with dysarthria. Also, in the way VIVOCA was implemented as a project, a large

part of data was collected in more realistic conditions under which a dysarthric user is more

likely to use any speech technology for communication (for e.g. home, place of work etc.).

VIVOCA can thus be very useful dataset to test the efficacy of the PSD metric. It will not

only investigate if the relationship between PSD and intelligibility is not an artefact of any

particular database but it will also test the robustness of PSD using data from more diverse

and realistic speaking environment.
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Figure 5.2: PSD analysis for the speakers with dysarthria in UASPEECH and VIVOCA

databases.

1Due to the smaller size of the VIVOCA dataset, some of the vowel tokens were unavailable for particular
speakers. The details of all the missing vowel tokens for individual speakers is given in the appendix table B.1.
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The result of the PSD analysis for the VIVOCA dataset along with the earlier UASPEECH

findings are presented in figure 5.2. It is an encouraging output where the average PSD

effect for the VIVOCA speakers tend to converge within the range of severe speakers as

predicted for UASPEECH database with a similar intelligibility profile of less than 50%.

This is empirically suggestive that the PSD metric might be able to quantitatively explain

the relationship between the extent of phase based deviations and the underlying speech

intelligibility of the dysarthric speaker.

The above finding is also suggestive that the PSD metric is less sensitive towards miss-

ing information, whilst predicting the underlying intelligibility and can give reasonable

estimates under sparse data conditions. This can be validated by the fact that, despite

the unavailability of data for certain vowel tokens across various VIVOCA speakers (See

appendix table B.1), the average PSD score was still predicted around the expected range

for the lowest intelligibility group of speakers.

The PSD predictions for the VIVOCA database also seem to be independent of any

particular vowel category examined, which confirms with the earlier findings on UASPEECH

(Figure 5.1). Although there is a small deviation noted for the diphthong category of the

vivoca-low group of speakers, it is most likely attributed to the unavailability of diphthong

data for a large group of speakers, i.e., 12 out of 13 speakers had no data for /ow/ and 7 out

of 13 speakers had no data for /aw/ (See appendix table B.1). The missing information can

make the overall averaging effect biased towards the intelligibility of the examined speakers.

5.2.3 An operational understanding of PSD

It was shown in sections 5.2.1 and 5.2.2 that PSD metric seems to hold a strong association

with the underlying dysarthric intelligibility, which seems to manifest a nearly linear model.

The relationship of PSD was studied with broad categorical descriptions of intelligibility

(very-low, low, mid, high). In order to further understand this association and draw any

meaningful conclusion about the operational behaviour of PSD, the metric was computed

on a speaker-wise basis. Figure 5.3 shows the PSD plot for each UASPEECH speaker which

are colour coded according to their categorical description of intelligibility.

The scatter plot shows a negative correlation of r = −0.87 (p < 0.01) between the PSD

metric and underlying quantitative estimate of intelligibility. The high degree of correlation

emphasises the strength of PSD metric in predicting the underlying speaker intelligibility

and the negative correlation is indicative of the fact that the deviation in PSD increases
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Figure 5.3: Relationship between PSD metric and intelligibility for speakers with dysarthria

in UASPEECH. The coloured dots represent speakers from various intelligibility groups and

the green line is the linear regression fit for the data points.

with decreasing intelligibility.

Figure 5.3 also shows a regression trend line plotted for the observed variables. It was

plotted using the polyfit() function defined in MATLAB version R2016b. The parameters

of the function were set to predict a linear model of best fit in the least square sense.

If the trend line is used to predict the underlying average categorical intelligibility, an

approximation of the operational range for the PSD metric can be hypothesised as shown

in table 5.3.

Such regression analysis can be exploited to draw theoretical estimates for unknown

measures like PSD metric or intelligibility about a given speaker. For example, if an estimate

for intelligibility is available for a speaker then its approximate PSD score can be computed

without analysing any user-specific acoustics and if sufficient user data is available for most

of the vowels, it can estimate a quantitative measure for intelligibility. The regression trend

shown in this case is represented by a simple linear model, which seems apt for the data.

More sophisticated and accurate models can also be utilised if the data shows complex

non-linear patterns. In either ways, it can enable us to plot a particular speaker as a point

of singularity on similar charts as represented by figure 5.3.
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Perceptual Correlate

of Intelligibility

Expected

PSD Score

High < 0.15

Mid 0.15 − 0.25

Low 0.25 − 0.30

Very Low > 0.30

Table 5.3: A hypothesised relationship between the PSD metric and the broad level cate-

gorical intelligibility classifications defined in UASPEECH.

This could be beneficial from an ASR perspective, as it can guide our understanding

for systematically building speech models by clustering data of speakers from multiple

sources who might be sharing similar acoustic properties. Alternatively, it can predict an

acoustically driven real-time estimate of a speaker’s intelligibility that can give a more

streamlined approach for any speech based therapy and rehabilitation process.

In case of the VIVOCA database shown in table 5.2, it is difficult to draw any precise

conclusion about the PSD metric or intelligibility for any speaker. It is partially attributed

to (i) Missing vowel data for various speakers (Table B.1) that might give a slightly skewed

prediction for the PSD metric or (ii) Inconclusive estimate for a speaker’s intelligibility that

is not based on a systematic assessment procedure of dysarthric speech (Enderby, 1983;

Hartelius and Svensson, 1990; Yorkston and Beukelman, 1984). However, such missing

information can always be gathered by either collecting more data or conducting formal

listening tests.

In order to demonstrate the importance of the regression process, let us examine one

speaker each from the three categorical intelligibility groups in VIVOCA, viz. A(<20%),

B(20%-50%) and C(>50%). Let the speakers be V2-3 (A), V2-2 (B) and V2-9(C) with

approximate average intelligibilities of 10%, 35% and 75%. In addition we also select the

”only” speaker V2-4 that has data available for all the vowel tokens under examination. The

task is to predict the PSD scores for the first three speakers and the perceptual measure

of intelligibility for the last speaker and examine how it fits in relation to the UASPEECH

plot of figure 5.3. The regression line shown in figure 5.3 has the following linear equation

y = −0.0033x+ 0.3811 (5.4)
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where y is the PSD score and x is the quantitative estimate of intelligibility. Table 5.4

shows the predicted values of PSD and intelligibility based on equation 5.4.

Speaker
Approximate

Intelligibility

Known PSD

Score

Predicted

PSD Score

Predicted

Intelligibility

V2-3 A (10%) - 0.3481 -

V2-2 B (35%) - 0.2656 -

V2-9 C (70%) - 0.1501 -

V2-4 - 0.3562 - ≈ 8%

Table 5.4: PSD and intelligibility scores for the VIVOCA users as predicted by the regression

equation 5.4.

A graphical representation of the estimated values is shown in figure 5.4.
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Figure 5.4: Predicted PSD and intelligibility estimates for VIVOCA speakers described in

table 5.4. The estimated values are represented by solid squares and diamond and plotted

against the UASPEECH speakers.
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As per the PSD operational range defined in table 5.3, the first three speakers V2-3, V2-

2 and V2-9 can be broadly classified as having very-low, low and mid level of intelligibility.

On the other hand, for the speaker V2-4 with a PSD value of 0.3562, the intelligibility was

predicted at approximately 8%. These theoretical estimates for the PSD and intelligibility

values seem to nicely fit the practical expectation for the speakers under consideration.

5.2.4 Correcting PSD in dysarthric speech

In the preceding sections we have been able to draw a systematic inference about the

relationship between the PSD metric and the perceptual notion of intelligibility. The ex-

amination conducted on two databases produced similar results, which exhibits a linear like

relationship between the PSD scores and intelligibility. One of the propositions that can

be drawn is to introduce a corrective approach which can reduce the effect of such phase

deviations as measured by the PSD across various intelligibility groups. The efficacy of

such corrections can then be directly tested by evaluating the ASR performance of various

speech systems.

Take 25 ms frames and
apply rectangular window

Apply FFT and 
keep lower half

Decompose
Spectra: |X(.)|

Phase: ΦD

Replace dysarthric phase
with control phase

ΦD=ΦC

Reconstruct Speech Segment

IFFTframe1 {|X(.)| * ejΦc} + 
IFFTframe2 {|X(.)| * ejΦc} + ..........

Repeat for
Consecutive Frames

Vowel
Segment

Figure 5.5: Correction measure to reduce the deviation effect of the PSD metric.

Historical evidence suggests that the human ear is not very good at resolving phase

information (Helmholtz, 1912; Ohm, 1843) and for this reason most perceptually motivated
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features like MFCC and PLP do not exploit the information in phase spectra. One might

therefore think that any correction to PSD alignments would be futile. However, if PSD

predicts undesirable acoustic artifacts relative to intelligibility, then its correction might

alter some underlying variabilities in a way which might be useful from a representational

perspective if not from a perceptual point of view.

One possible correction and test procedure is outlined in figure 5.5. It involves examining

the short-time frames (25 ms) of a dysarthric vowel segment in a non-overlapping fashion.

A rectangular window is applied to each frame and a fast Fourier transform was used to

decompose into spectral and phase components of the linearly spaced frequency bins. The

phase alignment for each vowel token of dysarthric speech was then replaced by the phase

alignments from similar vowel tokens of typical speech that are averaged across all the

UASPEECH control speakers. The phase transformation is applied to the vowel tokens

across the entire UASPEECH database. Lastly, the spectral component and the new phase

alignment is reconstructed using an inverse Fourier transform to get a new representation

of the original utterance.
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Figure 5.6: Corrected PSD alignment for various intelligibility groups. For clarity, it shows

the correction effect for the ”all-vowel” category only and similar results hold for other

vowel and diphthong categories.
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The effect of applying this correction on the ”all-vowel” category is shown in figure 5.6.

It shows a flattened response on the new set of dysarthric utterances that has the corrected

phase alignments. The PSD metric for this new set of files falls within the most intelligible

hypothesised range as shown in table 5.3. It should be noted that the flattened response

due to the correction holds for all the individual vowel and diphthong categories and the

purpose of showing only the ”all-vowel” category is for clarity. As an example, appendix C

exhibits the unwrapped phase alignment between the control and dysarthric speakers for a

specific and average vowel representation that is used in the corrective procedure.

5.3 PSD effect on dysarthric ASR performance

The correction of the PSD, as shown in figure 5.6, could be evaluated perceptually and

with a recognition experiment. Since the prime focus of the study is to develop methods to

enhance the dysarthric ASR performance, we do not report any listening tests in the thesis.

5.3.1 Experimental setup

In order to have a direct comparison with the baseline results of section 4.1, the experimental

design is kept exactly same. To the best of our knowledge, the results presented earlier

(Section 4.1.2, Sehgal and Cunningham (2015)) are the best reported on this relatively

large database (Kim et al., 2008) with a reasonably open vocabulary of 255 distinct words.

For testing the effect of PSD corrected files we have picked up the speech systems which

are practically more plausible to implement under real life scenarios, and are summarised

in table 5.5. Both SI & SAT models are adapted using the hybrid MLLR-MAP approach.

System Training Dataset Used

SD UASPEECH-Dysarthria

SI-00 WSJ SI-84 + WSJCAM0

SI-02 UASPEECH-Dysarthria

SAT UASPEECH-Dysarthria

Table 5.5: ASR systems that are re-tested to see the effect of PSD corrections.
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5.3.2 Dysarthric ASR results

In order to estimate the effect of the PSD correction on the ASR output, the experiments

for the speech systems mentioned in the last section are conducted under both supervised

and unsupervised correction modes. It effectively means the amount of prior information

that is exposed to guide the training process, which can take one of following forms:

• Supervised: The label alignments for the vowel tokens are pre-generated by the process

of forced alignment. In addition vowel-specific PSD corrections are applied from

control to dysarthric speakers. Under realistic setups such information is impractical

to produce and is restricted to be generated under laboratory conditions. Hence, the

ASR performance due to such corrections would rather aim at an oracle performance

that can be attained.

• Semi-supervised: The label alignments for the vowel tokens are pre-generated by

the process of forced alignment. There is no vowel-specific PSD correction applied,

instead, a global PSD correction is applied for all the vowels. This correction step

takes us one step closer to realistic usage as it aims to test the efficacy of ASR systems

by ignoring any knowledge about any specific vowels on which corrections are applied.

