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ABSTRACT 

Atomizers are used in many engineering applications including spray combustion in 

furnaces, diesel engines, direct injection petrol engines and gas turbine engines. They are 

also commonly used in applying agricultural chemicals to crops, paint spraying, food 

processing and cooling of nuclear cores. Pressure swirl atomizers occupy a special position 

amongst other atomizers because they differ in quality of atomization, simplicity of 

construction, reliability and low pumping power requirements. Turbulent mixing of the 

liquid and gas in these atomizers is indispensable consideration in the process of 

atomization. This thesis presents a recent Eulerian modelling of two-phase flow in a 

pressure swirl atomizer using Computational Fluid Dynamics (CFD) STAR-CD code and 

assesses its capabilities and validation. In this novel  Ʃ − Yliq  atomisation model, an 

Eulerian description is applied to solve the two-phase flow assuming both liquid and gas 

phases as a single continuum with high-density variation at large Reynolds and Weber 

numbers. The transport equations for the liquid mass fraction and interfacial surface 

density as well as the average density of the liquid and gas phases are modelled, liquid 

dispersion correctly captured and their numerical results presented. The results also show 

atomization characteristics such as droplet velocity and predicted droplet Sauter Mean 

Diameter (SMD) with reasonable order-of-magnitudes. The predictions show good 

agreement with experimental results obtained from a laser-diffraction-based drop size 

analyser (Malvern Spraytec). Different RANS turbulence models are evaluated in order to 

achieve the best configuration in comparison with experimental measurements and the 

standard k-ε turbulence model has shown the best performance. Parametric studies were 

conducted to analyse the influence of the liquid viscosity, surface tension, liquid and gas 

velocities, liquid and gas densities and pressure on the spray droplet SMD at different 

locations on the spray centre line and radial distances from the symmetry line of the 

atomizer. A combination of CFD modeling and the statistical Design of Experiments (DoE) 

technique known as modified Latin Hypercube Designs (LHD) is applied in order to 

improve SMD predictions from Ʃ − Yliq  atomisation model. With 4-factor DoE, eighty-

seven (87) cases were simulated with the variations and combinations in the design 

variables such as liquid viscosity 0.31 to 200 mPa.s, surface tension 20 to 75 mN/m, nozzle 

exit orifice diameter 1.5 to 3.5 mm and liquid velocity from 1 to 6 m/s. The results for the 

SMD at the axial distances along the spray centreline were obtained. Combinatorial 

optimization was performed to identify and obtain the optimal nozzle exit orifice 

diameters, operating conditions and fluid properties that  give the most minimum droplet 

(SMD) at the spray centreline. The results show remarkable improvement SMD and new 

SMD correlation for the model. 



v 
 

TABLE OF CONTENTS 

ACKNOWLEDGEMENT ....................................................................................................... I 

DEDICATION ........................................................................................................................ II 

ABSTRACT ........................................................................................................................... IV 

LIST OF FIGURES .............................................................................................................. IX 

LIST OF TABLES ............................................................................................................. XVI 

NOMENCLATURE .......................................................................................................... XVII 

CHAPTER 1 INTRODUCTION ............................................................................................ 1 

1.1 GENERAL INTRODUCTION ........................................................................................ 1 

1.2 THE OBJECTIVES OF THE RESEARCH ......................................................................... 6 

1.3 THE THESIS OUTLINE ............................................................................................... 7 

CHAPTER 2 LITERATURE REVIEW ................................................................................ 8 

2.1 INTRODUCTION ........................................................................................................ 8 

2.2 ATOMIZER CLASSIFICATION .................................................................................... 8 

2.3 PRESSURE ATOMIZERS ............................................................................................. 8 

2.4 ATOMIZATION MECHANISMS ................................................................................. 11 

2.4.1 Non-dimensional Parameters of Atomization ............................................... 12 

2.4.2 Breakup of liquid jets .................................................................................... 13 

2.4.3 Regimes of liquid jet break-up in pressure-assisted atomisation.................. 15 

2.4.4 Liquid sheet breakup ..................................................................................... 18 

2.4.5 Break-up length and the liquid core length in round liquid jets ................... 19 

2.4.6 Effect of density ratio and injection velocity on the liquid core length ........ 19 

2.4.7 Mean drop size .............................................................................................. 21 

2.4.8 Drop size distributions .................................................................................. 22 

2.4.9 Sauter Mean Diameter (SMD) predictions ................................................... 24 

2.5 THEORETICAL STUDIES ON PRESSURE SWIRL ATOMIZER ........................................ 28 

2.6 EXPERIMENTAL STUDIES ON PRESSURE SWIRL ATOMIZER ...................................... 29 

2.7 NUMERICAL STUDIES ON PRESSURE SWIRL ATOMIZER ........................................... 35 

2.8 TURBULENCE MODELLING ..................................................................................... 40 

2.8.1 Standard k-ε turbulence model ..................................................................... 41 

2.8.2 Renormalization Group (RNG) k-ε model .................................................... 42 



vi 
 

2.8.3 Standard k-ω  turbulence model ................................................................... 43 

2.8.4 Direct Numerical Simulation (DNS) atomization modelling ........................ 44 

2.8.5 Large Eddy Simulation (LES) ....................................................................... 45 

2.8.6 Turbulence model for two-phase flow ........................................................... 46 

2.9 DESIGN OPTIMIZATION .......................................................................................... 48 

2.9.1 Deterministic methods ................................................................................... 48 

2.9.2 Evolutionary and stochastic methods ........................................................... 48 

2.9.3 Hybrid optimization ...................................................................................... 48 

2.9.4 Response surface methods............................................................................. 49 

2.9.5 Latin Hypercube Designs .............................................................................. 50 

2.10 SUMMARY ........................................................................................................... 53 

CHAPTER 3 COMPUTATIONAL FLUID DYNAMICS (CFD) CODE 

SELECTION .......................................................................................................................... 54 

3.1 INTRODUCTION ...................................................................................................... 54 

3.2 BASIC CONSERVATION EQUATIONS ........................................................................ 54 

3.3 THERMOPHYSICAL PROPERTIES ............................................................................. 56 

3.4 GENERIC VARIABLES ............................................................................................. 56 

3.5 TURBULENCE MODELLING OPTIONS IN STAR-CD ................................................. 57 

3.5.1 The k-ε  turbulence models ............................................................................ 57 

3.5.2 Standard k-ε model ........................................................................................ 57 

3.6 SIMPLE ALGORITHM ............................................................................................ 59 

3.7 PISO ALGORITHM ................................................................................................. 60 

3.8 GEOMETRY AND COMPUTATIONAL MESH CAPABILITIES ........................................ 61 

3.9 DISCRETIZATION PRACTICES IN STAR-CD ........................................................... 63 

3.10 BOUNDARY CONDITIONS ..................................................................................... 64 

3.11 ATOMIZATION MODELLING .................................................................................. 65 

3.11.1 Lagrangian atomization model ................................................................... 65 

3.11.2 Eulerian modelling ...................................................................................... 66 

3.11.3 Governing equations ................................................................................... 66 

3.11.4 Evaluation of Ʃ −Y Model........................................................................... 68 

3.11.5 Eulerian-Eulerian atomization models ....................................................... 70 

3.11.6 Eulerian-Lagrangian Spray atomization (ELSA) model ............................. 71 

3.11.7 Model selection ........................................................................................... 72 

3.11.8 Model limitations ........................................................................................ 72 



vii 
 

3.12 SUMMARY ........................................................................................................... 73 

CHAPTER 4 EXPERIMENTAL ANALYSIS .................................................................... 74 

4.1 INTRODUCTION ...................................................................................................... 74 

4.2 APPARATUS ........................................................................................................... 74 

4.3 THE ATOMIZER...................................................................................................... 76 

4.4 THE TEST LIQUID .................................................................................................. 78 

4.5 SPRAY MEASUREMENT METHODS ......................................................................... 78 

4.6 HYDRODYNAMICS ANALYSIS ................................................................................ 82 

4.2 SUMMARY ............................................................................................................. 85 

CHAPTER 5 COMPUTATIONAL RESULTS AND DISCUSSION ............................... 86 

5.1 INTRODUCTION ...................................................................................................... 86 

5.2 GRID INDEPENDENCE TEST .................................................................................... 87 

5.3 COMPARISON OF SIMPLE AND PISO ALGORITHMS RESULTS ................................ 89 

5.4 FLOW FIELDS ON THE CROSSECTION PLANE ........................................................... 97 

5.5 FLOW FIELDS ON THE VERTICAL PLANE ............................................................... 109 

5.6 PREDICTION OF SAUTER MEAN DIAMETER (SMD) ............................................. 115 

5.7 SUMMARY ........................................................................................................... 117 

CHAPTER 6 EXPERIMENTAL RESULTS AND VALIDATION ................................ 118 

6.1 INTRODUCTION .................................................................................................... 118 

6.2 SPRAY SYMMETRY AND MEAN DROP SIZES .......................................................... 118 

6.3 VARIATION OF INLET PRESSURE ON THE SAUTER MEAN DIAMETER (SMD) ........ 121 

6.4 INFLUENCE OF GEOMETRICAL DIMENSIONS ON THE SAUTER MEAN DIAMETER 

(SMD) ...................................................................................................................... 123 

6.5 DROP SIZE DISTRIBUTIONS ALONG THE NOZZLE CENTRELINE AND FROM SPRAY 

CENTRELINE .............................................................................................................. 124 

6.6 LIQUID FILM BREAKUP ......................................................................................... 128 

6.7 VALIDATION OF   Ʃ − 𝐘  ATOMISATION MODEL .................................................... 129 

6.7.1 Effect of variants of k-epsilon turbulence model on the Sauter mean diameter

 .............................................................................................................................. 130 

6.7.2 Validation of Sauter Mean Diameter (SMD) at radial positions ................ 133 

6.7.3 Validation of Sauter Mean Diameter (SMD) at spray centre axis .............. 138 

6.8 SUMMARY ........................................................................................................... 139 



viii 
 

CHAPTER 7 PARAMETRIC STUDY AND CFD-BASED DESIGN 

OPTIMIZATION ................................................................................................................. 140 

7.1 INTRODUCTION .................................................................................................... 140 

7.2 DEPENDENCY OF SAUTER MEAN DIAMETER ON RADIAL DISTANCES .................... 141 

7.3 DEPENDENCY OF SAUTER MEAN DIAMETER ON SYMMETRIC AXIS AND PRESSURE 143 

7.4 DEPENDENCY OF SAUTER MEAN DIAMETER ON LIQUID VELOCITY ....................... 146 

7.5 DEPENDENCY OF SAUTER MEAN DIAMETER ON THE GAS VELOCITY ..................... 147 

7.6 DEPENDENCY OF SAUTER MEAN DIAMETER ON THE LIQUID DENSITY .................. 147 

7.7 DEPENDENCY OF SAUTER MEAN DIAMETER ON GAS DENSITY .............................. 151 

7.8 DEPENDENCY OF SAUTER MEAN DIAMETER ON THE LIQUID VISCOSITY ............... 153 

7.9 DEPENDENCY OF SAUTER MEAN DIAMETER (SMD) ON THE SURFACE TENSION ... 155 

7.10 EFFECT OF NOZZLE EXIT ORIFICE DIAMETERS ON SMD AT AXIAL LOCATIONS ... 156 

7.11 SAUTER MEAN DIAMETER (SMD) VARIATION WITH INJECTION VELOCITY AND 

DENSITY RATIO .......................................................................................................... 158 

7.12 EFFECT OF LIQUID DENSITY RATIOS ON TURBULENT QUANTITIES ...................... 160 

7.13 COMPARISON OF SAUTER MEAN DIAMETER (SMD) OF DIESEL, GASOLINE AND 

KEROSENE ................................................................................................................. 163 

7.14 CFD BASED  DESIGN OPTIMISATION .................................................................. 166 

7.14.1 Optimization and evaluation of SMD for DoE variables .......................... 171 

7.15 SMD CORRELATION BASED ON 4-FACTOR DOE ................................................. 177 

7.16 SUMMARY ......................................................................................................... 191 

CHAPTER 8 CONCLUSIONS AND DETAILED ASSESSMENT OF MODEL ......... 192 

8.1 INTRODUCTION .................................................................................................... 192 

8.2 SUMMARY OF THE MAJOR POINTS ........................................................................ 192 

8.3 CONCLUSIONS IN DETAIL AND ASSESSMENT OF MODEL ...................................... 195 

REFERENCE ....................................................................................................................... 202 

APPENDICES ...................................................................................................................... 218 

  SAMPLE EXPERIMENTAL RAW DATA ............................................. 218 

  SAMPLE RAW DATA FROM COMPUTATIONAL .......................... 267 

  MODIFIED LHD MATLAB CODE AND DOE CASES .................... 280 

  MATLAB CODE FOR LSQCURVEFIT .............................................. 287 



ix 
 

LIST OF FIGURES 

Figure 1.1 Schematic of pressure swirl atomizer[6] ........................................................ 2 

Figure 2.1 a) Schematic of (a) axial  and (b) tangential flow atomizers [26] .................. 9 

Figure 2.2 Classification of pressure atomizers [1] ....................................................... 11 

Figure 2.3 Droplet breakup of plain circular jet [17] ..................................................... 13 

Figure 2.4 Breakup of liquid jets [1] .............................................................................. 14 

Figure 2.5 Boundaries of four different jet disintegration regimes based on Reynolds 

and Ohnesorge numbers according to Reitz [35]. .......................................................... 16 

Figure 2.6 Liquid jet shape and qualitative variation of the break-up length in the four 

jet disintegration regimes with increasing velocity [35]. ............................................... 16 

Figure 2.7 The successive stages in the idealized break-up of a wavy sheet [41] ......... 18 

Figure 2.8 Liquid sheet break up, generated by pressure-swirl atomizer [42] ............... 19 

Figure 2.9 Drop size distribution from pressure-swirl atomizer, inlet pressure 10 bar, 

axial distance from exit orifice 50 mm, in center line of spray[1] ................................. 22 

Figure 2.10 The different atomizer designs and dimensions employed in the velocity 

measurement experiment of Horvay and Leuckel [5] .................................................... 30 

Figure 2.11 Variation of film thickness t with kinematic viscosity 𝒗𝑳 and liquid density 

𝝆𝑳 observed by Rizk and Lefebvre [80] ........................................................................ 32 

Figure 2.12 Variation of discharge coefficient, cone angle with kinematic viscosity 

observed by Rizk and Lefebvre [80] .............................................................................. 33 

Figure 2.13 Validation of numerical results in terms of axial mean liquid velocity and 

Sauter Mean Diameter [14] ............................................................................................ 36 

Figure 2.14 Turbulent kinetic energy in the cone region at different axial locations of 

the nozzle ....................................................................................................................... 38 

Figure 2.15 Direct Numerical Simulation (DNS) liquid structures downstream of 

injector [113] .................................................................................................................. 45 

Figure 2.16 Latin hypercube designs with good and poor space filling properties ....... 51 

Figure 3.1 Flow chart of the SIMPLE algorithm [103, 108] ......................................... 59 

Figure 3.2 Flow chart of PISO algorithm[145] .............................................................. 60 



x 
 

Figure 3.3 The computational domain and boundary conditions ................................... 62 

Figure 3.4 Mesh on vertical and cross section planes through the atomizer model....... 62 

Figure 3.5 Spray SMD along symmetry axis for different liquid jet velocities and a 

fixed gas velocity of 140 m/s [40].................................................................................. 69 

Figure 3.6 Spray SMD along symmetry axis for different gas jet velocities and a fixed 

liquid velocity of 0.5 m/s[40] ......................................................................................... 69 

Figure 3.7 Three spray zones in ELSA model [152] ..................................................... 71 

Figure 4.1 Photographs of the experimental setup ......................................................... 75 

Figure 4.2 Schematic and pictorial drawing of the nozzle (dimensions in millimetres) 77 

Figure 4.3 Measurement set-up of the Malvern Spraytec system[170] ......................... 79 

Figure 4.4 Measurement points relative to nozzle tip .................................................... 80 

Figure 4.5 Image from fast-shutter camera .................................................................... 82 

Figure 4.6 Uncorrected light scattering data. On transmission signal scale 1000 

represents 1mW .............................................................................................................. 83 

Figure 4.7 Corrected light scattering data. On transmission signal scale 1000 represents 

1mW ............................................................................................................................... 84 

Figure 4.8 Drop size/transmission level time history..................................................... 84 

Figure 5.1  Vertical section plane and 3D plot of pressure distribution ........................ 86 

Figure 5.2 Grid independence test using variation of pressure profile with grid sizes .. 87 

Figure 5.3 Comparison of density variations for (a) SIMPLE and (b) PISO algorithms

 ........................................................................................................................................ 90 

Figure 5.4 Comparison of velocity magnitudes on the vertical plane for (a) SIMPLE 

and (b) PISO algorithms ................................................................................................ 92 

Figure 5.5 Comparison of turbulent kinetic energy on the vertical section plane for (a) 

SIMPLE and (b) PISO algorithms ................................................................................. 94 

Figure 5.6 Contour plot of surface density for SIMPLE and PISO algorithm, axial 

positions ......................................................................................................................... 95 

Figure 5.7 Contour plot of surface density for SIMPLE and PISO algorithms, radial at y 

= 60 mm ......................................................................................................................... 95 



xi 
 

Figure 5.8 Velocity magnitudes at various nozzle sections ........................................... 99 

Figure 5.9 Contour plot of velocity magnitude at various cross sections in the 

computational domain .................................................................................................. 101 

Figure 5.10 Contour plots of scalar quantities on the cross section plane at the entry 

into the nozzle .............................................................................................................. 104 

Figure 5.11 Mass fraction of liquid on various cross section planes at y=60, 80, 100 and 

120 mm ........................................................................................................................ 106 

Figure 5.12 Surface density on various cross section planes at y=60, 80, 100 and 120 

mm ............................................................................................................................... 108 

Figure 5.13 Droplet velocity on the (a) spary centreline and (b) radial positions at y = 

60mm ........................................................................................................................... 110 

Figure 5.14 Contour plot of liquid mass fraction on the vertical plane ....................... 110 

Figure 5.15 Liquid mass fraction on the spray centre line ........................................... 111 

Figure 5.16 Mass fraction of liquid on the spray radial positions at y = 60 mm ......... 111 

Figure 5.17 Predicted surface density on radial position at y =60 mm ........................ 112 

Figure 5.18 Contour plot of interfacial surface density on the vertical plane .............. 113 

Figure 5.19 Predicted interfacial surface density on the spray centre line ................... 114 

Figure 5.20 Sauter mean diameter (SMD) on radial positions at y= 60mm ................ 115 

Figure 5.21. Spray Sauter mean diameter (SMD) predicted on the symmetry axis..... 116 

Figure 6.1 Drop size parameter profile along the spray centre line at atomizing pressure 

of 3.0bars, experimental. The error bars indicate the standard deviation of three 

measurements. .............................................................................................................. 119 

Figure 6.2 Sauter Mean Diameter (SMD) along the spray centre line at two different 

injection pressures, experimental ................................................................................. 119 

Figure 6.3 Radial Sauter Mean diameter (SMD) at axial positions y=60, 80, 100 and 

120 mm from the nozzle exit at injection pressure of 4.0 bars. The error bars indicate 

the standard deviation of three measurements ............................................................. 120 

Figure 6.4 Influence of injection pressure on the Sauter Mean Diameter (SMD) ....... 121 

Figure 6.5 Liquid flow rate versus injection pressure .................................................. 122 



xii 
 

Figure 6.6 Effect of liquid flow rate on the Sauter Mean Diameter (SMD) ................ 122 

Figure 6.7 Effect of geometrical dimensions of the nozzle on the Sauter Mean Diameter 

(SMD) .......................................................................................................................... 123 

Figure 6.8 Drop size distributions for injection pressure value of 3.5bars at axial 

distance y= 60, 80, 100 and 120 mm along the 3.5mm exit orifice nozzle centre line 125 

Figure 6.9 Particle Size Overlay (PSO) evaluated at axial sections along the 3.5mm exit 

orifice nozzle centre line for injection pressure value of 3.5bars ................................ 126 

Figure 6.10 Drop size distributions for injection pressure of 3.5 bar at various radial 

positions and 80 mm axial distance from exit orifice .................................................. 127 

Figure 6.11 Drop size distributions for injection pressure of 3.5 bar at various radial 

positions and 120 mm axial distance from exit orifice ................................................ 127 

Figure 6.12 Liquid sheet break up images from the fast shutter-camera for different 

injection pressures ........................................................................................................ 128 

Figure 6.13 Turbulent intensity decays along the axial position by comparing the 

standard k-epsilon and RNG k-epsilon turbulence models .......................................... 131 

Figure 6.14 Effect of turbulent intensity on the Sauter mean diameter (SMD) ........... 131 

Figure 6.15 Effect of turbulence models on the Sauter mean diameter (SMD) at 

y=60mm ....................................................................................................................... 132 

Figure 6.16 Effect of turbulence models on the mean liquid velocity, modelling ....... 132 

Figure 6.17  Validation of droplet Sauter Mean Diameter (SMD), model with 

experiment, standard k-ɛ turbulence model ................................................................. 135 

Figure 6.18 Validation of droplet Sauter Mean Diameter (SMD), model with 

experiment, RNG k-ɛ turbulence model ...................................................................... 136 

Figure 6.19 Validation of droplet Sauter Mean Diameter (SMD), model with 

experiment, Realizable k-ɛ turbulence model .............................................................. 137 

Figure 6.20 Validation of Sauter Mean Diameter (SMD) at spray centre axis, model and 

experiment .................................................................................................................... 138 

Figure 6.21 Influence of pressure on Sauter Mean Diameter, model and experiment . 139 

Figure 7.1 Radial profiles of the mean liquid mass fraction, predicted ....................... 142 



xiii 
 

Figure 7.2 Radial profiles of the mean liquid surface density at various axial positions

 ...................................................................................................................................... 142 

Figure 7.3 Predicted Sauter mean diameter (SMD) at various axial positions ............ 143 

Figure 7.4 Dependency of Sauter mean diameter on pressure at spray symmetric axis

 ...................................................................................................................................... 144 

Figure 7.5 Axial profile of the axial mean liquid velocity for two injection pressure 

values............................................................................................................................ 144 

Figure 7.6 Dependency of Sauter mean diameter on radial positions at y= 60 and 80 

mm for two injection pressures .................................................................................... 145 

Figure 7.7 Influence of pressure on Sauter mean diameter SMD at y=50, 60, 70 and 80 

mm ............................................................................................................................... 145 

Figure 7.8 Dependency of Sauter mean diameter on liquid velocity at 𝑽𝒈 = 1.5 m/s . 146 

Figure 7.9 Dependency of Sauter mean diameter on the gas velocity at 𝑽𝒍𝒊𝒒 = 5m/s 147 

Figure 7.10 Dependency of Sauter mean diameter on the liquid density .................... 148 

Figure 7.11 Radial profile of Sauter mean diameter(SMD) of liquid density at 200, 600 

and 1000 kg/m3 ............................................................................................................ 149 

Figure 7.12 Contour plots of liquid densities of (a)1000 (b)600 (c) 300 kg/m3 super-

imposed with streamlines ............................................................................................. 150 

Figure 7.13 Dependency of Sauter mean diameter on gas density at different axial 

positions ....................................................................................................................... 151 

Figure 7.14 Influence of gas densities of (a) 1.2 (b) 2 kg/m3 on the liquid core length

 ...................................................................................................................................... 152 

Figure 7.15 Radial profile of Sauter mean diameter at various liquid viscosities ....... 154 

Figure 7.16 Variation of Sauter mean diameter (SMD) in relation to liquid viscosity on 

spray centre line ........................................................................................................... 154 

Figure 7.17 Drop size (SMD) for the fluids listed in the legend at flow energy ......... 155 

Figure 7.18 Radial profiles of Sauter mean diameter (SMD) for two surface tension 

values at y = 60 mm and y = 80 mm ............................................................................ 156 

Figure 7.19 Axial variation of SMD for different exit orifice diameters ..................... 157 



xiv 
 

Figure 7.20 Radial profiles of mean liquid velocity at y = 60, 80, 100 and 120 mm .. 159 

Figure 7.21 Axial profile of the axial mean liquid velocity for two injection pressure 

values............................................................................................................................ 159 

Figure 7.22 Sauter mean diameter (SMD) variation with injection velocity and density 

ratio .............................................................................................................................. 160 

Figure 7.23 The effect of variation of liquid density on the turbulent intensity on the 

spray centreline ............................................................................................................ 161 

Figure 7.24 The effect of variation of liquid density on integral length scale ............. 161 

Figure 7.25 The effect of variation of liquid density on turbulent kinetic energy on 

spray centreline ............................................................................................................ 162 

Figure 7.26 The effect of variation of liquid density on turbulent viscosity................ 162 

Figure 7.27 The effect of variation of liquid density on turbulent dissipation rate ..... 163 

Figure 7.28 Comparison of droplet velocity for diesel, gasoline and kerosene liquid 

fuel, modelling at y=90mm .......................................................................................... 165 

Figure 7.29 Comparison of Sauter mean diameter (SMD) of diesel, gasoline and 

kerosene, modelling at y=90mm .................................................................................. 165 

Figure 7.30 Combinations and distributions of design parameters for optimization ... 167 

Figure 7.31 SMDs on the spray centreline for case 1, case 17 and case 24 ................. 170 

Figure 7.32 SMDs on the spray centre axis for case 1 to case 24 ................................ 173 

Figure 7.33 SMDs on the spray centre axis for case 25 to case 48 .............................. 174 

Figure 7.34 SMDs on the spray centre axis for case 49 to case 72 .............................. 175 

Figure 7.35 SMDs on the spray centre axis for case 73 to case 87 .............................. 176 

Figure 7.36 Surface plot of SMD against liquid properties with constant operating 

conditions for two existing SMD correlations ............................................................. 179 

Figure 7.37 Surface plot of SMD against liquid properties with constant operating 

conditions for the new SMD correlation ...................................................................... 179 

Figure 7.38 Surface plot of SMD against kinematic viscosity and pressure with constant 

mass flow rate and surface tension for two existing SMD correlations ....................... 181 



xv 
 

Figure 7.39 Surface plot of SMD against kinematic viscosity and pressure with constant 

mass flow rate and surface tension for the new SMD correlation ............................... 182 

Figure 7.40 Surface plot of SMD against kinematic viscosity and  mass flow rate with 

constant operating condition and surface tension for two existing SMD correlations 183 

Figure 7.41 Surface plot of SMD against kinematic viscosity and  mass flow rate  with  

constant operating condition and surface tension for the new SMD correlation ......... 184 

Figure 7.42 Surface plot of SMD against surface tension and mass flow rate with 

constant operating condition and kinematic viscosity for two existing SMD correlations

 ...................................................................................................................................... 185 

Figure 7.43 Surface plot of SMD against surface tension and mass flow rate with 

constant operating condition and kinematic viscosity for the new SMD correlation .. 186 

Figure 7.44 Surface plot of SMD against surface tension and pressure with constant 

mass flow rate and kinematic viscosity for two existing SMD correlations ................ 187 

Figure 7.45 Surface plot of SMD against surface tension and pressure with constant 

mass flow rate and  kinematic viscosity for the new SMD correlation ....................... 188 

Figure 7.46 Surface plot of SMD against two operating conditions with constant liquid 

properties for two existing SMD correlations .............................................................. 189 

Figure 7.47 Surface plot of SMD against two operating conditions with constant liquid 

properties for the new SMD correlation....................................................................... 190 

  



xvi 
 

LIST OF TABLES 

Table 2.1. Criteria used in evaluating the regimes of cylindrical liquid jet breakup [35-

39]. ................................................................................................................................. 17 

Table 2.2 Mean diameters .............................................................................................. 21 

Table 2.3 SMD correlations ........................................................................................... 24 

Table 2.4 Comparison of air core diameter, discharge coefficient, and spray cone angle

 ........................................................................................................................................ 37 

Table 2.5 Classification of turbulence models ............................................................... 41 

Table 2.6 Table Latin hypercube design configurations ................................................ 51 

Table 3.1 Coefficients of the Standard k-ε Turbulence Model ...................................... 58 

Table 4.1 Physical parameters of the nozzle .................................................................. 77 

Table 4.2 Test liquid properties ..................................................................................... 78 

Table 4.3 Drop analyzer system parameters[170].......................................................... 81 

Table 5.1 Grid statistics, pressure data and discretisation error estimates ..................... 88 

Table 7.1 Influence of liquid properties on SMD ........................................................ 164 

Table 7.2 Influence of liquid properties on SMD [42]................................................. 164 

Table 7.3 Definition of design of experiment (DoE) variables for optimization ......... 166 

Table 7.4 The best minimum Sauter Mean diameters (SMDs) on the spray centre line 

for cases 1, 17 and 24 ................................................................................................... 169 

Table 8.1 4-Factor Design of Experiment(DoE) Points ............................................... 284 

 

 

 

 

 

 

 



xvii 
 

NOMENCLATURE 

𝐶𝑑  Discharge coefficient   

𝐷  Drop diameter  m 

𝑑  Initial jet diameter m   

𝐷𝑜 Nozzle exit orifice diameter m  

𝑑32 Sauter mean diameter  m 

𝐷𝑡 Turbulent diffusivity 

𝑚̇  Mass flow rate of liquid kg/s   

𝑚vap Mean rate of vaporization kg/s  

𝑁  Rotational speed rpm  

𝑂ℎ  Ohnesorge number  

𝑟𝑒𝑞 Equilibrium drop size  m 

𝑅𝑒  Reynolds number 

𝑆𝑐𝑙𝑖𝑞 Turbulent Schmidt number  

𝑆𝑀𝐷  Sauter Mean Diameter m 

𝑢̃ Mean velocity    m/s 

𝑢  Velocity m/s  

𝑌̌  Mean mass fraction of liquid   

𝑊𝑒 Weber number 

 

Greek Symbol   

𝜌̅ Average density kg/m3  

𝜌𝑙 Liquid density  kg/m3 

𝜇𝑙 Liquid dynamic viscosity Pa-s  

𝜈𝑙 Liquid kinematic viscosity m2/s  

𝜆𝑜𝑝𝑡 Optimum wavelength  m  

𝜎  Surface tension N/m  

𝜏𝑐 Turbulence time scale  s  

𝜃  Cone angle  deg  

Ʃ̅  Mean interfacial surface density m-1 

Ʃ𝑒𝑞 Equilibrium interface area per unit mass m2/kg  

 



xviii 
 

Subscripts and Superscripts 

𝑔 gas 

𝑙  liquid 

 

Abbreviations 

𝐶𝐹𝐷  Computational Fluid Dynamics   

𝐷𝑜𝐸  Design of Experiments   

𝐿𝐻𝐷  Latin Hypercube Designs   

𝑃𝑆𝐴  Pressure-Swirl Atomizers   

𝑅𝐴𝑁𝑆  Reynolds Averaged Navier-Stokes    

𝑅𝑆𝑀  Reynolds Stress Model    

𝑆𝑀𝐷  Sauter Mean Diameter  

 

 

 

 

 

 

 



1 
 

CHAPTER 1 INTRODUCTION 

1.1 General introduction 

Atomizers are used in many engineering applications including spray combustion in 

furnaces, diesel and direct injection petrol engines, and gas turbine engines. They are 

also commonly used in applying agricultural chemicals to crops, paint spraying, and 

spray drying of wet solids, food processing and cooling of nuclear cores. Atomizers are 

special nozzles designed to produce a rapid break-down of liquid in a two-phase flow. 

They are used to increase the specific surface area of the fuel and thereby achieving 

high rate of mixing and evaporation. In most combustion systems, reduction in mean 

drop size leads to higher volumetric heat release rate, easier ignition, a wide burning 

range and lower exhaust concentrations of the pollutant emissions. Atomizers are 

known to affect combustion stability limits, combustion efficiency, smoke generation 

and carbon monoxide and unburned hydrogen-carbon levels[1, 2].  

There are different types of atomizers. Generally, they are classified based on the 

source of energy used for atomization. These nozzles include jet, swirl and jet-swirl 

atomizers. Pneumatic atomizers use gas energy for atomization while rotary atomizers 

break the liquid sheet into particles using mechanical energy. Atomisers using vibration 

or electric energy include acoustic, ultrasonic and electrostatic atomizers. Within these, 

pressure driven swirl atomizers occupy a unique operating space due to the quality of 

atomization, simplicity of construction, reliability of operation, low clogging and low 

expenditure of energy [3]. They are also the most common type found in the industry 

[4]. However, the greatest disadvantages of these atomizers are that they require very 

high injection pressure and consequently low discharge coefficient owing to the fact the 

air core covers the majority of the atomizer orifice.  

Horvay and Leuckel [5] credited the invention of pressure atomizers to Korting in 

1902. The atomizer designed by Korting was for use in an oil burner but it could also 

be used in other applications, such as fire suppression, oil-fired combustors, such as 

those used in power stations, aerosol nozzles for pharmaceutical and cosmetics, 

agricultural to administer chemicals such as fertilizers, pesticides and herbicides, spray 

drying such as in the production of powdered milk, fuel injection systems, and many 

chemical processes. By now these nozzles have been manufactured from a wide range 

of materials depending on the applications. These materials include plastics such as 
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nylon, PVC and Teflon, metals such as brass, stainless steel, tungsten carbide and 

aluminium, and ceramics such as silicon carbide.  

Pressure atomizers have different designs such as plain orifice, simplex, duplex, dual-

orifice, fan spray and spill return. Pressure swirl atomizers also called simplex 

atomizers are the most versatile among them. The basic principle of fluid flow through 

the swirl atomizer  as shown in Figure 1.1 is that, the liquid is introduced through 

tangential or helical passages into a swirl chamber from which it emerges through an 

exit orifice with tangential velocity components. As a result of the vortex flow, a 

hollow air core is formed which is concentric with the nozzle axis. The outflowing thin 

conical liquid sheet attenuates rapidly becoming unstable and disintegrates into 

ligaments and then drops in the form of a well-defined hollow cone spray.  

 

Figure 1.1 Schematic of pressure swirl atomizer[6] 

 

Dombrowski and Hasson [4], Wang and Lefebvre [7]  indicated that the motion in the 

swirl chamber is complex and the mechanisms of flow within the chamber and the 

resultant spray outside are not fully understood and therefore further research needs to 

be conducted on this atomizer. This unsatisfactory situation is due to several causes 

such as the great complexity of the atomisation process, differences in the design, size, 

and operating conditions of the nozzles tested and the inaccuracies and limitations 

associated with drop-size measurement techniques. However, the impact of certain 

geometrical dimensions of swirl nozzles on the sprays produced has been studied by 

Rizk and Lefebvre [8] and indicates that the pressure swirl atomizer essentially consists 

of three main elements inlet tangential ports, swirl chamber and exit orifice. The exit 

orifice is preceded by a swirl chamber with a certain contraction or convergence. The 

Air core 
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inlet is one or more cylindrical or rectangular channels positioned tangentially to the 

swirl chamber. The circular grooves are easier to drill to within specified limits of 

accuracy, this advantage is outweighed by the practical difficulties in obtaining holes 

which are truly tangential to the chamber therefore noncircular grooves are preferred in 

some atomizers [4]. The groove length to width ratio must be sufficiently large to 

ensure that the liquid enters the chamber tangentially and not as a diffuse flow. 

However, it must also not be too large since the gain in circulation may be offset by 

frictional losses. The swirl chamber contains a strong swirl motion of the liquid fuel 

and the central air core. Study of the swirl effect on the atomization of a liquid sheet 

has been performed by Rho et al.[9]. In the chamber, a portion of the swirl energy is 

converted into axial velocity and the liquid flows out of the nozzle in the form of a 

hollow cone. The exit orifice serves as the discharge outlet for the atomizer and 

contains holes in which the liquid is discharged. The size of the hole is usually of the 

order of a tenth of millimetre or less.  

Some of the most important parameters in pressure swirl atomizer are the pressure 

exerted by the fluid on the walls, the axial and the tangential components of the 

velocity and air core characteristics. These characteristics significantly influence the 

discharge coefficient at the exit orifice, the mean drop sizes and distribution, the spray 

cone angle and the liquid film thickness. The influence of injection pressure on spray 

angle has been investigated by several workers including, De Corso and Kennedy [10], 

Neya and Sato[11], Ortman and Lefebvre [12], Dodge and Biaglow [13]. The results 

obtained by De Corso and Kennedy and Neya and Sato show that over a wide  range of 

injection pressures from 0.17 to 2.7 MPa, the equivalent spray angle is an inverse 

function of the change in pressure. Ortman and Lefebvre also show that starting from 

atmospheric pressure, increases in liquid pressure cause the spray angle to first widen 

and then contract. The most common research in a pressure-swirl atomizer is the 

influence on the mean drop size. Several researchers including Lefebvre and Wang [7], 

Belhadef et al [14] and Emekwuru et al [15] did extensive works in this regard. They 

show that the mean drop sizes emanating from the pressure-swirl atomize decrease with 

increasing pressure. The pressure on the internal walls of the atomizer also influences 

the swirling motion and the initiation of the central air core. Horvay and Leukel [5] 

experimentally observed that the pressure in a swirl atomizer is almost constant in the 

swirl chamber, drops sharply in the contraction zone and further decreases in the exit 

orifice. The liquid velocity is an essential factor that affects the degree of atomization 
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and primarily depends on the injection pressure and has three components: the axial, 

tangential and the longitudinal. 

The formation of a central air core is one of the important characteristics of the flow in 

a simplex nozzle. The size of the air core determines the effective flow area at the 

discharge orifice and thus controls the coefficient of discharge. Som et al [16] 

determine the influences of nozzle geometry and nozzle flow on the size of the fully 

developed air core and recognize that below a certain Reynolds number at the inlet to 

the nozzle, liquid flows full through the nozzle without the formation of an air core 

while above a certain Reynolds number at the inlet to the nozzle, the formation of a 

fully developed central air core of cylindrical shape takes place in the nozzle.  

The internal characteristics and the nozzle dimensions are not the only factors that 

govern atomization performance. Liquid properties and ambient gas properties can 

significantly alter the mean droplet size and distribution. The liquid surface tension and 

viscosity tend to prevent breakup and instabilities, whereas the gas density will promote 

instability and breakup due to aerodynamic interaction. The ambient gas into which 

liquid spray is injected can vary widely in pressure and temperature. This is especially 

true for liquid fuel-fired combustion systems [17]. The ambient gas density has a strong 

influence on the mean drop sizes produced by the pressure-swirl atomizer. Not only 

that it affects the spray angle too such that the spray angle decreases sharply with 

increase in the ambient gas density until a maximum value of spray angle is reached 

beyond which any further increase in the ambient gas density does not affect the spray 

angle. Liquid density, while having a smaller overall effect on the flow can also alter 

performance as the higher inertia of the liquid phase. In fact, a modest amount of 

available data on the effects of liquid density on the mean drop size suggests that the 

influence is quite small [1].  In many respects, the liquid viscosity is the most important 

liquid property. As pointed out by Lefebvre although in an absolute sense its influence 

on atomization is no greater than the surface tension, its importance stems from the fact 

that it does not only affect the drop size and distributions but also the nozzle flow rate 

and the spray pattern. An increase in viscosity reduces the Reynolds number and also 

prevents the development of any natural instability in the jet or sheet. The combined 

effect is that it delays the disintegration of the liquid sheet and increase the size of the 

droplets in the spray. However, in a hollow-cone nozzle, a modest increase in the 

viscosity can actually increase the flow rate. It does this by thickening the liquid film in 
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the discharge orifice, thereby raising the effective flow area. At high viscosities, 

however, the flow rate diminishes with increasing liquid viscosity [1]. 

In addition to fluid properties, different instability mechanisms are paramount to the 

atomization process. These instability mechanisms include the Kelvin-Helmholtz 

instability arising from the interfacial shear across the liquid-gaseous boundary and the 

Rayleigh-Taylor instability that forms due to the different densities of the two fluids. 

The Kelvin-Helmholtz instability mechanisms are prevalent mostly in the primary 

atomization process while the Rayleigh-Taylor instability model is suitable for 

predicting the secondary breakup regime. Though these models in some aspects 

provide reasonable predictions of the liquid atomization, they do not account for the 

liquid turbulence motion observed in certain sprays. Recent experimental investigations 

and physical modelling studies have indicated that turbulence behaviours within a 

liquid jet have considerable effects on the atomization process. Such turbulent flow 

phenomena are encountered in most practical applications of common liquid spray 

devices[18]. 

In Computational Fluid Dynamics (CFD), two-phase flows are commonly modelled 

using two different approaches: The Eulerian method where the spray is considered a 

continuum across the whole flow domain and the Lagrangian method where the paths 

taken by the droplets are tracked through the domain.  A combination of an Eulerian k-

ɛ turbulence model to describe the interaction between droplets and gas phase in the 

secondary break-up with the Lagrangian method to model the disperse droplet phase 

was carried out by Lin et al.[19] and Xiong et al.[20] in a non-swirling effervescent 

atomisation spray. In these related works, the droplet velocity is finally calculated in 

the spray far field by a one-phase model initially developed for variable density jets.  

Within Eulerian methods, the two-phase model solves state equations for each fluid and 

takes into account the interactions between phases [21, 22]. Drawbacks of this method 

include the interfacial terms requiring complex modelling and the high number of 

equations as each fluid is transported. This work focuses on the entirely one-fluid 

Eulerian model and potentially brings the advantage to compute only the transport of 

one single fluid with a high-density variation [14]. This entirely Eulerian and general 

mathematical model developed and presented by Vallet et al [23] called the  Ʃ − Yliq 

atomization model has the potential for all the basic necessary capabilities. It describes 

the atomization from the first principle. However, its validation is insufficient and has 
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not been demonstrated well enough  in the pressure swirl atomizer at the time being and 

therefore needs further research and improvement.  

1.2 The objectives of the research 

The aim of this research is to validate and assess the capabilities of the   Ʃ −

Yliq  atomisation model in the pressure swirl atomizer and study the spray parameters, 

turbulence fields and effects arising in these two-phase flows. This will be achieved 

through the following objectives 

a. To perform numerical studies using STAR-CD code in order to model the effects of 

spray parameters and turbulence occurring inside the liquid jet to its atomization. 

b. To model the interfacial surface density for the liquid and gas for Ʃ −

Yliq  atomisation model in the STAR-CD code  

c. To evaluate the transport equation for the liquid mass fraction and average density 

for liquid and gas phase for turbulence and flow fields to be generated. 

d. To perform qualitative comparisons of the spray parameters, the turbulence and flow 

fields under varying conditions for the Ʃ − Yliq  atomisation model. 

e. To measure the droplet Sauter Mean Diameter (SMD) at different axial distances 

from the hollow-cone nozzle and different radial distances from the spray centreline 

using a laser-diffraction-based drop size analyser (Malvern Spraytec). 

f. To compare the measured droplet sizes to the predicted values of the droplet Sauter 

Mean Diameter (SMD) in order to validate the Ʃ − Yliq  atomisation model. 

g. To perform parametric studies in order to assess the capabilities of the Ʃ −

Yliq  atomisation model. 

h. To perform optimization technique in order to identify the optimal nozzle exit design 

parameter, operating conditions and fluid properties that perform at or give the most 

minimum drop sizes (SMD) at the spray centre line. 

i. To establish a SMD correlation for the model and compare it to the existing 

correlations. 
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1.3 The thesis outline 

This thesis is organized into eight chapters. The introduction, which is the subject of 

chapter one, consists of the background, the specific objectives which the research 

seeks to achieve and the organization of the report. Chapter two contains the review of 

atomization mechanisms, numerical atomization modelling techniques, theoretical and 

experimental research into pressure swirl atomizer  as well as the turbulence modelling 

techniques. The atomization model and computational fluid dynamics techniques used 

in modelling sprays in the Star-CD software code are described in chapter three. 

Chapter four presents the experimental methods and techniques for measuring mean 

drop sizes in the sprays emanating from pressure-swirl atomizer using Malvern 

Spraytec. Chapter five focuses on the computational analysis of the results where the 

qualitative comparisons of flow and turbulence fields are evaluated. This chapter also 

presents the numerical prediction of the droplet Sauter Mean Diameter on the spray 

centre line and radial positions. The experimental result analyses are performed in 

chapter six and chapter seven compares the numerical and experimental results in order 

to validate the  Ʃ − Yliq  atomisation model. Parametric studies are also undertaken in 

chapter seven in order to assess the capabilities and influence of spray parameters, 

operating and fluid properties on the droplet Sauter Mean Diameter (SMD). This 

chapter also presents the optimization techniques carried out on the nozzle and the 

model in order to identify the most minimum and optimal droplet Sauter Mean 

Diameter at the spray centre line. In addition, this chapter also undertakes an in-depth 

description of the reationship between  the Design of Experiments (DoE) and the 

resulting  droplet Sauter Mean Diameter (SMD). Chapter eight gives the detailed 

discussions and conclusions of the study and also summarises the overall assessment of 

the model.  
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CHAPTER 2 LITERATURE REVIEW 

2.1 Introduction 

Atomizers have many applicable uses in internal combustion engines, agricultural and 

chemical processes. Most of these engineering applications and processes require two-

phase flow and thus require the dispersion of liquids into a gaseous medium. The liquid 

fuels used in these processes have relatively low volatility and therefore could not 

achieve the required combustion in these systems. Therefore, atomizers are required to 

break the liquid fuels into fine droplets in order to achieve easier evaporation and 

efficient combustion as well as reduce the pollutants in the exhaust emissions [7]. Most 

atomizers achieve these through various complex processes and stages but largely it is 

due to a high relative velocity or the interaction between the liquid and surrounding gas 

phase. Numerous atomizers are in use but the most widely used is the pressure swirl 

atomizer which is designed to produce a hollow cone spray [1]. 

2.2 Atomizer classification 

Many types of atomizers are used in practice such as pressure atomizers, rotary 

atomizers and twin-fluid atomizers. Others are electrostatic, acoustics, ultrasonic 

atomizers [24]. Lefebvre [17, 25] summarized that the ideal atomizer should possess 

the following characteristics: 1.Ability to provide good atomization over wide ranges of 

fuel rates, 2. Provide rapid response to changes in fuel flow rates 3. Freedom from flow 

instabilities, 4. Low power requirements 5. Capability for scaling to provide design 

flexibility 6. Low cost, light in weight, ease of maintenance, and ease of removal for 

servicing, 7. Low susceptibility to damage during manufacture and installation, 8. Low 

susceptibility to blockage by contaminants in the fuel and to carbon build up on the 

nozzle face 9. Low susceptibility to gum formation by heat 10. Uniform radial and 

circumferential fuel distribution. 

2.3  Pressure atomizers 

Pressure atomizers utilise the pressure energy in the liquids and convert it into the 

kinetic energy by subjecting the liquid to a high applied pressure through a small 

orifice. This creates a relatively high velocity between the liquid and the surrounding 

gas and makes the liquid sheet disintegrates into ligaments and then to droplets. In 

terms of the direction to which the liquid is fed into the swirl chamber, pressure 
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atomizers can be classified as axial and tangential flow designs. The tangential designs 

are also called the “true” swirl atomizer because no special insert is used and liquid 

flows directly into the swirl chamber. On the other hand, the axial design requires the 

swirl insert for the liquid flow so that swirling motion can be created in the chamber. 

The schematic diagrams for both designs are shown in Figure 2.1(a) and (b) [26]. 

Pressure atomizers include plain-orifice, pressure-swirl (simplex), square spray, duplex, 

dual orifice, spill return and fan spray nozzles as shown in Figure 2.2 [17]. Plain-orifice 

atomizer shown in Figure 2.2a discharges liquid from a circular hole into the 

surrounding air and has narrow spray cone angles of about 10° which are 

disadvantageous for many spraying applications. The difficulties in keeping liquids free 

from impurities limit the minimum exit orifice to around 0.3mm and the maximum 

depends on the applications. The pressure swirl nozzle which has much wider cone 

angles of between 30° to 150° achieve these spray angles by imparting a swirling 

motion to the liquid in the swirl chamber. As the centrifugal force increases, it 

discharges from the exit orifice as an annular liquid sheet and spreads radially outward 

to form a conical spray which is disintegrated into ligaments and then into droplets. A 

full cone design can also be achieved by either using axial jet or other devices to 

introduce droplets into the core of the conical sprays. The hollow cone spray is more 

often used than the full cone because of its ability to create finer and small droplets. 

Pressure-swirl atomizers (PSA) shown in Figure 2.2b have the following advantages 

inter alia; they are simply constructed, low cost, require small amount energy for 

atomization and have high reliability. A problem with this nozzle is that it has a wide 

dispersion of droplet size [1, 26].  

 

Figure 2.1 a) Schematic of (a) axial  and (b) tangential flow atomizers [26] 
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Another disadvantage is an exponential relation between the liquid flow rate and the 

injection pressure. That is before the liquid flow rate can be doubled it requires a 

fourfold increase in the injection pressure. However, since pressure swirl nozzles are 

designed to operate within certain pressure regimes, this invariably affect the choice of 

liquid flow rate for a given pressure atomizer. This basic limitation necessitated the 

development of various “wide range” of pressure atomizers which can accommodate 

maximum to minimum flow rate ratio in excess of 20 with good quality atomization 

without impractical limitations imposed by the injection pressure. The dual-orifice 

nozzle shown schematically in Figure 2.2c, is one of the most common wide range 

atomizers and are mostly used in aircraft and industrial gas turbines. This atomizer 

basically consists of the combination of two simplex nozzles fitted concentrically inside 

each other designated primary and secondary nozzles. The primary nozzle which has 

small flow passages allows low liquid flow rate through it and gives better and quality 

atomization since high injection pressure is required. When a maximum pressure is 

reached due to the increase in the flow rate a pressurizing valve opens and allows liquid 

through the secondary nozzle. The liquid flow rate requires in the secondary nozzle is 

high due to large orifices compared to the primary nozzle passages without excessively 

using high injection pressures [1]. 
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Figure 2.2 Classification of pressure atomizers [1] 

2.4 Atomization mechanisms  

This involves the process in converting a bulk liquid into either jet or sheet and its 

disintegrating into ligament and then into drops as well as the mechanisms 

underpinning the growth of disturbances on the liquid sheet. This process affects the 

shape, structure and penetration of the resulting sprays as well as its droplet velocity 

and size distribution. The geometrical size, physical properties of the liquid and 

gaseous medium, turbulence in the liquid and cavitation in the nozzle all have strong 

influence on these atomization characteristics. The relevant liquid properties to 

atomization are surface tension, viscosity and density [27-29]. The surface tension and 

viscosity tend to have a consolidating influence on the sprays as against the disruptive 

actions of the various internal and external aerodynamic forces on the sprays. Basically, 

atomization occurs when the disruptive forces just exceed the stabilizing surface 

(a) 

(b) 

(c) 

(d) 

(e) 
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tension forces. The initial large droplets produced at this stage are unstable and undergo 

further break-ups into small droplets which is called secondary atomization. Thus 

atomization mechanism encompasses the process leading to the initial large droplet 

which is the primary atomization and the secondary atomization [1]. 

 

 Non-dimensional Parameters of Atomization 

In order to analyse liquid flows having an interface between two fluids some 

parameters are used to define its nature and atomization properties. To predict the 

influence of each atomization mechanism, it has been found that the momentum flux 

ratio provides a good estimation for atomization rate [30].  

For incompressible flows the momentum flux ratio is written as 

𝑀 =
𝜌𝑙𝑉𝑙

2

𝜌𝑔𝑉𝑔2
 

where g and l refers to the gas and liquid respectively, ρ is the density and V the 

velocity. 

Additional non-dimensional parameters in the description of the primary atomization 

are the fluids Reynolds number. 

𝑅𝑒𝑙 =
𝜌𝑙𝑉𝑙𝐷𝑐
𝜇𝑙

 

where  𝐷𝑐 is the characteristic length and is usually taken as the diameter of the nozzle 

and 𝜇𝑙 the dynamic viscosity of liquid. 

The influence of the surface tension effects on the liquid surface also play an important 

role in the atomization mechanics. Due to this, the Weber number is also commonly 

employed: 

𝑊𝑒 =
𝜌𝑙𝑉𝑙𝐷𝑐
𝜎

 

where 𝐷𝑐 is the characteristic length and is taken as the diameter of the droplets for a 

dispersed phase description and σ is the surface tension of the fluid. 
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Ohnesorge number (Oh) on the other hand relates the viscous forces to the inertial and 

surface tension forces. It is given according to the relation as 

Oh =
𝜇𝑙

√𝜌𝑙𝜎𝐷𝑐
 

 

 Breakup of liquid jets 

The phenomenom of jet break up has been a subject of research for decades. The 

earliest studies on jet disintegration were those of Plateau and Rayleigh at low 

Reynolds numbers [31]. Rayleigh studied theoretically the breakup of laminar liquid 

jets issuing from a circular orifice and concluded that all disturbances on the jet with 

wavelengths greater than the circumference will grow and that breakup occurs when 

the fastest growing disturbance attains an optimum wavelength λ𝑜𝑝𝑡 of 4.51d, where d 

is the initial jet diameter shown by Figure 2.3 and Figure 2.4a.  

 

Figure 2.3 Droplet breakup of plain circular jet [17] 

 

After break-up, the cylinder of length 4.51d becomes a spherical drop, so that 

4.51𝑑 × (𝜋 4)𝑑2 = (𝜋 6)𝐷3⁄⁄  

and the drop diameter, D, is obtained as  
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𝐷 = 1.89𝑑 

Weber [32] later examined Rayleigh’s work to include the effect of air resistance on the 

disintegration of jets into drops and found that the air friction reduces the optimum 

wavelength  λ𝑜𝑝𝑡 and the minimum wavelength λ𝑚𝑖𝑛 for the drop formation. For zero 

air velocity he found that λ𝑜𝑝𝑡 = 3.14𝑑 and λ𝑚𝑖𝑛 = 4.44𝑑 and at relative velocity of 15 

m/s, the optimum and minimum wavelengths were found to be λ𝑜𝑝𝑡 = 2.2𝑑 and λ𝑚𝑖𝑛 =

2.8𝑑 respectively with the drop diameter reducing from 1.88𝑑 to the value of 1.61𝑑. 

Weber also examined liquid viscosity on the jet break and found  the maximum 

wavelength λ𝑜𝑝𝑡 to be 

λ𝑜𝑝𝑡 = 4.44𝑑(1 + 3𝑂ℎ)
0.5 

where Ohnesorge number Oh  𝜇𝑙= liquid viscosity, 𝜌𝑙= liquid density, σ = surface 

tension, d = initial jet diameter. 

In terms of relative velocity between the jet and the surrounding air in generating the 

wave motion, low relative velocities cause the droplets to disintegrate into a fairly 

uniform drops which are far larger than the initial jet diameter as shown Figure 2.4a. At 

higher jet velocities, break up is caused by the oscillations or waviness of the whole jet 

with respect to the jet axis shown in Figure 2.4b. At even higher velocities, due to the 

enhanced interaction between the surface of the jet and the surrounding air, the waves 

become detached from the surface to from ligament and subsequently into drops as 

illustrated in Figure 2.4c. As the jet velocity increases, the diameter of the ligaments 

decreases. When they collapse, smaller droplets are formed in accordance with 

Rayleigh’s theory [17]. 

 

Figure 2.4 Breakup of liquid jets [1] 
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 Regimes of liquid jet break-up in pressure-assisted atomisation 

Four major different regimes for round liquid jet break-up in ambient or stagnant gases 

have been considered which are normally referred to as (with increasing jet Reynolds 

number from 1 to 4): 

1. Rayleigh break-up regime 

2. First wind-induced regime 

3. Second wind-induced regime 

4. Atomisation or spray regime 

The Rayleigh regime can be observed when a liquid jet of diameter D1 and velocity u1, 

is injected into a stagnant gas, if the jet diameter is small and the jet Reynolds' number  

𝑅𝑒𝑙 =  𝜌𝑙𝑢𝑙𝐷𝑙 µ𝑙⁄  is of the order 102. However, the maximum possible Reynolds 

number for this regime is dependent upon the Ohnesorge number 𝑂ℎ = 𝜇𝑙 (𝜌𝑙𝜎𝐷𝑙)
1 2⁄⁄  

shown in Figure 2.5 Boundaries of four different jet disintegration regimes based on 

Reynolds and Ohnesorge numbers according to Reitz [35]. where 𝜇𝑙, 𝜌𝑙 and 𝜎 are the 

liquid viscosity, liquid density and the surface tension respectively. The drops formed 

are larger than the jet diameter. At larger Reynolds numbers the jet shape becomes 

irregular and wavy. This regime is known as the non-axisymmetric Rayleigh break-up 

or the first wind-induced regime. These drop sizes equal approximately the jet 

diameter.  

Further increasing the Reynolds number leads to a stage where the shear stresses at the 

liquid jet surface induced by mean velocity difference between the jet and the ambient 

gas, and also by the turbulent eddies in both the gas and the liquid start to detach some 

droplets from the jet surface. This regime is called the second wind-induced regime and 

drops are smaller than Dl. This is where break-up is taking place under the influence of 

both ‘waves and instabilities' and 'turbulence and mean flow shear’. Further increase in 

Reynolds numbers around 105 leads to full atomisation of the jet [33, 34]. This is 

known as spray or atomisation regime. Drop sizes in this regime are much smaller than 

Dl. The limits and transition criteria for these regimes based on Reynolds and 

Ohnesorge numbers are given in Figure 2.5 from Reitz as straight lines in a log-log 

scale of the parameter space of Ohnesorge and Reynolds numbers. However, it should 

be noted that these limits are not definitive and they are only indicating approximate 

regions for the parameter space of Oh-Re. An illustration of the jet shape and the break-
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up process for each of the aforementioned four regimes is given in the schematics of 

Figure 2.6. 

