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SUMMARY 

The work reported in this thesis comprised two major parts which are: 

1) Off-line nonlinear identification of muscle relaxant dynamics, 

2) Simulation-based design of a variety of controllers (ranging from classical PID 

to nonlinear self-tuners) for the closed-loop control of muscle relaxation. Relaxant 

drugs namely, Vecuronium and Atracurium are considered throughout. 

Off-line identification studies, using two special nonlinear identification pack

ages (Nonlinear Identification package and Nonlinear Orthogonal Identification 

package), were carried out to determine nonlinear difference equation models 

(NARMAX) that best fit (in the least squares sense) recorded data from trials on 

humans and dogs for each drug. After validation, these models were assumed to 

represent, in a nonlinear polynomial form, the muscle relaxant drugs pharmacol

ogy. Two different approaches were explored for determining the physiological 

structure of both relaxant drugs: 

a) The drug model to comprise a pharmacokinetics part to represent the 

drug distribution, and pharmacodynamics which are often ~odelled by using the 

well known Hill equation. 

b) A cross-correlation approach based on Volterra series. 

With the relaxant dynamics structure thus fixed, the work proceeded to the 

control phase. Simple three-term PID controllers were first designed with their 

parameters being optimised, off-line, using the Simplex method. The non-adaptive 

nature of this class of controllers makes their robustness open to question when 

the system parameters for which they have been optimised change. Hence adap

tive controllers in the form of linear and nonlinear generalised minimum variance, 

self-tuners, generalised predictive and nonlinear k-step ahead predictive controllers 

were also considered. All these latter control approaches are shown to be satis

factory, in terms of transient and steady state performance. 



CHAPTER 1 

Introduction 

1 

Muscle relaxants reduce the muscle tone and form part of anaesthesia. Dur

ing surgical operations, they enable the surgeon to operate through small incisions 

and obtain access to deep structures, without interference from muscle action. The 

contraction of voluntary muscle is caused by the release of the neuromuscular 

transmitter, acetylcholine. The motor nerve fibre terminals, lying in gutters on the 

surface of the muscle, form a complex structure known as the motor end-plate. A 

short-lived depolarization of the motor end-plate membrane by acetylcholine pro

vokes a series of events which leads to the contraction of the muscle. 

Muscle relaxants fall into two groups: depolarizing and non-depolarizing 

agents. Non-depolarizing agents act by occupying the cholinergic receptor sites at 

the motor end-plate thus preventing depolarization by acetylcholine, whereas depo

larizing agents imitate the action of acetylcholine, but with a prolonged duration of 

action. A number of neuromuscular blocking drugs are available and the ones 

used in this research are Vecuronium (the experiments were performed on healthy 

mongrel dogs) and Atracurium (the experiments were performed on a female 

patient aged 70 years). 

The degree of neuromuscular blockade can be measured in terms of either an 

evoked electromyogram (EMG) or an evoked tension response (Epstein and 

Epstein, 1973, Ali and Savarese, 1976). This work considers the first of these two 

methods. This preference is because of the fast EMG response to the electrical 

stimulation of a peripheral motor nerve (Epstein and Epstein, 1975). The meas

ured (EMG) signal is processed by being amplified, rectified and integrated. 

Conventionally, muscle relaxants are administered by the anaesthetist using 

bolus injections to produce short periods of relaxation. With such manual pro

cedures it is difficult to maintain desired levels of relaxation and over-paralysis 
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can occur. When this happens, antagonist drugs, such as neostigmine, are admin

istered to assist patient recovery. When these drugs are used in large amounts, 

post-operative complications can arise. It is therefore desirable to have an au

tomatic control method which would largely relieve the anaesthetist from this task. 

This is specially desirable for short-acting drugs such as Vecuronium and Atracu

rium. 

Various design and simulation studies have been developed and applied to 

control muscle relaxation automatically using feedback control principles. 

Closed-loop control has been clinically shown to be a safe and effective means for 

continuous drug infusion, and is superior to manual methods (Sheppard et aI, 

1979, Asbury et al, 1980, Brown et aI, 1980, Linkens et aI, 1981). The benefits of 

feedback include the control of system responses to reference inputs, the reduction 

of the sensitivity of the system response to patient parameter variations, and the 

reduction of the effects of output disturbances. 

Feedback control of continuous infusions of muscle relaxants offers the 

advantages of precise control of the degree of paralysis and decrease in the 

undesirable side effects by virtue of the reduction of the total relaxant dosage 

(Cass et aI, 1976 , Linkens et al, 1981). 

Computer control of four non-depolarizing agents (Gallamine, d-Tubocurarine, 

Alcuronium and Pancuronium) was described by Cass et al (1976). The EMG 

was used as the measurement and the relaxant was administered by a motor-driven 

syringe pump in the on/off mode rather than by varying the rate of administration. 

Their method however results in a fairly long induction period because of the need 

to measure the response to an initial test dose in each case. 

Rametti (1985) designed a microcomputer-based control system to induce and then 

maintain a desired level of muscle relaxation in patients who undergo surgical pro

cedures. The drug d-Tubocurarine was chosen as it is one of the longest acting of 
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all commonly used relaxants. 

Satisfactory regulation with a mean of 74% paralysis for an 80% set-point in 

human trials using a simple proportional gain feedback controller was achieved by 

Brown et aI, (1980). The offset was removed by introducing an integral action 

into the control structure using a fixed PI controller. These authors reported occa

sional oscillations in the closed-loop response. 

Linkens et al (1982) used the evoked EMG response and administered the relaxant 

through an infusion pump. They considered the short acting Vecuronium and the 

longer acting Pancuronium. Trials were undertaken on both dogs and humans 

using fixed parameter proportional plus integral control. 

Sensitivity studies (Menad, 1984) proved that an optimised three-term (PID) con

troller, was unable to cope with expected variations in relaxant dynamics. A 

Smith predictor was later introduced into the overall control structure in an 

attempt to offset the pure time delay in the relaxant kinetics. This method showed 

a marked improvement over the fixed PID structure with a significant reduction in 

the sensitivity of the output response to system parameter changes. 

A classical approach (Well stead et aI, 1979), that of pole-assignment, became 

a popular technique for digital controller design. It is a well-suited method to 

adaptive control systems. This approach has been opted for by Menad, (1984) for 

the control of muscle relaxation. Also Linkens (1986) describes various 

identification, design and simulation studies which have led to successful on-line 

control of muscle relaxation involving the use of PI, Smith predictor and self

tuning algorithms. An explicit pole-assignment self-tuner approach has been 

chosen rather than an implicit self-tuner. The reason being that the process 

dynamics are estimated directly, an important aspect in muscle relaxant investiga

tions since not only is good control required but also a knowledge of relaxant 

dynamics is likely to have clinical importance. 
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Denai (1988) applied a self-tuning PID regulator, to muscle relaxation control. 

The control designs have included a simple proportional plus integral algorithm 

and a complex self-tuning algorithm based on pole-placement principles. A suc

cessful clinical implementation of these algorithms was reported. 

Another technique which has been investigated is the knowledge-based fuzzy logic 

algorithm suitable for heuristic descriptors of both measurment and control (Link

ens and Mahfouf, 1988). Using this approach for muscle relaxant drug adminis

tration (Pancuronium) showed very successful results. 

In contrast to the work done by the above researchers, in this thesis nonlinear 

identification of muscle relaxant dynamics for both Vecuronium and Atracurorium 

is discussed. Nonlinear difference equation models (NARMAX) obtained for both 

the drugs cited above are used to simulate the relaxant system under different con

trol strategies. Any controller design study requires the existence of a mathemati

cal model of the process to be controlled. Muscle relaxation requires a model that 

is a combination of the drug pharmacokinetics and pharmacodynamics (Hull et aI, 

1978). 

Several compartmental models have been proposed for the pharmacokinetics of 

muscle relaxants ranging from a one compartment (Gibaldi and Perrier, 1975) to a 

nine compartment model (Fleischliand and Cohen, 1966). Linkens et al (1981) 

confirmed that a two compartment model is sufficient to describe drug kinetics for 

Pancuronium. 

This thesis comprises two majors parts: 

The first part consists of the use of two extensive identification techniques to 

estimate nonlinear difference equation (NARMAX) models. A nonlinear 

identification package (NLI) designed by Billings and co-researchers was used to 

identify the dynamics of the drug Vecuronium, and another, the nonlinear orthogo

nal identification package also designed by Billings and co-researchers was used to 
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identify the dynamics of the drug Atracurium. 

The goal of these identification studies is to try to decide on the most appropriate 

NARMAX models and their subsequent validation. The drug response models 

should comprises two parts: 

1) One part representing linear pharmacokinetics which is obtained by 

linearizing the NARMAX model and 

2) Another part which is often modelled by a nonlinear effect pharmaco

dynamics in the form of a Hill equation. 

An alternative approach is the use of cross-correlation methods based on Volterra 

series (Billings and Fakhouri, 1982) to explore the underlying structure. 

The second part of this thesis consists of the control of muscle relaxation 

using different strategies. The postulates of control of muscle relaxation are that it 

be capable of bringing an initially unrelaxed patient to a selectable set-point in as 

short a time as possible with minimum overshoot, and that it be able to maintain 

that level within an acceptable band, with possible set-point changes. 

An optimized three-term (PID) controller whose parameters are determined using a 

hill climbing (or simplex) optimization routine (NeIder and Mead, 1965) was used. 

The application of the general minimum variance self-tuning controller developed 

by Clarke and Gawthrop (1975,1979) and Clarke et aI, (1975) was considered. 

Another technique falling into the category of self-tuners is the generalized predic

tive controller (Clarke et aI, 1987) based on an explicit algorithm which has 

showed its robustness when dealing with NARMAX models of both muscle relax

ant. Finally two nonlinear adaptive control approaches were considered. The first 

one is a direct digital control based on a k-step ahead predictor and the second is 

an extention of the general minimum variance self-tuner. 

The work reported in this thesis is concerned with the identification and con

trol of muscle relaxant drugs (Vecuronium and Atracurium) and it is organised 
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into seven additional chapters which are briefly summarised as follows: 

Chapter 2: This chapter opens with an introduction to the background of the 

mechanism of neuromuscular transmission. 

Chapter 3: This gives an overview of system identification of NARMAX 

models, and the applicability of the various forms of recursive estimation schemes 

(eg least squares, extended least squares,etc). Also a brief summary of structure 

detection and model validity tests is given. 

Chapter 4: Nonlinear identification of both drugs (Vecuronium and Atracuri

urn) dynamics is considered. 

Chapter 5: Pharmacokinetics and Pharmacodynamics of both drugs (Vecu

ronium and Atracurium) are presented and two methods are introduced: 

a) Fitting a physiological structure to the models (where the drug response 

comprises two parts: a linear pharmacokinetics which transports the drug into the 

blood and the nonlinear pharmacodynamics represented by a Hill equation). 

b) The use of the cross-correlation methods based on Volterra series (Bil

lings and Fakhouri, 1982) for both muscle relaxants. 

Chapter 6: This presents the simulation-based control of both muscle relax

ants (Vecuronium and Atracurium). Three different strategies are considered to 

control the NARMAX models: 

a) The widely used controller in control system design (three-term or PID 

controller) 

b) Application of the general minimum variance self-tuning controller. 

c) A generalized predictive controller 

Chapter 7: Nonlinear GMV control of muscle relaxation. Two adaptive 

control approaches are described 

a) A k-step ahead predictor and, 

b) The general minimum variance self-tuner to nonlinear systems. 
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Chapter 8: The major conclusions of this study and recommendations for 

further research are given. 
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CHAPTER 2 

Neuromuscular Transmission 

2.1) Contraction 

The function of the muscle is to contract. Muscles are attached to the bones 

by tendons and act to move these bones with respect to each other. These move

ments involve three types of activity. 

a) Central nervous system, reflex and voluntary activities. 

b) Events intervening between the impulse in the motor nerve and the beginning 

of the contraction. 

c) The contractile process itself. 

In the present chapter we shall be concerned with the transmission of the impulse 

from the nerve to the muscle leading to contraction. 

The nerve consists of bundles of hundreds of fibres. Each one of which is an 

extension of a single nerve cell or neurone. 

A neurone is a cell with a series of processes. Those processses which bring 

impulses to the nerve cells are called dendrites. 

The cell body gives rise to only one axon which is much longer than the den

drites. The axon which initially can be distinguished from the cell body by the 

absence of pigment granules and is much less densely covered by synaptic knobs 

(axon hillock), leaves the cell body and makes contact with an effector organ, in 

this case a number of muscle fibres. 

The axon of one neurone either forms a synapse with dendrites or arborises 

directly around the cell body. Each axon lies in a hollow tube (neurilemma) 

beneath a sheath called endoneurium which is constricted at intervals to form the 

node of Ranvier. Each segment of peripheral nerve contains a nucleated cell 

(shwann cell). 
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Medullated nerves have sheaths of myelin between axon and neurilemma. A 

schematic representation of a neuron is shown in Figure 2.1 (a). 

The structure of the synapse is diagramatically represented in Figure 2.1(b), which 

shows the relationship of the axon tenninals to the dendrites of the cell body. 

The details of the synaptic function are shown in Figure 2.2 and discussed in sec

tion 2.2. 

The contraction is led by a number of events which occur in the synapse between 

the nerve and the muscle, the so-called neuromuscular junction. These events are 

shown in Figure 2.3. 

2.2) Anatomy of the neuromuscular junction. 

The neuromuscular junction is a long cell containing many nuclei with fibrils 

embeded in a matrix of sarcoplasm, the whole being surrounded by a membrane 

called sarcolemna. The junction between the fibre and its motor nerve is known 

as the end-plate (Gutman and Young, 1944). A diagram of the structure is illus

trated in Figure 2.2. According to other studies (Couteaux, 1944) the end-plate 

has a mixed embryonic origin, the tissue adjacent to the nerve fibrils being derived 

from shwann sheaths. The use of modem techniques (Birks et aI, 1960) shows 

more details of the structure. The motor nerve is separated from the muscle by 

the synaptic cleft. The structure of this cleft is as follows. The motor nerve ends 

at the part of the muscle membrane known as the motor end-plate. In the area of 

the end-plate, the membrane lies in gutters on the surface of the muscle to consti

tute the synaptic cleft. At this level under the ridge of each gutter orifices to 

secondary cleft or cholinesterase can be found. 

A brief schematic of the structure of the neuromuscular junction is shown in Fig

ure 2.1(b). 
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2.3) Neuromuscular transmission. 

Woodbury et al (1965) and Birks et al (1960) showed, with physiological 

evidence and consideration of the structure of the nerve terminal and end-plate 

membrane, that the neuromuscular transmission is accomplished by other means 

than local circuit flow. This transmission is mediated by a chemical phenomenon, 

due to a chemical substance called acetylcholine. 

2.3.1) Polarization of the membrane. 

At rest, the inside of the motor end-plate membrane has a negative and the 

outside a positive electrical charge. This means, that the membrane has a resting 

potential which can be measured (Graham and Gerard, 1946). The membrane has 

a porous structure. These pores are of such a size that ions can move through 

them rapidly. 

Also, at rest, the membrane is about 100 times more permeable to potassium (Ka+) 

than it is to sodium (Na+). This difference may be due to the greater radius of 

(Na+) ions. This leads to an electrochemical resting potential across the mem

brane which is hence said to be polarized. 

2.3.2) Depolarization of the membrane. 

The arrival of an impulse at the nerve terminals releases an amount of acetyl

choline to cause depolarization of the post-synaptic membrane by increasing its 

permeability to (Na+) ions. The membrane becomes more permeable to sodium 

than potassium. The membrane potential is therefore reversed by this chemical 

phenomenon. 

These depolarization chemical sequences lead to the depolarization of the adjacent 

electrically excitable muscle membrane (Waud, 1968) which gives rise to an 

action potential followed by muscle contraction. But this depolarization is short 

lived, due to the presence of the enzyme acetylcholinesterase in high concentra

tions in the end-plate regions of the membrane. 



14 

2.4) Blockaee of the neuromuscular transmission, 

By their mechanisms of action, muscle relaxant agents fall largely into two 

categories: The depolarisers and the non-depolarisers. 

Thus far (section 2.3), acetylcholine has been described as a reactive substance as 

far as the junction region is concemed. It has been shown (Rike, 1975), that the 

neuromuscular blocking agents affect the release and production of acetylcholine. 

Drugs such as succinylcholine, sccinylcholine and decamethonium, known as 

depolarisers, have a similar action to that of acetylcholine at the post-synaptic 

membrane. 

Among the depolarisers mentioned above, the most commonly used is the succi

nylcholine drug. It is the 'best' short-acting neuromuscular blocking agent 

(Savarese and Kitz, 1975) and an excellent clinical drug, safe in most situations. 

2.4.1) Depolarisers and non-depolarisers. 

The depolarisers facilitate an increase in the production of acetylcholine and 

activate the cholinergic receptors, which lead to depolarisatic;m. The depolarization 

persists in spite of further release of acetylcholine to excite the muscle and 

paralysis will follow. 

The non-depolarisers which include Dimethyltubocurarine, Gallamine, Pancu

ronium, Vecuronium, Atracurium, Alcuronium, D-tubocurarine prevent depolariza

tion of the end-plate hence blocking the neuromuscular transmission. These 

agents also enter in competition for the cholinergic receptors with acetylcholine 

hence the name "competitive block". 

The reaction of acetylcholine with cholino-receptors leads to the failure of 

sufficient sodium pores to open, to permit a threshold depolarisation to take place. 

This activation causes a disturbance at the surface of the membrane and hastens 

the displacement of non-depolarising drugs. If after establishing a neuromuscular 

block, the environmental concentration is reduced rapidly, the non-depolarisers can 
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be shown to exhibit different dissociation rates from the receptor. This is known 

as their recovery index. 

2.4.2) Desensitization. 

The action of the drug succinylcholine, mentioned in section 2.4, is short 

lived. The use of succinylcholine, with time and high total dosage, will produce 

two types of block. The initial block is depolarising (phase I type) and the late 

form is non-depolarising and is referred to as "desensitising block" (phase II, dual 

or mixed block). 

Katz (1974) believes that the assumption that the prolonged response to succinyl

choline is due to changes in the nature of the block from depolarising to desensi

tizing is incorrect. The much more likely explanation given by Katz is overdose. 

2.4.3) Margin of safety. 

Paton and Waud (1967) introduced the concept of the margin of safety of 

neuromuscular transmission, which was later developed (Waud and Waud, 1971). 

The excess of acetylcholine released during a motor nerve activity will produce 

critical depolarisation of the post-synaptic membrane. However, in the presence 

of non-depolarising relaxants, the change in membrane potential is not sufficient to 

trigger off a propagated action potential. Hence the presence of "margin of 

safety" of neuromuscular transmission. 

2.5) The modelling of pharmocological effects of relaxant drugs. 

The concept of pharmocology is the relation between the administration of a 

drug and the pharmacological effect it produces. This concept consists of two 

parts: pharmacokinetics and pharmacodynamics. 

The pharmacokinetics refers to the rate of change in drug concentration within the 

body and its component organs, tissues and fluids. The practice of pharmacokinet

ics describes the relationships between drug dose and drug concentration in the 

blood, plasma or other body components. The kinetics of drug disposition cannot 
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be isolated from the phannacodynamics. The pharmacodynamics describe the re

lationship between the drug concentration and response. All these terms can be 

related as follows (Hug and Roberts, 1984). 

Pharmacology. 

ose. __ ___. __ -,Concentration. ___ -t ........ Effect. 

2.5.1) Pharmacokinetics. 

Pharmacokinetics modelling has been considered by many authors (Ham et 

aI, 1979), (Stanski et aI, 1979) and (I-Iull et aI, 1980). In biological systems, 

models are often formulated in terms of compartments. Compartmental models 

have been widely adopted in biomedical research. Organs or other entities are 

connected by various pathways. Movements of a drug from compartment to com

partment within the model are represented as first order processes. 

a) One compartment model. 

Relaxant drugs are rapidly distribute~ into the plasma and other body tissues and 

fluids upon entry into the system circulation following an intravenous (iv) injec

tion as shown in Figure 2.4. 

(1 ) 

r 
Figure 2.4: A one compartment model 
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This is modelled as a single exponential decay of concentration in the blood 

(Gibaldi and Perrier, 1975) and (Jacquez, 1972). 

The differential equation describing the model is: 

where 

UI (t) is the drug input 

kOI is the transfer rate from the compartment to the environment 

Xl (t) is the total amount of drug in the body at time t 

(2.1) 

For a rapid intravenous injection and if perturbation about a steady state is being 

considered we have: 

(2.2) 

b) Two-compartment models. 

A two compartment model for drug distribution is shown in Figure 2.5 

\ U1(t) 

K'll 
'T 

I I 'I (1 ) (2) I 

I 
KOI • I 

K12 
J 

Figure 2.5: A two-compartment model 

Shanks et al (1980) suggested two compartment models for both d-Tubocurarine 

and Pancuronium. The compartment (1) is the central compartment representing 

the highly perfused tissues (heart, kidneys, liver and lungs) while compartment (2) 
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is the peripheral compartment representing the poorly perfuse~ tissues (muscle, 

skin and fat). 

k12 denotes the transfer rate from compartment (1) to compartment (2), the 

forward transfer. 

k21 denotes the transfer rate from compartment (2) to compartment (1), the 

backward transfer. 

The plasma concentration (C) takes the following bi-exponential form following 

an intravenous injection of a relaxant agent. 

C(t) = ae- ct + be- dt 

where 

a, b, c and d are constants. 

c) Three compartment models. 

(2.3) 

The interpretation of the three compartment models was studied by several 

authors: (Brown and Godfrey, 1978) for the metabolism of bilirubin, (Sumner et 

al, 1976) for dioxin and (Gibaldi et aI, 1972) for d-Tubocurarine in man. 

Gibaldi et al (1972) proposed an appropriate pharmacokinetics model for d-

Tubocurarine in man. It comprises three compartments Figure 2.6 

I U1(t) 

K12 
I 

T K13 

t (2) (1 ) (3) 
I I 

K21 K31 
! 

K14 .. 

Figure 2.6: A three compartment model 

The central compartment (1) corresponds to the plasma, where the relaxant drug is 
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injected and excreted into the urine. The peripheral compartments (2) and (3) 

represent other sites unaccounted for. Frequently compartments (2) and (3) are in

terpreted as extracellular and intracellular compartment of poorly perfused tissues. 

The impulse response of the plasma concentration in the compartment of interest 

is a sum of decaying exponentials at time t following an intravenous injection of 

d-Tubocurarine 

x(t) = ae- ht + ce- dt + fe- gt (2.4) 

where 

a, b, c, d, f and g are constants. 

2.5.2) Pharmacodynamics 

As mentioned previously, the work of some authors, in biology and medicine, 

in modelling the pharmacokinetics of drugs was based on compartmental analysis. 

Regarding pharmacodynamics, Ham et al (1979), Sheiner et al (1979), Wagner 

(1968) and Whiting and Kelman (1980) extented the classical pharmacokinetics 

model by modelling a defined effect compartment linked to the plasma compart

ment by a first order process in such a way that this modification does not affect 

the parameters of the original model (Figure 2.7). 

j K12 

Drug 

-I 
(1 ) (2) 

~ 

K21 

I I Kll! 

