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Summary 

Photosynthesis is the process by which solar energy is converted into chemical 

energy. Solar energy is captured by light-harvesting (LH) antenna complexes, and then 

transferred to a specialized, membrane-bound complex called the reaction centre (RC) 

where this energy is trapped as a charge separated state. The development of 

lithographic techniques has allowed patterning of photosynthetic complexes on 

surfaces, creating the possibility of studying their light-harvesting and energy transfer 

properties. Reconstitution techniques enable the assembly of membrane vesicles 

containing LH and RC complexes for measuring the processes of energy harvesting 

and excitation transfer. 

LH2 and RCLH1 complexes purified from the phototrophic bacterium Rhodobacter 

(Rba.) sphaeroides have been patterned on glass surfaces. Fluorescence lifetime 

imaging microscopy (FLIM) results show that both complexes retained their native 

functions, and energy transfer from LH2 to RCLH1 was observed. Repeated FLIM 

measurements show that the patterned complexes can last for 60 days with their 

fluorescence properties and energy transfer capability retained. 

Methods were developed for nanoscale patterning of purified LH2, RCLH1 and LHCII 

complexes on semiconductive silicon surfaces. AFM images and FLIM results show 

that these complexes had retained their structural properties and energy transfer 

functions. 

LH2 and ΔcrtB RCLH1 purified from Rba. sphaeroides have been reconstituted with 

lipids to form artificial proteoliposomes. Five different LH2/ΔcrtB RCLH1 ratios were 

used for the reconstitution process. AFM images show the distribution of the 

complexes in the proteoliposomes and FLIM results show varying energy transfer 

efficiencies according to the different LH2/ΔcrtB RCLH1 ratios used in reconstitutions. 

LHCII from spinach and ΔcrtB RCLH1 from Rba. sphaeroides have been cross-

patterned on glass surfaces, to form a hybrid plant/bacterial photosynthetic system. 

FLIM results show evidence for energy transfer from LHCII to ΔcrtB RCLH1, and 

assembly of a biohybrid photosynthetic unit. 
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Chapter 1 

Introduction 

1.1 Photosynthesis 

Photosynthesis is the biological process by which light energy is captured and 

converted into biochemical energy, and it is the primary energy source for the 

majority of life on Earth. Photosynthetic organisms, including plants, algae and 

specialised bacteria, contain light-harvesting pigment-protein complexes that absorb 

solar energy. This energy is used to drive a series of electron transfers, which are 

coupled to the translocation of protons and generation of a proton gradient across a 

membrane. The transmembrane proton-motive force is utilised for the synthesis of 

ATP, which is then used to drive the metabolism of the cell, including fixation of 

carbon dioxide.  

Although the pigment-protein complexes for photosynthesis vary significantly in 

different types of organism, the overall process for photosynthesis is a redox reaction 

and can be represented by the equation: 

CO2 + 2H2A (light) → (CH2O) + 2A + H2O      (van Niel 1944) 

H2A represents electron and hydrogen ion donors, such as H2O and H2S, for the 

reductive assimilation of CO2 to form CH2O (carbohydrate). Photosynthesis can be 

divided into two main types, depending on the oxidation product of this reaction: 

oxygenic photosynthesis (oxygen-evolving) and anoxygenic photosynthesis (non-

oxygen-evolving). Oxygenic photosynthesis occurs in plants, algae and cyanobacteria, 

using H2O as the electron donor and with O2 as the oxidation product. Thus, oxygenic 

photosynthesis is imperative for aerobic life, as it was responsible for and maintains 

atmospheric oxygen levels. Anoxygenic photosynthesis occurs in other 

photosynthetic bacteria, excluding cyanobacteria, using a number of different 

compounds, including inorganic acids such as succinate and acetate. 
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1.2 Photosynthetic organisms 

1.2.1 Classification of photosynthetic organisms 

Organisms can be phylogenetically classified into three domains by their evolutionary 

relationships, based on the sequence of their small subunit ribosomal RNA in a ‘tree 

of life’. According to the classification method, photosynthetic organisms are found 

within the ‘eukarya’ and ‘bacteria’ domains. No ‘archaeal’ photosynthetic organisms 

have been found. The photosynthetic phyla are: cyanobacteria, purple bacteria, green 

sulphur bacteria, Gram positive bacteria, acidobacteria, green non-sulphur bacteria 

and plants (including algae). Groups containing photosynthetic organisms are shown 

in Figure 1.1. 

 

Figure 1.1. Classification of photosynthetic organisms 

Phylogenetic classification is based on the sequences of the small rRNA subunit. Phyla with 

photosynthetic organisms present are highlighted in green.  

(Mothersole 2013) 

 

Another method to classify photosynthetic organisms is by metabolic properties: 

(a) Carbon source: autotrophs derive their cellular carbon from CO2, whilst 

heterotrophs derive cellular carbon from pre-formed organic compounds. Most 

photosynthetic organisms are autotrophs; some may grow by either method. 

(b) Energy source: phototrophs utilise sunlight as the source of energy, whilst 

chemotrophs use various complex chemical compounds as the energy source.  

Photosynthetic organisms are phototrophs. 
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(c) Oxygen usage: An aerobe requires oxygen to grow, whereas an anaerobe grows in 

without oxygen, by anaerobic respiration or fermentation. 

 

1.2.2 Distinct groups of photosynthetic organisms 

Types of photosynthetic organism
Eukaryotic oxygenic photosynthesis (chloroplasts)

Plants Mosses Green algae Red algae Brown algae

Prokaryotic oxygenic photosynthesis

Prokaryotic anoxygenic photosynthesis
Cyanobacteria (-)

Purple bacteria (-) Green sulphur
bacteria (-)

Green nonsulfur
bacteria (-)

Heliobacteria (+)

Archaeal photosynthesis

Halobacteria

 

Figure 1.2. Types of photosynthetic organism.  

The (-/+) refers to the Gram-negative classification, which is based on the type of cell wall. 

 

1.2.2.1 Plants and algae 

One distinct phylum of the “eukarya” domain is the photosynthetic eukaryotes, such 

as plants, mosses, green algae, red algae, and brown algae. These photosynthetic 

eukaryotes all contain chloroplasts, in which thylakoid membranes house the 

apparatus for oxygenic photosynthesis. Although algae and plants are complex, the 

same basic principles of eukaryotic photosynthesis are found in oxygenic 

cyanobacteria.  
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1.2.2.2 Cyanobacteria 

Apart from the eukaryotes some prokaryotes are also capable of photosynthesis, and 

they can be classified into five distinct major groups, only one of which is oxygenic, 

the cyanobacteria. The other four groups are anoxygenic, known as the purple 

bacteria, the green sulphur bacteria, the green non-sulphur bacteria and the 

heliobacteria.  

The cyanobacteria are a large and diverse oxygenic photosynthetic group, and they 

occupy a wide range of habitats across the Earth, including some extreme 

environments such as hypersaline bays and hot springs. Cyanobacteria are often 

referred to as “blue-green algae” because they have a molecular mechanism of 

photosynthesis similar to the eukaryotic phototrophs. Many species of cyanobacteria 

can fix N2 and some can use H2S as an electron donor (Padan 1979). According to the 

endosymbiotic theory, chloroplasts found in plants and eukaryotic algae evolved from 

cyanobacterial ancestors (Zimorski et al 2014). 

1.2.2.3 Purple bacteria 

Purple phototrophic bacteria, as one of the anoxygenic photosynthetic prokaryotes, 

can metabolise in versatile ways. They can grow photoautotrophically, 

photoheterotrophically, aerobically, anaerobically and fermentatively (Imhoff 1995). 

Purple phototrophic bacteria are subdivided into ‘purple non-sulphur’ (the 

Rhodospirillaceae family) and ‘purple sulphur’ (the Chromatiaceae family) groups, 

based on their sulphide tolerance (van Niel 1944). Only the purple sulphur bacteria 

can use sulphur containing compounds such as H2S as an electron donor (Brune 1995). 

Most purple bacteria can fix molecular nitrogen and the Calvin cycle fixes CO2 in all 

purple bacteria (Tabita 1995). 

1.2.2.4 Green sulphur bacteria 

The photosynthetic green bacteria can be divided to two types: the green sulphur 

bacteria and the green non-sulphur bacteria. The green sulphur bacteria primarily use 

H2S as an electron donor, whilst the others do not. The green sulphur bacteria are 

obligate anoxygenic phototrophs and are strict anaerobes. They are found in oxygen-

free environments with very low light, for example at the bottom of lakes. They are 



 

5 
 

capable of nitrogen fixation and can fix CO2 through a reverse tricarboxylic acid cycle 

(Sirevåg 1995). 

1.2.2.5 Green non-sulphur bacteria 

Green non-sulphur bacteria are significantly more versatile than green sulphur 

bacteria. They are facultative anaerobes that grow aerobically by autotrophy or 

heterotrophy with reduced carbon compounds as electron donors. 

1.2.2.6 Heliobacteria 

Photosynthetic heliobacteria are strictly anaerobic photoheterotrophs. They are the 

only group of Gram-positive or spore-forming phototrophs, often found in soils and 

rice paddies. Photosynthetic heliobacteria are active nitrogen fixers but their CO2 

fixation is not well understood. The primary pigment involved in the photosynthesis 

of the heliobacteria is chlorophyll g, which is unique to this group. 

1.2.2.7 Acidobacteria  

The species Candidatus Chloracidobacterium thermophilum, recently discovered in a 

hot spring in Yellowstone National Park (Bryant et al 2007), has been assigned to a 

newly devised phylum, the physiologically diverse and ubiquitous Acidobacteria. 

1.2.3 Rhodobacter sphaeroides 

Rhodobacter (Rba.) sphaeroides is a Gram-negative, rod-shaped, and metabolically 

diverse purple non-sulphur bacterium. It can perform anoxygenic photosynthesis 

under anaerobic conditions in the light and can grow by chemoheterotrophy under 

semi-aerobic or aerobic conditions in the dark (Madigan & Gest 1979). It is also 

capable of dizatrophic growth and fermentation (Blankenship et al 1995). Rba. 

sphaeroides is typically found in anoxic zones at the bottom of deep lakes and in 

sediments (Madigan 1988, Pfennig 1978), sewage (Siefert et al 1978), and waste 

lagoons (Cooper et al 1975).  

Rba. sphaeroides is an excellent model organism for many reasons: it can be easily 

cultured in liquid medium in the laboratory under the light or in the dark; its small 

genome has been fully sequenced and well annotated, allowing for rapid genomic 

manipulation; since it can grow by chemotrophy, the genes essential for anoxygenic 

photosynthesis can be removed, allowing for in-depth genetic and biochemical 
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studies. A wealth of structural information is available for the Rba. sphaeroides 

photosynthetic membrane protein complexes, including the light harvesting 

complexes, LH2 and LH1, the reaction centre (RC), the cytochrome bc1 complex and 

ATP synthase.  

1.2.4 Synechocystis 

Synechocystis is a unicellular, Gram-negative cyanobacterium. It performs oxygenic 

photosynthesis reducing CO2 with H2O and can grow phototrophically under the light 

or heterotrophically when supplied with a carbon source (Anderson & McIntosh 

1991).  

Synechocystis is a useful photosynthetic model organism for several reasons. 

Significantly, the photosynthetic mechanism of Synechocystis is similar to that of 

plants and algae, showing a high level of homology among many of the 

photosynthetic protein complexes. Its genome is fully sequenced (Kaneko & Tabata 

1997). Synechocystis is naturally competent, its genome can uptake and incorporate 

foreign DNA by homologous recombination (Grigorieva & Shestakov 1982). Since it 

can grow photoheterotrophically, genetic manipulation of essential photosynthetic 

protein complexes is more straightforward than for eukaryotic counterparts, and 

there are many useful mutants available in the genes encoding proteins for 

biosynthesis, assembly and photosynthetic function. 

1.2.5 Arabidopsis and spinach 

Arabidopsis is a genus in the family Brassicaceae, small flowering plants related to 

cabbage and mustard. Arabidopsis is the first plant whose genome has been fully 

sequenced and one of the model organisms for plant biology studies. Spinach is also a 

flowering plant but in the family Amaranthaceae native to central and western Asia. It 

is also widely used as a model organism for photosynthesis studies in plants. 
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1.3 Light harvesting and energy trapping in Rhodobacter sphaeroides 

1.3.1 The photosynthetic unit of Rhodobacter sphaeroides 

The photosynthetic unit (PSU) of Rhodobacter sphaeroides consists of pigment–

protein complexes that absorb solar energy as electronic excitation energy (Şener et 

al 2007a). PSUs are embedded in intracytoplasmic membranes (ICM) (Schachman et 

al 1952, Sener et al 2016). The PSU contains three types of pigment-protein 

complexes: the reaction centre (RC), and the light-harvesting (LH) complexes LH1 and 

LH2. The LH complexes form an interconnected antenna system for absorbing solar 

energy and funnelling the excitation energy to the RC where excitation energy is 

trapped and converted to a charge separation (Figure 1.3). In wild-type Rba. 

sphaeroides, the LH1 complex encircles the RC at a stoichiometrically fixed ratio of 1:1 

(Aagaard & Sistrom 1972) and forms the ‘core complex’. The amount of LH2, 

however, varies with light intensity (Aagaard & Sistrom 1972, Adams & Hunter 2012). 

Both LH complexes comprise α and β polypeptides, which occur in a 1:1 ratio and 

form a scaffold for the light-harvesting pigments. Energy migration is directed by the 

spatial organisation and energetic order of the pigments binding within the LH 

complexes, which are bacteriochlorophylls (BChls) and carotenoids. Carotenoids are 

found in all photosynthetic organisms and have two major functions in 

photosynthesis. First, they act as accessory antenna pigments, absorbing light 

between 450 nm and 600 nm and transferring the energy to BChls, thus augmenting 

BChl absorption. Second, they protect the photosynthetic organism from photo-

oxidative damage (Guiraud & Foote 1976). The BChls will be introduced with their 

specific LH complexes. 
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Figure 1.3. Schematic of energy transfer from pigmented light-harvesting complexes 
to reaction centres in Rba. sphaeroides 

Photons of light are absorbed by the peripheral light-harvesting LH2 complexes (green) and 

create excited states. This electronic excitation energy is transferred via light-harvesting LH1 

complexes (blue) to the reaction centre (red). At the reaction centre, the excitation energy is 

trapped and transduced to a photochemical charge separation, then ultimately as a quinol.  

(From Mothersole, 2013) 

 

1.3.2 The peripheral light-harvesting complex LH2   

LH2 complexes are commonly found in purple bacteria. X-ray crystal structures were 

obtained for the nonameric LH2 from Rhodopseudomonas (Rps.) acidophila and the 

octameric LH2 from Phaeospirillum (Ph.) molischianum (Koepke et al 1996, 

McDermott et al 1995). A 6 Å electron microscopy (EM) projection map showed that 

the Rba. sphaeroides LH2 is nonameric (Walz et al 1998) and atomic force microscopy 

(AFM) analysis of 2-D crystals later confirmed this (Scheuring et al 2003). 

As of May 2018, no high-resolution 3D crystal structure of Rba. sphaeroides LH2 has 

been obtained. Therefore, the LH2 structure discussed here is that of 

Rhodopseudomonas acidophila, as it has similar structure to that of Rba. sphaeroides 

(Figure 1.4) (Papiz et al 2003).  

LH2 LH1 

RC 
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Figure 1.4. The LH2 complex of Rhodopseudomonas acidophila  

Components have been coloured as follows: LH2 α-polypeptides in green, LH2 β-polypeptides 

in cyan, B850 BChl in pink, B800 BChl in red and carotenoids in yellow.  

A. Projection view from the periplasmic side of the complex.  
B. Side view with the periplasmic side uppermost.  

(Modified from Mothersole, 2013) 

 

The LH2 complex has two absorbance maxima at 800 nm and 850 nm, arising from 

bound BChls, which are known as B800 and B850 (Cogdell 1985). These BChls are 

non-covalently attached to α and β polypeptides, which associate in a 1:1 ratio 

forming a heterodimer (Brunisholz & Zuber 1992). Each LH2 complex consists of nine 

αβ helices with the β helical subunits forming the outer ring, while the α helical 

subunits form the inner ring. Nine B800 BChl a molecules are positioned 

perpendicular to the transmembrane helix axis between the outer β helices, and 

eighteen B850 BChl molecules form an overlapping ring sandwiched between the αβ 

helices; there are also 13-14 carotenoid molecules, 9 of which are closely associated 

with the phytyl tails of the BChl a molecules (Freer et al 1996, McDermott et al 1995, 

Papiz et al 2003). In terms of energy transfer, excitation energy from carotenoid 

molecules and B800 is first passed to the B850 ring and then via the B875 ring in the 

LH1 complex to the RC. 

1.3.3 The light-harvesting LH1 complex  

The LH1 complex has a single BChl absorbance band at 875 nm in Rba. sphaeroides 

(B875). In Rba. sphaeroides an S-shaped LH1 complex of 28 αβ heterodimers and 56 
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BChls intertwines two reaction centres (Qian et al 2013). In some other bacteria, such 

as Thermochromatium tepidum, LH1 complexes consist of 32 B875 BChl molecules 

and form a complete circular array surrounding a single RC (Yu et al 2018); and the 

2.9 Å structure of the RC-LH1 complex from Blastochloris viridis (Qian et al 2018) has 

a ring of 34 BChls.  Models of the RC-LH1 ‘core complex’ are presented in section 

1.3.5. 

1.3.4 The reaction centre 

The reaction centre (RC) is the membrane protein-pigment complex that carries out 

primary photochemical charge separation using excitation energy from the 

surrounding LH1 complex. The RC reduces quinone to quinol, which leaves the RC and 

diffuses to the cytochrome bc1 complex. Here, a proton-motive force is generated 

that powers ATP synthesis. The Rba. sphaeroides RC was first purified from a 

carotenoid-less LH2-deficient mutant called R-26 (Feher 1971). Subsequent studies 

show the RC from Rba. sphaeroides is composed of three protein subunits: L (light), M 

(medium) and H (heavy), according to their apparent molecular weights (Clayton & 

Haselkorn 1972). The first structure of the Rba. sphaeroides RC shows that each L and 

M subunit comprises five transmembrane α-helices and these subunits are related by 

pseudo-twofold symmetry, whilst the H subunit has a single transmembrane helix 

with the bulk of its mass forming a globular domain containing two β-sheets at the 

cytoplasmic side of the membrane (Figure 1.5). 

Multiple cofactors bounding to the L and M subunits are arranged in two pseudo-

symmetric branches, designated A and B (Figure 1.5 B). Two BChl a molecules form a 

strongly interacting dimer known as the ‘special pair’ (PA PB, or P870, from their Qy 

maximal absorbance). Other bound cofactors are two accessory BChl a molecules, 

two bacteriopheophytins (HA and HB), two ubiquinones (QA and QB), a non-haem Fe2+, 

and a carotenoid molecule. Only branch A, which is more closely associated with L-

subunit, is used in the light-driven electron transfer process and is therefore termed 

the ‘active’ branch (Yeates et al 1987). The carotenoid molecule is within van der 

Waals contact with the accessory BChl of branch B and it has two roles: transferring 

excitation to the special pair and prevention of photo-oxidative damage by quenching 

the triplet excited state of the special pair (Cogdell et al 2000).  
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Tyr M210

 

Figure 1.5. The Rhodobacter sphaeroides reaction centre 

A.  Model of the reaction centre showing the L (orange), M (cyan) and H (red) subunits. 
Pigment molecules are in the same colours as in B.  

B. The reaction centre pigment cofactors including the two molecules of BChl a (PA and 
PB) known as the “special pair” (blue), two accessory molecules of BChl (BA and BB) 
(green), two molecules of bacteriopheophytin (HA and HB) (pink), and the carotenoid 
(spheroidene) (red). Also shown are two quinones (QA and QB) (purple), the Fe atom 
(orange) and two important aromatic amino acid side chains (yellow).  

(From Mothersole, 2013) 

 

1.3.5 The core complex 

The LH1 complex encircles the RC and together these complexes are known as the 

photosynthetic core complex (or RC-LH1). In Rba. sphaeroides there is an S-shaped 

dimeric RC-LH1 complex, with the small transmembrane polypeptide PufX acting as a 

channel to allow the mobilization of quinol and quinone between RC and cytochrome 

bc1 complexes (Figure 1.6) (Qian et al 2013). 
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Figure 1.6. The Rhodobacter sphaeroides core complex dimer 

LH1 β in blue, LH1 α in yellow, RC-H in cyan, RC-L in orange, RC-M in magenta, and PufX in red. 

A. Cytoplasmic face of the complex viewed perpendicular to the membrane.  
B. Complex viewed in the plane of the membrane  

(From Qian et al., 2013) 

 

The 3D crystal structure of the Rba. sphaeroides core complex has been defined at a 

resolution of 8 Å (Qian et al 2013). Each monomer contains 14 LH1 subunits around 

one RC forming a C-shaped assembly (Qian et al 2005, Qian et al 2013). The two 

halves of the dimer incline towards each other at an angle of about 168°, forming a V-

shaped structure that imposes curvature on the membrane (Hsin et al 2009, Qian et 

al 2008). PufX is essential for the dimeric complex structure and mutants lacking PufX 

only form monomeric RC-LH1 complexes (Francia et al 1999, Ratcliffe et al 2011). 

Monomeric PufX-minus RC-LH1 core complexes are hexagonally packed and the 

curvature of the membrane is significantly reduced (Adams et al 2011, Frese et al 

2008, Siebert et al 2004).  
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Membranes of Rba. sphaeroides contain a mixture of monomeric and dimeric core 

complexes; the monomeric form predominates when grown under 

chemoheterotrophic conditions and the dimeric form predominates under anaerobic 

heterotophic growth (Crouch & Jones 2012, Ratcliffe et al 2011). Some other species 

of photosynthetic bacteria, such as Rhodopseudomonas (Rsp.) palustris, possess only 

monomeric core complexes (Roszak et al 2003). 

1.3.6 Excitation transfer to the reaction centre 

After photon absorption by a pigment molecule, a series of ultrafast energy transfers 

takes place within LH2 and between RC-LH1 complexes. There are several pathways 

for excitation energy to arrive at the RC. In the case of Rba. sphaeroides, excitation 

energy transfer generally begins with photon absorption by B800 Bchl then follows 

the following route to the RC: B800 (LH2) → B850 (LH2) → B875 (LH1) → 

RC(Dahlberg et al 2017). Ultrafast energy transfer also occurs from carotenoids to 

nearby BChls.  

Within the LH2 complex, B800 to B850 excitation transfer takes approximately 650-

800 fs at room temperature (Jimenez et al 1996, Joo et al 1996, Ma et al 1997). As the 

B850 BChls are very well coupled, energy transfer time between B850 molecules 

within the LH2 ring is about 110 fs (Jimenez et al 1996, Monshouwer et al 1995). 

Excitation transfer from LH2 B850 to an adjacent LH1 B875 takes 3.3-4.6 ps (Hess et al 

1995a, Hess et al 1995b, Nagarajan & Parson 1997). As the B875 BChls are also very 

well coupled, energy transfer within the LH1 B875 ring is on the 80-100 fs timescale 

(Bradforth et al 1995). Excitation transfer from B875 to RC is the rate-limiting step, 

requiring 35-50 ps because of the approximately 4.5 nm separation between the LH1 

and the RC special pair. This longer transfer time also has the benefit of a low (10-

20%) probability of back transfer from RC to the LH1 (Beekman et al 1994, Otte et al 

1993, Visscher et al 1989). 

1.3.7 Membrane structure of Rhodobacter sphaeroides 

Light harvesting and energy transfer are related to the arrangement and 

stoichiometry of the light harvesting and reaction centre complexes in the 

photosynthetic membrane. Using atomic force microscopy (AFM) to image the 

organisation  of protein complexes in native cellular membranes provides insights 
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into how photosynthetic membranes funnel energy to reaction centres so efficient 

charge separation can take place (Şener et al 2007a). As many of the crystal 

structures of pigment containing membrane proteins have been revealed, 

photosynthetic membrane topology can be investigated by AFM and membrane 

proteins can be identified from their membrane protrusions (Sturgis et al 2009). 

Photosynthetic membrane architecture in Rba. sphaeroides (see Figure 1.7) was first 

revealed using AFM by Bahatyrova and co-workers (Bahatyrova et al 2004a), and 

more recently using whole chromatophore vesicles (Kumar et al 2016). The RC-LH1 

core complexes formed rows of up to six (RC-LH1-PufX) dimers and LH2 complexes 

formed ‘sandwich regions’ of 10–20 LH2s clustered between the RC-LH1 rows and 

LH2-only domains of variable size. The authors proposed that the functional 

significance of core clustering may be to increase the probability of trapping energy at 

an RC by allowing excitation energy transfer between adjacent dimers. When 

excitation energy arrives at an occupied RC (undertaking photochemistry), LH1-LH1 

transfer between B875 rings is most favourable. It was proposed that the energy 

could migrate along a succession of dimers until an open RC was found (Bahatyrova 

et al 2004a, Cartron et al 2014, Qian et al 2013). AFM of membranes from Rba. 

blasticus found that the core complex dimers are randomly distributed amongst LH2 

and formed no rows of core complex dimers (Scheuring et al 2005). 
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Figure 1.7. Tapping mode AFM showing the organisation of Rhodobacter 

sphaeroides photosynthetic membranes 

A. Membrane patches showing two types of domain: LH2-only regions (red circle) and 
regions containing a mixture of core complexes and LH2s (ringed green). 

B. Magnified, three-dimensional view of a mixed region. Rows of RC-LH1-PufX core 
complex dimers are shown, interspersed with LH2 complexes. A single core complex 
dimer is delineated (red outline). The strongly protruding RC-H, appears as a bright 
spot at the centre of the LH1 ring. LH2 is observed as the smaller hollow rings (green 
circle). The inset shows a model of the mixed region: a row of three RC-LH1-PufX 
dimers is separated by from another by LH2s sandwiched two-deep between them. 

(Adapted from Bahatyrova et al. 2004a) 

 

1.3.8 A three-dimensional model of a Rba. sphaeroides chromatophore 

A model for the Rba. sphaeroides membrane vesicle was proposed based on 

combination of AFM and linear dichroism data on the organisation of core complexes 

and LH2, and atomic models of the complexes (Bahatyrova et al 2004a, Frese et al 

2004). The semi-spherical shaped ICM vesicles are densely packed with light-

harvesting complexes: rows of RC-LH1 dimer complexes and interspersed LH2 

complexes.  

By combination of multiple AFM topographs, a computer-based 3D model of ICM 

vesicle in photosynthetic membrane was reconstructed, regardless of the position of 

the cyt bc1 and the ATPase (Figure 1.8) (Şener et al 2007a). Complex algorithms were 
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used to map the excitation migration over the entire vesicle according to the B800, 

B850, B875 and RC-BChl energy couplings. For a vesicle with 18 core complex dimers 

and 101 LH2 complexes, the calculated average excitation lifetime was 50 ps, which is 

a 95% quantum yield, showing a high energy transfer efficiency.   

A B

 

Figure 1.8. An in silico model of an entire photosynthetic membrane vesicle 

A. Electronic interactions across an ICM vesicle depicting the potential routes of 
excitation energy transfer. BChls are represented by their porphyrin rings, LH2 B800 
(blue), B850 (green), LH1 B875 (red), RC accessory (purple), RC special pair (orange).  
Electronic couplings between BChls are shown as grey connecting lines. 

B. Organisation of the photosynthetic complexes within a vesicle, depicted as space-
filling atomic structures (top-right) or cartoon representations (bottom-left): LH2 
(green), LH1 (red), RC (blue). The location of cyt bc1 (yellow) and ATP synthase 
(orange) is not established and they are depicted schematically as peripheral to the 
light harvesting complexes, at the ‘neck’ of the vesicle. 

(From Sener et al 2007) 

 

More recently, the model was refined using more data; mass spectrometry was used 

to quantify all major components, and the location of the cyt bc1 complex was 

established using EM and AFM (Cartron et al 2014) (Figure 1.9). This 1.9 million atom 

structural and functional model comprised 67 LH2 complexes, 22 dimer and 2 

monomer RC-LH1-PufX complexes, 4 cyt bc1 complexes and 2 ATP synthases. It was 

used to simulate all processes, from photon absorption to ATP production. It showed 

that the whole process is limited by the number of cytbc1 complexes. Also, under low 
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light conditions (~3% or less of bright sunlight) ATP turnover can still run at 50% of 

the maximum rate. The quantitative aspects of the model were expanded more 

recently (Sener et al 2016). 

 

Figure 1.9. Atomic structural model of a photosynthetic membrane vesicle 

The vesicle comprises 67 LH2 complexes (green), 11 LH1-RC-PufX dimers & 2 RC-LH1-PufX 

monomers (blue/red), 4 cytbc1 dimers (magenta), and 2 ATP synthases (orange). 

