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Abstract

This thesis describes experiments on the initialisation, coherent control, and readout

of a single hole spin trapped in a self assembled InGaAs semiconductor quantum dot.

High fidelity initialisation of a hole spin state is achieved by the fast ionisation of

a spin polarised neutral exciton under an applied electric field and in a Faraday

geometry magnetic field. The preparation of a coherent superposition state is

demonstrated by observing the precession of the hole spin about a Voigt geometry

magnetic field. The hole spin dephasing time is deduced from the decay of the

spin contrast. Coherent optical rotation of the hole spin state about the z-axis is

demonstrated using the geometric phase shift induced by a picosecond laser pulse.

By combining the precession of the spin about the x-axis, and optical rotations about

the z-axis, full quantum control of a hole spin is demonstrated over the surface of

the Bloch sphere. This is an important prerequisite for the use of a hole spin as a

qubit for quantum information processing applications.
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Chapter 1

Introduction

This thesis describes the coherent optical control of a single hole spin in a

semiconductor quantum dot using picosecond optical laser pulses and a photocurrent

detection technique. The primary motivation of the work is for applications in

quantum information processing.

1.1 Quantum information processing

Moore’s law states that the number density of transistors in a conventional central

processing unit doubles every 18 months. As a result, the length scale for a

transistor, and hence the number of electrons used to distinguish between the ‘on’

and ‘off’ states is falling. The ultimate limit is where the difference in charge

of the ‘on’ and ‘off’ states is one electron, and this will be reached soon. In

such a device, quantum mechanical effects will become important. The limit to

classical computing was first considered by Richard Feynman with a view to simulate

quantum mechanical systems [1]. Quantum mechanical effects such as parallelism

have been shown to be useful for efficiently solving certain types of problems. These

include finding prime factors of large numbers, search algorithms and simulation of

quantum mechanical systems [2].
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Chapter 1

1.1.1 The physical implementation of quantum computing

David DiVincenzo first set out the requirements for a quantum computer [3]. The

so called DiVincenzo criteria are the following: 1) “A scalable physical system with

well characterised qubits”. 2) “The ability to initialize the state of the qubits to a

simple fiducial state”. 3) “Long relevant decoherence times, much longer than the

gate operation time”. 4) “A ‘universal’ set of quantum gates”. 5) “A qubit-specific

measurement capability”. What is needed is a scalable system to realise these

criteria.

1.1.2 Quantum dots for quantum information processing

A self assembled quantum dot (SAQD) might provide the means to address the

DiVincenzo criteria. SAQD’s have many desirable properties: they can be easily

grown using standard semiconductor reactor technology, they interact strongly with

light due to the large optical dipole, they have sharp atomic like emission lines, the

emission/absorption energy can be tuned using band structure engineering, and they

can be scaled up and integrated with photonic structures to form on-chip devices.

An exciton confined in a SAQD is a potential qubit, and full quantum control

has been demonstrated using picosecond laser pulses [4], [5], [6], [7]. However, an

exciton has a short coherence time that is limited by radiative recombination. This

radiative lifetime is relatively short, about a nanosecond, since the overlap of the

electron and hole wavefunction is large in quantum confined systems.

Recently the interest in quantum dots for QIP applications has moved towards

the use of carrier spins as qubits. Electron spin lifetimes of ms have been reported

[8], and high fidelity spin initialisation demonstrated [9]. However, it is more difficult

to control a carrier spin with a fast optical pulse, because of the small energy

splitting between the spin states. Despite this challenge, optical spin rotation of

single electron spins has been recently demonstrated with picosecond gate times,

thus satisfying the DiVincenzo criterion number three [10], [11], [12]. Although the
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intrinsic coherence time of an electron spin is long, the extrinsic dephasing time is

much smaller, just a few nanoseconds. This is due to the electron spin interaction

with the bath of nuclear spins within the SAQD. This has stimulated increasing

interest in the use of a hole spin in a SAQD as a potential qubit, where the p-type

wavefunction, leads to a reduced hyperfine interaction [13], [14], [15]. This has been

encouraged by measurements of microsecond coherence times [16].

The subject of this thesis is the fast initialisation, read-out, and full quantum

control of a single hole spin confined in a self assembled quantum dot using an

optical geometric phase gate. Most recently, optical control of a hole spin has been

demonstrated by other groups, in both single quantum dots [17], and quantum dot

molecules [18]

1.2 Chapter Abstracts

The contents of the chapters are discussed in the following abstracts.

Chapter 2: Background

The basic concepts and background information on quantum dots and coherent

spectroscopy are introduced here. A discussion of the spin initialisation, control and

readout techniques is given, paying particular attention to the state of the art in the

field.

Chapter 3: Methods

The photocurrent spectroscopy techniques used in chapters 4-6 are described here.

All experiments were performed on single InGaAs quantum dots embedded in

Schottky diode structures. Optical excitation was performed using a sequence

of up to three picosecond laser pulses derived from a mode-locked Ti:Sapphire

laser. The laser pulses were manipulated using pulse shaping optics and have

independently tunable wavelength, pulse duration, polarisation, power and phase.
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A photocurrent detection technique was used to detect the quantum dot state by

measuring the change in photocurrent through the device as a result of optical

excitation. Schemes to measure Rabi oscillations and two/three-colour time-resolved

photocurrent spectroscopy are also described.

Chapter 4: Fast high fidelity hole spin initialization

Experiments to demonstrate fast initialisation of a single hole spin trapped in an

InGaAs quantum dot with a fidelity F > 99% and a 1/e time of ∼ 30 ps are

described. The high fidelity was achieved by applying a magnetic field parallel to

the growth direction. The fidelity of the hole spin, prepared by ionization of a

photo-generated electron-hole pair, is shown to be limited by the precession of the

exciton spin due to the anisotropic exchange interaction.

Chapter 5: Coherent precession of a single hole spin

The preparation of a partially coherent superposition of hole spin states is

demonstrated by the fast (10-100 ps) dissociation of a spin-polarized electron-hole

pair in a Voigt-geometry magnetic field. The spin preparation is shown to be optimal

when the precession of the neutral exciton and hole spin in the Voigt geometry

magnetic field are synchronized. Long dephasing times of T ∗2 = 12 − 17.5 ns are

deduced for the hole, consistent with the expected weak hyperfine coupling for holes

in InAs/GaAs quantum dots, and an order of magnitude longer than for the electron.

Chapter 6: Coherent optical control of the spin of a single

hole

Coherent optical control of a single hole spin confined to an InAs/GaAs quantum

dot is demonstrated. A superposition of hole spin states was created by fast (10-100

ps) dissociation of a spin-polarized electron-hole pair. Full control of the hole-spin

was achieved by combining coherent rotations about two axes: Larmor precession of
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the hole-spin about an external Voigt-geometry magnetic field, and rotation about

the optical axis due to the geometric phase shift induced by a picosecond laser pulse

resonant with the hole-trion transition.

Chapter 7: Conclusions and future work

A summary of the experimental results is given here. Proposals for future

experiments and projects are also discussed. These include the following: 1)

potential implementation of an AC-Stark shift to rotate the hole spin; 2) a rigorous

test of the spin preparation model which includes schemes in which to improve

the fidelity of spin initialisation; 3) proposals for picosecond spin control about

arbitrary axes; 4) measurements of the hole spin dephasing time as a function of

applied magnetic field and temperature, and 5) techniques to improve the effective

hole lifetime using voltage modulation.
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Chapter 2

Background

This introductory chapter will outline some of the basic physics used in the

experimental results chapters. This will include an introduction to qubits, a brief

outline of quantum dot physics and coherent spectroscopy, a discussion of spin

decoherence, and a description of spin control techniques. This is followed by a

review of the experimental work carried out in the field of coherent control of carrier

spins in semiconductor quantum dots.

2.0.1 Bits and qubits

In a classical computer information is encoded in classical bits. A ‘classical’ bit

can either take the value 0 or 1. Information is processed by performing a series of

logical operations on the bits which returns the values 0 or 1. A qubit is different.

A qubit can be constructed from any two-level system consisting of the orthogonal

states |0〉 and |1〉, and rather than take the values 0 or 1, a qubit can exist in any

linear superposition state described by a wavefunction |ψI〉:

|ψ〉 = c0 |0〉+ c1 |1〉 , (2.1)

where c0 and c1 are complex amplitudes with the normalisation condition |c0|2 +

|c1|2 = 1. The single qubit may also be written in column vector form, using the
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basis states |0〉 and |1〉:

|ψ〉 =

c0

c1

 . (2.2)

2.0.2 Quantum logic gates

Quantum logic gates are performed on single and 2-qubit states in order to control

the qubit register. Single qubit gates can be written as 2 × 2 matrices so that

they can be used to perform matrix multiplication on the initial qubit state |ψ〉.

Examples of single qubit gates include the Pauli-X gate (ÛX), the Pauli-Z gate (ÛZ)

gate and the the Hadamard gate (ÛH):

ÛX =

0 1

1 0

 , (2.3)

ÛZ =

1 0

0 −1

 , (2.4)

ÛH = 1√
2

1 1

1 −1

 . (2.5)

The application of the qubit gates on the wavefunction |ψI〉 manipulates the

coefficients c0 and c1. For example ÛX swaps the complex coefficients c0 and c1, ÛZ

introduces a phase factor eiπ = −1 between the |0〉 and |1〉 states and ÛH converts

the pure qubit states into a superposition state and vice versa. Most importantly,

there is no classical analogue of the Hadamard and Pauli-Z phase gates as they act

on the superposition state. In chapter 6 we will see implementation of the Pauli-Z

gate on a hole spin qubit, and implementation of a non-general unitary operation

which rotates the qubit about both the x and z axis by an arbitrary angle.

The manipulation of a superposition state using qubit gates has the consequence

that the output for the states |0〉 and |1〉 can be calculated in parallel. This

parallelism is a property of quantum processing which essentially means that a

quantum computer can calculate the result for many inputs simultaneously.
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2.1 Self assembled semiconductor quantum dots

In this thesis a hole spin confined in a self assembled quantum dot will be used

as a qubit. This section will briefly introduce some of the background physics of

quantum dots. This includes the growth, optical properties and how the energy

states of excitons depend on applied electric and magnetic fields.

2.1.1 Growth

Self assembled quantum dots (SAQD from hereafter) are nano-scale islands of

semiconductor surrounded by a semiconductor with a higher bandgap. Figure 2.1

shows a cross-sectional scanning tunneling microscopy image of a single InAs/GaAs

SAQD [19]. The quantum dot is highlighted in the red box. Also shown are the

dimensions of the quantum dot. The growth of SAQD’s, such as the one shown in

Fig. 2.1, is described in the following.

The starting point is a substrate of GaAs on which the semiconductor

heterostructure is grown. Next, a lower bandgap semiconductor material, for

example InAs, is grown slowly, atomic layer by atomic layer, on top of the GaAs

to form a quantum well layer. Because of the difference in the lattice constants

between the GaAs and InAs, there is high strain in the quantum well layer. After

the quantum well reaches a critical thickness, it becomes energetically favorable for

the InAs to release the strain by self-assembling into ‘pockets’ or ‘islands’ of material

which sit on top of a ‘wetting layer’. The ‘islands’ of InAs semiconductor material

are the quantum dots. This type of growth is known as the Stranski-Krastinow

growth mode. A self-assembled quantum dot is typically 15-30 nm wide (in the

plane) and 1-10 nm thick (in the growth direction). Finally a GaAs capping layer

is formed to encapsulate the dots within the lattice. This is shown in Fig. 2.1.

By tuning the growth conditions, such as temperature and deposition rate, it is

possible to control the properties of the quantum dots such as their size, composition

and surface density. This is attractive because it allows the optical properties of
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Higher bandgap
material eg GaAs.

Quantum dot. 
Lower bandgap
material eg InAs.

Higher bandgap
material eg GaAs.

Wetting layer.

Figure 2.1: Cross-sectional STM image of a typical self assembled quantum dot extracted
from ref. [19]. A red box has been added to highlight the quantum dot. The quantum dot
is made of InAs. The host material is made of GaAs.

the quantum dots to be controlled. A good introduction to the basic principles of

Stranski-Krastinow growth can be found in references [20] and [21].

This thesis describes experimental work performed on quantum dots consisting

of InGaAs grown on GaAs by MBE. The dots sizes are typically 20 nm laterally and

5 nm vertically (in the growth direction). InGaAs dots of this size typically have an

emission and absorption spectrum in the optical to near infra-red range.

2.2 Quantum dot energy states

This section describes the energy states of neutral and charged excitons in quantum

dots. First, a simple introduction to quantum confinement will be given. This will

be followed by a discussion of a simple ‘lens’ shape potential which is used to model

the confinement in quantum dots. Next, the formation of neutral excitons will be
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introduced along with the optical selection rules and a discussion of fine structure.

The energy states of neutral excitons in external electric and magnetic fields will

then be discussed. Finally charged excitons will be introduced.

2.2.1 Confined states and selection rules

A quantum dot is a nanometer scale island of low bandgap semiconductor material

which is surrounded by a higher bandgap semiconductor material. It is a physical

realisation of a finite three-dimensional potential energy well, where the carriers are

confined to discrete energy levels. For this reason quantum dots are often referred

to as ‘artificial atoms’.

The lattice mismatch in quantum dots (typically ∼ 6%) results in high strain,

which modifies the electronic band structure through the deformation potential. The

result of which is a lifting of the degeneracy of the light hole (lh) and heavy hole

(hh) states in the valence band. The splitting of the light holes and heavy holes is on

the order of tens of meV. For this reason, the light hole states are usually neglected

when discussing the lower energy states of quantum dots. However finite mixing of

the lh and hh exists in quantum dots and this will be discussed below.

Quantum dots are often modeled with a lens shape. The lens shape results in a

circularly-symmetric parabolic confinement potential in the growth (xy) plane. This

leads to an energy spectrum of a 2-D simple harmonic oscillator [20] with energy

En,m = (n + m + 1)~ω0. The confinement in the growth (z) direction has a much

shorter dimension. Therefore, it is reasonable to assume there will be only one

bound state in this direction with energy Ez
1 . Furthermore, if there is more than

one bound state in the z-direction, then the energy difference to the second level

will be much larger than the energy separation associated with the lateral motion.

The result of the lens model, is an atomic shell like energy spectrum, consisting of

quantized orbitals with total energy En,m = Ez
1 + (n + m + 1)~ω. The orbitals are

characterised by the angular momentum about the z axis n, and are labelled with

the conventional shell labels used in atomic physics, i.e. s, p, d etc.
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heavy hole
valence

band

conduction
band

s-shell

p-shell

s-shell

p-shell

se,z= -1/2, +1/2

jh,z= +3/2, -3/2

Spin up, down electrons: Spin up, down holes:

mz= +1mz= -1 mz= 0

0
X0

X

Figure 2.2: The two-fold spin-degenerate s-shell and p-shell conduction band and valence
band states in a quantum dot. The heavy hole valence band and electron conduction band
states are shown for mz = −1, 0, +1. The z-projections of the electron spin are labelled
se,z for the electron and jh,z for the hole. The dashed red line indicates the bound electron
hole pairs or excitons: X0

⇑↓ and X0
⇓↑

Figure 2.2 shows the s-shell and p-shell states in a quantum dot, with the two

spin levels for each state identified. The electron spin angular momentum projection

in the z-direction is labelled se,z = ±1/2(~). The hole spin angular momentum

projection in the z-direction is labelled jh,z = ±3/2(~). The red dashed lines in Fig.

2.2 indicate the formation of the bound electron-hole pairs, or excitons. In quantum

dots, the formation of excitons results from the confinement potential, rather than

the electron’s and hole’s mutual Coulomb interaction. However, the exciton’s energy

is reduced as a result of the binding of the electron and hole. The s-shell excitons

are formed from the single particle electron and hole states states and have a spin

Sz = jh,z(~) + se,z(~) = −2,−1,+1,+2.

In an optical transition, the formation of exciton states with spin S = ±2 is not

allowed due to the conservation of angular momentum. These states are therefore
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known as dark excitons. However, a small but finite light hole and heavy hole

interaction results in a mixing of excitons with spin S = ±1 and S = ±2, which

means the S = ±2 states can sometimes be observed [15]. The dark states have

much weaker dipole moments, but the strength of the mixing can be increased by a

reduction of the symmetry under the application of an external field. For example

in chapter 5 we will see how a Voigt geometry magnetic field, applied in the sample

plane, allows the S = ±2 states to become observable.

The exciton states with spin S = ±1 are allowed according to the selection rules

for dipole transitions. These states are therefore known as bright excitons and are

labelled in Fig. 2.2 as X0
⇑↓ and X0

⇓↑. Here, the electron and hole spin in the growth

direction is denoted as ‘up(down)’ ↑ (↓) and ⇑ (⇓) respectively. A photon that is

resonant with the crystal ground state |0〉 to neutral exciton state |X0〉, and with

circular polarisation σ+, creates a spin-polarised exciton X0
⇑↓. Conversely a photon

that is resonant with the crystal ground state |0〉 to neutral exciton state |X0〉, and

with circular polarisation σ−, creates a spin-polarised exciton X0
⇓↑. However, as a

result of the anisotropic electron-hole exchange interaction, the spin degeneracy is

lifted due to the quantum dot asymmetry, and this will be explained in the following

section.

2.2.2 Fine structure and electron and hole exchange energy

The neutral exciton fine-structure splitting is a result of the anisotropic electron-hole

exchange interaction which originates from the asymmetry of a quantum dot. The

Hamiltonian [22], [23], [24] for the electron-hole exchange interaction can be written

as an effective coupling of the electron spin S and hole angular momentum J :

Hexc = −
∑

i=x,y,z

(
aiJ

h
i S

e
i + bi(Jh

i )3Se
i

)
, (2.6)

where ai and bi are coupling constants, which are anisotropic due to the quantum

dot asymmetry. The Hamiltonian in eqn 2.6 may be written in the basis of the eight
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lowest energy states consisting of excitons formed from both the heavy hole (hh) and

light hole (lh) states [23]. The hh-lh splitting due to the high strain in a quantum dot,

and quantum confinement, is typically much larger than the electron-hole exchange

interaction energies. Therefore, the exchange interaction may be simplified to the

4× 4 matrix with the basis states |⇑↓〉, |⇓↑〉, |⇑↑〉, |⇓↓〉 [23]

Hexc = ~
2



δ0 δ1 0 0

δ1 δ0 0 0

0 0 −δ0 δ2

0 0 δ2 −δ0,


(2.7)

where, δ0 = 3
4az+ 27

16bz, δ1 = −3
8 (bx−by) and δ2 = −3

8 (bx+by) are the exchange energy

splittings. For an asymmetric dot bx 6= by and therefore δ1 6= 0. Typical values for

the exchange energy splittings for In(GaAs) quantum dots are δ0 = (100−500) µeV,

δ2 ∼ 0 [25], [23], and |δ1| = (10 − 100) µeV [26]. The coupling between the bright

states |⇓↑〉 and |⇑↓〉 by the off-diagonal terms δ1 means that the energy eigenstates of

the bright excitons are transformed from circular basis to the linear superpositions:

X0
X = 1√

2
(|⇓↑〉+ |⇑↓〉) (2.8)

X0
Y = 1√

2
(|⇓↑〉 − |⇑↓〉) , (2.9)

where the X and Y states are orientated along the crystal axes [110] and [1̄10], and

are separated by the fine-structure splitting energy. ~δ1 ≡ ~δfs.

The fine-structure splitting of the neutral exciton is often undesirable in QIP

schemes. It makes it harder to conserve the transfer of information between a photon

and a quantum dot exciton spin state. For example, it is difficult to produce photon

entanglement from the bi-exciton radiative cascade using dots with non-zero fine

structure. In chapters 4 and 5 we will see how the neutral-exciton fine structure

causes a reduction in the maximum obtainable fidelity of the preparation of a hole

spin state. However, there are schemes to reduce the fine structure splitting δ1. For
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Figure 2.3: The axes conventions for (a) Faraday and (b) Voigt geometry magnetic
fields.

example, many groups have recently shown schemes for tuning the fine structure to

zero including techniques such as thermal annealing [27], [28], strain tuning [29] and

growth on (111)B substrates [30], [31].

2.2.3 Application of external fields

The application of external magnetic and electric fields was used throughout the

experiments described in this thesis. This section is a brief introduction to explain

the various geometries of magnetic fields, and how the fields affect the energy levels

within a quantum dot.

Magnetic fields

The application of an external magnetic field can be used to lift the degeneracy of

quantum-dot spin states. The magnetic field causes a Zeeman splitting between the
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spin states, ∆EZ = gαµBB, which is determined by the g-factor gα. Experiments

in which the magnetic field is applied along the growth direction (z) are known

as Faraday geometry experiments, whereas magnetic fields applied in-plane (x or

y direction) are termed Voigt geometry magnetic fields. Figure 2.3 illustrates the

sample in the Faraday and Voigt geometries, along with the definition of the x−y−z

directions.

In chapter 4 we will see how the application of a Faraday geometry magnetic

fields transforms the neutral exciton energy eigenstates from linear to circular

polarisation, which improves the fidelity of the preparation of a hole spin state. In

chapters 5 and 6 we will see how the application of a Voigt geometry magnetic field

results in the mixing of the bright and dark neutral exciton states [23] as already

discussed. Furthermore, the Voigt geometry magnetic field is an integral part of

coherent control experiments since it provides an axis of rotation about which a

Zeeman-split spin state precesses. This will be discussed in detail in chapter 5.

Electric fields

The energy of quantum dot excitons may also be controlled by the application of

an external electric field, via the quantum confined Stark effect. The electric field

causes a displacement of the electron and hole wavefunctions. The energy shift is

given by ∆ES = µF + αF 2, where µ is the exciton electric-dipole moment and α

is the polarisability in the direction of the electric field F . In order to apply a

well-defined electric field in the z direction, quantum dots are often embedded in

diode structures which can be used to deterministically charge [32], [33], [34] the dots

and Stark shift the states [35]. Electric fields can also be applied in the quantum

dot plane in order to tune the neutral exciton fine structure [36], [37].

2.2.4 Charged excitons

A neutral exciton is a bound electron-hole pair. A singly-charged exciton or trion

consists of three bound charge carriers: two electrons and one hole for a negative
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trion or two holes and one electron for a positive trion. Trions can be photogenerated

when a photon excites an additional electron hole pair in a quantum dot that already

contains a charge. The resident charge in the dot can be introduced via dopants

near to the quantum dot layer during growth [38], by controllable charge tuning

when the dot is embedded in a diode structure [32], or by the ionisation of a neutral

exciton [8] [39], [40], [41].

2.3 Coherence of carrier spins in quantum dots

One of the criteria for the physical implementation of QIP is “Long relevant

decoherence times, much longer than the gate operation time” [3]. Decoherence

is caused by the interaction of a quantum system with its environment. In this

section the decoherence processes for electron and hole spins confined in quantum

dots are considered.

2.3.1 General concepts

The coherence time of a two-level system is characterised by two timescales. The

first is the relaxation of the state population T1 which is known as longitudinal

decay. The second is the decay of the phase factors in the wavefunction T ∗2 , termed

transverse decay. The overall coherence time of a quantum system is given by:

1
T2

= 1
2T1

+ 1
T ∗2
, (2.10)

where T ∗2 is the pure-dephasing caused by interactions which de-cohere the

wavefunction without affecting the state population.

It is instructive at this point to make use of the geometric representation of

the two-level system, namely the Bloch sphere. The wavefunction of the state:

|ψ〉 = c0 |0〉+ c1 |1〉 can be represented by a unit vector which points to the surface

of the Bloch sphere. This is illustrated by the inset in Fig. 2.4, where the co-ordinate

system is also defined. An arbitrary state can be written in terms of the co-efficients
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of the wavefunction x = 2< 〈c0c1〉, y = 2= 〈c0c1〉 z = |c1|2 − |c0|2. Here z is the

population inversion of the two-level system. The coefficients in the wavefunction,

c0 and c1, can be defined by two angles, θ and φ, which give the amplitude and phase

of the Bloch vector. In terms of these variables the coefficients may be written as

c0 = sin(θ/2) and c1 = eiφ cos(θ/2). This fully describes the two-level quantum

superposition state, and this representation is often useful for describing coherent

control of the state-vector and decoherence processes.

Figure 2.4 (a) illustrates the effect of decoherence due to pure dephasing

processes T ∗2 . The Bloch vector is scattered from the surface of the Bloch sphere

towards the center, without changing z.

Figure 2.4 (b) illustrates the effect of decoherence processes due to state

relaxation (T1). Since these effect the relative state populations, they alter z as

well. This is why state relaxation T1 is known as longitudinal decay, dephasing T ∗2
is know as transverse decay, and the overall coherence time T2 in eqn 2.10, is given

by a combination of both.

2.3.2 Decoherence of carrier spins in quantum dots

There are two possible sources of spin decoherence for electrons and holes confined

to InGaAs/GaAs quantum dots. The first is the coupling of the spin to its motion

via the spin-orbit interaction. This leads to spin relaxation (T1) through spin flips

mediated by phonons. We will see below that this is highly suppressed in quantum

dots due to quantum confinement. The second is the coupling to the ensemble of

randomly fluctuating nuclear spins within the quantum dot. This is the dominant

source of decoherence and is mediated by the hyperfine interaction. These effects

are discussed in the following.

2.3.3 Spin relaxation T1 via the spin orbit interaction

An electron moving in the presence of an electric field Ê experiences a Lorentz

effective magnetic field B̂eff ∝ Ê× p̂, where p̂ is the momentum of the electron. In a
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Figure 2.4: Bloch sphere representation of decoherence processes. (a) Transverse (T ∗2 )
and (b) longitudinal T1 relaxation. T ∗2 processes conserve the Bloch vector length z, but T1
do not. (c) inset: Bloch sphere angles θ and φ which determine the amplitude and phase
of the Bloch vector.

solid, the electric field originates from the charged atoms in the crystal lattice, and in

the case of quantum confined systems, it is asymmetric. The spin-orbit interaction

may be characterised by a spin-orbit length, which is a measure of the dimension in

which the electron’s spin is rotated by an angle π. The spin orbit length in GaAs

is ∼ (1 − 10) µm [42], which is much larger than the quantum dot. Therefore, the

quantum confinement suppresses the spin-orbit interaction. This has been confirmed

by measurements of long electron spin relaxation times. For example T e
1 ∼ tens ms

has been reported in reference [8]. The hole spin relaxation time was predicted

to be smaller due to finite heavy hole-light hole mixing [42]. However, hole spins

in quantum dots also exhibit long spin relaxation times, due to the large energy

splitting between light and heavy holes. This was confirmed by measurements of

T h
1 ∼ hundreds µs in reference [39] and T h

1 ∼ 1 ms in ref. [43].

19



Chapter 2

2.3.4 Spin dephasing T ∗2 via the hyperfine interaction

The confinement of an electron spin in a quantum dot suppresses the spin-orbit

interaction and leads to long spin relaxation times. However, this is offset by

dephasing of the electron spin state caused by the interaction with the ensemble

of nuclear spins. The hyperfine interaction can be thought as an effective magnetic

field which acts on the spin state. This effective magnetic field is known as the

Overhauser field and fluctuates randomly in time due to the random orientation

of the nuclear spins. We now consider the decoherence of an electron spin due to

the randomly fluctuating Overhauser field. The Hamiltonian for an electron spin S

interacting with a nuclear spin Ik may be written as [13]:

Hhf ∼ δ(rk)S.I + (nk.S)(nk.I − S.I)
r3
k(1 + d/rk)

+ Lk.Ik, (2.11)

where rk is the electron position operator relative to the nucleus k, nk = rk/rk.S, d

is the size of the nucleus and Lk is the orbital angular momentum operator. The first

term in eqn 2.11 is known as the contact hyperfine interaction. It depends on the

probability density of the electron wavefunction at the nuclear site. The second term

is known as the dipole-dipole interaction. It describes the interaction of the electrons

spin magnetic moment with the nuclear spin magnetic moment. It is a ‘long-range’

interaction, and is a function of the relative separation of the spins. The third term

describes the spin-orbit interaction which couples the electron’s orbital motion to the

nuclear spin. Electrons have s-type orbitals. Therefore the spin-orbit term is zero

for the case of electrons. The randomly fluctuating Overhauser field results in the

randomisation of the phase factors in the wavefunction and hence spin decoherence

The hyperfine interaction also leads to spin relaxation due to ‘flip-flop’

processes, where the spin of an electron is flipped, via exchange with a nuclear spin.

This spin flip-flop rate is given by ws ∼ |Ahf |2 /∆E2
e , where Ahf is the hyperfine

coupling constant for the electron or hole, and ∆Ee is the Zeeman splitting between

the spin states [44]. The flip-flop processes pump nuclear spin polarisation and
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have been shown to lead to interesting effects such as dynamic nuclear polarisation

[45] [44] [46], [47], [48], [49], nuclear spin feedback [50], [51], the ability to control

nuclear spins states coherently using optically detected nuclear magnetic resonance

[52], and the direct measurements of hyperfine constants [53], [54], [15]. The electron

spin flip-flop processes can be suppressed by increasing ∆Ee by the application of

a magnetic field [9] and is weaker for heavy-holes due to conservation of angular

momentum.

The most significant term for electrons in eqn 2.11 is the contact hyperfine

interaction. The electron has an s-type orbital wavefunction and therefore a high

probability density at the nuclear site. This interaction leads to electron spin

dephasing on a timescale of a few ns as measured by several groups [38], [11], [12],

[55], [56]. The fast electron spin dephasing thus limits its usefulness as a qubit.

However, the coherence can be recovered, by use of spin echo techniques, which

re-focus the electron spin [57], [58] to recover the ∼ µs coherence time.

A hole has a p-type orbital wavefunction. Therefore the contact term is zero

since |ψ(0)|2 = 0. This has stimulated interest in the use of hole spins as potential

qubits, encouraged by measurements of µs coherence times in coherent population

trapping experiments [16]. Theoretical predictions suggest that the dipole-dipole

interaction of the hole spin simplifies to an Ising form: Hhf = ∑
k A

h
kszI

z
k [13]. Here

Ahk is the coupling constant for holes, sz is the hole pseudospin 1/2 operator and Izk is

the component of a nuclear spin k in the z-direction. The Ising form means that the

effective magnetic field only acts in the z-direction. Calculations suggest that hole

hyperfine coupling constant Ah should be approximately 10% of that of the electron

[14]. This has been confirmed experimentally [54], [15]. The anisotropic nature of

the hole hyperfine interaction may lead to a reduced decoherence in the presence of

an in-plane magnetic field [13], but measurments of Ah in this experimental geometry

are not currently available.