• Unsupervised: No label alignments for the vowel tokens are available. The vowel

segments are predicted using a vowel-detection classifier on which the global PSD cor-

rection is applied. This correction step uses the most minimalistic set of information.

Usually such lack of information depicts a more realistic and practical setup. The ASR

measure under such constraints will set the lower bound that the PSD correction can

have on the ASR performance.

5.3.2.1 Supervised correction

The first set of experiments involved re-testing the four systems shown in table 5.5. The

speech systems were trained and tested on the modified utterances of dysarthric data, where

vowel specific PSD corrections were applied on the entire database. The detailed steps for

implementing the corrective procedure is explained in section 5.2.4.

Figure 5.7 shows the ASR improvements for the PSD corrected speech. In nearly all the

tested systems there were relative improvements across all the levels of dysarthric intelligi-

bility. The largest relative gains were noticed for the SD (19.3%) and SI adapted systems

153



5. Phase-based Analysis of Dysarthric Speech

prepared using dysarthric speech data (14.22%) for the most severe group of users. The

system adapted from typical speech data from other sources (SI-00) also showed an overall

3.44% improvement. It shows that the benefits of PSD correction are not only limited to

homogeneous and dysarthric-only sources of information, but its efficacy can be extended

to other sources also.

An interesting observation is that the ASR accuracies after the corrections seem to follow

a similar pattern that the PSD metric exhibited with intelligibility as shown in figure 5.1.

The corrective measure was found to be most effective for dysarthric speakers with the least

intelligibility, since all the systems showed the maximum relative improvement for the least

intelligible group as shown in figure 5.7. Thus, the ASR systems tested show an encouraging

pattern, where the best performance is achieved where improvement is most needed.
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Figure 5.7: ASR improvement after the PSD corrections relative to the results presented in

section 4.1.2. The four speech systems were re-tested on the speech files on which vowel-

specific PSD transforms were applied.

The trend seems to converge for all the systems as it move towards the higher intelligi-

bility dysarthric data (see figure 5.7). This was expected since it has been shown (Sehgal

and Cunningham, 2015) that reduced severity of dysarthria is more closer to the control
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group of speakers and models trained with typical speech may be the most appropriate

approach for modelling.

Intelligibility SD SI-02 SAT SI-00

very-low
23.52

28.06 ††
27.36

31.26 ††
28.71

32.54 ††
20.61

21.32 †

low
62.48

65.49 ††
62.92

64.89 ††
62.98

65.01 ††
57.89

57.22

mid
64.08

66.54 ††
68.51

71.74 ††
69.54

72.02 ††
66.12

65.86

high
83.07

84.42 ††
86.17

87.29 ††
86.87

87.83 ††
87.08

87.34

Table 5.6: Absolute ASR word accuracy averaged by various intelligibility groups. The top

number in each cell represents the best results presented in table 4.3 and the shaded number

is the result after the vowel-specific PSD correction was applied. Significant statistical gains

are shown using a † (p < 0.05) or †† (p < 0.01).

Lastly, table 5.6 shows the absolute comparison between the results reported in this

section and our earlier results in section 4.1.2 across all the tested ASR systems and in-

telligibility groups. Although SD modelling benefits most from PSD based corrections,

SI-adapted and SAT systems trained with dysarthric data still had the best overall perfor-

mance when averaged across all the intelligibility groups. A pairwise Cochran’s Q test was

conducted for each cell in table 5.6 to substantiate the findings from a statistical perspective.

All the cells marked with a †† (p < 0.01) or † (p < 0.05) shows significant improvements.

5.3.2.2 Semi-supervised correction

In the semi-supervised corrective mode, the aim is to relax the PSD correction procedure

and test its efficacy on the ASR output. This is achieved by applying a global PSD corrective

transform averaged across all the 13 vowels instead of applying a vowel-specific transform.

Similar to the corrections in the previous section, the transform is still applied to the pre-

segmented vowel tokens, where their approximate temporal location is known.

Since a global transform requires applying a single transform across all the vowels instead
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5. Phase-based Analysis of Dysarthric Speech

of multiple transforms, it has more practical potential to be used under realistic scenarios.

Hence, it becomes imperative to evaluate the performance differences between the global

and vowel-specific corrections applied earlier (figure 5.7).

A one-to-one comparison of the SD, SI-00(mllrmap), SI-02(mllrmap) and SAT(mllrmap)

systems for both the transform procedures is shown in figure 5.8. All the four systems tend

to show high degree of similarity between the global and vowel-specific transforms. A visual

inspection of the charts reveal that the global PSD transform does not exhibit a substantial

drop in ASR performance.
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Figure 5.8: PSD correction comparison between specific vowel PSD transform (figure 5.7)

and the global transform. Each chart exhibits a one-to-one comparison of a specific speech

system where the x-axis represents the baseline result presented in section 4.1.2
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Intelligibility SD SI-02 SAT SI-00

very-low
28.06

27.15 †
31.26

30.90

32.54

31.49 †
21.32

21.34

low
65.49

65.38

64.89

63.70 †
65.01

65.93

57.22

57.02

mid
66.54

66.92

71.74

71.33

72.02

72.27

65.86

66.19

high
84.42

84.33

87.29

86.01 †
87.83

86.96 †
87.34

87.32

Table 5.7: Absolute ASR word accuracy averaged by various intelligibility groups. The

top number in each cell represents the results presented in section 5.3.2.1 and the shaded

number is the result after the global PSD correction was applied. The † indicates significant

statistical gains (p < 0.05).

This was validated by running a Cochran’s Q test between the results of the vowel-

specific and global PSD corrections. Table 5.7 shows the absolute ASR scores for the two

transform schemes along with the cells that show a significant difference (marked with a

†). Out of the 16 possible combinations between the four systems and intelligibility groups,

table 5.6 shows 12 out of 16 systems where PSD correction was better than no correction,

whereas, table 5.7 highlights only 5 out of 16 such systems. It should be noted that at

p < 0.01, it was found that the global transform (table 5.7) showed no significant difference

across any of the speech systems and intelligibility groups. Hence a global transform can be

thought of as equivalent to the computationally more expensive vowel-specific transform.

5.3.2.3 Unsupervised correction

The unsupervised correction is the most realistic and strictest mode of PSD transform

that can be tested. In the unsupervised correction mode, the approximate time stamps

for the respective vowel tokens are unknown, unlike earlier presentations, where they were

pre-generated through the process of force alignment. The outcome of the unsupervised

correction will also show real-life application scope of applying the PSD correction outside

laboratory conditions.
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In order to achieve this, it requires two steps, (i) preparing a classifier that can predict

the vowels in a given utterance and (ii) applying a global PSD correction to the predicted

vowel areas. This section will deal with both these aspects and report the results.

(i) Preparing a Vowel Prediction Classifier

The vowel/non-vowel classifier was constructed as an HMM-GMM system using the

dysarthric training data from the UASPEECH corpus. The true phonetic alignment for

each word utterance was replaced by the string of corresponding consonant (c) and vowel

(v) labels. Table 5.8 shows an example of such a conversion

Example Word Phonetic Alignment Vowel-Consonant String

one w ah n c v c

juliet jh uw l iy eh t c v c v v c

whiskey w ih s k iy c v c c v

backspace b ae k s p ey s c v c c c v c

november n ow v eh m b er c v c v c c v

Table 5.8: Phonetic and corresponding vowel-consonant alignment for some example words.

The data was then processed as a 39 dimensional MFCC vector (12 static+c0+∆+∆∆)

and analysed as 25 ms window with a 10 ms shift. The continuous density HMM is a word-

internal tied-state tri-context model with clustering performed using decision trees, which

follows a strict left-to-right topology with 32 Gaussian components used per state. Since it

is a vowel-consonant (v-c) classifier setup, there are only three classes to start with, viz.,

vowel(v), consonant(c) and silence(sil), which gets expanded to triphone like context in

the same way as it is done for the usual monophones. The exact monophone and triphone

contexts that were generated during the training process included the 17 HMM classes c,

v, sil, c+ c, c+ v, c− c, c− v, v + c, v − c, v − v, c− c+ c, c− c+ v, c− v + c, c− v + v,

v− c+ c, v− c+ v, v− v+ c, where for example c− v+ c implies the presence of any vowel

token preceded and followed by any consonant.

Once the above HMM’s were trained, it was used to recognise every UASPEECH word

utterance as a blind sequence of v′s and c′s with no prior knowledge about the word itself.

Since the task of the classifier is to solely capture the presence of vowels only and ignore the

consonant sections, the recognition output was filtered to only retain the output timestamps
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that has vowel as the central token and ignoring the others. A total of 8 triphone context

sufficed this criteria, which are c− v + c, c− v + v, v − v + c, v − v + v, v − v, v + v, v + c,

c− v.

0 3800000 sil -2932.056396 start_sil -50.000000
3800000 8300000 c+c -3751.847412 ccvcv -50.000000
8300000 9700000 c-c+v -1427.203369
9700000 10800000 c-v+c -1076.188599
10800000 11500000 v-c+v -722.165894
11500000 13800000 c-v -1917.229126
13800000 19000000 sil -3814.687744 end_sil -50.000000

Figure 5.9: A sample recognition output for a random utterance from the vowel-consonant

classifier. The green sections indicate the presence of vowels in the utterance.

Figure 5.9 shows the recognition output from the HTK system of a random utterance

using the vowel-consonant classifier. It illustrates the filtering process of picking up the

timestamps that pertain to vowels only. In the above image the time segments marked as

green indicate the presence of a vowel and all other areas were ignored when selecting the

vowel-only sections.

Building a vowel-consonant classifier can be an arduous task due to the confusions that

might arise between true vowels and voiced segments. In scope of this thesis, the aim of

this section is not to build a highly efficient vowel detector, but it rather targets to build

a classifier that is good enough to prove the efficacy of the PSD corrections in realistic,

uncontrolled setups.

It is important to note that applying many PSD corrections to non-vowel segments can

be detrimental for the ASR performance. This was concluded after a series of informal

tests (not reported in the thesis) led to a fall in the ASR accuracy. Also, intuitively it can

be thought that such inaccurate corrections can lead to poor model training and increase

the effect of training/test mismatch. Hence, it becomes imperative to at least apply some

basic measures that can check the efficacy of the classifier output with some degree of

confidence. The force aligned data generated during the supervised correction mode can

be the benchmark for comparing any classifier output, since it is the closest we can get in

automatically predicting the location of the vowel tokens.

A frequency histogram plot is used to compare the distribution of the vowel segments
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Figure 5.10: The histogram plot for the frequency distribution of vowel durations as pre-

dicted by the forced alignment process (left) and vowel-consonant classifier (right). The

bin-width of the histograms was set to a fixed width of 25 ms.

predicted by the unsupervised classifier against the vowel segments generated by the forced

alignment process (as used in supervised and semi-supervised PSD corrections). The com-

parative histograms are shown in figure 5.10. The y-axis represents the relative probability

given by ci
N , where ci is the vowel frequency of the ith bin and N is the total number of

vowel tokens examined during the recognition process.

The vowel-consonant classifier predicted around 20% more vowel tokens than the force

aligned timestamps. The average vowel duration of the classifier output was 214 ms

(std.dev:182 ms) and the forced aligned timestamps is 272 ms (std.dev:177 ms). The vi-

sual inspection of the histograms in figure 5.10 shows a high degree of similarity between

the vowel frequency durations of the vowel-consonant classifier and the force aligned times-

tamps. They both exhibit a positively skewed map of the histogram plots which seem close

enough. In order to quantitatively measure the similarity of histogram shapes and the rela-

tive probability measure for the occurrence of various vowel durations associated with each

bin, a χ2 test was conducted on the two histograms. The first 68 bins were examined for the

test, which gives a good coverage of vowel tokens ranging up to 1700 ms. This upper limit

should be sufficient to conclude the test since we will cap our PSD correction experiments

at 1500 ms to avoid capturing very long and possibly incorrect vowel segments. Hence, the
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χ2 test will use 67 degrees of freedom and the following test statistics was retrieved for the

two histograms.

χ2 = 27.43

DF = 67

α = 0.001

CV(0.001,67) = 108.52

where CV is the critical value of the χ2 distribution and χ2
67 < CV . It implies that the

null hypothesis is accepted in this case that suggests no statistically significant difference

between the two histograms at p < 0.001.