(from Cartron et al., 2014) 
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1.4 Light harvesting and energy trapping in plants  

1.4.1 The photosynthetic unit in plants 

Photosynthesis in plants occurs in the leaf cells and more specifically in chloroplasts. 

The chloroplast encloses an aqueous space (the stroma) wherein sits stacks of 

thylakoid membranes (Johnson 2016) (Figure 1.10).  

 

Figure 1.10. Location of the photosynthetic machinery 

A. The model plant Arabidopsis thaliana.   
B. Basic structure of a leaf shown in cross-section. Chloroplasts are shown as green dots 

within the cells.  
C. An electron micrograph of an Arabidopsis chloroplast within the leaf.  
D. Close-up region of the chloroplast showing the stacked structure of the thylakoid 

membrane. 
(From Johnson, 2016) 

 

The whole photosynthetic process can be split into the ‘light’ and ‘dark’ reactions. In 

the light reactions, solar energy is harvested and water is split, whilst in the dark 

reaction, CO2 is reduced to carbohydrate and energy is stored. The light actions occur 

in the thylakoid membrane and the dark reactions take place in the stroma. The light 

reactions begin with the light absorption by pigment molecules, such as chlorophylls 

and the carotenoids, which are attached to thylakoid membrane-embedded protein 
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complexes known as light-harvesting complexes (LHCs) and photosystems (PSs). LHCII 

and LHCI are antenna systems, which collect and concentrate excitation energy and 

transfer it towards the PSII and the PSI complexes respectively. PSII and PSI are 

reaction centres, where there is a charge separation, electron donors are oxidized, 

and acceptors are reduced. 

1.4.2 Chlorophyll 

Chlorophyll pigments in the thylakoid membranes have alternating series of carbon 

single and double bonds (Figure 1.11A). Plants contain two types of chlorophyll, 

chlorophyll a and chlorophyll b. When a red photon (~650 nm) is absorbed, an 

electron in the chlorophyll molecule is excited from the ground state (S0) to the first 

excited state (S1), corresponding to the QY peak in the absorption spectrum. When 

absorbs a blue photon (~450 nm), the electron is excited from S0 to the second 

excited state (S2), but quickly drops back to S1 through internal conversion (Figure 

1.11B). The excited electron in the S1 state can either return to the S0 by fluorescence 

emission or heat radiation, or transfer the excitation energy to a nearby chlorophyll 

under certain conditions (Figure 1.11C). 
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Figure 1.11. The structure and electrodynamics of chlorophyll  

A. The structures of chlorophylls a and b.   
B. Jablonski diagram of the excitation of an electron by a photon.  
C. Excitation energy transfer between two chlorophylls.  

(From Johnson, 2016) 

1.4.3 LHCII 

The LHCII complex serves as an antenna for the PSII in light harvesting and excitation 

energy transfer. The number of LHCIIs in the thylakoid varies with light conditions, 

allowing adaption to the environment. The number is increased in low-light, whilst in 

high-light the LHCII dissipates energy through non-photochemical quenching (NPQ). 

The LHCII monomer consists of 3 transmembrane α-helices which bind to 8 

chlorophyll a and 6 chlorophyll b molecules (Liu et al 2004, Standfuss et al 2005) 

(Figure 1.12A). The chlorophylls are arranged in a circular geometry with an average 
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10 Å centre-to-centre distances (Fig. 1.12B), facilitating excitation transfer within the 

same molecule and to neighbouring LHCIIs (Liu et al 2004). 

 

Figure 1.12. The structure of LHCII  

A. The crystal structures of the LHCII trimer from pea.   
B. The organisation of chlorophylls a (red and pink) and b (blue).  

(Novoderezhkin et al 2011) 

1.4.4 PSII 

PSII is a unique photochemical water-plastoquinone (PQ) oxidoreductase, able to split 

water into protons, electrons and oxygen. It uses light energy to excite a special pair 

of chlorophylls the P680 to form a radical pair P680+QA
- with quinone QA, which has a 

sufficient redox potential to oxidize water. The overall H2O-PQ process generates 

proton translocation into the thylakoid lumen, contributing to the proton gradient 

used for ATP synthesis, and the by-product O2 (McEvoy & Brudvig 2006): 

2𝐻2𝑂 + 2𝑃𝑄 + 4𝐻𝑠𝑡𝑟𝑜𝑚𝑎
+

𝑙𝑖𝑔ℎ𝑡
→   𝑂2 + 4𝐻𝑙𝑢𝑚𝑒𝑛

+ + 2𝑃𝑄𝐻2 

PSII is found within the thylakoid membrane as a dimeric RC complex surrounded by a 

six minor monomeric antenna LHCII and two to eight trimeric LHCII, forming a PSII-

LHCII supercomplex (Figure 1.13) (Johnson 2016, Wei et al 2016). The PSII-LHII 

supercomplex is mainly located in the stacked regions, known as the grana, in the 

thylakoid membrane (Wood et al 2018). 
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Figure 1.13. Basic structure of the PSII–LHCII supercomplex from spinach 

The organization of PSII and its light-harvesting antenna. Protein is shown in grey, with 

chlorophylls in green and carotenoids in orange. 

 (From Johnson, 2016) 

1.4.5 PSI-LHCI 

PSI is a light-driven plastocyanin-ferredoxin oxidoreductase. It uses light energy to 

excite a special pair of P700 chlorophylls to form the extremely strong reductant 

P700* which is capable of reducing ferredoxin. The reduced ferredoxin is then utilized 

for the generation of NADPH as an energy source for subsequent dark, carbon-fixing 

reactions. 

PSI is found within the thylakoid membrane as a monomeric RC complex surrounded 

by four antenna LHCIs on one side only, forming a PSI-LHCI supercomplex (Figure 

1.14) (Amunts et al 2007, Ben-Shem et al 2003, Johnson 2016). PSI-LHI is mainly 

located in the unstacked regions, known as the stromal lamellae, in the thylakoid 

membrane (Wood et al 2018). 
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Figure 1.14. Basic structure of the PSI–LHCI supercomplex from pea  

The organization of PSI and its light-harvesting antenna. Protein is shown in grey, with 

chlorophylls in green and carotenoids in orange.  

(From Johnson, 2016) 

1.4.6 Thylakoid membrane structure  

The major components of the light reactions, LHCII, PSII, cytb6f, PSI, and ATP synthase 

are all embedded in the thylakoid membrane. The two domains in thylakoid 

membrane are the grana and the stromal lamellae. The grana associate with one 

another to form cylindrical stacks about 500 nm in diameter and more than 500 nm in 

height; the stromal lamellae wrap helically around the grana stacks forming contacts 

with grana layers (Austin & Staehelin 2011) (Figure 1.15A). The PSII-LHCII complexes 

distribute almost entirely within the grana, whereas the PSI and the ATP synthase are 

located in the stromal lamellae (Andersson & Anderson 1980). Cytb6f, however, is 

evenly found in the thylakoid (Johnson et al 2014) (Figure 1.15B). 
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Figure 1.15. Lateral heterogeneity in thylakoid membrane organization 

A. Electron micrograph of the thylakoid membrane showing stacked grana and 
unstacked stromal lamellae regions.  

B. Model showing the distribution of the major complexes of photosynthetic electron 
and proton transfer between the stacked grana and unstacked stromal lamellae 
regions. 

(From Johnson, 2016) 
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Sznee et al. showed by AFM the PSII arrangement in the grana stack and the presence 

of PSI in the ends of the grana stack (Sznee et al 2011) (Figure 1.16).  

 
Figure 1.16. AFM topographs of grana membranes from spinach.  

A. A lower resolution AFM topograph showing PSII complexes forming ordered arrays 
within the granal membrane.  

B. A higher resolution AFM topograph in which individual PSII complexes can be 
identified from their protruding subunits.  

(From Sznee et al., 2011) 
 

Later on, Johnson et al. used affinity-mapping AFM and showed the arrangement of 

cytochrome b6f and PSII complexes in spinach grana thylakoid membrane (Johnson et 

al 2014). The constructed map revealed the co-localisation between the cytochrome 

b6f and PSII, and suggested that their close proximity optimized photosynthetic 

efficiency by integrating solar energy conversion and electron transfer through 

fostering short-range diffusion of PQ in the protein-crowded thylakoid membrane. 

Wood et al. imaged the thylakoid stacks from spinach grown in light and dark 

surroundings (Wood et al 2018). Spinach grown in light synthesised grana with 

smaller average diameter, fewer membrane layers but more grana per chloroplast, 

creating a larger contact area of contact with the stromal lamellae (Figure 1.17).  

These changes in thylakoid stacking were proposed to regulate the balance between 

linear electron transfer (LET) and cyclic electron transfer (CET), enabling smaller grana 

to promote more efficient LET and larger grana enhance the efficiency of CET. 

a b 

100 nm 50 nm 
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Figure 1.17. Macromolecular organization of grana thylakoids. 

A. AFM topographs of dark-adapted grana thylakoids (scale bars: 100 nm).  
B. AFM topographs of light-adapted grana thylakoids (scale bars: 100 nm).  
C. Height cross-sections of the grana thylakoids in the main panels of A and B as 

indicated by the dashed lines.  
D. Histogram of the protein protrusion heights above the grana membrane surface with 

two-Gaussian fit in dark-adapted grana (blue line, N = 121) and light-adapted grana 
(red line, N = 126).  

E. Schematic model of measured protrusion heights in comparison with the atomic 
structures (Protein DataBank (PDB) accession numbers: 1Q90 and 3JCU).  

F. Nearest neighbour analysis of the protein protrusions in dark-adapted grana (blue 
line, N = 292) and light-adapted grana (red line, N = 347) (Unpaired Student's t-test. 
****P < 0.0001). 

(From Wood, 2018) 

 

1.4.7 Excitation energy and electron transfer chain 

The light reactions are the processes that harvest solar energy and temporarily store 

it in form of ATP and NADPH (Figure 1.18). These processes start with utilizing light 

energy to excite electrons within chlorophyll molecules residing in PSII-LHCII or PSI-

LHCI to a higher energy level. The LHCII and LHCI behave like antennas, transferring 

excitation energy to the reaction centres, PSII and PSI respectively. The excited 

chlorophyll in the reaction centre is then used to reduce the subsequent acceptors, 

followed by the oxidized chlorophyll being reduced by water in the case of PSII and 

plastocyanin in the case of PSI. The water oxidation at PSII results in the migration of 

protons into the lumen, forming a proton gradient against the stroma. The proton 

gradient is then utilized for ATP synthesis. Plastocyanin reduced by the cytochrome 

b6f complex diffuses to the PSI complex, replacing electrons used by PSI to reduce 

ferredoxin, and to contribute to the formation of NADPH. 
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Figure 1.18. The photosynthetic electron and proton transfer chain 

A. The linear electron transfer pathway from water to NADP+ to form NADPH results in 
the formation of a proton gradient across the thylakoid membrane that is used by the 
ATP synthase enzyme to make ATP. 

B. Redox potentials of the steps of linear electron flow in the thylakoid membrane. 

(Adapted from Johnson, 2016) 
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1.5 Immobilisation of functional proteins molecules on surfaces 

1.5.1 Protein-resistant surfaces 

Microscience and nanoscience are two important areas in biology as their scales 

match the size of the cells or the functional components (proteins, lipid bilayers, 

nucleic acids, etc). Proteins, as one of the most important cellular components, have 

been widely studied in terms of microscience and nanoscience, and immobilising 

proteins on surfaces has been a useful method for both fundamental studies of 

proteins and for the design of novel protein-based hybrid devices. It is important to 

be able to fabricate specific micro- and nanoscale arrangements of proteins on 

surfaces, but there is a challenge to overcome; non-specific adsorption is an 

enormous problem caused by strong and irreversible adhesion between proteins and 

most surfaces. Thus, protein resistant surfaces are required to effectively reduce the 

non-specific adsorption and precisely direct the deposition of proteins.  

Various surface-chemicals have been used for generating protein resistant surfaces. 

Naturally occurring compounds such as bovine serum albumin (BSA) (Bernard et al 

2000), elastin-like polypeptides (Nath et al 2004), sarcosine (Ostuni et al 2001) and 

polysaccharides (Luk et al 2000) have been used. Synthetic compounds such as 

fluorocarbon polymers (Ko et al 2005), polyvinyl alcohol (Sugawara & Matsuda 1995) 

and polyethylene glycol (PEG) (Harris 2013) or the PEG-related oligo ethylene glycol 

(OGE) have been thoroughly studied (Lopez et al 1993a, Lopez et al 1993b, Ostuni et 

al 2001, Pale-Grosdemange et al 1991, Prime & Whitesides 1991).  

1.5.2 Functional groups for covalent immobilisation of proteins 

Various interactions can be used to immobilize protein on surfaces and they differ in 

binding strength, binding dynamics, packing density and arrangement, and 

reversibility of the assembly process. The simplest process is physical adsorption 

where proteins are attached to surfaces through attractive forces such as ionic, 

hydrophobic, or van der Waals forces. However, this physical adsorption is weak in 

binding force, low in surface occupancy and poor in binding stability, even though the 

binding shows some reversibility. 
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By contrast, covalent interactions more stably link proteins to surfaces through 

chemical bonds. Various surface-chemicals are capable of coupling with proteins and 

derivative surfaces through different functional groups (Table 1.1). 

Table 1.1 Commonly available functional groups in proteins and functionalities of 
the required surfaces (Rusmini et al 2007). 

Side groups Amino acids Surface group 

-NH2 Lys, hydroxyl-Lys carboxylic acid 

active ester (NHS) 

epoxy 

aldehyde 

-SH Cys maleimide 

pyridyl disulfide 

vinyl sulfone 

-COOH Asp, Glu amine 

-OH Ser, Thr epoxy 

 
Amine chemistry: lysine residues are the most commonly used anchor points for 

protein immobilisation, and they are typically on the exterior of the protein. 

However, the abundance of lysine residues can create multipoint attachment leading 

to heterogeneous immobilisation on the surface. N-Hydroxysuccinimide (NHS)-

activated carboxylic acid is commonly utilized for coupling with amine groups, 

forming stable amide bonds (Patel et al 1997, Rao et al 1999). The immobilisation 

efficiency of NHS-esters depends on parameters such as pH, concentration, ionic 

strength and reaction time; the optimal parameters vary for different proteins. 
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Thiol chemistry: the unique thiol group in cysteine can create a disulphide bond 

(Jongsma & Litjens 2006). Oriented immobilisation is more likely to occur because of 

the small amount of cysteines in proteins comparing with lysines (< 1%). However, 

the low frequency of cysteines can necessitate their introduction to the surface of a 

target protein by protein engineering methods. 

Carboxyl chemistry: mild coupling methods, such as carbodiimide activation 

(Fernandez-Lafuente et al 1993), can be used for covalent protein immobilisation via 

carboxylic groups through aspartic and glutamic acid, which are abundant on the 

surface of proteins. 

Epoxy chemistry: epoxy chemistry shows stability at neutral pH values, in hydrated 

conditions, and is capable of forming strong bonds with minimal chemical 

modification of the protein. Though the covalent reactions between epoxy groups 

and proteins are known to be very slow, adsorbed proteins were shown to react at a 

high rate (Mateo et al 2002). Multifunctional groups with two moieties, one with 

groups for physical adsorption and the other with sufficient epoxy groups for covalent 

immobilisation, have been designed to improve the immobilization efficiency and 

protein stability (Grazú et al 2003, Wacker et al 2004). 

Photoactive chemistry: photoactive chemistry requires heterobifunctional photo-

linkers with one photo-reactive group and one chemical reactive group. Photoactive 

immobilisation starts from activation of photosensitive reagents by light of an 

appropriate wavelength, followed by chemical processes leading to the formation of 

covalent bonds between the photoactivated reagents and the biomolecules. The 

photoreaction is an efficient and fast reaction which can be performed at mild 

conditions, independent of pH and temperature. The commonly used photo-reagents, 

such as arylazides, diazirines, benzophenones, and nitrobenziles, are activated by 

light with λ ≥ 350 nm, where most biomolecules are transparent. Photoactive 

chemistry also does not require functional groups from biomolecules, thus it shows a 

nice biological compatibility.  

 

 



 

31 
 

1.6 Techniques for fabricating patterns of proteins on surfaces  

The increasing interest in the properties of microstructured or even nanostructured 

bio-materials forced improvements in fabrication techniques for immobilising 

biomolecules on surfaces with micrometre or nanometre scale precision. The 

fabrication process can be generally described as ‘top-down’ and ‘bottom-up’. A ‘top-

down’ process relies on lithographic techniques to pattern into a resistant medium on 

a surface. For example, the application of photolithography in the semiconductor 

industry which modifies a photoresist pattern with focused beams of light and 

develops it for the following cross-link. Similarly, electron-beam lithography also 

performs in a ‘top-down’ way but with higher resolution, for it uses the electron 

beam to expose the resist. The ‘bottom-up’ method, in contrast, relies on synthetic 

chemistry involving the breaking and reforming of covalent bonds to modify the 

functional groups on target molecules.  

To fabricate biological material on surfaces with the size and shape in a controlled 

way, different external forces can be involved such as light, fields and gradients 

(Brusatori et al 2003, Caelen et al 2002, Ekblad et al 2009). The fabrication technique 

usually requires a direct deposition of target molecules or a surface modified by self-

assembled monolayers (SAMs) of functional chemicals. The SAM chemicals generally 

have one head group with specific affinity for specific substrate (e.g. oxides, metals, 

metal-oxides, polymers, and semiconductors), an intermediate alkyl chain and a 

spacer, and a terminal functional group (e.g. acids, alcohols, amines, esters, 

fluorocarbons, nitriles) that can be stimulated by external force and be transformed 

for protein immobilisation.   

In the following sections, the commonly used biomolecular fabrication techniques will 

be introduced including the original methods, the development of the processes, and 

some applications. 

1.6.1 Soft lithography 

Soft lithography is a non-photolithographic technique based on SAMs on surfaces and 

replicas from masters to create micro- or even nanofabrication (Xia & Whitesides 

1998). Soft lithographic techniques are straightforward to apply, low in cost and 

effective in fabrication. Unlike photolithography which can be restricted by diffraction 
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limitation, soft lithography is capable of generating structures or patterns with 

feature sizes varying from 30 nm to 500 µm (Xia et al 1997, Zhao et al 1997). 

Moreover, soft lithography can generate structures in more than two dimensions 

with a wide variety of surface chemistries and materials. Soft lithography also shows 

disadvantages, such as inaccurate patterns generated by the stamp deformation, the 

defects in formed patterns caused by insufficient contact between the stamp and the 

substrate during printing, the difficulty of creating high-resolution structures because 

of the physical limitation of the stamps.  

A large number of soft lithographic techniques have been established and they are all 

based on using an elastomeric stamp with relief structures to generate patterns. 

Several polymers can be used for stamp replication and the most widely used one is 

poly(dimethylsiloxane) (PDMS). PDMS has a good chemical stability and is unreactive 

towards most patterned molecules. PDMS is optically transparent to wavelengths 

down to 300 nm, so it allows the UV cross-linking to cure prepolymers even in mould 

form (Wilbur et al 1996). It is also stable to humidity and high temperature (up to 180 

°C), and it is durable so it can be used for over 50 times. The stamp is generally 

prepared by casting a liquid polymer precursor on a silanized master having relief 

structures on its surface, then it is cured and peeled off (Figure 1.19) (Zhao et al 

1997). The master can be silanized by exposure to CF3(CF2)6(CH2)2SiCl3 vapour for∼30 

min and the commonly used commercial PDMS elastomer kit is Sylgard™ 184 

obtained from DowCorning. The technical problems of PDMS stamps are from the 

collapse caused by gravity (when the height of the relief features h<<d, the distance 

between them) or the deformation caused by the capillary force (when h>>d) (Roca-

Cusachs et al 2005, Sharp et al 2004). The proper ratio for a defect-free relief feature 

should be between 0.2 and 2 (Delamarche et al 1997). Other methods have been 

developed to overcome the deformation problem, such as backing the stamp with a 

rigid support, introducing a support for the noncontact regions, or using other stamp 

material like thermoplastics and fluorocarbon-modified siloxanes (Fichet et al 2002, 

Tsibouklis & Nevell 2003). 
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Figure 1.19. Schematic illustration of the procedure for casting PDMS replicas from 
a master having relief structures on its surface (Xia & Whitesides 1998). 

 

Among all stamp based soft lithographic techniques, microcontact printing (µCP) is 

the best known and most popular method (Kumar & Whitesides 1993). Other soft 

lithographic techniques include replica moulding (REM) (Lewis et al 2010, Xia et al 

1996), microtransfer moulding (µTM) (Lee et al 2005), micro-moulding in capillaries 

(MIMIC) (Lee et al 2008, Shim et al 2007), solvent-assisted micromoulding (SAMIM) 

(King et al 1997), and nanotransfer printing (Jeon et al 2004), etc. 

When performing µCP, the PDMS stamp is coated with ink (e.g. protein) and used to 

generate patterns on surfaces (Figure 1.20). This method can either generate SAMs as 

templates onto specific substrates, such as alkanethiols onto gold (Delamarche et al 

1996), or it can directly print proteins onto target surfaces, such as chicken 

immunoglobulins (IgGs) onto glass and polystyrene surfaces (Bernard et al 1998). The 

(d >>h) 
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hydrophobic property of PDMS restricts its usage for water soluble inks, such as 

inorganic complexes or biomolecules (Gates et al 2005). However, this can be fixed by 

oxidising the PDMS surface using oxygen plasma or UV light, which then allows the 

printing of polar inks because of the formation of a thin silica-like surface layer during 

the oxidation (Ferguson et al 1993). 

Glass

PDMS PDMS

Protein

PDMS

Glass Glass

A B C

D E F

Figure 1.20. Schematic illustration of µCP protein patterns using PDMS replicas. 

The µCP technique can be developed for multi-patterning to generate several 

different molecules on one surface. One way of doing this is performing the µCP 

sequentially, e.g. sequential inking and printing. Stamps with different relief features 

can be printed many times onto the same surface, thus creating multiplexed patterns. 

One other way is parallel inking of a stamp followed by a single printing. This 

technique requires a flat stamp with no relief features so it is free from buckling or 

collapse problems (Perl et al 2009). The flat stamp is inked locally with different 

molecules in a patterned shape and it works as a molecule carrier, transferring the 

pre-patterned molecules to the target surfaces (Rozkiewicz et al 2007). Any 

patterning-by-adsorption method can be used for parallel µCP. The resolution of 

parallel µCP is limited by the inking system and microfluidic networks can offer 

physical limitation on exposed area during inking (Foley et al 2005, Juncker et al 

2001). 

μCP has developed rapidly, based on the concept of transferring a molecule pattern 

to a surface by getting contact with the inked stamp. Various improvements to the 

process and the materials used overcame limitations of the original technique. Many 

molecules, polar or nonpolar, are currently compatible with the stamp and features 

below 100 nm can be reliably generated. The fabrication of multiple biomolecules 
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with high surface occupancy is still an open challenge, for both micro-scale and nano-

scale patterns. 

1.6.2 Nanoimprinting lithography 

Nanoimprint lithography (NIL) is a parallel nanofabrication technique first introduced 

by Chou and co-workers in 1995 (Chou et al 1995, Chou et al 1996). It is a low-cost 

high-throughput method with a repeatable imprint process and durable imprint 

mould. The advantage of nanoimprint lithography is that it can easily pattern 

nanostructures at great precision on the nanometre scale over a large area. Unlike 

conventional photolithography, nanoimprint lithography does not rely on light 

beams, thus its resolution is not limited by diffraction limitation and its features are 

not affected by light scattering or interference. Chou first fabricated sub-25 nm 

patterns using nanoimprint lithography (Chou et al 1995), followed by the fabrication 

of sub-10 nm patterns (Guo 2007), and Austin even pushed the NIL feature resolution 

down to 5 nm (Austin et al 2004). 

Nanoimprint lithography has two basic steps: imprint and pattern transfer (Figure 

1.21). In the first imprint step, a mould with nanostructures on its surface is pressed 

into the resist coated substrate, followed by removal of the mould. This allows 

duplication of the features on the mould surface into the resist layer, creating a 

thickness contrast. The second step is pattern transfer where etching is used to 

remove the residual resist in the compressed area, thus transferring the thickness 

contrast pattern into the entire resist. 

A B C

 

Figure 1.21. Schematic of the NIL process and SEM images of NIL fabrications  

A. Schematic of the originally proposed NIL process. 
B. Scanning electron microscopy (SEM) image of a fabricated mould with a 10 nm 

diameter. 
C. SEM image of hole arrays imprinted in poly(methyl methacrylate) by using such a 

mould. 
(From Gao 2007) 
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The resist layer can either be a thermoplastic with a low glass transition temperature 

above which the resist becomes a viscous liquid (Chou et al 1995); or be a 

photopolymer that can be cured using UV exposure (Alkaisi & Mohamed 2010) 

(Figure 1.22). Unlike photopolymers, the thermoplastic resist has to be cooled down 

before the mould removal.   

 

Figure 1.22. Schematic of thermal NIL and UV NIL processes (Kooy et al 2014) 

 

The advantages of NIL have promoted this technology from laboratory to industry. 

NIL has been included in the International Technology Roadmap for Semiconductors 

as a candidate technology for 32- and 22-nm nodes. Moreover, NIL has been applied 

for fabrication of organic electronics (Cedeno et al 2002), organic lasers (Pisignano et 

al 2005), nanoscale control of polymer crystallization (Hu et al 2005), organic solar 

cells (Aryal et al 2008), and templates for tissue engineering (Truskett & Watts 2006).  

Apart from those applications, NIL can create chemical patterns onto which proteins 

can self-assemble by biochemical interactions. NIL also allows the protein self-

assembly process to be performed under liquid. These advantages help to protect the 

biomaterial from external pressure and maintain their structural integrity and 
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functionality. Hoff and co-workers extended the application for protein patterning 

and achieved a 75 nm pattern spatial dimension (Hoff et al 2004). Later, membrane 

protein complexes were self-assembled on chemically patterned glass using NIL 

(Escalante et al 2008b, Maury et al 2007). However, multi-biomolecule patterning 

using NIL remains a challenge and an alternative method combines NIL with other 

techniques such as micro- and nanomoulding in capillaries (Kumar et al 2009, Lee et 

al 2008, Shim et al 2007) (MIMIC), which has been used to inject different inks that 

bind specifically to the pre-patterned chemicals. Vasilev et al also fabricated a sub 

100 nm LHCII/enhanced green fluorescent protein (EGFP) multi-pattern using a 

combination of NIL and replica transfer for self-assembly of functional groups (Vasilev 

et al 2014b) (Figure 1.23). 

 

Figure 1.23. Schematic representation of the lithographic process.  

The master template (A) is spin-coated (B) with a thin layer of polystyrene (PS), resulting in a 

sandwich structure where the PS layer replicates the topography of the master (C). The PS 

layer is then lifted from the master template in a water bath (D) and can be inverted for 

inspection (E). Then the PS film can be deposited on a clean flat substrate of glass or silicon 

(F, G), onto which an SAM of APTES is deposited in vapour phase (H). Subsequently, the 

masking PS layer is lifted off the substrate (I) and (J), followed by deposition of an SAM of 

MPTMS (K). The resulting chemically nanopatterned surface (L) is used for selective 

immobilization of LHCII and functionalized EGFP (M). 

(From Vasilev, 2014) 
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1.6.3 Photolithography  

Photolithography utilises light to introduce patterns into a light-reactive surface layer 

(del Campo et al 2005). This method has been used commercially to produce 

microelectronic devices with ~10 nm or sub-100 nm features, and to create features 

of functional chemical groups with micro- or nanometre dimensions, which is then 

used for fabrication of biological arrays (Chrisey et al 1996).  

Photolithography is based on the interaction of light with a light-sensitive chemical 

resist (photoresist), often made using SAMs, because groups of individual molecules 

can be used to make layers thinner than 3 nm and smaller in area than 0.25 nm2. 

Under irradiation in the UV range and in the presence of oxygen, the photoresist 

SAMs degrade and can be removed to form chemical patterns, such as for aryl- and 

alkylsilanes at 193 nm (Dulcey et al 1991). Similarly, patterns can be transferred to 

photosensitive and reactive SAMs which can be combined with many functional 

groups (Blawas & Reichert 1998). The procedure involves deposition of unprotected 

SAM groups and introducing photosensitive groups. 

Patterns can be introduced onto surfaces by exposing the photosensitive SAMs to 

light in several ways, such as through a mask, using two interference light beams, or 

through a probe aperture on a scanning near-field optical microscope (SNOM). 