 

Figure 2.5 Boundaries of four different jet disintegration regimes based on Reynolds 

and Ohnesorge numbers according to Reitz [35].   

 

Figure 2.6 Liquid jet shape and qualitative variation of the break-up length in the four 

jet disintegration regimes with increasing velocity [35]. 
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The same classification of the regimes with their boundaries defined by Weber and 

Ohnesorge numbers are given in Table 2.1 with the criteria for evaluating the nature of 

cylindrical liquid jet break-up regimes. The values of the gaseous Weber number, WeG, 

liquid Weber number, WeL, and Ohnesorge number, Oh, should be calculated to 

evaluate the Rayleigh and first-induced regimes. However, the gaseous Weber number, 

the liquid-to-gas density ratio, and the Taylor parameter, T, are involved in the second 

wind-induced and atomization regimes. These numbers are as follows. 

𝑊𝑒𝐿 =
𝜌𝑙𝑢𝑙

2𝐷

𝜎
,𝑊𝑒𝐺 =

𝜌𝑔𝑢𝑙
2𝐷

𝜎
, 𝑅𝑒𝐿 =

𝜌𝑙𝑢𝑙𝐷

𝜇𝑙
, Oh =

𝜇𝑙

√𝜌𝑙𝜎𝐷𝑐
, 𝑇 =

𝜌𝑙
𝜌𝑔
(
𝑅𝑒𝐿
𝑊𝑒𝐺

)
2

 

𝜇𝑙 is the liquid dynamic viscosity, 𝑢𝑙 is the liquid average velocity, 𝜎 is the surface 

tension coefficient, 𝐷 is the nozzle diameter, and 𝜌𝑙 and 𝜌𝑔 are the liquid and gas 

densities respectively. 

Table 2.1. Criteria used in evaluating the regimes of cylindrical liquid jet breakup [35-

39]. 

Break-up regime Criteria 

Dripping regime 𝑊𝑒𝐿 < 8 

Rayleigh regime 𝑊𝑒𝐿 > 8,𝑊𝑒𝐺 < 0.4 𝑜𝑟 1.2 + 3.41Oh
0.9   

First wind-induced regime 1.2 + 3.41Oh0.9 < 𝑊𝑒𝐺 < 13 

Second wind-induced 

regime 

13 < 𝑊𝑒𝐺 < 40.3 

Atomization regime 40.3 < 𝑊𝑒𝐺 

𝜌𝑔

𝜌𝑙
>
(√𝐴 − 1.15)

744
𝑓(𝑇)−2, 𝑓(𝑇)

=
√3

6
[1 − exp (−10𝑇)] 

  

 

The boundaries are mostly straight lines of constant Weber numbers unless for 

transition from Rayleigh to wind-induced regime where according to two different 
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correlations two boundaries of 𝑊𝑒𝐺 = 0.4 or 𝑊𝑒𝐺 = 1.2 + 3.41Oh
0.9 with 𝑂ℎ < 0.4  

can be considered.  According to Besheshti [40] transition between the first and second 

wind-induced regimes cannot be easily defined with these two parameters. Transition 

to atomisation regime is gradual and according to two different correlations the 

criterion for this transition is 𝑊𝑒𝐺 < 13 and 𝑊𝑒𝐺 < 40.3. 

 Liquid sheet breakup  

The basic mechanisms of sheet disintegration are broadly the same as those responsible 

for jet break up. According to Frazer et al.[41] if the relative velocity between the 

liquid sheet and the surrounding air is fairly low, a wave motion is generated on the 

sheet which causes rings of the liquid to break away from its leading edge. The volume 

of liquid contained in the rings can be estimated as the volume of a ribbon cut out of 

the sheet with a thickness equal to that of the sheet at the breakup distance and a width 

equal to one-half wavelength of the oscillation (λopt/2). These cylindrical ligaments then 

disintegrate into drops of uniform size according to the Rayleigh mechanism as 

illustrated in Figure 2.7[17]. 

 

Figure 2.7 The successive stages in the idealized break-up of a wavy sheet [41] 

For pressure-swirl atomizers (PSA), a conical liquid sheet is generated as shown in 

Figure 2.8. In contrast to the plain-orifice breakup, a wave motion is generated on the 

liquid sheet, which causes the primary breakup. This process is called classical 

atomization. With increasing inlet pressure and thus relative velocity, sheet breakup 

occurs closer to the atomizer. At very high relative velocities, atomization starts at the 

atomizer exit orifice. In this case, the liquid sheet has no time to develop a wavy 

structure, but is immediately torn into ligaments. This mode is called prompt 
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atomization. For high Weber number prompt atomization is dominant whereas for a 

low Weber number the classical model is dominant [2]. 

 

Figure 2.8 Liquid sheet break up, generated by pressure-swirl atomizer [42] 

 Break-up length and the liquid core length in round liquid jets 

The break-up length or the intact length Lb is the length where break up begins on the 

jet surface. The dense spray region shown in Figure 2.6 in second wind induced and 

atomisation regimes include a liquid core similar to the potential core in single-phase 

jets which is surrounded by a two-phase mixture of large droplets. The length of this 

liquid core is called the liquid core length 𝐿𝑐. It is also considered as the length that 

continuous liquid exists on the jet axis. This core length 𝐿𝑐 equals the break-up length 

𝐿𝑏  in the Rayleigh regime but is much longer than 𝐿𝑏 in the other three regimes and it 

reaches in the atomization regime. A qualitative illustration of the break-up length for 

each of the four regimes of jet break-up against jet velocity is shown on the left hand 

side of Figure 2.6. 

 Effect of density ratio and injection velocity on the liquid core 

length 

Grant & Middleman [43] performed liquid core length measurements in the atomisation 

regime with 𝜌𝑙 𝜌𝑔 > 500⁄  and proposed a correlation in the form of:  

𝐿𝑐 𝐷𝑙 = 8.51 𝑊𝑒
0.32⁄  
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Since the gas density is much smaller than the liquid density, the correlation only 

depends on the liquid properties and the injection velocity. However, other researchers, 

Hiroyasu et al. [44], Chehroudi et al. [45] and Andrews [46] have proposed the 

following correlation for experiments when  𝜌𝑙 𝜌𝑔 > 500⁄ : 

𝐿𝑐 𝐷𝑙 = 𝐶𝑐(𝜌𝑙 𝜌𝑔⁄ )
1 2⁄

⁄  

with different values of 15.8, 7.0 and 5 for 𝐶𝑐 respectively. The wide range of values 

for 𝐶𝑐, given by different researchers from different experiments, can be related to the 

fact that the primary break-up is very much affected by the flow conditions in the 

nozzle such as vorticity and turbulence which are not taken into account in these 

correlations. However, Chehroudi et al. [45] relate their much lower value of 𝐶𝑐 to 

some uncertainties in the measurements of Hiroyasu at al.[44]. 

This dependency of the liquid core on (𝜌𝑙 𝜌𝑔⁄ )
1 2⁄

 is the same as predicted by the 

theories based on the growth and instability of the surface waves with most unstable 

wavelength [47]. When the jet surface has become wavy or irregular typical of the first 

break up regime the pressure forces exerted by gas as a result of the motion of the jet 

on this irregular surfaces which will be unequal on each side of the surface because of 

the different diameters and shapes that it attains, can cause further disruption to the jet.  

These effects are generally referred to as aerodynamic effects in the literature. 

However, these effects are expected to be non-existent in the atomization regime since 

the jet surface is subject to strong mean flow shear and small-scale turbulent eddies that 

do not leave much room for waves or significant irregularities like the other regimes to 

develop or remain on surface.  

Tseng et al.[48] argue that the so-called aerodynamic effects are negligible for liquid to 

gas density ratios of above 500 and become important only for values of this ratio 

below 500. Hence they relate the lack of gas properties in the Grant & Middleman's 

correlation to negligibility of the aerodynamic effects because of very high density 

ratios in their experiments and the rather strong dependency on the liquid to gas density 

ratio in the other correlations to smaller density ratios in the related experiments. 
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 Mean drop size 

The mean droplet diameter is a very important parameter used to characterize the 

distribution of a spray. For most engineering purposes, the distribution of drop sizes 

may be described in terms of two parameters, one of them is the representative 

diameter and the other one is a measure of the range of drop sizes. There are several 

measures to define it, e.g., mass median droplet diameter, D0.5, arithmetic mean 

diameter, D10, the surface area mean diameter, D20, the volume mean diameter, D30,  

the Sauter mean diameter, D32 etc. 

In combustion and fuel injection, it is only the mean or average diameter and in 

particular the most important Sauter mean diameter (SMD) named after Josef Sauter in 

1924 which is used instead of the complete drop size distribution.  Generally, a 

combustor with larger SMD will produce more pollution (oxides of nitrogen, carbon 

monoxide) [49]. Table 2.2 shows the basic definitions for the average diameters [1]. 

Table 2.2 Mean diameters 

Common name Definition Used for 

Arithmetic mean diameter 

𝐷10 =
1

𝑁
∑ni𝐷𝑖

𝑁𝑖

𝑖=1

 

General comparison and 

calculating evaporation 

rates 

Area mean diameter 

𝐷20 = (
1

𝑁
∑ni𝐷𝑖

2

𝑁𝑖

𝑖=1

)

1
2

 

Monitoring surface 

applications  

 

Area-length mean diameter 
𝐷21 =

∑ ni𝐷𝑖
2𝑁1

𝑖=1

∑ ni𝐷𝑖
𝑁1
𝑖=1

 
Absorption studies 

Volume mean diameter 

𝐷30 = (
1

𝑁
∑ni𝐷𝑖

3

𝑁𝑖

𝑖=1

)

1
3

 

Hydrology and mass flux 

application 

Mean evaporative diameter 

𝐷31 = (
∑ ni𝐷𝑖

3𝑁1
𝑖=1

∑ ni𝐷𝑖
𝑁1
𝑖=1

)

1
2

 

Evaporation and molecular 

diffusion applications 

Sauter mean diameter 

(SMD) 
𝐷32 =

∑ ni𝐷𝑖
3𝑁1

𝑖=1

∑ ni𝐷𝑖
2𝑁1

𝑖=1

 
Mass transfer and reaction 

De Broukere diameter 
𝐷43 =

∑ ni𝐷𝑖
4𝑁1

𝑖=1

∑ ni𝐷𝑖
3𝑁1

𝑖=1

 
Combustion applications 
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 Drop size distributions 

A critical parameter in atomization study is the distribution of droplet size within the 

spray. It is an essential element to understand the atomization process. Some of the 

most widely used empirical droplet size distribution functions in spray atomization are 

the Rosin-Rammler volume distribution function, the log-normal distribution function, 

root-normal, log-hyperbolic and the Nukiyama-Tanasawa distribution functions. 

The Rosin-Rammler volume distribution function is widely used to express the droplet 

size distribution from nozzles especially for pressure nozzles. It is empirical and relates 

the volume percent oversize to droplet diameter. The atomization process produces 

droplets with random and chaotic size. Usually, atomizers produce droplets in the size 

range from a few microns up to several hundred microns. A simple method of 

illustrating the distribution of drop size in a spray is to plot a histogram, where each bin 

represents count percent of droplets of a given size class. A histogram sample is shown 

in Figure 2.9. Because the graphic representation of drop size distribution is 

experimental, several mathematic models were introduced in an attempt to reduce the 

intensity of experimental measurements. The Rosin and Rammler [50, 51] expression 

used to describe drop size distribution is given by: 

                                                       1 − 𝑄 = exp ( −
𝐷

𝑋
)
𝑞

                                             2.1 

where Q is the fraction of the total volume contained in drops of diameter less than D 

and X and q are constants that are determined experimentally [1, 7].  

 

Figure 2.9 Drop size distribution from pressure-swirl atomizer, inlet pressure 10 bar, 

axial distance from exit orifice 50 mm, in center line of spray[1] 
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The problem with this empirical approach is the difficulty of extrapolating the data to 

operating regimes outside the experimental range. Without additional experimentation, 

one can never be certain whether the extrapolated empirical correlation applies to the 

regime of interest. Unfortunately, additional experimentation is often impractical, 

impossible, or prohibitively expensive [52]. 

Alternative to the empirical approach are two analytical approaches to the problem of 

modelling drop size distribution. These are the maximum entropy (ME) method, and 

the discrete probability function (DPF) method. The ME method, pioneered by Sellens 

and Brzustowski [53] and Li and Tankin [54], views spray formation as a completely 

non-deterministic process that can be modelled using the principle of entropy 

maximization subject to a set of global constraints. The ME method assumes that the 

most likely drop size distribution is the one that maximizes an entropy function under a 

set of physical constraints (e.g. conservation of spray mass, minimization of surface 

energy, etc.). The most important part of applying the maximum entropy principle to 

predict drop size distribution is the correct formulation of the constraints. After 

approximately a decade of research, it appears that various formulations have 

converged to a commonly accepted form. The constraints contain 'source terms', which 

can be expressed in terms of representative diameters of the drop size distribution (eg. 

SMD, D21, D30, D10). It appears that at least two such diameters are needed to predict 

the drop size distribution. In principle, they can be obtained by other means such as an 

instability analysis. However, an instability analysis can provide only one such 

representative diameter; at present, there are no means of obtaining two or more. This 

makes the maximum entropy method less useful for practical applications because at 

present experimental measurement is the only way of obtaining more than one 

representative diameter [52]. 

The DPF method applied to modelling drop size distributions in Newtonian sprays by 

Sovani et al.[55, 56] and developed originally by Sivathanu and Gore [57] divides the 

spray formation process into deterministic and non-deterministic portions. It is assumed 

that spray formation involves a series of breakup stages of the initial fluid structure (flat 

sheet, annular sheet, jet, conical sheet, etc.). A fluid mechanic instability analysis such 

as the ones of Rayleigh [58], Weber [32], Sterling and Sleicher [37], Goren and 

Gottlieb [59], or Panchagnula et al.[60] can be used to describe the relevant breakup 

processes. It is stated that the DPF method is not tied to any particular instability 
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analysis and that  any number of linear or non-linear analyses that acceptably describe 

the relevant breakup physics may be used [52]. 

 Sauter Mean Diameter (SMD) predictions 

Sauter mean diameter abbreviated SMD or D32 is one of the most discussed atomizer 

characteristics and plays an important role in the combustion process. The goal is to 

keep SMD as low as possible due to higher efficiency and lower production of 

pollutions in combustion. A list of the best known empirical correlations of SMD is 

shown in Table 2.3 ordered from the oldest to the newest[1]. 

Table 2.3 SMD correlations  

N Author Equation Yea

r 

Liquid Comment 

I Ohnesorge[61] 𝑆𝑀𝐷 = 0.61𝑚1̇
0.318∆𝑝1

−0.53 

 

1936 water  

II Radcliffe[62] 𝑆𝑀𝐷

= 7.3𝜗0.2𝜎0.6𝑚1̇
0.25∆𝑝1

−0.4 

 

1960  𝜗=0.5-20 

mm2/s 

𝜌𝑙=750-

1600 kg/m3 

III Jasuja[63] 𝑆𝑀𝐷

= 4.4𝜗0.16𝜎0.6𝑚1̇
0.22∆𝑝1

−0.43 

 

1979 Kerosene 

Gas oil 

Residual 

fuel oil 

 

IV Simmons[64] 𝑆𝑀𝐷 = ∆𝑝1
0.275𝑊𝑒−0.43 

𝑆𝑀𝐷 = 170.824
𝐹𝑁0.64291

∆𝑝0.22565
 

1981 Water  

Kerosene 

We<1 

V Babu[65] 𝑆𝑀𝐷

= 198.515
𝐴0
0.3888𝐴1

0.32114

𝐴𝐶
0.05414∆𝑝0.2565

 

𝑆𝑀𝐷

= 66.898
𝐹𝑇0.50939𝐷0

1.00546𝑉𝐸
1.01112

𝑈𝐸
0.0809∆𝑝0.72844

 

1982 Kerosene Pressure up 

to 27.6 bar 
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VI Kennedy[66] 𝑆𝑀𝐷 = 10−3𝜎(6.11 + 0.32

∗ 105𝐹𝑁√𝜌𝑙

− 6.973

× 10−3√∆𝑝1

+ 1.89

∗ 10−6∆𝑝𝑙) 

1986 25 types 

of liquid- 

Kerosene

,oil etc 

We>10 

VII Lefebvre[67] 𝑆𝑀𝐷

= 2.25𝜇0.25𝜎0.25𝑚1̇
0.22∆𝑝1

−0.5 

𝜌𝐴
−0.25 

 

1987 Kerosene 

Gas oil 

Residual 

fuel  

oil 

 

VIII Wang, 

Lefebvre[68] 

𝑆𝑀𝐷

= 4.52 [
𝜎𝜇2

𝜌𝐴∆𝑝1
2]

0.25

[𝑡 cos 𝜃]0.25

+ 0.39 [
𝜎𝜌1
𝜌𝐴∆𝜌1

]
0.75

[𝑡 cos 𝜃]0.75 

1987 Diesel oil 

water 

 

IX Couto[69] 𝑆𝑀𝐷

= 1.817 cos 𝜃 (
ℎ0
4𝜎2

𝑈0
4𝜌𝑎𝜌1

)

1
6

[1

+ 2.6𝜇1 cos 𝜃 (
ℎ0
2𝜌𝑎
4𝑈0

7

72𝜌1
2𝜎5

)

1 3⁄

]

0.2

 

1997 Water 

Diesel oil 

 

X Musemic[70] 
𝑆𝑀𝐷 = [

𝑘

𝑊𝑒
]
0.44

[
𝜌𝑙
𝜌𝑎
]
0.08

 
2011 Water 

Water- 

glycerol 

 

t = 3.66 (
𝒅𝟎𝒎𝒍̇ 𝝁𝟏

𝝆𝟏∆𝑷𝟏
)
𝟎.𝟐𝟓

ℎ𝑜 = 
0.00805𝐹𝑁√𝜌1

𝐷0 cos𝜃
     𝑈𝑜 = √

2∆𝑃1𝐶𝑑

𝜌1
  𝑘 =

𝜇

2𝜋𝜑 sin(
𝜃

2
)
    

𝜑 =
𝑣𝑒𝑓𝑓

𝑣𝑝𝑜𝑡
 

The simplest correlations were empirical formulas in the general form  

 𝑆𝑀𝐷~𝜎𝑎𝜗𝑏𝑚1̇
𝑐∆𝑝1

𝑑                            2.2 

where a, b, c, d are experimental constants. Due to a disparity in the listed formulas (I, 

II, III, VII), it is not possible to define one universal correlation based on this model. 

The first correlation (I) in Table 2.3 was probably the first correlation of SMD in swirl 

atomization. It was published by Ohnesorge [61] in 1936. He set SMD to be a function 
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of injection pressure and mass flow, but did not include any of the liquid properties. 

Further correlations were made by Radcliffe [62] (II) and Jasuja[63] (III). They are 

both very similar to each other. They put in the correlation liquid properties such as 

viscosity and surface tension. According to the more convenient Lefebvre´s correlation 

[67] (VII), they have a bigger influence on surface tension and do not involve liquid 

and air density. These correlations are based on the model empirical formula in eq. 

(2.2), their advantage is the simplicity of creation and application, but more complex 

correlations (VIII, IX, X) are more accurate. Simmons[64] in 1981 investigated six 

swirl atomizers of small flow rates with water and kerosene and correlated the Weber 

number with inlet pressure. His correlation (IV) is valid only for small atomizers, with 

a Weber of number less than 1. Babu [65] in 1982 used eight different atomizers for 

pressure up to 27.6 bar, all with kerosene. He defined three equations (V), which are 

based on the atomizers dimensions. He also correlated equations for pressure above 

27.6 bar, but in his thesis they are not classified. Kennedy [66] derived his equation 

(VI) using six different atomizers with 25 types of liquids. He correlated mass flow 

rate, surface tension and inlet pressure under the condition that the Weber number is 

larger than 10. The SMD was found to be independent of liquid viscosity. Probably one 

of the most complex, semi-empirical correlation was introduced by Wang and 

Lefebvre[68] in 1987. The correlation (VIII) was based on the theory 

 𝑆𝑀𝐷 = 𝑆𝑀𝐷1 + 𝑆𝑀𝐷2                            2.3 

where 𝑆𝑀𝐷1 represents the first stage in the atomization process and 𝑆𝑀𝐷2 represents 

the final stage of atomization. They used several liquids to provide a range of viscosity 

from 1 mm2/s to 18 mm2/s and range of surface tension from 27 to 73 mN/m. 

Nowadays more than quarter-century later, it is taken as a reference for other 

corrections. Couto et al [69]  derived a theoretical formula (IX) based on a hypothesis 

regarding the thickness of a plane disintegrating liquid sheet. They compared their 

results with other empirical correlations in their work. They correlated liquid properties 

with atomizer dimensions and with properties of surrounding air. Recent investigation 

was made by Musemic [70] (X) by testing 20 atomizers with water-glycerol mixture 

with a dynamic viscosity of up to 5 mPas. He observed that higher swirl ratio led to a 

smaller drop size. A higher swirl ratio means a higher ratio of the tangential velocity 

components to the axial velocity [1]. Apart from these general correlations some 
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specific correlations are used for some specific atomizers. According to Elkotb [71] the 

SMD for plain orifice nozzles is determined  using 

𝑆𝑀𝐷 = 3.08𝜗𝐿
0.385(𝜎𝜌𝐿)

0.737𝜌𝐴
0.06∆𝑝𝐿

−0.54 

For pressure-swirl nozzles, mean drop sizes are usually correlated using empirical 

equations of the form 

𝑆𝑀𝐷 = 2.25𝜎0.25µ𝐿
0.25𝑚𝐿̇

0.25∆𝑝𝐿
−0.5𝜌𝐴

−0.25 

For rotary atomizers, any equation for mean drop size should take into account the 

effects of variations in disc or cup diameter and rotational speed, in addition to liquid 

properties and liquid flow rate. For atomization by direct drop formation, Tanasawa et 

al. [72] obtained a good correlation between their experimental data and the following 

expression for mean drop size 

𝑆𝑀𝐷 =
0.45

𝑁
[
𝜎

𝑑𝜌𝐿
]
0.5

[1 + 0.003
𝑚𝐿̇

𝑑µ𝐿
] 

For atomization by ligament formation, these same workers proposed the following 

equation  

𝑆𝑀𝐷 =
0.50

𝑁
[
𝜎

𝑑𝜌𝐿
]
0.5

[
𝑚𝐿̇

µ𝐿
]
0.1

 

An interesting feature of this equation is that it predicts the mean droplet size to 

increase slightly with increase in liquid viscosity [1].  

The mean drop sizes produced by twin-fluid atomizers are usually correlated in terms 

of the Weber and Ohnesorge numbers and the air/liquid mass ratio (ALR), as illustrated 

below 

SMD

Lc
= (A.We−0.5 + B. Oh) [1 +

1

ALR
]
𝐶

 

where A, B, and C are constants whose values depend on atomizer design and must be 

determined experimentally. Lc is a characteristic dimension of the atomizer. For 

prefilming types of airblast atomizer  the correlation is [73] 

SMD

𝐷h
= [0.33 (

σ

𝜌𝐴𝑈𝐴
2𝐷p

)

0.6

(
𝜌𝐿
𝜌𝐴
)
0.1

+ 0.68(
η𝐿

𝜌𝐿σ𝐷p
)

0.5

] [1 +
1

ALR
] 

where Dh is the hydraulic mean diameter of the atomizer air duct at its exit plane, and 

Dp is the prefilmer diameter.  
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2.5  Theoretical studies on pressure swirl atomizer 

Early studies of simplex atomizers employed analytical and/or experimental methods to 

predict the internal and external spray characteristics of the atomizer [3, 28-32]. Taylor 

in 1948 did the earliest work on the internal analyses of the simplex atomizer. He 

proved that there is a difference between the values of the air-core radii at the top of the 

swirl chamber and in the outlet and in 1950 investigated the growth of the boundary 

layer adjacent to a cone which represented the convergence of a swirl atomizer from 

the edge of the cone to the vertex. He also investigated the velocity distribution within 

the boundary layer. Giffen and Muraszew [74] undertook treatments of the inviscid 

theory of the pressure swirl atomizer (PSA). It was a classical quasi-one-dimensional 

inviscid analysis that may be used by those wishing to design swirl atomizers. The 

analysis of Giffen and Muraszew has been re-presented in the major works on 

atomization by Lefebvre [1]. The purpose of the analysis was to develop expressions in 

terms of the atomizer dimensions only for: (a) the air-core radius in the outlet, or 

discharge orifice, (b) the discharge coefficient and (c) the spray cone angle. Bayvel and 

Orzechowski [3] also did analytical analysis on the atomizer similar to Giffen and 

Muraszew but in addition gave a novel analysis of the axial and tangential velocities 

along with the air-core radius at the exit cross-section where the static pressure is zero 

throughout. The boundary layer analysis to determine the air-core diameter in the outlet 

was undertaken by Som and Biswas [75]. They made it clear from the outset that the 

flow was analysed according to three distinct zones of flow: (a) a central air-core near 

the axis (b) a boundary layer near the surface of the nozzle (c) an inviscid zone between 

the latter two zones where the tangential velocity behaves in the manner of a free 

vortex. Rizk and Lefebvre [8, 33] investigated the internal flow characteristics of 

simplex swirl atomizers using approximate analytical treatment of the flow. They 

investigated the effects of variation of the individual swirl atomizer geometrical 

dimensions on the thickness of the annular liquid film at the nozzle exit and the effects 

of the variation of the fluid properties on the values of the discharge coefficient, the 

spray angle and the liquid film thickness. They developed a general expression for the 

liquid film thickness at the exit of the swirl atomizer and stated that the air-core 

diameter increases with increasing pressure, decreasing inlet area, increasing swirl 

chamber diameter, decreasing swirl chamber length, increasing orifice length, 

decreasing liquid viscosity and decreasing liquid density. Moradi [76] developed a 

theoretical model for pressure swirl atomizer using integral conservation methods to 
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predict the SMD for fully developed atomization conditions. The results showed the 

model predicted the droplet sizes with high accuracy for wide range of operating 

conditions. However, the model overestimated the SMD for very low injection 

velocities, Weber numbers and cone angles. Theoretical model such as the semi-

empirical model developed from the surface wave breakup theory was also established 

by Xiao and Huang [77] to predict the SMD for combustors. They concluded that three 

geometrical parts such as tangential inlets, swirl chamber and the discharge orifice have 

significant effect on the SMD for pressure swirl atomizer. 

 

2.6 Experimental studies on pressure swirl atomizer 

One of the earliest pioneers who studied  experimentally the velocity profiles within a 

pressure swirl atomizer was Horvay and Leuckel [5]. The experiments were conducted 

using three different convergence configurations (standard, concave, and plain conical) 

and two different inlet/swirl chamber configurations (four 20 x 10 mm and four 20 x 5 

mm rectangular inlet slots). The atomizers were manufactured from Plexiglas(Perspex) 

and shared many of the overall dimensions: radius of swirl chamber rs = 50 mm, length 

of swirl chamber ls = 25 mm, radius of orifice ro = 10 mm and length of orifice lo = 20 

mm as shown in Figure 2.10. 
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Figure 2.10 The different atomizer designs and dimensions employed in the velocity 

measurement experiment of Horvay and Leuckel [5] 

 

The measurements of the liquid velocity components within the atomizer were carried 

out using the 'no contact' method of Laser-Doppler Anemometry (LDA). The refractive 

index of the operating liquid was adapted to that of the perspex by the use of mixtures 

of tetraline, turpentine and castor oil. The seeding particles needed to scatter the laser 

light were small air bubbles that were entrained at the intake pump that supplied the 

operating liquid to the experimental rigs. Radial profiles of the axial and tangential 

velocities were taken at six different cross-sections through the atomizer. De 

Keukelaere [78] conducted tests on a large perspex atomizer using water as the 

operating liquid. The flow rate was measured for different inlet pressures. Static 

pressure measurements were conducted on the internal walls of the atomizer using an 

electrical transducer providing wall pressure profiles for different inlet pressures. 

Measurements of the air-core diameter were undertaken employing a video system 

providing a clear view of the air-core topology within the convergence and outlet of the 

atomizer. To observe the velocities and nature of flow occurring within an atomizer 

Hsieh and Rajamani [79] investigated the flow in  the body of a hydrocyclone separator 

which bears close similarities with that of a swirl atomizer. They suggested that the 

flow may be turbulent but admitted that "The correlation between the turbulence and 
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the Reynolds number has not been established for vortical flow yet it is generally 

believed that turbulent conditions exist within the body of the hydrocyclone especially 

as the Reynolds number is as high as 105 to 106 for most practical applications’’. Other 

numerous experiments have been performed in order to determine a functional 

relationship between the SMD and the relative parameters such as surface tension, film 

thickness, viscosity, discharge coefficient, spray angle and liquid and gas densities [8, 

67, 80]. Rizk and Lefebvre [80] explained using Figure 2.11 that the film thickness t 

increases with increasing kinematic viscosity vL for any given pressure while it does 

appear to decrease with liquid density but stated that the effect was minimal and that 

the influence of pressure differential Δp on the film thickness was more pronounced. 
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Figure 2.11 Variation of film thickness t with kinematic viscosity 𝒗𝑳 and liquid density 

𝝆𝑳 observed by Rizk and Lefebvre [80] 

Rizk and Lefebvre [80] also presented a graph of variation of discharge coefficient CD, 

cone angle α with kinematic viscosity vL as shown in Figure 2.12 and explained that the 

maximum value of discharge coefficient was reached when the air-core disappeared 

entirely and the flow became predominantly axial. Further increase in viscosity then 
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has a retarding influence on the axial velocity which then causes the discharge 

coefficient to decrease.  They also noted that there was a sharp decline in spray cone 

angle with an increase in viscosity and that the increase in the pressure differential 

across the nozzle tended to widen the spray angle to the extent that the value of 

viscosity at which the swirl component became effectively zero was almost doubled for 

a four-fold increase in pressure differential. 

 

Figure 2.12 Variation of discharge coefficient, cone angle with kinematic viscosity 

observed by Rizk and Lefebvre [80] 
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Wang and Lefebvre[68] conducted an experiment in which they utilized two pressure-

swirl atomizers with different flow numbers to determine the proportionality of the 

SMD with the surface tension σ of the liquid. They discovered that SMD scales 

proportional to σ0.25. Similar results were found by Jones [81] and Simmons [82] with 

slight variation in the constant power. Saha et al.[83] attempted to quantify the average 

droplet diameters and velocities due to the breakup and subsequent coalescence of the 

droplets from two different simplex atomizers utilizing Phase Doppler Particle 

Analyzer (PDPA) and shadowgraph techniques. They discovered that, regardless of the 

injector diameter used, the droplet diameters and velocities all converged to the same 

value at axial distances far from the injector orifice. The final droplet velocities seem to 

vary only with respect to the injection pressure near the nozzle; however, far enough 

downstream all the droplet velocities converged to the same value along the center axis. 

They also discovered that even though the simplex nozzles were of the hollow-cone 

type, they still had significant number of droplets along the center axis. This was 

attributed to the fact that smaller droplets are going to be carried inwards by the 

entrained gas whereas the larger droplets would continue along their path at the sheet 

breakup point. They also observed appreciable coalescence effects downstream of the 

nozzle. Muhammad at al [84] experimentally study the effect of geometric parameters 

on the spray cone angle and the SMD for twelve (12) atomizers for three geometrical 

ratios of 𝐷𝑠/𝐷𝑜, 𝐿𝑜/𝐷𝑜 and 𝐿𝑠/𝐷𝑠 varied from 3 to 7.5, 0.81 to 2.69 and 1.25 to 5.0 

respectively where 𝐷𝑠 is the diameter of the swirl chamber, 𝐷𝑜 diameter of exit orifice, 

𝐿𝑜 height of exit orifice, 𝐿𝑠 combined vertical height of contraction part and swirl 

chamber. The experiment was performed at two injection pressures of 0.8 and 1.2MPa 

using Malvern instruments and water as the test liquid. It was observed that the spray 

cone angle continuously decreases with the increase in ratio 𝐷𝑠/𝐷𝑜, however, optimum 

value of 3.75 was obtained for the measurement of SMD. It was also shown that the 

SMD continuously increase with increase in 𝐿𝑜/𝐷𝑜 while 1.44 optimal value was 

obtained for the measurement of the spray cone angle. 
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2.7 Numerical studies on pressure swirl atomizer 

Computational fluid dynamics (CFD) research has been developed to produce 

simulations of spray characteristics in pressure swirl atomizer. Chinn et al.[85], Cooper 

et al. [86] and Yule and Chinn [87] are pioneers in the simulation of two-phase flow in 

the simplex atomizers. They predicted numerically the air core shape in the pressure-

swirl atomizer. Belhadef et al.[14] performed numerical studies using FLUENT to 

model the sprays characteristics within and outside the pressure swirl atomizer. He 

developed one-fluid Eulerian model to predict liquid sheet atomization with high 

Weber and Reynolds numbers. The model considered a single phase of liquid-gas 

mixture to represent the turbulent mixing of the liquid sheet with the ambient gas. As 

the flow was highly swirled and highly anisotropic, the Reynolds stress model was used 

for the turbulence. The mean liquid–gas interface density balance equation was solved 

to get the Sauter Mean Diameter of droplets. Experimental data was obtained using 

Phase Doppler Anemometry (PDA). Atomization characteristics such as the axial 

velocity and droplet Sauter Mean Diameter were determined experimentally and were 

compared with the modeling results. The agreement was reasonably good between 

predictions and measurements as shown in Figure 2.13. 
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Figure 2.13 Validation of numerical results in terms of axial mean liquid velocity and 

Sauter Mean Diameter [14] 
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Numerical simulation of laminar and turbulent two-phase flow in pressure-swirl 

atomizers was also carried out by Nouri-Borujerdi [88]. He coupled the laminar and 

turbulent Navier–Stokes equations with the explicit algebraic Reynolds stress model as 

well the level set model to simulate the air-water two-phase flow inside the pressure-

swirl atomizer. Applying a high-order compact upwind finite difference scheme with 

the level set equation culminated to capture the interface between air-liquid two-phase 

flow and decreasing the mass conservation error in the level set equation showed that 

some recirculation zones were observed close to the wall in the swirl chamber and to 

the axis. The proposed model showed that some improvements were obtained 

compared with the previous numerical solutions, especially in the laminar flow, so that 

the discharge coefficient, film thickness, and spray cone angle were satisfactory with 

the previous experimental data as shown in Table 2.4 

Table 2.4 Comparison of air core diameter, discharge coefficient, and spray cone angle 

Author Type of data dair/do CD θ 

(Laminar flow) 

(Turbulent flow) [88] 

Numerical 

Numerical 

0.70 

0.64 

0.388 

0.428 

68.22 

71.23 

Datta [16] Numerical 0.45 0.448 74.30 

Taylor[89] Analytical 0.632 - - 

Rizk [8] Experimental 0.59 0.39 - 

Rizk [8, 90] Experimental - - 69.63 

Suyari &  Lefebvre [91] Experimental 0.697 - - 

Jones[81] Experimental - 0.382 - 

He also showed the result of turbulent kinetic energy versus the radius cross section at 

the locations of z = 6.13 mm, rs=1.8 mm, and z = 12.58 mm, rs=1 mm respectively as 

shown in Figure 2.14a, b and indicates that the intensity of the kinetic energy increases 

drastically near the interface between the air core and the liquid. The comparison 

between the two figures indicates that the maximum turbulent kinetic energy increases 

as the flow approaches the nozzle outlet, i.e., when the fluid flows from z =6.13 to 

12.58 mm. 
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Figure 2.14 Turbulent kinetic energy in the cone region at different axial locations of 

the nozzle 

Hansen [92] also studied and simulated the flow in a scaled model of a Danfoss 

pressure-swirl atomizer through commercially available CFX-4.3 code. The main 

objective of his work was to investigate whether it was possible to model the internal 

gas-liquid flow of an atomizer by use of the commercial code CFX-4.3. Special 

emphasis was given to the flow of the liquid phase. Two approaches were used in the 

simulations: A Large Eddy Simulation (LES) based on the work of [93]  and a 

simulation where the flow was modelled as being laminar. The simulations were 

performed in a three-dimensional curvilinear grid representing the swirl chamber of the 

atomizer and managed to capture the overall flow characteristics of a pressure-swirl 

atomizer with the formations of an air-core and a thin liquid film in the exit region of 

the swirl chamber. The results from LES and simulations assuming laminar flow were 

verified against experimental findings from LDA and pressure measurements. Yule and 

Chinn [94] conducted a numerical study in pressure atomizer by treating the entire 

computational domain as single phase and then guessing the interface by joining grid 

points where pressure is found to be atmospheric. The solution was re-calculated by 

creating a new grid using the calculated interface and treating the interface as a “with-

slip” boundary. However, the condition of normal stress balance was not applied at the 

interface. The velocity and pressure distribution in the atomizer were calculated and 

discharge coefficient and spray angle were predicted. Steinthorsson and Lee [95] 

conducted three-dimensional simulations of internal, free-surface flow in a pressure-

swirl atomizer via commercial software FLUENT. The atomizer used in the 
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simulations is a large-scale atomizer. The Volume of Fluid (VOF) method was adopted 

to capture the formation of the air-core and Reynolds Stress Turbulence model was 

used to model the effects of turbulence. The results were compared to experimental 

data given by Wang et al. [96]. They concluded that the effect of the discrete inlet slots 

disappears before the liquid enters the orifice. Sakman et al.[97] studied the effects of 

simplex nozzle geometry on its performance numerically. They concluded that when 

designing a nozzle particular attention should be given to optimum values of the 

performance variables like the local maximum of spray cone half angle at Ds/ Do = 4.1 

and extreme caution should be taken when designing a simplex nozzle. The 

performance variables are dependent on the actual 18 physical dimensions since these 

may determine whether the flow is laminar or turbulent and may change the trends of 

the performance parameters.  

The numerical simulation of two-phase flow was also undertaken by Saha et al [98] 

whose research involves modelling the internal and near-nozzle flows in the Gasoline 

Direct Injection (GDI) injector. The Engine Combustion Network (ECN) Spray G 

condition and Spray G injector were considered for the simulation of the two-phase 

flow. The results showed that the predicted mass flow rate reasonably agreed with the 

experimental data available in the ECN database for peak needle lift and was also 

observed that the flow patterns and vapour formation were largely affected by very low 

needle lift for both flashing and non-flashing scenarios. A comprehensive review of 

various models for  Sauter Mean diameter (SMD) prediction was also undertaken by 

Vijay et al [99]. They revealed that the SMD was greatly influenced by the breakup 

mechanism and that the droplet size was minimized as the perforated instability 

converted into a surface wave breakup mechanism due to higher inertia collisions. They 

also indicated that viscosity downplayed the surface tension force and supported larger 

sized droplets and suggested experimental validation for SMD findings for higher 

ambient conditions. When the influence of fuel injection pressure and fuel temperature 

on SMD were analysed, it was observed that the temperature effect dominates in 

reducing the droplet size. Since spray flow fields are difficult to predict due to the 

topology and irregularities of the dense break-up region, Gin and Loth [100] used 

inflow boundary condition approach to characterise it where the droplets are 

computationally injected at 9 mm downstream of the orifice and combined this with 

empirical relations for turbulent kinetic energy and dissipation. The approach described 

the spatial distribution of the gas and the droplet velocity and found the droplet velocity 
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to be consistent with the turbulent diffusion theory based on the local Stokes numbers 

and turbulent kinetic energy. In the recent works by Stevenin at al [101] to model the 

atomization and dispersion of an irrigation water jet from the nozzle outlet to the region 

of the full development of the spray, an Eulerian model developed for large Reynolds 

and Weber numbers was used to treat the two phase mixture as a single continuous 

process. The mean velocity, turbulent kinetic energy, liquid volume fraction and Sauter 

Mean Diameter (SMD) were determined numerically and compared to experimental 

measurements. It was observed that the model successfully predicted the volume 

fraction and mean droplet size profiles but overestimated the decrease of the 

longitudinal velocity on the axis.  

 

2.8 Turbulence modelling 

A turbulence model is a computational procedure to close the system of mean flow 

equations so that a more or less wide variety of flows problems can be calculated. For 

most engineering problems it is unnecessary to resolve the details of the turbulent 

fluctuations. Only the effects of the turbulence on the mean flow are usually analysed. 

For turbulence model to be useful in a general-purpose CFD code it must have wide 

applicability, be accurate, simple and economical to run. The most common turbulence 

models are classified below. The classical models use the Reynolds Averaged Navier–

Stokes (RANS) equations which was proposed by Reynolds in 1895 [102] which 

provided an approximate time-averaged solution method to the Navier–Stokes (NS) 

equations and form the basis of turbulence in currently available commercial CFD 

codes. 
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Table 2.5 Classification of turbulence models 

Classical models 
Based on (time–averaged) Reynold equations 

(RANS) 

 1. Algebraic models or zero equation models 

 2.One-equation models- Prandtl’s mixing length 

model 

 3.Two equation models- k-ε, k-ω model 

 4.Reynolds stress model (RSM) 

 5.Algebraic stress model 

Large eddy simulation (LES) Base on space-filtered equations 

Direct Numerical Simulation (DNS) Navier-Stokes equations are numerically solved 

without any turbulence model 

Detached eddy simulation (DES) Combine the best aspects of RANS and LES 

methodologies in a single solution strategy 

The three different two-equation turbulence models commonly used in RANS 

modelling are briefly described below [103-105]. 

 Standard k-ε turbulence model 

The standard k-ε is a classical model which is based on transport equations for the 

turbulence kinetic energy (k) and its dissipation rate (ε): The k- ε model is the most 

widely used and validated turbulence model. It has achieved notable successes in 

calculating a wide variety of thin shear layer and recirculating flows without the need 

for case-by-case adjustment of the model constants. The model performs particularly 

well in confined flows where the Reynold shear stresses are important. This includes a 

wide range of flows with industrial applications which explains its popularity. In spite 

of the numerous successes the standard k- ε model shows only moderate agreement in 

unconfined flows. The model is reported not to perform well in weak shear layers and 

spreading rate of axisymmetric jets in stagnant surroundings is severely overestimated. 

A summary of performance assessment of the standard k-epsilon model is given below 

Advantages 

 Simplest turbulence model for which only initial and/or boundary conditions 

need to be supplied 

 Excellent performance for many industrial relevant flows 

 Well established; the most widely validated turbulence model 
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Disadvantages 

 Most expensive to implement than mixing length model (two extra PDEs) 

 Poor performance in a variety of important case such as 

i. some unconfined flows 

ii. flows with large extra strains(e.g. curved boundary layers, swirling 

flows) 

iii. rotating flows 

iv. fully developed flows in non-circular ducts [103] 

For turbulence kinetic energy (k) and its dissipation rate (ε):  

𝜕

𝜕𝑡
(𝜌𝑘) + ∇. 𝜌𝑘𝑢⃗ = ∇ [(𝜇 +

𝜇𝑡
𝜎𝑘
) 𝑔𝑟𝑎𝑑 𝑘]+𝐺𝑘 − 𝜌𝜀 

𝜕

𝜕𝑡
(𝜌𝜀) + ∇. 𝜌𝜀𝑢⃗ = ∇ [(𝜇 +

𝜇𝑡
𝜎𝜀
) 𝑔𝑟𝑎𝑑 𝜀]+𝐶1𝜀

𝜀

𝑘
𝐺𝑘 − 𝐶2𝜀𝜌

𝜀2

𝑘
 

where the turbulent (or eddy) viscosity, 𝜇𝑡, and the production of turbulence kinetic 

energy, 𝐺𝑘, are given as 

𝜇𝑡 = 𝜌𝐶𝜇
𝑘2

𝜀
 

𝐺𝑘 = −𝜌̅𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅
𝜕𝑢𝑗

𝜕𝑥𝑖
 

The model constants 𝐶1𝜀 , 𝐶2𝜀, 𝐶𝜇 and the turbulent Prandtl numbers 𝜎𝑘 and 𝜎𝜀 are 

determined as follow to accommodate a variety of flow problems [106-108]. 

𝐶1𝜀 = 1.44,  𝐶2𝜀 = 1.92,  𝐶𝜇 = 0.09,  𝜎𝑘 = 1.0   and 𝜎𝜀 = 1.3 

 Renormalization Group (RNG) k-ε model 

RNG k-ε is a more refined model than the standard k-ε model, developed using a 

statistical technique. The differences between the two models are: 

 An additional term is introduced in the dissipation equation to improve the 

accuracy in rapidly strained flows. 

 The accuracy of the swirl flow is improved. 

 An analytical formula for turbulent Prandtl numbers (inverse effective Prandtl 

numbers,  𝜎𝑘 and 𝜎𝜀) is added where the standard k-ε uses adjustable constants 

 Effective viscosity, μeff, is also analytically derived to handle the low-Reynolds 

number case 
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The equations for the RNG k-ε model are: 

𝜕

𝜕𝑡
(𝜌𝑘) +

𝜕

𝜕𝑥𝑖
(𝜌𝑘𝑢𝑖) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡
𝜎𝑘
)
𝜕𝑘

𝜕𝑥𝑗
]+𝑃𝑘 − 𝜌𝜀 

𝜕

𝜕𝑡
(𝜌𝜀) +

𝜕

𝜕𝑥𝑖
(𝜌𝜀𝑢𝑖) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡
𝜎𝜀
)
𝜕𝜀

𝜕𝑥𝑗
]+𝐶1𝜀

𝜀

𝑘
𝑃𝑘 − 𝐶2𝜀

∗ 𝜌
𝜀2

𝑘
 

where 

𝐶2𝜀
∗ = 𝐶2𝜀 +

𝐶𝜇ŋ
3(1−ŋ ŋ0)⁄

1+𝛽ŋ3
 and ŋ = 𝑆𝑘 𝜀⁄ ,  𝑆 = (2𝑆𝑖𝑗𝑆𝑖𝑗)

1 2⁄
 with the turbulent viscosity 

being calculated in the same manner as with the standard k-epsilon model. 

The model constants of the RNG k-ε model, 𝐶1𝜀 , 𝐶2𝜀, 𝐶𝜇, 𝜎𝑘, 𝜎𝜀 , ŋ0, and 𝛽 are given 

below. 

𝐶1𝜀 = 1.42,  𝐶2𝜀 = 1.68,  𝐶𝜇 = 0.0845,  𝜎𝑘 = 0.7194,  𝜎𝜀 = 0.7194,  ŋ0 =  4.38, 𝛽 =

0.012[109]. 

 Standard k-ω  turbulence model 

The standard k-ω model is another two-equation RANS turbulence model which 

replaces the rate of dissipation of turbulent kinetic energy in the k-ε model by the 

turbulence frequency (or specific dissipation rate), ω = ε/k. The equations have forms 

similar to the k-ε model: 

 Kinematic Eddy Viscosity ѵ𝑇 

ѵ𝑇 =
𝑘

𝜔
 

Turbulence Kinetic Energy k 

𝜕𝑘

𝜕𝑡
+ 𝑢𝑗

𝜕𝑘

𝜕𝑥𝑗
= 𝜏𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝛽∗𝑘𝜔 +
𝜕

𝜕𝑥𝑗
[(ѵ + 𝜎∗ѵ𝑇)

𝜕𝑘

𝜕𝑥𝑗
] 

 

Specific Dissipation Rate, 𝜔 

 

𝜕𝜔

𝜕𝑡
+ 𝑢𝑗

𝜕𝜔

𝜕𝑥𝑗
= 𝛼

𝜔

𝑘
𝜏𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝛽𝜔2 +
𝜕

𝜕𝑥𝑗
[(ѵ + 𝜎ѵ𝑇)

𝜕𝜔

𝜕𝑥𝑗
] 

 

Closure coefficients and auxiliary relations 

𝛼 =
5

9
, 𝛽 =

3

40
, 𝛽∗ =

9

100
, 𝜎 =

1

2
, 𝜎∗ =

1

2
  and 𝜀 = 𝛽∗𝜔𝑘 [110, 111] 
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In aaplying these variants of k- ε turbulence models to the spray characteristics in the 

pressure swirl stomizer, Baharanchi et al [112] investigated the influence of variants of 

K-e turbulence model and Reynolds Stress Model (RSM) on the atomization 

characteristics and swirl strength of the internal flow of a pressure swirl atomizer. They 

used the Volume of Fluid (VOF) multiphase model in Fluent 6.3 to simulate the flow in 

the atomizer and used the implicit scheme to calculate the interface between the two 

phases. The results showed that RNG k-epsilon turbulence model performed 

satisfactorily with the experimental data when an effective inlet Weber number was 

introduced into the flow and also reduced the computational cost when compared to 

SST K-ω and RSM. 

 Direct Numerical Simulation (DNS) atomization modelling 

The only means to exactly describe the atomization process numerically is through the 

use of Direct Numerical Simulation (DNS) where the full Navier-Stokes equations are 

solved exactly for all relevant length and time scales. For a fully turbulent multiphase 

flow, this involves discretizing the domain at a resolution on the scale of both the 

smallest turbulent velocity fluctuation (the Kolmogorov length scale) and the smallest 

liquid structure within the flow [113]. Gorokhovski and Herrmann [114] summarize the 

challenges involved in applying this strategy to study primary atomization as 

 Spatial and temporal scales span many orders of magnitude. 

In addition to resolving the Kolmogorov length scale η, it is also necessary to resolve 

the length scale of the smallest liquid structures. As topological change occurs, this 

length scale approaches zero as the liquid structure undergoes pinch-off. This 

necessitates a model to track topological changes. 

 Discontinuities in material properties at the interface must be resolved 

While some methods are able to approach a discontinuity in fluid properties well (for 

example a level set method) some approaches such as a finite difference method will 

introduce numerical smearing along the interface. 

 Surface-tension presents a singular force at the interface. 

Surface tension effects are crucial to accurate resolution of breakup in the case of small 

local Weber number. A typical approach to this problem is the continuum surface force 

method in which a local point force is applied proportional to the interfacial curvature. 
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 Both turbulence and turbulent atomization are inherently 3D rendering 2D 

simulation inaccurate. 

 The interface undergoes rapid topological distortion as shown in Figure 2.15 

Although DNS remains the only true way to resolve all atomization processes exactly 

its prohibitive cost restricts its use to primarily academic applications. Nonetheless, 

DNS results provide an invaluable tool for verifying models of primary atomization 

phenomenon for which no experimental data is available [114]. 

 

Figure 2.15 Direct Numerical Simulation (DNS) liquid structures downstream of 

injector [113] 

 Large Eddy Simulation (LES) 

Large Eddy Simulation (LES) is an approach in which the larger three-dimensional 

unsteady turbulence is explicitly resolved while the small scale eddies are modeled. 

The smaller eddies which are responsible for the majority of the energy dissipation but 

contain only a small amount of energy are assumed to have a more universal isotropic 

character making them easier to model than the large eddies which are directly affected 

by the flow geometry and may have an unsteady character. This eases the turbulent 

resolution restriction significantly and has been used successfully to simulate single 

phase flow. Current LES approaches to resolving primary atomization  either [114] 
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 Incorporate a coupled LES/DNS technique, performing a DNS calculation in 

regions containing multiple phases and LES in single-phase regions. This 

technique reduces the computational demand of DNS but is still expensive.  

 Develop a sub-grid scale atomization model. Several attempts have been made 

to couple a near DNS scale Eulerian simulation to a Lagrangian droplet 

formulation removing stripped-off ligaments from the domain and replacing 

them with Lagrangian droplets with appropriate secondary atomization models. 

 Neglect sub-grid atomization terms. 

 

 Turbulence model for two-phase flow 

Elgbobashi et al [115] developed a two-equation turbulence model for predicting two-

phase flows. His two equations described the conservation of turbulence kinetic energy 

and dissipation rate of that energy for the carrier fluid in a two-phase flow. These 

equations have been derived vigorously from the momentum equations of the carrier 

fluid. Closure of the time-mean equations was achieved by modeling the turbulent 

correlations up to third order. The new model eliminates the need to simulate in adhoc 

manner the effect of the dispersed phase on turbulence structure. Preliminary testing 

indicates that the model is successful in predicting the main features of a round gaseous 

jet laden with uniform-sized solid particles however the model is not implemented in 

most of the available commercial CFD codes. 

The model conservation equations of the turbulence kinetic energy and the dissipation 

rate of that energy for the carrier fluid in a steady incompressible turbulent two-phase 

round jet are presented below. 
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(i) The  turbulent kinetic energy k equation 

ρ1ɸ1U1k,1 + ρ1ɸ1U2k,2⏟              
convection

− (1/r)[ρ1ɸ1r(vt σk⁄ )k,2⏟            
Diffusion

],2 − ρ1ɸ1vtU1
2
,2⏟      

production P

+

[
 
 
 
 
4

3
Cɸ5ρ1(k

2 ϵ)[(vt σϕ)ɸ1,2],2U2,2 − cɸ5ρ1⁄⁄ vt

((k ϵ)[(vt σϕ)ϕ1,2⁄ ],2⏟          
𝐸𝑥𝑡𝑟𝑎 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

U1,2
2 − (vt σɸ⁄⁄ )ɸ1,2p,2

]
 
 
 
 

+ ρ1ϕ1ϵ⏟  
𝐷𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛

+

[
 
 
 

Fɸ2k [1 − ∫ (
Ω1 −ΩR
Ω2

) f(ω)dω
∞

0

] − F (U2 − V2) (
vt
σɸ
ɸ1,2)

⏟            
𝐸𝑥𝑡𝑟𝑎 𝐷𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛

+ Cɸ5F
k2

ϵ
[1 − ∫ (

Ω1 − ΩR
Ω2

) f(ω)dω
∞

0

] (
vt
σɸ
ɸ1,2)

,2
]
 
 
 

= 0 

(ii) The turbulent dissipation rate ϵ equation 

ρ1ɸ1U1𝜖,1 + ρ1ɸ1U2ϵ,2⏟              
convection

− (1/r)[ρ1ɸ1r(vt σϵ⁄ )ϵ,2⏟            
Diffusion

],2 − 𝐶𝜖1(𝜖 𝑘⁄ )(𝑃 + 𝑃𝑒)⏟          
𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

+ 𝜌1ɸ1 (𝜖 𝑘⁄ )(𝐶𝜖2𝜖 + 𝐶𝜖3𝜖𝑒)⏟            
𝑇𝑜𝑡𝑎𝑙 𝐷𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛

= 0 

The subscripts 1 and 2 denote the fluid and dispersed phase respectively,   Ui = the 

velocity components of the fluid, V𝑖= velocity components of the dispersed phase, 𝜌 = 

material density, 𝑝 = is the pressure, ɸ = volume fraction, the symbol ( ),1 means 

𝜕( )/𝜕𝑥 and, ( ),2  means  𝜕( )/𝜕𝑟, where x and r  are the distances along the axial and 

radial directions respectively. 

The values of the constants are 

 𝐶𝜖1 = 1.43,  𝐶𝜖2 = 1.92, 𝐶𝜖3 = 1.2, Cɸ5 = 0.1, σk = 1.0,   σϵ = 1,3 σϕ = 1.0  [115] 
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2.9 Design Optimization 

Optimization is a tool used to obtain the optimum value of a certain function. For a 

given application and models, several engineering projects are possible. However, due 

to economic costs and input requirements, it is important to find the best configuration, 

which represents the optimum. The basic concepts of optimization are the objective 

functions and the constraints. The objective functions define a mathematical expression 

of some value to be optimized. It can either be maximized or minimized depending on 

the goal. As indicated by many researchers, in real engineering problems there will 

always be constraints. There are equality and inequality constraints [116] which are 

embodied in the deterministic and stochastic methods of optimization. In generating the 

design variables and the distributions, a statistical Design of Experiments (DoE) 

technique known as Latin Hypercube Designs (LHD) which is used in this work to 

obtain an optimum set of parameters for the model is also discussed. 

 Deterministic methods 

These are methods with strong mathematical background. Thus, it is possible to prove 

that the minimum of a function under certain conditions was found. Because they 

require the computation of the gradient of the vector, which is the vector of the first 

derivatives of the object function, this is also called gradient-based methods. Steepest 

descent method, the conjugate gradient method, the Newton–Raphson, and the quasi-

Newton method are examples of deterministic methods [116]. 

 Evolutionary and stochastic methods 

Evolutionary methods, in contrast to the deterministic methods, generally do not rely 

on strong mathematical basis and do not make use of the gradient nor second derivative 

of the objective function as a direction of descent. The evolutionary optimization 

algorithms attempt to mimic nature in order to find the minimum of the objective 

function. However, there is no proof of convergence to a global minimum, although 

they usually converge. These methods require more function evaluations than the 

gradient-based ones. Genetic algorithm, differential evolution, particle swarm and 

simulated annealing are examples of evolutionary methods [116, 117]. 

 Hybrid optimization 

A hybrid optimization is a combination of the deterministic and the evolutionary or 

stochastic methods, in the sense that it utilizes the advantages of each of these methods. 
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The hybrid optimization method usually employs an evolutionary or stochastic method 

to locate a region where the global extreme point is located and then automatically 

switches to a deterministic method to get to the exact point faster. The hybrid 

optimization method is quite simple conceptually, although its computational 

implementation is more involved [118]. 

