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Abstract

In this thesis, we address problems in complex networksguie methods of statis-
tical mechanics and information theory. We particularlgus on the thermodynamic
characterisation of networks and entropic analysis omssitz¢ and dynamics of network
evolution. After a brief introduction of background and mation behind the thesis in
Chapter 1, we provide a review of relevant literature in Gaaf, and elaborate the main
methods from Chapter 3 to Chapter 6.

In Chapter 3, we explore the normalised Laplacian matrixhadtamiltonian oper-
ator of the network which governs the particle occupatiamsesponding to Maxwell-
Boltzmann, Bose-Einstein and Fermi-Dirac statistics. Télevant partition functions
derive the thermodynamic quantities in revealing netwdrkicsural characterisations.
Chapter 4 further decomposes the global network entropyreet statistics on edge-
connection components. This decompensation reflects tagetedistribution of entropy
across the edges of a network.

Furthermore, Chapter 5 and Chapter 6 provide the theolelpg@oaches to anal-
yse the dynamic network evolution and the application ofréed-world networks. In
Chapter 5, we investigate both undirected and directedor&tewolution using the Euler-
Lagrange equation. This variational principle is based lm\ton Neumann entropy
for capturing the topological variations of the time-vawyinetwork. Chapter 6 studies
the fMRI regional brain interaction networks. We furthevel®p a novel method for
characterising networks and offer a high discriminatioroagpatients with suspected
Alzheimer’s disease. Finally, Chapter 7 concludes thaeshasd discusses the limitations

of our methodologies, which also supplies the potentiaaesh in the future.
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Chapter 1

Introduction

In this chapter, we provide a roadmap detailing the resefancthis thesis. Commenc-
ing with the background of network science, especially reigg complex networks and
network entropy, we present findings of our study regardietyvark complexity with

entropy and the structural evolution over time. Then, wdimelthe motivation behind
the study, the state-of-the-art methods available to swlated problems, and briefly
describe our novel methods with statistical characteasand network evolution. We
propose our research goals, accomplishments, and the canilbutions made in the

thesis. Finally, an outline of the thesis is provided at theatusion of the chapter.

1.1 Network Science

We are surrounded by a wide variety of systems in nature trabe represented as an
abstract pattern of interactions or networks with vertiaed edges [110, 62, 12]. Such
network systems play a significant role in our daily life. Foample, the Internet is
comprised of enormous routers and computers in a kind ofer&teonnected by various
physical or wireless links [3]; social relationships areter kind of network structure
connected by human beings to spread ideas or knowledge (2%, Trading markets
maintain the financial networks for us to exchange goods andcges for the economic
prosperity [93, 83]. In nature, networks encode the intiyas between genes, proteins,
metabolites, and integrate chemical reactions into Iiks ¢88, 62, 56]. The existence

of a vast neural network in our brain, which includes thewigtiof billions of neurons,
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holds the key for us to understand brain function and consciess [48, 105, 37]. These
are just a few of the many examples in the real world. Networkrse has proved to be
an important innovation which allows us to investigate thechanisms behind complex

systems and the topological pattern in the network strectur

Network representation provides us with an abstract metihoeduce complex sys-
tems to simple structural patterns of connection. Verteed edges in a network can
be labelled with additional information to capture moreadlategarding their operation
[98, 25]. In theory, tools developed to help us understantdiorx characterisations can
also be applied immediately to any other systems repredest@ network [37]. If we
want to understand complex systems thoroughly, we showtddevelop a deep under-
standing of the corresponding network structure behinohtHa fact, most networks are
driven by universal organising principles. Scientistsendeveloped an extensive set of
tools to analyse, model and predict them. These tools ar@lexmand are comprised of
developments from a wide variety of fields including mathgesaphysics and computer

science [45, 98, 33].

The study of networks can be traced back to the early 18thupemthich is known
as the graph theory in the domain of discrete mathematice stdry begins with the
work published by Leonhard Euler in 1736 with his historigalotable solution to the
problem of the Seven Bridges ofiigsberg [49]. Since the early days of the 19th century,
the study of complex networks has been the territory of githglory. A few historical
remarks are established to provide the ideas of the in@ptiisary nature of topology. In
1960, a famous model was introduced by PauldSrend Alfréd Rényi which is known
as the Erds-Rényi random graph model [41, 42]. The traditional stoflypetworks
mainly focuses on regular graphs which provide a straigitiod realization of complex
networks. This model was relied on heavily in the past, h@wew is not suitable for
the realisation of the complex networks that are being stlithday. Growing interest
has prompted many scientists to review modelling paradigitisout the fixed linking
probabilities, and towards the end of the 20th century, wiaegised further movement

in network research. Several novel concepts and measutenathods were proposed
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and investigated in depth regarding large-scale complexar&s [98]. Two well-known
models which characterise the structural properties ofptexnetworks are small-world
networks [110, 75, 76] and scale-free networks [12, 13].s€H#oth illustrate the specific
statistical features of real-world network structure. Towmer specifies the short path
lengths and high clustering in topology, while the laterrelsterise the power-law degree

distribution with preferential attachment [13].

(a) Neural network of the nematode C. Elegans (b) Protein-Protein interaction network in Yeast

(c) Western States Power Grid (d) Words network in the David Copperfield

Figure 1.1: Different kinds of Network. (a) A directed and weighted netlwrepre-
senting the neural network of C. Elegans [110, 111]. (b)dtneprotein interaction
network in budding yeast [29]. (c) An undirected and unwtagmetwork representing
the topology of the Western States Power Grid of the UnitateS{110]. (d) Adjacency
network of common adjectives and nouns in the novel Davidpedield by Charles
Dickens [77].
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The exploding interest in network science, particularlyhwegard to complex net-
works, reveals the fundamental laws and principles in tmeptex network domain [98].
Despite the apparent diversity in the real world, the stmecand the evolution of the
networks behind them is driven by a prevailing set of chasations. If we disregard
the nature of the components and the precise nature of #i@aations, we find that these
networks are more similar to one another than they are diftdrom each other [56, 47].
Although there are hundreds of different technologieslalsé which can analyse the
universal principles of network structure, intellectuadascientific challenges are still
encountered when we attempt to understand, describecpesdl eventually control the

interwoven networks.

1.1.1 Complex Networks

Complex networks are large and varied networks which ilaistthe interactions between
the different parts of large complex systems [98, 25, 45].10&Il-known examples in-
clude social networks and power grids [45, 109]. These nédsvoffer interesting and
difficult challenges in terms of data analysis, as they abstsuntial and are characterised
by relationships between objects rather than simple measnts. As a matter of fact,
they are graphs [33, 46]. One of the most prominent challeigygo measure the com-
plexity of the network. In essence, complexity is a meastirgoww much information
exist within the network.

As the popularity of studying complex networks grows, mattyeo inherent diffi-
culties have attracted attention as we attempt to undetstenpossible complications in
network structure [98, 25, 3]. Three main categories arallyscited as being useful when
we illustrate network characterisation. The first is stuatcomplexity [74, 44, 43]. Un-
derstanding the structural complexity is useful for idiymtig and classifying the network
similarity as represented by the graphs. Although ther@is/idely accepted definition
that can be used to define network complexity, there aresstitie parameters and struc-
tural features that people usually consider, such as théauaf spanning trees [15], the
length of pathways [48] and connectivity [47, 61], etc. Thkdwork complexity encodes

structural and topological information to discriminatéetient kinds of networks [81, 59].
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The second is to identify the connection diversity. The ditletween nodes could have
distinct weights, directions and signs. Understandindne$é so-called edge properties is
still in its infancy for the rich characterisation of the ptiae and phenomenon [61, 4, 16].
The final consideration is to understand the network evatutSince links and nodes can
be created or could disintegrate at any moment, the netwankection is not constant
over time [42, 23, 70]. The evolution of networks usually scwhen connections are
added or rewired from one component to another [78, 25]. 8tbex, more effective and
efficient methods of investigations are required if we waniriderstand the characterisa-
tion of complex networks.

Broadly speaking, many characterisations have been welgiloited, many differ-
ent types of network structure have been classified, andonk$tave been analysed with
regard to their evolution over time [46, 47, 2, 80]. Most of tvailable characterisations
centre around ways of capturing network substructuregyudusters, hubs and communi-
ties [47, 2, 80]. The underlying representations are basesiople degree statistics that
capture the connectivity structures [110, 74]. These atarsations usually describe
networks using macroscopic parameters [46, 103]. Theyeaie a particular network
in terms of its structure, robustness, and performancermtiion through the statistics of
linking and clustering [50, 37]. However, the structure efworks is not designed from
the macroscopic perspective, and the connecting and negjrdf individual nodes play a
role in the microscopic structure [37]. The generalisatibthese rules governs the net-
work characterisations from both a purely deterministimdm to an entirely statistical

domain [37, 2, 80].

1.1.2 Statistical Mechanics

Throughout scientific history one of the most influentialomations was the discovery of
the laws of thermodynamics in the field of statistical phgq®, 80, 103, 86, 74, 114].
Statistical mechanics provides a framework based on whiglcam describe the macro-
scopic properties of matter from the microscopic points iefwin the particles. This
relationship provides a connection between the macro amdnibro world in terms of

thermodynamics [86]. For example, by using a heat bath ggdtom thermodynamics,
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principled physical measures of communicability and begain networks can be defined
[47]. Tools from statistical mechanics can also be usedaoattterise the degree distribu-
tion for different types of complex networks [2]. By maxinmg the ensemble entropy in
exponential random graphs, the Boltzmann distributioretiged in classical statistical
mechanics can be used to predict the properties of timesegphetworks [80]. Further-
more, preferential attachment can lead to the phenomenoarafensation exhibited in
growing networks [21, 23]. Both Bose-Einstein and FermiaDistatistics have been used

to account for the quantum geometry associated with diftasges of networks [20].

Another closely related approach is the heat bath analogyaph spectrum from
thermodynamics [114, 59, 108]. Classical statistical ptsysharacterises the system
with states to specify the energy dependence with the pilityadf finding certain states
[37, 86]. This method can be extended in order to understatwdanks. A real-world net-
work can also identify the possible energy states on thenggppctrum. This is known as
the heat bath analogy, and it provides a convenient routetteark characterisation. Here
the energy states of a network are captured using the eilgesvaf a matrix representa-
tion of network structure [59, 6, 104]. The energy statestlaea populated by particles
which are in thermal equilibrium with the heat bath. As a hestithis thermalisation,
the energy states are occupied according to the Boltzmastnbdition [46, 114, 104].
Formally, this physical heat bath system can be describeddaytition function with the
energy micro-states of the network represented by a syitdddsen Hamiltonian. Usu-
ally, the Hamiltonian is computed from the adjacency or bag@n matrix of the network,
but recently, Yeet al. have shown that the partition function can be calculate@édas
a characteristic polynomial instead [114]. Moreover, thedynamic and statistical anal-
ogy exploits various quantity in characterising the stiuait properties of the network
[106]. From the commencement of mapping the network to antbdynamic system, a
partition function succinctly describes characterisaiof the network such as entropy,
total energy and temperature [46, 114]. For example, the@stindex, as a measure of
centrality and that is associated with the partition fumtf a network, describes the ther-

modynamic variables characterising network structur6s44]. These variables, such as
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the entropy and internal energy, help us to interpret thecsiral properties within the
graph spectrum [47]. Moreover, the micro-states of the agtwystem can be explained
by graph spectral theory [59, 117]. More investigations efwork behaviour can be
provided by this approach [33, 59].

Despite the interest in alternative models of the therradldistribution of energy
states, there has been no systematic study of the variousdtdgnamic characterisations
resulting from different choices of statistical occupatimor has there been a specific
study of those associated with alternative assumptionsezaimg the graph spectrum
with Laplacian matrix of the network [33, 119]. Here we atf#no understand the struc-
tural information by measuring the entropy of networks fritmarmodynamic characteri-
sations [106, 104, 108]. The network complexity relatedimagy cannot be specifically
defined by different structural features when we take theltapcal complexity into ac-
count. Our goal is to find measurements which can encode eiguctural information
with a high degree of specificity. These parametric functiare based on metrical prop-
erties of graph spectra and present the notable featurehvaliows for the detection
of significant structural properties within networks andiethcan be used to identify
network or graph similarities in pattern recognition pexbk and to predict the network

evolution with appropriate data sets [106, 104, 108].

1.1.3 Network Entropy

Instead of describing the networks based on their structlraracterisations, many
types of research focus on quantifying network complexging entropy as a measure-
ment. The entropic measurements play an important role denstanding the struc-
tural and topological complexity of network systems. Buwiirtg from the ideas of in-
formation theory [5, 59], statistical mechanics [46, 2, 803], and quantum informa-
tion [84, 108, 23, 106], the measurement of entropy allowsaf@leep understanding
of network evolution [107, 115] and an unveiling of the rictierplay between network
topology and dynamics [93, 110]. More specifically, in thédfief complex networks,
the entropy of thermodynamic variables makes a great ¢wtion to the information

gathered on the network. The entropic quantities, such aar&m entropy [23], Gibbs
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entropy and von Neumann entropy [81, 59, 117], have provdxttoseful for detecting

significant structural characteristics of network ontaésg38].

The more complex, sophisticated, and unique the netwouktstre, the more pecu-
liar properties of entropy will be required to describe tleéworks. For example, collec-
tions of vertices usually share some similar propertietsateaknown as communities [47].
The entropic measurements are useful for identifying comitias with similar structural
complexity and with shared attributes. The fact that theyehthe same entropy can be
applied to explore symmetric and homogeneous network9p0 Furthermore, the con-
cept of entropy can be used to inform inferences in the problef complex networks
[59]. The evaluation of the encoded information in netwdrkictures can allow for the
challenging issues associated with inference to be adeltessh network entropy. Usu-
ally, the statistical structure probability in the netwaskcharacterised as the likelihood
using a generative model [60]. Some real networks preseighalikelihood similarity
during the evolution from which the phenomenon of prefaegmttachment associated

with entropy emerges [119, 113].

Generally speaking, two kinds of entropy are well known @sslcal and quantum
systems, i.e., the Shannon entropy [6, 10] and von Neumatnopsr(6, 81, 59, 117], re-
spectively. The Shannon entropy corresponds to the enfoypgtassical systems where
statistical mechanics are used to interpret the variouBgumations within networks. It
applies to the physical characteristics of states and figethe energy dependence with
regard to the probability of finding certain states [6]. Faredwork, it is sufficient and
reasonable to describe the states of networks with all plessbnnection matrices. A
network Hamiltonian introduces the energy of states [1T8]s approach maps the net-
work into the state of equilibrium where the specific Hanmlem purportedly specifies
the energy states associated with the topological pragsertrormally, the network sys-
tem can be described by a partition function with the energyorstates of the network
being represented by a suitably chosen Hamiltonian [108]. Thermodynamic charac-

teristics of the network, such as entropy, can then be difieen the partition functions
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[74, 114]. By specifying the micro-states of the networkisys, statistical thermodynam-

ics can provide deep insights into network behaviour.

On the other hand, von Neumann entropy is applied to desttrtdoguantum statis-
tics in a network system [81, 23, 63]. A mixed micro-state satistical mixture of pure
guantum states which correspond to the Hilbert space wahmtaximum knowledge of
the system [106]. The density matrix is used to describe tlaym state which repre-
sents the positive symmetric matrix with unitary trace [8#je density matrix represents
a convex combination of quantum states qualified by the vaimiNan entropy [24]. It
can be viewed as an extension of Shannon entropy that qearth# incompressible in-

formation content of a quantum state [59].

The network entropy can be constructed from a density masian operational
meaning of connection between quantum mechanics and thgmamics [106]. The
network community has shown interest in discussing thelehging topics regarding
the evaluation of the relationship between graph specttajaantum states theoretically.
Recently the spectra of the Laplacian or normalised matamehprovided a sophisti-
cated way to define the von Neumann entropy and density n&tix59]. Regarding
the eigenvalues of Laplacian and quantum states, von Naueranopy is derived from
the spectrum of the Laplacian matrix [59, 117]. This effithermnd effectively distin-
guishes the different structures in extremal graph theshgre entropy is maximal for
random graphs and minimal for regular graphs [59, 117].Hauréxtension approximates
the calculation of von Neumann entropy in terms of simplerdegtatistics to reduce the

guadratic complexity [106].

Overall, the entropic measurements play a crucial role éenghantification of the
complexity of the network structure. It raises questiongWwimerit investigation regard-
ing the information that is encoded in the structural feadusf networks. Both Shannon
entropy and von Neumann entropy offer novel methods to stéyproperties of pure
states and mixed quantum states in network systems, whecteaitral to the capture of

differences and similarities between networks appearingstly different contexts [6].
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1.2 Motivations and Goals

Although different physical analogies are useful for asadyg the network characterisa-
tions, they are not always readily relatable to the spentfaiesentation contained within
the graphs presented in previous literature. The study wbpy in network science is
an ongoing problem. The broad applicability of graph-basedlels offers a virtually
limitless field for the use of entropy to measure structuiiéibnces [38]. Identification
and classification of structural configurations in netwdrks shed light on the power of
entropy measurements when compared to topological methatieere used in previous

studies.

The goals of this thesis are to explore effective and efftanetwork characteristics
and their evolution. We aim to exploit entropic quantitiesharacterising network struc-
tural properties in an effort to embark on thermodynamicstatistical analysis. We aim
to find the structural information by comparing the entropthwnetwork complexity and
then utilising statistical models to derive entropic meaments with partition functions
and the Hamiltonian operator. We aim to develop novel siegismodels with network
characterisations that allows us to address the issueadhally arise within complex
networks. In this thesis, we have focussed on the problenestribing the network
statistics and evolution with different partition funat® We apply the entropy to de-

scribe structural variations of edge-connectivity andetivarying evolution. Specifically,

e We explore the effects of occupation statistics on the paipns of energy states
when the Hamiltonian operator is the normalised networkld@pn, and the en-
ergy states are then given by its spectrum. Commencing fnerheat bath analogy
with the Laplacian matrix playing the role as the Hamiltonithe energy states of
the system are categorised according to a) Maxwell-Boltamb) Bose-Einstein
and c) Fermi-Dirac statistics respectively. Based on theyaat partition function,
we use the statistical mechanical properties of the netsvtwkcalculate various
thermodynamic quantities when the energy levels are oedupy particles in ther-

mal equilibrium with the heat bath. We obtain different geation statistics for the
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energy levels by varying the partition function throughting experiment. The net-
work then can be characterised using thermodynamic qiesich as the entropy

and energy derived from the relevant partition function, [4®4].

e We extend the entropy analysis of the heat bath analogy wiriehides a useful
global characterisation of the network structure. We epglwow to easily com-
pute the entropy of edge or subnetwork structures, and ptterprovide a novel
edge entropy projection which can be implemented at theajjloétwork entropy.
We exploit this technique to analyse the distribution ofeedgtropy within a net-
work and explore how this distribution reveals the intrinstiructural properties of

different types of network.

e We explore whether the model of network entropy can be extgnd detail the
way in which the node degree distribution evolves with titaging into account the
effect of degree correlations caused by the degree steicf@dges. We exploit this
property by modelling the evolution of network structuréngsthe Euler-Lagrange
equations. Our variational principle is to minimise the rdp@s in entropy during
the evolution. By using our approximation of the von Neumantropy, we are
able to use update equations for the node degree which acfmuhe effects of
correlations induced by the edges of the network. It is &ffety a type of diffusion

process that models how the degree distribution propagatess the network.

e We explore whether the thermodynamic entropy can be usedrstrict an ef-
fective information theoretic graph-kernel for the purpad classifying different
types of graph or network structure. We construct a Jenbam®n kernel using
the Bose-Einstein entropy for a sample of networks and thpty&ernel principal
components analysis (kPCA) to map graphs into low dimerditeature space.
We apply the resulting method to classify fMRI activatiorivaerks from patients
with suspected Alzheimer’s disease. Furthermore, we arivated to establish
effective methods for measuring the structural propedfedirected graphs repre-

senting inter-regional casual networks extracted from fMRin data. We aim to
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use the directed network entropy to develop graph analytieshods to measure

the degree of functional connectivity in brain networks.

1.3 Contributions

The significant contributions of this thesis are developiagel statistical models for net-
work analysis with different partition functions, proundj the study on edge entropy de-
composition, minimising the entropy variance to model teework evolution, and apply-
ing the fMRI activation networks to distinguish Alzheimgdisease. These contributions

are summarised as follows:

1.3.1 Partition Functions and Spin Statistics

The first contribution, outlined in Chapter 3, is to propdse thermodynamic character-
isation of networks using the heat bath analogy when theggretates are occupied by
different spin statistics, specified by a partition funaticApplying the heat bath anal-
ogy and a matrix characterisation for the Hamiltonian ofmerave consider the cases
where the energy states are occupied according to MaxvedisBann, Bose-Einstein
and Fermi-Dirac statistics. We develop expressions fantbeynamic variables, such as
entropy, for the system with particles occupying the enstgtes given by the normalised
Laplacian eigenvalues. The chemical potential determinesiumber of particles at a
given temperature. We provide a systematic study of the@pittmeasurements for net-
work complexity resulting from the different partition fations and specifically those
associated with alternative assumptions concerning timessatistics. Compared to the
network von Neumann entropy to the corresponding nornhlisglacian matrix, these
entropies are effective at characterising the significamttural configurations and dis-
tinguishing between the different types of network modet{s-Rényi random graphs,
Watts-Strogatz small-world networks, Barabési-Albedlsdree networks). The effects
of the spin-statistics are a) with regard to bosons - to alleparticles in the heat bath to
congregate in the lower energy levels and b) with regardrtoifens - to allow particles in

the heat bath to populate higher energy levels. Bosons are seasitive to the spectral

gap in circumstances where a normalised Laplacian eneady skists and, hence, tend
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to detect cluster or community structure, and fermionseoetample the distribution of
path lengths in a network. Numerical experiments for sytithend real-world datasets
are presented to evaluate the qualitative and quantitdifiezences that are present in the
thermodynamic network characterisations derived frongtfierent occupation statistics,

which ultimately confirms these qualitative intuitions.

1.3.2 Edge Entropy Decomposition

The second substantial contribution, outlined in Chaptes #o propose a novel frame-
work to show how to project edge-entropy components so tietetailed distribution
of entropy across the edges of a network can be computed.isTpasticularly useful if
the analysis of non-homogeneous networks with a strong aamtynand hub structure is
being attempted. To commence, we view the normalised Legrlawatrix as the network
Hamiltonian operator which specifies a set of energy staids thve Laplacian eigen-
values. The network is assumed to be in thermodynamic éguin with a heat bath.
According to this heat bath analogy, particles can populeenergy levels according to
the classical and quantum statistical distribution, areddistribution, together with the
energy states, determines the thermodynamic variabldseafi¢twork, such as entropy
and average energy. We show how the entropy can decomposeoimiponents arising
from individual edges using the eigenvectors of the norsedliLaplacian. Compared to
previous work based on the von Neumann entropy, this theymaodic analysis is more
effective in characterising changes in network structureesit better represents the edge
entropy variance associated with edges connecting nodasgefdegree. Numerical ex-
periments on real-world datasets are presented to evahetpialitative and quantitative

differences in performance.

1.3.3 Dynamic Network Evolution

The third contribution, outlined in Chapter 5, will invegite network evolution dynamics
using the Euler-Lagrange equation. We use the Euler-Lggraquation to develop a vari-
ational principle based on the von Neumann entropy for tuauging network structures.

By utilising recent work to approximate the von Neumann @pyrusing simple degree
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statistics, the changes in entropy between different tipeeles are determined by corre-
lations in the degree difference in the edge connection Edier-Lagrange equation min-
imises the change in entropy and allows for the developmemtdynamic model which
predicts the changes of node degree with time. We first egplme effect of network
dynamics on the three widely studied complex network modelmely a) Erds-Rényi
random graphs, b) Watts-Strogatz small-world networksl, @nBarabasi-Albert scale-
free networks. Our model effectively captures the struttransitions in the dynamic
network models. We also apply our model to a time sequencetwfarks representing
the evolution of stock prices on the New York Stock Excha$¢E). Here we use the
model to differentiate between periods of stable and uteststbck price trading and to
detect periods of anomalous network evolution. Our expemisidemonstrate that the
presented model not only provides an accurate simulatidmeofiegree statistics in time-
varying networks, but that is also captures the topologiaaktions taking place when

the structure of a network changes violently.

1.3.4 fMRI Network Application

The final contribution, outlined in Chapter 6, is to extene tiheoretical approach to real-
world networks and to discuss the application of fMRI bragtmork analysis. We present
a novel method for characterising networks using the egtaggociated with bosonic par-
ticles in thermal equilibrium with a heat bath. Accordingas analogy, the normalised
Laplacian plays the role of the Hamiltonian operator, ardassociated energy states are
populated according to Bose-Einstein statistics. Thisehssubject to thermal agitation
by the heat reservoir. The physics of the system can be @&ptising a partition function
defined by the normalised Laplacian eigenvalues. Varioolsajithermodynamic charac-
terisations of the network including its entropy and endiggn can be computed from
the derivative of the corresponding partition functiontwiespect to temperature. We
explore whether the resulting entropy can be used to cartstrueffective information
theoretic graph-kernel for the purpose of classifyingedé#ht types of graph or network
structure. To this end, we build a Jensen-Shannon kerngj tise Bose-Einstein entropy

for a sample of networks and then apply kernel principal congmts analysis (kPCA) to
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map graphs into low dimensional feature space. We applyethdting method to classify

fMRI activation networks from patients with suspected Adirher’s disease.

The neurobiology of Alzheimer’s disease (AD) has been esttety studied by ap-
plying network analysis techniques to activation patten®/RI images. However, the
structure of directed networks representing the actingpatterns, and their differences
in health and Alzheimer’s people remain poorly understoblére, we aim to identify
the differences in fMRI activation network structure fotipats with AD, late mild cog-
nitive impairment (LMCI) and early mild cognitive impairme(EMCI). We use a di-
rected graph theoretical approach combined with entropgsomements to distinguish
subjects falling into these three categories from thoshiwihe normal healthy control
(HC) group. We explore three methods. The first is based otyiagplinear discrim-
inant analysis to vectors representing the in-degree atvdemree statistics of different
anatomical regions. The second uses an entropic measuocelefassortativity to gauge
the asymmetries in the node with in-degree and out-degteefiial approach selects the
most salient anatomical brain regions and utilizes theeakegtatistics of the connecting

directed edges.

1.4 Thesis Outline

Having defined the problem in the domain of complex network @resented the overall
goals of the thesis in Chapter 1, we propose a brief revievhefrélevant literature in
Chapter 2, which includes a discussion about statisticehaaics in complex networks,

network Hamiltonian, network entropy and dynamics.

Based on the heat bath analogy and the Hamiltonian operat@hapter 3, we detall
a novel method that describes the thermodynamic charsatiem of networks under dif-
ferent partition functions. We explore the case where thtgbaoccupations correspond
to Maxwell-Boltzmann, Bose-Einstein and Fermi-Diracistats. From the related parti-
tion functions, we can compute the thermodynamic entroplyearergy. Motivated by an
interest in revealing the nontrivial properties of the natistructure, we have compared

the three resulting entropic characterisations with the Neumann entropy. This study
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investigates how the different entropies can be used tcactarise changes in network
structure, and how it can distinguish different types ofamek structure. Studies with

synthetic data show that the entropies can distinguisb&REnyi random graphs, Watts-
Strogatz small-world networks, and Barabasi-Albert séade networks. Experiments on
real-world data, on the other hand, show that the thermadieneariables can not only be
used to detect both abrupt changes in network structuredoualso distinguish different

classes of networks.

In Chapter 4, we combine the methods developed in Chaptesxlore the thermo-
dynamic characterisations of networks, specifically tressociated with the thermalisa-
tion effects of the heat bath on the occupation of the nogedlLaplacian energy states.
We extend the use of entropy as a tool to characterise nestrrgtures in both static and
time series data. We conduct experiments which demongtratehe thermodynamic
edge entropy is better suited to represent the intringicitral properties associated with
long-tailed degree distribution when compared with theesively studied von Neumann

entropy.

In Chapter 5, we apply the Euler-Lagrange equation to mientine change asso-
ciated with von Neumann entropy in the network structurebis Treatment facilitates
the prediction of the degree statistics varying with timd aaptures the effects of degree
change correlations introduced by the edge-structureeohétwork. In other words, be-
cause of these correlations, the variance within one dedgamines the translation of
the connected nodes. We conduct numerical experimentg bsith synthetic and real-
world network data in time evolution. Our model is capableswhulating the degree

distribution and detecting significant variations in théwwk structure.