Whitesides and co-workers performed the first experiments using a mask to 

introduce micrometre patters onto SAM-coated gold surfaces (Ryan et al 2004) 

(Figure 1.24). They deposited SAMs of polyfunctional alkanethiols on gold, presenting 

two photocleavable groups: the o-nitrobenzyl amine-protecting group and the 

thiolate bond (Au-S). The 365 nm light cleaves the amine-protecting group and the 

220 nm light cleaves the entire SAM. The region exposed to 365 nm light can then 

cross-link to any group that contains a carboxylic acid, aldehyde, etc.; the region 

exposed to 220 nm light then allows a new SAM to form on it. Thus, a pattern of 

three SAMs having different properties can be produced on one gold substrate. 

Leggett and co-workers also reported using masks to fabricate micropatterns of 

different functional chemicals on either glass (Ahmad et al 2011, El Zubir et al 2017, 

Reynolds et al 2009, Xia et al 2016) or gold (Reynolds et al 2007) and micropatterns of 

polymer brushes on silicon surface (Johnson et al 2017). Those micropatterns can 

then be used for site specific protein immobilisation. 
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Figure 1.24. Patterning of a gold substrate with multiple, aligned SAMs using a 
photomask. 

R represents any group that can be coupled to a carboxylic acid, e.g., amine, alcohol, etc.; R’ 

represents any group that contains a carboxylic acid, aldehyde, etc. that can be coupled to an 

amine; R’’ represents an arbitrary functionality that terminates with a thiol group. 

A. A SAM terminates in amines after exposure to 365 nm light and 220 nm light.  
B. A SAM terminates in primary amides after exposure to 365 nm light and 220 nm light. 

(From Ryan et al 2004) 
 

However, photolithography through masks lacks flexibility, in terms of changing the 

size and period of patterns. Interferometric lithography, in contrast, can fabricate 

patterns over very large areas (cm2) (Adams et al 2010) (Figure 1.25). Interferometric 

lithography relies on the Fresnel mirror (Brueck 2005) to generate two 

interferometric beams. One beam projects directly onto the sample and the other 

beam is reflected by mirrors before reaching the sample, forming an optical path 

difference which leads to period variation in light intensity. When exposed to a 

specific wavelength, the photosensitive SAM forms sinusoidal patterns, with a period 

that depends on the wavelength of the laser beam used, the refractive index of the 

medium (the air), and the angle (θ) at which the two beam interfere (Brueck 2005) 
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(Figure 1.25). Interferometric patterned SAMs of different functional groups can then 

be used as templates to form patterns of biomolecules (Bird et al 2016, Moxey et al 

2015, Patole et al 2015). 

 

Figure 1.25. Interferometric lithography.  

(Left) Schematic diagram of apparatus used in interferometric lithography and (right) the 

bovine serum albumin (BSA) pattern generated from interferometric exposures of OEG-

terminated SAMs, followed by BSA incubation. (From Adams et al 2010) 

 

One challenge of photolithography is the restriction on the spatial resolution of the 

fabricated pattern, which is determined by the diffraction limit; patterns with 

features below 200 nm are generally hard to achieve through photolithographic 

techniques. However, the invention of the SNOM overcomes this problem; scanning 

near-field photolithography (SNP) irradiates the surface by passing light through a 

narrow, sub-diffraction aperture at the tip of a probe (El Zubir et al 2017) (Figure 

1.26). The spatial resolution achieved is determined by the size of the aperture rather 

than the wavelength of light, so SNP can fabricate 30 nm wide lines of 

octadecanethiol in a SAM of mercaptopropanoic acid (Sun & Leggett 2004). 

Moreover, lines of 9 nm in width has been fabricated into a SAM of 

mercaptoundecanoic acid on gold (Matthew Montague et al 2007). After patterning 

by SNP, the modified regions can be functionalised for site-specific protein 

attachment (Leggett 2012, Matthew Montague et al 2007, ul Haq et al 2010, Xia et al 

2016). By applying SNP patterning steps sequentially, multiple proteins can be site-

specifically immobilized at a single location (El Zubir et al 2017, Xia et al 2016).   
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Figure 1.26. Scanning near-field photolithography 

(Left) Schematic diagram of fabricating protein patterns by SNP. Near-field lithography with a 

fibre or cantilever probe leads to selective photoremoval of OEG-NPEOC protecting groups, 

exposing a protein-adhesive aminated surface onto which protein is adsorbed. 

A. Friction force microscopy image of a pattern fabricated by near-field exposure of an 
OEG-NPEOC-APTES film.  

B. Fluorescence microscopy image showing bright contrast from geometric shapes 
formed by near-field lithography followed by adsorption of FITC-labeled IgG.  

C. Tapping-mode phase image of YFP adsorbed to nanolines fabricated using an optical 
fibre probe in shear-force mode to modify OEG-NPEOC-APTES.  

D. Tapping mode height image of the lines shown in panel C. 
(From El Zubir et al 2017) 
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1.6.4 AFM scanning probe lithography 

A number of molecular patterning lithographic methods have been developed based 

on AFM scanning probe techniques. These lithographic methods either rely on 

physical processes to deposit or remove surface material; or rely on chemical 

reactions to modify surface molecules. AFM scanning probe lithography includes: dip-

pen nanolithography, nanoshaving techniques, constructive nanolithography, and 

scanning near-field photolithography which can also be classified as photolithography 

(Figure 1.27) (Leggett 2012).  

 Figure1.27. Schematic diagram of different AFM scanning probe lithography 
approaches. 

Near-field lithography with a fibre or cantilever probe leads to selective photoremoval of 

OEG-NPEOC protecting groups, exposing a protein-adhesive aminated surface onto which 

protein is adsorbed. 

A. Dip-pen nanolithography.  
B. Nanoshaving.  
C. Constructive nanolithography.  
D. Scanning near-field photolithography. 

(From Leggett 2012) 

 

Dip-pen nanolithography, first reported by (Piner et al 1999), uses the AFM probe as a 

pen to directly write molecular solvent ink on surfaces (Demers et al 2002, Hong et al 

1999, Hyun et al 2002, Ki-Bum Lee 2003, Lee et al 2002, Lee et al 2006a, Lee et al 

2006b, Salaita et al 2006). The ink was initially a thiol but subsequently developed to 

include a number of biomolecules. Ink molecules are delivered from the AFM tip to 
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the surface via a meniscus between them. The size and shape of the nanofeatures can 

be controlled by adjusting the tip velocity for writing, the ambient humidity, surface 

chemistry and other parameters. Recently, Heath et al reported the fabrication of 

lipid lines with widths as low as 6 nm using dip-pen nanolithography (Heath et al 

2014).  

Nanoshaving techniques, in contrast, work by scanning an AFM tip across a sample 

surface, thus removing surface-bound molecules. The tip-scanned area is left blank 

for secondary chemical decoration (Amro et al 2000, Liu & Amro 2002, Wadu-

Mesthrige et al 2001, Zhou et al 2003).  

Both dip-pen nanolithography and nanoshaving are physical process, and neither of 

them performs surface chemical modification. Constructive nanolithography (also 

known as local-oxidation lithography), however, selectively modifies surface 

chemicals by applying a bias voltage between the AFM tip and the conductive 

substrate. Sagiv and co-workers first reported fabricating oxidation patterns on silane 

films (Maoz 2000a, Maoz 2000b), using constructive nanolithography. Subsequently, 

a number of specific bond-breaking operations have been reported using electron 

beams via constructive nanolithography. For example, selective reduction of the nitro 

group to amine on the nitrophenyl SAM (Golzhauser et al 2001); selective removal of 

the oligo(ethylene glycol) terminal group from the functionalised alkanethiols of a 

SAM for protein binding (Krakert et al 2010); selective oxidation of methyl-terminal 

groups on a hexadecyl SAM to carbonyl-containing groups, for cross-linking with 

protein via NHS-ester (Menglong Yang 2009); selective desorption of non-crosslinked 

material following by cross-linking with protein (Turchanin et al 2007). 

As a direct-write, mask-less method, scanning probe lithography can bypass the 

diffraction limitation and fabricate patterns down to a few nanometres (Martínez et 

al 2007) (Figure 1.28). Such a small size just matches the size of most proteins and 

small biomolecules, which makes scanning probe lithography an attractive approach 

for nanoscale patterning of biomolecules. 
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A B C D

Figure 1.28. Schematics of constructive nanolithography and the generated 

patterns. 

A. Schematics of the constructive nanolithography by scanning probe AFM.  

B. AFM height image of a set of 16 interdigitated lines of 275 nm in length with a 
separation between nearest-neighbour lines of 10 nm.  

C. High resolution AFM image of the replica from the gold-coated DVD stamp 
with billions of reliefs. The replica shows a region of 20.8 × 20.8 μm2 that 
contains 29 stripes with a periodicity of 740 nm. 

D. Schematics of the setup for performing the lithography in parallel using the 
gold-coated DVD stamp. 

(From Martínez et al 2007) 

 

1.6.5 Outlook for surface patterning of proteins 

Native protein nanostructures such as complexes, supercomplexes, megacomplexes 

are important for both fundamental cellular studies and for novel protein-based 

biosensor design. Many patterning techniques have proved useful for the fabrication 

of functional protein assemblies on surfaces with controlled size and shape. However, 

such studies tend to focus on the methodology involved in surface chemistry and 

patterning a single type of usually a small, soluble protein, whilst patterning large 

membrane protein complexes, the retention of protein function, co-patterning 

different types of proteins, and protein-protein interactions are less explored 

following adsorption. The non-specific adsorption of proteins presents a major 

problem; protein consists of anionic, cationic, non-ionic, hydrophilic and hydrophobic 

structural units, and are strongly adhesive to most surfaces. Therefore, protein 

patterning techniques need to be improved to tackle the following challenges: 

1. Non-specific and controlled attachment: protein deposition must be controlled in 

defined areas with nanometre precision. 

2. Specific binding: proteins should be selectively introduced by specific interactions 

through different binding functional groups. 
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3. Retention of properties: proteins should remain functional after immobilisation. 

4. Substrates: a variety of substrates must be explored, in order to study different 

properties and interactions of immobilised proteins. For example, transparent 

glass is ideal for studying optical properties of the protein but inappropriate for 

investigating its electrical properties; the opaque but conductive gold is just the 

opposite.  

5. Multiple protein patterning: biochemical mechanisms rely upon protein-protein 

interactions; unless multiple protein types can be immobilised with controlled 

deposition, it will not be possible to make significant advances in 

nanobiotechnology, and in addressing biological problems. 

The first two challenges listed above have been tackled through different methods, 

and the third challenge has received increasing attention, whilst the last two are still 

developing.  
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1.7 Förster resonance energy transfer 

Förster resonance energy transfer (FRET) is an distance-dependent energy transfer 

mechanism first proposed by Thomas Förster in the 1940s (Förster 1946, Förster 

1965). It describes the energy interaction between two light-sensitive molecules, 

known as a donor/acceptor pair. When FRET occurs, the excitation in the donor 

molecule is transferred to the adjacent acceptor molecule in a nonradiative manner. 

Thus, the excitation of the donor molecule results in the fluorescence emission of the 

acceptor molecule (Figure 1.29). 

 

Figure 1.29. Jablonski diagram of FRET   (Alex M Mooney - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=23197114) 

 

In this diagram, electrons in the donor molecule absorb energy from excitation 

photons and transfer from the ground state (S0) to the excited state (S1) (blue arrow). 

Under typical fluorescence conditions, the excited electrons would release their 

energy by fluorescence emission and drop back to the ground state (green arrow). 

However, if a suitable acceptor molecule is close enough to the donor molecule 

(between 1 nm and 10 nm), the donor excitation energy can transfer directly to the 

https://en.wikipedia.org/wiki/Jablonski_diagram
https://commons.wikimedia.org/w/index.php?curid=23197114
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acceptor (blank arrows), and resulting in the nonradiative relaxation of the S1 excited 

state to S0 in the donor and the creation of an S1 excited state in the acceptor. Thus, a 

decrease of donor fluorescence intensity can be observed accompanied by the 

increase of the acceptor fluorescence intensity (red arrow). The orange arrows 

represent vibrational relaxations. 

Several primary conditions must be satisfied in order for resonance energy transfer to 

occur. First, the donor and the acceptor molecules must be within a certain distance 

(typically 1 nm to 10 nm); second, the absorption spectrum of the acceptor must 

overlap the fluorescence emission spectrum of the donor (Figure 1.30); third, the 

transition dipole orientation of the acceptor must be roughly parallel to that of the 

donor (Iqbal et al 2008, VanBeek et al 2007). 

Spectral 
overlap

 

Figure 1.30. Spectral overlap of absorption and emission of CFP/YFP (taken from 

https://www.semrock.com/fret.aspx) 

The FRET efficiency (E) refers to the quantum yield of the energy transfer and it is 

particularly sensitive to donor-acceptor distance (R) as represented by the equation: 

𝐸 =
1

1 + (𝑅 𝑅0)⁄ 6 

where R0 is known as Förster radius and it stands for the critical distance at which 

energy transfer is 50% efficient. The value of R0 depends on the spectral overlap of 

the donor and acceptor and the molecular orientation factor (К2). The value of К2 can 

range between 0 and 4. For a random orientation of the transition dipoles, the 

https://www.semrock.com/fret.aspx
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average value of К2 is 2/3. Table 1.2 listed typical values of R0 between chlorophylls 

and bacteriochlorophylls (assuming К2=1) (van Grondelle 1985). 

Table 1.2. Förster radius (R0) values for photosynthetic pigments (van Grondelle 

1985). 

Energy donor Energy acceptor R0 (nm) 

Chl b Chl a 10 

Chl a Chl a 8-9 

β-carotene Chl a ~5 

Bchl 875 in LH1 BChl 875 in LH1 9 

BChl 800 in LH2 BChl 850 in LH2 6.6 

BChl 800 in LH2 BChl 800 in LH2 10 

Allophycocyanin Chl a 7 

Phycoerythrin Phycocyanin 6 

 

Due to the sensitivity to distance, FRET can be used in molecular biology to 

investigate protein-protein distance and interactions. In a FRET-pair protein system, 

the FRET mechanism results in changes in fluorescence emission intensity (an 

intensity drop from the donor and increase from the acceptor) and fluorescence 

lifetime (a shortened lifetime from the donor). The decrease in fluorescent lifetime 

from the donor, known as photobleaching, can be a convenient tool to measure the 

FRET efficiency. On the basis of the fluorescence lifetime, the FRET efficiency E is 

represented by the equation: 

𝐸 = 1 −
𝜏𝐷𝐴
𝜏𝐷

 

where τDA and τD are the donor lifetime with and without the presence of the 

acceptor, respectively. The donor-acceptor distance, R, can be calculated by: 

𝑅 = 𝑅0 (
1

𝐸
− 1)

1
6
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1.8 Sample imaging by atomic force microscopy 

Conventional optical microscopy relies on illumination and lenses to obtain a 

magnified image of the sample. Due to the diffraction limit, the spatial resolution of 

optical microscopy is generally above 200 nm. In contrast, Atomic force microscopy 

(AFM) is based on an entirely different premise. AFM, as a scanning-probe 

microscopy method, is based on sensing the force between the AFM tip and the 

target sample to obtain the 3D topological images and the mechanical properties of 

the sample. Using a suitable tip, AFM can achieve a spatial resolution of a few 

nanometres, leading to the wide use of AFM in areas including material science, 

surface chemistry, molecular biology, cell biology and medicine. 

1.81. Instrumentation 

A scanning-probe AFM consists of a probe, a piezo scanner, laser feedback system 

(laser and detector), a controller and a computer (Figure 1.31). During AFM imaging, 

the sample is mounted onto the piezo scanner which moves the sample under the 

AFM probe on a scale from tens to hundreds of micrometres with a positional 

accuracy on the nanometre scale. The AFM probe consists of a flexible cantilever with 

a sharp probe at the end. The shape and spring constant of the cantilever and the tip 

radius of the probe are important factors for a high-resolution image. Generally, a 

sharp probe has a tip radius between 1 and 10 nm. During imaging, the probe is 

raster-scanned across the sample, tracing the sample surface. The uneven topology 

from the sample surface leads to deflection (bend) of the cantilever in varying 

different degrees and directions. A laser spot is directed onto the cantilever, and is 

reflected onto a position-sensitive photo-detector, thus monitoring cantilever 

deflection. The control system receives feedback from the detector and manipulates 

the piezoelectric scanner to adjust the sample position to maintain a constant 

interaction with the AFM probe and the sample. Based on the feedback required, the 

computer reconstructs a topography image of the sample surface from the line-by-

line sample-probe interaction.  
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Figure 1.31. Schematic for AFM.  (From MacGregor-Chatwin, 2014) 

 

AFM samples are absorbed onto a flat substrate before imaging and freshly-cleaved 

mica is a good option because it is atomically flat and therefore shows no significant 

topography when imaged by AFM. Thus, all the topological features of biological 

material on mica arise from the sample. The sample-substrate is mounted on the 

piezo scanner which controls the precise movement of the sample in the x, y and z 

directions on the nanometre scale. The sample is scanned using the x and y piezo, and 

a computer-controlled feedback system adjusts the sample height via the z piezo, to 

maintain the close tracking of the probe.  

Imaging can be performed either in air or in liquid. A ‘fluid cell’ is required when 

imaging in liquid, where the sample and probe are immersed in imaging buffer; this 

allows biological samples to be imaged under conditions similar to the native 

environment, and it also protects the sample from the capillary forces experienced 

during probe-sample interaction in air. 

Piezoelectric 
scanner 

Controller 

Laser 

Computer 

Quadrant 
detector Cantilever 

Probe 
Sample 
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1.8.2 Imaging modes 

The AFM can be run in two modes: contact mode and tapping mode. In contact 

mode, the probe is in constant contact with the sample during scanning and the 

cantilever deflection is measured. When the probe scans over a highly protruding 

structure, the cantilever deflection increases; the feedback system then adjusts the 

height of the sample and restores the cantilever deflection to its original position. 

From the height adjustment, the software can build a protrusion profile for each 

scan-line over the sample. During scanning, the force between tip and sample is kept 

constant. Abrasive forces can cause damage to the protruding structures or remove 

some weakly immobilised sample piece from the mica surface (Zhong et al 1993).  

Alternatively, in tapping mode the probe is not in constant contact with the sample 

but it oscillates vertically over the sample during the scan, interacting transiently with 

the sample. This minimises the forces applied to the sample, which is important when 

imaging biological samples (e.g. cells membranes) (Möller et al 1999). Cantilevers 

with different resonant frequencies can be chosen and the AFM can be tuned to 

oscillate the cantilever at the appropriate frequency. 

In tapping mode, the system monitors the amplitude of the tip resonance, which is 

lowered when the tip comes in contact with the sample. The AFM feedback system 

then lowers the sample position to restore the amplitude. The software then 

reconstructs a height profile of the sample surface according to the sample position 

adjustment.  

Not long ago, a new tapping mode called “Peak Force Tapping” (PFT) (trademark, 

Bruker Nano Surfaces Business) was invented. In PFT mode, multiple force curves are 

generated at every pixel where the probe approaches towards and moves away from 

the sample. The force varies during the whole process due to the change of distance 

between the tip and the sample surface. In order to measure the force curve, the 

probe is oscillated at a fixed frequency, typically at 2 kHz. By analysing the force 

curve, extra properties of the sample can be measured, such as sample adhesion and 

deformation. Therefore, PFT offers more information about the sample compared to 

standard tapping mode. 
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Although tapping mode AFM protects the sample from damage by the scan force, it 

generally shows lower lateral resolution than contact mode AFM. However, some 

high-resolution tapping mode AFM has also performed on biological membranes and 

individual protein complexes, and even subunits, can be distinguished in the 

membrane (Adams & Hunter 2012, Bahatyrova et al 2004a, Olsen et al 2014, Olsen et 

al 2008). PFT also enables control over the scan force with high precision, thus PTF 

mode is also a preferred technique when imaging biological samples. 

1.8.3 Advantages and limitations 

AFM has several advantages in imaging, compared to conventional optical microscopy 

and transmission electron microscopy. First, AFM has achieved a very high resolution 

of 0.01 nm vertically and 0.1 nm laterally, enabling visualisation of protein subunits. 

Second, AFM has a high signal-to-noise ratio, allowing direct imaging of single 

molecules, with no averaging as required by X-ray crystallography or cryo-electron 

microscopy; thus native membrane proteins can be visualised without any 

computational processing. Third, AFM can image samples at atmospheric pressure 

and under liquid in near-native buffer condition, thus minimising the effect on the 

sample. 

However, AFM also shows a few disadvantages. The image quality is highly 

dependent on variable factors: sample adsorption on the substrate, tip sharpness, 

vibrational interference and electrical interference. The tip manufacturing does not 

routinely produce perfect tip and some tips can be blunt or have defects such as a 

second apex (known as ‘double-tip’). Thus, the image can look blurred or show a 

‘double image’. These drawbacks can be improved by choosing tip carefully, electrical 

and physical isolating the microscope, and choosing the appropriate buffers.  
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1.9 Aims of this work  

The 3D structures of bacterial and plant photosystem complexes reveal the internal 

arrangements of cofactors that enable efficient solar energy harvesting and charge 

separation in photosynthesis (Ferreira et al 2004, Jones et al 2002, Jordan et al 2001, 

McDermott et al 1995, Roszak et al 2003). Atomic force microscopy (AFM) allows us 

to obtain the structural information for the membrane surface, showing the 2D 

organisation of these complexes (Sturgis et al 2009). However, the energy transfer 

and trapping behaviour of the natural photosynthetic membranes is still not fully 

explained. It is now feasible to use nanotechnology approaches to construct artificial 

photosynthetic systems that can simplify native arrangements and allow the study of 

photosystem architecture in a less complex way.  

The distance scales for native energy transfer and trapping networks such as the 

chromatophore vesicles of purple bacteria, chlorosomes, or the thylakoids of 

cyanobacteria, algae and plants, are in nm scale, from 50 nm to 500 nm. Thus, 

nanotechnology can fabricate dots and lines on such scales (Escalante et al 2008a, 

Escalante et al 2008b, Reynolds et al 2007) and can address important issues 

regarding LH antenna: RC trap ratios, and their collective properties, organisation and 

distribution. Proteo-liposome reconstitution can assemble LH antenna and RC 

complexes into a lipid bilayer, tens to hundreds of nanometers in scale. The 

reconstitution system can mimic the natural surroundings of the proteins and can 

control the types of proteins studied, and their ratios (Sumino et al 2011a, Sumino et 

al 2011b). Also, it is possible to study mixtures of complexes, such as hybrid 

bacterial/plant photosystems, or de novo designed maquettes and natural 

complexes, that would be impossible to assemble in a living organism through genetic 

means. 

Although nanopatterning technology and proteo-liposome reconstitution techniques 

allow light harvesting complexes to be assembled on surfaces or in a lipid system, 

challenges still remain: assembly of  arrays of light-harvesting complexes, sufficiently 

closely packed for long-range energy migration; assembly of multiple types of protein 

complexes on the same surface to form an artificial light-harvesting and energy 

transfer system; retained functionality of the light harvesting complexes within the 

assembled artificial system. Could such assemblies harvest light and perform energy 
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migration, and eventually a charge separation, as in the natural photosynthetic 

membrane?  

The work in this thesis explored a variety of techniques to tackle the challenges 

mentioned above. These include the following approaches. 

1. The use of soft lithography to fabricate micrometre patterns of both LH2 and 

RCLH1 complexes, with intersecting regions on glass surfaces. Protein arrangements 

were studied by AFM and energy migration in the patterned system was verified 

using a combination of fluorescence lifetime and spectral imaging microscopy.  

2. The development of conductive nanolithography, and its use to pattern LH2, RCLH1 

and LHCII complexes on semiconductive silicon substrates, including co-patterning 

multiple complexes on one surface at the same location. The achievement of a high 

density of protein packing in the nanopatterns and observation of energy transfer 

from LH2 to RCLH1. 

3. Reconstitution of LH2 and RCLH1 complexes in a mixed liposome system, with a 

series of LH2: RCLH1 ratios. Protein arrangements were investigated by AFM, and 

light harvesting and energy migration were studied under different conditions using 

fluorescence lifetime imaging microscopy. 

4. The use of soft lithography to fabricate micrometre patterns of both LHCII and 

RCLH1 complexes, with intersecting regions on glass surfaces. Energy migration in the 

patterned system was verified using a combination of fluorescence lifetime and 

spectral imaging microscopy.  
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Chapter 2 

Materials and Methods 

2.1 Standard buffers, reagents and media 

All buffers and culture media were prepared as described, unless otherwise stated 

(Maniatis et al 1982). All media and solutions were prepared using distilled water 

purified using the Milli-Q system (Millipore). Growth media were made following the 

manufacturer’s instructions, using distilled water and sterilised by autoclaving for at 

least 20 minutes at 15 psi above atmospheric pressure. All other solutions were 

sterilised by filtration through 0.45 µM filters before using. Heat labile solutions, such 

as vitamins and antibiotics, were added to culture medium only when they had 

cooled to below 45 °C. 

2. 2 Rhodobacter sphaeroides strains and growth 

2.2.1 Rhodobacter sphaeroides strains 

All Rhodobacter sphaeroides (Rba. sphaeroides) strains used for this work are listed in 

Table 2.1. Rhodobacter sphaeroides or Rba. sphaeroides refers to the wild type (WT) 

Rba. sphaeroides strain 2.4.1, unless otherwise stated. Strains were grown in M22+ 

medium (See Appendix: Growth medium for Rhodobacter sphaeroides) (Hunter & 

Turner 1988) and supplemented with 10,000 X vitamins (0.08 M nicotinic acid, 0.01 M 

thiamine, 7.3 mM 4-aminobenzoic acid, 0.4 mM d-biotin), to a final concentration of 1 

X, at 34°C.  

2.2.2 Growth on agar plates 

Cells were streaked out from glycerol stocks onto plates of M22+ agar (see Appendix: 

Growth medium for Rhodobacter sphaeroides). Plates were incubated at 34 °C for 

approximately three days until single colony could be observed.   
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Table 2.1 Rhodobacter sphaeroides strains 

Strain Properties Source/reference 

2.4.1 Wild type S. Kaplan, University of 

Texas 

ΔpufBALMX In frame genomic deletion 

of pufBALMX. 

E. Martin, University of 

Sheffield 

Δpuc1BA Δpuc2BA In-frame genomic deletion 

of puc1BA and puc2BA. 

E. Martin, University of 

Sheffield 

RCH-His Genomic modification to 

give a C-terminally tagged 

reaction centre-H subunit 

(Vasilev et al 2014a) 

ΔcrtB In frame genomic deletion 

of crtB. 

(Grayson et al 2017) 

 

2.2.3 Semi-aerobic growth 

Rba. sphaeroides cultures were routinely grown semi-aerobically in the dark at 34 C 

in an orbital shaker set at 160 rpm. These conditions induced the maximal 

biosynthesis of pigments (Niederman et al 1976). Single colonies were inoculated into 

10 ml of M22+ medium and grown at 34 C with 160 rpm shaking for 48 hours. 

Subsequently, the 10 ml culture was added to a 125 ml conical flask containing 80 ml 

of M22+ medium and grown under the same conditions overnight. These cultures 

were then grown further by transfer to a 2 L conical flask containing 1.5 L of M22+ 

medium or transfer to an appropriate vessel for photosynthetic growth (Section 

2.2.4). 

2.2.4 Photosynthetic growth 

For growth under photosynthetic conditions, anaerobic cultures were exposed to 

either 20 W MEGAMAN® CFL bulbs, or 116 W Osram Halogen Eco Pro bulbs to 

achieve the desired light intensity. Light intensity was measured in µmol photons s-1 

m-2 using a LI-250A Light Meter equipped with a LI-190 Quantum Sensor (LI-COR 
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Biosciences). 1 ml semi-aerobic culture was added into a 30 ml universal tube, then 

filled with M22+ medium and incubated in the light for 48 hours with a magnetic stir 

bar for gentle agitation. This culture was used to inoculate a 500ml medical flat bottle 

filled to the top with M22+ medium, grown with a magnetic stir bar for gentle 

agitation, to the desired cell density.   

2. 3 Purification of protein complexes from Rba. sphaeroides  

2.3.1 Cell harvesting and breakage 

Cells were pelleted at 4,000 x g for 30 minutes at 4 °C, then resuspended in standard 

‘Membrane Buffer’ (20 mM HEPES, 5 mM EDTA, pH 7.5) at approximately 5 g of cells 

per 10 ml buffer. A small spatula of lysozyme and deoxyribonuclease I from bovine 

pancreas (Sigma) were added to the cells, then incubated at 25 °C for 30 min in the 

dark. The cells were disrupted twice in a French pressure cell at 18,000 psi. Unbroken 

cells were removed by centrifugation at 33, 000 x g at 4 °C for 20 minutes. The 

supernatant was transferred to a clean tube ready for loading onto a sucrose 

gradient. 