T 

(E) 

Keq 

Figure 2.7: A two compartment model with effect compartment 
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Where 

E is the effect compartment 

kZe a rate constant of very small numerical value so that the original phar

macokinetics model is not affected. 

keq is the plasma concentration effect . 

The response is described as a function of the drug concentration Ce: 

E =f(Ce) (2.5) 

The function f can be a sigmoid as defined by a Hill equation. 

E is thus expressed as 

(2.6) 

where 

E is the drug effect 

C(50) the drug concentration in the blood plasma required to produce 50% of 

Em. 

the exponent, a., governs how rapidly the response will approach its maximum 

as C increases. 

It is also worth mentioning that equation 2.6 is transfonnable into a logistic func-

tion. 

Consider the general mathematical fonn of equation 2.6 

Xf1. 
Y----

h - Xf1. + Df1. (2.7) 

where 

Yh represents the pharmacodynamic effect. Equation 2.7 can be written as: 

1 
Yh=~a. 

1+ -
X 

(2.8) 



setting 

therefore 

hence 

X' = aLogX - aLogD 

e¥' = XU D-<i. 

Substituting equation 2.12 into 2.8 

1 
YL = -x'; 

1+e 
(XW) 
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(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

This is called the logistic equation. Ham et al, (1979) obtained the complete phar

macological response using three compartment models anq. the logistic equation. 

Both expressions of equations 2.7 and 2.13 are non-linear sigmoidal forms. 

2.6) Monitoring. types of stimulants and reversal of neuromuscular 

blockade. 

Whenever muscle relaxants are administered it is necessary to monitor the 

neuromuscular transmission to provide a guide to dosage. The most important 

aspect of monitoring is the determination of reversal of non-depolarizing blocks. 

Many authors developed different types of stimulation (twitch, tetanus, train-of

four and electromyograph). 

(Feldman, 1987) found that the electromyographic methods are suitable for use in 

small animals as they require less apparatus. But the disadvantage of electro

myography is that it is difficult to obtain good records during clinical conditions in 

the operating theatre. Other researchers assessed the response using the twitch 



22 

method (Epstein and epstein, 1973). Others favour the train-of-four methods (Ali 

et aI, 1970, 1975). 

In spite of the requirement for more sophisticated techniques the electromyograph 

is likely to remain the most widely used in the foreseeable future. 

An electromyographic signal can be rectified, integrated, and amplified to produce 

a voltage proportional to the area under the response curve. 

2.7) Administration of muscle relaxant drugs. 

Administration of muscle relaxant drugs is usually carried out manually by 

anaesthetists. If prolonged paralysis is needed for adequate operating conditions, 

supplements of doses are administered. This might result in over-paralysis at the 

end of an operation. When over-paralysis occurs, antagonist drugs such as atro

pine and neostigmine are administered to reverse the neuromuscular block. But 

this anticholinesterase can cause severe cardiovascular problems. 

2.8) Interaction of relaxant drugs with disease and other drugs. 

In this section a brief summary is given of the interaction of relaxant drugs 

with some diseases and other drugs (Aarow et aI, 1973). 

Diseases such as myasthenia gravis and carcinomatous neuromiopathy cause neu

romuscular disfunction. In the case of the myasthenic patients, the basic patho

physiology is not known but reports suggest that disease is due to the reduction in 

the quantal amount of acetylcholine from the motor nerve terminals. To achieve 

muscle relaxation, these patients need large doses, which rapidly develop to pro

longed desensitizing-type blocks. To overcome this problem, anaesthesia is best 

done using inhalant anaesthetics. 

Early in anaesthesia, if administration of d-tubocurarine follows recovery from the 

use of succimylcholine, it interacts with the desensitising phase. If the administra

tion of drugs is reversed (for rapid relaxation), this leads to the depolarizing action 

of succinylcholine which antagonizes the effect of d-tubocurarine and tends to 
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reduce neuromuscular relaxation. 

Antibiotics influence neuromuscular transmission (calcium, will usually antagonize 

the neuromuscular blocking effect). Also simultaneous use of relaxants and antibi

otics will possibly disturb the respiratory function. 

Many drugs and chemicals such as insecticides and some of the antimetabolites 

reduce the plasma cholinesterases. 

Simultaneous use of relaxants and cardiac drugs which include procaine, pro

cainamide, quinine, quinidine, dilantin and lidocaine may severely depress neu

romuscular transmission. 
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CHAPTER 3 

Nonlinear System Identification 

3.1> Introduction 

Over the years, the mathematical modelling of processes required knowledge 

of physics, chemistry, biology etc to develop the equations governing their dynam

ics. Because of the complexity of physical phenomena, in some cases the laws of 

science are inadequate to give a satisfactory discription of the plant dynamics. 

However, researchers used other means of information about the dynamics, which 

are the data obtained from experiments. The process of finding a model and 

estimating the unknown parameters from this data is called system identification 

(Goodwin et ai, 1977). 

The aim in many identification problems, in both industry and the biosciences is to 

combine a priori knowledge with experimental data. System identification is a 

well established subject in control theory. Although this discipline is well 

developed for linear systems, the identification of nonlinear systems is not well 

exposed. 

Every physical system is nonlinear in some way. It is essential that more effort is 

directed towards nonlinear system identification. 

This chapter presents a brief summary of three distinct types of models for the 

presentation of nonlinear systems, an introduction to the nonlinear identification 

package (NLl), a summary of the algorithms it employs and an illustrative exam

ple of its use, an introduction to the nonlinear orthogonal identification (NOl), and 

the last section deals with a brief summary of other packages used in this research. 

3.2) Nonlinear models 

There are basically three distinct approaches to nonlinear system representa

tion (Billings, 1980 and 1985). 
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3.2.0 Functional series models 

Examples are Volterra series and Wiener series. The Volterra method is used to 

represent a very broad class of nonlinear systems (e.g communication theory). 

The concept of this method can be illustrated as follows. 

Consider the nonlinear system shown in Figure 3.1. 

u(t) 

I 
-xCt) 

----~~~~ ...... h(.~.) .. .r 

y(t) 

Figure 3.1 

Where 

h(~) is the impulse response of the linear block. 

x(t) is the output of the linear block given by the convolution integral. 

00 

xCt) = fh(t)u(t-t) , 
o 

the output yet) of the nonlinear block is given by 

yet) = [x(t)] + [x(t)]2 

00 _00 

(3.1) 

= f h(tl)u(t-tl)dtl + f f h(t2)h(t3)U(t-t2)U(t-t3)dt2dt3 (3.2) 
o 00 

and therefore the general Volterra representation is of the form (Volterra,1930) 

- -- n 
yet) = I:f····fhn(tl.t2, .... ,tJITu(t-tj)dti 

n=10 0 i=l 
(3.3) 
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where u(t), yet) are the input and output signal respectively and the function 

hn('tl''t2' .... ''tn) is the n' th order Volterra kernel. 

The identification of nonlinear systems based on the Volterra representation re

quires estimation of the Volterra Kernals hn('tl''t2' ..•. ''tn). 

Several approaches are used to solve this problem, the most common being the 

correlation methods used for linear systems. 

An example described by Volterra series with just two terms takes the form. 

00 -
yet) = f hI ('tI)u(t-'tl)dtl + f J h2('tlt't2)U(t-tl)U(t-t2)dtl 't2 (3.4) 

o 00 

and was considered by Billings (1985). 

Using cross-correlation methods the solution was extremely difficult for a general 

stochastic input. If however the input is selected to be a white gaussian noise, the 

estimation of the Kemal.coefficients, becomes straight forward. Unfortunately, in 

practice, the number of temlS in the Volterra series will be unknown and the 

above method would break down whenever higher terms should be present. The 

functional series representation has been studied by several authors (Fakhouri, 

1980), (Korenberg, 1982), (~chetzen, 1980) and (Marmarelis et al, 1978). How

ever little progress was achieved in terms of practical applications. 

3.2.2) Block-orientated models 

A general representation of the structure of block orientated models, analysed 

by many authors (Billings and Fakhouri, 1978 and Korenberg, 1982) is depicted in 

the cascade system of Figure 3.2. 

u(t) fllllllw __ hlC.t) ~I x(t) i F[.] 
q(t) yet 

h2(t) 
'---+ 

) 
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where 

x(t) and q(t) are internal signals, which, realistically, are unavailable for 

measurement. 

(Billings et al, 1982) utilised the method of separability. Other authors (Haber et 

aI, 1976) have considered sub-classes of the general model referred to as the 

'Wiener and Hammerstein models representedin.Figure 3.3. 

"(I) {M 
h\(I) _I XCt) lil~ __ F .. [.'] __ r~ 

Wiener model 

u(t) 

Hammerstein model 

Figure 3.3 

It is clear from Figures 3.2 and 3.3 that the solution of the identification problem 

is to estimate h1('t) , h2('t) and F[.] (Billings et al, 1982). The main advantage of 

the block orientated approach is that it is easy to identify and to relate the results 

to the physical system. Even systems with severe nonlinearities can be identified 

using this approach. 

,12.3) Difference equation models 

The most important class of models in identification and digital control are 

based on linear differential equations (Goodwin et aI, 1977), (Goodwin et aI, 

1984) and (Iserman, 1972). 

The representation of nonlinear models by nonlinear differential equations has a 
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prominent role in identification because the development of the model from physi

cal laws arises naturally, directly or after some approximation. Usually it contains 

few parameters and is therefore easy to handle numerically. The coefficients of 

these models can be estimated using parameter estimation algorithms. 

If an approximate linear difference equation model is fitted to nonlinear data, this 

will provide a poor fit (Billings et al, 1985). It is preferable to use a nonlinear 

model than an approximate linear model. If the system is linear, then it can be 

represented by the following difference equation (Goodwin et al, 1977) 

i=1 i=l 

where 

and 

yet) is output sequence at time t 

u(t) is the input sequence at time t 

d is the system time delay 

(3.5) 

ai , bi are the unknown model parameters. All the parameter estimation algo

rithms for linear systems are based on this model which provides a very concise 

system representation. 

(Billings et Leontarities, 1981, 1982) showed that a nonlinear system can be 

represented by a nonlinear difference equation of the form 

yet) = F *[y(t-l), ... ,y(t-ny);u(t-d), ... ,u(t-d-nu+ 1)] (3.6) 

where 

F* [.] is some nonlinear function of u and y. 

The model of equation 3.5 is usually referred to as an Auto-Regressive Moving 

Average (ARMAX) model. And the model of equation 3.6 will be referred to as 

the nonlinear Auto-Regressive Moving Average with eXogenous inputs or (NAR-

MAX) model. 

A general representation for a wide class of nonlinear systems is of the form 
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z(t) = F~[z(t-1 ), ... ,z(t-ny);u(t-d), ... ,u(t-d-nu + 1 );e(t-1 ), ..• ,e(t-ny),e(t)] (3.7) 

For more details see appendix A. 

3.3) Structure detection and model validity tests 

In the early stages of an identification study it is imponant to detennine if the 

process under test exhibits nonlinear characteristics which will warrant a nonlinear 

model. If the data obtained is from a linear system, a linear model is considered, 

otherwise a nonlinear model ought to be considered. 

3.3.1) Structure detection test (STD) 

SID's are used to test whether the system under investigation is linear or 

nonlinear. Fadzil (1985) offers several methods : step tests, output mean tests, 

Subba Rao and Gabr tests and correlation tests. 

The correlation test is a very useful method. The computation required is not 

excesssive and interpretation of the results is straight-forward. 

The study of the structure detection tests based on correlation analysis has shown 

that when the system is nonlinear all the third order moments of the input are zero 

and all even orders moments exist, thus: 

(3.8) 

where 

y' indicates that the mean level has been removed. 

If the process is linear then 

<l>y'y'2(t) = 0, for all t (3.9) 

If 

<l>y'y'z(t) ~ 0, for all t (3.10) 

then the system under test is nonlinear (Bil1i!1gs et aI, 1983). 

3.3.2) Model validity test (MVT) 

Several methods have been developed for MVT and the most useful one is 

based on correlation analysis techniques. Many studies (Billings and Voon, 1983) 
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have indicated that fitting linear models to data with significant nonlinearities can 

provide very misleading results. This occurs, because the linear parameter rou

tines tend to yield estimated combination of process and noise model, which visu

ally provides a good prediction of the system output. The model is however usu

ally significantly biased. 

The MVT can fail to indicate the inadequacy of the estimated model when the 

process is nonlinear. This can mislead the experimenter into believing that the 

model is adequate when it is not. If the system is linear, the residuals should be 

unpredictable from all past inputs and outputs. 

When the system is nonlinear, the residuals should be unpredictable from all linear 

and nonlinear combinations of past inputs and outputs and this condition will hold 

if and only if 

,tP~~(t) = B(t) 

<I>~~(t) = a for all t 

'<I>~~u(t) = E[S(t)S(t-l-t)u(t-l-t) = 0, for all t I 
where 

<I>~~(t) = E[S(t)S(t-t)] detects deficiencies in the noise model. 

tP~U<t) = E[S(t)u(t-t)] detects all odd terms in f(u(t),y(t». 

(3.11) 

tP~~U<t) = E[S(t)S(t-l-t)u(t-l-t)] detects terms of the form uq(t-m)e(t-m), for 

all m,n odd q. 

For nonlinear systems, the tests tP~~(t) and tP~U<t) are not sufficient. 

If instrumental variables or suboptimal least-squares are used, the residuals may be 

coloured. 

It can be shown that in this case the process model is unbiased if and only if 

where 

tPu~(t) = 0, for all t 

tPu,2l;(t) = 0, for all t 

<l>u,2l;2(t) = 0, for all t I (3.12) 
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<l>u,21;('t) = E[u~(t)~(t+t)] detects all even terms in f(u(t),y(t» 

<l>u,21;2(t) = E[u~(t)~2(t+t)] detects all missing terms e(t) and power of e(t). 

Equations 3.11 and 3.12 give the experimenter a great deal of information regard

ing the deficiencies in the fitted model and can indicate which terms should be in

cluded in the model to improve the fit (Billings and Voon, 1983). 

3.4) Nonlinear identification packal:e (NLI) for nonlinear systems 

The NLI package was originally written by Voon and Leontaritis. It has 

been modified by Fadzil to constitute a powerful interactive package consisting of 

several suites of programs for data transformation, structure detection, parameter 

estimation and model validity tests. 

In the next section a brief summary of all algorithms used in NLI (recursive least 

squares, extented recursive least squares, instrumental variable and suboptimal 

least squares) are discussed. 

3.4.1) Least squares parameter estimation algorithm for the NARMAX 

models 

Consider the NARMAX model represented by equation 3.6 and introduce the 

time delay d 

yet) = F~[y(t-l), ... ,y(t-ny);u(t-d), ... ,u(t-d-nu + 1)] 

where 

F.[.] is some nonlinear function of u and y 

ny is the order of the lagged outputs 

nu is the order of the lagged inputs 

I is the degree of nonlinearity 

(3.13) 

If F.[.] is assumed to be a polynomial function and defining VI = y(t-I), V2 = 

y(t-2), ... ,Vny =y(t-ny ), Vny+1 =u(t-d), ... ,Vs =u(t - d - nu + 1) 

where 



Equation 3.13 can be represented as 

y(t) = F~[Vl,V2' ..• ,Vs-1,Vs] 

Expanding equation 3.14 

s s s 
yet) = L8jVi + LL8ijViVj + ........ . 

i=1 i=1j=1 
s s s s 

...... + LL ... L L8ij .. ,mnVj"} ... VmVn 
i=Ij=1 m=1n=1 

I times 
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(3.14) 

(3.15) 

If the output y(t) is assumed to be corrupted by zero mean additive noise e(t), the 

output z(t) may be written as 

z(t) = yet) + e(t) 

Substituting equation 3.16 into 3.15 

n, nM 

z(t) = LSj(z(t-i)-e(t-i» + LSn/u(t-d-i+1» 
i=1 i=1 

n,n, 
+ LLSyCz(t-i)-e(t-i»(z(t-j)-e(t-J) 

i=1j=1 
n, nM 

+ 2LLSi,ny+/Z(t-i)-e(t-i»(u(t-d-j+1) 
i=1j=1 

n,. n. 
+ LLSny+i,ny+/u(t-d-i+1)(u(t-d-j+1» + ....... 

i=1j=1 

........ higher order terms up to the degree 1+ e(t) 

Equation 3.17 can be represented as 

z(t) = F~[z(t-1), ... ,z(t-ny;u(t-d), ... ,u(t-d-nu+1), 

;e(t-1), ... ,e(t-ny)] + e(t) 

(3.16) 

(3.17) 

In general, noise is nonlinear and can not be added to the output so equation 3.17 

becomes 

z(t) = F~[z(t-1), ... ,z(t-ny);u(t-d), ... ,u(t-d-ny+1); 

e(t-1 ), ... ,e(t-ny),e(t)] (3.18) 

In general, equation 3.18 can be used to represent a wide class of nonlinear sys

tems whatever the noise. When the system is nonlinear, it is impossible to solve 

equation 3.18. Re-arranging equation 3.18 into a prediction error model gives the 
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general form. 

z(t) = F~[z(t-l), ... ,z(t-ny);u(t-d), ... ,u(t-d-nu+l), 

;E(t-1), ... ,E(t-ny)] + E(t) (3.19) 

where 

E(t) is the prediction error equal to z(t)-z(t) 

and 

E[ E(t) ]=0 
z(t-l),z(t-2), ... ,u(t-d), ... 

Expanding equation 3.19 

z(t) = GZU[z(t-l), ... ,z(t-ny), ... ;u(t-d), ... ,u(t-d-nu+ 1)] 

+ GZU£[z(t-l ), ... ,z(t-ny);u(t-d), ... ,u(t-d-ny + 1 );E(t-l ), ... ,E(t-n)] 

+ GE[E(t-1), ... ,E(t-ny) + E(t)] (3.20) 

where 

GZU is a polynomial function of z and u only. 

GZUE is a polynomial function of all cross product terms involving E(t) 

and 

GE is a polynomial function of prediction errors only. 

Separating out the unknown parameters of equation 3.20 

(3.21) 

where 

,GZU
[.] = \f;uCt)9zuCt-l) 

I GZUE
[.] = \f;uit)9zuE(t-l ) 

GE[.] = \f[ (t)9£(t-l) 

(3.22) 

grouping all terms involving E(t) and defining 

(3.23) 

gives 

(3.24) 
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equation 3.23 above shows that ~(t) is highly correlated with the elements of 

'l'iu(t). Therefore application of least squares wi11lead to biased estimates. 

3.4.2) Recursive least squares 

From equation 3.23 minimising the cost function J, 

where 

N 
J = L~2(t) leads to the well known least squares solution 

1=1 

where 

and 

o _ rwT,"u ]-hIiTz ~zu - L~ zuTzu T_ 

1. = [z(1),z(2), ... ,z(N)]T 

(3.25) 

(3.26) 

(3.27) 

equation 3.30 can be transformed into a recursive estimator which is simple and 

can be implemented using the unified representation algorithm by Sodestrom et aI, 

(1974) 

where 

8(t+l) = 8(t) + K(t+l)e(t+l) 

K(t+l) = P(t)<l>(t+l) 
A(t+l) + 'l'T(t+l)P(t)<l>(t+l) 

[
pet) - P(t)<l>(t+l)"l(t+l)P(t) 1 

A(t+l) - 'l'T(t+l)P(t)<l>(t+l) 
P(t+ 1) = ~----A-("':"t+-l';"') --.:........:...:..---:..----:.-=.. 

A(t+l) = AoA(t) + (I-Ao) 

A(t) is the forgetting factor 

and 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 



e(t) , ~(t) , ",(t) and <1>(t) are given below with the following definitions 

~(t) == ~zu(t) 

",T (t+ 1) == ",iue t+ 1 ) 

<DT (t+ 1) == ",T (t+ 1) 
) 
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(3.33) 

This algorithm computes the initial estimates of the unknown parameters and the 

error vector of the NARMAX model. 

3.4.3) Extended recursive least squares (ERLS) 

Panuska's method or extended least squares algorithm for linear systems has 

been widely used (Goodwin et al, 1977). 

The ERLS can be implemented for the NARMAX model using equation 3.28 to 

3.32 with 

~(t) == [~zuet)~ZUE(t)eE(t)] 

",(t+l) == [",iu(t+l)'I'iuE(t+l)",r(t+l)] 

'<1>(t+1) == [",(t-l)] 
) (3.34) 

From equation 3.34 the noise or prediction error parameters are included in e(t) , 

this to eliminate bias in the estimates. 

If the nonlinearities within the system are severe, the dimension of e(t) increases 

rapidly. To limit the dimension of the vector e(t) both instrumental algorithms 

and sub-optimal least squares algorithms were developed (Goodwin et aI, 1977), 

(young, 1970), (Billings et Voon, 1984). 

3.4.4) Instrumental variables 

The principle of instrumental variables has been applied to linear systems 

identification, but it has also been extended to the NARMAX models. 

The off line description of these algorithms is based on the linear model 

Y == <1>e + e (3.35) 
and the selection of an instrument matrix VT such that 



where 

lim..!.. VT <l> = R 
N 

lim..!..VT(Y-¢8o) = 0 
N 

) 
8 0 denotes the true parameter vector 

lim refers to limit in probability 

N sequence of N output measurements 

The above conditions ensure that the estimate 

E> = (VT8rlVTy 

is unbiased. 
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(3.36) 

(3.37) 

There are a number of ways of selecting the matrix VT so that equation 3.36 is 

satisfied. The most popular is either delayed inputs to form VT or define VT to 

have the same structure as ~ but with the measured outputs replaced by the 

predicted outputs. This latter algorithm is often referred to as the auxiliary model 

algorithm. Unfortunately instrumental variables can only be applied to nonlinear 

systems when certain properties of the system noise are satisfied. 

Consider the NARMAX model of equation 3.24 

where 

~(t) = ':I';uit)8zu£(t-l) + ':I'[(t)8£(t-l) + E(t) 

For a sequence of N output measurements define 

1. = [z(1), ... ,z(N)f 

':I'zu = [':I';uC1), ... ,':I';uCN)]T 

~ = [~(1), ... ,~(N)]T 

to yield the description 

) 

(3.38) 

(3.39) 

(3.40) 

1. ~ ':I'zu8 zu + ~ (3.41) 

Forming an instrumental matrix VT using the auxiliary model algorithm gives the 

instrumental variable estimate 
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8 = (VTl11 )-1 VT z zu TZU - (3.42) 

which will be biased whenever the process under test is nonlinear. A similar con

clusion follows even if VT is fonned from delayed inputs. This arises because the 

terms of the form 

1 T .. h 
lim-V [ZIu'E J 

N 
(3.43) 

for some i, j, k will not in general vanish even when £(k) is a zero mean white 

noise sequence (Billings and Voon, 1984). Equation 3.43 will however always 

tend to zero for the special case of the NARMAX model. When the noise tenns 

are represented within the model as a linear map L[.] 

z(t) = F1[z(t-l), ... ,z(t-ny);u(t-d), ... ,u(t-d-nu+l)] 

+ L[£(t-l), ... ,£(t-ne)] + Eel) (3.44) 

These conditions can always be tested using the model validity tests described in 

section 3.3.2. 