In Chapter 6, we demonstrate how to compute an informatiearttic graph-kernel
using Bose-Einstein entropy and the Jensen-Shannon divexg This method is based
on quantum statistics associated with the bosonic populafi the normalised Laplacian
eigenstates. By applying kernel PCA to the Jensen-Sharermelkmatrix, we are able to
embed sets of graphs into a low dimensional space. We ugaiisant classifier analysis

to assign the graphs to different groups in order to evaltregerformance of thermal
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entropies. The results of the experiment reveal that thbodatnproves the classification
performance for graphs extracted from fMRI data. The kemethod combined Bose-
Einstein entropy and the Jensen-Shannon divergence psowid effective and efficient
method for fMRI network analysis.

Furthermore, we are motivated to fill a gap in the literatwagarding the analysis
of fMRI regional brain interaction networks using directghphs. We take advantage
of the recently developed simplified approximations to tbe Meumann entropy of di-
rected graphs, which are dependent on the graph size and-thegiee and out-degree
statistics of vertices. Assortativity of nodes in directgdphs provides insights into the
neuropathology of Alzheimer’s disease and allow us to attarse the functional or-
ganisation of the brain. Entropic measurements assoardtbdhode degree identify the
edge connection features which offer high discriminatietwteen subjects suffering from
Alzheimer’s disease and normal subjects.

Finally, in Chapter 7, we offer a brief conclusion regarding advantages and short-
comings of the thesis. We summarise the contributions arlgereaggestions for future
research. Overall, after developing the theoretical aislywe present the experimen-
tal results on synthetic data and real-world networks thhowt the thesis. It shows the

potential applications of our theoretical methods.



Chapter 2

Literature Review

This chapter will review the existing literature about cdexpnetworks with considera-
tion being given to statistical mechanics, entropic measuguantum statistics and dy-
namic evolution. It starts with a discussion of network enkes to introduce existing
micro-canonical, canonical and grand-canonical ensesrabid their associated complex
networks. Then, the partition function is introduced toatidse all possible configura-
tions of network ensembles. We survey the thermodynamiceqas, such as entropy
and temperature in networks, by quantifying the networkwiicro-states and heat bath
analogy. Then, condensation phenomenon is observed eretitf network models and
the quantum statistics are presented. Finally, we disdusstgre, dynamics and other

topics relevant to complex networks with statistical ctgasations.

2.1 Network Characterisations in Statistical Mechanics

Statistical mechanics plays a vital role in helping us usterd the important features of
a network structure. They aim to develop effective char&agons of complex network
structures and to interpret the process of network dynariiesse characterisations have
been widely explored as the classification of different ypenetwork structure and the

methods of analysis pertaining to network evolution oveleti

2.1.1 Network Ensembles

In 1878 in statistical mechanics, J. W. Gibbs introducedcibrecept of an ensemble to

describe the microscopic properties of a thermal systerh [Rdwadays, people borrow



2.1. NETWORK CHARACTERISATIONS IN STATISTICAL MECHANICS 40

the idea of ensembles and apply it to thermal physics to aaalgmplex networks. Park
and Newman [80] explored the properties of a graph ensemitteBoltzmann distri-
bution. Bianconi quantified the complexity of networks witle concepts of ensembles
in random networks [17, 18] and further extended our undadihg to multiplex net-
works [19]. Waclaw described the problems associated vativorks formulation with
statistical ensembles by starting from the simplest caostin of random graphs [103].
Garlaschelli and Loffredo proposed a grand-canonicalrabtemodel to construct net-
works with reciprocity [53]. All of these researchers radgd network ensembles as a

fundamental tool in the analysis of complex systems.

The ensemble of networks can be used to construct netwotkgemeralised hidden
variables. Park and Newman assert that the ensemble madat®a single network,
but rather a probability distribution over the whole set ofgible networks [80]. Bian-
coni defines a network ensemble as a group of networks whtidfiea certain structural
constraints, such as degree distribution, community strac etc [19]. Subsequently,
certain undirected networks can be formulated in circuntsta where we are given the
number of links and nodes, the degree distribution or thencomty structure [18]. Fur-
ther theoretical analysis presents the extensive conttraf network ensembles on the
thermodynamic limits [17]. For example, given the total raénof nodes and links, the
degree of all nodes fix to the degree sequekgces=1,---,N, and all networks with the
same number of nodes form the ensemble with the uniformildligion P(G) = 1/N [7].
The network ensembles follow the same structural conssraiith the fixed distribution
on average. They are under maximum-entropy constrainteasthe probability measure-
ment in thermodynamic limits. The closer the grdpfs to satisfying the constraints, the

larger the probability value of certain structir€G) [7].

On the other hand, in terms of the statistical ensemble ofiarés, Garlaschelli
et al. restrict the fixed number of vertices on unweighted netwavikbout self-loops
or multiple edges. Regarding each link as a "particle” betweertices, the constraint
of "occupation number" for each pair of vertices followstaer statistics. Clearly, the

adjacency matrix can be utilized to characterise this gl Each possible adjacency
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matrix corresponds to a configuration within a network dtrees, and the combination of

these configurations defines the statistical ensemble wionks [52].

A similar description can be found in Waclaw’s work [103]. stead of defining
the network ensembles as a statistical distribution for tvork set, they refer to the
network as the ideal gas containing the particles. Mapphnegnietwork with the same
fixed number of nodes and links as the particles in a contathercanonical network
ensemble emphasizes the conservation of the number of rmoaksnks, such as the
thermal balance of ideal gas when it connects with a sourtealtf [103]. The partition
function is quite useful to describe the configurations imithe network ensemble. They
define the partition functiod (N, L) by summing over all combinations of nodes and links

in adjacency matrices as [26]

N

Z(N,L) = %-CLZ (2.1)

N
whereC? is the combination of the number of ways for choodirigks fromN/2 edges.

Further considering the fluctuations of the number of edgegw partition function

was introduced with a chemical potential for links in thergtacanonical ensemble [26].

Z(N,u) = Zexr(—uL)Z(N, L) (2.2)

By analogy with classical physics, Waclaw defines a micnoeoécal ensemble as a
set of all equal probability graphs with prescribed seqesraf degred;, - -- ,ky. These
degree sequences play a role in the micro-states. Then ttre-canonical ensemble
is constructed by summing over all sequences obeying theecaation lawky + - - - +
kn = 2L. With these definitions of the ensembles, Waclaw constreantsplex networks
with non-trivial statistical features, such as pow-law megdistribution, high clustering,

degree-degree correlation etc [103, 26].
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2.1.2 Micro-canonical and Canonical Ensembles

The micro-canonical ensemble is used to describe the pessifites of a system con-
strained by total energy in statistical physics. And theocacal ensemble describes the
system in terms of possible states within a heat bath at aioggmperature when it is

in thermal equilibrium exchanging the total energy. Noves two concepts have been

extended to network systems in the literature.

A micro-canonical network ensemble means that structwasiraints are strictly
satisfied. A general framework of a random network ensemdatebe built by using the
micro-canonical ensemble and statistical mechanics [A8¢anonical network ensem-
ble means these sets of structural constraints are satisfiaderage [18]. This concept
of network ensembles is consistent with the classicalssieai description that considers
the configurations of the system to be compatible with thelfer@ergy constraint, namely
the micro-canonical ensembles, or the fixed average eneitipeiheat bath, which is the
canonical ensembles [19]. By analogy, the random graph earidwed as the micro-
canonical ensemble which is formed Hynodes with a constant number of linksCon-
sidering the Poisson distribution for the degree with amaye(L) = p(N—1). It follows
that the canonical ensemble of the random graph is formedetwarnks that satisfy the

criteria as to the average number of links [5].

In addition, Anand and Bianconi use random graphs as an deamprder to find
the connection between micro-canonical and canonicalar&tensembles as the distri-
bution reaches the thermodynamic limit [5]. The differencentropy diverges between
two cases when the imposed constraints are extensive. mdam graph with a fixed
degree sequence, the entropy of the micro-canonical enseatobs not correlate to the
entropy of the canonical ensemble case [5]. Recently, Biairet al. extend the micro-
canonical and canonical ensembles to multiplex networksripfementing approaches
from statistical mechanics [19]. They introduce the unelated and correlated multiplex
ensembles which related to the probability of the netwook®tery layer. They consider
the multiplex ensembles with certain constraints on aweragch as the fixed number

of links and the degree sequence in each layer. They find thenazal ensembles are
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more suitable to describe the overlap situation, while tieeacanonical ensembles can

be extended to a number of other constraints [19].

2.2 Thermodynamic Variables in Networks

The analysis of statistical mechanics, in particular traymamic variables, within the
network system allows us to gain a deep insight into netwetkawiour. The network
can be succinctly described using a partition function wiheninterpreted in accordance
with the micro-states in the heat bath analogy. Additignahermodynamic variables,

such as entropy, total energy, and temperature, can beeddraum the partition function.

2.2.1 Network Entropy

The entropic measures provide a promising tool for undedstay the structural and topo-
logical complexity of network systems. They may be able &ohee the issues encoun-
tered regarding evaluation of the network robustness andhility to tolerate changes
[90]. In 1978, E.T Jaynes first described the Maximum EntrBpwyciple in statistical
mechanics. Since then, Strauss developed a class propatidel for configurations of
interacting points in 1986, which introduced this idea taygrs and lattices [97]. Park and
Newman analysed exponential random graphs with Boltzmatnlition and Gibbs en-
tropy. This means that in circumstance where we are giveha setworks, the expected
properties to measure real-world networks can be derived the data [80]. The network
properties can be predicted by maximizing the Gibbs entadplye graph ensemble when
it is subjected to the constraints imposed by a given set séfations. Similar to the
ideas contained in statistical mechanics, Lagrange nheltgowere introduced, and graph
Hamiltonian and partition function were defined [80].

Bianconi applies entropy to characterise randomized méteimmsembles that develop
a logarithm to generate the total number of networks. Thepgse that entropy can be
viewed as an indicator to assess structural features inomketwodels [17]. Furthermore,
Bianconi defines and evaluates the structural entropy toacterise undirected simple
networks with certain constraints, such as the degreahisitvn [17]. It also reflects the

community structure, in which case the networks might havek probability with the
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distance between the nodes [17]. Moreover, Anandl. map the information theory to
network topologies in order to quantify the complexity ofwerks [5]. They explain the
relationship between the Shannon entropy, the Gibbs gnang von Neumann entropy
for the network ensembles, which can be used to solve thesimée problems through
maximum-entropy principle [5]. Krioukoet al. further explore entropy distribution in
random networks given degree distribution [7]. They find tih@ network entropy has
the property of self-averaging. The relative entropicaace vanishes in thermodynamic
limit [19]. The fluctuations of entropy are also related te #verage degree in networks
[7]. Moreover, Bianconi finds that entropy is useful to salvierential problems in mul-
tiplex networks [19]. In particular, the smaller the entyay the ensemble, the smaller
the number of networks satisfying the corresponding cairgs, which implies that these

networks are optimized [19].

In addition, a large number of approaches demonstrate lieagritropy in thermo-
dynamics is practically advantageous when it comes to megsthe robustness and
complexity of the network. Since Boltzmann defined the gainesncept of entropy to
the system when it is associated with different states, Strahas extended the entropy
principle to characterise communication systems withrmfation theory [67, 86]. Such
an application of the entropy principle can be used to cherse a network in terms
of its complexity, robustness and heterogeneity. It has les¢ended to the graph spec-
trum domain. The normalised Laplacian spectrum can be dexgea complexity level
characterisation [81]. With the definition of von Neumanrtrepy, the density matrix
associated with the Laplacian spectrum provides a noveltaafudy thermodynamic
entropy on networks [81]. Anand, Bianconi and Severini gttt relation between the
Shannon entropy and the von Neumann entropy within netwexksbiting a given ex-
pected degree sequence [6].efal. [117] extend the approximate von Neumann entropy
for directed graphs to characterise the structural conitglex networks. Overall, ther-
modynamic entropy has generally become an important méeshahrough which we

can characterise complex networks.
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2.2.2 Network Temperature

In order to complete thermodynamic characterisations iwowks, one parameter in par-
ticular should be mentioned. That is temperature. Gernesakbaking, there is a limited
amount of literature that explores the impact of tempeeatur complex networks. Tem-
perature is usually considered to be a pseudo-parameter\éo, in order to completely
describe the statistical formalism in complex networks;|&zahelliet al. clearly discuss
the impact of temperature on networks with a degree of tapo#b optimization. They
also developed various temperature-dependent versiaretwbrk models [52].
Furthermore, when using temperature as a parameter withetveork, thermody-
namic characterisations provide a convenient way to reptethe structure within an
associated graph spectrum. The normalised Laplacian leasshewn to be related to the
continuous time random walk and the heat flow on a graph [4d4¢oBnoet al. explain
the thermodynamic depth relies on the heat flow to share thecterisation of a graph in
entropy with statistical complexity [43]. Escolano, Boraawd Hancock extend the ther-
modynamic depth with their findings regarding heat diffusim undirected and directed

networks to quantify the complexity of structural pattej#3).

2.2.3 Partition Function

The partition function can be succinctly used to descrilgertbtwork characterisations
and properties. It refers to the statistical propertieshs thermodynamic equilibrium.
Thermodynamic characteristics of the network, such aspwttotal energy, and temper-
ature can be derived from the partition functions.

Garlaschelliand Waclaet al. [52, 103] view the networks as being at an equilibrium
with the micro-canonical ensemble. It satisfies the comggdhat have a fixed number
of verticesN and a varying number of linksa = ¥; &;j, and which are controlled by the

chemical potentiali. Then the probability of a graphis introduced with temperatuiie

1

Pa = —exp{

. LA_EA} (2.3)

T

where the partition function i€ = yaexpuLa —Ea)/T. Considering the instructive
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case, the enerdya is summary of each individual link energigg. ThatisEa = 3 ; ajj &j -

Then the partition function can be written as

7 — ; |:| elH—a))aij /T _ |:| [1+ e(u—fij)/T] (2.4)

So the probability of grapA is
Pa= [P (1—pi)" (2.5)
i

And he probability of a link between nodand node is

1
elai—1/T 11

pij(T) = (2.6)
This form is the constant with quantum statistics, i.e.pheDirac statistics, which
we review in the next section. The enefgyimplies that each link is drawn with probabil-
ity pij independent of each other. Further, in order to simplifyftinen of &, Garlaschelli
et al. obtained many important network models, such as the higdeable models and
the configuration models of random graphs [52]. The optitionsof topology in the low
temperature case provides a deep understanding of the raitmgedependent network

models, which in the end aid the investigation of the stmattproperties within complex

networks [52].

2.3 Networks with Quantum Statistics

Quantum statistics are usually used to describe the statigtoperties of complex net-
works. Quantum network states are characterised by quantaapation numbers which

are mapped relative to the nodes, links, and triangles.

In particular, the quantum states are characterised by #mailkbnian operator,
which defines the energy spectrum of the network system. taiihtand Primas first
realised that the matrix form of Hamiltonian can be relatedhie adjacency matrix of

a certain graph [55]. Gutman introduced the definition ofpbranergy to the absolute
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eigenvalues of the adjacency matrix [57]. Further extensibthe energy spectrum is
defined as the eigenvalues of the Laplacian matrix [58]. [Bmvariants of the Hamilto-
nian operator are developed for the signless Laplacian {@g]distance matrix [54], the
incidence matrix [64] and, recently, the normalised Lajlador the connection to the
Randt index [81].

By defining the micro-states within the network system, tharqum statistical pic-
ture allows for Bose-Einstein and Fermi-Dirac statistewbé used in two different ways.
For example, the fitness of the nodes in the scale-free nktmodel can be an anal-
ogy to the Bose gas when following the Bose-Einstein stesisproperties [16]. Similar
mapping of the Fermi gas can describe the growing Cayleyg treEermi-Dirac statistics

[15].

2.3.1 Bose-Einstein Condensation

In terms of Bose-Einstein statistics, one of the most irsténg phenomena is the Bose-
Einstein condensation. Strauss first discovered the c@adien transition of a network
model in 1986 [97]. He described these networks as the frameof an equilibrium
model. More recently, Bianconi mapped the nonequilibrivale-free growing network
model with a fithess parameter to a Bose gas. This is known ss-Bmstein condensa-
tion [21]. Starting with the fitness model, every nadg assigned an energyrelating to
the fitness distributiop () which describes the ability of a node to attract new links.

1
B

& =——=Inn; (2.7)

wheref3 = 1/T plays the role of inverse temperature. A link between twoesddnd j
with energiessj andg; corresponds to two noninteracting particles on the enengsise;
andej. Adding a new node to the network corresponds to adding a mevgg levelg;
and 2n particles to the system. The probability of a particle landghe energy leved;
is given by

e Pék

M = sePak (2.8)



2.3. NETWORKS WITH QUANTUM STATISTICS 48

The occupation numbdéy(g;, t,ti) denotes the meaning that the number of links (particles)
on the energy leved; at timet, while adding nodes to the system at titneThe rate at

which particles accumulate on the energy level is given by

oki(&i,t,t) rr\e’BsW(i(Ei,t,ti)

= 2.9
ot Z (2.9)
wherez; is the partition function, defined as
t
Z; = Z e_Bgikj(Ej,t,tj) (2.10)
=1

Based on the assumption that each node increases its cottgdotiowing a power law,

the occupation number can be given as

f(&)
ki(&,t,t) :m<—) (2.11)

where the dynamic exponehts) satisfiesf (¢) = e (€= 1 plays role of the chemical

potential, satisfying the equation

1
wheredeq ¢) is the degeneracy of the energy legelThis equation suggests that in the

t — oo limit, the occupation number, given the number of partielith energye, follows

the familiar Bose statistics [2, 21]

(2.13)

Each time a new node is added to the network, the links of thile rexhibit a higher
probability that they will attach to others with high fitnes$hat shows that the high
connectivity nodes follow a generalised preferentialcittaent rule [12]. This kind of
network model exists scale-free property [22]. When theenfithess is significantly

higher than the mean value, this node grabs a finite fracfiail the links in the network.
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Figure 2.1: Schematic illustration of the mapping between the netwooklehand the

Bose gas. The fithess parameagecorresponds to the energy stateand a link between
node i and node j corresponds to particles at the energy statele;. The solid dots

on the energy levels are the existing links. The cycle dadtee new links to be added
in the network [21].

This phase transition can be mapped to the Bose-Einstedecsation in a Bose gas [21].

Furthermore, Ferretti, Mamino and Bianconi extend thiskweith their work per-
taining to the rewiring of links [50]. The rewiring procesmtls to remove links from
nodes that have a high negative fithess to optimize the nktstarcture. Rewiring proba-
bilities also satisfy the constraint of the network to berage graph. At low temperatures
and high rewiring rates, this constraint induces a Bosa&tEin condensation, which, in
turn, introduces the phase space with the connected companeé the degeneracy of the
networks [50]. They provide a mean-field solution to the modithe condensation phase
transition. Via numerical simulation and analytical argants below the phase transition,
the structure is significantly different to the links neae teighbours of the condensed
nodes [50].

Besides, Penrose also finds Bose-Einstein condensatiosoinable model of hard-
core repulsive bosons on the complete graph [82]. In recemtsy Bose-Einstein conden-
sation has also been shown to take place in networks with lextgpology, such as those
with a set of infinite linear chains crossing at a single & [linear chains connected by
a single line [30], an Apollonian scale-free network [3G}dahe infinitely ramified star
and wheel graphs [101]. By analogy, the networks like thali@®se gas depict a spec-

tral density with an anomalous behaviour at the bottom ofggnstates. They present a
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Bose-Einstein Condensation
Network

Figure 2.2: Bose-Einstein condensation in the network. The node fitreesgnifi-
cantly higher than the mean value, and this node grabs a fiiaiton of all the links.
A high density of particles occupies at the lowest energie g ].

discontinuous jump of the specific heat at the transitiorpenature. Typically the critical
temperature is proportional to the particle density. Theugd state usually has a finite
particle density located within a given region of the netkyare. the condensation has a

trapped fraction [101].

Interestingly, Anancet al. characterise the distribution of entropy of random net-
works with a given degree distribution [7]. They show tha dondensation of the aver-
age degree is different from the Bose-Einstein condensaticomplex networks. After
defining the entropy of a random network ensemble, they fiadltittuations of entropy
are mainly determined by the fluctuations of the averageadeddetworks with an aver-
age degree exceeding a certain threshold exhibit largati@vior condensation effects,
which means that a single node can atti@@N) links. This is not the same as typical
Bose-Einstein consideration in complex networks. Gehgrddey only correspond to

some large deviation configurations in network ensembles [7

2.3.2 Fermi-Dirac Statistics

Particles with half-integer spin are subject to Fermi-Dstatistics and obey the Pauli ex-
clusion principle. They give rise to models of network stuwie which are constrained by
the occupancy of the nodes and edges. Examples include fitaffi and the modelling

of certain types of geometric networks, such as the Cayksy [tt5]. It can be used to
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describe the form of super-symmetry multiplex networkq [Biukov et al. detail a ge-
ometric framework to study the structure and functions ofptex networks, interpreting
edges as noninteracting fermions whose energies are loljpadistances between nodes
[69]. Shen, Zhu and Liu discuss an inverse approach to nktexaution defining a rel-
ative with an illness model and Fermi-Dirac statistics [9Bhronchelli, Catanzaro and
Romualdo define a framework using bosonic reaction-diffugirocesses, with the aim
of analysing dynamic systems on complex networks [14]. rdaneaand Armano propose
a theoretical model of network evolution inspired by ferngpwhich maps complex net-
works to Fermi gas [63]. They show that the emergence ofréiffenetwork structures

can be represented in terms of quantum-classical tran$GRj.

2.4 Structural and Dynamic Networks

Except for thermal physics, many statistical methods aesl s analyse complex net-
works based on their structural properties, dynamics, @h@amsition, modelling, etc.
Martin, Zhang and Newman [72] use eigenvector centralitpéasure the importance of
nodes in the networks. This model relies on the small numb@odes which concentrate
most of the weight of the centrality. Based on the non-backing matrix, an alternative
method was established to avoid localisation and it is muoteraseful when it comes to
fixing the problems in circumstances where the standardalaptfails. Zhang, Martin
and Newman [118] use methods of statistical inference teaiéie core-periphery struc-
ture within networks. They combine an expectation-maxatan algorithm and a brief
propagation algorithm to efficiently deconstruct netwarke dense-core plus an outly-
ing structure. Domenicet al. [39] introduce von Neumann entropy into multiplayer
networks in order to distinguish different layers. They @g@te networks to minimise
the number of layers and maximize the ability to distinguigitiween the multiplayer
networks. Furthermore, they identify modular flows on nuplétyer networks to reveal

structures with a high level of overlap [40].

Zuev, Papadopoulos and Krioukov [119] describe the dynswficomplex networks
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with Hamilton’s equations. They derive the explicit formtbé Hamiltonian in the canon-
ical formalism to govern the growth of a network within theefarential attachment.
Bouna, Kitsak and Krioukov [50] consider networks arisingcosmology. They show
that networks grow following the power-law degree disttibn with Lorentz-invariant.
It encodes the maximum information about rewiring of th&girnvhich occurs according
to a preferential attachment rule [50]. Ferretti, Mamind &manconi [50] consider grow-
ing networks with both heterogeneity of nodes and topolgionstraints. They found
that at low temperature and high rewiring rates, a new phraasition was induced by an
extended condensate of links. This transition furtherredseo the size of the connected
component and the degeneracy of the networks [50].

Wu et al. [113] built a model to characterise the geometrical prapgf dynamic
networks. The growing geometrical networks follow the reapilibrium rule which can
generate scale-free networks with clustering and comnasraéind planar random geom-
etry with non-trivial modularity. Ostilli and Bianconi [{@letail a statistical mechanical
approach to extract the coordinates of the nodes in randomegeic graphs. They reveal
the mechanism behind the typical configurations of the né¢wimodel and explore the
finding that the distribution of nodes is either uniform ondensed at the temperature

limit [79]. The network structural transition is charadcsexd by connectivity.

2.5 Summary

In this chapter, we briefly reviewed the existing literatat®ut complex networks with
regard to statistical mechanics, thermodynamic variallggntum statistics and dynamic
structure evolution. It started with a discussion abouivoet ensembles and introduced
existing micro-canonical and canonical ensembles witbimglex networks. Following
the thermodynamic concept, literature about entropy antpégature in networks was
then presented. Then, condensation phenomenon is obsarnetworks models and
guantum statistics, i.e. Bose-Einstein statistics anthBirac statistics, are employed in
constructing different networks. Finally, we present saheestate-of-art topics, namely

structure, dynamics and others in complex networks wittugiam.



Chapter 3

Partition Functions and Spin Statistics

In this chapter, we explore the thermodynamic charact&sisaf networks using the
heat bath analogy when the energy states are occupied byeditfspin statistics, speci-
fied by a partition function. Utilising the heat bath anal@yd a matrix characterisation
for the Hamiltonian operator, we consider the cases whereettergy states are occu-
pied according to Maxwell-Boltzmann, Bose-Einstein andnkeDirac statistics. We
derive expressions for thermodynamic variables, such@smn for the system with par-
ticles occupying the energy states given by the normalissgaldcian eigenvalues. The
chemical potential determines the number of particles avengemperature. We pro-
vide the systematic study of the entropic measurementsefovark complexity resulting
from the different partition functions and specifically sgoassociated with alternative
assumptions concerning the spin statistics. Comparediathetwork von Neumann en-
tropy corresponding to the normalised Laplacian matrigsthentropies are effective in
characterising the significant structural configurationd distinguishing different types
of network models (Erdls-Rényi random graphs, Watts-Strogatz small-world neksjo
Barabasi-Albert scale-free networks). The effect of the sfatistics is a) in the case of
bosons to allow the particles in the heat bath to congregédteesilower energy levels and
b) in the case of fermions to populate higher energy levelgh Wormalised Laplacian
energy states, this means that bosons are more sensitiie gpéctral gap and hence
to cluster or community structure, and fermions better sartipe distribution of path

lengths in a network. Numerical experiments for synthetid eeal-world datasets are
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presented to evaluate the qualitative and quantitatieréiices of the thermodynamic
network characterisations derived from the different getion statistics, and these con-

firm the qualitative intuitions.

3.1 Introduction

The literature contains many accounts of work aimed at dgveg) effective characterisa-
tions of complex network structure. These characteriratitave been widely exploited
in both cluster and classify different types of network stane, and also to analyse how
networks evolve with time [46, 47, 2, 80]. Broadly speakinmst of the available char-
acterisations have centred around ways of capturing n&tsudsstructure using clusters,
hubs and communities [47, 2, 80]. The underlying represemis are usually based on
simple degree statistics that capture the connectiviticires [110, 74]. Although many
of the methods available are goal-directed, most promiajmgroaches are to draw on
ideas from physics, using analogies based on statisticathamecs [2, 46, 80], thermody-

namics [114] or quantum information [6].

One of the most powerful of these approaches is to use thgmaogics analogies
suggested by statistical physics. For instance, by maxwgithe ensemble entropy in
exponential random graphs, the Boltzmann distributiomfadassical statistical mechan-
ics can be used to predict the network properties of timdvewp networks [80]. Tools
from statistical mechanics can also be used to characteesgegree distribution for dif-
ferent types of complex networks [2]. Furthermore, by usangeat bath analogy from
thermodynamics, principled physical measures of comnalnility and balance in net-
works can be defined [47]. Ideas from quantum informatioothare also useful in the
understanding network structure. For instance, the prefed attachment can lead to the
phenomenon of condensation exhibited in growing netwo?ig. [ Both Bose-Einstein
and Fermi-Dirac statistics have been used to account fogul@tum geometries asso-
ciated with different types of networks [20]. Although tleedifferent physical analogies

are useful, they are not always easily related to the grapttisy representation.

Another closely related approach is heat bath analogy whrioliides a convenient
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route to network characterisation. Here the energy stdtasietwork are captured using
the eigenvalues of a matrix representation of network sirec The energy states are
then populated by particles which are in thermal equilitoriwith the heat bath. As a

result of this thermalisation, the energy states are oecuaccording to the Boltzmann
distribution [46, 114]. Formally, this physical heat batstem can be described by a
partition function with the energy micro-states of the natiwrepresented by a suitably
chosen Hamiltonian. Usually, the Hamiltonian is computedtthe adjacency or Lapla-

cian matrix of the network [88], but recently, ¥¢al. [114], have shown how the partition

function can be computed from a characteristic polynonistaad.

To embark on this type of analysis, partition functions canshbiccinctly used to
describe the network statistics and evolution. Thermodyoaharacterisations of the
network, such as entropy, total energy, and temperature ¢he be derived from the
partition functions [74, 114]. By specifying the micro4&sa of the network system, sta-
tistical thermodynamics can provide deep insights intevogt behaviour. For example,
by using the Maxwell-Boltzmann patrtition function to dabera thermalised network,
the entropy, internal energy, and the Helmholtz free enesgy be computed from the

graph spectra, and this leads to natural definitions of netsuch a centrality [46, 114].