2.3.2 Preparation of intracytoplasmic membranes (ICM) 

High concentrations of intracytoplasmic membranes (ICM) were prepared using a 

15/40 % (w/w) discontinuous sucrose gradient. 5 ml of broken cells (Section 2.3.1) 

were layered onto the 15 % sucrose band and centrifuged at 27, 000 rpm (65,000 x g) 

in a Beckman Type 45 Ti rotor at 4 °C for 8-12 hours. A pigmented band of ICM 

formed at the 15/40 % interface, which was collected. The ICM sample was diluted 

three-fold in working buffer (20 mM HEPES, pH 7.5) and spun at 40,000 rpm (125,171 

x g) in a Beckman Type 45 Ti rotor for 2 hours at 4 °C to pellet the membrane. The 

pellets were homogenised in approximately 3 ml of the working buffer. 

2.3.3 Solubilisation of ICM by detergent 

Membranes harvested from discontinuous sucrose gradients (Section 2.3.2) were 

solubilised in 3 % (v/v) β-DDM by stirring in the dark at 4 °C for 45 min. The solubilized 

membrane solution was diluted at least three-fold in working buffer and centrifuged 

for 1 hour in a Beckman Ti 70.1 rotor at 48,000 rpm (160,000 x g) at 4 °C to remove 

insolubilized material. The supernatant was collected. 
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2.3.4 Purification of His-tagged proteins  

His-tagged RCLH1 (His12-RCLH1) complexes were purified on a 5 ml Chelating 

Sepharose fast-flow Ni-NTA column (GE Healthcare). The column was first washed 

with 20 ml QH2O to wash away the ethanol used for storing the column. Solubilised 

membranes (Section 2.3.3) were applied to the column, equilibrated with 10 mM 

HEPES pH 7.4, 500 mM NaCl, 10 mM imidazole, 0.03% w/v β-DDM buffer. A gradient 

of 10 mM to 400 mM imidazole was applied and the His12-RCLH1 eluted at an 

imidazole concentration of ~300 mM. Eluted protein was then applied to a DEAE-

Sepharose column equilibrated with 10 mM HEPES pH 7.4, 50 mM NaCl, 0.03% w/v β-

DDM buffer. A gradient of 50 mM to 300 mM NaCl was applied with the main peak of 

pure protein eluting at a NaCl concentration of ~280 mM. Fractions with an A880: 

A280 absorbance ratio greater than 1.9 were pooled and applied to a HPLC column 

(Phenomenex BioSep) eluting at a flow rate of 0.3 ml min-1. The second elution peak 

(corresponding to the monomeric fraction of RC-His12-LH1-PufX) was collected and 

concentrated using Amicon 100,000 MWCO spin filters (Millipore) in 10 mM HEPES 

pH 7.4, 50 mM NaCl, 0.03% w/v β-DDM buffer. 

2.3.5 Purification of proteins using ion-exchange chromatography 

Proteins lacking a His-tag, for instance WT-LH2, WT-RCLH1, ΔcrtB RCLH1, were 

purified on a 5 ml DEAE-Sepharose (Sigma) ion-exchange column. The column was 

first washed with 20 ml QH2O in order to remove the ethanol used for storing the 

column. Solubilized membranes (Section 2.3.3) were applied to the column, which 

was equilibrated with 100 ml of buffer A (20 mM HEPES, 0.03 % β-DDM, pH 7.8). A 

gradient with an increasing NaCl concentration at 1 mM ml-1min-1 was applied to the 

column using high salt buffer B (20 mM HEPES, 0.03 % w/v β-DDM, pH 7.8, 1 M NaCl). 

The bound LH2 and RCLH1 eluted at a NaCl concentrations of ~150 mM and ~280 

mM, respectively. After the first DEAE-Sepharose column, fractions with an 

absorbance ratio greater than level 1 (Table 2.2) were collected, diluted twice in 

Buffer A and applied again to a DEAE-Sepharose column. The same washing and 

elution protocol was applied. After elution, fractions having a ratio greater than level 

2 (Table 2.2) were pooled and concentrated using Amicon 100,000 MWCO spin filters 

(Millipore) in 10 mM HEPES pH 7.8, 50 mM NaCl, 0.03% w/v β-DDM buffer.  
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Table 2.2 Absorbance ratios for collection of purified complexes 

Protein Reference 

absorbance bands  

Ratio level 1 Ratio level 2 

WT-LH2  A850:A280 2.2 3.3 

WT- RCLH1 A870:A280 1.7 1.9 

ΔcrtB RCLH1 A870:A280 1.7 2.0 

2.4 Purification of LHCII from spinach  

2.4.1 Spinach sources 

Briefly, mature spinach leaves were purchased from a local supermarket. 

2.4.2 Thylakoid preparation 

Spinach leaves were placed in a pre-cooled kitchen blender. Ice-cold buffer (50 mM 

Na3PO4, pH 7.4, 5 mM MgCl2, 300 mM sucrose) was added to leaf material at a ratio 

of 1:1 (v/w). The material was homogenised for approximately 30 seconds and 

filtered twice: firstly, through two layers of muslin cloth and, secondly, through a 

layer of cotton wool sandwiched between two sheets of muslin cloth. The filtered 

material was centrifuged at 3, 000 x g for 15 min at 4°C. The pellet was resuspended 

in 50 ml osmotic break buffer (10 mM Tricine, pH 7.4, 5 mM MgCl2) before mixing 

with 50 ml of osmotic halting buffer (10 mM Tricine, pH 7.4, 5 mM MgCl2, 400 mM 

sucrose) and centrifuged again at 3, 000 x g for 10 min. The resulting pellet yielded 

thylakoids. 

2.4.3 Thylakoid digestion 

Thylakoids extracted from spinach leaves (see above) were digested using n-Dodecyl 

α-maltoside (α-DDM). Unbroken thylakoids were removed by centrifugation at 1, 000 

x g for 5 min. 

2.4.4 Purification of LHCII trimers 

Trimeric LHCII from spinach was prepared following well-established protocols as 

previously described by (Ruban et al 1994), with some modifications to give a high 

level of purity. Briefly, LHCII trimers were isolated from digested thylakoids by 
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sucrose gradient sedimentation (8-14% sucrose, centrifugation at 100,000 x g for 36 

hours at 4 °C) and the trimeric form was purified by subsequent high-resolution size-

exclusion FPLC (AKTA).  

2. 5 Room temperature absorption spectra 

Room-temperature absorbance spectra were recorded on a Cary 60 UV-Vis 

spectrophotometer (Agilent) at wavelengths 950 nm - 260 nm in an ultra violet (UV) 

cuvette with a 1 cm path length. Baselines were corrected in the same range. 

Dilutions were made using the appropriate buffer or growth medium. 

2. 6 Room temperature fluorescence emission spectra in solution 

All emission and excitation fluorescence spectra were recorded in either buffer A 

(20 mM HEPES, 20mM NaCl, 0.03% w/v β-DDM) or buffer B (20 mM HEPES, 20mM 

NaCl). Measurements were recorded at room temperature in a 1 cm path-length 

quartz cuvette on a HORIBA FluoroLog spectrofluorometer (HORIBA Inc.). Excitation 

was provided from a tungsten light source in the visible-IR region of the spectrum. 

Fluorescence emission spectra were recorded using an excitation wavelength of 470 

nm with 14 nm excitation slit widths and scanning emission from 500 nm - 950 nm, 

with 4 nm emission slit widths. All fluorescence spectra were acquired as averages of 

10 scans. 

2.7 Fluorescence life-time imaging microscopy (FLIM) 

2.7.1 Home-built fluorescence microscope 

The fluorescence emission properties of samples were measured on a home-built 

time-resolved fluorescence microscope. The microscope is equipped with 2 sets of 

light sources: a 420 nm LED (Thorlabs, M420L2) and a 470 nm LED (Thorlabs, M470L2) 

for wide field fluorescence images; and a 420/485 nm picosecond diode laser 

(PicoQuant, PDL 828) for spectral and lifetime measurements. The excitation light is 

focused by a 100 × objective (PlaneFluorite, NA = 1.4, oil immersion, Olympus) and 

the fluorescence emission is collected from the same focal spot on the sample. The 

collected light is then filtered by dichroic beam-splitters to remove the background 

excitation light using the 458 nm dichroic beam-splitter (Semrock) when exciting with 
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the 420 nm LED or the 425 nm laser, or using the 495 nm dichroic beam-splitter 

(Semrock) when exciting with the 470 nm LED or the 485 nm laser. A filter wheel was 

equipped with 6 filters to allow filter selection as each measurement requires. A 

spectrometer (Acton SP2558, Princeton Instruments) was used for measurements 

requiring wavelength selection, an electron-multiplying charge-coupled device 

(EMCCD) detector (ProEM 512, Princeton Instruments) was used for photon collecting 

and a hybrid detector (HPM-100-50, Becker & Hickl) was used for photon counting. 

The modulation of the laser was synchronized with a time correlated single-photon 

counting (TCSPC) module (SPC-150, Becker & Hickl) for lifetime decay measurements. 

The objective is equipped with a piezo scanner (nPoint) to allow laser scanning of the 

sample for acquiring fluorescence spectral images and fluorescence lifetime images.  

2.7.2 Fluorescence images 

Samples were excited by the 420 nm LED or the 470 nm LED light source and 

fluorescence emission was filtered by individual bandpass (BP) filters: a 900/32 nm BP 

for RCLH1 complexes, an 857/30 nm BP for LH2, and a 679/41 nm BP for LHCII 

complexes. The entrance slit of the spectrometer was fully opened to collect all 

emission from the objective field. Fluorescence images were recorded by the EMCCD 

camera. 

2.7.3 Measurement of fluorescence emission spectra  

Samples were excited by the 420/485 nm laser and the fluorescence emission 

selected by long-pass filters before being diffracted by the spectrometer and 

recorded by the EMCCD. To work in a confocal mode, the entrance slit of the 

spectrometer was closed to 100 µm and only 15 pixel arrays of the EMCCD were 

involved in spectral recording. A grating with 150 lines/mm (150T) was used to select 

the wavelength for spectrum recording. Fluorescence spectral images were recorded 

by scanning the excitation laser on the sample using the piezo scanner (nPoint). 

2.7.4 Measurement of fluorescence lifetimes 

Samples were excited by the 420/485 nm pulsed laser at 1 MHz. Time-Correlated 

Single-Photon Counting (TCPSC) was applied for triggering the laser and counting the 

photon arrival time. TCPSC is a well-established and a common technique for 

fluorescence lifetime measurements. It detects single photons and measures their 
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arrival times in respect to the light source. For the measurements in this work, the 

entrance slit of the spectrometer was closed to 100 µm. A grating with 150 lines/mm 

was used to select the wavelength. A specific bandpass filter (Section 2.7.2) and a 

secondary exit slit on the spectrometer were used to narrow the recording 

wavelength range to 3 nm. Fluorescence lifetime images were recorded by scanning 

the excitation laser over the sample using the piezo scanner (nPoint). 

2.7.5 Analysis of fluorescence data  

Wide field fluorescence images were analysed by Image J, Spectral data were 

analysed by OriginPro, and the fluorescence decay curves were analysed by OriginPro 

and TRI2 (open source), with fitting using the multi-exponential decay function:  

𝐼(𝑡) = 𝐴1 exp (
−𝑡

𝜏1
) + 𝐴2 exp (

−𝑡

𝜏2
) + 𝐵 

Where τ is the fluorescence lifetime, A is the fractional amplitude contribution of the 

decay component, and B is the background. The quality of the fit was judged on the 

basis of the reduced χ2 statistic:  

χ2red = 

∑
[I(tk) − Ic(tk)]

2

I(tk)
n
k=1

n − p
= 

χ2

n − p
 

where tk is the time point k, I(tk) is the data at the time point k, Ic(tk) is the fit at the 

time point k, n is the number of the data points and p is the number of the variable fit 

parameters (n - p = degrees of freedom). 

Using a mirror to replace the sample, the time delay of the laser from the pulse 

starting point to the instrument responding point was measured. Such time delay was 

defined as the instrument response (IRF), which was approximately 130 ps on the 

home-built fluorescence microscope. The IRF was taken into account when the fitting 

was performed for the decay curves.  

2. 8 Atomic force microscope (AFM) imaging 

2.8.1 Instrumentation 

All images were acquired on the Multimode VIII instrument controlled by the 

NanoScope 5.0 controller (Bruker Nano Surfaces Business) and NanoScope software 
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(Bruker, v8.15).  Data analysis and image processing was done by NanoScope Analysis 

1.5, Gwyddion (open source), OriginPro 2015 and ImageJ (open source).  

2.8.2 Buffer and sample adsorption 

Buffer conditions varied depending on the nature of the sample. For liposome-protein 

samples, the adsorption buffer contained 20 mM MOPS (pH 7.8), 20 mM NaCl and 5 

mM MgCl2, and the imaging buffer contained 20 mM MOPS (pH 7.8) and 20 mM 

NaCl.  The liposome-protein samples were pipetted onto freshly cleaved mica discs 

(9 mm mica discs, from Agar Scientific) and incubated for 1 hour at 4°C in the 

absorption buffer. Prior to imaging, the absorption buffer was removed by pipetting 

and the mica was washed three times by imaging buffer.  

For the rest of the samples (protein patterns on silicon surfaces), AFM images were 

recorded either in air or in imaging buffer containing 20 mM HEPES (pH 7.8) and 20 

mM NaCl. The samples were imaged on their silicon substrate rather than on mica. 

2.8.3 Imaging patterned samples created by PDMS soft-patterning lithography 

Topography details were recorded by the AFM for protein patterns created by PDMS 

soft-patterning lithography (Section 2.9). AFM images were recorded by tapping 

mode in air using silicon probes with an aluminium reflective coating (OTESPA-R3, 

Bruker, nominal spring constant ~ 26N/m, nominal resonance frequency ~300 kHz). 

Images were taken with 512 x 512-pixel arrays.  

2.8.4 Imaging nanopatterned samples created by local oxidation lithography 

Topography and friction images of the oxidised molecules from the local oxidation 

nanopatterning (Section 2.10) were recorded immediately following local oxidation 

lithography. AFM imaging was performed in contact mode in air by a conductive AFM 

probe (Bruker, CONTV-PT) coated by a Pt-Ir layer. When protein immobilisation was 

complete, protein patterns were imaged in peak-force tapping mode in imaging 

buffer (Section 2.8.2) using ‘SNL-10’ probes (56 kHz, k~0.24Nm-1) (Bruker Nano). The 

peak-force amplitude was 10 nm and images were taken using 256 x 256 or 512 x 

512-pixel arrays. The peak-force set point varied between 50-1000 pN and the scan 

rate was between 0.5-1.0 Hz. 
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2.8.5 Imaging liposome-protein samples 

Liposome-protein samples (Section 2.11) were diluted to a usable concentration in 

adsorption buffer (Section 2.8.2) and incubated on mica for imaging. AFM images 

were recorded in peak-force tapping mode in imaging buffer (Section 2.8.2) at a peak-

force frequency of 2 kHz unless otherwise stated. SNL-10 probes (56 kHz, k~0.24Nm-

1) (Bruker Nano) were used for peak-force tapping. When imaging under liquid the 

standard fluid cell was used to house the AFM probe and to control it. Once the 

probe had been inserted into the fluid cell, the reservoirs were filled with imaging 

buffer (Section 2.8.2) and mounted on top of the sample where the laser was aligned 

with the probe. The peak-force amplitude was 10 nm and images were taken using 

either 256 x 256 or 512 x 512 pixel arrays. The peak-force set point varied between 

50-1000 pN and the scan rate was between 0.5-1.0 Hz. 

2. 9 PDMS soft-patterning 

2.9.1 Stamp preparation 

The Si master template (Mikromasch, TGZ11), with rectangular arrays of 5 µm width, 

10 µm pitch and 1.35 µm step height, was used as master to replicate a 

polydimethylsiloxane (PDMS) stamp (Zhao et al 1997). Prior to casting of the PDMS 

mixture, the Si master template was treated in trichlorosilane (Sigma-Aldrich) vapour 

under vacuum (20 mbar) for 16 hours. The PDMS mixture was prepared by mixing a 

Sylgard184 silicon elastomer base (Dow Corning) and a Sylgard184 silicon elastomer 

curing agent (Dow Corning) at a ratio of 10:1. The PDMS mixture was stirred for five 

minutes to reach uniformity and centrifuged at 3, 000 x g for 15 min to remove air 

bubbles. Then the PDMS mixture was cast onto the Si master and cured at 74°C for 8 

hr, before being carefully detached as a PDMS replica stamp. 

2.9.2 Active cross-linking of substrates 

The PDMS soft-patterning was performed on a poly-L-lysine coated substrate, either a 

glass coverslip (Fisher scientific, Corning BioCoat, REF 354085) or silicon. The 

substrate was treated with 20 mM dimethyl suberimidate.2HCl (DMS) (Thermo Fisher 

Scientific, Prod #20700) for 40 min at pH 8.5 to activate lysine as the cross-linker for 

amine attachment. 
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2.9.3 Immobilising light-harvesting complexes by soft-patterning 

The PDMS stamp was immersed into a solution of LH2 complexes (15 µM protein in 

buffer consisting of 20 mM HEPES, 0.03 % β-DDM, pH 7.8) for 5 min, then blown dry 

with Argon to form a surface layer of LH2. The LH2 inked stamp was gently placed 

onto the substrate to print LH2 arrays and left for 5 minutes before being gently lifted 

away. Samples with cross-patterned LH2 and RCLH1 arrays were made using the 

same printing steps performed for the RCLH1 complexes (either ΔcrtB RCLH1 or WT 

RCLH1) with the second printing orientation at roughly 90 degrees to the previous 

LH2 arrays. AFM was used to image samples prepared on silicon substrates in air. 

Samples prepared on glass coverslips were sealed either in a dry N2 atmosphere or in 

a 20mM HEPES buffer, pH 7.8 with protocatechuate-dioxygenase (50 nM)/ 3,4-

Dihydroxybenzoic acid (2.5 mM) enzymatic oxygen scavenging system (Swoboda et al 

2012) before being imaged by fluorescence life-time  microscopy for energy transfer 

studies. 

2.10 Local oxidation nanopatterning 

2.10.1 Preparation of mPEO-terminated silane monolayers on silicon substrate 

Uncoated, p-type (Boron) doped silicon (1 0 0) wafers (Siegert wafer) with a thickness 

of 0.5 mm were used as the substrate. Silicon substrates and glass vials were cleaned 

by immersion for 40 min in a piranha solution consisting of 30% hydrogen peroxide 

(Fisher Scientific) and 95% sulphuric acid (Fisher Scientific) at a ratio of 3:7. The 

cleaned silicon substrates were immersed in a solution of 15 mM 2-[methoxy 

(polyethyleneoxy) 6-9propy] trichlorosilane (mPEO chlorosilane) (Gelest) in 99.8% 

anhydrous toluene (Sigma-Aldrich) for 2 hours to form a self-assembled monolayer of 

mPEO-terminated silane (mPEO-SAM). After the SAM formation, the substrates were 

rinsed thoroughly with toluene and acetone and dried under a stream of argon. 

2.10.2 Creation of nanopatterns on mPEO-SAM silicon by local oxidation 

lithography 

The mPEO-SAM coated silicon substrates then went through the local oxidation 

process to create protein attachable regions on the protein resistant mPEO surface. 

The oxidation process was performed by the AFM (Multimode 8, Bruker) in contact 

mode in air at a relative humidity of approximately 40%. Silicon substrates were stuck 
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onto SPM specimen discs (Agar Scientific) by silver conductive adhesive (RS 

Components) and solidly mounted on the AFM sample holder. A conductive AFM 

probe (Bruker, CONTV-PT), coated by a Pt-Ir layer, scanned the silicon surface with a 

voltage bias, locally oxidising the –CH3 groups on the mPEO to –COOH groups (Choi et 

al 2006, Maoz 2000a, Maoz 2000b). 10 µm lines of –COOH groups were made by 

scanning the AFM tip at a pixel resolution of 25.6 pixels/µm; 5x5 µm squares of –

COOH groups were made by scanning the AFM tip at a pixel resolution of 51.2 

pixels/µm. The oxidation was performed with varying bias values (V) and bias 

durations (ms/pixel) (Avouris et al 1997, Fontaine et al 1998).  

2.10.3 Activation of the –COOH group to an NHS ester 

Silicon substrates with –COOH patterns were rinsed 3 times using ultrapure water 

and immersed for 1 hour in a solution consisting of 20 mM HEPES (Sigma-Aldrich), 20 

mM 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) (Thermo 

Scientific) and 20 mM N-hydroxysuccinimide (NHS) (Thermo Scientific). The 

incubation was at room temperate at pH 5.8, which allowed the reaction between the 

–COOH and the NHS to form an NHS ester for protein immobilisation.   

2.10.4 Protein immobilisation  

Following the formation of the amine-reactive NHS ester, the substrate was 

immersed in a solution of 2 µM photosynthetic complexes, 20 mM HEPES and 0.03% 

w/v β-DDM at pH 7.4. The incubation time varied from 40 min to 20 hours. Then, the 

sample was rinsed 3 times by detergent buffer (20 mM HEPES, 0.03% w/v β-DDM) to 

remove weakly binding complexes. Samples were imaged by the AFM in buffer (20 

mM HEPES, 20 mM NaCl, 5 mM MgCl2) for the topography and by FLIM in buffer (20 

mM HEPES, 0.03% w/v β-DDM) for optical properties and for energy transfer studies.  

2. 11 Proteoliposome reconstitution 

2.11.1 Liposome preparation  

Liposomes, also known as lipid vesicles, was prepared by the extrusion technique 

using a 0.2 µm pore filter. Working buffer consisted of 20 mM MOPS (pH 7.8) and 20 

mM NaCl, and liposome preparation used the lipid 1,2-dioleoyl-sn-glycero-3-

phosphocholine (DOPC) (Avanti Polar Lipids, Inc.). 20 mg/ml DOPC in chloroform was 
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evaporated in a dry argon stream and formed a lipid cake which then was mixed with 

1 ml of working buffer for adequate agitation by vortex to form large multi-lamellar 

vesicles (LMV). The LMV suspension was downsized by extruding 40 times through a 

0.2 µm pore polycarbonate membrane (Whatman Nucleopore) to form small uni-

lamellar vesicles. Thus, liposomes were prepared with an average diameter of ~260 

nm. All processes were performed at room temperature. 

2.11.2 Reconstitution of light-harvesting complexes into the liposome 

Following the formation of liposomes, β-DDM was added to the liposome solution at 

a final concentration of 0.03% w/v and the mixture was incubated for 30 min. Then, 

light-harvesting complexes purified from Rba. sphaeroides (Section 2.3) were 

incubated in liposome solution for 1 hour in the dark at 4°C to form a proteoliposome 

solution. The lipid/protein ratio for incubation was fixed at 500:1 (mol/mol). 

2.11.3 Purification of proteoliposome suspensions  

Redundant β-DDM in the proteoliposome solution was gradually removed by adding 

nonpolar polystyrene biobeads (BIO-RAD, Bio-Beads SM-2 Adsorbents) into the 

solution and rolling on a roller mixer (Stuart, SRT6) overnight at 4°C in the dark. 

Aggregated complexes were removed by sucrose density gradient centrifugation. 

Sucrose solutions were prepared in buffer (20 mM MOPS, 20 mM NaCl, pH 7.8) and 

the gradient formed with steps at 10%, 20%, 30%, 40% and 50% (w/w). 

Proteoliposomes were loaded onto the 10% sucrose layer and the gradients were 

centrifuged at 154,000 x g for 15 hours at 4°C in the SW41Ti rotor (Beckman). 

Pigmented bands were carefully collected from the 25%-30% interface using a 

peristaltic pump. Absorbance spectra of the proteoliposome samples were recorded 

to identify the protein components and the ratios between them. Topographic 

images were recorded for using AFM. Fluorescence measurements were performed 

for the optical properties and energy transfer studies. 

2. 12 Calculation of protein concentration in proteoliposomes  

Room-temperature absorbance spectra of proteoliposome samples were recorded on 

a Cary 60 UV-Vis spectrophotometer (Agilent) at wavelengths between 1000 nm - 450 

nm in an ultra violet (UV) cuvette with a 1 cm path length. Baseline were corrected in 
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the same range. Dilutions were made using the appropriate buffer or growth 

medium. 

Spectra were processed by scatter correcting and deconvoluting the contributions of 

RC-LH1-PufX and LH2 using a modified version of an Excel spreadsheet by Prof 

O’Haver available at https://terpconnect.umd.edu/~toh/spectrum/CurveFittingB 

.html. The spreadsheet adds spectra of the two complexes and a scatter curve to 

achieve a best fit to the data and returns spectra for the three components according 

to their fitted contributions (Swainsbury et al 2018). The scatter curve used was 

calculated using ʎ-2.6, and the RC-LH1-PufX and LH2 reference spectra were produced 

from proteins purified as described in Section 2.3. Concentrations of RC-LH1-PufX and 

LH2 were determined from their calculated components using extinction coefficients 

of 4410000 M/cm-1 and 3745500 M/cm-1 at 875 nm and 850 nm, respectively (Dr Pu 

Qian’s personal communication). 
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Chapter 3 

Excitation energy transfer and trapping in fabricated 
microarrays constructed from photosynthetic antenna 
and reaction centre complexes 

3.1 Summary 

LH2 and RCLH1 complexes were purified from Rba. sphaeroides and cross-patterned 

on glass surfaces, then sealed under physiological conditions for energy transfer 

studies. FLIM results show that both complexes retained their light-harvesting and 

energy transfer function. When the complex pattern was excited with 470 nm or 485 

nm light, fluorescence emission intensity and fluorescence lifetime decay from the 

LH2 complexes show evidence of energy transfer to RCLH1 complexes. 

Since absorption of carotenoids around 485 nm complicates the assignment of energy 

transfer, carotenoid-less RCLH1 complexes were purified from the ΔcrtB RCLH1 strain. 

ΔcrtB RCLH1 and LH2 complexes were cross-patterned on a glass surface and sealed 

under physiological conditions. Energy transfer from LH2 to ΔcrtB RCLH1 was 

observed, shown by the lifetime of fluorescence emission from LH2 complexes, which 

was shortened from 653 ps to 395 ps. 

To explore the possibility of the artificial light-harvesting system working when not 

under liquid, ΔcrtB RCLH1 and LH2 were cross-patterned on glass surface and sealed 

under a protective Argon atmosphere. Results show that both complexes retained 

their functions and are capable of energy transfer. Repeated FLIM measurements 

conducted over an extended time period show that the LH2/ ΔcrtB RCLH1 patterns 

can last for 60 days with their fluorescence properties and with energy transfer 

capability retained. 

AFM imaging of the ΔcrtB RCLH1 and LH2 patterns on silicon show that both 

complexes retained their structure after being printed on silicon surface. In the 

intersecting regions, where energy transfer were observed, the AFM results show a 

mixed arrangement of ΔcrtB RCLH1 sitting either beside LH2 or on top of LH2 

complexes. 
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3.2 Introduction 

The first stages of photosynthesis involve harvesting solar energy by light-harvesting 

(LH) antenna complexes, then transfer to a specialized, membrane-bound complex 

called the reaction centre (RC) where this energy is trapped as a charge separation. 

The LH function can be performed either by large pigment-protein complexes such as 

chlorosomes or phycobilisomes that sit on the membrane and deliver harvested 

energy to an underlying RC, or by a series of repeating LH units that sit alongside the 

RC in the membrane (Saer & Blankenship 2017). This latter case includes the 

photosynthetic apparatus of plants and, at a simpler level, the photosynthetic 

membranes found in purple phototrophic bacteria. The level of structural and 

functional characterisation for the phototrophic bacterium Rhodobacter (Rba.) 

sphaeroides has reached a level where all of the steps of photosynthesis, from 

absorption of solar energy, through to trapping at the RC, generation of a 

protonmotive force and the production of ATP, have been combined into an in silico 

model of the photosynthetic membrane (Cartron et al 2014, Sener et al 2016, Şener 

et al 2010). The power of this membrane model is such that it can account for the 

doubling time of the bacterium (Hitchcock et al 2017), and it also encourages the 

design and ‘bottom up’ fabrication of biohybrid energy trapping systems that capture, 

convert and store solar energy.  

New biohybrid energy transfer and trapping assemblies take many forms, and range 

from incorporating new chromophores into native (Dutta et al 2014a, Dutta et al 

2014b, Gundlach et al 2009, Harris et al 2014a, Harris et al 2013, Harris et al 2014b, 

Meadows et al 1995, Springer et al 2012, Yoneda et al 2015) and de novo designed 

(Kodali et al 2017, Mancini et al 2017, Meadows et al 1995) proteins, to using a 

variety of lithographic patterning methods to precisely position a single type of 

photosynthetic complex (Escalante et al 2010, Escalante et al 2008a, Escalante et al 

2008b, Patole et al 2015, Reynolds et al 2007, Vasilev et al 2014b). In this case, the 

assembly of extensive 2-dimensional architectures for energy harvesting, transfer and 

trapping requires the ability to direct the relative positions of two or more types of 

photosynthetic complex on the same surface. The two complexes chosen for this two-

protein patterning work are the LH2 antenna of Rba. sphaeroides, and its native 

energy acceptor, the RCLH1 complex (Cartron et al 2014, Qian et al 2013). Both are 
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membrane-intrinsic, multi-subunit proteins in which transmembrane polypeptides 

bind light-absorbing bacteriochlorophyll and carotenoid pigments (Freer et al 1996). 