The off-line instrumental variable estimator as defined in equation 3.41 can be 

implemented using the recursive equations 3.28 to 3.32 with the following 

definitions of the matrices: 

'FT(t+l) = ['FiuCt+1)] 

8(t) = [8zuCt)] 

zz(t) = ['Fiu(t+l)] 

3.4.5) Suboptimal least squares 
I (3.45) 

If the noise model is included in the estimator, the number of parameters to 

be estimated in the NARMAX model increases significantly. It would therefore 

be advantageous if unbiased process parameter estimates could be obtained 

without specifically estimating a noise model. This can be achieved for the NAR

MAX model if the noise is considered to be an additive signal at the output by 

using a new suboptimal least squares algorithm 

Consider the NARMAX model given by equation 3.7 



z(t) = F~[z(t-1), ... ,z(t-ny);u(t-d), ... ,u(t-d-nu+ 1); 

E(t-1), ... ,E(t-ny)] + E(t) 
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(3.46) 

Expansion of equations 3.46 leads to a considerable number of cross product terms 

between the noise and the measured input and the output signals. If however yet) 

is noise-free, then yet) could be monitored and equation 3.45 could be represented 

as 

z(t) = F1[y(t-l), ... ,y(t-ny);u(t-d), ..• ,u(t-d-nu+1)] + e(t) (3.47) 

and all the cross-product terms are eliminated. Although the signal yet) is unavail

able for measurement it can be estimated by recursively computing the predicted 

output using 

(3.48) 

The noise-free output yet) in equation 3.47 is therefore replaced by the estimate 

yet) . 

The algorithm is simple to implement using equation 3.28 to 3.32 with the follow

ing definitions 

'PT(t+1) = 'Pru(t+1) 

e(t) = ezu(t) 

zz(t) = 'P(t) I (3.49) 

It is important to remember that this algorithm is applicable only when the noise 

is additive at the output. Otherwise, the cross-product noise terms which appear 

in 'P;UE(t) may induce bias. This situation can be detected using the model vali-

dity tests. 

The noise in the nonlinear systems whether internal or output additive compli

cates the estimation problem. So a modified extended least squares and a new 

suboptimal least squares algorithms were introduced as one possible solution to 

yield unbiased estimates in the presence of multiplicative noise terms. Instrumen

tal variables which are widely used for linear systems yield biased estimates 

whenever the noise model cannot be expressed as a linear map. 
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If the extended least squares algorithm is used, the conditions of equation 3.22 

must be satisfied. Instrumental variables and suboptimal least squares do not 

specifically estimate a noise model and consequently the residuals may be 

coloured. 

From all of the five algorithms the extended recursive least squares is perhaps the 

best. This is probably due to the inclusion of the additive noise in the 

specification of the NARMAX model. But in some cases, due to the limitation of 

the NLI package, the extended recursive least squares can not be used. In these 

situation, instrumental variable or suboptimal recursive least squares has been 

used. Since both algorithms do not include the coefficients of the noise model in 

the parameter vector, the number of terms in the model is very much less than that 

in the extended recursive least squares case. 

3.5) Use of the NLI package 

The NLI program is written in FORTRAN 77. It has been implemented on 

the PERKIN-ELMER 3220 computer in the Department of Control Engineering, 

for multi-user access via any graphical terminal. Each option is selected by typing 

three characters. The data are supplied to the program. Then a nonlinear 

identification algorithm is selected. At the conclusion, the user may store the cal

culated data at the end of a run (predicted output, deterministic prediction errors 

and residuals) in the new data file specified by the user. This new data file can be 

used to interact with SPAID (section 3.6.3). If desired, a display of plots of input 

and output data may be chosen. After the data are read by the program, and 

before nonlinear identification is applied, a structure detection test is used to deter

mine if the process under test exhibits nonlinear characteristics which warrant a 

nonlinear model (section 3.3.1). 

The next step is to select one of the four ' least squares ' type recursive algo

rithms contained in the package, these are : Recursive least squ:1res, Auxiliary 
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instrumental variable, Extended Recursive least squares and Suboptimal Recursive 

least squares. 

Once one of these algorithms is selected, the initial specifications for the NAR

MAX model are entered which are : the order of the output, the order of the input, 

order of the prediction error, the time delay and the degree of nonlinearity of input 

and output. The program will display the coefficients which define the NARMAX 

model. Terms can be selected manually. The use of the forward and backward 

regression gives the terms which are significant. Also extra terms can be forced 

onto the model to improve the MVT. 

If the Fisher-Ratio is used, the forward and backward stepwise regressions are 

often selected together because any insignificant terms that are included in the 

model at the early stages may become insignificant when other terms are included 

at a later stage. These insignificant terms are deleted so that only the significant 

terms are retained in the final model. In both forward and backward regressions, 

the critical value of the Fisher-Ratio is assumed to be 4.0. 

Finally, a display of five options is given by the program namely (print 

coefficients of the model, print covariance, plot the residuals (input, output, 

predicted output, residuals and deterministic errors) and MVT option based on 

correlation functions). 

Each algorithm requires two channels of data : input and output channels. The 

two channels must be stored as two columns in indexed 80 bytes/record data file. 

The preliminary analysis of the data file involved estimating the coefficients in a 

linear model first, of varying the initial specification, and with various time delays, 

and analysing the loss function for each case. 

3.5.1) Example of use of the NLI package 

In the present section, the use of the NLI package will be illustrated using an 

example of a heat exchanger model (Billings and Fadzil, 1984). 
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The heat exchanger consists of a radiator through which heated water is passed 

and a fan which blows air across the radiator. Water is pumped through the radia-

tor around a closed loop which includes a heater tank (Figure 3.4). The aim is to 

control the temperature drop across the radiator together with the air flow rate 

across it by adjusting the input to the heater and the fan. A block diagram of the 

system is shown in Figure 3.5. With reference to Figure 3.5 extensive experimen

tation has shown that G22 and G12 are linear while Gn is nonlinear. Therefore 

only the nonlinear loop will be considered. 

3.5.2) System identification 

Having entered the data into the NLI the structure detection tests showed that 

<l>;z(t) is well outside the confidence bounds (Figure 3.6), confirming that the sys

tem is nonlinear (loop GIl). 

Using a prediction error estimation algorithm coupled with a stepwise regression 

procedure the model coefficients were estimated. The initial specification for the 

NARMAX model was: 

Order of the lagged output, 

Order of lagged input, 

Order of lagged prediction error, 

Delay of the input, 

Degree of nonlinearity of input and output, 

Degree of nonlinearity of prediction error, 

d = 1 

I = 3 

Ie = 2 

. , , 
~ . ..... ;,..1 

4~ : J ~.,} 'j .( ~ 

t;·l..,..j~ :~. ", '( 

With this initial specification the number of terms in the model was 83. Using the 

Fisher-Ratio test with 95% confidence bounds, the following model was obtained: 

z(t) = 2.072 + 0.9158z(t-1) + 0.4788u(t-1) - 0.01572z2(t-l) 

- 0.0113u2(t-l) - 0.00244z2(t-l)u(t-l) 

- 0.002239u3(t-l) + E(t) (3.50) 

The estimated model (equation 3.12) was good but the MVT, shown in Figure 3.7, 

indicates that the model is deficient in some way. <l>u'2~('t) is inside the 95% 
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confidence bounds while <1>U'2~2(t) is outside the confidence bounds for lag 11 and 

lag 12. 

<1>~~(t) and <l>u~(t) are unacceptable since they are outside the 95% confidence 

bounds, this means that addition of higher order noise model is required to im

prove the model and therefore equation 3.50 becomes 

z(t) = 2.381 + 0.8345z(t-1) + 0.4828u(t-1) 

- 0.0106z2(t-1) - 0.00867u2(t-1) - 0.002235z2(t-1)u(t-1) 

- 0.002293u3(t-1) - 0.05194£(t-l) - 0.008461£(t-2) 

+ 0.2159£(t-3) + 0.08243£(t-4) + £(t) 

- 0.05194£(t-1) - 0.008461£(t-2) 

+ 0.2159£(t-3) + 0.08243£(t-4) (3.51) 

The MVT for this model revealed that <1>~~(t) and all other tests were acceptable 

except <1>u~(t) which was still outside the confidence limits and therefore a term 

u(t-2) was added to the model of equation 3.49. The model becomes 

z(t) = 2.301 + 0.9173z(t-1) + 0.449u(t-1) 

+ 0.04577u(t-2) - 0.01889z2(t-1) - 0.00999u2(t-1) 

- 0.002099z2(t-1)u(t-1) - 0.002434u3(t-l) + £(t) 

- 0.004£(t-l) + 0.0380£(t-2) + 0.2745£(t-3) 

+ 0.1037£(t-4) (3.52) 

The MVT is shown in Figure 3.8. The correlation function are well within the 

confidence bounds. The predicted output of the final model of equation 3.52 is 

shown in Figure 3.9. 

3.6) Use of the nonlinear orthogonal identification package NOI 

The successful development of identification and controller design techniques 

for nonlinear systems depends much on the model which is used to represent the 

system under investigation. Traditionally the functional series description of Vol

terra and Wiener have been used (section 3.2.1). Unfortunately this method 

requires a large number of parameters, often over 500 kernel values, to describe a 

simple nonlinear system. However, by expanding the system output in terms of 
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past inputs and outputs using a NARMAX model a very concise representation for 

a wide class of nonlinear systems can be obtained to ease the problems associated 

with the functional series methods. 

A new orthogonal parameter estimation algorithm (appendix B) was derived by 

(Billings et al, 1987) and implemented by (Billings and Tsang, 1987) on the 

SUN-mycrosystems at Sheffield University. 

This NOI package consists of several suites of programs for data generation, struc

ture detection, parameter estimation and model validity tests. 

The parameter estimation program is composed of two algorithms : the extended 

orthogonal estimation algorithm and the prediction error algorithm. The first algo

rithm provides a quick way of fitting a model, while the second is slow but gives 

a much better estimate. Therefore, if an optimised model is required, one can pass 

the orthogoal estimate into the prediction error algorithm. 

The program displays a menu of options. Each algorithm requires two channels 

of data : input and output. The maximum number of data pairs is 1024. The 

maximum number of terms in the final model is 100, the maximum degree of non

linearity is 5, the maximum lags ny + nu and ne must both be equal to 100 and 

there is no maximum for time delay. 

where 

ny represents the number of lags in the output 

nu represents the number of lags in the input 

ne represents the number of lags in the prediction error 

3.7) Other packages 

This section gives a brief summary of other packages used during the course 

of this research. These packages are PSI, PSI CON and SPAID. 

3.7.1) PSI 

This is an interactive simulation language implemented in FORTRAN on the 
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large multi-user interactive PERKIN-ELMER 3240 in the Department of Control 

Engineering. This package has been developed by Van Den Bosh (1979) at Delft 

University of Technology, the Netherlands. 

It is a block-oriented simulation language. The package contains over 40 different 

block types including standard continuous dynamic elements such as a integrators, 

discrete elements such as zero-order-hold, time delay, a three-term (PID) controll

er, nonlinear elements such as dead-zone and saturation devices. Also available in 

PSI is a hill climbing optimization procedure used to optimize up to nine parame

ters which is very important for the design of optimal (PID) controllers. 

If graphical output is required then up to four variables may be printed on the 

screen or the line printer. Each block has a maximum of three inputs and three 

parameters. 

3.7.2) PSICON 

The simulation program PSICON (Linkens et al, 1982) is an extension of the 

block-oriented simulation program PSI. The parent language PSI is extended to 

make use of multitasking, to allow for inclusion of FORTRAN subroutines to give 

increased flexibility for incorporation of modern control algorithms. This interac

tion is achieved via message transfer between the two tasks using the multiuser 

operating system of the PERKIN-ELMER 3240 on which the program runs. 

PSI runs on a Tektronix 4010 grphics terminal screen which provides the continu

ous plotting of up to four variables and the external FORTRAN segment and 

overall control of the simulation is managed from an other terminal (Menad, 

1984). 

3.7.3) SPAID 

The SPAID package consists of several suites of programs for data handling 

and modification, parameter estimation, model validity tests, simulation and plot

ting. 
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The package has been design by Billings and Sterling, (1979). It is an interactive 

package written in FORTRAN 77, for the identification of linear single-input 

single-output time invariant systems. It has been implemented on the PERKIN

ELMER 3240 mini computer for multiuser access via any graphics tenninal (Bil

lings et aI, 1979) and (Batey et aI, 1975). 
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An input/output model of the process dynamics for muscle relaxant drugs 

comprises two parts. One is the linear pharmacokinetics (distribution of drug into 

the blood) and which can be described by a number of time constants, the other is 

the so called pharmacodynamics which describe the effect mechanism of the drug, 

and which can be represented by a static nonlinear characteristic. 

The emphasis in this work is on obtaining an input/output dynamic model which 

can be used for the design of controller algorithms for on-line infusion of drugs 

during surgery. 

The present work is the sequel to previous studies which used PRBS excitation 

under open loop conditions to obtain a linearized model for the drug Pancuronium 

administered in animal trials (Linkens et aI, 1982). 

A two-stage identification process was used to estimate the nonlinear pharmaco

dynamics for Vecuronium employing the linearized model obtained using PRBS 

excitation mentioned above (Linkens and Asbury, 1985). 

Identification of nonlinear difference equation models for the Vecuronium and 

Atracurium drugs is considered based on the NARMAX model representation pro

viding a general description of the process, but giving no indication as to the 

underlying physiological structure. It can however, be used with short lengths of 

data and under a variety of signal conditions. For these reasons, this technique is 

first applied to the experimental data under closed-loop control using Vecuronium 

and Atracurium drug infusion and the evoked EMG measurements. 
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This chapter presents two main studies of neuromuscular blockage using both 

Vecuronium and Atracurium. 

The first study is to fit a nonlinear model to the data of Vecuronium data using the 

NLI package with an extended recursive least squares algorithm documented in 

the previous chapter. 

After the initial direct identification of the data, initial conditions were introduced 

to account for the effect of the bolus injection administrated at the begining of the 

trial. 

In the second study, the NLI and NOI (Nonlinear Orthogonal Identification) pack

ages are used to fit a nonlinear model to the Atracurium data. 

4.2) Data acquisition and conditioning for Vecuronium 

The experiments were performed on healthy mongrel dogs (Linkens and 

Asbury, 1985). Anaesthetic drugs were injected intravenously into the left leg 

with methohexitone 5mg/ml, and maintained using a constant infusion of doperidol 

O.4mg/Kg/hr and fentanyl 6 ~ g/Kg/hr. Automatic ventilation with 02lN20 was 

used throughout the experiments, and the tidal volume adjusted to maintain an 

end-exhaled CO2 concentration of 4.2%. The level of relaxation was obtained 

from a rectified, integrated EMG (RIEMG) signal evoked using a O.IHz stimulus 

on the front leg and the muscle relaxant drug (Vecuronium) was continuously 

infused into the right leg via a roller pump driven by a d.c motor. The experi

mental set up is illustrated in Figure 4.1. The data obtained from this experiment 

are shown in Figure 4.2. 

Prior to the identification studies the data were normalised, so that an RIEMG 

value of 1 represented 100% relaxation (Figure 4.3). The data were smoothed by 

a two points averaging procedure, giving 122 data points, as shown in Figure 4.4 

with an equivalent sampling period of 20 seconds. 
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4.3) Identification of the NARMAX model 

To identify the NARMAX model, a software nonlinear identification package, 

:r-..'LI described in chapter 3, was used. 

The main objective of this study is to try and find the 'best' model for the sup

plied data. 

The first and the most important step in identification is to determine in the early 

stages of experimenting on a process, if this process exhibits linear or nonlinear 

characteristics which warrant linear or nonlinear models. To achieve this a struc-

ture detection test and a model validity test (MVT) are used (Billings and Voon, 

1983). 

The MVT is based on correlation analysis, which when the system is nonlinear 

reveals unpredictable residuals ~('t) from all linear and nonlinear combinations of 

past inputs and outputs. This condition will hold if and only if 

<I>~~(t) = OCt) 

<I>u~(t) = 0, for all t 

<I>~~u(t) = E[~(t),~(t-l-t)u(t-I-t)] = 0, for all t 

is established (section 3.3.2). 

The structure detection test of both data of Figures 4.3 and 4.4 shown in Figure 

4.5 and Figure 4.6 respectively, show that <I>;,z,(t) is well outside the confidence 

bounds. This indicates that the system exhibits significant nonlinear effects. 

Although, the structure detection tests show that <I>;,z{t):;t:O , it is a worthwile, 

exercise however to consider what happens if a linear model is fitted to the data. 

4.3.0 Best linear model 

Fitting linear models to the data with significant nonlinearities can produce 

very misleading results. This occurs because the linear parameter estimation rou

tines tend to yield an estimated combination of process and noise model which 

visually provide a good prediction of the system output. The linear model 

(equation 4.1) 



53 

PH1CZ.'Z.···2) 

2 iii 

"-1 . e 

Figure 4.5: Structure detection test of the actual data 

+ 1 . 13 

-1. 13 

Figure·4.6: Structure· detection' test of the-smoothed data 



z(t) = 0.01484 + 1.354z(t-l) - 0.1952z(t-2) - 0.2306z(t-3) 

+ 0.03431z(t-4) + 0.004898u(t-4) + 0.00322u(t-5) 
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+ 0.76621O-4u(t-6) + 0.005362u(t-7) - 0.04318e(t-l) (4.1) 

was estimated using an extended recursive least squares algorithm with the follow-

ing specifications 

The order of the lagged output, 

The order of the lagged input, 

The order of the noise, 

Delay of the input, 

Degree of nonlinearity of the model, 

where 

m=4 

1=1 

z and u are the system output and input at time t respectively and e is the noise. 

Extensive preliminary analysis of the data involved estimating the coefficients in 

linear models for different process and noise model orders and various time 

delays. The MVT for this linear model when the noise model order ( ne = 1) is 

shown in Figure 4.7. The plot of the residuals and the process and predicted out

puts are illustrated in Figures 4.8 and 4.9 respectively. 

From Figure 4.7, the cross-correlation analysis shows that <I>~~(t) and <I>u~('t) are 

slightly outside the 95% confidence bounds. This indicates a deficiency in the 

noise model. To improve the MVT the noise model was gradually increased and 

the coefficients of the model were estimated using the ERLS with the following 

specification 

The order of the lagged output, 

The order of the lagged input, 

The order of the noise, 

The delay of the input, 

Degree of nonlinearity of the model, 

m =4 

1=1 
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until what appeared to be the best linear model was obtained for a noise model of 

order 4. This model turned out to be 

z(t) = 0.01393 + 1.356z(t-l) - 0.1966z(t-2) - 0.231z(t-3) 

+ 0.03478z(t-4) + 0.005003u(t-4) 

+ 0.003231u(t-5) + 0.32361O-3u(t-6) 

+ 0.005251u(t-7) - O.05653e(t-l) 

- 0.01403e(t-2) - 0.0597e(t-3) - 0.01536e(t-4) (4.2) 

The MVT, the plot of the residuals and the process and predicted outputs are 

shown in Figures 4.10, 4.11 and 4.12 respectively. From Figure 4.10, the 

deficiency seems to have been alleviated. <l>l;~(t) is inside the confidence bounds 

and <l>u~(t) is acceptable. A normal linear analysis would therefore finish at this 

point. But, the MVT designed to detect some unmodelled nonlinear terms, 

confirms the result of the <l>;'z,(t) test shown in Figure 4.6 which indicates that the 

process is nonlinear. <l>~l;u(t) is acceptable but <l>U2~('t) and <l>u'2~(t) are outside 

the confidence bounds. This combination strongly suggests that there is room for 

nonlinear terms to be added to the model. 

4.3.2) Best nonlinear model 

The ERLS algorithm with a step-wise regression procedure was used to esti

mate the coefficients in the nonlinear model. The initial specification was 

The order of the lagged output, 

The order of the lagged input, 

The order of the noise, 

Time delay of the input, 

Degree of nonlinearity of the model, 

Degree of nonlinearity of the noise, 

n - 3 e-

TD =5 

1=2 

Ie = 1 

With this initial specification the total number of possible terms in the model was 

55. Allowing the step-wise regression algorithm to sort through all possible terms 

using the Fisher-ratio test operating with 95% confidence bounds produced a MVT 
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which at first showed the model to be deficient in some way. To improve on this, 

some terms were added to the model. The MVT is shown in Figure 4.13, where 

the cross correlation fuctions are all inside the confidence bounds, and which pro

duced the following model 

z(t) = 0.00493 + 1.63z(t-1) - 0.6377z(t-2) 

+ 0.07959u(t-5) - 0.05862u(t-7) - 0.1412z(t-3)u(t-5) 

- 0.01652z(t-2)u(t-6) + 0.09512z(t-3)u(t-7) 

+ 0.02459u(t-6)u(t-7) (4.3) 

The plot of the residuals and the process and predicted outputs are displayed in 

Figures 4.14 and 4.15 respectively. 

4.3.3) Search for initial conditions 

The NARMAX model identification has thus far been fitted to the raw data. 

However, given the fact that these data were obtained after the margin of safety 

had been taken up by a bolus dose, effectivly excluding the dead-zone from the 

overall pharmacodynamic characteristic, it was deemed important to manipulate 

the first few values of the input so as to preserve the expected known ' shape' of 

this characteristic. To achieve this, and keeping in mind that the compartments 

representing the pharmacokinetics are linearly modelled, the overall NARMAX 

model was linearised to yield an approximation of the linear dynamic model of the 

drug kinetics. 

A plot of the output from the NARMAX model versus the above linear model 

would be expected to display the characteristic of the effect compartment. It is 

while monitoring the shape of this characteristic that the first few values of the 

input were manipulated. This procedure is hence equivalent to introducing a set 

of initial conditions. 

By truncating the first few points of the set of data in Figure 4.4, a linear model 

was obtained and is shown in Figure 4.16. Using the NLI package, the structure 

detection tests shows that <l>;'z,(t) = 0, confirming that the data were linear 



, .,.t .'=' PH(EI r ~l , ~ 

A ., 
" ,. 
f 
I 

...• ~ 

\ -, ., 
" 

• ~ l , ;] :-:\ .. 41 :E,i:lJ J J 
~ 
f 

.. --) •. =-= '. ' ,-a 
~ \i --

, - \ ,'J 

-.. .. . ,~ .. -- . . 
. -:'''U. \1,J,4 • .:.~ J I 

~ ... .. , :;:: 

Figure 4.13: Model validity tests - best nonlinear 

- 2 
, ~ -~ 
.,-'--

" 

-, '7 _ 

.-- ;.- ... ., .. - .. " ........ ...... - . ,''''''''' .. '-~'" .... ", ,-. 

(:uTPfJT 

.. ,..:--~---- .. ------------~--
.: 

-1 
_ -2 

',,'" J\ I'V '/ . ..... ~ ..: ir \. ...... ~/N'.I . I" ~, \ j 1 _ t f ) "I \ . r , I, ,\ « 
r I '! ~ "l ',: :,' . ~i'': ¥ 'j I 'I " " -4' '. J 

_I ~ " 

2 ~ 

.. === =-

Figure 4.14: Plot of the residuals - best nonlinear 

61 



w 

, , 
, ' 

, , 
u 
U 
i 
:' 
'I 
I 

~ ,\ 
1;\ 
! j 

Ii 
~ ! 
i!, 

f .. 

. 
J 
u 
,\ 
,\ 

i 
" ;; 

/ 
!I 

V 

- ---.... 