In order to optimise the vowel prediction classifier, it is important to ignore irrelevant

vowel segments that might be having a strong chance of being misclassified. Unfortunately

there is no easy way to predict such differences between a true-positive and false-positive

outputs. The best approach is to combine our understanding of the dysarthric speaking rates

(see section 4.2.1) along with some basic statistics (mean, standard deviation etc.) collected

by the classifier for each intelligibility group. Table 5.9 shows the approximate time zones

that are used to extract the vowel segments for the global PSD corrections. The time regions

for each intelligibility group are hypothesised based on the average measurements of vowel

durations that were examined during the supervised and semi-supervised correction modes.

Dysarthric

Intelligibility

Vowel Duration (ms)

for PSD conversion

very-low 300 - 1500

low 300 - 1500

mid 250 - 750

high 250 - 650

Table 5.9: Operational duration range to extract the vowel segments for each of the intel-

ligibility groups.
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(ii) Results for the Unsupervised PSD corrections

The effect of unsupervised PSD correction on the dysarthric ASR performance was

compared against the vowel-specific transforms of figure 5.8. It is important to reiterate

that the benefits of such unsupervised corrections on the ASR output is highly dependent on

the performance of the classifier that can optimally predict the timestamps of the possible

vowel segments.
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Figure 5.11: Comparison between specific, global and unsupervised vowel PSD transform.

Each chart exhibits a one-to-one comparison of a specific speech system.
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A large number of PSD corrections on the incorrectly segmented areas of the utterance

might result in a cumulative negative impact on the ASR gains. The experiments in the

current section are not targeted to construct an efficient and highly optimised vowel classi-

fier, but it rather focuses on evaluating the effects of the unsupervised PSD correction using

an average vowel classifier.

The outcome of this experiment will give a practical insight about the viability of ap-

plying such global phase-based corrective transforms in a realistic setup. A one-to-one

comparison of the SD, SI-00(mllrmap), SI-02(mllrmap) and SAT(mllrmap) systems for all

the three transform procedures is shown in figure 5.11. In all the four speech systems tested,

the unsupervised correction mode shows no significant drop relative to the baseline results

of section 4.1.2. Although the relative gains for the unsupervised corrections are less than

that of vowel-specific and vowel-global transforms, it however shows a similar pattern that

is more favourable for reduced dysarthric intelligibility.

Intelligibility SD SI-02 SAT SI-00

very-low
23.52

25.41 ††
27.36

28.84 ††
28.71

29.79 †
20.61

20.95

low
62.48

64.50 ††
62.92

63.22

62.98

64.80 ††
57.89

57.72

mid
64.08

65.34

68.51

69.45

69.54

70.26

66.12

66.03

high
83.07

83.41

86.17

86.78 †
86.87

87.85 ††
87.08

87.09

Table 5.10: Absolute ASR word accuracy averaged by various intelligibility groups. The

top number in each cell represents the baseline results presented in table 4.3 and the shaded

number is the result after the global unsupervised PSD correction was applied. Significant

statistical gains are shown using a † (p < 0.05) or †† (p < 0.01).

The results were validated by conducting a Cochran’s Q test between the results of the

unsupervised PSD correction and the baseline result represented by y = 0 in figure 5.11.

Table 5.10 shows the absolute ASR scores along with the cells that show a significant

difference (marked with a † or ††). It is noteworthy that the application of PSD transform
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give statistically significant gains at p < 0.01 for most of the systems in the very-low and low

intelligibility groups. These results are both encouraging and coincidental with our earlier

findings, where PSD transforms are shown to be more effective in speech with high degree

of pathological disorder. Hence an unsupervised transform shows promising results that

might prove beneficial in uncontrolled and realistic setups for the application of dysarthric

speech interfaces.

5.4 Conclusion

In this chapter a new metric called PSD was introduced. It is based on the slope deviations

that are observed in the unwrapped phase spectra of the vowel segments. The PSD metric

exhibited a strong and nearly linear correspondence with the underlying intelligibility when

it was analysed across all the dysarthric vowel and diphthong segments. The PSD metric

does not require any pre-training, which makes it independent of any database for its

operation. Hence, PSD can make corpus independent predictions of a phase-based acoustic

anomaly that might be manifest in a signal. In the current study the PSD analysis was

conducted on two independent data sources, viz. the UASPEECH and VIVOCA corpora,

and it displayed a strong association between the PSD scores and the expected intelligibility

from a perceptual standpoint. It was also found that PSD was less sensitive towards missing

phonetic data and can give reasonable approximations under sparse data conditions. PSD

exhibits a reasonably good linear correlation with intelligibility that is useful for prediction.

It can be used either as an acoustically driven predictor of intelligibility that can aid in a

speaker’s speech therapy assessment, or it can give an estimate of a speaker’s PSD score

that can help to deploy better modelling techniques by clustering similar speakers together.

Since PSD was found to be a predictor of some underlying acoustic artefact relative to

intelligibility, a corrective procedure was applied to minimise the PSD aberration in the

dysarthric vowel tokens. The correction involved replacing the phase alignment for vowel

tokens of dysarthric speech with the phase alignment from similar vowel tokens of typical

speech. The PSD correction alters the reconstructed signal. During the inverse Fourier

transformation stage the new phase alignment is combined with the original magnitude.

So even though we discard the phase information during the feature generation process of

MFCCs, the time-domain signal has been modified. This results in changes to the magnitude

spectrum that appear to be more amenable for improving the ASR performance.
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Figure 5.12: Comparison between vowels of the Original and PSD corrected file for the

test word copy for a speaker with very-low intelligibility. The red ellipse shows an area of

interest where the PSD correction seems to exhibits a finer resolution of the spectrum.
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Figure 5.13: Comparison between vowels of the Original and PSD corrected file for the test

word bravo for a speaker with low intelligibility. The red ellipse shows an area of interest

where the PSD correction seems to exhibits a finer resolution of the spectrum.
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As an example, figure 5.12 and figure 5.13 shows the spectra comparison of the original

and PSD corrected files for the vowel segments of the words copy and bravo for two

speakers with very-low intelligibility. The original file was misrecognised by the ASR system,

whilst the same file is correctly recognised after the PSD correction was applied. One of

the possible reasons that is evident from the two figures are highlighted in the small area

represented by the red ellipse, which shows a better resolution of the possible formants in

the initial vowel production /aa/ of the two words. Lastly, It is worth mentioning that

although the corrections were applied in non-overlapping frames, it does not seem to have

left any detrimental effect on the spectrum and overall the the PSD corrections seem to

favour the ASR systems.

The PSD corrections gave significant ASR improvements across all the tested speech

systems and dysarthric intelligibility groups. A broad level summary of the speech systems

and intelligibility groups that benefitted from the PSD corrections relative to the baseline

results of chapter 4 is given below in decreasing order:

Speech Systems : SD > SI-02 > SAT > SI-00

Intelligibility : very-low > low > mid > high

It should be noted that although speaker adapted systems that utilise all the available

dysarthric speech (SAT, SI-02) had the best absolute scores for the majority of intelligibil-

ity groups, the speaker dependent (SD) system had the maximum relative gains (19.3%)

using the PSD correction scheme. The relative benefit was also independent of the type

of correction applied (supervised, semi-supervised, unsupervised), thus making the outcome

more acceptable for different applications. This is an encouraging outcome since in real-life

applications it is not always feasible to have data from multiple speakers due to physical

and technical constraints in order to prepare SAT or SI-02 like systems. In most scenarios

an SD model is the best choice of speech system that can be prepared for a given user and

PSD correction tends to provide maximum performance benefits for the speakers with low

intelligibility.

It is already mentioned that applying the PSD correction to other voiced regions instead

of only vowels was detrimental for ASR performance, irrespective of the correction mode

applied. Vowels are usually produced with an open vocal tract and its acoustics are fairly

well defined. Hence, it is more easier to observe an underlying phenomenon and apply
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any form of modification (PSD in our case), without adversely affecting the surrounding

syllable or word. In contrast, consonants are more complex as they involve some sort of

constriction along the vocal tract for it to manifest in the acoustics. They hardly ever form

the nucleus of the syllable under consideration. For dysarthric speech consonant production

has a greater chance to exhibit articulation errors due to the compromised filter system.

The errors can be at the place or manner of articulation and it can be further accentuated

by voicing errors. Due to this, it is extremely hard to understand any acoustic anomaly

and suggest a corrective approach that will adequately attempt to address the underlying

physiological weakness. At this stage there is a lack of understanding in associating any

phase based phenomenon with voiced segments of dysarthric speech, and it will need further

research to have a better understanding of the underlying mechanics.

The inclination of PSD to favour SD models can be attributed to both the data used

for training and the automated way in which the PSD correction operates. Irrespective of

which PSD scheme is used, it should be noted that all the three corrective methods rely

on a process to predict valid vowel segments in an utterance where a possible correction

could be applied. It has already been discussed that applying a lot of invalid corrections can

degrade the overall performance benefits. In an SD system, the effect of good and bad PSD

corrections is only limited to a single speaker, whereas, in SAT & SI-02 systems, the effect

of bad corrections will have a cumulative impact of each speaker during the adaptation

process. This could be one of the prime contributing factors for SD to receive maximum

benefit from the PSD corrections in comparison to the other systems.

Lastly, the speakers with the lowest intelligibility benefit the most from the PSD correc-

tion procedure and the relative gains seem to decrease as we move towards the less severe

end. The ASR outcome is in exact agreement to the PSD metric prediction for the un-

derlying intelligibility. Since PSD effect shows maximum deviation for the least intelligible

group, it is intuitive and highly likely that its associated phase correction will be the most

beneficial for ASR performance. This outcome is promising from a practical perspective,

since the maximum advantage of PSD correction is for speakers who will benefit most from

it in realistic setups. In general, any specialised speech system is particularly designed for

speakers with high degree of severity, since less severe speakers are more likely to benefit

from any state-of-the-art commercial system. Hence, real time PSD corrections can show

beneficial performance gains for speech systems that are especially designed for speakers

with lowest intelligibility.
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Chapter 6

Feature Representations based on

Phase Spectrum

In the previous chapter, a new metric (PSD) was introduced that was based on the devia-

tions observed in the unwrapped phase spectrum of vowels and diphthongs. In this chapter

we extend the idea of useful information encoded in the phase component of the Fourier

transform of dysarthric speech. It will be explored from a theoretical and practical stand-

point that if phase based feature encoding on dysarthric speech show any properties that

are beneficial for improving dysarthric ASR performance. It will also be explored if such

phase based feature representations have any augmented benefits for improving dysarthric

ASR when it is combined with the corrective properties of the PSD metric.
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6.1 Phase-based feature representations for speech recogni-

tion

Fourier analysis is important in the front-end processing of speech signals for ASR. It breaks

the complex speech signal into its fundamental constituents and encodes information for the

observed frequencies in its respective magnitude and phase components. Despite the fact

that both magnitude and phase parts are needed for the true representation of any speech

signal, most of the conventional feature representations for ASR only exploit the magnitude

spectrum of the Fourier analysis and the phase spectrum is mostly ignored. The reason for

disregarding the phase spectrum could be either historically motivated that suggested the

inadequacy of human ear to resolve phase information (Helmholtz, 1912; Ohm, 1843) or the

difficulty involved in processing the phase spectrum due to its chaotic nature that results

from random polarity and wrapping constraints of the phase between the range of ±π.

One of the earliest references that show the importance of phase was shown in a sys-

tematic study conducted by Oppenheim and Lim (1981). The paper gives a summary of

some key studies dating back to 1960’s that showed the prominence of phase-only synthesis

in analysing atomic crystal structures for measuring contours of the electron density. These

results opened pathways for Fourier phase analysis into other applications. The paper il-

lustrates examples where phase-only reconstruction of images and speech signals were more

close to the original than magnitude-only reconstruction. It also showed that phase-only

reconstruction of signals was better at preserving key ”event locations” in the signal and

had better correlation to the original signal.

In context of discrete speech signals it is known that one can apply Hilbert transform

to recover the magnitude spectrum of any signal from its phase spectrum within a scale

factor, if the underlying signal is either minimum or maximum phase (Oppenheim and

Schafer, 1989). Since most of the speech signals of interest are mixed phase, such trans-

formation might not be straightforward. Hence, the remainder of this section will outline

some key representations of speech signals that are based only on the processing of phase

spectrum. These phase-only feature representations will be used in later sections of this

chapter to investigate if they are beneficial in evaluating the performance of dysarthric ASR

in comparison to standard magnitude-based features like MFCC.
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6.1.1 Group Delay Function

The processing of the phase spectrum is a difficult task due to wrapping constraints of the

spectrum between the values of ±π. The wrapping exhibits the phase spectrum as a chaotic

curve with random fluctuations. In order to overcome this problem, the phase spectrum

can be computed as the negative first order derivative from the unwrapped phase spectrum.