The short distances between pigments ensure the rapid delocalization of excited 

states and their transfer within and between complexes in the native membrane 

(Freer et al 1996, Noy et al 2006, Şener et al 2009). Here we use a simple, robust 

lithographic procedure to construct intersecting lines of LH antenna and RC 

complexes, effectively creating a new micron-scale ‘photosynthetic unit’. A two-stage 

micro-contact printing method was used to fabricate a 2-D grid of cross-patterned 

LH2 and RCLH1 proteins, which was interrogated by fluorescence microscopy. 

Spectral and lifetime imaging shows that light absorbed by the LH2 antenna is 

transferred to RCLH1 complexes; thus, these arrays contain functionally coupled 

components for absorbing and transferring excitation energy, thereby performing the 

first two steps of photosynthesis. 
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3.3 Results 

3.3.1 Directed formation of crossed-patterned LH2 and RCLH1 complexes on glass 

and silicon 

We created artificial light-harvesting networks using a very simple and low cost soft-

lithographic technique, based on the micro-contact printing approach (Alom Ruiz & 

Chen 2007, Bernard et al 2000, Xia & Whitesides 1998), schematically represented in 

Figure 3.1. Optically transparent glass functionalized with poly-L-lysine (PLL) was 

chosen as a substrate, to facilitate characterisation of immobilized protein complexes 

by fluorescence microscopy. As a first step, the LH2 complexes (in green, Figure 3.1G 

and H) were printed onto the substrate using a soft PDMS stamp (Figure 3.1B and C) 

then inked with the protein solution (Figure 3.1D), followed by the printing of ΔcrtB 

RCLH1 complexes (in red, Figure 3.1I), performed in a similar way but at a 90° angle to 

the LH2 lines.  
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Figure 3.1. Schematic diagram of the micro-contact printing method used to 
fabricate the cross-patterned LH2 and RCLH1 protein arrays.   

A. Si master with rectangular arrays of 5 µm width, 10 µm pitch and 1.35 µm step 
height. 

B. Casting a PDMS replica of the master. 
C. PDMS replica.  
D. Inking the stamp with LH2 (green).  
E. PDMS stamped covered with LH2 ink. 
F. PLL coated glass activated by DMS (yellow).  
G. Printing LH2 on glass. 
H. LH2 arrays on glass. 
I. Printing RCLH1 complexes (red) on glass orthogonally to LH2 arrays.  
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3.3.2 Excitation energy transfer between LH2 and RCLH1 under physiological 

conditions  

In bacterial photosynthetic systems the LH2 antenna complexes harvest light energy 

and transfer it to the RCLH1 core complex, where the excitation energy is stabilized as 

a photo-chemical charge separation. Native biological light-harvesting networks are 

stabilized in membrane bilayers and operate under tightly controlled physiological 

conditions, so the cross-printed energy transfer assemblies were sealed in imaging 

buffer (20 mM HEPES, pH 7.8) to promote retention of their optical and structural 

properties. The artificial microarrays of cross-printed LH2 and RCLH1 complexes were 

characterized by florescence lifetime and spectral imaging in a home-built FLIM set-

up. This microscope is equipped with 485 nm pulsed laser and 470 nm LED excitation 

light sources; an EMCCD camera is coupled to a monochromator for wide-field and 

spectral imaging, and a single photon detector for time-correlated single photon 

counting (TCSPC) is used to acquire lifetime decay images. The samples were excited 

either at 485 nm or at 470 nm in the absorption band of the carotenoids present in 

both the LH2 and RCLH1 complexes (Figure 3.2). The excitation energy is absorbed by 

carotenoids and transferred to B800 and B850 bacteriochlorophylls (BChls) within the 

LH2 complexes, where energy is partly emitted as fluorescence and partly transferred 

to the B875 pigments in the RCLH1 complexes. In turn, LH1 B875 BChls can either 

emit some of the excitation energy as fluorescence, or transfer it to the RC, where it 

is trapped as a charge separation.  
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Figure 3.2. Absorption spectra of purified complexes.  

LH complexes were excited either at 470 nm or 485 nm for fluorescence emission. At 485 nm, 

the absorbances of RCLH1, LH2 and ΔcrtB RCLH1 are 0.57, 0.26 and 0.02, respectively. At 

470nm, the absorption of RCLH1, LH2 and ΔcrtB RCLH1 are 0.50, 0.22 and 0.02 OD units, 

respectively. 
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Figure 3.3 shows fluorescence data acquired from a sample cross-printed with LH2 

and RCLH1 complexes on glass, and sealed in imaging buffer (20 mM HEPES). The 

false-color fluorescence image (Figure 3.3A) of the sample, acquired in epi-

fluorescence mode illuminated by the 470 nm LED source, shows the surface 

distribution of the LH complexes; the green regions correspond to LH2 complexes 

(857/30 nm bandpass filter), and those in red are from RCLH1 complexes (900/32 nm 

bandpass filter). When switching to scanning confocal mode, and using 485 nm 

pulsed laser excitation, we were able to record the spectral map of fluorescence 

emission of the sample. The photon fluence of about 2.0x1014 photons pulse-1 cm-2 

was sufficiently low to minimise excitonic annihilation in the LH complexes. The 

fluorescence intensity maps acquired at 860 nm and 890 nm (Figure 3.3 B and C, 

respectively), confirm the immobilisation of the LH2 complexes along the near-

horizontal lines and immobilisation of the RCLH1 complexes along the near-vertical 

lines. A striking observation in the cross-over area (marked with number 2 in Figure 

3.3 B and C), where LH2 and RCLH1 complexes are in close proximity, is the decrease 

in the LH2 emission intensity, accompanied by a comparable increase in RCLH1 

emission. This observation is confirmed by the deconvolution of the spectra extracted 

from the pixel marked with the number 2 (cross-over area), orange curve in Figure 

3.3D, and its comparison with the individual spectra, green and red in Figure 3.3D, 

extracted from the pixels marked with the numbers 1 and 3 in panel B (LH2-only and 

RCLH1-only areas, respectively). We interpret these changes in the emission 

intensities as an indication for excitation energy transfer (EET) between the LH2 and 

RCLH1 complexes. In order to study the EET in more detail we recorded a 

fluorescence lifetime map of the immobilised LH2 complexes. An amplitude-averaged 

lifetime image of the cross-patterned sample, recorded at 860 nm (the LH2 peak 

emission wavelength), is shown in Figure 3.3E with two individual fluorescence decay 

curves shown in Figure 3.3F. From Figure 3.3E, the LH2 only areas (green) generally 

show longer lifetime of about between 750~900 ps, comparing with the LH2- RCLH1 

cross-over area (pink) of about between 400~550 ps. In Figure 3.3F, the green decay 

curve was extracted from the pixel marked 5 (Figure 3.3E) corresponding to the LH2-

only area, and the bi-exponential decay function fitting result shows an amplitude-

averaged lifetime τav = 904 ps, with components A1 = 0.39 , τ1 = 1119 ps  and A2 = 0.61, 

τ2 = 678 ps; the orange curve represents the fluorescence decay in the cross-over 
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area (marked 4, Figure 3.3E), and the bi-exponential decay function fitting result 

shows an amplitude-averaged lifetime τav = 541 ps, with components A1 = 0.09, τ1 = 

1138 ps  and A2 = 0.91, τ2 =  348 ps. This reduction of the LH2 fluorescence lifetime 

indicates EET from the LH2 complex to RCLH1 complex in the cross-over areas where 

the two protein molecules are in very close proximity.  
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Figure 3.3. Fluorescence spectrum and lifetime data from a cross-patterned WT LH2 

and RCLH1 complexes under physiological conditions (in imaging buffer) on a 

functionalised glass substrate. 

A. False colour fluorescence image (wide field excitation at 470 nm), showing the LH2 
(green) and RCLH1 (red) lines in a grid-like pattern with a period of 10 µm and line 
width of 5 µm.  

B. Spectral map excited by laser, showing the emission intensity at 860 nm (LH2 
emission peak), the excitation is by 485 nm laser pulsed (1 MHz repetition rate, 
2x1014 photons pulse-1 cm-2), scan size 26 µm.  

C. Simultaneously acquired spectral map showing the emission intensity at 890 nm 
(RCLH1 emission peak), scan size 26 µm. 

D. Individual emission spectra recorded in the pixels of the images in panels B and C 
marked with 1 (LH2 only), 2 and 3 (RCLH1 only), respectively. The spectral 
deconvolution in D shows a clear drop in the LH2 emission (olive peak fit) compared 
to the LH2 emission outside the cross-over area, accompanied with a corresponding 
increase in the (pink peak fit), again, compared to the RCLH1 emission outside the 
cross-over area.  

E. Amplitude weighted average lifetime image obtained at 485 nm excitation (1 MHz 
repetition rate, 2x1014 photons pulse-1 cm-2), and 860 nm emission (LH2 complex 
emission peak), clearly showing a decrease in the lifetime in the cross-over areas, 
where the two complexes are in close proximity, scan size 26 µm.  

F. Individual decay curves recorded in the pixels of the lifetime image in panel E marked 
with 4 (orange, average lifetime of 541 ps) and 5 (green, average lifetime of 904 ps), 
respectively.  

(Data obtained by Dr Cvetelin Vasilev.) 
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3.3.3 Energy transfer from LH2 to ΔcrtB RCLH1 under physiological conditions  

RCLH1 contains carotenoid pigments, therefore the LH2 and RCLH1 complexes 

studied in Figure 3.3 were both excited by the 485 nm light source, which complicates 

the assignment of energy transfer between them. In order to overcome this problem, 

we purified ΔcrtB RCLH1 complexes from the ΔcrtB RCLH1 strain, which has no 

carotenoids and therefore has negligible absorption at the excitation wavelength of 

485 nm (Figure 3.2). Accordingly, when LH2 and ΔcrtB RCLH1 are immobilised on a 

glass surface, only LH2 complexes are efficient at capturing 485 nm light. Using the 

same printing process and the same fluorescence measurement setting as for Figure 

3.3, LH2 and ΔcrtB RCLH1 were cross-patterned on glass and sealed in 20 mM HEPES 

buffer for fluorescence measurements.  

As expected, cross-patterned LH2 and ΔcrtB RCLH1 retain their optical properties and 

energy transfer capability (Figure 3.4). Figure 3.4A is the merged wide field false 

colour fluorescence image of complexes illuminated by 470 nm LED and recorded by 

EMCCD. The green lines are fluorescence filtered by the 857/30 nm bandpass filter, 

which indicates the distribution of LH2 complexes. The red squares are fluorescence 

filtered by 900/32 nm bandpass filter, which shows the location of fluorescent ΔcrtB 

RCLH1 complexes. Clearly, there are some fluorescent ΔcrtB RCLH1 complexes in the 

cross-over area, because nearby LH2 complexes are acting as an antenna and 

delivering excitation energy, ΔcrtB RCLH1 complexes without connected LH2 

complexes cannot harvest energy, stay unexcited and give the black gaps in the 

fluorescent image. Same results are observed in fluorescence spectral intensity 

images when the sample is excited with the 485 nm laser. The fluorescence intensity 

images at 857 nm and 890 nm are shown in Figure 3.4B and 3.4C separately. Typical 

emission spectra from marked pixels are plotted in Figure 3.4D.  

FLIM provided further evidence for energy transfer between LH2 and ΔcrtB RCLH1. An 

amplitude-averaged lifetime image of the cross-patterned sample, recorded at 857 

nm (LH2 peak emission wavelength) is shown in Figure 3.4E with two individual 

fluorescence decay curves shown in Figure 3.4F. From Figure 3.4E, the LH2 only areas 

(green) generally show a longer lifetime of about between 550~700 ps, compared 

with the LH2- ΔcrtB RCLH1 cross-over area (pink) of about between 350~500 ps. In 

Figure 3.3F, the green decay curve was extracted from the pixel marked 5 (Figure 3.4E) 
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corresponding to the LH2-only area, and the bi-exponential decay function fitting 

result shows an amplitude-averaged lifetime τav = 653 ps, with components A1 = 0.64 , 

τ1 = 711 ps  and A2 = 0.36, τ2 = 146 ps; the orange curve represents the fluorescence 

decay in the cross-over area (marked 4, Figure 3.4E), and the bi-exponential decay 

function fitting result shows an amplitude-averaged lifetime τav = 395 ps, with 

components A1 = 0.32, τ1 = 529 ps  and A2 = 0.68, τ2 =  275ps. Again, the reduction of 

the LH2 fluorescence lifetime confirms the EET from the LH2 complex to ΔcrtB RCLH1 

complex in the cross-over areas where the two protein molecules are in close 

proximity.  
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Figure 3.4. Fluorescence spectrum and lifetime from cross-patterned LH2 and ΔcrtB 

RCLH1 complexes imaged under physiological conditions  

A. False colour fluorescence image (470 nm wide field excitation), showing the LH2 
(green) and ΔcrtB RCLH1 (red) lines, filtered by 857/30 nm and 900/32 nm bandpass 
filters, respectively.  

B. Spectral map showing the emission intensity at 860 nm (LH2 emission), excitation 
source is 485 nm laser pulsed (1 MHz repetition rate, 2x1014 photons pulse-1 cm-2), 
scan size 32 µm;  

C. Simultaneously recorded spectral map showing the emission intensity at 890 nm 
(ΔcrtB RCLH1 emission), scan size 32 µm;  

D. Individual emission spectra recorded in the pixels of the images in panels B and C 
marked with 1 (LH2 only, green line), 2 (cross-over area, orange line) and 3 (ΔcrtB 
RCLH1 only, red line), respectively.  

E. Intensity-averaged lifetime image obtained with 485 nm excitation and 857 nm 
emission (LH2 emission), clearly showing a decrease in the lifetime in the cross-over 
areas, where the two complexes are in close proximity, scan size 32 µm.  

F. Individual decay curves recorded in the pixels of the lifetime image in panel E marked 
with 4 (orange, average lifetime of 395 ps) and 5 (green, average lifetime of 653 ps), 
respectively. 
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3.3.4 Energy transfer from LH2 to ΔcrtB RCLH1 in an argon protective environment  

Due to the lack of carotenoids ΔcrtB RCLH1 is expected to be less photo stable 

compared to WT RCLH1, so a protective Ar atmosphere was used to minimise photo-

oxidative damage to this complex. For this work ΔcrtB RCLH1 and LH2 complexes 

were patterned on a glass substrate, but not kept under liquid; instead they were 

partially dried in a partially dehydrated manner and then sealed under a protective 

Argon (Ar) atmosphere.  

Figure 3.5A shows a false colour epifluorescence image of cross-patterned LH2 (green) 

and ΔcrtB RCLH1 (red) complexes, with wide field excitation at 470 nm and the 

emission signals filtered by 857/30 nm and 900/32nm bandpass filters, respectively. 

Figure 3.5A shows the precision of patterning of the two types of complex, 

delineating their positions, and the differing emission bands provide evidence that 

the immobilised complexes have retained their properties and structural integrity 

under the protective conditions of our experiment. Spectral imaging of the co-

patterned complexes (Figure 3.5B) shows lines arising from LH2 emission at 860 nm. 

Orthogonal ΔcrtB RCLH1 lines are absent because absorption of the 485 nm excitation 

light is very weak, so fluorescence emission was barely detectable over the 

background in the areas where the ΔcrtB RCLH1 complexes were immobilised on their 

own. As expected, the spectral intensity map shows that the lines of LH2 emission 

were not uniform; individual emission spectra, corresponding to the pixels in Figure 

3.5B,C and marked with the numbers 1(LH2-only area, green), 2 (LH2/ ΔcrtB RCLH1 

cross-over area, orange), and 3 (ΔcrtB RCLH1-only area, red), are shown in Figure 

3.5D. Spectral deconvolution shows a clear drop in the LH2 emission (olive peak fit) at 

the LH2/ ΔcrtB RCLH1 intersection and an increase in the ΔcrtB RCLH1 emission (pink 

peak fit), compared to the ΔcrtB RCLH1 emission outside the cross-over area (pixel 3, 

red). A simultaneously acquired spectral map of emission intensity at 890 nm from 

ΔcrtB RCLH1 complexes (Figure 3.5C) shows major signals at the LH2/ΔcrtB RCLH1 

intersections; given that excitation is specific for LH2, this ΔcrtB RCLH1 emission must 

have arisen from excitation energy transfer from neighbouring LH2 complexes. Closer 

inspection of Figure 3.5C shows that a low level of fluorescence emission in the ΔcrtB 

RCLH1 channel is found in the vertical lines outside the LH2/RCLH1 intersections, a 
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possible indication of migration of EET to neighbouring ΔcrtB RCLH1 complexes 

arrayed in the vertical lines.  

Figure 3.5E shows an amplitude-weighted fluorescence lifetime map of surface-

attached LH2 and ΔcrtB RCLH1 complexes, with excitation at 485 nm and emission 

monitored at 857 nm, the peak emission wavelength of LH2. Individual decay curves 

corresponding to pixels 4 and 5 of the lifetime image are shown in Figure 3.5F. From 

Figure 3.5E, the LH2 only areas (green) generally show longer lifetime of about 

between 700~900 ps, comparing with the LH2- ΔcrtB RCLH1 cross-over area (pink) of 

about between 400~500 ps. In Figure 3.5F, the green decay curve was extracted from 

the pixel marked 5 (Figure 3.5E) corresponding to the LH2-only area, and the bi-

exponential decay function fitting result shows an amplitude-averaged lifetime τav = 

794 ps, with components A1 = 0.45 , τ1 = 974 ps  and A2 = 0.55, τ2 = 512 ps; the orange 

curve represents the fluorescence decay in the cross-over area (marked 4, Figure 

3.5E), and the bi-exponential decay function fitting result shows an amplitude-

averaged lifetime τav = 438 ps, with components A1 = 0.25, τ1 = 645 ps  and A2 = 0.75, 

τ2 = 284 ps. Again, the reduction of the LH2 fluorescence lifetime confirms the EET 

from the LH2 complex to ΔcrtB RCLH1 complex in the cross-over areas where the two 

protein molecules are in close proximity.  
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Figure 3.5. Fluorescence spectrum and lifetime from cross-patterned LH2 and ΔcrtB 

RCLH1 complexes on a functionalised glass substrate imaged in a protective 

atmosphere of argon 

A. False colour fluorescence image (wide field excitation at 470 nm), showing the LH2 
(green) and ΔcrtB RCLH1 (red) lines, filtered by 857/30nm and 900/32nm bandpass 
filters, respectively.  

B. Spectral map showing the emission intensity at 860 nm (LH2 emission), excitation is 
by a 485nm pulsed laser (1 MHz repetition rate, 2x1014 photons pulse-1 cm-2), scan 
size 32 µm.  

C. Simultaneously acquired spectral map showing the emission intensity at 890 nm 
(ΔcrtB RCLH1 emission), scan size 32 µm.  

D. Individual emission spectra recorded in the pixels of the images in panels B and C 
marked with 1 (LH2 only, green line), 2 (cross-over area, orange line) and 3 (ΔcrtB 
RCLH1 only, red line), respectively. The spectral deconvolutuon shows a clear drop in 
the LH2 emission (olive peak fit) and an increase in the ΔcrtB RCLH1 emission (pink 
peak fit), compared to the LH2 emission and the ΔcrtB RCLH1 emission outside the 
cross-over area. 

E. Amplitude weighted average lifetime image obtained at 485nm excitation (1 MHz 
repetition rate, 2x1014 photons pulse-1 cm-2) and 857nm emission (LH2 emission), 
clearly showing a decrease in the lifetime in the cross-over areas, where the two 
complexes are in close proximity, scan size 32 µm.  

F. Individual decay curves recorded in the pixels of the lifetime image in panel E marked 
with 4 (orange, average lifetime of 438 ps) and 5 (green, average lifetime of 794 ps), 
respectively. 
 

3.3.5 Long-term stability of cross-patterened LH2 and ΔcrtB RCLH1 complexes on 

glass surfaces 

In order to test the stability and “shelf life” of these artificial light-harvesting systems, 

the cross-patterned complexes samples were sealed in Argon atmosphere and stored 

at 4°C in the dark. Regular FLIM measurements, taken over approximately two 

months, showed that both LH2 and ΔcrtB RCLH1 are quite stable under these 



 

81 
 

conditions. From days 1 to 60, there is a small variation in the fluorescence lifetime of 

LH2 complex in both LH2 only area (typical amplitude-averaged lifetime of 740 ± 90ps) 

and LH2+ ΔcrtB RCLH1 cross-over area (typical amplitude-averaged lifetime of 400 ± 

50 ps) (Table 3.1). Lifetime data were fitted by a bi-exponential decay function. 

Parameter τ1 refers to the longer lifetime component, τ2 refers to the shorter lifetime 

one and τav refers to amplitude-weighted average lifetimes. ‘LH2’ refers to areas 

covered only by LH2; ‘LH2+ΔcrtB RCLH1’ refers to cross-over areas covered by both 

LH2 and ΔcrtB RCLH1.  

Table 3.1. Fluorescence lifetimes of LH2 at 860 nm.  
 

τ1 [ps] 
LH2+Δcrt
B RCLH1  

τ1 [ps]            
LH2 

τ2 [ps] 
LH2+ΔcrtB 
RCLH1  

τ2 [ps]              
LH2 

τav [ps] 
LH2+ΔcrtB 
RCLH1 

τav [ps]   
LH2 

Day 1 640 1040 280 520 430 770 

Day 5 480 1040 290 500 380 740 

Day 10 510 950 280 430 380 680 

Day 15 600 1100 360 600 450 840 

Day 20 490 1010 280 500 370 770 

Day 30 450 950 290 470 350 710 

Day 60 540 840 320 430 410 650 

 

Furthermore, the fluorescence lifetime images clearly show excitation energy transfer 

between LH2 and ΔcrtB RCLH1 60 days after sample preparation (Figure 3.6), on the 

basis of quenching of the LH2 fluorescence observed in the intensity and lifetime 

channels (Figure 3.6B and E). Individual decay curves corresponding to pixels 4 and 5 

of the lifetime image are shown in Figure 3.6F. From Figure 3.6E, the LH2 only areas 

(green) generally show longer lifetime of about between 0.6~0.75 ns, comparing with 

the LH2- ΔcrtB RCLH1 cross-over area (pink) of about between 0.35~0.5 ns. In Figure 

3.6F, the green decay curve was extracted from the pixel marked 5 (Figure 3.6E) 

corresponding to the LH2-only area, and the bi-exponential decay function fitting 

result shows an amplitude-averaged lifetime τav = 683 ps, with components A1 = 0.26, 

τ1 = 964 ps  and A2 = 0.74, τ2 = 488 ps; the orange curve represents the fluorescence 

decay in the cross-over area (marked 4, Figure 3.6E), and the bi-exponential decay 

function fitting result shows an amplitude-averaged lifetime τav = 382 ps, with 

components A1 = 0.30, τ1 = 507 ps and A2 = 0.70, τ2 = 285 ps. The fluorescence 

intensity images at 857 nm (Figure 3.6B) and 890 nm (Figure 3.6C), respectively, show 
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that the pattern is well preserved on the functionalised glass substrate with no 

diffusion of protein complexes, while the emission spectra (Figure 3.6D) indicate that 

both LH2 and ΔcrtB RCLH1 complexes remain undamaged.   
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Figure 3.6. Fluorescence spectrum and life-time data obtained 60 days after the 

sample preparation showing long-term stability of the cross-patterned LH2 and 

ΔcrtB RCLH1 complexes.  

A. False colour fluorescence image (470 nm wide field excitation) showing the LH2 
(green) and ΔcrtB RCLH1 (red) lines, filtered by 857/30 nm and 900/32 nm bandpass 
filters, respectively. 

B. Spectral map showing the emission intensity at 857 nm (LH2 emission); the excitation 
source is a 485nm pulsed laser (1 MHz repetition rate, 2x1014 photons pulse-1 cm-2), 
scan size 32 µm.  

C. Simultaneously acquired spectral map showing the emission intensity at 890 nm 
(ΔcrtB RCLH1 emission), scan size 32 µm. 

D. Individual emission spectra recorded in the pixels of the images in panels A and B 
marked with 1 (LH2 only, green line), 2 (cross-over area, orange line) and 3 (ΔcrtB 
RCLH1 only, red line), respectively. The spectral deconvolutuon shows a clear drop in 
the LH2 emission (olive peak fit) and an increase in the ΔcrtB RCLH1 emission (pink 
peak fit), compared to the LH2 emission and the ΔcrtB RCLH1 emission outside the 
cross-over area.  

E. Intensity-averaged lifetime image obtained at 485 nm excitation and 857 nm 
emission (LH2 emission ), clearly showing a decrease in the lifetime in the cross-over 
areas, where the two complexes are in close proximity, scan size 32 µm.  

F. Individual decay curves recorded in the pixels of the lifetime image in panel E marked 
with 4 (orange, average lifetime of 382 ps) and 5 (green, average lifetime of 683 ps), 
respectively. 
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3.3.6 Visualising the arrangement of patterned protein complexes on a glass 

substrate 

Initial characterisation had investigated the surface density, orientation and surface 

coverage of the immobilized protein complexes on the substrate. Atomic force 

microscopy (AFM) of micropatterns showed that the surface roughness of the PLL-

functionalized glass substrates was too high for accurate measurement of the height 

of the protein complexes (data not shown). Substrates such as silicon wafers, on the 

other hand, are opaque but are much better substrates for AFM measurement of the 

micropatterned LH complexes. Consequently, artificial LH networks were fabricated 

on two different types of substrates – micropatterned LH complexes on 

functionalized glass for fluorescence lifetime imaging microscopy (FLIM), and on 

silicon for examining the topography of immobilized complexes by AFM.  

Figure 3.7 shows AFM topographs of LH2 and ΔcrtB RCLH1 complexes cross-printed 

on a Si wafer in air. The LH2 complexes were printed in the horizontal direction and, 

subsequently, the ΔcrtB RCLH1 complexes were printed in the vertical direction, 

forming a zone of intersection shown in Figure 3.7A. The cross-section across the LH2 

line (green line, Figure 3.7A) reveals heights in the range 5 ~ 6 nm (Figure 3.7B), while 

the cross-section across the ΔcrtB RCLH1 line (red line, Figure 3.7A) reveals heights 

around 9 nm (Figure 3.7C). Both values conform with the known sizes of the two 

complexes and with a previous AFM measurements (Bahatyrova et al 2004a). 

Interestingly, three distinct height values are found for the topographic cross-section 

of the intersecting area: 5 ~ 6 nm (as found for the LH2 only area), around 9 nm (as 

for the ΔcrtB RCLH1 only area), and heights of around 14 nm. The results indicate that, 

during the second printing step, ΔcrtB RCLH1 complexes in the cross-over area can be 

immobilised not only next to the existing LH2 molecules on the substrate (similar to 

their relative disposition in the majority of the biological LH networks), but also on 

top of them, thus forming a vertical stacks of LH complexes (an arrangement which 

does not exist in the nature for that particular pair of LH complexes).  
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Figure 3.7. Topography of the cross-patterned LH2 / ΔcrtB RCLH1 complexes on a Si 
substrate. 

A. AFM topography image acquired under ambient conditions (air), with three sections 
indicated: green – LH2; Red – ΔcrtB RCLH1; blue intersection.  

B. Cross-section across the LH2 lines (green line), with a typical height around 5 nm.  
C. Cross-section across the ΔcrtB RCLH1 lines (red line), with a typical height around 9 

nm.  
D. Cross-section across the LH2+ ΔcrtB RCLH1 intersecting area (blue cursor), with 

typical heights of 5 nm, 9 nm and 14 nm. 
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3.4 Discussion 

Previous work using reconstituted membranes has shown that energy transfer can be 

observed in mixed assemblies of LH2 and RCLH1 complexes (Hunter et al 1979, 

Sumino et al 2011a, Uragami et al 2015), but controlling the nanoscale location, 

relative stoichiometries and 2-D organization of a series of photosynthetic complexes 

presents new challenges. For some time it has been possible to construct nanoarrays 

of single types of photosynthetic complex, starting with the light-harvesting LH2 

complex of Rba. sphaeroides (Escalante et al 2008a, Escalante et al 2008b, Reynolds 

et al 2007), and later the RCLH1 complex (Patole et al 2015) and the LHCII complex of 

plants (Vasilev et al 2014b). In each case the function of the complex, in terms of 

fluorescence emission, was retained; for LHCII it was possible to directly image the 

ability of immobilised molecules of LHCII to switch between fluorescent and 

quenched states. For LH2, there were indications of long-range excitation energy 

transfer; 80 nm-wide nanolines of LH2 complexes exhibit energy propagation on 

micron length scales, which greatly exceed the natural energy propagation lengths 

found in in native photosynthetic membranes (Escalante et al 2010). Excitation 

energy is generally trapped before it migrates for more than 50-100 nm within 

natural energy transfer and trapping networks such as the chromatophore vesicles of 

purple bacteria, or the thylakoids of cyanobacteria, algae and plants.  