[ ' I 
of' l 
r-
j 

i 
! 
I 

i 
I 
! 
~ 
! 

i 
I 
I 
! 

of 

; 

.l 
, 

, 
! 

J. 
! 

i 
! , ' 
! 
i 

! , 
! 

--'--. i 
I' It ---

[' 
I 

62 



63 

(Figure 4.17). An ERLS algorithm was used to estimate the coefficients. The ini

tial specification is 

The order of the lagged output, 

The order of the lagged input, 

The order of the noise, 

Time delay of the input, 

Degree of nonlinearity of the model, 

giving the best possible linear model as: 

TO =5 

1 = 1 

z(t) = 0.02719 + 1.541z(t-1) - 0.6699z(t-2) 

- 0.2884z(t-3) + 0.004183u(t-5) + 0.001354u(t-6) 

+ 0.003792u(t-7) - 0.04256e(t-1) + 0.02517e(t-2) (4.4) 

The MVT, the plot of the residuals and the process and predicted outputs are 

shown in Figures 4.18, 4.19 and 4.20 respectively. The aim of the 'phase plot' 

method is to try to match the nonlinear output data (DUTI) and the linear model 

(OUT1) represented by equation 4.4 with a forced nonlinear input data. The 

whole block diagram is represented in Figure 4.21. Manipulating the first few 

values of the input (equivalent to selecting a set of initial conditions) until the 

expected known 'shape' of the overall pharmacodynamics ( Hill equation type) is 

obtained. 

Before the addition of the initial conditions, the plots of DUn versus OUTI are 

illustrated in Figures 4.22 and 4.23 respectively. 

After adding the initial conditions of 5.5 units to the input the plots of OUTI 

versus OUT1 are shown in Figures 4.24 and 4.25 respectively. The new set of 

data inclusive of initial conditions is shown in Figure 4.26. 

Using the NLI package and the ERLS algorithm a best nonlinear fit is found for 

the data with the initial specification 
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OUT2 - nonlinear data 

OUTI - linear model 

Figure 4.22: Reoresentation of the nonlinear data and linear model 
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OUT2 - nonlinear data. 

OUTI - linear model. 

Figure 4.24: Representation of the nonlinear data and linear model 

with initial conditions 
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The order of the lagged output, 

The order of the lagged input, 

The order of the noise, 

Time delay of the input, 

Degree of nonlinearity of the model, 

Degree of nonlinearity of the noise, 

n = 5 e 

TD =3 

1=2 
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Allowing the step-wise regression algorithm linked with the prediction error rou

tine to sort through all the possible tenns using the Fisher-Ratio test operating 

with 95% confidence bounds, produced the following model 

z(t) = 1.376z(t-l) - 0.244z(t-l) 

- 0.3677z(t-3)+ 0.4154z(t-4) 

- 0.1750z(t-5) + 0.007367u(t-4) 

+ 0.03702z(t-l)u(t-3) - 0.004919z(t-l)u(t-4) 

+ 0.004134z(t-l)u(t-5) - 0.03932z(t-4)z(t-5) 

- 0.02160z(t-5)u(t-3) - 0.3442e(t-l) 

+ 0.2238e(t-3) (4.5) 
Computation of the MVT shown in Figure 4.27 for this model revealed that cI>~~('t) 

and all other correlation tests are inside the confidence bounds. The plot of the 

residuals and the superimposition of the process and predicted outputs are 

displayed in Figures 4.28 and 4.29 respectively. 

Comparing the MVT of Figures 4.13 and 4.27 and the fits of Figures 4.15 and 

4.29 it is clear that the introduction of the initial conditions to the data has 

significantly improved the model and hence the model represented by equation 4.5 

will be used in the later stages of this research. The final estimated model was 

simulated in FORTRAN (Figure 4.30). Equation 4.45 was linearized about an 

operating point (appendix C) 

ZL(t) = 8.0288210-3 + 1.389z(t-l) - 0.244z(t-2) 

- 0.3627z(t-3) + 0.394z(t-4) - 0.2037z(t-5) 

+ 8.1131O-3u(t-3) + 4.77881O-3u(t-4) + 2.1751O-3u(t-5) 
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4.4) Data acquisition and conditioning for Atracurium 

Two sets of data were obtained from a female and male patient respectively. 

The female patient aged 70, weighed 65 Kg. The concentration of Atracurium 

was 500 Jl glm!. The experimental set up is shown in Figure 4.31. 

With reference to Figure 4.31 and going round the loop starting at the block 

named, " Human subject ", the relaxant drug was injected into one forearm either 

continuously (through a computer controlled peristaltic pump) or as selected infu

sion (by an anaesthetist). The relaxograph comprises a pulse generator that stimu

lates the ulnar-nerve above the elbow, and electrodes that pick up the resulting 

electromyogram (EMG signal) at 20 second intervals. The EMG thus acquired is 

then rectified, amplified and integrated to give a rectified EMG (RIEMG) which is 

fed back to the computer in the automatic control mode. Alternatively it is moni

tored on a chart recorder by the human operator if the control is manual. In this 

chapter, manually controlled data are considered and the output of the first set of 

data is shown in Figure 4.32. Prior to the identification studies the data were nor

malised, so that a RIEMG value of 1 represented 100% relaxation (Figure 4.33). 

4.5) Identification of the NARMAX model 

Simultaneous linear and nonlinear identification presents a number of prob

lems, for which computer algorithms have been developed. In the present section, 

the application of two such algorithms to the Atracurium data is considered. The 

underlying structure assumed by these algorithms is that of a NARMAX model. 

The NLI package is used to identify the NARMAX model of the first set of data 

represented in Figure 4.33. 

In the early stages of experimentation on a process it is important to determine 

whether the process under test exhibits nonlinear or linear characteristics which 

warrant a linear or nonlinear model. 

Although the algorithm identifies and detects the structure of the model and then 
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Figure 4.32: Recorded E.M.G obtained during an operation performed 

by an anae'sthetist with a patient aged 70 years. 

Desired level: 20%; drug: Atracurium. 
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estimates the unknown parameters, the model obtained should only be accepted 

after model validity tests have confirmed that the fit is adequate. These model 

validity tests are based on correlation analysis (Billings and Voon, 1983 and 

1986b) (section 3.3). 

The use of the structure detection tests from section 3.3 shown in Figure 4.34 is 

that <t>;/z'(t):;eO • thus indicating that the system under test is nonlinear. Even 

though the nonlinearity is established, it is worthwhile however illustrating what 

happens if a linear model is fitted to the data. 

4.5.1) Best linear model fit 

Extensive preliminary analysis of the data involved estimating the coefficients 

in linear models of varying process and noise model orders and time delays. 

Using a recursive extended least squares with the following specification 

The order of the lagged output, 

The order of the lagged input, 

The order of the noise, 

Time delay of the input, 

Degree of nonlinearity of the model, 

Degree of nonlinearity of the noise, 

resulted in the following model 

TO =4 

1 = 1 

z(t) = O.8z(t-l) + O.174z(t-2) - O.037z(t-3) + O.219z(t-4) 

+ O.032z(t-5) - O.204z(t-6) + O.0308u(t-4) - O.016u(t-5) 

- O.0058u(t-6) - O.000353u(t-7) + O.0039u(t-8) + O.009u(t-9) 

- O.155e(t-l) - O.03441e(t-2) + O.036e(t-3) - O.047e(t-4) 

- O.OI7e(t-5) + O.264e(t-6) (4.6) 

Applying the MVT, which shows that when the system is nonlinear the residuals 

~('t) should be umpredictable from all linear and nonlinear combinations of past 

inputs and outputs (section 3.3.2). 

The MVT is shown in Figure 4.35. From Figure 4.35 the correlation tests <I>~~(t) 
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and <I>u~('t) are well inside the 95% confidence bounds, but <I>~(~u)('t) and <I>u2~2('t) 

are slightly outside the confidence bounds. These combinations suggest that non

linear terms are missing. The introduction of these nonlinear terms into the model 

was therefore investigated. The plot of the residuals and the superimposition of 

the process and predicted output are shown in Figures 4.36 and 4.37 respectively. 

4.5.2) Best fit of nonlinear model 

A recursive extended least squares algorithm with a step-wise regression pro

cedure was used to estimate the coefficients in the nonlinear model estimation, 

with the following specification 

The order of the lagged output, 

the order of the lagged input, 

The order of the noise, 

Time delay of the input, 

Degree of nonlinearity of the model, 

Degree of nonlinearity of the noise, 

n - 6 e-

TD=4 

1=2 

with this initial specification the total number of terms was very high. Allowing 

the step-wise regression algorithm to sort through all possible terms using the 

Fisher-Ratio test operating with 95% confidence bounds produced the following 

model 

z(t) = 0.982z(t-l) - 0.210z(t-l)z(t-3) + 0.213z(t-2)z(t-2) 

- 0.249z(t-3)u(t-6) + 0.265z(t-3)u(t-7) 

+ 0.0456u(t-4)u(t-6) 

- 0.0277u(t-5)u(t-7) + 0.164u(t-6)u(t-6) 

- 0.163u(t-7)u(t-7) 

- 0.254e(t-l) + 0.145e(t-4) + 0.224e(t-6) (4.7) 

The MVT is shown in Figure 4.38. From Figure 4.38 <I>u2~2('t) is slightly outside 

the confidence bounds. An attempt to improve the tests by adding a few terms to 

the model did not alter the fit, and hence the best nonlinear model obtained is 
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represented by equation 4.7. The plot of the residuals and the superimposition of 

the process and predicted outputs are displayed in Figures 4.39 and 4.40 respec

tively. Equation 4.7 was linearized about an operating point (see appendix C), the 

resulting model used in chapter 5, is of the form 

Zl(t) = -0.01034 + 0.857z(t-l) + 0.254z(t-2) 

- 0.117z(t-3) + 0.023u(t-4) - 0.015u(t-5) 

+ 0.043u(t-6) - 0.245u(t-7) 

4.6) Identification of the smoothed data 

(4.8) 

The use of the whole data (218 points) was first investigated but the results 

were unsatisfactory. The data were smoothed by two point averaging, giving (l08 

points) as shown in Figure 4.41 with an equivalent sampling period of 40 seconds. 

The identification of this data was carried out by using the NLI package. Even 

though the structure detection test displayed in Figure 4.42 shows that the data 

was linear, it is worthwhile considering what happens if the linear model is fitted 

to the data. 

4.6.1) Best linear model 

A recursive extended least squares algorithm is applied with the initial 

specification 

The order of the lagged output, 

The order of the lagged input, 

The order of the noise, 

Time delay of the input, 

Degree of nonlinearity of the model, 

Degree of nonlinearity of the noise, 

n =4 e 

TD =4 

1=1 

The plot of the MVT, the residuals and the superimposition of the process and 

predicted output are shown in Figures 4.43, 4.44 and 4.45 respectively. From Fig

ure 4.43, <I>~~(u)(t) is slightly outside the 95% confidence bounds, meaning that 
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nonlinear terms are missing. 

4.6.2) Best nonlinear model 

An extended recursive least squares is used with the following initial 

specification 

The order of the lagged output, 

The order of the lagged input, 

The order of the noise, 

Time delay of the input, 

Degree of nonlinearity of the model, 

Degree of nonlinearity of the noise, 

which gives the final estimated model 

n - 4 e-

TD=4 

1=2 

Ie = 1 

z(t) = 0.78z(t-l) + 0.5z(t-2) - 0.31z(t-3) 

+ 0.034u(t-4) + 0.28z(t-l)u(t-7) - 0.39z(t-2)z(t-3) 

- 0.263z(t-2)u(t-7) + 0.366z(t-3)z(t-3) (4.9) 

The plot of the MVT, the residuals and the superimposition of the actual data and 

the predicted output from this NARMAX model are shown in Figures 4.46, 4.47 

and 4.48 respectively. From Figure 4.46 the correlation tests are all inside the 

95% confidence bounds. The nonlinear model is thus seen to reveal a significant 

improvement on the linear fit of Figure 4.45. 

4.6.3) Identification of the NARMAX model 

The NO! package was used to identify the smoothed data represented in Fig

ure 4.41. U sing the extended orthogonal estimation algorithm with the following 

initinial specification 

The order of the lagged output, 

The order of the lagged input, 

The order of the noise, 

Time delay of the input, 

Degree of nonlinearity of the model, 

TD =4 

1=2 
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in 50 mI. The run was performed under automatic control and then initially 

switched to manual control. 

In this section, manually-controlled data are considered and the output data are 

shown in Figure 4.53. The input and output data are shown in Figure 4.54. 

Using NLI package the structure detection test <l>z?('t) is well inside the 95% 

confidence bounds (Figure 4.55), this means the data are linear. To obtain a best 

linear fit to these data an extended recursive least squares algorithm is used with 

the initial specification 

The order of the lagged output, 

The order of the lagged input, 

The order of the noise, 

Time delay of the input, 

Degree of nonlinearity of the model, 

which provides the following estimated model 

TD=4 

1=1 

z(t) = 0.438z(t-l) + 0.3z(t-2) + O.lz(t-3) 

- O.048z(t-4) + O.18z(t-5) - O.09z(t-6) 

- O.0005u(t-4) + O.0097u(t-5) - O.041u(t-6) 

+ O.09u(t-7) - O.187e(t-l) - O.104e(t-2) 

- O.052e(t-3) - O.037e(t-4) (4.12) 

The MVT shown in Figure 4.56 illustrated that the correlation tests are all inside 

the 95% confidence bounds confinning that the model is adequate. The plot of the 

residuals and the superimposition of the process and predicted outputs are 

displayed in Figures 4.57 and 4.58 respectively. 

In the case where the model is linear, the computation of the time constants is 

straight forward. The poles and zeroes are shown in Figure 4.59 and therefore the 

time constants are 

"[1 =22 sec 

"[2 =25 min. 
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4.8) Conclusion 

Two extensive identification techniques, namely, NLI and NOI have been 

used to estimate a nonlinear difference equation (called NARMAX) model for the 

drugs Vecuronium and Atracurium. 

For the case of Vecuronium, the NLI package was sufficient to use for 

identification of the model. The model validity tests shown in Figure 4.27 

revealed that all the cross-correlation tests were inside the confidence bounds and 

the superimposition of the process and the predicted output (Figure 4.29) shows a 

very good fit. 

For the case of Atracurium, the use of the NLI package offered a good model 

validity tests (Figure 4.43) and a fairly satisfactory fit (Figure 4.45). The fit was 

improved by using the NOI package. From Figure 4.51 the NOI has shown its 

superiority to that of the NLI and provided a better estimate. The strength of the 

algorithm lies mainly in the fact that it provides information regarding which 

terms in the model are significant. This is often very important in identification of 

nonlinear systems. 
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Although the NARMAX model gives a good fit to the data, comprising a 

small number of points, there is no clear relationship to the underlying physiologi

cal structure from this approach. It is widely considered that drug response 

models should comprise the linear pharmacokinetics to represent the drug distribu

tion and absorption, and the nonlinear pharmacodynamics which are often 

modelled by a static characteristics using the Hill equation (Wagner, 1968, 1976). 

The overall characteristic (pharmacokinetics and pharmacodynamics) relating drug 

input to evoked EMG response was seen in chapter 2 to comprise a dead space to 

account for the margin of safety. These nonlinear effects may be embodied in a 

Hill equation (linear part in series with a dead space and saturation device) as 

shown in Figure 5.1, where ex is a constant, not necessary an integer, and D is the 

value of X for which Y =50% of the maximum effect. 

In this chapter, a fit of physiological structure to the models of both drugs, Vecu

ronium and Atracurium, is studied following the arrangement shown in Figure 5.2. 

Since the NARMAX model was estimated off-line, many data points could be 

used, and a white noise input with the mean adjusted to give the experimental 

data's RIEMG level. 

An alternative approach to explore the underlying structure is to use cross

correlation methods based on Volterra series (Billing and Fakhouri, 1982). These 

methods require many data points (typically 5000 points) and Gaussian white 

noise inputs, which can be achieved, here, off-line using the identified NARMAX 

models. This technique should show whether the system under investigation is a 
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Wiener or Hammerstein model. These two models will be derived in the next sec-

tion. 

5.2) Wiener and Hammerstein models 

For the class of nonlinear systems such as cascade connections of linear 

dynamics and static nonlinear elements, system structure refers to the position of 

the nonlinear device in relation to the linear subsystems. Because the nonlinear 

Wiener (Billing and Fakhouri, 1977) and Hammerstein (Narendra and Gallman, 

1966) models are all subclasses of the general models, an algorithm that can deter

mine which, if any, of these models coincides with the structure of the process 

and provides an estimate of each component subsystem is desirable. 

In this section, Weiner and Hammerstein structures are derived using a separable 

class of random processes method. 

For the random variables X and Y let/l(xl,t) andh(y,t) be the probability density 

function and let I(x,y,t) be the joint probability density functions. Let the condi

tional probability density function of X relative to Y in terms of the probability 

density functions of X and Y be 

hence 

f (x/y·t) = I(x,y;t) 
l' h(y) 

f (y/x-t) = I(x,y;t) 
2' II (X) 

I(x,y;t) = II (x/y;t) h(Y) 

= h(y/x;t) II (x) 

If Y is a single-value function of the random variable X and is given by 

y = 'P(x) 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

then for any fixed value x of the variable X , Y possesses a single possible value 

'P(x) and the conditional probability of this value is equal to unity. 

Consequently, the conditional probability density function of the random variable 

Y with respect to X is the delta (0) function given by 



h(ylx;'t) = B(y-\}I(x» 

J1 if y = \}I(x) 
f 2(ylx;'t) = 10 if y ~ \}I(x) 

using equation S.3 

f(x,y;'t) = 11 (x)B(y-\}I(x» 

(Pugachev, 1962) 

Also define 

00 

g(y;'t) = f xf(x,y;'t)dx 

x(t) is separable with respect to yet) if 

g(y;'t) = gl(y)g2('t) 

using equation S.8 and S.6 

00 

g(y,'t) = f xf(x,y;'t)dx 

00 

g(y,'t) = f xfl (x)B(y-\}I(x»dx 

If \}I is a one to one function with \}I-I its inverse 

g(y,'t) = \}I-I (y) !l ('¥-l(y» 

for 't =0 equations S.8 and S.lO become 

hence 

g(y,O) = gl(y)g2(0) 

g(y,O) = \}I-l(YVlo\}l-l(y) 

\}I-I (y VI 0'1'-1 (y ) 
gl (y) = g2(O) 

Now consider the cross-correlation function 

<I>xy('t) = E[X(t)Y(t+t)] 
00 00 

<I>xy('t) = f f xyf(x,y;'t)dxdy 

00 _ 

<l>xy('t) = f y( f xf(x,y;'t)dx)dy 
-DO -DO 

lOS 

(S.S) 

(S.6) 

(S.7) 

(S.8) 

(S.9) 

(S.10) 

(S.l1) 

(S.12) 

(S.13) 
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00 

<1>xy{'t) = f yg(y,'t)dy 

00 

(5.14) 
-00 

Since the process is separable, using equation 5.8 

-
(5.15) 

For 't =0 equation 5.15 becomes 

00 

(5.16) 
-00 

Hence 

(5.17) 

The idea can be illustrated by considering the general model of Figure 3.2 of sec

tion 3.2.2. 

Assume that x(t) can be measured and let!(xt.x2;'t) be the second order probability 

density function of the process x(t) and analogous to equations 5.7 and 5.8 

-
-00 

g(X2,'t) = gt(xVg2('t), for all X,'t 

and analogous to equations 5.13 and 5.17 

Define the cross-correlation function 

--
Using equations 5.18, 5.19 and 5.20 

-
-00 

(5.18) 

(5.19) 

(5.20) 

(5.21) 



107 

(5.22) 

where 

C F is a constant. 

This is known as the invariance property (Billings and Fakhouri, 1978) 

But in practice the internal signals in Figure 3.2 x(t) and q(t) will not be available 

for measurement. However by considering separability under linear and nonlinear 

transformations equation 5.22 can be generalised. For a non-zero mean Gaussian 

white noise input Figure 3.2 yields 

00 

(5.23) 

00 

(5.24) 
-00 

where 

C FG and C FFG are constants, providing hI (t) are stable bounded-inputs 

bounded-outputs. 

Equation 5.23 represents the first degree correlation function and equation 5.24 

represents the second degree correlation function. If the second degree correlation 

function is the square of the first degree correlation function, except for a con

stant of proportionality (setting h2(t) = 8(t) in equations 5.23 and 5.24), the struc

ture refers to a Weiner model (linear dynamics followed by a nonlinear static 

characteristic). 

However, if the first and second degree correlation functions are equal except for a 

constant of proportionality (setting hI (t) = 8(t) in equations 5.23 and 5.24), the 

structure is consistant with a Hammerstein model (nonlinear static characteristic 

followed by linear dynamics) (Billings, 1985). 
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5.3) Fittin~ a physiolo~ical structure to the Vecuronium model 

It has been mentioned in section 5.1 that although the NARMAX model pro

vided a good fit to the data comprising a small number of points, it by no means 

reflects the under lying physiological structure. To obtain parameters for this 

structure, the arrangement shown in Figure 5.2 is used. 

The pharmacokinetics were modelled in two ways. First, a linear model was 

obtained by truncating the first few points and represented by equation 4.4, and 

second, the model was obtained by linearization of the NARMAX model about an 

operating point. 

S.3.n Use of the linear model obtained by truncating data 

Consider the 'best' nonlinear model (equation 4.5) and linear model (equa

tion 4.4). A white noise sequence is used as input for both models (Figure 5.3). 

To find the parameters of the Hill equation, an optimization method, the simplex 

method, available in the NAG library was used. 

Prior to optimization, YNL was plotted as a function of X/.N 

where 

Y NL is the output of the nonlinear model 

XLN is the output of the linear model 

Y HE is the output of the Hill equation block 

to give the results shown in Figures 5.4 and 5.5 respectively. The nonlinear static 

response (related to the pharmacodynamics) could now be estimated by fitting a 

Hill equation. 

After optimization, the parameters of the Hill equation turned out to be 

a = 0.8629 D = 0.4455 

By substituting the values of a and D into the Hill equation, Y HE and Y NL are 

shown in Figure 5.6 and the phase plot Y HEIX/.N is shown in Figures 5.7 and 5.8 

respectively. 
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From Figure 5.8, the pharmacodynamic characteristic (Hill equation) did not show. 

Therefore the linear model of equation 4.4 is replaced by the linearized NARMAX 

model. 

5.3.2) Use of the Iinearzed model 

The linearized NARMAX model is represented by (see section 4.3.3) 

ZL(t) = 8.0288210-3 + 1.389z(t-l) - O.244z(t-2) 

- 0.3627z(t-3) + 0.394z(t-4) - 0.2037z(t-5) 

+ 8.1131O-3u(t-3) + 4.778810-3u(t-4) + 2.1751O-3u(t-5) (5.25) 

(see appendix C). 

Substituting equation 4.4 by 5.26 and using the white noise signal as input to both 

models YNL and Xw are shown in Figure 5.9. 

Prior to optimization a plot of Y NL versus Xuv is displayed in Figures 5.10 and 

5.11 respectively. 