 Response surface methods 

A statistical Design of Experiments (DoE) technique known as Response Surface 

Method (RSM) is used in order to obtain an optimum set of modelling parameters. The 

design of experiments (DoE) methodology has been applied to different knowledge 

fields because of its high reliability and accuracy in the results [119-122]. The other 

great advantage of this statistical analysis is the huge reduction in the number of 

simulations needed to achieve the optimum set of values for the input parameters, 

which predefine exactly the number of iterations, in comparison with evolutive 

methods in which the number of iterations is unknown forehand since the termination 

point is arbitrary in order not to obtain a local optimum [123]. 

Response surfaces methods significantly accelerate the entire design optimization 

process and are often used to replace very complicated physical models, to generate 

correlations of experimental data and to reduce the computational cost involved [124]. 

Response surfaces are mathematical functions used to simulate the behavior of 

processes, experiments, and complex engineering analysis techniques. They allow 

optimization techniques to be feasibly applied to classes of problems outside of 

computer evaluated objective functions. This occurs because a properly constructed 

response surface that captures the behavior of a complex, computationally intense 

objective can be used to speed up the optimization process. Also, a properly 

constructed response surface can be used to optimize a process, or experimental work, 

where only discrete, empirical samples of the underlying system’s response to process 

parameters can be evaluated [117, 125]. There are a lot of different methods for 

generating response surface models. A popular, rapid, and accurate response surface 

method is to use Radial Basis Functions (RBF) as the foundation of creating a response 

surface[116]. It constructs an interpolation scheme with favorable properties such as 

high efficiency, good accuracy, and capability of dealing with scattered data, especially 

for higher dimension problems [117]. Another response surface model which uses 

interpolation method is Kriging and represents a relationship between objective 
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function (output) and design variables (input) using a stochastic process. The Kriging 

model drastically reduces the computational time required for objective function 

evaluation in the optimization (optimum searching) process[126]. This method is based 

on the assumption that the parameter being interpolated can be treated as a regionalized 

variable. A regionalized variable is intermediate between a truly random variable and a 

completely deterministic variable in that it varies in a continuous manner from one 

location to the next and therefore points that are near each other have a certain degree 

of spatial correlation, but points that are widely separated are statistically independent. 

In optimization, this method is very accurate when the number of design variables is 

small [116]. 

 Latin Hypercube Designs 

Latin hypercube designs abbreviated LHD is a rich class of designs that are suitable for 

computer experiments and numerical integration. They are easy to generate and achieve 

maximum stratification in each of the univariate margins of the design region[127]. 

McKay et al.[127] and Iman and Conover [128] proposed Latin-hypercube designs.  

These authors and Stein [129] showed that LHD is generally useful and efficient for 

computer experiments. It has some advantages in that it is computationally cheap to 

construct and covers the design region well without replications. One other good reason 

is that it allows the creation of experimental designs with as many points as needed or 

desired. Another good reason for the Latin hypercube popularity is flexibility. For 

example, if few dimensions have to be dropped out the resulting design is still a Latin 

hypercube design. This is because in Latin hypercube samples are non-collapsing i.e 

orthogonality of the sampling points. Although Latin hypercube designs have good 

uniformity with respect to each dimension individually, however, desirable properties 

such as space filling, or column-wise orthogonality come at the cost of very expensive 

optimization [130, 131].  

In a computer experimental design with  𝑝 points in  𝑑 dimensions is written as a  𝑝 × 𝑑 

matrix  

𝑋 = [𝑥1  𝑥2 ⋯𝑥𝑝 ]
𝑇

 

where each column represents a variable and each row 𝑥𝑖 = [𝑥𝑖
(1)
  𝑥𝑖
(2)
 ⋯  𝑥𝑖

(𝑑)
 ] 

represents a sample. A Latin hypercube design is constructed in such a way that each of 

the dimensions is divided into equal levels and that there is only one point (or sample) 
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at each level. As originally proposed, a random procedure is used to determine the 

point locations.  

Figure 2.16 shows two examples of Latin hypercube designs with good and poor space 

filling properties. A better choice is shown in Figure 2.16 (a) where the points are more 

uniformly distributed over the domain [132]. 

     

a.Design with good space filling properties b.Design with poor space filling properties 

Figure 2.16 Latin hypercube designs with good and poor space filling properties  

Modified Latin hypercube designs used in this work is a modification of the Matlab 

Statistics function lhsdesign (code) for LHD which provides a Latin hypercube sample 

of n values of each of p variables and the variables can range between any minimum 

and maximum numbers specified by the user, whereas the original LHD only provide 

data between 0 and 1 which is not very helpful in this practical problem where the 

design range is not bound to 0 and 1. To identify the number design points to be 

generated Felipe et al [133] presented in Table 2.6 a set of configurations that covers 

the typical application range of the LHD. 

Table 2.6 Table Latin hypercube design configurations 

No. of 

variables 

 No. of points 

 Small 

designs 

Medium 

designs 

Large 

designs 

2   12  20   120 

4    30  70   300 

6    56  168   560 

8    90 330   900 

10   132  572   1320 

12  182   910   1820  
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Rajaram et al. [134] carried out a study on the optimization of spray characteristics of 

biodiesel using response surface method of Design of Experiments (DoE). They 

considered three influencing factors such as the injection pressure, fuel temperature and 

fuel blends and indicated that the injection pressure and fuel temperature are the most 

important factors affecting the spray tip penetration (S), spray angle (θ) and Sauter 

mean diameter (SMD) since they have greater influence in the sheet disintegration and 

atomization. They chose three levels of factors for fuel injection pressure varies from 

180 to 220 bars, fuel temperatures 50oC, 60oC and 70oC and biodiesel fuel blends 

namely KB20, KOME and COME for the three levels respectively although the 

constituents of these blends were not specified. With these parameters, 27 design of 

experiment points were developed using full factorial design approach. The spray 

emanating from the multi-hole nozzle of diameter 0.33mm was captured using a high 

speed digital camera and the spray cone angles and the spray penetration tip were 

measured from the images captured by the camera for each respective DOE point. The 

SMD was calculated using 𝑆𝑀𝐷 = 500𝐷1.2𝜗0.2/𝑉𝑖𝑛𝑗 and 𝑉𝑖𝑛𝑗 = √2∆𝑃/𝜌, where D= 

diameter of orifice of nozzle, V= kinematic viscosity of fuel 𝑉𝑖𝑛𝑗 = fuel injection 

velocity, ∆𝑃 = (injection pressure – atmospheric pressure), 𝜌 = density of fuel. When 

the SMD was considered for finding the optimized conditions, it was realised from the 

response surface methodology that KOME oil at 210 bar injection pressure and 62°C 

fuel temperature were the optimized conditions and these conditions were used to test 

the engine performance and calculate the pollutants in the emission. 
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2.10 Summary 

This chapter covers many types of atomizers used in practice such as pressure 

atomizers, rotary atomizers and twin-fluid atomizers. Atomization processes such as 

break up of liquid jets and sheets as well as its break up regimes were discussed. The 

Sauter Mean Diameter (SMD) which is the main focus of this work was also described 

along aside the best known empirical SMD correlations for pressure swirl nozzles. The 

current state in the theoretical, experimental and numerical studies of flow inside and 

spray charateristics outside the pressure swirl atomizer were thoroughly reviewed. The 

various general turbulence models currently available in commercial CFD codes were 

also looked at and in particular the Reynolds Averaged Navier–Stokes (RANS) 

equations which provided an approximate time-averaged solution method to the 

Navier–Stokes (NS) equations. A brief review of variants of k-epsilon turbulence 

models on the spray characteristics in the pressure swirl atomizer were also presented. 

The design optimization techniques were also reviewed in order to identify the optimal 

nozzle exit design parameter, operating conditions and fluid properties that give the 

most minimum drop sizes (SMD) at the spray centre line. In order to select the 

appropriate technique to generate the design variables a statistical Design of 

Experiments (DoE) techniques known as Latin Hypercube Designs (LHD) which is 

used in this work to obtain an optimum set of parameters for the model was also 

adequately discussed. 
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CHAPTER 3 COMPUTATIONAL FLUID DYNAMICS (CFD) CODE 

SELECTION 

3.1 Introduction 

This section gives a brief overview of the CFD solver used in this study. There are 

several major commercial CFD software packages available now including STAR-

CCM+[135], ANSYS FLUENT[136], CFX[137], OpenFOAM[138], STAR-CD[139], 

etc. Generally, these packages can provide basic functions about flow calculation, two-

phase flow, and other applications based on different mathematical models and mesh 

generation strategies. A commercial STAR-CD code is used in this study because it 

provides a wide range of mathematical models for different physical transport problems 

like spray and atomization, droplet evaporation, combustion, heat transfer, particle 

mixing, etc., and can be applied in various categories like automotive (internal 

combustion engines), mechanical, nuclear, and chemical, etc. The flow in STAR-CD 

study can be compressible or incompressible, laminar or turbulent, single phase or 

multiphase, and the geometry can be a simple tube or a complex domain. In addition, it 

makes uses of various types of boundaries such as porous media, solid wall, moving or 

periodic in steady or unsteady flow fields. STAR-CD also provides a powerful set of 

meshing, pre and post-processing data tools to analyse interested physical parameters 

on certain locations in the simulated geometry which can enhance the understanding of 

complex physical phenomenon. 

3.2 Basic conservation equations 

An essential task in CFD is to resolve the conservation equations of mass flow and 

momentum to obtain the velocity and pressure fields in the domain. After that other 

models can be started using this basis of velocity and pressure distribution for different 

applications. 

 The mass and momentum conservation equations (the ‘Navier-Stokes’ equations) 

[140] solved by STAR-CD for general incompressible  and compressible fluid flows in 

Cartesian tensor notation are shown in equations  3.1 and 3.2  respectively[139] : 

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑗) = 𝑆𝑚         3.1 

𝜕𝜌𝑢𝑖

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝜌𝑢𝑗𝑢𝑖 − 𝜏𝑖𝑗) = −

𝜕𝑝

𝜕𝑥𝑖
+ 𝑆𝑖      3.2 

where  𝑡  — time 
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 𝑥𝑖  — Cartesian coordinate (i = 1, 2, 3) 

 𝑢𝑖  — absolute fluid velocity component in direction 𝑥𝑖       

  𝑝  — piezometric pressure 𝑝𝑠 − 𝜌0𝑔𝑚𝑥𝑚  where 𝑝𝑠 is static 

pressure, 𝜌0 is reference density, the 𝑔𝑚 are gravitational 

acceleration components and the 𝑥𝑚 are coordinates relative to a 

datum where is defined 

 𝜌  — density 

 𝜏𝑖𝑗  — stress tensor components 

 𝑆𝑚  — mass source 

 𝑆𝑖  — momentum source components and repeated subscripts 

denote summation. 

The specialisation of the above equations to a particular class of flow involves 

 Specification of a constitutive relation connecting the components of the stress 

tensor 𝜏𝑖𝑗 to the velocity gradients. 

 Specification of the ‘source’, 𝑆𝑖 , which represents the sum of the body and 

other external forces, if present 

 Application of ensemble or time averaging if the flow is turbulent 

For Newtonian turbulent flows 

𝜏𝑖𝑗 = 2𝜇𝑆𝑖𝑗 −
2

3
𝜇
𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖𝑗 − 𝜌̅𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅        3.3 

where the 𝑢′ are fluctuations about the ensemble average velocity and the overbar 

denotes the ensemble averaging process. The rightmost term in the above represents the 

additional Reynolds stresses due to turbulent motion. These are linked to the mean 

velocity field via the turbulence models. In principle, STAR-CD can accommodate any 

form of user-specified momentum source field 𝑆𝑖, but it does contain built-in provision 

for two common kinds of body forces, arising from buoyancy and rotation, 

respectively[139]. The relevant expressions are: 

Buoyant forces 

 𝑆𝑖 = 𝑔𝑖(𝜌 − 𝜌0)                       3.4 

where 𝑔𝑖 is the gravitational acceleration component in direction 𝑥𝑖 and 𝜌0 the 

reference density. 
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Rotational forces 

𝑆𝑖 = ƒ(𝑢𝑘, 𝜔𝑘, 𝑟𝑘)  3.5 

where ƒ( ) is a function involving components of the rotation vector 𝜔𝑘  and radius 

vector 𝑟𝑘 about a user-specified axis[139]. 

3.3 Thermophysical properties 

The modelling framework of STAR-CD provides for variations of all the 

thermophysical properties of fluid(s), namely density, viscosity, thermal conductivity, 

species diffusivities and specific heats, as functions of temperature, mass fraction and 

other variables. In some cases, optional built-in dependencies are provided. In all cases, 

facilities are available for user-specified property functions to be inserted. The in-built 

function relevant to this research for the equation of state (density) for incompressible 

multicomponent mixtures is given by 

𝜌 = [∑ (
𝑌𝑚

𝜌𝑚
)𝑚 ]
−1

          3.6 

where 𝑌𝑚 and  𝜌𝑚 are the mass fraction and density of component m, respectively 

[139]. 

3.4 Generic variables 

STAR-CD offers an additional facility for solving an arbitrary number of transport 

equations for user-defined variables needed for special-purpose applications as well as 

solving the basic flow equations.  The generic form of the transport equation for these 

variables can be written as: 

d

dt
∫ TϕϕdVV⏟      
Transsient

+ ∫ Cϕ1ϕ(u − uc). dSS⏟            
Convection 1

+ ∫ Cϕ2ϕ(ugc − uc). dSS⏟              
Convection 2

= ∫ Dϕgradϕ. dSS⏟          
Diffusion

+

∫ SϕdVV⏟    
Source

                 3.7 

where ϕ is a transported scalar or vector component, u the fluid velocity, uc the control 

volume surface velocity (grid velocity). The second convection term in the above 

equation allows for the possibility that the generic variable property is convected by a 

velocity ugc different from the fluid velocity, where ugc is specified by the user. The 

user-specified coefficients Tϕ, Cϕ1, Cϕ2, Dϕ and Sϕ can be either constants or arbitrary 

functions defined via user subroutines. Existence of any of the transient, convection, 

diffusion or source terms is optional [139]. 
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3.5 Turbulence modelling options in STAR-CD 

STAR-CD offers a wide variety of turbulence modelling capabilities. These may be 

subdivided into four categories as eddy Viscosity models, Reynolds Stress models, 

Large Eddy Simulation models and Detached Eddy Simulation models. 

It is generally recognised that all existing turbulence models, including those 

mentioned here, are inexact representations of the physical phenomena of turbulence. 

The degree of approximation in a given model depends on the nature of the flow to 

which it is being applied, and the characterisation of the circumstances which give rise 

to ‘good’ and ‘bad’ performance must unfortunately be based mainly on 

experience[139]. 

 The k-ε  turbulence models 

The main options currently available in STAR-CD for the well-known k-ε models for  

general applications are  the ‘standard’ k-ε model [108, 141, 142], the ‘Renormalisation 

Group’ (RNG) version of the k-ε model [109, 143], the ‘realizable’ k-ε model [144]. In 

these models, k and ε turbulent kinetic energy and its dissipation rate are chosen as 

typical turbulent velocity scale and length scale respectively. The options differ from 

each other in one of the following respects such as the form of the equations, the 

treatment of the near-wall region or the relation between Reynolds stresses and the 

rates of strain. The Standard k-ε model is employed in this study because it is the most 

widely used, one recommended fo the atomization model and validated turbulence 

model with varied applications[40]. 

 Standard k-ε model 

The ‘standard’ model in which the high Reynolds number forms of the k and ε 

equations are used in STAR CD in conjunction with algebraic law-of-the-wall 

representations of flow, heat and mass transfer. The transport equations for standard k-ε 

modelare as follows 

Turbulent kinetic energy k 

𝜕

𝜕𝑡
(𝜌𝑘) +

𝜕

𝜕𝑥𝑗
[𝜌𝑢𝑗𝑘 − (𝜇 +

𝜇𝑡

𝜎𝑘
)
𝜕𝑘

𝜕𝑥𝑗
] = 𝜇𝑡(𝑃 + 𝑃𝐵) − 𝜌𝜀 −

2

3
(𝜇𝑡

𝜕𝑢𝑖

𝜕𝑥𝑖
+ 𝜌𝑘)

𝜕𝑢𝑖

𝜕𝑥𝑖
+ 𝜇𝑡𝑃𝑁𝐿

           3.8 

where  

𝑃 = 𝑆𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗
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𝑃𝐵 = −
𝑔𝑖
𝜎𝑘,𝑡

1

𝜌

𝜕𝜌

𝜕𝑥𝑖
 

𝑃𝑁𝐿 = −
𝜌

𝜇𝑡
𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅

𝜕𝑢𝑖
𝜕𝑥𝑗

− [𝑃 −
2

3
(
𝜕𝑢𝑖
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𝜌𝑘
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𝜕𝑢𝑖
𝜕𝑥𝑖
] 

𝑃𝑁𝐿 = 0 for linear models and 𝜎𝑘 is the turbulent Prandtl number. The first term on the 

right-hand side of equation 3.8 represents turbulent generation by shear and normal 

stresses and buoyancy forces, the second viscous dissipation, and the third 

amplification effects. The last term accounts for the non-linear contributions. 

Turbulent dissipation rate ε 

𝜕

𝜕𝑡
(𝜌ε) +

𝜕

𝜕𝑥𝑗
[𝜌𝑢𝑗ε − (𝜇 +

𝜇𝑡

𝜎ε
)
𝜕ε

𝜕𝑥𝑗
] = 𝐶ε1

ε

𝑘𝑡
[𝜇𝑡𝑃 −

2

3
(𝜇𝑡

𝜕𝑢𝑖

𝜕𝑥𝑖
+ 𝜌𝑘)

𝜕𝑢𝑖

𝜕𝑥𝑖
] + 𝐶ε3

ε

𝑘
𝜇𝑡𝑃𝐵 −

𝐶ε2𝜌
𝜀2

𝑘
+ 𝐶ε4𝜌𝜀

𝜕𝑢𝑖

𝜕𝑥𝑖
+ 𝐶ε1

ε

𝑘
𝜇𝑡𝑃𝑁𝐿       3.9 

where 𝜎ε  is the turbulent Prandtl number and 𝐶ε1, 𝐶ε2, 𝐶ε3,   and  𝐶ε4  are coefficients 

whose values are given in Table 3.1[108]. The first term on the right-hand side of 

equation (3.9) represents the contribution to the production of dissipation due to linear 

stresses and dilatation effects, the second the contribution due to buoyancy, the fourth 

the contribution due to temporal mean density changes (of importance in combustion 

models), and the fifth the contribution due to non-linear stresses. The third term in the 

equation accounts for the dissipation destruction [139]. 

Table 3.1 Coefficients of the Standard k-ε Turbulence Model 

𝐶𝜇 𝜎𝑘 𝜎𝜀 𝜎ℎ 𝜎𝑚 𝐶ε1 𝐶ε2 𝐶ε3 𝐶ε4 K E 

0.09 1.0 1.22 0.9 0.99 1.44 1.92 1.44 -0.33 0.419 9.0 
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3.6 SIMPLE algorithm 

The SIMPLE (Simple Implicit Method of Pressure-Linked Equation) algorithm gives a 

method of calculating pressure and velocities. The method is iterative and when other 

scalars are coupled to the momentum equations, the calculation need to be done 

sequentially. The sequence of operations in CFD procedure which employs the 

SIMPLE algorithm is given in Figure 3.1. 

 

Figure 3.1 Flow chart of the SIMPLE algorithm [103, 108] 



60 
 

3.7 PISO algorithm 

PISO algorithm (Pressure implicit with splitting of operator) was proposed by Issa in 

1986 without iterations and with large time steps and a lesser computing effort. It is an 

extension of the SIMPLE algorithm used in CFD computational fluid dynamics to 

solve the Navier-Stokes equations. PISO is a pressure-velocity calculation procedure 

for the Navier-Stokes equations developed originally for non-iterative computation of 

unsteady compressible flow, but it has been adapted successfully to steady-state 

problems. PISO involves one predictor step and two corrector steps and is designed to 

satisfy mass conservation using predictor-corrector steps [103, 145] as shown in Figure 

3.2. 

 

Figure 3.2 Flow chart of PISO algorithm[145]  

 

PISO generally gives more stable results and takes less CPU time but not suitable for 

all processes[145]. For  laminar backward facing step PISO is faster than SIMPLE but 

it is slower concerning flow through heated fin and if momentum and scalar equation 

have weak or no coupling then PISO is better than SIMPLEC[103]. 
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3.8 Geometry and computational mesh capabilities 

The versatility and accuracy of an industrial continuum mechanics analysis system are 

very much tied to the flexibility of the computational mesh structure it employs. This 

determines both the level of geometrical complexity it can handle and the degree of 

control it offers over resolution of flow features. The function of the mesh is to fit the 

boundary surface of the computational domain and subdivide its volume into 

subdomains or ‘cells’, used in the numerical solution of the differential conservation 

equations of the mathematical model. STAR-CD employs a highly flexible mesh 

system that is probably unique in its combination of features[139]. At its heart lies the 

STAR-CD solver’s ability to perform a numerical analysis in a mesh consisting of 

arbitrary polyhedral cells, which may be used for fitting local geometrical features to a 

high degree of fidelity or for facilitating further mesh generation or optimization. 

Special cell shapes within this general category include hexahedra, tetrahedra, 

triangular prisms and pyramids, all of which may be generated using pro-STAR’s basic 

meshing capabilities. More complex, polyhedral cells may be created by pro-STAR’s 

advanced Auto Meshing module of the same volume. Further still, grids containing 

cells of arbitrary shape may be created in third-party packages and then imported into 

STAR-CD. The 3D model geometry shown in Figure 3.3 which is used to perform full 

3D steady state simulations  has 100mm by 150mm  for the diameter and vertical 

height of the computational domain. Other important geometrical parameters are exit 

orifice diameter 3.5 mm, diameter of swirl chamber 12 mm, exit orifice height 8mm 

and vertical height of contraction portion 3mm. These dimesions were chosen to suit 

the nozzle used in the experimental validation and to accommodate all the axial and 

radial distances considered in the spray.  The mesh imported into STAR-CD is shown 

and Figure 3.4. The mesh sizes were varied to determine whether the solution was grid 

dependent or not since it has been shown that a fine mesh produces better or accurate 

results and predictions than a coarse mesh though a fine grid increases the 

computational time.  Therefore, an optimal mesh configuration is required that provides 

a balance between computational time and solution accuracy. It was realized after 

various refinements of the mesh in relation to the simulation results that a final non-

uniform mesh grid composed of 1,894,340 polyhedral cells with base size 0.03mm 

produced better results than the base size of 0.05mm. The distribution of the mesh was 

done such that the swirl chamber and the middle of the cylinder have fine cells and 

coarse meshes on the remaing part of the cylinder.  The refined grid spacing on the 
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swirl chamber was about 0.015 mm and coarse mesh of 0.03 mm on the computation 

domain with a growth factor of 2.0. This is to reduce the computational time.  

 

Figure 3.3 The computational domain and boundary conditions 

 

Figure 3.4 Mesh on vertical and cross section planes through the atomizer model 

 



63 
 

3.9 Discretization practices in STAR-CD 

The differential equations governing the conservation of mass, momentum, energy, etc. 

within fluid systems are discretised by the finite volume (FV) method [146, 147]. Thus, 

they are first integrated over the individual computational cells and then approximated 

in terms of the cell-centred nodal values of the dependent variables. This approach has 

the merit, amongst others, of ensuring that the discretised forms preserve the 

conservation properties of the parent differential equations.In STAR-CD, only implicit 

schemes for time advancement are used. This means that diffusive and convective 

fluxes and source terms are computed at each time step. Two options for approximating 

the time derivative are offered. The choice depends on the solution algorithm used. In 

the case of SIMPLE, predominantly used for steady flows but under some conditions 

also recommended for transient flow simulations. The available options are the first 

order, fully-implicit Euler scheme and the second order, fully-implicit scheme with 

three time levels also called ‘quadratic backward implicit’. In the case of PISO, which 

is optimized for transient flow simulations, no choice is available: a special implicit 

scheme is used, based on the fully-implicit Euler scheme and explicit deferred 

correctors, which results in a formal accuracy lying between first and second order. In 

terms of spatial discretization, the differencing schemes available in STAR-CD for all 

types of mesh are the upwind differencing (UD), linear upwind differencing (LUD), 

central differencing (CD) scheme, monotone advection and reconstruction scheme 

(MARS) and blended differencing. The upwind differencing (UD) which may be low 

(first)-order scheme or second-order scheme selects the nearest upwind neighbour 

value for the transport quantity and also prevents the formation of artificial maxima in 

the solution. This form of interpolation preserves the correct physical bounds on 

transport quantity under all conditions, but can lead to numerical diffusion [148, 149]. 

Linear upwind differencing (LUD) which is the second-order accurate scheme 

formulated for non-structured meshes and derived from a scheme originally proposed 

for structured meshes. It results in less numerical smearing than the UD scheme, but 

can produce solutions that are outside the physical bounds on transport quantity (i.e. 

numerical dispersion) and central differencing (CD) scheme, which is also second-

order, simply interpolates linearly on nearest neighbour values, irrespective of flow 

direction. This scheme also produces less numerical diffusion, but can be dispersive. It 

is particularly recommended for use in direct and large-eddy simulation of turbulent 

flows [103].  
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3.10 Boundary conditions 

STAR-CD contains built-in boundary condition options that cover the majority of 

practical situations. These options are selected using pro-STAR which provides a level 

of spatial selection resolution ranging from individual cell faces through to entire 

surfaces. Any physically-consistent mix of boundary conditions is admissible. The 

available options used in the research are inlet (prescribed flow) boundary, outlet 

boundary, impermeable wall boundary and the symmetry plane. The inlet (prescribed 

flow) which is at an inlet or ‘free’ boundary, where the distributions of mass flux and 

fluid properties are known. The outlet boundary treatment is suitable for locations 

where the flow is everywhere outwards-directed, but the conditions are otherwise 

unknown. They are, of course, mainly determined by what is happening upstream. In 

impermeable wall the usual no-slip prescriptions for velocity is either applied directly 

or, in the case of turbulent flow calculations with certain turbulence models, via ‘wall 

functions’. These also include provision for wall roughness. Symmetry plane denotes a 

surface such that all field quantities on one side of it are a mirror image of those on the 

other side. The various boundary locations and conditions for the model are shown in 

Figure 3.3. The following quantities and values are defined as material properties for 

the inlet boundary regions. Liquid of density (𝜌𝑙 = 997.5 𝑘𝑔/𝑚
3) flows through the 

velocity inlet1 of 3.7mm diameter with air of density (𝜌𝑔 = 1.30𝑘𝑔/𝑚
3) passing 

through the other 3mm diameter inlet2. The inlet boundary conditions used to perform 

the calculations for the liquid are one (1) for liquid mass fraction, 10% for turbulence 

intensity, 0.005m for turbulent length scale and 5.0 m/s for the velocity magnitude. The 

air inlet conditions remain the same except for the velocity magnitude and mass 

fraction which are 1 m/s and zero respectively. The outlet boundary conditions are 10% 

for turbulent intensity, mass fraction of one for both liquid and air and 0.0024 m for the 

turbulent length scale. The walls represent the solid walls of the nozzle and the 

computation domain and standard wall functions are used to model the near-wall 

regions with no-slip conditions.   
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3.11 Atomization modelling 

Spray and atomization modelling refers to a subset of discrete phase particle modelling 

that describes the breakup of a continuous liquid into droplets. A number of industrial 

processes and applications such the internal combustion engines require turning of 

quantities of liquid into vapour. To burn such stable liquid fuels in an engine, the fuel 

droplets must be finer for intimate mixing to occur between the fuel and the oxidizer in 

a gaseous state. This gaseous mixing entails turning the liquid into a vapour and 

promoting mixing of the resulting gases. There are two general categories of spray 

modelling and these are primary atomization and secondary atomization. Primary 

atomization makes assumptions about the physics inside the nozzle and computes an 

initial drop size in the region near the nozzle [150]. On the other hand, secondary 

atomization models droplets that traverse the domain where they become 

hydrodynamically unstable and break into smaller droplets. Droplets can interact with 

each other directly through collision, creating larger droplets and changing the 

dynamics of the spray plume [1, 7]. There are a number of mixed approaches used to 

characterise the spray in the primary and the secondary atomization regions. Spray 

atomization models such as the Langragian or Discrete Droplet Model (DDM), 

Eulerian Model, Eulerian-Eulerian model and Eulerian-Langrangian Spray Atomization 

(ELSA) models are briefly reviewed with special focus and in-depth review of the 

entirely Eulerian model proposed by Vallet et al called Ʃ –Y atomization model [23]. 

 Lagrangian atomization model 

Lagrangian spray method also called Discrete Droplet Model (DDM) derived from 

stability analysis of the Kelvin-Helmholtz and Rayleigh instabilities have been in use 

for the past twenty years and used to characterise the spray in the secondary 

atomization regime. These methods have achieved this popularity due to their 

computational efficiency and ability to match experimental spray angles and 

penetrations [151]. The assumption is typically made that the liquid phase has 

negligible volume fraction in comparison to the gas phase rendering such simulations 

to be accurate only in predicting secondary breakup in the far-field of the flow. As such, 

many applications require tuning of model constants based on empiricism. The main 

drawback of this method is that it requires the first cell to be two or three times bigger 

than the nozzle diameter and makes the profile of the velocity at the inlet to be lost 

[152] There have been significant attempts to generalize the Lagrangian formulation to 
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accommodate accurate resolution of primary atomization. Gorokhovski et al. [153] 

generalized the stochastic approach traditionally used to model secondary atomization 

to predict primary air-blast atomization. 

  Eulerian modelling 

Vallet et al [23] proposed an entirely Eulerian model called Ʃ −Y atomization model 

which treats two phase flow as a single continuous flow with variable density at high 

Reynolds and Weber numbers. This model which is analogous to the model used in 

calculating the flame front in combustion captures the features of primary atomization 

and mainly characterise the droplet Sauter Mean Diameter (SMD) and the number 

density. The model makes assumption similar to Kolmogorov hypothesis of turbulence 

that at large Reynolds and Weber numbers the flow is independent of surface tension 

and viscosity. To capture the rate at which the surface energy is created the transport 

equation for the interfacial surface density is developed. This equation contains the 

production and destruction terms accounting for the physical phenomenon of interface 

stretching and collapse. The second transport equation for the liquid mass fraction 

controls the liquid dispersion and models the turbulent mixing of the liquid. The mean 

density of the two fluids is linked to the liquid mass fraction. With the knowledge of 

the interfacial surface density, liquid mass fraction and the mean density the droplet 

SMD is then determined for the primary atomization. This will then be used as an input 

for the secondary break up in the Lagrangian formulation and will in turn be used to 

predict liquid vaporization and subsequent in the combustion calculations [113, 154]. 

The Ʃ −Y model has been successfully applied and validated for a variety of coaxial 

and diesel jet type injectors [40].  

 Governing equations 

An entirely Eulerian approach proposed by Vallet et al.[23] treats a two- phase medium 

as a single continuum where the dense phase is described similarly to a species in a 

multi-component reactive mixture. 

Let  𝑌̃𝑙𝑖𝑞 be the liquid mass fraction per unit mass of the two-phase medium, then  

 Conservation equation for liquid mass fraction [40] 

 𝜕𝜌̅ 𝑌̃𝑙𝑖𝑞

𝜕𝑡
+
𝜕𝜌̅ 𝑢̃𝑗𝑌̃𝑙𝑖𝑞

𝜕𝑥𝑗
=
𝜕

𝜕𝑥𝑗
𝜌̅
𝐷𝑡
𝑆𝑐𝑙𝑖𝑞

𝜕𝑌̃𝑙𝑖𝑞

𝜕𝑥𝑗
− 𝑚̇𝑣𝑎𝑝𝜌̃Ʃ̃ 

 
3.10 
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where 𝜌̅ is the Reynold-average density, 𝑢̃𝑗  is the Favre-averaged velocity of both 

phases,   

 The mean density 𝜌̅  is related to the Favre averaged liquid mass fraction 𝑌̃ by 

 1

𝜌̅
=
 𝑌̃𝑙𝑖𝑞

𝜌𝑙
+
1 − 𝑌̃𝑙𝑖𝑞

𝜌𝑔
                                      3.11   

where 𝜌𝑙 and 𝜌𝑔 are the constant liquid and gas densities respectively. It is assumed 

that the pressure acting upon both phases is equal. 

𝑚̇𝑣𝑎𝑝 is the mean rate of vaporization per unit surface of the liquid Ʃ̃ is the mean 

surface area of the gas-liquid interface per unit of two-surface media. Dispersion of the 

liquid by the turbulence is expressed in the equation by using the turbulent diffusivity 

𝐷𝑡 and the turbulent Schmidt number as constant  𝑆𝑐𝑙𝑖𝑞 = 0.7 

Let Ʃ̃ be the average surface area of the liquid-gas interface per unit mass of two-phase 

medium. The transport equation for the  Ʃ̃ can be written as [40] 

 𝜕𝜌̅ Ʃ̃

𝜕𝑡
+
𝜕𝜌̅ 𝑢̃𝑗Ʃ̃

𝜕𝑥𝑗
=
𝜕

𝜕𝑥𝑗
𝜌̅
𝐷𝑡
𝑆𝑐Ʃ

𝜕Ʃ̃

𝜕𝑥𝑗
+
𝜌̅Ʃ̃

𝜏𝑐
[1 −

Ʃ̃

Ʃ𝑒𝑞
]     3.12 

where 𝐷𝑡 is the turbulent diffusivity, 𝑆𝑐Ʃ is turbulent Schmidt number and is a 

constant  𝑆𝑐Ʃ = 𝑆𝑐𝑡 = 0.7,   𝜏𝑐 is the rate of surface production and is proportional to 

turbulence time scale given by 

𝜏𝑐 = 𝐶1
𝑘̃

𝜀̃
           3.13 

 

Ʃ𝑒𝑞 is equilibrium interface area and is related to equilibrium drop size 𝑟𝑒𝑞 [23, 40] by: 

 
Ʃ𝑒𝑞 =

3𝑌̃𝑙𝑖𝑞

𝜌𝑙𝑟𝑒𝑞
,      𝑟𝑒𝑞 = 𝐶𝑟 (

𝜌̅𝑌̃𝑙𝑖𝑞

𝜌𝑙𝑖𝑞
)
2 15⁄

ŋ2 5⁄

𝜀̃2 5⁄ 𝜌𝑙𝑖𝑔
3 5⁄  3.13 

where   𝐶𝑟 is  a  constant  ŋ is the surface tension of the liquid. 

The atomization model eqs.(3.10) and (3.12) require a turbulent diffusivity and  an 

integral scale 𝜏𝑐 and the standard k-𝜀 turbulence model was used to calculate these 

variables as well as providing closure of the fluid dynamics transport equations[155]. 

Once Ʃ̃ is calculated, the Sauter mean diameter (SMD) 𝑑32 and the number density 𝑛 

can be found as: 

 𝑑32 =
6𝜌̅𝑌̃𝑙𝑖𝑞

𝜌𝑙𝑖𝑞Ʃ̃ 
           𝑛 =

𝜌𝑙𝑖𝑞
2 Ʃ̃3

36𝜋𝜌̅2𝑌̃𝑙𝑖𝑞
2
 
 2.27 
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 Evaluation of Ʃ −Y Model 

Beheshti et al [40] assessed Ʃ −Y model’s ability to predict the effects of liquid 

properties and injection regimes on the atomisation quality in air-assisted atomizer. 

Air-assisted atomisation for which extensive experimental data are available was 

chosen as a test case. It was shown that a good agreement was observed between the 

predictions and the experiment for a wide range of liquid properties such as density and 

surface tension for the various injection regimes defined for the liquid and gas 

velocities. They noted however that the model is limited in the fact that it only attempts 

to resolve the Sauter mean diameter (SMD) and as such is unable to resolve effects 

caused by the droplet size distribution in polydispersed sprays such as ballistic drop 

spreading. They concluded that this is acceptable in the current application because 

existing experimental data for gaseous and aerosol jets show a lower spreading rate for 

an increasingly heavy central jet suggesting that variable density effects are more 

dominant than ballistic spreading [40, 113, 156]. 

Figure 3.5 and Figure 3.6 show two of their results that predicted SMD along the 

symmetry axis of the air-assisted atomizer for a range of gas velocities. The only 

discrepancy they noted was that below a critical momentum ratio a recirculation zone 

was formed and within this range the model under-predicted the SMDs [40]. 
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Figure 3.5 Spray SMD along symmetry axis for different liquid jet velocities and a 

fixed gas velocity of 140 m/s [40] 

 

 

Figure 3.6 Spray SMD along symmetry axis for different gas jet velocities and a fixed 

liquid velocity of 0.5 m/s[40] 
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 Eulerian-Eulerian atomization models 

 Eulerian-Eulerian models is originally devolved for internal duct flows, mono-disperse 

liquid-gas flows and for solid particle laden two-phase flows. They are classified based 

on atomization modelling [40, 157]: 

1. Models (type 1) with two continuity and momentum equations, one for gas and 

one for liquid and with single constant droplet size. These are normally used for 

internal dilute two-phase flows or monodisperse laden flows. 

2. Models (type 2) with different size groups, each group having its own 

momentum equation and velocity field. A droplet number balance equation for 

each group size containing source terms for production and destruction of 

droplets due to break-up and coalescence accounts for secondary break-up and 

its coalescence. This requires sub-models for these two processes. Models of 

Luo and Svendsen [157] 

3. Model of type 1 above with addition of a model for calculation of the mean 

drops  SMD and distribution at each numerical element. Model of Platzer and 

Sommerfeld [158] which uses this approach to calculate the droplet size and its 

distribution. 

The major challenge in using the Eulerian-Eulerian model is that it is not good in 

predicting the spray parameters in the dilute region where the spray liquid tends to a 

completely a dispersed phase[159]. This rises basically from the nature of the 

Eulerian momentum equations that are accurate only for a continuous phase[40]. 

Capability of Eulerian-Eulerian (E-E) model in providing the spray characteristic 

parameters 

 These models have the ability to predict the following parameters 

 Mean droplet size or distribution 

 Spread angle 

 Velocity profile 

 Penetration depth with time 

Advantages 

 Can deal with primary break-up and the flow inside the nozzle 

 Economic in computation time 
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Disadvantages  

 Inaccurate in dilute spray region 

 Computationally expensive for the model types 1 and 2 

 

 Eulerian-Lagrangian Spray atomization (ELSA) model 

In this model, the Eulerian and the Lagrangian viewpoints are combined in modelling 

the atomization and separate the spray into the dense and dispersed regions due to the 

difference in its structure and atomization. The dense region is near the nozzle with 

complex and irregular topology of the spray and the dispersed phase is a far-field of the 

spray with a collection of droplets [160]. Since Lagrangian approach is more 

appropriate in the dispersed region of the spray and Eulerian modelling has been 

applied to the near-field by several researchers a combination of the two approaches 

have been used to resolve or model the primary and secondary atomization. The main 

assumption in this model is that the flow must be highly turbulent with high Reynolds 

and Weber numbers and Hoyas et al [161] indicate that the Reynolds and Weber 

number should be greater than 1500 and 350 respectively. The second assumption is 

that the liquid and the gas mixture is modelled as a single flow with mean properties.  

The three distinct zones for ELSA model such as Eulerian mixture, transition and 

Lagrangian zone are shown in Figure 3.7. 

 

Figure 3.7 Three spray zones in ELSA model [152] 

A drawback of this model is that the grid resolution close to the nozzle is sensitive and 

difficulty in adequately representing this near dense zone to capture the primary 

atomization as well as a serious imbalance load caused by large droplets created close 

to the near field [152]. 

 



72 
 

 Model selection 

Since the cost of performing simulation with DNS/LES models is very expensive and 

Lagrangian approach is also very effective in predicting secondary atomization the Ʃ 

−Y model has been selected for use within this project for the following reasons 

 It allows the use of standard numerical procedures based on a single continuity 

equation without source terms. The momentum conservation equation in this 

model is written in terms of a single velocity field which is the velocity of the 

centre of mass within a computational cell. In this way, one avoids the necessity 

to calculate the momentum exchange between the phases and uncertainties 

related to such calculation [162]. 

 Even in its original form, the model is capable of predicting droplet size and 

distributions with order-of-magnitude accuracy. 

 There have been significantly more publications relating to this model 

suggesting that the model shows promise to many researchers and that as the 

model matures results will continue to increase in accuracy. 

 The fully Eulerian formulation is naturally implemented in STAR-CD 

 Model limitations 

The following are the limitations of the Ʃ−Y atomisation model 

 The Ʃ−Y atomisation model in its only form can only predict the droplet Sauter 

Mean Diameter (SMD) and droplet number density in the primary atomization 

regime 

 The model cannot characterise the droplet size distributions for polydispersed 

sprays  

 The model is applicable to sprays with large Reynolds and Weber numbers [40, 

163]. 

 The model uses standard k-ɛ turbulence model which is developed for a single 

fluid flow though attempts have been made to extend the model for Large Eddy 

Simulation (LES) [164]. But in reality, k-ɛ turbulence model is not the very best 

in predicting turbulence in two-phase flows. However, due to the absence of 

generally acceptable turbulence model for the two-phase flow standard k-ɛ 

turbulence model is widely used in spite of its inadequacies.  
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3.12 Summary 

This chapter reviews the computational numerical methods used in the STAR CD code 

and discusses the basic conservation equations of mass flow and momentum to obtain 

the velocity and pressure fields in the spray. The additional facility in STAR CD for 

solving an arbitrary number of transport equations for user-defined variables needed for 

special-purpose applications as well as solving the basic flow equations was also 

reviewed. Brief accounts of turbulence modelling techniques in the STAR  CD such as 

the k-epsilon model, Renormalisation Group’ (RNG) and realizable’ k-ε model were 

also presented and the governing equations of the standard k-epsilon turbulence model 

analysed. In order to solve the basic conservation equations two pressure-velocity 

coupling SIMPLE and PISO algorithms were compared. This chapter also reviews how 

the geometry for the nozzle was designed and the type of mesh and parameters used for 

the computation. In addition, the discretization practices in the STAR-CD such upwind 

differencing (UD), linear upwind differencing (LUD), central differencing (CD) 

scheme, monotone advection and reconstruction scheme (MARS) and blended 

differencing were also discussed. The various boundary types employed in the STAR-

CD and the specific boundary locations and conditions were also analysed and 

discussed. The review was also done on the two categories of spray modeling such as 

primary atomization and secondary atomization. Whilst primary atomization modelling 

makes assumptions about the physics inside the nozzle and computes an initial drop 

size in the region near the nozzle, secondary atomization models droplets that traverse 

the domain where they become hydrodynamically unstable and break into smaller 

droplets. Other types of atomization model such as Lagrangian atomization model, 

Eulerian model, Eulerian-Eulerian model and Eulerian-Lagrangian model were also 

reviewed. The Ʃ−Y atomization model which is the main model used to predict the 

Saute Mean Diameter (SMD) was also thoroughly analysed and the merits and 

drawbacks of the model evaluated 
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CHAPTER 4 EXPERIMENTAL ANALYSIS 

4.1 Introduction 

The experimental studies involved using a hollow cone nozzle to produce a spray in 

order to assess and validate an entirely Eulerian model involving mainly modelling of 

the liquid mass and surface density to predict the mean drop sizes. A laser-diffraction-

based drop size analyser (Malvern Spraytec) was used to obtain drop size data from the 

free spray. The hydrodynamics structure was characterized by the spray drop size 

(Sauter Mean Diameter, SMD), number density and size distribution, and this was 

measured at various axial distances from the tip of the nozzle and radial distances from 

the spray centreline. The influence of injection pressure, volume flow rate and 

geometrical sizes on the mean drop sizes were also investigated. The Liquid sheet 

break up process was also visualised and analysed using a high speed camera. Spraytec 

software (version3.30) was used to analyse the raw data obtained from the experiments 

and convert them to drop size (SMD) values and size distribution information. 

4.2 Apparatus 

The apparatus was designed with the purpose of producing a continuous spray and to 

examine the spray characteristics quantitatively and qualitatively. The experimental 

layout is shown in Fig.4.1. Water, which was the working fluid, was initially collected 

in a 0.4l container and fed into the main line by a pump (A TCS Micro pumpR pump 

(S/N: 16062755 TCS) controlled by 24V power supply. A 300W triple power source by 

TTiR (EX354Tv) was used to control the pump speed by varying the supplied voltage. 

The resulting pressure drop across the apparatus was measured using a pressure 

transducer ifmR (PT5414) which has a range of 0.16-40 bar (16-4000kPa). The 

pressure sensor detected the pressure in the system and converted it to an analogue 

signal which was read by a digital multimeter later converted to pressure. The set-up of 

the pressure measurement device was that of a typical 4-20mA circuit set up with a 

500Ω resistor. In order to atomise the fluids, a stand was built whereby the fluid was 

atomised downwards into the laser beam as illustrated in Figure 4.1. The stand was 

built to allow for variation in the axial distance above the laser beam as well as in the 

other two perpendicular directions. A clamp was used to hold the nozzle to the stand 

allowing for the nozzle to be changed quickly. A plastic container was used to collect 

the fluid from the spray. Deflection of the sprayed liquid from the container back to the 
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measurement region initially caused problems during atomisation which affected the 

drop size measurement. In order to solve this problem absorbant tissue papers  at the 

base of the collection chamber prevented splash back.  

 

 

Figure 4.1 Photographs of the experimental setup 
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4.3 The Atomizer 

The atomizers used for this study were pressure swirl nozzles PFS 1392B1 and RXT 

0250TI manufactured by PNR Ltd which produce hollow cone sprays. This company 

manufactures various types of quality nozzles to precision. The tangential in-flow 

nozzle is made of AISI 303 stainless steel and in particular, the nozzle exit diameter is 

3.5mm, the nominal spray angle is 70 degrees, the inlet diameter is 3.7mm, the nominal 

flow rate at 3.0 bar gauge pressure is 3.90 litre per minute. The other specifications of 

PFS1392B1 and RXT0250TI are shown in Table 4.1. The reason for selecting these 

particular nozzles is primarily because of the computational model developed by the 

researcher and to assess and validate the Ʃ − Y  atomization model for further 

improvement. In this nozzle, liquid under pressure is formed into finely atomized 

droplets and work on the tangential flow principle. Inside the nozzle, there is an axial 

groove that injects the liquid tangentially into the vortex chamber where the strong 

centrifugal force produces a high rotational velocity and generates a finely atomized 

liquid hollow cone sprays. The relevant characteristics which determine the 

performance of these nozzles are the following  

1. The liquid flow delivered as a function of the feed pressure  

2. The opening angle of the produced spray  

3. The nozzle efficiency as the ratio between the energy of the spray and the energy 

used by the nozzle  

4. The evenness of the flow distribution over the target and  

5. The droplet size distribution of the spray.  

Figure 4.2 shows schematic drawings of the atomizers used and Figure 4.2a shows the 

nozzle that will produce conical spray pattern at 900 with respect to feed pipe axis and 

Figure 4.2b showing the nozzle that will produce the hollow cone sprays in line with 

feed pipe axis. The physical measurements of the nozzles are shown in Table 4.1 [165]. 
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Figure 4.2 Schematic and pictorial drawing of the nozzle (dimensions in millimetres) 

 

Table 4.1 Physical parameters of the nozzle  

(a) Nozzle with tangential flow  

Material Nozzle length L       

(mm) 

Height H 

(mm) 

Nozzle exit 

diameter (mm) 

Liquid inlet diameter 

(mm)  

Stainless 

steel 

34 24 3.5 3.7 

(b) Nozzle with in-line flow 

Material  Nozzle length L 

(mm) 

Height  H 

(mm) 

Nozzle diameter 

(mm) 

Liquid inlet diameter 

(mm) 

Brass 6.35 24 1.500 3.0 

 

 

 

 

 

 

 

 

(a) 

(b) 
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4.4 The Test Liquid 

The test liquid used for the spray experiment was soft tap water at an average 

temperature of 13 degrees Celsius. The test liquid property parameters are presented in 

Table 4.2. 

Table 4.2 Test liquid properties  

Property Mass density  Viscosity Surface tension 

Test liquid (water) 1000 0.001 0.072 

Units kg/m3 kg/ms kg/s2 

Symbol ρL µL σT 

Source Crowley et al 

[166] 

Emekwuru et al [15] Emekwuru et al 

[15] 

4.5 Spray Measurement Methods 

The spray characteristics were measured using a Malvern Spraytec which is a non-

intrusive, laser-diffraction-based drop analyser designed to continuously measure drop 

sizes and distribution information for continuous sprays Figure 4.3. This instrument is 

one of the most convenient and reliable spray analysers used in examining the global 

characteristics of sprays[167]. However, Hirleman et al [168] and Dodge [169] exposed 

some of the limitations of the instrument while several researchers have indicated that 

the variation in mean drop size and size distribution can be influenced by the effects of 

drop acceleration and deceleration [7]. The Malvern Spratec instrument is based on the 

Fraunhofer diffraction theory of a collimated laser beam scattering by moving drops. 

Light from the laser (1) is scattered by the spray droplets (3). The laser beam is 

expanded by the collimated optics (2) to provide a wide range parallel beam. The 

scattered light is focussed by a focusing lens (4) in a Fourier arrangement and picked 

up by the detector array (5). Unscattered light is focused by the focusing lens (4) so that 

it passes through the pinhole at the centre of the detector array. This is measured by the 

beam power detector to give the light transmission [170, 171].  
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Figure 4.3 Measurement set-up of the Malvern Spraytec system[170] 

 

The optical head had a He Ne 5 mW diode laser. To prevent particulate contamination 

of the optical apertures, there was a long base bridge with a 500 mm internal span 

between the transmitter and receiver optics (Figure 4.3), and a flow control panel 

provided clean and pressurised liquid to the centrally positioned nozzle between the 

transmitter and receiver optics. The electronics interface powered the optical head, 

acquired the raw scattering data, and processed and transmitted the signal information 

to the computer. The processed scattered data from the Spraytec was saved to the hard 

drive of a personal computer which had Spraytec software (version 3.30) installed on it 

and this software converted the raw data into useful mean drop sizes and distribution 

data [172]. The principles of laser diffraction drop size analysers have been discussed 

extensively (Lefebvre[1]; Malvern Spraytec Manual [170]; Emekwuru, [173]). When a 

parallel beam of light interacts with a drop, a diffraction pattern is formed such that 

some of the light is diffracted by an amount depending on the drop size. In general, 

large drops scatter light at small forward angles and small drops scatter light at large 

forward angles [170]. A lens focuses the diffraction pattern onto a photo detector, 

which measures the scattered light intensity. A curve-fitting program is used to convert 

the scattered light intensity into an empirical drop size distribution function, and this is 

displayed instantly.  

The need to avoid making drop size measurements close to the nozzle has been stressed 

by Wittig et al [167]  and Lefebvre[7]. The rapid deceleration of the smallest drops in 

the spray in this region gives rise to readings of SMD appreciably lower than the true 

value. Chin et al [174] recommend a downstream distance of 25cm at air pressure of 

100kPa as being the ideal plane at which to make the drop size measurements.  
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Lefebvre [7] indicated that their calculations take no account of evaporation and 

suggested that to minimize errors arising from this effect it is desirable to keep the 

distance as short as possible and estimated that 15cm was the best downstream distance 

at the pressure of 0.1MPa.  For the nozzle size and the liquid used in the experiments of 

Lefebvre [6], 50 mm was the best minimum axial position beyond which the results 

were consistent and below which no meaningful information was obtained for mean 

drop size and size distribution and this also agrees with the downstream distance used 

by Emekwuru [172] at the atomizing air pressure of 138kPa. All measurements were 

taken with the laser beam passing through the centreline of the spray. The problems 

associated with such measurement have been discussed by various workers including 

Dodge [169] and Chin et al [174].  However, Lefebvre [7] indicated that centre 

measurements are generally preferred because they encompass both the smaller drops 

in the core of the spray as well as the larger drops at the spray periphery. Figure 4.4 

shows the different distances from the nozzle tip for liquid sprays. The readings were 

taken only when the sprays were fully developed. The vertical and horizontal intervals 

between the measurement points were 20 and 5mm respectively.  

 

Figure 4.4 Measurement points relative to nozzle tip 

Assuming that the sprays were almost symmetrical, measurements were conducted for 

only half portion of the sprays. In using the Spraytec, the liquid was sprayed at various 

flow rates and drop sizes measured. Since the flow rate supplied by the pump could not 

be directly controlled, the power supplied to the pump was controlled by varying the 

voltage instead. All samples were sprayed at voltages of (0.5, 1, 1.5, 2 and 2.5)V. The 

flow rate was measured by timing how much time 0.4ml takes to spray. The pressure 

drop measured by the transducer was also recorded in volts to be later converted to 



81 
 

pressure units. Spraytec was operated at 2.5 kHz for 10s per measurement. The 

parameters used during the experiment for the Malvern Spraytec system are presented 

in Table 4.3. 

Table 4.3 Drop analyzer system parameters[170] 

Parameter Units Value 

Transmitting optics setup 

Laser power mW 5 

Beam waist diameter mm 10 

Laser wavelength nm 632.8 

Path length mm 30 

Receiving optics setup 

Drop size range mean diameter (D32) µm 0.1-2500 

Lens focal length mm 300 

Particle refractive index - 1.334 (water) 

Medium refractive index - 1.000 (air) 
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To visualize the liquid film break up, a high-speed resolution camera was utilized. 

Initially, a minimum exposure time and automatic flash were used to obtain the best 

possible instant picture as shown in Figure 4.5.  

 

Figure 4.5 Image from fast-shutter camera 

4.6 Hydrodynamics Analysis  

The hydrodynamics features of the spray were analysed using the drop size and the 

distribution. The results for spray in close proximity are usually difficult to measure. 

The inconsistencies of the results in this region can be due to possibly multiple 

scattering from the dense spray [173]. In this study, only measurements beyond 50 mm 

along the spray centre line of the nozzle are found to be consistent. Measurements were 

taken at axial distances of 50-150 mm in 20 mm increments along the atomizer centre 

line. Also at the radial distances of 5-50 mm, measurements were taken at radial 

distance  increments of 5 mm.  

Measurement of droplet size on spray centreline enables insight into the distribution of 

drops along the nozzle symmetry and helps to validate theoretical studies or relations 

for determining droplet sizes which is easier to develop on this axis [173, 175]. The 

symmetrical pattern observed during the experiments can also be explained in terms of 

the balance of forces acting in a spray during the operating conditions. There is a 

vertical effect due to the aerodynamic and gravity forces, and these forces act the same 

on mirror drops on either side of the nozzle axis [7]. Figure 4.6 andFigure 4.7 show the 

𝜃=70o 

Spray angle 
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uncorrected light scattering data and alignment of the laser beam for corrections before 

capturing the raw data. The Malvern Spraytec software provides means for correction 

of the effects of multiple scattering during the experiments. In cases where the particle 

concentration is high, the measurement process is complicated by scattered light being 

re-scattered by other particles before it reaches the detector. These multiple scattering 

errors are corrected by a light scattering correction algorithm and the correction effects 

during the experiments are seen in the smoother transmission signal curves in Figure 

4.7 compared to Figure 4.6 [170]. Figure 4.8 shows the drop size and transmission level 

time history which shows how the spray developed over time and plots the values of all 

derived parameters for each record against time. The illustration in Figure 4.8 was 

obtained when the spray was directed through the Malvern Spraytec measurement 

volume over a 10 second window.  

 

 

Figure 4.6 Uncorrected light scattering data. On transmission signal scale 1000 

represents 1mW 
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Figure 4.7 Corrected light scattering data. On transmission signal scale 1000 represents 

1mW 

 

 

Figure 4.8 Drop size/transmission level time history  
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4.2 Summary 

This chapter describes how a laser-diffraction-based drop size analyser (Malvern 

Spraytec) was used to obtain drop size data from the free spray. The apparatus was 

designed with the purpose of producing a continuous spray and to examine the spray 

characteristics quantitatively and qualitatively. The atomizers used for this study were 

pressure swirl nozzles PFS 1392B1 and RXT 0250TI manufactured by PNR Ltd which 

produce hollow cone sprays. The test liquid used  and its property parameters were 

presented. The spray measurement method for Malvern Spraytech which is mainly 

based on the Fraunhofer diffraction theory of a collimated laser beam scattering by 

moving drops was also described. The various locations where the droplet Sauter Mean 

Diameter (SMDs) and its distributions were measured for research work carried on 

hollow cone nozzle were evaluated and it was stated that only measurements beyond 50 

mm along the spray centre line of the nozzle are found to be consistent. Measurements 

were taken at axial distances of 50-150 mm in 20 mm increments along the atomizer 

centre line as well as radial distance increments of 5 mm from the spray centreline in 

this study.  
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CHAPTER 5 COMPUTATIONAL RESULTS AND DISCUSSION 

5.1 Introduction 

This chapter presents the modelling results for the flow fields on the cross section and 

vertical plane as well as the prediction of the Sauter Mean Diameter (SMD) at the spray 

centerline and radial positions for the Ʃ − Y  atomisation model. In order to have a 

better understanding of the flow and turbulence fields, the two-dimensional vertical 

plane is cut through the atomizer at 1800 and 3D view of the nozzle for the pressure 

distribution is shown in Figure 5.1. The two inlets or holes are symmetrically located at 

the side and in the middle of the atomizer so that the spray emerging from the nozzle 

can be adequately captured and analysed on the plane. The nozzle exit is located at the 

centre of the computational domain for an axisymmetric study to be carried out in the 

computational domain on the plane. Liquid through the outside jet and air through the 

middle jet are injected at a steady state and simulations were carried out using the 

Eulerian single-phase modelling methodology for the injected fluids with high-density 

variation, high Weber and Reynolds numbers. This Eulerian approach treats the liquid 

and air as a single continuous phase with large-scale features of the flow dependent 

only upon density variation. The Standard k-epsilon turbulence model was used to 

model the turbulence effect since it provided the best match in the validation after 

analysing other variants of k-epsilon turbulence models. The investigation of the 

turbulence models are  presented in Chapter 6. 