Recently measurement of T ∗2 = 2.3 ns and T ∗2 = 20 ns have been reported

for holes in an in-plane magnetic field in references [38] and [59] respectively. In
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both cases the authors attribute the dephasing to in-plane hole g-factors that are

sensitive to charge fluctuations in their p-type devices [60]. In reference [38], spin

echo techniques are used to recover ∼ µs coherence time for the hole. A detailed

discussion of this can be found in chapter 4, where a measurement of T ∗2 ∼ 15 ns is

reported.

2.4 Coherent optical spectroscopy of two level

systems

A two-level system may be controlled coherently with an optical field, provided that

the interaction timescale is faster than the coherence time T2. Control over the

complex amplitude and phase of the wavefunction is often achieved by using an

intense laser field with well defined and uniform phase. In this section the Rabi

oscillation of two-level system is introduced, the schemes to initialise spin qubits

are reviewed, and the state of the art in experiments to implement spin control are

discussed.

2.4.1 Rabi oscillations of excitonic qubits

A two-level system interacting with a coherent laser field will undergo Rabi

oscillations, if the interaction time is less than the coherence time. Consider the

two-level system in Fig. 2.5. The crystal ground state |0〉 has energy ~ω0. The

excited state |1〉 is the bound electron-hole pair or exciton of energy ~ω1. The

optical transition therefore has energy ~ω01 = ~ω1 − ~ω0. A laser with energy ~ωl

and detuning ~δl = ~ωl−~ω01 interacts with the system. By solving the Schrödinger

equation it can be shown that the state populations oscillate at the effective Rabi

frequency Ωeff =
√

Ω2
R + δ2

l [6]

|c1|2 = Ω2
R

Ω2
eff

sin2
(

Ωefft

2

)
, (2.12)
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Figure 2.5: Two-level system interacting with a laser field. |0〉 is the crystal ground
state of the quantum dot. The excited state |1〉 is the neutral exciton. An optical transition
of energy ~ω01 between the states may be driven by a laser with an energy ~ωl and detuning
δl.

where c1 is the complex amplitude state |1〉 and the Rabi frequency on resonance is

ΩR. It is defined as

ΩR =
∣∣∣∣∣ µ̄01.Ē0

~

∣∣∣∣∣ , (2.13)

where µ̄01 is the dipole moment of the transition and Ē0 is the electric field

strength of the laser. Pulsed excitation is often used to drive Rabi oscillations so

that time-resolved spectroscopy can be performed. A convenient quantity used to

describe pulsed excitation is the pulse area Θ, which is defined by the time integral

of the Rabi-frequency:

Θ =
∫ t=+∞

t=−∞
ΩR(t)dt, (2.14)

where ΩR(t) is the time-dependent Rabi frequency, which, in the case of a Gaussian

laser pulse, has a Gaussian envelope. The state of the two-level system may be
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considered diagrammatically using the Bloch-sphere representation (see for example

Fig. 2.4. The laser pulse rotates the Bloch vector by an angle determined by the

pulse area. For this reason the Rabi oscillation is often referred to as a Rabi-rotation

of the state of the system, described by the matrix:

Û(Θ) =

 cos(Θ/2) −i sin(Θ/2)

−i sin(Θ/2) cos(Θ/2).

 (2.15)

The wavefunction can therefore be controlled by varying the pulse area. For example,

a resonant laser pulse with pulse area Θ = π/2 acting on the state |0〉 results in

the superposition state 1√
2 (|0〉+ i |1〉). This is equivalent to a rotation of the Bloch

vector by an angle φ = π/2. The state of the two-level system can be fully controlled

by using sequences of laser pulses to observe effects such as Ramsey interference,

and full control over excitonic qubits has been achieved [61], [4], [5] [62].

The interaction of the excitonic qubit with its environment leads to decoherence

which manifests itself in the form of intensity damping of the Rabi-rotations. The

damping of neutral exciton Rabi-rotations is caused by the interaction with a bath

of longitudinal acoustic phonons [63],[64].

2.5 Coherent control of a quantum dot spin

Excitonic qubits have coherence times limited by radiative recombination, which,

at best, is on the order of a ns. An electron or hole spin trapped in a quantum

dot has the potential for a much longer coherence time as discussed in section 2.3.

In this section techniques for initialising, controlling and reading out a single spin

in a quantum dot are discussed. Furthermore a simple introduction to the various

schemes used to control a single spin coherently will be given.
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Figure 2.6: (a) Energy level diagram electron spin states up |↑〉 and down |↓〉, and
charged exciton states |↑↓⇑〉 and |↓↑⇓〉 at B = 0 T (b) equivalent diagram with an applied
magnetic field Bz. A pump laser resonant with the |↓〉 ←→ − |↓↑⇓〉 transition excites the
system into the |↓↑⇓〉 state with a rate Γ. γ is the spontaneous Raman scattering rate and
ξ↑↓ is the nuclear spin ‘flip-flop’ rate.

2.5.1 Spin initialisation techniques

Optical pumping

One technique for preparing a spin state in a quantum dot is optical shelving or

optical pumping using a CW laser. First the quantum dot is loaded with a single

charge carrier. This is usually achieved by introducing dopants near to the quantum

dot layer during growth [38], or by embedding the dots in a diode and tuning the

Fermi-level of the contact relative to the energy level of the quantum dot [32], [60].

The optical pumping is achieved by exciting a transition to the charged exciton

state, followed by relaxation via spontaneous emission. This will be explained by

following the energy level diagram in Fig. 2.6

Fig 2.6(a) is an energy level diagram consisting of the electron spin levels and
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the charged exciton levels which form the ground and excited states respectively.

Figure 2.6(a) shows the states without an applied magnetic field. The transitions

are circularly polarised and a σ− CW pump laser is resonant with the |↓〉 ←→ |↓↑⇓〉

transition. This excites population of the |↓↑⇓〉 state. The finite heavy-hole

light-hole mixing results in a small but finite probability that the |↓↑⇓〉 state decays

by emission of a σ+ photon to the |↑〉 state via spontaneous Raman scattering

[9]. The degeneracy of the electron spin states results in fast spin relaxation

between the states |↑〉 and |↓〉, where ξ↑↓ is the nuclear spin ‘flip-flop’ rate and γ

is the spontaneous Raman scattering rate. Therefore, without an applied magnetic

field, spin pumping will not occur. However, when a magnetic field is applied in

the Faraday configuration, the electron and nuclear Zeeman energy splittings are

incommensurate i.e. the spin flip rate ξ(B) decreases with increasing magnetic field.

This is illustrated in Fig. 2.6(b). After several cycles of excitation and emission

and under the condition Γ� γ � ξ↑↓(B), the electron is shelved into the |↑〉 state.

Atatüre et al. first demonstrated high fidelity (F � 99.9%) optical shelving of an

electron spin in reference [9] by the application of a Faraday-geometry magnetic

field. Furthermore Gerardot et al. [43] showed that the spin pumping technique

works for hole spins at zero magnetic field. This is due to the fact that the nuclear

spin ‘flip-flop’ rate ξ is much smaller for holes than for electrons. Using this fact,

Gerardot et al. demonstrated high fidelity hole-spin preparation F > 99.9%

The drawback to the optical pumping technique is that it is limited by the rate

γ. γ is inherently small because the ‘cross’ transitions in Fig. 2.6 are only weakly

allowed . This means that the time to initialise the electron spin is several µs. This

problem was partially addressed in refs [65] [66]. There, Emary et al. and Xu et al.

showed that the application of a Voigt-geometry magnetic field allows for faster spin

intialisation because the ‘cross’ transitions are allowed in this configuration. This

results in spin preparation times closer to the ∼ 1ns radiative recombination time.

In most optical-pumping schemes to initialise spins, the spin readout is

performed by using the pump laser to drive a transition between the intialised spin
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Figure 2.7: Energy level diagram to show how coherent population trapping works. The
diagram shows the electron spins eigenstates |x〉 and |x̄〉 and the charged exciton eigenstates
|T 〉 and

∣∣∣T̄〉 in a Voigt geometry magnetic field. Two laser fields, namely the driving laser
and the probe laser, with respective Rabi-frequencies Ωd and Ωp, drive the system into
a ‘dark’ state. This makes the transition ‘invisible’ to the probe under the two-photon
resonance condition.

and a trion. This has a drawback in that it is a destructive measurement of the

spin state. One way to circumvent this is to use a quantum dot molecule (a pair of

tunnel coupled quantum dots). This was the approach adapted by Kim et al. [67].

There the authors prepare the spin in one of the quantum dots and readout the spin

via a transition in the other. This has been extended by the work of Vamivakas et

al. who demonstrate the ability to non-destructively measure the spin state of an

electron in a tunnel-coupled quantum dot in real time [68].

Coherent population trapping

A potential drawback to spin initialisation by optical pumping is that, in general,

the spin can only be prepared in an eigenstate of the system, as opposed to any
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arbitrary state. This potential limitation of the optical pumping technique was

overcome in the experiments of Xu et al. [69]. These experiments make use of

the phenomenon of coherent population trapping (CPT) which is related to the

physics of electromagnetically-induced transparency [70]. Figure 2.7 is an energy

level diagram to help show how CPT is implemented. The figure shows the electron

spin states |x〉 and |x̄〉 and charged exciton states |T 〉 and
∣∣∣T̄〉 of a quantum

dot in a Voigt-geometry field. The Zeeman energy splitting allows the four-level

system to be reduced to a three-level lambda system. This is indicated by the

dashed lines in Fig. 2.7. A driving laser field with Rabi-frequency Ωd is resonant

with the |x̄〉 ←→
∣∣∣T̄〉 transition. A probe laser field with Rabi-frequency Ωp is

scanned through the |x〉 ←→ − |T 〉 transition. When the probe is on resonance, the

two-photon absorption condition is met, i.e. the frequency difference of the two lasers

is equal to the electron Zeeman energy splitting. Under this condition a ‘dark-state’

with no trion component is formed. The dark-state is a coherent superposition of

the electron spin states: ψ = (Ωd |x〉 − Ωp |x̄〉 /)
√

Ω2
d + Ω2

p [69]. Therefore by the

variation of the relative intensities of the driving and probe fields, any arbitrary

coherent superposition of the eigenstates of the electron spin may be prepared.

CPT has also been demonstrated for a hole spin by Brunner et al., as opposed

to an electron spin [16]. In these experiments the absorption of the probe laser

shows high visibility dips in the two-photon resonance condition. The visibility of

the dips is a measure of the hole spin coherence. The authors report coherence times

T2 > 100 ns with 90% confidence. In these experiments it is likely that the dark

state of the hole lies along the magnetic field direction. In this case the hole spin is

less sensitive to the hyperfine interaction due to its anisotropic nature. These long

coherence times demonstrate the hole spins potential as a qubit.

Ionisation of a spin-polarised electron-hole pair

Another approach to initialise a single spin in a quantum dot is to use the fast

dissociation of a photo-generated, spin-polarised electron-hole pair. This approach
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was first used by Kroutvar et al. in their experiments that demonstrate electron spin

memory in an ensemble of quantum dots [8]. The quantum dots were embedded in

a Schottky diode structure. Kroutvar et al. used circular polarisation to excite

spin-polarised electron-hole pairs. The large electric field ensured that the holes (in

this case) tunneled from the dots much faster than the radiative recombination time

to leave spin-polarised electrons. The relaxation time of the electron spins was then

probed by injecting holes into the device in forward bias. Similar techniques were

employed by Heiss et al. in experiments to measure the hole spin relaxation time

[39], [71]. The exciton ionisation technique has also been used to initialise electron

spins in single quantum dots by the work of Young et al. [40], and hole spins in

single quantum dots by the experiments of Ramsay et al. [41], [5] and Heiss et al.

[72]. The exciton ionisation technique for initialising a single hole spin in a quantum

dot was used throughout the experiments described in this thesis in chapters 4, 5

and 6.

2.5.2 Spin readout techniques

Before discussing the techniques used to control a single spin coherently, some of the

experimental techniques for spin readout or measurement will be briefly introduced.

In general a spin is read out by making use of the selection rules of the spin to charge

exciton transitions. See, for example, Fig. 2.8. This is used in combination with

the Zeeman energy splittings of the states. Many groups use all-optical detection

techniques to read out a spin state. These will be briefly discussed and compared

to the electrical read out detection used in the experiments described in chapters 4,

5 and 6.

Resonance fluorescence

Resonance fluorescence refers to the measurement of photoluminescence from a

resonantly-excited two-level system. The technique is inherently difficult because

the excitation photons have the same energy as the emitted photons. Therefore
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techniques are required which isolate the emitted photons from the scattered laser

light. One way to circumvent this is to use cross polarised excitation and detection

[11]. Another technique, is the use of orthogonal excitation and detection paths

[73], [74]. In refs [73], [74], the quantum dots were located in an optical cavity.

The excitation laser path was in a direction parallel to the quantum dot plane, and

the cavity preferentially emitted normal to the plane. For co-linear excitation and

collection paths, it is possible to use a combination of spectral filtering, polarisation

optics and lock-in detection of time-gated single-photon-counting modules (SPC),

in order to isolate the quantum dot emission. These are the techniques employed by

Press et al. in their pioneering work that first demonstrated full coherent control over

a single electron spin state in a quantum dot [11]. More recently, similar techniques

have been employed in experiments with hole spins [38]. In both sets of experiments,

the spin readout used the same laser that optically pumped the spin state. The idea

is that if the spin state has not been initialised in the correct state, then a click

is recorded on the SPC which corresponds to relaxation from the charged exciton

state.

Differential transmission/absorption

In differential transmission, a weak probe laser, with selected polarisation, is used to

excite a spin to trion transition resonantly. A small change in the transmitted laser

intensity is recorded on resonance as an absorption spectrum [9]. The relative change

in transmission is typically small, on the order ∼ 10−3, which results in a small

signal to background ratio. However, techniques such as Stark-shift-modulation

spectroscopy can be used with lock-in detection to improve the signal to background

ratio [59]. In experiments where the substrate is opaque at the relevant wavelength, a

similar technique may be used by detecting the reflected light rather the transmitted

light [16].
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Kerr and Faraday rotation

Kerr and Faraday rotation measurments use the rotation of the linear polarisation of

a probe laser by a small angle as a result of the interaction with the magnetic dipole

of a spin-polarised electron. The rotation of the probe laser’s linear polarisation is

measured in transmission and reflection geometries for Faraday and Kerr rotation

measurements respectively. The effect arises from the different phase velocities of

the σ± components of the probe beam. Kerr rotation spectroscopy can be used as

non-destructive measurement of a spin state. This has been shown in ref [75], where

the probe laser is non-resonant. Kerr rotation spectroscopy has also been used to

observe the coherent precession of a single electron spin [55], and to demonstrate

optical control of a single electron spin [56]. The small change (∼ mrad) in linear

polarisation angles means that modulation and lock-in detection is required. This

is often done in the form of a balanced bridge circuit, triggered by the modulation

of the probe beam [24].

Electrical readout

Strong electric fields can be applied by embedding a quantum dot in a diode

structure. In the regime where the carrier tunneling rates are much faster than

the radiative recombination rates, electrical detection can be used to infer the state

of the quantum dot. Resonant excitation of neutral and charged exciton species in

the dot allows for a change in photocurrent to be measured [76]. In a charged dot,

the absorption of the photons is conditional on the spin state of the resident charge.

This is a result of the Pauli exclusion principle. Such effects allow for a direct

mapping of the charge state to the spin [8], [39], [41]. Photocurrent detection is

particularly attractive since it enables measurements with high signal to noise ratios

in a relatively short space of time. Many groups have therefore used photocurrent

detection for the coherent spectroscopy of quantum dots [61], [4], particularly for

the coherent control of exciton spin states [62], [77], [78], [79].
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Comparison of optical detection with photocurrent detection

Photocurrent detection was used throughout all the measurements described in this

thesis and a comparison between this technique and others is now given. The

potential disadvantages of photocurrent detection are the following:

• The large electric field applied to the quantum dot leads to short lifetimes

for the carrier spin states. This is because the carriers must tunnel from the

dot in order to generate a photocurrent. However, techniques such as voltage

modulation [62], [80] may be used to improve the balance between achieving

high detection efficiency and long lifetime.

• The diode devices required to measure the photocurrent signal of one electron

per pulse need to be of high electrical quality.

• Photocurrent detection requires a large population of the trion states for spin

readout and therefore constitutes a destructive measurement of the spin.

• A further drawback to electrical detection is the photocurrent background,

attributed to absorption of scattered laser light by neighbouring quantum

dots [41], [61]. The background is proportional to the incident laser power

and therefore presents a possible challenge for high pulse area measurements

in multiple-pulse, coherent-control experiments.

The potential advantages of photocurrent detection are the following:

• It offers the advantage of very high detection efficiency, since all the carriers

that tunnel from the dot contribute to the photocurrent signal. For all-optical

detection, most of the photoluminescence signal is lost at the semiconductor-air

interface. Although the photon extraction efficiency can be improved by using

solid immersion lenses (SIL) [81] and/or optical cavities, it is still limited by

the efficiency of single-photon detectors.

• Photocurrent detection has the advantage of high-speed data collection.

Spectral measurments over ∼ meV with ∼ 100 data points can be taken in
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the space of minutes. Optical detection, on the other hand, often requires

long integration times to achieve high enough signal to noise, even if the signal

extraction is improved by making use of solid immersion lenses, optical cavities

or sensitive detectors.

• The signal-to-noise ratio can be extremely high in photocurrent detection

schemes, provided that the electrical device is of high enough quality. For

example it is possible to achieve ∼ 10 pA signal with a ∼ 100 fA noise level.

• Photocurrent detection has the added simplicity that no collection optics are

required, nor high-specification equipment such as single photon counting

modules or spectrometers.

• Electrical detection has the prospect of integration with photonic structures

within a functioning on-chip device with the possibility of electrical control

[62].

2.5.3 Spin control techniques

One challenge posed by the use of spin states as qubits, as opposed to exciton

states, is that resonant control of the spin states, using fast optical laser pulses, is

not possible, because of the small energy splitting between the spin states. Directly

controlling the spin state resonantly is only possible using microwave excitation,

through electron spin resonance techniques, which are inherently slow. In this

section, the methods used to overcome this challenge are introduced. The proposals

and experimental reports will be discussed in terms of two approaches to optical

rotations of a spin, namely the geometric phase shift, and the AC-Stark shift via

stimulated Raman transitions. These concepts are combined with a review of the

state of the art in the field.

Most theoretical proposals and experimental reports for the optical control of

electron or hole spins make use of Voigt geometry magnetic fields. The magnetic

field is used for rotations of a spin about the x axis and an optical pulse is used for
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Figure 2.8: Energy level diagram of negative (a) and positive (b) trions in a Voigt
geometry magnetic field. The spin energy eigenstates of (a) the electron |e〉 and |ē〉 and (b)
the hole |h〉 and

∣∣∣h̄〉 are aligned along the magnetic field (x) direction. All four transitions
from the spin eigenstates to the charged trion states |T±〉 are allowed. The transitions
have linearly polarised selection rules labelled with the polarisation X or Y .

rotations about the z-axis. This will be explained shortly.

Figure 2.8 is an energy level digram of a charged quantum dot system in the

Voigt geometry. Figure 2.8 (a) applies to a negatively-charged quantum dot. The

spin eigenstates of the electron |e〉 and |ē〉 are aligned along the magnetic field (x)

direction. All four optical transitions to the charged exciton states |T−〉 and
∣∣∣T̄−〉

are allowed and have linear polarisations labelled X and Y . The electron spin states

are split by the electron Zeeman energy splitting ∆Ee,x = ge,xµBBx. The charged

exciton states are split by the hole Zeeman energy splitting ∆Eh,x = gh,xµBBx. Here

ge,x and gh,x are the in-plane electron and hole g-factors respectively. Figure 2.8(b)

is the positively-charged quantum dot energy level diagram which is analogous to

Fig. 2.8(a).
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Figure 2.9: The energy eigenstates of the hole spin |h〉 and
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split by the Zeeman energy splitting ~ωh. A hole spin up |⇑〉 is a superposition of these
states, and if prepared (solid blue arrow), will precess about the magnetic field by an angle
θ = ωht. Inset: sample geometry

Spin precession about an applied magnetic field

Having considered the energy-level diagram for the system, we move to consider

how coherent spin control it is implemented. First we consider spin precession

about an applied magnetic field. It is instructive at this point to make use of the

diagrammatic representation of the spin state based the Bloch sphere. Figure 2.9 is

a Bloch sphere to illustrate the rotation of a hole spin due to its precession about

the Voigt geometry magnetic field. For this discussion the same arguments apply to

the electron spin. As previously discussed, the energy eigenstates of the hole spin lie

along the magnetic field direction. If a hole spin is initialised in an energy eigenstate,

the state remains stationary and no precession will be observed. If however, a

coherent superposition of the eigenstates is prepared, namely |⇑〉 = 1/
√

2(|h〉+
∣∣∣h̄〉)
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or |⇓〉 = 1/
√

2(|h〉−
∣∣∣h̄〉), the spin states accumulate a relative phase and the Bloch

vector will precess about the magnetic field at a frequency ωh = gh,xµBBx/~. The

magnetic field therefore rotates the Bloch vector. The precession of electron spins

in both quantum dot ensembles [50], [82], [83], [84] and single quantum dots has

been measured by several groups [11], [55], [56]. More recently, the precession of a

single hole spin has been reported [38], [85] and this is the subject of chapter 5 of

this thesis.

Spin rotations about the optical axis

Complete control of a spin state over the full surface of the Bloch sphere requires

rotation about two orthogonal axis. One of these axes of rotation is provided by

the spin precession about an applied magnetic field in the x-direction. Rotations

about the optical axis (z) have been proposed [86], [87], [88] and implemented [55],

[56], [11], [89], [12], [38], [59] by making use of the non-linear process of stimulated

Raman scattering. Optical control via stimulated Raman scattering will be described

shortly. Furthermore optical control will also be discussed in terms of the geometric

phase and AC-Stark shift interpretations. Stimulated Raman scattering, geometric

phase and AC Stark shifts are essentially three different interpretations of the same

physics in regimes of different pulse intensity and detuning. These will be explained

in turn below. The results described in chapter 6 of this thesis make use the

geometric phase shift.

Stimulated Raman scattering

An optical pulse, named a control pulse, with an energy width much greater than the

Zeeman splitting between the electron or hole spin states is used for spin rotations.

In general the pulse is detuned from the trion transition to avoid dephasing as a

result of real population of the trion state. Consider the charged dot in the energy

eigenstates basis as shown in Fig 2.8(a). Each trion |T−〉 and
∣∣∣T̄−〉 forms a Λ type

system. A broadband circularly polarised control pulse simultaneously couples all
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Figure 2.10: Energy level diagram of the charged exciton |X−〉 in the circular basis to
show the geometric phase shift. A σ− control pulse, with FWHM � ~ωe,x, ~ωh,x, drives
a 2π Rabi-rotation between the electron spin state ↓ and charged exciton state

four linearly polarised optical transitions. No direct optical transitions between the

spin states |e〉 and |ē〉 are allowed. However, the spin states are coupled via the trion

transitions, and since the phase between the x and y components of the σ± control

pulse is well defined, the control pulse drives spin Rabi oscillations between the |e〉

and |ē〉 states. This description is equivalent to stimulated Raman transition.

Geometric phase shift

The geometric phase shift of optical spin rotation applies when a control pulse is

close to or resonant with the trion transition. In the proposals of Economou et al.,

a σ± control pulse with pulse area Θ = 2π drives a Rabi rotation between one of

the electron spin states |↑〉 or |↓〉 and one of the charged exciton states [87]. The

Rabi rotation between the spin state and charged exciton state is selected by the

polarisation of the control pulse, as shown in Fig. 2.10. In this Figure, the spin and

37



Chapter 2

trion states are viewed in the circular basis, which is possible because the control

pulse is fast compared to the Zeeman energy couplings between the spin states and

the trion states. A control pulse, with pulse area 2π, imparts a phase shift on the

selected spin state, relative to the unselected spin state. The phase shift depends

on the detuning ∆ and the Rabi frequency of the laser pulse Ω(t), and is given by

eqn 2.16 [88]:

∆φ = 1
2

∫ ∞
−∞

dτ
(
|∆| −

√
∆2 + Ω(t)2

)
, (2.16)

where Ω(t) is the time dependent Rabi-frequency of the control pulse.

Consider the effect of the laser pulse, on a hole spin superposition state. Before

the arrival of the pulse at time tC, the wavefunction of the hole spin state may be

expressed as:

|ψ(t < tC)〉 = h⇑ |⇑〉+ h⇓ |⇓〉 . (2.17)

Under resonant excitation and in the ideal case of weak trion dephasing, a

circularly-polarised laser pulse drives a Rabi-rotation between the selected hole spin

and trion states. The wavefunction of the hole state after the arrival of the pulse

may be expressed by making use of eqn 2.15:

|ψ(t > tC)〉 = h⇑ |⇑〉+ h⇓

[
cos(Θ

2 ) |⇓〉+ i sin(Θ
2 ) |↓⇑⇓〉

]
, (2.18)

where Θ is the pulse area. When Θ = 2π, the state of the dot is returned to the

hole spin subspace after having acquired a phase shift of π [87], [88]. Therefore the

control pulse transforms the wavefunction in eqn 2.17 to:

|ψ(t > tC)〉 = h⇑ |⇑〉 − h⇓ |⇓〉 , (2.19)

where we observe a change of sign in the superposition. This phase is equivalent to

a rotation of the Bloch vector by an angle which depends on the detuning of the

control pulse ∆. This was the approach that was used in the experiments described

in chapter 5 of this thesis. Geometric optical control has also been demonstrated
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for single electrons spins by the work of Kim et al. in reference [89].

AC Stark shift

The AC stark shift interpretation of spin rotation applies in the regime of large

detuning ∆ and high pulse intensity. For large detuning, the amount of trion

population is small. Therefore, the spin control is better explained in terms of

an AC Stark shift of the selected spin state, rather than a Rabi rotation. For the

duration of the laser pulse, one of the spin states eg |↑〉 is shifted in energy by

the electric field of the control pulse. The perturbed spin state is selected by the

polarisation of the control pulse, in a similar manner to that described Fig. 2.10.

The additional energy splitting between the spin states due to the AC Stark shift

can be thought of as an effective magnetic field in the direction of the optical axis.

The spin then ‘precesses’ about this effective magnetic field. By expanding eqn 2.16

for large detuning in terms of Ω(t)2/∆2 to first order, it can shown that the phase

shift induced by a control pulse of duration τ and intensity I, may be written as

[24]:

∆φ ∝ µ2I

2∆ τ, (2.20)

where µ is the dipole moment of the transition, and the substitution Ω = µE/~ has

been made. The description of the phase shift, in terms of an effective magnetic

field, induced by a high intensity laser field, with large detuning, is the picture

that Berezovsky et al. use in their experiments which demonstrated electron spin

rotations by angles of up to π [56].

2.5.4 State of the art: putting it all together

This section describes four key experimental reports on the field of coherent control

of single carrier spins in self assembled semiconductor quantum dots, that form

the main references for this thesis. In chronological order these are : the work of

Press et al., at Stanford University, entitled “Complete quantum control of a single

quantum dot spin using ultrafast optical pulses” [11]; the work of Danny Kim et
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al., at Naval Research Laboratory (NRL), Washington, entitled “Ultrafast optical

control of entanglement between two quantum-dot spins” [12]; the work of Kristiaan

De Greve et al., at Stanford entitled, “Ultrafast coherent control and suppressed

nuclear feedback of a single quantum dot hole qubit” [17] and finally the work of

A. Greilich et al., at NRL, entitled “Optical control of one and two hole spins in

interacting quantum dots” [18]. These four works, along with the results of chapters

5 and 6 in this thesis, represent the state of the art in the field at this moment in

time.

“Complete quantum control of a single quantum dot spin using ultrafast

optical pulses” [11]

David Press and co-workers were the first to demonstrate complete quantum control

of a single electron spin in a self-assembled quantum dot [11]. In this work, high

fidelity spin preparation, ultrafast coherent optical control and optical spin readout

were all combined in one experiment. The experiments were performed on a single

InGaAs quantum in a Voigt geometry magnetic field. The quantum dot contained

a single electron, probabilistically charged from an n-type Si doping layer located

20nm from the quantum dot layer. The energy level diagram for such a system is

shown in Fig. 2.8(a).

Spin initialization into an energy eigenstate of the electron spin was performed

by driving the lowest energy transition in Fig 2.8(a) with a narrow band CW laser.

The same laser was used for spin readout, which is advantageous because of its

simplicity. Spin Rabi oscillations were demonstrated by using a broadband optical

laser pulse with variable power, detuned from the trion transition to avoid state

population. This constitutes rotation about the optical axis via stimulated Raman

transitions.

Rotations about a second axis were provided by the coherent precession of the

electron spin about the magnetic field. This was demonstrated by using a sequence

of π/2 rotation pulses separated by a variable time delay: a Ramsey interference
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experiment. The spin was initially in an energy eigenstate of the system. The first

π/2 pulse rotated the spin to an axis perpendicular to the magnetic field direction,

where it began to precess. The second π/2 pulse then either rotated it back to the

original spin state, or into the opposite eigenstate, depending on the phase. By

varying both the phase and pulse area of the rotation pulses, the ability to control

the electron spin to any arbitrary position on the Bloch sphere was demonstrated.

These pioneering experiments were the first to show full quantum control of a single

electron spin by using ultrafast laser pulses.

“Ultrafast optical control of entanglement between two quantum-dot

spins” [12]

The experiments of Press et al. constitute the optical manipulation of a single

spin qubit. The next challenge was to address the scalability of the spin qubit.