After optimization, the parameters of the Hill equation were 

a = 2.6337 D = 0.5129 

U sing these values of a and D the output of the Hill equation Y HE and the output 

of the NARMAX model are shown in Figure 5.12. The display of the phase plot 

YlIEIXLN is shown in Figures 5.13 and 5.14 respectively. Hence, from Figure 5.14, 

the phase plot shows the characteristic of the Hill equation. The values of ex. and 

D are respectable and commensurate with values obtained in previous studies 

using off-line sequential methods. 

$.4) Structural identification for Vecuronium 

The previous section showed how parameter estimates for an assumed phy

siological structure can be found using the NARMAX model. An alternative 

approach is to use cross-correlation methods based on Volterra series (Billings and 

Fakhouri, 1982) to explore the underlying structure. These methods require many 

data points (typically 5000 points) and Gaussian white noise as inputs, which can 

be achieved, here, off-line using the previously identified NARMAX model 
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represented by equation 4.5. 

5.4.1) Cross-correlation method 
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The final estimated model (equation 4.5) was simulated and excited with 

5000 points Gaussian white noise sequence with mean and variance adjusted to 

suit the operating level of the experimental data. The noise and output signals 

(5000 points) are shown in Figure 5.15. 

The cross-correlation tests were simulated using a FORTRAN program, and the 

results are shown in Figure 5.16. Traces 3 and 4 of Figure 5.16 can be used to 

determine the underlying structure. If trace 3 is a constant level, the structure is 

that of Wiener model. If trace 4 is a constant level then the structure is of a Ham-

merstien model. Neither of these conditions is fulfilled in Figure 5.16 and hence 

no definite indication is given in this case. The reason for a Wiener model not 

being indicated when this might be expected from physiological knwoledge is 

probably due to the small number of data points used in obtaining the NARMAX 

model and the non-optimality of the shape of the input signal. 

5.4.2) Computation of the time constants 

From the top trace of Figure 5.16 representing <l>uz • the impulse response of 

the linear part of the model can be obtained. Using the optimization routine avail

able in PSI ( Van Den Bosch, 1979), a two exponential transfer function of the 

form 

yes) _ K 
u(s) (s+a) (s+b) 

(5.26) 

was fitted to this response. The block diagram is shown in Figure 5.17 

where 

FUN represents a function generator containing the <l>uz data. 

FUN1 represents a function generator containing the impulse response data. 

After optimisation (Figure 5.18) on the three parameters K, a and b and using 

periods of 20 seconds gave the time constants 
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Figure 5.16: Cross correlation plots obtained from the NARMAX 

model excited with 5000 point white noise sequence 
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FUN (A) K y(B) 

I...-~~ _______________ ~ Time (50) 

Figure 5.18: Representation of the output of the two exponential tran5fcI" 

functions and the top trace of the cross-correlation 

plot ( after optimisation) 
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'tl = 0.96 min 't2 = 6.31 min 

These values are comensurate with pharmacokinetics of Vecuronium obtained via 

blood assay methods. 

5.5) Fitting a physiological structure to the Atracurium model (NLI) 

The same method is used here as in section 5.3 for Vecuronium. Many data 

points were obtained by exciting the NARMAX model of equation 4.7 on the 

whole data (218 points) and the linearized model of equation 4.8. The arrange

ment is shown in Figure 5.2. Both models are excited by a white noise sequence 

with its mean adjusted to give the experimental RIEMG level. 

5.5.1) The linear model obtained by linearization of 

the NARMAX model 

From Figure 5.2 both linearized and NARMAX models were excited with a 

white noise sequence, with standard deviation and mean adjusted to suit the level 

of experiment. To find the parameters of the Hill equation an optimazation rou

tine using the simplex method was again used. 

Prior to optimization Y NL was plotted as a function of XLN , where 

Y NL is the output of the NARMAX model 

XLN is the output of the linearized model 

Y HE is the output of the Hill equation 

Before optimization, the display of Y NL and XLN is shown in Figure 5.19 and Y NL 

versus XLN is shown in Figures 5.20 and 5.21 respectively. 

After optimization the parameters of the Hill equation turned out to be 

a = 2.131 D = 00405 

Substituting the values of a and D into the Hill equation, the plot of Y HE and Y NL 

is shown in Figure 5.22 and the plot of Y HE versus XLN is shown in Figures 5.23 

and 5.24 respectively. 
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Figure 5.19: Data used in optimisation method obtained from Figure 5.2 
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Figure 5.20: Representation of Y NL and XLN 
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Figure 5.21: Phase plot of Y~L versus XL;,,! 
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5.6) Structural identification 

An alternative approach is to use cross-correlation based on Volterra series 

(Billings and Fakhouri, 1982) (section 4.5.1). The use of the whole data (218 

points) was investigated but, the results were unsatisfactory. The data were 

smoothed by a two point averaging procedure, giving 108 points as shown in Fig-

ure 4.41 with an equivalent sampling period of 40 seconds. 

The identification of this new data was carried out using the NLI package. The 

structural identification was reconsidered by using the model obtained from the 

smoothed data. The method requires many data points (typically 5000 points). 

The NARMAX model represented by equation 4.9 was then simulated on a com-

puter and excited with Gaussian white noise with its mean adjusted to suit the 

operating level of the experiment data (Figure 5.25). Cross-correlation techniques 

(section 5.2) were used to check if the system under investigation was a Wiener or 

Hammerstein model. The cross-correlation plot is shown in Figure 5.26. As for 

Vecuronium, the same conclusions are drawn for this model. 

5.7) Computation of time constants 

From the top trace of Figure 5.26 the impulse response of the linear part can 

be obtained by using a two exponential fit 

yes) K 
--= 
u(s) (s+a) (s+b) 

(5.27) 

U sing the optimization routine in PSI the block diagram is the same as that for 

Vecuronium shown in Figure 4.44. 

After optimization on K, a and b of equation 5.5 the result is shown in Figure 

5.27 and 

tl = 1.42 min t2 = 15.11 min 

Another way of calculating the time constants is to use the pole and zero option 

(PAZ) in SPAID ( Billings and Sterling, 1979). 

First, consider the linearised model represented by equation 4.8. Using the (PAZ) 
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Figure 5.27: Representation of the output of the two exponential transfer 

functions and the top trace of the cross-correlation 

plot ( after optimisation) 
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method (Figure 5.28) gives 

'tl = 15 sec 't2 = 55 min 

Second, consider the linearized model of the form 

ZL(t) = 0.0024 + 0.92z(t-l) + 0.137z(t-2) 

- 0.0101z(t-3) + 0.033u(t-4) + 0.0135u(t-7) (5.28) 
obtained by linearizing equation 4.9 about its operating points. The use of (PAZ) 

method (Figure 5.29) gives 

'tl = 34 sec 't2 = 14.46 min 

The above results are tabulated in table 5.1 

5.8) Fitting a physiological structure to the model obtained using the NOY 

package (Atracuriurn) 

A NARMAX model obtained using the NOI package on the real data can be 

explored via off-line simulation to fit a physiological structure to this model. The 

NARMAX model is represented by equation 4.10 and was linearized about an 

operating point giving 

z/(t) = 0.01087 + 0.98212z(t-l) + 0.21716z(t-2) 

- 0.039625z(t-3) - 0.19737z(t-4) 

+ 0.022712u(t-4) + 0.0028305u(t-5) (5.29) 
The arrangement of Figure 5.2 is used, by substituting equation 4.8 by 5.27 and 

equation 4.7 by 4.10. A white noise sequence with its mean adjusted to give the 

experimental data's RIEMG level is shown in Figure 5.30 

Before optimization the plots of YNL versus XLN are shown in Figures 5.31 and 

5.32. 

After optimization, the parameters of the Hill equation turned out to be 

ex = 3.20 D = 0.677 

Substituting these values into the Hill equation, the Plot of YlIE and Y NL is shown 

in Figure 5.33 and the plot of Y HE versus XLN is shown in Figures 5.34 and 5.35 

respectively. 
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Fit of second order The whole 218 points being 

system <I> uz 
..... nonlinear and then linearized 

the NARMAX model >Ie >Ie 

'tl 
1.42 min 15 sec 

'tz 
15.11 min 55 min 

Table: 5.1 

". Using NLI package on 108 points 

>Ie>le Using NLI package on 218 points 
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The smoothed data 
(l08 points) and then 

linearized the NARMAX 
model **'" 

34 sec 

14.46 min 

>Ie"'''' Using NLI package on the smoothed data (l08 points) 
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5.9) Structural identification 

The NARMAX model of equation 4.9 was replaced by the NARMAX model 

of equation 4.10 (section 5.5.3). Using Gaussian white noise as input (Figure 

5.36) the cross-correlation plot is shown in Figure 5.37. 

From Figure 5.37 neither trace 3 nor trace 4 verifies the conditions of a Wiener or 

a Hammerstein model. As for Vecuronium. the reason for a Wiener model not 

being indicated, when this might be expected from physiological knowledge, is 

probably the small number of data points obtained from the experiment and the 

non-optimality of the shape of the input signal. 

5,9,1) Computation of the time constants 

From the top trace of Figure 5.37 the impulse response of the linear part was 

obtained by fitting a two time constants transfer function to the response of the 

form 

11&= K 
u(s) (s+a) (s+b) 

(5.30) 

As in section 5.5.4 an optimization routine was used to calculate the time con-

stants , 

After optimization (Figure 5.38) the time constants were found to be 

'tt = 1.3 min 't2 = 15 min 

If the linearized model is considered, equation 5.8, using the (PAZ) method in 

SPAID the time constants become 

'tl = 1.6 min 't2 = 22 min 

The results are tabulated in table 5.2 

~1Q) Comparison of both identifications 

Identification of the drug Atracurium under manual control was performed. 

Two identification methods were used. The first one consisted of a nonlinear 

identification package using a recursive extended least squares algorithm using the 

whole data (218 points) (Figure 5.11), and the smoothed data (108 points) 
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I Fit of the second order I 
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system <l>uz I on the smoothed data * I 
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I I 
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I I 
, 
I 

I ! I 
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i I 
I 't'l 

I 1.6 min 
, 

I 1.3 min I I 
I 
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I 
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I 
i I 

I I 

~I 15 min I 22 min 
! I 
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! 

Table: 5.2 

* Poles and zeros method from SPAID. 
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(Figure 5.26) and the second one consisted of a nonlinear orthogonal identification 

package employing the prediction error algorithm on the smoothed data only (l08 

points) (Figure 5.35). Comparing Figures 5.11, 5.26 and 5.35, it is clear that Fig

ure 5.35 representing the NOI technique demonstrates the effectiveness of the al

gorithm since the predicted output of the estimated model was virtually coincident 

with the process output. Also the parameters ( ex = 3.20 , D=0.67) found for the 

Hill equation via the model obtained using the NOI package compare well with 

values of ex = 2.6 , D=OA obtained by traditional methods for Atracurium 

(Weatherly et al, 1983). The time constants 'tl = 1.3 min and t2 = 15 min ob

tained from the model using the NO! technique are commensurate with the known 

pharmacokinetics of Atracurium. 

The reason for not giving a good structure by using NLI method is due to the al

gorithmic limitation of the package. Hence, using a collection of nonlinear 

identification methods currently available it has been possible to obtain parame

ters for a model which describes a dose/response of muscle relaxant drug adminis

tration. Such a NARMAX model could be used for the design of improved con

troller algorithms for on-line drug infusion regimes. These algorithms vary from 

simple three-term to minimum variance optimal control strategies and will be dis

cussed in the next chapter. 
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In the past few years, automatic control has experienced a large surge of 

interest in all fields of engineering. Systems requiring to be controlled automati

cally are becoming larger, more powerful, widespread and diverse, emcompassing 

ventilation control, combustion control in high temperature furnaces, pH control in 

chemical plants and automated operation of power plants, aircraft, ships and radio 

circuits. New applications for automatic control are continually coming to the 

fore. 

In recent years, automatic control has found new applications and has become a 

well established theory in the field of biomedical engineering. Linkens (1979) 

shows many applications of automatic control covering several areas of biomedical 

systems (lung parameter estimation, digestive tract, eye-and-ear control, heart beat 

arythmia). 

In the field of anaesthesia (Brown et ai, 1980, Asbury et ai, 1980, Linkens et aI, 

1981, Cass et ai, 1976, Shepphard et aI, 1979) demonstrate the superiority of feed

back control over the conventional manual methods. 

It has been mentioned in chapter 2 that the manual control of muscle relaxant 

administration tends to proceed by over-paralysis. To overcome this problem, 

antagonist drugs are administered to reverse the neuromuscular block. Sometimes, 

too large a dosage may not be desirable for the patient as this gives rise to post

operative complications. The magnitude of the dosage and the maintaining of 

correct levels of relaxation are the anaesthetist's main concerns in the control of 

the muscle relaxant administration. Medical staff would be relieved from the task 

of constant observation of the bedside monitors and frequent adjustments of the 
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infusion rate to maintain control by the introduction of feedback. 

The work reported in this chapter concerns the on-line control of muscle relaxant 

dynamics of both the drugs: Vecuronium and Atracurium. It is evident, from the 

control literature, that greater emphasis has been placed on linear systems. The 

area of adaptive control is no exception. This imbalance, can of course, be attri

buted to the diversity and complexity of nonlinear systems. 

However, many important control problems are known to be inherently nonlinear. 

Therefore, it is reasonable to believe that better control would result by accurately 

identifying a nonlinear model for the system and incorporating this knowledge into 

the structure of the control law. Hence nonlinear identification was carried out 

and NARMAX models were obtained for both the above drugs (chapter 4). 

Three different strategies will be considered in the present chapter to control the 

NARMAX models for Vecuronium and Atracurium. Section 6.2 will consider the 

most widely used controller in control system design. It is the three-term or PID 

(Proportional, Integral and Derivative) controller algorithm, and is given by 

u(t) = K[e(t) + l.. je(t)dt + Td de(t)] 
T j 0 dt 

(6.1) 

where K is the proportional gain, Ti is the integration time, T d is the derivative 

time, u(t) and e(t) represent the control and error signals respectively. Section 6.3, 

deals with the application of the general minimum variance self-tuning controller 

developed by Clarke and Gawthrop (1975, 1979) and Clarke et al, (1975), which 

was originally introduced by Astrom and Wittemark (1973). This controller is 

based on the minimization of a cost function that allows for set-point tracking of 

continuously varying demand signals and includes control effort weighting to 

avoid generation of excessive control signals. In section 6.4 a generalised predic

tive controller (GPC) algorithm due to Clarke et aI, (1987) is used to control the 

NARMAX models of both muscle relaxants. Linkens and Mahfouf (1988) used 
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this algorithm successfully to control an overall nonlinear model of the drug Atra

curium in which the pharmacokinetics of the drug were modelled by a third order 

transfer function while the pharmacodynamics (nonlinear part) were represented by 

a Hill equation. 

6.2) Design of the PID controller 

The PID controller has a forty-year history as the work horse of the process 

industries. Most industrial loops are controlled by discrete versions of the basic 

PID controller. With the surge of recent years in the area of adaptive controllers, 

tuning has been a major preoccupation amongst control theorists. The tuning 

scheme was divided into two categories: off-line and on-line. 

In off-line methods, controller parameters are calculated applying the early scheme 

of Ziegler and Nichols (1942). Mcgregor et al (1975) used a method based on 

identification, followed by numerical optimization of the control parameters. 

In contrast with off-line methods, on-line methods attempt to change controller 

settings as data are received. Work in adaptive control falls into the on-line 

category (self-tuning regulators, model reference adaptive control). In this section, 

an off-line method is used to design PID controllers for the NARMAX models of 

the muscle relaxant dynamics. 

Equation 6.1 can be expressed in discrete time as 

or 

where 

u(t) = u(t-1) + Poe(t) + P1e(t-l) + P2e(t-2) 

. Po = Kp + Ki + Kd ) 
, PI = -Kp - 2 Kd 

P2=Kd 

Using the simplex method (NeIder and Mead, 1965), the off-line tuning of the 

(6.2) 

(6.3) 

(6.4) 
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parameters Po ' PI ' P2 (equation 6.3) was formulated as an optimization problem 

in which the cost function to be minimised was the integral of the squared error. 

The closed loop configuration, inclusive of the PID controller whose parameters 

are to be optimised is shown in Figure 6.1 below. 

+,/ __ \e(t) ---
Set ;\ /\ lu(t) 

-..1. \/ \ A I, . ; .". f 
Pomt '. ,. \ . 

\,/ \.:' I 

y(t) 

B 

1 

Figure 6.1: Three-term control of the NARMAX models 

With reference to Figure 6.1 , block A represents the PID controller and B the 

relaxant model: either that of Vecuronium or Atracurium. Note that in either case 

the control signal is limited between 0 and 1 prior to its application to the system. 

1) Case of Vecuronium model 

With the above set-up, the optimisation procedure yielded the following PID 

parameters 

Po:: 0.95 PI:: 0.1 P2 = 2.8 

With the controller parameters fixed to these values, the responses of the system to 

square wave demands of levels (0.7 and 0.4) and (0.7 and 0.8) are shown in Fig

ures 6.2 and 6.3 respectively. 

2) Case ofAtracllrium model 

Two situations are considered for this case which are: 

a) that of the drug model obtained using the NLI package (equation 5.4) and 



b) that of the model obtained via the NO! package (equation 5.7). 

The controller parameters for these cases turned out to be 

Po =1.5 PI =0.005, P2 =3.0 

Po =1.95 PI =0.15, P2 =2.3 

respectively 
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The system responses for both the above situations to the same demand signals as 

those for the Vecuronium case are shown in 

a) Figures 6.4 and 6.5 and 

b) Figures 6.6 and 6.7 

respectively 

The responses of Figures 6.2, 6.3, 6.4, 6.5, 6.6 and 6.7 demonstrate fairly satisfac

tory PID control of the Vecuronium and Atracurium NARMAX models. Howev

er, these responses were obtained with the model parameters fixed to those values 

for which controller parameter optimisations were performed in the absence of any 

noisy disturbances. So, if the systems parameters and/or time delay were to vary, 

which is the case in practice (Menad, (1984) discusses this aspect and gives the 

ranges within which these quantities do vary in practical situations), it is to be ex

pected that the performance of these controllers will deteriorate gradually the 

further these quantities get from their 'nominal' values i.e those values upon 

which controller optimisation is based. 

Further performance degradation is expected upon the introduction of noisy distur

bances even if the derivative term in the PID controller were absent. 

Despite the above problems associated with fixed term feedback control of relax

ant administration, Linkens et aI, (1982), Brown et aI, (1980), Menad, (1984), 

Rametti, (1985) among other researchers have underlined its superiority to that of 

the conventional manual control method. 

An even better control strategy would be one in which an acceptabl(' rerformance 
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is maintained even under varying parameter and noisy (providing the signal to 

noise ratio is high enough) conditions. 

6.3) General minimum variance (GMV) 

Superior control (to that of the fixed-term controllers) can be achieved with a 

class of controllers known as self-tuning controllers (Clarke and Gawthrop, 1975, 

1979), Well stade et al, 1979, Astrom and Wittermark, 1973). 

Such controllers combine the identification and control phases on-line so that any 

system parameter changes are tracked and the controller parameters changed 

accordingly to achieve whatever objective constitutes the basis of the design (e.g 

minimisation of some performance index (Clarke and Gawthrop, 1975, 1979) or 

assignement of closed loop poles (Wellstead et aI, 1979». 

Compared with the standard three-term controller, adaptive controllers are rela

tively sophisticated and should not be used if a simple constant parameter con

troller will do the job. 

The general structure of the self-tuning controller is shown in Figure 6.8. 

A self-tuning regulator consists of three parts. 

(1) A feedback law that would give good control if the parameters of the pro

cess were known. 

(2) A recursive estimator which monitors the inputs and the outputs and esti

mates the unknown parameters. 

(3) The controller design algorithm which uses the estimates in (2) to update the 

control law in (1). 

Menad (1984) and Linkens et al (1985) reported the successful application of pole 

placement self-tuning control (Wellstead et aI, 1979) and Denai (1988) that of 

self-tuning PID control (Kim and Choi, 1987, Kraus et Myrom, 1984, Gawthrop, 

1986) in muscle relaxant administration. The following sections of this chapter 

introduce the general minimum variance (Clarke and Gawthrop, 1975, 1979) and 
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consider its application to the NARMAX models of the drugs Vecuronium and 

Atracurium. 

6.3,1) Minimum variance controller 

Consider the system illustrated in Figure 6.9. The system model can be 

expressed as 

(6.5) 

or 

B C 
y(t+k) = A"u(t) + A~(t+k) (6.6) 

or still 

Ay(t+k) = Bu(t) + C~(t+k) (6.7) 

where the argument z-l of the polynomials A(z-I), B(z-l) and C(z-l) has been 

dropped, and where k~l such that bo = 0 and the roots of C(z-l) are assumed to 

be within the unit circle. 

Consider the control law which minimize the variance of the output 

(6.8) 

The choice of this criterion originates from a quality control argument where it is 

desirable that the fluctuations or variance in the plant output around the operating 

point should be as small as possible. 

Since it is the noise which causes the variations in the system output, consider ini

tially the noise term in equation 6.6 

1 -1 C -n C + elz + ...... + nZ 

-~(t+k) = 1 ~(t+k) 
A 1 + al Z- + ...... + anz-n 

Dividing equation 6.9 by A(z-l) gives the infinite sequence 

£~(t+k) = [~(t+k) + nl~(t+k-l) + ..... + nk-l~(t+l) 
A 

+ nk~(t) + nk+l~(t-l) + ........ ] 
= fz(t+k) + fi(t+k) 

(6.9) 

(6.10) 



Q) 
Vl ..... 
o s:: 
~ 

~ 

150 

y 
\ 

\ 
\ 

+ 1 
I
I----~( '-,/' \ 

\ ...... Y... ) 
'<-..,)...' 

+ .... 

-~ 
--' 
c: 

8 
::s ... 
::s g-..... 
] 
s:: 
8 



151 

At time t n(t+k) is unknown and cannot be predicted since we have assumed that 

set) is a white noise sequence. The second term n(t+k) however, represents the 

noise signal up to and including time t which can be computed exactly from equa

tion 6.6 

~(t) = Ay(t) - z-kBu(t) 
C 

Define the identity 

where 

C E -k F 
-= +z-
A A 

E[ -1] 1 -I + + -k+1 z = + elz ..... ek-l z 

F[z-l] = 10+ ftz-1 + ..... + In-l z-n+ 1 

Multiplying equation 6.11 by ~(t+k) 

~ ~(t+k) = E~(t+k) + ~ ~(t) 
Using equation 6.10 

£~(t+k) = n(t+k) + n(t+k) 
A 

The idea is to choose the control u(t) to minimise 

1= E[y2(t+k)] 

~E [(! U(I) + Ii(I+k) + ii(l+k» 
2
] 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

=Er(l!.U(t) + n(t+k»2 + 2(l!.u(t) + n(t+k»n(t+k) + n\t+k)] (6.15) [A. A 
Since at time t n(t+k) is unknown and impredictable, it is uncorrelated with both 

u(t) and n(t+k) so that the second term in the above equation goes to zero to leave 

I ~ E[(! u(t) + fi(t+k»2 + ii2(I+k)] 

Differentiating I with respect to u(t) 

~ = 2E r(l!.U(t) + n(t+k»bo] = 0 
duet) [ A 

(6.16) 

(6.17) 



Hence the minimum variance control is 

u(t) = -~n(t+k) 
B 
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(6.18) 

The effect of the control can be seen by substituting equations 6.10 and 6.18 into 

equation 6.6 to give 

y(t+k) = ! [-! n(t+k») + ;;(t+k) + n(t+k) 

= Fl(t+k) (6.19) 

Hence the control in equation 6.18 is designed to ensure that the controlled part of 

the system output cancels the predicted disturbance Fl(t+k) only. This implies that 

minimum variance control will be most effective when the prediction is good. To 

implement the control law, u(t) must be expressed in another form. 