 

          

Figure 5.1  Vertical section plane and 3D plot of pressure distribution 
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The flow simulations were carried out with the boundary condition for the liquid inlet 

taken to be a specified velocity flow rate normal to the vertical plane and air velocity 

inlet parallel to the plane. The outlet of the computational domain is set to atmospheric 

pressure boundary. All wall boundaries are taken as no-slip. For gas and liquid 

respectively the densities are 1.20 and 997.5 kg/m3. In order to compare the results of 

the flow and turbulence fields, two simulations were run for two pressure-velocity 

coupling algorithms (SIMPLE and PISO) and SIMPLE algorithm was used to enforce 

mass conservation and to obtain the pressure field. These simulations were run at 

steady state with maximum residual tolerance of 1x10-4  for convergence to be 

achieved. 

5.2 Grid independence test 

Figure 5.2 presents the grid independence test using variation of pressure profile with 

cell sizes in the swirl chamber, contraction zone and exit orifice of the atomizer. The 

pressure variations are taken on the symmetry line inside the atomizer shown on the 

vertical plane in Figure 5.1 and the x-axis values are the positions on the symmetry 

line. 

 
Figure 5.2 Grid independence test using variation of pressure profile with grid sizes 
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One significant observation with this result is that the pressure in the swirl chamber is 

almost constant, drops sharply in the contraction zone and further decreases in the exit 

orifice which is consistent with the experimental observation made by Horvay and 

Leukel [5] on the gauge pressure at the internal walls of the pressure swirl atomizer. 

The pink, blue and red lines represent the variation of pressure in the nozzle on the 

symmetry line for cells, from coarse to fine grid, with base sizes of 0.08 mm, 0.05 mm 

and 0.03 mm respectively. With simulation of cell size 0.08 mm the pressure profile 

has maximum value of 0.266 bars, the 0.05 mm cell size the maximum pressure profile 

corresponds to 0.308 bars and 0.330 bars was the maximum value for the pressure 

profile when the mesh base size was reduced to 0.03 mm. It was observed after 

carrying out this series of grid independence tests shown on Figure 5.2 that increasing 

the number of cells beyond 1,894,340 with a base size of 0.03 mm did not alter the 

pressure profile. Thus the numerical simulations are grid independent beyond 

1,894,340 cells of base size 0.03 mm on the symmetry line. The discretisation error for 

the maximum pressure profile 𝑃𝑚𝑎𝑥 using the Grid Convergence Index (GCI) was 

calculated with these relations.  The relative error,𝑒, between successive grids is found 

by 

𝑒 =
𝑓2 − 𝑓1
𝑓1

 

where 𝑓1  is the fine grid and 𝑓2 is the coarse grid 

For each pair of successive grids, GCI is found from 

𝐺𝐶𝐼 =
𝐹𝑠|𝑒|

(𝑟𝑝 − 1)
 

where 𝐹𝑠 = 1.25  is the factor of safety recommended for three grid studies, r is the grid 

refinement ratio of 1.6 , p is the order of discretisation assumed to be 2. The two errors 

for the three grids are shown in Table 5.1 

Table 5.1 Grid statistics, pressure data and discretisation error estimates 

Grid size (mm) 𝑃𝑚𝑎𝑥 (bar) e 𝐺𝐶𝐼(%) 

0.08 0.266 - - 

0.05 0.308 0.1579 19.74 

0.03 0.330 0.0714 5.72 
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From Table 5.1 the results show that Grid Convergence Index (GCI) from the coarse to 

the fine grid is relatively low and therefore a grid independent solution is achieved.  

5.3 Comparison of SIMPLE and PISO algorithms results 

Figure 5.3 shows the contour plot for density with 15 levels on the colour map. In “one-

fluid-two-phase”  Ʃ − Yliq atomization model, high mean density variation is an 

important parameter and depends on the Favre averaged liquid mass fraction. Flow and 

turbulence fields depend heavily on the mean density variation and as such to get a 

complete picture of the model for further analysis to be conducted density variation for 

the two fluids treated as a single phase fluid must first and foremost be achieved for the 

simulation. From the figure, the blue colour corresponds to the lowest density and the 

red colour representing the maximum value for the density distribution can be observed 

in the vicinity of the liquid entry into the atomizer. The density variation can be seen in 

between these two limits and is large in relation to the maximum and minimum values 

of the density distributions. This is expected due to large density difference that exits 

between  liquid and gases [176]. As can be seen in the spray the density variations 

effect is stronger upstream and becomes less extreme in the downward stream. This 

density variation may be due to the compressibility effects induced by high-velocity 

flows between the two fluids. In this model temperatures of the liquid and gas are not 

considered so the density variations cannot be related to temperature variations.  

In order to assess whether or not these numerical results can be trusted for the density 

distribution, simulations were performed for two algorithms for pressure-velocity 

(SIMPLE and PISO) coupling.  The residuals for the main parameters calculated, such 

as: continuity equation, momentum and turbulence model were compared for both 

algorithms. Under the same conditions, and low under-relaxation factors to avoid 

divergence of the iterations, the two algorithms showed appropriate convergence with 

the maximum residuals for continuity being 1x10-4. With regards to computational 

time, the PISO case expends less CPU time than the SIMPLE case and has greater 

stability. The results show that the maximum local density value is 997.5 kg/m3 for 

both algorithms and minimum values of 1.184 kg/m3 and 1.205 kg/m3 for SIMPLE and 

PISO simulations respectively. The average density in the distribution is in the range 

between 499.3 and 570.5 kg/m3. It can, therefore, be easily seen that there are 

negligible differences in the two results indicating the result for the density is good and 

acceptable since SIMPLE and PISO algorithms tend to produce almost the same results 
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under the same conditions, the only difference being the procedures for coupling the 

pressure and velocity are different[103].  

 

 

 

Figure 5.3 Comparison of density variations for (a) SIMPLE and (b) PISO algorithms 

 

(a) 

(b) 
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Figure 5.4 presents the velocity magnitude on the vertical plane for the PISO and 

SIMPLE algorithms. The blue colour on both results represents the lowest values on 

the velocity distribution, which also implies that outside the spray there is only air. The 

minimum values of the velocity magnitude for the SIMPLE and PISO simulations are 

0.56 m/s and 0.54 m/s respectively. The red colour indicates the maximum values for 

the velocity on both contours and has values of 7.85 m/s and 7.61 m/s2
 respectively. 

The results indicate that the average velocity in the distribution is in the range of 3.905 

m/s to 3.924 m/s.  The high values of the velocity in close proximity to the liquid entry 

into the atomizer are expected since the liquid velocity is high. The results also show 

that the spray is symmetrical on the vertical plane and therefore the flow behaviour can 

be evaluated on the spray centreline. Conical spray is clearly visible and the minimum 

values are found downstream of the spray for both simulations. This is in conformity 

with the theory that the liquid sheet emanating from pressure-swirl atomizer outlet 

widens in the form of a cone after leaving the nozzle and disintegrates downstream into 

droplets[177] and are mostly confined in the core regions of the spray. It can also be 

found that the velocity in the centre spread of the liquid is greater than the speed of the 

droplets at the periphery of the spray. This is especially true because at the centre axis 

the air will drag the smaller droplets towards the centre while the larger droplets will 

remain at the outer periphery and as such the velocity distribution across the plane can 

vary appreciably from the centre to the outer radius. The phenomena at the tip of the 

spray may represent the break-up process of the spray sheet into droplets which may be 

induced by turbulent behaviour in the spray since in turbulent flows the turbulent 

transport terms are dependent on the mean velocity field. It can be observed that at the 

same colour locations for both the SIMPLE and PISO results, the velocity field values 

are slightly higher for SIMPLE than for PISO. These small discrepancies are acceptable 

since it lies within 1% and 3% as indicated by Barton [178] in his study to compare 

SIMPLE and PISO type algorithms for flow fields.  
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Figure 5.4 Comparison of velocity magnitudes on the vertical plane for (a) SIMPLE 

and (b) PISO algorithms 

 

 

 

 

(a) 

(b) 
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Figure 5.5 shows turbulent kinetic energy on the vertical plane when the simulations 

for the SIMPLE and PISO algorithms were compared. The turbulent kinetic energies 

are colour coded such that the various colours represent localised turbulent kinetic 

energy at various locations in the spray. As can be seen from the two results high 

turbulent kinetic energy increases in the vicinity of the atomizer exit and may be due to 

low liquid density at those locations. It can also be observed that low turbulent kinetic 

energy is found in the downstream of the spray which may be due to decrease in liquid 

velocity and high density variation. From the results, turbulent kinetic energy for PISO 

is slightly higher than the SIMPLE case when compared at the same colour locations 

with the maximum turbulent kinetic energy being 1.907 m2/s2 and 1.814 m2/s2 

respectively and the least turbulent kinetic energy values of 0.074 m2/s2 and 0.0072 

m2/s2 respectively. The results indicate that the average turbulent kinetic energy values 

in the distribution corresponding to the light yellow in the SIMPLE and PISO cases are 

0.908 m2/s2 and 1.06 m2/s2 respectively. The very low turbulent kinetic energy 

observed in the centre spread of the atomizer may be caused by large liquid to gas ratio 

and may also be attributed to the inadequacies in standard k-epsilon turbulence model 

in predicting better turbulent kinetic energy in two phase flow. Turbulence fields 

depend on density variation in this atomization model [40] and as the density variation 

decreases greatly the standard k-epsilon turbulence model may not adequately capture 

this effect and might have accounted for some of these distortions or fluctuations in the 

turbulent kinetic energy. The fact is turbulence modelling, even for single phase flows, 

is an active area of research and the modelling of variable density flows particularly 

flows with large density ratio is currently an unsolved problem[40]. 

The results also show that some recirculation zones are observed close to the walls in 

the swirl chamber and again standard k-epsilon turbulence model may not be good in 

predicting variable density flows which experience recirculation zones. However, as 

indicated by Pandal et al [123] in optimizing diesel spray break-up using this Ʃ-Y 

atomization model and Beshesti et al.[40] in assessing this Ʃ-Y model in air-assisted 

atomisation, most applied numerical works are still based on this turbulence model due 

to its robustness and accuracy in modelling shear driven flows with minimally curved 

streamlines but recirculation flows are challenging for any turbulence model. 
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Figure 5.5 Comparison of turbulent kinetic energy on the vertical section plane for (a) 

SIMPLE and (b) PISO algorithms 

 

(a) 

(b) 
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Figure 5.6 Contour plot of surface density for SIMPLE and PISO algorithm, axial 

positions 

 

Figure 5.7 Contour plot of surface density for SIMPLE and PISO algorithms, radial at y 

= 60 mm 
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Figure 5.6 and Figure 5.7 show the comparison of the contour plots of predicted surface 

density for SIMPLE and PISO cases at y = 60 mm for the radial case and  axial profile 

resulting from the locations on the spray centre line. The results show that the surface 

density is almost 2800 m-1 for both SIMPLE and PISO at axial location x=0 and for the 

other locations the SIMPLE predicted surface density is slightly higher than the PISO 

for the radial case. It can be observed from the radial results that the least surface 

density values are 480 m-1 and 505 m-1 for PISO and SIMPLE respectively. The axial 

result also shows that the surface density decreases linearly on the spray centreline. 

These two results were used in the prediction of the Sauter mean diameter (SMD) on 

both axial and radial positions of the spray plume in the computational domain with 

SIMPLE algorithm used in all predictions. 
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5.4 Flow fields on the crossection plane 

Figure 5.8 shows the predicted velocity magnitudes on the nozzle cross sections as 

shown on Figure 5.8a. The velocity magnitudes were generated in the sprays across the 

swirl chamber, contraction zone, mid section of the exit orifice and the tangential port 

into the swirl chamber. It was observed that the liquid velocity was very high in the 

tangential inlet to the atomizer as well as in the core of the exit orifice. Figure 5.9 

shows the velocity distribution across the spray in the computational domain when the 

transport equation for the liquid mass fraction, interfacial surface density and average 

density were modelled. It was evaluated at the sections for y = 60, 80 100 and 120 mm 

from the tip of the nozzle. Hollow cone spray formation can be observed and this gets 

wider at the distance increases with the entrained air. The flow fields for the velocity 

magnitudes indicate that regions of relatively high velocities in the liquid were found to 

be in the atomizer compared to the velocity in the computational domain. Figure 5.10 

shows the contour plots of pressure distribution, mean mass fraction of liquid, mass 

fraction of air and turbulent quantities such as turbulent viscosity, turbulent kinetic 

energy and its rate of dissipation at entry into the atomizer. Two-phase flow can clearly 

be seen between the mass fraction of liquid and air in the atomizer as shown in Figure 

5.10b and Figure 5.10c and liquid dispersion is correctly captured. It can also be 

observed that turbulent kinetic energy was very higher near the internal walls in the 

swirl chamber and pressure was also seen to be high near the internal walls as well. The 

maximum value for the density distribution can be observed in the vicinity of the liquid 

entry into the atomizer. 

 

a. Cross-section through the centres of parts of  the nozzle 
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b. Swirl chamber 

 

c. Contraction zone 



99 
 

 

d. Nozzle exit orifice 

 

e. Tangential entry into nozzle 

Figure 5.8 Velocity magnitudes at various nozzle sections 
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Velocity = 60 mm 

 

 

Velocity = 80 mm 



101 
 

 

Velocity = 100 mm 

 

 

Velocity = 120 mm 

 

Figure 5.9 Contour plot of velocity magnitude at various cross sections in the 

computational domain 
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a. Pressure distribution 

 

 

       b.  Mass fraction of liquid  
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c. Mass fraction of air 

 

 

d.  Turbulent kinetic energy  
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e.  Turbulent viscosity 

 

 

f.  Turbulent dissipation rate 

 

Figure 5.10 Contour plots of scalar quantities on the cross section plane at the entry 

into the nozzle 
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a. y=60mm 

 

 

b.  y=80mm 
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c.  y=100mm 

 

 
 d.  y=120mm 

Figure 5.11 Mass fraction of liquid on various cross section planes at y=60, 80, 100 and 

120 mm 
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Figure 5.11 presents the liquid mass fraction field 𝑌 at y=60, 80, 100 and 120 mm 

across the spray sections where droplet SMDs will be measured for validation of SMD 

at the radial positions. These results together with the corresponding interfacial surface 

density presented in Figure 5.12 were used to predict the SMD at radial locations in the 

spray. Spray spreading in radial direction is clearly observed and minimum values were 

found downstream the spray. This is because the mass fraction of the liquid decreases 

inside the spray as the liquid penetrates the air. The evolution of the interphase liquid 

surface density has the same behaviour as the mean liquid mass fraction. The minimum 

and maximum values of average interphase surface density correspond to the locations 

where the average liquid mass fraction is also minimum and maximum. This means the 

more liquid there is the more liquid and gas interface there is. 

 

 

a. y = 60 mm 
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Figure 5.12 Surface density on various cross section planes at y=60, 80, 100 and 120 

mm 

 

y= 80 mm 

y= 100 mm 

y= 120 mm 
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5.5 Flow fields on the vertical plane 

Figure 5.13a shows the axial profile of the droplet velocity obtained on the spray axis. 

The values on the y-axis represent the positions on the spray centre axis from the 

nozzle exit to the downstream in the computational domain. The vertical axis represents 

the velocity magnitude of the droplets at the various axial positions on the symmetry 

axis away from the nozzle exit. It can be seen that the maximum velocity at the vicinity 

of the nozzle exit is 6.5 m/s. The liquid velocity decreases quite sharply from the nozzle 

exit up to 20 mm to approximately 1.5 m/s. It further reduces to a low value and 

remains almost constant in the downstream part of the spray. Figure 5.13b shows the 

radial profile of the droplet velocity at the axial position y = 60mm. The result shows 

that higher mean velocity can be observed at the centre spread of the spray and it 

decreases towards the periphery of the spray.  
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Figure 5.13 Droplet velocity on the (a) spary centreline and (b) radial positions at y = 

60mm 

 

Figure 5.14 Contour plot of liquid mass fraction on the vertical plane 
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Figure 5.15 Liquid mass fraction on the spray centre line 

 

Figure 5.16 Mass fraction of liquid on the spray radial positions at y = 60 mm 
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Figure 5.14 illustrates the 2D field of the liquid mass fraction on the vertical plane. The 

liquid mass fraction lies between 0 and 1. The liquid mass fraction is 1 (in red) at the 

liquid phase and 0 at the air phase. Inside the domain of the atomizer, there is only 

liquid and as the liquid moves through the gas phase, the liquid mass fraction in the 

centre spread decreases. Outside the spray indicated by the blue colour, it is surrounded 

by only air. Conical spray is clearly visible and on the spray axis the mean liquid mass 

fraction decreases downstream the computational domain. Figure 5.15 presents the 

graph of the liquid mass fraction on the spray centre axis. The x-axis values represent 

the positions as shown on the probe line 1 in Figure 5.1. The liquid mass fraction on the 

vertical axis has a maximum value of 1. As can be seen from Figure 5.15 the value of 

the mass fraction of the liquid is high at the nozzle exit at x=0 and decreases 

downwards with the lowest value of 0.1. Figure 5.16 shows the liquid mass fraction 

distributions on the spray radial positions at y=60 mm which shows higher liquid mass 

fraction at the centre spread and decreasing sprays towards the atomizer walls. The 

high value of the liquid mass fraction at this location may be due to the initial impulse 

and high energy in the liquid as it leaves the exit orifice of the nozzle and attempting to 

penetrate the air. Liquid dispersion into the air may give rise to the decrease in the 

value of the liquid mass fraction.  

 

Figure 5.17 Predicted surface density on radial position at y =60 mm 
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The interfacial surface density being the key quantity characterising the atomization 

quality and droplet diameter in this model is predicted along and across the atomizer as 

shown in Figure 5.17, Figure 5.18 and Figure 5.19. In Figure 5.17 the radial positions 

are taken at y=60 mm from the tip of the atomizer. The vertical axis values represent 

the values of the interfacial surface density predicted on the radial positions. The axial 

position x=0 corresponds to a position on the spray centre axis. The y=60 mm is 

located with reference to the minimum distance away from the nozzle exit from which 

meaningful data can be obtained for spray drop size measurement. The results show 

that the interfacial surface density has the same shape profile as the mass fraction of the 

liquid. The minimal and maximum values of the surface density respectively are also at 

the point where the mass fraction values are also minimal and maximum respectively. 

This means that the more the liquid at a position in the field the more the surface 

density and vice versa. The maximum value for the surface density is 2800 m-1 at axial 

position x=0. This increase in the surface area density may be due to the bulk 

turbulence of the liquid. It is supported by Beheshti et al [40] that the rate of liquid 

surface area increase is a weighted sum of rates determined by the bulk turbulence and 

the drop collision. 

 

Figure 5.18 Contour plot of interfacial surface density on the vertical plane 
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Figure 5.19 Predicted interfacial surface density on the spray centre line 

Figure 5.19 shows predicted interfacial surface density on the spray centre line 

evaluated from the contour plot of surface density shown in Figure 5.18. It can be 

observed that the surface area density in the atomizer decreases sharply along the 

symmetry line (between axial position y=0 and 30 mm) from 16000 m-1 to 4000 m-1. 

The coordinates (x,y = 0,0) is located at the tip of the nozzle exit. Inside the 

computational domain, and on the spray centre line, the value of the predicted 

interfacial surface density decreases slowly as is almost constant (axial positions y = 30 

mm and y = 120 mm) with a value of 2000 m-1. This result is used to predict the Sauter 

Mean Diameter (SMD) on the spray centre axis. 
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5.6 Prediction of Sauter Mean Diameter (SMD)  

Figure 5.20 presents the radial profile of numerical predicted Sauter Mean diameter 

(SMD) at axial positions y = 60 mm from the nozzle exit. The result shows that the 

SMDs are smaller in the vicinity of the spray centre axis (axial position = 0) and higher 

droplet SMD values can be seen at the periphery of the spray. Thus it can be deduced 

that the SMD depends on the radial distance. This may be due to the large droplets 

experiencing less drag than the smaller droplets and can also be due to droplet 

coalescence which is accounted for by the model. Outside the liquid sheet, the mass 

fraction and liquid surface density are zero  and so the SMD calculated does not 

represent any droplet diameter. The result also shows that the droplet size has been 

predicted with correct order-of-magnitude when compared to the works of  

Beheshti[40] and Vallet et al[14] when assessing the same model.  

 

 

Figure 5.20 Sauter mean diameter (SMD) on radial positions at y= 60mm 
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Figure 5.21. Spray Sauter mean diameter (SMD) predicted on the symmetry axis 

Figure 5.21 shows the Sauter mean diameter predicted on the spray centre axis. The y-

values are the positions on the symmetry axis away from the nozzle exit in the 

computational domain. The curved line shows the Sauter mean diameter (SMD) 

predicted at the various locations on the spray centre line. The results show that the 

Sauter mean diameters (SMDs) close to the nozzle exit are smaller than other positions 

on the symmetry line downwards the domain. Thus, it can be deduced that the SMD 

increases with increasing downstream distance. This phenomenon may be attributed to 

droplets collisions which may result in droplet coalescence. It can also be concluded 

that these SMD values were predicted with correct order of magnitude and therefore 

was compared with the experimental results. 
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5.7 Summary 

The findings from this chapter show that across the various sections of the nozzle the 

pressure in the swirl chamber is almost constant, drop sharply in the contraction zone 

and further decreases in the exit orifice which is consistent with the experimental 

observations of many researchers. The flow fields for the velocity magnitudes indicate 

that regions of relatively high velocities in the liquid were found to be in the atomizer 

compared to the velocity magnitude  downstream the spray. It was deduced that the 

mass fraction of the liquid decreases inside the spray as the liquid penetrates the air and 

that the evolution of the liquid surface density has the same behaviour as the mean 

liquid mass fraction. The findings show that the SMDs are smaller in the vicinity of the 

spray centreline and higher droplet SMD values are seen at the periphery of the spray 

Thus the SMD depends on the radial positions in the spray. It was also observed that 

the SMDs close to the nozzle exit are smaller than other positions on the symmetry line 

downstream the spray. 
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CHAPTER 6 EXPERIMENTAL RESULTS AND VALIDATION 

6.1 Introduction 

This experimental and validation section undertakes the measurements of the droplet 

SMD at different axial distances for the hollow-cone nozzle and different radial 

distances from the spray centreline using a laser-diffraction-based drop size analyser 

(Malvern Spraytec) and also investigates the influence of injection pressure and liquid 

flow rate on the SMD. In addition, the geometrical exit orifice diameters of 3.5mm and 

1.5mm of the nozzle on the SMD are also analysed. The drop size distributions along 

the nozzle centreline 60, 80, 100 and 120mm as well as the radial drop distributions 

from spray centreline at 10, 15, 20 and 25mm are also discussed. The liquid film 

breakup as a function of the pressure differential is also presented. For the validation to 

be carried out variants of different turbulence models on the SMDs were first evaluated 

and the validation of SMD at spray centre axis and radial positions performed.  

6.2 Spray symmetry and mean drop sizes  

Figure 6.1 shows axial profiles of the arithmetic mean diameter d10, Sauter mean 

diameter, SMD d32, De Broukere diameter, d43 and mass median diameter (MMD) d50 

evaluated at axial positions of y = 60, 80, 100, and 120 mm for injection pressure of 3.0 

bars. Since droplet sizing can only be made after the disintegration of the liquid sheet, 

measurements can only be taken at a certain distance from the liquid sheet breakup. 

Therefore comparisons at closer axial distances are meaningless and in particular 

measurements below 60 mm from the tip of the nozzle are neglected. The diameters d10 

and d50 correspond, respectively, to drop diameters that encompass 10% and 50% of 

total volume of drops below the drop volume considered. It can be observed that the 

characteristic drop sizes increase in the axial direction downstream the nozzle. 

Arithmetic mean diameter d10 shows the least drop size and lower than the Sauter mean 

diameter d32 which is expected in most drop size distributions. De Broukere diameter, 

d43 records the highest drop size values. The Sauter mean diameter d32 which is 

described by Chin and Lefebvre [179] as the best measure of the fineness of sprays and 

mass median diameter d50 fall in within this range with the Sauter mean diameter d32 far 

lower than the mass median diameter d50. The relative positions of the different 

diameters as shown in Figure 6.1 also conform to the observations made by Williams 

[180] where the Sauter mean diameter, d32, is 18 μm and the other diameters d10 and d50 
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are 5.5 μm and 24 μm respectively. In Figure 6.2 the influence of pressure on mean 

drop size d32 was analysed at the locations on the spray centreline. As expected, it is 

observed that an increase in the injection pressure of liquid leads to a decrease in SMDs 

on the spray centreline.  

 

Figure 6.1 Drop size parameter profile along the spray centre line at atomizing pressure 

of 3.0bars, experimental. The error bars indicate the standard deviation of three 

measurements. 

 

Figure 6.2 Sauter Mean Diameter (SMD) along the spray centre line at two different 

injection pressures, experimental 
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Figure 6.3 Radial Sauter Mean diameter (SMD) at axial positions y=60, 80, 100 and 

120 mm from the nozzle exit at injection pressure of 4.0 bars. The error bars indicate 

the standard deviation of three measurements 

Figure 6.3 show  the experimental results of Sauter Mean diameter (SMD) at radial 

positions 10, 15, 20 and 25mm from the spray centreline for axial positions y = 60, 80, 

100 and 120 mm from the nozzle exit at injection pressure of 4.0 bars. It is found that 

the radial drop size profile from the spray center line shows an increase in the drop 

sizes as the axial distance increases from the spray centerline. At 60 mm from the 

nozzle, however, the drop sizes are as high as 402µm. The radial variation of the drop 

sizes is found to be dependent on both the injection pressure conditions and the spray 

measurement positions. It is evident that the higher the injection pressures, the smaller 

the drop sizes. From these spray profiles, it is also seen that larger sized drops occupy 

the spray periphery compared to those occupying the spray core. This is because they 

are less affected by the airflow entrained in the spray core that carries smaller drops. 
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6.3 Variation of inlet pressure on the Sauter Mean Diameter (SMD) 

Figure 6.4 presents the influence of injection pressure on the Sauter Mean Diameter 

(SMD) at y = 90 mm. It can clearly be seen that the increase in pressure leads to a 

decrease in the mean drop size (SMD) and is due to the combined effect of stronger 

liquid sheet instability and the maximum growth of the surface wave as the pressure 

increases. This makes the liquid sheet breaks up more easily and produces smaller 

droplets. Flow rate as the only parameter concerning the quantity rather than quality of 

an atomised liquid is shown in Figure 6.6 and its influence on the droplet SMD is 

analysed. It can be seen that the droplet SMD also decreases with increasing liquid flow 

rate. Figure 6.5 shows the flow rate and the injection pressure and it can be observed 

that the flow rate and injection pressure increase in exponential form which is 

consistent with the flow rate calculation formula. This also agrees wth the findings by 

Emekwuru and Watkins [172] that an increase in liquid flow rate would usually 

decrease the drop size. This can be justified with the explanation that greater flow rate 

indicates greater velocity of the liquid and hence the relative velocity between air and 

the droplets is reduced. This helps in reducing the drag work required and thus a greater 

part of kinetic energy is available for the creation of new surfaces and consequently 

more droplets.  

 

Figure 6.4 Influence of injection pressure on the Sauter Mean Diameter (SMD) 
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Figure 6.5 Liquid flow rate versus injection pressure 

 

Figure 6.6 Effect of liquid flow rate on the Sauter Mean Diameter (SMD) 
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6.4 Influence of geometrical dimensions on the Sauter Mean Diameter (SMD) 

Figure 6.7 shows the influence of nozzle exit orifice on the Sauter Mean Diameter 

(SMD) and can be observed that the nozzle exit orifice diameters 3.5 mm and 1.5 mm 

for big nozzle and small nozzle respectively have different SMD at the axial positions 

with small nozzle showing smaller SMDs than the big nozzle. Another significant 

observation is that break-up lengths are different for the two nozzles. When the 3.5 mm 

nozzle has droplet formation beyond 50mm  and the 1.5mm exit orifice nozzle has 

droplet SMD measured above 30mm. 

 

Figure 6.7 Effect of geometrical dimensions of the nozzle on the Sauter Mean Diameter 

(SMD) 
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6.5 Drop size distributions along the nozzle centreline and from spray centreline 

The drop distributions or histogram displays the spray results in the form of ‘in band’ 

percentages. Each bar in the graph represents a size band of droplets and its height 

represents the percentage of the spray that is within that size band. The Figures below 

shows the histogram and graphs which are generated from the numeric values  shown 

in Appendix 1. The cumulative undersize or result less than displays the percentage of 

the spray which is below a certain size [170].  
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Figure 6.8 Drop size distributions for injection pressure value of 3.5bars at axial 

distance y= 60, 80, 100 and 120 mm along the 3.5mm exit orifice nozzle centre line 
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Particle Size Distribution 28 Oct 2016 - 11:01:22.1240
 Example results555.smea\Import\V8a 1 1.psd

 Sample : watersherry
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0 - 100 %

Size (µm) % V < % V Size (µm) % V < % V Size (µm) % V < % V

0.117 0.00 0.00

0.136 0.00 0.00

0.158 0.00 0.00

0.185 0.00 0.00

0.215 0.00 0.00

0.251 0.00 0.00

0.293 0.00 0.00

0.341 0.00 0.00

0.398 0.00 0.00

0.464 0.00 0.00

0.541 0.00 0.00

0.631 0.00 0.00

0.736 0.00 0.00

0.858 0.00 0.00

1.00 0.00 0.00

1.17 0.00 0.00

1.36 0.00 0.00

1.58 0.00 0.00

1.85 0.00 0.00

2.15 0.00 0.00

2.51 0.00 0.00

2.93 0.00 0.00

3.41 0.00 0.00

3.98 0.00 0.00

4.64 0.00 0.00

5.41 0.00 0.00

6.31 0.00 0.00

7.36 0.00 0.00

8.58 0.00 0.00

10.00 0.00 0.00

11.66 0.00 0.00

13.59 0.00 0.00

15.85 0.00 0.00

18.48 0.00 0.00

21.54 0.00 0.00

25.12 0.00 0.00

29.29 0.00 0.00

34.15 0.01 0.01

39.81 0.07 0.06

46.42 0.20 0.13

54.12 0.43 0.23

63.10 0.76 0.33

73.56 1.18 0.42

85.77 1.66 0.48

100.00 2.16 0.50

116.59 2.68 0.52

135.94 3.27 0.59

158.49 4.10 0.83

184.79 5.47 1.37

215.44 7.84 2.37

251.19 11.75 3.91

292.87 17.73 5.98

341.46 26.13 8.40

398.11 36.93 10.79

464.16 49.62 12.69

541.17 63.22 13.60

630.96 76.39 13.17

735.64 87.69 11.29

857.70 95.84 8.15

1000.00 100.00 4.16

Particle Size Distribution 28 Oct 2016 - 10:54:59.1000
 Example results555.smea\Import\V10a 1 1.psd

 Sample : watersherry
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Rosin Rammler

D = 542.70 N = 2.54

0 - 100 %

Size (µm) % V < % V Size (µm) % V < % V Size (µm) % V < % V

0.117 0.00 0.00

0.136 0.00 0.00

0.158 0.00 0.00

0.185 0.00 0.00

0.215 0.00 0.00

0.251 0.00 0.00

0.293 0.00 0.00

0.341 0.00 0.00

0.398 0.00 0.00

0.464 0.00 0.00

0.541 0.00 0.00

0.631 0.00 0.00

0.736 0.00 0.00

0.858 0.00 0.00

1.00 0.00 0.00

1.17 0.00 0.00

1.36 0.00 0.00

1.58 0.00 0.00

1.85 0.00 0.00

2.15 0.00 0.00

2.51 0.00 0.00

2.93 0.00 0.00

3.41 0.00 0.00

3.98 0.00 0.00

4.64 0.00 0.00

5.41 0.00 0.00

6.31 0.00 0.00

7.36 0.00 0.00

8.58 0.00 0.00

10.00 0.00 0.00

11.66 0.00 0.00

13.59 0.00 0.00

15.85 0.00 0.00

18.48 0.00 0.00

21.54 0.00 0.00

25.12 0.00 0.00

29.29 0.00 0.00

34.15 0.01 0.01

39.81 0.08 0.07

46.42 0.25 0.16

54.12 0.52 0.27

63.10 0.89 0.38

73.56 1.34 0.45

85.77 1.82 0.48

100.00 2.27 0.45

116.59 2.66 0.39

135.94 3.05 0.39

158.49 3.62 0.57

184.79 4.69 1.07

215.44 6.74 2.05

251.19 10.38 3.64

292.87 16.17 5.79

341.46 24.49 8.32

398.11 35.34 10.86

464.16 48.23 12.88

541.17 62.13 13.90

630.96 75.65 13.52

735.64 87.28 11.63

857.70 95.69 8.42

1000.00 100.00 4.31

Particle Size Distribution 28 Oct 2016 - 10:46:09.1000
 Example results555.smea\Import\V12 1 1.psd

 Sample : watersherry
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0 - 100 %

Size (µm) % V < % V Size (µm) % V < % V Size (µm) % V < % V

0.117 0.00 0.00

0.136 0.00 0.00

0.158 0.00 0.00

0.185 0.00 0.00

0.215 0.00 0.00

0.251 0.00 0.00

0.293 0.00 0.00

0.341 0.00 0.00

0.398 0.00 0.00

0.464 0.00 0.00

0.541 0.00 0.00

0.631 0.00 0.00

0.736 0.00 0.00

0.858 0.00 0.00

1.00 0.00 0.00

1.17 0.00 0.00

1.36 0.00 0.00

1.58 0.00 0.00

1.85 0.00 0.00

2.15 0.00 0.00

2.51 0.00 0.00

2.93 0.00 0.00

3.41 0.00 0.00

3.98 0.00 0.00

4.64 0.00 0.00

5.41 0.00 0.00

6.31 0.00 0.00

7.36 0.00 0.00

8.58 0.00 0.00

10.00 0.00 0.00

11.66 0.00 0.00

13.59 0.00 0.00

15.85 0.00 0.00

18.48 0.00 0.00

21.54 0.00 0.00

25.12 0.00 0.00

29.29 0.00 0.00

34.15 0.00 0.00

39.81 0.02 0.02

46.42 0.14 0.12

54.12 0.38 0.25

63.10 0.77 0.38

73.56 1.26 0.50

85.77 1.81 0.55

100.00 2.33 0.52

116.59 2.77 0.44

135.94 3.14 0.37

158.49 3.60 0.46

184.79 4.47 0.87

215.44 6.26 1.79

251.19 9.61 3.36

292.87 15.18 5.57

341.46 23.39 8.21

398.11 34.27 10.88

464.16 47.30 13.03

541.17 61.42 14.12

630.96 75.18 13.76

735.64 87.03 11.85

857.70 95.61 8.58

1000.00 100.00 4.39
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Figure 6.9 Particle Size Overlay (PSO) evaluated at axial sections along the 3.5mm exit 

orifice nozzle centre line for injection pressure value of 3.5bars 

 

Figure 6.8 and Figure 6.9 present results of the drop size distributions and size overlay 

at various axial distances of 60, 80, 100 and 120 mm from the nozzle exit with the 

injection pressure value of 3.5 bars. It is observed that an increase in droplet formation 

through the spray downstream distances causes an increase in the drag force on 

droplets, so the distribution curves of droplets’ size become more flat and its maximum 

value decreases and moves to bigger drop sizes. Hence, droplet size distributions 

become more homogenous. This could be explained by two primary processes. The 

first is the coalescence of the drops due to collisions. Small drops can merge to create 

larger droplets. The second reason is the ‘selection by drag’ process [172, 181]. Large 

droplets suffer less braking than the smaller drops and hence there is a tendency to have 

more of them downstream. There is also a possibility of smaller droplets positioned far 

away from the nozzle evaporating thus shifting the measured spectrum towards the 

larger droplets [182]. In Figure 6.10 and Figure 6.11, it is seen that monomodal 

distributions have been observed and a lot of large-sized drops are present at the outer 

edges of the sprays. This happens because further downstream of the spray, larger 

drops experience less drag as the spray is more dilute and thus travels further outward. 

A study of hollow cone nozzles with water as the spraying fluid also observed this 

trend as the drop distribution was described as having  two peaks  with one higher than 

other [1, 172]. 
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20 mm       25 mm 

Figure 6.10 Drop size distributions for injection pressure of 3.5 bar at various radial 

positions and 80 mm axial distance from exit orifice 

 

10 mm       15 mm 

 
20 mm       25 mm 

Figure 6.11 Drop size distributions for injection pressure of 3.5 bar at various radial 

positions and 120 mm axial distance from exit orifice 

 

Particle Size Distribution 28 Oct 2016 - 12:09:22.0996
 Example results666.smea\Import\V6_R30 1 1.psd
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D = 541.94 N = 2.49
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Size (µm) % V < % V Size (µm) % V < % V Size (µm) % V < % V
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10.00 0.00 0.00

11.66 0.00 0.00

13.59 0.00 0.00

15.85 0.00 0.00

18.48 0.00 0.00

21.54 0.00 0.00

25.12 0.00 0.00

29.29 0.00 0.00

34.15 0.00 0.00

39.81 0.03 0.03

46.42 0.16 0.13

54.12 0.42 0.26

63.10 0.81 0.39

73.56 1.32 0.51

85.77 1.88 0.56

100.00 2.42 0.54

116.59 2.91 0.49

135.94 3.37 0.46
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184.79 5.06 1.09

215.44 7.16 2.10

251.19 10.91 3.75

292.87 16.90 5.99

341.46 25.48 8.58

398.11 36.56 11.08

464.16 49.55 12.99

541.17 63.35 13.80

630.96 76.59 13.24

735.64 87.83 11.25

857.70 95.90 8.06

1000.00 100.00 4.10

Particle Size Distribution 28 Oct 2016 - 12:23:18.0996
 Example results666.smea\Import\V8_R10 1 1.psd

 Sample : watersherry
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Rosin Rammler

D = 547.99 N = 2.54

0 - 100 %

Size (µm) % V < % V Size (µm) % V < % V Size (µm) % V < % V

0.117 0.00 0.00

0.136 0.00 0.00

0.158 0.00 0.00

0.185 0.00 0.00

0.215 0.00 0.00

0.251 0.00 0.00

0.293 0.00 0.00

0.341 0.00 0.00

0.398 0.00 0.00

0.464 0.00 0.00

0.541 0.00 0.00

0.631 0.00 0.00

0.736 0.00 0.00

0.858 0.00 0.00

1.00 0.00 0.00

1.17 0.00 0.00

1.36 0.00 0.00

1.58 0.00 0.00

1.85 0.00 0.00

2.15 0.00 0.00

2.51 0.00 0.00

2.93 0.00 0.00

3.41 0.00 0.00

3.98 0.00 0.00

4.64 0.00 0.00

5.41 0.00 0.00

6.31 0.00 0.00

7.36 0.00 0.00

8.58 0.00 0.00

10.00 0.00 0.00

11.66 0.00 0.00

13.59 0.00 0.00

15.85 0.00 0.00

18.48 0.00 0.00

21.54 0.00 0.00

25.12 0.00 0.00

29.29 0.00 0.00

34.15 0.02 0.02

39.81 0.10 0.08

46.42 0.26 0.16

54.12 0.50 0.24

63.10 0.81 0.31

73.56 1.16 0.34

85.77 1.49 0.33

100.00 1.76 0.28

116.59 2.00 0.24

135.94 2.31 0.31

158.49 2.92 0.61

184.79 4.20 1.28

215.44 6.66 2.46

251.19 10.86 4.20

292.87 17.26 6.41

341.46 26.11 8.85

398.11 37.26 11.15

464.16 50.12 12.86

541.17 63.70 13.58

630.96 76.72 13.02

735.64 87.85 11.13

857.70 95.88 8.04

1000.00 100.00 4.12

Particle Size Distribution 28 Oct 2016 - 11:44:01.0996
 Example results666.smea\Import\V8_R15a_Proper 1 1.psd
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0 - 100 %

Size (µm) % V < % V Size (µm) % V < % V Size (µm) % V < % V

0.117 0.00 0.00

0.136 0.00 0.00

0.158 0.00 0.00

0.185 0.00 0.00

0.215 0.00 0.00

0.251 0.00 0.00

0.293 0.00 0.00

0.341 0.00 0.00

0.398 0.00 0.00

0.464 0.00 0.00

0.541 0.00 0.00

0.631 0.00 0.00

0.736 0.00 0.00

0.858 0.00 0.00

1.00 0.00 0.00

1.17 0.00 0.00

1.36 0.00 0.00

1.58 0.00 0.00

1.85 0.00 0.00

2.15 0.00 0.00

2.51 0.00 0.00

2.93 0.00 0.00

3.41 0.00 0.00

3.98 0.00 0.00

4.64 0.00 0.00

5.41 0.00 0.00

6.31 0.00 0.00

7.36 0.00 0.00

8.58 0.00 0.00

10.00 0.00 0.00

11.66 0.00 0.00

13.59 0.00 0.00

15.85 0.00 0.00

18.48 0.00 0.00

21.54 0.00 0.00

25.12 0.00 0.00

29.29 0.00 0.00

34.15 0.00 0.00

39.81 0.03 0.03

46.42 0.12 0.09

54.12 0.30 0.17

63.10 0.55 0.26

73.56 0.88 0.33

85.77 1.25 0.37

100.00 1.63 0.38

116.59 2.02 0.39

135.94 2.47 0.45

158.49 3.14 0.67

184.79 4.31 1.17

215.44 6.41 2.10

251.19 9.98 3.57

292.87 15.56 5.58

341.46 23.56 8.00

398.11 34.07 10.52

464.16 46.75 12.67

541.17 60.67 13.92

630.96 74.47 13.81

735.64 86.56 12.09

857.70 95.42 8.87

1000.00 100.00 4.58

Particle Size Distribution 28 Oct 2016 - 12:06:33.0996
 Example results666.smea\Import\V6_R20 1 1.psd
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0 - 100 %

Size (µm) % V < % V Size (µm) % V < % V Size (µm) % V < % V

0.117 0.00 0.00

0.136 0.00 0.00

0.158 0.00 0.00

0.185 0.00 0.00

0.215 0.00 0.00

0.251 0.00 0.00

0.293 0.00 0.00

0.341 0.00 0.00

0.398 0.00 0.00

0.464 0.00 0.00

0.541 0.00 0.00

0.631 0.00 0.00

0.736 0.00 0.00

0.858 0.00 0.00

1.00 0.00 0.00

1.17 0.00 0.00

1.36 0.00 0.00

1.58 0.00 0.00

1.85 0.00 0.00

2.15 0.00 0.00

2.51 0.00 0.00

2.93 0.00 0.00

3.41 0.00 0.00

3.98 0.00 0.00

4.64 0.00 0.00

5.41 0.00 0.00

6.31 0.00 0.00

7.36 0.00 0.00

8.58 0.00 0.00

10.00 0.00 0.00

11.66 0.00 0.00

13.59 0.00 0.00

15.85 0.00 0.00

18.48 0.00 0.00

21.54 0.00 0.00

25.12 0.00 0.00

29.29 0.00 0.00

34.15 0.02 0.02

39.81 0.07 0.05

46.42 0.16 0.09

54.12 0.29 0.13

63.10 0.44 0.15

73.56 0.58 0.14

85.77 0.66 0.09

100.00 0.69 0.03

116.59 0.69 0.00

135.94 0.78 0.09

158.49 1.19 0.41

184.79 2.30 1.11

215.44 4.62 2.32

251.19 8.70 4.07

292.87 15.00 6.31

341.46 23.80 8.79

398.11 34.98 11.18

464.16 48.02 13.04

541.17 61.93 13.91

630.96 75.43 13.50

735.64 87.08 11.66

857.70 95.59 8.51

1000.00 100.00 4.41

Particle Size Distribution 28 Oct 2016 - 12:17:39.0996
 Example results777.smea\Import\V12_R10 1 1.psd
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Size (µm) % V < % V Size (µm) % V < % V Size (µm) % V < % V

0.117 0.00 0.00
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0.185 0.00 0.00

0.215 0.00 0.00

0.251 0.00 0.00
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4.64 0.00 0.00

5.41 0.00 0.00

6.31 0.00 0.00

7.36 0.00 0.00

8.58 0.00 0.00

10.00 0.00 0.00

11.66 0.00 0.00

13.59 0.00 0.00

15.85 0.00 0.00

18.48 0.00 0.00

21.54 0.00 0.00

25.12 0.00 0.00

29.29 0.00 0.00

34.15 0.00 0.00

39.81 0.06 0.05

46.42 0.18 0.12

54.12 0.39 0.21

63.10 0.70 0.31

73.56 1.10 0.40

85.77 1.57 0.47

100.00 2.08 0.52

116.59 2.66 0.58

135.94 3.39 0.73

158.49 4.44 1.05

184.79 6.12 1.67

215.44 8.82 2.70

251.19 13.03 4.21

292.87 19.19 6.16

341.46 27.56 8.37

398.11 38.12 10.56

464.16 50.43 12.31
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Particle Size Distribution 28 Oct 2016 - 12:13:02.0996
 Example results777.smea\Import\V10_R30 1 1.psd

 Sample : watersherry
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D = 544.53 N = 2.40

0 - 100 %
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6.6 Liquid film breakup 

The liquid film breakup as a function of the pressure differential can be visualized in 

the short exposure time pictures presented in Figure 6.12. It was observed in all the 

experiments carried out that a smooth liquid film around a hollow core was formed 

immediately after the atomizer nozzle exit orifice, ending in a ragged edge, and after 

that a well-defined hollow-cone spray was established. It can also be noticed from the 

pictures that the spray angle increases when the pressure differential increases, and the 

liquid film length is reduced. 

 

2bar      3bar 

 

4bar      5bar  

Figure 6.12 Liquid sheet break up images from the fast shutter-camera for different 

injection pressures 
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6.7  Validation of   Ʃ − 𝐘  atomisation model 

In order to establish the performance of the Ʃ − Y  Eulerian atomization model in terms 

of Sauter Mean Diameter (SMD) predictions, validation is carried out by comparing 

modelling results to Malvern Spraytec measurements which provided unique SMD data 

within near dense spray region of the nozzle. To enable the best comparisons of 

simulated SMD predictions against experiments to be achieved, different turbulence 

models were first evaluated in order to choose and achieve the best possible match with 

measurements for the spray droplet Sauter Mean Diameters (SMDs). The RANS 

turbulence models investigated in the prediction of SMD predictions were the Standard 

k- ε, RNG k- ε and Realizable k-epsilon turbulence models and this investigation also 

helps to draw a more accurate conclusion about turbulence model for the Ʃ − Y  

atomization model. The predicted Sauter Mean Diameter (SMD) of the liquid water at 

different axial distances along the nozzle and radial positions from the spray centreline 

and their corresponding data for the same locations and operating conditions from 

measurements were used for the validation as discussed later.  
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 Effect of variants of k-epsilon turbulence model on the Sauter 

mean diameter 

Figure 6.13 shows the graph of turbulent intensity decays along the axial position by 

comparing the standard k-epsilon and RNG k-epsilon turbulence models. It can be 

observed that the standard k-epsilon model predicted a higher decay in the average 

turbulent intensity as compared to RNG k-epsilon. Turbulent intensity is defined as the 

ratio of the root-mean-square turbulent velocity fluctuations to the mean flow velocity 

(𝑢́/U), and is expressed as a percentage. The turbulent intensity is also related to the 

turbulent kinetic in the flow as 𝑘 = 3(𝑈𝐼)2/2  where I is the turbulent intensity. The 

turbulent kinetic energy and the mean flow velocity can easily be computed from the 

flow. In comparing the two  𝑘 − 𝜀  turbulence models, the inlet turbulent intensity was 

kept constant. In theory, turbulence is affected by swirl in the mean flow. Since the 

RNG model accounts for this rotational motion appropriately by modifying the 

turbulent viscosity, larger decay could be counted for and therefore the turbulence in 

the flow gets uniformly distributed in the swirl chamber and the computational domain 

as compared to standard  𝑘 − 𝜀 model. In Figure 6.14, it can be seen that 10% of 

turbulent intensity is closer to the experimental data points and standard k-epsilon 

model utilize in this atomization is the best because it tends to produce the smallest 

SMD and the best match and configurations with the experimental results when 

compared to the RNG and Realizable K-epsilon turbulence models (Figure 6.15). It can 

also be observed that the turbulent intensity is higher in the outside spray than the 

center spread of the nozzle and this in conformity to the observation made by Yoon et 

al [183]. The reason is that the droplet which decreases momentum in the outside spray 

makes a great impact by the inflow of surrounding air. The turbulent intensity is getting 

smaller towards the downstream because the momentum of relative velocity is 

dramatically fallen and there is less actions of air current for droplet which is related 

with the highly small amount of air brought by its surroundings. However, there was no 

significant changes in the droplet velocity when the three turbulent models were 

compared as shown in Figure 6.16. 
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Figure 6.13 Turbulent intensity decays along the axial position by comparing the 

standard k-epsilon and RNG k-epsilon turbulence models 

 

Figure 6.14 Effect of turbulent intensity on the Sauter mean diameter (SMD) 
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Figure 6.15 Effect of turbulence models on the Sauter mean diameter (SMD) at 

y=60mm 

 

Figure 6.16 Effect of turbulence models on the mean liquid velocity, modelling 
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 Validation of Sauter Mean Diameter (SMD) at radial positions  

Figure 6.17 shows the comparison of the model with measurements for droplet Sauter 

Mean Diameter (SMD) at y=60, 80, 100 and 120 mm. The agreement between the 

model and experimental radial profiles at 60 mm downstream of the nozzle is good. 

The trend shows that the Sauter mean diameter SMD increases with increasing radial 

distances which is qualitatively correct but the rate of change is small with the mean 

diameter of the large droplets found on the periphery of the spray under predicted and 

the small mean drop size at the vicinity of the spray centreline perfectly predicted. At 

axial position of 80 mm from the exit of the nozzle, the agreement between the  Ʃ −

𝑌𝑙𝑖𝑞   atomisation model and experimental radial droplet mean diameter distributions is 

satisfactory with good prediction of the droplet size at the spray periphery but higher 

than the value predicted at position 60 mm axial distance from the nozzle exit. The rate 

of increase of droplet size with radial distance is correct and the size of the largest 

droplet at the spray periphery is well predicted. There is also a good agreement between 

the radial positions at 100 mm downstream of the nozzle for the model and the 

measurement with the droplet SMD having slight under-prediction of less than an 

average of 3%. The results at this axial position also shows that most of the predicted 

SMDs near the inner region of the spray are below the experimental values. In addition, 

the SMD increases at similar rates with radial distances for both results at this axial 

position. The radial profiles for the mean droplet sizes (SMDs) between the 

calculations and the experiments at the axial position 120 mm from the exit of the 

nozzle are closer with the SMD being small near the centreline of the spray and SMD 

reasonably predicted. The trend of increasing droplet size with radial distance is 

observed and agrees with the work of many researchers in predicting the mean drop 

sizes from a pressure swirl atomizer [7, 15]. The mean drop diameter of the 

experimental results of the largest droplet at the periphery of the spray is higher than its 

predicted values. However, the SMD at radial distance near the spray centreline is 

closely predicted in relation to the measurements. The more uniform and continuously 

increasing Sauter mean diameter with radial distance may be attributed to the farthest 

axial distance from which the drop sizes were measured and may also due to the 

coalescence of smaller droplets and this have been accounted for in the model. The 

small drop sizes observed around the spray symmetry axis may be attributed to 

collisions between the liquid droplets and by aerodynamic drag interactions with the 

entrained air as result of the hollow cone spray pattern emanating from the nozzle [7]. 
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The collisions result in unstable interactions between the drops and in turn lead to 

breaking down of droplets smaller than their original sizes. This is also supported by 

the observation made by Yoon et al [183] that the separation of small droplets near the 

centreline arises due to the competition between turbulent dispersion and entrainment 

of air by the spray and that droplets that are dispersed by turbulent eddies or 

fluctuations will move outwards from the inner region, but their outward motion will be 

opposed by the air entrainment. The air entrainment causes a radially inward velocity in 

conjunction with the spatial acceleration of the liquid jet. Small droplets will follow the 

mean gas motion which drives them to the spray centreline. Larger droplets are less 

affected by the air entrainment and will follow more ballistic trajectories subject to 

initial velocity vectors arising from the jet breakup process and turbulent dispersion. 

Further downstream the nozzle, the inward entrainment velocities are reduced to the 

point where smaller droplets are substantially dispersed from the centre line. Overall, 

the computational predictions of SMD for  Ʃ − 𝑌𝑙𝑖𝑞   atomisation model shows a very 

good agreement with most of the experimental measurements in the radial positions 

when standard k-ɛ turbulence was used. However, more divergence  was observed 

between the predictions and the experimental measurements when the RNG k-ɛ 

turbulence model and Realizable k-ɛ turbulence model were  used in the predictions as  

shown  in Figure 6.18 and Figure 6.19. 
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Figure 6.17  Validation of droplet Sauter Mean Diameter (SMD), model with 

experiment, standard k-ɛ turbulence model 
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Figure 6.18 Validation of droplet Sauter Mean Diameter (SMD), model with 

experiment, RNG k-ɛ turbulence model 
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Figure 6.19 Validation of droplet Sauter Mean Diameter (SMD), model with 

experiment, Realizable k-ɛ turbulence model 
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 Validation of Sauter Mean Diameter (SMD) at spray centre 

axis 

Figure 6.20 illustrates the validation of Sauter mean diameter (SMD) for the model 

with the experiment results on the spray centreline. It can be observed that the model 

has good agreement with the measurements with percentage error of less than an 

average of 5% between the model and the experiements at axial distances 60mm and 

120mm and better prediction at axial distances 80mm and 100mm. Figure 6.21 shows 

more clearly how sensitive SMD is to pressure differentials. This is because as pressure 

increases faster maximum growth rate of the liquid film occurs and will lead to the 

linear stability of the surface wave of the thread film getting worse. So the interaction 

between the liquid phase and the gas phase becomes stronger and the film can break up 

more easily. This will make the droplet SMD gets smaller. 

 

Figure 6.20 Validation of Sauter Mean Diameter (SMD) at spray centre axis, model and 

experiment 
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Figure 6.21 Influence of pressure on Sauter Mean Diameter, model and experiment 
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CHAPTER 7 PARAMETRIC STUDY AND CFD-BASED DESIGN 

OPTIMIZATION 

7.1 Introduction 

These parametric studies investigate the dependence of the Sauter Mean Diameter 

(SMD) under various operating conditions, fluid properties and geometrical 

dimensions. The parameters varied are pressure, liquid and gas velocities, liquid and 

gas densities, liquid viscosity, surface tension and the geometrical orifice size of the 

nozzle and their effects on the SMD at axial positions along the spray and radial 

distances from the spray centre line of the pressure swirl atomizer. 

The objective of the CFD-based design optimization is to obtain the nozzle exit orifice 

parameters, operating conditions and fluid properties that perform or give the most 

minimum droplet (SMD) at axial distances along the spray centerline. The design 

variables (DVs) used are liquid viscosity (DV1) 0.00031 to 0.2 Pa.s, surface tension 

(DV2) 0.02 to 0.075 mN/m, nozzle exit orifice diameter (DV3) 0.0015 to 0.0035 m and 

liquid velocity (DV4) from 1 to 6 m/s. The design cases were generated using a 

statistical Design of Experiments (DoE) technique known as Latin Hypercube Designs 

(LHD) using Matlab.  

In order to establish relationship between  design of experiments (DoE) variables such 

as liquid viscosity 𝜇𝑙, surface tension 𝜎, liquid velocity 𝑣, and nozzle exit diameter 𝐷𝑜 

and the resulting droplet SMD, and obtain a usable SMD correlation for the model, 

surface fitting of the data was carried out. The result was compared to two existing 

SMD correlations such as Jasuja [63] and Radcliffe [62] based on four design variables 

considered in their correlations. 

To further analyse the new SMD correlation for the model, 3D surface plots of SMD 

against various combinations of liquid properties and operating conditions with hold 

values for the existing and the new SMD correlations were shown using meshgrid 

surface plot code in Matlab. The kinematic viscosity ranges from 1 mm2/s to 1000 

mm2/s and the continuous variables for surface tension is between 20 mNm-1 and 75 

mNm-1 to cover wide range of liquids properties. The pressure values are generated 

between 0.5 and 10 bars based on the operating conditions of pressure swirl nozzles 

indicated by PNR Ltd in the user manual. The minimum and maximum values for mass 

flow rate are 0.0017 kg/s and 0.1667 kg/s respectively and were taken from the user 

manual for nozzles by PNR Ltd at constant pressure of 3 bars 
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7.2 Dependency of Sauter mean diameter on radial distances 

The Sauter Mean Diameter (SMD) of the liquid mass fraction predicted at the radial 

locations in the spray (i.e. between, x = 0 and 32 mm) is presented in Figure 7.1 and the 

corresponding interfacial surface density at the same positions is shown in Figure 7.2. 