Nanoarrays of two or more types of photosynthetic complex would be valuable tools 

to investigate LH antenna networks, in terms of RC trap ratios, and exploring length 

scales and geometries of energy migration and trapping that lie beyond those found 

in biology. However, progress with these aims relies on the ability to co-pattern two 

or more types of complex on the same surface and on the application of spectral and 

time-resolved microscopies to assess the functional state of immobilised assemblies. 

Recent developments in surface chemistries do allow multiprotein patterning (El 

Zubir et al 2017), and an alternating linear LHCII/EGFP pattern has been reported 

(Vasilev et al 2014b). Here, we have used a simple lithographic method to cross-print 

LH and energy trapping complexes, and at the points of intersection we demonstrate 

collection of light by one complex, LH2, and its subsequent transfer to the RCLH1 

complex. Thus, this assembly can be regarded as a new type of ‘photosynthetic unit’, 

where the complexes adopt a predetermined, geometric configuration. 
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Although the stability of surface-immobilised proteins is a potential problem, many 

studies have shown that photosystem complexes are stable on a variety of substrates. 

Purified bacterial RCs, stabilised using peptide surfactants, retain their function when 

deposited on indium-tin oxide (ITO)-coated glass (Das et al 2004) or gold electrodes 

(Ham et al 2010, Trammell et al 2007, Zhao et al 2002) or Gallium Arsenide (Frolov et 

al 2008). Stable coatings of RCLH1, Photosystem II (Badura et al 2006, Terasaki et al 

2008) and Photosystem I complexes on electrodes have been reported (Faulkner et al 

2008, Krassen et al 2009, Yehezkeli et al 2010). To our knowledge, there has been no 

systematic study of the long-term stability of surface-attached complexes on a 

functionalised glass substrate, so we undertook a 60-day test with the cross-

patterned arrays of photosynthetic complexes sealed in argon and stored at 4°C in 

the dark. These artificial light-harvesting systems proved to be extremely stable under 

these conditions, and further work will examine the stability of other natural and de 

novo designed maquette complexes. 

The means to control the relative positions of two or more types of molecule on the 

same surface allows construction of ‘mix and match’ combinations of molecules that 

could not be created through genetic means, such as arrays comprising mixed 

bacterial/plant, or plant/artificial maquette complexes. Further functional tests will 

include measuring the nanoelectrical properties of RC traps within native, biohybrid 

and bioinspired photosynthetic arrays, deposited on conducting substrates. This 

development would add a third function of charge separation to the absorption and 

transfer of energy demonstrated in the present work.  
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Chapter 4 

Nanoscale patterning of photosynthetic complexes on 
silicon by local oxidation lithography 

4.1 Summary 

Patterns of photosynthetic complexes were created on mPEO-SAM coated silicon 

surfaces by local oxidation lithography. Scanning an AFM tip with a voltage bias over 

an mPEO-SAM coated silicon surface locally oxidised the -CH3 groups to -COOH, 

preparing the surface for protein immobilisation. Following a systematic survey of 

experimental conditions, a bias potential of 12 V and a dwell time of 100 ms/pixel 

were chosen for the local oxidation, and 4 hours was found to be optimal for protein 

incubation, with regard to the fluorescence emission intensity from the immobilised 

proteins. Three photosynthetic complexes, bacterial RCLH1 and LH2, and the plant 

LHCII complex, were immobilised on oxidised mPEO-SAM coated silicon surfaces. 

AFM images and fluorescence emission spectra show that these complexes had 

retained their native functional and therefore structural properties.  

In order to create an artificial photosynthetic system for light harvesting and energy 

transfer, dual intersecting patterns of LH2 and RCLH1 complexes were formed on a 

silicon surface using local oxidation lithography. The RCLH1 nanolines were created 

by the first local oxidation, followed by orthogonal LH2 nanolines created by a second 

local oxidation. AFM topographies of the intersecting regions show that the RCLH1 

complexes were removed by the second local oxidation and replaced by the LH2 

complexes. However, there was no evidence for LH2→RCLH1 excitation energy 

transfer, presumably due to the limited contact area between two complexes.  

A 5x5 µm square area of LH2 complexes was fabricated with four intersecting RCLH1 

nanolines, in order to increase the contact area for energy transfer. The fluorescence 

lifetime of the LH2 complexes decreased from 900-1300 ps in the LH2-only regions to 

300-500 ps at the intersection points, indicating that, following light harvesting by 

LH2 complexes, excitation energy is been delivered to the RCLH1 acceptor complexes. 
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4.2 Introduction 

Light is harvested by light-harvesting antenna pigments within (bacterio) chlorophyll-

protein complexes and solar energy is transformed to excitation energy, which 

migrates among other light-harvesting complexes, until it arrives at the specialised 

complexes, reaction centres, where charge separation takes place and the excitation 

energy is converted into biochemical energy. In photosynthetic bacteria light 

harvesting and energy transfer occur in a system of intracytoplasmic membranes. In 

the case of Rba. sphaeroides these membranes take the form of vesicles, which are 

generally 50-60 nm in diameter (Tucker et al 2010). The processes of energy transfer 

and trapping take approximately 65 ps, and the quantum efficiency is approximately 

95% (Şener et al 2009, Şener et al 2007a, Şener & Schulten 2009). Exploiting this 

characteristic of light-harvesting and reaction centre complexes, in terms of the very 

high energy transfer and charge separation efficiency, is a major goal in producing 

bio-inspired solar cells. Developing procedures for controlling the nanoscale 

distribution of light-harvesting antennas and reaction centres that remain functionally 

active on conductive substrates is an important step towards this goal.  

Substrates such as gold and glass are widely used for the immobilisation of proteins. 

The surface properties of these substrates are generally modified by physical or 

chemical means to control the attachment of the target molecule. Self-assembled 

monolayers (SAMs), as the most extensively studied method, are generally used in 

modifying gold, silicon and glass substrates (Delamarche et al 1996, Nuzzo & Allara 

1983, Ulman 1996, Wen et al 2008). These SAMs have been applied to study the 

attachment of a variety of biological materials. Photosynthetic complexes have 

previously been attached onto insulating substrates such as glass (Escalante et al 

2008a, Escalante et al 2008b, Vasilev et al 2014b), and conductive substrate such as 

gold (Kondo et al 2007, Patole et al 2015, Reynolds et al 2007) and ITO (Suemori et al 

2006). These studies reported that immobilised photosynthetic complexes retained 

their functional properties. Other studies, of immobilised charge separating reaction 

centres on conductive surfaces, measured a photocurrent in (Kamran et al 2014, 

Kamran et al 2015, Kondo et al 2007, Tan et al 2012). However, such studies generally 

do not control the distribution of the reaction centres on conductive surfaces, either 

laterally or in terms of the numbers of layers deposited. Developments in fabrication 
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techniques make it possible to create nanometre scale molecular assemblies and 

direct the distribution of monolayers of protein complexes (Leggett 2012). These 

techniques include photolithography (Nicholas P. Reynolds et al 2009, Patole et al 

2015, Reynolds et al 2007, Sorribas et al 2002, Xia et al 2016), dip-pen 

nanolithography (DPN) (Ki-Bum Lee 2003, Lee et al 2002, Lee et al 2006a, Lee et al 

2006b), nanoimprint lithography (NIL) (Escalante et al 2010, Escalante et al 2008a, 

Escalante et al 2008b), scanning near-field photolithography (SNP) (Ehtsham Ul-Haq 

2013, Sun & Leggett 2004, Sun et al 2006) and local oxidation lithography (Choi et al 

2006, Choi et al 2008, Maoz 2000a, Maoz 2000b). However, most of the efforts in 

nanopatterning of photosynthetic complexes have focused on attaching a single type 

of complex such as LH2, RCLH1 or LHCII to a surface, and no comparative study has 

been reported on attachment of two types of photosynthetic complex on one 

conductive surface with their relative distributions controlled on the nanometre 

scale. 

In this work, we created nanometre scale of photosynthetic complexes patterns such 

as LHCII, LH2 and RCLH1 on mPEO-SAM modified silicon surfaces by local oxidation 

lithography. This approach provides greater flexibility in designing protein nanoarrays 

with specific geometries and composition compared to other recently developed 

nanopatterning methods. Experimental conditions have been varied, in order to find 

the most efficient protocol for surface molecule oxidation and protein 

immobilisation. AFM images and fluorescence emission results showed that 

photosynthetic complexes retained their structural and optical properties after being 

immobilised on silicon surfaces. Performing two successive local oxidations creates 

dual patterns of complexes of LH2 and RCLH1 on the silicon substrate. Energy transfer 

from the LH2 to the RCLH1 complexes is observed by monitoring fluorescence 

lifetimes. This work establishes a method for patterning multiple types of complexes 

on a conductive surface with their distribution controlled on a nanometre scale. This 

approach paves the way to fabricate conductive bio-chips for light harvesting and 

charge separation purposes, and it represents a useful step forward for producing 

bio-inspired nanoscale architectures for biosensors and for solar cells. 
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4.3 Results 

4.3.1 Nanopatterning photosynthetic complexes on silicon using local oxidation 

lithography 

Nanopatterns of photosynthetic complexes were created by local oxidation 

lithography on mPEO-SAM coated silicon surfaces. The processes of surface molecule 

oxidation and spatially controlled protein attachment are schematically represented 

in Figure 4.1. Specifically, an mPEO monolayer was first self-assembled onto a piranha 

cleaned silicon surface (panel A). Then, the self-assembled monolayer was locally 

oxidised by the current from a scanning conductive AFM probe with an applied bias 

between 6 V to 12 V (panel B). Such a bias contributes to the formation of water 

meniscus between the tip and the silicon surface, which induces a current sufficient 

to cause the oxidation of terminal -CH3 groups on the mPEO-SAM to -COOH groups 

(Daan Wouters et al 2005, Hoeppener 2002, Krakert et al 2010, Maoz 2000b, 

Menglong Yang 2009); the silicon surface is oxidised to silicon oxide (Avouris et al 

1997, Fontaine et al 1998). Following the local oxidation reaction, a mixed NHS and 

EDC solution was applied to transform -COOH groups into NHS ester groups, which 

are active in amine crosslinking and capable of attachment to photosynthetic 

complexes (panel C). Since the rest of the mPEO-SAM remained protein resistant, 

photosynthetic complexes were specifically immobilised on the silicon surfaces (panel 

D). The distribution and occupancy of the protein patterns were then imaged by AFM, 

following the method in Section 2.8. The home-built FLIM system was used to check 

for the retained function and the potential for light harvesting and energy transfer, 

following the method in Section 2.7. 

  



 

91 
 

Silicon

Conductive AFM probe

Water 
meniscus

-COOH group

Silicon

mPEO-SAM

A B

NHS, EDC 

C

Silicon

-COOH group

Silicon

NHS ester

Silicon

D Photosynthetic 
complexes 

Silicon

 Figure 4.1. Schematic for protein immobilisation by local oxidation lithography. 

A. mPEO-SAM coated silicon. 
B. Locally oxidise mPEO to yield -COOH by applying bias between the substrate and the 

AFM tip in contact mode. 
C. Activation reaction between NHS and -COOH groups at pH 5.8 to form NHS ester 

groups. 
D. Immobilise photosynthetic complexes by cross-linking amine to NHS ester at pH 7.4. 
 

4.3.2 AFM imaging of surface oxidation and protein immobilisation  

Following the oxidation reaction and protein immobilisation, AFM images were 

recorded to check the formation of -COOH groups (Figure 4.2) and the distribution of 

immobilised photosynthetic complexes (Figure 4.3). During the local oxidation 

process, the AFM tip scanned at a fixed rate holding the bias duration at 100 ms/pixel, 

whilst the bias applied between the silicon surface and the AFM tip varied from 6 V to 

12V to find out how bias would affect the oxidation. Figure 4.2A shows the height 

details of oxidised mPEO/COOH and silicon oxide nanolines on mPEO-SAM coated 

silicon. The four nanolines from left to right were created by bias from 6 V to 12V as 

marked underneath each line, with their average height plotted in Figure 4.2B. The 

increasing heights of the nanolines mainly arise from the oxidation of silicon substrate 

to silicon oxide, whilst the oxidised mPEO molecules make a very limited contribution. 
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As can been seen in Figure 4.2B, the nanoline created by the 6 V bias is 0.37 nm in 

height; with the bias increased to 8 V, 10 V and 12 V, the nanolines grew to 0.43 nm, 

0.65 nm and 0.76 nm, respectively. Therefore, higher bias value results in more silicon 

oxidation, forming a thicker layer of silicon oxide. Multiple passes of the conductive 

AFM probe were required to efficiently oxidise the mPEO, resulting in broadening of 

the lines created; the full width half maximum (FWHM) of each oxidised nanoline 

varied between 339 nm and 414 nm and generally showed an increasing trend 

according to the rising bias. Figure 4.2C is the friction image of the mPEO/COOH 

pattern; Molecules terminated with a -COOH group show brighter contrast than -CH3 

terminated mPEO. The average friction of each nanoline is plotted in Figure 4.2D. -

COOH group terminated nanolines generally show an increasing trend in terms of 

friction amplitude and FWHM. Specifically, the nanoline oxidised at 12 V of bias 

shows the brightest relative friction contrast value of 1.1 V and the largest FWHM of 

258 nm, whilst the other three nanolines show a relative friction contrast from 0.8 V 

to 0.9 V and FWHM values from 185 nm to 221 nm.  

Following local oxidation and friction image scanning, the oxidised mPEO sample 

went through the RCLH1 incubation process, as described in Section 2.10. AFM height 

images were recorded to check the RCLH1 distribution (Figure 4.3). Figure 4.3A shows 

the topology of the RCLH1 nanolines. The average height of each RCLH1 nanoline is 

plotted in Figure 4.3B, which takes into account the height of immobilised complexes 

and any vacant positions. As a result, low occupancies yield a lower average height, as 

seen in Figure 4.3B. Nanolines created at higher bias result in more efficient oxidation 

and better RCLH1 attachment and therefore a larger average height; RCLH1 nanolines 

made by biases at 6 V, 8 V, 10 V and 12 V show average heights of 5.5 nm, 7.2 nm, 8.7 

nm and 11.5 nm respectively; and average FWHM of 221nm, 256 nm, 320 nm and 

348 nm respectively. 
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Figure 4.2. AFM images of the mPEO/COOH lines formed by local probe oxidation 
on a silicon surface  

Local oxidation was performed at a bias from 6 V to 12 V and a bias duration of 100 ms/pixel. 

Height and friction image of the mPEO/COOH pattern were recorded in contact mode in air 

using the same tip for the local oxidation. 

A. Height image of the mPEO/COOH pattern on the silicon surface. 

B. Average height of each mPEO/COOH line and their FWHM according to topography.  
C. Friction image of the mPEO/COOH pattern on the silicon surface.  
D. Average relative friction of each mPEO/COOH line and their FWHM according to 

relative friction. 

 

To study RCLH1 attachment at a specific location on a given nanoline, sections were 

plotted across the four lines in Figure 4.3A (white dashed line), and the profiles are 

displayed in Figure 4.3C. Again, nanolines oxidised at higher bias show better RCLH1 

attachment, which does affect the average height but to a lesser degree than in 

Figure 4.3B. RCLH1 nanolines made by biases above 8 V are approximately 9.8nm in 

height, whilst the line oxidised at 6 V of bias is only 6.3 nm.  
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Figure 4.3. AFM images of RCLH1 complexes immobilised on NHS ester activated 
COOH patterns. 

The incubation time for RCLH1 complexes was 6 hours. Height images of the immobilised 

RCLH1 complexes on the oxidised pattern were obtained in peak-force tapping mode in liquid 

using an SNL probe, cantilever C. 

A. Height image of RCLH1 complexes immobilised on an NHS ester activated -COOH 
pattern.  

B. Average height and average FWHM recorded along each RCLH1 nanoline. 
C. Height details for the line section marked in panel A by the white dashed line. 
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4.3.3 Improvements in local oxidation scanning for high quality protein nanolines 

To obtain high quality nanopatterns of photosynthetic complexes, effective 

experimental conditions are required to efficiently oxidise exposed -CH3 groups to -

COOH. By varying AFM scanning bias and bias duration, a series of patterns of 

immobilised RCLH1 nanolines was created on mPEO-SAM coated silicon surfaces and 

their fluorescence emission properties were recorded (Figure 4.4). Figure 4.4A shows 

false colour fluorescence images of RCLH1 nanolines created by different scanning 

settings. Each group of nanolines shown in each image was created at the same bias 

duration, with bias voltages between 6 V and 12 V, as marked on the images. The 

total fluorescence intensity from each RCLH1 nanoline was quantified by ImageJ and 

plotted in Figure 4.4B. As can be seen, for a fixed bias duration, the fluorescence 

intensity of RCLH1 nanolines rises when scanning bias increases. Similarly, at a fixed 

scanning bias, the fluorescence intensity rises when the bias duration is prolonged. 

The highest fluorescence intensity is observed from the RCLH1 nanoline created at a 

bias of 12 V and a bias duration of 100 ms/pixel, as marked by a white rectangle in 

Figure 4.4A. The fluorescence emission spectrum from this RCLH1 nanoline (Figure 

4.4C) shows that the immobilised RCLH1 complexes were still functional. The 890 nm 

emission maximum from immobilised RCLH1, and the shape of the spectrum, largely 

match the fluorescence emission spectrum from RCLH1 complexes in solution (20 

mM HEPES, pH 7.8, 0.03% β-DDM), indicating that the complexes retained their 

structural and optical property after immobilisation on the silicon surface.  
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Figure 4.4. Fluorescence emission from the immobilised RCLH1 complexes on local 
probe oxidised nanolines.  

During the oxidation process, the relative ambient humidity was around 40%. Whenever 

necessary the AFM tip was replaced before it lost sharpness and the writing pixel resolution 

was at 256 pixels over 10 µm length (25.6 pixel/µm). For protein immobilisation, RCLH1 

solution was at a concentration of 2 μM and the incubation time was 6 hours.  

A. False colour fluorescence image of RCLH1 nanolines. Samples were excited at 470 nm 
by an LED light and fluorescence emission was recorded through a 900/32 nm 
bandpass filter. The four lines from left to right in each image were produced at 
biases from 6 V to 12 V, as marked under each line. The five images from left to right 
were produced at bias durations between 20 ms/pixel and 100 ms/pixel, as marked.  

B. Quantified fluorescence intensity of each RCLH1 nanoline in panel A; each line was 
cropped in ImageJ and its intensity counted. 

C. Normalised emission spectra of RCLH1 complexes immobilised on silicon and in 
solution, both excited by a 470 nm LED. 
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4.3.4 Bias duration over 100 ms/pixel shows no further improvement on the local 

oxidation 

The results from Section 4.3.2 and 4.3.3 show that a higher bias value and a longer 

bias duration contribute to a more efficient mPEO oxidation and improved 

immobilisation of complexes. Since 12 V is the maximum bias output from the AFM, 

the bias duration was deliberately prolonged from 80 ms/pixel to 240 ms/pixel to find 

out if values over 100 ms/pixel would contribute to further oxidation of mPEO 

molecules. Nanolines of RCLH1 complexes were created and their fluorescence 

emission intensity was quantified by ImageJ. The normalised fluorescence intensity is 

plotted in Figure 4.5. The results show that for values of bias duration over 80 ms/ 

pixel there is no consistent improvement in fluorescence intensity. For subsequent 

experiments bias of 12 V and duration of 100 ms/ pixel was chosen as the standard 

experimental condition. 

 

Figure 4.5. Normalised fluorescence intensity from RCLH1 nanolines created by local 
oxidation for bias duration from 80 ms/pixel to 240 ms/pixel. 

Local oxidation was performed at a bias of 12 V. The incubation time for RCLH1 complexes 

was 6 hours. 
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4.3.5 Determination of the most efficient incubation time for photosynthetic 

complexes on oxidised mPEO 

Following efficient mPEO oxidation, the protein incubation condition became another 

factor that affects the immobilisation of photosynthetic complexes. To find out the 

best incubation time, the RCLH1 photosynthetic complex was incubated at 4 °C from 

40 min to 20 hours on the mPEO/COOH patterns oxidised optimally as in Section 4.3.4. 

For each incubation time, the fluorescence intensity from the RCLH1 nanoline was 

quantified by ImageJ (Figure 4.6). As seen, the emission intensity increased slightly 

when the incubation time was prolonged from 40 min to 2 hours; followed by a sharp 

rise for the incubation of 4 hours and a drop when the incubation was prolonged to 

20 hours. Therefore, 4 hours of incubation, yielding the maximum RCLH1 

fluorescence intensity, was chosen as the most efficient time. 

 

Figure 4.6. Fluorescence intensity from RCLH1 nanolines created by cross-linking 
incubation time from 40 minutes to 20 hours. 
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4.3.6 Immobilisation of LH2 complexes on mPEO-SAM coated silicon surface by local 

oxidation 

Previous experiments, from Section 4.3.2 to Section 4.3.5, show that the most 

efficient mPEO oxidation occurs at 12 V of bias and 100 ms/pixel of bias duration; and 

the most efficient protein attachment requires 4 hours of incubation. With such 

experimental conditions, RCLH1 complexes have been efficiently attached on silicon 

surface to form nanoscale patterns, while retaining their structural properties and 

optical functions. Using the same experimental conditions, nanolines of LH2 

complexes were created on the mPEO-SAM coated silicon surfaces. 
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Figure 4.7. AFM images of mPEO/COOH lines formed by local probe oxidation on a 
silicon surface  

Local oxidation was performed at a bias of 12 V and a bias duration of 100 ms/pixel at relative 

ambient humidity around 40%. Images were recorded in contact mode in air with the same 

tip used for the local oxidation. 

A. Height image of the mPEO/COOH pattern on the silicon surface. 
B. Average height of each mPEO/COOH line and the corresponding FWHM.  
C. Friction image of the mPEO/COOH pattern on the silicon surface.  
D. Average relative friction of each mPEO/COOH line and the corresponding FWHM. 
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Figure 4.7 shows the AFM images of locally oxidised mPEO/COOH nanolines on an 

mPEO-SAM coated silicon surface. The lines are about 1 nm above the silicon surface 

with approximate FWHMs around 560 nm (Figure 4.7A and 4.7B). The relative friction 

contrasts of each line, shown in panel C and D, are around 4.7 V in amplitude and 440 

nm in FWHM. The height (Figure 4.7B) and friction amplitude (Figure 4D) were 

obtained by averaging all signals along each line. 

 

The oxidised mPEO-SAM coated silicon then went through the incubation process for 

LH2 immobilisation as described in Section 2.10. AFM topography was recorded to 

check the LH2 occupancy of the oxidised mPEO/COOH lines (Figure 4.8). Figure 4.8A 

shows the topology of the LH2 nanolines with a zoomed-in image of a segment from a 

specific line (marked by a red rectangle). Considering the unexpectedly high topology 

of some lines, possibly arising from some protein aggregates, the aggregate-free 

regions were chosen for plotting the average height along each line (Figure 4.8B), as 

marked by the green dashed rectangle in Figure 4.8A. Taking into account the height 

of the immobilised LH2 and any vacant positions, the lines show an average height of 

around 6 nm and the average FWHM from 436 nm to 523 nm. The LH2 attachment at 

a specific location on a given nanoline was studied by plotted the average height for 

sections across the four lines in Figure 4.8A (white dashed line). The profiles displayed 

in Figure 4.3C show the LH2 nanolines are around 7.0 nm in height, with the FWHM 

varying from 304 nm to 546 nm. 
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Figure 4.8. AFM images of LH2 complexes immobilised on an NHS ester activated 
COOH pattern. 

The incubation time for LH2 complexes was 4 hours. Height images of the immobilised LH2 

complexes on the oxidised pattern were obtained in peak-force tapping mode in liquid using 

an SNL probe, cantilever C. 

A. Height image of LH2 complexes immobilised on the NHS ester activated -COOH 
pattern. Zoomed-in details of LH2 occupancy are shown in the red rectangle. 

B. Average height and average FWHM recorded along each LH2 nanoline in the green 
dashed rectangle marked in panel A. 

C. Height details for the line section marked in panel A by the white dashed line. 

 
Fluorescence images of the lines were recorded to check the functionality of LH2 

complexes after immobilisation on the silicon surface. Figure 4.9A shows false colour 

fluorescence images of the LH2 nanolines and Figure 4.9B shows the fluorescence 

emission spectrum from the LH2 lines in the area marked by the white box. The 854 

nm emission maximum from immobilised LH2, and the shape of the spectrum, match 

the fluorescence emission spectrum from LH2 complexes in solution (20 mM HEPES, 
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pH 7.8, 0.03% β-DDM), indicating the complexes retained their structural and optical 

property after immobilisation on the silicon surface.  
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Figure 4.9. Fluorescence emission from nanolines of LH2 complexes  

Local oxidation was performed at a bias of 12 V and a bias duration of 100 ms/pixel at relative 

ambient humidity around 40%. Whenever necessary the AFM tip was replaced before it lost 

sharpness and the writing pixel resolution was at 256 pixels over 10 µm length (25.6 

pixel/µm). For protein immobilisation, LH2 solution was at a concentration of 2 μM and the 

incubation time was 4 hours.  

A. False colour fluorescence image of LH2 nanolines. The sample was excited at 470 nm 
by an LED light and the fluorescence emission was recorded through an 857/30 nm 
bandpass filter.  

B. Normalised emission spectra of LH2 complexes immobilised on silicon and in solution, 
excited at 470 nm by an LED. 

 
 

4.3.7 Immobilisation of LHCII complexes on mPEO-SAM coated silicon surface by 

local oxidation 

Following the nanopatterning of photosynthetic complexes from Rba. sphaeroides, 

LHCII complexes from spinach were also attached onto silicon surfaces with 

controlled distribution. 

Figure 4.10 shows the AFM results of locally oxidised mPEO/COOH patterns on the 

mPEO-SAM coated silicon surface. Using the local oxidation method described in 

Section 2.10, two nanolines of -COOH groups were created at 12 V of bias and 100 

ms/pixel of bias duration. The topographs in panels A and B show that both nanolines 

are about 0.4 nm in height and 400 nm in FWHM. For both nanolines, the relative 

friction images in panel C and D shows that their relative friction contrasts are around 

0.4 V in terms of amplitude and 254 nm in terms of FWHM. The height (Figure 4.10B) 
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and friction amplitude (Figure 4.10D) were obtained by averaging all signals along 

each line. 
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Figure 4.10. AFM images of mPEO/COOH lines formed by local probe oxidation on a 
silicon surface  

Local oxidation was performed at a bias of 12 V and a bias duration of 100 ms/pixel. Height 

image and friction images of the mPEO/COOH pattern were recorded in contact mode in air 

with the same tip used for local oxidation. 

A. Height image of the mPEO/COOH pattern on the silicon surface. 
B. Average height of each mPEO/COOH line and their FWHM.  
C. Friction image of the mPEO/COOH pattern on the silicon surface.  
D. Average relative friction of each mPEO/COOH line and their FWHM. 

 
Following surface oxidation, the substrate was incubated with LHCII complexes, using 

conditions described in Section 2.10. AFM images were recorded to study the 

topology of immobilised LHCII on the oxidised silicon surface, and therefore the 

quality of packing (Figure 4.11). Figure 4.11A shows the topology image of the LHCII 

nanolines and the zoomed-in image showing the LHCII occupancy is outlined by the 

red rectangle. The zoomed-in image shows that the LHCII nanoline varies in height, 

which possibly is caused by the LHCII stacking to form layers of 2-3 complexes during 

immobilisation. The average heights along the LHCII nanolines are 7.6 nm and 5.3 nm 
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and their FWHMs are 196 nm and 186 nm, as plotted in Figure 4.11B. Three cross-

sections were chosen from both lines to check the LHCII stacking (Figure 4.11C); the 

blue dashed line show heights of 6.3 nm, indicating single layers of LHCII complexes, 

whereas the section marked in red shows a maximum height of 16.1 nm, indicating a 

possibility of a triple layer of complexes; the section marked by the green dashed line 

shows heights of 13.2 nm and 20.8 nm, indicating a possibility of 2-4 layers of stacked 

LHCII complexes. 
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Figure 4.11. AFM images of the LHCII complex immobilisation on the NHS ester 
activated COOH pattern. 