However, the Boltzmann distribution does not take into aotoparticle spin-
statistics and their effects on the population of the théised energy levels. Unlike
the classical case where patrticles are distinguishablgyuamtum statistics particles are
indistinguishable. Particles with integer spin are suitjg8ose-Einstein statistics and do
not obey the Pauli exclusion principle. As a result, theyaggregate in the same energy
state. At low temperature, this leads to the phenomenon séHonstein condensation.
There has been work aimed at extending the heat-bath moti{d@such effects into ac-
count. For instance, Bianconi and Barabasi [21] have cootsd a network model based
on a Bose gas, and have studied the phase transitions innkedtmacture associated with
Bose-Einstein condensation [21]. This model has also beteméed to understand pro-

cesses such as supersymmetry in networks [47, 20]. On tlee b#nd, particles with
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half-integer spin are subject to Fermi-Dirac statisticd abey the Pauli exclusion princi-
ple. They thus give rise to very different models of netwdrkature, and these have been
exploited to model situations where there are constrainthe occupancy of the nodes
and edges of a network. Examples include traffic flow and ddeariodelling of certain

types of geometric networks such as the Cayley tree [15, 92].

Despite the interest in alternative models of the therradldistribution of energy
states under different particle spin statistics, therebleas no systematic study of the var-
ious thermodynamic characterisations resulting fromedé#ht choices of partition func-
tions, and specifically those associated with alternatbgeiaptions concerning the spin
statistics. Here we consider the effects of occupatiorissitzd on the populations of
energy states when the Hamiltonian operator is the norethletwork Laplacian, and
the energy states are then given by its spectrum. Commefrangthe heat bath anal-
ogy with the Laplacian matrix playing the role as the Hammiém, the energy states of
the system are occupied according to a) Maxwell-BoltzmdmrBose-Einstein and c)
Fermi-Dirac statistics respectively. From the relevamtipan function, we use the statis-
tical mechanical properties of the networks to computeoverthermodynamic quantities
when the energy levels are occupied by particles in thermalibrium with the heat bath.
Making different choices for the partition function, we alot different occupation statis-
tics for the energy levels. The network then can be charaettiusing thermodynamic
guantities such as the entropy and energy derived from tlegamr partition function
[46, 114]. In qualitative terms, the Pauli exclusion prpleimeans that particles subject
to Fermi-Dirac statistics are populated the energy statssdensely than that in the clas-
sical Maxwell-Boltzmann case. On the other hand, sincegdastobeying Bose-Einstein

are indistinguishable, they populate the energy states chemsely.

The thermodynamic picture offered by quantum Bose-Einségid Fermi-Dirac
statistics differs from that offered by classical MaxwBtitzmann statistics in a num-
ber of important ways. Both quantum statistics additignedlquire a chemical potential
to specify the distribution of states in the partition fuoot The chemical potential is

determined by the heat reservoir, and modifies the occupati@bability of the energy
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levels [24]. In both cases of Bose-Einstein and Fermi-Dgtatistics, for energy levels
greater than the chemical potential, the occupation piibtyaincreases. In other words,
at a given temperature, the higher energy levels are, the hkety to be occupied in the
guantum case than in the classical case. The differenceebatiermionic and Bosonic
statistics also manifests itself in important ways. Fotanse, at low temperatures where
there is little thermal disruption of the occupation pattdictated by the Pauli exclusion
principle, Bosons tend to condense in the lowest energesstathile there is just one
Fermion per energy state [24]. As a result, thermodynamantties such as the total en-
ergy or entropy of the system sample the spectrum of Lapiai&rgy states in different
ways, and potentially convey different aspects of netwamkcsure. For instance, Bose-
Einstein statistics are likely to respond more stronglyhi ¢luster community structure
since they are sensitive to the eigenvalue gap [20]. FennaieDstatistics, on the other
hand, are sensitive to a larger portion of the spectrum amdnare sensitive to the den-
sity of energy states [15]. As a result, they are more seediti the details of the degree
distribution and also to structural artefacts requiringrenmformation concerning the

Laplacian spectrum such as the path length and cycle lengjtibdtions [34].

The aim of this chapter is to explore the behaviour of theagytand total energy of
networks resulting from different choices of partition éilons. We compare four differ-
ent entropic network characterisations. The first threelté®m the partition functions
for a) Maxwell-Boltzmann, b) Bose-Einstein and ¢) Fermrdgi occupation statistics,
while the fourth is the von Neumann entropy associated wiéhrtormalised Laplacian
matrix of the network [81, 59, 117]. We explore how theseeatdht entropies can be
used to characterise the changes of network structure wwith aind distinguish different
types of network models (Eés-Rényi random graphs, small-world networks [110], and

scale-free networks [12]).

The remainder of the chapter is organised as follows. Weghstide a review of
the relationship between the partition function and thernttoelynamic variables, i.e. the
average energy, thermodynamic entropy, Helmholtz freeggneemperature and chemi-

cal potential. Then we provide a detailed analysis of theopigs resulting from the three
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different choices of partition functions and explore tHeiw and high-temperature lim-
its. The numerical experiments on synthetic and real-wdathsets are used to evaluate
the effectiveness of the different thermodynamic netwdr&racterisations. Finally, we

conclude the chapter and make suggestions for future work.

3.2 Thermodynamic Representation of Networks

Thermodynamic analogies provide powerful tools for analysomplex networks. The
underpinning idea is that statistical thermodynamics @aondmbined with network the-
ory to characterise both static and time-evolving netwdriks.

A complex network can be viewed as a grand canonical ensenvhieh not only
exchanges energy but also exchanges patrticles with a lseavo&. In general, the energy
and entropy of the network depend on the assumptions cangettmee Hamiltonian for

the system and the corresponding partition function.

3.2.1 Preliminaries

Let G(V,E) be an undirected graph with node $etnd edge sét CV xV, and let|V|
represent the total number of nodes on gr&gW,E). The |V| x |V| adjacency matribA

of a graph is defined as

1 if(uv)eE
A— (3.1)

0 otherwise.

Then the degree of nodeis dy = 5y Auv

The normalised Laplacian matrixof the graphG is defined as
[ =D ZLD? = dADT (3.2)

whereL = D — Ais the Laplacian matrix anD denotes the degree diagonal matrix whose
elements are given by(u,u) = dy and zeros elsewherd = diag(A1,A2,...Ay)) is the

diagonal matrix with the ordered eigenvalues as element®an (¢1, ¢2,. .., d ) is the
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matrix with the ordered eigenvectors as columns. The elemise expression df is

1 if u=vandd, #0
Luv = — kg fuvand(uv) €E (3.3)
0 otherwise.

3.2.2 Hamiltonian Operator

In quantum mechanics, the Hamiltonian operator is the suthekinetic energy and
potential energy of all the particles in the system. It is¢hergy operator of the system

and the standard formulation on a manifold is

H=—-0%+U(rt) (3.4)

In our case, we assume the graph to be in contact with a heaoas The eigenval-
ues of the Laplacian matrix can be viewed as the energy d@mfessand these determine
the Hamiltonian and hence the relevant Schrdodinger equatioch governs the particles
in the system. The particles occupy the energy states of &meilkbnian subject to ther-
mal agitation by the heat bath. The number of particles i eaergy state is determined
by the temperature, the assumed model of occupation gtaistd the relevant chemical
potential.

If we take the kinetic energy operatef]? to be the negative of the adjacency matrix,
i.e. —A, and the potential enerdy(r,t) to be the degree matrl?, then the Hamiltonian
operator is the Laplacian matrix on the graph. Similarlg,niormalised form of the graph

Laplacian can be viewed as the Hamiltonian operator

I
Il
|

(3.5)

In this case, the energy states of the netwak are then the eigenvalues of the Hamil-
tonianH| ) = L|yr) = Ei|gr).

The eigenvalues are all greater than or equal to zero, anduhtélicity of the zero
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eigenvalues is the number of connected components in theoriet Furthermore, the
density matrix commutes with the Hamiltonian, i.e. the ats#ted Poisson bracket is

Zero,

~
A ~ I

H,p] = [L’M =0 (3.6)

which means that the network is in equilibrium when therererehanges in the density

matrix which describes the system.

3.2.3 Thermodynamic Quantities

Here we consider the thermodynamic system specified by amystN particles with
energy states given by the network Hamiltonian and immersadheat bath with temper-
atureT. The ensemble is represented by a partition functigh, N), wheref3 = 1/kgT
is an inverse of temperature parameter [104].

When specified in this way, the various thermodynamic charsations of the net-
work can be computed. For instance, the average energy attiadrk can be expressed

in terms of the density matrix and the Hamiltonian operator,

J 17}
= |——1logZ(B,N)| =Tr(pH)=kgT?|—logZ 7
U= | -551002B.N)| = Tr(oH) kT | Tlonz| 3.7
the thermodynamic entropy by
S=kg iTIo Z (3.8)
—f8laT 997, '
and the chemical potential by
17}
U= —kgT {— Iogz} (3.9)
JON B

The chemical potential is a measure of how resistive theesyst to the addition of
new particles. It acts to offset the energy levels of the Hamian. In the case of Fermi-

Dirac statistics, the chemical potential is equal to theriréevel and at zero temperature
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determines the highest occupied energy state. In Bosediinstatistics, the chemical
potential tends to zero at zero temperature, and this leattetformation of the Bose-

Einstein condensate. In the remainder of the paper, wes&dlzmann constamkg = 1.

Both the energy and the entropy can be regarded as weightetidus of the Lapla-
cian eigenvalues which characterise the network struatudigferent ways. In the follow-
ing sections, we will explore these differences in moreitledad in particular to which
parts of the Laplacian spectrum they are most sensitivdfereint choices of the partition

function resulting from different occupation statistics.

3.3 Partition Functions and Occupation Statistics

According to the picture adopted in this chapter, the noisedlLaplacian of the graph
specifies a series of energy states that can be occupied tiglgsrAt a given tempera-
ture, there are a number of alternative ways in which theggnlewels can be occupied,

depending on the spin-statistics of the particles.

Here we consider the different situations that arise whemttupation of the energy
levels is governed by Maxwell-Boltzmann, Bose-Einsteid Bermi-Dirac statistics. The
Maxwell-Boltzmann distribution applies when spin statisiare ignored and the popula-
tion of the different energy levels is governed by thernadie. Bose-Einstein statistics
apply to bosons of integer spin, and which are indistingaliéf. Finally, Fermi-Dirac
statistics apply when the particles are fermions with hakger spin and are subject to
the Pauli exclusion principle.

For each distribution, we capture the statistical meclapiperties of particles in
the system using the partition function associated withdifferent occupation statistics.
The network can then be characterised using thermodynamaictigies computed from

the partition function, and these include the entropy, gnend temperature.

3.3.1 Maxwell-Boltzmann Statistics

In statistical mechanics, the Maxwell-Boltzmann disttibn relates the microscopic

properties of particles to the macroscopic thermodynamopgrties of matter [114]. It
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applies to systems consisting of a fixed number of weaklyaateng distinguishable par-
ticles. These particles occupy the energy levels assdormth a Hamiltonian and in our

case the Hamiltonian of the network, which is in contact witihermal bath [80].

Taking the Hamiltonian to be the normalised Laplacian ofrté&vork, the canonical

partition function for Maxwell-Boltzmann occupation ssaics of the energy levels is

V| N
Z,,=Tr {exp(—BI:)N] = (Ze‘ﬁfi) (3.10)

wheref3 = 1/kgT is the reciprocal of the temperatufewith kg as the Boltzmann con-
stant;N is the total number of particles amddenotes the microscopic energy of system

at each microstate Furthermore, from Eq.(3.7), the average energy of the orive

dlogz _  Tr[Lexp(—pL)] _ ZM ge P
- _ —N - A1
e =55~ =N TrfexppT)] " 5Vl e pa (341
and similarly derived from Eq.(3.8), the entropy of the systwithN particles is
dlogZ xp(—BL) exp(—BL)
= logZ—-p = —NTr{ ~—log Z
e o Triexp(—B0)] ° Triexp(—BL)]
\ e Béi e Béi
= N ZZM e e (3.12)
For a single particle, the density matrix is
exp(—BL)
= Z A
Pue = Trlexp(—BL)] (3.13)

Thus, the entropy in the Maxwell-Boltzmann system is siniplymes the von Neumann

entropy of a single particle, as we might expect.

3.3.2 Bose-Einstein Statistics

The Bose-Einstein distribution applies to indistinguisledbosons. Each energy state can

accommodate an unlimited number of particles specified byngtwork Hamiltonian.
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Bosonic particles subject to Bose-Einstein statisticsatmbey the Pauli exclusion prin-
ciple and can aggregate in the same energy state. Complegnksethave been success-
fully characterised using systems of bosons to capturearkttopology. For instance,
Bianconi and Barabasi [21] have constructed a network mioalstd on a Bose gas, and
have studied the phase transitions in network structui@caged with the Bose-Einstein
condensation of the gas. This model has also been extendedéostand processes such

as supersymmetry in networks [20].

For a grand-canonical ensemble with a varying number ofgbestand a chemical

potentialu, the Bose-Einstein partition function is

1V
ZBE - det(l - eﬁlJ eXd-BE]) ' - I] <%) (314)

From EQ.(3.7) and Eq.(3.8), the average energy is

U),. = _ag)gz = —Tr{ (I —ePHexp(—BL)] *(ul —L)ePH exp(—BE)}
\V\ eB(u—&)
- Z - eﬁ ) (3.15)

while the corresponding entropy is

Se =logZ+B{U)
= —Tr{log[l —ePH exp(—ﬁt)]} —Tr{B[I —ePHexp(—BL)] L(ul —D)ePH exp(—BI:)}

M VI (- g)ePlu—a)

=3 log(1-&7e)) - le s (3.16)

As a result the average energy is the average differenceebatihe Laplacian energy

states and the chemical potential, weighted by the Bossté&im factor exp-f(& —
1]/ (1—expg—pB(& —u)]). The weighted energy difference therefore decreases with

energy. The entropy also decreases with the energy of ttessta
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3.3.3 Fermi-Dirac Statistics

The Fermi-Dirac distribution applies to indistinguishaliérmions with a maximum oc-
cupancy of one particle in each energy state. Particlesatd®added to states that are
already occupied, and hence obey the Pauli exclusion ptecirhese particles behave
like a set of free fermions in the complex network with enestates given by the network
Hamiltonian. The statistical properties of the networlesthuus given by the Fermi-Dirac
distribution of the equivalent quantum system [86, 24]. Tbeesponding partition func-
tion is
VI

Z, = det(l ePH exp[—;zt]) - r! (1+ eﬁw—fi)) (3.17)

From Eq.(3.7) the average energy of the Fermi-Dirac syssem i

), = —‘9'(;’32 - —Tr{ [1 +ePHexp(—BL)] (ul —[)ePH exp(—;z[)}
|V| [J &)
_ Zl 1+68 — (3.18)

And the entropy is

Sp =logZ+B(U)
= Tr{log[l +ePH exp(—BI:)]} - Tr{B[I +ePHexp(—BL) L (ul —D)ePH exp(—BI:)}

V| |V| eB(u—&)

:i;mg (1_|_e/3(ﬂ—5i)> le “1+ZB“ - (3.19)

As the result, the average energy is the average differeatveelbn the Laplacian en-
ergy states and the chemical potential, this time weightedhle Fermi-Dirac factor
exp—pB(&— )]/ (1+exp—pB(& — u)]). For a given chemical potential, the higher en-
ergy levels receive more weight than in the case of the Basstdin statistics. Moreover,

the entropy associated with the states peaks at the chepoieadtial.
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3.3.4 Particle Population and Chemical Potential

We need to specify how the system associated with differartitipn functions is popu-
lated at various temperatures, and how we set the chemitaifoa in the case of Bose-
Einstein and Fermi-Dirac statistics. Our approach is tomat@ the number of particles
occupying each energy state, and sum over the differenggiséates.

In the case of Maxwell-Boltzmann statistics, the numberasfiples in the state with

energye is

eha N exp(—BL)

. = N = Z 3.20
N Nz T N D) 820
and so the total number of particles is
V|
N=TSn; (3.21)
X

In both cases of Bose-Einstein and Fermi-Dirac occupatiatistics, the partition
function and hence both the average energy and entropyndeyeon the chemical po-
tential. This parameter is determined by the number of gadiin the system and the
temperature.

For Bose-Einstein statistics at the temperature corrafipgrto 3, in order for the
number of particles in each energy state to be non-negd#tieeshemical potential must
be less than the minimum energy level, ite< ming;. Under Fermi-Dirac statistics, on
the other hand, with a single particle per energy state,lieenacal potential is hence just

thenth energy level, and sp = &,.

3.3.5 High and Low Temperature Limits

High Temperature Limits (8 — 0)

At high temperature, i.e. whefi approaches zero, thermalisation disrupts the effects
of the occupation statistics captured by different pamitiunctions, and both the Bose-
Einstein and Fermi-Dirac models are equivalent to the MdixB@ltzmann case. For

the Maxwell-Boltzmann distribution, the high-temperatlimit of the average energy is
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Chemical Potential p
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Figure 3.1: Plot of the chemical potentigh versus temperature T for Maxwell-
Boltzmann, Bose-Einstein and Fermi-Dirac statistics. h high-temperature region,
the three chemical potentials exhibit similar behavioarthe low-temperature region,
the chemical potential for Bose-Einstein statistics isagisvless than 0. However, with
Fermi-Dirac statistics, it is larger than 0 and increaseh thie number of particles N.

limg_,o(U)ys = %Tr[f_], which is as expected proportional to the trace of the nasadl
Laplacian, giving an average energy per particlg@@’l’r[f_]. The corresponding high-
temperature limit of the entropy is

. NB2 [ 1 _ - 5
[LITOSMB = Nlog|V| —i—N{MTr[L] —Tr[L ]} (3.22)

This is similar to the result obtained by Han et al. [59] fa tton Neumann entropy. As a
result, the entropy at high temperature is a constant fahede models of the occupation

statistics.

Low Temperature Limits (8 — )

The low temperature limits of the energy and entropy undexwl-Boltzmann statistics
satisfy whenB — o are limg_, ,(U),,z = 0 and ling_, . » §,5 = Nlogc, wherec is the
number of connected components in the network. We usuadliywliégh graphs having a
single connected component and as a result we have thatrthetlientropy in Maxwell-

Boltzmann case at the low temperature tends to zero.

In the case of the Bose-Einstein and Fermi-Dirac partitionctions, the chemical
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potential plays a pivotal role in determining the low-temgiare limit.

For Fermi-Dirac statistics, the constant chemical po&ptis equal to the energy of
highest state occupied by one of thgarticles at zero temperature. With a single particle
per energy state, this is hence just tith energy level, namelgy. As the temperature
approaches zero, the chemical potentiabproaches the Fermi energy, so thau = &y.
There is only one configuration for each identical particteupies at each energy state,

and the corresponding entropy is M, . S, = 0.

For Bose-Einstein occupation statisticsTat O all particles are in the ground state
and it is straightforward to show that Ign, ., S;c = (N+1)In(N+1) = NInN. AsN
goes to infinity, the limits of entropy tends to lim 1« limg_, , » Sz = INN. The main
difference between the thermal quantities of the classtedistical system and that of the
guantum spin systems is that the partition function resnltiifferent occupation of the

energy levels according to the relevant population stesist

In the Maxwell-Boltzmann case, without thermalisationlod tevels at zero temper-
ature, all particles occupy the zero energy ground statéirBhe case of Bose-Einstein
and Fermi-Dirac statistics, this pattern is modified by therical potential, and this
modified the way which the higher energy levels are populdted Bose-Einstein statis-
tics, the effect is to shift the occupation number from the znergy Maxwell-Boltzmann
ground-state by an amount proportional to the chemicalrpiaie In other words, the
particles are found with higher probabilities at lower gyelevels. In the case of the
Fermi-Dirac statistics, the effect is exaggerated sineectiemical potential is the energy

of the state corresponding to the number of particles inystem.

3.4 Physical Intuitions

The network Laplacian defines a set of energy levels for agysthich is in thermody-
namic equilibrium with a heat bath of known temperature. @Hierent partition func-
tions govern how a system of non-interacting particles paiputhese energy levels at

a particular temperature. From the partition functions,cae calculate the energy and
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entropy associated with the system of particles, at a pgaticemperature and for dif-
ferent numbers of particles. Our idea is to use these twantbdynamic quantities to

characterise the network from which the Laplacian was cadatbu

Of course, different networks will have different graph cp& (i.e. distributions of
Laplacian eigenvalues or energy levels of our thermodyoaystem), and this, in turn,
will give rise to a different population of energy levels Wwiemperature. More impor-
tantly, in this study, the choice of partition function walso control how the different
energy levels can be populated depending on the spin gtatigtthe particles, and the
number of particles added to the system. When we work withcthgsical Maxwell-
Boltzmann distribution, then the temperature is the onlgticling parameter. By in-
creasing temperature, we simply thermalise the populatidhe energy levels. On the
other hand, when we envoke non-classical spin statisticgntgm effects become evi-
dent. In the case of Fermi-Dirac statistics, only one plrtan occupy each energy state.
For Bose-Einstein statistics, on the other hand, part@d@scondense in the lower energy
states, particularly at low temperatures, but these pestare indistinguishable, leading
to different statistics. In the quantum cases, the effechahging the number of particles

can be modelled by adding a chemical potential which effeftishifts the energy levels.

We use the entropy and energy associated with the diswiibofienergy levels and
their different occupation probabilities to explore whatthe different partition functions
allow us to probe differences in network structure in défgrand hopefully more useful
ways. The main interest here lies in the low-temperaturawelr since at high tempera-
ture the effects of the quantum statistics are disturbetiéyntal effects all three partition
functions give identical results. At low temperature, we arore likely to find bosonic
particles in the low energy states when compared to the MieBedtzmann distribution.
On the other hand, because of the Pauli exclusion principéeare more likely to find
fermions at higher energies. Hence by populating the ergeggs in different ways, the
particles respond to the Laplacian spectrum in differentsadepending on which of the
three partition functions governs their behaviour. Thestjoa we seek to answer is when

measured in terms of their entropy or energy to the diffepamtition functions allow us
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to probe network structure in different ways.

It is well known that different types of network have diffatedegree distributions,
and this is reflected in their Laplacian spectra. For ingakeds-Rényi random graphs
the eigenvalues follow a semi-circular (or Wigner) digttibn, with mean controlled by
the connection probability. Scale-free networks have angrular distribution and net-
works of the Watts-Strogatz type have a more complex spmcivhich depends on the
parameters and may contain sharp peaks. For clusteristeythe distribution of the
lowest eigenvalues and the spectral gap are most impoHante, the choice of how the
eigenvalues are sampled, or choice of the partition fungctan be sensitive to the type
of structure. One might, for instance, expect Bose-Einstitistics to be better suited to
detecting networks with strong community structure beeahsy preferentially sample
the lower energy levels. Fermi-Dirac statistics, on theeptiand, may be better for dis-
tinguishing different network models because they probédg@mrange of energy levels,

and are hence more sensitive to the mean and variance ofgevalue distribution.

3.5 Experiments and Evaluations

We explore whether the thermodynamic characterisatiastreg from the three alterna-
tive models for the energy level occupation statistics aaprnployed as a useful tool for
better understanding the structural properties and thieigen of networks. Specifically,
we numerically simulate the effects of the three differemtdels and examine whether
the resulting entropies can distinguish different streeguand compare their relative per-
formance. Furthermore, we compute the thermodynamic ctaarsations for a number
of real-world time-evolving networks in order to investigavhether they can be used
to detect abrupt changes in network structure at differieme epochs. Finally, we use
the different entropies to classify tumour mutation nekgaand protein to protein inter-
action networks resulting from different groups. To sirfipthe calculation, we set the

Boltzmann constant to unity throughout our experiments.

This section is structured as follows. We commence by daisgrithe data-sets used
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in our experiments and the kernel principal components atetised to visualise the en-
tropy differences between different networks. We then@ghow the different entropies
depend on their free parameters, name temperature of a naiparticles for network

drawn from different models (random graph, small world acales-free networks). Using
kernel PCA we visualise how the networks from different msdistribute themselves in
three dimensions with the different partition functionsda&omment on which gives the

best separation. Finally, we report results on real-woatheets.

3.5.1 Data Sets

Here, we use four different datasets. The first containshejiaially generated artificial
networks, while the remaining three are extracted fromweald complex systems.

Synthetic Networks Data-set: Contains a large number of graphs which are ran-
domly generated according to one of three different compktwork models, namely,
a) the classical Eds-Rényi random graph model, b) the small-world model ohiced
by Watts and Strogatz [110], and c) the scale-free modekldped by Barabasi-Albert
model [12, 13]. These are created using a variety of modelpaters, e.g., the graph
size and the connection probability (randomly generateddsen 0.1 to 0.9) in the ran-
dom graph model, the link rewiring probability (randomlyngeated between 0.2 to 0.8)
in the small-world model [110] and the number of added cotioes (set to 1) at each
time step [12] in the scale-free model. The networks areaary generated by a normal
distribution with the number of node between 100 and 1,000.

NYSE Stock Market Networks Data-set: The New York Stock Exchange dataset
consists of the daily prices of 3,799 stocks traded contislyoon the New York Stock
Exchange over 6000 trading days. The stock prices wererdatdiom the Yahoo! finan-
cial database (http://finance.yahoo.com) [93]. A total4f 3tock were selected from this
set, for which historical stock prices from January 1986 ébrcary 2011 are available.
In our network representation, the nodes correspond t& stod the edges indicate that
there is a statistical similarity between the time seriepeisited with the stock closing
prices [93]. To determine the edge structure of the netwakuse a time window of

20 days is to compute the cross-correlation coefficientwédxen the time-series for each
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pair of stock. Connections are created between a pair ok stdbe cross-correlation
exceeds an empirically determined threshold. In our erpanis, we set the correlation
coefficient threshold to the value go= 0.85. This yields a time-varying stock market
network with a fixed number of 347 nodes and varying edge stredor each of 6,000
trading days. The edges of the network, therefore, reptémenthe closing prices of the

stock follow each other.

Tumour Mutation Networks Data-set: Contains tumour mutation data for three ma-
jor cancers taken from the Cancer Genome Atlas (TCGA). Thesa) ovarian cancer b)
uterine cancer and c) lung adenocarcinoma [35]. There @ga&bents with mutations
in 9,850 genes in the ovarian cancer cohort, 248 patientsmittations in 17,968 genes
in the uterine endometrial cancer cohort and 381 patientswitations in 15,967 genes
in the lung adenocarcinoma cohort [62]. The raw patient trartadata are binary vec-
tors, with elements corresponding to different genes. Thark numbers indicate if the
relevant gene is mutated or not (1 indicates the presencenoitation, O that a mutation
is absent). So each individual is characterised by a O-1rpigane sequence of muta-
tion indicators. Patient mutation networks were mapped gene interaction networks
by aggregating information from several pathways and auison databases, describing
physical protein-protein interactions (PPIs) and funwdiaelationships between genes in

both regulatory, signalling and metabolic pathways [48].

Protein-Protein Interaction Networks Data-set: The PPIs dataset extracted from
STRING-8.2 [99] consisting of networks which describe thteraction relationships be-
tweenhistidine kinasend other proteins. Histidine kinase is a key protein in neetbp-
ment of signal transduction. If two proteins have directygbal) or indirect (functional)
association, they are connected by an edge. There are 183rPfls dataset and they
are collected from 4 different kinds of bacteria with thddwling evolution order (from
older to more recent). Aquifex and Thermotoga-8 PPIs fromifex aelicus and Ther-
motoga maritima, Gram-Positive-52 PPIs from Staphyloas@ureus, Cyanobacteria-73

PPIs from Anabaena variabilis and Proteobacteria-40 P&s Acidovorax avenae [44].



3.5. EXPERIMENTS AND EVALUATIONS 72

3.5.2 Visualising the Distribution of Networks using Jense-Shannon

Divergence

We require a tool for visualising the similarity of sets odghs measured by the entropies
computed from the different partition functions. To thigslewe measure similarity using
the Jensen-Shannon divergence [73], which is asymmefiocniation theoretic diver-
gence measure computed from the entropies of pairs of graghsharacterise the sim-
ilarities of a set of graphs using a kernel matrix and thenemthe graphs into a vector

space using kernel-embedding for the purposes of vistialsa

Here we deal with the case where the nodes in the graphs a#elhband at each
time step, the node-sets are identical. Only the edge-sesJuaetween time-steps. More-
over, since the nodes are labelled it is straightforwarddteminine which edges have
been added, removed or remained unchanged between diffenersteps. Suppose that
Gj andG; are two graphs, and th& © G; is the union graph with the set of edges formed
from those edges that are present at either timeisiepme stepj. With the union graph
to hand, the Jensen-Shannon divergence for the pair of g@@ENAG; is

S(Gi) +S(Gj)

Dys(Gi,Gy) = S(Gi&Gy) — —

(3.23)

whereS§(Gj) is the entropy associated with the graph andS(G; @ G;j) is the entropy
associated with the corresponding union gr&ph Then the Jensen-Shannon kernel[10]
is given by

kJS(Gi,Gj) = |092—D33(Gi,Gj) (3.24)

With the graph kernel to hand, we embed the graphs into avspte. To compute the
embedding, we commence by computing the eigendecompositithe kernel matrix,
which will reproduce the Hilbert space with a non-linear mpiag. In such a case, graph
features can be mapped to low dimensional feature spacelinghr separation. The
graph kernel decomposition is

kis= DADT (3.25)
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where A is the diagonal eigenvalue matrix amel is the matrix with eigenvectors as
columns. To recover the matriX with embedding coordinate vectors as columns, we
write the kernel matrix in Gram-form, where each elemennignaer product of embed-
ding coordinate vectors

kys= XXT (3.26)

and as a resulX = v/A®T. In practice, we embed the samples of graphs into a three-
dimensional space and hence use just the three leadingvalges and corresponding

eigenvectors ok;sto compute the embedding.