The axial distance was taken at 60mm, 80mm, 100mm and 120mm below the nozzle 

exit. These were used to compute the SMD shown in Figure 7.3. It can be seen from the 

results that the SMD is smaller in the centre spread of the spray and increases with 

increasing radial distances which is consistent with the observation made by Milan[7, 

42]. However, there is a critical value of SMD where the rate of increase changes. The 

relatively larger mean drop sizes were observed at increasing radial distances because 

larger droplets tend to travel farther due to their greater momentum. A change of 

droplet sizes in the radial direction as seen in all locations were due to different 

dynamic behaviour of small and large liquid droplet sizes. Large Sauter mean diameters 

(SMD) are dispersed by the spray initial cone angle and subsequent interactions with 

smaller droplets by coalescence and also with turbulent eddies in the entrained air. The 

smaller SMD’s are generally increasingly swept toward the spray centre line by 

aerodynamic drag interactions with the entrained air[7]. The result clearly demonstrates 

that the farther the distance from the exit of the nozzle the larger the SMD on the spray 

centre line although the relative span is small. 
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Figure 7.1 Radial profiles of the mean liquid mass fraction, predicted 

 

Figure 7.2 Radial profiles of the mean liquid surface density at various axial positions 
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Figure 7.3 Predicted Sauter mean diameter (SMD) at various axial positions 

 

7.3 Dependency of Sauter mean diameter on symmetric axis and pressure 

The influence of pressure on the SMD at various axial positions was presented in 
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pressure differentials on the Sauter mean diameter at y = 50, 60, 70 and 80mm has also 

been presented in Figure 7.7. This result shows that the pressure differential increases 

with decreasing mean droplet size SMD. However, the SMD decreases sharply at the 

critical pressure value of 0.35bars. 

 

Figure 7.4 Dependency of Sauter mean diameter on pressure at spray symmetric axis  

 

Figure 7.5 Axial profile of the axial mean liquid velocity for two injection pressure 

values 

0.00 0.02 0.04 0.06 0.08 0.10 0.12

330

340

350

360

370

380

S
a
u
te

r 
m

e
a
n
 d

ia
m

e
te

r 
(

m
)

Spray centre axis (m)

 4bars

 3bars

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0

1

2

3

4

5

6

7

8

A
x
ia

l 
m

e
a

n
 l
iq

u
id

 v
e

lo
c
it
y
 (

m
/s

)

Axial Position(m)

 3bars

 4bars



145 
 

 

Figure 7.6 Dependency of Sauter mean diameter on radial positions at y= 60 and 80 

mm for two injection pressures 

 

Figure 7.7 Influence of pressure on Sauter mean diameter SMD at y=50, 60, 70 and 80 

mm 
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7.4 Dependency of Sauter mean diameter on liquid velocity 

Figure 7.8 shows the effect of liquid velocity on the Sauter mean diameter on the spray 

centre axis. The liquid velocity values used are 1, 2, 4 and 6 m/s and are evaluated on 

the downward distance from the nozzle. The results show that the increase in liquid 

velocity leads to the increase in the droplet Sauter mean diameter (SMD). This is 

because when liquid velocity increases the total free surface energy increases making 

droplet coalescence into bigger droplet. 

 

Figure 7.8 Dependency of Sauter mean diameter on liquid velocity at 𝑽𝒈 = 1.5 m/s 
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7.5 Dependency of sauter mean diameter on the gas velocity 

Gas velocity was varied from 1 m/s to 5m/s with an increment of 1m/s as shown in 

Figure 7.9. The SMD was calculated on the spray centre axis with the axial distance 

interval of 20 mm to 120mm away from the nozzle exit. Plotting the predicted SMD 

values against the variations of axial positions for the various velocities show that the 

droplet SMD decreases with increasing gas velocities. This is because when gas 

velocity increases the total turbulent kinetic energy increases making droplet breakup 

into smaller droplets. 

 

Figure 7.9 Dependency of Sauter mean diameter on the gas velocity at 𝑽𝒍𝒊𝒒 = 5m/s 
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results shows that for a particular position on the spray axis the SMD is lower for 

smaller liquid density value and increases with higher liquid density values as shown in 

Figure 7.11. Additionally, at y=50mm and 𝜌𝑙𝑖𝑞= 1000 kg/m3 the SMD is 47.08µm and 

for the same liquid density  and  at y=60mm the SMD is 184.90µm higher than the 

previous position. This clearly can be observed for the remaining cases and thus for the 

same liquid density value the SMD increases with increasing downstream distance 

below the tip of the nozzle exit on the symmetry axis. 

 

Figure 7.10 Dependency of Sauter mean diameter on the liquid density 
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density of the liquid and air superimposed with streamlines were plotted for the near 

and far fields for the liquid density at 1000, 600 and 300kg/m3 shown in Figure 7.12.  

 

Figure 7.11 Radial profile of Sauter mean diameter(SMD) of liquid density at 200, 600 

and 1000 kg/m3 
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Figure 7.12 Contour plots of liquid densities of (a)1000 (b)600 (c) 300 kg/m3 super-

imposed with streamlines 
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7.7 Dependency of Sauter mean diameter on gas density 

One of the important air properties influencing atomization is its density and as such 

the effect of the gas density on the SMD for the model was analysed as shown in Fig 

Figure 7.13. The gas density was varied from 0.6 kg/m3 to the original value of 1.2 

kg/m3 and then to the highest value of 10 kg/m3 in order to analyse the SMDs before 

and after the value of 1.2 kg/m3. The air density values between these limits were 2, 4, 

6 and 8 kg/m3. The analysis was done at the axial positions on the spray centre at 50, 

60, 70, 80, 90 and 100 mm downstream the nozzle.  As can be seen from the figure, the 

dependency of SMD on the gas density increases with the droplet Sauter Mean 

Diameter. This is also in line with the observation made by Beheshti [40] and  Lefebvre 

[1]. It can also be deduced from the graph that the SMD values increase with increasing 

axial distance on the spray symmetry axis and this is also in conformity to the 

observation made by Beheshti[40] in assessing this same atomization model. The 

variation of the gas density also has effect on the liquid core length as shown in Figure 

7.14 and can be observed that the liquid core lengths decrease with increasing gas 

density. 

 

Figure 7.13 Dependency of Sauter mean diameter on gas density at different axial 

positions 
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Figure 7.14 Influence of gas densities of (a) 1.2 (b) 2 kg/m3 on the liquid core length 
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7.8  Dependency of Sauter mean diameter on the liquid viscosity 

Figure 7.15 shows the variation of Sauter mean diameter (SMD) in relation to liquid 

viscosity on the axial positions. Three liquid viscosities of 0.001 Pa.s, 0.005 Pa.s and 

0.009 Pa.s were selected and analysed beyond 50mm downstream of the nozzle. The 

results confirm the adverse effect of an increase in liquid viscosity on atomization 

quality in particular on the SMD and thus increase it. This also agrees with the 

observation made by Lefebvre[1] that an increase in the liquid viscosity will usually 

increase the Sauter Mean Diameter of the drops. The influence of liquid viscosities of 

water at various temperatures is shown more directly on Figure 7.16 which illustrates 

the dependency of SMD on the liquid viscosity and at the radial positions for  pressure 

swirl nozzle. It can clearly be seen that at the temperature of 90 oC for water its 

viscosity is smaller than its corresponding viscosity at the temperature of 20 oC. This  

invariably affects the SMD and thus decreases the SMD at high temperatures for liquid 

water. When various percentages of glycerol were added to liquid water the viscosity 

also changes and shown in Figure 7.17. When this is plotted against the flow energy, 

the results show that viscosity with a higher percentage of glycerol increase the SMD at 

most flow energies. This result is also in agreement with the observation made by 

Eggers and Villermaux who, however, indicated that the increase in the SMD is more 

significant by adding viscoelasticity. In addition, all fluids produce finer droplets with 

higher flow energy. This is due to the high relative ambient gas speed which produces 

finer droplets [184].  
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Figure 7.15 Radial profile of Sauter mean diameter at various liquid viscosities 

 

Figure 7.16 Variation of Sauter mean diameter (SMD) in relation to liquid viscosity on 

spray centre line 
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Figure 7.17 Drop size (SMD) for the fluids listed in the legend at flow energy 

 

7.9 Dependency of Sauter mean diameter (SMD) on the surface tension 

The effect of two surface tension forces on the Sauter mean diameter (SMD) is shown 

in Figure 7.18. The results show that higher surface tension values lead to larger value 

of the SMD. The surface tension coefficient shows up in the destruction term of the 

transport equation for the mean interfacial surface density. Therefore, the reduction of 

the surface tension force will cause destruction reduction in the mean liquid and gas 

interface density and as a result reduce the Sauter mean diameter (SMD) of the 

droplets. This result is also in agreement with the findings obtained by Belhadef et al 

[14] in assessing this model that the Sauter mean diameter is lower with a weaker 

surface tension. And this also agrees with the conclusions drawn by Lefebvre [7] that 

the higher SMD values exhibited by water compared to most liquids are due entirely to 

the higher surface tension of water. 
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Figure 7.18 Radial profiles of Sauter mean diameter (SMD) for two surface tension 

values at y = 60 mm and y = 80 mm 
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will be and SMD for pressure-swirl atomizers will tend to scale with the initial sheet 

thickness and therefore an increase in the discharge orifice increases the mean drop size 

(SMD) in the spray and reduces the spray angle. 

 

Figure 7.19 Axial variation of SMD for different exit orifice diameters 
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7.11 Sauter mean diameter (SMD) variation with injection velocity and density 

ratio 

In Figure 7.20 and Figure 7.21 larger droplet velocities are seen in the centre spread of 

the spray than the concentration of droplets in the outer radial locations and this is 

generally due to the fact the larger size droplets are less affected by the air flow and 

tend to follow a more independent path, whereas smaller size droplets tend to follow 

the air flow field. The mean velocity profiles reveal the effect of air entrainment into 

the spray core and the resulting transport of small droplets. This entrainment causes the 

high droplet velocities on the spray centerline. Figure 7.22 presents the distribution of 

SMD for the injection velocity and density ratio. It is seen that the SMD decreases 

rapidly with increasing injection velocity. This behaviour is exhibited by all the density 

ratios. The rate at which the SMD drops is very small initially, but the values of 6 m/s 

tend to drop sharply for very high injection velocities. If the injection velocity is 

increased to even higher values, the flow will become highly turbulent and contain 

recirculation zones that will alter the droplet behaviour drastically. Based on this, to 

utilize this model for very high injection velocities proper physics must be accounted 

for. Another observation that is evident in Figure 7.22 is that as the gas density is 

increased (low ρliq/ρg), the SMD is drastically reduced. This may be attributed to the 

fact that with higher gas densities, the interaction between the droplets and the air is 

much higher, therefore the air does more work on the mean drop sizes and breaks the 

droplets apart. 
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Figure 7.20 Radial profiles of mean liquid velocity at y = 60, 80, 100 and 120 mm 

 

Figure 7.21 Axial profile of the axial mean liquid velocity for two injection pressure 

values 
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Figure 7.22 Sauter mean diameter (SMD) variation with injection velocity and density 

ratio 

7.12 Effect of liquid density ratios on turbulent quantities 
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deduced clearly from the results that the increase in liquid density reveals changes in 

individual turbulent parameters and the changes are disproportionate. 

 

Figure 7.23 The effect of variation of liquid density on the turbulent intensity on the 

spray centreline 

 

Figure 7.24 The effect of variation of liquid density on integral length scale 
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Figure 7.25 The effect of variation of liquid density on turbulent kinetic energy on 

spray centreline 

 

Figure 7.26 The effect of variation of liquid density on turbulent viscosity 
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Figure 7.27 The effect of variation of liquid density on turbulent dissipation rate 
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SMD. This is also in conformity with the observation made by Maly [42] which shows 

a dependence of SMD on different liquids as shown on Table 7.2. 

Table 7.1 Influence of liquid properties on SMD 

 Liquid  Formula Density 

kg/m3 

Surface 

Tension N/m 

Dynamic 

Viscosity µ·106 Pa·s 

SMD 

[μm] 

 Diesel C12H26 840 0.028 2400 400.0 

Kerosene C12H24 800 0.026 1600 363.3 

 Gasoline C8H18 750 0.025 380 352.6 

 

Table 7.2 Influence of liquid properties on SMD [42] 

Liquid  SMD [μm]  

Arctic diesel 44.2 

Kerosene 46.3 

Winter diesel 46.9 

Kerosene + oil 50.7 

Biodiesel 50.7 

Palm oil 52.6 

Aged winter 

diesel 

53.1 

 



165 
 

 

Figure 7.28 Comparison of droplet velocity for diesel, gasoline and kerosene liquid 

fuel, modelling at y=90mm 

 

Figure 7.29 Comparison of Sauter mean diameter (SMD) of diesel, gasoline and 

kerosene, modelling at y=90mm 
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7.14 CFD based  design optimisation 

The objective of this study is to obtain the optimal nozzle exit orifice parameters, 

operating conditions and fluid properties that perform or give the most  minimum 

droplet (SMD) at axial distances along the spray centerline. The design variables (DVs) 

used are liquid viscosity (DV1) 0.00031 to 0.2 Pa.s, surface tension (DV2) 0.02 to 0.075 

mN/m, nozzle exit orifice diameter (DV3) 0.0015 to 0.0035 m and liquid velocity 

(DV4) from 1 to 6 m/s as shown in Table 7.3. The design cases were generated using a 

statistical Design of Experiments (DoE) technique known as Latin Hypercube Designs 

(LHD) in Matlab. This resulted in eighty-seven (87) design cases for CFD simulations 

shown in Table 8.1 in Appendix III. Felipe et al [133] indicate that for four (4) 

variables for medium designs using LHD a minimum of seventy (70) cases are 

required. A commercial Computational Fluid Dynamics (CFD) software STAR-CD 

code was used to simulate the two-phase flow for the eighty-seven (87) design cases for 

seventy-three (73) different nozzle exit diameters. The standard k-ε turbulence model 

was used to capture the turbulent behavior in the flow. The results were obtained for 

the average density, liquid mass fraction and interfacial surface density from the 

simulations, the   Ʃ − Yliq  atomisation model was used to evaluate the Sauter mean 

diameter (SMD) at the axial  positions of the spray at 20, 40, 60, 80, 100 and 120 mm. 

Combinatorial optimization was performed in order to identify and obtain the minimum 

SMD at these locations. 

Table 7.3 Definition of design of experiment (DoE) variables for optimization 

Design 

parameters 

Description Symbol Range of values 

Input variables Liquid viscosity DV1 0.31 to 200 mPa.s 

surface tension DV2 20  to 75 mN/m 

Nozzle orifice diameter DV3 1.5 to 3.5 mm 

Liquid velocity DV4 1 to 6 m/s 

Output variables Average density distribution 

at the axial positions 
𝜌̅ > 0 

Liquid mass fraction 

distribution at the axial 

positions 

Yliq > 0 

Surface density Ʃ > 0 

Objectives Minimize the  Sauter Mean 

diameter (SMD)  at the axial 

positions 

d32 - 
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Figure 7.30 Combinations and distributions of design parameters for optimization 
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In order to map and show uniform distributions between the design variables as shown 

in Figure 7.30 the modified Latin hypercube Matlab code was used. This code can be 

found in Appendix III. The original code was created to generate random values 

between 0 and 1 but with the modified code the extreme limits can be varied and give 

options to specify user-defined values.  In running this code, a total of 87 design cases 

were generated including the corner or factorial points for the correct combination of 

parameters such as liquid viscosity, surface tension, nozzle orifice diameter and liquid 

velocity as shown in Table 8.1 in Appendix III. It can be observed that the design 

points are uniformly distributed among the design variables and can accommodate and 

suffice for a wide range of fluid properties for liquids such as water, diesel, gasoline 

and kerosene fuels. 

In performing the combinatorial optimization, eighty-seven (87) simulations were run 

in Star-CD CFD code using the standard k-ɛ turbulence model and their results for 

average density, mass fraction of liquid and interfacial surface density generated 

analysed. These were used to compute for the droplet Sauter Mean Diameter (SMD) at 

the axial positions on the spray centre line. With the 4-factor design of experiment 

(DoE) resulting in the simulations of eighty seven (87) cases, the results show the cases 

with the most minimum droplet Sauter mean diameter (SMD) at the various axial 

locations along the nozzle on the spray centreline for the combinations of liquid 

viscosity, surface tension, nozzle exit diameter and liquid velocity as shown in Table 

7.4. The results show that case 17 generated the most minimum SMD at axial position 

20 mm and 40 mm from the nozzle exit. Case 1 was the most minimum SMD at 

locations 60 mm, 80 mm and 100 mm from the nozzle exit and case 24 gives the best 

minimum from the nozzle exit at axial distance 120 mm. Figure 7.31 presents the 

results of the best minimum Sauter Mean diameters (SMDs) along the spray centre line 

for cases 1, 17 and 24 respectively. 
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Table 7.4 The best minimum Sauter Mean diameters (SMDs) on the spray centre line for cases 1, 17 and 24 

Case  DV1 

Viscosity 

DV2 

Surface 

tension 

DV3 

Nozzle 

exit 

diameter 

DV4 

Liquid 

velocity 

Sauter Mean Diameter, SMD (µm) 

Axial positions (mm) 

20 40 60 80 100 120 

1 0.00031 20 1.50 1.0 22.41 

 

23.15 

 

23.53 24.09 

 

29.32 

 

33.34 

 

17 0.00031 35.71 2.7 1.07 19.10 20.58 24.56 26.62 31.79 35.36 

24 0.02028 47.71 1.64 1.14 23.72 24.07 25.49 25.90 29.89 

 

32.79 
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Figure 7.31 SMDs on the spray centreline for case 1, case 17 and case 24 
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 Optimization and evaluation of SMD for DoE variables 

The optimization of droplet Sauter Mean Diameter of a spray nozzle under different 

spray conditions was investigated numerically using  Ʃ − Yliq atomization model. The 

optimal SMD was influenced greatly by the operating conditions, nozzle exit diameter 

and fluid properties as shown in Figure 7.31. In order to identify and obtain the most 

minimum SMDs, Figure 7.32 to Figure 7.35 present the bar charts for all the 87 cases 

including the corner or factorial points. The black, red, blue and pink depict the first, 

second, third and fourth cases respectively on a particular bar chart. The vertical axis 

represents the axial positions on the spray centreline and droplet Sauter Mean Diameter 

(SMDs) evaluated at that locations shown on the horizontal axis. These charts were 

optimized to generate the best three cases shown in Figure 7.31. The resultant graph in 

Figure 7.31 shows that the SMD increases with increasing axial distance on the spray 

centre line for all the best three cases. The curve up to 20 mm is considered the conical 

liquid sheet for which no meaningful SMD can be predicted or evaluated. This 

indication is also consistent with the experimental  measurements observed by many 

researchers on pressure swirl nozzle [1, 7]. Beyond this point, atomization process 

starts which may either be caused by the disintegration of the liquid sheet by 

aerodynamic forces or turbulence forces within the liquid itself. This gives rise to the 

formation of droplets beyond this point and subsequent smaller droplets collisions 

resulting in coalescence downstream the spray. Coalescence results in one droplet of a 

larger size than that of the pre-collision droplets. Since these phenomena appear at low 

relative velocity, it is expected that their effect is significant in low-velocity regions of 

the spray where this causes an increase in droplet size. Another possible outcome of 

droplet collisions which may result in coalescence is when the relative velocity of the 

droplets is higher and the collisional kinetic energy is sufficient to expel the intervening 

layer of gas. If the collisional energy exceeds the value for permanent coalescence, then 

temporary coalescence occurs. Temporary coalescence may result in either disruption 

or fragmentation. In disruption, the collision product separates into the same number of 

droplets which existed prior to the collision. In fragmentation, the coalesced droplet 

breaks up into numerous satellite droplets [186]. Coalescence followed by disruption 

does not have any significant influence on droplet size. Even if some mass transfer 

occurs, the droplet diameters are not changed in any observable way. This model takes 

coalescence into account. 
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One other observation with the spray combination inputs with better performance in 

these limits by exhibiting most minimum Sauter Mean diameter is that the low values 

of operating conditions, nozzle exit diameters and fluid properties play significant 

effect in the remarkable improvement in the size of the droplet SMD at these positions. 

But more dominant is the liquid viscosity and the operating conditions. The significant 

reduction in size makes this atomization model more suited and applicable to a wide 

range of spray application areas especially in the internal combustion engines where 

small SMDs are desired and agricultural spraying where smallest droplets are essential 

to good plant cover. 
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Figure 7.32 SMDs on the spray centre axis for case 1 to case 24 
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Figure 7.33 SMDs on the spray centre axis for case 25 to case 48 
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Figure 7.34 SMDs on the spray centre axis for case 49 to case 72 
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Figure 7.35 SMDs on the spray centre axis for case 73 to case 87 
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7.15 SMD correlation based on 4-factor DoE 

In the  Design of Experiments (DoE), the four (4) design variables are liquid viscosity 

𝜇𝑙, surface tension 𝜎, liquid velocity 𝑣, and nozzle exit diameter 𝐷𝑜. In order to 

establish relationship between these inputs and the resulting droplet Sauter Mean 

Diameter (SMD) and obtain usable SMD correlation for the model, surface fitting of 

the data was carried out. The result was compared to two existing SMD correlations 

such as Jasuja [63] and Radcliffe [62]. The following relations are used to transform  

some of the DOEs to the standard variables of kinematic viscosity 𝜗, surface tension 𝜎, 

mass flow rate 𝑚𝑙̇ , and pressure differential ∆𝑃𝑙 in their correlations. The kinematic 

viscosity is obtained from 𝜗 =
𝜇𝑙

𝜌𝑙
  where 𝜇𝑙 is the dynamic viscosity and 𝜌𝑙 the density 

of the liquid. The pressure differential ∆𝑃𝑙 is derived from 𝑣 = √
2∆𝑃𝑙

𝜌𝑙
 where 𝑣 is the 

velocity. The mass flow rate 𝑚𝑙̇  is also found from these relations 

𝐹𝑁 =  
𝑚𝑙̇

√𝜌𝑙∆𝑃𝑙
 

where flow number, 𝐹𝑁, in terms of atomizer dimensions is defined by Maly [42] as 

𝐹𝑁 =  0.389𝐷0
1.25𝐴𝑖

0.5𝐷𝑐
−0.25 where 𝐷𝑜 is nozzle exit diameter from the DoE, the inlet 

area 𝐴𝑜 from the geometry of the nozzle and 𝐷𝑐, the diameter of the swirl chamber 

from the nozzle geometry. 

Therefore, SMD correlation based on 4-factor DoE is formulated as shown below 

𝑆𝑀𝐷 = 𝜆𝜗𝑎𝜎𝑏𝑚𝑙̇
𝑐∆𝑝𝑙

𝑑 

where 𝜆, a, b, c and d are experimental constants determined from fitting the data.  As 

indicated, the data for dependent variable SMD and independent variables 𝜗, 𝜎, 𝑚𝑙̇  and 

∆𝑃𝑙  were generated from the DoE points shown in Appendix III using the appropriate 

relations demonstrated above. Using Matlab Isqcurvefit code in the optimization tool 

box shown in Appendix IV gives 𝜆 = 2.025, 𝑎 = 0.122, 𝑏 = 0.078, 𝑐 = 0.06 and 𝑑 =

−0.42 with the normal of the residuals (resnorm) of the data representing the measure 

of  the goodness of fit as  9.7261 which is less than the residual norm at the bad ending 

point. Hence, the fit is extremely good considering the variations in the liquid 

properties and operating conditions.  
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 Therefore, the SMD correlation for model is 

𝑆𝑀𝐷 = 2.03𝜗0.12𝜎0.08𝑚𝑙̇
0.06∆𝑝𝑙

−0.42 

Comparing this correlation and the experimental constants to the two existing SMD 

correlations, Jasuja 𝑆𝑀𝐷 = 4.4𝜗0.16𝜎0.6𝑚l̇
0.22∆𝑝l

−0.43 and Radcliffe 𝑆𝑀𝐷 =

7.3𝜗0.2𝜎0.6𝑚l̇
0.25∆𝑝l

−0.4, show that the model under predicts all the constants but has 

high dependency on the viscosity and pressure differential. In the Radcliffe case, the 

pressure differential is the only variable that is over predicted in the new correlation. 

The slight disparities in the experimental constants predicted may be attributed to the 

range of values used for the kinematic viscosity and the difficulty in adequately 

capturing surface tension. Wang et al [7, 68] even assert that within the same limits of 

fluid properties and nozzle operating conditions is not possible to define one universal 

SMD correlation based on this formulation. To further analyse the new SMD 

correlation, surface plots for various combinations of predictor variables against the 

SMD with hold values were carried out. 

 

Surface Plot of SMD vs Kinematic viscosity and Surface tension 

Radcliffe  𝑆𝑀𝐷 = 7.3𝜗0.2𝜎0.6𝑚l̇
0.25∆𝑝l

−0.4 

 

 

 

 



179 
 

Jasuja  𝑆𝑀𝐷 = 4.4𝜗0.16𝜎0.6𝑚l̇
0.22∆𝑝l

−0.43 

 

Figure 7.36 Surface plot of SMD against liquid properties with constant operating 

conditions for two existing SMD correlations 

New  𝑆𝑀𝐷 = 2.03𝜗0.12𝜎0.08𝑚𝑙̇
0.06∆𝑝𝑙

−0.42 

 

Figure 7.37 Surface plot of SMD against liquid properties with constant operating 

conditions for the new SMD correlation 
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Figure 7.36 and Figure 7.37 show the 3D surface plot of SMD against liquid properties 

with constant operating conditions for existing and new SMD correlations. The 

kinematic viscosity ranges from 1 mm2/s to 1000 mm2/s and the continuous variables 

for surface tension is between 20 mNm-1 and 75 mNm-1 to cover wide range liquids 

properties. The two operating conditions, pressure and mass flow rate, are held at 

constant levels in order to estimate the approximate SMDs or response variables for the 

correlations and also observe the relationship between these two predictor variables and 

SMD based on the fitted model SMD correlation. In this case, the possible SMDs are 

known from these two fluid properties within these input continuous variables and 

constraints. With meshgrid surface plot code in Matlab, the two continuous variables of 

kinematic viscosity and surface tension as well as the fitted model SMD correlation 

were defined with built-in functions and the response surface generated.  

In order to analyse the response surface of the new fitted SMD correlation for the Ʃ −

𝑌𝑙𝑖𝑞 atomization model, the result was compared to two existing SMD correlations by 

Radcliffe and Jasuja based on the same four input variables. The results show the 

response surface or SMDs of the new model equation exhibit similar trend and shape 

with the existing correlations and the SMDs were smaller than those for the two 

existing correlations for the same conditions and constraints. This may be due to the 

smaller exponents or dependency of surface tension and the mass flow rate in the new 

SMD model which means the model could not adequately account for the surface 

tension. 

The response surface shown in Figure 7.37 is curved because the new SMD correlation 

contains quadratic terms that are significant. The highest SMD approximately 110µm 

of the surface is seen in the upper left corner of the plot and corresponds with the 

combination of highest values of 1000 mm2/s and 75 mNm-1 for kinematic viscosity 

and surface tension respectively. The lowest values of SMDs for the surface are 

observed in the lower left corner of the plot and this corresponds with low values of 

both kinematic viscosity and surface tension 1 mm2/s and 20 mNm-1 respectively. The 

third and fourth predictor variables, mass flow rate and pressure differential, are not 

displayed in the surface plot since they are hold values. These results were obtained for 

the hold values for mass flow rate of 0.0074 kg/s with its experimental-power constant 

and pressure at 0.93MPa. The significance of this result is that liquids with lower fluid 

properties will give small droplet SMDs with other conditions remaining unchanged for 

a particular pressure swirl nozzle. 
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Surface Plot of SMD vs Kinematic viscosity and Pressure 

Radcliffe  𝑆𝑀𝐷 = 7.3𝜗0.2𝜎0.6𝑚l̇
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Jasuja  𝑆𝑀𝐷 = 4.4𝜗0.16𝜎0.6𝑚l̇
0.22∆𝑝l

−0.43 

 

 

Figure 7.38 Surface plot of SMD against kinematic viscosity and pressure with constant 

mass flow rate and surface tension for two existing SMD correlations 
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𝑆𝑀𝐷 = 2.03𝜗0.12𝜎0.08𝑚𝑙̇
0.06∆𝑝𝑙

−0.42 

 

Figure 7.39 Surface plot of SMD against kinematic viscosity and pressure with constant 

mass flow rate and surface tension for the new SMD correlation 

 

Figure 7.38 and Figure 7.39 present the surface plot of SMD against kinematic 

viscosity and pressure with holding the parameters of mass flow rate and surface 

tension in SMD correlations constant. The continuous variables for pressure are 

generated between 0.5 and 10 bars based on the operating conditions of pressure swirl 

nozzles indicated by PNR Ltd in the user manual and the kinematic viscosity lies 

within 1 mm2/s and 1000 mm2/s. The average constant surface tension value is taken as 

47.5 mNm-1 and the hold value for the mass flow rate is 0.0074 kg/s. From the three 

plots similar profiles were observed and the response surface for these predictors for 

the new fitted model was less than those in the existing SMD correlations. The results 

also show the peak SMD for this combination and conditions is in the upper right 

corner of the plot and occurs at lower value of pressure at 0.5 bar and highest value of 

1000 mm2/s for the kinematic viscosity. With these results on these conditions, the 

local minimum SMDs are expected to emanate from pressure swirl nozzle with liquids 

with higher viscosity operating under lower pressure conditions. 
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Surface Plot of SMD vs Kinematic viscosity and Mass flow rate  

Radcliffe  𝑆𝑀𝐷 = 7.3𝜗0.2𝜎0.6𝑚l̇
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−0.43 

 

Figure 7.40 Surface plot of SMD against kinematic viscosity and  mass flow rate with 

constant operating condition and surface tension for two existing SMD correlations 
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𝑆𝑀𝐷 = 2.03𝜗0.12𝜎0.08𝑚𝑙̇
0.06∆𝑝𝑙

−0.42 

 

Figure 7.41 Surface plot of SMD against kinematic viscosity and  mass flow rate  with  

constant operating condition and surface tension for the new SMD correlation 

 

Figure 7.40 and Figure 7.41 demonstrate the surface plot of SMD against kinematic 

viscosity and mass flow rate with constant pressure operating condition and surface 

tension for the new and existing SMD correlations. The minimum and maximum values 

for mass rate flow are 0.0017 kg/s and 0.1667 kg/s respectively and were taken from 

the user manual for nozzles by PNR Ltd at constant  pressure of 3 bars. The hold value 

for the liquid property is assumed as 47.5 mNm-1 for surface tension.and the boundary 

for the design space for kinematic viscosity ranges from 1 mm2/s to 1000 mm2/s. 

The plot in Figure 7.41 shows how the response variable, the SMD, relates to two of 

the four predictors or components based on the new fitted model SMD correlation. As 

indicated, the surface plot can only show three variables at a time, while holding the 

other two components at a constant level. The SMD observed on the plots are only 

valid for these fixed levels of these input variables. The plots show the same general 

trends and profiles for the existing and new SMD correlations and maximum droplet 

sizes are expected from a nozzle of higher flow rate with denser liquids based on these 

input conditions. 
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Surface Plot of SMD vs Surface tension and Mass flow rate 

Radcliffe  𝑆𝑀𝐷 = 7.3𝜗0.2𝜎0.6𝑚l̇
0.25∆𝑝l

−0.4 

 

Jasuja  𝑆𝑀𝐷 = 4.4𝜗0.16𝜎0.6𝑚l̇
0.22∆𝑝l

−0.43 

 

Figure 7.42 Surface plot of SMD against surface tension and mass flow rate with 

constant operating condition and kinematic viscosity for two existing SMD correlations 
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𝑆𝑀𝐷 = 2.03𝜗0.12𝜎0.08𝑚𝑙̇
0.06∆𝑝𝑙

−0.42 

 

Figure 7.43 Surface plot of SMD against surface tension and mass flow rate with 

constant operating condition and kinematic viscosity for the new SMD correlation 

 

The 3D surface plots of SMD against surface tension and mass flow rate with constant 

pressure operating condition and kinematic viscosity for SMD correlations are shown 

in Figure 7.42 and Figure 7.43. The Figures show a smooth curve response surface 

which were generated from these continuous predictors:  0.0017 ≤ 𝑚̇ ≤ 0.1667 for 

mass flow rate, 20 ≤ 𝜎 ≤ 75 for surface tension, hold values of 3 bars and 200 mm2/s 

for pressure and viscosity respectively. The maximum value for the response surface is 

observed at the upper left corner of the plot and corresponds with highest combined 

input values for mass flow rate and surface tension. The lowest values of mass flow 

rate and surface tension based on the model constant parameters will result in 

producing smaller SMDs by pressure swirl nozzle. The resulting surface response for 

the new fitted model is lower than the SMD for the existing correlations as expected 

and consistent with the previous results and the general shape of the new model is 

similar to the existing ones. 
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Surface Plot of SMD vs Pressure and Surface tension 

Radcliffe  𝑆𝑀𝐷 = 7.3𝜗0.2𝜎0.6𝑚l̇
0.25∆𝑝l

−0.4 

 

Jasuja  𝑆𝑀𝐷 = 4.4𝜗0.16𝜎0.6𝑚l̇
0.22∆𝑝l

−0.43 

 

Figure 7.44 Surface plot of SMD against surface tension and pressure with constant 

mass flow rate and kinematic viscosity for two existing SMD correlations 
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𝑆𝑀𝐷 = 2.03𝜗0.12𝜎0.08𝑚𝑙̇
0.06∆𝑝𝑙

−0.42 

 

Figure 7.45 Surface plot of SMD against surface tension and pressure with constant 

mass flow rate and  kinematic viscosity for the new SMD correlation 

 

Figure 7.44 and Figure 7.45 illustrate surface plot of SMD against surface tension and 

pressure with constant mass flow rate and kinematic viscosity for the SMD 

correlations. The boundaries of the design space are 0.5 ≤ ∆𝑃 ≤ 10 bars and 20 ≤

𝜎 ≤ 75 mNm-1 for pressure and surface tension respectively and 3D surface plot hows 

how the response variable the droplet Saute Mean Diameter (SMD) relates to these two 

predictor variables. The results show that the peaks of the SMDs correspond with 

combinations of lower pressure operating condition and liquid with higher surface 

tension and verse versa for the local minimum for the SMDs. These optimum results 

were obtained for the fitted model equations with hold on values for average viscosity 

and flow rate as 200 mm2/s and 0.084 kg/s respectively. 
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Surface Plot of SMD vs Pressure and Mass flow rate 

Radcliffe  𝑆𝑀𝐷 = 7.3𝜗0.2𝜎0.6𝑚l̇
0.25∆𝑝l

−0.4 

 

Jasuja  𝑆𝑀𝐷 = 4.4𝜗0.16𝜎0.6𝑚l̇
0.22∆𝑝l

−0.43 

 

Figure 7.46 Surface plot of SMD against two operating conditions with constant liquid 

properties for two existing SMD correlations 
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𝑆𝑀𝐷 = 2.03𝜗0.12𝜎0.08𝑚𝑙̇
0.06∆𝑝𝑙

−0.42 

 

Figure 7.47 Surface plot of SMD against two operating conditions with constant liquid 

properties for the new SMD correlation 

 

The surface plots in Figure 7.46 and Figure 7.47 show the relationship between two 

operating conditions, pressure and mass flow rate, which are one of the most 

parameters used in selecting a nozzle and the output SMDs or the response surface for 

these SMD correlations. The liquids properties such as viscosity and surface tension are 

the hold values. These combinations are worth analysing because for a particular liquid 

these liquid properties are known. It can be observed from the plots that high pressure 

differentials and low mass flow rates result in lower droplet SMDs. However, higher 

SMDs are expected at higher mass flow rates and lower pressure differentials. The 

maximum on the plots for the three cases are 150µm, 130µm and 5.3µm respectively 

for the two existing and new correlations respectively. The peak on the new correlation 

corresponds with the highest SMD value and occurs at approximate mass flow rate of 

0.1667 kg/s and pressure of 3 bars. These results are possible with liquid properties 

assumed at 200 mm2/s and 47.5 mNm-1  for viscosity and surface tension respectively.  
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7.16 Summary 

The findings show that the SMD is smaller in the centre spread of the spray and 

increases with increasing radial distances. It was observed that the SMD decreases with 

increasing pressure but increases with axial distances. The results also show that the 

increase in liquid velocity leads to the increase in the droplet Sauter mean diameter 

(SMD). The variation in the gas velocities on the axial positions shows that the droplet 

SMD decreases with increasing gas velocities and for the same liquid density value the 

SMD increases with increasing downstream distance. The mean droplet sizes (SMD) 

are also found to increase with ambient air density. The influence of liquid viscosities 

on SMD makes SMD exhibits decreasing trend with decreasing liquid viscosity on the 

spray centreline and radial position. The results also show that higher surface tension 

values lead to the larger value of the SMD. The influence of nozzle discharge orifice 

1.5, 2.5 and 3.5 mm on the mean drop sizes (SMD) shows that the SMD also tends to 

increase noticeably with increasing atomizer exit diameter. It was deduced from the 

results that at low liquid density to gas density ratio ((low ρliq/ρg) the SMD is 

drastically reduced. When liquid fuels were analysed the findings show that kerosene 

and gasoline both with low viscosities have significantly smaller SMD while more 

viscous diesel oil has considerably larger SMD. 

When optimization was performed in order to identify the optimal nozzle exit design 

parameter, operating conditions and fluid properties that perform at or give the most 

minimum drop sizes (SMD) at the spray centre line, the results show that case 17 

generated the most minimum SMD at axial position 20 mm and 40 mm from the nozzle 

exit. Case 1 was the most minimum SMD at locations 60 mm, 80 mm and 100 mm 

from the nozzle exit and case 24 gives the best minimum from the nozzle exit at axial 

distance 120 mm. The findings reveal that low values of operating conditions, nozzle 

exit diameters and fluid properties play significant effect in the remarkable reduction in 

the size of the droplet SMDs at these positions. The findings also establish a new SMD 

correlation for the model which is found to be consistent with the existing correlations 

and has high dependencies on the liquid viscosity and pressure differential. The results 

also show that the response surfaces of the new correlation exhibit similar trend and 

shape with the existing correlations for the various combinations of liquid properties 

and operating conditions and thus the SMDs were smaller than those for the two 

existing correlations for the same conditions and constraints 
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CHAPTER 8 CONCLUSIONS AND DETAILED ASSESSMENT OF MODEL 

8.1 Introduction 

In this chapter, a summary of the major points is presented and then thoroughly 

discussed in more details. 

8.2 Summary of the major points 

In this work,  Ʃ − 𝑌𝑙𝑖𝑞   atomisation model has been validated and applied to sprays 

from pressure-swirl atomizer using the CFD commercial code STAR-CD. This entirely 

Eulerian model proposed by Vallet et al [23] has some unique features and capabilities. 

This model can characterise the atomization from the inside of the atomizer through to 

its primary break-up and secondary atomization by providing information on the mean 

velocities, fluid properties, turbulence properties droplet size d32, droplet number 

density, liquid mass fraction and the interphase surface density between the liquid and 

gas. These properties are achieved by using a single set of equations for the 

conservation of mass, momentum and turbulence model treating both phases as a single 

continuum with high density variation, large Weber and Reynolds numbers. Thus the 

model is quite easier than the Lagrangian spray model which requires the knowledge 

and the input of velocity profile, droplet size and distributions of the spray before it can 

be modelled for further atomization especially the secondary break-up to be analysed. 

This means that Lagrangian model is not good in predicting the atomization 

characteristics at the primary break-up regime. In addition, the two-fluid Eulerian-

Eulerian model where different sets of equations are used to describe the continuity, 

momentum and turbulence model both the dispersed and continuous phase is also 

difficult to model and computationally expensive. Therefore, the need for validation 

and assessment of the atomization capabilities of the  Ʃ − 𝑌𝑙𝑖𝑞    atomization model.  

The model principally makes use of transport equation for the development of surface 

tension density (Ʃ) to characterize the rate at which surface tension energy is created. A 

second transport equation tracking the transport of liquid mass fraction (𝑌𝑙𝑖𝑞) models 

the turbulent mixing of liquid. With knowledge of a local interfacial surface area and 

liquid mass fraction, the Sauter mean diameter SMD is then characterized. The 

predictive potential of the model has been evaluated by performing simulations in a 

designed pressure swirl atomizer which show results for turbulence, flow fields and 

droplet size (SMD) with reasonable order-of-magnitude. 
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In order to achieve the desired outcome for better understanding of the physics behind 

the model, the SIMPLE and PISO algorithms in the CFD code to achieve appropriate 

pressure-velocity coupling were analysed and the properties and scalars such as average 

density, local velocity and turbulence model were compared. The standard k-epsilon 

turbulence in the code was also utilised since it gives the best match with the 

experimental results.  

The validation of this model was performed by the experimental data obtained from the 

measurements carried out using the Malvern Spraytec for drop size measurement and 

characterization. A very good agreement was achieved between the model prediction 

and experimental measurements of the droplet sizes (SMD) at the near-field of the 

nozzle. The validations confirmed the model capabilities of predicting the droplet 

Sauter mean diameter (SMD) with the correct order of magnitudes. 

In addition, parametric studies were also carried out to explore and analyse some 

exponential dependency and the influence of   Sauter Mean diameter (SMD) on  liquid 

and gas densities, liquid and gas velocities. These were also found to be in reasonably 

good agreement with some of the empirical correlations for Sauter Mean Diameter 

(SMD) for pressure swirl atomizer along the spray centreline. In addition, different 

liquid viscosities, surface tension forces, and nozzle exit orifice sizes  were also 

simulated and analysed for the  Ʃ − 𝑌𝑙𝑖𝑞   atomisation model in order to observe their 

effects on the SMD. Typical ranges of values found in a wide range of spray 

applications or conditions were used. It was noted that these three parameters viscosity, 

surface tension and nozzle exit orifice have reduction effects on the SMD as their 

values decreased for the range of values considered. 

There was also analysis on variants of RANS-based turbulence models such as the 

standard, RNG, and realizable k-epsilon turbulence models and it was observed that the 

standard k-epsilon turbulence model has the best configuration or match with the 

experimental results. This also confirms the usage and adoption of this variant of k-

epsilon turbulence model in developing this atomization model. In the same analysis, 

10% of turbulent intensity was utilised after comparing it with the effect of 5% and 

20% intensities on the SMD at the axial positions along the spray. 

Liquid core lengths were also analysed to give the qualitative view of the break-up 

length in the primary atomization regime and it was observed that the core lengths 

decrease with increasing liquid density for pressure swirl atomizer. 
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To further assess the capabilities of this Ʃ − 𝑌𝑙𝑖𝑞    atomization model, optimization 

technique was performed on the model in the pressure swirl atomizer to achieve the 

objective of the combination of geometrical designed variables, fluid properties and 

operating conditions that produce or give the most minimum Sauter Mean diameter 

(SMD) at the axial positions on the spray centre line. These 4-factor Design of 

Experiments (DoE) points were mapped and uniformly distributed using the modified 

Latin hypercube designs (LHD) code resulting in eighty seven (87) design cases. It was 

realised after simulating that lower fluid properties and exit orifice diameter were the 

design variables that produced the most minimum and remarkable reduction in the 

SMD at the axial locations downstream the nozzle.  

In order to establish a usable and new SMD correlation for the model based on 4-factor 

Design of Experiments (DoE), Matlab Isqcurvefit code in the optimization tool box was 

used to fit the data with experimental constants approximately obtained with the normal 

of the residuals (resnorm) representing the measure of the goodness of fit. 

The SMD correlation for the model showed that for given fluid properties and nozzle 

operating conditions the SMD could easily be computed and known. This would  also 

serve as a reference or benchmark for researchers working to improve on this model 

and within these fluid properties, operating conditions and nozzle geometrical regimes 

considered. 
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8.3 Conclusions in detail and Assessment of Model 

In chapter 5,  Ʃ − 𝑌𝑙𝑖𝑞    atomization model was applied to sprays emanating from 

pressure swirl atomizer using finite volume method implemented in the Star-CD code 

to capture the features and atomization characteristics of the spray. It was shown that 

high-density variation between the liquid and the gas, which is one of the critical 

requirements of this model, was achieved and the contour plots of these variations on 

the vertical plane in the computational domain for the SIMPLE and PISO algorithms 

showed negligible difference between the two results. It  was also observed 

qualitatively that the contour plots of the velocity on the vertical plane in both cases 

showed that the velocity in the centre spread of the spray decreases with the 

downstream distance and varies appreciably from the centre to the outer radius of the 

spray. It was also shown that the standard k-epsilon turbulence model was adequate for 

this model though some recirculation zones are observed close to the walls in the swirl 

chamber and as such the turbulent kinetic energy resulted in very low turbulent kinetic 

energy observed in the centre spread of the spray. The interfacial surface density 

modelled across four sections in the spray qualitatively showed similar scalar scenes of 

the liquid mass fraction at the same axial locations and hollow cone sprays were clearly 

visible. It was observed on the spray axis that the mean liquid mass fraction decreases 

downstream the sprays. 

SMD on axial distances: Many features of atomization characteristics especially the 

SMD which is the main output of this model was analysed since its determination is an 

important input parameter for efficient combustion for internal combustion engines 

related applications as larger SMD will produce more pollutants (oxides of nitrogen, 

carbon monoxide) in the exhaust emissions. As such when the SMDs were predicted at 

the axial positions on the spray centre line, it was observed that SMDs in close 

proximity to the nozzle exit after the disintegration of the liquid sheet were smaller than 

the ones near the far field of the spray. Thus it was deduced that the SMDs increase 

with increasing axial distances on the spray symmetry line. This was attributed to the 

collisions of smaller droplets giving rise to droplet coalescing at the downstream of the 

spray which was accounted for in the model. It was also observed that the model 

predicted droplet size with the correct order of magnitudes. 

SMD on radial positions: In the case of prediction of SMD on the radial positions in 

the spray, it was observed that higher droplet SMDs were seen at the periphery of the 
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spray while the smaller ones were more dominant in the vicinity of the centre portion of 

the spray. It was concluded that SMDs vary with the radial positions of the sprays 

emanating from the pressure swirl atomizer. This was attributed to the aerodynamic 

force which tends to drag the smaller droplets towards the centre while the larger 

droplets resulting from the droplet coalescence which are less affected by this force 

remain at the outer periphery of the spray. 

In terms of experimental measurement in order to obtain unique data to validate the 

numerical results, the findings showed after measurements were taken beyond 50 mm 

from the tip of the nozzle that arithmetic mean diameter d10 showed the least drop size 

and lower than the Sauter mean diameter d32 while the De Broukere diameter, d43 

recorded the highest drop size values measured in the four axial distances consider in 

the spray centre line. It was also noted in the mean drop size characterization that the 

Sauter mean diameter d32 was far lower than the mass median diameter d50 and increase 

with the axial positions of the spray.  

When the experimental data was obtained for the SMDs in the radial positions it was 

also noted that the SMD from the spray centre line showed an increase in the drop sizes 

as the radial distance increases towards the periphery. This is because small droplets 

will follow the mean gas motion which drives them to the spray centreline. Larger 

droplets are less affected by the air entrainment. In terms of variation of injection 

pressure on the SMD at the axial positions, the SMD was found to have decreased with 

increase in pressure. This was due to the faster maximum growth rate of the liquid film 

as the pressure increases and which will lead to the linear stability of the surface wave 

of the thread film getting worse. This will eventually give rise to stronger interaction 

between the liquid phase and the gas phase and therefore make the film breaks up more 

easily. This will make the droplet SMD smaller. The same finding was observed for the 

increase in the liquid flow rate and was concluded that there was a linear relationship 

between the pressure and the flow rate of the nozzle and the two have the same effect 

on the SMD. With regard to the experimental observation of the effect of two different 

nozzle exit orifice diameters on the SMD at the spray centre locations, the findings 

showed that the nozzle with small orifice diameter exhibited smaller SMDs than the big 

nozzle and the liquid sheet lengths beyond which meaningful drops measurement could 

be obtained were different for the two nozzles with the length of the smaller one far 

below the big one.  
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In terms of drop size distributions at radial positions as measured and processed by 

Malvern Spraytech software, it was noted that the drop size distribution showed an 

increase in droplet formation through the spray downstream distances and become 

more uniform. The distribution curves of droplets’ size become more flat and its 

maximum value decreased and moved to bigger drop sizes.  

To enhance the understanding of the liquid sheet instability and liquid film breakup 

mechanisms against the pressure differential, visualisation was done using fast shutter 

camera and it was noted that a well-defined hollow-cone spray was captured and that 

the spray angle increased when the pressure differential increased and the liquid film 

length was reduced. 

K-epsilon turbulence models on SMD: It was observed that the standard k-epsilon 

turbulence model utilized in this model was the best model when compared to the RNG 

and Realizable K-epsilon turbulence models since it tends to produce the smallest SMD 

and the best match with the experimental results. However, when the turbulent intensity 

decay was observed along the axial position by comparing the standard k-epsilon and 

RNG k-epsilon turbulence models, the standard k-epsilon model predicted a higher 

decay in the average turbulent intensity as compared to RNG k-epsilon model. In 

addition, it was noted however that the model could not show much difference in the 

droplet velocity when the three k-epsilon turbulence models were compared. 

Validation of SMD: When the validation of Sauter Mean Diameter (SMD) at radial 

positions was performed at y=60 mm it was realised that a very good agreement was 

achieved but the rate of change was too small with the SMD of the large droplets found 

on the periphery of the spray under predicted and the small mean drop sizes at the 

vicinity of the spray centreline perfectly predicted. At axial position of 80 mm from the 

exit of the nozzle, the agreement between the model and experimental results was 

satisfactory with a good prediction of the droplet size at the spray periphery. There was 

also a good agreement between the model and the measurement at 100 mm downstream 

of the nozzle with the predicted SMD having an average of 3% under prediction at the 

radial position. In addition, it was observed that the radial profiles for the SMDs at the 

axial position 120 mm from the exit of the nozzle were closer between the calculations 

and the experiments with the SMD being smaller near the spray centre line which was 

attributed to the competition between turbulent dispersion and entrainment of air by the 

hollow cone spray.  
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It was also demonstrated and shown that the model also agreed with measurements 

when the validation of SMD was evaluated on the spray centreline of the nozzle. In all, 

it was concluded that the computational predictions of SMD for the Ʃ −

𝑌𝑙𝑖𝑞 atomization model showed good validation with the experimental measurements.  

When the parametric study was performed to investigate and confirm the dependency 

of SMD on radial distances, it was observed that the results of SMD was smaller in the 

centre spread of the spray and increased with increasing radial distances. This 

observation was consistent  at the axial distances  60mm, 80mm, 100mm and 120mm 

downstream the nozzle exit.  It was also noted with the same vertical heights and at x = 

0 that the farther the distance from the exit of the nozzle the larger the SMD on the 

spray centre line. 

When the dependency of SMD was observed on the vertical positions in the spray, 

since this is very critical in combustion applications especially in the internal 

combustion engines where space is limited and the atomizer needs to perform well at 

very short distances, it was observed that the SMD increased with axial distances but 

decreased with increasing pressure and flow rate. However, this higher pressure 

produced or increased the droplet velocity. 

Injection velocity on SMD: When the liquid velocity was increased from 1 m/s to a 

maximum of 6 m/s at a constant gas velocity, it was found to have a corresponding 

increment in the SMD evaluated in the spray centreline. However, the dependency of 

SMD on the gas velocity was observed to be decreasing with increasing gas velocities. 

This was because when gas velocity increases the total turbulent kinetic energy 

increases making droplet breakup into smaller droplet. 

Exponential dependency of SMD on fluid properties: The density of the liquid was 

varied from the range of 1000 to 50 kg/m3. The general profile of the results showed 

that for a particular position on the spray centreline the SMD was lower for smaller 

liquid density values and increased with higher liquid densities. It was also noted that 

the calculated exponent was found to have a reasonably close agreement with the 

empirical correlations for the pressure swirl atomizer at the spray centre line. For the 

effect of gas density on SMD, it was observed that the gas density increases with  the 

droplet  Sauter Mean Diameter (SMD) and was this consistent with the observation 

made by Lefebvre in analysing this parameter on centreline of sprays from pressure 

swirl atomizers. It was also found that for various liquid densities the liquid core 
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lengths was different and thus for higher liquid density the length was longer and vice 

versa.  

Dependency of Sauter mean diameter (SMD) on the liquid viscosity. The results 

confirmed the adverse effect of an increase in liquid viscosity on atomization quality in 

particular on the SMD and thus decrease with decreasing SMD. When the influence of 

liquid viscosities of water at various temperatures were observed, it was clearly seen 

that at the temperature of 90oC for water, its viscosity was smaller than its 

corresponding viscosity at the temperature of 20 oC. This invariably affected the SMD 

and thus decreased it at high temperatures for the liquid water. 

Dependency of Sauter mean diameter (SMD) on the surface tension: When the 

effect of surface tension on the Sauter mean diameter (SMD) was observed, it was 

found that higher surface tension values led to larger value of the SMD. Since the 

surface tension coefficient shows up in the destruction term of the transport equation 

for the mean interfacial surface density the reduction of the surface tension force will 

cause destruction reduction in the mean liquid and gas interface density and as a result 

reduce the Sauter mean diameter (SMD) of the droplets. 

SMD variation with injection velocity and density ratio: It was seen that the SMD 

decreased rapidly with increasing injection velocity for low density ratios. This was 

attributed to the fact that with higher gas densities  the interaction between the droplets 

and the air is much higher, therefore the air does more work on the mean drop sizes 

(SMDs)  and breaks the droplets apart. 

SMD on nozzle exit diameter: It was evident from the result that the SMD also tended 

to increase noticeably with increase in atomizer exit orifice diameter. This result was 

expected because the larger the exit orifice the larger the initial sheet thickness and 

SMD for pressure-swirl atomizers will tend to scale with the initial sheet thickness and 

therefore increase the droplet (SMD). 

Effect of density ratios on turbulent quantities: It was observed that the turbulent 

intensity increased with increasing density ratios but the turbulent length scale rather 

increased with decreasing density ratios. Large density variations on the integral length 

scale were  seen downstream of the spray on the spray centre line. 

SMD of diesel, gasoline and kerosene: It was noted that gasoline with the lowest 

viscosity has the highest axial velocity in the spray centre. On the other hand, diesel 

fuel with the highest viscosity has the smallest axial velocity on the centre spread of the 
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spray and the mean velocity of kerosene was found to be in the middle of the two 

liquids. Kerosene and gasoline both with low viscosities have significantly smaller 

SMD while more viscous diesel fuel has considerably larger SMD. 

Optimization for minimum SMD on spray centreline: In achieving this result, 4-

factor design of experiment (DoE) resulting in eighty-seven (87) cases were generated 

using Latin Hypercube Designs (LHD). When the combinatorial optimization was 

performed in order to obtain the most minimum droplet Sauter mean diameter (SMD) 

at the various locations on the spray centre line for a wide range of variations and 

combinations of liquid viscosity, surface tension, nozzle exit diameter and liquid 

velocity, it was observed that case 17 generated the most minimum SMD at axial 

positions 20 mm and 40 mm from the nozzle exit, case 1 was the most minimum SMD 

at locations 60 mm, 80 mm and 100 mm from the nozzle exit and case 24 gave the best 

minimum from the nozzle exit at axial distance 120 mm. It was concluded that this 

optimization led to significant reduction in the size of the droplet SMD and makes this 

atomization model more suited and applicable to a wide range of spray application 

areas. 

SMD correlation for Ʃ − 𝒀𝒍𝒊𝒒   atomisation model: In order to establish a novel SMD 

correlation of the model and compare the experimental constants in the correlation with 

the existing SMD correlations such as Jasuja and Radcliffe based on 4-factor design of 

experiments (DoE), Matlab Isqcurvefit code in the optimization tool box was used to fit 

the data. The experimental constants on the kinematic viscosity and pressure 

differential were well predicted but disparities were observed in the experimental 

constants on the surface tension and mass flow rate when compared to the two existing 

correlations. These differences were attributed to the range of values used for the liquid 

properties and the difficulties in adequately capturing surface tension in the model.  

To further assess the new SMD correlation for  Ʃ − 𝑌𝑙𝑖𝑞   atomisation model, surface 

plots of various combinations of the predictor variables against SMD with typical 

values were performed. It was observed that in all cases the response variables for the 

new SMD model were smaller when compared to the two existing SMD correlations. 