The incubation time for LHCII complexes was 4 hours. Height images of the immobilised LHCII 

complexes on the oxidised pattern were obtained in peak-force tapping mode in liquid with 

SNL probe, cantilever C. 

A. Height image of LHCII complexes immobilised on the NHS ester activated -COOH 
pattern. Zoomed-in details of LHCII occupancy are shown in the red rectangle. 

B. Average height and average FWHM recorded along each LHCII nanoline. 
C. Height details of line sections marked in panel A by green, red and blue dashed lines. 

 

Fluorescence emission of immobilised LHCII complexes was recorded to check the 

retention of their optical properties. Figure 4.12A is the false colour fluorescence 

image of the LHCII nanolines recorded through a 679/41 nm bandpass filter. Figure 

4.12B shows the fluorescence emission spectrum from the LHCII nanoline marked in 
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the white box in figure 4.12A. The 680 nm maximum emission and the shape of the 

spectrum matches the fluorescence emission in solution (20mM HEPES, pH 7.8, 0.03% 

β-DDM). Therefore, the LHCII complexes are still optically functional after 

immobilisation on the silicon surface. 

Figure 4.12. Fluorescence emission from nanolines of LHCII complexes.  

During local oxidation process, the AFM tip was replaced before it lost sharpness and the 

writing pixel resolution was at 256 pixels over a 10 µm length (25.6 pixel/µm). For the protein 

immobilisation, LHCII solution was at a concentration of 2 μM and the incubation time was 4 

hours.  

A. False colour fluorescence image of LHCII nanolines. The sample was excited at 470 
nm by an LED light and fluorescence emission was recorded through a 679/41 nm 
bandpass filter.  

B. Normalised the fluorescence emission of LHCII complexes immobilised on silicon and 
in solution, excited at 470 nm by an LED light source. 

 
 

4.3.8 Co-patterning two types of photosynthetic complex on mPEO-SAM coated 

silicon surface by local oxidation 

In photosynthetic cells of Rba.sphaeroides energy trapping starts with absorption of 

light by LH2 complexes, followed by energy transfer via LH1 complexes to the 

reaction centre where excitation energy is trapped and transformed into chemical 

energy. To mimic this process on a silicon surface, two photosynthetic complexes 

must be patterned on one silicon surface so that their distributions intersect. Based 

on the immobilisation of single types of complex, i.e. RCLH1, LH2 and LHCII complexes, 

(see Sections from 4.3.2 to 4.3.7), successive local oxidation reactions and protein 

incubations were performed to pattern both RCLH1 complexes and LH2 complexes on 

the same silicon surface (Figure 4.13). Specifically, RCLH1 complexes were 
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immobilised on the four -COOH nanolines oxidised by the first AFM scanning; the 

second AFM scanning was performed locally but at 90 ° to the RCLH1 lines, creating 

three -COOH lines for the attachment of LH2 complexes. Wild-type complexes, with 

normal carotenoid content, were used for this work. 
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Figure 4.13. Schematic for multiple protein immobilisation by local oxidation 
lithography. 

A. First local oxidation of four lines for RCLH1 immobilisation. 
B. Second local oxidation of three lines for LH2 immobilisation. Local oxidation was 

performed at the same location orthogonal to the RCLH1 lines. 
 

 

Figure 4.14 shows the AFM images of mPEO/COOH patterns from the first local 

oxidation. Panel A and B show that the average heights along the oxidised nanolines 

(mPEO/COOH and Si/SiO2) vary from 1.0 nm to 1.5 nm and the relative average 

FWHM are between 471 nm and 687 nm. Panel C and D show that the average 

friction contrast values along the mPEO/COOH nanolines are uniformly around 0.23 V 

in relative friction value and with FWHM of 500 nm.  
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Figure 4.14. AFM images of mPEO/COOH lines made by the first local oxidation on a 
silicon surface  

Local oxidation was performed at a bias of 12 V and a bias duration of 100 ms/pixel at relative 

ambient humidity around 40%. AFM images were recorded in contact mode in air using the 

same tip for the local oxidation. 

C. Height image of the mPEO/COOH pattern on the silicon surface. 
D. Average height of each mPEO/COOH line and their FWHM.  
E. Friction image of the mPEO/COOH pattern on the silicon surface.  
F. Average relative friction of each mPEO/COOH line and their FWHM. 

 

Figure 4.15 shows the AFM results of the RCLH1 complexes immobilised on the 

nanolines from the first local oxidation. Figure 4.15A is the topology of the RCLH1 

nanolines with a zoomed-in detail showing the protein occupancy. The average 

heights of each RCLH1 nanoline in Figure 4.15B show the RCLH1 nanolines are around 

9 nm in height and 350 nm in FWHM. To study the RCLH1 occupancy at a specific 

location on a given nanoline, sections were plotted across the four lines in Figure 

4.15A (white dashed line), and the profiles are displayed in Figure 4.15C. Results show 

that the RCLH1 nanolines are around 10.5 nm in height and 353 nm in FWHM.  
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Figure 4.15. AFM images of RCLH1 complexes immobilised on an NHS ester 
activated COOH pattern following the first local oxidation. 

The incubation time for RCLH1 complexes was 4 hours. Height images of the immobilised 

RCLH1 complexes on the oxidised pattern were obtained in peak-force tapping mode in liquid 

using an SNL probe, cantilever C. 

A. Height image of the RCLH1 complexes immobilised on the NHS ester activated -COOH 
pattern. Zoomed-in details on RCLH1 occupancy are shown in the red rectangle. 

B. Average height and average FWHM recorded along each RCLH1 nanoline. 
C. Height details for the line section marked in panel A by the white dashed line. 

 

Figure 4.16 shows the AFM images from the second local oxidation performed at 90 ° 

to the RCLH1 nanolines. The images were recorded in contact mode in air with the 

same conductive AFM tip used in the second local oxidation process. The height 

measurements in panel A and B show that RCLH1 patterns are about 5 nm and the 

oxidised mPEO/COOH (Si/SiO2) lines are about 1 nm. The drop in the height of RCLH1 

is possibly caused by the high scanning speed of 1.5 Hz, the low scanning resolution of 

128x 128 pixel and the high contact pressure setting for the AFM imaging. Panels C 
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and D show that RCLH1 patterns are roughly ten times larger in friction contrast than 

the mPEO/COOH patterns. 
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Figure 4.16. AFM images of the RCLH1 pattern from the first local oxidation and the 
mPEO/COOH pattern from the second local oxidation.  

The second local oxidation was performed at a bias of 12 V and a bias duration of 100 

ms/pixel in a perpendicular direction to the RCLH1 lines. Images were recorded in contact 

mode in air using the same tip as for the second local oxidation. 

A. Height image of the RCLH1 pattern and the mPEO/COOH pattern. 
B. Average height of each RCLH1 line marked in the pink rectangle and that of each 

mPEO/COOH line marked in the black rectangle in panel A.  
C. Friction image of the RCLH1 pattern and the mPEO/COOH pattern.  
D. Average relative friction of each RCLH1 lines marked in pink rectangle and that of 

each mPEO/COOH line marked in black rectangle in panel C. 
 

Figure 4.17 shows the AFM images of the RCLH1 complexes and the LH2 complexes 

immobilised on a silicon surface. Both RCLH1 and LH2 nanolines are 10 µm in length 

and the overview of protein distribution is shown in Figure 4.17A. The zoomed-in 

image marked with the red rectangle reveals the detailed topology of the crossover 

region (Figure 4.17B). As can be seen, the RCLH1 lines are interrupted where the LH2 

lines intersect, indicating that the original RCLH1 complexes were replaced by the LH2 

complexes in the second stage of protein deposition. Topologies of lines at specific 

locations, marked with the white dashed line in Figure 4.17B, are plotted in Figure 
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4.17C. The RCLH1 lines are about 10 nm in height and the LH2 lines are about 7 nm in 

height. To study the protein occupancy, average heights in randomly chosen regions 

along each LH2 (marked by the green dashed rectangle) and RCLH1 (marked by the 

pink dashed rectangle) nanoline were plotted in Figure 4.17D and 4.16E, respectively. 

The average heights along the three LH2 nanolines are around 4.5 nm and those 

along the four RCLH1 lines are about 10 nm. The FWHM of the LH2 and RCLH1 lines 

are approximately 170 nm and 320 nm respectively. Therefore, the first local 

oxidation seems more efficient than the second one with a higher protein occupancy 

and a larger FWHM on each line. 
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 Figure 4.17. AFM images of the intersecting RCLH1 and LH2 nanolines created by 
successive local oxidations on a silicon surface. 

The incubation time for the photosynthetic complexes was 4 hours. Height images of the 

immobilised LH2/RCLH1 complexes on the oxidised pattern were obtained in peak-force 

tapping mode in liquid using an SNL probe, cantilever C. 

A. Height image of the LH2/RCLH1 complexes immobilised on the NHS ester activated -
COOH pattern.  

B. Zoomed-in details of the LH2/RCLH1 lines corresponding to the red rectangle in panel 
A. 

C. Height profile for the line section marked in panel B by the white dashed line. 
D. Average height and average FWHM details recorded along each LH2 line marked in 

green rectangle in panel B.  
E. Average height and average FWHM details recorded along each RCLH1 line marked in 

pink rectangle in panel B.  
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4.3.9 Energy transfer between LH2 and RCLH1 complexes immobilised on a silicon 

surface 

Nanolines of LH2 and RCLH1 created in Section 4.3.8 failed to show evidence of 

energy transfer due to the limited contact area at the intersections. Therefore, a 

larger area of LH2 in the form of a 5x5 µm square, with four intersecting RCLH1 

nanolines, was fabricated in order to increase the contact area for this energy 

transfer study. A 5 µm square of mPEO/COOH was created followed by incubation 

with LH2 complexes. Then, four 10 µm long mPEO/COOH nanolines were oxidised 

across the LH2 square (Figure 4.18C), followed by the incubation with RCLH1 

complexes. Local oxidation was performed at 12 V of bias and 4 ms/pixel of bias 

duration for the 5 µm square (51.2 pixels/µm for scanning); and 12 V and 100 

ms/pixel for the 10 µm long lines (25.6 pixels/µm for scanning). Referring to the 

roughly 400 nm FWHM of nanolines oxidised by previous line scanning (Section 4.3.2 

to 4.3.8), the mPEO/COOH lines swell during the serial oxidation to form the square 

pattern, the effect is to oxidise mEPO molecules several times over, roughly an extra 

10 times. Moreover, the pixel density on the square is twice of that on the line; thus, 

the 4 ms/pixel bias duration for formation of the square is equivalent to 80 ms/pixel 

when performing line oxidation.  

Figure 4.18 shows the AFM images of the two local oxidations. The LH2 complexes 

were immobilised following the first oxidation, but before the second oxidation. 

Panel A is the friction image of the square created by the first local oxidation. Then 

the sample was incubated with the LH2 complexes followed by the second local 

oxidation creating four mPEO/COOH nanolines. Panel C and E show the friction and 

topology images of the LH2 square and the COOH lines. The relative friction value and 

heights of the line sections are plotted in Panel B, D and E corresponding to the 

dashed lines in Panel A, C and E respectively. The height of LH2 square in panel F is 

about 1.3 nm. Such a drop is possibly caused by the high scanning speed of 1.5 Hz, 

the low scanning resolution of 128x 128 pixel and the high contact pressure setting 

for the AFM imaging. 
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Figure 4.18. AFM images of two local oxidations.  

The incubation time for LH2 complexes was 4 hours. The LH2 complexes were immobilised 

following the first oxidation, and then was the second oxidation. The RCLH1 complexes were 

not immobilised yet.  

All the images were recorded in contact mode in air by the same conductive AFM tip used in 

the local oxidation. 

A. Friction image of the mPEO/COOH pattern square from the first local oxidation.  
B. Relative friction value of the line section marked by the black dashed line in panel A. 
C. Friction image of the immobilised LH2 square and the four mPEO/COOH lines from 

the second local oxidation.   
D. Relative friction values of the line sections marked by the white and green dashed 

lines in panel C. 
E. Topology of the immobilised LH2 square and the four mPEO/COOH lines from the 

second local oxidation. 
F. Heights of the line sections marked by the black and green dashed lines in panel E. 

 

Following the second local oxidation, the sample was incubated with the RCLH1 

complexes for 4 hours. The surface distribution of the immobilised LH2 and RCLH1 

complexes is shown in Figure 4.19A, whilst panel B shows the height profile of the 

line section marked by the black dashed line in panel A. As seen in Panel B, the RCLH1 

lines are about 8 nm in height and the LH2 square are about 6 nm in height, marked 

by the pink and green dashed line respectively. Referring to the topology in Figure 

4.18E, after the immobilisation of the RCLH1, some unexpectedly high topologies 

were noticed in Panel A (pink ovals), possibly arising from the aggregates of the 

RCLH1 complexes. Heights of the RCLH1 aggregates are shown in panel C and D 
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corresponding to the line sections marked in blue and red dashed lines in panel A, 

respectively. As can be seen, those aggregates are between 30 nm and 80 nm in 

height. 
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Figure 4.19. AFM images of co-patterned LH2 square and RCLH1 lines.  

A. Peak-force tapping AFM image recorded in liquid with SNL probe (cantilever C). 
Topology of the immobilised LH2 square and the four RCLH1 lines. 

B. Heights of the line section marked by the black dashed line in panel A.  
C. Heights of the line section marked by the blue dashed line in panel A.  
D. Heights of the line section marked by the red dashed line in panel A. 

 

Zoomed-in AFM images were recorded to see the details of occupancy of complexes 

on the co-pattern (Figure 4.20). Each image is a zoom from the region marked by the 

red dashed square in the previous image, corresponding in order from A to E. As seen 

in panel E, the complexes are about 10 nm to 20 nm in diameter, and they are fully 

packed on the silicon surface. 
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Figure 4.20. Zoomed-in AFM images of co-patterned LH2 square and RCLH1 lines.  

A. Whole topology view of the co-patterned LH2 square and the RCLH1 lines.  
B. Zoomed-in image of the red dashed square marked in panel A. 
C. Zoomed-in image of the red dashed square marked in panel B. 
D. Zoomed-in image of the red dashed square marked in panel C. 
E. Zoomed-in image of the red dashed square marked in panel D. 

 

Fluorescence emission from the co-patterned LH2 and RCLH1 complexes was 

recorded to check if the immobilised complexes retained function and to see if any 

energy transfer occurred from LH2 to RCLH1 complexes (Figure 4.21). Figure 4.21A 

and B shows the fluorescence wide-field images excited by the 470 nm LED; the 

fluorescence emission was recorded either through an 857/30 nm bandpass filter for 

the LH2 distribution or a 900/32 nm bandpass filter for the RCLH1 distribution. 

Despite the apparent selectivity of the 857/30 nm bandpass filter, which should 

favour LH2 complexes, the 30 nm bandwidth does allow some signal from RCLH1 

complexes to reach the detector. The same applies to the 900/32 nm bandpass filter 

for the LH2 complexes.  

Figure 4.21 D is the fluorescence lifetime image from the co-patterned complexes. 

The complexes were excited at 485 nm by a pulse laser and fluorescence emission 

photons were collected at 857 nm± 3 nm to study the lifetime of the LH2 complexes. 

In the fluorescence lifetime image, fluorescence from RCLH1 complexes is unlikely to 

reach the detector because of the 3 nm bandwidth narrowed by the grating and the 

slit in front of the detector. Thus, the fluorescence lifetime image represents a ‘pure’ 

LH2 signal. As seen, regions marked in the green dashed ovals are where the four 
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RCLH1 nanolines exist, whereas the red ovals delineate three areas where large 

numbers of aggregated RCLH1 complexes lie on the LH2 surface. These aggregates 

are clearly seen in topographic profiles in Figure 4.21C; they are also seen in the wide-

field fluorescence image in Figure 4.21A and B. The lifetimes of LH2 in the regions 

with RCLH1 aggregates (red dashed ovals) are between 300 and 600 ps (Figure 4.21D), 

likely because the overlying RCLH1 complexes act as acceptors for energy absorbed 

by LH2. In the regions where the LH2 square intersects with the RCLH1 lines (green 

dashed ovals), the LH2 lifetimes are shortened from ~900-1300 ps to ~300-500 ps, 

indicating the likelihood of energy transfer between the two types of complexes.  
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Figure 4.21. Fluorescence images of co-patterned LH2 square and RCLH1 lines.  

The 470 nm LED was used for recording the wide-field fluorescence images in panel A and B. 

Fluorescence lifetime imaging in panel D used the 485 nm pulsed laser. 

A. Wide-field fluorescence image recorded through 857/30 nm bandpass filter. 
B. Wide-field fluorescence image recorded through 900/32 nm bandpass filter. 

C. Topology of the immobilised LH2 square, the four RCLH1 lines and the RCLH1 
aggregates. 

D. Fluorescence lifetime image recorded at 857± 3 nm by scanning the 485 nm laser 
over the sample.  
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4.4 Discussion 

Exploiting the characteristic high energy transfer and charge separation efficiency of 

photosynthetic complexes is an important step in producing bio-inspired solar cells. 

Research on surface immobilisation and patterning has been performed mostly on a 

single type of photosynthetic complex such as LH2, RCLH1 or LHCII on non-conductive 

surfaces like glass (Escalante et al 2008a, Escalante et al 2008b, Vasilev et al 2014b), 

or conductive surfaces such as gold or ITO (Kondo et al 2007, Patole et al 2015, 

Reynolds et al 2007, Suemori et al 2006). Although energy transfer in nature always 

involves more than one complex, no comparable study has been reported on 

attaching dual photosynthetic complexes on one conductive surface with their 

distribution controlled on the nanometre scale. 

In this work, patterns of photosynthetic complexes, such as LHCII, LH2 and RCLH1, 

have been created on semi-conductive silicon surfaces on a nanometer scale. The 

most efficient experimental conditions have been found for mPEO molecule oxidation 

and protein immobilisation. Two types of complexes have been immobilised on one 

silicon surface with controlled placement and retained functional properties. The 

complexes studied in the present work are still capable of light harvesting and energy 

transfer, and so constitute an artificial light-harvesting system. 

4.4.1 Over long bias duration will not contribute to further oxidation of mPEO 

molecules on the silicon surface 

Experimental conditions such as tip bias voltage and bias duration were studied for 

the most efficient mPEO oxidation. Results show that larger bias value and longer bias 

duration generally contribute to more efficient mPEO oxidation (Figure 4.4) 

(Menglong Yang 2009). However, this does not mean that unreasonably increasing 

the tip bias and prolonging the bias duration will result in the optimal mPEO oxidation. 

Results from Section 4.3.4 show that at 12 V of bias, a bias duration over 100 ms/pixel 

(at 25.6 pixel/μm of scanning resolution) barely contribute to further oxidation of the 

mEPO; accordingly, no increase in fluorescence intensity was observed for 

subsequently immobilised RCLH1 complexes (Figure 4.5). At this point, it is possible 

that no further oxidation of mEPO is possible, considering the very high protein 

occupancy on the oxidised patterns; another factor could be the oxidation of the 

underlying silicon on the substrate surface, producing a swollen layer of non-
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conductive SiO2, which reduces the electric field strength as the oxide thickness 

increases (Avouris et al 1997). At 12 V of bias voltage and 100 ms/pixel of bias 

duration, the oxide thickness was around 1 nm, so taking into consideration the 

original 2.5 nm SiO2 coating, the total thickness of the SiO2 was about 3.5 nm. 

Previous research reported the thickness of SiO2 generally reaches less than 5 nm, 

whilst in some extreme condition there is swelling to 8 nm (Fang 2004, Fontaine et al 

1998, Yang et al 2005, Yang et al 2006). Therefore, the experimental conditions for 

mEPO oxidation in this work were set as 12 V of bias voltage and 100 ms/pixel of bias 

duration (at 25.6 pixel/μm of scanning resolution). 

4.4.2 Photosynthetic complexes retained their structural and fluorescence 

properties after immobilisation on the silicon surface 

The AFM line sections show that the heights of immobilised RCLH1 complexes are 

about 10.5 nm above the silicon surface (Figure 4.15C) and the LH2 complexes are 

about 7 nm (Figure 4.8C). Considering the underlying swollen SiO2 of approximately 1 

nm in height (Figure 4.7B and 4.13 B), the net heights for the immobilised RCLH1 and 

LH2 are about 9.5 nm and 6 nm respectively. Both values conform with the known 

sizes of the two complexes from previous AFM measurements (Bahatyrova et al 

2004a). Likewise, those locations where the upper surface of the LHCII complexes is 

approximately 6.3 nm above the silicon surface (Figure 4.11C) indicates deposition of 

a single layer of LHCII. The swollen SiO2 in this experiment was slightly low, at 0.4 nm 

in height (Figure 4.10B), thus the net height of the immobilised LH2 is about 5.9 nm, 

which is in good agreement with the 6 nm height of the LHCII trimers (Liu et al 2004, 

Standfuss et al 2005). The varying heights of the LHCII lines (Figure 4.11C), show that 

in places 2-4 layers of stacked LHCII complexes were formed during immobilisation 

(Johnson 2016, Wood et al 2018). 

The fluorescence emission spectra of all the three immobilised complexes showed a 

consistent spectral shapes and emission maxima, comparable with fluorescence 

spectra of purified complexes solubilised in detergent (Figure 4.4C, 4.9B and 4.12B). 

4.4.3 Fluorescence quenching caused by the silicon substrate 

Patterning photosynthetic complexes on cheap, plentiful conductive surfaces can be a 

useful and scalable way to couple light-harvesting and energy transfer to charge 
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separation in the RC and produce a photocurrent. Photosynthetic complexes have 

been immobilised on conductive surfaces such as gold and ITO (Kondo et al 2007, 

Patole et al 2015, Reynolds et al 2007, Suemori et al 2006). Those substrates are 

either too expensive to be scalable or the surface is too rough for the AFM. Silicon is a 

cheap, pure and stable material, it is abundant in the Earth’s crust and is widely used 

in modern technology. Thus silicon was chosen for the nanopatterning of the 

complexes using local oxidation lithography. However, despite the advantages of 

silicon, the fluorescence of immobilised complexes, particularly LH2, was 

unexpectedly quenched to a high degree. Similarly, LH2 fluorescence has been 

reported to be quenched when this complex is immobilized on a gold surface. 

Escalante et al reported a drop in emission intensity when LH2 complexes were 

adsorbed on a gold surface compared with glass (Escalante Marun 2009). Magis et al 

reported the fluorescence emission of isolated LH2 adsorbed on gold decreased 

within seconds to zero (Magis et al 2010). Fluorescence quenching of the LHCII 

complexes was also observed when they were attached to semiconductor quantum 

dots (QDs) (Werwie et al 2018). 

4.4.4 Energy transfer between immobilised LH2 and RCLH1 on the silicon surface 

This chapter reports the first immobilisation of photosynthetic complexes, and also 

transfer of excitation energy between complexes. By performing two successive local 

oxidations, lines of LH2 and RCLH1 have been patterned on a single silicon surface 

(Section 4.3.8). AFM images show that this procedure preserved the structure of both 

complexes, although at the crossover area the RCLH1 complexes created by the first 

local oxidation were removed during the second local oxidation and replaced by the 

second complex (Figure 4.17). Due to the limited contact area at the intersections, 

the crossed nanolines failed to show evidence of energy transfer between two types 

of complexes. An attempt was made to increase the intersection area by patterning a 

5x5 µm square of LH2 with four intersecting RCLH1 nanolines; a drop in the LH2 

fluorescence lifetime was observed at the projected locations of the RCLH1 lines 

(Section 4.3.9). Figure 4.21 C and D show that the fluorescence lifetime of LH2 was 

shortened from ~900-1300 ps (Chen et al 2005, Pflock et al 2011b, Sumino et al 2013) 

to 300-500 ps at some points within the intersecting regions, indicating that some 

harvested excitation energy has been delivered from the LH2 to the RCLH1. The AFM 
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images show that intersections between the RCLH1 lines and the LH2 square (Figure 

4.19A) are not as obvious as those for the LH2 lines and RCLH1 lines (Figure 4.17B), 

possibly because relatively few RCLH1 complexes had replaced the initially patterned 

LH2 complexes following the second oxidation. This would account for the limited 

evidence for energy transfer from LH2 to RCLH1. 

4.4.5 Additional work 

This work demonstrates that photosynthetic complexes can be patterned on semi-

conductive silicon surface on the nanometre scale with high protein occupancy. Due 

to the high refractive index of the silicon substrate (likely 3-fold higher than for glass), 

a high proportion of the emitted light from the protein complexes lies within the 

evanescent field and is refracted into the substrate, so less emission is available for 

detection. A possible solution could be performing the patterning on the conductive 

but transparent ITO surface, which would make the fluorescence study much easier. 

In this work, we deliberately chose the silicon over the widely used glass because of 

its semi-conductivity. Such conductivity allowed the exploration of conductive 

patterning and could also enable the use of the Peak-force TUNA AFM to study 

photocurrent from the RC. With both LH2 and RCLH1 cross-patterned on one 

conductive surface, one can specifically excite the LH2 complexes, monitor energy 

transfer by fluorescence emission and then observe localised generation of a 

photocurrent by RC. The use of a carotenoid-less RCLH1 acceptor complex might help 

to provide clearer evidence for excitation energy transfer. 

4.4.6 Conclusion 

Efficient experimental conditions have been found for fabricating nanopatterns of 

photosynthetic complexes, such as LHCII, LH2 and RCLH1, on semi-conductive silicon 

surfaces. These complexes retained their capacity for light harvesting and energy 

transfer, and so constitute an artificial light-harvesting system. This approach opens 

up new possibilities for the creation of artificial photosynthetic systems on 

conductive surfaces. 
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Chapter 5 

Energy transfer in reconstituted LH2/ ΔcrtB RCLH1 
proteoliposomes 

5.1 Summary 

LH2 and ΔcrtB RCLH1 complexes were purified from Rba. sphaeroides and 

reconstituted with lipids to form artificial proteoliposomes for energy transfer studies. 

Five different LH2/ΔcrtB RCLH1 ratios were used for the reconstitution process; 

sucrose density gradient centrifugation was used to purify the proteoliposomes, 

which migrated to the 20%-30% sucrose gradient interface. Dynamic Light Scattering 

was employed to measure the average size of the proteoliposomes, which was 197 

nm before the sucrose gradient and 262 nm after. 

The absorption spectrum of each proteoliposome sample was fitted using the 

component spectra for the LH2 and ΔcrtB RCLH1 complexes. Based on the fitting 

result, the LH2/ ΔcrtB RCLH1 ratio of each proteoliposome sample was calculated, 

which roughly matched the ratios used for protein incubation during the 

proteoliposome reconstitution. AFM topographs were recorded to investigate the 

distribution and clustering of both complexes in the proteoliposome membranes.  

Fluorescence emission spectra demonstrated excitation energy transfer from LH2 to 

the ΔcrtB RCLH1 complexes in the proteoliposomes, which was abolished when the 

proteoliposomes were solubilised by 2% β-DDM. The spectra shifted more toward the 

ΔcrtB RCLH1 emission with decreasing LH2/ ΔcrtB RCLH1 ratios. Inter-complex energy 

transfer was further verified by measuring the fluorescence lifetime decay of the LH2 

complexes. The lifetime of the LH2 donor in the proteoliposome is much shorter than 

when the proteoliposome is solubilised, when it is uncoupled from the ΔcrtB RCLH1 

energy transfer acceptor. 

Sodium ascorbate and Coenzyme Q0 were applied to mimic the active RC condition in 

the proteoliposomes, but no obvious change were observed in the fluorescence 

emission spectra nor for the fluorescence lifetime decay for both LH2 and LH1 

complexes. 
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 5.2 Introduction 

Photosynthesis is a process by which phototrophic organisms capture solar energy 

and convert it into the energy source for most living organisms on Earth. The primary 

photosynthetic process is initiated when sunlight is absorbed by light-harvesting (LH) 

complexes and excitation energy migrates towards the reaction centre (RC) where 

charge separation occurs (Figure 5.1). In photosynthetic purple bacteria, energy 

transfer and trapping take place in intracytoplasmic membranes. The antenna 

complexes involved are the peripheral light-harvesting 2 (LH2) complexes and the 

core light-harvesting 1 (LH1) complexes (Blankenship 2013). 