3.5.3 Parameter Dependence

In this section, we investigate how well the different mad#lthe energy level occupation
statistics can be used to distinguish synthetic networkeigged using the Eéd-Rényi

random graphs, Watts-Strogatz small-world models [11@]Barabasi-Albert scale-free
network models [12, 13]. We conduct numerical experimeatsvaluate whether the
thermodynamic variables, especially entropy, can reptediéferences in the structure

and topology of networks.

Fig.3.2(a) shows the behaviour of the entropies resultiognfMaxwell-Boltzmann
occupation statistics as a function of temperatuyg8jl We explore the effect of varying
the number of particles occupying the system and exploredises wher&l = 1 and
N = 3. From Eq.(3.12), it is clear that the effect of varying N isigly to scale the

entropy by a multiplicative factor.

For the three different graph models (BsdRényi random graph model, Watts-
Strogatz small-world model and Barabasi-Albert scale-freodel), there is different be-
haviour with temperature. For small-world networks, the@py increases fastest at low
values of temperature. But it is quickly overtaken by thdeséeee networks at interme-
diate temperatures. The ExstRényi random graph model shows the slowest rate of in-
creasements. The common feature is that all three entroje=sase monotonically with
temperature. However, the detailed dependence/@ghdepends on the partition func-

tion and the underlying occupation statistics. Specifyjcatl the low-temperature region
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(0.07 ~ 0.12), the entropy distinguishes strongly among the diffetgpes of network

models.
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Figure 3.2: Mean and standard deviations of the entropies for threerdiiit network

models versus temperature. Number of particles N = 1 and NRed.cross line: Erik-

Rényi random graphs; blue star line: Watts-Strogatz smadldinetworks; black circle

line: Barabasi-Albert scale free networks.

Fig.3.2(b) and Fig.3.2(c) respectively show similar plfiis the entropies derived
from the Bose-Einstein and Fermi-Dirac partition funcionn the case of the Bose-
Einstein entropy, the curves for the three different grapdes exhibit the same pattern
as in the Maxwell-Boltzmann case. As a result, at low tempees, the ordering of
the Bose-Einstein entropy can be used to separate theetiffeetwork models. In both
the Bose-Einstein and Fermi-Dirac, the number of partitleaffects the entropy via
the chemical potentigk. Hence, the entropy is not simply scaled by chandihgin
the case of the Fermi-Dirac partition function, the pattefentropies for the different

modes is more complex for the various network models. Kijr&ar different values of

N, the behaviour is very different with temperature. Roe 1, we see a similar pattern
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to the Maxwell-Boltzmann and Bose-Einstein cases, but Wth 3 the behaviour is
different with the scale-free and random graphs having lsseglaration for all values of
temperature. Additionally, the small-world model is oeéen by the random graphs and
scale-free models at a lower value of temperature. This ahaexguence of the exclusion
principle manifesting itself at low temperature, and hemalifying the distribution of
entropy for the different models.

Comparing the plots for the Bose-Einstein and Fermi-Dinaicapies, the follow-
ing features should also be noted: a) in each case for thereliff models approach the
same limiting value for a given value ®f, b) in the case of the Fermi-Dirac partition
function all networks have zero entropy as temperaturecgmbes zero, c) in the case of
the Bose-Einstein model the entropy approaches the finite WaN at zero temperature
determined by the number of particles in the system, d) theiBirac entropy increases
more rapidly with increasing temperature than the Bosest€in entropy. On the other
hand, as the temperature increases, the occupation plibptlsithe higher energy states
increases and particles begin to occupy the higher enaatpsstMoreover, the occupation
probabilities for the three different partition functiobscome identical.

As expected, the differences between the different modelsmast evident at low
temperature. These observations also fit with the intustioutlined in Section 3.4. The
faster rise of the Fermi-Dirac entropy with temperature asequence of the greater
probability of finding fermions in the higher energy levelsor Bose-Einstein entropy,
the greater separation between the different network nsadelow temperature is a con-

sequence of the different shape of their degree distribatio

3.5.4 Distinguishing Different Network Models

We now explore the ability of the different entropies, réisigl from the three different
partition functions (Maxwell-Boltzmann, Bose-Einsteamd Fermi-Dirac) to distinguish
the three types of complex networks (random graphs, smallemetworks and scale-free
networks).

Fig.3.3 shows histograms of the entropy for data generated the three network

models in the synthetic dataset. Each figure shows the gntopputed using a different
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partition function. The differently coloured curves in thistograms correspond to the dis-

tribution from three network models. In each plot, the@s-dRényi random graphs occupy

the low entropy region while the small-world networks stayhe high entropy-area. The

distributions of random graphs and scale-free networkslaser in Maxwell-Boltzmann

and Bose-Einstein cases when compared to the small-wotlebries. However, using

entropy simply as a unary feature is insufficient to obtaiodyeeparation between the

different network models (Efis-Rényi random graphs, Watts-Strogatz small-world net-

works and Barabasi-Albert scale-free networks). Bettpasation can though be obtained
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Figure 3.3: Histograms of entropy for Maxwell-Boltzmann, Bose-Eitstend Fermi-
Dirac statistics. The networks are randomly generated thé#mumber of nodes gener-
ated from a normal distribution with the number of nodes leev100 and 1,000. The
red line represents Ebd-Rényi random graphs; the black line small-world network
and the blue line scale-free networks. Temperaflute 10 and the number of particles

N=1.

if we analyse the pattern of entropy differences betweerspdigraphs. Fig.3.4 shows

the results of applying the kernel embedding techniqueradlin Section 3.5.2 to the

entropies computed from the three different partition fiores. The differently coloured
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points correspond to the data generated from the threeelitfenetwork models (red -
Erdds-Rényi random graphs, blue - small world networks, baatatesfree networks).
In the case of Maxwell-Boltzmann and Bose-Einstein, thé&dkht models from non-
overlapping subspaces and can be easily separated. Irsthefdaose-Einstein statistics,
the effect of changing the number of particles is negligiblethe case of Fermi-Dirac
statistics, on the other hand, although more scattered wigemumber of particles is low,
they form tightly clustered subspaces when a larger numijgarticles are used. This is
in line with our physical intuition, since if the number ofrgiales is increased then so the
number of energy levels populated increases, even at lowdsture. This is in contrast
to the Bose-Einstein case, where particles congregatevarergy levels.
The results above are obtained, using entropies derived Maxwell-Boltzmann

and Bose-Einstein partition functions, the Jensen-Shadivergence with kernel embed-
ding provides a better visualisation of the separation efdifferent numerical network

models.

3.5.5 Real World Data

We now compute the entropy characterisations obtained fherthree different partition
functions on real-world data. Specifically, we explore vileetthe entropy can be used as
an effective tool for better understanding the evolutiomeafl-world complex networks.
First, we focus on the detail of New York Stock Exchange ircktmarket dataset and
then provide analysis of the tumour mutation networks aralgm-protein interaction

networks.

Stock Market Data

Fig.3.5 and Fig.3.6 show the entropy time-series for the B¥&ta obtained from differ-
ent partition functions. In Fig.3.5, the entropy is derifenim the Maxwell-Boltzmann
partition function. Itis annotated to show the positionsighificant financial events such
as Black Monday, Friday the 13th mini-crash, Early 1990seRsion, 1997 Asian Crisis,
9.11 Attacks, Downturn of 2002-2003, 2007 Financial Crigie Bankruptcy of Lehman

Brothers and the European Debt Crisis. In each case, thepgnindergoes significant
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fluctuations during the financial crises, associated widlmditic structural changes.
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Figure 3.5: Entropy from Maxwell-Boltzmann occupation statistics Y SE (1987-
2011). Critical financial events, i.e., Black Monday, Fysidhe 13th mini-crash, Early
1990s Recession, 1997 Asian Crisis, 9.11 Attacks, Dowrfi2002-2003, 2007 Fi-
nancial Crisis, the Bankruptcy of Lehman Brothers and theopean Debt Crisis, all
appear as distinct events. Particle numidet 5 and temperaturg = 7.

A good example is the downturn of 2002-2003. After the 9.1acks, investors
became unsure about the prospect of terrorism affecting/tited States economy. Fol-
lowing the subsequent collapse of many internet companigsgerous large corporations
were forced to restate earnings and investor confidencersdif This considerably altered
the inter-relationships among stocks and resulted in Sogmt variance in the structure

of the entire market.

Fig.3.6 compares the entropy derived from the three diffigpartition functions with
the von Neumann entropy. In the figure, entropies coming filearthree partition func-
tions perform better in evaluating the structural changdbeé network time-series when
compared to the von Neumann entropy. Further exploratiowslthat entropies, derived
from Bose-Einstein and Fermi-Dirac partition functionghidit the similar behaviour
in the evolution of stock markets. Compared to the MaxwaltBnann case, the Bose-
Einstein and Fermi-Dirac entropies are more sensitivedatiical events in the financial

data, such as Black Monday in 1987 and the Asian Financialigdn 1997.



3.5. EXPERIMENTS AND EVALUATIONS 80

20— —

15— —
/\\,‘" —~AS~ A A

10— v AV} —

=
z
g
&
g
=3
=
g
£
g
3
2
-3}
1
=
2 L !
: 05/1987 03/1991 03/1995 02/1999 02/2003 02/2007 01/2011
H
=
z
g
Z
g
=3
=
2
S
=
1
%
4
-3}

o I N I A I A
051987 03/1991 031995 0211999 0212003 0212007 0172011

= 01
T

| | | | |
& 004
05/1987 03/1991 03/1995 02/1999 02/2003 02/2007 01/2011

1 T 1 | |
5/1987 03/1991 03/1995) 02/1999) 02/2003 02/2007 01/2011

yon-Neumann Entropy
A
{
>
é L

Figure 3.6: von Neumann Entropy and thermodynamic entropy comparetl ¥8E
(1987-2011): (a) Maxwell-Boltzmann occupation statistifh) Bose-Einstein occupa-
tion statistics and (c) Fermi-Dirac occupation statist{c§ von Neumann entropy.

Tumour Mutation Networks

Next, we turn our attention to the tumour mutation netwoiksthe three different can-
cers, i.e. a) ovarian cancer, b) uterine cancer and c) luegazrcinoma.

In Fig.3.7(a), we provide the histogram of the entropy coteddrom the Maxwell-
Boltzmann partition function. The different colour of ces/represent the three types of
cancers. The most striking feature of this plot is that thredtkinds of tumour networks
dominate different entropy intervals. By applying two sgpa thresholds to the entropy
histogram, we can assign the patients to three classes. Véeskarched for the two
thresholds which give the maximum pooled classificationueaxy over the three cancer
classes. We find that the best result is given when the utandevarian classes are sepa-
rated using an entropy thresholdSys = 2.92, and the ovarian and lung adenocarcinoma
with a threshold aGyg = 4.38. The resulting classification accuracies are 33.87% for
uterine cancer, 83.71% for ovarian cancer and 78.48% faqy &adlenocarcinoma.

Fig.3.7(b) repeats the analysis using the entropy dernaed the Bose-Einstein par-
tition function. Here the corresponding thresholds ar® 24dd 4.52, giving correct clas-
sification rates of 75.00%, 93.54%, and 83.96% for the ueravarian, and lung ade-

nocarcinoma classes respectively. For the case of the Hgirag entropy, as shown in
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Table 3.1: Classification accuracy of three different partition fuocs. The thermo-
dynamic entropy thresholds for Maxwell-Boltzmann stadsstare 2.92 and 4.38. The
values of entropy separation for Bose-Einstein statisties2.49 and 4.52. And the
corresponding thresholds of entropy for Fermi-Dirac stat$ are 0.56 and 2.08.

Accuracy Uterine Cancer Ovarian Cancer  Lung Adenocarcanom Total
Maxwell-Boltzmann  33.87% (84/248) 83.71% (312/356) 7864800/381) 70.66% (696/985)
Bose-Einstein 75.00% (186/248) 93.54% (333/356) 80.8498/381) 83.96% (827/985)
Fermi-Dirac 63.71% (153/248) 74.16% (264/356) 79.53% (383) 73.10% (720/985)

Fig.3.7(c), the thresholds aBep = 0.56 andS-p = 2.08 giving classification accuracies
of 63.71%, 74.16%, 73.10% for the uterine, ovarian and ludepacarcinoma groups.

To improve the separation of the data, we use the kernel etimgetbased on the
Jensen-Shannon divergence to measure network similasityutlined in Section 3.5.2.
The results of the tumour networks, embedding into the tdieensional space spanned

by the first three leading eigenvectors of the kernel madii@,shown in Fig.3.8. The plot
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Figure 3.7: Histograms of entropy from three statistics for tumour rtiatanetworks
(ovarian, uterine and lung adenocarcinoma). Particle rmuNb= 2, temperaturgd =
10.

sheds light on the three different classes of data (showiffereht colours) exhibiting a
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compact manifold structure for three statistics. For eadthopy, the different groups of
tumour mutation networks are well separated in the embegdslyace, and this is espe-
cially so in the case of the Bose-Einstein entropy.

In the Maxwell-Boltzmann and Fermi-Dirac cases, althoulé groups of lung ade-
nocarcinoma and ovarian cancer are well separated, thiersudf uterine tumour net-
works are interspersed among remaining two classes. Theadmsts are obtained in
the Bose-Einstein case where the individual networks otiteene group form the most

compact cluster.
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Figure 3.8: Kernel embedding with the Jensen-Shannon divergence dechftom
tumour mutation network entropies (ovarian, uterine amg ladenocarcinoma) for dif-
ferent partition functions. Particle numbir= 3, temperaturg = 10.

Protein-Protein Interaction Networks

Our final example is based on Protein-protein interactiaworks. We perform kernel

embedding on the protein-protein interaction networksisoalise their distribution and
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to provide a comparison between the entropic discriminatistained with different par-
tition functions. To this end, we show the distribution o&tRPI's in the space spanned

by the leading three kernel principal components in Fig.3.9

= Acidovorax
4 Anabaena

1 L]
¢ Staphilococcus
5 AquifexANDThermotoga
g 0.5 a
E A B . n " AA a
g o ‘MA..Am i
— L]
i ¢ .i L ¢
= _ [ w“
£ 05 . 'L‘,‘ .
n
-14
1 | ]
.
0 05
0
1, -0.5

Second Eigenvector First Eigenvector

(a) Maxwell-Boltzmann Statistics

= Acidovorax
4 Anabaena = Acidovorax
¢ Staphilococcus 4 Anabaena
AquifexANDThermotoga 1 ¢ Staphilococcus
05 AquifexANDThermotoga
’ L}

Third Eigenvector
Third Eigenvector
o

Second Eigenvector

21 First Eigenvector a1 05 First Eigenvector

(b) Bose-Einstein Statistics (c) Fermi-Dirac Statistics

Figure 3.9: Kernel embedding with the Jensen-Shannon divergence deghftom
PPI network entropies (Acidovorax, Anabaena, Staphiloags@nd Aquifex & Ther-
motoga) for different partition functions. Particle numibe= 5, temperaturgd = 10.

In each case, the embedded data exhibits a manifold stewatuch results in good
separation of the different classes of PPI. Moreover, theeHginstein entropy provides
a better separation of more tightly formed clusters and fewdiers. The reason for this
is that Bose-Einstein statistics encourage particles goeggte in the lower energy states
at low temperature. This amplifies the influence of the nunobeonnected components
and the spectral gap in determining the entropy. The forewafiected by the multiplicity
of the zero eigenvalues and the latter relates to the deggepartivity in the network.

The particle occupation of the low energy states producéager entropic separation
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in the Bose-Einstein case. By contrast, neither the Max®eltzmann nor Fermi-Dirac

statistics strongly reflect the lower part of Laplacian $peun, since they do not give
a similar particle concentration in the lower energy statds a result, Bose-Einstein
statistics are more sensitive to the cluster structure torés, and in the case of PPI's
where there is a strong inhomogeneity of node degree whattsleo better separation of

different classes.

Conclusions from the real world data study

In the case of the tumour mutation networks, overall, thé-pesled performance comes
from the Bose-Einstein entropy. Compared with the Maxwaltzmmann case, the en-
tropies derived from spin statistical partition functiomgpear to be more sensitive to
differences in network structure and more accurately retlee structural differences
between distinct types of tumour mutation networks. Theeaattern emerges with
protein-protein interactions networks, This is not sigioig since the PPI's have a strong

cluster (community) structure. This again fits with the itituns given in Section 3.4.

3.6 Summary

Our study uses the normalised Laplacian matrix as the Hanmglh operator of the net-
work, and the associated energy states are given by theveiges of the normalised
Laplacian. We explore the case where the particle occupmtiorrespond to Maxwell-
Boltzmann, Bose-Einstein and Fermi-Dirac statistics. nfrtbe relevant partition func-
tions, we can compute the thermodynamic entropy and en&tgtivated by an interest
in revealing the nontrivial properties of the network sture, we have compared the three
resulting entropic characterisations and with the von Neeumentropy. We provide a de-
tailed analysis of the three different partition functipegpressed both in terms of the
normalised Laplacian matrix and its eigenvalues.
We evaluate the network models resulting from the threeewdfit partition func-

tions on both synthetic and real-world datasets. This shonstigates how the different
entropies can be used to characterise the changes in nettmackure, and distinguish dif-

ferent types of network structure. Studies with synthesitadhow that the entropies can
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distinguish Erds-Rényi random graphs, Watts-Strogatz small-world nesyBarabasi-
Albert scale-free networks. Experiments with real-worltaj on the other hand, show
that the thermodynamic variables can not only be used tactktth abrupt changes in
network structure, but also distinguish different classfasetworks.

The main conclusion from this study is that for distingunghdifferent network mod-
els, the Fermi-Dirac entropy appears best. The reason ifrstithat it is most sensitive
to the higher eigenvalues of the normalised Laplacian arsdallows it to better probe
differences in the degree distributions for different med®ur real-world data, on the
other hand, comes mainly from problems where there is agttommunity or cluster
structure. Here the Bose-Einstein model performs bestttaceason for this is that it is

most sensitive to the eigenvalue gap.



Chapter 4

Edge Entropy Decomposition

In prior chapter, we have shown how to compute global netvemrkopy using a heat
bath analogy and partition functions with three statisticsthis chapter, we show how
to project out edge-entropy components so that the detdiéddbution of entropy across
the edges of a network can be computed. This is particuladyuliif the analysis of non-
homogeneous networks with a strong community as hub steiigibeing attempted. To
commence, we view the normalised Laplacian matrix as the@orktHamiltonian oper-
ator which specifies a set of energy states with the Laplaaigenvalues. The network
is assumed to be in thermodynamic equilibrium with a hedt.bAtcording to this heat
bath analogy, particles can populate the energy levelgdicgpto the classical Maxwell-
Boltzmann distribution and the quantum spin statisticeeseEndistributions together with
the energy states determine thermodynamic variables ofi¢h&ork, such as entropy.
We analyse the partition functions relevant to Bose-Einsé&d Fermi-Dirac statistics
in terms of temperature. At high temperatures, the effectpiantum spin statistics are
disrupted by thermalisation and correspond to the clasMexwell-Boltzmann case.
However, at low temperatures, the Bose-Einstein systerdarmges into a state where the
particles occupy the lowest energy state, while in the Fé&dirac system there is only
one patrticle per energy state. These two models produce difierent entropic char-
acterisations, which are appropriate to different typesetivork structure. We show
how the entropy can be decomposed into components arigingifrdividual edges using

the eigenvectors of the normalised Laplacian. Comparedewiqus work based on the
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von Neumann entropy, this thermodynamic analysis is mdextfe in characterising
changes of network structure since it better representsdbe entropy variance associ-
ated with edges connecting nodes of large degree. Numesipariments on real-world
datasets are presented to evaluate the qualitative anditqtige differences in perfor-

mance.

4.1 Introduction

There has been a considerable recent interest in comptigngritropy associated with
different types of network structure [59, 117, 104]. Netkwentropy has been extensively
used to characterise the salient features of the structstaiic and dynamic network sys-
tems arising in biology, physics, and the social sciencés38, 117]. For example, the
von Neumann entropy can be used as an effective charati@nisd network structure,
commencing from a quantum analogy in which the Laplacianiman graphs [81] plays
the role of the density matrix. Further development of tdisai has shown the link be-
tween the von Neumann entropy and the degree statisticsrefqgdanodes forming edges
in a network [59], which can be efficiently computed for bothedted and undirected
graphs [59, 117]. Since the eigenvalues of the density rafiect the energy states of a
network, this approach is closely related to the heat badlogy in statistical mechanics.
This provides a convenient route to network charactededti17, 104]. By populating
the energy states with particles which are in thermal dopiim with a heat bath, this
thermalisation, of the occupation statistics for the epestgates can be computed using
the different distribution [114, 104]. The properties oftphysical heat bath system are
described by a partition function with the energy micraesaf the network represented

by a suitably chosen Hamiltonian [114].

The Hamiltonian specify the energy states which are poedlby particles in ther-
mal equilibrium with a heat bath. A key element in this thelission approach is to
model how the energy states are occupied at a particularagetyse. Normally this is

assumed to follow the classical Maxwell-Boltzmann digitibn, where the particles are
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distinguishable and weakly interacting. But in the quantoethanic domain, these parti-
cles obey spin statistics. In other words, they are indistishable and are either fermions
(half-integer spin) or bosons (integer spin). Particlethwiteger spin are subject to Bose-
Einstein statistics and do not obey the Pauli exclusioncgula. They can aggregate in
the same energy state. At low temperature, this leads tdsegmenon of Bose-Einstein
condensation. There has been work aimed at extending thdelnm networks. For in-
stance, by mapping the network model to a Bose gas, phas#tiwas have been studied
in network evolution associated with Bose-Einstein cosdéon [21]. This model has
also been extended to understand processes such as supetsyin networks [47]. In
the meanwhile, particles with half-integer spin are subjed=ermi-Dirac statistics and
obey the Pauli exclusion principle. They give rise to modaélaetwork structures con-
strained by the occupancy of the nodes and edges. Exampledertraffic flow and also

the modelling of certain types of geometric networks sucthasCayley tree [15].

Although entropic analysis of the heat bath analogy prav@eiseful global char-
acterisation of network structure, it does not allow thergpy of edge or subnetwork
structure to be easily computed. There has been a littlesyic study of the result-
ing thermodynamic characterisations of network entropyedges. In this chapter, we
explore a novel edge entropy projection which can be apptigte global network en-
tropy computed from Maxwell-Boltzmann, Bose-Einstein &edmi-Dirac statistics. We
characterise the thermalised system of energy states psirigion functions relevant
to three occupation statistics. From the partition funtiove compute the entropy of
the network with particles. Because Bose-Einstein padicoalescence in low energy
states and Fermi-Dirac particles have a greater tendermgycigpy high energy states for
the Puli exclusion principle, these types of spin statiskiad to very different distribu-
tions of entropy for a network with a given structure (i.e.eh af normalised Laplacian
eigenvalues). Moreover, at low temperature, the distioimstare also different from the
classical Maxwell-Boltzmann case. It is these low-tempeeadifferences in energy and
entropy that we wish to investigate as a means of charaictgrifferences in the net-

work structure. We use this technique to analyse the digiab of edge entropy within
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a network and explore how this distribution encodes thensitt structural properties of

different types of network.

The remainder of the chapter is organised as follows. IMdS&awve briefly introduce
the von Neumann entropy with its approximate degrees of siodanected by an edge.
In Sec.4.3, we develop an entropic network characterisdtam the heat bath analogy
and Maxwell-Boltzmann, Bose-Einstein and Fermi-Diratistigs, and then describe our
edge entropy projection. In Sec.4.5, we undertake expetsrte demonstrate the use-
fulness of this novel method. Finally, we conclude our cbaptith a summary of our

contribution and suggestions for future work.

4.2 Entropy Representation

4.2.1 Density Matrix

In quantum mechanics, the density matrix is used to deserdyestem whose state is an
ensemble of pure quantum statgs), each with probabilityp; . The density matrix is

defined as

V]

p = .Z\pi|lﬂi><'~l’i| (4.1)

Severini et al. [81] have extended this idea to the graph dan®pecifically, they
show that a density matrix for a graph or network can be obthly scaling the com-
binatorial Laplacian matrix by the reciprocal of the numbé&nodes in the graph. With
this notation, the specified density matrix is obtained lafieg the normalised Laplacian
matrix by the number of nodes, i.e.

L

v 4.2)

p:

When defined in this way the density matrix is Hermitian pe= pt andp > 0, Tr[p] =
1. It plays an important role in the quantum observation @ss¢cwhich can be used to

calculate the expectation value of the measurable quantity
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4.2.2 Von Neumann Entropy

The interpretation of the scaled normalised Laplacian asnaitly operator, opens up the
possibility of characterising a graph using the von Neunmamtropy from quantum infor-
mation theory. The von Neumann entropy is defined as the gntobthe density matrix
associated with the state vector of a system. As noted alS®xesrini et al. [81] sug-
gest how the von Neumann entropy can be computed by scakngatmalised discrete

Laplacian matrix for a network. As a result the von Neumarnogy is given in terms of

the eigenvaluegy, .....,Ay, of the density matrip,
S =—Tr(plogp) = — = Iogﬂ (4.3)
" i; VIV '

The von Neumann entropy [81] computed from the normalisqadcan spectrum
has been shown to be effective for network characterisatiofact, Han et al.[59] have
shown how to approximate the calculation of von Neumannopgtin terms of simple
degree statistics. Their approximation allows the cubroglexity of computing the von
Neumann entropy from the Laplacian spectrum, to be reducedd¢ of quadratic com-

plexity using simple edge degree statistics, i.e.

1 1 1

Sn=1-5— =
" V] ‘V‘Z (u,%eE dydy

(4.4)

This expression for the von Neumann entropy allows the apmrate entropy of
the network to be efficiently computed and has been shown tanbeffective tool for
characterising structural property of networks, with exial values for the cycle and

fully connected graphs.

Therefore, the edge entropy decomposition is given as

edge 1 1 1 1
(V)= = ————
a2 ERNERENE

(4.5)

whereS,, = ¥ e S(u,v). This expression decomposes the global parameter of von
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Neumann entropy on each edge with the relation to the defremsthe connection of

two vertexes.

4.3 Thermodynamic Representation

4.3.1 Maxwell-Boltzmann Entropy

Taking the Hamiltonian to be the normalised Laplacian of leéwvork, the canonical
partition function for Maxwell-Boltzmann occupation ssics of the energy levels can
be achieved as Eq.(3.10). The entropy of the systemMjihrticles is given by Eq.(3.12).
Since the density matrix commutes with the Hamiltonian afmer we havedp/dt = 0
and the system can be viewed as in equilibrium. So the enindpg Maxwell-Boltzmann
system is simplyN times the von Neumann entropy of a single particle, as we migh

expect.

4.3.2 Bose-Einstein Entropy

For a system of the network, as the grand-canonical ensenitiiex varying number of
particlesN and a chemical potential, the Bose-Einstein partition function is achieved
as Eq.(3.14). The corresponding entropy is given by Eg}3.This entropy depends on
the chemical potential for the partition function and heicgedetermined by the number
of particles in the system. At the temperatfrehe corresponding number of particles in

the leveli with energyA; is

1
n = 4.6
B — -1 (4©)
As a result, the total number of particles in the system is
VI V| 1 1
2" 2 oB— -1 |ex— ) explpl] |

In order for the number of particles in each energy state tmdoenegative, the

chemical potential must be less than the minimum energy,legeu < minA;.
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The equivalent function of density matrix in this case isegiby

1 pr O
Tr(p) +Tr(p2) | o o

Poe = (4.8)

wherep; = — (expB(L—p1)]—1) ‘andp, = (1 —exp—B(L —u)]) ™.

Since Bose-Einstein statistics allow particles to coaesdhe lower energy levels,
the corresponding entropy reflects the smaller Laplacigamnsalues most strongly. As
a result, the number of connected components (the mulitipb¢ the zero eigenvalues),

and spectral gap (the degree of bi-partiality in a graph)yawst strongly reflected.