It is known as the group delay function that is mathematically denoted as:

τ(ω) = −d(φ(ω))

dω
(6.1)

The above equation represents the ”rate of change in the phase spectrum”, where φ(ω)

is the continuous unwrapped phase spectrum. The unwrapping of phase involves adding

multiples of ±2π whenever the alignment between consecutive frequency bins exceeds π.

for each f requency bin ;

i f ( (φ(n) − φ(n− 1)) < −π )

φ(n) = φ(n) + 2π

i f ( (φ(n) − φ(n− 1)) > π )

φ(n) = φ(n) − 2π

Listing 6.1: Pseudo-code illustration for unwrapping the phase

The above listing shows the pseudo-code for unwrapping the phase where φ(n) is the

phase at the nth frequency bin. The unwrapping process generally employs extra steps to

take into account the direction of phase shift also. In the current thesis, the unwrapping

process was however performed using the unwrap() function defined in MATLAB version

R2016b.

Once the unwrapped phase spectrum is determined, it is possible to compute the group

delay function of equation 6.2 by applying the definition of derivatives. The group delay

function can thus be defined as:

τ(ω) = −φ(n)− φ(n− 1)

f(n)− f(n− 1)
(6.2)

where φ(n) and f(n) are the unwrapped phase and frequency at the nth bin respectively.

The unwrapping process can completely be avoided and the phase spectrum can also be
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computed directly from the time-domain signal (Oppenheim and Schafer, 1989) as:

τ(ω) =
XR(ω)YR(ω) +XI(ω)YI(ω)

|X(ω)|2
(6.3)

where X(ω) and Y (ω) are the Fourier transforms of x(n) and nx(n) respectively and R

and I denote the real and imaginary parts of the complex output.

6.1.1.1 Properties of Group Delay Function

The motivation behind representing the speech signal using the phase spectrum instead

of the more commonly used magnitude spectrum lies in the properties of the group delay

function. The theory and properties with its practical applications are discussed in greater

detail in the earlier studies (Murthy and Yegnanarayana, 1991, 2011). The current section

will however briefly highlight the key properties along with some simple illustrations.

(I) Property of Additivity: The convolution of any time-domain signal is additive in the

group delay phase spectra. This is in contrast to the magnitude spectra, which is multi-

plicative in its presentation. For example, if X(t) is the convolution of two signals X1(t)

and X2(t) given as:

X(t) = X1(t) ∗X2(t) (6.4)

The Fourier transform for the above will be

X(ejω) = X1(ejω)X2(ejω) (6.5)

From the basic properties of complex number we can deduce the following for equa-

tion 6.5 :

|X(ejω)| = |X1(ejω)||X2(ejω)| (6.6)

arg[X(ejω)] = arg[X1(ejω)] + arg[X2(ejω)]

^[X(ejω)] = ^[X1(ejω)] + ^[X2(ejω)]

φX(ejω) = φX1(ejω) + φX2(ejω)

(6.7)
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Now applying the definition of group delay function (equation 6.2) in the above phase

relationship, we get

τX(ejω) = τX1(ejω) + τX2(ejω) (6.8)

where τX1(ejω) and τX2(ejω) represent the group delay functions of X1(ejω) and X2(ejω)

respectively. Equations 6.6 and 6.8 clearly shows the multiplicative and additive behaviour

of the magnitude and group delay spectra.

At this stage we can recall that the transfer function of any speech signal in pole-zero

format is written as:

X(ejω) =
b0
a0

∏M
k=1(ejw − ck)∏M
k=1(ejw − dk)

(6.9)

The additive property of the group delay function can be applied to the above equation

to get:

τX(ejω) = τzeros(e
jω)− τpoles(ejω) (6.10)

Hence, the inherent additive nature of group delay function has a more direct application

in contrast to the magnitude spectrum, which requires a logarithmic domain to work on.

(II) Property of Higher Resolution: This is one of the most important properties of the

group delay function that makes it an attractive form for representing the spectral structure

of a speech signal. It tends to exhibit higher resolving power in differentiating closely spaced

peaks in the spectrum.
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Figure 6.1: The figures demonstrate the high resolution capability of the group delay spec-

trum. Part (a) shows the pole-zero plot for four poles that are located very close to the unit

circle and occur in complex conjugate pairs, (b) gives the first 200 samples of an approxi-

mate time-domain signal which comprises of expected frequencies predicted by the presence

of poles and (c), (d) show the magnitude and group delay spectrum respectively.

It is easier to understand the phenomenon of higher resolution by an example as illus-

trated in figure 6.1. The part-(a) represents a pole-zero plot of four poles along with their

complex conjugate pairs. The poles have been intentionally placed in close proximity to the

unit circle as this will push the frequency response high around that band of frequencies,
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which should be depicted as prominent peaks in the spectrum. In addition, the poles are

also placed very close to each other, which can better aid in understanding the resolving

power of the magnitude and group delay spectra. It can be easily seen that the magni-

tude spectrum represented in part-(c) can only coarsely define the four expected peaks in

the spectrum. There is a very prominent peak at the around 3.5 kHz, two weak peaks

at around 3 kHz and 4.5 kHz followed by a very faint crest just noticeable at around 2.5

kHz. In contrast, the group delay spectra represented in part-(d) resolves the peaks in the

spectrum with much greater resolution and accuracy at the expected frequencies. Since

group delay spectrum exhibits higher resolving properties, the speech features generated

from them might hold a better chance in distinguishing important acoustic events.

This can especially be beneficial for dysarthric speech, where the underlying acoustics is

generally convolved with severity or etiology based disfluencies that can be difficult to pro-

cess. It is seen in previous chapters that such unexpected artefacts are directly proportional

to the underlying intelligibility. Hence, one might expect greater benefits of speech feature

representations based on group delay spectrum for speakers with lower intelligibility. The

outcome of this is reported in the following sections of this chapter.

•

The powerful properties of the group delay function can prove beneficial for an effective

representation of signals. It has been advantageous for various signal processing related

tasks like digital filtering and pole-zero decomposition (Murthy and Yegnanarayana, 1989).

The high resolution property of the group delay function has been effective in estimat-

ing an accurate spectrum under noisy conditions (Yegnanarayana and Murthy, 1992) and

robust formant extraction (Murthy, Murthy, and Yegnanarayana, 1989; Murthy and Yegna-

narayana, 1991; Yegnanarayana, 1978). The benefits of the group delay function in speech

technology are covered in detail in an article by Murthy and Yegnanarayana (2011).

6.1.1.2 Problem with Group Delay Function

Despite the advantages of the group delay spectrum, it however comes with a caveat, which

can be detrimental for front-end processing in ASR. We know that a speech signal is char-

acterised by its spectral envelope that results from the filter response of the vocal tract and
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the fine harmonic structure due to the excitation source. The aim of any front-end pro-

cessing is to disregard the effect of fine structure and encode the spectral shape. Typically

speech is a mixed phase signal where poles are well within the unit circle and the zeros can

be within or outside the unit circle.

The problem with the processing of group delay function is that if there are zeros which

occur too close to the unit circle, these can result in huge spikes in the group delay spec-

trum. The spikes tend to dominate the spectral shape and shadow the true locations of the

formants and this makes the spectrum not very useful for feature generation purpose. The

occurrence of spikes in the spectrum results when the denominator term |X(ω)|2 in equa-

tion 6.3 gets smaller, i.e., when the distance between the zero location and the corresponding

frequency bin on the unit circle reduces.
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Figure 6.2: A simple illustration showing that the angle subtended by the chord joining two

adjacent frequency bins is greater for the zero location near to the unit circle (α > β).

A simple graphical illustration showing the main reason for spikes is shown in figure 6.2.

We know from the properties of triangles that the largest interior angle is always opposite

to the longest side. Hence, it is easy to assert that the angle subtended by the common

chord joining the adjacent frequency bins (ω1, ω2) will be greater for zero locations nearer

to the unit circle (α > β). It thus leads to two possible conclusion; (i) rate of change of

phase (equation 6.2) is greater for zeros near to the unit circle and (ii) greater angle (α)
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will always have shorter distance to the frequency bins on the unit circle resulting in higher

value of |X(ω)|2 (equation 6.3).
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Figure 6.3: Spikes in the group delay spectrum due to introduction of random zeros around

the unit circle. The spikes obscure the true location of the formants in the spectrum.

Figure 6.3 shows the effect of zeros near to the unit circle on the group delay spectrum.

The pole-zero plot shown in part-(a) shows four closely spaced conjugate poles and random

zeros are introduced around and near to the unit circle. It can be easily seen that the high

resolution property of the group delay spectrum demonstrated earlier is now masked by

unexpected spikes in the spectrum. The spikes tend to obscure the true location of the

formants, thus making any meaningful interpretation of the phase spectrum difficult and

misleading.
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6.1.2 Modified Group Delay Function (MODGDF)

It was shown in the previous section that how the advent of spikes can make the processing

of group delay spectrum difficult and inhibit its practical applicability. The spikes are

introduced by the smaller values of |X(ω)|2 in equation 6.3. The modified group delay

function (Murthy and Gadde, 2003) was formulated to reduce the effect of spikes in order

to maintain the dynamic range of the spectrum. It was shown that by introducing |S(ω)|,
which is a cepstrally smoothed version of |X(ω)|, very low values can be avoided in the

denominator of equation 6.3. The modified group delay function is defined as:

τMODGDF (ω) =

(
τX(ω)

|τX(ω)|

)(
|τX(ω)|

)α
(6.11)

where

τX(ω) =
XR(ω)YR(ω) +XI(ω)YI(ω)

|S(ω)|2γ
(6.12)

where S(ω) is the cepstrally smoothed version (Yegnanarayana and Murthy, 1992) of

X(ω). In addition, the parameters α,γ can be empirically controlled to reduce the effect of

spikes in the modified group delay function.

6.1.3 Product Spectrum (PS)

The product spectrum is an alternate form of group delay representation that includes

information from both the magnitude and phase spectrum. It is defined as the product of

the group delay function and the power spectrum (Zhu and Paliwal, 2004) denoted as:

τPS(ω) = |X(ω)|2 τ(ω)

= XR(ω)YR(ω) +XI(ω)YI(ω)
(6.13)

As a consequence of the definition of product spectrum, the denominator term of |X(ω)|2

that was responsible for the spikes in the group delay spectrum is cancelled out. This can

be a useful representation, since it exploits the benefits of both the power spectrum and the

phase spectrum without any need for applying smoothing techniques.
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6.1.4 Cepstral coefficients based on MODGDF and PS representations

The MODGDF and PS representations of the group delay function will be used in the

remainder of this chapter to extract the new speech features. It will thus be explored if the

feature representations based on the phase spectrum are better at characterising dysarthric

speech instead of the magnitude spectrum.

for each speech frame do:

compute Phase Spectrum as:

evaluate Modified Group Delay (MODGDF)         evaluate Product Spectrum (PS)

-compute S(ω) ≈ cepstrally smoothed X(ω)    
-тMODGDF(ω)=(тX(ω)/|тX(ω)|)·(|тX(ω)|)

α            -тPS(ω) = XR(ω)YR(ω) + XI(ω)YI(ω)

-тX(ω)   =(XR(ω)YR(ω) + XI(ω)YI(ω))/|S(ω)|
2γ

compute FFT as:

FFT(x[n]) = X(ω) 
FFT(y[n]) = FFT(n*x[n]) = Y(ω)

apply mel-filterbank analysis

log(FB(MODGDF)) = MODGDF_FBE
log(FB(PS))     = PS_FBE

apply DCT on log mel-filterbanks

DCT(MODGDF_FBE) = MODGDF_DCT
DCT(PS_FBE)     = PS_DCT

miscellaneous processing

-append c0 to MODGDF_DCT & PS_DCT
-apply cepstral mean subtraction
-append delta(△) coefficients
-append acceleration(△△) coefficients

output as 39-dimensional vector

MODGDFCC & PSCC

pre-emphasise data and apply window

Figure 6.4: Main steps for the generation of phase based cepstral coefficients.