In all based on computational assessment and experimental validation performed, the 

 Ʃ − 𝑌𝑙𝑖𝑞   atomisation model is very good in predicting and capturing most important 

features of the primary atomization such as droplet SMDs, mean velocities, turbulent 

kinetic energy and liquid core length. The model also proves to be a versatile one  since 
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it can accommodate a wide range of variations for spray input parameters and generate 

any size of the output atomization characteristics in particular SMD so desired and 

required. The model is able to establish a usable  SMD correlation which is consistent 

with existing correlations and will serve as a reference or benchmark for further 

assessment of this model by researchers. 
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a.  Axial distance Drop size and DSD measurement at 60 mm 

 

 

 

! Average Measurement Parameters 28 Oct 2016 - 11:06:24.3600
(average size distribution, weighted)

 Example results555.smea\Import\Averages\V6 1 1.psd

 Sample : watersherry

 Start+0.0004 (s) ::  +0.3600 (s)     

Standard Values:

Trans = 41.4 (%) Dv(10) = 229.5 (µm) Span = 1.051 

Cv = 2820 (PPM) Dv(50) = 485.1 (µm) D[3][2] = 294.8 (µm)

SSA = 0.0204 (m²/cc) Dv(90) = 739.3 (µm) D[4][3] = 483.6 (µm)

Notes:

 using catheter nozzle

Average (average size distribution, weighted):

Source file:  V6 1

868 Records Averaged 31 Records Skipped

Average Range =  28 Oct 2016 - 11:06:24.0004 :: 11:06:24.3600

Measurement Values and Settings

Instrument = Spraytec - Open Spray

Lens = 300mm Path Length = 30.0 (mm)

Particulate Refractive Index = 1.33 + 0.000i Scatter start = 1

Dispersant Refractive Index = 1.00 Scatter end = 36

Particle Density = 1.00 (gm/cc) Scattering threshold = 1

Residual = 0.00   (%) Minimum size = 0.10 (µm)

Extinction analysis = Off Maximum size = 2500.00 (µm)

Multiple Scatter = On

Identification

Operator = mnska S/W =  v3.20.006

Serial Numbers: Instrument = MAL1118761 Detector = 10FT-CDL

SOP Name = -MANUAL 4- -IMPORTED MEASUREMENT-

Last Edited = Not Edited

Rapid Measurement

Trigger = Manual

Trigger Delay = 0.0 msecs

! Low Light Transmission
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! Particle Size Distribution 28 Oct 2016 - 11:06:24.0024
 Example results555.smea\Import\V6 1 1.psd

 Sample : watersherry

 Start+0.0024 (s)     

200 1000

Particle Diameter (µm)

0.00

12.50

25.00

37.50

50.00

V
o

lu
m

e
 F

re
q

u
e

n
c
y
 (

%
)

0

50

100

C
u

m
u

la
ti
v
e

 V
o

lu
m

e
 (

%
)

Rosin Rammler

D = 637.63 N = 9.30

0 - 100 %

Size (µm) % V < % V Size (µm) % V < % V Size (µm) % V < % V

0.117 0.00 0.00

0.136 0.00 0.00

0.158 0.00 0.00

0.185 0.00 0.00

0.215 0.00 0.00

0.251 0.00 0.00

0.293 0.00 0.00

0.341 0.00 0.00

0.398 0.00 0.00

0.464 0.00 0.00

0.541 0.00 0.00

0.631 0.00 0.00

0.736 0.00 0.00

0.858 0.00 0.00

1.00 0.00 0.00

1.17 0.00 0.00

1.36 0.00 0.00

1.58 0.00 0.00

1.85 0.00 0.00

2.15 0.00 0.00

2.51 0.00 0.00

2.93 0.00 0.00

3.41 0.00 0.00

3.98 0.00 0.00

4.64 0.00 0.00

5.41 0.00 0.00

6.31 0.00 0.00

7.36 0.00 0.00

8.58 0.00 0.00

10.00 0.00 0.00

11.66 0.00 0.00

13.59 0.00 0.00

15.85 0.00 0.00

18.48 0.00 0.00

21.54 0.00 0.00

25.12 0.00 0.00

29.29 0.00 0.00

34.15 0.00 0.00

39.81 0.00 0.00

46.42 0.00 0.00

54.12 0.00 0.00

63.10 0.00 0.00

73.56 0.00 0.00

85.77 0.00 0.00

100.00 0.00 0.00

116.59 0.00 0.00

135.94 0.00 0.00

158.49 0.00 0.00

184.79 0.00 0.00

215.44 0.00 0.00

251.19 0.00 0.00

292.87 0.01 0.01

341.46 0.35 0.34

398.11 3.19 2.84

464.16 14.35 11.16

541.17 38.86 24.51

630.96 70.14 31.28

735.64 92.29 22.15

857.70 99.47 7.18

1000.00 100.00 0.53
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! Average Measurement Parameters 28 Oct 2016 - 11:08:25.3500
(average size distribution, weighted)

 Example results555.smea\Import\Averages\V6a 1 1.psd

 Sample : watersherry

 Start+0.0004 (s) ::  +0.3500 (s)     

Standard Values:

Trans = 39.9 (%) Dv(10) = 233.8 (µm) Span = 1.073 

Cv = 3042 (PPM) Dv(50) = 474.6 (µm) D[3][2] = 304.7 (µm)

SSA = 0.0197 (m²/cc) Dv(90) = 743.3 (µm) D[4][3] = 481 (µm)

Notes:

 using catheter nozzle

Average (average size distribution, weighted):

Source file:  V6a 1

835 Records Averaged 39 Records Skipped

Average Range =  28 Oct 2016 - 11:08:25.0004 :: 11:08:25.3500

Measurement Values and Settings

Instrument = Spraytec - Open Spray

Lens = 300mm Path Length = 30.0 (mm)

Particulate Refractive Index = 1.33 + 0.000i Scatter start = 1

Dispersant Refractive Index = 1.00 Scatter end = 36

Particle Density = 1.00 (gm/cc) Scattering threshold = 1

Residual = 0.00   (%) Minimum size = 0.10 (µm)

Extinction analysis = Off Maximum size = 2500.00 (µm)

Multiple Scatter = On

Identification

Operator = mnska S/W =  v3.20.006

Serial Numbers: Instrument = MAL1118761 Detector = 10FT-CDL

SOP Name = -MANUAL 5- -IMPORTED MEASUREMENT-

Last Edited = Not Edited

Rapid Measurement

Trigger = Manual

Trigger Delay = 0.0 msecs

! Low Light Transmission
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Particle Size Distribution 28 Oct 2016 - 11:08:25.1140
 Example results555.smea\Import\V6a 1 1.psd

 Sample : watersherry

 Start+0.1140 (s)     
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Rosin Rammler

D = 377.47 N = 1.27

0 - 100 %

Size (µm) % V < % V Size (µm) % V < % V Size (µm) % V < % V

0.117 0.00 0.00

0.136 0.00 0.00

0.158 0.00 0.00

0.185 0.00 0.00

0.215 0.00 0.00

0.251 0.00 0.00

0.293 0.00 0.00

0.341 0.00 0.00

0.398 0.00 0.00

0.464 0.00 0.00

0.541 0.00 0.00

0.631 0.00 0.00

0.736 0.00 0.00

0.858 0.00 0.00

1.00 0.00 0.00

1.17 0.00 0.00

1.36 0.00 0.00

1.58 0.00 0.00

1.85 0.00 0.00

2.15 0.00 0.00

2.51 0.01 0.01

2.93 0.06 0.05

3.41 0.15 0.09

3.98 0.27 0.13

4.64 0.44 0.17

5.41 0.65 0.21

6.31 0.90 0.24

7.36 1.16 0.27

8.58 1.45 0.28

10.00 1.74 0.29

11.66 2.04 0.30

13.59 2.37 0.32

15.85 2.73 0.36

18.48 3.16 0.43

21.54 3.69 0.53

25.12 4.37 0.68

29.29 5.23 0.86

34.15 6.32 1.08

39.81 7.64 1.32

46.42 9.18 1.55

54.12 10.91 1.73

63.10 12.76 1.84

73.56 14.64 1.88

85.77 16.51 1.87

100.00 18.34 1.84

116.59 20.17 1.82

135.94 22.04 1.87

158.49 24.07 2.03

184.79 26.43 2.37

215.44 29.38 2.94

251.19 33.20 3.82

292.87 38.21 5.01

341.46 44.67 6.46

398.11 52.64 7.97

464.16 61.90 9.26

541.17 71.87 9.97

630.96 81.67 9.80

735.64 90.26 8.58

857.70 96.62 6.36

1000.00 100.00 3.38



223 
 

b. Axial distance Drop size and DSD measurement at 80 mm 

 

 

 

Average Measurement Parameters 28 Oct 2016 - 10:58:53.3000
(average size distribution, weighted)

 Example results555.smea\Import\Averages\V8 1 1.psd

 Sample : watersherry

 Start+0.0004 (s) ::  +0.3000 (s)     

Standard Values:

Trans = 65.9 (%) Dv(10) = 237.4 (µm) Span = 1.134 

Cv = 1677 (PPM) Dv(50) = 463.9 (µm) D[3][2] = 364.7 (µm)

SSA = 0.0165 (m²/cc) Dv(90) = 763.3 (µm) D[4][3] = 481.6 (µm)

Notes:

 using catheter nozzle

Average (average size distribution, weighted):

Source file:  V8 1

749 Records Averaged 0 Records Skipped

Average Range =  28 Oct 2016 - 10:58:53.0004 :: 10:58:53.3000

Measurement Values and Settings

Instrument = Spraytec - Open Spray

Lens = 300mm Path Length = 30.0 (mm)

Particulate Refractive Index = 1.33 + 0.000i Scatter start = 1

Dispersant Refractive Index = 1.00 Scatter end = 35

Particle Density = 1.00 (gm/cc) Scattering threshold = 1

Residual = 0.00   (%) Minimum size = 0.10 (µm)

Extinction analysis = Off Maximum size = 2500.00 (µm)

Multiple Scatter = On

Identification

Operator = mnska S/W =  v3.20.006

Serial Numbers: Instrument = MAL1118761 Detector = 10FT-CDL

SOP Name = -MANUAL 2- -IMPORTED MEASUREMENT-

Last Edited = Not Edited

Rapid Measurement

Trigger = Manual

Trigger Delay = 0.0 msecs
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Particle Size Distribution 28 Oct 2016 - 10:58:53.0024
 Example results555.smea\Import\V8 1 1.psd

 Sample : watersherry
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Rosin Rammler

D = 476.31 N = 2.60

0 - 100 %

Size (µm) % V < % V Size (µm) % V < % V Size (µm) % V < % V

0.117 0.00 0.00

0.136 0.00 0.00

0.158 0.00 0.00

0.185 0.00 0.00

0.215 0.00 0.00

0.251 0.00 0.00

0.293 0.00 0.00

0.341 0.00 0.00

0.398 0.00 0.00

0.464 0.00 0.00

0.541 0.00 0.00

0.631 0.00 0.00

0.736 0.00 0.00

0.858 0.00 0.00

1.00 0.00 0.00

1.17 0.00 0.00

1.36 0.00 0.00

1.58 0.00 0.00

1.85 0.00 0.00

2.15 0.00 0.00

2.51 0.00 0.00

2.93 0.00 0.00

3.41 0.00 0.00

3.98 0.00 0.00

4.64 0.00 0.00

5.41 0.00 0.00

6.31 0.00 0.00

7.36 0.00 0.00

8.58 0.00 0.00

10.00 0.00 0.00

11.66 0.00 0.00

13.59 0.00 0.00

15.85 0.00 0.00

18.48 0.00 0.00

21.54 0.00 0.00

25.12 0.00 0.00

29.29 0.00 0.00

34.15 0.06 0.06

39.81 0.21 0.15

46.42 0.47 0.26

54.12 0.85 0.38

63.10 1.34 0.48

73.56 1.89 0.55

85.77 2.48 0.58

100.00 3.07 0.60

116.59 3.72 0.65

135.94 4.57 0.84

158.49 5.86 1.29

184.79 7.98 2.12

215.44 11.36 3.38

251.19 16.43 5.07

292.87 23.48 7.06

341.46 32.58 9.10

398.11 43.46 10.87

464.16 55.50 12.05

541.17 67.84 12.34

630.96 79.42 11.58

735.64 89.21 9.79

857.70 96.29 7.08

1000.00 100.00 3.71
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Average Measurement Parameters 28 Oct 2016 - 11:01:22.4004
(average size distribution, weighted)

 Example results555.smea\Import\Averages\V8a 1 1.psd

 Sample : watersherry

 Start+0.1996 (s) ::  +0.4004 (s)     

Standard Values:

Trans = 67.3 (%) Dv(10) = 243 (µm) Span = 1.115 

Cv = 1615 (PPM) Dv(50) = 469.7 (µm) D[3][2] = 371.2 (µm)

SSA = 0.0162 (m²/cc) Dv(90) = 766.7 (µm) D[4][3] = 486.6 (µm)

Notes:

 using catheter nozzle

Average (average size distribution, weighted):

Source file:  V8a 1

502 Records Averaged 0 Records Skipped

Average Range =  28 Oct 2016 - 11:01:22.1996 :: 11:01:22.4004

Measurement Values and Settings

Instrument = Spraytec - Open Spray

Lens = 300mm Path Length = 30.0 (mm)

Particulate Refractive Index = 1.33 + 0.000i Scatter start = 1

Dispersant Refractive Index = 1.00 Scatter end = 34

Particle Density = 1.00 (gm/cc) Scattering threshold = 1

Residual = 0.00   (%) Minimum size = 0.10 (µm)

Extinction analysis = Off Maximum size = 2500.00 (µm)

Multiple Scatter = On

Identification

Operator = mnska S/W =  v3.20.006

Serial Numbers: Instrument = MAL1118761 Detector = 10FT-CDL

SOP Name = -MANUAL 3- -IMPORTED MEASUREMENT-

Last Edited = Not Edited

Rapid Measurement

Trigger = Manual

Trigger Delay = 0.0 msecs
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Particle Size Distribution 28 Oct 2016 - 11:01:22.1240
 Example results555.smea\Import\V8a 1 1.psd

 Sample : watersherry

 Start+0.1240 (s)     
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Rosin Rammler

D = 525.92 N = 2.61

0 - 100 %

Size (µm) % V < % V Size (µm) % V < % V Size (µm) % V < % V

0.117 0.00 0.00

0.136 0.00 0.00

0.158 0.00 0.00

0.185 0.00 0.00

0.215 0.00 0.00

0.251 0.00 0.00

0.293 0.00 0.00

0.341 0.00 0.00

0.398 0.00 0.00

0.464 0.00 0.00

0.541 0.00 0.00

0.631 0.00 0.00

0.736 0.00 0.00

0.858 0.00 0.00

1.00 0.00 0.00

1.17 0.00 0.00

1.36 0.00 0.00

1.58 0.00 0.00

1.85 0.00 0.00

2.15 0.00 0.00

2.51 0.00 0.00

2.93 0.00 0.00

3.41 0.00 0.00

3.98 0.00 0.00

4.64 0.00 0.00

5.41 0.00 0.00

6.31 0.00 0.00

7.36 0.00 0.00

8.58 0.00 0.00

10.00 0.00 0.00

11.66 0.00 0.00

13.59 0.00 0.00

15.85 0.00 0.00

18.48 0.00 0.00

21.54 0.00 0.00

25.12 0.00 0.00

29.29 0.00 0.00

34.15 0.01 0.01

39.81 0.07 0.06

46.42 0.20 0.13

54.12 0.43 0.23

63.10 0.76 0.33

73.56 1.18 0.42

85.77 1.66 0.48

100.00 2.16 0.50

116.59 2.68 0.52

135.94 3.27 0.59

158.49 4.10 0.83

184.79 5.47 1.37

215.44 7.84 2.37

251.19 11.75 3.91

292.87 17.73 5.98

341.46 26.13 8.40

398.11 36.93 10.79

464.16 49.62 12.69

541.17 63.22 13.60

630.96 76.39 13.17

735.64 87.69 11.29

857.70 95.84 8.15

1000.00 100.00 4.16



227 
 

c. Axial distance Drop size and DSD measurements at 100 mm 

 

 

 

 

 

 

Average Measurement Parameters 28 Oct 2016 - 10:51:42.4004
(average size distribution, weighted)

 Example results555.smea\Import\Averages\V10 1 2.psd

 Sample : watersherry

 Start+0.1996 (s) ::  +0.4004 (s)     

Standard Values:

Trans = 67.5 (%) Dv(10) = 245.7 (µm) Span = 1.104 

Cv = 1607 (PPM) Dv(50) = 473.6 (µm) D[3][2] = 371.5 (µm)

SSA = 0.0161 (m²/cc) Dv(90) = 768.6 (µm) D[4][3] = 489.4 (µm)

Notes:

 using catheter nozzle

Average (average size distribution, weighted):

Source file:  V10 1

502 Records Averaged 0 Records Skipped

Average Range =  28 Oct 2016 - 10:51:42.1996 :: 10:51:42.4004

Measurement Values and Settings

Instrument = Spraytec - Open Spray

Lens = 300mm Path Length = 30.0 (mm)

Particulate Refractive Index = 1.33 + 0.000i Scatter start = 1

Dispersant Refractive Index = 1.00 Scatter end = 35

Particle Density = 1.00 (gm/cc) Scattering threshold = 1

Residual = 0.00   (%) Minimum size = 0.10 (µm)

Extinction analysis = Off Maximum size = 2500.00 (µm)

Multiple Scatter = On

Identification

Operator = mnska S/W =  v3.20.006

Serial Numbers: Instrument = MAL1118761 Detector = 10FT-CDL

SOP Name = -MANUAL 3- -IMPORTED MEASUREMENT-

Last Edited = Not Edited

Rapid Measurement

Trigger = Manual

Trigger Delay = 0.0 msecs
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Particle Size Distribution 28 Oct 2016 - 10:51:42.1000
 Example results555.smea\Import\V10 1 1.psd

 Sample : watersherry
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Rosin Rammler

D = 538.45 N = 2.47

0 - 100 %

Size (µm) % V < % V Size (µm) % V < % V Size (µm) % V < % V

0.117 0.00 0.00

0.136 0.00 0.00

0.158 0.00 0.00

0.185 0.00 0.00

0.215 0.00 0.00

0.251 0.00 0.00

0.293 0.00 0.00

0.341 0.00 0.00

0.398 0.00 0.00

0.464 0.00 0.00

0.541 0.00 0.00

0.631 0.00 0.00

0.736 0.00 0.00

0.858 0.00 0.00

1.00 0.00 0.00

1.17 0.00 0.00

1.36 0.00 0.00

1.58 0.00 0.00

1.85 0.00 0.00

2.15 0.00 0.00

2.51 0.00 0.00

2.93 0.00 0.00

3.41 0.00 0.00

3.98 0.00 0.00

4.64 0.00 0.00

5.41 0.00 0.00

6.31 0.00 0.00

7.36 0.00 0.00

8.58 0.00 0.00

10.00 0.00 0.00

11.66 0.00 0.00

13.59 0.00 0.00

15.85 0.00 0.00

18.48 0.00 0.00

21.54 0.00 0.00

25.12 0.00 0.00

29.29 0.00 0.00

34.15 0.02 0.02

39.81 0.11 0.09

46.42 0.29 0.19

54.12 0.59 0.30

63.10 0.99 0.40

73.56 1.46 0.47

85.77 1.94 0.48

100.00 2.37 0.44

116.59 2.76 0.39

135.94 3.19 0.43

158.49 3.86 0.67

184.79 5.12 1.26

215.44 7.47 2.35

251.19 11.46 4.00

292.87 17.60 6.14

341.46 26.17 8.56

398.11 37.07 10.91

464.16 49.79 12.72

541.17 63.34 13.55

630.96 76.44 13.10

735.64 87.68 11.24

857.70 95.83 8.14

1000.00 100.00 4.17
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Average Measurement Parameters 28 Oct 2016 - 10:54:59.4004
(average size distribution, weighted)

 Example results555.smea\Import\Averages\V10a 1 1.psd

 Sample : watersherry

 Start+0.1996 (s) ::  +0.4004 (s)     

Standard Values:

Trans = 66.0 (%) Dv(10) = 235.1 (µm) Span = 1.138 

Cv = 1655 (PPM) Dv(50) = 466.8 (µm) D[3][2] = 361.2 (µm)

SSA = 0.0166 (m²/cc) Dv(90) = 766.2 (µm) D[4][3] = 482.9 (µm)

Notes:

 using catheter nozzle

Average (average size distribution, weighted):

Source file:  V10a 1

502 Records Averaged 0 Records Skipped

Average Range =  28 Oct 2016 - 10:54:59.1996 :: 10:54:59.4004

Measurement Values and Settings

Instrument = Spraytec - Open Spray

Lens = 300mm Path Length = 30.0 (mm)

Particulate Refractive Index = 1.33 + 0.000i Scatter start = 1

Dispersant Refractive Index = 1.00 Scatter end = 35

Particle Density = 1.00 (gm/cc) Scattering threshold = 1

Residual = 0.00   (%) Minimum size = 0.10 (µm)

Extinction analysis = Off Maximum size = 2500.00 (µm)

Multiple Scatter = On

Identification

Operator = mnska S/W =  v3.20.006

Serial Numbers: Instrument = MAL1118761 Detector = 10FT-CDL

SOP Name = -MANUAL 1- -IMPORTED MEASUREMENT-

Last Edited = Not Edited

Rapid Measurement

Trigger = Manual

Trigger Delay = 0.0 msecs
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Particle Size Distribution 28 Oct 2016 - 10:54:59.1000
 Example results555.smea\Import\V10a 1 1.psd

 Sample : watersherry

 Start+0.1000 (s)     
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Rosin Rammler

D = 542.70 N = 2.54

0 - 100 %

Size (µm) % V < % V Size (µm) % V < % V Size (µm) % V < % V

0.117 0.00 0.00

0.136 0.00 0.00

0.158 0.00 0.00

0.185 0.00 0.00

0.215 0.00 0.00

0.251 0.00 0.00

0.293 0.00 0.00

0.341 0.00 0.00

0.398 0.00 0.00

0.464 0.00 0.00

0.541 0.00 0.00

0.631 0.00 0.00

0.736 0.00 0.00

0.858 0.00 0.00

1.00 0.00 0.00

1.17 0.00 0.00

1.36 0.00 0.00

1.58 0.00 0.00

1.85 0.00 0.00

2.15 0.00 0.00

2.51 0.00 0.00

2.93 0.00 0.00

3.41 0.00 0.00

3.98 0.00 0.00

4.64 0.00 0.00

5.41 0.00 0.00

6.31 0.00 0.00

7.36 0.00 0.00

8.58 0.00 0.00

10.00 0.00 0.00

11.66 0.00 0.00

13.59 0.00 0.00

15.85 0.00 0.00

18.48 0.00 0.00

21.54 0.00 0.00

25.12 0.00 0.00

29.29 0.00 0.00

34.15 0.01 0.01

39.81 0.08 0.07

46.42 0.25 0.16

54.12 0.52 0.27

63.10 0.89 0.38

73.56 1.34 0.45

85.77 1.82 0.48

100.00 2.27 0.45

116.59 2.66 0.39

135.94 3.05 0.39

158.49 3.62 0.57

184.79 4.69 1.07

215.44 6.74 2.05

251.19 10.38 3.64

292.87 16.17 5.79

341.46 24.49 8.32

398.11 35.34 10.86

464.16 48.23 12.88

541.17 62.13 13.90

630.96 75.65 13.52

735.64 87.28 11.63

857.70 95.69 8.42

1000.00 100.00 4.31
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d. Axial distance Drop size and DSD measurements at 120 mm 

 

 

 

Average Measurement Parameters 28 Oct 2016 - 10:46:09.4004
(average size distribution, weighted)

 Example results555.smea\Import\Averages\V12 1 1.psd

 Sample : watersherry

 Start+0.1996 (s) ::  +0.4004 (s)     

Standard Values:

Trans = 67.0 (%) Dv(10) = 250.3 (µm) Span = 1.086 

Cv = 1655 (PPM) Dv(50) = 478.4 (µm) D[3][2] = 376.7 (µm)

SSA = 0.0159 (m²/cc) Dv(90) = 769.9 (µm) D[4][3] = 493.2 (µm)

Notes:

 using catheter nozzle

Average (average size distribution, weighted):

Source file:  V12 1

502 Records Averaged 0 Records Skipped

Average Range =  28 Oct 2016 - 10:46:09.1996 :: 10:46:09.4004

Measurement Values and Settings

Instrument = Spraytec - Open Spray

Lens = 300mm Path Length = 30.0 (mm)

Particulate Refractive Index = 1.33 + 0.000i Scatter start = 1

Dispersant Refractive Index = 1.00 Scatter end = 36

Particle Density = 1.00 (gm/cc) Scattering threshold = 1

Residual = 0.00   (%) Minimum size = 0.10 (µm)

Extinction analysis = Off Maximum size = 2500.00 (µm)

Multiple Scatter = On

Identification

Operator = mnska S/W =  v3.20.006

Serial Numbers: Instrument = MAL1118761 Detector = 10FT-CDL

SOP Name = -MANUAL 2- -IMPORTED MEASUREMENT-

Last Edited = Not Edited

Rapid Measurement

Trigger = Manual

Trigger Delay = 0.0 msecs
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Particle Size Distribution 28 Oct 2016 - 10:46:09.1000
 Example results555.smea\Import\V12 1 1.psd

 Sample : watersherry

 Start+0.1000 (s)     
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Particle Diameter (µm)
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Rosin Rammler

D = 551.98 N = 2.54

0 - 100 %

Size (µm) % V < % V Size (µm) % V < % V Size (µm) % V < % V

0.117 0.00 0.00

0.136 0.00 0.00

0.158 0.00 0.00

0.185 0.00 0.00

0.215 0.00 0.00

0.251 0.00 0.00

0.293 0.00 0.00

0.341 0.00 0.00

0.398 0.00 0.00

0.464 0.00 0.00

0.541 0.00 0.00

0.631 0.00 0.00

0.736 0.00 0.00

0.858 0.00 0.00

1.00 0.00 0.00

1.17 0.00 0.00

1.36 0.00 0.00

1.58 0.00 0.00

1.85 0.00 0.00

2.15 0.00 0.00

2.51 0.00 0.00

2.93 0.00 0.00

3.41 0.00 0.00

3.98 0.00 0.00

4.64 0.00 0.00

5.41 0.00 0.00

6.31 0.00 0.00

7.36 0.00 0.00

8.58 0.00 0.00

10.00 0.00 0.00

11.66 0.00 0.00

13.59 0.00 0.00

15.85 0.00 0.00

18.48 0.00 0.00

21.54 0.00 0.00

25.12 0.00 0.00

29.29 0.00 0.00

34.15 0.00 0.00

39.81 0.02 0.02

46.42 0.14 0.12

54.12 0.38 0.25

63.10 0.77 0.38

73.56 1.26 0.50

85.77 1.81 0.55

100.00 2.33 0.52

116.59 2.77 0.44

135.94 3.14 0.37

158.49 3.60 0.46

184.79 4.47 0.87

215.44 6.26 1.79

251.19 9.61 3.36

292.87 15.18 5.57

341.46 23.39 8.21

398.11 34.27 10.88

464.16 47.30 13.03

541.17 61.42 14.12

630.96 75.18 13.76

735.64 87.03 11.85

857.70 95.61 8.58

1000.00 100.00 4.39
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Average Measurement Parameters 28 Oct 2016 - 10:41:35.4004
(average size distribution, weighted)

 Example results555.smea\Import\Averages\V12a 1 1.psd

 Sample : watersherry

 Start+0.0696 (s) ::  +0.4004 (s)     

Standard Values:

Trans = 68.0 (%) Dv(10) = 262.1 (µm) Span = 1.048 

Cv = 1634 (PPM) Dv(50) = 488.9 (µm) D[3][2] = 387.6 (µm)

SSA = 0.0155 (m²/cc) Dv(90) = 774.5 (µm) D[4][3] = 502.4 (µm)

Notes:

 using catheter nozzle

Average (average size distribution, weighted):

Source file:  V12a 1

827 Records Averaged 0 Records Skipped

Average Range =  28 Oct 2016 - 10:41:35.0696 :: 10:41:35.4004

Measurement Values and Settings

Instrument = Spraytec - Open Spray

Lens = 300mm Path Length = 30.0 (mm)

Particulate Refractive Index = 1.33 + 0.000i Scatter start = 1

Dispersant Refractive Index = 1.00 Scatter end = 36

Particle Density = 1.00 (gm/cc) Scattering threshold = 1

Residual = 0.00   (%) Minimum size = 0.10 (µm)

Extinction analysis = Off Maximum size = 2500.00 (µm)

Multiple Scatter = On

Identification

Operator = mnska S/W =  v3.20.006

Serial Numbers: Instrument = MAL1118761 Detector = 10FT-CDL

SOP Name = -MANUAL 1- -IMPORTED MEASUREMENT-

Last Edited = Not Edited

Rapid Measurement

Trigger = Manual

Trigger Delay = 0.0 msecs
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Particle Size Distribution 28 Oct 2016 - 10:41:35.1500
 Example results555.smea\Import\V12a 1 1.psd

 Sample : watersherry

 Start+0.1500 (s)     
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Rosin Rammler

D = 11780.57 N = 1.02

0 - 100 %

Size (µm) % V < % V Size (µm) % V < % V Size (µm) % V < % V

0.117 0.00 0.00

0.136 0.00 0.00

0.158 0.00 0.00

0.185 0.00 0.00

0.215 0.00 0.00

0.251 0.00 0.00

0.293 0.00 0.00

0.341 0.00 0.00

0.398 0.00 0.00

0.464 0.00 0.00

0.541 0.00 0.00

0.631 0.00 0.00

0.736 0.00 0.00

0.858 0.00 0.00

1.00 0.00 0.00

1.17 0.00 0.00

1.36 0.07 0.07

1.58 0.07 0.00

1.85 0.07 0.00

2.15 0.07 0.00

2.51 0.07 0.00

2.93 0.07 0.00

3.41 0.07 0.00

3.98 0.07 0.00

4.64 0.07 0.00

5.41 0.07 0.00

6.31 0.07 0.00

7.36 0.07 0.00

8.58 0.07 0.00

10.00 0.07 0.00

11.66 0.07 0.00

13.59 0.07 0.00

15.85 0.07 0.00

18.48 0.07 0.00

21.54 0.07 0.00

25.12 0.07 0.00

29.29 0.07 0.00

34.15 0.07 0.00

39.81 0.07 0.00

46.42 0.07 0.00

54.12 0.07 0.00

63.10 0.07 0.00

73.56 0.07 0.00

85.77 0.07 0.00

100.00 0.07 0.00

116.59 0.07 0.00

135.94 0.07 0.00

158.49 0.07 0.00

184.79 0.07 0.00

215.44 0.44 0.37

251.19 2.10 1.66

292.87 6.14 4.04

341.46 13.57 7.42

398.11 24.86 11.29

464.16 39.60 14.74

541.17 56.35 16.75

630.96 72.87 16.52

735.64 86.73 13.86

857.70 96.02 9.29

1000.00 100.00 3.98
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Cumulative 9 Nov 2016 - 01:51:09
 Example results555.smea\Overlays\V6a 1 1 1.pso

1 10 100 1000

Particle Diameter (µm)
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Date-Time File Sample Dx(10) Dx(50) Dx(90)

[V] 28 Oct 2016... V6a 1 1 watersherry 49.98 379.47 731.90

[V] 28 Oct 2016... V8a 1 1 watersherry 236.49 466.16 764.36

[V] 28 Oct 2016... V10a 1 1 watersherry 247.88 473.47 768.78

[V] 28 Oct 2016... V12a 1 1 watersherry 320.12 511.04 770.51

[V]=Volume [N]=Number

Frequency 9 Nov 2016 - 01:51:09
 Example results555.smea\Overlays\V6a 1 1 1.pso

1 10 100 1000

Particle Diameter (µm)
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Date-Time File Sample Dx(10) Dx(50) Dx(90)

[V] 28 Oct 2016... V6a 1 1 watersherry 49.98 379.47 731.90

[V] 28 Oct 2016... V8a 1 1 watersherry 236.49 466.16 764.36

[V] 28 Oct 2016... V10a 1 1 watersherry 247.88 473.47 768.78

[V] 28 Oct 2016... V12a 1 1 watersherry 320.12 511.04 770.51

[V]=Volume [N]=Number
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Cumulative 9 Nov 2016 - 02:00:13
 Example results555.smea\Overlays\V6 1 1 1.pso

6cm away

1 10 100 1000

Particle Diameter (µm)
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Date-Time File Sample Dx(10) Dx(50) Dx(90)

[V] 28 Oct 2016... V6 1 1 watersherry 441.02 571.43 717.72

[V] 28 Oct 2016... V8 1 1 watersherry 204.06 433.22 746.86

[V] 28 Oct 2016... V10 1 1 watersherry 239.25 465.25 764.46

[V] 28 Oct 2016... V12 1 1 watersherry 254.54 478.18 771.34

[V]=Volume [N]=Number

Frequency 9 Nov 2016 - 02:00:13
 Example results555.smea\Overlays\V6 1 1 1.pso

6cm away

1 10 100 1000

Particle Diameter (µm)

0.00
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Date-Time File Sample Dx(10) Dx(50) Dx(90)

[V] 28 Oct 2016... V6 1 1 watersherry 441.02 571.43 717.72

[V] 28 Oct 2016... V8 1 1 watersherry 204.06 433.22 746.86

[V] 28 Oct 2016... V10 1 1 watersherry 239.25 465.25 764.46

[V] 28 Oct 2016... V12 1 1 watersherry 254.54 478.18 771.34

[V]=Volume [N]=Number
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e. Radial distances Drop sizes and DSD experimental results at y=60mm, 

x=10mm 

 

 

 

! Average Measurement Parameters 28 Oct 2016 - 11:24:16.2400
(average size distribution, weighted)

 Example results666.smea\Import\Averages\V6_R10a_Proper 1 1.psd

 Sample : watersherry

 Start+0.0004 (s) ::  +0.2400 (s)     

Standard Values:

Trans = 44.9 (%) Dv(10) = 262.2 (µm) Span = 1.009 

Cv = 2966 (PPM) Dv(50) = 488.4 (µm) D[3][2] = 341.7 (µm)

SSA = 0.0176 (m²/cc) Dv(90) = 755.1 (µm) D[4][3] = 497.4 (µm)

Notes:

 using catheter nozzle

Average (average size distribution, weighted):

Source file:  V6_R10a_Proper 1

586 Records Averaged 13 Records Skipped

Average Range =  28 Oct 2016 - 11:24:16.0004 :: 11:24:16.2400

Measurement Values and Settings

Instrument = Spraytec - Open Spray

Lens = 300mm Path Length = 30.0 (mm)

Particulate Refractive Index = 1.33 + 0.000i Scatter start = 1

Dispersant Refractive Index = 1.00 Scatter end = 36

Particle Density = 1.00 (gm/cc) Scattering threshold = 1

Residual = 0.00   (%) Minimum size = 0.10 (µm)

Extinction analysis = Off Maximum size = 2500.00 (µm)

Multiple Scatter = On

Identification

Operator = mnska S/W =  v3.20.006

Serial Numbers: Instrument = MAL1118761 Detector = 10FT-CDL

SOP Name = -MANUAL 8- -IMPORTED MEASUREMENT-

Last Edited = Not Edited

Rapid Measurement

Trigger = Manual

Trigger Delay = 0.0 msecs

! Low Light Transmission
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Particle Size Distribution 28 Oct 2016 - 11:24:16.2324
 Example results666.smea\Import\V6_R10a_Proper 1 1.psd

 Sample : watersherry

 Start+0.2324 (s)     
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Particle Diameter (µm)

0.00

5.00

10.00

15.00

20.00

V
o

lu
m

e
 F

re
q

u
e

n
c
y
 (

%
)

0

50

100

C
u

m
u

la
ti
v
e

 V
o

lu
m

e
 (

%
)

Rosin Rammler

D = 517.16 N = 2.37

0 - 100 %

Size (µm) % V < % V Size (µm) % V < % V Size (µm) % V < % V

0.117 0.00 0.00

0.136 0.00 0.00

0.158 0.00 0.00

0.185 0.00 0.00

0.215 0.00 0.00

0.251 0.00 0.00

0.293 0.00 0.00

0.341 0.00 0.00

0.398 0.00 0.00

0.464 0.00 0.00

0.541 0.00 0.00

0.631 0.00 0.00

0.736 0.00 0.00

0.858 0.00 0.00

1.00 0.00 0.00

1.17 0.00 0.00

1.36 0.00 0.00

1.58 0.00 0.00

1.85 0.00 0.00

2.15 0.00 0.00

2.51 0.00 0.00

2.93 0.00 0.00

3.41 0.00 0.00

3.98 0.00 0.00

4.64 0.00 0.00

5.41 0.00 0.00

6.31 0.00 0.00

7.36 0.00 0.00

8.58 0.00 0.00

10.00 0.10 0.10

11.66 0.47 0.37

13.59 0.50 0.03

15.85 0.50 0.00

18.48 0.50 0.00

21.54 0.50 0.00

25.12 0.50 0.00

29.29 0.50 0.00

34.15 0.50 0.00

39.81 0.54 0.03

46.42 0.62 0.08

54.12 0.77 0.15

63.10 0.97 0.20

73.56 1.21 0.24

85.77 1.44 0.24

100.00 1.64 0.20

116.59 1.79 0.15

135.94 1.93 0.14

158.49 2.21 0.28

184.79 2.91 0.70

215.44 4.47 1.57

251.19 7.49 3.02

292.87 12.58 5.09

341.46 20.24 7.65

398.11 30.63 10.40

464.16 43.47 12.83

541.17 57.85 14.38

630.96 72.37 14.52

735.64 85.31 12.93

857.70 94.95 9.64

1000.00 100.00 5.05
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e. Radial distances Drop sizes and DSD experimental results at y=60mm, 

x=20mm 

 

 

Average Measurement Parameters 28 Oct 2016 - 12:06:33.4004
(average size distribution, weighted)

 Example results666.smea\Import\Averages\V6_R20 1 1.psd

 Sample : watersherry

 Start+0.1996 (s) ::  +0.4004 (s)     

Standard Values:

Trans = 62.5 (%) Dv(10) = 286.6 (µm) Span = 0.9753 

Cv = 2016 (PPM) Dv(50) = 497.5 (µm) D[3][2] = 401.4 (µm)

SSA = 0.0149 (m²/cc) Dv(90) = 771.8 (µm) D[4][3] = 513 (µm)

Notes:

 using catheter nozzle

Average (average size distribution, weighted):

Source file:  V6_R20 1

502 Records Averaged 0 Records Skipped

Average Range =  28 Oct 2016 - 12:06:33.1996 :: 12:06:33.4004

Measurement Values and Settings

Instrument = Spraytec - Open Spray

Lens = 300mm Path Length = 30.0 (mm)

Particulate Refractive Index = 1.33 + 0.000i Scatter start = 1

Dispersant Refractive Index = 1.00 Scatter end = 36

Particle Density = 1.00 (gm/cc) Scattering threshold = 1

Residual = 0.00   (%) Minimum size = 0.10 (µm)

Extinction analysis = Off Maximum size = 2500.00 (µm)

Multiple Scatter = On

Identification

Operator = mnska S/W =  v3.20.006

Serial Numbers: Instrument = MAL1118761 Detector = 10FT-CDL

SOP Name = -MANUAL 4- -IMPORTED MEASUREMENT-

Last Edited = Not Edited

Rapid Measurement

Trigger = Manual

Trigger Delay = 0.0 msecs
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Particle Size Distribution 28 Oct 2016 - 12:06:33.0996
 Example results666.smea\Import\V6_R20 1 1.psd

 Sample : watersherry

 Start+0.0996 (s)     
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Rosin Rammler

D = 584.94 N = 2.76

0 - 100 %

Size (µm) % V < % V Size (µm) % V < % V Size (µm) % V < % V

0.117 0.00 0.00

0.136 0.00 0.00

0.158 0.00 0.00

0.185 0.00 0.00

0.215 0.00 0.00

0.251 0.00 0.00

0.293 0.00 0.00

0.341 0.00 0.00

0.398 0.00 0.00

0.464 0.00 0.00

0.541 0.00 0.00

0.631 0.00 0.00

0.736 0.00 0.00

0.858 0.00 0.00

1.00 0.00 0.00

1.17 0.00 0.00

1.36 0.00 0.00

1.58 0.00 0.00

1.85 0.00 0.00

2.15 0.00 0.00

2.51 0.00 0.00

2.93 0.00 0.00

3.41 0.00 0.00

3.98 0.00 0.00

4.64 0.00 0.00

5.41 0.00 0.00

6.31 0.00 0.00

7.36 0.00 0.00

8.58 0.00 0.00

10.00 0.00 0.00

11.66 0.00 0.00

13.59 0.00 0.00

15.85 0.00 0.00

18.48 0.00 0.00

21.54 0.00 0.00

25.12 0.00 0.00

29.29 0.00 0.00

34.15 0.02 0.02

39.81 0.07 0.05

46.42 0.16 0.09

54.12 0.29 0.13

63.10 0.44 0.15

73.56 0.58 0.14

85.77 0.66 0.09

100.00 0.69 0.03

116.59 0.69 0.00

135.94 0.78 0.09

158.49 1.19 0.41

184.79 2.30 1.11

215.44 4.62 2.32

251.19 8.70 4.07

292.87 15.00 6.31

341.46 23.80 8.79

398.11 34.98 11.18

464.16 48.02 13.04

541.17 61.93 13.91

630.96 75.43 13.50

735.64 87.08 11.66

857.70 95.59 8.51

1000.00 100.00 4.41
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f. Radial distances Drop sizes and DSD experimental results at y=60mm, 

x=30mm 

 

 

 

! Average Measurement Parameters 28 Oct 2016 - 12:09:22.3000
(average size distribution, weighted)

 Example results666.smea\Import\Averages\V6_R30 1 1.psd

 Sample : watersherry

 Start+0.0004 (s) ::  +0.3000 (s)     

Standard Values:

Trans = 84.6 (%) Dv(10) = 244 (µm) Span = 1.095 

Cv = 656.2 (PPM) Dv(50) = 479.3 (µm) D[3][2] = 361.6 (µm)

SSA = 0.0166 (m²/cc) Dv(90) = 768.6 (µm) D[4][3] = 491.8 (µm)

Notes:

 using catheter nozzle

Average (average size distribution, weighted):

Source file:  V6_R30 1

747 Records Averaged 2 Records Skipped

Average Range =  28 Oct 2016 - 12:09:22.0004 :: 12:09:22.3000

Measurement Values and Settings

Instrument = Spraytec - Open Spray

Lens = 300mm Path Length = 30.0 (mm)

Particulate Refractive Index = 1.33 + 0.000i Scatter start = 1

Dispersant Refractive Index = 1.00 Scatter end = 36

Particle Density = 1.00 (gm/cc) Scattering threshold = 1

Residual = 0.00   (%) Minimum size = 0.10 (µm)

Extinction analysis = Off Maximum size = 2500.00 (µm)

Multiple Scatter = On

Identification

Operator = mnska S/W =  v3.20.006

Serial Numbers: Instrument = MAL1118761 Detector = 10FT-CDL

SOP Name = -MANUAL 5- -IMPORTED MEASUREMENT-

Last Edited = Not Edited

Rapid Measurement

Trigger = Manual

Trigger Delay = 0.0 msecs

! Low Scattering Signal
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Particle Size Distribution 28 Oct 2016 - 12:09:22.0996
 Example results666.smea\Import\V6_R30 1 1.psd

 Sample : watersherry

 Start+0.0996 (s)     
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Rosin Rammler

D = 541.94 N = 2.49

0 - 100 %

Size (µm) % V < % V Size (µm) % V < % V Size (µm) % V < % V

0.117 0.00 0.00

0.136 0.00 0.00

0.158 0.00 0.00

0.185 0.00 0.00

0.215 0.00 0.00

0.251 0.00 0.00

0.293 0.00 0.00

0.341 0.00 0.00

0.398 0.00 0.00

0.464 0.00 0.00

0.541 0.00 0.00

0.631 0.00 0.00

0.736 0.00 0.00

0.858 0.00 0.00

1.00 0.00 0.00

1.17 0.00 0.00

1.36 0.00 0.00

1.58 0.00 0.00

1.85 0.00 0.00

2.15 0.00 0.00

2.51 0.00 0.00

2.93 0.00 0.00

3.41 0.00 0.00

3.98 0.00 0.00

4.64 0.00 0.00

5.41 0.00 0.00

6.31 0.00 0.00

7.36 0.00 0.00

8.58 0.00 0.00

10.00 0.00 0.00

11.66 0.00 0.00

13.59 0.00 0.00

15.85 0.00 0.00

18.48 0.00 0.00

21.54 0.00 0.00

25.12 0.00 0.00

29.29 0.00 0.00

34.15 0.00 0.00

39.81 0.03 0.03

46.42 0.16 0.13

54.12 0.42 0.26

63.10 0.81 0.39

73.56 1.32 0.51

85.77 1.88 0.56

100.00 2.42 0.54

116.59 2.91 0.49

135.94 3.37 0.46

158.49 3.97 0.60

184.79 5.06 1.09

215.44 7.16 2.10

251.19 10.91 3.75

292.87 16.90 5.99

341.46 25.48 8.58

398.11 36.56 11.08

464.16 49.55 12.99

541.17 63.35 13.80

630.96 76.59 13.24

735.64 87.83 11.25

857.70 95.90 8.06

1000.00 100.00 4.10
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g. Radial distances Drop sizes and DSD experimental results at y=80mm, 

x=10mm 

 

 

 

Average Measurement Parameters 28 Oct 2016 - 12:23:18.4004
(average size distribution, weighted)

 Example results666.smea\Import\Averages\V8_R10 1 1.psd

 Sample : watersherry

 Start+0.1996 (s) ::  +0.4004 (s)     

Standard Values:

Trans = 68.5 (%) Dv(10) = 285.6 (µm) Span = 0.9809 

Cv = 1646 (PPM) Dv(50) = 496.9 (µm) D[3][2] = 407.5 (µm)

SSA = 0.0147 (m²/cc) Dv(90) = 773 (µm) D[4][3] = 512.8 (µm)

Notes:

 using catheter nozzle

Average (average size distribution, weighted):

Source file:  V8_R10 1

502 Records Averaged 0 Records Skipped

Average Range =  28 Oct 2016 - 12:23:18.1996 :: 12:23:18.4004

Measurement Values and Settings

Instrument = Spraytec - Open Spray

Lens = 300mm Path Length = 30.0 (mm)

Particulate Refractive Index = 1.33 + 0.000i Scatter start = 1

Dispersant Refractive Index = 1.00 Scatter end = 36

Particle Density = 1.00 (gm/cc) Scattering threshold = 1

Residual = 0.00   (%) Minimum size = 0.10 (µm)

Extinction analysis = Off Maximum size = 2500.00 (µm)

Multiple Scatter = On

Identification

Operator = mnska S/W =  v3.20.006

Serial Numbers: Instrument = MAL1118761 Detector = 10FT-CDL

SOP Name = -MANUAL 12- -IMPORTED MEASUREMENT-

Last Edited = Not Edited

Rapid Measurement

Trigger = Manual

Trigger Delay = 0.0 msecs
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Particle Size Distribution 28 Oct 2016 - 12:23:18.0996
 Example results666.smea\Import\V8_R10 1 1.psd

 Sample : watersherry

 Start+0.0996 (s)     
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Rosin Rammler

D = 547.99 N = 2.54

0 - 100 %

Size (µm) % V < % V Size (µm) % V < % V Size (µm) % V < % V

0.117 0.00 0.00

0.136 0.00 0.00

0.158 0.00 0.00

0.185 0.00 0.00

0.215 0.00 0.00

0.251 0.00 0.00

0.293 0.00 0.00

0.341 0.00 0.00

0.398 0.00 0.00

0.464 0.00 0.00

0.541 0.00 0.00

0.631 0.00 0.00

0.736 0.00 0.00

0.858 0.00 0.00

1.00 0.00 0.00

1.17 0.00 0.00

1.36 0.00 0.00

1.58 0.00 0.00

1.85 0.00 0.00

2.15 0.00 0.00

2.51 0.00 0.00

2.93 0.00 0.00

3.41 0.00 0.00

3.98 0.00 0.00

4.64 0.00 0.00

5.41 0.00 0.00

6.31 0.00 0.00

7.36 0.00 0.00

8.58 0.00 0.00

10.00 0.00 0.00

11.66 0.00 0.00

13.59 0.00 0.00

15.85 0.00 0.00

18.48 0.00 0.00

21.54 0.00 0.00

25.12 0.00 0.00

29.29 0.00 0.00

34.15 0.02 0.02

39.81 0.10 0.08

46.42 0.26 0.16

54.12 0.50 0.24

63.10 0.81 0.31

73.56 1.16 0.34

85.77 1.49 0.33

100.00 1.76 0.28

116.59 2.00 0.24

135.94 2.31 0.31

158.49 2.92 0.61

184.79 4.20 1.28

215.44 6.66 2.46

251.19 10.86 4.20

292.87 17.26 6.41

341.46 26.11 8.85

398.11 37.26 11.15

464.16 50.12 12.86

541.17 63.70 13.58

630.96 76.72 13.02

735.64 87.85 11.13

857.70 95.88 8.04

1000.00 100.00 4.12
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h. Radial distances Drop sizes and DSD experimental results at y=80mm, 

x=15mm 

 

 

 

Average Measurement Parameters 28 Oct 2016 - 11:44:01.4004
(average size distribution, weighted)

 Example results666.smea\Import\Averages\V8_R15a_Proper 1 1.psd

 Sample : watersherry

 Start+0.1996 (s) ::  +0.4004 (s)     

Standard Values:

Trans = 64.8 (%) Dv(10) = 274.2 (µm) Span = 1.015 

Cv = 1870 (PPM) Dv(50) = 489.5 (µm) D[3][2] = 397.1 (µm)

SSA = 0.0151 (m²/cc) Dv(90) = 771 (µm) D[4][3] = 505.3 (µm)

Notes:

 using catheter nozzle

Average (average size distribution, weighted):

Source file:  V8_R15a_Proper 1

502 Records Averaged 0 Records Skipped

Average Range =  28 Oct 2016 - 11:44:01.1996 :: 11:44:01.4004

Measurement Values and Settings

Instrument = Spraytec - Open Spray

Lens = 300mm Path Length = 30.0 (mm)

Particulate Refractive Index = 1.33 + 0.000i Scatter start = 1

Dispersant Refractive Index = 1.00 Scatter end = 36

Particle Density = 1.00 (gm/cc) Scattering threshold = 1

Residual = 0.00   (%) Minimum size = 0.10 (µm)

Extinction analysis = Off Maximum size = 2500.00 (µm)

Multiple Scatter = On

Identification

Operator = mnska S/W =  v3.20.006

Serial Numbers: Instrument = MAL1118761 Detector = 10FT-CDL

SOP Name = -MANUAL 10- -IMPORTED MEASUREMENT-

Last Edited = Not Edited

Rapid Measurement

Trigger = Manual

Trigger Delay = 0.0 msecs
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Particle Size Distribution 28 Oct 2016 - 11:44:01.0996
 Example results666.smea\Import\V8_R15a_Proper 1 1.psd

 Sample : watersherry

 Start+0.0996 (s)     
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Rosin Rammler

D = 558.74 N = 2.60

0 - 100 %

Size (µm) % V < % V Size (µm) % V < % V Size (µm) % V < % V

0.117 0.00 0.00

0.136 0.00 0.00

0.158 0.00 0.00

0.185 0.00 0.00

0.215 0.00 0.00

0.251 0.00 0.00

0.293 0.00 0.00

0.341 0.00 0.00

0.398 0.00 0.00

0.464 0.00 0.00

0.541 0.00 0.00

0.631 0.00 0.00

0.736 0.00 0.00

0.858 0.00 0.00

1.00 0.00 0.00

1.17 0.00 0.00

1.36 0.00 0.00

1.58 0.00 0.00

1.85 0.00 0.00

2.15 0.00 0.00

2.51 0.00 0.00

2.93 0.00 0.00

3.41 0.00 0.00

3.98 0.00 0.00

4.64 0.00 0.00

5.41 0.00 0.00

6.31 0.00 0.00

7.36 0.00 0.00

8.58 0.00 0.00

10.00 0.00 0.00

11.66 0.00 0.00

13.59 0.00 0.00

15.85 0.00 0.00

18.48 0.00 0.00

21.54 0.00 0.00

25.12 0.00 0.00

29.29 0.00 0.00

34.15 0.00 0.00

39.81 0.03 0.03

46.42 0.12 0.09

54.12 0.30 0.17

63.10 0.55 0.26

73.56 0.88 0.33

85.77 1.25 0.37

100.00 1.63 0.38

116.59 2.02 0.39

135.94 2.47 0.45

158.49 3.14 0.67

184.79 4.31 1.17

215.44 6.41 2.10

251.19 9.98 3.57

292.87 15.56 5.58

341.46 23.56 8.00

398.11 34.07 10.52

464.16 46.75 12.67

541.17 60.67 13.92

630.96 74.47 13.81

735.64 86.56 12.09

857.70 95.42 8.87

1000.00 100.00 4.58
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i. Radial distances Drop sizes and DSD experimental results at y=80mm, 

x=20mm 

 

 

 

Average Measurement Parameters 28 Oct 2016 - 12:05:02.4004
(average size distribution, weighted)

 Example results666.smea\Import\Averages\V8_R20 1 1.psd

 Sample : watersherry

 Start+0.1996 (s) ::  +0.4004 (s)     

Standard Values:

Trans = 68.5 (%) Dv(10) = 287.9 (µm) Span = 0.9735 

Cv = 1644 (PPM) Dv(50) = 498.8 (µm) D[3][2] = 406.8 (µm)

SSA = 0.0147 (m²/cc) Dv(90) = 773.5 (µm) D[4][3] = 514.3 (µm)

Notes:

 using catheter nozzle

Average (average size distribution, weighted):

Source file:  V8_R20 1

502 Records Averaged 0 Records Skipped

Average Range =  28 Oct 2016 - 12:05:02.1996 :: 12:05:02.4004

Measurement Values and Settings

Instrument = Spraytec - Open Spray

Lens = 300mm Path Length = 30.0 (mm)

Particulate Refractive Index = 1.33 + 0.000i Scatter start = 1

Dispersant Refractive Index = 1.00 Scatter end = 36

Particle Density = 1.00 (gm/cc) Scattering threshold = 1

Residual = 0.00   (%) Minimum size = 0.10 (µm)

Extinction analysis = Off Maximum size = 2500.00 (µm)

Multiple Scatter = On

Identification

Operator = mnska S/W =  v3.20.006

Serial Numbers: Instrument = MAL1118761 Detector = 10FT-CDL

SOP Name = -MANUAL 3- -IMPORTED MEASUREMENT-

Last Edited = Not Edited

Rapid Measurement

Trigger = Manual

Trigger Delay = 0.0 msecs
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Particle Size Distribution 28 Oct 2016 - 12:05:02.0996
 Example results666.smea\Import\V8_R20 1 1.psd

 Sample : watersherry

 Start+0.0996 (s)     
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Rosin Rammler

D = 5206.34 N = 1.16

0 - 100 %

Size (µm) % V < % V Size (µm) % V < % V Size (µm) % V < % V

0.117 0.00 0.00

0.136 0.00 0.00

0.158 0.00 0.00

0.185 0.00 0.00

0.215 0.00 0.00

0.251 0.00 0.00

0.293 0.00 0.00

0.341 0.00 0.00

0.398 0.00 0.00

0.464 0.00 0.00

0.541 0.00 0.00

0.631 0.00 0.00

0.736 0.00 0.00

0.858 0.00 0.00

1.00 0.00 0.00

1.17 0.00 0.00

1.36 0.04 0.04

1.58 0.04 0.00

1.85 0.04 0.00

2.15 0.04 0.00

2.51 0.04 0.00

2.93 0.04 0.00

3.41 0.04 0.00

3.98 0.04 0.00

4.64 0.04 0.00

5.41 0.04 0.00

6.31 0.04 0.00

7.36 0.04 0.00

8.58 0.04 0.00

10.00 0.11 0.08

11.66 0.11 0.00

13.59 0.11 0.00

15.85 0.11 0.00

18.48 0.11 0.00

21.54 0.11 0.00

25.12 0.11 0.00

29.29 0.11 0.00

34.15 0.11 0.00

39.81 0.11 0.00

46.42 0.11 0.00

54.12 0.11 0.00

63.10 0.11 0.00

73.56 0.11 0.00

85.77 0.11 0.00

100.00 0.11 0.00

116.59 0.11 0.00

135.94 0.11 0.00

158.49 0.11 0.00

184.79 0.22 0.10

215.44 0.98 0.76

251.19 3.07 2.10

292.87 7.33 4.25

341.46 14.47 7.14

398.11 24.89 10.43

464.16 38.40 13.51

541.17 54.01 15.61

630.96 70.03 16.02

735.64 84.31 14.29

857.70 94.79 10.48

1000.00 100.00 5.21
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j. Radial distances Drop sizes and DSD experimental results at y=80mm, 

x=30mm 

 

 

 

 

Average Measurement Parameters 28 Oct 2016 - 12:11:41.4004
(average size distribution, weighted)

 Example results666.smea\Import\Averages\V8_R30 1 1.psd

 Sample : watersherry

 Start+0.1996 (s) ::  +0.4004 (s)     

Standard Values:

Trans = 75.9 (%) Dv(10) = 251.8 (µm) Span = 1.082 

Cv = 1120 (PPM) Dv(50) = 473.2 (µm) D[3][2] = 374.3 (µm)

SSA = 0.0160 (m²/cc) Dv(90) = 763.7 (µm) D[4][3] = 489.9 (µm)

Notes:

 using catheter nozzle

Average (average size distribution, weighted):

Source file:  V8_R30 1

502 Records Averaged 0 Records Skipped

Average Range =  28 Oct 2016 - 12:11:41.1996 :: 12:11:41.4004

Measurement Values and Settings

Instrument = Spraytec - Open Spray

Lens = 300mm Path Length = 30.0 (mm)

Particulate Refractive Index = 1.33 + 0.000i Scatter start = 1

Dispersant Refractive Index = 1.00 Scatter end = 36

Particle Density = 1.00 (gm/cc) Scattering threshold = 1

Residual = 0.00   (%) Minimum size = 0.10 (µm)

Extinction analysis = Off Maximum size = 2500.00 (µm)