4.3.3 Fermi-Dirac Entropy

The Fermi-Dirac distribution applies to indistinguishaliérmions with a maximum oc-
cupancy of one particle in each energy state. Particlesatd®added to states that are
already occupied, and hence obey the Pauli exclusion ptecirhese particles behave
like a set of free fermions in the complex network with enestates given by the network

Hamiltonian.

The statistical properties of the networks are thus givetnbyFermi-Dirac statistics
of the equivalent quantum system, and the correspondirigiparfunction is Eq.(3.17).

From Eq.(3.8), the associated entropy of the Fermi-Diratesy is given by Eq.(3.19).

Under Fermi-Dirac statistics, on the other hand, the nurobearticles occupying

theith energy state is
1

" exgBA — )] +1

and the total number of particles in the network system is

N

(4.9)

v . .
N=2"= 2 xoBOv -] 71 " Lexp(—Bu)exapil 1]

(4.10)

With a single particle per energy state, the chemical pa@tkisthence just thath energy

level, and squ = Ap.
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Similarly, we find that the equivalent density matrix furcti

1 ps O
Tr(p3) +Tr(ps) | o 04

P, = (4.11)
wherep, = (I +e BH exp[BE]) o andp, = (I + eBH exp[—B[]) -

Since Fermi-Dirac statistics exclude multiple particlemi the same energy level,
the corresponding entropy does not just reflect the lowdrgdaghe Laplacian spectrum
and are sensitive to a greater portion of the distributiohaylacian eigenvalues. As a

result, we might expect them to be more sensitive to subfferdnces in the network

structure.

4.4 Edge Entropy Analysis

The edge entropy decomposition is to project the global ogtwntropy onto the edges
by multiplying the eigenvector matrices with the entrodengents. The matrix form for
entropy can be written as,

S=-Tr[plogp] = —Tr[Z] (4.12)

Since the spectral decomposition of the normalised Laghagiatrix is
[ = dADT (4.13)
We can decompose the matédas follows
> =do(A)oT (4.14)

As a result, we can perform edge entropy projection using_#ygacian eigenvectors,

with the result that the entropy of ed@ev) is given as,

V|

Spd V) = 3 0(X)é ¢ (4.15)
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where, for Maxwell-Boltzmann statistics,

e BA e B

og
V| __gx V| ax
i‘:‘le PA Zi‘:‘le PA

UMB</\i) =-N
and for Bose-Einstein statistics,

VI |V| eB(H—2)

GBE()\i):—i;Iog<l—eﬁ(“ A) le - eﬁﬂ m

and for Fermi-Dirac statistics,

\4 eB(H=A)

(A'):i;"’g(lJreﬁ(Hi)) BZ 1+eﬁu %)

Thus, the global entropy can be projected on the edges ofettveork system. This

provides useful measures for local entropic charactéoisaf network structure in a rel-

atively straightforward manner.

4.5 Experiments and Evaluations

In this section, we provide experiments to evaluate thegseg methods of edge entropy
decomposition. We commence by assessing the performaresgedegrees by compar-
ing the previous con Neumann entropy. Then we apply thewedld networks, i.e. PPIs,

NYSE and fMRI, to distinguish significant structural vartan

451 Data Sets

The first two datasets are Protein-Protein Interaction od¢svand New York Stock
Exchange networks as introduced in chapter 3. The PPl datas&ins four groups
of bacteria, i.e., Aquifex and Thermotoga-8, Gram-Posit#2, Cyanobacteria-73 and
Proteobacteria-40 [44]. The financial networks are ex¢étom New York Stock Ex-

change over 6000 trading days with a total of 347 stocks.

4.5.2 Experimental Results

We first investigate the temperature dependence of edgepgniith degree properties in

three statistics. We select three different types of edgesdifferent values of degrees at
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the vertices and explore how the entropy changes with testyoer.
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Figure 4.1: The temperature tendency of edge entropy with differenteegn both

ends in three statistics. The red line represents the highee edge; the blue line is the
low-degree edge and the black line is the median value okeésgon the edge ends.

Fig.4.1(a) plots three selected edge entropies versusetatope with Maxwell-

Boltzmann occupation statistics. The three edges show itasidependence of entropy

on the temperature. As the inverse of temperat@jar{creases, the edge entropy reaches

a maximum value. The edge entropy for vertices with the highrele increases faster

than that for the low-degree in the high-temperature rediothe low-temperature limit,

entropy approaches zero. This is because when the tempeddcreases the configu-

ration of particle occupation becomes identical as theigdast always state at the low

energy levels since the thermalisation effects vanish.

The quantum statistics, i.e., Bose-Einstein and Ferma®aases, exhibit the sim-

ilar pattern like the Maxwell-Boltzmann statistics at thghtemperature. As shown in

Fig.4.1(b) and Fig.4.1(c), the edge entropy increasestiméases at the high-temperature
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Figure 4.2: Scatter plot of edge entropies compared to the von Neumanopgrwith
different value of temperatures.

region. However, as the temperature goes down (the invensgdratures increases), the
edge entropy in quantum statistics present a differenttiecydcompared to the classical
Maxwell-Boltzmann case. For Bose-Einstein statistice,etdge entropy reaches a con-
stant value in the low-temperature limit. It is because thafiguration of practices tend
to condensate at the low energy state, which makes the ettopgnoalesce at a constant
platform. On the other hand, particles in Fermi-Dirac stais have a greater tendency
to occupy high energy state with the Puli exclusion prireiglhis leads to edge entropy
more distinguishable at the low-temperature limit withdd®pread distribution of parti-
cles among the energy states. Two kinds of edge entropiedhrglnantum statistics cases
are more sensitive to represent the degree structuratetiite in the low-temperature re-

gion compared to the Maxwell-Boltzmann statistics.
To better present the relationship between the edge easrapithree statistics and
von Neumann entropy case, Fig.4.2 shows the edge entrogernen with a different

value of temperatures. All three statistical entropiestakh transition relationship with
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von Neumann entropy in terms of changing temperature. Famele, the Maxwell-
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Figure 4.3: 3D scatter plot of edge entropy from Maxwell-Boltzmann istats and

von Neumann entropy. (a) Edge entropy in Maxwell-Boltzmatatistics. (b) Edge en-
tropy from von Neumann formula. (c) Comparison of edge guytigetween Maxwell-
Boltzmann statistics and von Neumann entropy.

Boltzmann entropy is roughly in linear proportion to von &nn entropy at the high
temperatureff = 0.1). However, as the temperature reduces, it takes on anxapaiely
exponential dependence. The Maxwell-Boltzmann edge pynttecreases monotonically
with the von Neumann edge entropy in the low-temperatureng@ = 10). The similar
patterns can be observed in Bose-Einstein and Fermi-Dasesc The high temperature
produces a proportional relationship to the von Neumanre edgropy, while the low

temperature causes a transition to an inverse proportiovelea two entropies.

Furthermore, we explore the relationship between edg®@nin statistical meth-

ods and von Neumann case. Take the Maxwell-Boltzmann titatess an example, we
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show the 3D plots of edge entropy with the vertex degree ir4E3g. The figure com-
pares the edge entropy between Maxwell-Boltzmann stzgiatid von Neumann entropy
with node degree connection for each edge in the network.obkervation is that both
entropies have a similar tendency with the degrees at the Bmel Maxwell-Boltzmann
edge entropy is more sensitive to the degree variance tleawotih Neumann entropy in
the high degree region. The reason for this is the constemtitethe von Neumann en-
tropy formula dominates the value of edge entropy when tigeeds are large. Thus, the
Maxwell-Boltzmann edge entropy is better suited to repredlee differences in graph

structure associated with large degree nodes.

Protein-Protein Interaction Maxwell-Boltzmann Statistics von Neumann Entropy
. Networks Distribution Distribution
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Figure 4.4: Examples of protein-protein interaction networks with e@gtropy distri-
bution of von Neumann entropy and Maxwell-Boltzmann stiatis

Now we apply the real-world PPI networks as an example tcebdtustrate the
difference between edge entropy distributions in von Neumentropy and the Maxwell-
Boltzmann statistics. Fig.4.4 shows two examples of PPiorks, namely Anabaena
variabilis and Aquifex aelicus together with their assteiaedge entropy histograms.
The Maxwell-Boltzmann edge entropies are more sensititled@resence of edges asso-

ciated with high degree nodes, which provides better edggzidiination. This effect is
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manifest in the differences of edge entropy histogramshénMaxwell-Boltzmann case,
the histogram shows two peaks in the edge entropy distabpivhile the von Neumann
edge entropy is concentrated at low values and has just ke giegk. In other words, the

von Neumann edge entropy offers less salient structure.
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Figure 4.5: Entropy from Maxwell-Boltzmann statistics and von Neumantropy for
NYSE (1987-2011). Number of particleshs= 1 and temperature {8 = 10.

Next, we turn our attention to the time evolution of network8e take the NYSE
network as an example to explore the entropic charactensat the network struc-
ture. Fig.4.5 plots the total network for the Maxwell-Battann and von Neumann
cases. Both entropies reflect the positions of significasivalfinancial events. In each
case, the entropy undergoes significant fluctuations ddainegnancial crises, associated
with dramatic structural changes. Compared to the von Neareatropy, the Maxwell-
Boltzmann case is more sensitive to fluctuations in the nét¢sioucture. A good example
is Black Wednesday in 1992, which is obvious in the MaxwedltBmann entropy but is
not clear in the von Neumann case.

The similar entropic pattern can be observed in Fig.4.6¢twBhows both entropies
from Bose-Einstein and Fermi-Dirac statistics with vagdinancial events annotated,
including Black Monday, Friday the 13th mini-crash, Ear88Ds Recession, 1997 Asian
Crisis, 9.11 Attacks, Downturn of 2002-2003, 2007 Finah€iasis, the Bankruptcy of
Lehman Brothers and the European Debt Crisis. In each dasegntropy undergoes

sharp increase corresponding to the financial crises, wanelassociated with dramatic
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Figure 4.6: Entropy in NYSE (1987-2011) derived from Bose-Einstein &mami-
Dirac statistics. Critical financial events, i.e., Black Miay, Friday the 13th mini-
crash, Early 1990s Recession, 1997 Asian Crisis, 9.11 Kgtaddownturn of 2002-
2003, 2007 Financial Crisis, the Bankruptcy of Lehman Beathand the European
Debt Crisis, can be represented in thermodynamic entroply Maxwell-Boltzmann
statistic. It is efficient to use the partition function asisting with entropy to identify
events in NYSE.

structural changes in the networks. Similarly the Maxvigsdltzmann entropy in Fig.4.5,
the quantum entropies are also effective in indicating titecal events. Moreover, the
Bose-Einstein quantities show the greatest variationndutine crises, suggesting that
changes in cluster-structure (modularity) are importamirdy these episodes.

We now focus in detail on one particular critical financia¢éey; i.e., Black Monday
in October 1987, to explore the dynamic structural diffeeewith the entropic variance.
We visualize the network structure at three-time epocles, bhefore, during and after
Black Monday, and compare the three statistical edge entigtribution with von Neu-
mann entropy case. Fig.4.7 shows the network structure dge entropy distribution
during the crisis. Before Black Monday, the stocks are higiunnected with a large
number of densely connected clusters of stocks followimgstlime trading trends. This
feature is reflected in edge entropy distribution of thred¢istics. However, during Black
Monday, the number of connections between stock decregisdicantly with large num-
bers of nodes becoming disconnected. Some stocks do thdigghysincrease their
number of links with other stocks. This manifests itself ashét of the peak to the
high entropy region of the distribution. After Black Monddlye stocks begin to recover
connections with another and a few stocks tend to form sousterts in the network struc-

ture. The node degree distribution also returns to its pressshape. In contrast, the von
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Figure 4.7: Visualisation of network structure before, during and méack Mon-
day. Edge entropy distribution is computed from von Neumantropy, Maxwell-
Boltzmann statistics, Bose-Einstein statistics and F&irac statistics. The statistical
model such as the Maxwell-Boltzmann case is more sensagivepresent the dynamic

structure in the networks.
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Neuman edge entropy distribution does not completely retitecdetails of these critical
structural changes. Compared to the three statistical edigepy, the distribution of von
Neumann edge entropy does not change significantly duringkBMonday and hence
does not effectively characterise the dynamic structuth®@ietwork. Moreover, an in-
teresting observation is the difference of edge entropyibdigion between Bose-Einstein
and Fermi-Dirac statistics after Black Monday. This is hessathe networks exist some
clusters with community structure. Since Bose-Einstetigics preferentially sample
the lower energy levels with the network eigenvalue spettitis more suitable to detect
networks with strong community edge connection. While Rddinac statistics may be
more sensitive to the mean and variance of the eigenvaltrédison since they probe a

wider range of energy levels.

In conclusion, all of the statistical methods and von Neumadge entropies can
be used to represent changes in network structure. Comgpmathd von Neumann edge
entropy, the Maxwell-Boltzmann edge entropy is more safstb variance associated
with the degree distribution. In the high-temperaturesagihe quantum statistics have
similar degree sensitivity to the Maxwell-Boltzmann edggropy. However, in the low-
temperature region, Bose-Einstein statistics is moreitemi reflect strong community
edge connection; while Fermi-Dirac edge entropy is mortable to represent high de-

gree variations.

4.6 Summary

This chapter has explored the thermodynamic charactemsabf networks resulting
from Maxwell-Boltzmann statistics, Bose-Einstein st#ts and Fermi-Dirac statistics,
and specifically those associated with the thermalisatifacts of the heat bath on the
occupation of the normalised Laplacian energy states. &g the normalised Laplacian
matrix as the Hamiltonian operator of the network with assed energy states which can
be occupied by classical distinguishable particles andhigusa identical particles. This

extends the use of entropy as a tool to characterise netwrgtigres in both static and
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time series data. To compare with the extensively studiedN@uman entropy, we con-
duct the experiments which demonstrate that the thermadinadge entropy is better
suited to represent the intrinsic structural propertieoaisited to long-tailed degree dis-
tributions. The results reveal that all of the statistigattepies are effective in character-
ising dynamic network structure and distinguish differgmpies of network models. Both
guantum spin statistics present the similar effects cpoed to the classical Maxwell-
Boltzmann case since they are disrupted by thermalisatitdreahigh temperatures. But,
at low temperatures region, the phenomenon of Bose-Ematel Fermi-Dirac statistics
are significant different producing quite different enimopharacterisations of network
structure. Bose-Einstein system condenses into a stateevhe particles occupy the
lowest energy state, which preferentially samples the t@wergy levels with the net-
work eigenvalue spectrum. The resulting entropy is moreble to detect networks with
strong community edge connection. Fermi-Dirac systemherother hand, follows the
Puli exclusion principle with only one particle per energydl. It probes a wider range
of network spectrum which is more sensitive to the mean andvee of the eigenvalue

distribution.



Chapter 5

Modelling Network Evolution

In this chapter, we investigate both undirected and dicenttwork evolution using the
Euler-Lagrange equation. We use the Euler-Lagrange exjutdi develop a variational
principle based on the von Neumann entropy for time-varyiatyvork structure. Com-
mencing from recent work to approximate the von Neumanropgtusing simple de-
gree statistics, the changes in entropy between diffener@ épochs are determined by
correlations in the degree difference of edge connectiéns. Euler-Lagrange equation
minimises the change in entropy and allows for the developiroea dynamic model
to simulate the changes of node degree with time. We firstoegpghe effect of net-
work dynamics on the three widely studied complex networklel®, namely a) Eiibs-
Rényi random graphs, b) Watts-Strogatz small-world netgjoand c) Barabasi-Albert
scale-free networks. Our model effectively captures baoitiinected and directed struc-
tural transitions in the dynamic network models. We applymodel to a network time
sequence representing the evolution of stock prices on #wve ¥brk Stock Exchange
(NYSE) and sequences of Drosophila gene regulatory nesvashtaining different de-
velopmental phases of the organism from embryo to adult.e Mex use the model to
differentiate between periods of stable and unstable gidck trading and to detect peri-
ods of anomalous network evolution. Our experiments shattte presented model not
only provides an accurate simulation of the degree stedisti time-varying networks,
but that is also captures the topological variations takitage when the structure of a

network changes violently.
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5.1 Introduction

The study of network evolution plays an increasingly crudée in modelling and pre-
dicting the structural variance of complex networks [L1Hrevious studies have ad-
dressed this problem from the perspectives of both the kvdlthe global characterisa-
tion of network structure. At the local level, the aim is todebhow the detailed connec-
tivity structure changes with time [115, 71]. Specificaligtworks grow and evolve with
the addition of new components and connections, or the irgyvof connections from
one component to another [12, 47]. On the other hand, at titeglevel, the aim is to
model the evolution of characteristics which capture thecstire and hence the function
of a network to allow different types of network function te Bistinguished from one to
another. Thermodynamic analysis of network structurenaithe macroscopic properties
of network structure to be described in terms of variablet a1 temperature, associated
with the internal structure [115]. There are also modelstgped to learn the patterns of
network evolution. Examples here include generative andragressive models which
allow the detailed evolution of edge connectivity struetto be estimated from noisy or

uncertain input data [60].

However, both the global and the local methods require to develop models that
can be fitted to the available data by estimating their patarsewhich describe how
vertices interact through edges and how this interactiotveg with time. There are few
methods that are both simple and effectively predict théutvam of network structure.
Motivated by the need to fill this gap in the literature andugment the methods available
for understanding the evolution of time-varying networlteere have been a number of
attempts to extend the scope of probabilistic generativdatsousing various forms of
regressive or autoregressive models [60, 8]. Howevergthesentially local models are
parameter intensive and a simpler approach is to coach tbelimaerms of how different

node degree configurations co-occur on the edges conngleting[115, 108].

In recent work we have addressed the problem by detailinghargéve model of
graph-structure [60] and have shown how it can be appliectevark time series using

an autoregressive model [8, 116]. One of the key elementsi®htodel is a means of
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approximating the von Neumann entropy for both directed @mdirected graphs [59].
Von Neumann entropy is the extension of the Shannon entrefoyed! over the re-scaled
eigenvalues of the normalised Laplacian matrix. A quadrapiproximation of the von
Neumann entropy gives a simple expression for the entropyceésted with the degree
combinations of nodes forming edges [107, 115]. In accardamith intuition, those

edges that connect high degree vertices have the lowespgntrhile those connecting
low degree vertices have the highest entropy [115, 108]. iMpkonnections between
low degree vertices is thus entropically unfavourable. &boer, the fitting of the gen-
erative model to dynamic network structure involves a dpson length criterion which

describes both the likelihood of the goodness of fit to thé@vie network data together
with the approximate von Neumann entropy of the fitted nekwdihis latter term reg-

ulates the complexity of the fitted structure [112, 8], andigates against overfitting of
the irrelevant or unlikely structure. Moreover, the chamgentropy of the two vertices
forming an edge between different epochs depends on theigirofithe degree of one
vertex and the degree change of the second vertex. In othdsywhe change in entropy

depends on the structure of the degree change correlations.

The aim of this chapter is to explore whether our model of oekwentropy can
be extended to model the way in which the node degree distiibevolves with time,
taking into account the effect of degree correlations causethe degree structure of
edges. We exploit this property by modelling the evolutidmetwork structure using
the Euler-Lagrange equations. Our variational princigléoi minimise the changes in
entropy during the evolution. Using our approximation a fon Neumann entropy, this
leads to update equations for the node degree which indhedeftects of the node degree
correlations induced by the edges of the network. It is éffely a type of diffusion
process that models how the degree distribution propagatess the network. In fact,
it has elements similar to preferential attachment [12i¢asiit favours edges that connect

high degree nodes [104, 108].

This model can also be extended to directed graphs. In podk we have developed
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approximate expressions for the von Neumann entropy oftéidegraphs [117], consid-

ering the cases where there is a) a mixture of unidirectiandlbidirectional edges, b)

where the unidirectional edges dominate (strongly dickgtaphs) and c) where the bidi-
rectional edges outnumber the unidirectional edges (wedikécted graphs). Here we

focus on the strongly directed graphs, where edges areypunalirectional and there are

no bi-directional edges. Our model distinguishes betwienr-degree and out-degree
of vertices, and we develop Euler-Lagrange equations farthe distributions quantities

evolve with time.

The remainder of the chapter is organised as follows. InSS&cwe provide a de-
tailed analysis of entropy changes in dynamic networks awaldp models for degree
statistics by minimising the von Neumann entropy changeguisie Euler-Lagrange equa-
tions. We theoretically analyse both undirected and deekctetworks separately. In
Sec.5.3, we conduct numerical experiments on the synthetiadeal-world time-varying
networks and apply the resulting characterisation of ngkwwolution. Finally, we con-

clude the chapter and make suggestions for future work.

5.2 \Variational Principle on Graphs

5.2.1 Directed Network Entropy

Severiniet al. [81] exploit the concept of density matrix from quantum mechanics
in the network domain. They obtain the density matrix for awoek by re-scaling the
combinatorial Laplacian matrix by the reciprocal of the fn@nof nodes in the graph.
Hanet al. render the computation of entropy more tractable by makisgand order
approximation to the Shannon entropy [59]. In so-doing tleegxpress the entropy it in
terms of the traces of the normalised Laplacian and its gqUdre resulting approxminate
von Neumann entropy depends on the degrees of pairs of noaem§ edges.

For directed graphs, the approximate von Neumann entroplaited to the in-degree
and out-degree of the nodes [117]. First, the edgeéesstdivided into two subset&;
andE,, whereE; = {(u,v)|(u,v) € E and(v,u) ¢ E} is the set of unidirectional edges,

E> = {(u,v)|(u,v) € E and(v,u) € E} is the set of bidirectional edges. The two edge-sets
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satisfy the condition&; UE, = E,E; N Ep; = 0. With this distinction between unidirec-
tional and bidirectional edges, the analogous approxandtr the von Neumann entropy

of a directed graph is,

S=1- o . 1 (5.1)
B Vi 2|V|2 (Z dingout? (Z doutdout :

u,v)eE u,v)eEp

To simplify the expression according to the relative impode of the sets of uni-
directional and bidirectional edgés andE,, the von Neumann entropy can be further
approximated to distinguish between weakly and stronglgatied graphs. For weakly
directed graphs, i.e]E1| < |E2| most of the edges are bidirectional, and we can ignore

the summation ove; in Eq.(5.1), rewriting the remaining terms in curly brackes

1 1 dguf+d8uf
—1_ _ U v 52
TV avp {&E g } >

For the strongly directed graph the unidirectional edgesidate, i.e.|E;| > |E;|,
there are few bidirectional edges, and we can ignore the stiommoverE; in Eq.(5.1),

giving the approximate entropy as

1 1 dir
=1-——— - 5.3
Ssd |V| 2‘\/‘2 {( Z d\llndSUtz} ( )

uv)eE

Thus, both the strongly and weakly directed graph entrogegsend on the graph

size and the in-degree and out-degree statistics of edgescbans [117].

5.2.2 Euler-Lagrange Equation

We would like to understand the dynamics of a network whiabl\es so as to minimise
the entropy change between different sequential epochdo Tobis we cast the evolution
process into a variational setting of the Euler-Lagrangeéqgn, and consider the system

which optimises the functional

£(@)= [ Gltaw,a0)dr 5.4
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wheret is time,q(t) is the variable of the system as a function of time, gftdlis the time

derivative ofg(t). Then, the Euler-Lagrange equation is given by

oG . d ag .

Here we consider an evolution which changes just the edgeecbirity structure
of the vertices and does not change the number of verticdgigraph. As a result, the
1

factors 1— ﬁ andW are constants and do not affect the solution of the Eulerdrage

equation.

5.2.3 Undirected Graphs

Suppose that two undirected grapBs= (\,E) andGyiar = (Vioat, Eriat) represent
the structure of a time-varying complex network at two censge epochs andt +
At respectively. Then the change of approximate von Neumatnomnbetween two

sequential undirected graphs can be written a

1 dUAV + dVAU + AUAV
AS— _gG)- L 5.6
S(Gi1at) — S(Gt) |V|2 (u,v)gE,E’ du(dy +Ay)dy(dy +4Ay) 56

wherel, is the change of degree for nodgi.e.,A, = diF2 —di; A, is similarly defined
as the change of degree for nogé.e.,A, = di*2' —d!. The entropy change is sensitive

to degree correlations for pairs of nodes connected by aa.edg

We aim to study evolutions that minimise the entropy charggoeated with the
structure of the degree change correlations, i.e. miniisesntropy change between
time intervals. In order to represent the change of entropseraccurately, here, we ap-
proximate the denominator in Eq.(5.6) to the quadratic @nchapply the Euler-Lagrange

equationg = ASwith the entropy change to obtain

- dudy + dvAy + Aydy

G [t,du(t), Au(t), du(t), Av(t)] = 5 (5.7)

For the vertex indexed with degreed,, the Euler-Lagrange equation in Eq.(5.5)
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gives,

oG dadg
First, solving for the partial derivative of the degkg we find

G B duAv+ 2d,Au + 2AuAv
od, d3d2

(5.9)

The detailed analysis above not only involves the terms $b dirder in the node degree
change but also those of second order, i.e. degree differemgelations of the form

AUAv.

Then computing the partial time derivative to the first ordegree differencd,, we

obtain

0G  dy+Av
b, R (5.10)
Substituting Eq.(5.9) and Eq.(5.10) into Eq.(5.8),
oG d ag 20?u—dAu
ady dtan, d3d2 =0 ®.11)
The solution for Euler-Lagrange equation in terms of nodgeke difference is
dy\
A=) A+C (5.12)
dv

whereC is the constant term coming from the integral of the difféisdrequation. This
leads to a detailed degree update equation which involvgsars term ofl,/dy and plus
a constanC. Since it considers the effects of second order terms in llaage of von

Neumann entropy, this solution is accurate in predictirgdgree distribution

As a result, it gives a relationship between the degree @snfinodes connected
by an edge when solving the Euler-Lagrange equation whighimises the change in

entropy over time. Since we are concerned with understgnginv network structure
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changes with time, the solution of the Euler-Lagrange eqoagirovides a way of mod-
elling the effects of these structural changes on the defise@bution across nodes in the

network. The update equation for the node degree is at timehsp andt + At is

: A
dttat — gt Ay = dt ) A 5.13
u u+vzu VL u+vZu At . t ( )

In other words by summing over all edges connected to npde increment the degree
at nodeu due to changes associated with the degree correlatione@etiof connecting
edges. We then leverage the solution of the Lagrange equettisimplify the degree

update equation, to give the result

o\ 2
tHAt gt Yu
d," = dU,+VZUI <dv) Ay+C (5.14)
This can be viewed as a type of diffusion process, which wgsdatige degree so as
to satisfy constraints on degree change correlation so @snionise the entropy change
between time epochs. Specifically, the update of degreetetiee effects of correlated

degree changes between nodes connected by an edge.

5.2.4 Directed Graphs

Weakly Directed Graphs

In order to accommodate directed edges, we consider theuantletd! be the number
of edges incident on vertaxor in-degree andQ" be the number of edges leaving vertex
u or out-degree. The ratio of in-degree to out-degrer, is dd% andry = J‘VVT':f We use
this ratio to re-write the directed graph entropies in teahm-degree and in/out degree

ratio. As a result, the weakly directed graph entropy is

1 1 ru(ru+ry)
Sw=1——— { 7} (5.15)
NP AR T

For two weakly directed graph@},, = (\,E;) and G,:™ = (Viiat, Eriat), repre-

senting the structure of a time-varying complex networkaaxt tonsecutive epochsand
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t + At respectively, the change of von Neumann entropy is given by

ASwa = S(Giug") — S(Giya) (5.16)
1 { (2ru+ry)Ary+rudry  ry(ru+ry) (dA) +dlAT) }
2|V|2 (uv)eE.E’ dLnd\i’n (dLnd\i/n)Z

whereA" is the change of in-degree for nodei.e., A" = d"(t + At) — d"(t); AN is
similarly defined as the change of in-degree for ngdee., A" = diN (t + At) — diN(t). Ary,

andAr, are the change of degree ratio for the nadend noder respectively.

The Euler-Lagrange equation foy gives

0ASwa A OASwg _ _ 2(2ru+ry)(dfAY +dfAT)

_ - U = A7
ory  dt dAry (dindinm)2 0 (®.17)

and similarly forr, gives
ODSyy  d OASwg _ 2ru(dA7 +d7AY) _ 0 (5.18)

dr,  dt dAry (dindlin)2
Combining the Eq.(5.17) and Eq.(5.18), the relationshigsbend" andd!" is

AN AN

(5.19)

Thus, for the weakly directed graph, there exists a linemetation betweed\" /d" and
/.
Strongly Directed Graphs

For a strongly directed graph, the von Neumann entropy i{522). can be expressed in

terms of in-degree and in/out degree ratio as

Sgml-— 1 ff (5.20)
TN IV | e B '

uv)eE

For two strongly directed graph8l, = (\t,E) and GLi* = (Viiat, Eriat), the
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change of von Neumann entropy is

ASsa=S(Cyq™) ~S(Gad (5.21)
1 difdiNAry — ry(difAIN + diNAIM)
(dpdy)?

