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Abstract

The demand for inspection and repair technologies for the water industries on
their water mains and distribution pipes is increasing. In urban water distribution
systems, due to the fact that water pipes are ageing, pipe leakages and serious
damage may occur. Compared with the cost of pipe replacement in the under-
ground distribution system, regular pipe inspection and repair is more cost effec-
tive to water companies and local communities. However, small-diameter pipes
are not accessible to humans because they are small in size and often buried un-
derground. Therefore, inspection robotic systems are more suited to this task in
terms of underground pipe networks mapping and damage localisation, in order
to target repair from above ground.

There are a number of challenges for robot mapping and localisation in water
pipes, which are: 1) feature sparsity in water pipes – lack of navigation landmarks,
2) in-pipe robot can only detect nearby features, and 3) unlike indoor/outdoor
SLAM problems, in-pipe robot has less movement flexibility. The main aim of this
thesis is to solve these challenges and address the problem of robot mapping and
localisation in small-diameter feature-sparse water pipes.

This thesis presents a number of novel contributions. Firstly, for the front end,
where raw sensor data is transformed into signals useful for mapping and localisa-
tion algorithms, new types of maps are developed here for water pipes: for plastic
pipes, ultrasound data is used to map the ground profile through the plastic pipe
wall, whilst for metal pipes a hydrophone is used to determine a map based on
pipe vibration amplitude over space. Secondly, a new sequential approach to map-
ping and localisation is developed, based on alignment of multiple maps based on
dynamic time warping averaging. Thirdly, a new simultaneous localisation and
mapping algorithm is developed, which overcomes the limitation of the sequential
approach in that the map is not updated. Finally, a new sensor fusion algorithm
is developed that transforms the robot location in the local coordinate frame to
the world coordinate frame, which would be essential for targeting repairs from
above ground.
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Chapter 1

Introduction

1.1 Background

Water is of great importance and is a precious resource for human beings. In de-
veloped countries, almost all cities are equipped with complete and sophisticated
water supply and purification systems that transform and transfer rain, snow and
groundwater to drinking-standard water. In most cases, water supply infrastruc-
ture contains various types of components that are used to pump, divert, store,
purify and deliver drinking water [121]. Raw (untreated) water is collected in wa-
ter collection points, such as lakes, rivers, artificial reservoirs and groundwater.
This is transferred to purification facilities via uncovered above-ground aqueducts
or tunnels. After a number of purification processes, the drinking-standard water
is transferred into the underground or above-ground tanks and water towers in
cities. Water is then transmitted to private houses or industrial, commercial or
institution customers by using underground water pipe networks.

In water distribution systems, because pipe materials are ageing, leakages and
damage may happen [121]. These will lead to bacteria infiltration and waste of
water. To prevent these, one can use an entirely new set of water distribution
system facilities that contains the latest technology, or alternatively, do periodical
inspections and regular maintenance before damage occurs. In terms of expense,
inspections and maintenance are more acceptable and widely used in the water
industry.

The cost of replacing pipes in an underground water distribution system is
relatively high [28]. Fig.1.1a shows an example of digging the ground for pipe
replacement in an urban area. Therefore regular tests and maintenance are usu-
ally preferred from a commercial perspective. In addition, the water distribution
system in a city is mostly viewed as a complete system. Damage in one section

1
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(a) (b)

Figure 1.1: (a) Water pipe replacement in urban area [63]. (b) Internal view of a
plastic pipe demonstrating the lack of features for mapping and localisation [120].

of the network may have a large negative impact in the community or even re-
sult in a wider area being deprived of service. A dramatic example is the famous
New York City breakdown in 1998 where a 48-inch, 128 year old water main pipe
burst on Fifth Avenue. Several streets were flooded and a 35-foot-wide crater was
created.

A less costly way to maintain water distribution, compared to pipe replace-
ment, is more careful maintenance before pipe damage occurs. Therefore, recently
researchers and institutions have put more effort into this field [102]. The water
industry has spent a large amount of money on early failure detection in their un-
derground networks (water, gas, oil and its derivatives) each year. Successful early
failure detection can largely prevent wastage of water, reduce the risk of pollution
and improve the stability of the service.

An important problem in water pipe inspection is that many pipelines are
inaccessible to humans because they are located underground and some are even
placed at the bottom of oceans. This increases the difficulty and cost of inspection
around the pipe. Therefore, robotic systems have great potential for inspecting
these inaccessible pipelines [102]. Whilst there are many techniques for robot
pipe inspection itself, an as yet unsolved problem is accurately locating damage in
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pipes once found. Further to this, water companies often do not precisely know
the location of their pipes. Therefore repairs are difficult to accurately target. This
leads to the specification of a key challenge for water pipe inspection: the mapping
of pipe networks and localisation of damage using robot navigation algorithms.
The focus of this project is therefore the localisation and mapping problem for
water pipes using mobile robotic systems.

There are three major challenges for robot navigation in water pipes. The
first is the feature sparsity in water pipes, see Fig.1.1b for an inside vision of
a pipe. Most current robot navigation systems deal with indoor and outdoor
environments, which contain numerous landmark features. However, it is dark
in water pipes and pipe walls are smooth and of the same colour in a section of
pipeline, which makes it difficult for camera-based methods to distinguish visual
patterns and for other sensors (e.g. range sensors) to capture features. Secondly,
in pipes the robot can only detect features that are nearby using standard sensors
such as laser range finders and ultrasound sensors. This makes it even more
difficult for sensors to capture landmark features for navigation. Thirdly, unlike
indoor or outdoor navigation, the in-pipe robot has a very restricted route (either
moving forward or backward) in the pipe. By contrast, in an indoor environment,
the navigation robot can move flexibly and detect landmark features from different
positions and angles, reducing uncertainty in the estimate of the map and robot
location. However in water pipes, this flexible movement around landmarks is not
possible. Therefore, robot navigation in water distribution pipes is a difficult and
as yet unsolved problem.

1.2 Aim and Objectives

The aim of this thesis is to build a robot mapping and localisation system for the
underground water pipe environment.

The aim is achievable through several objectives:

1. Explore the challenges of water pipe inspection and robot navigation in wa-
ter distribution pipes. Investigate the buried pipe infrastructure; such as pipe
wall materials, pipe surroundings (voids between pipe wall and soil) etc., to
find observable features useful for navigation and determine corresponding
types of sensors to observe those features.

2. Investigate existing robot navigation algorithms and determine methods for
testing them against the needs of the problem as defined in objective 1.

3. Develop and implement a specialised robot navigation algorithm for water
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pipe networks by modification and improvement of the most promising al-
gorithms determined in objective 2.

4. Verify and validate the robot navigation algorithm with tests undertaken in
controlled laboratory environments using a prototype pipe inspection robot.

1.3 Structure of the Thesis

The thesis is structured as follows.
Chapter 1 gives background and introduction to the water pipe mapping and

localisation problem and outlines published contributions arising from this thesis.
Chapter 2 provides a literature review of key areas of relevance, such as robotic

systems for water pipe inspection and mapping, simultaneous mapping and lo-
calisation (SLAM), and particularly SLAM for water pipes.

Chapter 3 presents the first novel contribution, where new types of robot nav-
igation map are developed for both plastic and metal water pipes. For plastic
pipes, the technique is based on using ultrasonic sensing, where the reflections
off the soil exterior to the pipe wall are used to construct a terrain-profile map.
For metal pipes, the technique is based on hydrophone sensing, where the sound
waves excite pipe vibration, which creates a unique profile along the length of the
pipe that can be used as a map. Elements of this chapter are published in [96, 98].

Chapter 4 presents a novel sequential approach to mapping and localisation,
where a map is first constructed then used for localisation. The map is constructed
by a robot making multiple passes up and down a length of pipe - the map from
each pass is then averaged using dynamic time warping. The localisation is per-
formed using a robust version of the EKF, previously developed in the aerospace
domain for localising off a map of the ground terrain profile [65]. Elements of this
chapter are published in [98].

Chapter 5 presents a novel PipeSLAM algorithm, using the Rao-Blackwellised
particle filter. The PipeSLAM algorithm addresses the limitation of the sequential
approach from chapter 4, which is that the map is not updated in that scheme.
Elements of this chapter are published in [97].

Chapter 6 presents a novel method for localising pipes in the world coordinate
frame by using heading estimates from an inertial measurement unit (IMU), fused
with the PipeSLAM and sequential algorithms from chapters 4 and 5. The limi-
tation of the algorithms from chapters 4 and 5 is that they only estimate distance
travelled along the pipe. The IMU gives an estimate of heading, so along with
distance travelled the robot location, and therefore the pipe location, can be trans-
formed to the world coordinate frame. However, both the heading and distance
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travelled estimates incorporate uncertainty, which must be propagated through
the nonlinear transformation from the local to the world coordinate frame. This is
done using Monte Carlo sampling, which is both simple and effective.

Chapter 7 provides conclusions and directions for future work.

1.4 Contributions Arising from this Thesis

Novelties arising from this thesis are: a novel type of map for navigating in plastic
water pipes, where the terrain profile external to the pipe wall is measured by
an ultrasonic sensor (see Chapter 3); a novel type of map for navigating in metal
water pipes, where a hydrophone is used to induce pipe vibration (see Chapter
3); a novel sequential method for mapping and localisation in water pipes, where
map calibration for a set of independent maps is performed using an existing
algorithm based on averaged dynamic time warping [116] (see Chapter 4); a novel
in-pipe SLAM algorithm – PipeSLAM, where a Rao-Blackwellised particle filter
based SLAM algorithm is developed for water pipes using the novel types of map
described above (see Chapter 5).

During the thesis writing, four papers have been peer reviewed and published
in international publications, and are listed below:

1. Ke Ma, Juanjuan Zhu, Tony J. Dodd, Richard Collins, and Sean R. Anderson.
"Robot mapping and localisation for feature sparse water pipes using voids
as landmarks." In Conference Towards Autonomous Robotic Systems, pp. 161-
166. Springer, 2015.

Winner of the IET Robotics and Mechatronics TPN prize for most promising
industry technology.

2. Ke Ma, Ali Hassan-Zahraee, Juanjuan Zhu, R. Mills, Joby Boxall, Rob Dwyer-
Joyce, Tony Dodd, Richard Collins, and Sean R. Anderson. "Robotic Map-
ping and Localisation in Feature Sparse Water Pipes." In 19th World Con-
ference on Non-Destructive Testing. German Society for Non-Destructive Testing,
2016.

3. Ke Ma, Michele M. Schirru, Ali Hassan Zahraee, Rob Dwyer-Joyce, Joby Box-
all, Tony J. Dodd, Richard Collins, and Sean R. Anderson. "Robot mapping
and localisation in metal water pipes using hydrophone induced vibration
and map alignment by dynamic time warping." In IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 2548-2553. IEEE, 2017.
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4. Ke Ma, Michele Schirru, Ali Hassan Zahraee, Rob Dwyer-Joyce, Joby Boxall,
Tony J. Dodd, Richard Collins, and Sean R. Anderson. "PipeSLAM: Simul-
taneous localisation and mapping in feature sparse water pipes using the
Rao-Blackwellised particle filter." In IEEE International Conference on Advanced
Intelligent Mechatronics (AIM), pp. 1459-1464. IEEE, 2017.



Chapter 2

Literature Review

2.1 Introduction

In many countries in Europe including the U.K., a great number of cities are still
equipped with aged water infrastructure. These water pipes buried underground
are often inaccessible for humans and many pipes were buried decades ago. How-
ever, mostly because of the high cost in renewing pipes, water companies are not
willing to replace these out-of-date pipes with new pipes that contain modern ma-
terial technologies. Hence, for these aged facilities, additional care and monitoring
are essential. For instance, these aged water pipes need inspection more often for
leakages and other potential damages using modern inspection technologies such
as robotic systems.

This chapter will firstly give an introduction to water infrastructure and water
distribution systems, including the latest development of pipe inspection tech-
niques. Secondly, because this research is focused on developing a solution to
pipe inspection by using an in-pipe robot, a brief review of the robot simultane-
ous localisation and mapping (SLAM) techniques and historical development will
be given. Thirdly, the robot navigation or SLAM problem can be viewed as prob-
abilistic state estimation. Therefore, probabilistic state estimation methods will be
described. Fourthly, a review of the recent developments in robot SLAM in water
pipes will be given. Finally, a short summary of this chapter will be given.

2.2 Water Pipes and Inspection

2.2.1 Water Distribution Systems

In a typical water distribution system network, pipes are categorised into two
types by their functionality [146]:

7
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Property boundary

Supply pipe Distribution pipe
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Figure 2.1: Illustration diagram of trunk mains and distribution pipes in water
distribution system

.

Trunk mains are usually of large size (typically greater than 18 inches in di-
ameter) that deliver a large amount of water from one area to another. For in-
stance, clean water is firstly delivered from purification facilities, through large-
sized trunk mains to water tanks and pumping stations in the cities and towns.
Local citizens normally do not get their tap water from water trunk mains, but
from smaller sized water distribution pipes.

Distribution pipes, also called communication pipes, transfer water from trunk
mains to local communities and business buildings. The diameters of distribution
pipes are normally smaller than water trunk mains (typically about 3 inches), but
are also determined by the usage of the consumers. For instance, business con-
sumers normally require larger sized pipes compared with home users. Also,
fire hydrants on the streets are attached to nearby distribution pipes rather than
trunk mains. Fig.2.1 shows a general layout of trunk mains, distribution pipes and
supply pipes.

Supply pipes are also called service pipes. Normally, it is a short section of
small diameter pipe (about 1 inch), that connects a building to the distribution
pipes. In some exceptional cases, a supply pipe could be connected directly to a
water trunk main.
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Figure 2.2: Schematic functioning of Sahara system [101]. The system sends a
sensor head into a pipe tethered with a cable driven by a motor above the ground.
The human operator above the surface tracks the sensor head with a detector.

It is worthwhile to mention that a pipe normally uses the same material across
its length and it normally has no distinguishable landmarks or features for robot
navigation.

2.2.2 Water Pipe Inspection

In the past decade, much research and development has been put into pipe inspec-
tions, however, pipe robots are still in their infancy, with few implementations that
can freely travel through typical underground water pipe systems.

In 1998, Roth and colleagues [126] provided a short review on the state-of-
art in pipe inspection technology in the late 20th century. That work is focused
on inspection technology that is targeted to waste water pipes. They found that
many in-pipe inspection devices were tethered and tele-operated from a control
station above the ground. Although a fully autonomous pipe inspection robot was
the goal, the main emphasis at that time, and even in recent years [92], was the
inspection and damage detection systems, rather than damage localisation, which
requires robot localisation and mapping.

The Sahara leakage detection system (Fig.2.2) sends a sensor platform into a
pipe tethered with a motor above the ground [102]. The surface human operator
tracks the sensor platform using a detecting device. This inspection technology is
effective in pipelines of diameter larger than 0.3m.

Apart from in-pipe inspection, pipe inspection can also be done from the above
ground level by using ground penetrating radar (GPR) [29]. The principle behind
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GPR is that it transmits electro-magnetic signal pulses to the ground [29]. When
the signal reaches the sub-surface (i.e. the soil-pipe surface), the signal reflects
back to a receiver within the GPR. Based on the reflected signal, the location of
the sub-surface can be estimated. Recent research has found that such technology
is not only able to detect the location of buried containers [154] but can also locate
leakages [67, 109].

Safe, reliable water systems are significant to urban communities. There are
over 2 million kilometres of water pipes across Europe, of which more than 50
thousand are distribution pipes feeding water distribution systems [102]. Wa-
ter pipes are very sensitive and expensive components in the water industry as
they cannot be regularly replaced or shut down for maintenance, which may dis-
rupt the entire service in a certain area. However, most underground water pipes
were built decades ago, therefore, there is an increasing need for efficient and
non-disruptive inspection techniques. Hence, the water industry needs fully au-
tonomous in-pipe robots to do regular inspection (i.e. early detection of damage
for repair) before significant and disruptive failure can occur.

2.2.3 Inspection Robotics

Since the first in-pipe inspection devices were designed in the 1970s, many robot
prototypes of different mechanisms have been proposed. A first review on dif-
ferent robot platforms for water pipe locomotion from the application point of
view was given by [130]. Generally, for large-diameter horizontal pipes such as
water trunk mains, wheel based robot platforms are most suitable. In terms of
small-diameter pipes or those pipes where wheel based platform are not applica-
ble, other types might be suitable, such as legged [16, 110], or snake-like robots
[131, 149]. Fig.2.3 shows six different types of in-pipe robot mechanisms that are
commonly used in underground water pipe scenarios.

In 1998, a small-sized water pipe inspection robot tailored for 13mm in-diameter
water pipe was developed [137]. The robot has a micro arm and an onboard CCD
camera for leakage detection using image processing techniques. But this design
lacks flexibility and is not capable of smooth motion through sharply curved pipes,
such as pipe junctions. In the early 2000s, the mobility restriction was overcome by
Muramatsu and Roh [107, 124, 125]. Another image processing based algorithm
was published, which used a CCD camera and laser diode to acquire in-pipe im-
ages [44, 45]. In 2003, a tele-operation system for pipe inspection was developed
[13].

These techniques are capable of robot navigation tasks in the water pipe envi-
ronment. But due to the darkness in the water pipe environment and the feature
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Figure 2.3: Different mechanical types of in-pipe robots [102]. These types are: (a)
wheeled, (b) tracks, (c) legged, (d) inchworm, (e) snake, (f) screw.

sparsity of the inner pipe wall (Fig.1.1b), the robustness of such visual based navi-
gation techniques is still in question. Although image processing techniques have
been investigated for a while and become relatively mature, such techniques may
not be the optimal solution of pipe navigation where pipes lack visual landmarks.
Additional sensing technology or navigation methods should be used that can be
fused with visual sensing techniques.

2.3 Robot Simultaneous Localisation and Mapping (SLAM)
Problem Formulation

In many robot applications, GPS location is not available. For those robots that
are used in underground pipes, oceans and other hazardous environments, other
techniques need to be developed to solve the navigation problem. Therefore, in
such cases, the robot itself needs to build a map of the unknown environment and
concurrently localise itself in real-time. A simultaneous localisation and mapping
(SLAM) problem asks if it is possible for a mobile robot to simultaneously track
its location while incrementally building a consistent map of an unknown envi-
ronment at the same time. A solution to the problem has been seen as a milestone
in the field of robotics as it is the starting point for robots to be truly autonomous
[46].

2.3.1 Standard Problem Formulation

The current standard SLAM problem formulation mainly consists of two processes
(see Fig.2.4):
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Figure 2.4: Front-end and back-end in a typical SLAM problem

1. Front-end process is the sensor data acquisition and filtering process to pro-
duce readable data for later back-end process.

2. Back-end processes pre-filtered data and uses a suitable SLAM algorithm to
process those data to simultaneously estimate robot pose and the map of the
environment.

Front-end process: data association and sensor fusion

In real world robotic navigation applications, it is not practical to directly write
sensor observations as a mathematical function of robot pose and map parameters.
For example, in vision-based SLAM applications (such as [49]), the sensor obser-
vations are usually a sequence of image clips captured from a visual camera. Raw
images, as the input data, cannot be directly used to drive the SLAM process. The
same difficulties are found in other sensors, such as distance measurement-based
SLAM, e.g. using lidar sensing [83]. Therefore, the front-end process is to convert
or extract information from raw data that can be used later in the back-end SLAM
process.

In a typical visual-SLAM system, camera images may contain a large amount
of information (pixels). For navigation purposes, not all pixels are of interest but
a specific visual pattern can be important. Therefore, the front-end process will
firstly extract some distinguishable pixels or patterns in the image. The pattern
locations can thus be easier for the back-end module to process. Similarly, laser
measurement returns the time-of-flight of a laser beam and it will need to be
converted to distance (to an obstacle) before entering the back-end process.

In addition, a front-end process also needs to perform data association from
multiple sensors – sensor fusion. Many robot platforms are equipped with multi-
ple sensors for navigation purposes and the information gathered from different
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sensor observations need to be fused to give a better understanding of the sur-
roundings. Those different types of data (e.g. distances, visual images) need to be
fused to distinguish a landmark. For instance, imagine a mobile robot exploring
through an indoor environment of multiple obstacles and each obstacle is painted
in different colours on its surface. To build a map, a robot needs to determine
which obstacle it captures by using a visual image and to determine the distance
by using a laser scanner measurement. In such a setting, the front-end module
produces an output from raw data comprising the distance and colour of that
observed obstacle.

Back-end process: robot location and map estimation

The most used problem formulation for SLAM can be traced back to 1997 in a
seminal paper [95]. This de-facto standard formulation has been widely adopted
in many SLAM research papers [36, 51, 61, 76, 113, 138].

In a typical SLAM problem, the state that needs to be estimated is the combi-
nation of robot location and map parameters (where typically map parameters are
condidered time-invariant). We denote the time history of robot locations, sensor
measurements (produced from the front end process) and control inputs as

x0:k = {x0, x1, · · · , xk} (2.1)

y1:k = {y1, y2, · · · , yk} (2.2)

u1:k = {u1, u2, · · · , uk} (2.3)

where xk ∈ Rnx is the robot location (or pose) at sample time k, yk ∈ Rny is the
corresponding sensor measurements, and uk ∈ Rnu is the vector of control inputs.

The key problem in SLAM is to estimate the joint distribution of the robot
location, xk, and the map parameters, θθθ, from the history of observed outputs,
control inputs, and initial state x0,

p(xk, θθθ|y1:k, u1:k, x0)

The common algorithmic solutions developed for estimating this joint distribution,
based on nonlinear state estimation methods, are described in Section 2.4.

2.3.2 The Evolution of the SLAM Problem

The development and evolution of simultaneous localisation and mapping (SLAM)
can be broadly classified into three main time periods that are the classical age
(1986-2004), the algorithmic-analysis age (2004-2015), and the robust-perception age
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(2015-now), according to a recent review on robot SLAM [20]. Sections below have
highlighted some key milestones from each of these periods to show an evolution
of SLAM over these time periods.

The classical age (1986-2004)

Modern probabilistic SLAM development can be traced back to the IEEE Robotics
and Automation Conference in 1986, California. Since then, probabilistic ap-
proaches have been widely adopted in robotic research and artificial intelligence
[46]. This historical conference came to a consensus that in the area of robot map-
ping and localisation, the most fundamental problem that needed to be addressed
was the consistent probabilistic mapping [20].

Several years later after this conference, several key papers [48, 135] found a
mathematical model that could be used to describe the correlation between land-
mark locations and robot motion uncertainties. Results also showed that the cor-
relation would increase over an accumulated number of successive measurements.