This was addressed by the work or Danny Kim et al. with their coherent control

experiments in coupled quantum dots [12]. In the experiments of Danny Kim et

al. both single and 2-qubit gate phase gates were demonstrated by using optical

control of the lowest energy electron spin states in a tunnel-coupled quantum dot

molecule. A quantum dot molecule consists of a pair of vertically-stacked quantum

dots, separated by a thin (∼ 9 nm) tunnel barrier. The dots were embedded in a

Schottky diode structure so that they could be deterministically charged with one

electron per dot. Furthermore, the dots were deliberately grown to be a different size,

such that the optical transition energies in each dot could be isolated spectrally. The

tunnel barrier between the dots was carefully selected so that the exchange energy

splitting was large enough to perform 2-qubit operations with a narrow band laser

pulse, but small enough to perform single qubit operations with an ultrafast laser

pulse. This will be explained shortly.

In the absence of an applied magnetic field, the spin eigenstates of the

two-electron (2e) system consist of three degenerate triplet states: T0 = 1/
√

2(|↑↓〉+

|↓↑〉), T− = |↓↓〉 and T+ = |↑↑〉, and the spin singlet state S = 1/
√

2(|↑↓〉 − |↓↑〉),
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which are separated in energy by a bias-dependent exchange energy splitting

∆ee(Vbias). The states T0 and S couple to the same optically-active excited state

X2− and thus form a Λ system suitable for optical pumping. A circularly polarised

CW laser resonant with the triplet to X2− transition was used to shelve the spin

in the singlet state, which is an entangled state of the electron spin. This was an

interesting and novel effect in itself.

After demonstrating spin initialisation into an entangled state [67], Kim et al.

next showed the ability to control the entanglement by using a pair of single-qubit

gates. The single-qubit gates consisted of a pair of circularly-polarised broadband

laser pulses separated by a variable time delay. The bandwidth of the pulses was

chosen to be much greater than the exchange energy splitting but much smaller than

the energy separation of the excitons for each dot. This was so that the laser pulses

only acted on one electron in one of the dots. Each of the laser pulses rotated one of

the electron spins about the optical axis via a stimulated Raman transition. A pair of

π/2 pulses were used to measure the Ramsay interference. The first pulse rotated the

Bloch vector into a superposition of singlet and triplet states, and the second either

drove it back to the singlet or up to the triplet, dependent on the phase. Ramsey

fringes were observed, with a period determined by ∆ee. By varying the pulse area

and phase, Kim et al. demonstrated control over the entangled superposition state:

α |↑↓〉 + β |↓↑〉. Furthermore, the application of an in-plane magnetic field allowed

Raman transitions to the T+ and T− states, enabling complete control of the full 2e

system: α |↑↓〉+ β |↓↑〉+ χ |↑↑〉+ δ |↓↓〉

Two-qubit phase gates were also demonstrated by using a spectrally-narrow

pulse, with a bandwidth much smaller than ∆ee. In this situation, the laser pulse was

slow compared to the exchange dynamics. This laser pulse with pulse area Θ = 2π

was used to control the phase of the precession of the singlet-triplet superposition

state. By driving a 2π Rabi rotation between only the singlet state and the excited

state, the singlet state acquires a phase shift relative to the triplet state. This is

analogous to the geometric phase shift discussed previously in section 2.5.3. The
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results of Kim et al. constitute real progress in demonstrating the scalability of a

quantum dot system. However, a fast dephasing time T ∗2 < ns was measured, and

although attributed to electric field fluctuations, this indicated that the hole spin

might be advantageous.

“Ultrafast coherent control and suppressed nuclear feedback of a single

quantum dot hole qubit” [17]

In addition to the work reported in chapter 6 of this thesis, two reports on the

coherent optical control of a single hole spin in a self-assembled quantum dot

have been published very recently (August and September 2011). The first was

a demonstration of optical control of a single hole spin by De Greve and Press et al.

in the group of Y. Yamamoto at Stanford University [17]. The experiments made use

of samples containing either deterministically-chargeable or probabilistically-charged

quantum dots, loaded with a single hole. The authors made use of the same approach

to initialise, optically control, and readout the hole spin as was used for the electron

spin (Press et al. [11]). Spin Rabi oscillations and Ramsey fringes were observed,

demonstrating complete control of the hole spin over the surface of the Bloch sphere.

In addition De Greve et al. compared the Ramsey fringes of the electron and

hole spin. For the electron spin, asymmetric fringes and hysteresis were observed.

The authors attributed this to a strong nuclear spin feedback loop which affects the

electron spin via the hyperfine interaction. This is because the nuclear polarisation

was significantly altered during each cycle of the experiment. No such behaviour

was observed for the hole spin, and the authors suggest a lower limit of a factor of

30 reduction in any nuclear spin feedback mechanism.

A dephasing time T ∗2 = 2.3 ns was extracted from a fit to the decay of the

Ramsey fringes. The authors suggest that electric field fluctuations due to charge

noise were the main source of decoherence in their experiments. A further discussion

of this can be found in chapter 5 section 5.7. In addition to the coherent optical

control experiments, De Greve et al. used spin echo techniques to measure the hole
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spin intrinsic decoherence time T2. This was done by using a π refocusing pulse to

remove time-ensemble average dephasing. From these experiments De Greve et al.

measured a decoherence time of T ∗2 = 1.1 µs.

“Optical control of one and two hole spins in interacting quantum dots”

[18]

The second experimental report on the optical control of a hole spin was published

very soon after the work of the Yamamoto group. Greilich et al. from NRL not only

demonstrated coherent optical control of a single hole spin, but control over two

interacting spins in a quantum dot molecule [12]. By deterministically charging the

quantum dot molecule, Greilich et al. were able to move from a regime of optical

control of one of the hole spins to both of the hole spins. Deterministic charging

allowed for voltage control of the number of holes in each dot. This was denoted

(0,1), (1,1), (1,2) or (2,1), where the number in brackets denotes the number of holes

in the (‘red’, ‘blue’) dots.

In the first experiments, the authors showed spin Rabi oscillations and Ramsey

interference fringes for a single hole spin in one of the quantum dots in a magnetic

field. For these experiments, the blue dot had a pair of anti-parallel holes spins and

the dot of interest (red) had a single spin, i.e. the charge configuration was (1,2).

Spectral isolation of the transitions in each dot was used to achieve control over only

one of the spins. By varying the time delay and power of two optical pulses, the

entire surface of the Bloch sphere was explored.

The control of interacting holes spins was demonstrated in two different regimes.

The first regime, namely the weak-coupling regime, used samples where the exchange

splitting was smaller than the linewidth of the control laser pulse. The quantum

dot was charged into the (1,1) state and the control laser performed spin rotations

on the red dot, regardless of the spin state of the hole in the blue dot. In this

regime the control laser did not directly control the spin in the blue dot, but it was

indirectly coupled via the exchange interaction. This manifested itself in a beating
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of the Ramsey fringes at the exchange energy splitting, which could be tuned by

using the applied bias.

In the final set of experiments, the authors used samples where the exchange

interaction was large∼ 80 µeV. In this regime, the energy eigenstates were expressed

in the singlet and triplet basis, which is analogous to the experiments performed on

coupled electrons spin by the same group [12]. By using Ramsey interferometry,

Greilich et al. demonstrated spin rotations from the singlet to triplet states,

enabling coherent control over the entanglement between the hole spins. For these

experiments, the control laser rotated the spin state about the optical axis, and the

singlet-triplet exchange energy provided the axis for the ‘precession’ of the state.

The experiments were the first to demonstrate the controlled interaction of hole

spins in a quantum dot molecule. This scalability is essential because it forms the

basis for two-qubit phase gates.

These four papers show that the coherent optical control of single spins is a

highly topical area of research. In some respects the field is in its infancy, but some of

the experimental reports show the real potential of what can be achieved, both from

the perspective of fundamental physics, and for applications in quantum information

processing. This is especially true for a single hole spin in an optically-active

quantum dot.
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Methods

This chapter describes the experimental methods used to perform photocurrent

spectroscopy on a single InGaAs quantum dot in a Schottky diode. The basic

principle behind the experiments is as follows. A picosecond laser pulse resonant

with an optical transition in a quantum dot excites charge carriers. Under an

applied bias to the Schottky diode, the carriers tunnel from the dot. This can be

measured as a change in photocurrent through the diode. To measure the dynamics

of the quantum state in the dot, up to three separate laser pulse trains were used,

each with independently controllable wavelength, polarisation, power and phase.

The experimental methods used to achieve this will be described in this chapter

along with details of the Schottky diode sample and the experimental measurement

techniques.

3.1 The quantum dot Schottky diode

Figure 3.1 is a schematic diagram of the quantum dot Schottky diode. The basic

principle of the quantum dot Schottky diode is as follows: under an applied reverse

bias, and at low temperature, no current flows unless a photo-excited electron-hole

pair has been generated. The quantum dots are embedded in the intrinsic region of

the diode and form the active element. Photons that are resonant with transitions

in the quantum dots excite electron and hole pairs. The charge carriers then tunnel
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Figure 3.1: Schematic diagram of the layer structure and band structure of a quantum-dot
Schottky diode device. A resonant photon incident on the sample creates an exciton (e-h
pair) in the Quantum Dot. Under the applied bias the carriers tunnel from the dot.

from the dot under the applied bias and can be read out as a photocurrent. The

quantum state of the dots can be prepared, controlled and read out using laser

pulses with selected polarisation, power and time delay. By exploiting the atom-like

nature of the quantum-dot energy states, the states of the carriers in the dot can

be inferred according to the selection rules, and can be read out by photocurrent

measurements.

3.1.1 Device growth and fabrication

The sample growth and fabrication was carried out at the National Centre for

III-V Semiconductor Technology in Sheffield. Fabrication of the devices used in

the experiments in chapters 5 and 6 was carried out by Yanwen Wu and Peter

Brereton from the Cavendish Laboratory, University of Cambridge. The wafers

were grown by Molecular Beam Epitaxy (MBE). The quantum dots were formed
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by self-assembled Stranski-Krastanov growth. Figure 3.1 shows the layer structure

of the wafers which was the following: an undoped GaAs substrate with a 50-nm

n-doped GaAs (Si, n=4x108 cm−3) layer, a 25 nm i-GaAs spacer layer, a single layer

of InGaAs self-assembled dots, 125-nm of i-GaAs, followed by a 75-nm Al0.3Ga0.7As

blocking barrier and a 5-nm GaAs cap.

After growth, the wafers were cleaved and processed into Schottky diodes by

using a combination of optical lithography, acid etching and metal evaporation.

Figure 3.2 is a diagram showing an overlay of the mask design used to produce

the diodes and Fig. 3.3 is a photograph of a fully processed device. Apertures in

an aluminum shadow mask were made by electron beam lithography in order to

spatially isolate individual quantum dots. The apertures also acted as markers to

register the dots. A schematic diagram of the resulting layer structure and band

structure for the Schottky diode device used for photocurrent spectroscopy can be

found in Fig. 3.1.

After processing, the devices were mounted onto a ceramic, non-magnetic,

leadless chip carrier (LCC). A wire-bonder was then used to form gold bonds from

the contacts of the devices to the pins of the LCC. In order to make electrical

connections from the detection circuit to the LCC, the LCC was housed in a

custom-built compact socket made of ceramic. Figure 3.8 (b) shows an example of

the resulting device. The overall design provided robust electrical connections and

a protective environment for the samples, suitable for low temperature operation.

3.2 Electrical circuit and device characterisation

An important component of any photocurrent spectroscopy experiment is the

electrical circuit. Figure 3.4 illustrates the basic circuit used for all measurements.

The circuit consisted of a Keithley 230 (K230) voltage source, a Keithley 6485

pico-ammeter (K6485) and the Schottky diode. The instruments were connected

via shielded coaxial cables, with a PTFE insulating layer. An important property

of the device and circuit was a low leakage current and noise level under a reverse
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Figure 3.2: Transparent overlay of the masks used for device fabrication. The device
consisted of several independently contactable mesas (green), each with a 5 × 5 array of
apertures. Each stage of the processing involved applying a photoresist to the sample, then
masking it (with the patterns shown), before exposure to UV radiation. The mask was
removed and the sample developed in a photo-developer. Finally, the sample had a metal
eg, Gold or Titanium, evaporated onto it. The photoresist was then dissolved in acetone
to leave the evaporated metal in the pattern of the mask.

applied bias.

The processed diodes were tested by measuring the current as a function of

applied bias to produce a current vs voltage (IV) curve. To identify the best devices,

many hundreds of diodes were tested. The majority of diodes tested did not pass

the IV test. Figure 3.6 shows a histogram of the performance statistics of a set of

typical diodes. The diodes which did pass the IV tests were cooled to T = 4.2 K.

Typical values for a workable diode at helium temperature were a leakage current

I < 100 fA over the bias range 0 > VBias > −3V with a noise ∆Imax < 50 fA. Figure

3.5 shows a current voltage (IV) curve at room and liquid Helium temperatures for

a workable diode.

In order to minimise the circuit noise in reverse bias, several steps were taken:
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Figure 3.3: Photograph of a fully processed Schottky diode device. Gold bonds were
made from the Schottky contact and ohmic contact to the ceramic package which housed
the sample. The smaller mesas were generally used, since they had smaller leakage currents
due to their smaller areas. Each mesa contained an array of apertures in an aluminium
shadow mask with apertures sizes ranging from 200 nm to 1 µm diameter. The reflective
mask allowed for spatial isolation of individual quantum dots.

1) The circuit was grounded in only one position to avoid ground loops. The

ground was made via the K6485 chasis (grounded via mains ground). All shielding,

including the outer jackets of the coaxial cables, and also the K230 ground and the

cryostat dewar were connected to the K6485 grounding. Without this grounding

configuration, a ground loop or antenna would pick up ambient electromagnetic

fields, causing current fluctuations in the circuit.

2) The inner and outer connections of the coaxial cables were insulated via a

PTFE jacket. Standard coaxial cables use a polythene insulating layer. This plastic

was found to increase reverse bias noise because it is more sensitive to temperature
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Figure 3.4: Circuit diagram for PC spectroscopy. Solid black lines represent the electrical
connections made with the inner core of co-axial cable. Dotted lines represent the shielding.
K230: Voltage source. K6485: pico-ammeter (pA)

fluctuations.

3) A thermal insulating jacket was added to the cable cladding to reduce temperature

fluctuations.

4) The sockets built to encase the chip carriers were made of a ‘Macor’ ceramic

material, which has excellent resistive properties, preventing any indirect leakage

current. The material also has a co-efficient of thermal expansion which matches

the leadless chip carriers (LCC).
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Figure 3.5: Typical current voltage performance for a good Schottky diode at liquid
helium (black) and room (red) temperature in the dark.

3.3 Photocurrent detection

For the very best devices, negligible current flows through the diode at liquid helium

temperature under an applied reverse bias in the dark. See Fig 3.5. When a

photon is resonant with the crystal ground state |0〉 to the first excited state in

the quantum dot |X〉, an electron is lifted across the band gap, from the valence

band to the conduction band. Under the applied DC electric field, the electron and

hole dissociate and tunnel out of the dot, which leads to photocurrent through the

device. Due to the fact that the device only generates a single electron charge per

laser pulse, it has been described as a “optically generated single electron turnstile”

[76].

The amount of photocurrent signal that is generated by a train of laser pulses

resonant with a pulse area Θ = π is determined by the photocurrent detection
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Figure 3.6: Statistics on the number of diodes with a given reverse leakage current at
room temperature under an applied bias of -3 V. Red represents the sampled labeled VN1464
and green the sample labelled VN382. Both sets of samples had the same layer structure
but originate from different wafers. VN1464 had a nominally lower quantum dot density.

efficiency. With a laser with a pulse repetition frequency of ν = 76 MHz, and

assuming that the π pulses fully invert the |0〉 → |X〉 2-level system, the maximum

measured current through the device will be I = ηνe. Here e is the electronic charge

and η is the detection efficiency. On assuming that both carriers have tunneled from

the dot before the arrival of the next pulse, we expect η = 1, and hence I = 12.18 pA.

This photocurrent can be measured with a low noise picoammeter.

The tunneling rates of the electron and hole depend on the effective mass, and

vary exponentially with the applied bias [90]. For an applied bias of∼ (−0.9±0.3) V,

the electron tunneling time varied from tens of picoseconds to ∼ 100 ps. The

hole tunneling times were much larger, due to the increased effective mass and

additional AlGaAs barrier between the quantum dots and Schottky contacts. As

an example, typical values for the tunneling times with an applied bias of −0.8 V
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were (50− 100) ps for the electron and (2.5− 4.0) ns for the hole. The wafers were

specifically designed this way, in order to trap holes by the inclusion of the AlGaAs

barrier (see Fig. 3.1). An example of the method for measuring the tunneling times

can be found with reference to section A.5 Fig. A.8

3.4 Helium bath cryostat: Attocube system

3.4.1 Cryostat design

All of the measurements presented in this thesis were made with a base temperature

of T = 4.2 K. This was achieved by using a liquid helium bath cryostat designed by

Cryogen Industries of America. A helium bath cryostat is a very stable system in

which to house the sample because there is no flow of Helium gas. Stable coupling

between the incident laser and single quantum dot was maintained over several

days. Figure 3.7 shows the design and dimensions of the cryostat. A Lakeshore

superconducting magnet with magnetic fields 0 < |B| < 5 T was also contained

within the system. The basic design of the cryostat consisted of an evacuated jacket

containing a bath of liquid helium. The sample was mounted inside an evacuated

sleeve that sat within the helium bath, and inside the bore of the superconducting

magnet.

A Thorlabs ‘cage-system’, which consisted of an array of ‘cage-plates’ connected

via cage rods, was used to hold the sample and objective lens. The insert then sat

within the sleeve, with a small amount of Helium exchange gas, to provide good

thermal contact. The cage had several electrical pins for connecting the device,

temperature sensor, heater, piezo stages etc. The whole system was then elastically

suspended and acoustically insulated to de-couple it from the environment.

A stack of piezo-electric transducers designed by Attocube Systems were used

to position the sample. The piezos operated under the ‘slip-stick’ motion control

mode, in which the application of a voltage pulse moves the stages. The slip stick

approach is advantageous because a constant voltage supply is not required for a
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Figure 3.7: The attocube helium bath cryostat. This diagram is extracted from the
Attocube systems manual. The sample sat within an insert which contained ∼ 3 cm3 of
helium gas (for thermal exchange). A Thorlabs ‘cage system’ held the objective lens and a
baseplate on which the low temperature piezo-stages sat. The sample was centered in the
core of the superconducting magnet.

given stage position, therefore reducing electrical noise. The stages were operated

using an ANC200 controller and the minimum step size at T = 4K was ∼ 4 nm. This

allowed for high precision control of the position of the sample in three dimensions

with respect to the incident laser.

3.4.2 Sample mounting

One challenge presented by the use of the cage system was the small (∼ 2×2×2 cm3)

space available to mount the sample within the working distance of the objective lens

(f = 4.51 mm). Two basic designs were used, one for Faraday geometry, and one

for Voigt geometry. Figure 3.8 shows the design for Voigt geometry. For the Voigt

geometry the direction of the laser beam was rotated by 90◦ using a right-angled

prism mirror. The laser beam then passed through the objective lens and hit the

56



Methods

Chip carrier

Sample

Electrical contacts

Bond wires

Bx
Laser (z)

(b)

(a)

Ceramic

Ceramic

Laser

45º mirror

Piezo stages 

lens

Bx

Cage plate 

~15 mm

~30 mm

Figure 3.8: Photograph of packaged device and sample mounting. (a) Sample mounted
in the Voigt geometry within the cryostat insert stick (side on view). (b) Sample mounted
within leadless chip carrier contained within a ceramic tile.
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sample, which sat on a L-shaped bracket mounted onto the piezo stages. In order

to achieve the best possible coupling between the laser and the quantum dot, an

objective lens with a short f = 4.51 mm focal length was used. The objective lens

produced a spot of diameter ∼ 1 µm. The lens is illustrated in Fig. 3.8(a)

A leadless chip carrier (LCC) package was chosen to fit the sample within the

cage, due to its low profile (∼ 2.5 mm thickness). Another benefit of the LCC was

that it contained no magnetic materials. It was found that samples mounted on the

more conventional TO5 header packages could not be moved by the piezo-stages

under external magnetic fields because the pins/leads contained Nickel, and the

maximum forces for operational stages are < 30 g. The LCC packages were mounted

into custom-built Macor ceramic tile sockets. Figure 3.8 (b) illustrates the sample

mounted in an LCC within a socket. In order to make the electrical connections

to the LCC, brass screws in the socket ‘pinched’ the device into place via the LCC

pins (rather like a standard mains plug socket). Solder then connected the screws

to thin insulated copper wires which were connected to the rest of the circuit via

the Attocube cage connector pins. The copper wires were thin, since thicker wires

stiffened at low temperatures and prevented the piezo stages from moving freely

(due to excess torque). For the stages to move freely, the total mass of the packaged

sample, plus heater and temperature plate, and all other components had to be less

than 50g. Thus aluminum brackets were chosen to fix the sockets into place.

Temperature dependent measurements

For temperature-dependent measurements, a resistive heater and temperature sensor

were contained within a plate which was attached to the top of the piezo stack. The

resistive heater was connected to a computer-controlled ‘Aim TTi Pl303’ power

supply unit. A power, integral, differential or PI(D) algorithm was used to control

the power supply [6]. The PI(D) control achieved stable temperatures T = (4−70) K

to within ∆T < 1 mK. This allowed for automated temperature-dependent

measurements.
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Figure 3.9: Simplified schematic of three-pulse experimental setup. Femtosecond pulses
were sourced from a Ti:Sapphire laser (top left). The beam was split into three ‘arms’,
each incident on a pulse shaper. The first arm formed the preparation pulse, the second the
control pulse (where applicable) and the third the detection pulse (where applicable). Each
pulse was spectrally filtered by pulse shapers as discussed in section 3.5.2. Each pulse has
its polarisation controlled. The three pulses were then re-combined before being delivered
to the sample via a single-mode fibre. A breakdown of all the components is described in
the following sections.

3.5 Optical setup

This section describes the construction of the optics to provide the independently

controllable laser pulse trains used to prepare, manipulate and readout the quantum

dot(s) state(s). The manipulation of the laser from its source down to the objective

lens within the cryostat is also discussed. The end result was a collimated beam

from a single-mode fiber which carried three picosecond laser pulses, each with

independently tunable wavelength, bandwidth, polarization, arrival time and power.

Figure 3.9 shows a simplified diagram of the optics that illustrates the design of the

three-pulse experiment.
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3.5.1 Laser Source

A wavelength-tunable mode-locked Titanium:Sapphire laser (Coherent Mira 900,

pumped by a Coherent Verdi V-8 laser) was used as the laser source. The laser

emitted a train of laser pulses at a repetition rate of 76 MHz, corresponding to a pulse

separation of ∼ 13 ns. The pulses had a duration of 150 fs and hence were spectrally

broad with a full width half maximum (FHWM) of≈ 14 meV in energy, and≈ 10 nm

in wavelength. The laser wavelength was centered at ∼ 950 nm. This wavelength

corresponds to the crystal ground state to s-shell neutral exciton transitions in the

quantum dots. The laser was water cooled and purged with nitrogen gas to remove

any absorption by water vapor, and to maintain stable power and directionality of

the output.

3.5.2 Pulse Shaping

Pulse-shaping optics were used to provide spectrally narrow ∼ 0.2 meV laser pulses.

This was done in order to address individual optical transisitions in a single quantum

dot and to avoid unwanted coupling to neighbouring dots of similar energy. It was

typical to locate several (∼ 5−15) quantum dots under a single aperture within the

unfiltered bandwidth of the laser. In addition, the energy separation between the

neutral exciton transitions, for example biexciton and charged exciton transitions,

was on the order of 1 − 2 meV [6]. This meant that laser pulses with energy

FWHM << 1 meV were required. The design of the pulse shapers followed the

Fourier-Transform approach from ref. [91]. Figure 3.10 illustrates the design and

layout of a single pulse shaper.

The output from the Ti:Sapphire laser was first collimated before passing it

through a beam expander (5:15 f1:f2 telescope). The purpose of the beam expander

was to maximise the spot size on the diffraction gratings in the pulse shapers. This

was done to provide the best possible spectral resolution. The beam was split using

polarising beam-splitters. Half-wave plates were used to control the fraction of light
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Figure 3.10: Pulse shaper. Each pulse shaper was made up of two diffraction gratings,
two lenses (f = 50 cm) in a 4-f arrangement, and a motorised slit in the masking plane.
The focal length of the lenses determined the minimum spectral width of the output pulse.
The position and width of the slits determined the output wavelength and linewidth of the
output pulse.

that entered each pulse shaper. Further half-wave plates were used to rotate the

polarisation of the light to match the polarisation of the diffraction gratings.

For each pulse shaper the expanded beam was first incident on a diffraction

grating with 1200 lines per mm. The grating mapped the spectral components of

the pulse to an angle. The first lens was placed at the focal distance (f = 50 cm)

and collected the diffracted light. It mapped the angle to a position at the focal

plane. A motorised slit (Newport linear translation stages MFAPP, MFA-CC or

M-MFN25CC, 25 mm travel) was placed at the image plane of the first lens. The

slit transmitted only a small frequency component, and the lateral position of the

slit determines the centre wavelength of the transmitted light. The width of the

slit determined the spectral bandwidth of the transmitted light, and was chosen

to produce laser pulses with ∆EFWHM = 0.2 meV. The motorised stage allowed
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for automated control over the output wavelength of the pulse shaper. The second

lens was placed at the focal distance f = 50 cm from the slit. The second lens

maps the spatial position of the unmasked frequency components onto an angle.

The second diffraction grating was placed at the focal plane of the second lens.

It spatially recombined the frequency components of the light. The output of the

second diffraction grating was a beam with a Gaussian energy spectrum, provided

that the pulse shaper had a mirror symmetry about the slit. For this to be true, a

pulse shaper must preserve the laser pulse characteristics in the case where no slit

it present, i.e. it must be dispersionless. Such a system is known as a ‘4-f zero

dispersion compensator’ [91].

In order to check the spatial recombination of the beam after the pulse shaper,

all but the highest/lowest frequency components were blocked at the masking plane

and both the position and angle of the diffraction gratings were varied so that the

beam had no asymmetry. The pulse shapers were tested by measuring the output

pulse spectrum with a double spectrometer. Due to the fact that the beam was

not ideally collimated at the input, the position of the mask was not exactly at

the focal distance f . The minimum spectral width was optimised by making small

adjustments to the longitudinal position of the mask. To test the recombination

of the beam, spectra were taken after spatially masking all but the ‘left hand side’

or ‘right hand side’ of the output spot. This was done in order to confirm the

uniformity of the wavelength across the beam profile. Finally, spectra were then

taken as a function of lateral slit position in order to calibrate the pulse shapers.

This provided a linear function that mapped the slit position to the wavelength of

the output pulses. Figure 3.11 shows an example of a measurement of the wavelength

as a function of slit position.

3.5.3 Coupling light into a single mode fibre

The laser pulses were delivered to the cryostat via single-mode fibres. The coupling

efficiency into the single mode fibre was important since it was the most significant
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Figure 3.11: Pulse shaper calibration. The output wavelength of the pulse shapers was
measured as a function of slit position by using a double spectrometer.

source of power loss after the pulse shapers. The pulse shapers reduced the power

available from ∼ 800 mW to ∼ 800 µW. Therefore it was important to obtain

the maximum possible transmission into the single-mode fibres. A high precision

manual stage, with 20nm resolution, was used to couple the laser beam into the

single-mode fibre (Elliot Scientific, Gold Series XYZ Flexure Stage). The single

mode fibre used was designed for a wavelength operation of (830 ± 150) nm with

a (730 ± 30) nm cutoff wavelength. The single-mode fibre had a 5.6 µm mode

field diameter (MFD) and a 125 µm cladding. In order to achieve the maximum

coupling efficiency, it was necessary to match the Gaussian mode of the input beam

to the mode field diameter of the fibre. This was done by choosing a lens with the

appropriate numerical aperture (NA) according to eqn 3.1, [92][93]:

f = πDw

2λ , (3.1)
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Figure 3.12: Intensity profile of laser
beam. The beam profile is assymetric
due to diffraction at the slit in the pulse
shapers. This reduces the maximum
obtainable coupling efficiency into a single
mode fibre due to mode mis-matching

where f is the focal length of the lens, D is the Gaussian beam waist and w the

mode field diameter.

By measuring the beam profile of the laser spot at the position of the microscope

objective it was then possible to select a microscope objective lens with the

appropriate numerical aperture. The beam profile was elliptical due to diffraction

by the slit in the pulse shaper. This is shown in Fig. 3.12. Here the FWHM widths

were measured as x = 10.2 mm and y = 4.8 mm. A microscope objective lens with

NA = 0.55 and f = 4.5 mm was chosen. This gave a maximum measured coupling

efficiency of ∼ 55%. This is close to maximum obtainable value of 80% [94]. The

asysmmetry of the beam profile lead to a reduction in the maximum obtainable

coupling efficiency into the single mode fibre. One way to circumvent this would be

to use cylindrical lenses in the pulse shapers. This option was not pursued due to

the added complexity in the alignment of the pulse shapers.

3.6 Single, two and three-pulse experimental

setups

The experiments performed used up to three laser pulses. The experimental setup

evolved as the number of pulses increased from one to three. The exact setup for a

given measurement depended on the aims of the experiment and the number of pulses

used. In this section the optics used for the experiments are described. For multiple

pulse experiments, the pulses were labeled in accordance with their functionality:

the first pulse prepared the quantum dot state and is termed the preparation pulse;
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the second pulse manipulated the state and is termed the control pulse; finally, the

third pulse detected the state and is termed the detection pulse.

3.6.1 Single-pulse setup

For single-pulse measurements, the laser was sent from the optical bench, via a 5m

single mode fibre, to an assembly of optics which sat on a shelf on top of the cryostat.