The main steps to generate the phase-based cepstral features is outlined in figure 6.4.
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The empirical evaluation of the new representation is covered in the following sections. For

MODGDF generation, there is a lack of any theoretical justification for the optimal values

for α, γ. The smoothing parameters were thus determined by using the brute-force search

with values tested between 0.05−0.95 with a step increment of 0.05. The one that gave the

best result was retained. For the experiments using MODGDF, the smoothing parameters

were thus set at α = 0.95 and γ = 0.20. A 26-band mel spaced triangular filters was

used for the filterbank analysis. Lastly, the choice of window function was also carefully

selected. It was observed that certain window operations affected the group delay spectrum

to a greater degree by the introduction of spurious spikes, whilst others produced a much

smoother spectrum, keeping the resolution of the formants intact. It was found that both

Gaussian and Hanning-Poisson window produced the smoothest group delay spectrum and

the later was chosen as the application window. Our choice of window function for phase-

based spectrum generation has also been corroborated in other studies (Bozkurt, Couvreur,

and Dutoit, 2007). The Hanning-Poisson window is defined as:

w(n) =
1

2

(
1− cos

(
2πn

N − 1

))
e
−α|N−1−2n|

N−1 (6.14)

where α controls the exponential slope. For all the experiments reported later on phase

features, the value was set to α = 2.5.

MODGDF & PS based cepstral coefficients will be referred to as MODGDFCC

and PSCC in the remainder of the thesis.

6.2 Phase based features for dysarthric speech

The conceptual understanding of the group delay spectrum along with its properties form

a convincing and sufficient basis to extend the idea of phase based features for representing

dysarthric speech. To the best of our knowledge, there is no work in the literature that

explores the possibility of phase feature representation for evaluating the performance of

ASR on dysarthric speech. This section will briefly examine some of the useful properties of

a feature representation and compare some noticeable and important differences manifest

in the magnitude and phase based speech features of dysarthric speech signals.
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6.2.1 Frequency representation using phase spectrum
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Figure 6.5: The figure shows the long term average spectra for the centre of the vowel /iy/ in

the word be. It compares the MFCC and group delay based spectral representations along

with the actual magnitude spectrum for a speaker chosen from each of the intelligibility

groups in UASPEECH database. The comparison was done using around 1000 speech

samples extracted from the centre of the vowel /iy/. The specific speakers selected for each

intelligibility group are very-low→M04, low→F02, mid→M05, high→F05. The dotted line

represents the approximate location of the first three formants for a typical vowel /iy/ given

in Wells (1962).
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For consistency, the analytical work conducted here uses the same set of files that were

used in section 4.2.4 for the ZZT analysis of vowel tokens. The spectrum comparison was

conducted for the front high vowel /iy/ in the production of the word be. A comparison

between the MFCC and Group Delay based spectra is shown in figure 6.5 along with the

actual magnitude spectrum for a speaker chosen from each of the intelligibility groups.

Around 1000 samples of voiced segment was selected from the centre of the vowel /iy/ in

generating the two spectra for each speaker. It can be easily seen in figure 6.5 that across

all the intelligibility groups, the group delay spectrum shows a better correspondence of the

expected peaks in comparison to the standard spectrum. For example, it can be seen for

both mid and high intelligibility speakers, the expected locations for the first three formants

(represented by dashed lines) are more closely aligned with the group delay spectra instead

of the MFCC spectra. Since the distribution of formants is affected in speakers with lower

intelligibility, a slight shift from the typically expected format locations is expected. Despite

this, the peaks noticed in the magnitude spectrum show a higher degree of agreement

to the group delay spectrum instead of MFCC for speakers with reduced intelligibility.

For example, in the very-low intelligibility speaker the peak in the magnitude spectrum

around 3 kHz matches with a peak in the corresponding group delay spectra, whilst the

standard spectrum does not show the expected peak around this frequency region. A similar

observation is also noticed for the low intelligibility speaker around 2.5 kHz, where the group

delay spectrum shows a much finer resolution of the peak. It can be emphasised here that

both the spectra are generated from the MFCC and PSCC based cepstral coefficients. The

overall outcome is promising as it can be seen that the high resolution properties of the

group delay spectrum discussed in section 6.1.1.1 can prove to be beneficial in the processing

of disordered signals.

6.2.2 Better class separability

The aim of any feature representation technique for speech recognition is to capture suffi-

cient discriminatory information about the individual phonetic tokens. However, generat-

ing such an optimal feature set can be more difficult in dysarthric speech due to the high

degree of inter- and intra-speaker variability, data sparsity issues and malformed phonetic

space (Blaney and Wilson, 2000; Kent et al., 2000; Morris, 1989). In the current section, the

analysis of class (phonetic) separability is studied by examining certain aspects of speech

production that are more likely to generate consonant articulation errors in dysarthric
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speech. The most common distortions reported in the literature include detrimental effects

to place of articulation, manner of articulation and voicing (Kent et al., 1990; Kim et al.,

2010a; Riddel et al., 1995).

For example, in a study on 50 speakers with Cerebral palsy it was found that speech

production errors were primarily noticed in voicing and place of articulation in comparison to

manner of articulation (Platt et al., 1980; Platt, Andrews, and Howie, 1980). Another recent

study on 7 native American speakers with Cerebral palsy and varying degree of intelligibility

examined the presence of only voicing errors in speakers with high intelligibility and place,

manner and voicing errors collectively present in lower intelligibility speakers. It has been

examined that the place errors are mostly noted for labiodental, dental and alveolar sounds

and manner category errors are more manifest in fricatives and affricates (Platt et al., 1980;

Platt, Andrews, and Howie, 1980). In another study by Antolik and Fougeron (2013), place

articulation errors due to incomplete closure of alveolar and velar stops was noticed for

speakers with amyotrophic lateral sclerosis and devoicing of voiced consonants were found

problematic in dysarthric speakers with Parkinson’s disease and cerebellar ataxia.

It is beyond the scope of the current study to examine all the articulation and voicing

errors and we limit our analysis to the aspects of speech production errors that are found

to be more prominent in speakers with dysarthria, viz., place of articulation and voicing.

In the current section, the analysis of class (phonetic) separability is studied by examining

the following four sounds as shown in table 6.1.

Examined Tokens Token Type Targeted Error

/s/ , /sh/ Alveolar vs Post-Alveolar fricative Place of articulation

/t/ , /d/ Voiceless vs Voiced Stop Voicing

Table 6.1: Phonetic tokens examined for certain speech production errors.

The fricative sounds /s/ and /sh/ are examined in context of the following vowel /iy/

and the stop sounds /t/ and /d/ are examined in context of the following vowel /uw/. The

example utterances of the word see:she are selected for the alveolar:post-alveolar fricatives

and two:do are selected for the voiceless:voiced stops from the UASPEECH database for

a speaker each from the four intelligibility groups. Both MFCC and phase group delay

cepstral coefficients are examined for representing the above fricative and stop syllables. It

is emphasised that only PSCC representation will be shown for brevity and MODGDFCC
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gives similar results.

Since the cepstral representation is generally encoded in higher dimensional space (39

commonly), the problem is first approached as a dimensionality reduction task that will

assist in data visualisation in a lower dimensional subspace. The efficacy of magnitude and

phase based cepstral coefficients will then be examined as a clustering separation problem

to discriminate between the underlying acoustic phonetic tokens ( [/s/, /sh/, & /iy/] and

[/t/, /d/, & /uw/] in our case). Principal Component Analysis (PCA) is used for the

dimensionality reduction task. A complete mathematical description of the PCA is detailed

in the book by Jolliffe (2002), however a simple summary is given here.

Let us consider a matrix X of MFCC or PSCC representation of speech with n feature

observations and m cepstral coefficients given as:

X =



m cepstral coefficients︷ ︸︸ ︷
s11 s12 s13 · · · s1m

s21 s22 s23 · · · s2m

...
...

...
. . .

...

sn1 sn2 sn3 · · · snm




n features (6.15)

where sij is the jth cepstral coefficient for the ith feature. PCA uses an orthogonal

transformation to reduce an n-dimensional space into an r-dimensional space where r < n.

It reduces the dimension of the above matrix X by treating it as an eigendecomposition

problem defined as:

(XTX)︸ ︷︷ ︸
m x m matrix

W = λW (6.16)

where W is the eigenvector, also known as ”loadings” and λ is the diagonal matrix of

eigenvalues that are used to describe the data. Each column of W represents a principal

component that accounts for the variability in the data in decreasing order of importance.

Hence, the first column of W will have the largest eigenvalue representing the greatest

variance. In order to reduce the dimensionality, a transformation is computed on the original

data matrix X as:

T = XW (6.17)

183



6. Feature Representations based on Phase Spectrum

where T represents the PCA scores. As each column of W represents a principal com-

ponent, in the current analysis we will only pick up the first two columns of the matrix that

will result in a two-dimensional representation of the original cepstral features X.

The two dimensions are chosen for presentation purpose only as it will assist in visual-

ising the representation of the two different cepstral representations (MFCC, PSCC) and

compare its discriminatory capabilities for dysarthric signal.

Figures 6.6 - 6.9 show the two dimensional projection of the MFCC and PSCC features

for the syllable fricatives she and see and the syllable stops two and do for dysarthric

speech of varying intelligibilities. If we first look at the very-low intelligibility speaker (part-

(a) of figure 6.6 and figure 6.8), it can be easily seen that the MFCC projection exhibits

overlapping clusters across the entire length of the syllable fricative and stop. In addition to

indistinguishable clusters between [/s/, /sh/, /iy/] and [/t/, /d/, /uw/], there is a marked

zone towards the middle of the utterances that shows the effect of coarticulation that is not

easily discernible for the respective two sounds. Since the features are not discriminatory

in the MFCC representation, it can make the acoustic modelling task a challenge resulting

in incorrect clustering of Gaussian distributions, especially in an HMM-GMM system. In

contrast, the PSCC representation for the same speech shows much better discriminatory

capabilities. It shows the presence of more tightly bound clusters which are easily separable

in the acoustic space. Also, the coarticulatory effect of the two syllable fricatives and stops

tend to be non-overlapping and are well defined within its own domain.

The above explanation for overlapping clusters and coarticulation for the MFCC rep-

resentation seems to extend for the low (part-(b) of figure 6.6 and figure 6.8) and mid

(part-(a) of figure 6.7 and figure 6.9) intelligibility speakers too. It can be easily seen that

the PSCC representation of the same utterance shows much better discriminatory capabil-

ities by representing tightly bound clusters for the phones [/s/, /sh/ & /iy/] and [/t/, /d/

& /uw/], which are easily separable in the acoustic space. Although the difference between

MFCC and PSCC representation seem to reduce for the high intelligibility group (part-(b)

of figure 6.7 and figure 6.9), it can still be observed that the PSCC clusters for /s/ and /sh/

exhibit non-overlapping clusters in contrast to MFCC that still shows a noticeable overlap

between the cloud of distinct points.
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Figure 6.6: The above figures shows a two dimensional PCA representation for the MFCC

and PSCC features derived from the syllable fricatives she & see. The plots are shown

for a speaker each from the (a) very-low and (b) low intelligibility groups where each point

represents a frame.
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Figure 6.7: The above figures shows a two dimensional PCA representation for the MFCC

and PSCC features derived from the syllable fricatives she & see. The plots are shown

for a speaker each from the (a) mid and (b) high intelligibility groups where each point

represents a frame.
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Figure 6.8: The above figures shows a two dimensional PCA representation for the MFCC

and PSCC features derived from the syllable stops two & do. The plots are shown for

a speaker each from the (a) very-low and (b) low intelligibility groups where each point

represents a frame.
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Figure 6.9: The above figures shows a two dimensional PCA representation for the MFCC

and PSCC features derived from the syllable stops two & do. The plots are shown for a

speaker each from the (a) mid and (b) high intelligibility groups where each point represents

a frame.
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It is observed in the previous presentation and discussion that the PSCC tends to exhibit

better discriminatory capabilities for representing unique phoneme clusters in comparison

to the standard MFCC based representation. Due to better discrimination, it was also able

to show promising alternatives that might be capable of handling certain speech production

errors, like place of articulation and voicing that are more exhibit as a characteristic of

dysarthric speech. One of the problem with MFCC is its sensitivity to noise that can

inadvertently introduce ripples in the spectral valley and degrade performance (Tyagi and

Wellekens, 2004; Zhao and Wang, 2013). Group Delay based cepstral representation show

better robustness to convolution & white noise and is more suited for inter-speaker class

separations (Hegde, Murthy, and Gadde, 2007; Murthy, Hegde, and Rao, 2004). In the

current study, we have exploited the idea of phase based spectrum to the analysis for

dysarthric signals and find it to be a promising alternative for better phoneme discriminatory

capabilities for disordered speech. It implies that if dysarthric speech can be regarded as a

noisy channel that is often convolved with a wide variation of non-speech sounds, PSCC and

MODGDFCC based cepstral representation might prove more effective than the standard

MFCC.