In the meantime, visual based localisation [4] and sonar based localisation
[26, 30] found that there may exist many common characteristics between these
two approaches. This had soon been proved by Smith et al. [134], who found
that the uncertainties of landmark estimations were correlated with each other.
This is because landmark locations are captured and estimated based on the same
robot poses, which contain the same errors. The conclusion was significant – the
estimation of both localisation and mapping requires a joint state vector consisting
of both robot poses and landmark locations.

Gradually, researchers realised that the mapping and localisation problems
could be described as a single state estimation problem. On the other hand, to
address the mapping problem, the most important part was to find the correlation
among landmarks. At the 1995 International Symposium on Robotics Research,
the abbreviation SLAM appeared in the robotics community and was presented
in a mobile robot paper [47]. At the time, it was also called concurrent mapping
and localisation, abbreviated as CML, which was equivalent to SLAM. Soon after,
a significant improvement was made by Csorba [31, 32], which used a bounded
region filter (BRF) that largely reduced the storage requirement to a linear function
of N.

Since then, researchers have been focused on improving computational effi-
ciency and solving problems in data association. The International Symposium on
Robotics Research in 1999 is another milestone for SLAM in the robotics commu-
nity. In the symposium, the first SLAM session was held and Thrun et al. [140]
presented their formulation of probabilistic SLAM. Then, in 2000, the SLAM work-
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shop at the IEEE International Conference on Robotics and Automation (ICRA)
attracted 15 SLAM researchers. Just two years later, the ICRA 2002 workshop
attracted over 150 robotic researchers in the SLAM area.

Algorithmic-analysis age (2004-2015)

The second period in SLAM is the algorithmic-analysis age. In this period, some
problems existed in the fundamental properties of SLAM, such as convergence
and observability, which were solved [37]. The paper [37] gives a review on the
recent state-of-the-art research mainly on feature based SLAM. In the algorithmic-
analysis age, SLAM became a much wider subject which integrated many research
fields, including computer vision, signal processing, systems identification, sensor
fusion, graph theory, optimisation and probability theory [20].

In the past decade, with the fast development in digital memory technology,
it became possible to allow complex algorithms to solve large scale SLAM prob-
lems while retaining computational efficiency in practical robot applications. In
addition, many algorithms based on the extended information filter (EIF) were
developed to overcome computational complexity by exploiting sparsity in maps
[52, 150, 151]. But the inconsistency issue was not solved (e.g. loop closure –
recognising locations that have already been visited).

Robustness can be one of the most important factors for robots achieving full
autonomy. A SLAM solution can result in failure mainly due to two reasons:
algorithmic failure and hardware-related failure.

The reason for hardware-related failure can be straight forward: no hardware
component can be guaranteed to operate correctly at all times, e.g. large cumula-
tive drift errors may occur such as drift in long-term trajectory estimation from an
inertial measurement unit (IMU) [112].

For algorithmic failures, incorrect data association can be one of the main rea-
sons for failure. For instance, the data association in the front-end module needs
to transform raw sensor measurements to a readable dataset for the back-end
module. For instance, in a visual-based SLAM [133], if the front-end module ex-
tracts wrong pixels (possibly due to unavoidable noise in the image), incorrect
features will be recognised in the image and therefore produce wrong states for
the back-end module, which will result in poor estimation.

Many contributions have been made in feature based SLAM problems in the
Algorithmic-analysis age. To implement high autonomy in mobile robot applica-
tions, one important thing is that a robot itself needs to determine whether it has
travelled back to a known location which it has passed before. This is usually
called loop closure in the field [5]. Due to unavoidable drift in robot pose estima-
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Figure 2.5: SLAM as a factor graph. It gives an insightful visualisation of a SLAM
problem. πππ at the very front denotes the initial assumptions and prior knowl-
edge. Blue circles indicate the robot poses (x0, x1, · · · ). The green circles denote
sparse landmarks (l0, l1, · · · ). In addition, (u1, u2, · · · ) marks the control input or
robot motion constraints and (y1, y2, · · · ) indicate the actual sensor measurement
of landmarks from each robot pose. Loop closure is abbreviated and marked in
(c1, c2, · · · ), although it usually happens after a long time when robot travels back
to a known position of the map.

tion, the robot needs to move to a known location in the environment in order to
close the loop and correct accumulated drift. Therefore, loop closure in a SLAM
problem is key to achieve robustness. However, it can be difficult to achieve in
some scenarios. Since the real world environment is usually dynamic and land-
marks are not static in positions, e.g., moving people, flashing lights. A common
assumption in most SLAM problem settings is that the environment is unchanged
(static) with no moving objects. Various approaches have been made to correctly
determine a loop closure using different SLAM methods and in different scenarios,
such as visual place recognition [94] and feature extraction in laser-based SLAM
method [144].

Scalability is another important aspect that concerns the size of the environ-
ment that needs to be explored. Many modern SLAM algorithms that have been
developed so far are mainly targeting indoor environments [54, 55], which are
small scaled and bounded. However, real world robot applications include larger
scale environment explorations, such as ocean exploration, large scale terrain scan-
ning, agriculture farming and water pipeline inspection. In such scenarios, Thrun
and Montemerlo [139] used a method called Graph SLAM to solve the problem
by using sparse information by generating a factor graph (see Fig.2.5). All these
applications may lead to unbounded state variables to represent the environment
as more and more map landmarks are discovered. Because robots in such environ-
ments need to continuously travel through new places, observing new landmarks,
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computational memory usage will be unbounded. In practice, typical SLAM algo-
rithms have a quadratic growth in memory usage [5]. To tackle this problem, an
iterative linear solver was introduced, which can reduce the quadratic complexity
to linear, which means the memory consumption grows linearly in the number of
variables [35]. Among various optimisation approaches, there are three interesting
methods to reduce the computational cost:

• Node and edge sparsification – this cluster of approaches simply reduces the
number of new nodes and edges adding into the graph in graphSLAM
[139] in order to solve the scalability problem. Typical methods include the
information-theoretic approach [69], inducing new constraints between exist-
ing nodes [73], information based criterion graph optimisation [84], generic
linear constraint [21] and nonlinear graph sparsification [100]. Also, in or-
der to reduce the number of variables, the discrete robot pose can be re-
placed by a continuous trajectory by using B-splines [53]. This technique
has been used and improved in many SLAM algorithms and applications
[1, 10, 12, 43, 79, 105, 145].

• Parallel SLAM – uses multiple processors, such as a graphic processing unit
(GPU) to simultaneously estimate SLAM variables. In factor graph, the idea
is to separate a large graph into several small sub-graphs and each sub-graph
is then stored and processed in a single processor. The first attempt was by
Bosse et al. [11] followed by sub-graph optimisation methods [111, 155], and
hierarchy of sub-maps [62]. In addition, some approaches divide mapping
and localisation into two independent computing cores and estimate them
in parallel [81], or separate other parts of the SLAM process and run them
in parallel [132, 136, 152].

• Swarm robots SLAM – another way to reduce computational cost is to use
a multirobot system. Individual robots cooperatively travel through a large
area and share knowledge with each other simultaneously. This leads to
two knowledge sharing structures: 1) a centralised structure – each robot
builds its own map and uploads the environment information to a central
station which merges all sub-maps and distributes integrated information
to individual robots [39, 122]; and 2) a decentralised structure – assume no
central station is available and individual robots have to build a consensus
and draw a common map [2, 34, 82, 87]. Saeedi et al. [127] give a more
detailed review on robot SLAM for multirobot systems.

Metric mapping uses metric map models to represent the environment. Us-
ing a suitable map representation is crucial in solving SLAM problem. Generally
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speaking, metric map models include feature-based maps and occupancy grid-
based maps. In 2-dimensional space, assuming landmarks are distinguishable,
the former models the environment as a set of sparse landmarks with specific
features and latter models the environment as a matrix of cells with the probabil-
ity of occupation of individual cells. IEEE RAS Map Data Representation Working
Group has lately released a standard representation of these 2-dimensional maps
in robotic navigation [68]. Many current SLAM methods are using feature-based
approaches, which models the environment as a set of sparse landmarks with
specific features (e.g., points, lines, planes) [106].

Semantic mapping is another way of modelling the environment, which asso-
ciates semantic elements to geometric properties in the environment. Due to the
gradually realised limitations of maps that are merely geometric, semantic map-
ping has drawn increased attention recently in order to enhance robot robustness
in complex environment settings and facilitate autonomous tasks, for instance,
SLAM in indoor office environment using semantic objects [15] and human-robot
interaction [7, 19, 128]. Except for a few methods discovered so far, the develop-
ment of semantic mapping is still at its basic level.

Active SLAM contrasts to passive robot SLAM applications where robots per-
form SLAM using sensor measurements that were not deliberately obtained for
the purpose of localisation and mapping. In order to deliver better and more ac-
curate SLAM results, a robot needs to deliberately control its motion to collect the
necessary data that can minimise the uncertainty in the localisation and mapping
process. This type of SLAM is usually called active SLAM. The definition first
originated from [6] and has further been explored in [142]. Thrun [143] stated that
active SLAM includes the dilemma of whether to explore new locations (extend
the map) in the environment or to revisit explored positions (reduce mapping and
localisation uncertainty). Therefore, the active SLAM problem can be viewed as a
decision making problem which has several solution frameworks that can be ap-
plied to SLAM. One of the well-known decision making frameworks is the theory
of optimal experimental design [119]. Several research papers [23, 24] have ap-
plied this theory to active SLAM, to guide the robot in selecting its next possible
action based on the uncertainties in map estimation. Model predictive control has
also been applied to active SLAM [89, 90]. One popular framework used in active
SLAM decomposes the problem into three main processes:

• Select vantage points – ideally, a robot performing active SLAM should eval-
uate its motion at every time step but the computational cost grows expo-
nentially and is impractical in real-world applications [17, 99]. In practical
active SLAM algorithms, a small area of the environment is selected, and
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frontier-based methods are used to explore the space [78, 153]. Recent ap-
proaches using a continuous-space domain representation have solved the
convergence and optimisation problem in a local area [70, 147, 148].

• Calculate utility of an action – when planning an action, a robot needs to con-
sider the robot pose and the map along with future possible sensor mea-
surements and future actions as well. Most of the current works use a linear
combination of uncertainties in robot pose and the map [14, 22]. Since the
numerical values indicating robot pose errors are considerably lower than
the errors of the map (due to the increased space exploration), these two
values are not comparable and often need to be tuned manually. But recent
approaches partially address the problem in particle filter SLAM [22] and
pose graph optimisation [25].

• Execute an action or stop exploration – executing an action is often the simplest
part in the active SLAM algorithm as motion planing has various techniques
to support this. However, determining whether or not the exploration is
accomplished remains unsolved.

2.4 Probabilistic State Estimation Methods for Robot Navi-
gation

The SLAM problem is usually regarded as state estimation (of the robot pose and
map parameters), therefore, state estimation methods have been extensively used
to solve robot navigation problems [46]. SLAM state estimation is typically viewed
in a probabilistic framework, using recursive Bayesian state estimation methods
based on sensor measurements and the system model.

This section first describes probabilistic state estimation algorithms that have
been developed in the literature, including the Kalman filter [77], which is an opti-
mal state estimator for linear Gaussian systems that has been widely described in
the literature [9, 64, 74]. State estimators for nonlinear systems are also described,
including the extended Kalman filter (EKF) [64, 123], the ensemble Kalman filter
[18, 50, 57, 66] and the particle filter [58].

The section finishes with a description of two of the most popular state esti-
mation algorithms for SLAM: EKF-SLAM [38] and FastSLAM (which is based on
the particle filter) [141].
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2.4.1 Kalman Filter

The Kalman filter [77] is a well-known and well-used algorithm in the field of state
estimation, for linear, possibly time-varying, Gaussian systems described by the
state-space model

xk = Fk−1xk−1 + Gk−1uk−1 + wk−1 (2.4)

yk = Hkxk + vk (2.5)

where xk ∈ Rnx is the state vector, uk ∈ Rnu is the control input, Fk is the state
transition matrix, Gk is the control matrix, wk ∼ N(0, Qk) is Gaussian noise, yk ∈
Rny is the measurement, Hk is the measurement matrix and vk ∼ N(0, Rk) is
Gaussian measurement noise.

The Kalman filter can be used to recursively calculate the posterior distribution
of the state xk at each time step k, given the history of the measurements, y1:k, i.e.

p(xk|y1:k)

Using Bayes theorem, assuming conditional independence of measurements, and
recalling the Markov property of the state-space model, then p(xk|y1:k) can be
expressed as [129],

p(xk|y1:k) = p(xk|yk, y1:k−1) ∝ p(yk|xk, y1:k−1)p(xk|y1:k−1)

∝ p(yk|xk)p(xk|y1:k−1)
(2.6)

where from (2.5),
p(yk|xk) = N(yk|Hkxk, Rk) (2.7)

and p(xk|y1:k−1) is obtained from the Chapman-Kolmogorov equation [129], which
defines the prediction step of the Kalman filter,

p(xk|y1:k−1) =
∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (2.8)

where from (2.4),

p(xk|xk−1) = N(xk|Fk−1xk−1 + Gk−1uk−1, Qk−1) (2.9)

and where the distribution of the state at the previous time step, p(xk−1|y1:k−1), is
assumed known, with mean x̂k−1 and covariance Pk−1, i.e.

p(xk−1|y1:k−1) = N(xk−1|x̂k−1, Pk−1) (2.10)
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Therefore, by substitution of (2.9) and (2.10) in (2.8),

p(xk|y1:k−1) =
∫

N(xk|Fk−1xk−1 + Gk−1uk−1, Qk−1)N(xk−1|x̂k−1, Pk−1)dxk−1

(2.11)
where the result of the marginalisation over xk−1 is a Gaussian distribution [129],

p(xk|y1:k−1) = N(xk|Fk−1x̂k−1 + Gk−1uk−1, Fk−1Pk−1FT
k−1 + Qk−1)

= N(xk|x−k , P−k )
(2.12)

To obtain the posterior distribution of the state, p(xk|y1:k), first note that the term
on the right hand side of (2.6) can be expressed as the joint distribution

p(xk, yk|y1:k−1) = p(yk|xk)p(xk|y1:k−1)

= N(yk|Hkxk, Rk)N(xk|x−k , P−k )
(2.13)

which using Lemma A.1, can be expressed as

p(xk, yk|y1:k−1) = N


xk

yk

 ∣∣∣∣
 x−k

Hx−k

 ,

 P−k P−k HT
k

HkP−k HkP−k HT
k + Rk


 (2.14)

Finally, the mean x̂k, and covariance Pk, of the conditional distribution

p(xk|yk, y1:k−1) = p(xk|y1:k)

= N
(
xk|x̂k, Pk

) (2.15)

can be obtained from (2.14) and Lemma A.2, such that

x̂k = x−k + P−k HT
k (HkP−k HT

k + Rk)
−1(yk −Hkx−k ) (2.16)

Pk = P−k − P−k HT
k (HkP−k HT

k + Rk)
−1HkP−k (2.17)

Hence, the well known Kalman filter recursions for estimating the state vector can
now be stated in their usual form, using (2.12), (2.16) and (2.17) as

1. The prediction step

x−k = Fk−1x̂k−1 + Gk−1uk−1 (2.18)

P−k = Fk−1Pk−1FT
k−1 + Qk−1 (2.19)
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2. The update step

Sk = HkP−k HT
k + Rk (2.20)

Kk = P−k HT
k S−1

k (2.21)

x̂k = x−k + Kk

(
yk −Hkx−k

)
(2.22)

Pk = P−k −KkHkP−k (2.23)

Note that the recursion starts from a prior mean x̂0 and covariance P0.

2.4.2 Extended Kalman Filter

The extended Kalman filter (EKF) is used to estimate the states of nonlinear sys-
tems that are subject to Gaussian process and measurement noise [9, 123]. This is
different to the Kalman filter, which can only address linear Gaussian problems.
The key difference is that the EKF propagates a Gaussian state estimate by lin-
earising the system for all the updates of the covariance matrices (which preserves
Gaussianity). In other regards, the EKF resembles the Kalman filter, so they are
closely related.

A nonlinear state-space system with additive Gaussian process and measure-
ment noise can be represented as,

xk = f(xk−1, uk−1) + wk−1 (2.24)

yk = h(xk) + vk (2.25)

where xk ∈ Rnx is the state, yk ∈ Rny is the measurement, wk ∼ N(0, Qk−1) is the
Gaussian process noise, vk ∼ N(0, Rk) is the Gaussian measurement noise, f(·) is
the dynamic model function, and h(·) is the measurement model function. The
functions f(·) and h(·) can also depend on the time step k, but for the convenience
of notation, this dependency is omitted.

The idea of the EKF is to assume Gaussian approximations to the filtering
densities,

p(xk|y1:k) ' N(xk|x̂k, Pk) (2.26)

In the EKF, these approximations are made by using Taylor series approximations
to the non-linearities.

Therefore, the steps for the EKF algorithm can be expressed as
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1. Prediction step

x−k = f(x̂k−1, uk−1) (2.27)

P−k = FxPk−1FT
x + Qk−1 (2.28)

2. Measurement update step

Sk = HxP−k HT
x + Rk (2.29)

Kk = P−k HT
x S−1

k (2.30)

x̂k = x−k + Kk(yk − h(x−k )) (2.31)

Pk = P−k −KkHxP−k (2.32)

where Fx and Hx are Jacobian matrices whose elements at row i and column j are
given by

[Fx]i,j =
∂fi(x, u)

∂xj

∣∣∣∣∣
x=x̂k−1,u=uk−1

(2.33)

[Hx]i,j =
∂hi(x)

∂xj

∣∣∣∣∣
x=x−k

(2.34)

2.4.3 Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF) is similar to the Kalman filter but where
the state covariance is represented by a sample covariance matrix derived from
an ensemble of state vector samples [18, 50, 57, 66]. The EnKF is particularly
suited to state estimation in high dimensional systems where it is impractical
to work with algebraic operations on the Kalman filter state covariance matrix.
Therefore, it would appear that the EnKF is suited to the SLAM problem because
of the potential large dimensionality of the state vector in large maps, although
this application has not been studied to date.

Again, we assume the same nonlinear system dynamics shown in (2.24) and
(2.25). To formulate the EnKF, firstly, at time step k, assume an ensemble of q state
estimates with stochastic errors, and the ensemble set is written as X̂−k ∈ Rnx×q,
and

X−k
∆
= {x(1)−k , · · · , x(q)−k } (2.35)

where x(i)−k ∈ Rnx , i = 1, ..., q is the predicted state estimate of ith ensemble
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member propagated through state equation (shown in (2.24)) as below

x(i)−k
∆
= f(x̂(i)k−1, uk−1) + w(i)

k−1 (2.36)

and the estimation mean x−k of the ensemble set is calculated by

x−k
∆
=

1
q

q

∑
i=1

x(i)−k (2.37)

Since the true state vector xk is unknown, we can approximate state estimates by
using ensemble members. The ensemble error matrix and output error matrix are
defined around the mean by

Ex−k

∆
= [x(1)−k − x−k , · · · , x(q)−k − x−k ] (2.38)

Ey−k

∆
= [y(1)−

k − y−k , · · · , y(q)−
k − y−k ] (2.39)

where Ex−k
∈ Rnx×q and Ey−k

∈ Rny×q. Correspondingly, the predicted error statis-
tics P−xk

, P−xyk
and P−yyk

can be approximated as

P−xk

∆
=

1
q− 1

Ex−k
(Ex−k

)T (2.40)

P−xyk

∆
=

1
q− 1

Ex−k
(Ey−k

)T (2.41)

P−yyk

∆
=

1
q− 1

Ey−k
(Ey−k

)T (2.42)

By using (2.31), a posterior estimate of each sample can be calculated by

x̂(i)k = x(i)−k + Kk(y
(i)
k − h(x(i)−k )) (2.43)

where we use the classic Kalman gain expression in Kalman filter to express the
Kk and that is

Kk = P−xyk
(P−yyk

)−1 (2.44)

and each perturbed observation y(i)
k is given by

y(i)
k = yk + v(i)

k (2.45)

where v(i)
k is zero-mean Gaussian noise variable that is v(i)

k ∼ N(0, Rk). Similar to
the predicted error matrix Ex−k

, a posterior error matrix can be written as

Ex̂k

∆
= [x̂(1)k − x̂k, · · · , x̂(q)k − x̂k] (2.46)
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and the posterior error covariance matrix is

Pk =
1

q− 1
Ex̂k ET

x̂k
(2.47)

The evaluation of covariance matrix can be approximated by using discrete en-
semble members.

Hence, the overall EnKF algorithm steps are as follows:

1. Analysis Step:

Kk = P−xyk
(P−yyk

)−1 (2.48)

x̂(i)k = x(i)−k + Kk(yk + v(i)
k − h(x(i)−k )) (2.49)

x̂k = 1/q
q

∑
i=1

x̂(i)k (2.50)

Pk =
1

q− 1
Ex̂k ET

x̂k
(2.51)

2. Prediction Step:

x(i)−k = f(x̂(i)k−1, uk−1) + w(i)
k−1 (2.52)

x−k = 1/q
q

∑
i=1

x(i)−k (2.53)

Ex−k
= [x(i)−k − x−k , · · · , x(q)−k − x−k ] (2.54)

Ey−k
= [y(i)−

k − x−k , · · · , y(q)−
k − x−k ] (2.55)

P−xyk
=

1
q− 1

Ex−k
(Ey−k

)T (2.56)

P−yyk
=

1
q− 1

Ey−k
(Ey−k

)T (2.57)

2.4.4 Particle Filter

The particle filter was first developed by Gordon [58], and was initially known as
the Bootstrap filter. The particle filter randomly generates samples to propagate
the distribution of the state estimate, which are weighted based on their likelihood
as derived from observed data [27, 40, 59, 60]. The particle filter can be applied to
nonlinear non-Gaussian systems, which is a key advantage over the EKF. However,
a disadvantage is that the particle filter tends to be computationally expensive
compared to the EKF because of the need to propagate many samples.

After each time update in estimation, particle weights will vary. Some particles
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may have lower and lower weights, and become less important. These particles
will tend to zero. Since these particles become less important, the entire particle
set becomes less efficient. In order to maintain the number of particles at all
time, those particles that produced a ’good estimate’ (higher weights) are copied
to reproduce new particles and particles with low weight values will be removed.
This is called particle resampling, which plays a significant role in particle filtering
[3].

Assuming a nonlinear state-space model with additive Gaussian noise, as de-
scribed above,

xk = f(xk−1, uk−1) + wk−1 (2.58)

yk = h(xk) + vk (2.59)

then the basic particle filter for state estimation (the bootstrap filter, which uses
the state equation as the proposal distribution) can be described as follows [58] (at
each time-step):

1. First calculate the prediction of the state, using the state equation, for each
particle x(i)−k , for i = 1, · · · , ns, where ns is the number of particles,

x(i)−k = f(x̂(i)k−1, uk−1) + w(i)
k−1 (2.60)

2. Then evaluate the importance weight for each particle sample and multiply
by the previous particle weight (which has been normalised),

ω̃
(i)
k = ω

(i)
k−1 p(yk|x

(i)−
k ) (2.61)

where ω
(i)
k−1 is the normalised weight, and ω̃

(i)
k is the un-normalised weight.