Figure 3.13 shows a schematic diagram of the experimental setup. The shelf held

an assembly of optics that collimated the beam, controlled the polarisation of the

output and imaged the sample. The fibre assembly was built within a cage system

and consisted of a fibre connector plate, a translatable collimation lens, a linear

polariser and a motorised half-wave plate. Due to the birefringence of the fibre, the

linear polarisation at the input of the fibre was converted to elliptical polarisation

at the output. The degree of ellipticity depended on the curvature of the bends

within the fibre [95]. To minimise the effect, the optical fibre was fixed within a

hose-pipe tube. This was done to fix the fibre in place and to keep the fibre bends

constant. A linear polariser was placed after the collimation lens in order to correct

the polarisation change within the fibre. A motorised (Newport PR50PP) rotation

stage holding a half-wave plate (Newport 10RP52-2) was used to achieve control of

the angle of linear polarisation. Finally, a quarter-wave plate (Newport 10RP54-2)

was used to convert the linear polarisation into circular polarisation.

3.6.2 Two-pulse, two-fibre setup: measurements of hole spin

preparation

The two-colour (two-pulse) experiments were carried out by using separate single

mode fibres to carry the separate ‘preparation’ and ‘detection’ pulses. This

experimental setup was used in the measurements of chapter 4. The reason for

using two fibres was for the ease of control over the polarisation of the light. For

each pulse, a separate single fibre assembly was used. See Fig. 3.13. A non-polarising

beamsplitter cube was used to recombine the beams and direct the two beams to
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Figure 3.13: Experimental setup for optics on top of the cryostat for single-pulse
measurements. The output beam from the pulse shaper was sent via mirrors and a
collimator/telescope, through a motorised neutral density filter to the ‘fibre launch’: a
fixed microscope objective lens (MO) in front of a single-mode fibre adapator, mounted on
a high precision xyz stage. A single-mode fibre sent the coupled light to the Attocube ‘shelf’,
which held a fibre assembly and imaging optics. In order to measure the laser power, a
glass slide reflected 5− 10% of the incident beam. The glass slide was chosen to be thick
(> 5 mm) to prevent artifacts in the laser power spectrum

the objective lens in the cryostat. A photograph of the shelf with the two fibre

assemblies can be found in Fig. 3.14. One disadvantage of using this technique was

that it was more difficult to couple both the ‘preparation’ and ‘detection’ beams to

the quantum dot equally. Furthermore, the mechanical stability of the output of

each beam was independent. However, automated control over the polarisation of

each pulse was of crucial importance for the hole spin preparation experiments in

chapter 4, making the use of two fibres essential.

A free-space delay line was constructed in order to control the relative arrival

time of the preparation and detection pulses. The delay line consisted of a retro

reflector (Newport UBBR2.5-1I) mounted on a linear translation stage with 15cm

travel. The 15cm travel allowed for a change of path length corresponding to a 1 ns
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Figure 3.14: Photograph of the ‘shelf’ optics which sat on top of the cryostat. The shelf
optics here were arranged for a two-pulse, two-fibre assembly. Note that the second fibre
assembly is hidden (into the plane of the page). To avoid the use of mirrors, each fibre
assembly was mounted onto a x − y translation stage and a tilt stage. This allowed for
control over the position and angle of the beams with respect to the objective lens. For
these experiments, the polarisation of each beam was controlled at the output of the fibre
by using a linear-polariser and a motorised half-wave plate.

time delay. In order to achieve minimum drift of the beam from within the delay

line, care was taken to ensure that the beam direction going into the retro reflector

was parallel to the axis of travel. Nonetheless, a change of coupling efficiency into

the single mode fibre of 10% was measured when moving from one end of the stage

to the other.
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3.6.3 Two and three-pulse setup using a single fibre:

measurements of the hole spin precession and optical

control

As an improvement to the experimental setup, a single fibre was used to carry both

the ‘preparation’ and ‘detection pulses’. This was done by recombining the beam

with a 50:50 non-polarising fibre coupler/beamsplitter (Thorlabs FC830-50B). In

addition to this, a section of free-space optics was introduced in each arm. The

free-space sections, referred to as fibre benches, fixed the neutral density filters

and half-waveplates with respect to the beam position. This was done for reasons

described in section 3.6.4. Figure 3.15 contains a diagram of the so-called fibre bench

which were used for power and polarisation control.

Polarisation control

The birefringence of the fibres [95] was exploited in order to achieve independent

control over the polarisation of the two pulses. An in-line polarisation controller

termed a ‘fibre paddle’ (Thorlabs FPC030) was used to coil and stress the fibre so

that any arbitrary polarisation at the output of the fibre could be achieved. This

allowed for a controlled ‘correction’ of the polarisation change due to the rest of the

fibre. Fortunately, this correction was identical for orthogonal polarisations. This

allowed for the motorised half-wave plates to be inserted into the ‘fibre benches’ (see

Fig. 3.15). The result was the ability to have a single fibre carrying both preparation

and detection pulses with arbitrary polarisations. This enabled a scale up in the

number of pulses. Figure 3.15 illustrates the resulting ‘optical circuit’, which is a

series of fibres and fibre beam splitters ‘mated’ together. One consequence of using

such an ‘optical circuit’ was the increased power losses. This was due to ‘mating’

the fibres together and coupling losses in the free-space fibre benches. However a

compromise was made to allow for scalability and improved stability.
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Timing control

A variable time delay between the preparation and detection pulses of several

nanoseconds was required in order to measure the hole spin precession and dephasing

time T ∗2 . This was achieved by replacing the 15 cm translation stage in the delay

line with a stage of 30 cm travel (Newport M-IMS300CC). In addition, a double

pass of the delay line was introduced by using two retro-reflectors mounted on the

stage and a fixed retro-reflector mounted on the optical table. Figure 3.15 illustrates

this. This increased the range of the time delay to 4 ns. Further passes of the beam

through several retro-reflectors multiplies both the power losses due to changes in

coupling the optical fibre, and power losses at the mirrors. Therefore it was decided

not to scale up the number of passes further by using more retroflectors in the delay

line to increase the available time delay. Instead, an additional length of fibre was

introduced into the detection arm in order to increase the time delay between pulses

beyond 4 ns. This allowed for delay times between the pulses of up to 8.5 ns.

3.6.4 Stability

A highly stable system was required to perform photocurrent spectroscopy of single

quantum dots. This was particularly true in the case of multiple pulse experiments.

The main source of instability in the lab was the temperature fluctuations due to the

15 minute periodic ‘on/off’ air conditioning system. These temperature fluctuations

resulted in a variation of the beam direction from the laser. The pulse shapers

introduced a large path length of the laser beam, which amplified the change in the

beam angle and position. This caused two problems: 1) changes in coupling to the

single mode fibre, and 2) changes in the position of the beam over the neutral density

(ND) filter. The free-space section, referred to as the fibre bench (Thorlabs), solved

the problem with the neutral density filter as it fixed the position of the beam with

respect to the ND filter. A proportional, integral, or PI algorithm controlling the

neutral density filter was developed to stablise the power due to changes in coupling

into the single mode fibre.
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Figure 3.15: Schematic diagram of the components used to construct an ‘optical circuit’
which delivered three separate laser pulse trains to the sample. The output of each
pulse shaper was sent to a ‘fibre bench’ and ‘fibre paddle’ (bottom right) for power and
polarisation control. The control pulse passed through a retro-reflector (RR1) delay line
for up to 1ns delay with respect to the preparation pulse. The detection pulse passed through
three retro-reflectors (RR2, RR3, RR4). This enabled up to 4 ns delay with respect to the
preparation pulse. The pulses were re-combined in fibre beamsplitters. A single mode fibre
then carried the pulses to the shelf optics. Finally, the re-combined beam was delivered to
the cryostat

A Ti:Sapphire laser only remains in stable operation when mode locked for

‘constant’ temperatures. Therefore the air conditioning system was required. It

regulated the lab temperature to approximately within ±0.5◦ of 17◦. A foam board

insulating cover was constructed to cover the optical table fully in order to reduce

the problem of beam wandering due to the temperature oscillation. This provided

a fully isolated optics system and hence the level of stability in the laser power

required for the experiments.
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3.6.5 Automation

Many of the experiments described in this thesis required automation of the

experimental setup. Measurements of time resolved photocurrent spectra required

several days of continuous measurements. To carry out measurments such as this,

a fully automated and remotely controlled experimental system was built. The

various instruments and motor drivers were controlled using ‘virtual instruments’

or vi programmes written in the graphical programming language Labview. The

graphical programming environment allows for easy control and link up of serial

‘sub-vi’s’ built into a ‘master’ programmes which performs iterative steps to carry

out an experiment. It also allows easy, real-time monitoring over the progress of an

experiment.

3.6.6 Summary of optical setup

The resulting experimental setup was a single-mode fibre delivering three separate

laser pulse trains at a pulse repetition of 76 MHz. Each pulse had computer

controlled and independently tunable power, wavelength, polarisation and arrival

time.

3.7 Measurement techniques

Several different measurement schemes were used in the experiments in this thesis.

Single-pulse photocurrent spectroscopy was performed in order to characterise

samples. Power-dependent photocurrent measurements were made in order

to measured Rabi rotations of the neutral exciton. Two-pulse photocurrent

spectroscopy was performed in order to measure the charged exciton spectra.

Two and three-pulse time-resolved photocurrent spectroscopy was used in order

to measure the spin dynamics of a single hole. The details of these measurement

techniques are described in this section.
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3.7.1 Photocurrent spectra

Single-pulse photocurrent spectra were measured in order to identify the dots most

suitable for the more advanced experiments. To measure the photocurrent spectra,

the laser spot was centered on an aperture within a mesa. The laser power was

reduced to well below a typical π pulse power. The photocurrent was recorded

as a function of the wavelength of the laser. This was done by stepping the

lateral position of the slit in the pulse shaper. Measurements like this are termed

‘photocurrent detuning’. Once a strong peak was identified, the laser was tuned to

resonance and the photocurrent maximised by stepping the position of the sample

with respect to the objective lens with the nano-positioners. The incident laser power

was kept low (. 1 µW) so that the exciton population was not driven beyond a π

Rabi rotation. An example of such a measurement for two different apertures on the

same mesa can be found in Fig. 3.16. Aperture ‘b3200’ was selected as a candidate

for single quantum dot spectroscopy. This dot was used for the measurements of

the hole spin precession (chapter 4) and the hole spin control (chapter 6).

The criteria for selecting for a suitable dot for the more advanced experiments

were the following: 1) any peaks within the spectrum should be spectrally isolated.

2) The dot of interest must have good coupling to the laser: the power required for

a π pulse must be as low as possible, and the photocurrent signal must be as close

to the maximum of 12 pA. 3) The background photocurrent IBG must be as low as

possible: IBG < 2pA for a π pulse power. 4) The fine-structure splitting δfs must

be as small as possible |δfs| < 20 µeV.

Figure 3.17 shows a typical photocurent spectrum of a ‘good’ quantum dot.

The sample was excited with a single laser pulse of pulse area Θ = π and circular

polarisation. The reverse bias was set to Vbias = −0.8 V, where the electron

and hole tunneling times were ∼ τe = 30 ps and ∼ τh = 2.5 ns respectively.

The photocurrent was measured as a function of the laser wavelength. A clear

resonance can be observed in Fig. 3.17. The resonance corresponds to the neutral

exciton |X0〉 transition. The shape and width of the resonance corresponds to the
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Figure 3.16: Photocurrent spectrum of two different apertures on the same mesa of the
sample labelled VN382CAM2. Aperture b4200a has several dots with poor coupling to the
laser. Aperture B3200a has one very strong peak which is centered about λ = 955 nm. Both
apertures have an undesirably large photocurrent background. Nonetheless B3200a was
selected for experiments. This dot was used for measurements of the hole spin precession
and control in chapters 5 and 6

laser pulse spectrum and is fitted to a Gaussian function with an energy width

FWHM ∼ 0.2 meV. The amplitude is ∼ 11 pA. This dot from the sample labelled

‘VN382 aperture B2’ was used for the hole spin preparation experiments in chapter

4.

3.7.2 Measurement of a neutral exciton Rabi oscillation

Throughout this thesis, the experiments used laser pulses with calibrated pulse areas.

The calibration was done by measuring the neutral exciton Rabi rotation. First

the laser pulse was set on resonance with the neutral exciton. The photocurrent

was then measured as a function of the square root of the incident laser power
√
P [76],[61],[77],[5],[41]. An incoherent background photocurrent, proportional
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Figure 3.17: Photocurrent spectrum of a neutral exciton in a quantum dot. The dot
was excited with a single laser with pulse area Θ = π and circular polarisation. The
photocurrent is plotted as a function of the detuning of the laser pulse with respect to
the neutral exciton transition. Red line: Gaussian fit to the data with an energy width
determine by the laser pulse FWHM ∼ 0.2 meV, and amplitude of ∼ 11 pA.

to the incident power was subtracted for all the measurements. The background

photocurrent was attributed to absorption of scattered light by other dots in the

sample [61]. In order to suppress two-photon absorption and population of the

bi-exciton state |XX〉, the spectral width ∆EFWHM = 0.2 meV was set such that

∆EFWHM � δB, where δB = 2 meV is the bi-exciton binding energy [77]. In order

to suppress the population of the |XX〉 state further, circular polarisation was used

for all Rabi-rotation measurements [77], [4].

Figure 3.18 shows a neutral exciton Rabi rotation at a temperature T = 12.5 K.

Measurements similar to Fig. 3.18 were made in order to calibrate the pulse areas for

multiple-pulse experiments. Oscillations in the photocurrent can be seen clearly, up

to a pulse area of 14π. Beyond this pulse area, there is large scatter in the data, due

to the large background. It is clear in Fig. 3.18 that the Rabi rotation is intensity
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Figure 3.18: Example measurement of a neutral exciton Rabi rotation with a temperature
T = 12.5 K and applied bias VB = −0.6 V. The fitting was done according to the model
described in reference [64]

damped. The intensity damping was studied in detail in the work of Ramsay et al.

[63], [64] and will not be mentioned further here.

3.7.3 Time-resolved photocurrent measurements

The use of a pulsed laser source allows the measurement of the dynamics of the

quantum dot hole spin state. This was achieved by varying the relative path lengths

of the laser pulses which prepared, controlled and probed the hole spin state. High

precision linear stages were used to vary the path length and provided sub picosecond

time resolution.

Measurement of zero delay time

The first step was to ensure that the end of travel of the linear stages in each arm

corresponded to a relative path length of zero. The was done by measuring the
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Figure 3.19: Time resolved photocurrent measurement of how to determine ‘time-zero’
between two laser pulses. The photocurrent was measured as a function of the time delay
between the two pulses. Both pulses were resonant with the

∣∣X0〉 and had pulse area Θ = π.
The effective pulse area is Θ = 2π when the two π pulses overlap in time and this resulted
in a dip in the photocurrent signal

‘inversion recovery’ of the X0 spin, to find the point at which the two/three arms

in the experiments had the same path length [96]. Two laser pulses were used for

these measurements. Both pulses had Θ = π, and both were resonant with the

X0 transition. Furthermore, the pulses had either co or cross circular polarisation.

The photocurrent was measured as a function of the delay time between the two

pulses τD by stepping the position of the retro-reflector in the delay line. Figure

3.19 is an example of such a measurement. There is a dip in the photocurrent

when the delay time between the laser pulses is less than the electron tunelling

rate, where the pulses overlap in time, and have an effective overall pulse area

Θ = 2π. Measurements similar to Fig. 3.19 were performed for all three arms in

the experiments. This allowed the relative arrival time of the laser pulses to be

controlled to sub-picosecond resolution.
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Measurement of fine-structure splitting

The fine-structure splitting of the neutral exciton δfs = ~ωfs could also be extracted

from the inversion recovery measurements described above. This was done by fitting

the difference in photocurrent (PC) for cross-polarised and co-polarised pulses,

PC−+ − PC++, to eqn 3.2 [96]:

PC−+ − PC++ = eνηf(ρ↑↑(τ)− ρ↓↓(τ)) = A exp(−Γeτ) cos(ωfsτ). (3.2)

Here e is the electron charge, ν is the pulse repetition frequency, η the detection

efficiency and ρ↑↑ and ρ↓↓ are the probabilities that the exciton is in the spin up

(|X⇑↓〉) or down (|X⇓↑〉) state respectively, and Γe is the electron tunelling rate. A

physical interpretation of the measurement is the following. The circular polarisation

of the first pulse creates a superposition of the linearly-polarised exciton energy

eigenstates. The states accumulate a relative phase due to the fine-structure splitting

δfs. Therefore the exciton state beats at the fine-structure frequency ωfs = δfs/~.

This is probed by a second laser pulse, which either creates more exciton population

or decreases the exciton population depending on the phase. The result of this is

an oscillation in the photocurrent. More details of these type of measurements can

be found in the appendix section A.4.

3.8 Summary

This chapter described the experimental methods used for performing photocurrent

spectroscopy on single quantum dots embedded in Schottky diodes. First the

principle of the quantum dot Schotkky diode was introduced. This was followed

by a discussion of the electrical circuit used for the experiments. Next, the cryostat

and sample mounting was discussed. This was followed by a discussion of the optics

used for spectral filtering, and control of the polarisation, power, wavelength and

arrival time or three separate laser pulses. Finally, the measurement techniques were
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discussed. These include measurements of a neutral exciton Rabi rotation and time

resolved photocurrent spectroscopy.
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Fast high fidelity hole spin

initialisation

4.1 Introduction

The initialisation of a spin-qubit, in this case a single hole spin, is a key ingredient of

any quantum information processing protocol [3], [97]. In this chapter, experimental

results demonstrating the preparation of a hole spin on a picosecond timescale

are presented and the dependence of the fidelity on applied magnetic and electric

fields are studied. By applying a magnetic field in the growth direction (Faraday

geometry), near unit fidelity F > 99% of hole spin preparation is demonstrated. An

analytical model of the spin preparation is constructed to show that the fidelity of

the hole spin is limited by the precession of the exciton spin due to the anisotropic

electron hole exchange interaction. The application of a Faraday geometry magnetic

field improved the fidelity of spin preparation by suppressing the entanglement

between electron and hole spins generated by the neutral exciton fine-structure

splitting. By studying the dependence of the fidelity on the applied bias voltage, it

was found that an increased electric field also improved the fidelity by reducing the

time available for this spin mixing.

The results of this chapter are published in: Applied Physics
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Letters: 97, 061113 (2010).

4.2 Sample details

These measurements were performed on the sample labelled VN382 aperture B2

which has been extensively studied in previous work [5], [6], [41], [77]. In the reverse

bias regime, the electron tunneling rate Γe = 30 ps−1 (Vbias = −0.8 V) is much

greater than the rates of hole tunneling Γh, radiative recombination Γr ≈ 1 ns−1

and the fine-structure splitting δfs = 2π/225 ps−1. Therefore following resonant

excitation of the neutral exciton transition, the electron quickly tunnels out of the

quantum dot, to leave a spin-polarized hole.

4.3 Principle of operation for initialising the hole

spin

Before discussing the experimental results, the principle of operation for the

preparation of a single hole spin is introduced. Figure 4.1 shows a schematic diagram

of the steps (a)-(e) involved in preparing and reading out the hole spin and these

will be discussed in turn in the following. Each panel in Fig. 4.1 is a schematic

band diagram of the quantum dot in the Schottky diode. Initially the dot is in the

crystal ground state.

The first step (a) is to prepare a spin-polarised electron-hole pair using a

preparation pulse with pulse area Θ = π and circular polarisation. Figure 4.2

(a) shows an energy level diagram of the circularly-polarised Zeeman-split neutral

exciton states X0
⇓↑ and X0

⇑↓ in a Faraday geometry magnetic field. Here, ⇓ (⇑)

denotes the hole spin and ↑ (↓) denotes the electron spin in the growth direction

(z).

The preparation pulse was resonant with one of the Zeeman-split neutral exciton

transitions. Photons with circular polarisation σ+(σ−) carry angular momentum
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(a) Prepare spin polarised X0

Using + polarisation and 
(b) Electron tunnels from dot t~30ps

To leave spin polarised hole

(d) Create X+ conditional on h spin (e) Carriers tunnel from dot

Figure 4.1: Principle of operation for preparing and detecting the hole spin. Each panel
is a schematic diagram of the Schottky diode and spin states within the quantum dot. (a)
Preparation: A σ± polarised π pulse resonant with X0 creates a spin polarised electron
hole pair. (b) Ionisation: Under the applied bias the electron tunnels from the dot to leave
a spin polarised hole (c) detection: A σ± polarised π pulse resonant with X+ creates an
additional electron hole pair, conditional on the spin state of the prepared hole and this
can be measured as a change in photocurrent through the device after the carriers tunnel
from the dot (d)

+1(−1) respectively. Due to conservation of angular momentum, the preparation

pulse prepares a neutral exciton with spin J = +1(−1) using circular polarisation

σ±. The exciton spin J = mh
J + me

s is the sum of the heavy-hole and electron spin

projections mh
J and me

s respectively. The spin projections of the hole and electron

take the values mh
J = ±3/2 and me

s = ±1/2 respectively. Therefore, a σ+ pulse

creates an exciton with spin |⇑↓〉 and a σ− pulse creates an exciton with spin |⇓↑〉

and this is illustrates in Fig. 4.1(a) and Fig. 4.2(a). In the Faraday geometry, only

bright excitons with S = ±1 are considered [23], [25] since the dark excitons are not

optically active in dots with high symmetry and relatively small exchange energy.

Figure 4.1(a) shows the prepared electron and hole spins in the conduction and
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Figure 4.2: Schematic energy level diagram in a Faraday geometry magnetic-field of
(a) neutral exciton X0 states |X⇓↑〉 and |X⇑↓〉 with σ− and σ+ optical selection rules
respectively.(b) spin-polarised hole states |h⇓〉 and |h⇑〉 (c) Positive trion states |X+

⇓ 〉
and |X+

⇑ 〉 with optical selection rules σ+ and σ− respectively. Experimental procedure:
(a) Preparation pulse: σ± polarised π pulse resonant with X0. (b) Ionisation: electron
tunnels out of the dot with rate Γe = 1/30 ps−1 (dashed line). (c) Detection: σ± polarised
π pulse resonant with X+. If the spin has been prepared in a pure state, only the cross
polarised detection pulse will be absorbed to create an additional electron hole pair due to
Pauli-blocking

valence bands respectively.

After the preparation pulse prepares the spin-polarised neutral exciton, the

electron tunneled from the dot the under the applied electric field. The electron

tunneling is shown in Figs 4.1(b) and 4.2(b) with blue dashed lines. The ionisation

of the neutral exciton [41], [8], [72], [40], was fast compared to the neutral exciton

fine-structure splitting, ensuring that a hole with a net spin was prepared.

To detect the hole spin, a second circularly-polarised pulse denoted the detection

pulse, with pulse area Θ = π, was scanned through resonance with the h −→ X+

transition. Figure 4.2(b) shows the energy level diagram and selection rules
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for the Zeeman-split charged exciton states X+
⇓↑ = X+

⇓ and X+
⇑↓ = X+

⇑ in a

Faraday geometry magnetic field. The detection pulse had either the same helicity

(co-polarised) or opposite helicity (cross-polarised) as the preparation pulse. The

detection pulse created an additional electron-hole pair, provided it had the opposite

helicity to the preparation pulse, according to the selection rules presented in

Fig. 4.2(c). Absorption of a co-polarised detection pulse was forbidden due to

Pauli-blocking, since co-polarised hole spins may not occupy the same quantum

state.

The amplitude of the X+ peak is directly proportional to the hole spin

projection Sz and thus the co/cross detection pulses directly map the purity of

the prepared spin. Figure 4.1(d) illustrates the creation of the additional electron

hole pair in the conduction and valence bands in the quantum dot. Finally the

carriers tunnel from the quantum dot before the arrival of the next pulse sequence,

13ns later. This was measured as a change in photocurrent through the device as

shown in Fig. 4.1(e).

4.4 Model of spin preparation

The purity of the hole spin preparation is limited by spin mixing generated by

the anisotropic exchange interaction before the electron tunnels from the dot.

Application of the Faraday geometry magnetic field suppresses this spin mixing

since the exciton energy eigenstates become purely circular. In order to understand

better the hole spin preparation purity, an analytical model was constructed.

We first consider the time evolution of the exciton spin state. At time t = 0 a

circularly polarised laser pulse, termed the preparation pulse, with pulse area Θ = π

and FWHM = 0.2 meV, is resonant with one of the neutral exciton transitions. We

assume that this creates a spin-polarized electron-hole pair (exciton) with near unit

probability. The fine-structure splitting ~δfs couples the exciton states X0
⇑ and X0

⇓

and causes the exciton spin to precess. This is modeled by a 2×2 Hamiltonian with
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a Zeeman splitting of ~ωz and a fine-structure splitting ~δfs as seen in eqn 4.1.

H = ~
2

ωz δfs

δfs −ωz

 . (4.1)

The eigenvectors |ψ±〉 of the Hamiltonian H are

|ψ+〉 = sin(θ) |⇑↓〉+ cos(θ) |⇓↑〉

|ψ−〉 = cos(θ) |⇑↓〉 − sin(θ) |⇓↑〉 (4.2)

where θ is a mixing angle given by tan(2θ) = −δfs/ωz and |⇑↓〉 and |⇓↑〉 are the

exciton spin states. The eigenvalues of H are

λ = ±~
2
√
ω2
z + δ2

fs. (4.3)

A σ− polarized preparation pulse creates an exciton of spin |⇓↑〉 and a σ+ polarized

preparation pulse creates an exciton of spin |⇑↓〉. The states can be expressed as

linear combinations of the eigenvectors:

|⇓↑〉 = sin(θ) |ψ+〉+ cos(θ) |ψ−〉 .

|⇑↓〉 = cos(θ) |ψ+〉 − sin(θ) |ψ−〉 . (4.4)

Consider the case where the preparation pulse has σ− polarisation. At a time t> 0

the state evolves and accumulates a relative phase determined by the eigenenergy

λ. The spin state |⇓↑〉
∣∣∣∣∣
t>0

may then be written.

|ψ(t)〉 = sin(θ) |ψ+〉 eiλt + cos(θ) |ψ−〉 e−iλt (4.5)

We now consider the probababilty P⇑↓ at at time t measuring the exciton state |⇑↓〉

84



Fast high fidelity hole spin initialisation

by projecting |ψ(t)〉 onto the spin up basis:

P⇑↓ =
∣∣∣∣∣ 〈⇑↓ |ψ(t)〉

∣∣∣∣∣
2

(4.6)

= sin2(2θ)sin2(λt) (4.7)

Similarly the probability P⇓↑ of measuring the exciton state |⇓↑〉 can be found by

projecting onto the spin down basis.

P⇓↑ =
∣∣∣∣∣ 〈⇓↑ |ψ(t)〉

∣∣∣∣∣
2

(4.8)

= 1− (sin2(2θ) sin2(λt)) (4.9)

From Equations 4.7 and 4.9 we can see that the total neutral exciton state

population, which we define as P+, and the difference in neutral exciton state

population which we define as P−, can be written as

P+ = P⇓↑ + P⇑↓ = e−ΓXt (4.10)

P− = P⇓↑ − P⇑↓ =
[
1− 2 sin2(2θ) sin2(λt)

]
e−ΓXt, (4.11)

where a phenomenological exciton decay rate ΓX0 = Γe+Γr ≈ Γe has been introduced

to account for electron tunneling and radiative recombination at rates Γe and Γr

respectively.

So far we have constructed equations for the time evolution of the neutral

exciton. We must now consider how the neutral exciton states map onto the hole

spin states by considering the decay paths of the neutral exciton and hole states.

Figure 4.3 is a schematic diagram of the decay paths of the neutral exciton states

and the hole states. The exciton spin states decay by electron tunneling to the hole

spin states with a rate Γe. The exciton spin states may also decay by radiative

recombination to the crystal ground with a rate Γr. The hole spin states decay by

hole tunneling to the crystal ground state with a rate Γh. We neglect hole spin

relaxation between the hole spin states since it is on the order of a few µs [39]. By
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Figure 4.3: Schematic diagram of the decay paths of the neutral exciton states X0
⇓

and X0
⇑ and hole spin states h⇓ and h⇑. After the preparation pulse prepares the exciton

states, they may decay by electron tunneling with a rate Γe ≈ 30 ps−1 or by radiative
recombination, with a rate Γr ≈ 1 ns−1. For this dot under an applied bias of −0.8 V,
the exciton decay is dominated by electron tunneling to the hole states. The hole states
decay to the crystal ground state by hole tunneling with a rate Γh ≈ 1/2 ns−1 at a bias of
−0.8 V. By considering this diagram, a set of rate equations are constructed, which relate
how the exciton state populations are mapped onto the hole spin state populations.

inspection of Fig. 4.3, we can construct the following set of rate equations for the

occupation of the hole spin states |h⇓〉 and |h⇑〉

ḣ⇓ = ΓeP⇓↑ − Γhh⇓

ḣ⇑ = ΓeP⇑↓ − Γhh⇑

ḣ+ + Γhh+ = ΓeP+ (4.12)

ḣ− + Γhh− = ΓeP−, (4.13)

where h⇑(⇓) are the hole spin up(down) state populations, and ḣ⇑(⇓) are the rate of

change of the hole spin up(down) state populations. We define ḣ+ = ḣ⇑ + ḣ⇓ as
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the rate of change of the total hole spin population and ḣ− = ḣ⇑ − ḣ⇓ as the rate

of change in the difference in hole spin population. We also define h− = h⇑ − h⇓

and h+ = h⇑ − h⇓ as the difference and sum of the hole spin state populations

respectively. Equations 4.12 and 4.13 have the form

ẏ + αy = Q (4.14)

which has the general solution y = e−I
[∫ t

0 Qe
Idt+ c

]
where I =

∫
αdt. On solving

the differential equations 4.12 and 4.13 to find h+ and h−, we find the hole spin

contrast C and fidelity F as:

C = 2F − 1 = lim
ΓX t>>1

(
h−
h+

)
= 1−

(
δ2
fs

δ2
fs + ω2

z + (ΓX − Γh)2

)
. (4.15)

The fidelity F in eqn 4.15 is a measure of the purity of the preparation of a single

hole spin. From 4.15 we can see that (i) F is limited by a competition between the

fine-structure splitting and electron tunneling rate, and (ii) For large B-fields where

ω2
z >> δ2

fs, F −→ 1 since the eigenstates are transformed from linear to circular.