- 2
2|V| (uv)eE,E’

whereA{j‘ is the change of in-degree for nodeA" is similarly defined as the change of

in-degree for nods.

Now we apply the Euler-Lagrange equation to the changestobmnfor strongly

directed graph. The partial derivative of the ratids

IS __ dfAY +dy'A]

TG T 622
And the partial time derivative to the first order ratio dréfaceAr, is
NSy 2
bty dndp (5-23)
Then, the solution of the Euler-Lagrange equatiorrfazan be computed as
inpiNn inpin
OASg  dOASq 2(0yAV+dVAY) (5.24)
JAry  dt dAry (dindinm)2
Similarly, applying the Euler-Lagrange equation on thelégreed, we get
0ASyq  d OASyy  ry(diPAIN + diNAIM) 4 dil (r Al — 2diNAr ) 0 (5.25)

odyy  dt ony ~ (d)3(dy)?
Substituting Eq.(5.24) into Eq.(5.25), the relationshetvizeend, andr, can be obtained

A7 _ yAn

din ry

(5.26)

Therefore, the Euler Lagrange dynamics leads to a lineatioakhip betwee@%
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andAr—Lu for strongly directed graphs. This should be compared tattaogous relation-

ship which arises from the incremental analysis of the natie éj;“: ,
u

Aiun dlijn ASUt

and as a result
Aru Ain Aout
T Tdp g 629
Combining with Eq.(5.26) gives the growth equation
Aout 1Ain
= zar (5.29)

which is the out-degree grows at half the rate of the in-degie the next section we

explore empirically how well this relationship is observed

5.3 Experimental Evaluation

5.3.1 Data Sets

Synthetic Time-evolving Networks: We generate three kinds of complex network models,
namely, a) Erds-Rényi random graph model, b) Watts-Strogatz small-evoddel [110],
and c) Barabasi-Albert scale-free model [12, 13]. Thesemrmated with the fixed number
of vertices with changing the parameters with the netwonkcstire evolution. For the
Erdds-Rényi random graph, the connection probability is monigglly increasing at the
constant rate of 0.005. Similarly, the link rewiring probey in the small-world model
[110] increases constantly between O to 1 as the networlugwnl For the scale-free
model [13], one vertex is added to the connection at eachstee

Drosophila Gene Regulatory Networks: The time-evolving network represents the
DNA microarrays expressed at different developmentalestdigom fertilization to adult-
hood during the life cycle of Drosophila melanogaster. Theetbpmental process has
four stages, namely, the embryonic (1-30), larval (31-#0)pal (41-58) and adulthood

(59-66). The vertices in the network are gene identitiectiiary in number from 588
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to 4028 at different time epochs. This hence tests the plofibur method to deal with
networks of variable size. The gene expression patternsadelled as a binary Markov
random field [96] which allow the edge connections to be deitezd.

Financial Directed & Undirected Networks: This dataset consists of the daily prices
of 3,799 stocks traded continuously on the New York Stockharge over 6000 trading
days. The stock prices were obtained from the Yahoo! finhdeatbase [93]. A total
of 347 stock were selected from this set, for which histérstack prices from January
1986 to February 2011 are available. In our network reptaesen, the nodes correspond
to stock and the edges indicate that there is a statistizalegity between the time series
associated with the stock closing prices [93].

To establish the edge-structure of the network we use a timdow of 20 days
is to compute the cross-correlation coefficients betweertithe-series for each pair of
stock. Connections are created between a pair of stock drtyes-correlation exceeds an
empirically determined threshold. In our experiments, @ektlse correlation coefficient
threshold to the value t§ = 0.85. This yields a time-varying stock market network with
a fixed number of 347 nodes and varying edge structure for @a6000 trading days.
The edges of the network, therefore, represent how thengjgsices of the stock follow

each other.

5.3.2 Synthetic Networks

We first conduct experiments on the synthetic networks. Wegee three kinds of time-
evolving network models from Eé&s-Rényi random graphs, Watts-Strogatz small-world
networks, and Barabasi-Albert scale-free networks touatalour theoretical analysis.
Using the degree update equation derived from the prin@plainimum entropy
change and the Euler-Lagrange equation in Eq.(5.14), wedur attention to synthetic
network data to characterise the structural variance waordtmodels. Fig.5.1 shows the
visualisation of the time evolution for three complex nettkhg Since we fix the number
of vertices to 200, for the random graphs, the networks evisbm an initially sparse set
of edges with a low value of the connection probability. Ae ttonnection probability

increases, the structure of the random graph exhibits aepinassition to a state with a
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high density of connection and a giant connected compoieplhase transition can also
be observed for the Watts-Strogatz small-world model, asdtviring probability evolves
with time. Commencing from a regular ring lattice, the neatkvstructure evolves to a
small-world network with high rewiring probability, andeh to an Erds-Rényi random
graph structure with unit rewiring probability. For the Ec&ree network, the evolution
takes place via preferential attachment. The nodes withititeest degree have the largest
probability to receive new links. This process producegsshhigh degree nodes or hubs

in the network structure.

3&

o ° ° o
.
.
.
o
.
o

(c) Scale-free Networks

Figure 5.1: Visualisation of dynamic network structures in time eviaotfor three
network models (Erfls-Rényi random graphs, Watts-Strogatz small-world neisyo
Barabasi-Albert scale-free networks)

Now we explore whether the Euler-Lagrange equation carnuoagtructural proper-
ties in the time evolution. We use our model to predict thevoek structure at subsequent
time steps and simulate the degree distribution. We theongpare the predicted degree
distribution with which from the original time series. Fs2 shows the simulation results

and degree distribution comparisons. The predicted dedjstebution resulting from
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Euler-Lagrange dynamics for the simulated networks fitequiell to the observed dis-
tributions. This provides empirical evidence that the Ell@grange equation accurately

predicts the short-term evolution of the different networidels.
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Figure 5.2: Degree distribution of original networks and simulatedywrks for three
network models. The red line is for the originally observestworks and the blue
line is for the results simulated with the second order Eurange analysis. (Edd-
Rényi random graphs, Watts-Strogatz small-world netwdksabasi-Albert scale-free
networks).

To visualise how the different networks evolve over extehtilme intervals, we ap-
ply the principal component analysis of the degree distidiouto project the degree dis-
tribution sequences for the networks into a low dimensi@palce. To commence, we
normalise the degree distributions so that the bin congntsto unity, and then we con-
struct a long vector from the normalised bin contents. Wa ttenstruct the covariance
matrix for the set of long vectors representing the obsedegtee distributions for the
sample of networks. Finally, we apply principal componemdlgsis to the sample co-

variance matrix for the sample of observed vectorised nétwegree distributions. We



5.3. EXPERIMENTAL EVALUATION 118

project both the observed and predicted distributionstiméoprincipal component space
spanned by the leading three eigenvectors of the covariaatex. In this way, we vi-
sualise the evolution of the observed and predicted degstigbdtions in the principal
component space. The results are shown in Fig.5.3. The reatsg@re the original net-
work distributions and the blue ones are the predicted dfigss.3 clearly shows that for
all three network models the predicted network degreeildigion evolves in a similar

manner to the observed network degree distribution.
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Figure 5.3: Visualisation of degree distribution in network evolutigrith princi-
pal component analysis (Eg-Rényi random graphs, Watts-Strogatz small-world net-
works, Barabasi-Albert scale-free networks).

Then, we explore the effect of length of time step on the parémce of the degree
distribution prediction accuracy. Fig.5.4 shows the degtistribution error with a differ-
ent value of the time step for the three different network eledThe prediction error is
the standard error over the normalised bin contents (thmelatd deviation of the differ-

ence in observed and predicted bin contents, divided bygbars root of the number of
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bins). The longer the time intervalg, the higher the prediction error in the degree distri-
bution. For the random graph, the errors sharply increas@arthe stepit = 20. This is
because, during the evolution, the random graph undergplease transition from being
sparsely connected to containing a giant connected compoA¢ large time intervals,

the predictions fail for the reason of the presence of thastgtomponent.
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Figure 5.4: The degree distribution error with the different value aigisteps for three
network models (Erdls-Rényi random graphs, Watts-Strogatz small-world neksyo
Barabési-Albert scale-free networks). Degree predictioor increases quickly after
time stepAt =
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Figure 5.5: Degree distribution of originally observed networks anchidated net-
works before/after Black Monday.

A similar behaviour can be observed in the sample of smatldvoetworks. As

the time step interval increases, there are two instantsn@ $separating three different
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Figure 5.6: Degree distribution of originally observed networks anchidated net-
works during Black Monday. The network becomes disconmkat® most vertices are
disjoint, which results in the degree distribution follagithe power-law.

evolution models. The first event occurs arouktd= 15 and the second it = 25.

The reason is that, during the evolution, the structure ook changes from a regular
lattice at the beginning to a small-world network, and thewlfy takes on a similar
structure to a random graph. These three epochs and thaasedowith the impact of
structural transition on the performance of degree distidim prediction. Finally, the
degree prediction error for the scale-free network growsvigl and smoothly with the
time step, since there are no significant structure tramstduring the evolution. As
a result, the topology of the scale-free network remainklstaOverall, increasing the
value of the time interval results in a reduction of the pcadin accuracy. Our new model
is capable of capturing the local trends arising from thec$tral changes during the

evolution.

5.3.3 Real-world Networks

For real-world network evaluation, we test our method o gadvided by the Drosophila
genes and the New York Stock Exchange. We first evaluate tbeeated networks

with the life cycle of Drosophila genes dataset. Then we taosthe time sequential
undirected and directed networks which consist of the dailyes of 3,799 stocks traded

continuously on the New York Stock Exchange over 6000 tradeys.
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Figure 5.7: Comparison of entropy evolution in Drosophila gene regulahetworks

using von Neumann entropy and the simulation with the Euégrange model. The
four developmental phases are embryonic (red line), laivalck line), pupal (blue
line), and adulthood (green line).

Undirected Drosophila Gene Regulatory Networks

To commence, we represent the Drosophila gene regulatdwories as undirected
graphs evolving from the embryonic stage to the adulthoadest The four phases of
the Drosophila life cycle in genes represent the structwadhtions in the gene regula-

tory network connections.

We compare the computed von Neumann entropy of the netwahktiat computed
from the degree evolution predicted by the Euler-Lagrangdehin Eq.(5.14). Fig.5.7
plots the two entropies for the entire life cycle of Drosdatdevelopment. The four
developmental phases, namely, embryonic (red line), léiolack line), pupal (blue line),
and adulthood (green line) are represented by differeniucs! The entropy predicted by
the Euler-Lagrange model exhibits a similar time seriesan®d to that obtained with the
von Neumann entropy calculated from the observed degrébdison. In other words,
the degree distribution predicted by the Euler-Lagrangeggn effectively captures the

changes in structure due to developmental changes in tleerggolatory networks.

Undirected Financial Networks

Now we simulate the behaviour of the financial market net&woHkere we focus on how
the degree distribution evolves with time. We compare theufated structure and the

observed network properties and provide a way to identiéydbnsequence of structural
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variations in time-evolving networks. Our procedure is@®ivs. We first select a net-
work at a particular epoch from the time series and simutatevolution using the degree
update equation in Eq.(5.14). Then we compare the degrgédisons for the real net-
work sampled at a subsequent time and the simulation of theedalistribution after an
identical elapsed time. One of the most salient events ilt8E is Black Monday.
This event occurred on October 19, 1987, during which thédxsiock markets crashed,

dropping in value in a very short time.

Original Networks

Simulated Networks

(a) Before Black Monday (b) During Black Monday (c) After Black Monday

Figure 5.8: The visualisation of network structure for three specifigsdaf Black
Monday financial crisis. The red line corresponds to theogmtrdifference for the
original networks and the gray line is the Euler-Lagrangeleho

We compare the prediction of consecutive time steps atrdifteepochs, before/after
and during the Black Monday crisis. The results are showngrbts and Fig.5.6. The
most obvious feature is that the degree distribution fongtevorks before and after Black
Monday is quite different to that during the crisis perioduridg the Black Monday cri-
sis, a large number of vertices in the network is disconmkdibis results in a power-law
degree distribution. However, for time epochs before aner &lack Monday, the dis-
connected nodes recover their interactions to one anofis. increases the number of
connections among vertices and causes departures fronowe faw distribution. This
phenomenon is also observed in the simulated networks wsingegree update equa-

tion. This is an important result that empirically shows siraulated networks reflect the
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Figure 5.9: The von Neumann entropy difference in NYSE (1987-2011) fagioal fi-
nancial networks and simulated networks. Critical finalneients, i.e., Black Monday,
Friday the 13th mini-crash, Early 1990s Recession, 199arA€lrisis, 9.11 Attacks,
Downturn of 2002-2003, 2007 Financial Crisis, the Bankzyptf Lehman Brothers
and the European Debt Crisis, are associated with largemntiifferences.

structural properties of the original networks from whibley are generated. Moreover,
our dynamic model can reproduce the topological changé®tdtar during the financial

crisis.

In Fig.5.8, we show network visualisations correspondmthtee different instants
of time around the Black Monday crisis. In order to compaeesimulated network struc-
tures resulting from the current model, we show the conecbenponents (community
structures) at three-time epochs. As the network appraatieecrisis, the network struc-
ture changes violently, and the community structure sulisiiéy vanishes. Only a single
highly connected cluster at the centre of the network persiEhese features can be ob-
served in both the simulations and original time evolutibthe networks. At the crisis
epoch, most stocks are disconnected, meaning that thes goéve independently with-
out strong correlations to the remaining stock. During th&is; the persistent connected
component exhibits a more homogeneous structure as shdvign 8. Our network pre-
diction gives structures that more closely resemble thgirtal network structure. After
the crisis, the network preserves most of its existing comiygstructure and begins to
reconnect again. This result also agrees with findings ierditerature concerning the

structural organisation of financial market networks [93].
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Finally, we explore the anomaly detection in dynamic neksorWe validate our
framework by analysing the entropy differences betweenkitad networks and actual
stock market networks in the New York Stock Exchange (NY3iprder to quantita-
tively investigate the relationship between a financiaisrand network entropy changes,
we analyse a set of well-documented crisis periods. Thesedseare marked along-
side the curve of the first order entropy difference in Fig.%or all business days in our
dataset.

The literature in the financial domain usually identifiesploéential crashes using ei-
ther a) the trading volumes [31], b) the variation of expéceturns [11] or ¢) Spearman’s
rank correlation [1]. Recently, machine learning techeggjsuch as conditional random
fields, support vector machines and artificial neural netgdnave been used to identify
trading patterns using various criteria on specific findnd#asets [32]. Unfortunately,
the complexity of these data-driven methods is generatii kiue to the combination of
multiple techniques. By contrast, our entropy based arsig®asily effected using our

dynamic model which clearly indicates the financial crises.

Directed Financial Networks

Next, we extend our study to directed graph representatibttsee New York Stock Ex-
change data. To extract directed graphs from the stock theiess data, we compute the
correlation with a time lag. We measure the correlation 8@eday windows separated by
a time and then select the lag that results in the maximuneledion. As with undirected
graphs we threshold the correlation to establish edgessepting interactions between
stock. We determine the directionality of the edges usimgsilgn of the lag. All the
resulting edges are unidirectional. We, therefore, exptmw the time evolution follows
our model for strongly directed graphs.

First, we investigate how the distributiongfevolves with the time. Fig.5.10 shows
the distribution at three different time epochs, i.e., befauring and after Black Mon-
day. Here, the parametgy reveals the relationship between in-degree and out-dégree
each vertex. As shown in Fig.5.10, during the Black Mondag,dumulative distribution

becomes concentrated over a small range of values aroutyd Tihis reflects the fact that
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Figure 5.10: The cumulative distribution of parameter= di' /d%'t in directed finan-
cial networks before/during/after the Black Monday. Thstribution shrinks during
the Black Monday crisis.

a substantial fraction of vertices become isolated durvegBlack Monday, without the
out-edges. The remaining connections exist with a balaeteden in-degree and out-
degree. After Black Monday, the network structure begingetmver as the cumulative
distribution widens to return to its previous shape.

From the analysis leading to Eq.(5.19), there is a lineatimship between the
quantitiesAr—;‘u and%t%. In order to test whether this relationship holds in pragtiig.5.12
shows scatter plots cgr“—u versus%{f% for epochs before, during and after the Black Monday
crisis. This provides evidence that there exists a lindatiomship between the fractional
in-degree change and the degree ratio change. By fittingearliregression to the se-
guence of scatter plots for the time series, we explore h@xstbpe parameters of the
regression line and the regression error evolve with timg.5FL3 shows the linear re-
gression errors, as well as the fitted slope, during the geniound Black Monday. Here
we provide the regression error, for a) the flexible fittingheff slope and b) the regression
for a fixed value of the slope. In the time interval around Bl&Monday, both the linear
regression parameter and its error changes abruptly. 3hisdause there are substantial
structural differences in the network evolution. During tBlack Monday, many nodes
become disconnected and the connected components ofegdoicome small and frag-
mented. Only a small number of community structures remaghly inter-connected.
During Black Monday itself, although the slope of the regres line is zero, the scatter

about the line is relatively small.



5.3. EXPERIMENTAL EVALUATION 126

> &
S S X
- & . &
& & N & & & \z?
S $ < & & & &
& & N WA & & oS & &
& > S AR B ¥ Q >
¢ N & =3 & & <
oA & RSy ) A o 5 o \V'
e & &S S S S N
9 & © N A & < 9
50 <®
40
30
g
=] 20
m
o 10
]
‘7 ol Loy vl vy Lev v vy Lo v v vy L v v vy Lt vy L v vy | |
% May/1987 Mar/1989 Apri/1991 May/1993 Jun/1995 Jul/1997 e Sep/1999 Jan/200
&h & > > ~ c{‘% & &
S 4*‘;& & e"& & & & & xO\
: R
= S S & 3 & S g
= N A& QY SIS & & Gy S
8 & & & > NN fb‘& &"Q &
& 600 %\,§° ‘QQ
5 &

400

200

o I‘LJ,I.L“IJ.WL L Mjm

M L P T SR S M T T S R S W |
Jan/2001 Mar/2003 Apr/2005 Jul/2007 Sep/2009 Jan/2011

Time (1987 - 2011)

Figure 5.11: The linear regression error for the whole sequential firndata in

NYSE (1987-2011). Critical financial events, i.e., Blackiday, Friday the 13th mini-
crash, Early 1990s Recession, 1997 Asian Crisis, 9.11 Ketadownturn of 2002-

2003, 2007 Financial Crisis, the Bankruptcy of Lehman Beathand the European
Debt Crisis, are associated with significant error peaks.
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Figure 5.12: The scatter plots ofi" /A" versusr,/Ar, during the epoch of Black
Monday (a)-(e). Before Black Monday: (a) October 1, 1987%; Qztober 10, 1987.
During Black Monday: (c) October 19, 1987. After Black Mogddd) October 29,
1987; (e) November 10, 1987

Furthermore, the linear regression error sequence for itiezedirected financial
network time series is shown in Fig.5.11. The peaks in theessgon error correspond
closely to the occurrence of the financial crisis. Our ansalys the directed graph is
effective and efficient to detect the abnormal structureyinagnic networks. The most
striking observation is that the largest peaks of regressan be used to identify the
corresponding financial crisis. This shows that the thé@akanalysis of minimising the
change of directed entropy is sensitive to significant stmat¢ changes in networks. The
financial crises are characterised by significant entronghs, whereas outside these

critical periods remains stable.
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Figure 5.13: The linear regression error and standard deviation duriagkBVionday
(June 1987 - April 1988). The blue diamond curve is the eranmith the flexible slope
in the regression. Red circle line is the error bar with thediglope in the regression.
Black star curve represents the value of the slope.

5.4 Summary

In this chapter, we explore how to model the time evolutionetfvorks using a variational
principle. We use the Euler-Lagrange equations to modekttodution of undirected
and directed networks that undergo changes in structure ibymnising the change in
von Neumann entropy. This treatment leads to the model ofthevnode degree varies
with time and captures the effects of degree change caoetaintroduced by the edge-
structure of the network. In other words, because of theseletions, the variety of one
degree determines the translation in connected nodes.

We conduct the experiments on a time-series of networkesepting life cycle of
Drosophila and the stock trades on the NYSE. Our model iskdapa predicting how
the degree distribution evolves with time. Moreover, it @sp be used to detect abrupt

changes in network structure.



Chapter 6

fMRI Network Application

The neurobiology of Alzheimer’s disease (AD) has been esttety studied by applying
network analysis techniques to activation patterns in fMRages. However, the struc-
ture of the directed networks representing the activatattepns, and their differences in
health and Alzheimer’s people remain poorly understoodhikchapter, we aim to iden-
tify the differences in fMRI activation network structurerfpatients with AD, late mild
cognitive impairment (LMCI) and early mild cognitive impaient (EMCI). We first use a
directed graph theoretical approach combined with entrof@asurements to distinguish
subjects falling into these three categories and the nohmalthy control (HC) group.
Then we present a novel method for characterising netwaikgjuhe entropy associated
with bosonic particles in thermal equilibrium with a heattbalo this end, we construct
a Jensen-Shannon kernel using the Bose-Einstein entrogydample of networks and
then apply kernel principal components analysis (kPCA) &pmraphs into low dimen-
sional feature space. We apply the resulting method toitye84RI activation networks

from patients with suspected Alzheimer’s disease.

6.1 Introduction

Functional magnetic resonance imaging (fMRI) providesphssiicated means of study-
ing the neuropathophysiology associated with Alzheimegisease (AD) [100]. Specifi-

cally, the blood oxygen level-dependent (BOLD) signal inRMndicates the activation
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potential of different brain regions, and neuronal acgilaetween the various brain re-
gions can be determined by measuring the correlation betaetvation signals. The
resulting network representation of region activity hasved useful in understanding
the functional working of the brain [9]. Functional neur@iging has also proved useful
in understanding Alzheimer’s disease (AD) via the analpdigtrinsic brain connec-

tivity [89]. Abnormal brain function in AD is characterisdny progressive impairment
of episodic memory and other cognitive domains, resultmgementia and, ultimately,
death [87]. Although there is converging evidence aboutdkatity of the affected re-

gions in fMRI, it is not clear how this abnormality affectetfunctional organisation of

the whole brain.

Tools from complex network analysis provide a convenieptraach for understand-
ing the functional association of different regions in thraib [89]. The approach is to
characterise the topological structures present in thie larad to quantify the functional
interaction between brain regions, using the mathematicaly of networks and graph
theory. Graph theory offers an attractive route since ivjokes effective tools for char-
acterising network structures together with their intisromplexity. This approach has
led to the design of several practical methods for charzatgrthe global and local struc-
ture of undirected graphs [117]. Features based on the lgéotzthlocal measures of
connectivity are widely used in functional brain analy€i§]] By comparing the struc-
tural and functional network topologies between diffengopulations of subjects, graph
theory provides meaningful and easily computable measemésrio reveal connectivity

abnormalities in both neurological and psychiatric digosd87].

Furthermore, kernel-methods on graphs provide emergidgpawerful set of tools
to determine the class-structure of different graphs. &@laee many examples in the liter-
ature where graph kernels have successfully exploiteddgpal information, and these
include the heat diffusion kernel [68], the random walk le(85], and the shortest path
kernel [27]. Once a graph kernel is to hand, it provides a eniant starting point from
which machine learning techniques can be applied to leatengially complex class-

structure [10].
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Unfortunately, there is relatively little literature aichat studying structural network
features using directed graphs and entropic kernel mettiibugh the success of exist-
ing graph kernels, one of the main challenges that remain igte capture the variations
present in different classes of graph in a probabilistic neanThe vast majority of tech-
niques suggested by graph theory pertain to undirectedrr#thn directed graphs. How-
ever, directed graphs are a more natural representatiaaiof &tructure, since they allow
the temporal causality of activation signals for differanatomical structures in the brain.
Moreover, Granger causality provides a powerful tool tfaat be used to investigate the
direction of information flow between different brain regg[66]. When combined with
machine learning algorithms, classification exhibitedrfrdirected graphs provides an ef-
fective way of detecting functional regions associatedhwilzheimer’s disease [66]. By
explicitly defining anatomical and functional connections directed manner between
brain regions, fMRI data may be analysed in a more detailgdamd used to identify the

different stages of neurodegenerative diseases [87, 66].

Recently, statistical mechanics and network entropy haenlused to understand
more deeply variations in network structure. One of the esses here has been to use
guantum spin statistics to describe the geometries of caxmtworks [23]. For exam-
ple, using a physical analogy based on a Bose gas, the phananoé Bose-Einstein
condensation has been applied to study the salient aspsteterk structure [21]. This
has been extended to understand processes such as supetsymmetworks [20]. Al-
though these types of analogy are useful and provide poledls for network analysis,

they are not easily accommodated into the kernel-baseda@pto machine learning.

This chapter is motivated by the need to fill this importar gathe literature, and
to establish effective methods for measuring the struthnaperties of directed graphs
representing inter-regional casual networks extractaa fiMRI brain data. In particular,
we develop a link between statistical mechanics and keregiods to define information

theoretic kernels in terms of network entropy.

In order to characterise the functional organisation oftfan, firstly, our approach
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uses as its starting point the von Neumann entropy for dicegtaphs. It provides a nat-
ural way of capturing the flow of information across a directeetwork, based on the
asymmetry of edges entering and exiting its nodes. We ainséathe directed network
entropy to develop graph analytical methods to measuredyeed of functional connec-
tivity in brain networks. Secondly, we explore whether thg/gical heat bath analogy
and Bose-Einstein statistics can be used to furnish thereshentropy, and implicitly the

underlying probability distribution. We define informatitheoretic kernels in terms of
network entropy to distinguish Alzheimer’s disease suigjfom normal healthy control

population.

The heat bath analogy and Bose-Einstein statistics areepdoas follows. We
commence from a physical analogy in which the normalisedda@n plays the role
as Hamiltonian (energy operator) and the normalised L&plagigenvalues are energy
states. These states are occupied by bosonic (integer [Fuiti¢les and the resulting
system is in thermodynamic equilibrium with a heat-bathiclhs characterised by tem-
perature. The bosons are indistinguishable, and eachyelesg can accommodate an
unlimited number of particles. The effect of the heat battoithermalise or randomise
the population of energy levels. The occupation of the gnstates is therefore governed
by Bose-Einstein statistics and can be characterised asirappropriate partition func-
tion. The partition function is the effective cumulativeopability distribution function
over the energy states in the network when the system ofcfetis in thermodynamic
equilibrium with the heat bath. From the partition functiere can compute the entropy
of the system of particles, and hence compute the Jensem&hm&ernel. Once the ker-
nel matrix is to hand, we use kernel principal componenttyarsa kPCA) [91] to embed

the graphs into a low dimensional feature space where titzggn is performed.

We demonstrate that the resulting techniques can be useadtiogdish the fMRI
data from healthy controls and AD objects. The AD subjectsleksignificantly lower
regional connectivity and exhibit disrupted the globaldtional organisation when com-
pared to healthy controls. Moreover, the graph kernel ireBiemstein statistics combined

with the linear discriminant analysis is applied to brainwek data for two groups of
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subjects with early mild cognitive impairment (EMCI) anddanild cognitive impair-
ment (LMCI). Our results indicate that in-degree and owgrde statistics for the nodes
together with their associated entropy may be useful asghgvased indicator to distin-

guish Alzheimer’s disease subjects from normal healthyrobpopulation.

6.2 Entropy Analysis in fMRI Networks

In this section, we give the preliminaries on the directedpfr representation in en-
tropy analysis. We provide the concept of approximate voarhien entropy for directed

graphs. We then introduce the idea of edge entropy assatati

6.2.1 Approximate von Neumann Entropy for Directed Graphs

For an undirected graph, as shown in Chapter 5, the von Neusraropy [81] computed
from the normalised Laplacian spectrum has been proved teffbetive for network
characterisation. In fact, Hagt al[59] have shown how to approximate the calculation
of von Neumann entropy in terms of simple degree statistics.

Their approximation allows the cubic complexity of compagtithe von Neumann
entropy from the Laplacian spectrum, to be reduced to on@adigtic complexity using
simple edge degree statistics in Eq.(4.4). This expredsiothe von Neumann entropy
has been extended to characterise the structural prapeftieetworks. It has extremal
values for the cycles and fully connected graphs. eYal. [117] have extended this
result to directed graphs by distinguishing between thieigree and out-degree of nodes,
giving the following expression for the entropy

1 1 ain 1
V| TV, ddg T 2 G

u,v)eEp

S =1- (6.1)

where the edge sé&tis partitioned into two disjoint subselts andE,, which respectively
contain the unidirectional and directional edges.