3. Then normalise the updated weights

ω
(i)
k =

ω̃
(i)
k

∑ns
j=1 ω̃

(j)
k

(2.62)

After this procedure, each particle comprises a state estimate for the current time
step and a corresponding weight, which indicates the probability that the actual
state is the estimated state.

Over time steps, the particle set will diverge and the majority of particles will
have very small weights that tend to zero, whilst a few particles will have relatively
large weights. To solve this problem of degeneracy, the particles are regularly
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resampled (as discussed above). A popular resampling method is called sequential
importance resampling [129].

In sequential importance resampling, the following procedure is used:

1. The current weights, ω
(i)
k , are interpreted as the probability of obtaining the

sample index i in the set of current particles {x(i)−k | i = 1, . . . , ns}.

2. A total of ns particles are then resampled from the set {x(i)−k | i = 1, . . . , ns}.

3. The corresponding weights are then set to a constant value, ω
(i)
k = 1

ns
.

This resampling step ensures that multiple copies are made of particles with high
weights, and particles with low weights tend to be removed. In practice, at each
time step, the algorithm calculates the effective number of particles,

neff ≈
1

ns

∑
i=1

(ω
(i)
k )2

(2.63)

and if neff is lower than a given value, then the resampling step is performed.

2.4.5 Comparison and Discussion

The performance of each filtering algorithm presented above depends on the type
of problem and to a certain extent the computational device used for implementa-
tion. To demonstrate differences in performance of each state estimation algorithm
a numerical example is presented in this section

The EKF has good performance on low nonlinearity problems with relatively
low computational cost. But when it comes to highly nonlinear problems, the
estimation results will be inaccurate. In addition, as it is originated from the
Kalman filter, it assumes all uncertainties are Gaussian.

The EnKF is suitable for both linear and nonlinear problems and tends to have
good performance on nonlinear problems with relatively low computational cost
compared to the particle filter. But if one wants to achieve high accuracy without
any consideration of computational restrictions, the particle filter is likely to be
the better choice. This is because a particle filter does not linearise the model and
when the number of particles is significantly large, the estimation will converge
to an optimal estimate. In addition, similar to the EKF, the EnKF assumes all
uncertainties are Gaussian.
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Figure 2.6: Estimation results of a linear model (shown in (2.64) and (2.65)) using
EKF, PF, and EnKF methods. Green line in each plot indicates the unobserved true
state. (a) noisy observations, (b) state estimation using EKF, (c) state estimation
using PF with 100 particles, (d) state estimation using EnKF with a number of
100 ensemble members, (e) state estimation using PF with 1000 particles, (f) state
estimation using EnKF with a number of 1000 ensemble members.

The particle filter is able to address both linear and nonlinear problems and
has very good performance on problems of very high nonlinearity compared with
the EKF and EnKF. The only problem is that the size of the particle set may need
to be very large when the state dimension is large, which leads to a dramatically
increased computational cost.

To illustrate some of these differences, the algorithms are now compared on
some numerical examples. First a linear model is used, so that the optimal state
estimate can be used as a benchmark from the Kalman filter. Then a nonlinear
system is studied.
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Figure 2.7: Estimation results of a nonlinear model (shown in (2.67) and (2.68)) us-
ing EKF, PF, and EnKF methods. Green line in each plot indicates the unobserved
true state. (a) noisy observations, (b) state estimation using EKF, (c) state estima-
tion using PF with 100 particles, (d) state estimation using EnKF with a number of
100 ensemble members, (e) state estimation using PF with 1000 particles, (f) state
estimation using EnKF with a number of 1000 ensemble members.



30 2.4. Probabilistic State Estimation Methods for Robot Navigation

Consider the linear system,

xk = 0.9xk−1 + wk−1 (2.64)

yk = xk + vk (2.65)

with initial condition x0 = 1, which is simulated over k = 100 time steps. The
signals wk and vk are Gaussian noises where wk ∼ N(0, 0.1) and vk ∼ N(0, 1).

The estimations using EKF, EnKF and particle filter are compared to the obser-
vations in Fig.2.6. To measure the error of the state estimate, normalised rooted
mean square error (NRMSE) is used and is

NRMSE =

√
1
N ∑N

k=1(x̂k − xk)2

xmax − xmin
(2.66)

where xk is the true state at time k and x̂k is the location estimate. In this lin-
ear case, all state estimation algorithms achieve similar performance in terms of
NRMSE (Fig.2.6).

For a nonlinear system, which has been analysed before in many papers [58],
[80], [3], we have

xk+1 =
xk

2
+

25xk

1 + x2
k
+ 8 cos(1.2k) + wk (2.67)

yk =
x2

k
20

+ vk (2.68)

with initial assumption x0 = 1, simulated over 100 time steps, wk and vk are
Gaussian noises that are wk ∼ N(0, 0.1) and vk ∼ N(0, 1). The estimations (black
lines) are shown in Fig.2.7 along with true states (green lines), from which it is
clear in terms of NRMSE and visual inspection that both the EnKF and the particle
filter outperform the EKF for this highly nonlinear system.

2.4.6 EKF-SLAM

The basic SLAM problem, as discussed above, is to estimate the joint distribution
of the robot location, xk, and the map parameters, θθθ, from the history of observed
outputs, control inputs, and initial state x0,

p(xk, θθθ|y1:k, u1:k, x0)

which can be done using the state estimation methods described above. Note that
the full state vector here is an augmentation of the robot pose xk with the map
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parameters θθθ (where the map parameters are assumed to be time-invariant).

The robot motion model is typically described in a state equation,

p(xk|xk−1, uk−1)⇔ xk = f(xk−1, uk−1) + wk−1 (2.69)

where f(·) indicates the motion function or the prediction model, and wk is the
noise term, which is assumed to be Gaussian. Note that the motion model is not
a function of the map parameters, θθθ.

The measurement model can be described as

p(yk|xk, θθθ)⇔ yk = h(xk, θθθ) + vk (2.70)

where h(·) indicates the measurement function, and vk is the Gaussian noise term.
Note that the measurement model is a function of both the robot pose, xk, and the
map parameters θθθ.

The EKF can be applied directly to this nonlinear state-space model, noting
only that the map parameters are omitted from the time update step because the
map is assumed to be time-invariant. This results in the well-known EKF-SLAM
algorithm [38, 46], which is as follows:

1. Time update

x−k = f(x̂k−1, uk−1) (2.71)

θθθ−k = θ̂θθk−1 (2.72)

P−k = FxPk−1FT
x + Qk−1 (2.73)

2. Measurement update

Kk = P−k HT
k (HxP−k HT

x + Rk)
−1 (2.74)x̂k

θ̂θθk

 =

x−k
θθθ−k

+ Kk

yk − h


x−k

θθθ−k



 (2.75)

Pk = P−k −KkHxP−k (2.76)

2.4.7 FastSLAM

The FastSLAM algorithm [104, 141] is a state estimation method for SLAM that
is based on the particle filter, with a simplification known as Rao-Blackwellisation
that separates out one set of states (the map parameters, which are high dimen-
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sional) from a distinct set of states (the robot pose, which are low dimensional).

Particles are used to represent all possible state trajectories of the robot, and
each particle has a unique associated map; each map is updated using an EKF,
which lends computational efficiency to the procedure [104, 141]. Without the
Rao-Blackwellisation step, the overall state dimension in SLAM, including robot
pose and map parameters, would be too large in realistic scenarios to solve using
the standard form of particle filter.

The key step in the Rao-Blackwellised particle filter for FastSLAM, is partition-
ing the joint distribution of robot pose and map parameters, p(xk, θθθ|y1:k, u1:k, x0),
using the product rule, so that

p(xk, θθθ|y1:k, u1:k, x0) = p(θθθ|xk, y1:k)p(xk|y1:k, u1:k, x0) (2.77)

The key point to note is that after application of the product rule, the high-
dimensional map parameters p(θθθ|xk, y1:k) can be updated separately to the low-
dimensional robot pose, p(xk|y1:k, u1:k, x0). Therefore, the robot pose can be esti-
mated using a particle filter with a relatively small number of particles, whilst the
typically large number of map parameters can be updated using EKFs. This tends
to work well in practice because the robot localisation problem tends to be more
severely nonlinear than the map update problem [46, 104, 141].

Localisation using the particle filter
For the ith particle, the robot pose estimate x(i)k can be described as

x(i)k ∼ p(xk|uk, x(i)k−1) (2.78)

and the corresponding weight or the so-called importance factor ω
(i)
k of that par-

ticle is calculated using the same weights assignment as in the particle filter algo-
rithm, defined in (2.61) and (2.62).

Mapping using the EKF
Unlike the localisation part, the mapping part uses the EKF instead of the particle
filter. Since this map update is conditioned on the robot pose, the EKF step is
repeated for each individual particle. Hence, the overall estimation posterior in
FastSLAM includes the robot pose and landmark locations. The particle set can
be represented as

Xk = {x
(i)
k , µµµ

(i)
k,1, ΣΣΣ(i)

k,1, · · · , µµµ
(i)
k,m, ΣΣΣ(i)

k,m} (2.79)

where µµµ
(i)
k,m and ΣΣΣ(i)

k,m are the mean and covariance of matrices indicating the mth
map parameter in particle i at time k, obtained from each EKF. The FastSLAM
algorithm is described in Algorithm 2.1.



Chapter 2. Literature Review 33

Algorithm 2.1 FastSLAM

1: for i = 1, · · · , ns do . explore all particles

2: Retrieve a robot pose x(i)k−1 from the particle set Xk.

3: Update the pose x(i)k ∼ p(xk|uk, x(i)k−1). . sampling

4: Update µµµ
(i)
k,1:m and ΣΣΣ(i)

k,1:m with yk using the EKF. . Measurement update

5: Calculate weight ω̃
(i)
k . using likelihood

6: end for

7: Normalise weights ω
(i)
k =

ω̃
(i)
k

∑ns
j=1 ω̃

(j)
k

8: Resample if needed

2.5 Robot Simultaneous Localisation and Mapping in Wa-
ter Pipes

Simultaneous localisation and mapping has been a popular approach to mobile
robot navigation for many years. Recently, various new technologies and appli-
cations have been presented, in the field of in-door, out-door and underwater
environments [5, 46]. However, methods for using SLAM in pipes are still quite
new. There have been very few attempts to tackle the problem of robot navigation
in pipes in general, and especially in water distribution pipes. Some researchers
have implemented SLAM on in-pipe robots that employ visual cameras [85], or
inertial measurement units (IMUs) [91].

Many SLAM algorithms employ cameras as they are inexpensive and image
processing techniques are quite mature. However, in the pipe environment, there
are relatively few visual landmarks and it is dark, and in water filled pipes the
images can be noisy. Thus, it is not easy to use visual cameras for navigation in
water pipes. IMUs and gyros, although subject to drift, are suitable for obtaining
direction in short-length pipes. But the drawbacks are apparent: their estimation
uncertainties will increase as the robots travels further and further. Hence, they
have to be corrected with other sensors in the long term.

This section describes the main research that has been done in SLAM for robots
in water pipes.

Cameras + IMU

An early research paper from Krys and Najjaran [85] used a visual SLAM system
equipped with a set of 4 grey-scale CCD cameras, an IMU and a laser range
finder (see Fig.2.8). That SLAM system was only tested in a controlled laboratory
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Figure 2.8: Experiment setup in laboratory environment in Krys and Najjaran [85]

environment with small scale pipe line settings (1.22m in length), and the system
was targeted for large in-service water mains.

The 4 spinning CCD cameras capture 360o images around the sensor carrier
in the cross section of the pipe. A laser range finder is used to find the distance
between the CCD camera and the image of interest. A gyroscope in the IMU
gives direction information and an accelerometer provides dead reckoning dis-
tance travelled along the pipe. Due to the well known accelerometer accumulation
error, the CCD cameras are used to correct the drift.

Note that this SLAM system platform contains 4 cameras and therefore is tar-
geting large water mains and will not be capable of inspection in small scale water
pipes. Most importantly, the system is tested in a transparent pipe in a laboratory
environment, which allows external cameras to capture ground truth of the robot
movement. However, due to the transparency of the pipe, the light conditions
are not realistic, so the testing is not suitable for real-world trunk mains, which
are dark. Another limitation is that, in a real-world scenario, the dead reckoning
sensor – the accelerometer – can drift rapidly in a large water main full of flowing
water, which has not been tested.

Laser + Camera

A recent research paper from Liu and Krys [93] built up a prototype of sensor
carrier for internal pipe inspection (see Fig.2.9). The pipe is made of concrete and
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(a) (b)

Figure 2.9: Experiment setup in laboratory environment in Liu and Krys [93]: (a)
experiment setup, (b) artificial features on the internal pipe wall.

is 82.55 cm in diameter. A laser range finder and an inspection camera are used to
perform in-pipe navigation and inspection.

In terms of navigation, the robot uses its onboard camera to capture a se-
quence of images of the internal pipe wall, as well as distance information from
a laser range finder. By assuming the profile of the internal pipe wall is known,
localisation is performed by those two sensors. The accuracy and performance of
localisation is directly related to the prior knowledge of the pipe wall profile. The
inspection is performed by drawing the contour of the internal pipe wall of 360◦.
A limitation of this work is that the map is assumed to be known.

Camera + IMU + Laser + Motor encoder

Lee et al. [88] also applied a visual-SLAM method to robots in water pipes, by
using an IMU, a laser transducer and a camera (see Fig.2.10). The visual camera
captures the feature of pipe joints and elbows to localise the robot while producing
a 3D map of the pipeline. Whilst apparently effective, testing was limited to a
small-scale laboratory environment.

IMU + Motor encoder

Murtra and Mirats Tur [108] used a combination of IMU and a motor encoder
to estimate the location of a sensor carrier in water pipe. This is a simple dead
reckoning scheme and is not SLAM but is included here for completeness. The
other methods discussed above all use some type of corrective sensor such as a
camera and/or a laser range finder to observe the environment, which is used in
localisation and/or mapping. The limitation of a dead reckoning system is that it
can drift over time and unexpected events such as blockages will go undetected.
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(a)

(b)

Figure 2.10: Experiment setup in laboratory environment in Lee et al. [88]: (a)
experiment setup, (b) sensor carrier: MRINSPECT V.

2.6 Summary

In a water distribution system, water pipes are ageing, and have leakages and
need regular maintenance and inspection. However, most pipe environments are
inaccessible to humans. Thus, a water pipe robot system would be very useful for
water companies.

Many robot pipe inspection systems have been developed but a key gap in
most of these is that they do not include a navigation system. When a robot is
inspecting water pipes, it needs to know its current location and the location of
the damage/leakage, which motivates this research on robot navigation systems
for water pipes.

Robot navigation using the SLAM technique has been reviewed here, high-
lighting the main techniques of EKF-SLAM and FastSLAM (based on particle fil-
ters). Although there has been much research on robot navigation using SLAM
in indoor and outdoor environments, they are mainly applicable to feature-rich
environments.

Navigating in water pipes presents a number of different challenges to those
commonly encountered in typical SLAM problems, particularly a lack of land-
mark features. It has been found in this review that only a very small number of
attempts have been made to solve the problem of navigating in water distribution
pipes, mainly based on cameras and IMUs such as are used in typical indoor/out-
door environments. This motivates further research on robotic navigation systems
that are designed specifically for water pipes.
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The Front End: From Sensor Data
to Maps for Water Pipes

3.1 Introduction

This chapter will illustrate the front-end part in this SLAM project and that includes
the experiment setups, sensor modules used, sensor raw data transformation to
readable data. As explained in Section 2.3.1, the front-end in a typical SLAM prob-
lem mainly focuses on feature extraction and data association. The observation
equation is usually a nonlinear equation which transfers raw sensor data into
readable data for the later back-end process. Therefore, the objective of this chapter
is to obtain the readable observation data or observation equations.

This thesis contains three different laboratory experiment settings. Modern
water distribution pipes are mostly made of plastic, thus we firstly conduct exper-
iment for plastic pipes. However, there still exists pipes that are made of metal.
Therefore, experiments on metal pipes have also been conducted from short (1m)
to long (5m). Details of these pipes are explained below:

1. For plastic pipes – use a 300 mm width plastic board and 6 mm in its thick-
ness to represent plastic pipe wall and the soil underneath representing the
soil outside the plastic pipe wall (see Fig.3.2a).

2. For experiment I in metal pipe, use a 1m long, 88 mm in external diameter
pipe vertically placed. Only the 40 cm mid-section is used for scanning (see
Fig.3.5).

3. For experiment II in metal pipe, use a 5m long metal water pipe, which
is horizontally placed and 70 mm in its internal diameter and 80 mm in
external diameter (see Fig.3.6).

37
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Figure 3.1: Diagram showing the principle of ultrasound scanning in a plastic
water pipe. The first reflection is when the ultrasound reaches the inter pipe wall;
the second is the reflection when it reaches the outer pipe wall; the third is the
reflection when it reaches soil surface outside the pipe.

3.2 From Ultrasound Data to Navigation Maps in Plastic
Pipes

3.2.1 Concept

Ultrasound is used to measure the distance to an obstacle by calculating the time
of ultrasound flight. The first reflection of the ultrasound is often used in mobile
robotics to calculate distance to the nearest object - that would be the inside of
the pipe wall for a robot in a pipe. Ultrasound is also used in this way with pipe
inspection robots for damage detection.

An additional advantage of ultrasound used in water is that the signal can be
transmitted through a plastic pipe wall and be reflected off the ground behind,
outside the pipe, although with weaker signal power. This technique has been
used to detect voids outside of plastic pipe walls, where the voids might lead to
damage of the pipe due to lack of ground support [156]. In this robotics project, a
novel use of ultrasonic signals penetrating through the pipe wall is to create a new
type of map for navigation based on the ground terrain profile outside the pipe,
which is advantageous because the terrain outside the pipe is likely to have more
features, i.e. navigation landmarks, than the inside of the pipe wall, which tends
to be smooth and featureless.
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(a)
(b)

Figure 3.2: Experimental setup in the laboratory environment. (a) Ultrasonic sens-
ing probe, mounted on an x-y motorised arm in a water bath. At the base of the
water bath is a layer of soil, over which is a plastic board of similar width and
material as a water pipe. (b) Diagram of the lab setup shown in panel (a).

In Fig.3.1, the ultrasound sensor receives an echo after emitting a signal di-
rected at the pipe wall. The echo signal is a time-domain signal wave, which
contains 3 pulses (lower time-series plot in Fig.3.1). The first pulse is the strongest
pulse, which is the reflection from the inner pipe wall. The second is a smaller
reflection from the outer pipe wall. The third pulse is the reflection from the soil
outside the pipe. This pulse is the one of interest for creating a navigation map
based on the ground terrain profile outside the pipe.

3.2.2 Experiment Settings and Sensor Platform

The ultrasonic transducer was moved through a water bath over plastic pipe ma-
terial to emulate the water pipe environment. The base of the water bath was
covered in soil, with the plastic pipe material resting on top (Fig.3.2). At certain
locations in the soil, voids were inserted to create landmark features for evaluating
the navigation algorithm.

The ultrasonic transducer had a central excitation frequency of 10 MHz and
focal distance of 75 mm, mounted to the gantry of a stepper motor driven scanning
table. The transducer was pulsed at a rate of 160 pulse/s using PC mounted
pulser-receiver and digitisation cards. The location of the transducer was recorded
for each pulse. The reflected ultrasound was windowed such that the reflections
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Figure 3.3: Design of a water pipe inspection robot for small diameter water pipes.
The prototype shown here is designed to operate in 3 inch pipe and is tethered to
simplify recovery in the event of a robot failure (a requirement of water utilities).
The use of a tether can also be exploited to supply power and off-board process-
ing. The robot is composed of modules that are flexibly linked by a steel spring.
Each module is composed of a 70mm long by 29 mm diameter core unit, which
contains sensors and processing units. The flexible arms extend the diameter of
each module to the range 65-80mm, bracing against the inner pipe wall for stabil-
ity. (a) Robot with 3 modules. (b) Robot in 3 inch clear plastic pipe. (c) Zoomed
view of one robot module.

extending from the upper pipe surface to approximately 80 mm past the lower
surface of the pipe could be observed and digitised at a rate of 100 MSamples/s.

3.2.3 Experiment Data

The experiment data was collected in a simple laboratory setting (see Fig.3.2). The
ultrasound sensor head is moving along the plastic board from the left to the right.
At each location, an ultrasound time sequence is received. By calculating the index
of third reflection in the time sequence (see Fig.3.1), a single number indicating
the index of the third reflection can be achieved. After the sensor head reaches the
right end, a sequence of data indicating the reflection indices are gathered. A total
number of 8000 indices is gathered. After the sensor head returns to the left end,
a complete set of 16,000 measurements are obtained.

3.2.4 Ultrasound Derived Maps for Plastic Pipes

The map for navigation generated from ultrasound data is shown in Fig.3.4. Ul-
trasound transducer moves from one end to the other end above a plastic board
Fig.3.2b. A one dimensional sequence of data is measured with 8000 discrete mea-
surement points along the plastic board. The amplitude of the ultrasound data is
referred to the time-of-flight. But due to the fact that ultrasound reflection waves
travels through water, pipe and air outside the pipe wall, the exact distance is not
measurable. On the other hand, in this robot navigation project, it is not important
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of the physical meaning of the map, as long as the map itself can help on in-pipe
robot localisation (in Chapter 4) and SLAM (in Chapter 5). The data shown in
Fig.3.4a has some undesirable disturbances noises and they are smoothed out by
using median filter and results in Fig.3.4b. Both localisation and SLAM will not
work if a long region of the map is too flat. Therefore, an additional artificial soil
void (from location 500 to location 750) is added to the map, based on the first big
void from location 0 to location 300. Thus, the final ultrasound derived soil depth
map is shown in Fig.3.4c.

3.2.5 Discussion

In this Section, a new use of ultrasound sensor data was introduced. Various robot
navigation literature have used ultrasound sensor to detect nearest obstacles by
measuring the time of flight of the first pulse in the reflection time-domain signals.
But in this project, a novel use of this ultrasound reflection data (measuring the
third pulse) has proved that the soil void depths outside the plastic pipe wall can
be used as an important feature due to its variations along the pipe length.

However, the major drawback of this technique is that the ultrasound trans-
ducer has to point to one direction during its observation. Otherwise, it may
observe different soil profiles and the soil depth map will be changing because the
measured soil depth map is one dimensional while in practical scenarios the pipe
is three dimensional in space.