4.5 Results

In order to investigate the hole spin preparation, a series of photocurrent

measurements were made. To show how the fidelity of preparation improves

with the application of a magnetic field, two sets of example spectral measurements

are presented in this section. The first without an applied magnetic field, and the

second with an applied magnetic field of B = ±3 T.

4.5.1 Hole spin preparation without an applied magnetic

field

Figure 4.4(a) shows a single pulse measurements of the neutral exciton without an

applied magnetic field. First, the photocurrent was measured as the preparation
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Figure 4.4: a) Single pulse neutral exciton 0 −→ X0 spectra for σ− (red squares)
and σ+ (black triangles) excitation polarisation. b) Two pulse charged exciton h −→ X+

spectra using cross (black crosses) and co (red circles) polarisation. With a time delay of
∆τD = 160ps, the photocurrent was measured as the detection pulse was tuned through
resonance with the h −→ X+. For the case of cross polarised detection, a clear peak,
with amplitude PC+− can be seen. In the case of co-polarised detection, a smaller peak
of amplitude PC++ can also been seen. The charged exciton spectra have been offset for
clarity

pulse, with pulse area Θ = π, was tuned through the 0→ |X0〉 transition using σ+

(black triangles) σ− (red squared) polarisation. This was done in order to determine

the optical frequency of the preparation pulse. Without a magnetic field, as in Fig.

4.4(a), the X0 peaks occur at the same energy using σ+ and σ− polarisation.

With the preparation pulse resonant with the neutral exciton, the photocurrent

was measured as a function of the detuning of a second pulse named the detection

pulse. The detection pulse had pulse area Θ = π and co or cross circular polarisation

with respect to the preparation pulse. With time delay of τD = 160 ps, an additional

peak appeared in the photocurrent spectrum at ∼ +1.3 meV detuning with respect

to the X0. This peak is shown in the case of B = 0 T in Fig. 4.4(b) for cross-circular
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polarisation (black crosses) and co-circular polarisation (red circles). The additional

peak, which is present for both co and cross polarisation at B = 0 T is attributed

to the the charged exciton X+. This peak can be attributed to the charged exciton

because of the following: 1) The peak was only present in the two pulse spectrum.

2) The signal increased exponentially with the τD indicating it resulted from the

decay of the X0 state. 3) The peak occurred at ∼ 1 meV higher energy than the

X0. Negatively charged excitons are red shifted with respect to the |X〉0 state [34].

4) The polarisation selection rules were consistent with the expected behaviour for

the |h〉 → |X+〉 transition.

The selection rules of the charged exciton transition are presented in the

energy-level diagram of Fig. 4.2 (c). Absorption of the detection pulse as it is

scanned through resonance with the |h〉 → |X+〉 transitions is conditional on the

spin of the hole. In the case of perfect spin preparation, absorption of a detection

pulse co-polarized with respect to the preparation pulse is forbidden due to Pauli

blocking. By contrast, absorption of a cross-polarized detection pulse is allowed,

resulting in a change of photocurrent proportional to the occupation of the hole spin

state, selected by the polarisation of the detection pulse. In Fig. 4.4(b) a strong X+

peak was observed for cross polarised detection and is labelled with a photocurrent

amplitude PC+−. However, a weaker peak is also observed for co-polarised detection

and is labelled with a photocurrent amplitude PC++. The presence of this peak

indicates that the hole spin was not prepared purely in the h⇓ state, in this case of

B = 0 T.

4.5.2 Hole spin preparation with an applied magnetic field

B = ±3 T

The neutral exciton X0 and charged exciton X+ spectra will now be presented in

the case of an applied magnetic field B = ±3 T. The data was collected in the

same manner as in the case of zero applied magnetic field. Figure 4.5(a) shows

the single pulse neutral exciton spectra in an applied magnetic field B = 3 T
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Figure 4.5: a) Single pulse neutral exciton 0 −→ X0 spectra for σ− (red triangles) and
σ+ (black triangles) excitation polarisation. The neutral exciton spectra are split by the
Zeeman energy. (b) and (c) Two pulse charged exciton h −→ X+ spectra using cross (black
crosses) and co (red circles) polarised detection, in an applied magnetic field of B = +3 T
(c) and B = −3 T (b). With a time delay of ∆τD = 160 ps, the photocurrent was measured
as the detection pulse was tuned through resonance with the h −→ X+ transitions. The
red and black arrows (left to right) indicate which X0 state was prepared. In both cases
(b) and (c) clear peaks, with amplitudes PC+− (c) and PC−+ (b) can be seen using cross
polarised detection. In the case of co-polarisation, no peak can be seen. This indicates that
the hole spin has been prepared purely in the h⇑ state for (c) and h⇓ for (b) The dotted
lines in (b) and (c) indicate the expected position of the X+ for the case of imperfect spin
preparation. The charged exciton spectra have been offset for clarity

using σ− polarisation (red triangles) and σ+ polarisation (black triangles). With

an applied magnetic field, the X0 is split into a Zeeman doublet, with well defined

circular polarisation. Using σ+ polarisation prepares the X0
⇑ state, and using σ−

polarisation prepares the X0
⇓ state. The X0 splitting was measured as a function of

applied magnetic field and the results are presented in Fig. 4.6. An out of plane

g-factor for the neutral exciton, gX0 = 1.69± 0.05 was extracted from a linear fit to

the data according to ∆E = gX0µBBz.

Figure 4.5(c) shows the photocurrent measurement of the charged exciton with
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Figure 4.6: The energy spitting of the neutral exciton as a function of applied magnetic
field Bz. Gaussian fits are made to the Zeeman split neutral exciton peaks to determine
the energy splitting ∆E at each magnetic field Bz. By fitting the data (red line) to
∆E = gµBBz, where µB is the Bohr-magneton, an exciton g-factor is extracted

an applied magnetic field B = 3 T using both cross (black crosses) and co (red

circles) polarisation. The preparation pulse with σ+ polarisation prepared the

neutral exciton state X0
⇑. For the case of cross polarised detection, a clear peak, with

amplitude PC+− can be seen in Fig. 4.5(c). This transition is allowed according to

the selection rules in Fig. 4.2. In the case of co-polarised detection, no peak can be

seen. This indicates that the hole spin was prepared purely in the h⇑ state in this

case. The dotted lines in Fig. 4.5(b) indicate the expected position of the X+ for

the case of imperfect spin preparation.

To further confirm the high purity of spin preparation, the magnetic field

direction was reversed and the photocurrent spectra of the X+ are presented in

Fig. 4.5(b). In this case the X0
⇓ state was prepared. A strong peak labelled PC−+ is

observed using cross polarisation. Again no X+ peak was observed for co polarised
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pulses, confirming the high fidelity spin preparation. From the Zeeman splitting of

the charged exciton, a g-factor, gX+ = 1.69 ± 0.05 was obtained and gX+ = gX0 as

expected.

4.6 Magnetic field dependence

The purity of hole spin preparation is quantified by the experimental fidelity FPC ,

defined as:

FPC = PC+−

PC++ + PC+−
, (4.16)

where PC+− is the amplitude of the photocurrent peak for the charged exciton

using cross polarised preparation and detection and PC++ is the amplitude of

the photocurrent peak for the charged exciton using co polarised preparation and

detection.

Figure 4.7 shows an example of a series of photocurrent spectra of the X+ as a

function of magnetic field. In order to quantify the amplitude of the peaks PC+− and

PC++, Gaussian fits were made to the data. For large magnetic fields where PC++

can not be resolved, an estimate of the amplitude was made. The estimate ε is the

variance of the photocurrent noise, ε = σ/
√
N , where σ is the standard deviation in

the photocurrent within the FWHM of the peak position and N the number of data

points within this range. The peak position was found by reversing the magnetic

field direction. A set of spectral measurments for magnetic fields (−4 ≤ Bz ≤ +4) T

were made to investigate the hole spin preparation fidelity.

Figure 4.8 shows the measured fidelity as a function of applied magnetic field at

a gate voltage of -0.8 V. The fidelity was observed to increase strongly as a function

of B from 81% at B = 0 T to w 100% for B ≥ 1T . The experimental data were

fit according to eqn. 4.15 using two fitting parameters δfs = 2π/(225 ± 25) ps−1

and (ΓX − Γh) = 1/(28 ± 4) ps−1. The fitting paramaters are in good agreement

with previous measurements of ΓX = 1/30 ps−1 and δfs = 1/230 ps−1 on this dot

as measured by inversion recovery measurements [5], [77], [96]. The functional
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Figure 4.7: Series of photocurrent spectra of the X+ as a function of increasing magnetic
field from B = 0 T (a) to B = −0.75 T (f). Black(red) are the data points for cross(co)
polarised preparation an detection pulses. Black(red) solid lines are Gaussian fits to the
data.

dependence of F with magnetic field is in excellent qualitative agreement with the

model.

4.7 Voltage dependence

The dependence of the fidelity on the electron tunneling rate was also investigated

by measuring FPC as a function of gate-voltage at B = 0 T. A series of photocurrent

measurements of PC++ and PC+− were made. The results are presented in Fig. 4.9.

For increasing gate-voltage and hence electron tunneling rate, a rise in the measured

fidelity was observed.

The red lines in Fig. 4.9 show a calculation of the range of possible values

for F using known tunneling rates [5] and the fine-structure splitting determined

from the fitting in Fig. 4.8. The range in values for the calculation, bound within
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Figure 4.8: Hole spin preparation fidelity as a function of magnetic field. The red line
is a fit to eqn 4.15. Each data point was found using the photocurrent amplitudes for the
X+ with co and cross polarisation, and by calculating FPC . For B ≤ 1 T, errors were
calculated using the least squares fitting. For B ≥ 1 T, where the co-polarised peak cannot
be resolved, error bounds were calculated using the variance of the photocurrent noise ε/2.

the solid lines of Fig. 4.9 take into account the range in values of the parameters

ΓX = 1/(28 ± 4)ps−1 and δfs = (2π/(225 ± 25))ps−1. There is good agreement

between the model and the experiment. A contributing factor to any discrepancy

may be related to neglecting a small variation in the fine-structure splitting with

gate-voltage [96].

The results in Fig. 4.9 indicate that increasing the gate voltage improves the

spin preparation by decreasing the time available for the exciton spin to precess.

However, by increasing the static gate voltage there is a trade off between improving

the fidelity of the hole spin preparation and reducing the lifetime of the hole. In

principle, this may be overcome through dynamic control of the tunneling rates using

voltage modulation [62], [80]. Further improvements could be made by optimizing

the tunnel barriers in the device to achieve faster and slower electron and hole
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Figure 4.9: Hole spin preparation fidelity as a function of applied reverse bias at
B = 0 T. Two (red) lines indicate range of calculated values of F using eqn. 4.15 with
ωz = 0. Each data point was found using the photocurrent amplitudes for the X+ with
co and cross polarisation by, and calculating FPC . The errors were calculated using least
squares fits.

tunneling rates respectively.

4.8 Summary

To summarize, the fast (1/e time of 30 ps), triggered, high fidelity (F > 99%)

initialisation of a single hole spin in a Faraday geometry magnetic field has been

demonstrated by using a picosecond laser pulse and an electrical detection technique.

The speed of preparation, limited by the electron tunneling rate, is compatable with

gate times used in the coherent control experiments.

The purity of the hole spin preparation was limited by the mixing between the

electron and hole spins, generated by the anisotropic exchange interaction before the

electron tunneled from the dot. For the dot presented here, with a fine-structure
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splitting of δfs = 2π/(225 ± 25) ps−1, a gate voltage of −0.8 V, and a strong 4-T

magnetic field, the model predicts a fidelity of 99.9% for the hole spin preparation.

By reducing δfs and the strength of spin mixing, for example by using techniques

such as thermal annealing [26], strain tuning [29] and growth on (111)B substrates

[30], [31], similarly high fidelities could be achieved at significantly lower magnetic

fields.
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Hole spin precession and

measurement of dephasing time

5.1 Introduction

The principal source of dephasing of an electron spin trapped on a semiconductor

quantum dot is the nuclear spins of the crystal lattice [50],[98]. Since the heavy hole

has a p-type, rather than s-type wavefunction, the hyperfine interaction experienced

by the hole is about one tenth of that of the electron due to the suppression of the

contact hyperfine interaction [13], [53], [54]. This has stimulated interest in using

the hole spin as a qubit, encouraged by measurements of hundreds of µs lifetimes

[39] and high visibility dips in coherence population trapping (CPT) experiments,

suggesting coherence times in the microsecond regime [16]. However, as yet there is

no evidence for the creation of a superposition state that survives in the absence of

a driving laser, nor a direct measurement of T ∗2 . This is an important prerequisite

for the coherent control of a single hole spin. Important steps towards using a hole

spin as a qubit include the initialisation of a single hole spin [43], [41], [99] and a

demonstration of a non-general single qubit operation [41]. By comparison, there

are a number of reports of the precession of a single electron spin [100] and the

coherent optical control of the electron spin [11],[12], [89].
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In this chapter, the observation of the precession of a single heavy-hole spin

confined to an InAs/GaAs quantum dot in an in-plane magnetic field is presented,

the signature of a coherent superposition of the energy-eigenstates of the hole

spin. The superposition is created through the fast (10 − 100 ps) ionisation of a

spin-polarised electron-hole pair, where the electron tunnels from the dot to leave a

spin-polarized hole. The contrast of the spin precession is found to have a maximum

value of close to one half, when the in-plane hole Zeeman energy is tuned into

resonance with the effective fine-structure splitting of the bright neutral exciton.

From the decay of the hole spin precession, a dephasing time T ∗2 = 12.2− 17.8 ns is

deduced. This value is compatible with dephasing due to fluctuations in a nuclear

magnetic field acting on the hole spin, and is 7-10 times longer than for an electron

spin confined to an InAs/GaAs quantum dot [59].

5.2 Sample details

These measurements were performed on the sample labelled VN382 CAM2 Aperture

B3200 mounted in a Voigt geometry. Importantly, in the reverse bias regime, the

electron tunneling rate, Γe ≈ 90 ps−1 (Vbias = −0.8 V), is much greater than the

rates of hole tunneling Γh ∼ 3 ns−1, radiative recombination Γr ≈ 1 ns−1 and the

fine structure splitting δ1 = 2π/236 ps−1. Therefore, after resonant excitation the

neutral exciton transition, the electron quickly tunnels out of the quantum dot, to

leave a spin polarized hole. This will be explained in the following section

5.3 Principle of operation

The principle of operation for the preparation and detection of a coherent

superposition state is introduced here. Figure 5.1 shows a schematic band diagram

of the spin states of the quantum dot in the Schottky diode structure. This is

is accompanied by the energy-level diagram in Fig. 5.2, which shows the neutral

exciton (a), the hole spin states (b) and the charged exciton (c). These figures
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Figure 5.1: Principle of operation for preparing and detecting the hole spin. Each panel
is a schematic diagram of the Schottky diode. The electron and hole spin states within the
quantum dot are denoted by solid red arrows and non-solid red arrows respectively. (a)
Preparation: A σ± polarised π pulse resonant with X0 creates a spin-polarised electron
hole pair. (b) Ionisation: Under the applied bias the electron tunnels from the dot to leave
a spin-polarised hole. (c) Detection: a σ± polarised π pulse resonant with the positively
charged exciton X+ creates an additional electron hole pair, conditional on the spin state
of the prepared hole. This can be measured as a change in photocurrent through the device
after the carriers tunnel from the dot (d)

illustrate the steps (a)-(d) involved in preparing and reading out the hole spin and

these will be explained in turn shortly. Figure 5.1 (e) shows the geometry for the

experiments. The magnetic field was applied in-plane, in the x-direction, and the

laser pulses propagated in the z-direction. Throughout this discussion, the hole

spin states up |⇑〉 and down |⇓〉 and the electron spin states up |↑〉 and down |↓〉 are

defined to be in the z-direction. Initially the dot was in the crystal ground state.
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Figure 5.2: Energy-level diagram in Voigt geometry magnetic field. (a) The neutral
exciton has 4-states: two bright (|Bα〉, |mJ | = 1) and two dark (|Dα〉, |mJ | = 2). After
preparing the neutral exciton, the electron tunnels from the dot to leave a spin polarised
hole state as indicated by the dashed blue lines (b) The hole spin states are aligned parallel
and anti-parallel with respect to the magnetic field: |h〉, |h̄〉. (c) The corresponding positive
trion states are |T 〉 = |hh̄e〉, and |T̄ 〉 = |hh̄ē〉. The labels X and Y indicate the polarisations
of the transitions.

5.3.1 Preparation of spin polarised neutral exciton

The first laser pulse (Fig. 5.1 (a)) was used to prepare the hole spin through

ionization of a spin-polarised electron-hole pair [41], [8]. The preparation pulse

had a pulse-area of π and was σ+-circularly polarised. The polarisation of the

preparation pulse σ+ carrying angular momentum mJ = +1 transfers +1 unit of

angular momentum to the exciton. Therefore resonant excitation of the bright

neutral exciton with a π pulse and σ+ polarisation creates an electron-hole pair |↓⇑〉

with high probability. Figure 5.1(a) illustrates the preparation of the spin polarised

electron hole pair within the quantum dot, indicated by the spins ⇑ and ↓.

Figure 5.2 (a) shows an energy level diagram of the energy eigenstates
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of the neutral exciton in the Voigt geometry. There are four neutral exciton

states in Fig 5.2, the bright states |Bx,y〉 with angular momentum |mJ | = 1

and the dark states |Dx,y〉 with angular momentum |mJ | = 2. The prepared

exciton state |⇑↓〉 is a superposition of the bright exciton states |Bx,y〉 with some

dark-exciton |Dx,y〉 component due to admixing by the in-plane magnetic field. The

superposition evolves in time due to the energy-splitting Ebb between the bright

exciton states, which is a combination of the in-plane Zeeman energies EhZ , EeZ ,

and the electron-hole exchange energies. More details of the neutral exciton in the

Voigt geometry can be found in section A.1 and with reference to Fig. A.4.

5.3.2 Ionisation of the neutral exciton: hole spin

preparation

Figures 5.1(b) and 5.2 (b) show the electron tunneling from the dot under the

applied electric field. Provided that the time evolution of the neutral exciton state,

due to the energy splitting Ebb, is slow compared to the electron tunneling rate, the

resulting state is a hole with a net spin. For example, using a σ+ preparation pulse

to prepare a neutral exciton with spin |⇑↓〉, prepares a hole spin |⇑〉, and conversely,

using σ− preparation pulse to prepare the state |⇓↑〉, prepares the hole spin state

|⇓〉. The hole tunneling rate is much slower than the electron tunneling rate, due to

its increased effective mass, and due to an AlGaAs blocking barrier, as discussed in

section 3.3. The factors that determine the purity of the hole spin preparation will

be discussed later.

5.3.3 Precession of the hole spin

The energy eigenstates of the hole spin |h〉 and |h̄〉 in Fig. 5.2 are aligned parallel

and anti-parallel with respect to the magnetic-field direction. The hole spin-up |⇑〉

is a superposition of these states |⇑〉 = 1√
2(|h〉+

∣∣∣h̄〉), and consequently the hole spin

precesses about the magnetic field, as the |h〉 and
∣∣∣h̄〉 states accumulate a relative

phase due to the in-plane hole Zeeman splitting, EhZ . The wavefunction of the
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superposition state has the form:

|ψ(t)〉 = 1√
2
(
eiωht/2 |h〉+ e−iωht/2

∣∣∣h〉) , (5.1)

where ωh = ∆EhZ/~ = ghµBB/~ is the precession frequency due to the hole Zeeman

energy splitting between the states, and gh is the in-plane hole g-factor. The energy

splitting between the hole spin states |h〉 and |h̄〉 is shown in Fig. 5.2(b).

Figure 5.3 shows the Bloch sphere representation of the precession of the Bloch

vector about the magnetic field. The blue arrow represents the Bloch vector which

initially points in the z-direction, it depicts the initial hole spin state |⇑〉. The Bloch

vector then precesses about the x-axis (magnetic field direction) at a frequency ωh.

Therefore, the Bloch vector oscillates between hole spin up ⇑ and hole spin down ⇓,

which modulates the spin z-component between maximum and minimum values of

±1 in the ideal case of perfect spin preparation.

5.3.4 Detection

A second laser pulse, named the detection pulse, was used to measure the hole spin

z-component. It arrived at a time τD after the preparation pulse. The detection pulse

of pulse-area π and circular polarisation, was tuned into resonance with the hole to

positive trion transition. It created an additional electron hole pair, conditional on

the spin state of the hole, due to Pauli blocking. The detection pulse had co/cross

circular-polarisation σ± w.r.t. the preparation, and selected either the hole spin

up or down state to map to the trion state. Figure 5.1(c) shows the excitation of

an additional electron-hole pair when cross polarised preparation and detection is

used. When the additional carriers tunnel from the dot, a change in photocurrent is

detected, which is proportional to the occupation of the selected hole spin state [41].

The tunneling of the additional carriers from the dot is illustrated in Fig. 5.1(d).

By writing the hole spin projections in the z-direction |⇑〉 and |⇓〉 in terms of

the eigenstates |h〉 and
∣∣∣h̄〉; | ⇑〉 = 1/

√
2
(
|h〉+ |h̄〉

)
and | ⇓〉 = 1/

√
2
(
|h〉 − |h̄〉

)
,
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Figure 5.3: A Bloch sphere representation of the hole spin state evolution. Using a
σ+ preparation pulse prepares a hole spin up |⇑〉. The hole spin up state is represented
by a Bloch vector (large blue arrow) in the z-direction. The prepared spin state | ⇑〉 is
perpendicular to the magnetic field direction (x) and thus the spin vector precesses about
the x-axis. Also shown (lower right) is the Voigt experimental geometry.

we can calculate the time evolution of the probability of measuring a particular

spin z-component by projecting eqn 5.1 onto the spin states |⇑〉 and |⇓〉. In the

measurements, this corresponds to measuring a change in photocurrent proportional

to the hole spin z projection, which is given by:

∆PCcross = A |〈⇑ |ψ(t)〉|2 = A cos2(ωht/2) (5.2)

∆PCco = A |〈⇓ |ψ(t)〉|2 = A sin2(ωht/2) (5.3)

∆PCcross −∆PCco = A cos(ωht) (5.4)

Here A is the maximum measured photocurrent for the h−X+ transition, which is

determined by the carrier tunneling rates and photodiode detection efficiency. Thus

by measuring the amplitude of the charged exciton spectra, using both co and cross
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circularly polarised preparation and detection pulses, as a function of the time delay

between the pulses, it’s possible to map out the hole spin z-projection in time, and

observe the coherent precession of the spin about the magnetic field.

5.4 Results

The main results of this chapter will now be presented. The results show the

observation of the precession of a single hole spin trapped in a quantum dot, a

signature of the preparation of a coherent superposition of the hole spin state. This

was achieved by measuring a series of photocurrent spectra of the charged exciton

vs the inter-pulse time delay τD. An example spectral measurement, with a time

delay τD = 130 ps, and an applied a magnetic field B = 4.7 T, is presented in Fig.

5.4. Figure 5.4 contains six different spectra which will be described in the following

sections.

Analysis of single and two pulse spectral measurements

Figure 5.4 shows the single pulse photocurrent measurements of the neutral exciton

using σ− and σ+ polarisation in the green and blue respectively. The photocurrent

was measured as the laser was tuned through the neutral exciton resonance, which is

labelled X0
bright in Fig. 5.4. This was done in order to determine the frequency of the

preparation pulse. The dot of interest is labelled quantum dot A, the dots labelled

B and C are of sufficiently large detuning to be ignored. For all the measurements,

the preparation pulse had a pulse area Θ = π, which was calibrated using the

neutral exciton Rabi-rotation, as described in the methods chapter section 3.7.2. In

addition to the bright exciton peak in Fig. 5.4, a smaller shoulder peak is present at

∼ −0.3 meV detuning. This peak is the contribution from the dark exciton |M | = ±2

states and is labelled |X0
dark〉 in Fig. 5.4. More details about dark excitons can be

found in the appendix sections A.1, A.2 and A.3.

With the preparation pulse resonant with the neutral exciton, the photocurrent

was measured as a function of the detuning of the detection pulse. The detection
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Figure 5.4: . Photocurrent spectra of neutral and positively charged exciton. Green
and blue: single π pulse spectra of the neutral exciton using σ− and σ+ excitation
respectively. Red and Black: two pulse measurements of the charged exciton. Pink and
light blue: the single pulse photocurrent spectra (green and blue) are subtracted from the
two-pulse photocurrent spectra (red and black)to remove photocurrent contribution from the
neighbouring quantum dots B and C. The important feature of these measurements are the
photocurrent amplitudes of the X+ peaks for co and cross circularly polarised preparation
and detection.

pulse had co or cross circular polarisation w.r.t the preparation, and pulse area

Θ = π. With a detection time delay τD = 130 ps an additional peak was observed

at ∼ +1meV detuning with respect to the X0 peak. This peak was not present in

the single pulse measurements in Fig. 5.4 (green and blue). The additional peak is

shown in the red and black in Fig. 5.4 and is labelled |X+〉. The additional peak is

attributed to the h−X+ transition for reasons described in chapter 4, section 4.5.

The pink and light blue data in Fig. 5.4 are the two-pulse measurements of the

X+ with the single pulse measurements subtracted. The subtraction was done in

order to remove unwanted photocurrent contribution from the preparation pulse,

and from neighbouring dots. The amplitudes of the resonances for co and cross
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circular excitation were determined from Gaussian fitting and are labelled in Fig.

5.4 with PC++ and PC+− respectively. These amplitudes are the most important

features of Fig. 5.4 since they were used to determine the hole spin z-component

according to:

SZ = PC+− − PC++

PC+− + PC++
(5.5)

= PC+− cos2(ωht/2)− PC++ sin2(ωht/2)
PC+− + PC++

(5.6)

= C cos(ωht). (5.7)

Here, C is the spin contrast, ωh is the precession frequency of the hole, and τD the

detection pulse time delay. A set of spectral measurements similar to those presented

in Fig. 5.4 were made as a function of τD in order to map out the evolution of the

hole spin. For each time delay, the amplitude of the X+ was determined and the

results are presented in the following.

5.4.1 Time dependence of X+ amplitudes.

Figure 5.5 presents a series of two-colour spectra of the X+ over a 190-ps time delay

range, with an applied magnetic field B = 4.7 T. The amplitudes of the h − X+

peaks for co and cross circular excitation, PC++ and PC+−, oscillate in anti-phase

with the time-delay τD. PC++ and PC+− are plotted as a function of τD in Fig. 5.6.

The normalised difference in photocurrent amplitudes is proportional to the hole

spin z-component as described in eqn 5.7. This is a time resolved measurement of

the coherent precession of the hole spin about the magnetic field and demonstrates

that the preparation pulse has created a coherent superposition of the hole spin

eigenstates: 1/
√

2(|h〉 ±
∣∣∣h̄〉).

5.4.2 Magnetic field dependence of the hole spin precession

A set of measurements of the trion peak amplitude oscillations were made as a

function of magnetic field, in order to confirm that the photocurrent oscillation
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Figure 5.5: . A example set of two-pulse measurements of the charged exciton X+ using
co and cross (red and black) circularly polarised preparation and detection pulses over one
period of the hole spin precession. The data are vertically offset for clarity. Each set
of measurements (red and black) is labelled with the time delay between preparation and
detection τD. The solid red and black lines are Gaussian fits to the data.

results from a superposition of the two Zeeman split hole spin states. The results

are presented in Fig. 5.7. The left column in Fig. 5.7 is set of measurements

of PC++ and PC+− (red and black) as a function of time delay for four different

magnetic fields (top to bottom). The frequency of the oscillation increases with

applied magnetic field, confirming that the oscillation results from a superposition

of hole spin states separated in energy by the Zeeman splitting. The pink data points,

in the left column in Fig. 5.7, are the sum of the co and cross charged exciton peak
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Figure 5.6: Photocurrent amplitude of the charged exciton X+ as a function of time
delay τD for co polarised (black) and cross polarised (red) preparation and detection.

amplitudes PC+− + PC++, a measure of the total hole spin population. There is

an initial fast rise in the photocurrent as the electron tunnels from the dot under

the applied electric field and the neutral exciton decays into the hole states. This

is followed by a much slower decay, where the hole tunnels from the dot. The solid

pink line is a fit to equation A.6 to extract the electron and hole tunneling rates,

which is described in section A.5.

The right hand column in Fig. 5.7 is the hole spin z-component as a function

of time delay for each magnetic field. The hole spin z-component oscillates between

a value ∼ ±0.4, depending on the magnetic field. The precession frequency is

determined by the Zeeman splitting between the hole spin states |h〉 and
∣∣∣h̄〉, which

is given by ~ωh = ghµBB. The solid navy lines in Fig. 5.7 are fits of the spin

precession data to eqn 5.7, to extract the frequency ωh and the amplitude or contrast

C of the spin precession for each magnetic field. The frequency of the precession
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Figure 5.7: Hole-spin precession as a function of applied magnetic field. The left column
is set of measurements of the photocurrent amplitudes of the charged exciton for co and
cross-polarised preparation and detection (red and black) as a function of time delay for
four different magnetic-fields (top to bottom). The pink data points are the sum of the co
and cross charged exciton peak amplitudes, a measure of the total hole-spin population. The
solid pink line is a fit to equation A.6 to extract the electron and hole tunneling rates. The
right hand column is the corresponding hole-spin z-component as a function of time-delay
for each magnetic-field. The solid navy line is a fit to a cosine function to extract the
frequency, phase and amplitude of the oscillation. The contrast of the oscillation or spin
z-component is given by the normalised difference between cross and co-circular excitation:
SZ = (PC+− − PC++)/(PC+− + PC++) as presented in the right-hand panel.
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Figure 5.8: Hole spin precession energy ∆Ermh = ~ωh = ghµBB as a function of applied
magnetic field. The precession energy as determined by the frequency of the fits ωh in fig.
5.7 is extracted from fitting the spin oscillations from fig. 5.7. The solid red line is a linear
fit to the data. An in plane hole g-factor gh = 0.079± 0.004 is extracted from the fit

has a linear dependence on the applied magnetic field as shown in Fig. 5.8, and a

fit to ~ωh = ghµBB gives an in-plane hole g-factor gh = 0.079 ± 0.004 at a bias of

Vbias = −0.8 V. The in-plane hole g-factor is small but non-zero as expected for a

dot with finite asymmetry [23].