The two subset&; andE; satisfy the conditions th&; = {(u,Vv)|(u,v) € EN(v,u) ¢
E}, E2={(u,v)|(u,v) e EN(v,u) € E}. EfUE;=E, E;NE; = 0. If most of the edges

in the graph are unidirectional, i.6E;| > |Ep|, then the graph is said to be strongly
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directed. In this case we can ignore the entropy associatedive summation ove,,
giving the approximate entropy for strongly directed graph

1 1 dan 1
VI IVE (2 0 e

v)

Sa=1- (6.2)
There are thus two factors determining the entropy. Theifirite ratio of in-degree to
out-degree for the node startsuaih the directed edge, i.&, = (;j(u,i“: ; while the second is
the directed version of the edge entropy, 5%. The former weights the contributions
of the entropy associated with the directed edges exitimig noThe contributions to the
entropy are thus large if the ratig is small, and directed edge connects nodes with large

both out-degree and in-degree.

6.3 Entropic Edge Assortativity for Directed Graphs

The assortativity is the tendency of nodes to connect toetlodssimilar degree. This
concept can be extended to directed graphs if we measumetiericy of nodes to connect
to those nodes of similar in-degree and out-degree. Festdr [51] define the directed

assortativity as
15 weel(d — dg) (of — of)
r(a,B) === (6.3)

E| o%cgB

wherea, 3 € {in,out} is the incoming and outgoing direction for a directed ed@ﬁa.:

|E|*1z(u7\,)eE dy ando? = \/|E|_1Z(u,v)eE(d8’ —dg@)2. The similar definitions are for
dé ando®.

Ye et al[114] adopts a different approach to defining degree adsaotydor directed
graphs based on von Neumann entropy decomposition. Thethistbased on the obser-
vation that edges associated with high degree nodes haesdatropy and preferentially
attach to clusters in a graph. The entropic assortativitgsueement provides a novel
way to analyse the graph structure. For instance, basecdeapibroximation for the von
Neumann entropy for directed grajsh, the coefficient of directed edge assortativity is

given by [114]
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Z(u,v)eE [(Sjv_ SEV) (Sjv - Sl_ﬂv)]

R=
opoy

(6.4)

whereS,, associate the entropy of all the outgoing edges from vert@nds),, are all

the incoming edges of vertax

6.4 Experiments and Evaluations

In this section, we describe the application of the abovehou to the analysis of inter-
regional connectivity structure for fMRI activation netiks for normal and Alzheimer's
patients. We first examine the differences in degree digiah for the four groups of
subjects. Then we apply the entropy-based analysis tondigsh Early Mild Cognitive
Impairment(EMCI) and Late Mild Cognitive Impairment (LMCIFinally, we explore
whether we can classify the subjects on the basis of sintyilafithe activation networks
from the fMRI scans. To do this, we embed the network sintijatata into a vector-space
by applying kernel-PCA to the Jensen-Shannon kernel. Tplginthe calculation, the

Boltzmann constant is set to unity through the experiment.

6.4.1 Dataset

The fMRI data comes from the ADNI initiative [85]. Each imagelume is acquired
every two seconds with Blood-Oxygenation-Level-Depem@DLD) signals. The fMRI
voxels here have been aggregated into larger regions aksit€ROIs). The different
ROI's correspond to different anatomical regions of therbaad are assigned anatomical
labels to distinguish them. There are 96 anatomical regiorsach fMRI image. The
correlation between the average time series in differentsREpresents the degree of
functional connectivity between regions which are drivgmbural activities [104].

A directed graph with 96 nodes is constructed for each paliased on the magni-
tude of the correlation and the sign of the time-lag betwéentime-series for different
anatomical regions. To model causal interaction among R@¢sdirected graph uses the
time-lagged cross-correlation coefficients for the avertige series for pairs of ROIs.

We detect directed edges by finding the time-lag that resuttee maximum value of the
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cross-correlation coefficient. The direction of the edgesthels on whether the time lag is
positive or negative. We then apply a threshold to the marimaalues to retain directed
edges with the top 40% of correlation coefficients. Thisdgel binary directed adjacency
matrix for each subject, where the diagonal elements ar® setro. Those ROIs which
have missing time series data are discarded.

Subijects fall into four categories according to their degrédisease severity. The
classes are full Alzheimer’s (AD), Late Mild Cognitive Impaent (LMCI), Early Mild
Cognitive Impairment (EMCI) and Normal Healthy ControlsGH The LMCI subjects
are more severely affected and close to full Alzheimer’silevthe EMCI subjects are
closer to the healthy control group (Normal). We have fMRiadar 30 AD subjects, 34
LMCI subjects, 47 EMCI subjects, and 38 normal healthy adrgubjects.

6.4.2 Directed Degree Classification

We first investigate the in-degree and out-degree distabuif the data by showing a
scatter plot with in-degree versus out-degree for eaclctdideedge. In order to extract
potential structural difference, the distribution of pi§inn the scatter plot is analysed
using a general linear model. Fig.6.1 and Fig.6.2 show tlattescplots of in-degree
versus out-degree, comparing the first AD vs. Normal andreigdEMCI vs. LMCI
respectively. The obvious difference is that normal subjexhibit a high degree of
interregional connection compared to Alzheimer’s sulsjedh similar effect is shown
by Early and Late detection groups. Table 6.1 shows the ceafts of a linear model
with 95% confidence bounds and root mean square error.

The results of fitting the linear model show that the in-degaed out-degree distri-
butions for the nodes in the AD and LMCI groups of subjectsehagreater slope than
those of the Normal and Early groups. This implies that tieeeegreater imbalance in in-
degree and out-degree in the Alzheimer’s and late detegtiomps. In other words, the
nodes in the fMRI inter-regional connectivity graphs foesk two groups tend to have
larger in-degree than out-degree. Moreover, the smalbvalliRMSE in these two groups
reveals that for Alzheimer’s subjects the scatter aboutdbeession lines is smallest. By

contrast, for the normal and early control subjects thetace significantly higher. This
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Figure 6.1: The in-degree distribution for edges in the directed graphslormal
Healthy Control and Alzheimer’s groups. The blue starses@nt the edges of nor-
mal patients’ graphs which occupy the high degree regioh laige variance. The red
cycles indicate the AD patients’ graphs with narrow and l@agrée occupation.

Table 6.1: Liner polynomial model to fit the edge in-degree/out-degtistribution

Groups Coef¢) Cl (a) Coef (B) Cl (B) R? RMSE
AD 0.8582 [0.8406,0.8758] 5.445 [4.719,6.171] 0.7604 a&4
Normal 0.6103 [0.5848,0.6357] 22.45 [20.94,23.96] 0.3711.3445
EMCI 07235 [0.7034,0.7436] 14.6  [13.5,15.7] 0.5253 16389
LMCI 0.9236 [0.9098, 0.9375] 2.933 [2.356, 3.509] 0.8395 44@6

underlines the imbalance in in-degree for the subjectsigghg to the diseased groups.

We can explore this asymmetry of in-degree and out-degmne®ne detail using Ye's
entropy assortativity measure [114]. This gauges the eéxemhich nodes to connect to
others with similar in-degree or out-degree [66]. To repnéghe structural difference
regarding the entropy associated with degree of each naaplotithe histogram of edge
entropy assortativity in Fig.6.3 and Fig.6.4. It shows thigecence in entropy of the
directed edges for subjects in AD vs. Normal, and EMCI vs. LUMEY comparing the
directed edges in the AD and normal groups, we conclude tiea¢dges in the directed
graphs for Alzheimer’s subjects tend to have a higher vafuentropy, and this reveals
the structure is weakly connected with a lower average it degree ratio. A similar
result is shown in the EMCI and LMCI subject groups. For lateh&imer’s subjects,
the shift in entropy to the right represents the weak degoeaection in the nodes. This

clearly reveals the loss of interregional connection foectied edges in Alzheimer’s.
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Figure 6.2: The in-degree/out-degree distribution for edges in theotidd graphs
in Early Mild Cognitive Impairment (EMCI) and Late Mild Codive Impairment
(LMCI).

Finally, the in-degree and out-degree of nodes are usecdsdtures to distinguish
the different group of subjects. For each edge, we conducidimensional feature vec-
tors with two nodes and in and out degree measurements omedeh So the graph can
be represented by these directed edges associated witlifoensional feature vectors.
We perform the linear discriminant analysis (LDA) on the Wémmer's(AD) and Normal
healthy control groups as the training process to find thésaecboundary. Then the
LDA model is applied to the EMCI and LMCI groups to classifytipats. We compare

the results and the labels to get classification accuracy.

Table 6.2 shows the classification accuracy of linear disio@nt analysis (LDA).
The directed graphs for the AD and Normal subjects are usétkasaining data to find
the decision boundary. The performance of the resulting ldiassier is high with an
accuracy of 87.87% when computed using 10-fold cross-aatid. We randomly divide
the AD and Normal subjects into 10 disjoint subsets of eqizal. SRemove one subset,
train the LDA model using the other nine subsets. This pm&esepeated by removing
each of the ten subsets once at a time and then average thiécddi®n accuracy. In order
to evaluate the performance of classification, we providalte for sensitivity and speci-

ficity for LDA classifier. The sensitivity indicates the pertage of Alzheimer’s people
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who are correctly identified. It reaches 88.59% which regmésthe high percentage of
correctly classified. In addition, the specificity shows titue negative that is the healthy
people correctly identified as healthy. The accuracy of &% teveals that most normal
healthy people are correctly identified in the Normal gro8jmilarly to the LDA in AD
and Normal classier, for the discrimination of subject®hging to the EMCI and LMCI
groups, we obtain a classification accuracy of 80.47%. Aigothis result is accept-
able, the sensitivity is reduced to 75.85% indicating soeregntage of patients are not

correctly classified in LMCI groups.
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Figure 6.3: Histogram of directed edge entropy association. Normaibéshow en-
tropy association for each edge compared to the late and Ailpgrwhich the distribu-
tions shift to high entropy region.
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Figure 6.4: Histogram of directed edge entropy association betweely Ehid Cog-
nitive Impairment (EMCI) and Late Mild Cognitive Impairmief.MCI).
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Table 6.2: The classification accuracy with linear discriminant as@y(LDA) for
training data (AD/Normal) and testing data (EMCI/LMCI) @)

LDA Accuracy  Sensitivity Specificity Positive Predictiyit
AD/Normal 87.87+0.58 88.59 87.10 88.00
EMCI/LMCI 80.474+0.41 75.85 86.18 87.14

6.4.3 Entropic Kernel Classification

Now we describe the application of the quantum statisticalhmds to investigate the
structural dissimilarity of the fMRI activation networkshich is used to distinguish
different groups of patients. We compute the Jensen-Shmakemel matrix using the
Bose-Einstein entropy and compare the performance olotdien von Neumann en-
tropy. Given the spectra of a graph and the total number diges, the chemical po-

tential can be derived from Eq.(4.18), which is used to dateuthe entropy. Fig.6.5 and

~ < 0O Alzheimer
~ + Late
~ Early

T~ *  Normal

Third eigenvector
o

Second eigenvector First eigenvector

Figure 6.5: Kernel PCA performance of Jensen-Shannon Divergence ia-Basstein
entropy. Temperatur8 = 10 and particle numbed = 1.

Fig.6.6 show the results of mapping the graphs into a 3-déeal feature space ob-
tained by kernel principal components analysis (kPCA). Bfirst three eigenvectors to
show the cluster of each group. The common feature is thatthet Bose-Einstein and
von Neumann entropies separate the four groups of subjadtse case of Bose-Einstein

statistics, the clusters are better separated than thes@eth with von Neumann entropy.
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To place our analysis on a more quantitative footing, weyapijgher’s linear dis-

criminant analysis to classify graphs with the kernel feadtand compute the classifica-

tion accuracy for the different groups of subjects. TabBstimmaries the results of clas-

sification accuracy obtained by Jensen-Shannon kernelgutechfrom the two entropies.

Compared to the accuracy with von Neumann entropy, thairaddavith Bose-Einstein

entropy exhibits a higher classification accuracy. The Hasstein entropy outperforms

the von Neumann entropy on three classes of data preseni@aniaygin of about 10%.

This reveals that the proposed graph kernel computed witheleShannon Divergence

and Bose-Einstein entropy improve the classification perémce for the fMRI data.
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Figure 6.6: Kernel PCA performance of Jensen-Shannon Divergence itNeamann

entropy.

Table 6.3: Classification Accuracy for Entropy from Bose-EinsteintiStecs and von

Neumann Entropy

Classification Accuracy Alzheimer

LMCI EMCI Normal

Bose-Einstein Statistics 93.33% (28/30)

100% (34/34) @mBA2/47) 92.11% (35/38)

von-Neumann Entropy ~ 93.33% (28/30) 88.24% (30/34) 82.9B9M() 86.84% (33/38)

The main parameters of the Bose-Einstein entropy are thpesature and number

of particles in the system. Here, we discuss the effectseoféemperature on the energy

level occupation statistics and hence upon the entropiekeerformance at low and high

temperatures. We first focus on the average number of pestiglen the temperatufe

at each energy level from Eq.(4.17). In Fig.6.7, we plot the occupation numberthe

different normalised Laplacian energy states with différealues of temperature.
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Figure 6.7: Average occupation number for energy state set differenpésature for
Bose-Einstein statistics.

As shown in this figure, with fixed temperature and increagingrgy, the number
of particles in each energy level decreases. As a resullpiver energy levels are occu-
pied with the largest number of particles. Furthermorehade¢mperature decreases, the
number of particles in each energy state decreases. Itgbeuioted that the number of
particles in each state is determined by two factors, namellge Bose-Einstein occupa-

tion statistics, and b) the number of particles as deterdiayethe chemical potential.
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Figure 6.8: Classification accuracy changes with temperature in Jekannon Di-
vergence with entropy from Bose-Einstein statistics.

In order to evaluate how temperature affects the performahthe Jensen-Shannon

kernel, we compare its behaviour at low and high temperatooe the fMRI brain acti-
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Figure 6.9: Kernel PCA performance of Jensen-Shannon Divergence wiittogy
from Bose-Einstein statistics at different values of terapge 3 = 1,N = 5).

vation data, we sg® = 1 andf = 0.1, leaving the total particle numbir= 5 unchanged.
Compared to the low temperature caBe<{10) in Fig.6.5, increasing temperature makes
the four classes of graphs more densely clustered in feaparee, shown in Fig.6.9 and
Fig.6.10. This is term which reduces the performance ofdddPCA. Fig.6.8 shows the
performance of classification changes with temperaturghdgemperature increases, the
occupation number at each energy level increases andlpartiecome to propagate in
the high energy states. This will rise up the entropy andatsawce in each group, which

reduces the performance of classification accuracy.
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Figure 6.10: Kernel PCA performance of Jensen-Shannon Divergence wiitoy
from Bose-Einstein statistics at different values of terapge 3 =0.1,N = 5).
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6.4.4 ldentifying Salient Nodes for Disease Classification

Identifying diseased regions in the brain is also an impagéudy in Alzheimer’s analy-
sis. Several studies have shown that in anatomical stesthe corresponding ROIs are
important for understanding brain disorders [100, 89]. dJ@re compute the difference
of out-degree and in-degree in our study and investigatenthod for identification of

the disease nodes in patients with Alzheimer’s.
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Figure 6.11: Histogram of degree difference between Alzheimer's (ADJ &lormal
Healthy Controls (HC) groups. The normal and early patiextsibit a wide bound
range compared to the late and AD groups which the distdbutarrows around zero.
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Figure 6.12: Histogram of degree difference between Early Mild Cogeitimpairment
(EMCI) and Late Mild Cognitive Impairment (LMCI).

We first compute the histogram of degree imbalance, i.edegtee minus in-degree

for each node. Fig.6.11 and Fig.6.12 compare histogranaraat for AD and HC, and
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Figure 6.13: Directed edge entropy difference between Alzheimer’'s (ABJ Normal
Healthy Controls (HC) groups. The significant changes of@egatio in each nodes
associate with the similar pattern in edge entropy plot,cihilustrates the diseased
area in the brain.

for EMCI and LMCI. The obvious feature is that the directedmrs for HC (normal) and
EMCI (early development) groups give a much broader rangkegfee difference com-
pared to that for the AD (fully developed disease) and LM@tgldevelopment) groups.
In other words, for subjects with fully developed AD, thesailoss of connection between

brain regions and gives rise to a narrowing of the distrdoubf degree difference.

We now plot the difference in directed edge entropy betweeresponding regions
(nodes) in the directed graphs for the AD and HC groups. We dirsiimilar feature
pattern of the degree difference in both plots as shown in6Hi§ and Fig.6.14. The
entropic measurements associated with degree differeniteibrain areas, such as the
Temporal Gyrus, Parahippocampal Gyrus, Operculum CortebLangual Gyrus, suggest
that subjects with AD experience loss of interconnectioeir brain network during the

progression of the disease.

As listed in Table 6.4, top ten anatomical regions with tligdat entropy differences
for subjects with full AD are right Parahippocampal Gyrest Inferior Temporal Gyrus,
left Paracingulate Gyrus, right Temporal Fusiform Corteghit Heschl's Gyrus, left Pari-
etal Operculum Cortex, right Paracingulate Gyrus, left peral Fusiform Cortex, left

Central Opercular Cortex and left Inferior Frontal GyrudhisTresult is consistent with
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the previous study [66, 87], which suggested that the mitehigporal gyrus is an im-
portant region in AD pathology [89]. The parahippocampalgyhas consistently been
reported as being an affected region in EMCI and AD [51]. Tdsslof connection be-
tween these brain regions results in significant functiomgdairment between healthy

subjects and patients with AD.
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Figure 6.14: The ratio of out-degree and in-degree difference corredipgnto each
ROI in two groups of AD and Normal patients.

Table 6.4: Top 10 ROIs with the significant difference between group#\bf and
Normal. These ROIs are extracted from the absolute valuaisfiegree to in-degree
ratio.

Graph measure ROI Number Corresponding area in brain

83 Right Parahippocampal Gyrus
14 Left Inferior Temporal Gyrus
27 Left Paracingulate Gyrus
Out-degree/In- 65 R?ght Tempo,ral Fusiform Cortex
degree Ratio 93 Right Hgschl s Gyrus
Difference 43 Lgft Parletal' Operculum Cortex
75 Right Paracingulate Gyrus
38 Left Temporal Fusiform Cortex
42 Left Central Opercular Cortex
5 Left Inferior Frontal Gyrus

We now repeat our LDA analysis using just the salient regimted in Table 6.4,
since it is the impairment of connections to these anatdmtoactures that appear to de-
termine the onset of AD. We perform LDA on the 4 vectors repnéisg the pairs of listed

anatomical regions. The classification accuracy is showralile 6.5. In comparison
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Table 6.5: LDA classification accuracy with top 20 selected ROIls toidggtish
AD/Normal and EMCI/LMCL (in %)

LDA Accuracy  Sensitivity Specificity Positive Predictiyit
AD/Normal 9052+0.67 91.36 89.61 91.20
EMCI/LMCI 86.20+0.81 83.90 90.12 89.26

to the previous results in Table 6.3, the accuracy increlgesout 3% in AD/Normal
groups and 6% in the EMCI/LMCL groups. All other performasi@e also improved

with these selected degree features.
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Figure 6.15: Edge entropy distribution of fMRI networks with (a) von Neanm en-
tropy, (b) Maxwell-Boltzmann statistics, (¢) Bose-Einststatistics and (d) Fermi-
Dirac statistics. Two groups of patients, Alzheimer’s dise (AD) and healthy control
(Normal).

Then, we apply the fMRI brain networks to further compare edge entropy dis-
tribution with these statistical methods. Fig.6.15 sholes difference of edge entropy
distribution with two groups of patients, i.e., Alzheingdisease (AD) and healthy con-

trol (Normal). Compared to the von Neumann entropy whichsduoa clearly represent
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distributions difference between two groups, statisticathods are more robust to distin-
guish the detailed entropic edges. The Maxwell-Boltzmaistridution, as an example
in Fig.6.15(b), illustrates that the edge entropy in Alzher’s disease tends to present a
low entropy value. This observation is more palpable in BEsestein and Fermi-Dirac
distributions, as shown in Fig.6.15(c) and Fig.6.15(d}hwmore edges tending to occupy
the low entropy region. The Bose-Einstein edge entropyletha more distinguish-
able property to separate two groups compared to the Fenmacdistribution since the

nonoverlapping area is much larger.
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Figure 6.16: Visualisation of LDA performance with three dimensionahpipal com-
ponents in four groups of Alzheimer’s disease. (a) MaxBalizmann statistics, (b)
Bose-Einstein statistics, (c) Fermi-Dirac statistics.

Finally, we select the edges with the largest 3% of entropthexnanatomical re-
gions. This gives 278 significant edges as a feature vectar.eXjglore whether these
feature vectors can be used to classify normal healthy stgpnd patients with the
early Alzheimer’s disease. Fig.6.16 is the visualisatibnhe three dimensional prin-
cipal components for four groups using linear discrimiramtlysis (LDA). Three prin-
cipal eigenvectors show the cluster of each group. The camfiesmture is that each of

the three statistical edge entropy (MB, BE, FD) can give #qgasation among the four
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subject groups. Here, the Bose-Einstein edge entropy mieadetter performance than

Maxwell-Boltzmann and Fermi-Dirac cases.

6.5 Summary

In conclusion, motivated by filling the gap in the literatwkanalysing fMRI regional
brain interaction networks using directed graphs. We conuaérom the recently devel-
oped simplified approximations to the von Neumann entropglii@cted graphs, which
are dependent on the graph size and the in-degree and aetedsgtistics of vertices. In
order to characterise the functional organisation of tla@nhrassortativity of nodes in di-
rected graphs provides insights into the neuropathologizfeimer’s disease. Entropic
measurements associated with node degree identifies teecedgection features which
offer high discrimination between subjects suffering frAl and normal subjects.
Furthermore, we show how to compute an information theograph-kernel using
Bose-Einstein entropy and the Jensen-Shannon diverg&egresent a novel method
for characterising networks using the entropy associatddsonic particles in thermal
equilibrium with a heat bath. According to this analogy, tieemalised Laplacian plays
the role of Hamiltonian operator, and the associated ersteggs are populated according
to Bose-Einstein statistics. This model is subject to treagitation by the heat reservoir.
The physics of the system can be captured by using a partiticoiion defined over the
normalised Laplacian eigenvalues. We explore whetherabi@ting entropy can be used
to construct an effective information theoretic graphAefor the purposes of classifying
different types of graph or network structure. To this end,censtruct a Jensen-Shannon
kernel using the Bose-Einstein entropy for a sample of nedsvand then apply kernel
principal components analysis (kPCA) to map graphs intodomensional feature space.
We apply the resulting method to classify fMRI activationwerks from patients with

suspected Alzheimer’s disease.



Chapter 7

Conclusions and Future Work

This chapter provides a summary of the main contributiorthénthesis, which includes
the novel methods in the network analysis with partitionclions, spin statistics, edge
entropy decomposition, dynamic network evolution and ty@iaation in fMRI networks.

We analyse the limitations of these methods and provide ttengal research in the

future.

7.1 Summary of Contributions

The overall goal of this thesis is to apply statistical anttaic techniques to develop
novel and effective methods for analysing the network stimecand evolution, particu-
larly paying attention to the application of fMRI data. Tastkend, we investigate thermo-
dynamic characterisation of networks with different spitistics specified by partition
functions. We propose a novel framework to show how to ptaege-entropy compo-
nents. The detailed distribution of entropy across the edge presented. We also de-
velop an efficient method for simulating the dynamic netwevklution using the Euler-
Lagrange equation. Finally, we apply the fMRI brain netwsoté extend the theoretical
approach to real-world datasets.

Our starting point is to develop statistical models withaiejto partition functions
and entropy to investigate the network structure. This scdbed in Chapter 3. The
normalised Laplacian matrix is regarded as the Hamiltooerator of the network, and

the associated energy states are given by the eigenvalubs obrmalised Laplacian.
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We explore the classical and quantum statistical casesewther particle occupations
correspond to Maxwell-Boltzmann, Bose-Einstein and Fddinac statistics. From the
relevant partition functions, we can calculate the therymaghnic entropy and energy. It
provides the detailed analysis of three different panitionctions deriving the entropic

characterisations when compared to the extensively stirdgyroNeumann entropy.

We conduct the experiments on both synthetic and real-waatdsets to evaluate
statistical properties. Entropies from three statistmabtels can be used to characterise
changes in network structure, and distinguish differettvoek structures. The synthetic
data, generating from Eéd-Rényi random graphs, Watts-Strogatz small-world ngtsjo
Barabasi-Albert scale-free networks can be distinguislysehtropies. Experiments with
real-world data show that the thermodynamic variables @dronly be used to identify

different classes of network, but can also to detect theglohanges in network structure.

In classical and quantum statistical models, i.e., MaxaBeltzmann, Bose-Einstein
and Fermi-Dirac statistics, the Fermi-Dirac entropy appesaperior performance to dis-
tinguish different networks. This is because Fermi-Dinatistics is more sensitive to the
higher eigenvalues of the normalised Laplacian, whichaadld to enlarge probe differ-
ences in the degree distributions for different models. @at-world data, on the other
hand, comes mainly from problems where a strong communitjuster structure exists
in the networks. Thus, the Bose-Einstein model performsfbethe reason of sensitivity

to the eigenvalue gap.

Based on the thermodynamic entropy with spin statisticgpmepose a novel frame-
work in Chapter 4 to project out edge-entropy componentiaithe detailed distribution
of entropy across the edges of a network can be computed. iBechthe methods in
Chapter 3 that Hamiltonian operator of the network assediatith energy states derived
from the eigenvalues of normalised Laplacian matrix, theigda occupation in the en-
ergy states result from three statistics. Then the corredipg thermodynamic entropy
extends it as a tool to characterise network structures tin gtatic and time serial data.

Our results in the experiments demonstrate that the theynawdic edge entropy is better
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suited to represent the intrinsic structural propertieoaisited to long-tailed degree dis-
tributions when compared with the von Neuman entropy. Thgatrticularly valuable for

the analysis of non-homogeneous networks with a hub streictu

The third contribution, as outlined in Chapter 5, is the depment of a variational
principle to investigate both undirected and directed oetwevolution. We apply the
Euler-Lagrange equation based on the von Neumann entreginfe-varying network
structure. Commencing from recent work to approximate the Neumann entropy us-
ing simple degree statistics, the changes in entropy betwdierent time epochs are
determined by correlations in terms of the degree diffezdmetween edge connections.
Our Euler-Lagrange equation minimises the change in eptaop develops a dynamic
model to simulate the changes of node degree with time. Weefqdore the effect of
network dynamics on the three widely studied complex nétwaodels, namely Eitis-
Rényi random graphs, Watts-Strogatz small-world netwoasksl Barabasi-Albert scale-
free networks. Our model effectively captures both und@eand directed structural
transitions in the dynamic network models. We also apply tead-world networks. One
is the time sequential network representing the evolutf@taxk prices on the New York
Stock Exchange (NYSE) from 1987 to 2011. The other is the esecps of Drosophila
gene regulatory networks containing different developiaghases of the organism from
embryo to adult. Our experiments show that the presenteehmod only provides an ac-
curate simulation of the degree statistics in time-varyiatyvorks, but that is also captures

the topological variations taking place when the structiir@ network changes violently.

Finally, in order to fill the gap in the literature regarding the analysis of fMRI
regional brain interaction networks using directed graph&hapter 6, we take advan-
tages of the recently developed approximate von Neumamomnfor directed graphs,
which are dependent on the graph size and the in-degree dartegree statistics. As-
sortativity of vertices provides insights into the neuriyadogy of Alzheimer’s disease to
explore the functional organisation of the brain. Entrapigasurements associated with
node degree identifies the edge connection features whiehlagh discrimination be-

tween subjects suffering from the AD and normal subjectsthieumore, we compute an



7.2. LIMITATIONS 152

information theoretic graph-kernel using Bose-Einsteitray and the Jensen-Shannon
divergence. This method is based on the entropy associatedesonic particles in ther-
mal equilibrium with a heat bath. It is subjected to therntalation by the heat reservoir.
The physics of the system can be captured by using a partiticoiion defined over the
normalised Laplacian eigenvalues. We explore whetherdabglting entropy is useful to
construct an effective information theoretic graph-kéfoethe purposes of classifying
different types of graph or network structure. To this en@, build a Jensen-Shannon
kernel using the Bose-Einstein entropy for a sample of nedsvand then apply kernel
principal components analysis (kPCA) to map graphs intodomensional feature space.
We apply the resulting method to classify fMRI activationwerks from patients with

suspected Alzheimer’s disease.

7.2 Limitations

Although the novel methods provided in this thesis outpend some of the state-of-
the-art measures in network characterisations, therditi@ sumber of limitations to be

noticed as follows.

First, commencing with the definition of the Hamiltonian cgter of the network,
the associated energy states correspond to the eigenwdlties normalised Laplacian.
We specify the particle occupations correspond to MaxBellzmann, Bose-Einstein
and Fermi-Dirac statistics. This leads to an indetermigatenition of the meaning of
particles on the network. In other words, it is difficult teepent a clear physical meaning
to the particles with regard to the structural charactéasa in the network. This short-
coming clearly suppresses the utility of statistical stuell applications in the network

characteristics.