It is worth noting that, compared to other robot navigation projects, the ob-
served ’feature’ in this project is still far less – one numeric value at each location
along the pipe. However, in a typical visual SLAM problem (either outdoor or
indoor environment), an image captured from a visual camera contains too much
information (landmarks). Tracking one important landmark while ignoring other
landmarks may still do the job. However, in this project, one has to make full use
of the one dimensional data and any undesirable disturbances may have unex-
pected impact on the robot navigation.

3.3 From Hydrophone Data to Navigation Maps in Metal
Pipes

3.3.1 Concept

A hydrophone emitting lower frequency sound waves, compared to ultrasound,
can be used to excite pipe vibration. When a hydrophone emits sound waves, the
metal pipe will vibrate and the vibration will be recorded by another hydrophone
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Figure 3.4: Ultrasound data derived map from experiment conducted in labora-
tory environment. (a) Raw ultrasound transducer measurement in laboratory. (b)
Smoothed ultrasound data after applying a median filter to filter out undesirable
disturbances. (c) An artificial void (from location 500 to 750) is added to create
another feature for localisation and SLAM. It is then rescaled to match the ampli-
tudes in later metal pipe data.
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receiver. The recorded echo signal contains various frequency components which
are related to the mechanical structure of the pipe and other surroundings. Due to
the fact that the underground surroundings along the metal pipe are not perfectly
the same, the frequency components of the echo signal at each location may vary.
Therefore, this frequency variation along the pipe can be used as another type of
feature compared with the smooth and featureless inner pipe wall.

After the hydrophone transducer receives an echo signal in time-domain, the
echo signal can be transformed into frequency-domain using Fast Fourier trans-
form (FFT). However, not all frequencies are of interest, and this is because some
frequency components are not changing along the pipe while some frequency
components will change rapidly as the hydrophone travels through the pipe.
Therefore, the front-end process will filter out those frequencies that are not chang-
ing much along the pipe and keep those frequency components that are changing.
Therefore, by calculating the amplitudes of those frequency components or the
mean amplitude of certain frequency band of that signal, a one dimensional map
can be obtained.

Similarly to the case of plastic pipes with ultrasound mentioned previously,
this one dimensional map obtained from hydrophone data can be used as a navi-
gation map or the offline data for SLAM in metal water pipes.

3.3.2 Experiment Settings and Sensor Platform

The experiments on metal pipes are separated into two different metal pipes. The
first experiment is conducted in a short metal pipe (1m length, 88 mm in external
diameter). The second experiment is conducted in a longer metal pipe (5m length,
70 mm in internal diameter and 80 mm in external diameter).

In order to demonstrate the feasibility of the mapping and localisation tech-
nique described above, a small-scale laboratory experiment was constructed. A
steel pipe, of dimensions 1 metre in length, by 88 millimetres in external diameter,
was inserted into a concrete mould in a water butt, which was then filled with
water (Fig.3.5). The pipe material was chosen to be steel as opposed, to e.g. cast
iron, because the acoustical properties of steel are well known. This makes steel a
more appropriate material for testing in the early stages of developing this novel
technique.

A 3D printed unit was used to house a pair of hydrophones (Bruel&Kjaer type
8103) emitting signals around 3.7× 103kHz. This unit was then immersed into
the steel pipe in an ultrasonic pulse-echo setup. The input signal to the pulser
was a waveform generator (Tektronix AFG3022C), amplified by a Bruel&Kjaer
type 2713 amplifier, which produced pipe vibration. The receiver unit, the second
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Figure 3.5: Experimental setup for 1m metal pipe: The hydrophone pulser and
receiver unit, H8103, travels up and down a one metre steel pipe that is immersed
in water. Experimental recording was conducted on a 40 cm mid-section of the
pipe.
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Figure 3.6: Experimental setup for 5m metal pipe: The hydrophone pulser and
receiver unit, H8103, travels up and down a one metre steel pipe that is immersed
in water. Experimental recording was conducted on a 40 cm mid-section of pipe.

hydrophone connected to an additional amplifier (Bruel&Kjaer 2693), measured
the amplitude of the pipe vibration. Finally this output signal was logged on a PC
using a National Instruments BNC 2110 receiving unit.

In this preliminary work the sensors were not mounted in the robot in Fig.3.3,
which would have over complicated the laboratory experiment. However, the
robot is designed to carry a sensor payload such as used here.

3.3.3 Experimental Data

The map of pipe vibration amplitude (measured in arbitrary units, a. u.) was con-
structed over a 40cm mid-section of a 1m pipe. Data was logged at 0.5 centimetre
spacing over this mid section (see Fig.3.7 for experiment data). A fast Fourier
transform (FFT) was used to transform the data from the time- to frequency-
domain to obtain the amplitude of pipe vibration at each spatial location. The
amplitude was averaged over the range 15-25 kHz to produce a one-dimensional
map of mean pipe vibration amplitude over space (Fig.3.7c). This one-dimensional
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function in Fig.3.7c corresponds to the map h(.) defined in (4.2).

3.3.4 Hydrophone Derived Maps for Metal Pipes

Hydrophone derived maps for 40cm mid-section in 1-metre metal pipe is shown
in Fig.3.7c. Hydrophone derived maps for 5-metre pipe is shown in Fig.3.8d and
Fig.3.9d using different derivation parameters. For 5-metre metal pipe, two sets of
experiment data are gathered (Data I in Fig.3.8 and Data II in Fig.3.9).

The experiment in 1m metal pipe is conducted in a one way travel – the sensor
platform starts from its original location and travels for 40cm and then stops.
However, the experiments for 5-metre metal pipe contains two passes (forward
pass and return pass). The sensor platform moves from left end of the pipe to
the right end of the pipe and then return. It is worth mentioning that the data
collected from 1m metal pipe only contains a "single path" that is left-to-right, but
the two sets of data (Data I and Data II) collected in 5m metal pipe contain a "full
return path" that is left-to-right-to-left.

On the sensor platform, one hydrophone transmits signals and the other re-
ceives response signals. Signals are time-domain waves. By using a Fast Fourier
transform (FFT), a frequency-domain response signal can be obtained for each
time-domain signal. Using Data II in Fig.3.9 as an example, the brighter in colour
map in Fig.3.9b the more frequency components in that frequency range. By tak-
ing an average over a certain frequency band, a one dimensional map (green line
in Fig.3.9c) can be calculated. As can be seen that it is too noisy, after taking a me-
dian filter, the smoothed map is shown in black. In Fig.3.9d, the black smoothed
map covers a forward pass (0m to 4.995m) and a backward pass (4.995m to 0m).
The red line is the mirrored backward map which overlays on the forward pass
map. The reason to plot this is because due to unexpected disturbances, the map
derived from the forward pass does not guarantee to match the one from the back-
ward pass. To select an average frequency band, one has to consider two things:
1) the mismatch error of forward map and backward map should be as small as
possible; 2) the derived map should contain measurable features, which means
the map should not be too flat.

Data I and Data II from the same pipe at same controlled conditions. The
reason for the difference between their frequency maps is that an additional noise-
filtering process is conducted in Data II that low frequency components in its
time-domain signals are filtered out.
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Figure 3.7: Experimental data in 1m length metal pipe: (a): Time-domain signals
observed by the hydrophone over 40 cm of pipe. Signals were observed at 0.5 cm
intervals but for clarity the graph only shows signals at 5 cm spacing. (b): Space-
frequency representation of hydrophone signal amplitude obtained from an FFT of
the time-domain signals. The red lines indicate the region over which the average
amplitude is taken to form the one dimensional map. (c): The hydrophone map
of amplitude over space.
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Figure 3.8: Experiment in 5m metal water pipe (data I). (a) Time signals mea-
sured by hydrophone. (b) The space-frequency representation of pipe vibration
amplitude. The amplitudes over frequency were obtained from an FFT of the
time-domain signals. The red lines define the frequency range used to average
over to form the map. (c) The map of pipe vibration amplitude over space. (d)
The comparison of forward observations and mirrored backward observations.
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Figure 3.9: Experiment in 5m metal water pipe (data II). (a) Time signals mea-
sured by hydrophone. (b) The space-frequency representation of pipe vibration
amplitude. The amplitudes over frequency were obtained from an FFT of the
time-domain signals. The red lines define the frequency range used to average
over to form the map. (c) The map of pipe vibration amplitude over space. (d)
The comparison of forward observations and mirrored backward observations.
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3.3.5 Discussion

This section introduced how navigation maps are derived from hydrophone data
in three experiments in two different metal pipes. The principle behind the deriva-
tion of hydrophone data is the same. One hydrophone transmits signals to the
metal pipe, and the other hydrophone records the response signals. A frequency
colour map is computed by taking a Fast Fourier transform (FFT) to the time-
domain signals. By taking an average over a selected frequency band, a mean
frequency response map is then obtained.

Compared with literature, the novelty of this work is that hydrophone is firstly
used as a navigation sensor in metal water pipes. Similar to the ultrasound sensor,
the derived navigation map is in one dimension. Although it creates some mea-
surable features in metal pipes, the ’feature’ is still far less. Compared with visual
camera tracking landmarks, the one dimensional map contains too little informa-
tion, where visual image data contains too much information. The advantage of
hydrophone sensing is that it can be applied to any metal pipes even if their in-
ternal pipe wall are very smooth and are of same colour. However, if the internal
metal pipe wall is identical every where, visual camera sensing will fail.

The weakness is that for the first time processing hydrophone signals in an
unknown pipe, one cannot easily determine the frequency range to average over.
Because averaging over different frequency range will result in different map, and
the derived map may not contain enough features if it is not well selected and
later navigation may fail if use a bad map.

3.4 Summary

In this chapter, the front-end part of robot navigation is introduced. It has il-
lustrated the experiment of using ultrasound sensing technique and hydrophone
sensing technique for plastic pipes and metal pipes. For plastic pipes, ultrasound
can go through the plastic pipe wall and therefore the reflection can be received
by a ultrasound transducer. A soil void depth map can be derived based on the
ultrasound refection data. For metal pipes, a hydrophone transmits signals to
the metal pipe and another hydrophone records that response signals. The time-
domain signals are processed using FFT and averaged over a certain frequency
band to derive a one dimensional map for navigation.

The sensor platforms in these experiments are tethered to a motor which pro-
vides power supply and sensor measurements are transmitted from the tethered
cable to a PC. It is assumed that the motor encoder works perfectly that the motor
encoder gives accurate locations during sensor travelling. However, in practical
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scenarios, motor encoder will not produce 100% accuracy in estimating sensor
location.



Chapter 4

Sequential Mapping and
Localisation in Water Pipes

4.1 Background

The previous chapter has shown how navigation data in both plastic and metal
pipes can be obtained, reducing feature sparsity, so that the robot can in principle
produce a map and estimate its location. This problem is addressed in this chapter
by using a sequential mapping and localisation method, i.e. first mapping the
pipe and then secondly using the map to perform localisation (as opposed to the
simultaneous approach used in SLAM in Chapter 5). This sequential approach is
appealing because it should be less prone to divergence than SLAM (because only
one quantity is estimated at a time, the map then location) and it is just as useful
for the purpose of repair from above ground because data can be collected, and
then post-processed for the map, and then the location.

The previous chapter described new types of maps that can be derived from
ultrasound data for plastic pipes and hydrophone data for metal pipes. However
the problem is that the only way of calibrating the spatial component of the map
is by a dead reckoning sensor such as a motor encoder, which could be subject
to unknown drift. To solve this problem, it is assumed that the robot will make
multiple passes up and down the pipe between two known locations (a realistic
assumption because known entry points into water pipe networks are spaced by
about 100 metres in the UK). This means that the map calibration can be improved
by spatial averaging of robot movements up and down the pipe between two
known locations.

Taking a direct average of the data would be likely to lead to smoothing of
the peaks and troughs in the map, degrading features required for localisation.

52
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Instead, the key novelty in this chapter is to use a signal alignment technique to
warp the maps in the spatial direction before averaging. This improves the spatial
calibration without overly smoothing the map features. The signal alignment and
averaging algorithm is based on dynamic time warping (DTW) and is known as
DTW barycentre averaging (DBA) [116].

Section 4.2 defines the mapping and localisation problem, presents the map-
ping solutions based on DBA and the two alternatives to localisation, one based on
the extended Kalman filter (EKF) used in terrain-based localisation [65], and one
based on the particle filter (PF) [129]. The experimental details for the hydrophone
induced vibration of the metal pipe is also presented in this section. Section 4.3
presents the results on evaluation of the mapping and localisation methods using
a combination of experimental and simulation data. Table 4.1 and Table 4.2 show
the lists of data that are used to evaluate the localisation algorithm. Table 4.3 have
shown the experiment results. Finally, section 4.4 concludes the chapter.

4.2 Methods

4.2.1 Problem Statement

In defining the concept of operations for the pipe inspection robot considered in
this work (see Fig.3.3 for a prototype), a number of assumptions are made. The
first regards the robot deployment. In consultation with project partners from the
water utilities industry, e.g. Yorkshire Water, it requires the robot to enter the
water pipe network through existing access points to minimise costs. Assuming
fire hydrants could be used, which in the UK, Europe and the USA are separated
by approximately 100 metres [121, Chapter 14, Table 14.2].

This leads to the second assumption, that the robot will travel between two
points with known location, i.e. two fire hydrants. The third assumption is that
robot travel time between two hydrants, in terms of relative time cost to e.g. robot
deployment, is relatively trivial, hence it is worth the robot making multiple passes
up and down the pipe in order to maximise the mapping and localisation accuracy.

Due to the fact that navigation through the pipe in itself is relatively trivial,
i.e. forwards or backwards, the need for a SLAM solution is limited, hence, the
sequential approach to mapping and localisation is taken here. In addition, only
consider the problem of localising with respect to one dimension, i.e. distance
travelled through the pipe: this technique is not suited to correcting heading,
which is left to future work.

Define the mapping and localisation problem as follows: 1. to estimate a map
h(xk) from hydrophone-induced pipe vibration signals, that transforms robot pose
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xk ∈ Rnx at time-step k to sensor measurements yk ∈ Rny , where h : xk → ỹk,
where ỹk is the noise-free sensor output, and robot pose for example is xk =[
x y ψz

]T, i.e. location in x-y co-ordinates and heading ψz (yaw); and 2. localise
the robot by obtaining the estimate of the pose distribution p(xk|yk). For a straight
pipe, heading is not needed, and we only care about the robot distance travelled
from the origin. But for expandability and integrity of this project, y and ψz are
added to the state xk.

Assume that the dynamics of the pipe robot can be represented by a state-space
model, with state dynamics

p(xk|xk−1, uk−1)⇔ xk = f (xk−1, uk−1) + wk−1 (4.1)

where f(.) is the state transition function, uk−1 ∈ Rnu is the input, wk−1 ∼ N(0, Σw)

is the state noise. The measurement model is

p(yk|xk)⇔ yk = h (xk) + vk (4.2)

h(.) is the measurement function, and vk ∼ N(0, Σv) is the measurement noise.

In this part the state vector xk can be simplified to contain just the location of
the robot along the pipe, xk = xk and nx = 1. The observation yk is the processed
hydrophone signal, which is the average of the vibration amplitude over some
frequency range, |ā|k, hence, yk = |ā|k, and ny = 1. The state dynamics are
assumed to be obtainable from a processed motor encoder reading, which defines
distance travelled, mk, hence

f (xk−1, uk−1) = Fk−1xk−1 + Gk−1uk−1 (4.3)

where Fk−1 = 1, Gk−1 = 1, and uk−1 = mk−1. Although defining this one dimen-
sional state-space model is relatively trivial, it has the advantage that it provides
ready extensibility to more state dimensions for representing the pose in two or
three dimensions, and also can incorporate more sensors, e.g. camera and IMU
data.

4.2.2 Dynamic Time Warping (DTW) and DBA algorithms

In this work it has been demonstrated that the robot can obtain a map of pipe
vibration amplitude over space by travelling through the pipe and exciting pipe
vibration using a hydrophone. Corresponding locations of the robot can be cali-
brated using dead reckoning, e.g. from a motor encoder. However, any drift in
the dead reckoning estimate will result in an incorrectly spatially calibrated map.
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Figure 4.1: Diagram illustration of DTW averaging between two sequences. Taking
the black line (as a time sequence) for example, each index in the black sequence
must have at least one match in the blue line, and vice versa. The red line indicates
the distance between the two indices in the two sequences.

Time sequences DBA solution Direct average

Figure 4.2: Diagram illustration of DTW Barycentre Averaging (DBA) approach.
A cluster of light grey lines are the sequence samples that need to be averaged.
The DBA map (black) is not vertically compressed over the indices. But the direct
averaging result (blue) is compressed vertically. Therefore, direct averaging may
lead to sequence distortion while DBA method can produce a more acceptable
result.
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Algorithm 1: DTW
1: procedure DTW(sk,sl)
2: M1,1 = 0
3: M2:Nk ,1 = ∞
4: M1,2:Nl = ∞
5: for i = 2 to Nk do
6: for j = 2 to Nl do
7: c = d

(
sk(i), sl(j)

)
8: Mi,j = c + min

(
Mi−1,j, Mi,j−1, Mi−1,j−1

)
9: end for

10: end for
11: end procedure
Figure 4.3: Algorithm 1: The dynamic time warping (DTW) algorithm, which
takes as input two sequences of data, sk ∈ RNk and sl ∈ RNl , and returns the
matrix of similarity measure between the two sequences M ∈ RNk×Nl .

A solution to this problem is for the robot to make multiple passes back and forth
through the pipe in order to generate a set S of nm independent sequences of map
data, in order to average out drift errors, where

S = {s1, . . . , snm} (4.4)

where each data sequence is comprised of pipe amplitude response signals over
space, sj = (|ā|j,1, . . . , |ā|j,ns), where ns is the number of spatial samples, and for
each amplitude datum there is a corresponding dead reckoning estimate of spatial
location, x(d), hence we have the data pairs (x(d)j,k , |ā|j,k), for each map j = 1, . . . , nm

and for each observation within the map k = 1, . . . , ns.

The sequences in the set S can be combined to reduce the effect of drift, how-
ever, a direct averaging of these sequences would be likely to smooth out the
map due to sequence misalignment, degrading features required for localisation.
Instead, we propose that sequences can be combined into a map using a signal
alignment technique that warps the sequences in the spatial dimension before av-
eraging. In this work we use a signal alignment technique based on dynamic time
warping (DTW) shown in Fig.4.1, known as DTW barycentre averaging (DBA)
shown in Fig.4.2.

The DTW algorithm calculates an alignment cost matrix M, between two se-
quences sk and sl (see Algorithm 1). The optimal alignment between the sequences
follows a ‘valley’ in the cost matrix. The approach of DBA is to use DTW to com-
pare a mean sequence estimate, s̄, to each sequence in S and iteratively reduce the
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total DTW cost,

s̄∗ = arg min
s̄

nm

∑
i=1

D2 (s̄, si) (4.5)

where the quantity D (s̄, si) is the cumulative alignment cost calculated by DTW,
where D (s̄, si) = MN1,N2 is obtained from the final element computed for the cost
matrix M in Algorithm 1 (Fig.4.3).

The algorithm DBA can be used to obtain a solution to the optimisation prob-
lem posed in (4.5), i.e. the optimal signal average, s̄∗. The algorithm is iterative
and has guaranteed convergence [117]. At each iteration k:

1. Use DTW (Algorithm 1) to iteratively compute the optimal alignment be-
tween each data sequence and the current estimate of the signal average s̄k,
i.e. DTW

(
s̄k, sj

)
, for j = 1, . . . , nm.

2. Use the updated alignment from step 1 to update the signal average to s̄k+1

and set s̄∗ = s̄k+1. Increment k and go to step 1.

The initial mean s̄0 is defined by using one of the data sequences in S chosen at
random. The algorithm is repeated until convergence, which can be monitored by
evaluating the cumulative alignment cost in (4.5).

Finally, the optimal sequence of data samples s̄∗ forms the continuous map
function h(.) from linear interpolation of the data pairs (x∗1 , s∗1), (x∗2 , s∗2), . . . , (x∗ns

, s∗ns
),

where for a location xk on the interval
(

xj, xj+1

)
, at sample-time k, we define

h(xk) = s∗j + (s∗j+1 − s∗j )
xk − x∗j

x∗j+1 − x∗j
. (4.6)

Here we use linear interpolation to define the map h(xk) but an alternative such
as splines could equally be used.

4.2.3 Localisation by Extended Kalman Filtering

The approach taken to localisation using the EKF is inspired by a terrain-based
navigation algorithm developed for aerospace applications [65]. The steps for the
EKF at sample time k consist of:

1. The prediction step for the state vector xk and state covariance Pk,

x−k = Fk−1x̂k−1 + Gk−1uk−1 (4.7)

P−k = Fk−1Pk−1FT
k−1 + Qk−1 (4.8)

where Qk−1 = Σw is the state noise covariance.
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2. The measurement update step requires the definition of the linearised mea-
surement model, Hx, which is obtained from the derivative of a local quadratic
fit to the spatial map of pipe vibration amplitude, where the local quadratic
approximation of the spatial map is

h(x−k ) = a
(

x−k
)2

+ b
(

x−k
)
+ c (4.9)

where x−k is the current location prediction of the robot and hence the deriva-
tive is

Hx =
d

dx−k
h(x−k ) = 2ax−k + b (4.10)

The parameters of the local quadratic function are obtained from a least-
squares fit to a data window centred on the current prediction of the robot
location x−k : the size of local quadratic fit window was set proportional to
the state covariance, W f it = αPk [65].

3. The EKF measurement update is performed by

Kk = P−k HT
x

(
HxP−k HT

x + Rk + ε2
k

)−1
(4.11)

x̂k = x−k + Kk

(
yk − h

(
x−k
))

(4.12)

Pk = (I−KkHx) P−k (4.13)

where Rk = Σv is the measurement noise covariance, and the term ε2
k , in

(4.11), is due to the linear fit error εk, where

εk = h(x̂k)− 2ax̂k − b (4.14)

This time-varying error term is recommended by [65] because it inflates the
measurement noise covariance term Rk in regions of poor fit (typically due
to high nonlinearity), reducing the chance of filter divergence and making
the EKF more robust.

4.2.4 Localisation by Particle Filtering

As an alternative to the EKF for localisation we also investigated the use of the
PF. In this case the PF is based on the bootstrap filter with sequential importance
resampling [129] as used in our previous work on mapping and localisation in
plastic water pipes [96].
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In the first step the particles are initialised,

x̂(i)0 ∼ p(x0), for i = 1, . . . , ns (4.15)

where ns is the number of samples, and initial particle weights are set to w(i)
0 = 1

ns
,

for i = 1, . . . , ns. At each sample-time k the PF performs the following steps:

1. The location is predicted by samples drawn from the state equation, Eq. 4.1,

x(i)−k ∼ p(xk|x̂
(i)
k−1, uk−1), for i = 1, . . . , ns (4.16)

where we assume that the state equation can be used as the importance
distribution of the particle filter [129].