•

In the current section two important properties of feature representation have been explored

in context of disordered speech signals. The high resolution aspect of the group delay

spectrum was explored in section 6.2.1 that shows promising signs to better model the

resonances of the vocal tract of dysarthric speech. It was also shown in section 6.2.2 that

PSCC/MODGDFCC representations of disordered signal were more coherent and optimal at

defining phonetic clusters in the acoustic space, thus exhibiting refined class separability

property for better characterising the underlying speech. There is sufficient theoretical and

practical evidence to suggest the beneficial aspects of the phase based spectrum. In the

following sections the effect of the group delay representation will be empirically evaluated

on dysarthric speech by measuring its relative ASR performance on various speech systems.
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6.3 Experiments on phase vs magnitude based features of

dysarthric speech

In this section experiments will be conducted to compare the performance between the

standard MFCC and phase based PSCC & MODGDFCC representations.
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Figure 6.10: Relative ASR gains in comparison to the baseline results presented in sec-

tion 4.1.2 for the phase based feature representation of dysarthric speech. The figures show

the results for PSCC and MODGDFCC based cepstral coefficients.

The results are shown in figure 6.10, where the x-axis is representative of the standard
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MFCC results presented in table 4.3. The plots show the relative ASR gains across the

four tested speech systems (SD, SI-00 (mllrmap), SI-02 (mllrmap), SAT (mllrmap)). It is

evident that the phase based feature representations of dysarthric speech show gains across

all the tested systems. Both PSCC and MODGDFCC feature representations are highly

effective for modelling dysarthric speech with greater degree of pathological disorder in

comparison to standard magnitude based MFCC representation. The relative benefit to

ASR performance is reduced in less severe cases. The outcome of the experiment tends

to coincide with the earlier PSD findings for predicting intelligibility or improving ASR

performance, where PSD corrections were found to be more effective for dysarthric speech

with lowest intelligibility.

Intelli-

gibility

PSCC Features MODGDFCC Features

SD SI-02 SAT SI-00 SD SI-02 SAT SI-00

very-low
23.52

26.52 ††
27.36

30.00 ††
28.71

30.55 ††
20.61

22.36 ††
23.52

25.33 ††
27.36

30.27 ††
28.71

30.28 ††
20.61

21.65 †

low
62.48

66.81 ††
62.92

66.30 ††
62.98

66.72 ††
57.89

60.89 ††
62.48

65.82 ††
62.92

67.05 ††
62.98

66.83 ††
57.89

60.23 ††

mid
64.08

65.52 †
68.51

70.90 ††
69.54

72.02 ††
66.12

66.69

64.08

65.02

68.51

72.34 ††
69.54

72.23 ††
66.12

66.23

high
83.07

83.14

86.17

86.86 †
86.87

87.71 ††
87.08

86.93

83.07

82.96

86.17

86.98 †
86.87

87.12

87.08

86.19

Table 6.2: Absolute ASR word accuracy averaged by various intelligibility groups. The top

number in each cell represents the best baseline results presented earlier in table 4.3 using

standard MFCC features. The shaded number is the result of using phase based feature

representation for the MFCC’s. Significant statistical gains are shown using a † (p < 0.05)

or †† (p < 0.01).

In order to investigate the benefit to ASR performance of phase based features, a pairwise

Cochran’s Q test was conducted for MODGDFCC/Standard-MFCC and PSCC/Standard-

MFCC feature representations. Table 6.2 shows the absolute ASR scores for the two feature

representations. The cells that exhibit significant gains are marked with a †† (p < 0.01) or

† (p < 0.05).

Out of the 16 possible combinations between the four systems and intelligibility groups,
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PSCC based feature representation shows significant gains in 13 systems and MODGDFCC

based feature representation shows significant gains in 12 systems. It is noteworthy that

for both the feature representations, all the systems showed highly significant gains for the

very-low and low intelligibility groups. This is an encouraging outcome, since the majority

of dysarthric speech systems are primarily targeted to benefit users with a high degree of

speech disorder. Hence, feature representation based on group delay spectra of pathological

speech can prove to be significantly beneficial for robust acoustic modelling.

It was noted that PSCC was significantly better (†) at speaker dependent modelling

over MODGDFCC for speakers with lowest intelligibility. The selection between PSCC

and MODGDFCC seems to be a matter of choice and can be dependent on particular

applications. MODGDFCC also comes with an additional constraint of finding optimal

values of (α, γ), which can be dependent on the underlying dataset, whereas, PSCC is free

from such constraints and can benefit from the information in both the magnitude and

phase spectrum.

6.4 PSD enhanced phase based feature representation for

dysarthric ASR

It was seen in chapter 5 that PSD was not only effective at quantitatively predicting the

underlying intelligibility, but a systematic correction of PSD was beneficial to the ASR

performance on dysarthric speech. In the previous section it was shown that the group

delay based feature representations were significantly better at characterising the acoustics

of the dysarthric speech in comparison to the standard MFCC. The two set of experiments

might look unrelated, however, both utilise a common source of information that emanates

from the phase component of the Fourier transformations. The former uses deviations of

the continuous phase spectrum and the latter exploits the group delay phase spectrum with

a common goal of improving dysarthric ASR performance.

Hence the experiments outlined in this section are a logical extension of our previous

work that will combine the beneficial properties of PSD correction and PSCC/MODGDFCC

based feature representations. It is hypothesised that if phase based features are generated

on speech utterances with corrected PSD slopes, then the average effect might have a

favourable impact on the dysarthric ASR performance.
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Figure 6.11: Relative ASR gains for the PSD corrections on standard MFCC along with

PSD enhanced phase based feature representation (PSCC, MODGDFCC) of dysarthric

speech.

The results are shown in figure 6.11, where the x-axis is representative of the baseline

results presented in table 4.3. The PSD results are as presented in section 5.3.2.1 for the

supervised correction mode. The plots show the relative ASR gains across the four tested

speech systems (SD, SI-00 (mllrmap), SI-02 (mllrmap), SAT (mllrmap)). It is evident

that the combined effect of PSD + PSCC/MODGDFCC for dysarthric speech shows

noticeable gains in comparison to the individual benefit of PSD or PSCC/MODGDFCC

application seen earlier. As it was anticipated, the outcome of the combined approach
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Intelli-

gibility

PSD + PSCC Features PSD + MODGDFCC Features

SD SI-02 SAT SI-00 SD SI-02 SAT SI-00

very-low
28.06

29.07 †
31.26

32.72 ††
32.54

34.08 †
21.32

23.92 ††
28.06

28.34

31.26

33.64 ††
32.54

33.16

21.32

22.33 †

low
65.49

70.30 ††
64.89

68.38 ††
65.01

68.92 ††
57.22

60.67 ††
65.49

69.12 ††
64.89

68.25 ††
65.01

68.03 ††
57.22

60.73 ††

mid
66.54

67.01

71.74

71.58

72.02

72.65

65.86

66.23

66.54

66.88

71.74

72.32

72.02

72.17

65.86

65.43

high
84.42

84.49

87.29

87.12

87.83

88.00

87.34

87.58

84.42

83.09

87.29

87.04

87.83

87.92

87.34

86.12

Table 6.3: Absolute ASR word accuracy averaged by various intelligibility groups. The

top number in each cell represents the best results of the PSD correction presented in

section 5.3.2.1 using standard MFCC features. The shaded number is the result of using PSD

correction with phase based feature representation for the MFCC’s. Significant statistical

gains are shown using a † (p < 0.05) or †† (p < 0.01).

tends to follow similar pattern of the earlier experiments and looks highly effective for

modelling dysarthric speech with greater degree of pathological disorder.

In order to investigate the ASR performance of the combined approach, a pairwise

Cochran’s Q test was conducted for PSD/PSD+PSCC and PSD/PSD+MODGDFCC ap-

proaches. Table 6.3 shows the absolute ASR scores for the two feature representations. The

cells that exhibit significant gains are marked with a †† (p < 0.01) or † (p < 0.05). There

were highly significant gains noted in nearly all the speech systems tested under the very-low

and low intelligibility groups. Once again the results present an encouraging outcome with

notable impact on the ASR performance of highly severe dysarthric speech with marginal

benefits for the mid and high intelligibility groups.

6.5 Conclusion

The work in this chapter is inspired from the ZZT and PSD applications presented in earlier

chapters. It has shown that phase of a signal might preserve useful acoustic information

necessary for improved ASR performance. The phase information was extracted in the

form of the group delay spectrum from the phase component of the Fourier transformations
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and it was encoded using cepstral coefficients in the form of MODGDFCC and PSCC

representations. The justifications presented in this chapter argued that such phase based

representation of dysarthric speech is motivated by a strong theoretical framework that

gives compelling evidence to represent such signals in these alternative forms. For example,

the extremely important high resolution and class separability properties of the group

delay spectrum extended these beneficial effects to the recognition of dysarthric speech.

The properties of the group delay spectrum showed strong evidence that phase based fea-

ture representations are more suited to characterise the resonances of the vocal tract, and

exhibited better phone discrimination capabilities in dysarthric signals.

Despite significant ASR results and compelling evidence that phase-based feature repre-

sentation is more amenable for dysarthric signals, it still leaves us with important questions,

such as how these alternate features represent the signal that leads to higher recognition

accuracy for dysarthric speech.

-1 -0.5 0 0.5 1

Real Part

-1

-0.5

0

0.5

1

Im
ag

in
ar

y 
P

ar
t

Pole-Zero Plot

0 2 4 6 8
(x 1000 Hz)

0

0.2

0.4

0.6

0.8

1

M
ag

ni
tu

de

Magnitude Spectrum

-1 -0.5 0 0.5 1

Real Part

-1

-0.5

0

0.5

1

Im
ag

in
ar

y 
P

ar
t

Pole-Zero Plot

0 2 4 6 8
(x 1000 Hz)

0

0.2

0.4

0.6

0.8

1

M
ag

ni
tu

de

Phase Spectrum

Figure 6.12: Pole locations of the magnitude and phase spectra for the vowel /iy/.

One of the ways in which this question might be answered is by looking at poles of
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the magnitude and phase spectra to see if they give any informative cues. By way of an

example, figure 6.12 shows the approximate pole locations inferred from the two spectra for

one particular instance of the vowel /iy/ for a dysarthric speaker. This suggests that the

poles of a phase spectrum might be closer to the unit circle, hence reflecting the prominent

peaks in the spectrum. This aspect could help to preserve the acoustically relevant features

for distinguishing vowels. In order to substantiate this observation, further research is

needed to explore appropriate methods for inferring accurate pole locations, and then to

apply these over multiple utterances generated by multiple speakers.

In the current chapter, the first set of experiments empirically corroborated the effi-

cacy of phase based cepstral coefficients over the standard MFCC features. Both PSCC

and MODGDFCC representations showed statistically significant gains in nearly all the

speech systems and intelligibility groups. It is important to highlight that the results were

highly significant (p < 0.01) for the very-low and low intelligibility groups and SD based

speech systems showed maximum performance benefit. The outcome is in agreement with

the PSD findings of chapter 5 that also favoured speakers with lowest intelligibility and

performed best for SD systems. Another interesting observation was the outcome of the

SI-00 (prepared from large amount of typical speech) system. It exhibited significant gains

using either phase representations, which is an encouraging result as it showcases the im-

portance of PSCC/MODGDFCC over MFCC based representation, whilst using disparate

and heterogeneous datasets for dysarthric speech recognition.

The individual work conducted on both PSD and phase representations of dysarthric sig-

nals gave significant improvements across various speech systems and intelligibility groups.