Multiple Scatter = On

Identification

Operator = mnska S/W =  v3.20.006

Serial Numbers: Instrument = MAL1118761 Detector = 10FT-CDL

SOP Name = -MANUAL 6- -IMPORTED MEASUREMENT-

Last Edited = Not Edited

Rapid Measurement

Trigger = Manual

Trigger Delay = 0.0 msecs
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Particle Size Distribution 28 Oct 2016 - 12:11:41.0996
 Example results666.smea\Import\V8_R30 1 1.psd

 Sample : watersherry

 Start+0.0996 (s)     
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Rosin Rammler

D = 6983.73 N = 1.10

0 - 100 %

Size (µm) % V < % V Size (µm) % V < % V Size (µm) % V < % V

0.117 0.00 0.00

0.136 0.00 0.00

0.158 0.00 0.00

0.185 0.00 0.00

0.215 0.00 0.00

0.251 0.00 0.00

0.293 0.00 0.00

0.341 0.00 0.00

0.398 0.00 0.00

0.464 0.00 0.00

0.541 0.00 0.00

0.631 0.00 0.00

0.736 0.00 0.00

0.858 0.00 0.00

1.00 0.00 0.00

1.17 0.00 0.00

1.36 0.04 0.04

1.58 0.04 0.00

1.85 0.04 0.00

2.15 0.04 0.00

2.51 0.04 0.00

2.93 0.04 0.00

3.41 0.04 0.00

3.98 0.04 0.00

4.64 0.04 0.00

5.41 0.04 0.00

6.31 0.04 0.00

7.36 0.04 0.00

8.58 0.04 0.00

10.00 0.12 0.08

11.66 0.12 0.00

13.59 0.12 0.00

15.85 0.12 0.00

18.48 0.12 0.00

21.54 0.12 0.00

25.12 0.12 0.00

29.29 0.12 0.00

34.15 0.12 0.00

39.81 0.12 0.00

46.42 0.12 0.00

54.12 0.12 0.00

63.10 0.12 0.00

73.56 0.12 0.00

85.77 0.12 0.00

100.00 0.12 0.00

116.59 0.12 0.00

135.94 0.12 0.00

158.49 0.12 0.00

184.79 0.12 0.00

215.44 0.35 0.23

251.19 1.53 1.18

292.87 4.60 3.07

341.46 10.60 6.00

398.11 20.33 9.73

464.16 33.90 13.57

541.17 50.40 16.50

630.96 67.82 17.43

735.64 83.48 15.66

857.70 94.75 11.26

1000.00 100.00 5.25
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k. Radial distances Drop sizes and DSD experimental results at y=100mm, 

x=10mm 

 

 

 

Average Measurement Parameters 28 Oct 2016 - 12:20:16.4004
(average size distribution, weighted)

 Example results777.smea\Import\Averages\V10_R10 1 1.psd

 Sample : watersherry

 Start+0.1996 (s) ::  +0.4004 (s)     

Standard Values:

Trans = 70.4 (%) Dv(10) = 278.9 (µm) Span = 0.9982 

Cv = 1520 (PPM) Dv(50) = 497 (µm) D[3][2] = 400 (µm)

SSA = 0.0150 (m²/cc) Dv(90) = 775 (µm) D[4][3] = 510.8 (µm)

Notes:

 using catheter nozzle

Average (average size distribution, weighted):

Source file:  V10_R10 1

502 Records Averaged 0 Records Skipped

Average Range =  28 Oct 2016 - 12:20:16.1996 :: 12:20:16.4004

Measurement Values and Settings

Instrument = Spraytec - Open Spray

Lens = 300mm Path Length = 30.0 (mm)

Particulate Refractive Index = 1.33 + 0.000i Scatter start = 1

Dispersant Refractive Index = 1.00 Scatter end = 36

Particle Density = 1.00 (gm/cc) Scattering threshold = 1

Residual = 0.00   (%) Minimum size = 0.10 (µm)

Extinction analysis = Off Maximum size = 2500.00 (µm)

Multiple Scatter = On

Identification

Operator = mnska S/W =  v3.20.006

Serial Numbers: Instrument = MAL1118761 Detector = 10FT-CDL

SOP Name = -MANUAL 11- -IMPORTED MEASUREMENT-

Last Edited = Not Edited

Rapid Measurement

Trigger = Manual

Trigger Delay = 0.0 msecs
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Particle Size Distribution 28 Oct 2016 - 12:20:16.0996
 Example results777.smea\Import\V10_R10 1 1.psd

 Sample : watersherry

 Start+0.0996 (s)     
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Rosin Rammler

D = 563.70 N = 2.55

0 - 100 %

Size (µm) % V < % V Size (µm) % V < % V Size (µm) % V < % V

0.117 0.00 0.00

0.136 0.00 0.00

0.158 0.00 0.00

0.185 0.00 0.00

0.215 0.00 0.00

0.251 0.00 0.00

0.293 0.00 0.00

0.341 0.00 0.00

0.398 0.00 0.00

0.464 0.00 0.00

0.541 0.00 0.00

0.631 0.00 0.00

0.736 0.00 0.00

0.858 0.00 0.00

1.00 0.00 0.00

1.17 0.00 0.00

1.36 0.00 0.00

1.58 0.00 0.00

1.85 0.00 0.00

2.15 0.00 0.00

2.51 0.00 0.00

2.93 0.00 0.00

3.41 0.00 0.00

3.98 0.00 0.00

4.64 0.00 0.00

5.41 0.00 0.00

6.31 0.00 0.00

7.36 0.00 0.00

8.58 0.00 0.00

10.00 0.00 0.00

11.66 0.00 0.00

13.59 0.00 0.00

15.85 0.00 0.00

18.48 0.00 0.00

21.54 0.00 0.00

25.12 0.00 0.00

29.29 0.00 0.00

34.15 0.00 0.00

39.81 0.03 0.03

46.42 0.14 0.11

54.12 0.35 0.21

63.10 0.66 0.31

73.56 1.04 0.38

85.77 1.45 0.41

100.00 1.84 0.39

116.59 2.19 0.35

135.94 2.56 0.36

158.49 3.10 0.54

184.79 4.12 1.02

215.44 6.10 1.97

251.19 9.59 3.49

292.87 15.17 5.58

341.46 23.24 8.07

398.11 33.88 10.63

464.16 46.66 12.78

541.17 60.65 14.00

630.96 74.49 13.84

735.64 86.58 12.09

857.70 95.43 8.85

1000.00 100.00 4.57
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l. Radial distances Drop sizes and DSD experimental results at y=100mm, 

x=10mm 

 

 

 

 

 

 

 

 

 

 

 

Average Measurement Parameters 28 Oct 2016 - 11:50:09.4004
(average size distribution, weighted)

 Example results777.smea\Import\Averages\V10_R15c 1 1.psd

 Sample : watersherry

 Start+0.1996 (s) ::  +0.4004 (s)     

Standard Values:

Trans = 72.5 (%) Dv(10) = 281.3 (µm) Span = 0.9898 

Cv = 1408 (PPM) Dv(50) = 499.8 (µm) D[3][2] = 404.2 (µm)

SSA = 0.0148 (m²/cc) Dv(90) = 776 (µm) D[4][3] = 513.7 (µm)

Notes:

 using catheter nozzle

Average (average size distribution, weighted):

Source file:  V10_R15c 1

502 Records Averaged 0 Records Skipped

Average Range =  28 Oct 2016 - 11:50:09.1996 :: 11:50:09.4004

Measurement Values and Settings

Instrument = Spraytec - Open Spray

Lens = 300mm Path Length = 30.0 (mm)

Particulate Refractive Index = 1.33 + 0.000i Scatter start = 1

Dispersant Refractive Index = 1.00 Scatter end = 36

Particle Density = 1.00 (gm/cc) Scattering threshold = 1

Residual = 0.00   (%) Minimum size = 0.10 (µm)

Extinction analysis = Off Maximum size = 2500.00 (µm)

Multiple Scatter = On

Identification

Operator = mnska S/W =  v3.20.006

Serial Numbers: Instrument = MAL1118761 Detector = 10FT-CDL

SOP Name = -MANUAL 13- -IMPORTED MEASUREMENT-

Last Edited = Not Edited

Rapid Measurement

Trigger = Manual

Trigger Delay = 0.0 msecs



254 
 

m. Radial distances Drop sizes and DSD experimental results at y=100mm, 

x=15mm 

 

 

 

 

 

  

 

 

 

Particle Size Distribution 28 Oct 2016 - 11:50:09.0996
 Example results777.smea\Import\V10_R15c 1 1.psd

 Sample : watersherry

 Start+0.0996 (s)     
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Rosin Rammler

D = 607.19 N = 2.30

0 - 100 %

Size (µm) % V < % V Size (µm) % V < % V Size (µm) % V < % V

0.117 0.00 0.00

0.136 0.00 0.00

0.158 0.00 0.00

0.185 0.00 0.00

0.215 0.00 0.00

0.251 0.00 0.00

0.293 0.00 0.00

0.341 0.00 0.00

0.398 0.00 0.00

0.464 0.00 0.00

0.541 0.00 0.00

0.631 0.00 0.00

0.736 0.00 0.00

0.858 0.00 0.00

1.00 0.00 0.00

1.17 0.00 0.00

1.36 0.00 0.00

1.58 0.00 0.00

1.85 0.00 0.00

2.15 0.00 0.00

2.51 0.00 0.00

2.93 0.00 0.00

3.41 0.00 0.00

3.98 0.00 0.00

4.64 0.00 0.00

5.41 0.00 0.00

6.31 0.00 0.00

7.36 0.00 0.00

8.58 0.00 0.00

10.00 0.00 0.00

11.66 0.00 0.00

13.59 0.00 0.00

15.85 0.00 0.00

18.48 0.00 0.00

21.54 0.00 0.00

25.12 0.00 0.00

29.29 0.00 0.00

34.15 0.00 0.00

39.81 0.00 0.00

46.42 0.00 0.00

54.12 0.00 0.00

63.10 0.00 0.00

73.56 2.14 2.14

85.77 2.14 0.00

100.00 2.14 0.00

116.59 2.14 0.00

135.94 2.14 0.00

158.49 2.25 0.11

184.79 2.82 0.57

215.44 4.42 1.60

251.19 7.76 3.34

292.87 13.54 5.78

341.46 22.19 8.65

398.11 33.69 11.50

464.16 47.38 13.69

541.17 62.05 14.67

630.96 76.10 14.05

735.64 87.89 11.79

857.70 96.09 8.20

1000.00 100.00 3.91
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n. Radial distances Drop sizes and DSD experimental results at y=100mm, 

x=15mm 

 

 

 

 

 

 

 

 

 

 

 

Average Measurement Parameters 28 Oct 2016 - 12:02:02.4004
(average size distribution, weighted)

 Example results777.smea\Import\Averages\V10_R20 1 1.psd

 Sample : watersherry

 Start+0.1996 (s) ::  +0.4004 (s)     

Standard Values:

Trans = 73.1 (%) Dv(10) = 268.9 (µm) Span = 1.028 

Cv = 1345 (PPM) Dv(50) = 492.4 (µm) D[3][2] = 394.2 (µm)

SSA = 0.0152 (m²/cc) Dv(90) = 775.1 (µm) D[4][3] = 506.1 (µm)

Notes:

 using catheter nozzle

Average (average size distribution, weighted):

Source file:  V10_R20 1

502 Records Averaged 0 Records Skipped

Average Range =  28 Oct 2016 - 12:02:02.1996 :: 12:02:02.4004

Measurement Values and Settings

Instrument = Spraytec - Open Spray

Lens = 300mm Path Length = 30.0 (mm)

Particulate Refractive Index = 1.33 + 0.000i Scatter start = 1

Dispersant Refractive Index = 1.00 Scatter end = 36

Particle Density = 1.00 (gm/cc) Scattering threshold = 1

Residual = 0.00   (%) Minimum size = 0.10 (µm)

Extinction analysis = Off Maximum size = 2500.00 (µm)

Multiple Scatter = On

Identification

Operator = mnska S/W =  v3.20.006

Serial Numbers: Instrument = MAL1118761 Detector = 10FT-CDL

SOP Name = -MANUAL 2- -IMPORTED MEASUREMENT-

Last Edited = Not Edited

Rapid Measurement

Trigger = Manual

Trigger Delay = 0.0 msecs
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o. Radial distances Drop sizes and DSD experimental results at y=100mm, 

x=20mm 

 

 

 

 

 

  

 

 

 

Particle Size Distribution 28 Oct 2016 - 12:02:02.1232
 Example results777.smea\Import\V10_R20 1 1.psd

 Sample : watersherry

 Start+0.1232 (s)     
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Rosin Rammler

D = 605.22 N = 2.62

0 - 100 %

Size (µm) % V < % V Size (µm) % V < % V Size (µm) % V < % V

0.117 0.00 0.00

0.136 0.00 0.00

0.158 0.00 0.00

0.185 0.00 0.00

0.215 0.00 0.00

0.251 0.00 0.00

0.293 0.00 0.00

0.341 0.00 0.00

0.398 0.00 0.00

0.464 0.00 0.00

0.541 0.00 0.00

0.631 0.00 0.00

0.736 0.00 0.00

0.858 0.00 0.00

1.00 0.00 0.00

1.17 0.00 0.00

1.36 0.00 0.00

1.58 0.00 0.00

1.85 0.00 0.00

2.15 0.00 0.00

2.51 0.00 0.00

2.93 0.00 0.00

3.41 0.00 0.00

3.98 0.00 0.00

4.64 0.00 0.00

5.41 0.00 0.00

6.31 0.00 0.00

7.36 0.00 0.00

8.58 0.00 0.00

10.00 0.00 0.00

11.66 0.00 0.00

13.59 0.00 0.00

15.85 0.00 0.00

18.48 0.00 0.00

21.54 0.00 0.00

25.12 0.00 0.00

29.29 0.00 0.00

34.15 0.00 0.00

39.81 0.01 0.01

46.42 0.10 0.09

54.12 0.30 0.20

63.10 0.62 0.32

73.56 1.02 0.40

85.77 1.43 0.42

100.00 1.77 0.34

116.59 1.97 0.19

135.94 2.02 0.05

158.49 2.03 0.02

184.79 2.25 0.22

215.44 3.18 0.92

251.19 5.52 2.34

292.87 10.10 4.57

341.46 17.57 7.48

398.11 28.22 10.65

464.16 41.68 13.46

541.17 56.88 15.19

630.96 72.12 15.25

735.64 85.48 13.35

857.70 95.16 9.68

1000.00 100.00 4.84
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p. Radial distances Drop sizes and DSD experimental results at y=100mm, 

x=30mm 

 

 

 

Average Measurement Parameters 28 Oct 2016 - 12:13:02.4004
(average size distribution, weighted)

 Example results777.smea\Import\Averages\V10_R30 1 1.psd

 Sample : watersherry

 Start+0.1996 (s) ::  +0.4004 (s)     

Standard Values:

Trans = 77.5 (%) Dv(10) = 255.5 (µm) Span = 1.066 

Cv = 1051 (PPM) Dv(50) = 483.7 (µm) D[3][2] = 378.9 (µm)

SSA = 0.0158 (m²/cc) Dv(90) = 771 (µm) D[4][3] = 497.4 (µm)

Notes:

 using catheter nozzle

Average (average size distribution, weighted):

Source file:  V10_R30 1

502 Records Averaged 0 Records Skipped

Average Range =  28 Oct 2016 - 12:13:02.1996 :: 12:13:02.4004

Measurement Values and Settings

Instrument = Spraytec - Open Spray

Lens = 300mm Path Length = 30.0 (mm)

Particulate Refractive Index = 1.33 + 0.000i Scatter start = 1

Dispersant Refractive Index = 1.00 Scatter end = 36

Particle Density = 1.00 (gm/cc) Scattering threshold = 1

Residual = 0.00   (%) Minimum size = 0.10 (µm)

Extinction analysis = Off Maximum size = 2500.00 (µm)

Multiple Scatter = On

Identification

Operator = mnska S/W =  v3.20.006

Serial Numbers: Instrument = MAL1118761 Detector = 10FT-CDL

SOP Name = -MANUAL 7- -IMPORTED MEASUREMENT-

Last Edited = Not Edited

Rapid Measurement

Trigger = Manual

Trigger Delay = 0.0 msecs
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Particle Size Distribution 28 Oct 2016 - 12:13:02.0996
 Example results777.smea\Import\V10_R30 1 1.psd

 Sample : watersherry

 Start+0.0996 (s)     
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Rosin Rammler

D = 544.53 N = 2.40

0 - 100 %

Size (µm) % V < % V Size (µm) % V < % V Size (µm) % V < % V

0.117 0.00 0.00

0.136 0.00 0.00

0.158 0.00 0.00

0.185 0.00 0.00

0.215 0.00 0.00

0.251 0.00 0.00

0.293 0.00 0.00

0.341 0.00 0.00

0.398 0.00 0.00

0.464 0.00 0.00

0.541 0.00 0.00

0.631 0.00 0.00

0.736 0.00 0.00

0.858 0.00 0.00

1.00 0.00 0.00

1.17 0.00 0.00

1.36 0.00 0.00

1.58 0.00 0.00

1.85 0.00 0.00

2.15 0.00 0.00

2.51 0.00 0.00

2.93 0.00 0.00

3.41 0.00 0.00

3.98 0.00 0.00

4.64 0.00 0.00

5.41 0.00 0.00

6.31 0.00 0.00

7.36 0.00 0.00

8.58 0.00 0.00

10.00 0.00 0.00

11.66 0.00 0.00

13.59 0.00 0.00

15.85 0.00 0.00

18.48 0.00 0.00

21.54 0.00 0.00

25.12 0.00 0.00

29.29 0.00 0.00

34.15 0.00 0.00

39.81 0.07 0.07

46.42 0.24 0.17

54.12 0.54 0.30

63.10 0.94 0.40

73.56 1.40 0.46

85.77 1.86 0.46

100.00 2.27 0.40

116.59 2.62 0.35

135.94 3.01 0.39

158.49 3.67 0.66

184.79 5.00 1.33

215.44 7.54 2.54

251.19 11.86 4.32

292.87 18.44 6.58

341.46 27.49 9.05

398.11 38.79 11.31

464.16 51.69 12.90

541.17 65.12 13.43

630.96 77.81 12.69

735.64 88.50 10.69

857.70 96.12 7.63

1000.00 100.00 3.88
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q. Radial distances Drop sizes and DSD experimental results at y=120mm, 

x=10mm 

 

 

 

 

 

 

 

 

 

 

 

 

 

Average Measurement Parameters 28 Oct 2016 - 12:17:39.4004
(average size distribution, weighted)

 Example results777.smea\Import\Averages\V12_R10 1 1.psd

 Sample : watersherry

 Start+0.1996 (s) ::  +0.4004 (s)     

Standard Values:

Trans = 76.3 (%) Dv(10) = 252.5 (µm) Span = 1.081 

Cv = 1129 (PPM) Dv(50) = 478.8 (µm) D[3][2] = 379.7 (µm)

SSA = 0.0158 (m²/cc) Dv(90) = 770 (µm) D[4][3] = 494 (µm)

Notes:

 using catheter nozzle

Average (average size distribution, weighted):

Source file:  V12_R10 1

502 Records Averaged 0 Records Skipped

Average Range =  28 Oct 2016 - 12:17:39.1996 :: 12:17:39.4004

Measurement Values and Settings

Instrument = Spraytec - Open Spray

Lens = 300mm Path Length = 30.0 (mm)

Particulate Refractive Index = 1.33 + 0.000i Scatter start = 1

Dispersant Refractive Index = 1.00 Scatter end = 36

Particle Density = 1.00 (gm/cc) Scattering threshold = 1

Residual = 0.00   (%) Minimum size = 0.10 (µm)

Extinction analysis = Off Maximum size = 2500.00 (µm)

Multiple Scatter = On

Identification

Operator = mnska S/W =  v3.20.006

Serial Numbers: Instrument = MAL1118761 Detector = 10FT-CDL

SOP Name = -MANUAL 9- -IMPORTED MEASUREMENT-

Last Edited = Not Edited

Rapid Measurement

Trigger = Manual

Trigger Delay = 0.0 msecs
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Particle Size Distribution 28 Oct 2016 - 12:17:39.0996
 Example results777.smea\Import\V12_R10 1 1.psd

 Sample : watersherry

 Start+0.0996 (s)     

20 100 1000 2000
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Rosin Rammler

D = 508.56 N = 2.73

0 - 100 %

Size (µm) % V < % V Size (µm) % V < % V Size (µm) % V < % V

0.117 0.00 0.00

0.136 0.00 0.00

0.158 0.00 0.00

0.185 0.00 0.00

0.215 0.00 0.00

0.251 0.00 0.00

0.293 0.00 0.00

0.341 0.00 0.00

0.398 0.00 0.00

0.464 0.00 0.00

0.541 0.00 0.00

0.631 0.00 0.00

0.736 0.00 0.00

0.858 0.00 0.00

1.00 0.00 0.00

1.17 0.00 0.00

1.36 0.00 0.00

1.58 0.00 0.00

1.85 0.00 0.00

2.15 0.00 0.00

2.51 0.00 0.00

2.93 0.00 0.00

3.41 0.00 0.00

3.98 0.00 0.00

4.64 0.00 0.00

5.41 0.00 0.00

6.31 0.00 0.00

7.36 0.00 0.00

8.58 0.00 0.00

10.00 0.00 0.00

11.66 0.00 0.00

13.59 0.00 0.00

15.85 0.00 0.00

18.48 0.00 0.00

21.54 0.00 0.00

25.12 0.00 0.00

29.29 0.00 0.00

34.15 0.00 0.00

39.81 0.06 0.05

46.42 0.18 0.12

54.12 0.39 0.21

63.10 0.70 0.31

73.56 1.10 0.40

85.77 1.57 0.47

100.00 2.08 0.52

116.59 2.66 0.58

135.94 3.39 0.73

158.49 4.44 1.05

184.79 6.12 1.67

215.44 8.82 2.70

251.19 13.03 4.21

292.87 19.19 6.16

341.46 27.56 8.37

398.11 38.12 10.56

464.16 50.43 12.31

541.17 63.63 13.20

630.96 76.50 12.87

735.64 87.66 11.16

857.70 95.80 8.14

1000.00 100.00 4.20
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r. Radial distances Drop sizes and DSD experimental results at y=120mm, 

x=15mm 

 

 

 

Average Measurement Parameters 28 Oct 2016 - 11:55:08.4004
(average size distribution, weighted)

 Example results777.smea\Import\Averages\V12_R15b 1 1.psd

 Sample : watersherry

 Start+0.1996 (s) ::  +0.4004 (s)     

Standard Values:

Trans = 74.7 (%) Dv(10) = 270.4 (µm) Span = 1.023 

Cv = 1251 (PPM) Dv(50) = 493.7 (µm) D[3][2] = 395 (µm)

SSA = 0.0152 (m²/cc) Dv(90) = 775.4 (µm) D[4][3] = 507.1 (µm)

Notes:

 using catheter nozzle

Average (average size distribution, weighted):

Source file:  V12_R15b 1

502 Records Averaged 0 Records Skipped

Average Range =  28 Oct 2016 - 11:55:08.1996 :: 11:55:08.4004

Measurement Values and Settings

Instrument = Spraytec - Open Spray

Lens = 300mm Path Length = 30.0 (mm)

Particulate Refractive Index = 1.33 + 0.000i Scatter start = 1

Dispersant Refractive Index = 1.00 Scatter end = 36

Particle Density = 1.00 (gm/cc) Scattering threshold = 1

Residual = 0.00   (%) Minimum size = 0.10 (µm)

Extinction analysis = Off Maximum size = 2500.00 (µm)

Multiple Scatter = On

Identification

Operator = mnska S/W =  v3.20.006

Serial Numbers: Instrument = MAL1118761 Detector = 10FT-CDL

SOP Name = -MANUAL 15- -IMPORTED MEASUREMENT-

Last Edited = Not Edited

Rapid Measurement

Trigger = Manual

Trigger Delay = 0.0 msecs
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Particle Size Distribution 28 Oct 2016 - 11:55:08.0996
 Example results777.smea\Import\V12_R15b 1 1.psd

 Sample : watersherry

 Start+0.0996 (s)     
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Rosin Rammler

D = 8413.00 N = 1.02

0 - 100 %

Size (µm) % V < % V Size (µm) % V < % V Size (µm) % V < % V

0.117 0.00 0.00

0.136 0.00 0.00

0.158 0.00 0.00

0.185 0.00 0.00

0.215 0.00 0.00

0.251 0.00 0.00

0.293 0.00 0.00

0.341 0.00 0.00

0.398 0.00 0.00

0.464 0.00 0.00

0.541 0.00 0.00

0.631 0.00 0.00

0.736 0.00 0.00

0.858 0.00 0.00

1.00 0.00 0.00

1.17 0.00 0.00

1.36 0.06 0.06

1.58 0.06 0.00

1.85 0.06 0.00

2.15 0.06 0.00

2.51 0.06 0.00

2.93 0.06 0.00

3.41 0.06 0.00

3.98 0.06 0.00

4.64 0.06 0.00

5.41 0.06 0.00

6.31 0.06 0.00

7.36 0.06 0.00

8.58 0.06 0.00

10.00 0.18 0.12

11.66 0.18 0.00

13.59 0.18 0.00

15.85 0.18 0.00

18.48 0.18 0.00

21.54 0.18 0.00

25.12 0.18 0.00

29.29 0.18 0.00

34.15 0.18 0.00

39.81 0.18 0.00

46.42 0.18 0.00

54.12 0.18 0.00

63.10 0.18 0.00

73.56 0.18 0.00

85.77 0.18 0.00

100.00 0.18 0.00

116.59 0.18 0.00

135.94 0.18 0.00

158.49 0.18 0.00

184.79 0.18 0.00

215.44 0.23 0.05

251.19 1.00 0.77

292.87 3.50 2.50

341.46 8.92 5.42

398.11 18.25 9.33

464.16 31.77 13.52

541.17 48.59 16.82

630.96 66.58 17.99

735.64 82.83 16.26

857.70 94.54 11.71

1000.00 100.00 5.46
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s. Radial distances Drop sizes and DSD experimental results at y=120mm, 

x=20mm 

 

 

Average Measurement Parameters 28 Oct 2016 - 12:00:31.4004
(average size distribution, weighted)

 Example results777.smea\Import\Averages\V12_R20 1 1.psd

 Sample : watersherry

 Start+0.1996 (s) ::  +0.4004 (s)     

Standard Values:

Trans = 74.6 (%) Dv(10) = 268.2 (µm) Span = 1.03 

Cv = 1267 (PPM) Dv(50) = 492.4 (µm) D[3][2] = 395.5 (µm)

SSA = 0.0152 (m²/cc) Dv(90) = 775.3 (µm) D[4][3] = 505.9 (µm)

Notes:

 using catheter nozzle

Average (average size distribution, weighted):

Source file:  V12_R20 1

502 Records Averaged 0 Records Skipped

Average Range =  28 Oct 2016 - 12:00:31.1996 :: 12:00:31.4004

Measurement Values and Settings

Instrument = Spraytec - Open Spray

Lens = 300mm Path Length = 30.0 (mm)

Particulate Refractive Index = 1.33 + 0.000i Scatter start = 1

Dispersant Refractive Index = 1.00 Scatter end = 36

Particle Density = 1.00 (gm/cc) Scattering threshold = 1

Residual = 0.00   (%) Minimum size = 0.10 (µm)

Extinction analysis = Off Maximum size = 2500.00 (µm)

Multiple Scatter = On

Identification

Operator = mnska S/W =  v3.20.006

Serial Numbers: Instrument = MAL1118761 Detector = 10FT-CDL

SOP Name = -MANUAL 1- -IMPORTED MEASUREMENT-

Last Edited = Not Edited

Rapid Measurement

Trigger = Manual

Trigger Delay = 0.0 msecs
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Particle Size Distribution 28 Oct 2016 - 12:00:31.0996
 Example results777.smea\Import\V12_R20 1 1.psd

 Sample : watersherry

 Start+0.0996 (s)     

50 100 1000 2000
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Rosin Rammler

D = 696.58 N = 2.32

0 - 100 %

Size (µm) % V < % V Size (µm) % V < % V Size (µm) % V < % V

0.117 0.00 0.00

0.136 0.00 0.00

0.158 0.00 0.00

0.185 0.00 0.00

0.215 0.00 0.00

0.251 0.00 0.00

0.293 0.00 0.00

0.341 0.00 0.00

0.398 0.00 0.00

0.464 0.00 0.00

0.541 0.00 0.00

0.631 0.00 0.00

0.736 0.00 0.00

0.858 0.00 0.00

1.00 0.00 0.00

1.17 0.00 0.00

1.36 0.00 0.00

1.58 0.00 0.00

1.85 0.00 0.00

2.15 0.00 0.00

2.51 0.00 0.00

2.93 0.00 0.00

3.41 0.00 0.00

3.98 0.00 0.00

4.64 0.00 0.00

5.41 0.00 0.00

6.31 0.00 0.00

7.36 0.00 0.00

8.58 0.00 0.00

10.00 0.00 0.00

11.66 0.00 0.00

13.59 0.00 0.00

15.85 0.00 0.00

18.48 0.00 0.00

21.54 0.00 0.00

25.12 0.00 0.00

29.29 0.00 0.00

34.15 0.00 0.00

39.81 0.00 0.00

46.42 0.00 0.00

54.12 0.00 0.00

63.10 0.00 0.00

73.56 0.00 0.00

85.77 2.33 2.33

100.00 2.33 0.00

116.59 2.33 0.00

135.94 2.33 0.00

158.49 2.33 0.00

184.79 2.33 0.00

215.44 2.51 0.18

251.19 3.41 0.90

292.87 6.00 2.58

341.46 11.52 5.53

398.11 21.08 9.56

464.16 34.96 13.88

541.17 52.07 17.11

630.96 69.95 17.87

735.64 85.42 15.47

857.70 95.78 10.36

1000.00 100.00 4.22
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t. Radial distances Drop sizes and DSD experimental results at y=120mm, 

x=20mm 

 

 

 

 

 

 

 

 

 

 

 

Average Measurement Parameters 28 Oct 2016 - 12:14:42.4004
(average size distribution, weighted)

 Example results777.smea\Import\Averages\V12_R30 1 1.psd

 Sample : watersherry

 Start+0.1996 (s) ::  +0.4004 (s)     

Standard Values:

Trans = 72.5 (%) Dv(10) = 270 (µm) Span = 1.027 

Cv = 1386 (PPM) Dv(50) = 490.2 (µm) D[3][2] = 394.8 (µm)

SSA = 0.0152 (m²/cc) Dv(90) = 773.2 (µm) D[4][3] = 504.8 (µm)

Notes:

 using catheter nozzle

Average (average size distribution, weighted):

Source file:  V12_R30 1

502 Records Averaged 0 Records Skipped

Average Range =  28 Oct 2016 - 12:14:42.1996 :: 12:14:42.4004

Measurement Values and Settings

Instrument = Spraytec - Open Spray

Lens = 300mm Path Length = 30.0 (mm)

Particulate Refractive Index = 1.33 + 0.000i Scatter start = 1

Dispersant Refractive Index = 1.00 Scatter end = 36

Particle Density = 1.00 (gm/cc) Scattering threshold = 1

Residual = 0.00   (%) Minimum size = 0.10 (µm)

Extinction analysis = Off Maximum size = 2500.00 (µm)

Multiple Scatter = On

Identification

Operator = mnska S/W =  v3.20.006

Serial Numbers: Instrument = MAL1118761 Detector = 10FT-CDL

SOP Name = -MANUAL 8- -IMPORTED MEASUREMENT-

Last Edited = Not Edited

Rapid Measurement

Trigger = Manual

Trigger Delay = 0.0 msecs
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u. Radial distances Drop sizes and DSD experimental results at y=120mm, 

x=30mm 

 

  

Particle Size Distribution 28 Oct 2016 - 12:14:42.0996
 Example results777.smea\Import\V12_R30 1 1.psd

 Sample : watersherry

 Start+0.0996 (s)     

20 100 1000 2000

Particle Diameter (µm)
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Rosin Rammler

D = 547.32 N = 2.50

0 - 100 %

Size (µm) % V < % V Size (µm) % V < % V Size (µm) % V < % V

0.117 0.00 0.00

0.136 0.00 0.00

0.158 0.00 0.00

0.185 0.00 0.00

0.215 0.00 0.00

0.251 0.00 0.00

0.293 0.00 0.00

0.341 0.00 0.00

0.398 0.00 0.00

0.464 0.00 0.00

0.541 0.00 0.00

0.631 0.00 0.00

0.736 0.00 0.00

0.858 0.00 0.00

1.00 0.00 0.00

1.17 0.00 0.00

1.36 0.00 0.00

1.58 0.00 0.00

1.85 0.00 0.00

2.15 0.00 0.00

2.51 0.00 0.00

2.93 0.00 0.00

3.41 0.00 0.00

3.98 0.00 0.00

4.64 0.00 0.00

5.41 0.00 0.00

6.31 0.00 0.00

7.36 0.00 0.00

8.58 0.00 0.00

10.00 0.00 0.00

11.66 0.00 0.00

13.59 0.00 0.00

15.85 0.00 0.00

18.48 0.00 0.00

21.54 0.00 0.00

25.12 0.00 0.00

29.29 0.00 0.00

34.15 0.00 0.00

39.81 0.04 0.04

46.42 0.17 0.13

54.12 0.41 0.24

63.10 0.76 0.35

73.56 1.19 0.43

85.77 1.65 0.46

100.00 2.10 0.45

116.59 2.51 0.41

135.94 2.95 0.44

158.49 3.60 0.65

184.79 4.81 1.21

215.44 7.07 2.26

251.19 10.96 3.89

292.87 17.00 6.05

341.46 25.53 8.52

398.11 36.47 10.94

464.16 49.29 12.82

541.17 63.00 13.70

630.96 76.24 13.25

735.64 87.60 11.36

857.70 95.80 8.20

1000.00 100.00 4.20
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velocity density fraction surface top bottom

0 753.323 0 0.404755 0 6439.69 1829.468 6100447 0.000299891

1 3.56E-03 754.159 3.56E-03 0.40249 3.56E-03 6403.39 1821.249 6066059 0.000300236

7.11E-03 761.038 7.11E-03 0.383639 7.11E-03 6102.41 1751.783 5780935 0.000303028

1.07E-02 771.091 1.07E-02 0.356492 1.07E-02 5668.83 1649.327 5370196 0.000307126

1.42E-02 780.424 1.42E-02 0.33177 1.42E-02 5273.68 1553.528 4995863 0.000310963

1.78E-02 786.421 1.78E-02 0.316246 1.78E-02 5025.32 1492.215 4760586 0.000313452

2.13E-02 790.134 2.13E-02 0.306962 2.13E-02 4876.24 1455.247 4619360 0.000315032

2.49E-02 791.701 2.49E-02 0.303219 2.49E-02 4815.86 1440.353 4562160 0.000315717

2.84E-02 792.81 2.84E-02 0.300627 2.84E-02 4773.74 1430.041 4522259 0.000316223

3.20E-02 793.524 3.20E-02 0.299065 3.20E-02 4748.05 1423.892 4497923 0.000316566

density fraction surface top bottom d32

2 0 874.861 0 0.195688 0 3134.06 1027.199 2968958 0.00034598

3.56E-03 876.486 3.56E-03 0.190746 3.56E-03 3055.09 1003.117 2894148 0.000346602

7.11E-03 886.858 7.11E-03 0.160536 7.11E-03 2571.34 854.2358 2435882 0.000350689

1.07E-02 901.595 1.07E-02 0.118736 1.07E-02 1901.4 642.3107 1801234 0.000356595

1.42E-02 914.687 1.42E-02 8.28E-02 1.42E-02 1325.11 454.5564 1255303 0.000362109

1.78E-02 921.805 1.78E-02 6.38E-02 1.78E-02 1019.45 352.9206 965745.4 0.000365439

2.13E-02 925.201 2.13E-02 5.51E-02 2.13E-02 879.673 305.9514 833331.8 0.000367142

2.49E-02 926.128 2.49E-02 5.29E-02 2.49E-02 843.88 293.968 799424.4 0.000367725

2.84E-02 926.675 2.84E-02 5.16E-02 2.84E-02 822.585 286.7485 779251.2 0.000367979

3.20E-02 926.968 3.20E-02 5.09E-02 3.20E-02 811.863 283.0849 769094.1 0.000368076

3 density fraction surface top botto

0 911.925 0 0.17304 0 2770.04 946.797 2624114 0.000360806

3.56E-03 912.789 3.56E-03 0.168287 3.56E-03 2694.18 921.6631 2552251 0.000361118

7.11E-03 918.896 7.11E-03 0.13672 7.11E-03 2189.35 753.7888 2074015 0.000363444

1.07E-02 927.802 1.07E-02 9.15E-02 1.07E-02 1465.56 509.2787 1388354 0.000366822

1.42E-02 935.988 1.42E-02 5.07E-02 1.42E-02 812.716 284.832 769902.1 0.000369959

1.78E-02 940.545 1.78E-02 2.84E-02 1.78E-02 454.209 160.0437 430281.3 0.000371951

2.13E-02 942.818 2.13E-02 1.75E-02 2.13E-02 280.225 99.13562 265462.7 0.000373445

2.49E-02 943.435 2.49E-02 1.47E-02 2.49E-02 234.51 83.207 222156 0.000374543

2.84E-02 943.83 2.84E-02 1.29E-02 2.84E-02 206.221 73.33389 195357.3 0.000375383

3.20E-02 944.017 3.20E-02 1.22E-02 3.20E-02 193.885 69.059 183671.1 0.000375993

density fraction surface top bottom d32

4 0 926.556 0 0.172752 0 2764.02 960.3864 2618411 0.000366782

3.56E-03 927.133 3.56E-03 0.167589 3.56E-03 2681.41 932.2638 2540153 0.000367011

7.11E-03 930.954 7.11E-03 0.134738 7.11E-03 2155.77 752.6093 2042204 0.000368528

1.07E-02 936.493 1.07E-02 8.76E-02 1.07E-02 1401.06 492.0668 1327252 0.000370741

1.42E-02 941.536 1.42E-02 4.51E-02 1.42E-02 721.355 254.7486 683354 0.000372792

1.78E-02 944.249 1.78E-02 2.25E-02 1.78E-02 359.255 127.2753 340329.4 0.000373977

2.13E-02 945.507 2.13E-02 1.22E-02 2.13E-02 194.555 69.04886 184305.8 0.000374643

2.49E-02 945.807 2.49E-02 9.79E-03 2.49E-02 156.435 55.5466 148194 0.000374824

2.84E-02 945.992 2.84E-02 8.37E-03 2.84E-02 133.786 47.51612 126738.2 0.000374916

3.20E-02 946.075 3.20E-02 7.77E-03 3.20E-02 124.236 44.12333 117691.2 0.000374907

density fractio surface top bottom d32

5 0 923.654 0 0.176788 0 2828.88 979.7457 2679855 0.000365597

3.56E-03 924.067 3.56E-03 0.174109 3.56E-03 2786.08 965.3303 2639309 0.000365751

7.11E-03 928.465 7.11E-03 0.141616 7.11E-03 2266.26 788.913 2146873 0.000367471

1.07E-02 935.054 1.07E-02 9.29E-02 1.07E-02 1487.31 521.3545 1408959 0.000370028

1.42E-02 941.028 1.42E-02 4.91E-02 1.42E-02 786.576 277.3804 745139.2 0.000372253

1.78E-02 944.141 1.78E-02 2.63E-02 1.78E-02 421.324 148.9656 399128.7 0.000373227

2.13E-02 945.485 2.13E-02 1.65E-02 2.13E-02 264.043 93.40049 250133.2 0.000373403

2.49E-02 945.741 2.49E-02 1.47E-02 2.49E-02 235.092 83.14652 222707.4 0.000373344

2.84E-02 945.834 2.84E-02 1.41E-02 2.84E-02 225.929 79.89044 214027.1 0.000373273

3.20E-02 945.828 3.20E-02 1.42E-02 3.20E-02 228.279 80.70996 216253.3 0.00037322

density fract surface top bottom d32

6 0 932.928 0 0.175136 0 2801.6 980.3357 2654012 0.000369379

3.56E-03 933.11 3.56E-03 0.1725 3.56E-03 2759.18 965.7689 2613826 0.000369485

7.11E-03 935.616 7.11E-03 0.140897 7.11E-03 2253.31 790.9529 2134606 0.000370538

1.07E-02 939.412 1.07E-02 9.33E-02 1.07E-02 1491.87 525.9646 1413278 0.000372159

1.42E-02 942.861 1.42E-02 5.01E-02 1.42E-02 800.377 283.4212 758213.1 0.000373801

1.78E-02 944.652 1.78E-02 2.76E-02 1.78E-02 440.749 156.5557 417530.3 0.000374956

2.13E-02 945.42 2.13E-02 1.79E-02 2.13E-02 285.161 101.4984 270138.7 0.000375727

2.49E-02 945.542 2.49E-02 1.63E-02 2.49E-02 259.367 92.3248 245703.5 0.000375757

2.84E-02 945.554 2.84E-02 1.59E-02 2.84E-02 253.162 90.11167 239825.4 0.000375739

3.20E-02 945.513 3.20E-02 1.62E-02 3.20E-02 258.743 92.06782 245112.4 0.000375615

density frac surface top bottom d32

7 0 931.831 0 0.176976 0 2831.51 989.4703 2682346 0.000368882

3.56E-03 931.814 3.56E-03 0.177013 3.56E-03 2832.05 989.6591 2682858 0.000368882

7.11E-03 934.402 7.11E-03 0.147118 7.11E-03 2353.72 824.8041 2229726 0.000369913

1.07E-02 938.547 1.07E-02 9.93E-02 1.07E-02 1588.84 559.2623 1505140 0.000371568

1.42E-02 942.501 1.42E-02 5.35E-02 1.42E-02 855.435 302.4122 810370.7 0.000373178

1.78E-02 944.681 1.78E-02 2.78E-02 1.78E-02 444.429 157.5223 421016.5 0.000374148

2.13E-02 945.814 2.13E-02 1.42E-02 2.13E-02 227.032 80.62024 215072 0.000374852

2.49E-02 946.109 2.49E-02 1.06E-02 2.49E-02 169.515 60.24236 160584.9 0.000375143

2.84E-02 946.293 2.84E-02 8.35E-03 2.84E-02 133.207 47.41274 126189.7 0.000375726

3.20E-02 946.406 3.20E-02 7.23E-03 3.20E-02 115.172 41.043 109104.7 0.00037618

density frac surface top bot d32

8 0 933.281 0 0.174703 0 2795.19 978.2819 2647939 0.00036945

3.56E-03 933.239 3.56E-03 0.175192 3.56E-03 2803.13 980.976 2655461 0.000369418

7.11E-03 935.66 7.11E-03 0.144515 7.11E-03 2312.43 811.3014 2190611 0.000370354

1.07E-02 939.524 1.07E-02 9.56E-02 1.07E-02 1530.47 539.0744 1449845 0.000371815

1.42E-02 943.194 1.42E-02 4.93E-02 1.42E-02 789.581 279.0172 747985.9 0.000373025

1.78E-02 945.188 1.78E-02 2.41E-02 1.78E-02 386.638 136.7054 366269.9 0.000373237

2.13E-02 946.214 2.13E-02 1.13E-02 2.13E-02 181.811 64.11414 172233.2 0.000372252

2.49E-02 946.454 2.49E-02 8.36E-03 2.49E-02 134.936 47.4726 127827.6 0.00037138

2.84E-02 946.652 2.84E-02 6.07E-03 2.84E-02 98.4109 34.50461 93226.61 0.000370115

3.20E-02 946.761 3.20E-02 4.97E-03 3.20E-02 80.664 28.23843 76414.62 0.000369542

9 density fraction surface top bottom d32

0 933.36 0 0.17692 0 2830.62 990.7803 2681503 0.000369487

3.56E-03 933.138 3.56E-03 0.179811 3.56E-03 2876.98 1006.731 2725421 0.000369385

7.11E-03 935.421 7.11E-03 0.151005 7.11E-03 2416.21 847.5195 2288924 0.00037027

1.07E-02 939.247 1.07E-02 0.102757 1.07E-02 1644.39 579.0852 1557764 0.000371741

1.42E-02 942.989 1.42E-02 5.55E-02 1.42E-02 887.846 313.7681 841074.3 0.000373056

1.78E-02 945.117 1.78E-02 2.81E-02 1.78E-02 451.156 159.615 427389.1 0.000373465

2.13E-02 946.282 2.13E-02 1.29E-02 2.13E-02 207.986 73.44322 197029.3 0.000372753

2.49E-02 946.582 2.49E-02 8.91E-03 2.49E-02 143.613 50.58246 136047.5 0.0003718

2.84E-02 946.802 2.84E-02 6.02E-03 2.84E-02 97.5909 34.20701 92449.81 0.000370006

3.20E-02 946.906 3.20E-02 4.77E-03 3.20E-02 77.5849 27.10863 73497.73 0.000368836
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liquid denisty fraction surface top bot d32

viscosity 0 939.221 0 0.194935 0 3085.51 1098.522 3077984 0.000357

axial 0.01 946.857 0.01 0.166941 0.01 2635.66 948.4155 2629232 0.000361

2 0.02 949.804 0.02 0.156474 0.02 2467.11 891.7178 2461093 0.000362

0.03 954.619 0.03 0.13941 0.03 2192.82 798.5006 2187472 0.000363

0.04 955.593 0.04 0.136402 0.04 2144.34 782.0688 2139110 0.000366

0.05 958.226 0.05 0.127617 0.05 2002.79 733.7156 1997905 0.000367

density fraction surface top bottom

4 0 943.693 0 0.194814 0 3086.66 997.561 1103.068 3079132

0.01 949.167 0.01 0.169664 0.01 2684.18 997.561 966.2368 2677633

0.02 951.082 0.02 0.160355 0.02 2535.68 997.561 915.0645 2529495

0.03 954.539 0.03 0.145312 0.03 2296.11 997.561 832.2358 2290510

0.04 955.037 0.04 0.142576 0.04 2252.61 997.561 816.9921 2247116

0.05 956.783 0.05 0.134827 0.05 2129.5 997.561 774.0011 2124306

6 density fraction surface top bott d32

0 926.366 0 0.209291 0 3358.49 1163.28 3350299 0.000347

0.01 934.649 0.01 0.181237 0.01 2910.99 1016.358 2903890 0.00035

0.02 938.08 0.02 0.170038 0.02 2732.26 957.0555 2725596 0.000351

0.03 943.707 0.03 0.152152 0.03 2446.66 861.5214 2440693 0.000353

0.04 944.863 0.04 0.148602 0.04 2389.91 842.4512 2384081 0.000353

0.05 947.999 0.05 0.138968 0.05 2235.92 790.4492 2230467 0.000354

density fraction surface top bot

8 0 931.342 0 0.209682 0 3299.99 1171.714 3291941 0.000356

0.01 939.704 0.01 0.181181 0.01 2839.23 1021.539 2832305 0.000361

0.02 943.11 0.02 0.170025 0.02 2658.88 962.1137 2652395 0.000363

0.03 948.306 0.03 0.152896 0.03 2382.4 869.9532 2376589 0.000366

0.04 949.393 0.04 0.149718 0.04 2331.26 852.8473 2325574 0.000367

0.05 952.217 0.05 0.140888 0.05 2189.08 804.9357 2183741 0.000369

density fraction surface ton bot

10 0 935.691 0 0.210339 0 3379.72 1180.874 3371477 0.00035

0.01 942.322 0.01 0.183386 0.01 2948.04 1036.852 2940850 0.000353

0.02 945.177 0.02 0.172403 0.02 2772.03 977.7081 2765269 0.000354

0.03 949.82 0.03 0.154718 0.03 2488.47 881.7255 2482401 0.000355

0.04 950.831 0.04 0.151003 0.04 2428.92 861.47 2422996 0.000356

0.05 953.43 0.05 0.141314 0.05 2273.54 808.398 2267995 0.000356

density fraction surface top bot d32

15 0 936.146 0 0.20336 0 3292.84 1142.248 3284809 0.000348

0.01 942.922 0.01 0.176509 0.01 2864.42 998.6053 2857434 0.000349

0.02 945.541 0.02 0.166236 0.02 2700.41 943.0977 2693824 0.00035

0.03 949.875 0.03 0.149848 0.03 2438.12 854.0212 2432173 0.000351

0.04 950.711 0.04 0.146544 0.04 2385.38 835.926 2379562 0.000351

0.05 953.088 0.05 0.137592 0.05 2242.09 786.8237 2236622 0.000352

0.05 6 7 8 9 0.1

visc

2 0.000367 0.000366 0.000363 0.000362 0.000361 0.000357

4 0.000364 0.000364 0.000363 0.000362 0.000361 0.000358

6 0.000354 0.000353 0.000353 0.000351 0.00035 0.000347

8 0.000369 0.000367 0.000366 0.000363 0.000361 0.000356

10 0.000356 0.000356 0.000355 0.000354 0.000353 0.00035

15 0.000352 0.000351 0.000351 0.00035 0.000349 0.000348

viscosity

0.000289 367.2424 365.6048 363.3409 362.326 360.7197 356.8966

0.000489 364.3548 363.5737 363.3409 361.7577 360.8548 358.2398

0.000689 354.3874 353.3652 352.9824 351.1362 349.9987 347.2169

0.000889 368.604 366.7255 366.0511 362.7339 360.6741 355.934

0.001089 356.4373 355.5392 355.1907 353.5671 352.5688 350.2542

0.001589 351.7912 351.294 351.135 350.0963 349.4763 347.7365
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surface tension density fraction surface top bot d32

40 0 939.704 0 0.181181 0 2839.23 1021.539 2832305 0.000361 360.6741

y=60 0.003556 941.079 0.003556 0.176454 0.003556 2761.52 996.3429 2754785 0.000362 361.6772

0.007111 949.687 0.007111 0.147683 0.007111 2295.28 841.5158 2289682 0.000368 367.5252

0.010667 962.025 0.010667 0.107501 0.010667 1645.82 620.5119 1641806 0.000378 377.9447

0.014222 973.322 0.014222 0.072141 0.014222 1076.46 421.3009 1073835 0.000392 392.3331

0.017778 979.728 0.017778 0.052691 0.017778 765.045 309.7371 763179.1 0.000406 405.8511

0.021333 983.003 0.021333 0.043194 0.021333 614.903 254.7578 613403.3 0.000415 415.3186

0.024889 984.025 0.024889 0.04042 0.024889 572.748 238.6475 571351.1 0.000418 417.6898

0.028444 984.731 0.028444 0.038538 0.028444 545.104 227.6992 543774.5 0.000419 418.7382

0.032 985.139 0.032 0.037491 0.032 531.157 221.6007 529861.5 0.000418 418.2238

density density surface liq dens d32

72 0 939.704 0 0.181181 0 2839.23 997.561 360.6741 364.6741

y=60 0.003556 941.079 0.003556 0.176454 0.003556 2761.52 997.561 361.6772 365.6772

0.007111 949.687 0.007111 0.147683 0.007111 2295.28 997.561 367.5252 371.5252

0.010667 962.025 0.010667 0.107501 0.010667 1645.82 997.561 377.9447 381.9447

0.014222 973.322 0.014222 0.072141 0.014222 1076.46 997.561 392.3331 396.3331

0.017778 979.728 0.017778 0.052691 0.017778 765.045 997.561 405.8511 409.8511

0.021333 983.003 0.021333 0.043194 0.021333 614.903 997.561 415.3186 419.3186

0.024889 984.025 0.024889 0.04042 0.024889 572.748 997.561 417.6898 421.6898

0.028444 984.731 0.028444 0.038538 0.028444 545.104 997.561 418.7382 422.7382

0.032 985.139 0.032 0.037491 0.032 531.157 997.561 418.2238 422.2238

density fraction surface top bott

40 0 948.306 0 0.152896 0 2382.4 869.9532 2376589 0.000366 366.0511

y=80 0.003556 948.833 0.003556 0.151213 0.003556 2354.09 860.8553 2348348 0.000367 366.579

0.007111 952.828 0.007111 0.137867 0.007111 2137.91 788.1812 2132696 0.00037 369.5704

0.010667 959.712 0.010667 0.115522 0.010667 1777.92 665.2071 1773584 0.000375 375.0638

0.014222 967.205 0.014222 0.091921 0.014222 1399.5 533.4381 1396087 0.000382 382.0953

0.017778 974.516 0.017778 0.069384 0.017778 1039.47 405.6961 1036935 0.000391 391.2455

0.021333 978.83 0.021333 0.056553 0.021333 836.948 332.1346 834906.7 0.000398 397.8105

0.024889 981.688 0.024889 0.04813 0.024889 704.903 283.4889 703183.7 0.000403 403.1506

0.028444 983.197 0.028444 0.043643 0.028444 635.627 257.4574 634076.7 0.000406 406.0351

0.032 984.26 0.032 0.04045 0.032 586.939 238.8781 585507.5 0.000408 407.9848

72 density fraction surface d32

y=80 0 948.306 0 0.152896 0 2382.4 366.0511 370.0511

0.003556 948.833 0.003556 0.151213 0.003556 2354.09 366.579 370.579

0.007111 952.828 0.007111 0.137867 0.007111 2137.91 369.5704 373.5704

0.010667 959.712 0.010667 0.115522 0.010667 1777.92 375.0638 379.0638

0.014222 967.205 0.014222 0.091921 0.014222 1399.5 382.0953 386.0953

0.017778 974.516 0.017778 0.069384 0.017778 1039.47 391.2455 395.2455

0.021333 978.83 0.021333 0.056553 0.021333 836.948 397.8105 401.8105

0.024889 981.688 0.024889 0.04813 0.024889 704.903 403.1506 407.1506

0.028444 983.197 0.028444 0.043643 0.028444 635.627 406.0351 410.0351

0.032 984.26 0.032 0.04045 0.032 586.939 407.9848 411.9848
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air density density fraction surface top bottom d32

0.6 0 929.571 0 0.200054 0 3146.22 1115.786 3138546 0.000356

1.00E-02 937.264 1.00E-02 0.175675 1.00E-02 2757.02 987.9231 2750296 0.000359

2.00E-02 940.559 2.00E-02 0.165883 2.00E-02 2600.89 936.1365 2594546 0.000361

3.00E-02 945.99 3.00E-02 0.149896 3.00E-02 2346.19 850.8007 2340468 0.000364

4.00E-02 947.127 4.00E-02 0.14662 4.00E-02 2294.06 833.2066 2288465 0.000364

5.00E-02 950.132 5.00E-02 0.138006 5.00E-02 2157.03 786.7435 2151769 0.000366

density fraction surface top bot d32

0.8 0 938.177 0 0.211705 0 3388.12 1191.701 3379856 0.000353

1.00E-02 945.216 1.00E-02 0.184775 1.00E-02 2957.4 1047.914 2950187 0.000355

2.00E-02 948.122 2.00E-02 0.173781 2.00E-02 2781.51 988.5935 2774726 0.000356

3.00E-02 952.728 3.00E-02 0.156381 3.00E-02 2503.18 893.9313 2497075 0.000358

4.00E-02 953.658 4.00E-02 0.152975 4.00E-02 2448.65 875.315 2442678 0.000358

5.00E-02 956.208 5.00E-02 0.14337 5.00E-02 2294.92 822.5492 2289323 0.000359

density fraction surface top bottom

1 0 928.114 0 0.219453 0 3492.1 997.561 1222.064 3483583

1.00E-02 936.837 1.00E-02 0.187082 1.00E-02 2974.93 997.561 1051.592 2967674

2.00E-02 940.207 2.00E-02 0.174307 2.00E-02 2770.49 997.561 983.308 2763733

3.00E-02 945.551 3.00E-02 0.154829 3.00E-02 2458.65 997.561 878.3923 2452653

4.00E-02 946.477 4.00E-02 0.151262 4.00E-02 2401.59 997.561 858.996 2395733

5.00E-02 949.146 5.00E-02 0.141529 5.00E-02 2245.75 997.561 805.9901 2240273

1.3 density fraction surface top bot d3

0 944.932 0 0.203362 0 3278.68 1152.98 3270683 0.000353

1.00E-02 950.958 1.00E-02 0.176052 1.00E-02 2840.31 1004.508 2833382 0.000355

2.00E-02 953.519 2.00E-02 0.164558 2.00E-02 2655.32 941.4551 2648844 0.000355

3.00E-02 957.538 3.00E-02 0.146764 3.00E-02 2368.65 843.1926 2362873 0.000357

4.00E-02 958.289 4.00E-02 0.14343 4.00E-02 2314.94 824.6843 2309294 0.000357

5.00E-02 960.371 5.00E-02 0.134291 5.00E-02 2167.59 773.8151 2162303 0.000358

density fraction surface top bot d32

2 0 945.091 0 0.197388 0 3163.61 1119.298 3155894 0.000355

1.00E-02 950.545 1.00E-02 0.172056 1.00E-02 2756.57 981.2818 2749847 0.000357

2.00E-02 952.615 2.00E-02 0.162346 2.00E-02 2600.32 927.9194 2593978 0.000358

3.00E-02 956.204 3.00E-02 0.146645 3.00E-02 2347.67 841.3352 2341944 0.000359

4.00E-02 956.842 4.00E-02 0.14353 4.00E-02 2297.58 824.0132 2291976 0.00036

5.00E-02 958.763 5.00E-02 0.135064 5.00E-02 2161.37 776.9662 2156098 0.00036

density surface top bottom d32

0 931.309 fraction 0 3240.73 1127.422 3232826 0.000349

4 1.00E-02 939.327 0 0.201763 1.00E-02 2794.18 979.6936 2787365 0.000351

2.00E-02 942.569 1.00E-02 0.173829 2.00E-02 2618.01 920.7693 2611625 0.000353

3.00E-02 947.714 2.00E-02 0.162812 3.00E-02 2340.98 827.3373 2335270 0.000354

4.00E-02 948.706 3.00E-02 0.145497 4.00E-02 2289.91 810.0166 2284325 0.000355

5.00E-02 951.403 4.00E-02 0.142302 5.00E-02 2148.59 761.8911 2143350 0.000355

5.00E-02 0.133468

6 density fraction surface top bottom d32

0 931.82 0 0.2043 0 3273.49 1142.225 3265506 0.00035

1.00E-02 939.284 1.00E-02 0.177425 1.00E-02 2843.55 999.9148 2836615 0.000353

2.00E-02 942.365 2.00E-02 0.166618 2.00E-02 2670.71 942.0898 2664196 0.000354

3.00E-02 947.39 3.00E-02 0.149302 3.00E-02 2393.72 848.6833 2387882 0.000355

4.00E-02 948.396 4.00E-02 0.145843 4.00E-02 2338.39 829.9015 2332687 0.000356

5.00E-02 951.107 5.00E-02 0.136597 5.00E-02 2190.51 779.5102 2185167 0.000357

density fraction surface top bott d32

0 929.847 0 0.206921 0 3299.99 1154.429 3291941 0.000351

8 1.00E-02 938.009 1.00E-02 0.179113 1.00E-02 2854.96 1008.058 2847997 0.000354

2.00E-02 941.413 2.00E-02 0.16794 2.00E-02 2676.27 948.6054 2669743 0.000355

3.00E-02 946.765 3.00E-02 0.150356 3.00E-02 2395.01 854.1108 2389169 0.000357

4.00E-02 947.864 4.00E-02 0.146979 4.00E-02 2341.04 835.8966 2335330 0.000358

5.00E-02 950.744 5.00E-02 0.137804 5.00E-02 2194.29 786.098 2188938 0.000359

density fraction surface top bottom d32

0 932.871 0 0.207272 0 3316.9 1160.148 3308810 0.000351

10 1.00E-02 940.521 1.00E-02 0.179205 1.00E-02 2867.55 1011.276 2860556 0.000354

2.00E-02 943.622 2.00E-02 0.167958 2.00E-02 2687.38 950.9332 2680825 0.000355

3.00E-02 948.604 3.00E-02 0.150189 3.00E-02 2402.68 854.8193 2396820 0.000357

4.00E-02 949.547 4.00E-02 0.146831 4.00E-02 2348.88 836.5376 2343151 0.000357

5.00E-02 952.158 5.00E-02 0.137617 5.00E-02 2201.2 786.1988 2195831 0.000358
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liquid density fraction surface top bottom d32

density 0.1 968.732 0.1 0.206545 0.1 3317.43 1000 1200.521 3317430 0.00036188 361.882694