2. The weight update step is

ω̃
(i)
k = ω

(i)
k−1 p(yk|x

(i)−
k ), for i = 1, . . . , ns (4.17)

where we assume Gaussian noise vk on the sensor output,

ω̃
(i)
k = ω

(i)
k−1 exp

(
−1

2

(
yk − ŷ(i)

k

)T
R−1

k

(
yk − ŷ(i)

k

))
, (4.18)

for i = 1, . . . , ns, where ŷ(i)
k = h

(
x(i)−k

)
. The weights are then normalised to

sum to unity to get ω
(i)
k according to (2.62).

3. To avoid degeneracy, resampling is performed if the effective number of par-
ticles drops below a threshold, γ = 0.6ns, using stratified resampling [129].
Then use the selected samples to construct the new sample set {x̂(i)k , i =

1, · · · , ns}.

4.2.5 Algorithm Evaluation

The mapping and localisation algorithms were evaluated by combining the data
from the hydrophone experiment with a simulated robot moving up and down
the map, using the state-space model defined in (4.1) and (4.2) for the simulation.
The number of map sequences generated was nm = 20, five passes forward along
the pipe and five backwards. The input was constant, mk = 0.1 cm or mk = −0.1
cm depending on direction, and drift was added to the simulated robot in the
mapping stage in the form of white noise wk, i.e. state noise covariance Σw = 0.05
cm2, also the measurement noise term vk was set to Σv = 0.01.
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For the EKF localisation the size of quadratic fit window was set to W f it = αPk,
with α = 2.3; the noise covariances were set to

√
Qk = 0.5 cm and

√
Rk = 5.

For the particle filter localisation, the number of particles was set to ns = 100
and noise covariances were set to

√
Qk = 0.5 cm and

√
Rk = 5. To make the

localisation more challenging and highlight the benefit of using the map over dead
reckoning, we also added a deterministic linear and sinusoidal drift term dk to the
state equation, of the form dk = −0.2m̄k + 0.02m̄k sin(1.1m̄k + 2), where m̄k = kmk,
where mk = 0.0395 cm.

To calculate the errors in estimations, a normalised rooted mean square error
is used and is shown below.

NRMSE =

√
∑N

k=1(s̃k−sk)2

N

smax − smin
(4.19)

where s represents the true time series and s̃ represents the estimated time series.
The time series s can be a map, a sequence of robot locations.

4.3 Results and Discussion

4.3.1 Mapping Results Using DBA Algorithm

As discussed in Section 4.2.2, a cluster of drifted time series can be calibrated us-
ing a method called DTW Barycentre Averaging algorithm, abbreviated as DBA
algorithm [116] [115]. To test the performance of the DBA algorithm in map cal-
ibration, two examples are used – a simulated nonlinear map of a sine wave and
1m metal pipe experimental data. Results are shown in Fig.4.4 and Fig.4.5.

In this mapping process, the most significant noise that we considered was the
drift noise in the dead reckoning (from the motor encoder). In addition, extra noise
such as white noise in both sensor measurements and motor encoder were also
added. Besides, some sinusoidal noise was also added into the dead reckoning.

The first result was generated using a simulated nonlinear sinusoidal map
(green) plotted in Fig.4.4. Fig.4.4c and Fig.4.4d, which show the map estimation
errors through a number of robot simulations (From 1 to 20). Fig.4.4a and Fig.4.4b
show the DBA map estimate using 20 runs (10 runs forward and 10 backward)
and are plotted in grey lines. To more clearly show the estimation errors, the
drift is enlarged in the figure. The black DBA map estimation in Fig.4.4a is much
better compared with that in Fig.4.4b, although the former also contains a certain
amount of errors especially in the far left and far right regions.

One of the most important factors in DBA estimation is the selection of the ini-
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(a) DBA map using most accurate initial map
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(b) DBA map using least accurate initial map
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(c) Evaluation of DBA algorithm: multiple simulations
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(d) Evaluation of DBA algorithm: simulation means
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Figure 4.4: Evaluation of DBA algorithm in mapping using a nonlinear map as
an example. (a) DBA map generated from 20 runs (10 forward and 10 backward)
using the most accurate initial map in DBA iteration. (b) DBA map generated
from 30 runs but using the least accurate initial map. (c) mapping error (NRMSE):
in the DBA iterations, mapping errors using the most accurate initial map (black),
the least accurate initial map (red) and a randomly selected initial map (blue). (d)
Mapping error mean.



62 4.3. Results and Discussion

-5 0 5 10 15 20 25 30 35 40

Location (cm)

50

100

150

200

A
m

p
lit

u
d

e

re
s
p

o
n

s
e

(a) DBA map using most accurate initial map
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(b) DBA map using least accurate initial map
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(c) Evaluation of DBA algorithm: multiple simulations
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(d) Evaluation of DBA algorithm: simulation means
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Figure 4.5: Evaluation of DBA algorithm in mapping using 1m metal pipe data as
an example. (a) DBA map generated from 20 runs (10 forward and 10 backward)
using the most accurate initial map in DBA iteration. (b) DBA map generated
from 20 runs but using the least accurate initial map. (c) mapping error (NRMSE):
in the DBA iterations, mapping errors using the most accurate initial map (black),
the least accurate initial map (red) and a randomly selected initial map (blue). (d)
Mapping error mean.
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tial average map, which is randomly chosen from the set of observed maps. It is
clear that the initial average map will affect the convergence of the DBA algorithm
but it is unclear from a theoretical perspective what that affect will be. Hence, the
problem now is to evaluate the impact, in simulation, of selecting different ini-
tial maps. The DBA algorithm was applied to the mapping simulations described
above, but now choosing the initial map at random, repeated across 10 indepen-
dent simulations. The affect of the random initial map was also investigated as
a function of number of runs up and down the pipe (under the assumption that
increasing the number of runs might mitigate the affect of initial map selection).

Fig.4.4 and Fig.4.5 show best case and worst case maps along with the mean
values of the map estimation errors, versus the number of runs in the pipe. From
the results, it can be seen that if the first map selected is the most accurate (black
line) then the estimation error is much smaller then the other two (red and blue).
With the increased number of runs in the pipe, the black line is smooth and stable.
However, if the first map selection is the least accurate (red) then the estimation
error is slowly increased. Random selection (blue) lies somewhere between those
two. On average, it would appear that the number of runs is relatively indepen-
dent of the map error when randomly selecting the initial map.

The most important point regarding the random selection of the initial average
map, is how it actually affects the localisation accuracy, when the map is used
in the localisation algorithm. This point is addressed below in section 4.3.6 (Fig.
4.26).

4.3.2 Localisation Results from Simulation Data

Simulation results are compared with linear and nonlinear map profiles using EKF
and particle filter. For linear map profile, results are shown in Fig.4.6. For non-
linear linear map profile, results are shown in Fig.4.7. In this simulation part, the
simulated measurements are both for linear case and nonlinear case, i.e. measure-
ments are a smooth line for the linear case and are a smooth sine wave for the
nonlinear case. All localisation results are shown in Fig.4.8 - Fig.4.19 and Table 4.1
shows what each figure tells.

In order to generate the DBA map (Fig.4.6a and Fig.4.7a) for the linear map
model, 20 runs are simulated with noise in their motions and sensor observations.
After the DBA map is achieved, both extended Kalman filter (EKF) and particle
filter (PF) are performed to compute the location of the robot at each time sample
(Fig.4.6b and Fig.4.7d). The simulation results of EKF locations and PF locations
are shown in Fig.4.6c and Fig.4.7e. Compared with dead reckoning (DR) locations
as a reference, both EKF locations and PF locations show much improved accuracy.
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Figure 4.6: Localisation results using simulated linear data. (a) Mapping using
DBA method, (b) and (c) Localisation using an extended Kalman filter (EKF). (d)
and (e) Localisation using a particle filter (PF). For both the EKF and PF a com-
parison is given to dead reckoning, showing the clear improvement in localisation
accuracy with EKF and PF.
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Figure 4.7: Localisation results using simulated nonlinear sine wave data. (a)
Mapping using DBA method, (b) and (c) Localisation using an extended Kalman
filter (EKF). (d) and (e) Localisation using a particle filter (PF). For both the EKF
and PF a comparison is given to dead reckoning, showing the clear improvement
in localisation accuracy with EKF and PF.
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Table 4.1: List of figures showing localisation results (with Gaussian noise in local-
isation process) of different data using extended Kalman filter and particle filter.
For example, the localisation result of non-linear simulation data using particle
filter is shown in Fig.4.11.

Data
Estimation Method

Extended Kalman filter Particle filter

Linear data 4.8 4.10

Non-Linear data 4.9 4.11

Plastic pipe data 4.13 4.14

Metal 1m pipe data 4.16 4.17

Metal 5m pipe Data I 4.18 4.19

Metal 5m pipe Data I (reverse) 4.20 4.21

In practical scenarios, the motor encoder (dead reckoning) and robot equipped
sensor (ultrasound sensor or hydrophone) may have different accuracy levels. Due
to potential motor gear slipping, water flow and tethered cable elasticity, drift
noise is unavoidable in dead reckoning estimates. This drift can be very small and
can be ignored in a short-length pipe but as the length of the pipe increases, the
impact on robot location estimation can be huge. Therefore, to test if the algorithm
is robust on this drift noise, additional drift is added to the motor encoder data
along with white noise.

Various levels of white noise are also added into the robot equipped sensor
(ultrasound sensor or hydrophone) data. The magnitudes of additional added
white noise are measured using signal-to-noise ratio (snr) in dB, where

snr = 10 log10

(
Psignal

Pnoise

)
(4.20)

snr is defined as the ratio of the power of a signal and the power of unwanted
environment noise. Here the environment noise is assumed to be Gaussian noise
with zero mean and different covariance. The additional white noise are added in
different snr ratios: 15dB, 20dB, 25dB, 30dB, 35dB, 40dB, 45dB and 50dB. snr = ∞
indicates no additional white noise. To measure the error of the location estimate,
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normalised rooted mean square error (NRMSE) is used by replacing s with robot
location x in (4.19).

NRMSE =

√
∑N

k=1(x̃k−xk)2

N

xmax − xmin
(4.21)

where xk is the true robot location at time k and x̃k is the location estimate. xmax is
the furthest location robot travels and xmin is the nearest location. In this case, xmin

and xmax are the locations of the two ends of the pipe. Assuming the robot travels
from one end of the pipe to the other end of the pipe, then return the starting
point, xmax − xmin indicates the length of the pipe. Since the starting location is
assumed to be 0, xmin is set to be 0.

Fig.4.8 ∼ Fig.4.11 show the effect of the additional white noise added into
the simulated sensor measurements. For EKF localisation using linear simulation
data shown in Fig.4.8, the increase of the amplitude of additional white noise
will make the location estimation covariance larger. For snr = ∞ dB, the location
estimation will accurately track the simulated line. Purple dots are the simulated
observations along the black line (DBA map). The smaller the snr ratio, the wider
those purple dots spread. The bold dark purple line is the quadratic fit of the
local map. Since the DBA map is a straight line, the quadratic fit looks straight
in this case. The dashed red line is the derivative of the quadratic fit at that EKF
location. From Fig.4.8b, Fig.4.8d and Fig.4.8e, EKF can estimate fair good locations
with small white noise but the uncertainty will go larger with larger white noise.
The grey shadow shows EKF covariance and is called the uncertainty region. It
goes wider as the robot travels through the pipe in the forward pass. This is
because when the measurement uncertainty is large (small snr), dead reckoning
location estimates become the dominant part. Since the robot travels further before
reaching to the next known location, the uncertainty in dead reckoning location
estimates will accumulate and therefore increase. However, if the measurement
data is noise free (snr = ∞ dB), the measurement data will become dominant in
location estimation and therefore the uncertainty area will not increase as the robot
travels (see Fig.4.8a and Fig.4.8b). Therefore, EKF locations are more accurate
for noise-free measurements (EKF NRMSE = 0.00681866 = 0.6819%), compared
with snr = 15 dB measurements (EKF NRMSE = 0.0282015 = 2.8202%). But
they all outperform dead reckoning (DR) estimates (DR NRMSE = 0.1126938 =

11.26938%).

For a nonlinear sinusoidal map, the dark purple quadratic fit can fit the sinu-
soidal map very well in a small region. EKF location estimation for this sinusoidal
map can still get good estimation results – estimated locations can track the true
locations when the robot travels through the pipe. Similar to the linear map, when
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Figure 4.8: EKF location estimation in linear (straight line) observations. (a)-(b)
Localisation with additional sensor noise snr = ∞ dB (noise free), (c)-(d) Localisa-
tion with additional sensor noise snr = 20 dB, (e)-(f) Localisation with additional
sensor noise snr = 15 dB.
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Figure 4.9: EKF location estimation in nonlinear (sine wave) observations. (a)-(b)
Localisation with additional sensor noise snr = ∞ dB (noise free), (c)-(d) Localisa-
tion with additional sensor noise snr = 20 dB, (e)-(f) Localisation with additional
sensor noise snr = 15 dB.
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Figure 4.10: PF location estimation in linear (straight line) observations. (a)-(b)
Localisation with additional sensor noise snr = ∞ dB (noise free), (c)-(d) Localisa-
tion with additional sensor noise snr = 20 dB, (e)-(f) Localisation with additional
sensor noise snr = 15 dB.
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Figure 4.11: PF location estimation in nonlinear (sine wave) observations. (a)-(b)
Localisation with additional sensor noise snr = ∞ dB (noise free), (c)-(d) Localisa-
tion with additional sensor noise snr = 20 dB, (e)-(f) Localisation with additional
sensor noise snr = 15 dB.
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the measurement is noise free (snr = ∞ dB), the EKF location estimates are very
accurate with small error (EKF NRMSE = 0.012636 = 1.2636%), compared with
large dead reckoning location error (DR NRMSE = 0.1126938 = 11.26938%). For
larger measurement errors (snr = 15 dB), the location error in EKF estimates is
slightly bigger (EKF NRMSE = 0.0156131 = 1.5613%). Therefore, for a nonlinear
sinusoidal map, EKF location estimation still outperforms dead reckoning loca-
tions.

Both linear and nonlinear simulation data are also estimated using particle fil-
ter (PF) with different level of white noise (see Fig.4.10 and Fig.4.11). Similar to the
linear case, particle filter gets better location estimates with smaller white noise.
When measurements are noise free (snr = ∞ dB), the PF location error is small
(PF NRMSE = 0.0066082 = 0.6608%), with same DR location error (DR NRMSE
= 0.1126938 = 11.26938%). Compared with EKF estimation, PF estimation slightly
outperforms with accuracy increased by 0.0211%. But since both estimation is very
accurate, the difference can be ignored. However, when noise increases, the PF lo-
cation error increases quicker then EKF location error. When snr = 15 dB in linear
data, EKF location error is 2.8202% while PF location error is 3.8059%. One reason
can be the insufficient number of particles which means ns = 100 particles are not
large enough.

4.3.3 Localisation Results from Plastic Water Pipe Data

Algorithm evaluation results are also compared in plastic pipes using EKF and
particle filter. For plastic pipes, results are shown in Fig.4.12 ∼ Fig.4.14.

In order to generate the DBA map (Fig.4.12a and Fig.4.15a) for the plastic pipes
and metal pipes, 20 runs are simulated with noise in their motions and sensor
observations. After the DBA map is achieved, both EKF and PF are performed to
compute the location of the robot at each time sample (Fig.4.12b and Fig.4.15d).
The comparison of EKF locations and PF locations are shown in Fig.4.12c and
Fig.4.15e. Compared with dead reckoning (DR) locations as a reference, both EKF
locations and PF locations show much improved accuracy.

4.3.4 Localisation Results from Metal Water Pipe Data

For metal pipes, EKF estimation and PF estimation results are shown in Fig.4.15-
4.19. Two experiment data sets are tested: 1-metre metal pipe (Fig.4.16 and
Fig.4.17), 5-metre metal pipe Data I (Fig.4.18 and Fig.4.19)

In order to evaluate the mapping and localisation algorithms described above
we used the experimental data to define a ground truth map. We then simulated
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Figure 4.12: Sequential mapping and localisation approach in plastic water pipes.
(a) The use of DBA to construct a map estimate from observations with simulated
drift. (b) and (c) Localisation using an extended Kalman filter (EKF). (d) and (e)
Localisation using a particle filter (PF). For both the EKF and PF a comparison is
given to dead reckoning, showing the clear improvement in localisation accuracy
with EKF and PF.
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Figure 4.13: EKF localisation approach in plastic water pipes with different level
of white noise. (a)-(b) Localisation with additional sensor noise snr = ∞ dB (noise
free), (c)-(d) Localisation with additional sensor noise snr = 20 dB, (e)-(f) Locali-
sation with additional sensor noise snr = 15 dB.
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Figure 4.14: PF localisation approach in plastic water pipes with different level of
white noise. (a)-(b) Localisation with additional sensor noise snr = ∞ dB (noise
free), (c)-(d) Localisation with additional sensor noise snr = 20 dB, (e)-(f) Locali-
sation with additional sensor noise snr = 15 dB.
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robot movement up and down this map, with simulated drift, to investigate the
effectiveness of the DBA algorithm for constructing the map: we generated a total
of 20 maps to align and average using DBA (Fig.4.15a). We then applied both
the EKF and the PF localisation algorithms to this estimated map and found that
the technique improved on using dead reckoning alone as expected (Fig.4.15b ∼
Fig.4.15e). Hence, both the EKF and PF greatly outperformed the localisation
using dead reckoning alone. The EKF slightly outperformed the PF, which along
with the efficiency of the EKF approach, makes the EKF more appealing in this
application.

In addition, all experiments assume the robot is travelling from the left end to
the right end through the length of the metal pipe. An additional evaluation is to
use a reverse data set, i.e. by reconstructing data I to assume the robot is travelling
from the right end to the left end and then return to the right end. In this case,
the right end location is initialised to 0 cm. When the robot reaches the left end,
it reaches the maximum distance travelled location (499.5 cm). Both EKF and PF
localisation results are shown in Fig.4.20 ∼ Fig.4.21. These results give the first
evidence that mapping and localisation using hydrophone induced vibration with
map alignment using DBA is feasible, supporting field testing of the sensor on the
robot prototype shown in Fig.3.3a. The technique for calibrating the spatial map is
also extensible to other types of sensor that would produce similar map data, e.g.
through-pipe-wall ultrasonics, proposed in our earlier work [96]. One appealing
feature for the hydrophone method we test here, in comparison to the through-
pipe-wall ultrasonic method, is that it is omnidirectional in nature, which should
make it robust to any robot rotations. A limitation of the method is that it is only
useful for correcting drift along the length of the pipe, i.e. distance travelled, not
heading estimates. This we leave to future work, but envisage fusing the method
with IMU data to solve this problem.

4.3.5 Localisation Results with Blockage Noise

Besides common Gaussian white noise, it is also important to evaluate both local-
isation algorithms in dealing with blockage noise. There can be many reasons for
a robot to get stuck when it travels through a pipe. It may be blocked by some
unknown obstacles inside the pipe or facing a strong water flow. This is not only
relevant to an in-pipe robot but also to other robot applications such as a wheeled
mobile robot, which may get stuck on a slippery surface, e.g. sand. In that case,
the spinning wheels imply that the robot is moving, but it may actually stay in the
same place.

To represent this scenario, the simulation model of the robot movement is
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Figure 4.15: Sequential mapping and localisation approach in 1m metal water
pipe. (a) The use of DBA to construct a map estimate from observations with sim-
ulated drift. (b) and (c) Localisation using an extended Kalman filter (EKF). (d)
and (e) Localisation using a particle filter (PF). For both the EKF and PF a com-
parison is given to dead reckoning, showing the clear improvement in localisation
accuracy with EKF and PF.
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Figure 4.16: EKF localisation approach in 1m metal water pipe. (a)-(b) Localisation
with additional sensor noise snr = ∞ dB (noise free), (c)-(d) Localisation with
additional sensor noise snr = 20 dB, (e)-(f) Localisation with additional sensor
noise snr = 15 dB.
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Figure 4.17: PF localisation approach in 1m metal water pipe. (a)-(b) Localisation
with additional sensor noise snr = ∞ dB (noise free), (c)-(d) Localisation with
additional sensor noise snr = 20 dB, (e)-(f) Localisation with additional sensor
noise snr = 15 dB.
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Figure 4.18: EKF localisation approach in 5m metal water pipe data I. (a)-(b) Lo-
calisation with additional sensor noise snr = ∞ dB (noise free), (c)-(d) Localisation
with additional sensor noise snr = 20 dB, (e)-(f) Localisation with additional sen-
sor noise snr = 15 dB.
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Figure 4.19: PF localisation approach in 5m metal water pipe data I. (a)-(b) Local-
isation with additional sensor noise snr = ∞ dB (noise free), (c)-(d) Localisation
with additional sensor noise snr = 20 dB, (e)-(f) Localisation with additional sen-
sor noise snr = 15 dB.
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Figure 4.20: EKF localisation approach in 5m metal water pipe data I (reverse
path). (a)-(b) Localisation with additional sensor noise snr = ∞ dB (noise free),
(c)-(d) Localisation with additional sensor noise snr = 20 dB, (e)-(f) Localisation
with additional sensor noise snr = 15 dB.
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Figure 4.21: PF localisation approach in 5m metal water pipe data I (reverse path).
(a)-(b) Localisation with additional sensor noise snr = ∞ dB (noise free), (c)-(d)
Localisation with additional sensor noise snr = 20 dB, (e)-(f) Localisation with
additional sensor noise snr = 15 dB.
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Table 4.2: List of figures showing localisation results (with Gaussian noise and
additional blockage noise in localisation process) of different data using extended
Kalman filter and particle filter. For example, the localisation result of plastic pipe
data (with additional blockage noise) using particle filter is shown in Fig.4.24.

Data
Estimation Method

Extended Kalman filter Particle filter

Plastic pipe data 4.22 4.24

Metal 1m pipe data 4.23 4.25

modified to
xk = Fxk−1 + Guk−1 + bk−1 (4.22)

where the blockage noise term bk−1 = −uk−1 cancels the movement of the robot
due to the external input, so the robot remains stuck in place, i.e. xk = xk−1.
However, note that the state-space model used in the localisation algorithm to
represent robot motion remains as previously defined because the presence of a
blockage would be unknown.

To test if EKF and PF is capable of dealing with such scenarios, additional
blockage noise is added to the experiment data to pretend the robot is stuck for
a short period of time during its movement. Results are shown in Fig.4.23 ∼
Fig.4.25 and Table 4.2 shows what individual figure tells. To test the blockage
noise, data gathered from 1m metal pipe and plastic pipe are used. The maps used
for localisation are generated from previous DBA approach. However, it is worth
mentioning that the blockage noise is only added into the localisation process not
in the mapping process – mapping using DBA does not include blockage noise.
For comparison, blockage noise is added into robot forward movement, and the
backward movement will not contain any drift noise or blockage noise in motor
encoder. But additional white noise will be added into ultrasound sensor and
hydrophone measurements.