The last set of experiments used in this study explored the compound impact of PSD and

PSCC/MODGDFCC work. In this study the PSD corrections were first applied to the

dysarthric speech that was later featured using PSCC/MODGDFCC representations. The

results of this composite approach were compared against the best PSD results of chap-

ter 5 that used vowel-specific transforms for the PSD corrections. There were performance

benefits across all the speech systems and intelligibility groups with highly significant gains

for the very-low and low intelligibility groups. Hence, the combined approach can accen-

tuate the beneficiary properties of PSD and PSCC/MODGDFCC to maximise the ASR

performance for speakers where it is most needed.

The main phase-related work conducted in this thesis are based on PSD corrections,

PSCC/MODGDFCC representation and the amalgamation of PSD + PSCC/MODGDFCC.

196



6. Feature Representations based on Phase Spectrum

All three approaches exhibited a prominent pattern in their implementation, i.e., the max-

imum relative benefit was projected for the SD speech systems and favoured for speakers

with severe dysarthria.
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Chapter 7

Discussions and Future Work

The thesis begins by providing a background of dysarthria from an anatomical perspective

and discussed the broad categories of such neurological speech impairments. It was apparent

from research reports that there is an ever growing need to improve human-to-machine

interaction for people with dysarthria and speech was classified as one of the principal

medium to provide a natural and faster mode of interaction.

The study systematically explored standard state-of-the-art ASR techniques for model

training and adaptation. It was determined that hybrid adaptation approaches like MLLR-

MAP was better than MLLR and MAP only adaptations for modelling of dysarthric speech.

SAT based training, which has the inherent capability to reduce the inter-speaker variabil-

ities were statistically more effective to model dysarthric speech with low to mid level of

intelligibility. Since dysarthric speech with high intelligibility was found to be more similar

to typical, it was determined that ASR systems prepared from typical data with homo-

geneous vocabulary and recording conditions (SI-03) were statistically more effective than

ASR systems trained using a typical database with disparate acoustic profile (SI-00). The

results of the ASR systems described in chapter 4 on the UASPEECH database was found

to be statistically better than any of the earlier published results in the literature. The

results, thus formed the baseline for comparison with all the proposed approaches in the

thesis for improving ASR performance.

The thesis also explored conventional acoustic analysis approaches to understand the

characteristics of dysarthric speech and its relationship to intelligibility. Temporal measures

like sypse and VOT indicated more than two times slower speaking rate and exhibited

greater variability for dysarthric speakers with reduced intelligibility. The analysis further
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pointed towards the presence of inter-speaker variabilities and speech production errors,

such as phonemic errors, manifest in dysarthric speakers. In addition, frequency based

analysis was also conducted to study the F1-F2 plane. The standard metric of F1-F2

area was examined along with two new measures of shape and displacement. The area

was computed using the log ratios between the formant profiles of dysarthric and control

speakers and was termed as the compression factor (CF). F1-F2 shape was classified as being

convex, concave or flipped and displacement was introduced to evaluate the directional shift

of the F1-F2 quadrilateral space. It was observed that a high CF and displacement value

along with a concave/flipped arrangement of vowels in the F1-F2 space indicated reduced

phonatory discrimination with overlapping vowel tokens. This behaviour was generally

more evident in speakers with reduced intelligibility.

The thesis further explored a new analytical approach to find acoustic evidence in

dysarthric speech that conveys a functional association with the intelligibility of the un-

derlying speech. The acoustic analysis informed the development of a new metric that was

beneficial for computing quantitative estimates about the intelligibility of dysarthria. The

outcome measures of the metric was systematically exploited to improve the ASR perfor-

mance of various dysarthric speech systems.

ZZT pattern analysis of 
dysarthric vowel segments

Development of a novel 
phase-based PSD metric 

Exploiting phase features of 
dysarthric signals using

MODGDFCC & PSCC representations

Exploiting an amalgamation
of PSD + Phase Features

f :Dysarthric Intelligibility

Improving 
Dysarthric 

ASR

Figure 7.1: Proposed framework for predicting intelligibility and improving ASR perfor-

mance.
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The study proposed a series of coherent approaches that are outlined in figure 7.1 and

discussed below along with an overall summary of results.

ZZT and PSD analysis of dysarthric speech

A new approach for the acoustic analysis of dysarthric speech was investigated by studying

the Z-transform of a time-domain dysarthric vowel segment that was windowed using the

Hanning-Poisson function. It was displayed as a two dimensional plot of the ZZT (Zeros

of the Z-Transform) patterns that emerge from the underlying complex roots. The

expected typical speech pattern usually manifests itself in three distinct zones in the z-

plane, where the zeros above the unit circle represents the glottal pulse, zeros below the unit

circle pertain to the vocal tract filter response and zeros around the unit circle correspond

to the impulse train. The distribution of zeros was observed to be in nearly the typical

range for the mild and high intelligibility group of dysarthric speakers, however it showed

a highly skewed mapping of zeros for the low and very-low intelligibility speakers. One

of the factors contributing to the skewed distribution of zeros was found to be related to

some underlying phase based acoustic event that was more prominent in speakers with

lower intelligibility. This understanding was later confirmed when the unwrapped phase

component of the complex roots was plotted. The slope of the unwrapped phase for a

speaker with lower intelligibility showed significant deviation relative to the slope of a typical

or high intelligibility dysarthric speakers.

The above observations suggested the possibility of a phase related phenomenon that

might encapsulate some underlying dysarthric artefact. The idea of phase deviations was

further extended in chapter 5. The study proposed a new metric, called the Phase Slope

Deviation (PSD) that was used to examine the effect of phase deviations in the dysarthric

vowel segments. PSD uses the unwrapped phase component of the Fourier transform of any

discrete signal under consideration to compute the deviation estimate. The metric was

computed on two disparate data sources, viz. UASPEECH and VIVOCA, and it exhibited

a strong and nearly linear relationship between the acoustically derived PSD scores and

underlying dysarthric intelligibility. It was also found to be very effective under sparse and

missing data conditions. For example, it was found that nearly 23% of the vowel tokens

had no data for the VIVOCA corpus when examined for 13 speakers across 13 vowel tokens

under consideration. Despite the missing information, PSD predicted the expected intelli-

gibility range of VIVOCA speakers in the expected zones for the perceptual correlates of
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intelligibility. Also, since PSD has no pre-involvement with any particular data source, it

should be independent of any particular corpus. The proposed metric also displays a func-

tional association with the underlying dysarthric intelligibility. If a fair degree of acoustic

data is available for a dysarthric speaker, PSD can predict an approximate intelligibility

zone that can aid in better dissemination of any speech based therapy. Alternatively, if the

intelligibility of a speaker is known, an approximate PSD score can be computed, which can

help to devise better acoustic or pronunciation modelling techniques by examining possibly

homogeneous speakers with a similar acoustic profile.

Improving Dysarthric ASR

It has been evident from the ZZT and PSD based analysis that a phase related phenomenon

seems to be intrinsically embedded in the acoustics of the dysarthric speech and that it has

a strong correspondence to the underlying speech intelligibility. In the current study a

series of phase motivated methodologies were suggested with each having its own merits for

improving the ASR performance. A summary of the proposed methods are:

• PSD Corrections: The PSD metric was used to give a quantitative estimate of the

phase deviations that are manifest in a dysarthric vowel segment. As the deviation was

observed to a greater degree in speech with lowest intelligibility, corrective methods

were applied to the dysarthric vowel segments to reduce the overall effect of PSD. The

corrections were applied in a supervised, semi-supervised and unsupervised mode that

differed in the amount of prior information that was available for applying a suitable

vowel phase modification.

• Phase Based Features: This work was inspired by the ZZT and PSD analysis of the

dysarthric vowel segments. It was based on the notion that the phase component of a

Fourier transform of disordered speech has some inherent property that might convey

or encode important acoustic cues relevant to the underlying intelligibility. Cepstral

features were thus prepared from the group delay spectrum and extracted using the

modified group delay (MODGDFCC) and product spectrum (PSCC) functions. The

phase cepstral representation of dysarthric speech showed better formant resolving

and class separability properties relative to the cepstral features extracted from

the magnitude spectrum. The effect of phase based features on dysarthric ASR is an

independent approach to improve the performance of dysarthric speech recognition
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systems. It has no direct relationship to the PSD corrective measures applied for

improving the ASR performance.

• PSD + Phase Based Features: Both PSD and phase based features (MODGDFCC,

PSCC) of dysarthric speech are inspired from the potential information that might

be encapsulated in the phase component of a speech signal. The former exploits the

relationship between the phase deviation and severity of dysarthric speech and the

later exploits the theoretical and practical properties of the phase spectrum that show

better potential to represent dysarthric speech. This is an amalgamative approach

that utilises the beneficial aspects of the otherwise two independent techniques for

improving the ASR performance of dysarthric speech.

It is reiterated that the SD system refers to a speaker dependent system, SI-02 uses

all the dysarthric data for preparing the base model for speaker specific adaptation, SI-00

uses typical speech data from the WSJ SI-84 and WSJCAM0 corpus for preparing the base

model for speaker specific adaptation and the SAT model uses the speaker adaptive training

regime with SI-02 models as the starting canonical model set. The baseline results produced

in section 4.1.2 gives an absolute gain of 11.05% (20.42% relative) over the last published

best results in the literature that was evaluated on a large dysarthric vocabulary set of

255 competing words (Christensen et al., 2012). The baseline results have already shown

the significance of using hybrid adaptation techniques where SAT systems were especially

important for modelling speech with decreasing intelligibility.

A collective summary of the results applying the proposed methods in this study is

compiled in figure 7.2. All the suggested methods have shown significant benefits relative to

our baseline results, albeit, the combined approach of using the PSD corrections along with

the phase features produce the best overall gains in nearly all the systems and intelligibility

groups. It should be noted that all the proposed methods are the most effective for the

speakers with lowest intelligibility. This can be easily seen from the y-axis scale of individual

graphs, which is approximately halved for each intelligibility group from very-low to high.

This is a very promising outcome from a practical application perspective. Since most of the

dysarthric speech systems are targeted for speakers with lowest intelligibility, the suggested

methods can prove highly beneficial in situations where real-time improvement is most

needed. Out of the four speech systems presented in this study, the speaker dependent and

the dysarthric data based SI-02 and SAT systems are the most productive from a practical
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and performance perspective.
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Figure 7.2: ASR gains relative to the best baseline results presented in section 4.1.2 for the

three proposed methods in the study. The average results are presented for speakers in each

intelligibility group of the UASPEECH database.

The PSD correction method has shown significant gains across all these systems and

was the most effective for the SD system in comparison to the adaptation methods. This

is predominantly due to the negative impact of the incorrect PSD corrections, which has a

single speaker effect in the SD system and manifests as a cumulative effect of all the speakers

involved in the adaptation process. In the current study the effect of PSD corrections on
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the ASR performance was evaluated using the supervised, semi-supervised and unsupervised

modes that varies in the amount of prior information that is exposed for the corrections to

apply to a particular vowel segment. For example, in a supervised mode the approximate

location of vowel segments in an utterance was predicted by the process of forced alignment

and in the unsupervised mode, the possible location of vowel(s) was predicted by using a

vowel-consonant classifier. Although PSD corrections are the most effective under super-

vised and semi-supervised modes, the unsupervised correction has shown significant gains

for speakers with reduced intelligibility using the SD, SI-02 and SAT systems. This is a very

beneficial outcome, as it makes PSD more versatile and independent for its applications in

realistic practical settings. The success of the unsupervised PSD corrections is largely de-

pendent on the strength of the vowel-consonant classifier to predict precise vowel locations.

This is not an easy task, since true vowel locations in an utterance can often get confused

with other voiced segments of speech that can lead to a fall in the ASR performance due to

the application of erroneous PSD corrections.

In this study the representation of dysarthric speech as PSCC and MODGDFCC phase

features also came out as a significantly effective alternative to standard MFCC features.