9.00E-02 970.796 9.00E-02 0.180996 9.00E-02 2907.85 1000 1054.261 2907850 0.00036256 362.5569259

1000 8.00E-02 971.451 8.00E-02 0.170693 8.00E-02 2742.29 1000 994.9193 2742290 0.00036281 362.8060173

7.00E-02 972.879 7.00E-02 0.154327 7.00E-02 2479.09 1000 900.849 2479090 0.00036338 363.3788949

6.00E-02 972.902 6.00E-02 0.151225 6.00E-02 2429.17 1000 882.7626 2429170 0.0003634 363.4009269

5.00E-02 973.484 5.00E-02 0.142571 5.00E-02 2289.81 1000 832.7435 2289810 0.00036367 363.6736341

density fraction top bottom d32

600 0 562.46 0 0.205866 0 3268.92 600 694.7483 1961352 0.00035422 354.219101

1.00E-02 566.747 1.00E-02 0.17853 1.00E-02 2832.08 600 607.0881 1699248 0.00035727 357.2686573

2.00E-02 568.472 2.00E-02 0.167666 2.00E-02 2658.39 600 571.8806 1595034 0.00035854 358.5381616

3.00E-02 571.266 3.00E-02 0.150481 3.00E-02 2383.49 600 515.7881 1430094 0.00036067 360.6672524

4.00E-02 571.788 4.00E-02 0.147216 4.00E-02 2331.3 600 505.0581 1398780 0.00036107 361.0703994

5.00E-02 573.258 5.00E-02 0.13825 5.00E-02 2187.89 600 475.5175 1312734 0.00036223 362.2344748

300 density fraction surface top bottom d32

0 279.432 0 0.211466 0 3363.69 300 354.5422 1009107 0.00035134 351.3425275

1.00E-02 281.911 1.00E-02 0.18272 1.00E-02 2905.89 300 309.0647 871767 0.00035453 354.5266883

2.00E-02 282.924 2.00E-02 0.171271 2.00E-02 2723.58 300 290.7401 817074 0.00035583 355.8307551

3.00E-02 284.509 3.00E-02 0.153449 3.00E-02 2439.62 300 261.9457 731886 0.00035791 357.9050962

4.00E-02 284.813 4.00E-02 0.1502 4.00E-02 2387.82 300 256.6735 716346 0.00035831 358.3093583

5.00E-02 285.652 5.00E-02 0.141048 5.00E-02 2241.98 300 241.7439 672594 0.00035942 359.4201848

density fraction surface top bottom d32

150 0 140.171 0 0.211285 0 3362.91 150 177.6962 504436.5 0.00035227 352.2666944

1.00E-02 141.376 1.00E-02 0.183537 1.00E-02 2917.67 150 155.6864 437650.5 0.00035573 355.7321686

2.00E-02 141.85 2.00E-02 0.17271 2.00E-02 2743.73 150 146.9935 411559.5 0.00035716 357.1621625

3.00E-02 142.618 3.00E-02 0.155392 3.00E-02 2465.53 150 132.9702 369829.5 0.00035954 359.5445402

4.00E-02 142.756 4.00E-02 0.152273 4.00E-02 2415.54 150 130.4273 362331 0.00035997 359.967285

5.00E-02 143.159 5.00E-02 0.143256 5.00E-02 2270.76 150 123.0503 340614 0.00036126 361.2602953

100 density fraction surface d32

0 93.4276 0 0.213805 0 3425.03 100 119.8517 342503 0.00034993 349.9289878

1.00E-02 94.2134 1.00E-02 0.186161 1.00E-02 2980.21 100 105.2332 298021 0.00035311 353.1065413

2.00E-02 94.5216 2.00E-02 0.175411 2.00E-02 2807.22 100 99.48077 280722 0.00035437 352.6618546

3.00E-02 95.0213 3.00E-02 0.158173 3.00E-02 2530.03 100 90.17882 253003 0.00035643 356.4338151

4.00E-02 95.1089 4.00E-02 0.155155 4.00E-02 2481.5 100 88.53973 248150 0.0003568 356.7992274

5.00E-02 95.371 5.00E-02 0.146212 5.00E-02 2337.8 100 83.66631 233780 0.00035788 357.8847973

density fraction surface

50 0 46.5502 0 0.223157 0 3575.52 50 62.32802 178776 0.00034864 348.6375011

1.00E-02 46.9328 1.00E-02 0.19605 1.00E-02 3141.02 50 55.20705 157051 0.00035152 351.5230889

2.00E-02 47.0811 2.00E-02 0.185655 2.00E-02 2974.24 50 52.44505 148712 0.00035266 352.6618546

3.00E-02 47.3234 3.00E-02 0.168866 3.00E-02 2704.58 50 47.94788 135229 0.00035457 354.568026

4.00E-02 47.3621 4.00E-02 0.166151 4.00E-02 2660.93 50 47.21556 133046.5 0.00035488 354.8801484

5.00E-02 47.4869 5.00E-02 0.157581 5.00E-02 2523.12 50 44.8982 126156 0.00035589 355.8942827
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smd for density fraction surface top bottom d32

various 0 838.013 0 0.999821 0 15997.2 5027.178 15154468 0.000332 331.7291071

air veloicty 1.33E-02 894.069 1.33E-02 0.466615 1.33E-02 7466.31 2503.116 7072985 0.000354 353.8981227

1 2.67E-02 918.577 2.67E-02 0.245178 2.67E-02 3923.32 1351.289 3716640 0.000364 363.578235

4.00E-02 919.889 4.00E-02 0.233043 4.00E-02 3729.08 1286.242 3532632 0.000364 364.1030624

5.33E-02 923.941 5.33E-02 0.197798 5.33E-02 3165.05 1096.522 2998315 0.000366 365.7127523

6.67E-02 926.845 6.67E-02 0.172896 6.67E-02 2766.68 961.4868 2620931 0.000367 366.8492797

8.00E-02 930.065 8.00E-02 0.145569 8.00E-02 2329.46 812.3318 2206744 0.000368 368.1132812

9.33E-02 930.887 9.33E-02 0.138629 9.33E-02 2218.38 774.2876 2101516 0.000368 368.4424476

0.106667 932.243 0.106667 0.12728 0.106667 2036.76 711.9353 1929463 0.000369 368.9809838

0.12 933.615 0.12 0.115935 0.12 1855.43 649.4319 1757686 0.000369 369.4812097

denisty fraction surface density C top bottom d32

0 764.844 0 0.99976 0 15996.1 947.32 4587.963 15153425 0.000302767

2 1.33E-02 856.26 1.33E-02 0.458865 1.33E-02 7341.68 947.32 2357.446 6954920 0.000338961

2.67E-02 899.31 2.67E-02 0.231971 2.67E-02 3711.35 947.32 1251.683 3515836 0.000356013

4.00E-02 901.462 4.00E-02 0.219264 4.00E-02 3508.05 947.32 1185.949 3323246 0.000356865

5.33E-02 908.482 5.33E-02 0.183591 5.33E-02 2937.3 947.32 1000.735 2782563 0.000359645

6.67E-02 913.208 6.67E-02 0.159769 6.67E-02 2556.14 947.32 875.414 2421483 0.00036152

8.00E-02 918.302 8.00E-02 0.134746 8.00E-02 2155.8 947.32 742.4251 2042232 0.000363536

9.33E-02 919.576 9.33E-02 0.128719 9.33E-02 2059.45 947.32 710.2014 1950958 0.000364027

0.106667 921.743 0.106667 0.118563 0.106667 1897.08 947.32 655.7077 1797142 0.000364861

0.12 924.02 0.12 0.108128 0.12 1730.19 947.32 599.4746 1639044 0.000365747

density fraction surface top bottom d32

3 0 706.657 0 0.999572 0 15993.6 4238.127 15151057 0.00028 279.7248576

1.33E-02 822.833 1.33E-02 0.449593 1.33E-02 7193.98 2219.64 6815001 0.000326 325.6991009

2.67E-02 880.465 2.67E-02 0.224982 2.67E-02 3600.2 1188.533 3410541 0.000348 348.4879666

4.00E-02 882.799 4.00E-02 0.21427 4.00E-02 3428.73 1134.944 3248105 0.000349 349.4173445

5.33E-02 891.899 5.33E-02 0.181009 5.33E-02 2896.4 968.6505 2743818 0.000353 353.030194

6.67E-02 898.104 6.67E-02 0.158794 6.67E-02 2540.81 855.6812 2406960 0.000356 355.5028391

8.00E-02 905.413 8.00E-02 0.133925 8.00E-02 2142.74 727.5446 2029860 0.000358 358.4210007

9.33E-02 907.357 9.33E-02 0.127053 9.33E-02 2032.64 691.6946 1925561 0.000359 359.2172589

0.106667 910.564 0.106667 0.115971 0.106667 1855.62 633.5941 1757866 0.00036 360.4336895

0.12 913.928 0.12 0.104303 0.12 1670.32 571.9526 1582328 0.000361 361.462831

4 density fraction surface top bottom d32

0 645.434 0 0.999462 0 15991.4 3870.521 15148973 0.000255 255.4972226

1.33E-02 782.533 1.33E-02 0.440709 1.33E-02 7051.44 2069.216 6679970 0.00031 309.7642612

2.67E-02 856.24 2.67E-02 0.227103 2.67E-02 3633.71 1166.728 3442286 0.000339 338.939874

4.00E-02 860 4.00E-02 0.215439 4.00E-02 3447.08 1111.665 3265488 0.00034 340.4285361

5.33E-02 873.342 5.33E-02 0.179695 5.33E-02 2875.26 941.6111 2723791 0.000346 345.6987116

6.67E-02 882.181 6.67E-02 0.156033 6.67E-02 2497 825.8961 2365458 0.000349 349.1484837

8.00E-02 892.635 8.00E-02 0.128957 8.00E-02 2064.37 690.6692 1955619 0.000353 353.1716527

9.33E-02 895.107 9.33E-02 0.122176 9.33E-02 1956.63 656.1636 1853555 0.000354 354.0027957

0.106667 899.25 0.106667 0.111152 0.106667 1781.49 599.7206 1687641 0.000355 355.3602799

0.12 903.89 0.12 9.88E-02 0.12 1586.5 535.9236 1502923 0.000357 356.5874951

5 density fraction surface top bottom d32

0 572.128 0 0.999297 0 15988.9 3430.355 15146605 0.000226 226.4768125

1.33E-02 755.84 1.33E-02 0.42519 1.33E-02 6803.27 1928.254 6444874 0.000299 299.191844

2.67E-02 841.17 2.67E-02 0.208907 2.67E-02 3343.1 1054.358 3166985 0.000333 332.9215779

4.00E-02 843.882 4.00E-02 0.199941 4.00E-02 3199.75 1012.36 3031187 0.000334 333.9812453

5.33E-02 858.443 5.33E-02 0.168556 5.33E-02 2697.2 868.1743 2555112 0.00034 339.779422

6.67E-02 868.422 6.67E-02 0.148555 6.67E-02 2375.69 774.0506 2250539 0.000344 343.9401412

8.00E-02 880.648 8.00E-02 0.124848 8.00E-02 1994.97 659.6828 1889875 0.000349 349.0616342

9.33E-02 884.191 9.33E-02 0.118358 9.33E-02 1890.31 627.9065 1790728 0.000351 350.6430378

0.106667 890.833 0.106667 0.106105 0.106667 1694.52 567.131 1605253 0.000353 353.2970339

0.12 898.016 0.12 9.27E-02 0.12 1480.8 499.2109 1402791 0.000356 355.8696226
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density fraction surface constdens top bottom d32

smd on 0 848.634 0 0.999848 0 15997.6 947.32 5091.03 15154846 0.000335934

symmetry 1.33E-02 899.227 1.33E-02 0.470883 1.33E-02 7534.19 947.32 2540.584 7137289 0.000355959

axis at 2.67E-02 921.65 2.67E-02 0.244974 2.67E-02 3919.64 947.32 1354.682 3713153 0.000364833

various 4.00E-02 922.766 4.00E-02 0.233583 4.00E-02 3737.39 947.32 1293.255 3540504 0.000365274

velocities 5.33E-02 926.446 5.33E-02 0.197803 5.33E-02 3164.96 947.32 1099.523 2998230 0.000366724

6 m/s 6.67E-02 929.07 6.67E-02 0.17253 6.67E-02 2760.69 947.32 961.7547 2615257 0.000367748

8.00E-02 931.912 8.00E-02 0.145361 8.00E-02 2325.94 947.32 812.782 2203409 0.000368875

9.33E-02 932.61 9.33E-02 0.13875 9.33E-02 2220.01 947.32 776.3978 2103060 0.000369175

0.106667 933.793 0.106667 0.127609 0.106667 2041.24 947.32 714.9623 1933707 0.000369737

0.12 934.974 0.12 0.116577 0.12 1864.25 947.32 653.9788 1766041 0.000370308

densit fraction surface top bottom d32

4 0 792.695 0 0.999836 0 15997.5 4755.39 15154752 0.000314 313.7887101

1.33E-02 868.657 1.33E-02 0.474828 1.33E-02 7597.28 2474.776 7197055 0.000344 343.8595226

2.67E-02 904.682 2.67E-02 0.246959 2.67E-02 3951.3 1340.516 3743146 0.000358 358.1255835

4.00E-02 906.828 4.00E-02 0.232926 4.00E-02 3726.75 1267.343 3530425 0.000359 358.9774547

5.33E-02 912.818 5.33E-02 0.197086 5.33E-02 3153.27 1079.422 2987156 0.000361 361.3544071

6.67E-02 917.257 6.67E-02 0.170903 6.67E-02 2734.35 940.5718 2590304 0.000363 363.1124679

8.00E-02 921.906 8.00E-02 0.143916 8.00E-02 2302.74 796.0621 2181432 0.000365 364.9264651

9.33E-02 923.115 9.33E-02 0.136882 9.33E-02 2190.38 758.147 2074991 0.000365 365.3736543

0.106667 925.101 0.106667 0.125522 0.106667 2008.81 696.7232 1902986 0.000366 366.1210366

0.12 927.045 0.12 0.114551 0.12 1833.28 637.1636 1736703 0.000367 366.8811884

density fraction surface top bottom d32

2 0 707.328 0 0.999305 0 15988.2 4241.018 15145942 0.00028 280.0102197

1.33E-02 818.263 1.33E-02 0.459217 1.33E-02 7351.44 2254.562 6964166 0.000324 323.737492

2.67E-02 868.573 2.67E-02 0.254579 2.67E-02 4078.21 1326.723 3863370 0.000343 343.4107295

4.00E-02 872.508 4.00E-02 0.238663 4.00E-02 3823.34 1249.412 3621926 0.000345 344.9579329

5.33E-02 881.74 5.33E-02 0.204912 5.33E-02 3282.85 1084.075 3109909 0.000349 348.5872031

6.67E-02 888.934 6.67E-02 0.179404 6.67E-02 2874 956.8699 2722598 0.000351 351.4547519

8.00E-02 896.697 8.00E-02 0.152778 8.00E-02 2446.85 821.9734 2317950 0.000355 354.6122506

9.33E-02 898.999 9.33E-02 0.144831 9.33E-02 2319.35 781.2175 2197167 0.000356 355.5568021

0.106667 902.375 0.106667 0.133491 0.106667 2137.4 722.7536 2024802 0.000357 356.9503238

0.12 905.458 0.12 0.12337 0.12 1975.06 670.2381 1871014 0.000358 358.2218938

density fraction surface top bottom

1 0 544.727 0 0.999524 0 15993 3266.806 15150489 0.000216 215.6238199

1.33E-02 674.509 1.33E-02 0.579034 1.33E-02 9319.95 2343.382 8828975 0.000265 265.4194691

2.67E-02 728.266 2.67E-02 0.425538 2.67E-02 6881.4 1859.429 6518888 0.000285 285.2371733

4.00E-02 733.609 4.00E-02 0.411325 4.00E-02 6654.58 1810.51 6304017 0.000287 287.199481

5.33E-02 744.306 5.33E-02 0.385885 5.33E-02 6248.46 1723.299 5919291 0.000291 291.132686

6.67E-02 752.695 6.67E-02 0.367311 6.67E-02 5950.2 1658.839 5636743 0.000294 294.2902989

8.00E-02 761.605 8.00E-02 0.348253 8.00E-02 5642.15 1591.387 5344922 0.000298 297.7382072

9.33E-02 765.015 9.33E-02 0.341551 9.33E-02 5533.35 1567.75 5241853 0.000299 299.0831283

0.106667 769.542 0.106667 0.332956 0.106667 5393.42 1537.342 5109295 0.000301 300.8911928

0.12 773.152 0.12 0.32656 0.12 5289.76 1514.883 5011095 0.000302 302.3057772
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petrol density fraction surface bot

fuel 696.135 0 660.243 0 0.17474 0 2781.22 692.237 1936105 0.000358 357.5411477

Radial 696.135 3.56E-03 660.812 3.56E-03 0.17127 3.56E-03 2724.65 679.056 1896724 0.000358 358.0149859

696.135 7.11E-03 665.853 7.11E-03 0.14388 7.11E-03 2282.75 574.818 1589102 0.000362 361.7247451

696.135 1.07E-02 673.276 1.07E-02 0.10442 1.07E-02 1645.76 421.821 1145671 0.000368 368.1867036

696.135 1.42E-02 680.131 1.42E-02 6.89E-02 1.42E-02 1071.79 281.196 746110.5 0.000377 376.8818763

696.135 1.78E-02 684.151 1.78E-02 4.86E-02 1.78E-02 743.91 199.65 517861.8 0.000386 385.5273884

696.135 2.13E-02 686.315 2.13E-02 3.81E-02 2.13E-02 573.253 156.847 399061.5 0.000393 393.0390002

696.135 2.49E-02 687.006 2.49E-02 3.49E-02 2.49E-02 520.831 143.68 362568.7 0.000396 396.2839724

696.135 2.84E-02 687.448 2.84E-02 3.28E-02 2.84E-02 487.377 135.244 339280.2 0.000399 398.6215513

696.135 3.20E-02 687.691 3.20E-02 3.17E-02 3.20E-02 469.714 130.791 326984.4 0.0004 399.9928406

diesel fraction surface

786.088 0 737.801 0 0.18243 0 2933.33 807.56 2305856 0.00035 350.2214601

786.088 3.56E-03 738.977 3.56E-03 0.17733 3.56E-03 2852.17 786.252 2242057 0.000351 350.6835246

786.088 7.11E-03 746.088 7.11E-03 0.1475 7.11E-03 2376.23 660.279 1867926 0.000353 353.4824005

786.088 1.07E-02 756.293 1.07E-02 0.10566 1.07E-02 1709.02 479.45 1343440 0.000357 356.8826253

786.088 1.42E-02 765.64 1.42E-02 6.85E-02 1.42E-02 1117.3 314.772 878296.1 0.000358 358.3896202

786.088 1.78E-02 770.969 1.78E-02 4.78E-02 1.78E-02 786.989 220.968 618642.6 0.000357 357.1815621

786.088 2.13E-02 773.721 2.13E-02 3.74E-02 2.13E-02 621.758 173.606 488756.5 0.000355 355.1999392

786.088 2.49E-02 774.601 2.49E-02 3.42E-02 2.49E-02 571.463 159.027 449220.2 0.000354 354.0070819

786.088 2.84E-02 775.214 2.84E-02 3.21E-02 2.84E-02 537.437 149.257 422472.8 0.000353 353.2946647

786.088 3.20E-02 775.582 3.20E-02 3.09E-02 3.20E-02 518.449 143.699 407546.5 0.000353 352.5950757

density fraction surface bot d32

745.756 0 704.075 0 0.18323 0 2939.14 774.063 2191881 0.000353 353.1499972

745.756 3.56E-03 704.887 3.56E-03 0.1786 3.56E-03 2865.16 755.336 2136710 0.000354 353.5040648

kerose 745.756 7.11E-03 710.292 7.11E-03 0.14964 7.11E-03 2402.38 637.712 1791589 0.000356 355.9473829

745.756 1.07E-02 718.148 1.07E-02 0.10847 1.07E-02 1744.31 467.372 1300830 0.000359 359.2877479

745.756 1.42E-02 725.421 1.42E-02 7.15E-02 1.42E-02 1152.8 311.079 859707.5 0.000362 361.8427714

745.756 1.78E-02 729.607 1.78E-02 5.07E-02 1.78E-02 820.566 221.927 611942 0.000363 362.6597676

745.756 2.13E-02 731.768 2.13E-02 4.03E-02 2.13E-02 654.727 177.137 488266.6 0.000363 362.7872326

745.756 2.49E-02 732.451 2.49E-02 3.73E-02 2.49E-02 606.294 164.052 452147.4 0.000363 362.8280123

745.756 2.84E-02 732.926 2.84E-02 3.54E-02 2.84E-02 574.923 155.638 428752.3 0.000363 363.0028582

745.756 3.20E-02 733.223 3.20E-02 3.44E-02 3.20E-02 558.478 151.291 416488.3 0.000363 363.2529105

symmetry below

Symmtery density fraction surface top bot

Petrol 696.135 0 534.375 0 0.9994 0 15990.7 3204.31 11131686 0.000287855

696.135 1.33E-02 610.763 1.33E-02 0.46566 1.33E-02 7443.41 1706.462 5181618 0.00032933

696.135 2.67E-02 647.861 2.67E-02 0.24511 2.67E-02 3911.54 952.7716 2722960 0.000349903

696.135 4.00E-02 650.518 4.00E-02 0.22882 4.00E-02 3649.87 893.1209 2540802 0.000351511

696.135 5.33E-02 656.66 5.33E-02 0.19453 5.33E-02 3099.28 766.4286 2157517 0.000355236

696.135 6.67E-02 660.97 6.67E-02 0.17068 6.67E-02 2715.72 676.8862 1890508 0.000358045

696.135 8.00E-02 665.393 8.00E-02 0.14676 8.00E-02 2330.62 585.9264 1622426 0.000361142

696.135 9.33E-02 666.635 9.33E-02 0.14007 9.33E-02 2222.78 560.2374 1547355 0.000362061

696.135 0.106667 668.498 0.10667 0.13003 0.106667 2061 521.5327 1434734 0.000363505

696.135 0.12 670.259 0.12 0.12047 0.12 1907.05 484.4806 1327564 0.000364939

kero fraction surface

Kerosen 745.756 0 579.195 0 0.99945 0 15991.4 3473.273 11925682 0.000291243

745.756 1.33E-02 657.93 1.33E-02 0.4592 1.33E-02 7350.47 1812.717 5481657 0.000330688

745.756 2.67E-02 692.095 2.67E-02 0.25058 2.67E-02 4015.61 1040.563 2994665 0.000347472

745.756 4.00E-02 694.538 4.00E-02 0.23594 4.00E-02 3781.68 983.2283 2820211 0.000348636

745.756 5.33E-02 700.459 5.33E-02 0.20294 5.33E-02 3254.18 852.9195 2426824 0.000351455

745.756 6.67E-02 704.891 6.67E-02 0.17898 6.67E-02 2871.14 756.9726 2141170 0.000353532

745.756 8.00E-02 709.533 8.00E-02 0.15437 8.00E-02 2477.58 657.1624 1847670 0.000355671

745.756 9.33E-02 710.921 9.33E-02 0.14719 9.33E-02 2362.75 627.8342 1762035 0.000356312

745.756 0.106667 712.999 0.10667 0.13641 0.106667 2190.27 583.544 1633407 0.000357256

745.756 0.12 714.881 0.12 0.12659 0.12 2033.06 542.9593 1516167 0.000358113

Diesel density fraction surface

786.088 0 583.471 0 0.99934 0 15992.3 3498.515 12571355 0.000278293

786.088 1.33E-02 681.092 1.33E-02 0.45646 1.33E-02 7314.7 1865.356 5749998 0.00032441

786.088 2.67E-02 722.869 2.67E-02 0.25032 2.67E-02 4018.68 1085.683 3159036 0.000343675

786.088 4.00E-02 725.747 4.00E-02 0.23585 4.00E-02 3787.29 1027.005 2977143 0.000344963

786.088 5.33E-02 733.181 5.33E-02 0.20256 5.33E-02 3255.12 891.0921 2558811 0.000348245

786.088 6.67E-02 738.794 6.67E-02 0.17815 6.67E-02 2865.15 789.7146 2252260 0.000350632

786.088 8.00E-02 744.679 8.00E-02 0.1532 8.00E-02 2466.7 684.5134 1939043 0.000353016

786.088 9.33E-02 746.4 9.33E-02 0.14596 9.33E-02 2351.04 653.6494 1848124 0.000353683

786.088 0.106667 749.052 0.10667 0.13505 0.106667 2176.87 606.9703 1711211 0.000354702

786.088 0.12 751.523 0.12 0.125 0.12 2016.24 563.6603 1584942 0.000355635

Gasoline axial velocity 0 6.62145 radial 0 1.05041

1.33E-02 2.89025 velocity 3.56E-03 1.03396

2.67E-02 1.4671 7.11E-03 0.82458

4.00E-02 1.41232 1.07E-02 0.50975

5.33E-02 1.18984 1.42E-02 0.23389

6.67E-02 1.03824 1.78E-02 0.10543

8.00E-02 0.878122 2.13E-02 5.83E-02

9.33E-02 0.846455 2.49E-02 4.47E-02

0.106667 0.776184 2.84E-02 3.60E-02

0.12 0.705049 3.20E-02 2.76E-02

Kerosene axial velocity 0 6.73353 radial 0 1.05319

1.33E-02 2.89513 velocity 3.56E-03 1.02584

2.67E-02 1.46739 7.11E-03 0.80442

4.00E-02 1.41084 1.07E-02 0.48132

5.33E-02 1.19199 1.42E-02 0.20407

6.67E-02 1.04242 1.78E-02 8.50E-02

8.00E-02 0.881629 2.13E-02 5.07E-02

9.33E-02 0.844905 2.49E-02 4.56E-02

0.106667 0.776463 2.84E-02 4.40E-02

0.12 0.719946 3.20E-02 4.80E-02

Diesel oil axial 0 6.66167 radial 0 1.04043

velocity 1.33E-02 2.90639 velocity 3.56E-03 1.00016

2.67E-02 1.47293 7.11E-03 0.772273

4.00E-02 1.41322 1.07E-02 0.449882

5.33E-02 1.18655 1.42E-02 0.17407

6.67E-02 1.0216 1.78E-02 6.90E-02

8.00E-02 0.859777 2.13E-02 5.90E-02

9.33E-02 0.831317 2.49E-02 6.33E-02

0.106667 0.770896 2.84E-02 6.85E-02

0.12 0.71867 3.20E-02 7.48E-02
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2 Velocity density fraction surface top bottom d32

0 741.814 0 0.999561 0 15992.2 4448.93 15953195 0.000278874 278.8739218

2.00E-02 900.773 2.00E-02 0.322559 2.00E-02 5120.68 1743.315 5108191 0.000341278 341.2783007

4.00E-02 924.162 4.00E-02 0.234907 4.00E-02 3707.33 1302.553 3698288 0.000352204 352.2042632

6.00E-02 939.704 6.00E-02 0.181181 6.00E-02 2839.23 1021.539 2832305 0.000360674 360.674087

8.00E-02 948.306 8.00E-02 0.152896 8.00E-02 2382.4 869.9532 2376589 0.000366051 366.0511117

0.1 952.217 0.1 0.140888 0.1 2189.08 804.9357 2183741 0.000368604 368.6040393

density fraction surface top bottom d32

4V 0 879.021 0 0.999824 997.561 0 15997.2 5273.198 15958183 0.000330438 330.4384848

2.00E-02 957.837 2.00E-02 0.318608 997.561 2.00E-02 5097.74 1831.047 5085307 0.000360066 360.066231

4.00E-02 968.604 4.00E-02 0.229813 997.561 4.00E-02 3677.02 1335.587 3668052 0.000364113 364.1133872

6.00E-02 975.624 6.00E-02 0.173739 997.561 6.00E-02 2779.83 1017.024 2773050 0.000366753 366.7527202

8.00E-02 979.48 8.00E-02 0.143604 997.561 8.00E-02 2297.69 843.9435 2292086 0.000368199 368.1988808

0.1 981.157 0.1 0.131077 997.561 0.1 2097.24 771.6427 2092125 0.000368832 368.8320529

density fraction surface top bottom d32

5V 0 880.725 0 0.999822 0 15997.2 5283.409 15958183 0.000331078 331.0783842

2.00E-02 958.455 2.00E-02 0.320637 2.00E-02 5130.55 1843.897 5118037 0.000360274 360.2742542

4.00E-02 969.046 4.00E-02 0.230839 4.00E-02 3693.81 1342.162 3684801 0.000364243 364.2426637

6.00E-02 975.945 6.00E-02 0.17446 6.00E-02 2791.64 1021.58 2784831 0.000366837 366.8373838

8.00E-02 979.722 8.00E-02 0.144426 8.00E-02 2310.9 848.984 2305264 0.000368281 368.2806318

0.1 981.36 0.1 0.131873 0.1 2109.95 776.4893 2104804 0.000368913 368.9129181

6V density fraction surface top bottom d32

0 904.935 0 0.999867 0 15997.9 5428.888 15958881 0.00034018 340.1797294

2.00E-02 966.9 2.00E-02 0.320378 2.00E-02 5125.87 1858.641 5113368 0.000363487 363.486635

4.00E-02 975.256 4.00E-02 0.230915 4.00E-02 3694.44 1351.207 3685429 0.000366635 366.6350213

6.00E-02 980.711 6.00E-02 0.174062 6.00E-02 2784.73 1024.227 2777938 0.0003687 368.7004866

8.00E-02 983.664 8.00E-02 0.143941 8.00E-02 2302.54 849.5375 2296924 0.000369859 369.8587503

0.1 984.896 0.1 0.131852 0.1 2109.07 779.163 2103926 0.000370338 370.3376699

8V density fraction surface top bottom d32

0 913.337 0 0.999874 0 15997.9 5479.332 15958881 0.000343341 343.340581

2.00E-02 969.477 2.00E-02 0.320676 2.00E-02 5130.84 1865.328 5118326 0.000364441 364.4410462

4.00E-02 977.098 4.00E-02 0.230114 4.00E-02 3681.81 1349.064 3672830 0.000367309 367.3090099

6.00E-02 981.979 6.00E-02 0.173078 6.00E-02 2769.21 1019.754 2762456 0.000369148 369.147529

8.00E-02 984.513 8.00E-02 0.143929 8.00E-02 2302.8 850.1998 2297183 0.000370105 370.1053226

0.1 985.526 0.1 0.132289 0.1 2116.48 782.2455 2111318 0.000370501 370.5010468

10V density fraction surface top bot d32

0 901.966 0 0.999863 0 15997.4 5411.055 15958382 0.000339073 339.0728752

2.00E-02 963.522 2.00E-02 0.330659 2.00E-02 5291.08 1911.583 5278175 0.000362167 362.1674737

4.00E-02 972.46 4.00E-02 0.240162 4.00E-02 3843.29 1401.288 3833916 0.000365498 365.4977189

6.00E-02 978.537 6.00E-02 0.179483 6.00E-02 2872.55 1053.785 2865544 0.000367743 367.7432952

8.00E-02 981.791 8.00E-02 0.146713 8.00E-02 2349.13 864.249 2343400 0.000368801 368.8012477

0.1 983.007 0.1 0.133742 0.1 2140.7 788.8159 2135479 0.000369386 369.3859761
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turbulent density Fraction surface constat top bottom d32

intensity 0 972.765 0 0.174728 0 2796.88 997.561 1019.816 2790058 0.000366

0.2 0.003556 973.306 0.003556 0.171359 0.003556 2743.42 997.561 1000.708 2736729 0.000366

0.007111 977.753 0.007111 0.140006 0.007111 2242 997.561 821.3477 2236532 0.000367

0.010667 984.425 0.010667 0.093188 0.010667 1492.8 997.561 550.4172 1489159 0.00037

0.014222 990.672 0.014222 0.05019 0.014222 804.67 997.561 298.3316 802707.4 0.000372

0.017778 994.083 0.017778 0.027038 0.017778 433.97 997.561 161.2693 432911.5 0.000373

0.021333 995.702 0.021333 0.016281 0.021333 261.627 997.561 97.26615 260988.9 0.000373

0.024889 996.059 0.024889 0.014012 0.024889 225.163 997.561 83.74127 224613.8 0.000373

0.028444 996.23 0.028444 0.013016 0.028444 209.197 997.561 77.79919 208686.8 0.000373

0.032 996.246 0.032 0.013027 0.032 209.335 997.561 77.86798 208824.4 0.000373

0.05 density fraction surface top bottom d32

0 977.994 0 0.174832 0 2797.87 1025.908 2791046 0.000368 367.5711

0.003556 978.52 0.003556 0.169942 0.003556 2719.72 997.7499 2713087 0.000368 367.7545

0.007111 982.217 0.007111 0.1365 0.007111 2184.69 804.4357 2179362 0.000369 369.1153

0.010667 987.619 0.010667 0.087915 0.010667 1407.34 520.9574 1403907 0.000371 371.0767

0.014222 992.487 0.014222 0.044334 0.014222 710.048 264.0055 708316.2 0.000373 372.7227

0.017778 995.013 0.017778 0.02174 0.017778 348.527 129.7871 347676.9 0.000373 373.298

0.021333 996.093 0.021333 0.012146 0.021333 195.017 72.58888 194541.4 0.000373 373.1283

0.024889 996.302 0.024889 0.0103 0.024889 165.48 61.57326 165076.4 0.000373 372.9986

0.028444 996.405 0.028444 0.009396 0.028444 151.01 56.17542 150641.7 0.000373 372.9075

0.032 996.431 0.032 0.009168 0.032 147.345 54.81299 146985.6 0.000373 372.914

0deg 20 deg 48 deg 90 deg turb models

viscosity 0 336.9887 335.6467 331.6081 326.4109 d32 sand d32RNG d32Rea

0.01333 356.6421 356.0862 353.8198 351.6905 366.8374 366.3536 366.5126

0.02667 365.2742 364.7548 363.8227 362.2942 366.9629 366.6964 366.8289

0.04 365.7252 365.2445 364.3508 362.7392 368.3691 368.8797 369.3086

0.05333 367.1033 366.7104 365.9947 364.5096 370.4769 372.6332 373.8087

0.06667 368.082 367.7937 367.1465 365.6176 372.3123 378.1795 379.8437

0.08 369.0978 368.9885 368.3737 366.972 373.1004 384.7203 384.5633

0.09333 369.377 369.351 368.6933 367.3525 373.2012 390.5352 385.7258

0.10667 369.9858 369.9471 369.264 367.9531 373.1552 391.6598 384.4988

0.12 370.7039 370.4944 369.9142 368.6889 373.033 392.3261 383.0019

372.9397 391.9642 381.5263

Q and P 0.238 0.4 0.55 0.6 0.67

2 370.7039 370.5746 369.6154 369.6154 369.1131

4 369.9858 370.0275 369.3351 369.3351 368.627

6 369.377 369.436 369.0007 369.0007 368.1205

8 369.0978 369.0823 368.7849 368.7849 367.8286

10 368.082 367.9461 367.7605 367.7605 366.5889

12 367.1033 366.8899 366.8075 366.8075 365.4155

14 365.7252 365.5019 365.5178 365.5178 363.8062

16 365.2742 365.0367 365.1658 365.1658 363.3898

18 356.6421 356.7697 357.019 357.019 353.3401

20 336.9887 337.4461 338.0476 338.0476 329.8275
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denisty fraction 0 0.17446 surface 0 2791.64 d32 top DensityLi bottom

60mm 0 975.945 3.56E-03 0.171617 3.56E-03 2746.26 1021.58 997.561 2784831.19 0.000366837

3.56E-03 976.319 7.11E-03 0.140484 7.11E-03 2248.27 1005.318 997.561 2739561.872 0.000366963

7.11E-03 980.151 1.07E-02 9.37E-02 1.07E-02 1.50E+03 826.1732 997.561 2242786.469 0.000368369

1.07E-02 985.931 1.42E-02 5.09E-02 1.42E-02 8.16E+02 554.2786 997.561 1496122.037 0.000370477

1.42E-02 991.27 1.78E-02 2.82E-02 1.78E-02 4.52E+02 303.0086 997.561 813856.1516 0.000372312

1.78E-02 994.126 2.13E-02 1.80E-02 2.13E-02 2.89E+02 168.3678 997.561 451266.6696 0.0003731

2.13E-02 995.424 2.49E-02 1.60E-02 2.49E-02 2.57E+02 107.4502 997.561 287915.0583 0.000373201

2.49E-02 995.68 2.84E-02 1.54E-02 2.84E-02 2.47E+02 95.7191 997.561 256512.8355 0.000373155

2.84E-02 995.769 3.20E-02 1.56E-02 3.20E-02 2.50E+02 91.80353 997.561 246100.2938 0.000373033

3.20E-02 995.746 93.17195 997.561 249831.172 0.00037294

0

top bottom

denisty 0 979.722 fraction 0 0.144426 surface 0 2310.9 848.984 2305264 0.000368281 368.2806318

80mm 3.56E-03 979.737 3.56E-03 0.14452 3.56E-03 2312.46 849.5495 2306820 0.000368277 368.2773604

7.11E-03 981.438 7.11E-03 0.130726 7.11E-03 2091.88 769.7968 2086778 0.000368893 368.8925315

1.07E-02 984.72 1.07E-02 0.104152 1.07E-02 1666.8 615.3633 1662735 0.000370091 370.091124

1.42E-02 988.39 1.42E-02 7.46E-02 1.42E-02 1194.17 442.4431 1191257 0.000371408 371.4084715

1.78E-02 991.963 1.78E-02 4.60E-02 1.78E-02 736.033 273.5878 734237.8 0.000372615 372.614641

2.13E-02 993.884 2.13E-02 3.06E-02 2.13E-02 490.899 182.7174 489701.7 0.00037312 373.1198494

2.49E-02 995.009 2.49E-02 2.17E-02 2.49E-02 347.608 129.4242 346760.2 0.000373238 373.2383636

2.84E-02 995.395 2.84E-02 1.86E-02 2.84E-02 298.168 110.9834 297440.8 0.000373128 373.1275907

3.20E-02 995.596 3.20E-02 1.70E-02 3.20E-02 272.664 101.4463 271999 0.000372966 372.9655796

top bottom

density 0 981.36 Fraction 0 0.131873 surface 0 2109.95 776.4893 2104804 0.000368913 368.9129181

100mm 3.56E-03 981.519 3.56E-03 0.130858 3.56E-03 2093.79 770.6377 2088683 0.000368959 368.958616

7.11E-03 983.012 7.11E-03 0.118973 7.11E-03 1903.73 701.7113 1899087 0.000369499 369.49934

1.07E-02 985.479 1.07E-02 9.91E-02 1.07E-02 1585.4 585.7766 1581533 0.000370385 370.3852679

1.42E-02 988.135 1.42E-02 7.76E-02 1.42E-02 1242.59 460.2814 1239559 0.000371327 371.3266297

1.78E-02 990.718 1.78E-02 5.68E-02 1.78E-02 909.797 337.796 907578 0.000372195 372.1950069

2.13E-02 992.973 2.13E-02 3.86E-02 2.13E-02 618.312 229.9868 616803.9 0.000372869 372.8686408

2.49E-02 994.057 2.49E-02 2.98E-02 2.49E-02 477.302 177.6449 476137.9 0.000373096 373.0956075

2.84E-02 994.936 2.84E-02 2.26E-02 2.84E-02 362.459 134.9241 361575 0.000373157 373.1565537

3.20E-02 995.204 3.20E-02 2.04E-02 3.20E-02 327.03 121.7013 326232.4 0.000373051 373.0509829

top bottom

density 0 983.565 Fraction 0 0.114866 surface 0 1838.07 677.8691 1833587 0.000369696 369.6956202

120 3.56E-03 983.375 3.56E-03 0.116469 3.56E-03 1863.8 687.1962 1859254 0.000369609 369.6085346

7.11E-03 984.151 7.11E-03 0.110259 7.11E-03 1764.58 651.069 1760276 0.000369868 369.8675438

1.07E-02 985.651 1.07E-02 9.81E-02 1.07E-02 1570.46 580.2494 1566630 0.000370381 370.3807043

1.42E-02 987.85 1.42E-02 8.02E-02 1.42E-02 1284.05 475.3908 1280918 0.000371133 371.1328014

1.78E-02 989.839 1.78E-02 6.40E-02 1.78E-02 1025.01 380.1689 1022510 0.0003718 371.7996404

2.13E-02 991.8 2.13E-02 4.81E-02 2.13E-02 769.957 286.0395 768079.1 0.000372409 372.4089007

2.49E-02 993.251 2.49E-02 3.63E-02 2.49E-02 582.291 216.5637 580870.8 0.000372826 372.8259078

2.84E-02 994.098 2.84E-02 2.95E-02 2.84E-02 472.757 175.9255 471603.9 0.000373037 373.0365801

3.20E-02 994.606 3.20E-02 2.54E-02 3.20E-02 406.652 151.3649 405660.2 0.000373132 373.1322886
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mass fraction radial mass fraction radia massfraction mass fraction massfraction

60mm 0 0.17446 80mm 0 0.144426 100mm 0 0.131873 120mm 0 0.114866

0.003556 0.171617 0.003556 0.14452 0.003556 0.130858 0.003556 0.116469

0.007111 0.140484 0.007111 0.130726 0.007111 0.118973 0.007111 0.110259

0.010667 0.093698 0.010667 0.104152 0.010667 0.099068 0.010667 0.0981161

0.014222 0.050946 0.014222 0.074607 0.014222 0.077635 0.014222 0.0802063

0.017778 0.028227 0.017778 0.045967 0.017778 0.056827 0.017778 0.0640119

0.021333 0.017991 0.021333 0.03064 0.021333 0.038602 0.021333 0.0480674

0.024889 0.016022 0.024889 0.021679 0.024889 0.029785 0.024889 0.0363392

0.028444 0.015366 0.028444 0.018583 0.028444 0.022602 0.028444 0.029495

0.032 0.015595 0.032 0.016983 0.032 0.020381 0.032 0.0253643

Surface densityradial surface surface surface

60mm 0 2791.64 80mm 0 2310.9 0 2109.95 120mm 0 1838.07

0.003556 2746.26 0.003556 2312.46 100mm 0.003556 2093.79 0.003556 1863.8

0.007111 2248.27 0.007111 2091.88 0.007111 1903.73 0.007111 1764.58

0.010667 1499.78 0.010667 1666.8 0.010667 1585.4 0.010667 1570.46

0.014222 815.846 0.014222 1194.17 0.014222 1242.59 0.014222 1284.05

0.017778 452.37 0.017778 736.033 0.017778 909.797 0.017778 1025.01

0.021333 288.619 0.021333 490.899 0.021333 618.312 0.021333 769.957

0.024889 257.14 0.024889 347.608 0.024889 477.302 0.024889 582.291

0.028444 246.702 0.028444 298.168 0.028444 362.459 0.028444 472.757

0.032 250.442 0.032 272.664 0.032 327.03 0.032 406.652

60 mm radial d32 80mm radial d32 100mm rdaial d32 120mm radial d32

mean drop 0 366.8374 0 368.2806 0 368.9129 0 369.6956202

 size SMD 0.003556 366.9629 0.003556 368.2774 0.003556 368.9586 0.003556 369.6085346

0.007111 368.3691 0.007111 368.8925 0.007111 369.4993 0.007111 369.8675438

0.010667 370.4768 0.010667 370.0911 0.010667 370.3853 0.010667 370.3807043

0.014222 372.3123 0.014222 371.4085 0.014222 371.3266 0.014222 371.1328014

0.017778 373.1004 0.017778 372.6146 0.017778 372.195 0.017778 371.7996404

0.021333 373.2012 0.021333 373.1198 0.021333 372.8686 0.021333 372.4089007

0.024889 373.1552 0.024889 373.2384 0.024889 373.0956 0.024889 372.8259078

0.028444 373.033 0.028444 373.1276 0.028444 373.1566 0.028444 373.0365801

0.032 372.9397 0.032 372.9656 0.032 373.051 0.032 373.1322886
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Modified Latin Hypercube Matlab code for Design of Experiments(DoE) 

function 

[X_scaled,X_normalized]=lhsdesign_modified(n,min_ranges_p,max_ranges_p) 

%lhsdesign_modified is a modification of the Matlab Statistics function lhsdesign. 

%It might be a good idea to jump straight to the example to see what does 

%this function do. 

%The following is the description of lhsdesign from Mathworks documentation 

% X = lhsdesign(n,p) returns an n-by-p matrix, X, containing a latin hypercube sample 

of n values on each of p variables. 

%For each column of X, the n values are randomly distributed with one from each 

interval (0,1/n), (1/n,2/n), ..., (1-1/n,1), and they are randomly permuted. 

%lhsdesign_modified provides a latin hypercube sample of n values of 

%each of p variables but unlike lhsdesign, the variables can range between 

%any minimum and maximum number specified by the user, where as lhsdesign 

%only provide data between 0 and 1 which might not be very helpful in many 

%practical problems where the range is not bound to 0 and 1 

%Inputs:  

%       n: number of radomly generated data points 

%       min_ranges_p: [1xp] or [px1] vector that contains p values that correspond to the 

minimum value of each variable 

%       max_ranges_p: [1xp] or [px1] vector that contains p values that correspond to the 

maximum value of each variable 

%Outputs 

%       X_scaled: [nxp] matrix of randomly generated variables within the 

%       min/max range that the user specified 

%       X_normalized: [nxp] matrix of randomly generated variables within the 

%       0/1 range  

%       figure 

%       subplot(2,1,1),plot(X_scaled(:,1),X_scaled(:,2),'*') 

%       title('Random Variables') 

%       xlabel('X1') 

%       ylabel('X2') 

%       grid on 

%       subplot(2,1,2),plot(X_normalized(:,1),X_normalized(:,2),'r*') 

%       title('Normalized Random Variables') 

%       xlabel('Normalized X1') 

%       ylabel('Normalized X2') 

%       grid on 

p=length(min_ranges_p); 

[M,N]=size(min_ranges_p); 

if M<N 

    min_ranges_p=min_ranges_p'; 

end 

     

[M,N]=size(max_ranges_p); 

if M<N 

    max_ranges_p=max_ranges_p'; 
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end 

 

slope=max_ranges_p-min_ranges_p; 

offset=min_ranges_p; 

 

SLOPE=ones(n,p); 

OFFSET=ones(n,p); 

 

for i=1:p 

    SLOPE(:,i)=ones(n,1).*slope(i); 

    OFFSET(:,i)=ones(n,1).*offset(i); 

end 

X_normalized = lhsdesign(n,p); 

 

X_scaled=SLOPE.*X_normalized+OFFSET; 

 

Corner points 

DOE2 =[]; 

for x4 = [min, max] 

    % the fouth parameter 

    for x3 = [min, max] 

        % third parameter 

        for x2 = [min, max] 

            % second parameter 

            for x = [min, max] 

        % first parameter 

        DOE2 = [DOE2; x,x2,x3,x4]; 

        % the number of x should be equal to the number parameters 

            end 

        end 

    end 

end 

 

Intermediary points 

steps = n 

doe(:,1) =  linspace(min, max, steps);  %first parameter contains increment 

% linspace(min value, max value, steps)  

doe(:,2) = lhsdesign_modified(steps, min, max); %second parameter random 

distribution 

%lhsdesign_modified(steps,min value,max value) 

doe(:,3)= lhsdesign_modified(n, min, max); 

doe(:,4) = lhsdesign_modified(n, min, max); 

     

%subplot creat figure matrix (mxn) figure number  m columns, n rows 

% subplot(m,n,figure number) 

subplot(3,2,1) 

plot(doe(:,1),doe(:,2),'b.') 

 xlabel('DV_1');ylabel('DV_2'); 

 

% Distributions     

subplot(3,2,2) 
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plot(doe(:,1),doe(:,3),'b.') 

 xlabel('DV_1');ylabel('DV_3'); 

  

subplot(3,2,3) 

plot(doe(:,1),doe(:,4),'b.') 

xlabel('DV_1');ylabel('DV_4'); 

 

subplot(3,2,4) 

plot(doe(:,2),doe(:,3),'b.') 

xlabel('DV_2');ylabel('DV_3'); 

 

subplot(3,2,5) 

plot(doe(:,2),doe(:,4),'.') 

xlabel('DV_2');ylabel('DV_4'); 

 

subplot(3,2,6) 

plot(doe(:,3),doe(:,4),'b.') 

 xlabel('DV_3');ylabel('DV_4'); 
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Table 8.1 4-Factor Design of Experiment(DoE) Points 

 DV1(viscosity) DV2(Surf.Tension) DV3(NozzleDia) DV4(Liq.Vel) 

  Design of Experiment (DoE) points for CFD Based Design Optimization 

1 0.00031 20 1.5 1 

2 0.2 
20 1.5 1 

3 0.00031 
75 1.5 1 

4 0.2 
75 1.5 1 

5 0.00031 
20 3.5 1 

6 0.2 
20 3.5 1 

7 0.00031 
75 3.5 1 

8 0.2 
75 3.5 1 

9 0.00031 
20 1.5 6 

10 0.2 
20 1.5 6 

11 0.00031 
75 1.5 6 

12 0.2 
75 1.5 6 

13 0.00031 
20 3.5 6 

14 0.2 
20 3.5 6 

15 0.00031 
75 3.5 6 

16 0.2 
75 3.5 6 

17 0.00031 
35.71429 2.7 1.07143 

18 0.003163 
49.07143 1.67143 4.21429 

19 0.006015 
27.85714 2.1 3 

20 0.008868 
30.21429 3.24286 3.14286 

21 0.011721 
61.64286 2.75714 2.28571 

22 0.014574 
50.64286 3.38571 1.21429 

23 0.017426 
45.14286 2.38571 2.35714 

24 0.020279 
46.71429 1.64286 1.14286 

25 0.023132 
37.28571 3.35714 2 

26 0.025984 
53 3.47143 3.71429 

27 0.028837 
42.78571 2.9 5.64286 

28 0.03169 
45.92857 2.35714 5.71429 

29 0.034543 
63.21429 1.95714 3.57143 

30 0.037395 
65.57143 3.32857 1.57143 

31 0.040248 
34.14286 2.01429 5.28571 

32 0.043101 
69.5 2.5 1.35714 

33 0.045953 
60.07143 2.04286 5.85714 
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34 0.048806 
22.35714 2.32857 4.85714 

35 0.051659 
71.07143 3.15714 3.35714 

  

36 0.054512 

34.92857 1.75714 3.07143 

37 0.057364 
48.28571 3.5 5.57143 

38 0.060217 
21.57143 2.67143 2.42857 

39 0.06307 
72.64286 1.87143 4.57143 

40 0.065922 
60.85714 1.84286 1.71429 

41 0.068775 
67.14286 2.44286 5 

42 0.071628 
24.71429 3.41429 2.85714 

43 0.074481 
44.35714 1.5 4.92857 

44 0.077333 
52.21429 2.87143 1.5 

45 0.080186 
28.64286 3.07143 1.42857 

46 0.083039 
57.71429 2.41429 2.71429 

47 0.085891 
74.21429 2.64286 2.21429 

48 0.088744 
33.35714 2.72857 5.92857 

49 0.091597 
36.5 2.24286 4 

50 0.09445 
39.64286 3.44286 3.78571 

51 0.097302 
25.5 2.21429 1.92857 

52 0.100155 
56.92857 3.3 2.78571 

53 0.103008 
38.07143 2.78571 2.64286 

54 0.10586 
20.78571 3.01429 3.92857 

55 0.108713 
23.92857 1.92857 5.21429 

56 0.111566 
59.28571 1.81429 6 

57 0.114419 
66.35714 3.21429 5.5 

58 0.117271 
58.5 2.3 1 

59 0.120124 
75 2.84286 4.42857 

60 0.122977 
32.57143 3.27143 5.35714 

61 0.125829 
73.42857 2.18571 5.07143 

62 0.128682 
70.28571 1.7 3.85714 

63 0.131535 
67.92857 3.04286 3.5 

64 0.134388 
53.78571 2.58571 5.42857 

65 0.13724 
51.42857 3.18571 4.78571 

66 0.140093 
56.14286 1.55714 1.85714 

67 0.142946 
54.57143 1.52857 4.35714 
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68 0.145798 
68.71429 2.07143 1.64286 

69 0.148651 
41.21429 1.9 5.78571 

70 0.151504 
29.42857 1.58571 2.57143 

71 0.154357 
31.78571 2.98571 3.42857 

72 0.157209 
23.14286 1.72857 4.14286 

73 0.160062 
38.85714 3.12857 1.28571 

74 0.162915 
26.28571 2.81429 5.14286 

75 0.165767 
49.85714 2.27143 4.28571 

76 0.16862 
27.07143 2.12857 4.71429 

77 0.171473 
20 2.61429 3.21429 

78 0.174326 
40.42857 1.78571 4.07143 

79 0.177178 
47.5 2.55714 2.5 

80 0.180031 
64 3.1 2.14286 

81 0.182884 
43.57143 1.61429 1.78571 

82 0.185736 
62.42857 2.15714 2.92857 

83 0.188589 
64.78571 1.98571 4.64286 

84 0.191442 
55.35714 2.95714 3.28571 

85 0.194295 
42 2.92857 4.5 

86 0.197147 
31 2.47143 2.07143 

87 0.2 
71.85714 2.52857 3.64286 
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MATLAB CODE FOR LSQCURVEFIT 

function [x,resnorm,residual,exitflag,output,lambda,jacobian] = 

ascona(x0,xdata,ydata,PrecondBandWidth_Data) 

%    xdata1 Input : DV1viscosity 

%    xdata2 Input : DV2SurfTension 

%    xdata3 Input : DV3Massflow 

%    xdata4 Input : DV4Pressure 

%    ydata Output : SMD 

options = optimoptions('lsqcurvefit'); 

%% Modify options setting 

options = optimoptions(options,'Display', 'off'); 

options = optimoptions(options,'PrecondBandWidth', PrecondBandWidth_Data); 

[x,resnorm,residual,exitflag,output,lambda,jacobian] = ... 

lsqcurvefit(@(x,xdata)x(1)*xdata1.^x(2).*xdata2.^x(3).*xdata3.^x(4).*xdata4.^x(5),x0

,xdata,ydata,[],[],options); 

% x(1)= λ, x(2)= a, x(3)= b, x(4)= c, x(5)= d 

xdata = [xdata1, xdata2, xdata3, xdata4]; 

ydata = [ydata]; 

% x = [x(1), x(2), x(3), x(4), x(5)] 

x0 = [Initial point]; 

end 

 

 

 

 

 

 

 

 

 

 

 

 