With the additional blockage noise, although the model remains the same,
but some simulation parameters need to be modified. The error covariance in
state update equation Qk is increased while Rk remains the same. For different
simulation data and experiment data, Qk is increased differently.

From Fig.4.23, it can be seen that without additional white noise in hydrophone
measurements, the EKF estimation can track the true robot location very well with
small error (NRMSE = 0.9776%). Even if the additional white noise in hydrophone
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Figure 4.22: EKF localisation approach in plastic water pipe with blockage noise
in motor encoder. (a)-(b) Localisation with additional sensor noise snr = ∞ dB
(noise free), (c)-(d) Localisation with additional sensor noise snr = 35 dB, (e)-(f)
Localisation with additional sensor noise snr = 30 dB.
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Figure 4.23: EKF localisation approach in 1m metal water pipe with blockage
noise in motor encoder. (a)-(b) Localisation with additional sensor noise snr = ∞
dB (noise free), (c)-(d) Localisation with additional sensor noise snr = 20 dB, (e)-(f)
Localisation with additional sensor noise snr = 15 dB.
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Figure 4.24: PF localisation in plastic water pipe with blockage noise in motor
encoder. (a)-(b) Localisation with additional sensor noise snr = ∞ dB (noise free),
(c)-(d) Localisation with additional sensor noise snr = 40 dB, (e)-(f) Localisation
with additional sensor noise snr = 20 dB.
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Figure 4.25: PF localisation in 1m metal water pipe with blockage noise in motor
encoder. (a)-(b) Localisation with additional sensor noise snr = ∞ dB (noise free),
(c)-(d) Localisation with additional sensor noise snr = 20 dB, (e)-(f) Localisation
with additional sensor noise snr = 15 dB.
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measurements increases to snr = 15 dB, the EKF location error is still relatively
small ((NRMSE = 2.4790%). But for plastic pipe data (see Fig.4.22), the location
error is largely increased (NRMSE = 2.7209% for snr = ∞ dB and NRMSE =

5.0540% for snr = 30 dB). Note that the EKF estimation for plastic pipe will fail
to track the true robot location when the white noise is too big (snr = 30 dB) if
the blockage noise is added. The reason is because the map contains two large flat
regions. If the robot sticks in the flat map region too long, EKF estimation will
fail and the grey shadow (EKF covariance or confidence region) will not overlay
the true robot location. However, failure will not occur for the 1-metre metal pipe
data, as its map is varying along the pipe with no too-flat region.

For the particle filter, however, estimation for plastic pipe data will not fail
if a sufficient number of particles is used (see Fig.4.24). When the robot travels
through a flat map region, the particles will diverge. When the robot comes out
of the flat region, particle filter estimation will quickly converge to the true robot
location and largely decrease the uncertainty range (i.e. the particle spread).

4.3.6 Discussion

In this chapter, the effectiveness of sequential mapping and localisation in wa-
ter pipes has been demonstrated, by using a number of sets of experiment data
with additional various types of noise. Both mapping using DBA algorithm and
localisation using EKF and PF have shown significant improvement over dead
reckoning estimation.

As explained in Section 4.3.1, the accuracy of final map generated using DBA
algorithm can be varied if different initial map is used in the DBA iteration. There-
fore, additional analysis needs to be carried out to evaluate such uncertainty. It can
be seen from Fig.4.26 that dead reckoning location error is constant along different
number of runs in pipe. But EKF and particle filter location errors (NRMSE) are
varied. For each selected number of runs, 10 simulations have been carried out.
Therefore, the location error mean is numerically calculated from these 10 simu-
lations and the error bar represents the standard deviation of the 10 simulations.
From the results shown in Fig.4.26, both EKF and PF locations are much accurate
compared to the dead reckoning location.

The original dead reckoning data (motor encoder readings) are assumed to be
accurate without any noise. However, in order to show the effectiveness and ro-
bustness of the mapping and localisation algorithm, additional noises are added
into both dead reckoning data and sensor measurements. Table 4.3 shows the full
localisation results using either EKF or PF in different data sets with various addi-
tional noises. Fig.4.27 ∼ 4.29 give a visual illustration of the localisation algorithms
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(a) EKF localisation using DBA algorithm with random initial map
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Figure 4.26: Evaluation of the impact of random initial map selection in DBA
algorithm on localisation performance. (a) EKF localisation error. (b) Particle filter
localisation error.

Figure 4.27: Location estimates of simulation data with different levels of white
noises. The additional added white noise are measured using signal-to-noise ratio
(snr) from 15 dB to 50 dB.
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using different data sets with different additional noises.

From Fig.4.27, it can be seen that when additional white noises in sensor mea-
surements are very small (snr = 50 dB) both EKF and PF provide better location
estimates compared with larger white noises (snr = 15 dB). For both linear sim-
ulated data (solid lines) and nonlinear simulated data (dashed lines), EKF locali-
sation (red lines) gives more accurate location estimates compared with PF local-
isation (purple lines). Both EKF and PF location estimation are all outperforming
against dead reckoning location estimation (solid black line). Location errors in
dead reckoning are assumed to be the same for all simulation and experiment data
sets excluding the tests for blockage noise.

Figure 4.28: Location estimates using data from plastic pipe and 1-metre metal
pipe. The additional added white noise are measured using signal-to-noise ratio
(snr) from 15 dB to 50 dB.

The localisation results for plastic pipe and 1-metre metal pipe are shown in
Fig.4.28. Both EKF and PF estimations provide more accurate location estimates
for the 1-metre metal pipe compared with plastic pipe – both dashed red line and
dashed purple line are below solid red line and solid purple line for snr > 25
dB. As mentioned previously, the reason behind is the navigation maps. The am-
plitudes of the 1-metre metal pipe is not flat almost for all regions in the map.
However, for plastic pipe data, if there is no void outside the pipe wall, the map
amplitude will be flat and equals to zero. This is also another drawback of local-
isation using ultrasound sensor. But for metal pipes, the frequency responses are
always changing at different locations along the pipe, therefore the maps of the
metal pipes will not contain flat regions. It is important to note that a flat map
means it does not contain ’features’. But if the map fluctuates too often with high
frequency and amplitude, it will look like a map full of white noises – this is not
a good navigation map as well.
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Figure 4.29: Location estimates using data from plastic pipe and 1-metre metal
pipe. Fixed blockage noises are added. The additional added white noise are
measured using signal-to-noise ratio (snr) from 15 dB to 50 dB.

Similarly, with additional blockage noise added shown in Fig.4.29, localisation
in metal pipe is more accurate than that in plastic pipe – dashed lines are below
solid line for snr = 15 dB to snr = 50 dB. It is worth mentioning that, with
blockage noise added, when the amplitude of white noise increases (snr = 30 dB),
EKF location estimation will fail to track the true location for plastic pipe data.

It is important to point out again that the linearisation method used in EKF
estimation is by using a quadratic fit to the local map. Therefore, this method
is more accurate for maps that contains more quadratic-like regions. For the 1-
metre metal pipe map, the shape of each local region can be modelled using a
quadratic function. But for the plastic pipe map, although it contains two big
voids (features), they all look like triangles with two straight edges that are unlike
quadratic functions. Therefore, the EKF estimation with quadratic fit can handle
the metal pipe data but for plastic pipes it is not the best solution.

4.4 Summary

This chapter has addressed the problem of robot localisation in simulated lin-
ear and nonlinear maps, plastic and metal water pipes. In order to address the
problem of spatially calibrating the map using a dead reckoning sensor subject to
drift, it introduced the use of a signal alignment and averaging algorithm based
on dynamic time warping. The localisation was based on nonlinear state estima-
tion. This chapter evaluated the approach on a combination of experimental and
simulation data, demonstrating that the technique is effective.
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Chapter 5

Simultaneous Localisation and
Mapping in Water Pipes

5.1 Introduction

In the previous chapter, a method was presented for sequentially mapping and
then localising a robot in a water pipe. This method appeared to work well judging
by the simulated and experimental results. However, the sequential method is
limited because it does not allow the map to be updated in real-time, which would
be essential for future robot systems that could monitor pipes on a longer term
basis. This is due to the fact that the pipe and surrounding soil conditions might
change, altering the map for either metal or plastic pipes. Therefore, the aim
of this chapter is to develop SLAM for feature sparse water pipes based on the
sensing techniques developed in chapter 3.

As mentioned in the literature review, mapping and localisation has been de-
veloped for water pipes using SLAM techniques with cameras and inertial mea-
surement units (IMUs) [85, 91]. In this chapter, a SLAM algorithm for water pipes,
termed PipeSLAM, is developed based on the Rao-Blackwellised particle filter
(RBPF) [42]. Specifically, the map is regarded as a continuous function over space
that is represented using a weighted basis function decomposition - a radial basis
function network. We use a state-space model to describe the robot dynamics,
where the state vector is composed of robot pose and is augmented with the basis
function parameters to describe the map.

The state-space representation of the robot location and the map parameters in
an augmented state vector is well suited to estimation via the RBPF, because the
map function is linear-in-the-parameters, and so can be estimated via the Kalman
filter, and particles can be used to represent robot poses, solving the localisation

94
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problem. In addition, there can be many map parameters, and so this part is
not suited to estimation via the particle filter, whilst the robot location is repre-
sented by relatively few parameters and so is well suited to estimation via particle
filtering.

The approach to mapping is demonstrated experimentally on data from both
plastic and metal pipes, as done in the last chapter on sequential mapping and
localisation. The results of the PipeSLAM algorithm are also benchmarked against
a dead reckoning solution, and demonstrate that the RBPF algorithm can be used
to more successfully solve the mapping and localisation problem using the terrain-
type map.

Section 5.2 defines the in-pipe SLAM problem, presents the solution of PipeS-
LAM algorithm using Rao-Blackwellised Particle Filter (RBPF) [41]. Section 5.3
presents the results on evaluation of the PipeSLAM algorithm using a combina-
tion of experimental and simulation data. Table 5.2 has shown the list of data that
are used to evaluate the PipeSLAM algorithm. Table 5.3 and Table 5.4 show the
PipeSLAM results compared with the localisation results using sequential map-
ping and localisation methods that are introduced in Chapter 4. Finally, Section
5.4 concludes the chapter.

5.2 Methods

5.2.1 Problem Statement

In this work we focus on the problem of robot navigation in relatively small pipes,
with diameter of about 3 inches (a current prototype robot design is shown in
Fig.3.3). These small pipes are commonly used for water distribution in urban
environments. The small diameter means that movement within the pipe is re-
stricted, consisting of back and forth movement only. For entry into these small
pipes, fire hydrants can potentially be used, which in the UK, Europe and the USA
are spaced approximately every 100 metres [121, Chapter 14, Table 14.2].

We model the dynamics of the pipe robot using a state-space model, with state
dynamics

p(xk|xk−1, uk−1)⇔ xk = f (xk−1, uk−1) + wk−1 (5.1)

where k is the sample index, xk ∈ Rnx is the robot pose (including location),
f(.) is the state transition function, uk−1 ∈ Rnu is the input, wk−1 ∼ N(0, Σw) is
the state noise. In this work we simplify the state vector xk to contain just the
spatial location of the robot, x, along the pipe, and the input uk is obtained from a
processed motor encoder reading defining a dead reckoning estimate of distance
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travelled, hence f (xk−1, uk−1) = Fxxk−1 + Gk−1uk−1, where Fx = 1, Gk = 1. The
measurement model is

p(yk|xk)⇔ yk = h (xk) + vk (5.2)

where the observation yk ∈ Rnx is obtained from the hydrophone signal, where
vibration amplitude is averaged over some frequency range, and the measurement
function h(.) is a one-dimensional map, which transforms from the spatial loca-
tion of the robot xk to mean pipe vibration amplitude; also vk ∼ N(0, Σv) is the
measurement noise.

To represent the unknown map, h(x), where x is a spatial location, we use a
basis function decomposition,

h(x) =
M

∑
j=1

θjφj(x) (5.3)

where M is the number of basis functions, θj ∈ R is the corresponding weight of
the jth basis function, and φj(x) is a basis function. Note that this representation
of h(x) is linear-in-the-parameters θj. Here we use radial basis functions for φ(x),
specifically the squared exponential function,

φj(x) = exp

(
−
(x− cj)

2

2σ2

)
(5.4)

where cj is the centre of the basis function (a spatial location along the pipe) and σ

is the width of a basis function, which we assume for simplicity here are the same
across all basis functions. We also assume that the centres can be evenly spaced
based on some prior knowledge of the likely spatial frequency of variation in pipe
vibration amplitude, although it would be possible to use an adaptive technique
to place basis functions [75, 118]. Hence, in this case, the parameter vector θθθ is the
only unknown describing the map, where

θθθ = (θ1, θ2, . . . , θM)T (5.5)

We define the probabilistic SLAM problem here in the usual way, as computing
the joint distribution of robot location and map over all samples times [46],

p(xk, θθθ|y1:k, u1:k, x0) (5.6)

where y1:k = {y1, . . . , yk} is the set of observations, u1:k = {u1, . . . , uk} is the set
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Figure 5.1: A diagram showing the construction of a one dimensional function by
using radial basis functions. The red function is the sum of three black radial basis
functions.

of all inputs and x0 is the initial location of the robot.

5.2.2 Estimation via a Rao-Blackwellised Particle Filter

To solve the problem of estimating the joint distribution of robot location and
map parameters, p(xk, θθθ|y1:k, u1:k, x0), we initially define an augmented state-space
model, with linear state dynamicsxk

θθθk

 =

Fx 0
0 Im

xk−1

θθθk−1

+

Gk−1

0

 uk−1 +

ωωωk−1

ηηηk−1

 (5.7)

where Im is the identity matrix of dimension M and ηηηk ∼ N(0, Ση) is a noise term
accounting for uncertainty in the map parameter evolution. The measurement
model is

yk = Φ(xk)θθθk + νννk (5.8)

where
Φ(xk) =

(
φ1(xk), . . . , φM(xk)

)
(5.9)

The problem of estimating the augmented state vector is nonlinear, and so,
for example an extended Kalman filter might be used to obtain the solution [46].
Alternatively, a particle filter might be used, which avoids the linearisation of the
measurement function [129]. However, in this case, naive application of a standard
particle filter would be computationally infeasible because the number of basis
functions used to describe the map, and hence the state dimension, could be very
large depending on the length of pipe explored.

A further alternative is the Rao-Blackwellised particle filter (RBPF) [42], which
in this case can be used to exploit the linear-in-the-parameters nature of the basis
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function decomposition of the map: a Kalman filter can be used to update the
parameters θθθk, effectively reducing the state-dimension for the particle representa-
tion, keeping the computational complexity manageable. A particle filter can still
be used to represent the robot location, which in this case is a one-dimensional
problem, well suited to particle filtering. A similar formulation has been used in
the popular FastSLAM algorithm [141].

The principle of Rao-Blackwellisation is to partition the joint distribution of
p(xk, θθθ|y1:k, u1:k, x0) using the product rule, where

p(xk, θθθk|y1:k, u1:k, x0) = p(θθθk|xk, y1:k)p(xk|y1:k, u1:k, x0) (5.10)

The key point to note is that the function p(θθθk|xk, y1:k) can be represented an-
alytically, as a conditional Gaussian, so that only the function p(xk|y1:k, u1:k, x0)

requires sampling [129]. This is why the map parameters θθθk can be updated in a
linear estimation step, i.e. by the Kalman filter.

A further significant point to note when using the RBPF algorithm in SLAM is
that due to representing the robot pose via a set of particles, x(i)k ∼ p(xk|y1:k, u1:k, x0),
for i = 1, . . . , ns, where ns is the number of particles, each individual particle has
its own associated map. This means for every single particle representing robot
pose x(i)k , there is a distinct associated set of map parameters θθθ

(i)
k , and a separate

Kalman filter must be computed to update each map.

5.2.3 PipeSLAM Algorithm

In this section the PipeSLAM algorithm is described for estimating the joint dis-
tribution p(xk, θθθk|y1:k, u1:k, x0) using the RBPF.

Initialise particles

Draw initial samples based on x(i)0 ∼ p(x0|y0), and initialise the parameter settings
for the Kalman filter for all particle samples, such that θθθ

(i)
0 = θ̂θθ0, for i = 1, . . . , ns,

where ns is the number of particle samples.

Particle filter time update

The particle state xk is updated at each time point according to linear state transi-
tion model (5.11),

x(i)−k = Fxx̂(i)k−1 + Gk−1uk−1 + w(i)
k−1, for i = 1, . . . , ns (5.11)
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Kalman filter time update

The basis function weights for each map associated with the ith particle, θθθ
(i)
k , for

i = 1, . . . , ns, are updated at time step k. Due to the assumption that the map
is time-invariant, the weights θθθ

(i)
k are also assumed to be unchanging over time,

so the prediction step for θ̂θθ
(i)
k is a constant for the mean, and an inflation of the

uncertainty in the covariance,

θθθ
(i)−
k = θ̂θθ

(i)
k−1 (5.12)

P(i)−
k = P(i)

k−1 + Ση (5.13)

Kalman filter measurement update

The estimation of basis function weights for each map, θ̂θθ
(i)
k , for i = 1, . . . , ns, are

corrected using the standard Kalman filter update step,

S(i)
k = Φ

(
x(i)−k

)
P(i)−

k ΦT
(

x(i)−k

)
+ Σv (5.14)

K(i)
k = P(i)−

k ΦT
(

x(i)−k

)
S(i)

k

−1
(5.15)

θ̂θθ
(i)
k = θθθ

(i)−
k + K(i)

k

(
yk −Φ

(
x(i)−k

)
θθθ
(i)−
k

)
(5.16)

P(i)
k = P(i)−

k −K(i)
k Φ

(
x(i)−k

)
P(i)−

k (5.17)

Evaluate and normalise importance weights

Particle weights, ω
(i)
k for i = 1, . . . , nS, need to be re-evaluated based on the likeli-

hood for the newly arrived observation, and then normalised,

ω̃
(i)
k = ω

(i)
k−1 p(yk|x

(i)−
k , θ̂θθ

(i)
k ) (5.18)

ω
(i)
k =

ω̃
(i)
k

∑ns
j=1 ω̃

(j)
k

(5.19)

Particle resampling

When the number of effective particles (neff) drops to a certain threshold (Nres),
the particle set needs to be resampled to avoid excessive particle depletion [129],

neff =
1

∑ns
j=1

(
ω

(j)
k

)2 (5.20)
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Table 5.1: Parameter settings for PipeSLAM algorithm evaluation

Parameter description Parameters Values
Number of basis functions M 100
Width of basis functions σ 10
State transition matrix of x Fx 1
State transition matrix of θθθ Im III100×100
Input matrix Gk 1
State noise covariance in x Σω 0.3 cm2

State noise covariance in θθθ Ση 000100×100
Measurement noise covariance Σν 0.1
Particle sample size ns 100
Efficient particles threshold Nres 50

Therefore, when neff drops to lower than a predefined threshold Nres, the particle

set {x̂(i)k , θ̂θθ
(i)
k , P(i)

k } needs to be resampled by drawing ns times from the present par-
ticle set to a new particle set and the probability of drawing a particle {x(i)k , θθθ

(i)
k , P(i)

k }
is proportional to its associated weight ω

(i)
k . The algorithm is then repeated from

step 2.

5.2.4 Algorithm Evaluation

The PipeSLAM algorithm was evaluated using a combination of experimental and
simulation data. We used the map generated by the experiment described above
as a ground truth map. We then simulated a robot moving back and forth along
this map by the state-space model defined in (5.1) and (5.2).

The PipeSLAM algorithm was used in the simulation phase to simultaneously
estimate both the map and robot location. Table 5.1 shows the parameter settings
used in the PipeSLAM algorithm. In particular, the number of particle samples,
ns, was set to 100, which is relatively few but in this one-dimensional problem
performed well.

To make the SLAM problem more challenging and highlight the benefit of
using the map over dead reckoning, we also added a deterministic linear and
sinusoidal drift term dk to the state equation, of the form

dk = −0.2m̄k + 0.02m̄k sin(0.1m̄k + 2) (5.21)

where m̄k = kmk, where mk = 1 (a.u.) for plastic pipe, mk = 0.4995 cm for 5-metre
metal pipe and mk = 0.0395 cm other data sets.
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Table 5.2: List of figures showing PipeSLAM results with additional Gaussian
noise in measurements. The lower the snr value the larger noise but snr=∞ indi-
cates no additional noise. For example, the PipeSLAM result of Metal pipe of 5m
long Data I with snr=20 dB is shown in Fig.5.20.

Data
Signal to noise ratio (snr) in dB

snr = ∞ snr = 30 snr = 20 snr = 15

Linear data 5.2 5.3 5.4 5.5

Non-Linear data 5.6 5.7 5.8 5.9

Plastic pipe data 5.10 5.11 5.12 5.13

Metal 1m pipe data 5.14 5.15 5.16 5.17

Metal 5m pipe Data I 5.18 5.19 5.20 5.21

Metal 5m pipe Data I reverse 5.22 5.23 - -

Metal 5m pipe Data II 5.24 5.25 5.26 5.27

5.3 Results and Discussion

5.3.1 Results from Simulation Data

Result figures of PipeSLAM algorithm using different data sets and with different
noise levels are listed in Table 5.2. The order is showing from lower level of noise
to higher level of noise, i.e., from no noise snr = ∞ to snr = 15. It is worth
mentioning that snr = ∞ indicates no additional noise.

PipeSLAM results are firstly shown using the linear (Fig.5.2 ∼ Fig.5.5) and
nonlinear (Fig.5.6 ∼ Fig.5.9) simulation data with additional white noise added in
measurements (at signal to noise ratio snr = ∞, snr = 30, snr = 20 and snr = 15).
The simulation of robot movement along the pipe is from left (forwards) to right
(backwards) over a ground true map generated from linear and nonlinear simula-
tion data. Panels (a)-(d) in those figures are PipeSLAM at increasing time steps of
robot movement, where (a)-(b) are the forward movement and (c)-(d) are the back-
ward movement. Panel (e) in those figures shows the PipeSLAM location results
with different additional white noise. Compared to dead reckoning estimate, the
PipeSLAM locations show much improved performance that exhibits large drift.
From time step t = 1000 to t = 1200, it is assumed that the robot is staying at
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the right end of the pipe and it starts to move to the left (backwards) at time step
t = 1201.