Another limitation is the Hamiltonian operator, which igaeded as the normalised
Laplacian matrix, determines the energy of a given netwBdkiar, there is comparatively
little work to understand complex networks from a purelyssiaal statistical mechanics
point of view where the energy is not constrained. Classleamodynamics describes

systems in equilibrium. However, many networks which haverged as a result of a
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dynamical process are far from equilibrium. Real-worldwaeks result from a combi-
nation of a growth process and some thermalisation proseg®e example, the Internet
grows, but at the same time, it continuously rearrangeshéiig a sort of thermalisa-
tion [2]. The introduction of a network Hamiltonian makeslisadvantage to study the

evolutionary networks with thermalisation in a flexible way

Moreover, in terms of dynamic network evolution, we applg thariational princi-
ple with Euler-Lagrange equation in the experiments. Altjioit effectively identifies
abrupt changes and distinctive periods in time-varyingniona networks, there are still
some limitations with the large-scale networks evolvinghwnflexible vertices. Some
unexpected random fluctuations may not associate with @mjifcable events in the time-
series. A few critical events do not give rise to unique patievhen it applies the change

of approximate von Neumann entropy in variational prineipl

Finally, when it comes to the application of fMRI networksg \generate the brain
networks using the cross-correlation coefficients to meage similarity between pairs
of a time-serial signal. However, this method cannot adedyiaepresent the functional
structural activity in the brain. Actually, there does nahibit a linear correlation be-
tween pairs of regions in the brain. The threshold for carsiing the binary adjacency
matrix can also lead to the lost of information in functiomahnectivity. In this case,
more advantage technologies, such as mutual informatidtransfer entropy, should be

investigated to compensate the drawbacks of cross-cborela

7.3 Future Work

In this section, we provide the possible solutions to thatétions of this thesis, and

discuss some approaches for the potential research.

First, in order to clearly explain the meaning of particlasthe network system,
we may introduce the network topologies with the thermodyica of the ideal gas. By
analogy with eigenvalues of graph spectrum, the one-paeitergy spectrum can derive
the thermodynamical properties in the scope of networkasttarisations. In this sense,

the networks with connectivity can be viewed as the idealigabe study of general
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physical systems. Moreover, a stochastic process canildescgas of identical particles
transporting on the networks. The transition rate for plesi depends on the state of the

node which corresponds to the quantum walks on the networks.

Moreover, in terms of network Hamiltonian, other graph rnicas such as adjacency
matrix, Laplacian matrix and singless Laplacian can beangol as the Hamiltonian op-
erator to specify the energy spectrum. So far the equilib@pproaches have been pro-
posed with specific partition function to study topologipabperties of networks, while
the dynamic network evolution requires the network Hamito to be more suitable to
represent the non-equilibrium process. Perturbationrtheay be further applied to the
dynamic network described by Euler-Lagrange or Hamiltegsations. This is more in-
teresting to derive the dynamic Hamiltonian that goveresigtwork evolution in analogy

to the physical intuition.

In addition, the entropic methods can further associatke métwork structure. The
definition of entropy provides the concept of thermodynamic networks, which es-
tablishes a link between microstates and macroscopic igésas of networks. There-
fore, the information of network topology can be computemhfrentropy to reflect the
divergence between different structures. In fact, the venrNann entropy with Jensen-
Shannon divergence has been proved to be an efficient wayhstraot graph kernel to
measure dissimilarity. This provides a new direction fa development of kernel meth-
ods. It allows us to further explore graph kernels and mutfakmation methods with
thermodynamic entropies from different statistics. Rattr information divergence from
different network statistical entropy will provide a morewserful tool for characterising

various structural patterns.

Finally, we acknowledge that we have explored a relativielytéd quantity of real-
world data. It would, for example, be interesting to see & thermodynamic variables
can be used to detect temporal anomalies and disturbanties e@volution of networks
on a greater variety of data. Another interesting line oéstigation would be to explore
whether phase transitions can be detected with thermodgngurantities to other net-

work structures such as the multilayer networks and muttipletworks. We also plan
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to extend the work in this thesis to the low-temperaturetirfor exploring the observed

phenomenon of Bose-Einstein condensation in the networks.



List of Symbols

.CQ-:’_G>"_”_U>ZC m< o

Graph

Vertex set of a graph

Edge set of a graph

Vertex Index

Number of Vertices in a graph

Adjacency Matrix of a graph

Degree Matrix of a graph

(Combinatorial) Laplacian matrix of a directed/undirettgaph
Normalized Laplacian Matrix of a directed/undirected drap
Diagonal Eigenvalue Matrix of Normalized Laplacian
Eigenvector Matrix of Normalized Laplacian

Identity Matrix

Fitness Parameter for each node

Degree of Vertexi

In-degree of Vertex

Out-degree of Vertex

Eigenvalue of Normalized Laplacian Matrix

Pure Quantum States

Density Matrix

Hamiltonian Operator

Kinetic Energy

Potential Energy

Number of Particles

Thermodynamic Average Energy

Helmholtz Free Energy

Thermodynamic Temperature

Boltzmann Constant

Chemical Potential

Energy State



157

w
m

N NN N
<
@

'|'|
o

Partition Function

Partition Function in Maxwell-Boltzmann Statistics
Partition Function in Bose-Einstein Statistics

Partition Function in Fermi-Dirac Statistics
Thermodynamic Entropy

Thermodynamic Entropy in Maxwell-Boltzmann Statistics
Thermodynamic Entropy in Bose-Einstein Statistics
Thermodynamic Entropy in Fermi-Dirac Statistics

Von Neumann Entropy of a Graph

Edge Entropy Decomposition in Maxwell-Boltzmann Statisti

Von Neumann Entropy of a Directed Graph

Von Neumann Entropy of a Weakly Directed Graph

Von Neumann Entropy of a Strongly Directed Graph

Euler-Lagrange equation

Variable in Euler-Lagrange Equation as a Function of Time

Time Derivative ofg(t)

Change of Approximate von Neumann Entropy

Change of Approximate von Neumann Entropy for Weakly DeddBraph
Change of Approximate von Neumann Entropy for Strongly Eied Graph
Degree change at vertex

Time Differential to the Change of Degree at vertex

Graph Change in Euler-Lagrange Equation

Node Degreel at Time Epoch

Ratio of In-degree to Out-degree for Node

Directed Assortativity

Directed Edge Assortativity with von Neumann Entropy
Jensen-Shannon Divergence

Jensen-Shannon Divergence in Graph Kernel



Abbreviations

AD

ADNI

BA

BE

BEC

BOLD

Cl

EMCI

ER

FD

fMRI

HC

JSD

kPCA

LDA

Alzheimer’s Disease

Alzheimer’s Disease Neuroimaging Initiative
Barabasi-Albert Scale-free Networks
Bose-Einstein Statistics

Bose Einstein Condensation

Blood Oxygen Level-Dependent
Confidence Interval

Early Mild Cognitive Impairment
Erdés-Rényi Random Graph
Fermi-Dirac Statistics

functional Magnetic Resonance Imaging
Healthy Control

Jensen Shannon Divergence

kernel Principal Component Analysis

Linear Discriminant Analysis



159

LMCI  Late Mild Cognitive Impairment
MB Maxwell-Boltzmann Statistics
NYSE New York Stock Exchange
PCA Principal Component Analysis
PPI Protein-Protein Interaction

ROI Region of Interest

RMSE Root Mean Square Error

SD Strongly Directed

VNE von Neumann Entropy

WD Weakly Directed

WS Watts-Strogatz Small World Networks



Bibliography

[1] Alanyali, M., Moat, H. S., & Preis, T. (2013). Quantifygrthe relationship between
financial news and the stock mark&cientific reports3, 3578.

[2] Albert, R. & Barabasi, A.-L. (2002). Statistical meches of complex networks.
Review Modern Physic34(1), 47-97.

[3] Albert, R., Jeong, H., & Barabasi, A.-L. (2000). Erromaaitack tolerance of complex
networks.nature 406(6794), 378—382.

[4] Alstott, J., Pajevic, S., Bullmore, E., & Plenz, D. (20150pening bottlenecks on
weighted networks by local adaptation to cascade failudesirnal of Complex Net-
works 3, 552-565.

[5] Anand, K. & Bianconi, G. (2009). Entropy measures forwetks: toward an in-
formation theory of complex topologie®hysical Review E (Rapid communications)
045102(R)80.

[6] Anand, K., Bianconi, G., & Severini, S. (2011). Shannow &on Neumann entropy
of random networks with heterogeneous expected defegsical Review E 036109
83(3).

[7] Anand, K., Krioukov, D., & Bianconi, G. (2014). Entropysiribution and condensa-
tion in random networks with a given degree distributi®mysical Review E 062807
89.

[8] Andreas, L., Simonetto, A., & Leus, G. (2015). Distribdtautoregressive moving
average graph filterdEEE Signal Processing Letter82.11, 1931-1935.

[9] Anwar, A. R., Hashmy, M. Y., Imran, B., Riaz, M. H., Mehds, M. M., Muthalib,

M., Perrey, S., Deuschl, G., Groppa, S., & Muthuraman, M1@0Complex network



BIBLIOGRAPHY 161

analysis of resting-state fMRI of the brai@8th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMB@). 3598-3601).

[10] Bai, L. & Hancock, E. (2012). Graph kernels from the Jm§&hannon divergence.
Journal of Mathematical Imaging and Visip#7, 60—69.

[11] Bali, T. G. & Hovakimian, A. (2009). Volatility spreadmd expected stock returns.
Management SciencB5(11), 1797-1812.

[12] Barabasi, A.-L. & Albert, R. (1999). Emergence of sogliin random networks.
Science286, 509-512.

[13] Barabasi, A.-L., Albert, R., & Jeong, H. (1999). Meaaldi theory for scale free
random networksPhysics A272, 173-187.

[14] Baronchelli, A., Catanzaro, M., & Pastor-Satorras,(®08). Bosonic reaction-
diffusion processes on scale-free netwofRbysical Review E 0161178.

[15] Bianconi, G. (2002). Growing cayley trees describedlyermi distribution Phys-
ical Review E 03611,656.

[16] Bianconi, G. (2005). Emergence of weight-topologyretations in complex scale-
free networks Europhysics Letters/1, 1029.

[17] Bianconi, G. (2008). Entropy of randomized networkembles.Europhysics Let-
ters 2800581.

[18] Bianconi, G. (2009). The entropy of network ensemblelysical Review E.79,
036114.

[19] Bianconi, G. (2013). Statistical mechanics of mukyohetworks: entropy and over-
lap. Physical Review E. 0628087.

[20] Bianconi, G. (2015). Supersymmetric multiplex netlsdescribed by coupled
Bose and Fermi statisticRhysical Review O1.

[21] Bianconi, G. & Barabasi, A.-L. (2001a). Bose-Einstemndensation in complex
networks.Physical Review LetteB8, 5632.

[22] Bianconi, G. & Barabasi, A.-L. (2001b). Competitiondamultiscaling in evolving

networks.Europhysics Letter$4, 436.



BIBLIOGRAPHY 162

[23] Bianconi, G., Rahmede, C., & Wu, Z. (2015). Complex guamnetwork geome-
tries: Evolution and phase transitioragXiv:1503.04739v2

[24] Blundell, S. J. & Blundell, K. M. (2006).Concepts in Thermal PhysicgOxford
University Press.

[25] Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & ldng, D.-U. (2006). Com-
plex networks: Structure and dynamidhysics reports424(4), 175-308.

[26] Bogacz, L., Burda, Z., & Waclaw, B. (2006). Homogeneaomplex networks.
Physica A: Statistical Mechanics and its Applicatip866, 587—607.

[27] Borgwardt, K. M. & Kriegel, H.-P. (2005). Shortest-paternels on graphs. IRifth
IEEE International Conference on Data Minirfgp. 74-81).

[28] Brunelli, I., Giusiano, G., Mancini, F. P., Sodano, &.,Trombettoni, A. (2004).
Topology-induced spatial Bose-Einstein condensatioltmmons on star-shaped opti-
cal networks.Journal of Physics B: Atomic, Molecular and Optical PhysR8, S275.

[29] Bu, D., Zhao, Y., Cai, L., Xue, H., Zhu, X., Lu, H., Zhang, Sun, S., Ling, L.,
Zhang, N., et al. (2003). Topological structure analysithefprotein—protein interac-
tion network in budding yeashucleic acids researct81(9), 2443—-2450.

[30] Buonsante, P., Burioni, R., Cassi, D., & Vezzani, A.@2D Bose-Einstein conden-
sation on inhomogeneous networks: Mesoscopic aspectssvrsrmodynamic limit.
Physical Review B 0942086.

[31] Chesney, M., Crameri, R., & Mancini, L. (2015). Detectiabnormal trading activ-
ities in option marketsJournal of Empirical Finance33, 263-275.

[32] Choudhry, R. & Garg, K. (2008). A hybrid machine leammsystem for stock market
forecastingWorld Academy of Science, Engineering and Techno@@f3), 315-318.

[33] Chung, F. (1997). Spectral graph theor¢BMS Regional Conference Series in
Mathematics92.

[34] Chung, F. & Yau, S.-T. (1998). Coverings, heat kerneld spanning treeslournal
of Combinatorics6, 163-184.

[35] Consortium, I. C. G. et al. (2010). International netiwof cancer genome projects.

Nature 464(7291), 993.



BIBLIOGRAPHY 163

[36] de Oliveira, I., FA de Moura, M. L., Andrade, J. J., & Alpuerque, E. (2010).
Bose-Einstein condensation in the apollonian complex odwPhysical Review E
030104(R)81.

[37] Dehmer, M. & Emmert-Streib, F. (20097nalysis of complex networks: from biol-
ogy to linguistics John Wiley & Sons.

[38] Dehmer, M. & Mowshowitz, A. (2011). A history of graph teopy measuresin-
formation Scienced81(1), 57-78.

[39] Domenico, D., Lancichinetti, A., Arenas, A., & RosvaM. (2015a). Structural
reducibility of multilayer networksNature Communication$, 7864.

[40] Domenico, M. D., Nicosia, V., Arenas, A., & Latora, V.q25b). Identifying mod-
ular flows on multilayer networks reveals highly overlagpiorganization in social
systemsPhysical Review X 011023.

[41] Erdos, P. & Rényi, A. (1959). On random graphubl. Math. Debreceng, 290—
297.

[42] Erdos, P. & Rényi, A. (1960). On the evolution of randoraghs.Publ. Math. Inst.
Hung. Acad. S¢i5(1), 17-60.

[43] Escolano, F., Hancock, E. R., & Lozano, M. A. (2012). Hea#usion: Thermody-
namic depth complexity of network®hysical Review E 0362085, 190-198.

[44] Escolano, F., Lozano, M. A., Hancock, E. R., & Giorgi, 2010). What is the
complexity of a network? The heat flow-thermodynamic demibraach.Joint IAPR
International Workshops on Statistical Techniques in é&attRecognition (SPR) and
Structural and Syntactic Pattern Recognition (SSRR). 286—295).

[45] Estrada, E. (2012).The structure of complex networks: theory and applications
Oxford University Press.

[46] Estrada, E. & Hatano, N. (2007). Statistical-mechahapproach to subgraph cen-
trality in complex networksChemical Physics Letterd39, 247-251.

[47] Estrada, E. & Hatano, N. (2008). Communicability in qaex networks.Physical
Review E77.

[48] Ethan, C., Benjamin, G., Emek, D., Igor, R., Ozgun, Badh, A., Nikola, S., Gary,



BIBLIOGRAPHY 164

B., & Chris., S. (2011). Pathway commons, a web resource itdodpcal pathway
data.Nucleic Acids Res39, D695-D690.

[49] Euler, L. (1736). Solutio problematis ad geometriataspertinentisCommentarii
Academiae Scientiarium Imperialis Petropolitan8e128-140.

[50] Ferretti, L., Mamino, M., & Bianconi, G. (2014). Condstion and topological
phase transitions in a dynamical network model with rewirari the links. Physical
Review E 04281,(89.

[51] Foster, J. G., Foster, D. V., Grassberger, P., & Padzi$k(2010). Edge direc-
tion and the structure of networkBroceedings of the National Academy of Sciences
107(24), 10815-10820.

[52] Garlaschelli, D., Ahnert, S. E., Fink, T. M. A., & Calddli, G. (2008). Temperature
in complex networksarXiv:cond-mat/0606805

[53] Garlaschelli, D. & Loffredo, M. I. (2006). Multispecegrand-canonical models for
networks with reciprocityPhysical Review E73.

[54] Gopalapillai, I., Ivan, G., & Vijayakumar, A. (2007).rQdistance energy of graphs.
Match

[55] Gunthard, H. H. & Primas, H. (1956). Zusammenhang vapgentheorie und mo-
theorie von molekeln mit systemen konjugierter bindungealvetica Chimica Acta
39(6), 1645-1653.

[56] Gutfraind, A., Bradonj, M., & Novikoff, T. (2014). Modelling the neighbour aid
phenomenon for installing costly complex networkkurnal of Complex Networks
3(2), 249-263.

[57] Gutman, I. (2001). The energy of a graph: old and newltesélgebraic combina-
torics and applications(pp. 196-211).

[58] Gutman, I. & Zhou, B. (2006). Laplacian energy of a grahimear Algebra and its
applications 414(1), 29-37.

[59] Han, L., Escolano, F., Hancock, E., & Wilson, R. (2018raph characterizations
from von neumann entropyattern Recognition Letter83, 1958-1967.

[60] Han, L., Wilson, R. C., & Hancock, E. R. (2015). Generatgraph prototypes from



BIBLIOGRAPHY 165

information theory.I[EEE transactions on pattern analysis and machine intehicg
37(10), 2013-2027.

[61] Hernandez, J. M., Li, Z., & Mieghem, P. V. (2014). Weigtitbetweenness and
algebraic connectivityJournal of Complex Networkg, 272—-287.

[62] Hofree, M., Shen, J. P., Carter, H., Gross, A., & ldeRer2013). Network-based
stratification of tumor mutations\ature Methods10, 1108-1115.

[63] Javarone, M. A. & Armano, G. (2013). Quantum-classtecahsitions in complex
networks.Journal of Statistical Mechanics: Theory and Experimédt, P04019.

[64] Jooyandeh, M., Kiani, D., & Mirzakhah, M. (2009). Ineidce energy of a graph.
Match 62(3), 561.

[65] Kashima, H., Tsuda, K., & Inokuchi, A. (2003). Margiidd kernels between
labeled graphs. I1&0th international conference on machine learning (ICMB)-(pp.
321-328).

[66] Khazaee, A., Ebrahimzadeh, A., & Babajani-Feremi, 201(7). Classification of
patients with MCI and AD from healthy controls using diretigraph measures of
resting-state fMRIBehavioural Brain Researcl322(Part B), 339 — 350.

[67] K.Huang (1987)Statistical MechanicsNew York: Wiley.

[68] Kondor, R. I. & Lafferty, J. (2002). Diffusion kernelsxaraphs and other discrete
input spacesThe Nineteenth International Conference on Machine Lewyi, 315—
322.

[69] Krioukov, D., Papadopoulos, F., amd Amin Vahdat, M. &.Boguna, M. (2010).
Hyperbolic geometry of complex networkBhysical Review E 0361082.

[70] Leskovec, J., Kleinberg, J., & Faloutsos, C. (2007)aj@r evolution: Densification
and shrinking diameter®ACM Trans. Knowledge Discovery from Dafig1), 1-40.

[71] Lucas, L., Bartolo, L., Fernando, B., Jordi, L., Juan,NC, & Author, A. (2008).
From time series to complex networks: The visibility gragtroceedings of the Na-
tional Academy of Sciencel05.13, 4972-4975.

[72] Matrtin, T., Zhang, X., & Newman, M. (2014). Localizatiand centrality in net-
works. Physical Review E 0528080.



BIBLIOGRAPHY 166

[73] Martins, A., Smith, N., Xing, E., Aguiar, P., & Figueille, M. (2009). Nonextensive
theoretic kernels on measuremurnal of Machine Learning Researct0, 935-975.

[74] Mikulecky (2001). Network thermodynamics and compigxa transition to rela-
tional systems theoryfComputers & Chemistr\25, 369.

[75] Newman, M. & Watts, D. (1999a). Renormalization groumalgsis of the small-
world network modelPhysics Letter A263, 341.

[76] Newman, M. & Watts, D. (1999b). Scaling and percolatiothe small-world net-
work model.Physical Review 50, 7332.

[77] Newman, M. E. (2006). Finding community structure inwerks using the eigen-
vectors of matricesPhysical Review E74(3), 036104.

[78] Onnela, J.-P., Chakraborti, A., Kaski, K., Kerteszg&Kanto, A. (2003). Dynamics
of market correlations: Taxonomy and portfolio analy$tysical Review E 056110
68.

[79] Ostilli, M. & Bianconi, G. (2015). Statistical mechasi of random geometric
graphs: Geometry-induced first order phase transitiBhysical Review E 042136
91.

[80] Park, J. & Newman, M. (2004). Statistical mechanicsetivorks.Physical Review
E 066117 70(6).

[81] Passerini, F. & Severini, S. (2008). Quantifying coaxily in networks: The von
neumann entropy.Inthernational Journal of Agent Technologies and Sysigms.
58-67).

[82] Penrose, O. (1991). Bose-Einstein condensation inxactly soluble system of
interacting particlesJournal of Statistical Physi¢c$3, 761-781.

[83] Peron, T. & Rodrigues, F. (2011). Collective behaviofinancial marketsEuro-
pean Physical Lettei96(48004).

[84] Perseguers, S., Lewenstein, M., Acin, A., & Cirac, D(02). Quantum complex
networks.Nature Physics6, 539 — 543.

[85] Petersen, R. C., Aisen, P., Beckett, L., Donohue, Mm&aA., Harvey, D., Jack,

C., Jagust, W., Shaw, L., Toga, A., et al. (2010). Alzheimeéisease neuroimaging



BIBLIOGRAPHY 167

initiative (ADNI) clinical characterizationNeurology 74(3), 201-209.

[86] Rief, F. (1965). Fundamentals of Statistical and Thermal PhysiddcGraw-Hill
Science, New York.

[87] Rombouts, S. A., Barkhof, F., Goekoop, R., Stam, C. JSdaeltens, P. (2005).
Altered resting state networks in mild cognitive impairrnand mild Alzheimer’s dis-
ease: an fMRI studyHuman brain mapping26(4), 231-239.

[88] Rovelli, C. & Vidotto, F. (2010). Single particle in gntum gravity and braunstein-
ghosh-severini entropy of a spin netwofkhysical Review D81, 044038.

[89] Rubinov, M. & Sporns, O. (2010). Complex network measuwf brain connectivity:
uses and interpretationsleuroimage52(3), 1059-1069.

[90] Safar, M. H., Sorkhoh, I. Y., Farahat, H. M., & Mahdi, K. £011). On maximizing
the entropy of complex network®rocedia Computer Sciencg, 480-488.

[91] Scholkopf, B., Smola, A., & Miuller, K.-R. (1997). Kerherincipal component
analysis. Ininternational Conference on Atrtificial Neural Networlgp. 583-588).:
Springer.

[92] Shen, Y., Zhu, D., & Liu, W. (2004). Fermi-Dirac statcst of complex networks.
Chinese Phys. Left22, 1281.

[93] Silva, F.,, Comin, C., Peron, T., Rodrigues, F., Ye, Cil]séh, R., Hancock, E.,
& Costai, L. (2015). Modular dynamics of financial marketwetks. Physics and
Society arXiv:1501.05040.

[94] Silva, F. N., Comin, C. H., Peron, T. K. D., RodriguesAF, Ye, C., Wilson, R. C.,
Hancock, E. R., & Costa, L. d. F. (2016). Concentric netwgnkisietry. Information
Sciences333, 61-80.

[95] So, W., Robbiano, M., de Abreu, N. M. M., & Gutman, I. (Z)1 Applications of a
theorem by ky fan in the theory of graph energinear Algebra and its Applications
432(9), 2163-2169.

[96] Song, L., Kolar, M., & Xing, E. P. (2009). Keller: estirtiag time-varying interac-
tions between gene8ioinformatics 25(12), 128—-136.

[97] Strauss, D. (1986). On a general class of models forasten. SIAM Review



BIBLIOGRAPHY 168

28(4), 513-527.

[98] Strogatz, S. H. (2001). Exploring complex networkiature 410(6825), 268—-276.

[99] Szklarczyk, D., Franceschini, A., Wyder, S., Forslukd Heller, D., Huerta-Cepas,
J., Simonovic, M., Roth, A., Santos, A., Tsafou, K. P., et(aD14). String v10:
protein—protein interaction networks, integrated over titee of life. Nucleic acids
research43(D1), D447-D452.

[100] Van Den Heuvel, M. P. & Pol, H. E. H. (2010). Exploringetbrain network: a
review on resting-state fMRI functional connectivifguropean neuropsychopharma-
cology, 20(8), 519-534.

[101] Vidal, E., Lima, R., & Lyra, M. L. (2011). Bose-Einstecondensation in the
infinitely ramified star and wheel graphBhysical Review E 0611333.

[102] Viswanath, B., Mislove, A., Cha, M., & Gummadi, K. PO@9). On the evolution
of user interaction in facebook. RProceedings of the 2nd ACM workshop on Online
social networkgpp. 37-42).: ACM.

[103] Waclaw, B. (2013). Statistical mechanics of compleiwvorks.arXiv:0704.3702

[104] Wang, J., Wilson, R., & Hancock, E. (2016a). Networkrepy analysis using the
maxwell-boltzmann partition functionThe 23rd International Conference on Pattern
Recognition(ICPR)(pp. 1-6).

[105] Wang, J., Wilson, R. C., & Hancock, E. R. (2016b). fMRtigation network anal-
ysis using Bose-Einstein entropyoint IAPR International Workshops on Statistical
Techniques in Pattern Recognition (SPR) and Structural@yrmtactic Pattern Recog-
nition (SSPR)(pp. 218-228).

[106] Wang, J., Wilson, R. C., & Hancock, E. R. (2016c). Thedynamic network
analysis with quantum spin statistic3oint IAPR International Workshops on Statis-
tical Techniques in Pattern Recognition (SPR) and Strattand Syntactic Pattern
Recognition (SSPRpp. 153-162).

[107] Wang, J., Wilson, R. C., & Hancock, E. R. (2017a). Mimsimg entropy changes in
dynamic network evolutioninternational Workshop on Graph-Based Representations

in Pattern Recognition(pp. 255—-265).



BIBLIOGRAPHY 169

[108] Wang, J., Wilson, R. C., & Hancock, E. R. (2017b). Spatistics, partition func-
tions and network entropylournal of Complex Network§(6), 858—883.

[109] Wang, X. & Chen, G. (2003). Complex networks: Smallrladp scale-free and
beyond.IEEE Cirsuits and System Magazjig 6—20.

[110] Watts, D. & Strogatz, S. (1998). Collective dynamié¢ssmall world’ networks.
Naturg 393, 440-442.

[111] White, J. G., Southgate, E., Thomson, J. N., & Bren8e(1986). The structure of
the nervous system of the nematode caenorhabditis eletp@nsind of a wormPhil.
Trans. R. Soc. Lon@14, 1-340.

[112] Wolstenholme, R. J. & Walden, A. T. (2015). An efficieagproach to graphical
modeling of time seriedEEE Transactions on Signal Processjiti@, 3266—3276.

[113] Wu, Z., Menichetti, G., Rahmede, C., & Bianconi, G. 18). Emergent complex
network geometryNature Scientific Report$, 10073.

[114] Ye, C., Comin, C. H., Peron, T. K. D, Silva, F. N., Ragires, F. A., Costa, L. d. F.,
Torsello, A., & Hancock, E. R. (2015a). Thermodynamic cheeazation of networks
using graph polynomiald?hysical Review F92(3), 032810.

[115] Ye, C., Torsello, A., Wilson, R. C., & Hancock, E. R. (&b). Thermodynamics
of time evolving networksInternational Workshop on Graph-Based Representations
in Pattern Recognition(pp. 315-324).

[116] Ye, C., Wilson, R., & Hancock, E. (2016). Correlatioatwork evolution using
mean reversion autoregressioB+SSPR 2016, Lecture Notes in Computer Science
10029, 163-173.

[117] Ye, C., Wilson, R. C., Comin, C. H., da F. Costa, L., & laok, E. R. (2014).
Approximate von neumann entropy for directed grapPtsysical Review 9.

[118] Zhang, X., Martin, T., & Newman, M. (2015). Identifican of core-periphery
structure in networksPhysical Review E 0328091.

[119] Zuev, K., Papadopoulos, F., & Krioukov, D. (2016). Haonian dynamics of
preferential attachmengournal of Physics A: Mathematical and Theoretic&(10),

105001.