5.4.3 Magnetic field dependence of fidelity of hole-spin

preparation

The amplitudes of the oscillations in the hole spin z-component were used to quantify

the contrast C of the spin preparation and provide a measure of the purity of the

prepared coherent superposition state. A value of C = 1 indicates perfect spin

preparation. The amplitude of the precession is plotted as a function of magnetic

field in Fig. 5.9. In the previous chapter, we saw how the fine structure of the neutral
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Figure 5.9: Hole spin precession contrast as a function of applied in-plane magnetic
field. The amplitudes of the oscillations in the hole spin (see for example fig. 5.7) provide
a measure of the purity of the prepared coherent superposition state, which is termed the
contrast. The red lines are calculations based on the model of the spin preparation described
in section A.6 using the measured values of the electron and hole tunneling rates Γe(B), Γh,
the bright-bright splitting ∆ Ebb(B) and the mixing angle θ(B). The varying calculations
take into account the uncertainty in the measured parameters.

exciton results in reduction of C. Intuitively, one might expect that an increasing

effective fine-structure splitting in a Voigt geometry magnetic-field would result in

a reduction of the contrast C. However C was found to increase with magnetic field

as shown in Fig. 5.9.

The details of the model of the spin preparation fidelity can be found in section

A.6, where the spin contrast is shown to be given by:

C = lim
Γet�1�Γht

h⇑ − h⇓
h⇑ + h⇓

(5.8)

C = 1
2 cos (2θ)[f(ωh − ωbb) + f(ωh + ωbb)] (5.9)

f(a) = (Γe − Γh)2

(Γe − Γh)2 + a2 , (5.10)
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where θ is the mixing angle between bright and dark excitons, Γe and Γh are the

electron and hole tunelling rates, ωh the hole spin precession frequency and ~ωbb the

energy splitting or effective fine structure of the bright neutral exciton. Equation

5.9 is a Lorentzian function which is resonant when ωh = ωbb. With increasing

magnetic field up to B ∼ 4T, the hole precession energy is tuned into resonance

with the bright-bright fine structure splitting, which improves the spin contrast.

The solid red lines in Fig. 5.9 are calculations from the model described in eqn

5.9 using measured values of the electron and hole tunneling rates Γe(B), Γh, the

bright-bright neutral exciton splitting ∆Ebb(B) and the mixing angle θ(B). These

values were measured in experiments and the details can be found in the appendix

section A. The values of the experimentally determined parameters used in the

calculation are:

1) Γ e(B) = Γ e(0) + kB2, where Γ e(0) = (0.01095 ± 0.0002) ps−1 is the tunneling

rate at zero field (τe(0) ∼ 90 ps−1) and k = (−0.00013 ± 0.00001)ps−1 T−2 is a

curvature constant, which accounts for the helical trajectory of the electron in the

magnetic field as determined experimentally (see section A.5.2).

2) The hole tunneling rate Γh = 1/(3± 0.2) ns−1 (see section A.5.2).

3) A mixing angle given by tan2 θ ≈ (aB)2, where a = (0.085 ± 0.01) T−2 as

determined in section A.2.

4) The bright-bright neutral exciton energy splitting, ∆Ebb = δ1 + KB2, where

δ1 = (16.5± 0.5) µeV and K = (0.13± 0.004) µeVT−2 as determined in section A.4.

5) The in-plane hole g-factor gh = 0.079± 0.004 as determined in Fig. 5.8.

The uncertainty in θ, ∆Ebb and Γe give rise to a range in possible values for the

calculation. From the calculations, it is clear that the contrast takes a maximum
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value when ωh = ωbb , which occurs at magnetic fields B ∼ 4T. The model is in

reasonable quantitative agreement with the data and reproduces the increase in C

with magnetic field.

An interpretation of the spin preparation is as follows. As part of an

electron-hole pair, the hole experiences an additional effective magnetic field due to

the electron via the exchange interaction. Since the electron has components aligned

parallel and anti-parallel to the external magnetic field, the hole spin precesses with

two frequency components, ±ωbb. For the rotating component, if ωh = ωbb, the

precession of the hole spin with or without the electron are synchronized and the

hole spin is unaffected by the removal of the electron. For the counter-rotating

component, the frequency mismatch between the hole spin precession with and

without the electron, combined with the time-uncertainty of the electron tunneling

event, randomizes the phase of the hole spin resulting in a mixed state. The net

effect using a dot with δ1 ∼ 16.5 µeV and Γe ∼ 1/90 ps−1 is a spin-polarized hole

with a contrast of up to one half.

Higher contrasts up to C > 0.9 at B ∼ 2T could be achieved using dots

where the fine-structure can be tuned to zero using techniques such as thermal

annealing [27], [28], strain tuning [29] and growth on (111)B substrates [30], [31].

More details on the effect of the fine-structure splitting can be found in section 5.5

where calculations are performed to explore the effects of zero fine structure splitting

and increased electron tunneling rate.

5.4.4 Hole spin precession as a function of applied bias

In order to understand better the role of the electron tunneling rate in the partial

mixing of the spin, the spin preparation contrast was studied as a function of applied

reverse bias voltage with a constant applied magnetic field B = 4.7 T.

Figure 5.10 shows an example set of measurements of the voltage dependence of

the hole spin precession. The pink data points in Fig. 5.10 show how the electron and

hole tunneling rates increase with applied bias. The tunneling rates are examined
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Figure 5.10: Hole spin precession with an applied magnetic field B = 4.7 T for various
applied bias voltage. The red and black data points are the photocurrent amplitudes of the
charged exciton for co and cross excitation PC+− and PC++. The pink data points are
the sum of the co and cross photocurrent amplitudes PC+−+PC++ with fits to eqn A.6 to
extract the electron and hole tunneling rates. The blue data points are the spin contrast,
(PC+−−PC++)/(PC+−+PC++), fit (solid navy) to a cosine function to extract the spin
amplitude or contrast C and frequency of the spin precession ωh.

in section A.5 and will not be mentioned further here. The red and black data

points in Fig. 5.10 are the amplitudes PC++ and PC+− for co and cross excitation

which oscillate in anti-phase. The blue data points in Fig. 5.10 are the normalised

difference in the the amplitudes (PC++−PC+−)/(PC++ +PC+−), proportional to

Sz. Fits to eqn 5.7 were used to extract the amplitude or contrast C and frequency

of the precession at each voltage.

Spin preparation contrast as a function of applied bias

Figure 5.11 shows the contrast of the hole spin precession as a function of applied

bias, with a constant magnetic field B = 4.7 T. The contrast was found to

increase with applied bias. This is because the contrast is limited by a competition
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Figure 5.11: The spin precession contrast as a function of applied bias voltage, with an
applied magnetic field B = 4.7T . The dashed lines are calculations using eqn A.27 from
the model of the spin preparation in section A.6. The solid lines are fits to the data using
a fitting parameter which gives the voltage dependence of the electron tunneling rate.

between the electron tunneling rate and frequency mismatch between the effective

fine structure splitting and the hole precession energy. The dashed lines in Fig. 5.11

are calculations using eqn 5.9 from the model of the spin preparation in section A.6.

The following parameters were used in the calculation: 1) The measured value of the

mixing angle θ from the magnetic field dependence of the bright dark mixing (Fig.

A.3), where atB = 4.7 T, cos(2θ) = 0.72. 2) The measured value of the bright-bright

neutral exciton splitting or effective fine structure Ebb = 19.7 µeV at B = 4.7 T

and Vbias = −0.8 V. 3) The hole precession energy as a function of applied bias:

~ωh(V ) = (18.4+4.1Vbias) µeV (see section 5.4.4). 4) The voltage dependence of the

electron tunneling rate using the function Γe ∝ exp −V0
Vbias+Vbi

as measured in Fig A.9.

4) For simplicity the hole tunneling is neglected since Γe >� Γh for all Voltages.

The calculations are in good qualitative agreement with the measured values. The
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solid lines in Fig. 5.11 are fits to the experimental data using the measured constants

Ebb, cos(2θ) and ~ωh(V ), and using only one fitting parameter; the gradient m of

the electron tunneling rate Γe(Vbias), where ln(Γe(Vbias)) = c−m/(Vbias + Vbi). The

gradient extracted from the fit was 15.5, whereas the measured value is 15 ± 2.8.

The experimental data is in reasonable agreement with the theory for Vbias < 1.1 V.

The model predicts a higher spin contrast than was measured for the data point

Vbias = 1.2 V. The discrepancy at V bias = 1.2 V, may be due to the fact that, at

this bias, the electron tunneling rate Γe ∼ 1/18 ps−1, becomes comparable to the

preparation pulse of duration FWHM ∼ 12 ps.

Electric field dependence of the in-plane hole g-factor

Figure 5.12 shows the precession energy of the hole ~ωh = ghµBB as a function of

electric field F , for a magnetic field B = 4.7 T. The hole spin precession frequency

ωh was found to increase with applied bias at a magnetic field B = 4.7 T. This can

be understood as the tuning of the in-plane hole g-factor using the vertical electric

field applied to the device. The data in Fig. 5.12 was fit to a linear function with

a gradient of d(~ωh)/dF = (0.90 ± 0.04) µeV/Vµm−1. An increasing in-plane hole

g-factor with electric field has also been observed recently in other Voigt geometry

experiments [38], [85]. The effect is attributed to the sensitivity of the hole spin

Zeeman interaction to electric fields and strain due to anisotropy of the confinement

potential of p-type hole states [85]. Similar effects have also be observed in the tuning

of the out of plane g-factor in neutral excitons [101]. Here the effect is attributed

to a changing overlap of the hole wavefunction with the Indium-rich region of the

quantum dot. Tunable exciton g-factors have also been explained by the coupling

to the continuum of states in the contacts in reference [102].
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Figure 5.12: The precession energy of the hole ~ωh = ghµBB as a function of applied
bias for a magnetic field B = 4.7 T. This linear increase with bias indicates a tuning of
the in plane hole g-factor. The data is fit to a linear function ~ωh = (15.7 + 0.9F )µeV

5.5 Evaluation of the model of hole spin

preparation

It is instructive to consider the effect of varying the parameters that limit the

contrast of the hole spin preparation in eqn 5.9. The important parameters are the

neutral exciton fine structure splitting at zero magnetic field δ1, and the electron

tunneling rate Γe or time te. Figure 5.13 shows various calculations based on

the model, using a range of values of δ1 and te. In Fig. 5.13 (a), the contrast is

calculated for various values of δ1 = (0 −→ 18) µeV and a fixed value of the electron

tunneling time te = 90 ps (at zero B-field). As δ1 tends to zero, the maximum

value for C tends towards 1, but Cmax occurs at increasingly lower B-fields. This is

because Cmax occurs when the exciton energy splitting is equal to the hole precession
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Figure 5.13: Exploring the model of spin preparation. The figures (a) and (b) show
calculations based on the model of the contrast of the hole spin preparation using eqn
A.27. (a) contrast for various fine-structure splittings δ1 and a fixed electron tunneling
time te = 90 ps. (b) contrast for various te with fixed δ1

energy (δbb = ωh).

In Fig. 5.13 (b) the contrast is calculated for various electron tunneling times

te = (30 −→ 100) ps and a fixed value of δ1 = 16.5 µeV (at zero B-field). In this

case, the width of the resonance increases and also Cmax increases with decreasing

tunneling time. Therefore, it is possible to obtain high values of C over a larger

range of magnetic field. This is because for faster electron tunneling there is a

reduced time for spin mixing due to the exciton spin rotation. The minimum value

for the tunneling time used te = 30 ps is not unreasonable, since this is the value

measured for the device used in the experiments of the hole spin preparation in the

Faraday geometry in section 4.5. Also presented in Figs 5.13 (a) and (b) are the

experimental values of C for a reference. Figure 5.14 shows calculated values of C

in the ideal case of fast electron tunneling Γe = 1/30 ps−1 and decreasing δ1. The
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Figure 5.14: Exploring the model of spin preparation in the ideal case of fast electron
tunneling and small fine-structure splitting. The figure shows calculations based on the
model of the contrast of the hole spin preparation using eqn A.27 in the ideal case of fast
electron tunneling te = 30 ps for various δ1

resonance shifts towards lower B-field, but with a fast electron tunneling time, the

resonance is broad and it is possible to obtain values C > 90% at magnetic fields

B ∼ 1.5 T using values of δ1 close to zero.

5.6 Oscillation in the energy of the charged

exciton

In addition to the oscillation in the amplitudes of X+, the energy splitting ∆EX+

between the X+ peaks measured for co and cross-circular excitation also oscillates.

This can be seen by close inspection of the energy position of the peaks for

co-polarised and cross-polarised excitation presented in Fig. 5.15.

Figure 5.16 shows a comparison between the hole spin precession and ∆EX+ .
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Figure 5.15: The charged exciton photocurrent spectra for co and cross excitation (red
and black) over one period of the spin precession. In addition to an oscillation in the
amplitudes of the peaks, there is an oscillation in the energy splitting which can been seen
with close inspection of the energies of the peaks

The period of the oscillations is the same for the two data sets, but the maximum

splitting occurs 40 ps after the maximum value for Sz. The energy-splitting ∆EX+

may arise from an effective magnetic (Overhauser) field generated by polarised

nuclear spins. Nuclear spin effects are important, since they determine the dephasing

time of the hole spin, as discussed in section 5.7. In each cycle of the experiment,

the total electron spin generated by the pulse-pair oscillates with the time delay,

modulating the pumping rate of the nuclear spins, and hence the energy splitting

of the charged exciton ∆EX+ . The amplitude of a cosine fit to the oscillation of
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Figure 5.16: Hole spin precession (black) and the energy splitting of the charged exciton
∆EX+ (red) plotted vs. time delay, for a magnetic field B = 4.7 T and bias of 0.8 V. The
solid lines are cosine fits to the data. The period of the oscillation is the same for both
data sets. The amplitude of the fit to the energy splitting oscillation gives an indication of
the maximum splitting.

∆EX+ in Fig.5.16 was used to infer the maximum X+ splitting ∆Emax
X+ . Figure 5.17

shows ∆Emax
X+ as a function of applied bias. The coloured data points are repeat

measurements made on different days. It is postulated that the efficiency of nuclear

spin pumping, and hence Overhauser field, increases with the electron tunneling

rate. An increasing Overhauser field with increasing bias has been observed before

with similar devices [103], [46], [48], but never using pulsed excitation.

Figure 5.18 shows the average energy difference of the charged exciton peaks

for co and cross circular excitation. The average energy is defined by the offset of

cosine fits to the X+ energy oscillations for both co and cross polarised excitation.

Interestingly, the average difference decreases with increasing bias, whereas the

amplitude of the oscillation increases. It is possible that as the peaks are tuned

closer in energy with increasing bias, the electron-nuclear spin flip-flop process is
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Figure 5.17: Amplitude of charged exciton energy splitting oscillation as a function of
applied bias. The maximum splitting of the charged exciton is determined by the amplitude
of the fit to the oscillation in the energy splitting and is found to increase with bias.

more efficient, since the energy cost of the flip-flop process decreases. This would

explain the increase in the amplitude of the splitting oscillation with increasing bias,

but further work is required to investigate these interesting effects.

5.7 Hole spin dephasing time T∗2

The extrinsic dephasing time of a hole spin trapped in a quantum dot T∗2 is the

parameter that limits its usefulness as a qubit. Furthermore, measurements of T∗2
give insight into the physics of spin coherence in quantum dots. In this section the

decay of the contrast of the hole spin precession is used to measure T∗2, and the

measured value of T∗2 is consistent with dephasing due to fluctuations in the nuclear

spin bath within the quantum dot.

Figure 5.19 presents a measurement of the hole spin precession over a 8.5 ns
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Figure 5.18: Difference between average energy of the charged exciton for co/cross
circular excitation as function of applied bias. The average energy is determined by the
offset in the fits to cosine functions of the oscillation in the energy splitting.
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Figure 5.19: Precession of the hole spin as a function of τD (white circles) with a an
undamped cosine (red line) function to guide the eye. Over 40 periods of the oscillation
can be clearly seen with very little decay in the amplitude.
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Figure 5.20: Hole spin population over 8.5 ns. The data points are the sum of the
photocurrent amplitudes of the X+ for co and cross-polarised excitation PC+− + PC++.
The red line is fit made to eqn A.6 as outlined in the appendix section A.5 and gives a
hole tunneling time τh = (3.0± 0.2)ns

time delay. The data was collected and processed in the same manner as in the data

of Fig. 5.7. For the gate voltage used, the hole tunneling time was about 3 ns, which

is small compared to the 13 ns repetition period of the laser, ensuring the dot was

empty on the arrival of the next preparation pulse.

Figure 5.20 shows the total photocurrent signal PC+− + PC++ of the charged

exciton. The photocurrent signal of the trion peak becomes weak at large time delays

due to hole tunelling. The total X+ signal after 8.5 ns is reduced to ∼ 150 fA, which

is comparable to the photocurrent noise. This results in the increased scatter of the

data for large τD in Fig. 5.19. Nevertheless, more than 40 periods of the hole spin

precession can be resolved in Fig. 5.19 at an applied magnetic field B = 4.7 T.

The decay in the spin contrast C was used to infer the dephasing time T∗2. Figure

5.21 plots the amplitude of the oscillation at the time delay τD. This was found by
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Figure 5.21: The amplitude of the hole spin precession is plotted as a function of time.
The fit is to a Gaussian decay and yields a dephasing time of T ∗2 = 12.2− 17.5 ns

fitting a cosine to the data for the time range τD± T/2, where T is the period. The

hole-spin contrast C decays with time delay. Since no spin-echo techniques were

employed, the most likely source of dephasing is inhomogeneous broadening due to

variations in the effective Overhauser field acting on the hole spin. The decay of

the hole spin interacting with a nuclear spin bath in Voigt geometry magnetic field

is expected to have a Gaussian-like decay, sz ∝ exp (−τ 2/T ∗22 ), where T ∗2 = ~
√

2/σ

and σ is the variance of the hole-nuclear hyperfine interaction [13]. A value of

T ∗2 = 12.2− 17.5 ns was deduced from fits to data in Fig. 5.21.

The dephasing time is 7-10 times longer than the 1.7 ns measured by Press

et al for an electron spin confined to a single InGaAs/GaAs quantum dot [38], [11].

This is in-line with the ratio of the hyperfine interaction strengths of the electron

and hole measured for InAs/GaAs quantum dots [54], [15], suggesting that the main

source of dephasing is the hole-nuclear spin interaction. Furthermore the measured
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value of T∗2 is consistent with the theoretical estimates described in section A.7.

The T∗2 is small compared to the microsecond-scale “T∗2” measured by Brunner

et al [16] in a coherent population trapping (CPT) experiment. The dynamics of a

hole spin in a nuclear spin bath has two characteristic times, in the 10-ns (∼ 1/σ)

and microsecond (∼ EhZ/σ
2) regimes [13], where EhZ is the hole Zeeman energy

splitting. It is possible that the Brunner experiments measure the longer of these

two time constants.

In Recent experiments by De Greve et. al. [38] and Greilich et. al. [85] hole spin

dephasing times of T∗2 = 2.3 ns and T∗2 = 20.7 ns have been reported respectively.

Both groups attribute the dephasing to in-plane hole g-factors that are sensitive

to local electric field fluctuations, and both groups use deterministically chargeable

p-type devices. Recent experiments by Gerardot et. al. [104] show that, in general,

the linewidth for X+ transitions is ∼ 3× larger for p-type devices compared to

n-type devices. Similar devices are used in ref. [85], and this presumably results in

the strong electric field dependent in-plane g-factor reported. The gradient of the

hole spin precession energy with respect to electric field F , d(~ωh)/dF, reported in

ref [85] is ∼ 14 µeV/Vµm−1. This is ∼ 15× larger than the value of 0.9 µeV/Vµm−1

measured in the n-type devices used in these experiments (see Fig. 5.12). The result

of this is that the reported 4.3 mV fluctuations in ref. [85] due to charge noise in

the devices gives rise to a dephasing time which is limited by spectral diffusion of

the optical transitions. This is further confirmed by the work of ref. [38], where

the dephasing is again attributed to charge noise in the p-type device. In this

case a relatively large in-plane hole g-factor is reported, gh = 0.27. Large in-plane

hole g-factors are a result of significant heavy-hole light-hole mixing. The reported

g-factor gradient ∼ 2µeV/Vµm−1 is small in this case. Therefore, T ∗2 = 2.3 ns is

more likely to be dominated by the hyperfine interaction [14].
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5.8 Summary of measurement of hole spin

precession and dephasing time

This chapter describes the preparation of a coherent superposition state of a single

hole spin by observing the spin precess in a Voigt geometry magnetic field. The

method for preparing the superposition state, the ionisation of a spin polarised

electron hole pair, is unique compared to other spin preparation techniques [9], [11],

[16], [59], [38] in that it is created by a single picosecond laser pulse, and survives

in the absence of a driving laser field. Furthermore the preparation is fast and is

limited by the electron tunneling rate.

The dependence of the spin preparation contrast or fidelity on the applied

magnetic and electric fields has been studied and compared to a simple model

formulated from first principles. Calculations using measured parameters are able to

predict well the expected spin preparation contrast as a function of applied magnetic

and electric fields.

For the magnetic field dependence, the contrast is maximum C ∼ 0.4 when the

hole spin precession frequency is equal to the bright neutral exciton effective fine

structure splitting. Although the contrast of the spin precession is small, in this

case less than one half, it would be possible to improve it by using a quantum dot

with zero fine structure splitting to values C > 0.9 at magnetic fields B < 2 T.

Many groups have recently shown techniques for tuning the fine structure to zero.

These include techniques such as thermal annealing [27], [28], strain tuning [29] and

growth on (111)B substrates [30], [31]. For the electric field dependent studies, the

contrast is shown to improve with increasing electric field. The improved contrast

with increasing electric field is due to the fact that with faster electron tunneling,

there is less time available for spin mixing.

The dephasing time of the hole was measured by observing the decay in

amplitude of the hole spin precession contrast at long time delays, up to around

8.5 ns. The most likely source of dephasing is the fluctuations in the nuclear
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magnetic field coupling to the hole spin via the hyperfine interaction. By fitting the

decay in amplitude of the precession contrast to a Gaussian decay, a dephasing time

T ∗2 = 12.2−17.5 ns was inferred, which is 7-10 times longer than the 1.7 ns measured

by Press et al for an electron spin confined to a single InGaAs/GaAs quantum dot

[38], [11]. This is in line with the ratio of the hyperfine interaction strengths of the

electron and hole measured for InGaAs/GaAs quantum dots [54], [15], confirming

that the main source of dephasing is the hole-nuclear spin interaction.

In conclusion, this is the first1 observation of a the precession of a single hole

spin and is an important step towards full quantum control of a hole spin state

in a quantum dot. The next step to achieving full quantum control over the hole

spin state, is the rotation of the spin about an axis orthogonal to the magnetic field

direction, and this is the subject of the next chapter.

1During the completion of the experiments other groups were carrying out similar work [38],
[59]
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Optical rotation of a single hole

spin

6.1 Introduction

One of the DiVincenzo criteria for quantum computation using a carrier spin

confined in a quantum dot is the ability to perform a single qubit operation with a

gate speed much faster than the coherence time of the specified qubit [3], [97]. In

the previous chapter the extrinsic dephasing time of a hole spin in a quantum dot

on the order of tens of nanoseconds was reported. This means that the maximum

gate time for qubit operations needs to be on the order of a few picoseconds in order

to achieve thousands of quantum operations before decoherence. One approach to

achieve this is to use a picosecond optical laser pulse to perform a spin rotation.

Pioneering experimental work which demonstrated the rotation of a single electron

spin state in a quantum dot has been reported [11], [100], [89], [56], [12]. However,

there are been no such reports on the coherent optical control of a single hole spin

qubit 1, which has the prospect of a longer coherence time due to the suppression

of the contact hyperfine interaction [13].

This chapter describes the first experimental demonstration of the coherent

1During the completion of the experimental work, two other groups achieved similar
experimental goals, [85], [38]
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optical rotation of a single hole spin using a picosecond laser pulse. A geometric

phase gate is demonstrated, which is equivalent to a Pauli-Z qubit gate, and more

general rotations about the z-axis are also shown. Additional data will be presented

that shows the ability to control the angle of rotation and the direction of the Bloch

vector using the detuning and phase of a picosecond optical pulse. In conjunction

with the rotation due to the Larmor precession about the external magnetic field,

the experiments show the first full coherent quantum control of a single hole spin

trapped in quantum dot over the surface of the Bloch-sphere. It is noted that

during the completion of the experimental work, two other groups achieved similar

experimental goals, [85], [38].

6.2 Principle of the geometric phase gate

The approach to rotate the hole spin was adopted from theoretical proposals based

on geometric phase in references [87], [88]. To see how the phase gate works, we first

consider the energy level diagram of the energy eigenstates for the system consisting

of a hole spin and a charged exciton in the Voigt geometry as depicted in Fig. 6.1.

The hole eigenstates |h〉 and |h̄〉 are split by the Zeeman energy ~ωh = ghµBB. The

excited states consisting of the positively charged excitons |T 〉 and |T̄ 〉 are split by

the electron Zeeman energy ~ωe = geµBB. The dipole allowed transitions between

the hole and the charged exciton states are linearly polarised and labelled with the

polarisations X and Y.

Figure 6.1 depicts the states in the energy eigenstates basis. In order to

implement the geometric phase shift, it is necessary to use a laser pulse that drives a

Rabi-rotation between selected hole spin and charged exciton states. To achieve this

requires a laser pulse with a bandwidth ∆ω much greater than the Zeeman energy

splittings ~ωh = ghµBB and ~ωe = geµBB. To see how this can be implemented

requires a change of basis in which we view the hole and charged exciton states.

Figure 6.2 shows an energy level diagram in the circular basis, where the hole

and charged exciton states are coupled using a laser pulse with a bandwidth much
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Figure 6.1: Energy level diagram of the hole states |h〉 and |h̄〉 and the charged exciton
states |T 〉 and |T̄ 〉 in the energy eigenstates basis. The transitions are linearly polarised
(labelled X and Y) and all four transitions are optically active.

greater than the energy splittings in the system. In this case the spin-z states

can be considered quasi-stationary since the laser pulse has a time duration much

shorter than timescales of the precession of the hole and charged exciton states.

The application of a picosecond circularly-polarised laser pulse drives a Rabi rotation

between the hole and charged exciton spin states selected by the circular polarisation

of the excitation. This leaves the other states unaffected because of the transitions

must obey ∆m = ±1. For example, a σ− pulse resonant with the hole to charged

exciton transition couples the hole spin state |⇑〉 to the charged exciton state |⇑⇓↑〉.

Conversely, a σ+ pulse resonant with the hole to charged exciton transition couples

the hole spin state |⇓〉 to the charged exciton state |⇓⇑↓〉. Figure 6.2 shows the case

where a 2π pulse with σ− polarisation drives a Rabi-rotation between the state |⇑〉

to |⇑⇓↑〉 back down to the ⇑. The result of this is to impart a phase shift on |⇑〉

hole spin state relative to the |⇓〉 hole spin state. The phase shift depends on the
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Figure 6.2: Energy level diagram of hole and charged exciton system in the circular basis.
In this picture the hole spin states | ⇑〉 and | ⇓〉 are coupled by the hole Zeeman energy
splitting ~ωh = ghµBB and the charged exciton states | ⇑⇓↑〉 and | ⇑⇓↓〉 are coupled by
the charged exciton Zeeman energy splitting ~ωe = geµBB as depicted by the blue curved
arrows. The curved red arrows show how a fast laser pulse with σ− polarisation only
couples to the ⇑-⇑⇓↑ transition, driving a Rabi-rotation between these states, selected by
the polarisation of the laser pulse.

detuning ∆ and the Rabi frequency Ω of the laser pulse and is given by eqn 6.1 [88]:

∆φz = 1
2

∫ ∞
−∞

dτ
(
|∆| −

√
∆2 + Ω(t)2

)
, (6.1)

where the time integral is performed over the duration of the laser pulse. Consider

the effect of the laser pulse, on the hole spin superposition state. Before the arrival

of the pulse at time tC, the wavefunction of the hole spin state may be expressed as:

|ψ(t < tC)〉 = h⇑ |⇑〉+ h⇓ |⇓〉 . (6.2)

Under resonant excitation and in the ideal case of weak trion dephasing, a
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circularly-polarised laser pulse drives a Rabi-rotation between the selected hole spin

and trion states. The wavefunction of the hole state after the arrival of the pulse

may be expressed as:

|ψ(t > tC)〉 = h⇑ |⇑〉+ h⇓

[
cos(Θ

2 ) |⇓〉+ i sin(Θ
2 ) |↓⇑⇓〉

]
, (6.3)

where Θ is the pulse area. When Θ = 2π, the state of the dot is returned to the hole

spin subspace having acquired a phase shift of π [87], [88]. Therefore the control

pulse transforms the wavefunction in eqn 6.2 to:

|ψ(t > tC)〉 = h⇑ |⇑〉 − h⇓ |⇓〉 , (6.4)

where we observe a change of sign in the superposition. Figure 6.3 shows a Bloch

sphere to illustrate the optical rotation about the z-axis, due to the control pulse.

It is apparent that the result of the control pulse is a rotation about the optical (z)

axis by an angle ∆φz determined by the detuning of the control pulse.

Full coherent control of the hole spin state requires rotations of the spin about

two orthogonal axis. Figure 6.3 shows a Bloch sphere to illustrate both the optical

rotation about the z-axis, due to the control pulse, and the Larmor precession about

the x-axis, due to the applied magnetic field. The lower right of the figure shows the

Voigt experimental geometry. We first consider the general case for spin rotations

using a resonant control pulse. The hole spin up state |⇑〉 is prepared, and is depicted

by the blue arrow pointing in the z-direction in Fig. 6.3. The spin state precesses

about the magnetic field and is rotated by an angle θ = ωht. At the time of the

arrival of the control pulse, the Bloch vector points in the y-direction as depicted by

the vector labelled Sbefore in Fig. 6.3. The control pulse rotates the Bloch vector by

an angle ∆φz about the z-axis to the vector labelled Safter in Fig. 6.3. The Bloch

vector then continues to precess having acquired a phase shift of π.