In panels (a)-(c) in Fig.5.2 ∼ Fig.5.5, the 100 particle maps (light blue lines) are
initiated with zero weights and spread out as the robot moves. The black line in-
dicates the specific particle map that is of the largest weight. Some particles share
the same largest weight, it randomly picks one of them to plot in black. When the
robot reaches to the right end of the pipe (known location), all particle locations
will reset to be the true location. This process is similar to the loop closure situation
in typical SLAM problems. The algorithm will resample all particles when the
robot reaches to a known location. Therefore, all particles of small weights will
die out and large weighted particle survive. Thus, all particle locations as well as
dead reckoning location will be set to the known location. This is why the blue
dead reckoning location in panel (e) jumps to 39.5 cm at time step 1000. The grey
shaded area in panel (e) shows the particle spread indicating the confident zone in
its location estimation. It can be seen that on the forward pass, the particle spread
goes wider as the robot moves further. This is because the accumulated error in
motor encoder uncertainty. Due to the fact that the robot will not ’see’ a ’feature’
twice for the first time, this accumulated error cannot be corrected and the par-
ticles will continuously spread out. But when the particles spread is too wide,
calculated by the number of efficient particles neff expressed in (5.20), the particle
set will resample to reduce the uncertainty. Therefore, in Fig.5.2e, the grey shaded
area goes wider and after a short time, it narrows again, both in the forward pass
and the backward pass.

Compared PipeSLAM results with different levels of additional added white
noise, the larger the additional white noise added, the wider the particle spreads,
and the worse the estimated map.

5.3.2 Results from Plastic Water Pipe Data

The PipeSLAM algorithm is also evaluated using plastic pipe data shown in Fig.5.10
∼ Fig.5.13. Same to assumption made in the linear and nonlinear simulation data,
the robot starts from very left of the pipe and moves towards the right end of
the pipe. When it reaches to the right end, it stops for 200 time steps and move
backward to the left.

The main difference between the plastic pipe data and the simulated linear or
nonlinear data is that the former contains two large flat regions (i.e. from location
300 to 500 and 750 to 1000) shown in Fig.5.10 ∼ Fig.5.13. The ’feature’ regions
are from location 0 to 300 and 500 to 750, which are like triangles in their shapes
similar to simulated linear map. Therefore, the PipeSLAM works well in those
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Figure 5.2: PipeSLAM results from simulation of robot movement along a pipe,
forwards and backwards, over a ground truth map generated from linear sim-
ulation data (snr = ∞ dB). (a)-(d) PipeSLAM at increasing time steps of robot
movement (a-b: forward movement, left to right; c-d: backward movement, right
to left). (e) PipeSLAM localisation results over time, showing the improvement
compared to the dead reckoning estimate, which exhibits significant drift.
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Figure 5.3: PipeSLAM results from simulation of robot movement along a pipe,
forwards and backwards, over a ground truth map generated from linear sim-
ulation data (snr = 30 dB). (a)-(d) PipeSLAM at increasing time steps of robot
movement (a-b: forward movement, left to right; c-d: backward movement, right
to left). (e) PipeSLAM localisation results over time, showing the improvement
compared to the dead reckoning estimate, which exhibits significant drift.
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Figure 5.4: PipeSLAM results from simulation of robot movement along a pipe,
forwards and backwards, over a ground truth map generated from linear sim-
ulation data (snr = 20 dB). (a)-(d) PipeSLAM at increasing time steps of robot
movement (a-b: forward movement, left to right; c-d: backward movement, right
to left). (e) PipeSLAM localisation results over time, showing the improvement
compared to the dead reckoning estimate, which exhibits significant drift.
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Figure 5.5: PipeSLAM results from simulation of robot movement along a pipe,
forwards and backwards, over a ground truth map generated from linear sim-
ulation data (snr = 15 dB). (a)-(d) PipeSLAM at increasing time steps of robot
movement (a-b: forward movement, left to right; c-d: backward movement, right
to left). (e) PipeSLAM localisation results over time, showing the improvement
compared to the dead reckoning estimate, which exhibits significant drift.
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Figure 5.6: PipeSLAM results from simulation of robot movement along a pipe,
forwards and backwards, over a ground truth map generated from nonlinear sim-
ulation data (snr = ∞ dB). (a)-(d) PipeSLAM at increasing time steps of robot
movement (a-b: forward movement, left to right; c-d: backward movement, right
to left). (e) PipeSLAM localisation results over time, showing the improvement
compared to the dead reckoning estimate, which exhibits significant drift.
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Figure 5.7: PipeSLAM results from simulation of robot movement along a pipe,
forwards and backwards, over a ground truth map generated from nonlinear sim-
ulation data (snr = 30 dB). (a)-(d) PipeSLAM at increasing time steps of robot
movement (a-b: forward movement, left to right; c-d: backward movement, right
to left). (e) PipeSLAM localisation results over time, showing the improvement
compared to the dead reckoning estimate, which exhibits significant drift.
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Figure 5.8: PipeSLAM results from simulation of robot movement along a pipe,
forwards and backwards, over a ground truth map generated from nonlinear sim-
ulation data (snr = 20 dB). (a)-(d) PipeSLAM at increasing time steps of robot
movement (a-b: forward movement, left to right; c-d: backward movement, right
to left). (e) PipeSLAM localisation results over time, showing the improvement
compared to the dead reckoning estimate, which exhibits significant drift.
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Figure 5.9: PipeSLAM results from simulation of robot movement along a pipe,
forwards and backwards, over a ground truth map generated from nonlinear sim-
ulation data (snr = 15 dB). (a)-(d) PipeSLAM at increasing time steps of robot
movement (a-b: forward movement, left to right; c-d: backward movement, right
to left). (e) PipeSLAM localisation results over time, showing the improvement
compared to the dead reckoning estimate, which exhibits significant drift.
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’feature’ areas but will slightly drift in those ’flat’ regions as expected. The overall
map estimation for plastic pipe data is not as good as over the map generated
from simulated linear and nonlinear data.

When the robot travels through the pipe for the first time (left to right), it has
no prior knowledge of the map. Therefore, the particle uncertainty spreads largely
over time. But when it reaches to the right end of the pipe, it resets all particle
locations and maps and acquired knowledge of the map. This knowledge can be
viewed as a prior when it moves backwards. With a prior of the map, PipeSLAM
location uncertainty reduces significantly (shown in the right half in panel (e) in
those results figures), while the dead reckoning is still drifted largely over time.

5.3.3 Results from Metal Water Pipe Data

In order to test and evaluate the PipeSLAM algorithm, 3 sets of experimental
pipe vibration data is also used to define the ground truth map. These 3 sets of
experiment data are: 1) 1-metre metal pipe data, 2) 5-metre metal pipe data I, and
3) 5-metre metal pipe data II. It simulates the robot moving forward and backward
over this data to analyse the PipeSLAM algorithm. Drift is applied to the robot
simulation to make the SLAM problem more challenging and the map used in
the PipeSLAM algorithm is initialised with zero weights. Results are shown in
Fig.5.14 ∼ Fig.5.27.

In addition, all experiments assume the robot is travelling from the left end
to the right end through the length of the metal pipe. An additional evaluation
is to use an reverse data set, i.e. by reconstructing data I to assume the robot is
travelling from the right end to the left end and then return to the right end. In
this case, the right end location is initialised to 0 cm. When the robot reaches the
left end, it reaches the maximum distance travelled location (499.5 cm). Results
are shown in Fig.5.22 ∼ Fig.5.23.

The results obtained from the simulation demonstrate how the PipeSLAM al-
gorithm learns the map: each particle used to represent robot location has an
associated map based on the trajectories of the particles – these separate maps are
clearly seen in panels (a)-(b) in those result figures. On the backward pass along
the simulated pipe the maps have converged to similar values (see panels (c)-(d)
in those result figures).

Regarding localisation, on the forward pass, whilst the map is unknown there
is relatively large uncertainty in the robot location. Then on the backward pass
the uncertainty reduces (see panels (e) in those result figures). Quantitatively,
the PipeSLAM algorithm is able to localise more accurately than dead reckoning,
which demonstrates the usefulness of the PipeSLAM algorithm.
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Figure 5.10: PipeSLAM using plastic pipe data. Signal to noise ratio (snr) = ∞
dB. (a)-(d) PipeSLAM at different time steps building the map while localising.
(e) PipeSLAM location estimates much improved accuracy compared with dead
reckoning locations.
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Figure 5.11: PipeSLAM using plastic pipe data. Signal to noise ratio (snr) = 30
dB. (a)-(d) PipeSLAM at different time steps building the map while localising.
(e) PipeSLAM location estimates much improved accuracy compared with dead
reckoning locations.
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Figure 5.12: PipeSLAM using plastic pipe data. Signal to noise ratio (snr) = 20
dB. (a)-(d) PipeSLAM at different time steps building the map while localising.
(e) PipeSLAM location estimates much improved accuracy compared with dead
reckoning locations.
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Figure 5.13: PipeSLAM using plastic pipe data. Signal to noise ratio (snr) = 15
dB. (a)-(d) PipeSLAM at different time steps building the map while localising.
(e) PipeSLAM location estimates much improved accuracy compared with dead
reckoning locations.
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Further quantitative results demonstrating the effectiveness of the PipeSLAM
algorithm in comparison to dead reckoning are shown in Table 5.3 and Table 5.4.

5.3.4 Discussion

PipeSLAM results using different simulation and experiment data sets with dif-
ferent white noises have been shown above. It is still not quite clear to determine
if the PipeSLAM algorithm is better or the sequential mapping and localisation
algorithm (in Chapter 4) is better. Therefore, this part will put all results together
to show the performances of the two algorithms.

A full location estimation results of the two algorithms are listed and compared
in Table.5.3 and Table 5.4. A visual comparison of these results are demonstrated
in Fig.5.28 ∼ Fig.5.31.

For simulated linear and nonlinear data (see Fig.5.28), PipeSLAM location es-
timation performance is not as good as EKF and PF location estimation that the
blue PipeSLAM location errors are larger than red and purple lines. But compared
to the same dead reckoning location error (black line on the top of each figure),
PipeSLAM has still performed well. Also, the location errors of both EKF and
PF estimation smaller for linear simulation data than nonlinear simulation data
(dashed red line is lower than solid red line, dashed purple line is lower than
solid purple line). This demonstrates that EKF and PF estimators are good at pro-
cessing linear maps compared to nonlinear maps. However, this is not the case
for PipeSLAM location estimation that dashed blue line (PipeSLAM using nonlin-
ear simulation data) is always on top of solid blue line (PipeSLAM using linear
simulation data).

For plastic pipe data (Fig.5.29), 1-metre metal pipe data (Fig.5.30) and 5-metre
metal pipe data I (see Fig.5.31), their location errors along different white noises
are similar. However, it can be seen that both EKF and PF location errors are rela-
tively smooth along different noise ratios. But PipeSLAM location errors are oscil-
lated along different noise ratios. One possible reason is that the PipeSLAM have
not run enough times for different random numbers, as the Rao-Blackwellised
particle filter used in PipeSLAM is a probabilistic method. After running large
number of times, the mean location error for PipeSLAM may be more smooth.
But this also demonstrates that PipeSLAM is not as robust as the sequential map-
ping and localisation method demonstrated in Chapter 4.

However, compared with sequential mapping and localisation method, which
needs to run the robot 20 times forwards and backwards in a pipe, PipeSLAM only
needs a single run. This largely saves time and costs if it is deployed in a industrial
application. This experiment has not tested the PipeSLAM for multiple runs at
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Figure 5.14: PipeSLAM using 1-metre metal pipe data. Signal to noise ratio (snr) =
∞ dB. (a)-(d) PipeSLAM at different time steps building the map while localising.
(e) PipeSLAM location estimates much improved accuracy compared with dead
reckoning locations.
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Figure 5.15: PipeSLAM using 1-metre metal pipe data. Signal to noise ratio (snr) =
30 dB. (a)-(d) PipeSLAM at different time steps building the map while localising.
(e) PipeSLAM location estimates much improved accuracy compared with dead
reckoning locations.
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Figure 5.16: PipeSLAM using 1-metre metal pipe data. Signal to noise ratio (snr) =
20 dB. (a)-(d) PipeSLAM at different time steps building the map while localising.
(e) PipeSLAM location estimates much improved accuracy compared with dead
reckoning locations.
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Figure 5.17: PipeSLAM using 1-metre metal pipe data. Signal to noise ratio (snr) =
15 dB. (a)-(d) PipeSLAM at different time steps building the map while localising.
(e) PipeSLAM location estimates much improved accuracy compared with dead
reckoning locations.
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Figure 5.18: PipeSLAM using 5-metre metal pipe data I. Signal to noise ratio
(snr) = ∞ dB. (a)-(d) PipeSLAM at different time steps building the map while
localising. (e) PipeSLAM location estimates much improved accuracy compared
with dead reckoning locations.
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Figure 5.19: PipeSLAM using 5-metre metal pipe data I. Signal to noise ratio
(snr) = 30 dB. (a)-(d) PipeSLAM at different time steps building the map while
localising. (e) PipeSLAM location estimates much improved accuracy compared
with dead reckoning locations.
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Figure 5.20: PipeSLAM using 5-metre metal pipe data I. Signal to noise ratio
(snr) = 20 dB. (a)-(d) PipeSLAM at different time steps building the map while
localising. (e) PipeSLAM location estimates much improved accuracy compared
with dead reckoning locations.
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Figure 5.21: PipeSLAM using 5-metre metal pipe data I. Signal to noise ratio
(snr) = 15 dB. (a)-(d) PipeSLAM at different time steps building the map while
localising. (e) PipeSLAM location estimates much improved accuracy compared
with dead reckoning locations.
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Figure 5.22: PipeSLAM using reverse 5-metre metal pipe data I. Signal to noise
ratio (snr) = ∞ dB. (a)-(d) PipeSLAM at different time steps building the map while
localising. (e) PipeSLAM location estimates much improved accuracy compared
with dead reckoning locations.
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Figure 5.23: PipeSLAM using reverse 5-metre metal pipe data I. Signal to noise ra-
tio (snr) = 30 dB. (a)-(d) PipeSLAM at different time steps building the map while
localising. (e) PipeSLAM location estimates much improved accuracy compared
with dead reckoning locations.
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Figure 5.24: PipeSLAM using 5-metre metal pipe data II. Signal to noise ratio
(snr) = ∞ dB. (a)-(d) PipeSLAM at different time steps building the map while
localising. (e) PipeSLAM location estimates much improved accuracy compared
with dead reckoning locations.
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Figure 5.25: PipeSLAM using 5-metre metal pipe data II. Signal to noise ratio
(snr) = 30 dB. (a)-(d) PipeSLAM at different time steps building the map while
localising. (e) PipeSLAM location estimates much improved accuracy compared
with dead reckoning locations.
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Figure 5.26: PipeSLAM using 5-metre metal pipe data II. Signal to noise ratio
(snr) = 20 dB. (a)-(d) PipeSLAM at different time steps building the map while
localising. (e) PipeSLAM location estimates much improved accuracy compared
with dead reckoning locations.
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Figure 5.27: PipeSLAM using 5-metre metal pipe data II. Signal to noise ratio
(snr) = 15 dB. (a)-(d) PipeSLAM at different time steps building the map while
localising. (e) PipeSLAM location estimates much improved accuracy compared
with dead reckoning locations.
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a same condition. But it is likely that more experiment runs will improve the
PipeSLAM performance and its location estimate will be more accurate if increase
experiment running times.

Overall, PipeSLAM is a more considerable choice for future in-pipe robot in-
spections. The first and the most important reason is that it can be upgraded
to online application without saving and processing offline data after experiment
and the location results are much more accurate than dead reckoning results.

Figure 5.28: Results with additional white noise – a comparison of simulation data
using EKF, PF and PipeSLAM algorithms. Results demonstrate EKF estimates, PF
estimates and PipeSLAM estimates are outperformed to dead reckoning estimates.

5.4 Summary

This chapter has addressed the SLAM problem for feature-sparse water pipes. In
order to track robot location while building the map at the same time, this chapter
has introduced a PipeSLAM algorithm based on the Rao-Blackwellised particle
filter: the key features of this algorithm are that the map is decomposed using a
radial basis function network that is linear-in-the-parameters; these map parame-
ters are estimated using a Kalman filter; robot location is estimated using particles.
The feasibility of the algorithm has been tested using a combination of experiment
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Figure 5.29: Results with additional white noise – a comparison of plastic data
using EKF, PF and PipeSLAM algorithms. Results demonstrate EKF estimates, PF
estimates and PipeSLAM estimates are outperformed to dead reckoning estimates.

Figure 5.30: Results with additional white noise – a comparison of 1-metre metal
pipe data using EKF, PF and PipeSLAM algorithms. Results demonstrate EKF esti-
mates, PF estimates and PipeSLAM estimates are outperformed to dead reckoning
estimates.
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Figure 5.31: Results with blockage noise – a comparison of 5-metre metal pipe data
I using EKF, PF and PipeSLAM algorithms. Results demonstrate EKF estimates, PF
estimates and PipeSLAM estimates are outperformed to dead reckoning estimates.

and simulation, where the maps are generated in simulation as well as experi-
ments and then the PipeSLAM algorithm has been evaluated on the those maps in
simulation. A benchmark against robot localisation using just dead reckoning for
all data sets both from simulation and experiments have demonstrated the success
of the PipeSLAM method.



Chapter 6

Sensor Fusion For Estimating Pipe
Location in the World Coordinate
Frame

6.1 Introduction

The work in previous chapters has developed novel solutions to estimating the
distance of the robot travelled through water pipes. This information allows the
robot to estimate its own location in the local coordinate frame of the pipe (be-
cause a small diameter pipe is essentially a one dimensional environment, hence
distance travelled is the only measure of location required). However, the distance
travelled along a pipe is not sufficient to transform the robot location from the
local coordinate frame into the world coordinate frame. The heading of the robot
is also required for this transformation. The transformation of the robot into the
world coordinate frame is of crucial importance because this also determines the
location of the pipe itself, which is needed to effect repairs from above ground.

This chapter will add another sensor to the system that will produce head-
ing information to the robot localisation algorithm, and that is an inertial mea-
surement unit (IMU). Due to the fast development of current IMU technologies
in micro-electronic mechanical systems (MEMS) devices, many mobile robot sys-
tems have employed IMUs as one of their important sensors (see Section 2.5). The
IMU used in this chapter is an Xsens MTi-3-8A7G6-DK (see Fig.6.2), which is a
commercial product that includes calibration and processing algorithms that fuse
gyroscope and accelerometer sensors using an EKF to produce attitude estimates
in terms of yaw, pitch and roll.

Therefore, the robot distance travelled can be estimated by PipeSLAM, and the
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Euler angles

Figure 6.1: Sensor fusion illustration diagram

heading can be estimated by an IMU. This chapter will introduce an approach to
fuse IMU and PipeSLAM to estimate XYZ locations in 3D space. The key novel
contribution is formulating the sensor fusion algorithm in such a way that the un-
certainty of the two distinct estimation algorithms, PipeSLAM for distance trav-
elled and IMU-EKF for heading, is propagated into the world coordinate frame.
This uncertainty estimate is generated via Monte Carlo simulations of a stochastic
local-world coordinate transformation, which is both simple and effective.

6.2 Methods

From the previous chapters, one-dimensional locations are assumed. This is due
to the fact that experiments were conducted in pipes with small diameters. There-
fore, the sensor platform is assumed to move either forward or backward with
no cross-sectional movements. However, to carry out repairs on pipes from above
ground, the location of the pipe must be estimated in the world coordinate frame.
Thus, directional information needs to be acquired and an IMU can be used for
this purpose. Combined with the distance travelled produced from previous ap-
proaches, such as PipeSLAM, XYZ coordinates can be computed after the sensor
fusion (see Fig.6.1).

An IMU device can produce rotational Euler angles along x, y and z axes in
the world frame with embedded its estimators, such as extended Kalman filter [8].
Thus, in each time stamp, the pose of the robot can be easily calculated by using
simple trigonometric functions.

6.2.1 Heading Estimate via Inertial Measurement

IMU technology has been developing rapidly but the principle behind the small
chip is rather similar. Mostly used IMU data fusion approaches might be traced
back to 1995, according to the work from [8]. The heading of a mobile robot
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Figure 6.2: xsens MTi-3-8A7G6-DK IMU used in the laboratory experiments

can be estimated by an IMU. The IMU uses a gyroscope to measure rotational
velocity and an accelerometer to measure linear acceleration. The gyroscope and
accelerometer data are then fused using an EKF. The observation equations are

zGx(k) = ψ̇x(k) + εψ̇x
(k) + v1(k)

zGy(k) = ψ̇y(k) + εψ̇y
(k) + v2(k)

zGz(k) = ψ̇z(k) + εψ̇z
(k) + v3(k)

zAx(k) = cos ψy(k) cos ψz(k)ax(k) + cos ψy(k) sin ψz(k)ay(k)

− sin ψy(k)g(k) + εax(k) + v4(k)

zAy(k) = [sin ψx(k) sin ψy(k) cos ψz(k)− cos ψx(k) sin ψz(k)]ax(k)

+ [sin ψx(k) sin ψy(k) sin ψz(k) + cos ψx(k) cos ψz(k)]ay(k)

+ sin ψx(k) cos ψy(k)g(k) + εay(k) + v5(k)

zAy(k) = [cos ψx(k) sin ψy(k) cos ψz(k) + sin ψx(k) sin ψz(k)]ax(k)

+ [cos ψx(k) sin ψy(k) sin ψz(k)− sin ψx(k) cos ψz(k)]ay(k)

+ cos ψx(k) cos ψy(k)g(k) + εg(k) + v6(k)

(6.1)

The observations from gyroscopes and acceleration measurement unit on the
IMU chip are zGx(k), zGy(k), zGz(k), zAx(k), zAy(k) and zAz(k). ψ̇x(k), ψ̇y(k), ψ̇z(k)
are the Euler angular rotation rates along x, y and z local axes, and ax(k), ay(k) and
az(k) are the accelerations along x, y and z local axes. Additionally, εψ̇x

(k), εψ̇y
(k),

εψ̇z
(k), εax(k), εay(k) and εaz(k) are the drift errors added to the measurements.

Also, Gaussian noises v1(k), v2(k), v3(k), v4(k), v5(k), v6(k), are assumed here to
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be added into the equations respectively, in order to use extended Kalman filter.
More detailed explanations can be found in [8].