From equation 6.14 and using 6.11 

n(t+k) = ~~(t) 

= ~ [AY(t) - ~-kBU(t) ) 
substituting equation 6.20 into 6.18 

u(t) = _~ F [Ay(t) - Z-kBU(t») 
BA C 

or 

u(t) [ C-::-
k 

) = - :~ y(t) 

From equation 6.12 

hence 

c - z-kp = AE 

F 
u(t) = --yet) 

BE 

(6.20) 

(6.21) 

(6.22) 

(6.23) 

(6.24) 

Equation 6.24 represents the feedback control law that gives minimum variance. 

The controlled system is illustrated in Figure 6.10 
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Setting G=BE equation 6.24 becomes 

Gu(t) = Fy(t) (6.25) 
Since the plant parameters are unknown, the polynomials F(z-l) and G(z-l) may 

be found by estimation. There are two well known methods for this: the implicit 

and explicit approaches. 

6.3.2) The implicit algorithm 

For the system whose parameters are unknown, the polynomial F(z-l) and 

G(z-l) are estimated on-line. The algorithm relies on implicit rather than explicit 

identification. The self tuning algorithm employing the implicit identification 

scheme is shown in Figure 6.11. The process is described by equation 6.5. 

Ay(t) = z-kBu(t) + C~(t) 
multiplying by E(z-l) gives 

AEy(t) = z-kBEu(t) + CE~(t) 
using equation 6.12 

F BE 
y(t+k) = Cy(t-k) + Cu(t-k) + E~(t) 

y(t+k) = ~y(t-k) + ~ u(t-k) + n(t+k) 

Substituting equation 6.28 into 6.15 and assuming C(z-l) =1 

Gu(t) = Fy(t) 

therefore a recursive least squares algorithm can be used with 

~(t) =_ ~(t~k) ... !~~k-ny:;u(t-k) .... u(t-k-nJ]TI 

8(t) - [foJI, .... Jny'go' .... ,gnu] 

If C(z-l)=1 , the estimates will be unbiased. 

6.3.3) The explicit algorithm 

(6.26) 

(6.27) 

(6.28) 

(6.29) 

(6.30) 

The process is described by equation 6.48 and the explicit identification 

schemes is shown in Figure 6.12. 

Define the vectors 
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. ~(t) =_ ~(t~ 1) .. ··~(~-An);U(t=-k) .... U(t-k-n)f} (6.31) 
8(t) - [al'a2' .... ,an,bo, .... ,b,J 

The polynomial C(Z-l) is assumed to be equal to 1 unless an extended recursive 

least squares estimator is used. 

8(t) and x(t) can be used in a recursive least squares estimator to find estimates of 

the process parameters which may be used to solve equation 6.12 (called diophan

tine). But equation 6.12 can be difficult to solve. 

6.3.4) The generalised minimum variance self-tuning controller 

Briefly, consider the system governed by the difference equation 

yet) = z-k!!..u(t) + £~(t) 
A A 

(6.32) 

where 

A = 1 + alz-1 + ....... + anaz-na 

B = bo + b1z-1 + ....... + bnbZ-nb 

C = 1 + C1z-1 + ....... + Cncz-nc 

u(t) and yet) are the system's input and output sequences, ~(t) a zero mean white 

noise sequence and k is the system's integer time delay. A general minimum vari

ance controller is required to minimum the cost function 

It = E[(Py(t+k) - Rw(t)2 + (Q'u(t))2] (6.33) 

E being the expectation operator and P, Q and R are discrete polynomials and wet) 

is the demand signal . 

Put equation 6.32 into its k-step ahead prediction form and multiply both sides by 

A 

Ay(t+k) = Bu(t) + C~(t+k) 
Using the identity of equation 6.12 

(6.34) 

(6.35) 

where the discrete polynomials E and F have degrees (k-1) and ( na-1 ) respec

tively. 



Multiplying both sides of equation (6.34) by E 

EAy(t+k) = EBu(t) + EC~(t+k) 
from equation 6.35 

EA = C - z-kF 

Substituting for EA in equation 6.35 

Cy(t+k) = Fy(t) + EBu(t) + EC~(t+k) 
or 

F EB 
y(t+k) = Cy(t) + Cu(t) + E~(t+k) 

Substituting for y(Hk) in the cost function ft , yields 

155 

(6.36) 

(6.37) 

(6.38) 

(6.39) 

PF PEB 2 
II = E[(Cy(t) + Cu(t) + PE~(t+k) - Rw(t» + (Q'u(t»2] (6.40) 

Provided that the order of P is less than k, Pe~(t+k) is uncorrelated with the rest 

of the quantities inside the expectation operator and II can be re-written as 

[ 
PF PEB 2 2] ft = E (Cy(t) + Cu(t) - Rw(t» + (Q'u(t» 

+ E[(PE~(t+k»2] 
Differentiating II with respect to u(t) and equating the result to zero 

dft [ PF PEB 1 - = 2bo (-y(t) + -c u(t) - Rw(t) + 2q' oQ' u(t) = 0 
du(t) C 

where 

eo = Po = 1 is assumed without loss of generality. 

Now let 

to give 

or 

Q' 
Q = q'o

bo 

PFy(t) + (PEB + CQ)u(t) - RCw(t) = 0 

Fy(t) + Gu(t) + Hw(t) = 0 

(6.41) 

(6.42) 

(6.43) 

(6.44) 
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where 

F=PF 

G = PG + CQ = PBE + CQ 

H=-RC 
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Alternatively, if the concept of the generalised (auxiliary) output function of the 

fonn 

<D(t) = Py(t) - Rw(t-k) + Qu(t-k) (6.45) 

or 

<D(t+k) = Py(t+k) - Rw(t) + Qu(t) (6.46) 

(k-step ahead predictor form) is considered and this is shown in Figure 6.13. 

Now consider a control law that seeks to minimise the variance of this auxiliary 

output 

12 = E (<I>(t+k»2] 

F BE 2] 12 = E (Pcy(t) + Cuet) + n(t+k) - Rw(t) + Qu(t)) 

d/2 
="P [Fe Z(t) + BeE U(t)] - Rw(t) + Qu(t»2(bo + qo) = 0 

duet) 

and hence the control law 

where 

F'y(t) + G'u(t) + H'w(t) = 0 

F'=PF 

G' = PG + CQ 

H' = -CR 

as previously 

(6.47) 

(6.48) 

(6.49) 

(6.50) 

Thus, minimisation of the two cost functions h and 12 achieve the same control 

law and minimise the variance of the auxiliary output. If the parameters are unk

nown they will need to be estimated. From equations 6.40, 6.44 and 6.46 

<D(t+k) = Fy(t) + Gu(t) + Hw(t) + n(t+k) 

= x T(t)8 + n(t+k) (6.51) 
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where 

XT(t) = [y(t-k),y(t-k-1), .... ;u(t-k), .... ;w(t-k), .... ] 

aT = fioJi, .... ;go, .... ;ho, .... ] (6.52) 

The parameters of aT can be estimated using either an ordinary or extended recur

sive least squares estimator. 

The general minimum variance algorithm described previously is applied to con

trol the NARMAX models of both Vecuronium and Atracurium. Eventhough the 

algorithm has been applied largely to linear models, in the next section of this 

chapter an attempt with the NARMAX models will be shown. 

6.3.5) GMV conrol of muscle relaxation 

In what follows, the above developed GMV controller is employed in the 

closed loop control of muscle relaxation. Here again, both the Vecuronium and 

Atracurium models are considered with the latter being represented by either of 

equations 4.5, 4.9 and 4.10. 

a) Case of the Vecuronium model 

The simulation for this case was run with the following specifications 

Order of P-polynomial NP=O with Po = 1.0 

Order of Q-polynomial NQ=O with qo = 0.2 

Order of R-polynomial NR=O with ro = 1.0 

The system and the noise polynomial orders where set to: 

Na = 5 , Nb = 4 and Nc = 0 respectively, while the forgetting factor and the initial 

diagonal elements of the covariance matrix to: 0.995 and 1000 respectively. 

The system dead-time for this case assumed a value of 3. The initial vector of the 

controller parameter estimates was 

[0,0,0,0,0; 1 ,0,0,0,0;-1 ,0,0,0,0] 

f; g; h 

The reference (demand) signal was a square wave of levels 0.8-0.4 and 0.8-0.6. 
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The output and control signals for this case are shown in Figures 6.14 and 6.15. 

b) Case of the Atracurium model (NL[) 

With the exception of Na ' Nb and qo and the system time delay which now 

assume values of 6, 4, 0.12 and 4 respectively, the simulation was run with the 

same specifications as those for case a) above. The resulting output and control 

signals are shown in Figures 6.16 and 6.17. 

c) Case of the Atracurium model (NOn 

Figures 6.18 and 6.19 show the system responses for this case. the simula

tion conditions are identical to those of the NLI-model except for qo which is now 

0.22. 

6.4) Generalised predictive control (GPC) algorithm. 

The robustness of the existing self-tuners is open to question when assump

tions have to be made about the model order and/or the dead time. Minimum 

variance (Astrom and Wittenmark, 1973) and generalised minimum variance 

(Clarke and Gawthrop, 1975, 1979) self-tuning controllers (or regulators) are par

ticularly sensitive to varying time delays. Self-tuning controllers based on the 

pole assignment principle (Wellstead et aI, 1979), though capable of coping with 

variable delays, may perform unacceptably if the system order is over estimated. 

The GPC algorithm (Clarke et al, 1987) appears to overcome both of these above 

problems. The ability of this algorithm to cope with varying or unknown dead 

times follows form its 'explicitness' while its predictive nature makes it suitable 

for handling the over parametrisation problem. The remaining of this chapter 

introduces the basic GPC algorithm. 
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6.4.l>The basic algorithm (GPC) 

Consider the following model 

A(Z-l)y(t) = B(z-1)u(t-l) + x(t) (6.53) 
where A and B are polynomials in the backward shift operator z-1 

A(z-1) = 1 + alz- l + .... + anaz-na 

B(z-l) = bo + b1z-1 + .... + bnbz-nb 

and u(t), yet) and x(t) are the control input, the measured variable or output and 

the disturbance term respectively. 

In the literature x(t) has been considered to be of moving average for 

x(t) = C(z-1 )~(t) (6.54) 

where C is a polynomial in the backward shift operator z-1 and ~(t) is an 

uncorrected random sequence 

By combining equation 6.54 with 6.53 a CARMA (Controlled Auto-Regressive 

and Moving-Average) model is obtained. 

A(Z-I)y(t) = B(z-l)u(t-l) + C(z-I)~(t) (6.55) 

Much self-tuning theory is based on this model , but it seems to be inappropriate 

for many industrial applications in which disturbances are non-stationary. Hence 

x(t) becomes 

x(t) = C(z-1 )~(t) 
!1 

where !1 is the differencing operator of the form 

!1 = l-z-1 

Coupling 6.57 with 6.53 gives 

A(Z-I)y(t) = B(z-l)u(t-l) + lli 
!1 

which represent the CARIMA model (integrated-moving-average) 

(6.56) 

(6.57) 

(6.58) 
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with C(z-l) =1 for simplicity 

To derive the j-step ahead predictor y(t+j) based on equation 6.58, as in the GMV 

case, consider the identity 

(6.59) 

with 

C(z-l) =1, equation 6.59 becomes 

1 = Eiz-l)A~ + z-jFiz-1) (6.60) 

where Ej and Fj are polynomials uniquely defined given A(z-l) and the prediction 

interval j. 

If equation 6.58 is multiplied by Ej1t 

E~~y(t + JJ = EB~u(t + j - 1) + Ej~(t + J) 

and substituting for E~~ from equation 6.60 

y(t+}) = EJ~u(t+j-l) + Fp{t) + Ej~(t+J) (6.61) 

where y(t+j) is the j-step ahead predictor. As EjCz-l) is of degree j-l the noise 

components are well in the future so that the optimal predictor, given measured 

output data up to time t and any given u(t+i) for i>l, is clearly 

y(t+j!t) = Gj1u(t+j-l) + Fjy(t) (6.62) 

where 

(6.63) 

In the development of the GMV self-tuning controller only one prediction 

yet + kit) is used where k assumed the value of the plant's dead time. Here a 

whole set of predictions for which j runs from a minimum up to a large value : 

these are called the minimum and maximum "prediction horizon". 

~4.2) Recursion of the Diophantine equation 

A simple and more effective scheme is to use recursion of the diophantine equa

tion so that the polynomials Ej+l and Fj+l are obtained given the values of Ej and 



Fj • 

For clarity of notation set 

A = A.1 , E=Ej , F=Fj , R=Ej+l ' S=F j+l 

equation 6.60 gives 

1 = EA + z-jF 

1 = RA + z-(j+l)S 
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(6.64) 

(6.65) 
This is a recursion of the Diophantine equation relating Ej to Ej +1 and Fj to Fj+1 

Substracting equation 6.64 from 6.65 

(6.66) 

The polynomial Ej is of degree j-1, hence R is of degree j so is R-E and therefore 

R-E = R + r.z-j J 

Equation 6.66 becomes 

Hence 

Ai? + z-j(z-IS - F + Arj) = 0 

For equation 6.69 to be equal to zero 

{~ = ZeFj - Ar) 

A =A.1 

Where 

A 1 -1 + -na = + aal ....... + anaZ 

F = 10 + I1 z-1 + ....... + Infz-rf 

(6.67) 

(6.68) 

(6.69) 

(6.70) 

(6.71) 

As 1 is a leading element of A so A and 10 first element of Pj , then rj = 10 

because S is of power z-j and (Pj - Arj) is multiplied by z hence 

rj =/0 (6.72) 

which is the first element of the polynomial Fj , and the following components of 



higher power are obtained using the recursion 

where 

Si is the next horizon 

fi+ 1 and rj are the last horizon. 

Setting R = 0 equation 6.67 becomes 

R = E + T/-j 

£. 1 = E·+ r·z-i J+ J J 

and using equation 6.63 
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(6.73) 

(6.74) 

(6.75) 

Gj+1 = B(z-l)R(z-l) (6.76) 

So equations 6.72 to 6.76 constitute the basis for the implementation of the GPC 

algorithm. 

6.4.3) The predictive control law 

Suppose a future set-point or reference sequence of the form 

w(t+J) ; j= 1,2, ...... . (6.77) 

is available. In the GPC case a smoothed approach from the current output y(t) to 

wet) is required which is obtainable from the simple first order lag model 

wet) = y(t) 

wet + J) = aw(t + j - 1) + (1 - a)w 

where a = 1 for a slow transition from the current measured variable to the real 

set point. This approach is illustrated in Figure 6.20 

y 

W set-point 
;----::::::::====== 

Predicted output 

t 1 t+ 1 t+ 2 t+n 
4---~--~--~------------~ Timet 

-, Projected control 
u 

Figure 6.20: Set-point control and output in GPC 

The aim of the predictive control law is to drive future plant outputs y(t+j) close 
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w(t+j). 

Consider the following cost function 

[= [G(e,u) (6.78) 

where 

U is a vector of increments of u and I is a quadratic function of the form 

j=Nz j=N. 
[G = L e2(t+j) + L A.~u2(t+j-l) (6.79) 

j=N1 j=1 

The method could be summarized as follows: 

At each present time t, a forecast is made of the process output over a long range 

time horizon by means of a mathematical model of the process dynamics and is a 

function of the future control weighted to apply at time t. As a result of this fore

cast several control actions will be proposed but the best will be selected so that 

the predicted output will follow the predicted set-point. The control action is 

applied at the present time t. The whole procedure is then repeated at the next 

sample and this is called the receding horizon approach (De Keyser and Van

comwenberghs, 1982). 

(1) at sample instant t the response of the plant is 

[y(t),y(t-l);u(t-l)] (6.80) 

(2) The control increment vector is computed using the optimization routine 

(3) u(t) is extracted and applied to the plant. 

(4) all sequences are shifted in preparation for the next sample to repeat the 

same procedure. The prediction sequence is shown in Figure 6.21. 

Consider the cost function repesented by equation 6.79 

e2(t+j) = [y(t+j) - w(t+j)]2 

Nl is the minimum costing horizon 

N 2 is the maximum costing horizon 

').... are the control weighting sequences 
') 

(6.81) 
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Figure 6.21: The prediction sequence in GPC 
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In general N2 is chosen to include all responses which are affected by the current 

control. It should be greater than the degree of B(z-l) , it is however set to ap

proximate the rise time plant Nl can often be considered equal to 1 but the value 

of the dead-time of the process is known prior equal to "K". 

By setting 

I~::~) 'A(j) = 'A 

equation 6.61 becomes 

y(t+l) = Gl~u(t) + F1y(t) + E1s(t+l) 

y(t+2) = G2~u(t+l) + F2Y(t) + E2s(t+2) 

(6.82) 

(6.83) 

Consider the component of y(t+j) which consists of signals known at time t f(t+j) 

then 

(1+1) = [G1(z-l) - glo]~u(t) + Fty(t) 

(1+2) = z(G2(z-1) - g20 - z-lg2l)~U(t) + F1Y(t) 

(6.84) 

.etc 

where 

Gi(Z-l) = giO + gilz- 1 + ......... . (6.85) 

So equation 6.83 can be written in the key vector fonn 

y = Gil + f (6.86) 
where the vectors are all Nxl 

y = [Y(t+1),y(t+2), ...... ,y(t+N)f 



it = [~u(t).~u(t+l), ......• ~u(t+N-l)f 
f = [f(t+ 1)jtt+2) •...... /(t+N)]T 

In the Gi(z-l) polynomial 

k goes from 0 to the present horizon 

i the value of the present horizon 
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(6.87) 

The matrix G of equation 6.86 is the lower triangular of dimension NxN of the 

form 

G= 

Using equation 6.87, equation 6.88 becomes 

G= 

go 0 0 0 0 0 00 

gl go 

gz gl go 

(6.88) 

(6.89) 

If the process has a dead-time K>=l , the first row of G is zero. if K=l ; go = 0 

etc. 

Consider the cost function of equation 6.79 

Nz Nz 
IG = l:<y-W)2 + l:ACJ)[~u(t+j-l)]z (6.90) 

Nl pI 



Minimizing equation 6.90 leads to y = Gil + f 

E[IGl = II = (Gu + f- wl(Gu + f- W) + AUTU 

u = (GT G + Al)-IGT(W_f> 

il = [.1u(t),.1U(Hl), ...... ,.1U(HN-l)f 
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(6.91) 

(6.92) 

(6.93) 

.1u(t+l), .... etc could be ignored and as .1u(t) is the first element of il , therefore 

u(t) = u(t-l) + gT(W_f> (6.94) 

where 

gT is the first row of (GTG + 'AIrIGT 

6.4.4) The control law 

Consider the vector e composed of predicted future system error 

(w(t+J) - Y(Hj). Using the cost function of equation 6.79 

j=Nl NM 
IG(N1.N2.Nu,A) = Le2(t+j) + AL.1u2(Hj-l) (6.95) 

j=Nl j=l 

(1) Given yet) and the past values of y, u,.1u the prediction of the freely 

responding plant are made to form, by comparison with w, the vector e. 

(2) for a given N 1, N2, Nu, A , e the vector il is calculated by minimizing I 

(3) The first element u(t) = u(t-l) + .1u(t) is asserted and sequences are shifted 

ready for repeating sequence I, 2, ..... 

(4) setting NI to a value less than the dead-time K, would add unnecessary cal

culations. If the dead-time is unknown, NI is set to 1 and the degree of B(z-I) 

increased 

(5) N2 should exceed the degree of B(z-I) . 

(6) N u , which is the control horizon determines the degree of freedom in the 

future control increments. Generally N u=1 gives satisfactory performances. 

(7) A which the control weighting factor, for the easiest chose is set to zero, but 

very often to a very small value. 
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6.4.5) General predictive control of muscle relaxants 

As for the GMV approach of section 6.3 the drug dynamics are represented 

by the identified NARMAX models of chapter 5 

(2) Case of the drug Vecuronium 

The simulation was run over 1000 samples with the following specifications 

Nt = 1, N2 = 10, Nu = 1, A. = 0.1 . 

The orders of the A and B polynomials were set to na = 5 and nb = 6 , and the 

forgetting factor and the initial diagonal elements of the covariance matrix in the 

estimation routine to 0.995 and 1000 respectively. 

Initial control was via a PI controller whose parameters were set to 

Kp = 0.8 , and Ke = 0.04 . 

Lower and upper limits of 0 and 3 respectively were imposed on the control sig

nal. The output responses and control signals for square wave demands of levels 

(0.8 and 0.4) and (0.8 and 0.6) are shown in Figures 6.22 and 6.23 respectively. 

An other two simulation runs were performed with the same specification with the 

exception of: First the lower and upper limit were set to 0 and 1 respectively (Fig

ure 6.23a) and second with the same limit but the control was via an optimized 

PID controller were Kp = 0.95, Ke = 0.1 and Ki = 2.8 (Figure 6.23b). 

b) Case of the NU Atracurium model 

With the exception of the A and B polynomial orders and the tuning factor A , 

which were set to 

na = 4 , nb = 8 and A. = 0 and the control limits of 0 and 1, the simulation for 

this case was run with the specifications of case a) above. The resulting output 

and control signals are shown in Figures 6.24 and 6.25. 

c) Case of the NO! Atracurium model 

Figures 6.26 and 6.27 depict the output and control signals for this case with the 

simulation run with specifications identical to those in case b) above. 
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Also Figure 6.27a shows the output and control signals with the same conditions 

as in case b) with the exception of the use of the optimized PID controller, where 

Kp = 1.95, Ke = 0.15 and Ki = 2.3. 

The results of Figures 6.22 through to 6.27a clearly demonstrate the ability of the 

GPC control strategy to cope satisfactory with the nonlinearly modelled muscle re

laxant process. It also shows significant improvement on the optimised PID con

troller in that the responses for the latter are of a rather ' sluggish ' nature during 

set point changes. 

6.5) Conclusion 

To conclude this chapter, we note that the three controller algorithms hitherto 

considered have all performed in a satisfactory manner. While both the adaptive 

control schemes coped well with the system nonlinearity and showed faster 

responses during set-point level changes over the fixed parameter controller (PID), 

the GPe approach clearly proved its superiority over the GMV in so far as the 

steady state offset is concerned. This was to be expected since the control costing 

(Q polynomial) in the cost function of the GMV algorithm must be set to zero if 

zero steady state error is to be achieved. This is a result of the compromise 

between reduced control effort and increased steady state error. This is not how

ever a drawback since the error is not substantial and would be expected to reduce 

even further if the control changes (as opposed to the control signal itself) are 

penalised thereby inserting a digital integrator into the loop (Clarke and Gawthrop, 

1975). This offset problem does not arise with the GPC algorithm as this is based 

on incremental control. 