A rotation of the Bloch vector using a control field is equivalent to a qubit

operation. When the control pulse is resonant with the hole to charged exciton
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Figure 6.3: Bloch sphere to illustrate rotation of the hole-spin vector about the optical
axis. The precession of the Bloch-vector (large blue arrow) about the magnetic field
direction (x) is shown by the angle θ = ωht. The control pulse arrives at a point when the
Bloch vector is directed along the y-axis (Sbefore) and rotates the Bloch vector about the
optical (z) axis to the vector Safter by an angle ∆φz dependent on the detuning. The path
of the Bloch vector in time is indicated by small red arrows. Also shown (lower right) is
the Voigt experimental geometry.

transition and arrives at a time when the the Bloch vector point along the y-axis

as shown in Fig. 6.3, the control pulse acts as a Pauli-Z gate Ûz on the hole spin

qubit:

Ûz |ψI〉 =

 1 0

0 −1


 h⇑

h⇓

 =

 h⇑

−h⇓


Furthermore the overall phase of the precession and angle of rotation can be

controlled by varying the arrival time of the control pulse and its detuning. Using

combinations of rotations about the x and z axes provides full control of the hole

spin over the surface of the Bloch sphere.
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6.3 Results

The coherent optical control of the hole spin was achieved using a three pulse

experiment. The first pulse, termed the preparation pulse had circular polarisation

and pulse area Θ = π and was resonant with the neutral exciton transition, it

prepared the hole spin in a coherent superposition state at time τP = 0. The second

pulse, termed the control pulse had circular polarisation, pulse area Θ = 2π and

variable detuning with respect to the charged exciton transition. The control pulse

also had variable time delay with respect to the preparation pulse and was used

to coherently rotate the hole spin. Finally, the third pulse, termed the detection

pulse, was used to detect the hole spin at times τD. The detection pulse had co or

cross circular polarisation with respect to the preparation pulse and was resonant

with the charged exciton transition. The photocurrent absorption of the detection

pulse was proportional to the hole spin z-component and provided a time resolved

measurement of the hole spin precession. Chapter 5 outlines the method to prepare

and detect the hole spin state and observe the coherent procession. The experiments

in this chapter followed the same procedure as described in 5.3, the only difference

being the addition of the control pulse to the experiments. Fig. 6.4 is a schematic

diagram listing the steps (i)-(v) involved in the experiment. The lower part of

Fig. 6.4 shows the pulse sequence. The upper part of Fig. 6.4 shows schematic band

diagrams of the device. This illustrates the preparation, the control and precession

and also the detection of the hole spin over the course of the experiment.

6.3.1 Measurement of the electron spin precession and

electron g-factor

In order to determine the magnetic field conditions for the experiments, a

measurement of the electron g-factor was made. To measure the electron g-factor,

a time resolved measurement of the trion precession was made under an applied

magnetic field. The electron g-factor was measured using the same three-pulse
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Figure 6.4: Principle of operation for preparing, controlling and measuring the hole spin
state. The figures shows a series of schematic band diagrams of the device to illustrate
the steps in the experiment (i) Resonant excitation of the neutral exciton transition by
a laser pulse propagating along the z-axis creates a spin-polarized electron-hole pair. (ii)
When the electron tunnels it leaves a spin-polarized hole that precesses about the magnetic
field applied along the x-axis. (iii) Rotation of hole-spin. The hole (trion) spin-z states
are coupled with in-plane Zeeman energies of ~ωh (~ωe) respectively. This is depicted by
curved blue arrows. The σ+-polarized control pulse couples the |⇓〉 ↔|⇓⇑↓〉 states only,
imparting a phase-shift on |⇓〉. (iv) To detect the hole-spin, a circularly polarized laser
pulse resonant with the hole-trion transition is absorbed conditional on the spin-z state
of the hole. (v) When the additional carriers created in step (iv) tunnel from the dot a
change in photocurrent proportional to the occupation of the hole spin state selected by the
helicity of the detection pulse is measured.

experimental method to control the hole spin. The only difference being that in this

case the control pulse had pulse area Θ = π and not Θ = 2π. The control pulse with

Θ = π created near unit population of the charged exciton state, which precessed

about the magnetic field. This type of experiment is equivalent to the measurements

of the energy splitting of the neutral exciton [96] previously discussed in chapter 3

section 3.7.3, and described in detail in the appendix section A.4, except that here

the energy beat of the charged exciton due to the electron Zeeman energy splitting

was measured.

Figure 6.5 shows an example of the time resolved measurement of the trion

precession. Two data sets are presented in 6.5. For both measurements the

photocurrent was recorded as a function of the time delay between preparation
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Figure 6.5: Measurement of the precession of the charged exciton. The black curve is a
two pulse measurement of the hole spin precession without a control pulse, in a magnetic
field B = 4.7 T. The red curve is a three pulse measurement, where the control pulse had
a pulse area Θ = π and was resonant with the hole to charged exciton transition. For the
three pulse measurement (red), two oscillation frequencies can be observed (i) the hole spin
precession and (ii) the faster charged exciton precession.

and detection pulses. This was done using both co and cross circularly polarised

preparation and detection and the difference in photocurrent PC+− − PC++ is

plotted in Fig. 6.5 for the cases of with and without a control pulse. The data in

the black in Fig. 6.5 is a two-pulse measurement of the hole spin precession. This

is for the case of without any control pulse and is used as a reference. The red

data in Fig. 6.5 is the three pulse measurement, where the control pulse had pulse

area Θ = π. Two oscillation frequencies can be observed. The slower oscillation

is due to the hole spin precession, while the faster oscillation is a result of the

electron Zeeman energy splitting. A fast Fourier transform of the data yields an

oscillation period of τ = 33 ps, which at a magnetic field of B = 4.7 T corresponds

to an electron g-factor |ge| = 0.47. Using the results from the measurments of the
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g-factors, a magnetic field B = 1.128 T was used in all experiments related to the

hole spin control. At this magnetic field the Zeeman energy splittings of the hole

and charged exciton are 5.1 µeV and 30 µeV. These are factors of 40 and 7 times

smaller than the bandwidth of the control pulse. Therefore the splittings at this

magnetic field satisfied the approximate stationary state condition which is required

for the geometric phase shift.

6.3.2 Hole spin control: controlling the phase of the

precession

In order to understand the effect of the control pulse on the hole spin state, a

set of measurements of the hole spin precession vs the control pulse arrival time

were made. For all these measurments the control pulse was tuned on resonance

with the hole-trion transition. The pulse sequence is illustrated in the lower part

of Fig. 6.4. The hole-spin precession was measured by scanning the detection

time τD, and a series of measurements for different values of τc are presented in

Fig. 6.6. The difference between the photocurrents measured for σ± detection pulses

is plotted: ∆I = Icross − Ico. For reference, the hole-spin precession with a period

of 770 ps was measured without the control pulse and is shown as the lowest plot

in Fig. 6.6 in bold black. The main effect of the control pulse was to change the

phase of the hole-spin precession as seen in Fig. 6.6. For detection times within

the electron-tunneling time, a fast oscillation with a period 138-ps period was also

observed. This was due to precession of a trion component created by the control

pulse, as a result of the imperfect contrast of the hole-trion Rabi rotation. The

effect of the control pulse is highlighted for three cases in Fig. 6.6 and these will

be discussed in turn in the following. The red trace in Fig. 6.6 presents the case

where the hole-spin points along the z-axis when the control pulse arrives. This is

illustrated by the Bloch sphere (a) in Fig. 6.6. Since the control pulse produces a

rotation about the z-axis, it is expected to have minimal effect on the hole-spin in

this case. This can be seen by comparing the bold black and red-traces of Fig. 6.6.
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Figure 6.6: Control over the hole spin precession phase. Plotted is ∆I = PCcross−PCco
as a function of the detection time τd for various control times τc. Also plotted is the hole
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The Bloch sphere (a) of Fig. 6.6 illustrates this process. It shows how the Bloch

vector (large red arrow) is unaffected by the presence of the control pulse, and

therefore there is no change of phase of the precession.

The blue-trace in Fig. 6.6 presents the case where, just before applying the

control pulse, the hole-spin points along the y-axis. In this situation a rotation of

π about the z-axis caused by the control pulse, shifts the phase of the hole-spin

precession by π. This is can be seen by comparing the blue trace in Fig. 6.6 to the

bold (black) and is illustrated with the Bloch sphere (b).

The green-trace in Fig. 6.6 presents the case where, just before applying the

control pulse, has Bloch vector precessed by an angle of approximately 0.6π. In this

situation a rotation of π about the z-axis caused by the control pulse, again shifts

the phase of the hole-spin precession by π. This means the Bloch vector continues

to precess from the angle 2π − 0.6π = 1.4π This is can be seen by comparing the

green trace in Fig. 6.6 to the bold (black) and is illustrated with the Bloch sphere

(c).

In a general case, the effect of the rotation is to reflect the hole-spin about

the z-x plane. The hole-spin before applying the control pulse can be written

as s = s(0)(0, sinωhτc, cosωhτc). A reflection about the z-x plane maps s →

s(0)(0, cosωhτc, sinωhτc), and subsequently the measured hole-spin precession evolves

as sz = cos (ωh(τd − 2τc)). In other words, the phase of the hole-spin is shifted by

−2ωhτc, as occurs in a spin-echo experiment. The expected gradient of 2 for the

phase of the hole-spin precession ωhτs is confirmed in Fig. 6.7 which plots the

precession start time τs against the control pulse arrival time τc. Here τs is defined

with respect to the case of no control pulse and is found by fitting the time-traces

of Fig. 6.6 to ∆I(τd) = ∆I(c) cos (ωh(τd − τs)), for τd & τc + 200 ps.

The results in Fig. 6.6 demonstrate optical rotations of the hole spin by angles

of up to π when the control pulse is resonant with the |X+〉. Furthermore, the

phase of the hole spin precession can be controlled by varying the arrival time of the

control pulse. In the next section, control over the angle of rotation is demonstrated.
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Figure 6.7: The ‘start time’ τs of the spin precession after the arrival of the control
pulse is plotted as a function of the control pulse arrival time τc. The start time is defined
by the phase of the oscillation as determined by the cosine fits to the precession curves in
Fig. 6.6. The linear fit has a gradient of 2.00± 0.01

6.3.3 Controlling the angle of rotation

The final set of experiments demonstrate that the rotation angle ∆φz can be

controlled by the detuning of the control pulse ∆c with respect to the charged exciton

transition. This was in accordance with the theory that predicts tan(∆φz/2) =

∆ωc/∆c [88]. Here ∆ωc is the control pulse bandwidth for a hyperbolic-sech pulse.

The detuning ∆c is defined in the energy level diagram in Fig. 6.8. The time-delay

of the control pulse was set to τc = 234 ps. This value of τc was chosen so that,

on arrival of the control pulse, the hole-spin pointed along the y-axis, where Sz was

most sensitive to rotations about the z-axis. A series of hole-spin precessions were

measured for different detunings of the control pulse ∆c.

Figure 6.9 shows a series of measurements of the hole spin precession for

different values of ∆c with respect to the pulse bandwidth of the control pulse
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Figure 6.8: Energy level diagram to illustrate control pulse detuning ∆c with respect to
the charged exciton

∣∣X+〉 energy.

∆ωc = 0.13 meV. Accompanying the measurements in Fig. 6.9 are a series of Bloch

spheres to illustrate the effect. These will be discussed in turn in the following.

The red-trace shows the case where ∆c = 0.4 meV >> ∆ωc. In this case,

the control laser was far detuned from the hole-trion transition. The precession

was relatively unaffected by the control, since the far-detuned pulse only induced a

small rotation angle. This is illustrated by the Bloch sphere (a) which shows how

the precession of the Bloch vector is unaffected by the control pulse for this 0.4 meV

detuning.

As the control was tuned into resonance, the amplitude of the precession

decreased. For a detuning of −0.14 meV, which was approximately equal to the

bandwidth of the control pulse, the rotation angle ∆φz was close to π/2. This

left the hole-spin aligned along the x-axis. Since the Bloch vector was parallel to

the magnetic field direction, the subsequent precession of the hole-spin about the
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magnetic field was suppressed. This is shown in the pink trace in Fig. 6.9. The

spin rotation is illustrated in the Bloch sphere of Fig. 6.9(b).

Near resonance, the amplitude of the precession changed sign indicating a

rotation angle of greater than π/2. This is shown in the blue trace of Fig. 6.9. The

spin rotation is illustrated in the Bloch sphere (c). The amplitude of the hole-spin

precession was maximal when the control was very close to resonance, as shown in

the blue trace of Fig. 6.9. This indicates that the hole spin was rotated by an angle

close to π.

To quantify the angle of the rotation of the hole spin due to the control pulse,

the amplitudes of the spin precession were found by fitting each trace in Fig. 6.9 to

cosine functions. Figure 6.10 plots of the ratio of the precession amplitudes against

the detuning of the control pulse ∆c. The ratio is normalised to the total hole

population, with and without the control pulse and is defined by R = S(c)
z /Snoz .

The red-line in Fig. 6.10 is a calculation of R expected for the ideal case of

no trion dephasing, namely R = cos (∆φz), where tan (∆φz/2) = ∆ωc/∆c [87]. For

the pulses used here, the bandwidth of the control ∆ωc was 0.13 meV. There is

close agreement between experiment and theory. This implies that the control-pulse

rotated the hole-spin by a detuning-dependent angle ∆φz, with a maximum value

close to π, in accordance with model of ref. [87]. The imperfect contrast in the dip

of Fig. 6.10 may be due to errors in the pulse-area, or the intensity damping [64]

of the hole-trion Rabi rotation. A value of R = −1 is expected on resonance for the

case of no trion dephasing. The intensity damping of the Rabi-rotation means that

the 2π control pulse creates a finite trion population, which, due to the uncertainty

in the electron tunneling time, results in a scrambling of the hole spin. One way

to estimate the effect is to calculate the intensity damping of the Rabi rotation for

resonant excitation.

The reduction in the amplitude of the Rabi rotation is approximately 20%

using a 2π pulse. The amount of charged exciton created is maximum on resonance,

and reduces as the pulse is detuned. Therefore, the effect of the intensity damping
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Figure 6.9: Control over the angle of spin rotation. ∆I = PCcross − PCco is plotted
as a function of the detection time τd for various control detunings ∆c. The hole spin
precession without control is also plotted in bold black. Highlighted in red blue and pink
are three illustrative cases of ∆c with corresponding Bloch spheres to show the effect of ∆c
w.r.t the control pulse bandwidth ∆ωc
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Figure 6.10: Detuning dependence of the amplitude of spin precession after the arrival
of the control pulse. The experimental data are normalised with respect to the amplitude
of the precession without a control pulse. The red curve is a calculation using the theory
R = cos (∆φz), where tan (∆φz/2) = ∆ωc/∆c [87]. This predicts R(∆c = 0) = −1. The
blue curve is a calculation which includes an estimate of the effect of dephasing due to the
finite population of the trion state when the control pulse is close to resonance.

on the reduction of the spin amplitude scales proportionally with the amount of

trion created. The blue trace in 6.10 shows a calculation where the effect of the

reduction in amplitude scales with the amount of charged exciton created. The

trion populatation was determined from the photocurrent spectrum, which was

proportional to a Gaussian G with a FWHM of the laser pulse. The calculation

is given by the function R(1− 0.2G), where R(∆c = 0) = −1, is the ideal case. The

the factor 0.2 accounts for the intensity damping, which was 20% when ∆c = 0.

This crude estimate is in reasonanble agreement with the experimental data.
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6.4 Summary of optical control of hole spin

This chapter describes experiments that demonstrate the coherent optical control of

a single hole spin confined to a quantum dot. The results show that a picoseconds

laser pulse can be used to rotate the hole spin Bloch vector about the optical axis

by an angle that depends on the detuning. Two sets of experiments were described.

In the first, the phase of the precession of the hole spin state about an in-plane

magnetic field was controlled by varying the arrival time of the control pulse. In the

second, the angle rotation angle was varied by changing the detuning of the control

pulse with respect to the charged exciton transition. The external magnetic field

provided rotations about the x-axis, due to the Larmor precession of the hole spin

state. By combining coherent rotations about two orthoganol axes, defined by an

external magnetic field and the optical axis of a control laser, full control of the

hole-spin on the Bloch sphere was achieved.

The optical rotation had a gate-time defined by the 14 ps FWHM of the control

pulse, which is much smaller than the measured extrinsic dephasing time of the hole

spin T ∗2 = 12.2−17.5 ns. However, the rotation about the magnetic field was slower,

with a 770 ps timescale defined by the in-plane hole Zeeman energy. The gate time of

the rotation can not be decreased by simply increasing the strength of the applied

magnetic field, and hence the precession frequency. This is because the Zeeman

energy splittings of the hole and trion need to be much smaller than the bandwidth

of the control pulse. A larger bandwidth control pulse could be used in principle, by

designing a pulse shaper with a shorter focal length. However, this would result in a

higher photocurrent background. Therefore it would be desirable to use a quantum

dot with a larger in-plane hole g-factor.

Picosecond control about both axes should be possible by pursuing proposals

to control the direction of the rotation axis of the control pulse [87]. For example,

optical rotations about the x-axis can be achieved by using a detuned laser pulse

which is linearly polarised. This drives a 2π Rabi-rotation for both linearly
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x-polarised transitions, so that both hole eigenstates |h〉 and |h̄〉 in Fig. 6.1

accumulate a phase determined by the detuning of the laser pulse [87]. By using

combinations of rotations about the z-axis and the x-axis it would be possible to

achieve rotations about an arbitrary axis on a picosecond timescale.

The experimental results in this chapter have been submitted to Physical

Review Letters and are under review. The submitted paper can be found on the

arXiv [105].
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Conclusions and future work

7.1 Conclusions

This thesis described the coherent optical control of a single hole spin in a

semiconductor quantum dot using picosecond optical laser pulses. Three key

experimental results were presented:

• Experiments that demonstrate fast initialisation of a single hole spin trapped

in an InGaAs quantum dot with a fidelity F > 99% and a 1/e time of ∼ 30 ps.

The high fidelity was achieved by applying a magnetic field parallel to the

growth direction. The fidelity of the hole spin, prepared by ionisation of

a photo-generated electron-hole pair in an electric field, was shown to be

limited by the precession of the exciton spin due to the anisotropic exchange

interaction.

• The preparation of a partially coherent superposition of hole spin states was

demonstrated by the fast (10-100 ps) electric field induced dissociation of

a spin-polarized electron-hole pair in a Voigt geometry magnetic field. The

spin preparation was shown to be optimal when the precession of the neutral

exciton and hole spin in the Voigt geometry magnetic field are synchronized.

Long dephasing times of T ∗2 = 12 − 17.5 ns were deduced for the hole spin,

consistent with the expected weak hyperfine coupling for holes in InAs/GaAs
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quantum dots, and an order of magnitude longer than for the electron.

• Coherent optical control of a single hole spin confined to an InAs/GaAs

quantum dot was demonstrated. A superposition of hole spin states was

created by fast (10-100 ps) dissociation of a spin-polarized electron-hole pair.

Full control of the hole-spin was achieved by combining coherent rotations

about two axes: Larmor precession of the hole-spin about an external Voigt

geometry magnetic field, and rotation about the optical axis due to the

geometric phase shift induced by a picosecond laser pulse resonant with the

hole-trion transition.

To summarise, the results presented in this thesis demonstrate that a hole spin

trapped in a self assembled quantum dot is a potential qubit. The spin state can

be initialised with high fidelity, controlled coherently to an arbitrary position on

the surface of the Bloch sphere, and readout using picosecond optical laser pulses.

Combined with the potential for scalability, and integration within an on chip device,

the results show that the coherent optical manipulation of a hole spin state may

provide a path for realising quantum information processing.

7.2 Future work

Ideas for future experiments are as follows.

7.2.1 AC-Stark shift

Optical rotation of the hole spin can be considered in two regimes. Spin rotations

by angles of up to π can be achieved by using (near) resonant excitation and pulse

area 2π, while spin rotations by angles beyond π require higher intensity pulses that

are far detuned. The former is the geometric phase shift, which was implemented in

the experiments described in chapter 6 of this thesis, and the latter is the AC-Stark

shift. One of the reasons that AC stark shift approach was not taken in this thesis,

was because of a lack of available power from the laser.
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The maximum available power for the control pulse used in the experiments

was in fact only just enough for a 2π pulse. This was mainly due to losses in power

as a result of splitting and recombining the laser beams. It would be possible to

achieve more power if some of the optics constructed were simplified, by making

use of custom-made fiber beamsplitters. Furthermore, higher laser power could be

obtained by better mode matching of the free space Gaussian beams to the modes

of the fibres. This could be done by using cylindrical lenses in the pulse shapers.

Alternatively, an additional mode locked Ti:Sapphire laser would also do the job.

In order to implement the AC-Stark shift, it would be necessary to find devices

with lower background photocurrent. The background photocurrent is proportional

to the incident laser power, but its gradient strongly depends on the dot density, the

aperture size, and the reflectivity of the aluminium shadow mask. Therefore, devices

with lower background signal could be fabricated by optimising these parameters.

Therefore, by increasing the laser power, and by designing devices with lower

background photocurrent, the AC-Stark shift experiments might be feasible.

7.2.2 Optical rotations about arbitrary axes

One of the limitations of using the precession of the hole spin as an axis of rotation,

is that it is limited by the in-plane hole g-factor, and the necessity that the Zeeman

energy is small compared to the control laser bandwidth. This makes the precession

about the magnetic in the field in the x-direction inherently slow. In the proposals

of Economou et al, the polarisation of the control pulse allows for optical rotations

about the x-axis via the geometric phase shift [87], [88]. A linearly-polarised

control pulse, drives Rabi oscillations for both hole spin states. Each spin state

acquires a phase which depends on the detuning, and the difference in phase shift

gives a rotation about the x-axis. Furthermore, the relative phase shift can also

be controlled by varying the degree of ellipticity of the control pulse. Therefore,

rotations about any arbitrary axes could be achieved by using combinations of

rotations about the x and z axis. This would allow for rotations of the Bloch
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vector on a ps timescale, as opposed to the much slower spin precession, which is

limited by the Zeeman energy splitting between the hole spin states.

7.2.3 Magnetic field dependence of the hole spin dephasing

time

Simulations by Fischer et al suggest that the hole spin coherence time depends

strongly on the strength of the magnetic field [13]. Despite this, De Greve et al

showed no measurable dependence of the hole spin dephasing time with in-plane

magnetic field. The authors attributed this to the fact that the hole spin dephasing

time measured in their system was not limited by nuclear magnetic field fluctations

[17]. However, given the anisotropic nature of the hyperfine interaction, it would

be interesting to measure the decay of the spin precession as a function of applied

magnetic field using the sample studied in the experiments of this thesis.

7.2.4 Temperature dependence of the hole spin dephasing

time

The hole spin dephasing time is limited by the hyperfine interaction time at low

temperatures. However, it would be interesting to study the effects of decoherence

due to spin relaxation as a result of phonon scattering. This would indicate

the relative importance of decoherence due to spin relaxation and nuclear field

fluctuations. This could be implemented by measuring the decay of the hole spin

precession as a function of temperature, and extrapolating to T ∼ 0 K.

7.2.5 Fidelity of spin preparation in the Voigt geometry

The hole spin preparation fidelity in the Voigt geometry is quite poor, less than 75%.

In the appendix of chapter 5, we saw how this was a result of the frequency mismatch

between the neutral exciton fine structure and hole Zeeman energies, combined with

the uncertainty of the electron tunneling time and finite mixing of the bright-dark
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neutral excitons. It would be interesting to test the model more rigorously, by

comparing the spin preparation constrast for dots with different electron tunneling

rates, g-factors and neutral exciton fine-structure splittings.

7.2.6 Preparing the hole into an energy eigenstate of the

system

It would be interesting to investigate the use of a linearly-polarised preparation pulse

to prepare the neutral exciton in an energy eigenstate of the system. The question

is, how would this affect the fidelity of the spin preparation? The experimental

procedure to implement this would require two control pulses, with variable time

delay, which both perform rotations of angles of π/2. The linearly polarised

preparation pulse would first prepare a hole in an energy eigenstate. The first

control pulse would rotate the spin by an angle π/2 to a direction parallel to the

optical axis, and perpendicular to the magnetic field. The spin would then begin to

precess. Finally, the second control pulse would rotate the spin state, either back to

the original eigenstate, or the opposite one, depending on the phase.

By making use of eqns A.8 and A.9 in section A.6, it can easily be shown that

a linearly-polarised preparation pulse prepares the exciton wavefunction:

|ψ0〉 = α |⇑↓〉+ α |⇓↑〉+ β |⇑↑〉+ β |⇓↓〉 . (7.1)

The dark exciton components are small, because they are determined by the mixing

angle θ, i.e. β ≈ sin(θ). Therefore, for small magnetic fields, we can neglect excitons

withs spin Sz = ±2, and eqn 7.1 simplifies to:

|ψ0〉 = 1√
2
|⇑↓〉+ |⇓↑〉 . (7.2)

Eqn 7.2 is an entangled state of the electron and hole. Therefore, the preparation of

this exciton state may result in a mixed hole spin state. This is because the electron

and hole wavefunctions are non-separable, and therefore the electron tunneling
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scrambles any fixed phase relationship in the superposition. However, it would be

interesting to see if this is the case. The question is, does the incoherent tunelling

of the electron out of the dot collapse the wavefunction of the hole spin?

7.2.7 Improving the hole lifetime: voltage modulation

One of the main disadvantages of the photocurrent detection technique is the short

hole lifetime, which ultimately limits the coherence time. The hole lifetime is

typically on the order of a few ns at a moderate applied bias. The electric field

cannot be simply reduced because of the necessity that the dot be empty on the

arrival of the next pulse sequence. Furthermore, the detection efficiency drops off

rapidly with decreasing electric field. However, a simple solution is to modulate the

bias applied to the photodiode. Some preliminary work on adding an AC component

to the DC bias has been carried out as part of the masters thesis of R. Coles [80].

There, Coles et al., showed an improved photocurrent detection efficiency which

enabled the application of a lower DC bias. The basic idea is to apply a AC electric

field to the device such that the electric field is high for preparation and detection,

and low for the rest of the experiment. The AC field has a sine waveform and a

period equal to the repetition period of the laser source. The tunneling rates of the

electron and hole are then determined by the phase and amplitude of the AC field.

AC voltage modulation has been used in Schottky diodes in the work of Vasconcellos

et al. that demonstrates coherent electrical control of exciton qubits [62]. It should

be possible to obtain longer hole lifetimes, using similar techniques. Pulse picking

could then be implemented in order to measure the hole spin dephasing time well

beyond the 13 ns time duration between un-modulated laser pulses. This could

potentially enable measurements of the intrinsic decoherence time of the hole spin,

by making use of spin-echo techniques.
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7.2.8 Quantum dot molecules

Universal control of quantum bits requires both single and two-qubit phase gates.

Two-qubit phase gates can be implemented by making use of quantum dot molecules.

Coherent control of both one and two hole spins in quantum dot molecules has

been achieved in the work of Greilich et al. [18]. Other work on quantum dot

molecular structures includes that of Vamivakas et al. [68]. There, Vamivakas et

al. demonstrated non-destructive measurements of electron spins in real time [68].

It is not exactly clear whether or not a photocurrent detection would be useful for

the study of quantum dot molecules, because electric fields are used to tune the

quantum dots into resonance, and this may present difficulties for measurements in

the photocurrent regime. Furthermore, the spin preparation technique, via exciton

ionisation, may have to be reconsidered because it may be hard to load both

dots with a single hole spin simultaneously. Nonetheless, it would be interesting

to perform photoluminescence spectroscopy on quantum dot molecules to fully

characterise the states under different bias regimes. Studies of the neutral exciton

could then provide a starting point for photocurrent detection.
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Chapter 5 - Appendices

This appendix describes the background work that was carried out for the

experiments in chapter 5. For example, the model for the hole spin preparation

fidelity is formulated section A.6. The model calculations in chapter 5, sections 5.4.3

and 5.4.4, use various parameters that were measured in the experiments. These

include the mixing angle between bright and dark excitons θ(B), the neutral exciton

effective fine structure splitting ∆Ebb(B), and the electron and hole tunneling rates

as a function of magnetic field and applied bias Γe(B, Vbias), and Γh(B, Vbias). The

measurements of these parameters can be found in this section.

A.1 Single-pulse photocurrent spectra of a

neutral exciton in a Voigt geometry magnetic

field

Single pulse spectra of the neutral exciton X0 were measured at each magnetic

field to determine the optical frequency to be used for the preparation pulse in

the two-pulse measurements of the hole spin precession. Figure A.1 shows example

photocurrent spectra for single pulse measurements with and without an applied

Voigt geometry magnetic field. The spectra were taken by tuning a laser pulse with

circular polarisation, and pulse-area Θ = π, through the neutral exciton resonance
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Figure A.1: Single pulse measurement of the neutral exciton with zero applied magnetic
field (black), and an applied magnetic field (red) in the Voigt geometry. A single neutral
exciton peak was observed for B = 0 T. With the applied magnetic field, the peak was
blue-shifted, due to the diamagnetic shift. Furthermore, an additional peak appeared
at negative detuning and is labelled Dx,y. This is the dark exciton. The single pulse
measurements were taken in order to determine the frequency to be used for the preparation
pulse, and to determine the mixing angle between bright and dark excitons

and measuring the change in photocurrent. Without an applied magnetic field, a

single peak was observed; this is the bright neutral exciton labelled |B〉. With an

applied magnetic field, a second peak with a smaller amplitude was present at a

detuning ∼ −0.34 meV from the more prominent peak. This peak was attributed

to the dark exciton labelled |D〉. The pulse width was greater than than the energy

splittings between |Bx〉 and |By〉 and |Dx〉 and |Dy〉. Therefore, it was not possible

to resolve each of the four states |M | = −2,−1,+1,+2.