The state update equations are

xGx(k + 1)
xGy(k + 1)
xGz(k + 1)
xAx(k + 1)
xAy(k + 1)
xAz(k + 1)


=



FGx 0 0 0 0 0
0 FGy 0 0 0 0
0 0 FGz 0 0 0
0 0 0 FAx 0 0
0 0 0 0 FAy 0
0 0 0 0 0 FAz





xGx(k)
xGy(k)
xGz(k)
xAx(k)
xAy(k)
xAz(k)


+



uGx

uGy

uGz

uAx

uAy

uAz


+ w(k)

(6.2)

with

FGx

∆
=



1 Ts
1
2 T2

s
1
6 T3

s 0 0
0 1 Ts

1
2 T2

s 0 0
0 0 1 Ts 0 0
0 0 0 1 0 0
0 0 0 0 1 Ts

0 0 0 0 0
Tψ̇z

Tψ̇z+Ts


(6.3)

FAx

∆
=


1 Ts

1
2 T2

s 0
0 1 Ts 0
0 0 1 0
0 0 0 Tax

Tax+Ts

 (6.4)

xGx(k)
∆
=



ψz(k)
ψ̇z(k)
ψ̈z(k)...
ψz(k)
εψz(k)
εψ̇z

(k)


(6.5)
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xAx(k)
∆
=


x(k)
vx(k)
ax(k)
εax(k)

 (6.6)

uGx(k)
∆
=



0
0
0
0
0

Ts(C1ψ̇z+C2ψ̇z )

Tψ̇z+Ts


(6.7)

and

uAx(k)
∆
=


0
0
0

Ts(C1ax+C2ax )
Tax+Ts

 (6.8)

where C1 and C2 are error constants such that ε(0) = C2 and ε̇(0) = C1
T , and Ts is

the sampling interval. Others including Tψ̇z
, C1ax and C2ax are parameters that are

to be tuned, according to Barshan and Durrant-Whyte [8]. The other remaining
matrices FGy , FGz , FAy , FAy , and remaining state vectors xGy , xGz , xAy , xAy in (6.2)
have the similar formats according to the equations above with individual corre-
sponding error parameters substituted in. Therefore, the combined state contains
30 states and the state update equation ((6.2)) can be expressed as

xk = Fxk−1 + u + wk−1 (6.9)

where

F =



FGx 0 0 0 0 0
0 FGy 0 0 0 0
0 0 FGz 0 0 0
0 0 0 FAx 0 0
0 0 0 0 FAy 0
0 0 0 0 0 FAz


(6.10)

The state equation (6.9) is linear while the observation equation (6.1) is nonlinear.
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Figure 6.3: An example showing one step increment from t = k− 1 to t = k in a
2D case

Therefore, a standard EKF can be applied to the IMU model.

6.2.2 Sensor Fusion

IMU provides the heading estimate, whilst PipeSLAM or DBA method provides
distance travelled. The aim of this section is to fuse these methods, into x-y-z
location of the pipe/robot in the world coordinate frame, with uncertainty.

In a simple 2D case (see Fig.6.3), assuming at time stamp k, the robot is rotating
by β, and moving forward by d. Equations are

xk = xk−1 + d cos β

yk = yk−1 + d sin β
(6.11)

When the robot rotates by β, its local coordinate frame will also rotate by β and
any vector coordinates in the previous local frame needs to be updated after the
rotation. This need to require a rotation matrix. Assume a vector v = (x, y) is in
its local frame. When the local frame rotates anti-clockwise by β, the vector v will
all rotate to be v′ and its coordinates in the world frame will be updated following
the equations below

x′ = x cos β− y sin β

y′ = x sin β + y cos β
(6.12)
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or in a matrix form x′

y′

 = R2d(β)

x
y

 (6.13)

R2d(β) =

cos β − sin β

sin β cos β

 (6.14)

The square matrix R2d in (6.14) is called the direction cosine matrix or DCM which
transforms a coordinate frame to another coordinate frame. However, in 3D cases,
rotations could happen in all x − y− z axes and the rotation matrix is relatively
more complicated. The Euler angles come from the IMU are ψx

∆
=roll, ψy

∆
=pitch

and ψz
∆
=yaw. Thus the rotation matrix or DCM in 3D space can be expressed as:

Rz(ψz) =

cos ψz − sin ψz 0
sin ψz cos ψz 0

0 0 1

 (6.15)

Ry(ψy) =

 cos ψy 0 sin ψy

0 1 0
− sin ψy 0 cos ψy

 (6.16)

Rx(ψx) =

1 0 0
0 cos ψx − sin ψx

0 sin ψx cos ψx

 (6.17)

To construct the DCM in 3D, three rotation matrices Rx(ψz), Ry(ψy), Rz(ψx) need
to be multiplied together in certain order. It is worth mentioning that different
multiplication orders will result in different outcomes. The most commonly used
are Rzyx = RzRyRx showing (6.18).

Rzyx = RzRyRx =cos ψy cos ψx cos ψx sin ψz sin ψy − cos ψz sin ψx cos ψz cos ψx sin ψy + sin ψz sin ψx

cos ψy sin ψx sin ψz sin ψy sin ψx + cos ψz cos ψx cos ψz sin ψy sin ψx − cos ψz sin ψx

− sin ψy cos ψy sin ψz cos ψz cos ψy


(6.18)
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Rxyz = RxRyRz = cos ψy cos ψx − cos ψy sin ψx sin ψy

cos ψz sin ψx + sin ψz sin ψy cos ψx cos ψz cos ψx − sin ψz sin ψy sin ψx − sin ψz cos ψy

sin ψz sin ψx − cos ψz sin ψy cos ψx sin ψz cos ψx + cos ψz sin ψy sin ψx cos ψz cos ψy


(6.19)

The Eq.(6.18) interprets that the space is firstly rotated about z-axis, then y-axis,
then x-axis. This is opposite to Eq.(6.19).

Location Estimation using Monte Carlo Method

Now to set DCM matrix notation to be Rdcm, which can be Rzyx in (6.18) or Rxyz

in (6.19). Then express Rdcm in column vectors such that

Rdcm
∆
=
[
rx

dcm ry
dcm rz

dcm

]
(6.20)

where rx
dcm is the first column indicating the direction vector of its x−axis in world

coordinate frame, ry
dcm is the second column indicating the direction vector of its

y−axis in world coordinate frame and rz
dcm is the third column in Rdcm indicating

the direction vector of its z−axis in world coordinate frame. Assuming the robot
heading is along x−axis in its local coordinate frame, which means the x−axis
in its local coordinate frame is pointing to the robot movement direction. There-
fore, by using (6.11), the location coordinates update equation in 3D form can be
expressed as xk

yk

zk

 =

xk−1

yk−1

zk−1

+ dk · rx
dcm(ψx,k, ψy,k, ψz,k) (6.21)

To simplify notation, define

lk
∆
=

xk

yk

zk

 (6.22)

f(ψx,k, ψy,k, ψz,k)
∆
= rx

dcm(ψx,k, ψy,k, ψz,k) (6.23)

and (6.21) becomes
lk = lk−1 + dk · f(ψx,k, ψy,k, ψz,k) (6.24)

In order to calculate variance of the robot location in 3D world coordinates, ad-
ditional white noise should be added into IMU angular outputs. By using Monte
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Carlo simulation method with ns particles, the particle location set at time k are
lp
k , where p = 1, . . . , ns. The particle location update in state space form is

lp
k = lp

k−1 + dk · f(ψx,k + wψ
x,k, ψy,k + wψ

y,k, ψz,k + wψ
z,k) (6.25)

where wψ
x,k, wψ

y,k and wψ
z,k are zero mean Gaussian noise at time k. Then the covari-

ance of the location estimate can be numerically calculated as

Σlk =
1
ns

ns

∑
p=1

(lp
k − E[lk])

2 (6.26)

where lk = E[lk] =
ns

∑
p=1

lp
k is the averaged location at time k in 3D world frame.

Therefore, the location estimate at time k is expressed as Gaussian distributed
variable that

lk ∼ N (lk,
1
ns

ns

∑
p=1

(lp
k − lk)

2) (6.27)

Hence, since the mean location estimation lk and variance Σlk can be calculated,
the location estimation results can be plotted (e.g. Fig.6.6).

Location Estimation with Prior Knowledge of the Pipe

Since the pipe used in the experiment is straight, it can be used as a prior knowl-
edge to the estimation. This prior knowledge can be expressed as Gaussian vari-
able that meets the condition Lprior ∼ N (Lprior, Σprior). Denote previous location

estimation to be Lest
∆
= lk, for k = 1, . . . , ns, and the combined posterior estimate

mean Lpost and covariance ΣLpost can be calculated by using the well-known for-
mulas:

Lpost = ΣLpost(Σ
−1
Lest

Lest + Σ−1
Lprior

Lprior) (6.28)

ΣLpost = (Σ−1
Lest

+ Σ−1
Lprior

)−1 (6.29)

6.3 Algorithm Evaluation

The experiments are conducted in a 5-metre metal pipe, and two data sets are col-
lected. The robot distance travelled has been estimated in Chapter 4 and Chapter
5. Since the two methods have provided similar distance travelled results, and due
to the page limitation, the distance travelled estimated by PipeSLAM are selected
to demonstrate the effectiveness of this sensor fusion algorithm. In the Monte



Chapter 6. Sensor Fusion For Estimating Pipe Location in the World
Coordinate Frame 145

Carlo simulation, the Gaussian noise wψ
x,k, wψ

y,k and wψ
z,k in (6.25) is set to be zero

means with covariances of 0.3 (radians per unit sample) that added into IMU Euler
angle outputs.

6.4 Results and Discussion

The sensor fusion results are shown in Fig.6.6 ∼ Fig.6.9 with four panels in each
figure. Fig.6.6 shows the result in xy-plane (horizontal plane) and Fig.6.7 shows
the result in xz-plane (vertical plane).

Panel (a) shows the direct location estimation of true distance estimates with
IMU data. Although distance travelled does not contain any types noise and drift,
the location coordinate estimates are still drifted and this is due to the distur-
bances in IMU measurements. Panel (b) shows the direct location estimation of
PipeSLAM distance estimates with IMU data. This estimation is still bad for the
same reason of the IMU measurement noise. However, by using Monte Carlo
simulation method, and combining forward pass location with backward location,
the mean estimated location are more accurate and close to the true pipe loca-
tion (green line), shown in panel (c). The red lines are the numerically calculated
variance of particle locations, which can be regarded as uncertainty estimates. By
adding a prior knowledge of the pipe location (panel (d)), the location estimates
are much closer to the true pipe location and the uncertainty (red lines) is largely
reduced.

Figure 6.4: Yaw, pitch and roll outputs from IMU Data I
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Figure 6.5: Yaw, pitch and roll outputs from IMU Data II

6.5 Summary

In summary, this chapter has demonstrated a sensor fusion technique by adding
an IMU to provide heading information. The experiments are tested in the 5-metre
metal water pipe with an IMU chip operating on sensor platform. The experiment
results have demonstrated that with multi-sensor fusion of one motor encoder, a
pair of hydrophones and an IMU can produce a good estimation of pipe location
in the 3D world coordinate frame.



Chapter 6. Sensor Fusion For Estimating Pipe Location in the World
Coordinate Frame 147

Figure 6.6: Pipe mapping using sensor fusion technique using data set I shown
in xy-plane. (a) The estimation using noise free dead reckoning distances and
IMU data. (b) Estimation using PipeSLAM distance and IMU data. (c) Estimation
using sensor fusion of PipeSLAM distance and IMU data, shown with sensor un-
certainties. (d) Along with PipeSLAM distance and IMU data, a prior knowledge
(assuming the pipe is straight) is added to the estimation.
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Figure 6.7: Pipe mapping using sensor fusion technique using data set I shown
in xz-plane. (a) The estimation using noise free dead reckoning distances and
IMU data. (b) Estimation using PipeSLAM distance and IMU data. (c) Estimation
using sensor fusion of PipeSLAM distance and IMU data, shown with sensor un-
certainties. (d) Along with PipeSLAM distance and IMU data, a prior knowledge
(assuming the pipe is straight) is added to the estimation.
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Figure 6.8: Pipe mapping using sensor fusion technique using data set II shown
in xy-plane. (a) The estimation using noise free dead reckoning distances and
IMU data. (b) Estimation using PipeSLAM distance and IMU data. (c) Estimation
using sensor fusion of PipeSLAM distance and IMU data, shown with sensor un-
certainties. (d) Along with PipeSLAM distance and IMU data, a prior knowledge
(assuming the pipe is straight) is added to the estimation.
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Figure 6.9: Pipe mapping using sensor fusion technique using data set II shown
in xz-plane. (a) The estimation using noise free dead reckoning distances and
IMU data. (b) Estimation using PipeSLAM distance and IMU data. (c) Estimation
using sensor fusion of PipeSLAM distance and IMU data, shown with sensor un-
certainties. (d) Along with PipeSLAM distance and IMU data, a prior knowledge
(assuming the pipe is straight) is added to the estimation.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

The demand for inspection and repair technologies for the water industries on
their water mains and distribution pipes is increasing, this can be due to the high
cost of damaged infrastructure replacement and more regulations that force water
companies to invest on robot inspection [102]. In urban water distribution systems,
due to the water pipes are ageing, pipe leakages and serious damage may occur.
Compared with the cost pipe replacement in the underground distribution system,
regular pipe inspection and repair is more cost effective to water companies and
local communities. However, small-diameter pipes are not accessible for human as
they are small in size and often buried underground. Therefore, inspection robotic
systems are more suitable to this task in terms of underground pipe networks
mapping and damage localisation.

This thesis has addressed the problem of mapping and localisation in water
pipes and has defined three main challenges for such robot navigation systems.
First, due to feature sparsity inside water pipes, robot is not easy to navigate it-
self based on the featureless in-pipe environment, compared with many indoor
and outdoor robot operation environment. Second, in-pipe robot can only de-
tect nearby features by using standard sensors such as laser range finders and
ultrasound transducers. Third, unlike other well-developed indoor/outdoor robot
navigation systems, an in-pipe robot has less flexibility and can only move either
forward or backward.

The aim of this project was address the challenges defined above to build a
robot navigation system that could build accurate maps of the pipe while localis-
ing itself in the relatively featureless water pipe environment. This aim was suc-
cessfully achieved through the previous chapters, and the contributions of these

151
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chapters are summarised below.

To map the pipe, the robot firstly needs to find observable features in or out-
side the water pipe. This project has tested two novel approaches to sensing for
building maps, in plastic pipes and metal pipes (see chapter 3). One of the novel
contributions of this thesis was to use ultrasound sensor to detect the terrain, or
soil, profile outside plastic pipe walls, and use the terrain profile as a navigation
map. However, such a technique cannot directly translate to metal pipes because
ultrasound does not have sufficient energy to penetrate metal pipe walls. There-
fore, another novelty of the project was to develop the use of a hydrophone to
excite pipe vibration to build a novel type of map for metal pipes. In the hy-
drophone approach, one hydrophone transmits signals to the metal pipe and the
metal pipe will vibrate. The other hydrophone then receives the response signal
from the metal pipe vibration. Due to the mechanical characteristics and struc-
ture of the pipe, the response signal varies at each location within the pipe, which
can be used as map. Therefore, such pipe vibration signals can be used for robot
navigation in metal pipes. Both techniques have been tested in different labora-
tory settings and the navigation maps they produced can be used for sequential
mapping and localisation or simultaneous localisation and mapping (SLAM).

In chapter 4 a novel method for sequential mapping and localisation was de-
veloped. The maps created from chapter 3 require spatial calibration, which can
only be practically performed by a dead reckoning sensor such as a motor en-
coder. Motor encoder (dead reckoning) measurements may contain various types
of noises, such as constant drift and white noise. To spatially calibrate the map
therefore, a signal alignment and averaging algorithm named DTW barycentre
averaging (DBA) was used. After that the calibrated map was used to perform lo-
calisation algorithms. Two localisation algorithms were implemented, which were
the extended Kalman filter (EKF) localisation [65] and a standard particle filter
(PF) localisation. To test the robustness of the algorithms, additional noises, such
as blockage noise in robot motion and extra white noise in ultrasound sensor and
hydrophone, were also added in the simulation. The location estimates from both
localisation algorithms show much better improvements against the drifted dead
reckoning estimation.

In chapter 5 a novel PipeSLAM algorithm was developed for simultaneously
localising and mapping in water pipes. The PipeSLAM algorithm was developed
based on the Rao-Blackwellised particle filter. The key features of the algorithm
are that the map is decomposed by a radial basis function network that is linear-
in-parameters; these map parameters are estimated using a Kalman filter; robot
location is estimated using particles. The results demonstrated this algorithm
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could successfully build the map and calculate accurate location estimates along
the pipe, compared with dead reckoning location estimates. The key advantage
of the PipeSLAM algorithm compared with the previous approach illustrated in
Chapter 4 is that PipeSLAM can be further developed into an online SLAM-in-pipe
solution in future.

In the previous approaches mentioned above, pipes are assumed to be straight.
But it is not always the case in real scenarios, since a pipe network usually contain
T junctions and L elbows. Therefore, in order to determine robot location in the
xy-plane, directional information is required in addition to robot distance travelled
- an inertial measurement unit (IMU) can be used to obtain the directional infor-
mation. Thus, in addition to sequential mapping and localisation (chapter 4) and
PipeSLAM (chapter 5), a sensor fusion with an IMU (Chapter 6) was used to es-
timate robot location in the world coordinate frame. The robot distance travelled
and robot heading are estimated separately. By assuming two known locations
(two ends of the pipe), the fused algorithm is able to calculate the shape of the
pipe and its location in the world coordinate frame.

7.2 Future Work

Apart from the current development on this robot in-pipe SLAM project, there are
many more future research directions to investigate: real-time laboratory and field
test; sensor fusion with other different types of sensors; multi-robot operation for
mapping entire pipe networks (using cooperative/swarm robotics).

• Further laboratory test and Field test:

1. Real-time laboratory testing – The experiment data gathered from the
laboratory first and the whole set of raw data, including motor encoder
readings, hydrophone signals and ultrasound signals, were processed
and analysed offline in this project. The sequential mapping and locali-
sation using DBA is designed for offline analysis. But PipeSLAM can be
further upgraded for online processing: data can be gathered and pro-
cessed using the PipeSLAM algorithm along with sensor fusion with
IMU, while the robot is travelling through the pipe. As the computer
memory and processor technology has been increasing rapidly, a small
chip can deal with large work load. This on the other hand also allows
all analysis work to be processed onboard.

2. Field testing – Field testing needs to be performed using the algorithms
developed in this thesis. There are sites in the UK where testing can be
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performed on buried water pipes, where the location of the buried pipe
is known and can be checked for ground truth. The field testing also
needs to be done on larger-scale pipes and pipe networks, to demon-
strate the effectiveness of PipeSLAM and the sensor fusion technique
on more realistic pipe lengths, e.g. 100 metres would be ideal because
that is the typical distance between fire hydrants in the UK.

3. From tethered to untethered – At this stage of the project, the sensor
platform is tethered to a continuous track powered by two motors on
both ends of the pipe. One important reason for tethering is that wa-
ter companies do not yet have confidence in robotic systems and have
concerns that robots might become trapped in the pipe requiring man-
ual recovery (by digging up the road). So for the near future tether-
ing is likely to be standard until the technology is proven. One useful
benefit of tethering the robot is that the robot platform effectively has
unconstrained power. There are additional advantages in this tethered
method: the drive to the system can be effected by actuators outside the
pipe to pull the robot back upstream (whilst flow can be used to drive
the robot downstream); sensor measurements can be directly transmit-
ted back to the terminal PC for off-board processing with unconstrained
computational resources; in the event of the robot becoming stuck in
the middle of the pipe, the robot can be recovered by the tethered cable.
However, ultimately an untethered in-pipe robot will have much more
flexibility and will potentially allow much less human participation. A
full autonomous pipe inspection robot is therefore the ultimate goal.
To achieve this goal, several difficulties shall be considered: ob-board
power system and computational device; wireless communication be-
tween the robot and above ground human coordinator; a back up re-
covery plan in the event of robot failure (possibly using other search
and rescue robots).

• Sensor fusion with other types of sensors:

1. Excluding a motor encoder, the sensor platform is equipped with one
pair of hydrophones (or a ultrasound transducer). Using the hydrophone
pair as an example, it can only receive one signal at one location at one
time. After signal processing, one numeric value indicating the am-
plitude at that location is the output. Although it can over perform
against drifted dead reckoning estimates, it may not always success-
fully give the true location. Attaching multiple sensor modules (e.g. 3
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pairs of hydrophones) of fixed distance between each of them, they can
give a set of 3 numeric amplitude readings. This increases the measure-
ment output from 0 dimension (a point) to 1 dimension (a line). This
can largely improves the accuracy in both mapping and localisation
processes.

2. Sensor fusion with visual cameras, associated visual SLAM algorithms
such as a visual SLAM system [85] which uses a set of 4 spinning grey-
scale CCD cameras capturing 360o images around sensor platform in
the cross section of the pipe. As visual SLAM is a well developed area
in robot SLAM, many similar visual SLAM algorithms [56, 86, 103] are
also available to integrate into the in-pipe SLAM technology.

machine learning for recognising objects such junctions, elbows and fire
hydrants.

3. Sensor fusion with above ground sensing technology such as ground
penetrating radar (GPR) [71, 72, 114].

• A single inspection robot can only travel and inspect a small area of pipe.
However, with a group of inspection robots operating in the water pipe
network, a global map of the pipe network can be obtained. The health
of individual pipe sections within the network can be monitored 24 hours
without human participation. Therefore, another direction can be coopera-
tive/swarm robots using distributed SLAM techniques [33]. In addition, the
PipeSLAM algorithm developed here is suited to dealing with a section of
pipe, at the local scale, but global mapping of the pipe network might be
more suited to graph SLAM techniques, which represents the map as ver-
tices and nodes [139], where for instance branches or entry/exit points in
the pipe network would be the nodes. This might create an interesting prob-
lem/solution of multi-scale SLAM, where small scale mapping-localisation
is performed using methods developed in this thesis (between two nodes of a
graph), and the larger-scale SLAM problem is addressed through the graph
SLAM approach. These techniques would also exploit data from multiple
robots cooperating and communicating map data between each other.



Appendix A

Properties of Gaussian
Distribution

Lemma A.1 (Joint distribution of Gaussian variables) According to Sarkka [129,
p. 209], if random variables x ∈ Rn and y ∈ Rm have the Gaussian probability
distributions

x ∼ N(m, P)

y|x ∼ N(Hx, R)
(A.1)

then the joint distribution of x, and y and the marginal distribution of y are given
as x

y

 ∼ N


 m

Hm

 ,

 P PHT

HP HPHT + R




y ∼ N(Hm, HPH + R)

(A.2)

Lemma A.2 (Conditional distribution of Gaussian variables) According to Sarkka
[129, p. 209], if the random variables x, y have the joint Gaussian probability
distribution x

y

 ∼ N


a

b

 ,

 A C
CT B


 (A.3)

then the marginal and conditional distributions of x, y are given as follows:

x ∼ N(a, A)

y ∼ N(b, B)

x|y ∼ N(a + CB−1(y− b), A− CB−1CT)

y|x ∼ N(b + CTA−1(x− a), B− CTA−1C)

(A.4)
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