A feature common to the results obtained in this chapter under the three different 

control strategies, again not a surprising result, is that of the system performance 

being of better quality the shorter the range of variation of the demand signal. As 

the requirement in muscle relaxation control is for a steady level of paralysis, a 
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range of set-point variation of 0.78-0.82, say for 80% degree of relaxation would 

be realistic and the above observation would encourage the GPC and GMV algo

rithms to be used in on-line practical situations. 

An extention of the GMV self-tuner to non-linear systems modelled by nonlinear 

difference equations (Sales, 1988) is presented in the next chapter and applied to 

the muscle relaxant process. 
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CHAPTER 7 

Nonlinear GMV Control Of Relaxant administration via simulation 

7,1) Introduction 

In the preceding chapter, the benefits of feedback control and its superiority 

to the conventional method (manual control) of muscle relaxant administration 

were highlighted, Reasons were given as to why preference was given to the 

adaptive (self-tuning) over the classical fixed parameter controller. The self-tuners 

described in chapter six as well as those used by Linkens et al (1985) and Denai 

(1988) are all derived with the assumption that the system to be control is linear. 

While these controllers are expected to and do perform well when applied to non

linear systems with a subtantial linear region, satisfactory behaviour cannot be 

guaranteed if the system's nonlinearity is severe. With care being taken to make 

the system operate in this linear portion (some kind of 'jacketting' regime (Menad, 

1984) may need to be used for this purpose). The self-tuners of the previous 

chapter were seen to maintain good control of the muscle relaxant process 

modelled as a nonlinear difference equation (NARMAX model). 

This observation together with the above remarks would suggest that the system 

was operating over the linear part of the pharmacodynamics characteristics. It is 

also true to say that the NARMAX models were not severely nonlinear in that 

recording of the data, from which they were identified, did not begin until the 

margin of safety (dead-space) was taken up. 

In the light of the above remarks regarding the possible failure of linear self-tuners 

when applied to some nonlinear systems, there is certainly a case for having a 

self-tuner controller algorithm in which the on-line identification is performed on 

the basis of a nonlinear model of the process, and the subsequent control law com

puted using the knowledge thus required about the system's nonlinear dynamics. 
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The usefulness of nonlinear identification packages such as the NLI or NO! is evi-

dent as these provide an off-line means of determining the nonlinear structure 

(NARMAX model) of the system under consideration. Once a NARMAX model 

structure has thus been identified, it may be used in a self-tuning context with its 

parameters being estimated on-line and the desired control law computed. 

In what follows, two adaptive control approaches of the kind described above are 

considered. The first is a direct digital control based on a k-step ahead prediction 

(k being the process time delay) and the second an extention of the GMV self

tuner of the previous chapter to nonlinear systems (Sales, 1988). In both cases, 

the system's nonlinearity is in form of a NARMAX model. 

7.2) K-step ahead predictor control 

Given a nonlinear difference equation relating the system's output z(t) to its 

past values and to those of the input (control) signal. and given that the system's 

integer input delay is k, the control signal u(t) is calculated by predicting z(t+ 1), . 

..... ,z(t+k-l) using the given difference equation shifted forward in time and setting 

z(t+k) equal to the desired output (i.e the set-point). 

7.2.11 The basic algorithm 

consider the nonlinear difference equation: 

z(t) = Fl[z(t-l) ..... ,z(t-nz);u(t-k), .... u(t-k-nu+ 1);e(t-l), .... ,e(t-ne)] (7.1) 

On-line identification will yield the following model (estimated). 

z(t) = F[z(t-l), .... ,z(t-nz);u(t-k), .... u(t-k-nu+ 1)] (7.2) 

F being the nonlinear (estimated) input/output map. Shifting equation (7.2) k

steps ahead gives: 

z(t+k) = F[z(t+k-l), .... ,z(t+k-nz);u(t), .... u(t-nu+ 1)] (7.3) 

The k-step ahead controller, as mentioned above, consists in solving for u(t), the 

control signal, by setting z(t+k)=w(t), wet) being the desired output. 

Hence setting the left-hand side of equation 7.3 to wet) and solving for u(t) yields; 
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u(t) = G[w(t);z(t+k-I) •....• z(t+k-nz);u(t-l) •.... u(t-nu+ I)] (7.4) 

where 

G[.] is a nonlinear function of w. z and u. 

at time t. z(t+I) •.....• z(t+k-l) are all unknown and have to be predicted thus: 

2(t+l) = F[z(t) •....• z(t+I-nz);u(t-k+I) •.... ,u(t-nu-k+2)] 
A AI 
z(t+2) = F [z(t+I), .... ,z(t+2-nz);u(t-k+2), .... ,u(t-nu-k+3)] 

(7.5) 

. 
z(t+k-I) = F[z(t+k-2), .... ,z(t+k-I-nz);u(t-I), .... ,u(t-nu)] 

The nonlinear k-step ahead adaptive control law is given by substitution of equa

tion 7.5 into 7.4 thus: 

u(t) = G[w(t);z(t+k-l), .... ,z(t+k-nz);u(t-I), .... ,u(t-nu+ I)] 

7.2.2) K-step ahead predictor control of muscle relaxation 

a) Case of the Vecuronium model 

(7.6) 

The NARMAX model used to simulate the process nonlinear dynamics is 

that of equation 4.5. The time delay in this case is 3 (i.e k=3) and so two values 

of z are predicted and the control law computed on the basis that z(t+3}=w(t}. the 

set-point wet) being a square wave. Figures 7.1 and 7.2 show the system 

responses. 

In Figure 7.1 where no limits are imposed on the control signal, u(t) is seen to go 

both negative and 'excessively' positive during set point level changes. Both 

these features are unrealistic since negative control signals are equivalent to a 

sucking action i.e that of extracting the drug from the blood stream, while exces

sively positive controls may damage the pump motor if its input voltage upper 

limit is exceeded i.e for a 10 volt limit, the control signal should not exceed 1 

when all the variables are normalised, which is the case for our application. The 

set-point tracking is nevertheless very good in terms of both transient and steady 
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state behaviours. Figures 7.2 shows the same variables as those in Figure 7.1 but 

with control limits of 0 and 1 being now imposed. At first sight, the control sig

nal appears to be 'badly behaved' but as this happens between 'safe' limits with 

good steady state levels being kept everywhere except at the transient points, it 

can be concluded that the control is 'good'. One would expect it to be even more 

so in real-life application where fluctuations in the set-point, if at all required, will 

be very small. 

The output response is again well behaved except for the initial transient which is 

rather slow (cf. figure 7.1). The limiting actions on the control signal are reflected 

in the output response at the transition points, but the time constants with which 

the output changes levels are fast enough, demonstrating good control in the pres

ence of the above constraint (ie.O~u(t)~1 ). 

b) Case of the Atracurium NU model 

Equation 5.4 is used, here, to simulate the system dynamics. The integer 

delay for this case is 4 and so 3 future values of z have to be predicted and z(t+4) 

set to wet), again a square wave set-point. Figures 7.3 and 7.4 show the results 

for this case with the control limits (absent in Figure7.3) being introduced in Fig

ure 7.4. Similar comments to those for the above Vecuronium case apply here, 

with this case showing an even better 'clipped' control signal and a subsequently 

better behaviour of the output response with faster transients. This is clearly due 

to the fact that when the control signal was not 'clipped' (Figure 7.3) its excur

sions at the transient points are of smaller amplitude than those in Figure 7.1. 

,) Case if the Atracurium NO! model 

Figures 7.5 and 7.6 show the control, set-point and output signals for this 

case in which the NARMAX model of equation 5.7 simulates the system's non

linear dynamics. As for case b) the integer delay, here, is 4. 

An attempt to run the simulation with no control limits resulted in numerical 
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overflow, owing to the too large excursions of u(t) at the transition instants. First 

control limits of 0 and 4 were imposed (Figure7.5) and second, these limits were 

modified to 0 and 1 (Figure 7.6). The system has clearly coped well in both cases 

despite the larger fluctuations in the set-point. 

7.3) Nonlinear generalised minimum variance self-tuning control 

In what follows, a description is given of the nonlinear GMV self-tuning con-

troller algorithm (Sales, 1988) which is an extension of the linear GMV (Clarke, 

1975, 1979). Sales (1988) used this algorithm successfully in the control of a 

pilot liquid level system and diesel generator. 

7.3.n Derivation of the nonlinear control law 

Consider the NARMAX model: 

where 

z(t) = pl[z(t-1), .... ,z(t-nz);u(t-k), ..... u(t-k-nu+ 1); 

e(t-1), .... ,e(t-ne)] + e(t) (7.8) 

z and u are the system's output and input sequences respectively, e(t) a white 

noise sequences with zero mean and pi is some nonlinear function of degree 1. 

Putting equation 7.8 into its k-step ahead prediction form: 

z(t+k) = F1[z(t+k-1), .... ,z(t+k-nz);u(t), .... ,u(t-nu+ 1); 

e(t+k-1) ...... e(t+k-ne)] + e(t+k) (7.9) 

Now consider a controllaw that seeks to minimise the cost function: 

(7.10) 

where 

E is the expectation operator, z and u are as previously defined. w is the set

point, and p(z-I). R(z-I) and Q'(z-l) are discrete design polynomials. 

Note that the choise of I(Hk), above. allows for both set-point tracking and con

trol costing. 

Substituting equation 7.9 into 7.10 



189 
-4 .. l\3·· ~ 

Input 

l ~ !~ ,~~l, :t-~ r 

10~ 200 3~a -100 5013 6ee 7~a 8a o gaa I ull l:) 

Set point 

21Hl -Hltl Sl:lu :, (1 ,) I o I:) 'J 

Output -9 
.9 .tel.~-I 

\ r--\' ( 
"~ __ .J \ __ . ___ 1 1[\'------' 

L . .- .-~-~-~ . . -.. -.~-.-.-~---~-----~-
IB13 2EHl -I I) fJ 3 ill) 1 8,j li 

Fi~ure 7.5: K·step ahead controlled svstem of Atracurium (NOn 

Input 

1-~'-J-....+.\::::::_~~ __ :=l.t:=-rY-l, --\L~-Jt--=-ll-_---.i1 _~--t'_---.:: .~ 
IIh) 2f:i ,j :,:00 "',Hl :3 f)U ,; u') ;' 8 0 8 11 » '~ui:l I ' I:) U 

-2 Set point 
.9 'l ') '~~ - I 

i-'L r--L \ __ ~ ----.J ___ __ 

_ ...---_t __ 

lEla 2130 :3 60 ... al:) saC) ,,6O 7>?:1e 8 BI:) CJil0 lllti!) 

- 9 Output 
·9 • 1 0" ~ - I 

I 
,--~ ,1----\ '~--\ 1 ., } \ .. ,I \ ; " 

\ / . , 
\ \ I . ___ I 

I _._-
-_.-_. 

~----~ ------ .. ------------ -,. -~-

1013 26>?:1 " ') u -Ill 0 5lH:l .: 0;)0 :-'€H.1 ,30 0 900 ll!'l» 

.. 9 

Fi~re 7.6: K-step 3head controlled svstem of Atracurium (NOT) 



I(t+k) = E[(Ppl(z(t+k-1) • ... ;u(t) • ... ;e(t+k-1) • ...• 

e(t+k-ne» + Pe(t+k» - RW(t»2 + (Ql(u(t»2] 
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(7.11) 

Note that unlike the linear GMV whose cost function includes the term (Q'u(t»2 • 

the nonlinear version includes (Ql(u(t»2 since NARMAX models often include 

either powers or products (or both) of u. z and e. 

Noting that the only term of Pe(t+k) (equation 7.11) that is uncorrelated with the 

other terms in pl[.] is poe(t+k) • equation 7.11 is re-written as: 

I(t+k) = E[(ppl(z(t+k-1) • ... ;u(t) •.... ;e(t+k-1) •....• 

e(t+k-ne» + (P-po)e(t+k) - Rw(t»2 + (Ql(u(t»2] 

+ E[(Poe(t+k»2] (7.12) 

Differentiating equation 7.12 with respect to u(t) and equating the result to zero to 

find the optimal control law: 

del) dpi[.] ~ I •• - = 2 (PF (z(t+k-1) ..... u(t) ..... e(t+k-1) ..... 
duet) duet) 

e(t+k-ne) + (P-po)e(t+k) - Rw(t» 

+ 2q' Q' df(u(t» f(u(t» = 0 
o duet) (7.13) 

But 

dpl[.] = d!(u(t» • hence equation 7.13 becomes: 
duCt) duet) 

del) df(u(t) (i .. - = 2 d () (PP (z(t+k-l) ..... u(t) ..... e(t+k-l) ..... e(t+k-ne» 
duet) u t 

+ (P-po)e(t+k) - Rw(t» + q'oQl(u(t))] = 0 (7.14) 

Letting Q = Q' q' 0 • this becomes; 

or 

where 

P pi (Z(t+k-l ) .... ;u(t) .... ;e(t+k-l ) ..... e(t+k-ne») 

+ (P-po)e(t+k) - Rw(t» + Q!(u(t» = 0 

F'I [Z(t+k-l), ... ,z(t+k-nt);u(t), ... ,u(t-n2); 

le(t+k-l), ... ,e(t+k-n3)] - Rw(t) = 0 

(7.15) 

(7.16) 
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nz = (nu + nq - 1) or (nu + np - 1) which ever is the greater 

and 

n3 = ne + np . 

Next consider the auxiliary output function given by 

<I>(t+k) = pz(t+k) - Rw(t) + Qf(u(t» (7.17) 

Which, upon substitution for z(t+k) from equation 7.9, becomes 

<I>(t+k) = ppl[Z(t+k-l), ... ;U(t), ... ;e(t+k-l), ... ,e(t+k-ne)] 

+ Pe(t+k) - Rw(t) + Qf(u(t» (7.18) 

It is now required to find a control law which minimises the variance of this gen-

eralised auxiliary output function i.e the cost function to be minimised is now 

J(t+k) = E[(<I>(t+k)f] 

Substituting equation 7.18 into 7.19 to give 

J(t+k) = E[(ppl(z(t+k-l), ... ;u(t), .•• ;e(t+k-1), ... ,e(t+k-ne» 

+ (P - po)e(t+k) - Rw(t) + Qf(u(t»2] 

(7.19) 

+ E[(Poe(t+k»2] (7.20) 

Differentiating with respect to u(t) 

dJ _ dF[.] r 1 ., 
- - 2(l+qo) d () l!'F (z(t+k-l), ... ,u(t), ... , 
duet) u t 

e(t+k-l), ... ,e(t+k-no» + (P-po)e(t+k) - Rw(t) + Qf(ll(t») = 0 (7.21) 

and the control law bcomes 

F,Z[z(t+k-I), ... ,z(t+k-nl), ... ;U(t), •.. ,U(t-n2); 

e(t+k-l), ... ,e(t+k-n3)] - Rw(t) = 0 

where 

nl = nz + np 

n2 = (nu + nq - 1) 

or 

(nu + np - I) whichever is the greater 

and 

(7.22) 
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The control laws of equations 7.16 and 7.22 are identical. implying that if an auxi

liary output is generated using equation 7.17, then it suffices to minimise its vari

ance for a control law which minimises the more complex cost function (equation 

7.10) to be arrived at. 

So far in this section, all the derivations were on the basis of known system 

parameters, which is obviously not the case in self-tuning. So. let us now look at 

the nonlinear GMV algorithm, above, in the self-tuning context. There are two 

main cases to consider here i.e those of the algorithm being of an explicit or an 

implicit nature. 

7.3.2) The explicit nonlinear GMV algorithm 

The explicit self-tuning nonlinear GMV controller algorithm estimates the 

system parameter explicitly and uses them to compute the control law at every 

sampling instant. 

The NARMAX model representation of the system (equation 7.8) is written in the 

fonn 

z(t) = xT (t)8 + e(t) 

where the measurement vector XT(t) is given by 

XT(t) = [z(t-I), ... ,z(t-nz);u(t-k), ... ,u(t-k-nu+ 1); 

e(t-I), ... ,e(t-ne);z2(t-I), ... ,z(t-l)u(t-k) 

, ... ,z(t-l)e(t-I), ... higher order terms] 

and the parameter vector 8 by 

8 = [81, .•• ,8nz;8nz+l ..... ,8nz+nu;8nz+nu+l ..... ,8nz+nu+ne: 

8 11, ..• '81nz+l; ........ ·,81nz+nu+ne .. ·] 

(7.23) 

Note that the noise parameters are estimated on-line i.e the algorithm should cope 

even with coloured noise corruption as long as the signal to noise ratio is high 

enough. 

With the above definitions of XT and 8 , the recursive least squares estimator of 

chapter 3 (equations 3.13 to 3.17) may be used to estimate the vector of parame-
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ters E>. The prediction error is now: [ z(t)-xT(t) 8(t-l) ], E> , being the vector of 

parameter estimates. The noise terms in XT (t) cannot be measured and are hence 

estimated thus: 

e(t) = z(t) - X(t)8(t). 

7.3.3) The implicit nonlinear GMV self-tuner 

Unlike the explicit algorithm, this estimates directly the controller parameters. 

The system parameters are thus indirectly or (implicitly) estimated. 

For this case consider the auxiliary output function 

<D(t) = pz(t) - Rw(t-k) + Q/(u(t-k» (7.24) 

<D(t) = F,z[z(t-l), .. ,z(t-n l);U(t-k), ... ,u(t-k-n2);e(t-l), ... ,e(t-n3)] 

- Rw(t-k) + e(t) (7.25) 

Re-write this as 

<D(t) = XT(t)8 + e(t) (7.26) 

with 

xT(t) = [z(t-l), ... ,z(t-nI);u(t-k), ... ,u(t-k-n~;e(t-l), ... , 

e(t-n3);w(t-k), .... , w(t-k-n,);z(t-l )2, ... ;z(t-l )z(t-2), ... , 

z(t-l)u(t-k), ... ;z(t-l)e(t-l), ... ; .... higher order terms] (7.27) 

and 

8 = [81, .•• '8nl;8nl+l' .... 8nI+n2' .. ;8nl+n2+l' ... ,8nl+n2+n3; 

ro, .. ·r nr; 8 11 ' .... 8 1n1;· .. . 8 Inl +n2+n3' .... ; .... ] 

As for the explicit case, the recursive least squares estimator (equations 3.13-3.17) 

can be used, on-line, to estimate directly the controller parameters. The prediction 

error for this case is; ( E(t) = <D(t) - XT 8(t-l) ) and the noise term estimates are 

given by 

e(t) = <D(t) - XT(t)8(t) 

The size of the measurement and parameters vectors is clearly larger in the case of 

the implicit algorithm, and for this reason, the explicit approach is adopted in the 

sequel. 



7.4) Nonlinear GMV self·tuning control of muscle relaxation 

a) Case of the Vecuronium 
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a.1) the simulation is run over 1000 samples with the following parametrisa

tion of the self-tuning algorithm 

p(z-l) = R(z-l) =1 ; Q(z-l) = A. = 0.5 , k=3, the initial diagonal elements of the 

covariance matrix are set to 108 as this case is noise-free. The set-point is a 

square wave of levels 0.4 and 0.7 and the control signal is limited to between 0 

and 1. 

Figure 7.7 shows the control, set-point and output signals, while the estimated sys-

tem parameters are displayed in Figures 7.8 through to 7.11. Note that only the 

first 200 samples are shown in the graphs of the parameters estimates, the reason 

being that these converge to constant values even before the 200th sample. 

Figure 7.7 demonstrates a well-behaved system with good transient and steady 

state properties. The parameter estimates take between 10 to 20 samples to con

verge to their correct values, except for the last two which take about 150 samples 

to converge. This has not, however, influenced the control much. Note that the 

initial vector of parameter estimates e is taken to be null vector. This would 

obviously pose a problem in the computation of the control law initially as this 

includes division by a term that will be zero. To avoid such an occurrence, a 

statement is included in the control program to set this term to an arbitrary value 

of 0.1 when it is zero. This precaution can be done away with if a fixed-term 

controller is used to assume initial control and the estimation is allowed to run 

from t=O. 

a.2) So next, a.1) is re-run with the initial control being provided by a PI con

troller, until the output reaches 75% of the first set-point level. The PI parameters 

are set to: 

Kp=l.O and K,-0.08. 
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Figures 7.12 through to 7.16 show the system response and parameter estimates 

for this case. While the introduction of the PI controller does not appear to have 

any effect on the control and outputs signals, it has certainly delayed the conver

gence of the parameter estimates (those that converged fast in case a.l) ) and 

caused these to oscillate more prior to their convergence. 

a.3) Case a.2), above, is now re-run in the presence of white noise of zero mean 

and standard deviation of a =0.01. The covariance matrix elements are now ini

tially set to 104
• 

Figures 7.17 through to 7.21 show the system response, control and set-point sig

nals and the parameter estimates. The output response is reasonably well behaved 

given the application (i.e muscle relaxation) since the observed fluctuations around 

anyone level of the set-point would be regarded as acceptable by most surgeons. 

The parameter estimates have taken longer than in the preceding two cases to con

verge. This may be due to the still very large covariance matrix diagonal ele

ments (104) which is known to 'amplify' the influence of noisy disturbances. 

Reducing it to a much lower values would imply some degree of confidence in the 

initial zero parameter estimates, which is clearly not true. A way out of this 

dilemna would be to have some 'intelligent' guess of the parameter estimates ini

tially, but as the system's difference equation representation is nonlinear this be

comes too hard a task. 

b) Case of the NLI-Atracurium 

b.I) The simulation is run with the following specification: 

Total run-time=1000 samples, p(,Z-l) = R(r) = 1, Q(r1)=A. = 0.5 , k=4, initial 

covariance matrix elements= 108 
, set-point levels (0.4, 0.7), control limits=(O, 1). 

The set-point, output response and control signals are shown in Figures 7.22 and 

the system's parameter estimates in Figures 7.23 and 7.24. Again very satisfac

tory performance is demonstrated in Figure 7.22 with a less oscillatory control 
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signal at the transient points (cf. Figure 7.7) than that in the Vecuronium case. 

Convergence of the parameter estimates to their correct values is fast ( :$;;10 sam-

pIes ). 

h.2) To preserve consistency, here again a PI controller is now introduced to as

sume initial control so as to give the self-tuner sensible initial parameter estimates 

when it takes over control. The PI parameters are set to: 

Kp =1.05 and Kj =0.05 

This does not appear to have influenced either the system response or the parame

ter estimates (see Figures 7.25-7.27). 

b.3) Again for consistency's sake, a white noise disturbance of zero mean and 

0.01 standard deviation is introduced and the covariance matrix diagonal elements 

set to 104• Although the effect of this noise is quite apparent on the control sig

nal, the output response is very well-behaved and certainly better than in the 

Vecuronium case (see Figure 7.28 and compare to 7.17). Here again the parame-

ter estimates failed to converge to their correct values though their initial oscilla-

tions are not as severe as those in the Vecuronium case (see Figures 7.29 and 7.30 

and compare to 7.18-7.21). 

c> Case of the NOI-Atracurium 

c.1) This simulation is run with exactly the same specifications as those for 

case b.l). The set-point, output and control signals are shown in Figure 7.31. A 

very satisfactory behaviour is demonstrated with only sudden changes in the con

trol signal at the transition points. Note the absence of any oscillations, unlike 

cases a) and b). The first seven parameter estimates have converged after about 

10 samples to their correct values, while the remaining five have taken around 200 

samples to converge (Figures 7.32 through 7.34). 

c.2) Introduction of the PI controller with 

Kp = 1.05 and K j =0.05 
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Here again this does not seem to have affected the control and output signals (Fig

ure 7.35), while its effect on the parameter estimates is totally unexpected: it not 

only caused them to oscillate "violently" initially but also to converge to biased 

estimates, (Figures 7.36-7.38). 

c.3) This simulation is run for the same conditions as case b.3) above. Here 

again, the system is seen to cope very well with the noisy disturbance (Figure 

7.39). The parameter estimates are again initially oscillatory and biased. the com

ments in case a.3) are applicable here (Figures 7.40-7.42). 