The success of phase based feature representation was primarily attributed to the unique

properties of the group delay spectrum. It was emphasised that better frequency repre-

sentation and class separation attribute of the phase spectrum was advantageous to better

characterise dysarthric speech in comparison to the standard MFCC’s. Another important

merit of phase based feature representation was that it was found to be robust at effec-

tively characterising varying degrees of dysarthric severities. It was especially seen that

PSCC/MODGDFCC features showed refined phone discriminatory capabilities, whilst the

standard MFCC features were adversely affected by the high degree of variability manifest

in the dysarthric speech with reduced intelligibility. The processing of dysarthric speech as

phase representations shows a similar beneficial trend as noted for the method of PSD cor-

rections. The phase representations of PSCC and MODGDFCC tends to marginally favour

the SD system over the adaptive counterparts for the very-low and low intelligibility group

of speakers, but is more effective for the adaptive systems as the dysarthric intelligibility

increases. This can be attributed to the properties of the phase spectrum discussed in the

study that might hold a greater chance of producing better base models for the SI-02 and

SAT systems as the underlying acoustic variability reduces.
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Another important outcome of the study is the recognition results for the SI-00 sys-

tem. Ideally, for the preparation of any dysarthric speech system, the SI-00 models is the

least preferred choice for adaptation. This is primarily due to the huge amount of acoustic

dissimilarity that exists between the training and adaptation datasets, which might pro-

duce sub-optimal speaker specific models. The findings in the current study report that

SI-00 adapted systems show significant gains for the very-low and low intelligibility group

of speakers using nearly all the three suggested methods. This is highly encouraging as it

widens the scope of potential data sources that can be used to build dysarthric speech sys-

tems for speakers with the lowest intelligibility. Since there is already a scarcity of openly

available dysarthric databases for research and development purposes, the suggested meth-

ods of PSD correction, PSCC/MODGDFCC feature representations and its combination

can extend its beneficial properties on varied datasets.

An alternative perspective for a good dysarthric speech system

For the preparation of any dysarthric speech system, choice of vocabulary and its size plays

an important role. It involves an iterative communication process between the therapist

and the dysarthric user to establish the best possible set of words, which can be effectively

used for communication. In the current study, the grammar network that was built for all

the tested speech systems allowed the recognition of one out of the possible 255 competing

words where each word had an equally likely chance to get recognised. The efficacy of ASR

systems was evaluated using the standard metric of Word Accuracy that can be defined for

word level recognition as:

WAcc =

(
NR

NT

)
· 100 (7.1)

where NR are the utterances that were successfully recognised and NT is the total

number of utterances. However, the above metric only operates on the output of a single

ASR system and does not take account of its improvement relative to another ASR system.

In designing dysarthric speech systems it is important to test the effectiveness of multiple

systems in relation to each other and select the one that might be more amenable for a

particular speaker with a specific set ot vocabulary. Hence, it is sometimes desirable to

measure the effectiveness of any improved speech system in more tangible terms that reflect

the possible increase in the likeliness of a word to get recognised. In reflection of this, one

can define:
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PWI =

(
Nproposed −Nbaseline

v

)
· 100 (7.2)

where PWI is the improvement factor of recognition for each word in the vocabulary

using the proposed system relative to any baseline system. Nproposed and Nbaseline are the

total number of utterances that were successfully recognised using the two systems and

v is the total vocabulary size. As an illustration, if we pick the proposed system as the

combined approach of PSD Corrections + PSCC/MODGDFCC feature representation and

the baseline system as the initial hybrid adaptation systems defined in section 4.1.2, then

the per word recognition improvement using the above equation is shown in figure 7.3.
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Figure 7.3: Per word recognition improvement where the proposed system uses the combined

approach of PSD+PSCC/MODGDFCC and the baseline system is the one suggested in

section 4.1.2 using hybrid adaptation method.

It can be seen that the proposed system increases the recognition improvement for each

word in the vocabulary (255 in our case) by around 100% for the speakers with lowest

intelligibility. The benefit tends to reduce with increasing dysarthric intelligibility, albeit, it
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still provides a positive improvement factor across all the intelligibility groups. This aspect

of looking at ASR performance can give an alternate perspective to select speech systems

relative to each other. In practical setups, for any dysarthric speech system, the size of v is

generally in the range of 5-50, which can give a more realistic estimate using equation 7.2.

Adaptive methods seem to be amongst the best techniques that can be used to prepare

efficient dysarthric speech systems like SAT, SI-02, especially for speech with low degree

of intelligibility. It however comes with an overhead of requiring more dysarthric data

for preparing good base systems that are suited for speaker specific adaptation. Speaker

dependent systems on the other hand can be prepared with a more simpler setup and require

data on a per speaker basis. In the current study, it was shown that all the proposed

methods were more beneficial for SD systems than any alternative. It was also shown that

the benefits of PSD, phase features and its combination can be achieved by using the same

amount of available information and the proposed methods did not prove to be resource or

data hungry, which gives promising prospects to addresses the problem of data sparsity to

some extent.

Future Work

The study conducted in the thesis has attempted to explore novel approaches based on

phase of a signal for better comprehension of dysarthric speech. The suggested methods

were beneficial from the perspective of acoustic analysis and ASR improvement. This has

also opened new pathways that are worth exploring from research and application viewpoint.

It was examined in chapter 4 that a relationship might exist between the unwrapped

phase component of the complex roots of ZZT and the underlying intelligibility. Since

speaking rate measure like sypse is also found to have a reasonably linear association

with intelligibility, it will be interesting to explore if such phase slope deviations have any

relationship with rate of speech in general instead of dysarthric speech. One of the way in

which the study can be extended is to examine control group of speakers (especially the

ones with a slow speaking rate) and investigate the phase deviation. If any phase-based

effect is present, it might indicate towards a more generic association to the rate of speech

instead of a dysarthric specific anomaly causing the deviation.

In order to conclude anything meaningful from such a kind of analysis, further research

is also needed to make the method of plotting unwrapped phase component of the complex

roots of ZZT more robust as it currently lacks refinement and is sensitive to the ordering of
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roots. It is also influenced by the alignment of the examined speech segment at the glottal

closure instant. Future research can direct towards exploring automatic alignment methods

to give a more informed understanding of such a phenomenon.

PSD exhibited a strong functional relationship with the underlying intelligibility that

could be associated using regression trends. It can be valuable if such trends can be utilised

to predict intelligibility based on PSD scores and the other way round. This can assist

in setting up a more structured speech therapy routine and aid in designing better speech

systems by clustering acoustically similar speakers together. The metric can be further

exploited to investigate if PSD holds any relationship at a phonetic level, which might give

useful insights into understanding the effect of speech impairment on specific phonemes in

relation to others. Also, since PSD corrections proved helpful to improve the efficacy of ASR

performance, it will be worth researching if such corrections can be systematically utilised

in the speech synthesis domain to improve the perceptual quality of dysarthric speech.

For improving ASR performance, PSD corrections were found to be beneficial for only

vowels and was detrimental when applied to other voiced tokens. It was possibly due

to articulation and voicing errors that are more manifest in consonants than vowels for

dysarthric speech. It requires further research to understand how phase based phenomenon

(such as PSD) can be studied and utilised for other voiced segments.

It was also found that phase based features were better at characterising dysarthric

speech in comparison to magnitude based features for improving the ASR performance.

In light of these findings it will be worth extending the study of phase representations

to investigate its efficacy for noise robustness and other environmental factors that can

affect dysarthric ASR performance. In addition, since both phase and magnitude spectrum

give a complete description of a speech signal rather than any single one, it will be worth

researching whether any joint feature representation of phase and magnitude can add any

significant benefit for the ASR performance of dysarthric speech.

The phase based approaches investigated in this thesis were found to be significantly

beneficial for the classical approaches like HMM-GMM to improve the ASR performance

of dysarthric speech. It will be interesting to see if class separation properties of the phase

spectrum and/or the corrections of the PSD can further assist the discriminative training

paradigms to optimise the classification margins for the input-output mappings. It will be

of particular interest to extend the suggested approaches into deep architectures like DNN-

HMM that intrinsically aim to optimise a generative-discriminative modelling framework.
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Appendix A

Acoustic Analysis of UASPEECH

A.1 F1-F2 vowel quadrilaterals for UASPEECH dysarthric

speakers

The vowel quadrilaterals for various dysarthric speakers in the UASPEECH database. For

clarity the speakers are grouped according to their intelligibility groups, i.e., very-low, low,

mid and high. Each quadrilateral is plotted against the average F1-F2 representation of

the control speakers in the UASPEECH database.

210



A. Acoustic Analysis of UASPEECH

130014001500160017001800190020002100

F2

400

500

600

700

800

900

F1

M04 - Concave Presentation

iy

ae
aa

uw

iy

ae

aa

uw
M04
control

130014001500160017001800190020002100

F2

400

500

600

700

800

900

F1

F03 - Convex Presentation

iy

ae

aa

uw

iy

ae

aa

uw
F03
control

130014001500160017001800190020002100

F2

400

500

600

700

800

900

F1

M12 - Convex Presentation

iy

ae

aa

uw

iy

ae

aa

uw
M12
control

130014001500160017001800190020002100

F2

400

500

600

700

800

900

F1

M01 - Convex Presentation

iy

ae
aa

uw

iy

ae

aa

uw
M01
control

Figure A.1: F1-F2 vowel quadrilateral for speakers with very-low intelligibility. The red

polygon represents the average vowel quadrilateral for the control speakers in UASPEECH

database. The speakers are arranged in their increasing order of severity from top-left to

bottom-right.
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Figure A.2: F1-F2 vowel quadrilateral for speakers with low intelligibility. The red polygon

represents the average vowel quadrilateral for the control speakers in UASPEECH database.

The speakers are arranged in their increasing order of severity from top-left to bottom-right.
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Figure A.3: F1-F2 vowel quadrilateral for speakers with mid intelligibility. The red polygon

represents the average vowel quadrilateral for the control speakers in UASPEECH database.

The speakers are arranged in their increasing order of severity from top-left to bottom-right.
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Figure A.4: F1-F2 vowel quadrilateral for speakers with high intelligibility. The red polygon

represents the average vowel quadrilateral for the control speakers in UASPEECH database.

The speakers are arranged in their increasing order of severity from top-left to bottom-right.
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Appendix B

The VIVOCA Data Source

B.1 Missing vowel tokens

Due to the smaller size of the VIVOCA database and bespoke vocabulary requirements for

individual users, there are some vowel tokens for which no example was recorded from a

particular speaker. Table B.1 shows all the missing vowel tokens for each speaker. The

table cells that are coloured as red were unavailable for a particular speaker-vowel pair. As

an example, majority of VIVOCA speakers have no data for the diphthong /oy/.
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iy ih eh ae aa ao uh uw ey ay aw ow oy

V2-1

V2-2

V2-3

V2-4

V2-5

V2-6

V2-7

V2-8

V2-9

V2-10

V2-7?

V2-11

V2-12

Table B.1: The availability of data for the vowel tokens of VIVOCA speakers. The red

blocks indicate that there was no speech utterance for the specific speaker-vowel pair.
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Appendix C

Phase Alignment for Control and

Dysarthric Speakers

C.1 Unwrapped phase alignment for control and dysarthric

speakers

The figure below shows the unwrapped phase alignment of the front-low vowel /ae/ aver-

aged across control speakers and for two dysarthric speakers from the very-low and high

intelligibility groups. A similar alignment holds for all the individual vowel and diphthong

categories and the purpose of showing only for a single vowel is for clarity. The figure also

shows the global unwrapped phase alignment, which is averaged across all the 13 vowel

tokens for the control speakers.
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Figure C.1: Unwrapped phase alignment for control and dysarthric speakers with very-low

and high intelligibility. The alignment is presented for the front vowel token /ae/ along

with the global alignment that is averaged across all the vowel tokens for control speakers.
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Appendix D

Standard Deviational Ellipses

D.1 Standard Deviational Ellipses for control and dysarthric

intelligibility groups

The standard deviational ellipses for the control and dysarthric intelligibility groups (very-

low, low, mid and high) in the UASPEECH database. Each plot shows the data spread

in both F1 and F2 directions for the vowels and diphthongs. The plots also exhibits the

angle of rotation for each ellipse relative to the data under consideration for the mean points

represented for each phonetic token.
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Figure D.1: Standard deviational ellipse for the control and very-low intelligibility group.

The top and bottom graphs show the variation for vowels and diphthongs respectively.
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Figure D.2: Standard deviational ellipse for the control and low intelligibility group. The

top and bottom graphs show the variation for vowels and diphthongs respectively.
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Figure D.3: Standard deviational ellipse for the control and mid intelligibility group. The

top and bottom graphs show the variation for vowels and diphthongs respectively.
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Figure D.4: Standard deviational ellipse for the control and high intelligibility group. The

top and bottom graphs show the variation for vowels and diphthongs respectively.
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