Figure A.2 shows the diamagnetic shift of the bright exciton in the applied

magnetic field. The two fits to the data were made using the functions E =

S+CB+DB2 and E = S+D′B2 in order to estimate the strength of the shift using

the fitting parameters D = (4.0 ± 1) µeVT−2 or D′ = (5.6 ± 0.3) µeVT−2. These
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Figure A.2: Bright neutral exciton resonance energy as a function of applied magnetic
field

values allowed for a calculation of the extent of the neutral exciton wavefunction

using the function r =
√

8µD
e2 [106] (assuming spherical symmetry). Here µ is the

exciton effective mass 1/µ = 1/m∗e + 1/m∗h. The radius r = 3.5nm was calculated

using the value D′ = 5.6. This is in excellent agreement with the size of the

wavefunction measured using the intensity damping of Rabi rotations for similar

dots ∼ (3− 5) nm [64].

A.2 Estimation of the bright-dark exciton mixing

angle

A mixing angle θ can be used to characterise the strength of mixing between the

bright and dark excitons in a Voigt geometry magnetic field. More details of this can

be found in section A.6 with reference to eqn A.9. The ratio of the peak amplitudes

159



Appendix A

for the dark and bright exciton, AD/AB, can be used to estimate a mixing angle

between. The peak amplitudes are illustrated by the blue arrows in Fig. A.1. AD/AB

is plotted as a function of applied magnetic field in Fig. A.3. It was not possible

to resolve the dark exciton for magnetic fields B < 3T, because the dark exciton

signal was too weak. Furthermore, it was not possible to determine the absolute

individual values of the mixing angles θx and θy, since only two of the possible four

peaks were present. Therefore, an average mixing angle θ was calculated from the

data in Fig. A.3. The mixing angle θ is given by:

AD

AB
= sin2(θ)

cos2(θ) ≈ (aB)2, (A.1)

which yields a value of a = (0.085 ± 0.01) T−1. The ratio of the peak heights at

B = 4.7 T is AD/AB = 0.15. This gives a mixing angle of 0.4 radians or 23°.

This is in close agreement to values of AD/AB = 0.15 measured for similar dots

using photoluminescence spectroscopy [23], [27], [25]. The parameter a was used to

determine the bright/dark mixing strength at a particular magnetic field, and was

used for calculations of the spin preparation contrast in sections 5.4.3 and 5.4.4.

A.3 Bright-dark exciton exchange energy

Figure A.4 is an energy level diagram that shows the various exchange energy

splittings of the neutral exciton δ0, δ1 and δ2 in a Voigt geometry magnetic field.

The energy splitting between the states labelled |B〉, and |D〉 in Fig. A.1, can be

used to estimate the exchange energy δ0. δ0 is the splitting between bright and dark

excitons at zero magnetic field. For each magnetic field, a Gaussian fit was made

to both the bright and dark photocurrent peaks, in order to determine the energy

splitting between the states. The results are presented in Fig. A.5. The various

coloured data points in Fig. A.5 are repeat measurements using σ± excitation. The

red line is a calculation of the energy splitting, using the following energies extracted
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Figure A.3: The ratio of the peak heights for the dark and bright excitons, AD and AB,
is plotted as a function of magnetic field. This is done in order to estimate the mixing
angle between the bright and dark states. The dark peak can’t be resolved for magnetic
fields B < 3 T. The solid red line is a fit to eqn A.1, which allows the mixing strength
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hole spin preparation fidelity, as discussed in section A.6
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(2δ0 + δ1 − δ2)2 + 4(ge − gh)2µ2
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]

+1
4

[
−(δ1 + δ2) +

√
(2δ0 − δ1 + δ2)2 + 4(ge + gh)2µ2
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√
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]

−1
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[
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√
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, (A.2)
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Figure A.4: In a Voigt geometry magnetic field, the reduced rotational symmetry in
plane, results in the mixing of bright exciton states with |M | = ±1 with the dark exciton
states with |M | = ±2. The resulting states are labelled |Bα〉 bright and |Dα〉 for dark, where
α = x, y. The magnetic field mixes the bright state |Bx〉 with the dark state |Dx〉 and the
bright state |By〉 with the dark state |Dy〉. The states are split by the exchange energies,
δ0, δ1, δ2, which give rise to fine-structure splittings between the bright/dark, bright-bright
and dark-dark states respectively.

for the eigenstates [23]:

N1 [|By〉+ α(|Dy〉)]

N1 [|Bx〉+ α(|Dx〉)]

N1 [|Dy〉+ α(|By〉)]

N1 [|Dx〉+ α(|Bx〉)] (A.3)

respectively.

The data in Fig. A.5 show little or no increase in the splitting with increasing

magnetic field. This implies that the Zeeman energy splitting had a small

contribution relative to the exchange energy splitting at zero magnetic field δ0. The
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relatively large mixing seen in Fig. A.3 suggest that the Zeeman energy contribution

is strong, which is in contradiction with the bright/dark splitting data of Fig. A.5.

One possible explanation is that the observed weak magnetic field dependence

of the bright/dark splitting was due to a nuclear spin pumping effect. It is

postulated that the bright exciton, which has a large dipole and large absorption,

more efficiently pumps nuclear spins. This may cause a reduction or cancellation

[107] of the Zeeman energy terms of eqns A.2. By contrast, the dark exciton with

less absorption, pumps the nuclear spin bath at a lower rate, and the Zeeman terms

are large and unaffected. This effect would give strong bright/dark mixing, without

a strong bright/dark Zeeman splitting. However, due to the lack of data points, and

large fitting errors in Figs A.5 and A.3, it is difficult to reach conclusions without

further investigation.

The average energies of the bright and dark states were used to calculate the

red line in Fig. A.5. This was done using the mean values of the energies in A.2,

since was not possible to resolve all four individual states. The calculation used

the following values: the bright/bright fine structure splitting at zero magnetic field

measured in section A.4, δ1 = 16.5 µeV, and the electron and hole in-plane g-factors

ge = 0.466± 0.02 and gh = 0.079± 0.004, as determined by experiment (in sections

6.3.1 and 5.4.2 respectively). The dark/dark fine-structure splitting δ2 was assumed

to be negligible compared to δ1 and δ0 [23], [108], [109], [44]. A value of δ0 ∼ 0.3 meV

was obtained, in agreement with literature values [23], [44], [27].

A.4 Neutral exciton effective fine-structure

splitting

The splitting between bright neutral excitons in the Voigt geometry magnetic field

is estimated by [27]:

∆Ebb ≈ δ1 +KB2
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Figure A.5: Splitting between bright and dark excitons as a function of applied magnetic
field. The dark exciton peak can’t be resolved for magnetic fields B < 3 T. The different
coloured data points are for different polarisations and different arms in the experimental
setup (repeat measurements). The spectral width of the excitation laser pulse was on a
similar order to the splittings and this resulted in a large uncertainty in the the peak
positions as determined by the Gaussian fitting. The solid red line is a calculation of the
expected energy splitting according to eqns A.2, where a value of ~δ0 = 0.3 meV has been
used for the bright-dark exchange energy at zero magnetic field.

where

K = − µ2
B

δ0(1− ( δ1−δ2
2δ0

)2)
[gexghx + δ1 − δ2

4δ0
(g2
ex + g2

hx)] (A.4)

It was not possible to measure the bright-bright fine-structure splitting ∆Ebb

directly from spectral measurements, since the spectral width of the laser pulse was

large compared to ∆Ebb. However, it was possible to measure ∆Ebb using two-pulse

time-resolved measurements of the neutral exciton beat in the Voigt geometry. The

method for which was outlined in the methods chapter section 3.7.3. As a reminder,

the basic idea is to measure the photocurrent as a function of time delay between

two laser pulses, which are both resonant with the neutral exciton transition, and

have co/cross circular polarisation and pulse area Θ = π.
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The effective fine-structure splitting energy of the neutral exciton ∆Ebb can be

extracted by fitting the difference in photocurrent (PC) for cross polarised pulses

and co-polarised pulses PC+− − PC++ to eqn A.5 [96]:

PC+− − PC++ = eνηf(ρ↑↑(τ)− ρ↓↓(τ)) = A exp(−Γeτ) cos(∆Ebbτ/~) (A.5)

Here, e is the electron charge, ν is the pulse repetition frequency, η the detection

efficiency and ρ↑↑, and ρ↓↓ are the probabilities that the exciton is in the spin

up/down state respectively. For time delays ∆τD � τh, the decay rate of the |X0〉

state is ΓX0 ≈ Γe, where Γe is the electron tunneling rate.

Figure A.6 shows an example measurement of the fine-structure neutral exciton

beat with an applied magnetic field B = 4 T. The data plotted is PC+− − PC++

fit to an exponentially decaying cosine [96] according to eqn A.5. A tunelling rate

for the electron Γe = 1/105 ps−1 was used and the extracted beat period was found

to be τbb = 224 ps.

The beating of the neutral exciton was measured at each magnetic field. Figure

A.7 shows ∆Ebb as a function of the in-plane magnetic field. For some of the

magnetic fields, the data was noisy and the beat period was estimated (without

fitting), which results in large error bars ∼ 20%. Nonetheless, a clear rise in ∆Ebb

was observed with increasing magnetic field.

The data in Fig. A.7 was fit to the function ∆EBB = δ1 + KB2, in line

with the theory of eqn A.11. The fitting parameters δ1 = (16.5 ± 0.5) µeV and

K = (0.130 ± 0.004) µeVT−2 were extracted from the fit. The value for K is

small, but in agreement with literature values for InAs/GaAs quantum dots [27].

The energy splitting ∆Ebb causes a reduction in the maximum possible obtainable

hole spin preparation fidelity, since it results in a partial mixing of the spin. The

partial mixing is a result of the frequency mismatch between ∆Ebb and the hole

spin precession energy ~ωh = ghµBB, combined with the uncertainty in the electron

tunneling time. This can be seen with inspection to eqn A.27 and with reference to

figs 5.13 and 5.14.
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Figure A.6: . Time-resolved measurement of the effective bright-bright fine-structure
splitting ∆Ebb in a magnetic field B = 4 T. The photocurrent oscillates as a result of the
beat of the exciton due to the energy splitting ∆Ebb. The solid red line is a fit to extract the
frequency of the oscillation. The beating of the neutral exciton state results in a reduction
in the maximum obtainable fidelity of the hole spin preparation.

A.5 Measurements of carrier tunneling rates

The electron and hole tunneling rates were important parameters in the experiments.

The electron tunneling rate limits the hole spin preparation fidelity and speed. The

hole tunneling rate ultimately limits the coherence time of the hole spin qubit.

It is possible to infer the electron and hole tunneling rates, Γe and Γh, from the

two-pulse measurements of the charged exciton amplitude. Figure A.8 shows a

typical measurement of the hole spin precession with an applied magnetic field

B = 4.7 T and a gate voltage Vbias = −0.96V . The preparation pulse, with pulse

area Θ = π, and circular polarisation, was resonant with the neutral excitonX0. The

detection pulse, with Θ = π and co or cross circular polarisation, was resonant with

the charged exciton X+. The change in photocurrent was measured as the detection
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Figure A.7: . Bright-bright energy splitting of the neutral exciton ∆Ebb as a function
of applied magnetic field. The energy splitting at each magnetic-field is found using a
two-pulse time-resolved measurement of the beat of the neutral exciton, an example of
which can be found in fig. A.6. The solid red line is a fit to the function ∆EBB = δ1 +KB2

according to eqn A.11, where the fitting parameter K = 0.13± 0.03µeVT−2 was extracted.

pulse was tuned through resonance with the X+. The amplitudes of the charged

exciton for co-polarised (PC++) and cross-polarised circular excitation (PC+−) are

plotted as a function of time delay in Fig. A.8. The sum of these two components

PC+−+PC++ is plotted with pink data points in Fig. A.8. Initially PC+−+PC++

increases as the neutral exciton X0 decays by electron tunneling before reaching a

maximum. PC+− + PC++ then decays as the charged exciton X+ decays by hole

tunneling. Therefore, the sum PC+−+PC++ is proportional to the total hole state

population. The pink data in Fig. A.8 can be used to determine the electron and

hole tunneling rates Γe = 1/τe and Γh = 1/τh by fitting PC+− + PC++ to the

following eqn A.6 [96], [6], [41].

∆PCtotal = A
[
(1− e−

τ
τe )e−

τ
τh

]
(A.6)
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Figure A.8: Red and black: photocurrent amplitude of X+ for cross and co polarised
preparation and detection. Pink: sum of the amplitudes (red+black). Solid pink: fit to eqn
A.6

A.5.1 Voltage dependence of carrier tunneling rates

The electron and hole tunneling rates at each voltage were found by fitting PC+−+

PC++ to eqn A.6 as previously described. Figure A.9 and fig A.10 show the effect

of the applied reverse bias on the tunneling rates. The built in voltage Vbi = 0.76 V

is taken to be half the GaAs band gap [5], [6]. The data is fit to eqn A.7 from

reference [90]:

Γ e = ~π
2m∗L2 exp

[ −4
3~eF

√
2m∗E3

I

]
(A.7)

Here, m∗ is the effective mass, taken to be m∗ = 0.067m e for the electron, and

mh = 6m∗ for the hole [90], L is the confinement potential width, F = (V + Vbi)/d

the electric field, where d = 230nm is the distance between electrical contacts, and

EI is the effective ionisation energy.
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Figure A.9: Electron tunneling rate as a function of applied reverse bias. A linear
fit to the data using eqn A.7 allows for an estimate of the effective ionisation energy
EI = 171±9meV and confinement potential width L = 1.8−2.7nm [90]. This is consistent
with the electric field dependence and values of EI and L measured on similar devices [90],
[5]. The fitting was done according to a linear function ln Γ e = A + B/(V + Vbi), where
the constants A = 4.9± 1.6 and B = 15.0± 2.8 were extracted.

A.5.2 Magnetic field dependence of electron tunneling rate

The electron and hole tunneling rates were measured as a function of applied (Voigt

geometry) magnetic field. This was done using fits to eqn A.6 to the pink data in

Fig. 5.7.

Figure A.11 shows the magnetic field dependence of the electron tunneling rate.

The electron tunneling rate was found to increase with applied magnetic field. As the

magnetic field is increased from zero to 4.7 T, the effective barrier thickness of the dot

increases, due to the helical trajectory of a carrier moving parallel to the magnetic

field [110]. This resulted in an increased electron tunneling time from 90-135 ps at

a gate voltage of 0.8 V, as shown in Fig. A.11. The empirical fit in Fig. A.11 is

of the form Γ e(B) = Γ e(0) + kB2. Here Γ e(0) = (0.01095 ± 0.0002) ps−1 is the
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Figure A.10: Hole tunneling rate as a function of applied reverse bias. A linear
fit to the data using eqn A.7 allows for an estimate of the effective ionisation energy
E I = 102± 8meV under the applied electric field [90].

tunneling rate at zero field, and k = (−0.00013± 0.00001) ps−1T−2 is the curvature

constant. This is consistent with an ionisation energy of 163 ± 12 meV [110]. The

hole tunneling did not show a measurable trend with magnetic field. This might

be because the extracted hole tunneling rates ∼ 1/3 ns were much larger than the

detection time delay ∼ 1 ns. This resulted in an error in ∆τh ∼ 20%, which may be

larger than any magnetic field dependence.

A.6 Model of spin preparation

An analytical model of the spin preparation in the Voigt geometry was constructed

in order to better understand what limits the spin contrast. The following model

is an adaptation of the arguments presented for the Faraday geometry in chapter 4

section 4.4. To begin, we first consider the energy eigenstates of the prepared neutral
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Figure A.11: Electron tunneling rate as a function of applied magnetic field. The
solid line is an empirical fit of the form Γ e(B) = Γ e(0) + kB2, where Γ e(0) =
(0.01095 ± 0.0002) ps−1 is the tunneling rate at zero field. A curvature constant k =
(−0.00013± 0.00001)ps−1T−2 was extracted.

exciton, and subsequently consider the evolution of the exciton spin state. A set of

rate equations are constructed to map the decay of the neutral exciton states to the

hole spin states. Finally an expression for the expected spin preparation fidelity and

contrast is formulated.

A.6.1 Fidelity of spin preparation in a Voigt geometry

magnetic-field

The neutral exciton states are constructed from the heavy spin states with Jh =

±3/2 and the electron spin states of Se = ±1/2. From these single particle

states, four exciton states, characterised by their angular momentum projections

|M | = Jh + Se, can be formed, namely |M | = −2,−1,+1,+2. In a Faraday

geometry magnetic field, only the optically bright states are considered. Here, a
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photon with angular momentum |M |±1 transfers one unit of angular momentum (~)

to create an optically bright exciton with |M | = ±1. The optically dark states with

|M | = ±2 are not allowed due to conservation of angular momentum as confirmed

by measurements [23]. In the Voigt geometry magnetic field, the story is different.

The application of a magnetic field in the sample plane (x) direction results in

a mixing of the bright and dark states and all four exciton |M | = −2,−1,+1,+2

states are observable [23] [25]. The mixing is a result of the reduced symmetry of the

quantum dot under the application of the in-plane magnetic field and is characterised

by the exchange interaction energy splittings namely δ0, δ1 and δ2. Figure A.4 is

a schematic energy level diagram showing the states labelled |Bx〉, |By〉, |Dx〉 and

|Dy〉. The states are labelled B for bright and D for dark, and the subscripts indicate

the polarisation x or y. The bright and dark states may be written as superpositions

of the electron and hole spins in the growth direction z, ↓, ↑ and ⇓,⇑:

|Bx〉 = 1√
2

(|⇑↓〉+ |⇓↑〉)

|By〉 = 1√
2

(|⇑↓〉 − |⇓↑〉)

|Dx〉 = 1√
2

(|⇑↑〉+ |⇓↓〉)

|Dy〉 = 1√
2

(|⇑↑〉 − |⇓↓〉) . (A.8)

The diagonalised Hamiltonian for the neutral exciton in the in-plane magnetic field

in the basis {|Bx〉 , |Dx〉 , |By〉 , |Dy〉} may be written [23]:

H0 = 1
2



δ0 + δ1 ge,x + gh,x 0 0

ge,x + gh,x −δ0 − δ2 0 0

0 0 δ0 − δ1 ge,x − gh,x

0 0 ge,x − gh,x −δ0 + δ2



. Here δ0, δ1, δ2 are the exchange energies, which give rise to fine-structure splittings

between the bright/dark, bright-bright and dark-dark states respectively, and ge,x

and gh,x are the in-plane g-factors of the electron and heavy-hole respectively.
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Figure A.4 shows the various exchange energies in this geometry. The energy

eigenstates of H0 may be written [23]

|ψx(B)〉 = cos θx |Bx〉+ sin θx |Dx〉

|ψy(B)〉 = cos θy |By〉+ sin θy |Dy〉

|ψx(D)〉 = − sin θx |Bx〉+ cos θx |Dx〉

|ψy(D)〉 = − sin θy |By〉+ cos θy |Dy〉 , (A.9)

where the mixing between the bright and the dark states |Bα〉 and |Dα〉 is

characterised by a mixing angle θα. At time t = 0, a circularly polarised laser

pulse σ+, with pulse area Θ = π and FWHM = 0.2 meV, creates a superposition

of the mostly bright states. With a moderate magnetic field the dark and bright

excitons are separated by an energy larger than the pulse width, and the pulse width

is larger than the splitting between |Bx〉 and |By〉. Due to the energy splittings

between the bright exciton states, the states accumulate a relative phase and for

t > 0 the superposition state may be written:

|ψ(t)〉 = cosφeiEbbt/2~|ψx(B)〉+ sinφe−iEbbt/2~|ψy(B)〉, (A.10)

where the parameter φ is defined by tan 2φ = cos θx
cos θy . φ is set to minimize the initial

occupation of the | ↑⇓〉 state, since we are considering the case where we use a σ+

preparation pulse, which creates the | ↓⇑〉 state. The precession of the mostly bright

neutral exciton occurs at frequency ωbb = Ebb/~. The energy splitting is a function

of the exchange energies and the Zeeman energies [27]:

Ebb ≈ δ1 +KB2

where

K = − µ2
B

δ0(1− ( δ1−δ2
2δ0

)2)
[gexghx + δ1 − δ2

4δ0
(g2
ex + g2

hx)] , (A.11)
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as already discussed in section A.4.

The probability P of measuring a exciton with a hole spin down is found by

calculating the projection onto the spin-down basis:

P⇓ =
∣∣∣∣∣ 〈⇓ |ψ(t)〉

∣∣∣∣∣
2

. (A.12)

Similarly, the probability P⇑ of measuring a exciton with a hole spin up can be found

by projecting onto the spin-up basis.

P⇑ =
∣∣∣∣∣ 〈⇑ |ψ(t)〉

∣∣∣∣∣
2

. (A.13)

We now make the assumption that electron spin may be traced out, since its spin

state is not measured, and therefore this information is erased 1 Therefore, if we

write the wavefunction A.10 in the form

|ψ(t)〉 = a| ⇑↓〉+ b| ⇓↑〉+ c| ⇑↑〉+ d| ⇓↓〉, (A.14)

then P⇑ = |a|2 + |c|2 and P⇓ = |b|2 + |d|2. By substituting eqn. A.8 into Eqn. A.9

and substituting the result into A.10, to find the co-efficients |a|2+|c|2 and |b|2+|d|2,

we can find the probability of measuring an exciton with hole spin up P⇑:

P⇑ =
[

1
2 + sin(2φ)

2 (sin(θx) sin(θy) + cos(θx) cos(θy)) cos(ωht)
]
e−ΓXt. (A.15)

Similarly the probability of measuring a an exciton with hole spin down P⇓↑ can be

be written:

P⇓ =
[

1
2 −

sin(2φ)
2 (sin(θx) sin(θy) + cos(θx) cos(θy)) cos(ωht)

]
e−ΓXt, (A.16)

where we have introduced a phenomenological decay of the neutral exciton ΓX ≈ Γe

1In the experiments it was found that preparing a superposition of the mostly dark excitons
using a preparation pulse resonant with the dark peak in the photocurrent spectrum yielded the
same results.
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Figure A.12: Schematic diagram of the decay paths of the neutral exciton states X0
⇓ and

X0
⇑ and hole spin states h⇓ and h⇑. After the preparation pulse prepares the exciton states,

they may decay by electron tunneling with a rate Γe ≈ 1/90 ps−1 or radiative recombination
with a rate Γr ≈ 1/ ns−1. For this dot under an applied bias of −0.8 V the exciton decay
is dominated by electron tunneling to the hole states. The hole states decay to the crystal
ground state by hole tunneling with a rate Γh ≈ 1/3 ns−1 at a bias of −0.8 V . The curved
arrows represent the coherent precession of the states about the in plane magnetic field.
By considering this diagram, a set of rate equations are constructed which relate how the
exciton state populations are mapped onto the hole spin state populations.

due to electron tunneling. From eqns A.15 and A.16 we can write the difference in

neutral exciton state population P− = P⇑ − P⇓, and the total neutral exciton state

population P+ = P⇑ + P⇓:

P− = sin(2φ) cos(θx − θy) cos(ωht)e−Γet (A.17)

P+ = e−Γet (A.18)

So far we have constructed equations for the time evolution of the neutral exciton.

We must now consider how the neutral exciton states map onto the hole spin states

by considering the decay paths of the neutral exciton and hole states. Figure A.12
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is a schematic diagram of the decay paths of the neutral exciton states and the hole

states. The exciton spin states decay by electron tunneling to the hole spin states

with a rate Γe as indicate by thick dashed blue lines in fig A.12. The exciton spin

states may also decay by radiative recombination to the crystal ground with a rate

Γr. The hole spin states decay by hole tunneling to the crystal ground state with

a rate Γh as indicated by the thick dotted lines in fig A.12. We neglect hole spin

relaxation between the hole spin states since this is on the order of 100’s of µs [39].

The hole spins are coupled by the Zeeman energy splitting and precess at a frequency

ωh determined by ∆E = ghµBBx. With inspection of fig. A.12, we construct the

following set of rate equations for the occupation of the hole spin states |h⇓〉 and

|h⇑〉

ḣ⇑ = ΓeP⇑ − Γhh⇑ (A.19)

ḣ⇓ = ΓeP⇓ − Γhh⇓ (A.20)

From these eqns we can construct rate equations for the total hole spin population

and the difference in hole spin population:

ḣ⇑ + ḣ⇓ = Γe(P⇑ + P⇓)− Γh(h⇑ + h⇓) (A.21)

ḣ⇑ − ḣ⇓ = Γe(P⇑ − P⇓)− Γh(h⇑ − h⇓). (A.22)

from which we may write

ḣ+ + Γhh+ = ΓeP+ (A.23)

ḣ− + (Γh + iωh)h− = ΓeP−, (A.24)

where we define ḣ+ = ḣ⇑+ ḣ⇓ as the rate of change of the total hole spin population

and ḣ− = ḣ⇑ − ḣ⇓ as the rate of change in the difference in hole spin population.
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Equations A.23 and A.24 have the form

ẏ + αy = β (A.25)

which has the general solution y = e−I
[∫ t

0 βe
Idt+ c

]
where I =

∫
αdt. Solving the

differential equations A.23 and A.24 to find h+ and h− we find the hole spin contrast

C and Fidelity F where, C = 2F − 1, as:

C = lim
Γet�1�Γht

h⇑ − h⇓
h⇑ + h⇓

(A.26)

C = 1
2 sin 2φ cos (2θ)[f(ωh − ωbb) + f(ωh + ωbb)] (A.27)

f(a) = (Γe − Γh)2

(Γe − Γh)2 + a2 . (A.28)

The fidelity F eqn A.27 is a measure of the purity of the preparation of a single

hole spin by ionisation of a neutral exciton in a Voigt geometry magnetic field.

The contrast C predicts the maximum contrast or visibility in the amplitude of the

precession of the spin.

From eqn A.27 we can see that two factors determine the spin contrast. The

first factor arises from the mixing of the bright and dark excitons. The second factor

is a competition between electron tunelling and a frequency mismatch between the

hole Zeeman energy splitting Eh = ~ωh and the effective bright-bright fine-structure

splitting Ebb. The contrast takes a maximum value when Ebb = ±~ωh. This can

be understood as a minimal loss of coherence when the electron and hole dissociate

under this resonance condition.

Figure A.4 shows the energy level diagram of the neutral exciton states. For

most cases of interest δ0 >> δ1,2, which means that we can make the approximation

θx ≈ −θy. Under this assumption the mixing angle term cos(θx − θy) ≈ cos(2θ)

and therefore φ ≈ π/4. The mixing angle θ can be estimated experimentally as

described in section A.2
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A.7 Estimate of dephasing time T ∗2

Reference [13] considers the decoherence of a single hole-spin in an external

magnetic field, due to fluctuations in a randomized ensemble of nuclear spins. The

spin-component perpendicular to the applied magnetic field is found to decay as

exp (−t2/T ∗22 ), where T ∗2 =
√

2/σ, and σ is the variance in the fluctuations of the

hole-nuclear interaction given in Eq. (9) of ref. [13] as:

(~σ)2 = 1
4N

∑
j

νjI
j(Ij + 1)|Ajh|2 ≡

A2
eff

4N , (A.29)

where N is the effective number of nuclei overlapping with the hole wavefunction,

νj is the abundance of isotope j, Ij is the nuclear spin of isotope-j, and Ajh is the

coupling strength of the hole-nuclear interaction for isotope-j.

To calculate the effective hole-nuclear interaction strength for pure GaAs and

InAs, the following values are used. I(69,71Ga) = I(75As) = 3/2 and I(113,115In) =

9/2. The isotopes have natural abundances 2ν(115In) = 96%, 2ν(113In) =

4%, 2ν(69Ga) = 60%, 2ν(71Ga) = 40%, 2ν(75As) = 100%. To estimate the

hole-nuclear coupling energies Ajh, recently measured values of the ratios of the

hyperfine coupling strengths of the hole and electron measured by E. A. Chekhovich

et al were used [15]. These measurements were carried out using optically detected

NMR experiments on single InAs/GaAs and GaAs dots [111],[112], [15]. The values

measured are: Ā(As) = +10%, Ā(In) = −15%, Ā(Ga) = −(3 − 6)%, where Ā =

Ajh/A
j
e. These measurements were made for the z-component of the hole-spin, with

an external magnetic field aligned along the z-axis. Due to the anisotropic nature

of the hole-nuclear interaction, some caution is needed in applying these numbers,

but since these are the only available measurements of Ā, these values were used.

The ratio Ā was used along with accepted values of the electron-hyperfine coupling

strengths Ae(In) = 47 µeV, Ae(69Ga) = 74 µeV, Ae(71Ga) = 94 µeV, Ae(75As) =

89 µeV [113]. Using the numbers above, an estimate |Aeff (GaAs)| = 12.6−13.9 µeV

and |Aeff (InAs)| = 27.6 µeV was made.
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To estimate the effective number of nuclei of the dot N = Vdot/V0, where Vdot is

the effective volume enclosed by the hole wavefunction and V0 = a3
L/8 = 0.0225 nm3

is the volume occupied by each lattice-site, a spherical carrier wavefunction of

|ψ|2 ∝ exp(−r2/d2) with a volume of Vdot = 4πd3/3 was assumed. In recent

measurements on a similar dot, the size of the carrier wavefunction d = 3.25−3.5 nm

was deduced from the intensity damping of Rabi rotation measurements of the

neutral exciton transition [64]. The work of Finley et al [114] shows that the hole

wavefunction is smaller than the electron. Therefore this value of N is more likely

to provide be an upper bound on the number of nuclei. Based on the above values

of d an estimate of N = 6400 − 8000 was made for the quantum dot, and hence

T ∗2 ≈ 5.4 − 13 ns for a large In-poor and small In-rich dots respectively. This is in

the same range as the measured value of T ∗2 = 15.4+5.5
−3.3 ns, lending support to the

notion that the hole-nuclear spin interaction is the dominant source of the dephasing

of the hole-spin.

Although the T ∗2 measured here was large compared to an electron-spin in an

InAs/GaAs quantum dot [38], it is similar to electron-spin values measured for much

larger GaAs interface [55], [115] or electrically defined [116] quantum dots, where

longer dephasing times are to be expected, since σ scales with the number of nuclei as

σ ∼ N−1/2. However, InAs/GaAs dots have superior optical properties compared to

GaAs dots. In particular, Rabi oscillations using charged GaAs interface dots suffer

strong intensity damping, limiting their use in coherent optical control experiments

[56], [117].
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