7.5) Conclusion 

To conclude this chapter we note that both the k-step ahead predictor and the 

nonlinear GMV controllers coped well with the nonlinearily modelled muscle 

relaxation system. One source of concern is perhaps the apparent inability of the 

estimation procedure in the nonlinear GMV case to produce unbiased estimates in 

the presence of white noise of reasonably small amplitude which could be attri

buted to the dilemna discussed in case a.3). The consolation in this case is that 

these biased estimates do not influence the control in a harmful way. As long as 

the control is good, and all indications are that it will be very good in practice 

where constant set-points are required, the 'correctness' of the parameter estimates 

is not very important since inference of useful information as regards relaxant 

kinetics which is of great importance to pharmacologists is nearly impossible 

given the complexity of the NARMAX model representations. 
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Conclusions and recommendations 
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Muscle relaxant agents are conventionally administrated by bolus injections. 

The size of the dose required to produce a given degree of paralysis is usually 

determined by the anaesthetist based on his!her experience. This manual method 

sometimes gives rise to post-operative complications, when conditions of over

paralysis occur as a result of consumption of unnecessarily large amounts of drug. 

Linkens et aI, (1980, 1981), Asbury et al, (1980) and Brown et al , (1980) studied 

the closed-loop control of muscle relaxation and its advantages in overcoming the 

problems encountered in manual control. Two major individual parts of this thesis 

are devoted to: 1) Identification and 2) Control of muscle relaxant dynamics 

represented by a nonlinear difference equation (called a NARMAX model) for 

Vecuronium and Atracurium respectively. 

For the case of Vecuronium, the identification of the NARMAX model was 

carried out by using a software package NLI, described in chapter 3. U sing this 

package, the final model can only be achieved by combining several realization 

such as structure detection, parameter estimation and model validity tests. In the 

early stages of experimenting on a process it is important to determine if the pro

cess under test exhibits linear or nonlinear characteristics which warrant linear or 

nonlinear models. The data were obtained from a healthy mongrel dog under con

ditions described in chapter 4. Initially a linear model was fitted to the data, but 

the model validity test based on correlations analysis indicated that nonlinear 

terms were missing. However a good fit was obtained by fitting a nonlinear 

model to the data. 

In the case of Atracurium, two extensive identification techniques have been 

used to estimate a nonlinear difference equation (NARMAX model). The data 

were obtained under the conditions described in chapter 4. For the first method, a 
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nonlinear identification package with an extended recursive least squares algorithm 

(ERLS) was used. For the second method, a nonlinear orthogonal identification 

package (NOI) consisting of several suites of programs for data generation, struc

ture detection, parameter estimation and model validity tests was used. The 

parameter estimation program is composed of two algorithms : The extended 

orthogonal estimation algorithm and the prediction error algorithm. The first algo-· 

rithm provided a quick way of fitting a model, while the second algorithm was 

slow but gave improved estimates. The orthogonal property of the algorithm 

allows parameters to be estimated one at a time by repeated application. Addi

tional terms were added without the need to re-estimate all the previous 

coefficients. 

Pharmacokinetics and pharmacodynamics identification for both muscle relax

ants was undertaken in chapter 5. It is widely considered that drug response 

models should comprise two parts. One represents linear pharmacokinetics (tran

sport of the drug via the blood) and the other represents nonlinear effect phar

macodynamics (which are often modelled by a static characteristic using the Hill 

equation). The aim was to obtain the parameters for the Hill equation. In the 

case of the Vecuronium drug values of <X = 2.63 , D=0.5, and for the Atracurium 

case <X = 3.5 , D=0.62 were obtained. These values are commensurate with those 

for similar drugs such as Pancuronium. An alternative approach was to use the 

cross-correlation methods based on Volterra series (Billings and Fakhouri, 1982). 

These methods require many data points (typically 5000 points) to explore the 

underlying structure. This was achieved by an off-line simulation using NAR

MAX models for both muscle relaxants. From the cross-correlation results an 

impulse response of the linear part of the model was obtained. Using an optimisa

tion routine, a two exponential transfer function was fitted to the time response for 

Vecuronium, giving 



tl = 0.96 min, t2 = 6.31 min 

and for Atracurium 

tl = 1.6 min, 't2 = 22 min 
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Also, neither of the cross-correlation conditions showed that the structure was a 

Hammerstein or a Wiener model. The reason for a Wiener model not being indi

cated, when this might be expected from physiological knowledge, whereby the 

linear part can be identified separately, is probably due to the short number of data 

points and not enough probing in the input used in identifying the models. 

The second part of the research consisted of different strategies of control 

applied to muscle relaxant administration, being three-term PID controller, general 

minimum variance (Clarke et al, 1975), generalised predictive controller (Clarke 

and Gawthrop, 1987), k-step ahead predictor and an extension of the GMV self

tuner to nonlinear system modelled by a NARMAX model (Sales,1988). The use 

of a three-term Pro controller showed fairly satisfactory control for both Vecu

ronium and Atracurium. The responses were obtained with the model parameters 

fixed to those values for which controller parameter optimization was performed. 

The general minimum variance approach showed a lack of robustness to control 

the relaxant dynamics represented by the NARMAX model, whereas the general 

predictive controller developed by Clarke et aI, (1987) demonstrated far superior 

performance via simulation studies. This method is capable of stable control of 

processes with variable parameters, with variable dead-time, and with a model 

order which changes instantaneously provided that the input/output data are 

sufficiently rich to allow reasonable plant identification. The generalised predictor 

controller approach proved to be very robust compared to the general minimum 

variance, with both algorithms viewing the NARMAX model as linear. 

A direct digital based k-step ahead predictor and a control weighted self

tuning minimum variance controller with a nonlinear difference equation structure 
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was also investigated. This method (Sales, 1988) was used on a liquid level sys

tem and the results were very encouraging. The same method was applied for 

both muscle relaxant dynamics (Vecuronium and Atracurium). The research has 

shown that this approach is superior to the general minimum variance algorithm. 

As a result of this research, modern methods of nonlinear systems and 

identification have been applied successfully to practical biomedical processes. 

Nonlinear effect are commonplace in the life sciences, and good models for such 

systems are increasingly important for decision support systems and automated 

on-line drug infusion approaches. The work reported has shown that inter

disciplinary research in these areas may lead to improved systems design and per

formance. 

As suggestions for further work, in the case of Vecuronium and Atracurium, 

long sets of data with probing inputs are needed. Future research should be 

extended to the design of adaptive controllers in biological systems by extending 

the general predictive control and possibly the pole-placement method to the 

NARMAX model since nonlinearity recurrs frequently in biological systems. 

A further suggestion is the development of a package similar to PSICON, but in 

which the equivalent of the PSI part allows simulation of discrete systems, so as 

to be able to simulate a NARMAX model in one task and control it from another. 

This will help in the validation of the controller algorithms in that one can use 

pseudo- coded ADC/DAC to see the effect of limited accuracy on the system per

formance. This approach has been used successfully in developing self-tuning 

algorithms validated in clinical trials on humans. 
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APPENDIX A 

System representation 

Consider a causul discrete time-invariant system with input set U, output set 

Y and define the input-output or response map as the map that gives the system 

output y(t) for t~ as a function of the input sequence in the time interval from 0 

to t. 

y(t) = ![u(t),u(t-I), ..• ,u(O)] (A.I) 

where 

/[.] indicates the time interval of the input (Arbib and Zeiger, 1969). The 

method basically consists of grouping together all the input sequences for which 

the response of the input-output map after these sequences are applied is the same. 

For example, define two input sequences as 

WI = (U(tl),U(tl - 1), ... ,u(O» 

W2 = (U(t2),U(t2 - 2), ... ,u(O» 

The sequenses wI and w2 are said to be equivalent if and only if 

i+t(u}.1'W}) = /z+t(u},},w~ for all Ul,l E U 

i+
2
(U2,2,U2,},Wt) = /z+2(U2,2,U2,},W2) for all U2,l> U2,2 E U 

i+\U3,3,U3,2,U3,},WI) = /1+3(U3,3,U3,2,U3,},W2) 

for all U3,1, U3,2, U3,3 E U etc. (A.2) 

The above equivalence relationship is the state set of the Nerode realization. (Bil-

lings and Leontaritis, 1984) detailed the system representation. Here a brief sum

mary is given 

An input-output map is thus called finite time observable if and only if there exists 

an integer k such that for any two input sequences WI and w2 

i+1(Ul,l,Wt) =/z+I(Ul,l,W2) for all Ul,l E U 

i+2(U2,2,~},WI) = /z+2(U2,2,U2,I,W2) for all U2,1, U2,2 E U 

i+le(uk,k,UU-t, ... ,Uk,I,WI) = /z+k(Uk,k,Uk,k_t> .•. ,uk,l,W2) 

for all Uk,Ie, ... ,Uk,l E U 

implies that 
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and 

j l+k+2 ) jx+-k+2( (Uk+2,k+2, .•. ,Uk+2.1 WI = Uk+2.k+2 •.• W2) 

for all Uk+2.k+2 ••. £ U etc. (A.3) 

The equivalence conditions of equation (A.2) can be replaced by the conditions of 

equation (A.3). 

It would however be far more realistic if the response to a single input sequence 

were sufficient to determine the equivalence of two inputs sequences WI and w2 in 

equation (2) or (3). If the conditions in equation (A.2) or (A.3) were valid for 

only one Ul£U, one u2£U, where ul = ul.l = uI.2 = UI,3···· ; u2 = u2,1 = u2,2 ••• 

they would be valid for any ul,l ,u1,2,uI.3 etc. If in addition, ul>u2 • •• could be 

any member of the set V, then the input/output map will be called input

independent single input observable. Hence it can be proved that there exists a 

function F(.) such that 

l+k+l(Uk+l,Uk, ..• ,uI,wI) = F[uk+l,uk' .•• ,UI/1+1(UI,WI)' 

jl+\U2,Ul,Wl, .• . /l+k(Uk,Uk_l .... Ul>Wl)] 

Which can be expressed as 

y(tl+k+l) = F[y(tl+k), ... ,y(tl+l),U(tI+k+l),U(tl+k) ... u(tl+l)] 

or substituting t = tl+k+ 1 

yet) = F[y(t-l), ... ,y(t-k),u(t), ... ,u(t-k)] 

(A.4) 

(A.5) 

This model represents a generalisation of the well known ARMA model to non

linear system. When the noise terms are included the model is called a nonlinear 

ARMAX or NARMAX model. 

A similar derivation can be followed for stochastic systems. It can be shown that 

where 

yet) = F·[y(t-l), ... ,y(t-k),u(t), ... ,u(t-k),E(t-l) 

, ... ,E(t-k)] + E(t) (A. 6) 



£(t) is the prediction error and it is independent from yI-l,ut 

and 

E[£(t)ly-l ,u~ = 0 

and 

£(t) = y(t) - y(t) = y(t) - .f(y'-l ,ut) 

where 

y(t) = E[y(t)ly-l ,u~ = j(yt-l ,u~ 

The future value £(t+ 1) will be unpredictable from £1 • 
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APPENDIX B 

The orthogonal least squares algorithm 

Parameter estimation in NOI is based on the orthogonal least squares algo

rithm. This algorithm was derived for stochastic nonlinear systems which can be 

represented by a NARMAX model (Billings, Korenberg and Liu, 1987). The 

advantages of this algorithm lies in its superior efficiency and that it provides 

information regarding which terms in the model are significant. This is often vital 

in the identification of NARMAX models. 

3.1> NARMAX model 

A wide class of nonlinear systems can be represented by the following 

expression (Leontaritis and Billings, 1985 a, btl ) 

Where 

yet) = FI[y(t-I), ... ,y(t-Ny),u(t), ... ,u(t-Nu)' 

E(t-I), ... ,E(t-Nt )] + E(t) 

u(t) and yet) represent the measured input and output respectively. 

(B.I) 

N u' Ny, Ne represent the number of the lags in the input, output and the predic

tor error respectively. 

Where 

E(t) is the predictor error defined as 

E = yet) - yet) 

and 

E[E(t)li-l,u~ = 0 

i-I = [y(t-I),y(t-2), ... ,y(l)]T 

u' = [u(t),u(t-I), ... ,u(l)f 

FI[.] is some nonlinear function. 

(B.2) 

A time delay in the input and dc level can easily be accommodated and equation 

(B.I) becomes 



yet) = de + F1[y(t-l), ... ,y(t-Ny),u(t), ... ,u(t-Nu)' 

E(t-1), ... ,E(t-Nt )] + ECt) 
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(B.3) 

Expanding equation (B.3) by defining the function p1[.] to be a polynomial of 

degree I gives 

M 
yet) = L 8"pm(t) + E(t) (B.4) 

m=O 

Direct least squares estimation on equation (B.4) may involve an excessive 

number of terms. An orthogonal least squares algorithm (Koren berg, Billings and 

Liu, 1987) can overcome these difficulties. 

1.3) Orthogonal regression 

The Orthogonal least squares is much more efficient than the least squares 

algorithm. The advantages of the algorithm lie mainly in the fact that it provides 

information regarding which terms in the model are significant. (Korenberg, Bil

lings and Liu, 1987) detailed the derivation of this algorithm, only the main results 

are quoted here. 

Consider a linear-in-parameters expression of equation (B.4) 

M 
yet) = L Wj(t)gi + ~(t) 

i = 1 

where 

Wi(t) = PI (t) 
k - 1 

Wk(t) = pit) - L (XjkWj(t), k = 2, ... , M 
i = 1 

and 

WjCt)pjCt) .. . 
(Xij =,. ' '<.I, J = 1,2, ... ,M 

wr(t) 

(B.5) 

(B.6) 

(B.7) 

(B.8) 

Here, the bar - denotes time averaging. The estimates of the coefficients gi are 

given by 

Wi(t)Y(t) 
gj = , i = 1, ... ,M 

wr(t) 
(B.9) 
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The coefficients of the original equation can easly be obtained according to the 

formula 

M e. - gA. - ~ a .. e· i = M - 1,M - 2, ... ,1 (B.1O) 
I - I ~ I) I' 

i = i + 1 

The estimates (equation (B.1O» are unbiased and the standard deviations of the 

estimates are given by 

_1 ~_ij_ 
~ i = 1.' .. ,M 

N i = 1 w}<t) , 
(B.ll) 

where 

(

I i =j 

tij = _ ± ai/Jicj' 0 <i < j, j = 1, ... ,M 
k = i +1 

(B.12) 

and 0 2 = E[~2(t)]. An estimate of 0' can be obtained from 

0'= 
1 N M 2 

N _ M L (Y(t) - LWj(t)gj) 
t = 1 i=1 

(B.13) 

Because the orthgonality 

__ M --
y2(t) = L grwt(t) + 0 2 (B.14) 

i = 1 

The ratio of the reduction in the sum of squared errors due the i'th term is ther-

fore given by 

gf~ 
[rer];= I , ,i= 1,"',M 

y2(t) 
(B.15) 

The above equation can be used as a criterion for determining the significant terms 

in the model and insignificant terms may be removed from the orthogonal equa

tion. This is equivalent to removing corresponding Pi(t) , s from the original 

model leading to a less complex model. 

Interpreting equation (B.15) requires care, since if the position of Pi(t) is altered in 

equation (B.4) a different value for [rer]i is given. In general, the earlier Pi(t) 
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appears in equation (BA) the larger [rer]i will be. In an attempt to overcome this 

difficulty an orthogonal regression procedure based on the idea of stepwise regres

sion is suggested. 

In the initial stage, all Pi(t), i = 1, .. ,M are considered as possible candidates for 

Wi(t). For i=I, .. ,M, calculate 

W~"(t) = Pi(t) 
c') 

,.(0) wi yet) 
g 1 = -===:::;;-

(w~)(t»2 
(g~»2-(w-;-:;:~)-(t)~)2 

[rer]~" = -------
y2(t) 

Find the maximum of [rer]~" , say [rer]Y) = max[rerlY), 1 <= i<= M. Then the 

one-term orthogonal equation is selected 

yet) = WI (t)g I + ~(t) 
with 

In the second stage, all Pi(t), i = 1, ... ,M,i :I:- j are considered as possible candi

dates for w2(t). For i = 1, ... ,M, i :I:- j, calculate 

where 

C) WlPi(t) 
0.12 = ------

wI(t) 

Find the maximum of [rer]~) , say [rer]~k) = max[rer]~) • l<=i<=M. Then the 

two-term orthogonal equation is selected 

with 
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where 

The procedure is terminated at the m'th stage when 

m 
1 - :r, [rer]j < a desired tolerance n < M. The final orthogonal equation is 

j = 1 

selected as 

m 
yet) = :r, Wj(t)gj + ~(t) 

j = 1 

Using equations (B.9) and (B.lO), it is a straightforward task to calculate the 

corresponding parameters 9 j in the model containing only m significant terms. 

Because of the orthogonality, before adding the i+ 1 'th term to the orthogonal 

equation, there is no need to remove the effect of the i'th term. In step wise 

regression a term that was significant at an earlier stage may become insignificant 

after several other terms are included in the model. To overcome this difficulty, 

before adding a new term, those terms that are already in the model are tested for 

their significance using some statistical test (Billings and Voon, 1986b) and if 

necessary deleted. Such precaution is not needed in the orthogonal regression. 
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APPENDIX C 

LINEARIZATION 

Most methods of system analysis have been developed for linear control sys

tems. For a linear control system all the relationships between the variables are 

linear differential equations, usually with constant coefficients. 

Actual control systems usually contain some nonlinear elements. Such elements 

would in turn yield nonlinear differential equations for the system. 

In the following it is shown how the equations for nonlinear elements may be 

linearized (Raven,l978) 

Consider the following equation 

'Y=X2 (C.l) 

The plot of equation C.I is shown below in Figure C.l.I 

Figure C.I.I 

In the vicinity of the point (Xj,Yj) , the function is closely approximated by the 

tangent. For example, consider the pair (X,Y) on the curve of the nonlinear func

tion. X is displaced a distance x from Xj. X intersects the nonlinear function a 

venical distance y + E from Y and it intersects the tangent a distance y from Yj • 

Hence the equation for Y is 

Y = Yj + Y + E ;:: Yj + y (C.2) 
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The slope at point (Xj,Yj) is 

L = [dY] 
X dX· , (C.3) 

or 

(C.4) 

equation C.2 becomes 

Y::: Yj + 2X,x (C.5) 

A general procedure for obtaining a linear approximation is to use the variation 

~Y for a function Y = Y(Xt ,x2, ... ,xn) of n independent variables, that is 

~Y=[:£lMl+[:rlM2+ ... + [:;.lM. 
Therefore 

y = ~Y= Y - Yi 

xl = Ml = Xl - Xli 
X2 = M2 = X2 - X2i 

. . 
Xn = Mn = Xn - Xni 

(C.6) 

Thus, the general expression for obtaining a linear approximation for the linear 

function 

(C.?) 

Where 

[C1 = :£1, [c2 = :rl etc 

The above method is applicable to linearize the NARMAX model represented by 

equation C.g 

z(t) = kIz(t-l) + k2z(t-2) + k3z(t-3) + k4z(t-4) 

+ ksz(t-5) + k6u(t-4) + k7u(t-3)z(t-l) + kgu(t-4)z(t-l) 

+ k9u(t-5)z(t-l) + k lOz(t-4)z(I-5) + k llu(I-3)z(t-5) (C.S) 



where 

kl =1.376 ks =-0.1750 k9 =0.004134 

kz =-0.244 k6 =0.007367 klO =-0.03932 

k3 =-0.3677 k7 =0.03702 kn =0.02160 

k4 =0.4154 kg =-0.004919 

The partial derivatives are: 

a az(t) = (k1 + k7U(t-3) + kgU{t-4) + k9U(t-5»(z(t-l) - 1) 
z(t-l) 

= fl(Z(t-l) - 1) 

az(t) 
az(t-2) = (k2)(z(t-2) - 1) 

= h(z(t-2) - 1) 

az(t) 
az(t-3) = (k3)(z(t-3) - 1) 

= i3(z(t-3) - 1) 

az(t) 
az(t-4) = (k4 + klOZ{t-5»(z(t-4) - 1) 

= f4(z(t-4) - 1) 

az(t) 
az(t-5) = (ks + klOZ{t-4) + kl1U{t-3»(z(t-5) - 1) 

= fs(z(t-5) - 1) 

a aZ(t~) = (k7Z{t-l) + knZ{t-5»(u(t-3) - it) 
u(t-

= f6(u(t-3) - it) 

az(t) 
ou(t-4) = (k6 + kgZ(t-l»(u(t-4) - it) 

= h(u(t-4) - it) 

az(t) 
au(t-5) = (~Z{t-l»(u(t-5) - it) 

= fg(u(t-5) - it) 

where u and zare the operating points with values 

u =0.3584 

z=O.5261 

Subtituting the values of the k's into the f's. 
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11 = 1.376 + (0.03702-0.004919+0.004134)x0.3587 

= 1.389 

h = -0.244 

13 = -0.3677 

14 = 0.4154 - 0.03932xO.5261 

= 0.395 

Is = - 0.1750 - 0.03932xO.5261 - 0.0216xO.3587 

= -0.2034 

16 = (0.03702-o.02160)xO.5261 

= 0.00811 

h = 0.007367 - 0.004919xO.5261 

= 0.004779 

Is = 0.004134xO.5261 

= 0.00217 

The equation representing the operating point is of the fonn 

Zop(t) = k1Z(t-l) + k2Z(t-2) + k3Z(t-3) + k4Z(t-4) 

+ ksZ(t-5) + k6U{t-4) + k7U{t-3)Z(t-1) + kgU{t-4)Z(t-1) 
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+ k9U{t-5)Z(t-1) + klQZ(t-4)Z(t-5) + k llU{t-3)Z(t-5) (C.9) 

or 

Zo/t) = Z(k1 + k2 + k3z + k4 + ks) + 1Ik6 + fiZ(k7 + kg + k9) + klOf

Substituting the values of the k's, ii' sand Z' s 

Zop(t) = 0.52309 

therefore the linearized model is of the fonn 

Zl(t) = zop(t) + 11 (z(t-1) - Z) + h(z(t-2) - Z) 

+ h(z(t-3) - 1) + liz(t-4) - 1) + Is(z(t-5) - 1) 

+ 16(u(t-3) - ii) + h(u(t-4) - ii) + Ig(u(t-5) - ii) 

Rearranging the above equation 

Zl(t) = 0.00812 + 1.389z(t-1) - 0.244z(t-2) - 0.3677z(t-3) 

(C.lO) 



+ 0.3947z(t-4) - 0.2034z(t-5) + 0.OO8112u(t-3) 

+ 0.OO477u(t-4) + 0.OO2174u(t-5) 
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(C. 11) 