 

Figure 5.1 Model of an antenna-energy trapping system 

 

3D structures of light-harvesting (LH) and reaction centre (RC) complexes (Ferreira et 

al 2004, Jones et al 2002, Jordan et al 2001, McDermott et al 1995) have been studied 

at resolutions down to 1.9 Å, which revealed the internal arrangements of 

chlorophyll-protein complexes that foster efficient solar energy harvesting and charge 

separation. However, detailed structural information of individual light-harvesting 

complexes has to be augmented by knowledge of arrangements of light-harvesting 

complexes in the membrane. Atomic force microscopy (AFM) allows us to observe 

the supramolecular organization of individual complexes when forming a 
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‘photosynthetic unit’ in the membrane, such as high resolution AFM images of native 

Rba. sphaeroides membranes (Bahatyrova et al 2004a, Kumar et al 2016, Sturgis et al 

2009) and membranes from mutant strains (Adams et al 2011, Ng et al 2011, Olsen et 

al 2014, Olsen et al 2008). Still, there is an unsolved question of how supramolecular 

organization affects the primary photosynthetic processes of light harvesting and 

energy transfer. Addressing this question would aid understanding of the basic 

mechanisms of energy trapping and provide molecular-level strategies for the 

construction of artificial photosynthetic systems. 

Atomic structures of complexes have been docked into AFM membrane maps to 

construct models of whole membrane assemblies (Şener et al 2010, Şener et al 

2007b) that predict energy transfer and trapping behaviour and identify desirable 

design motifs for artificial photosynthetic systems (Cartron et al 2014, Sener et al 

2016). One approach to construct such artificial systems is to reconstitute light-

harvesting complexes into a lipid bilayer supported on a solid substrate (Sackmann 

1996, Tanaka & Sackmann 2005). Sumino and co-workers reconstituted LH2 and LH1-

RC into phospholipid (DOPC, DOPG and asolectin) bilayers and observed enhanced 

energy transfer from LH2 to LH1-RC in the artificially reconstituted system compared 

to that in a homogeneous micellar solution (Sumino et al 2011b). Other studies also 

showed that when LH2 complexes (from Rhodopseudomonas acidophila) and LH1-RC 

complexes (from Blastochloris viridis) were combined into a lipid bilayer system, the 

ratio of LH2 to LH1-RC complexes affects their local organisation (Uragami et al 2015). 

Moreover, another study found that Rba. sphaeroides, grown under different light 

levels, produced different ratios of LH2 to LH1-RC in the photosynthetic membrane, 

which influences the efficiency of light harvesting and the rates of energy migration 

toward the RC traps (Timpmann et al 2014). 

In wild type Rba. sphaeroides, light harvesting generally starts from the BChls in the 

LH2 antenna complexes followed by excitation energy transfer via the LH1 antenna 

complexes to the RC. The energy migration route is: B800 (LH2) → B850 (LH2) → 

B875 (LH1) → RC (Dahlberg et al 2017). The carotenoid works mainly as an excitation 

energy quencher to protect the photosynthetic organism from photo-oxidative 

damage (Guiraud & Foote 1976). However, carotenoids can also act as an accessory 

antenna pigment to assist light harvesting and pass the excitation energy to the BChl 
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such as B800, B850 and B875. Thus the energy transfer route can be: carotenoid → 

B800 (LH2) → B850 (LH2) → B875 (LH1) → RC; or carotenoid → B875 (LH1) → RC.  

To specifically excite the LH2 and monitor energy transfer from LH2 to the RCLH1, a 

carotenoidless ΔcrtB RCLH1 mutant was created and a 485 nm pulsed laser, targeted 

at carotenoids within the LH2 energy transfer donor, was used as light source. The 

carotenoid-containing LH2 and ΔcrtB RCLH1 complexes were reconstituted at five 

different LH2/ ΔcrtB RCLH1 ratios into proteoliposomes. Photosynthetic complexes 

were clearly observed in AFM topographs of the reconstituted proteoliposome 

membrane. Fluorescence emission spectra and fluorescence lifetime decay show that 

energy transfer efficiency could reach 73% in the proteoliposomes and LH2/ ΔcrtB 

RCLH1 ratios higher than 1 would not yield further improvements to inter-complex 

energy transfer. 
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5.3 Results 

5.3.1 Reconstitution of LH2 and ΔcrtB RCLH1 complexes into liposomes 

LH2 and ΔcrtB RCLH1 were purified from Rba. sphaeroides and were reconstituted in 

different ratios with lipids to form artificial proteoliposome systems for light 

harvesting and energy transfer. Liposomes were made by an extrusion method using 

DOPC lipid, by following the ‘Liposome Preparation Protocol’ described on the Avanti 

website (https://avantilipids.com/tech-support/liposome-preparation/). Specifically, 

DOPC in chloroform was dried to form DOPC lipid films, which were hydrated in 

buffer (20 mM MOPS, 20 mM NaCl, pH 7.8) and agitated by vortex to produce a 

suspension of large, multilamellar vesicles (LMV). Each lipid bilayer in the LMV is 

separated by a water layer. The stable and hydrated LMVs were then downsized by 

an extrusion process, where they were forced through a polycarbonate filter. The 

polycarbonate filter used in this chapter has a defined pore size of 200 nm, which 

yields liposomes with mean diameters of approximately 200 nm. Photosynthetic 

membrane proteins were then reconstituted into liposomes following the process 

shown in Figure 5.2. The liposomes were incubated with 0.03% w/v β-DDM for 30 min, 

then with photosynthetic membrane protein complexes at a fixed lipid / protein ratio 

of 500: 1 (mol/mol) for 1 hour. Each sample was left with Biobeads for 3 hours to 

remove the β-DDM and to form proteoliposomes. Five different proteoliposome 

samples were prepared using different LH2: ΔcrtB RCLH1 ratios (Table 5.1):  

 #1 LH2-only  

#2 ΔcrtB RCLH1-only 

#3 2LH2:1ΔcrtB RCLH1 

#4 1LH2:1ΔcrtB RCLH1 

#5 1LH2:2ΔcrtB RCLH1 
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β-DDMDOPC Membrane 
protein

Biobead

DOPC Liposome Add 0.03% β-DDM,
Incubate for 30 min

Add membrane protein, 
incubate for 1 hour 

Add biobeads to 
remove β-DDM

Reconstituted membrane 
proteins proteoliposome

Figure 5.2. Schematic diagram of reconstituting membrane proteins into 
proteoliposomes 

 

Table 5.1. Ratios (mol/mol) between lipid and protein complexes for 
proteoliposome reconstitutions  

Sample DOPC  LH2 ΔcrtB RCLH1 LH2 / ΔcrtB RCLH1 ratio  

#1  1500 3 0 LH2 only 

#2 1500 0 3 ΔcrtB RCLH1 only 

#3 1500 2 1 2 : 1 

#4 1500 1.5 1.5 1 : 1 

#5 1500 1 2 1 : 2 

 

5.3.2 Sucrose gradient fractionation of reconstituted LH2/ ΔcrtB RCLH1 

proteoliposomes 

Following the reconstitution process, the five proteoliposome samples were 

fractionated on discontinuous sucrose density gradients as described in Section 

2.11.3. Purified liposomes containing pigment-proteins migrated to the 20% - 30% 

sucrose interface (Figure 5.3). Pigmented bands were harvested and the sucrose 

concentrations were measured for each sample band as listed in Table 5.2. 



 

126 
 

 

#1 #2 #3 #4 #5

Figure 5.3. Sucrose gradient fractionation of LH2/ ΔcrtB RCLH1 proteoliposomes 

300 µl of each sample was loaded on discontinuous sucrose gradients consisting of steps of 

10%, 20%, 30%, 40 % and 50 % (w/w) sucrose in 20 mM HEPES, 20 mM NaCl, pH 7.8. The 

sucrose gradients centrifuged at 154,000 x g for 15 hours at 4 °C.  

 

Table 5.2. Sucrose concentrations of purified LH2/ ΔcrtB RCLH1 proteoliposomes 

samples 

Sucrose 

concentration 

#1 #2 #3 #4 #5 

25 % 28 % 27 % 27 % 27 % 

 

5.3.3 Size of the reconstituted proteoliposomes  

The sizes of the reconstituted proteoliposomes were monitored by Dynamic Light 

Scattering (DSL). Two DSL measurements were taken for sample #1, one for just after 

the reconstitution before the sucrose gradient and one for after the sucrose gradient. 

The size distribution curves from the two measurements are shown in Figure 5.4. 

Only one peak is seen for both distribution curves, which means the LH2 

proteoliposomes were relatively uniform in size as a monodisperse sample both 

before and after the sucrose gradient.  
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Figure 5.4. Size distribution of LH2 proteoliposomes (sample #1) 

The blue curve shows the size distribution of LH2 proteoliposomes just following the 

reconstitution and before the sucrose gradient; the red curve shows the size distribution of 

LH2 proteoliposomes after the sucrose gradient. 

  

Statistics of size distribution curves are listed in Table 5.3. The peak position 

corresponds to the size at the strongest scattering intensity; the average size stands 

for the intensity-based overall average size; the polydispersity index (PdI) indicates 

the width of the overall distribution; a monodisperse sample would have a low PdI 

would be a good way to describe, and a PdI greater than 0.7 indicates that the sample 

has a broad size distribution. The strongest scattering was from proteoliposomes with 

diameters of 257 nm and 328 nm before and after sucrose gradient separation, 

respectively. The average sizes of the proteoliposomes are 197 nm and 262 nm, close 

to the extrusion filter pore size of 200 nm. For both measurements, the PdI values are 

reasonably low, just below 0.2.   

Table 5.3. Size distribution of LH2 proteoliposomes (sample #1) 

Sucrose gradient Peak size (nm) Average size (nm) PdI 

Before  257 197 0.199 

After  328 262 0.199 
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5.3.4 Absorption spectra of LH2/ ΔcrtB RCLH1 proteoliposomes  

In Rba. sphaeroides the pigments involved in light harvesting are bacteriochlorophylls 

(BChls) and carotenoids. Carotenoid exist in both WT-LH2 and WT-RCLH1 complexes, 

and absorb light in visible range between 450 nm and 600 nm. The LH2 complex has 

two absorption maxima at 800 nm and 850 nm in the near-infra-red range, arising 

from BChls known as B800 and B850 (Cogdell 1985); and the LH1 complex has a single 

BChl absorbance band at 875 nm, arising from BChls known as B875. These 

absorption wavelengths, allow analyses of levels of relevant protein complexes in the 

proteoliposome preparations.  

Figure 5.5 shows the normalised absorption spectra of the membranes from semi-

aerobically grown Rba. sphaeroides, the purified LH2 and the ΔcrtB RCLH1 complexes 

from Rba. sphaeroides, and the five LH2/ ΔcrtB RCLH1 reconstituted proteoliposome 

samples. The absorption spectra from the purified LH2 and ΔcrtB RCLH1 complexes 

act as a reference for the Rba. sphaeroides membrane, where the LH2: RCLH1 ratio is 

about 2.13 : 1, and for the reconstituted liposomes. Sample #1, LH2-only 

proteoliposomes (blue) and #2, ΔcrtB RCLH1-only proteoliposomes (magenta), have 

the same absorption spectra as the purified LH2 (blank) and the purified ΔcrtB RCLH1 

(grey) samples respectively, indicating the retention of protein absorption following 

reconstitution. When both LH2 and ΔcrtB RCLH1 complexes are reconstituted, sample 

#3 proteoliposomes with 2LH2/1ΔcrtB RCLH1 (olive) shows similar absorption to the 

native membrane (purple) in the infrared range, and they share a similar ratio of LH2 

to RCLH1 at around 2:1. As the ratio of LH2 to ΔcrtB RCLH1 decreased in the 

proteoliposome preparations, in sample #4 with 1LH2/1ΔcrtB RCLH1 (red) and #5 

1LH1/2ΔcrtB RCLH1 (violet) there is a relative intensity decrease at both 800 nm and 

850 nm accompanied by an intensity increase at 875 nm.  
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Figure 5.5. Normalised absorption spectra from native Rba. sphaeroides 
membranes, purified LH2 and ΔcrtB RCLH1 complexes, and the five LH2/ ΔcrtB 
RCLH1 reconstituted proteoliposome samples. 

 

Spectra fitting was performed using purified LH2 and ΔcrtB RCLH1 spectra as standard 

absorption curves, and the protein ratios in the proteoliposome samples were 

calculated from the absorption spectra fitting results (Table 5.4) using the method 

described in Section 2.12. Clearly, the calculated protein ratios from the fitting match 

very well with the actual protein ratios used during the protein incubation, which 

means both LH2 and ΔcrtB RCLH1 have been efficiently reconstituted into 

proteoliposomes.  
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Table 5.4. LH2 / ΔcrtB RCLH1 ratios in reconstituted proteoliposomes calculated 
from absorption spectrum fitting results, and compared with protein ratios used 
during incubation (Table 5.1) 

Sample 

LH2 / ΔcrtB RCLH1 ratio 

Spectrum fitting result Protein ratio used during incubation 

#1  LH2 only LH2 only 

#2 ΔcrtB RCLH1 only ΔcrtB RCLH1 only 

#3 1.92 : 1 2 : 1 

#4 0.90 : 1 1 : 1 

#5 1 : 2.06 1 : 2 

 

According to the absorption spectra in Figure 5.5, LH2 can be excited either through 

the carotenoid pigments between 450 nm and 600 nm, or through BChls at 800 nm or 

850 nm. Although the main absorption band of the RCLH1 complex is at 875 nm, 

some light can also be absorbed at 800 nm and 850 nm. Therefore, excitation at 800 

nm and/or 850 nm is not a clean way to excite only the LH2 and monitor energy 

transfer to RCLH1. The carotenoidless version of RCLH1 (Section 2.2.1) (Grayson et al 

2017) provides unambiguous excitation of the LH2 donor complex.  

Figure 5.6 shows absorption spectra from the purified LH2 complexes and the purified 

ΔcrtB RCLH1 complexes, normalised at the near-IR maxima. As can be seen, the ΔcrtB 

RCLH1 barely shows any absorbance in the carotenoid absorption range (450 nm- 580 

nm), and its absorption at 485 nm is only 8% of that of LH2. Therefore, when the LH2/ 

ΔcrtB RCLH1 proteolipsomes are excited by 485 nm light, hardly any ΔcrtB RCLH1 

complexes are excited compared with LH2. Thus, energy transfer from the LH2 to the 

ΔcrtB RCLH1 in the proteoliposomes can be studied, because the energy transfer 

would follow the route: carotenoid → B800 (LH2) → B850 (LH2) → B875 (LH1) → RC. 
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Figure 5.6. Normalised absorption spectra showing the absorption intensity of the 
carotenoid at 485 nm.  

Absorption intensities at 485 nm are 0.27 for the purified LH2 complex and 0.021 for the 

ΔcrtB RCLH1 complex. 

 

 

5.3.4 AFM observation of the assembled LH2/ ΔcrtB RCLH1 in the proteoliposomes  

AFM was applied to visualise the arrangement of individual complexes within the 

proteoliposomes, which were adsorbed onto a mica substrate.  

Figure 5.7A shows an AFM topograph of sample #1, the LH2 only proteoliposomes, 

which distinguishes three height levels: the mica (dark), the DOPC bilayer (brown) and 

the clusters of LH2 complexes (bright). Figure 5.7B shows the height profile along the 

red dashed line in Figure 5.7A, where the DOPC bilayer is about 4 nm in height and 

the LH2 complexes are about 6.5 nm in height. 
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Figure 5.7. AFM image of sample #1 LH2 only proteoliposome and the height profile.  

 

Figure 5.8A shows the AFM image taken at a higher magnification and it shows a 

cluster of LH2 in the DOPC bilayer with two height levels of LH2 apparent, as found in 

native membranes (Olsen et al 2008) and possibly including an ‘up-down’ orientation, 

as found in two-dimensional crystals (Bahatyrova et al 2004b). The ring diameters of 

the LH2 complexes are about 6-7 nm. Figure 5.8B shows the AFM image of an 

unbroken proteoliposome vesicle, where arrays of LH2 complexes can be spotted on 

the vesicle in a rectangular pattern, as seen for 2D crystals of LH2 (Bahatyrova et al 

2004b). 

A B

Figure 5.8. AFM image of sample #1 LH2 only proteoliposome. 
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Figure 5.9 shows the AFM image of sample #2 ΔcrtB RCLH1 only proteoliposomes and 

the height profile along the red dashed line. The lipid bilayer is almost fully packed 

with ΔcrtB RCLH1 and the height of RCLH1 complexes is around 9-11 nm. 
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Figure 5.9. AFM image of sample #2 ΔcrtB RCLH1 only proteoliposome and the 

height profile.  

Figure 5.10 shows the AFM image of sample #3 2LH2/1ΔcrtB RCLH1 proteoliposomes. 

The LH2 complexes are indicated by green arrows and the ΔcrtB RCLH1 complexes are 

indicated by red arrows.  

 

Figure 5.10. AFM image of sample #3 2LH2/1ΔcrtB RCLH1 proteoliposome.   
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Figure 5.11 shows AFM images of sample #4 1LH2/1ΔcrtB RCLH1 proteoliposomes. 

The boxed region in the left image is shown at higher resolution in the right image. 

The LH2 complexes are indicated by green arrows and the ΔcrtB RCLH1 complexes are 

indicated by red arrows. The diameter of LH2 rings is about 8 nm and the diameter of 

RCLH1 rings is about 12 nm. 

Figure 5.11. AFM image of sample #4 1LH2/1ΔcrtB RCLH1 proteoliposome. 

Figure 5.12 shows AFM images of sample #5 1LH2/2ΔcrtB RCLH1 proteoliposomes. 

The LH2 complexes are indicated by green arrows and the ΔcrtB RCLH1 complexes are 

indicated by red arrows.  

 

Figure 5.12. AFM image of sample #5 1LH2/2ΔcrtB RCLH1 proteoliposomes.   
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5.3.5 Fluorescence emission spectra of the LH2/ ΔcrtB RCLH1 proteoliposomes 

LH2 complexes within the LH2/ ΔcrtB RCLH1 proteoliposome samples were 

specifically excited by a 485 nm pulsed laser. Fluorescence emission spectra were 

recorded to study transfer of excitation energy, with separately recorded spectra of 

purified LH2 and ΔcrtB RCLH1 complexes in detergent protected buffer (20 mM 

HEPES, pH 7.4, 0.03% β-DDM) used as controls. Figure 5.13A shows the spectra of 

purified LH2 (blank) and ΔcrtB RCLH1 (grey) complexes, together with those of sample 

#1 LH2 only proteoliposome (blue) and #2 ΔcrtB RCLH1 only proteoliposome 

(magenta). Clearly, sample #1 and the purified LH2 complex show a same spectral 

shape, indicating the LH2 complexes have retained their absorption properties 

following the proteoliposome reconstitution. Sample #2 and the purified ΔcrtB RCLH1 

complexes barely show any LH1 emission at ~883 nm because genetic removal of 

carotenoids has eliminated their ability to absorb light at 485 nm. 

Fluorescence emission spectra of all five reconstituted proteoliposome samples are 

shown in Figure 5.13B. In general, compared with LH2-minus sample #2 (magenta), 

samples #3 (olive), #4 (red) and #5 (violet) show fluorescence emission from both LH2 

(around 854 nm) and ΔcrtB RCLH1 (around 883 nm), indicating that the ΔcrtB RCLH1 

complexes in these three samples have obtained excitation energy from LH2. 

Apparently, efficient energy transfer requires a reasonable ratio between the LH2 and 

the ΔcrtB RCLH1 complexes. Although the rising proportion of ΔcrtB RCLH1 and the 

dropping proportion of LH2 from sample #3 to #5 (Table 5.1) lead to an increasingly 

obvious red shift of the fluorescence emission maximum, it does not indicate that 

sample #5 has the highest energy transfer efficiency. Instead, fluorescence lifetime 

decays of LH2 complexes were recorded in order to study the energy transfer 

efficiency (Section 5.3.6). 
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Figure 5.13. Fluorescence emission spectra of purified protein complexes and the 
five LH2/ ΔcrtB RCLH1 proteoliposome samples. 

Each spectrum is an average of five measurements. 

A. Fluorescence emission spectra of samples #1 and #2 compared with spectra of 
purified LH2 and ΔcrtB RCLH1 complexes in detergent (0.03% β-DDM) buffer; 

B. Fluorescence emission spectra of sample #1 to #5. 
 

To provide more evidence of ΔcrtB RCLH1 complexes as recipients of excitation 

energy from LH2, each proteoliposome sample was incubated with 2% of β-DDM in 

the ice for 1 hour. At such a high concentration the β-DDM solubilises the 

proteoliposomes, resulting in separation of the closely packed LH2 and ΔcrtB RCLH1 

into individual complexes. Figure 5.14 shows the fluorescence emission spectra of the 

solubilised proteoliposome samples, with 485 nm excitation. For samples #1, #3, #4 

and #5, only emission from the LH2 (peaking around 852 nm) was observed and the 

ΔcrtB RCLH1 emission decreased sharply. Comparing with the LH2 emission (peaking 

around 854 nm) from proteoliposomes, the LH2 in solubilised solution shows a 2 nm 

blue shift on the spectral wavelength. Similarly, a blue shift in absorption from 850 

nm to 848 nm was observed for proteoliposome and detergent solubilised LH2 

complexes, respectively (Pflock et al 2008). The falling intensity from the related 

fluorescence emission reflects the decreasing proportion of LH2 complexes (Table 

5.1). Specifically, sample #1 (blue) with 100% of protein as LH2 shows the highest 

fluorescence emission intensity, followed sample #3 (olive) with 67% protein as LH2, 

sample #4 (red) with 50% and sample #5 (violet) with 33%. Sample #2 (magenta) with 

100% of ΔcrtB RCLH1 still shows almost no emission when the proteoliposome is 

solubilised. 



 

137 
 

840 860 880 900 920

0

200

400

600

800

1000

1200

1400

1600
LH2/crtB RCLH1 proteoliposome

 #1 LH2 only 

 #2 crtB RCLH1 only 

 #3 2LH2/1crtB RCLH1 

 #4 1LH2/1crtB RCLH1 

 #5 1LH2/2crtB RCLH1 

Fl
u

o
re

sc
e

n
ce

 in
te

n
si

ty
 [

a.
u

.]

Wavelength [nm]

 

Figure 5.14. Fluorescence emission spectra of the five LH2/ ΔcrtB RCLH1 
proteoliposome samples, following addition of 2% β-DDM. 

Each spectrum is an average of five measurements. 

 

Figure 5.15 shows fluorescence emission spectra before (red spectra) and after 

(black) β-DDM addition to the proteoliposomes; the data analysis takes into account 

dilution by the β-DDM. The blue fitting curves peaking around 854 nm represent the 

LH2 emission; the magenta curves peaking around 883 nm represent the ΔcrtB RCLH1 

emission; the green curves are the cumulative fit results. 

Figure 5.15A shows the fluorescence emission intensity of the LH2-only sample #1. 

Addition of β-DDM nearly doubles the amplitude of LH2 emission, showing the 

quenching effects of creating closely packed LH2 arrays, as shown by the AFM 

topography in Fig. 5.7. Therefore, even without RCLH1 traps, the LH2 complexes can 

still behave like an antenna system, harvesting light and transferring energy within its 

own network.  

Figure 5.15B shows that the ΔcrtB RCLH1 complexes barely emit any fluorescence 

either in proteoliposomes or in 2% β-DDM solution, due to their inability to absorb 

485 nm wavelength excitation (Figure 5.6). 

Figure 5.15C shows the fluorescence emission of sample #3, with a 2:1 LH2: ΔcrtB 

RCLH1 ratio. When both complexes are packed in proteoliposomes (red), the fitting 

result shows an emission intensity of 254 a.u. from the LH2 (blue) and 428 a.u. from 
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the ΔcrtB RCLH1 (pink). Solubilisation of the proteoliposomes and separation of the 

LH2 and ΔcrtB RCLH1 complexes disrupts energy transfer so, with the same amount 

of LH2, the fluorescence emission intensity at 854 nm rises to 1300 a.u. (blank) whilst 

the relative emission from the ΔcrtB RCLH1 at 880-890 nm decreases. 

Similar fluorescence emission characteristics were seen for samples #4 (Figure 5.15D) 

and #5 (Figure 5.15E). In the case of sample #4, spectral fitting yields emission 

amplitudes from LH2 and ΔcrtB RCLH1 of 114 a.u. (blue) and 348 a.u. (pink) 

respectively; when the proteoliposome is solubilised, the LH2 emission rises to 890 

a.u. (blank). Similarly, for sample #5, the fitted amplitudes for emission from LH2 and 

ΔcrtB RCLH1 were 105 a.u. (blue) and 235 a.u. (pink) respectively; when the 

proteoliposome is solubilised, the LH2 emission rises to 450 a.u. (blank). For both 

samples, fluorescence emission from ΔcrtB RCLH1 complexes decreases when the 

proteoliposomes were solubilised. 

 

5.3.6 Fluorescence lifetime decay of LH2 complexes in proteoliposomes 

Apart from sample #2, which has no LH2, the fluorescence lifetimes of LH2 complexes 

were recorded at 857 ± 3 nm to study the efficiency of energy transfer in the 

reconstituted proteoliposomes. Figure 5.16 shows the fluorescence lifetimes of the 

LH2 complexes from samples #1, #3, #4 and #5. The red squares are the lifetimes of 

LH2 in the proteoliposome, and the blank dots are the LH2 lifetime when the 

proteoliposomes are solubilised by 2% β-DDM. The specific values are listed in Table 

5.2. When the complexes are in proteoliposomes, sample #1 containing LH2 as the 

only complex shows the longest lifetime of 0.725 ns. When ΔcrtB RCLH1 complexes 

are present, the LH2 lifetime is shortened. In sample #3, where 2/3 of complexes are 

LH2, the fluorescence lifetime is 0.428 ns; the lifetime drops further to 0.355 ns for 

sample #4, which has an equal proportion of LH2 and ΔcrtB RCLH1 complexes; sample 

#5, with 1/3 of complexes as LH2 and 2/3 as ΔcrtB RCLH1, shows an LH2 lifetime of 

0.368 ns which is slightly longer than that of sample #4. However, when the 

proteoliposomes were solubilised, the LH2 lifetimes of all samples rise to 

approximately 1.3 ns, indicating that solubilisation disrupts energy transfer networks 

and stops the transfer of excitation energy from the LH2 antenna to ΔcrtB RCLH1 

complexes.  
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Figure 5.15. Fluorescence emission spectra from each LH2/ ΔcrtB RCLH1 
proteoliposome sample before and after solubilisation by 2% β-DDM 

 

Referring to the LH2 lifetime, energy transfer efficiency from the LH2 to the LH2 or 

the LH1 can be calculated by equation: 

𝐸 = 1 −
𝜏𝐷𝐴
𝜏𝐷
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where τDA and τD are the donor lifetime with and without the presence of the 

acceptor, respectively. In reconstituted proteoliposomes, excited LH2 complexes act 

as energy donors, delivering excitation energy to acceptors such as the nearby LH2 or 

ΔcrtB RCLH1 complexes. As listed in Table 5.5, sample #1 shows the lowest energy 

transfer efficiency of 44%, followed by sample #3 of 67% and sample #5 of 72%. 

Sample #4 shows the highest energy transfer efficiency of 73%. This indicates that 

energy transfer from LH2 to LH1 is more efficient than among LH2 (sample #3 

compared with #1); and a reasonably high proportion of LH1 improves the overall 

energy transfer efficiency (sample #4 compared with #3), whilst over which no further 

improvement would be expected (sample #4 compared with #5). 
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Figure 5.16 Fluorescence lifetimes of LH2 in proteoliposomes compared with the 
LH2 lifetime when the proteoliposomes are solubilised by 2% of β-DDM.   

Each lifetime result is the average of more than 5 measurements and the error bar shows the 

maximum/ minimum deviation in each measurement data group. 

 

Table 5.5. LH2 lifetime measured at 857 nm when proteins are in proteoliposomes 
and when the proteoliposomes are solubilised by 2% β-DDM. 

857nm #1 #2 #3 #4 #5 

Proteins in the 
proteoliposome 

0.725 n/a 0.428 0.355 0.368 

Proteoliposome 
solubilised 

1.300 n/a 1.312 1.294 1.306 

Energy transfer 
efficiency 

44% n/a 67% 73% 72% 
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Representative LH2 lifetime decay curves in proteoliposomes (dots) and their fitting 

results (dashed lines) are shown in Figure 5.17. For the case of proteoliposomes 

solubilised by 2% β-DDM, the LH2 decay for sample #1 (ddm_#1) was chosen as the 

representative decay curve for the other solubilised proteoliposome samples. The 

grey solid line is the Instrument Response Function (IRF). 
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Figure 5.17. Fluorescence lifetime decay curves of the LH2 complexes 

Each lifetime decay curve is a randomly chosen individual decay curve from a measurement 

data group.  

 

In an attempt to maintain RCs in an open state ascorbate/Q0 (250 µM sodium 

ascorbate, 1 mM Coenzyme Q0) was added to proteoliposomes. However, this 

treatment had no effects on the amplitude or lifetime of LH2 fluorescence. Timpmann 

et al (Timpmann et al 2014) showed that open RC traps shorten the overall 

fluorescence lifetime in membranes from high- and low-light grown cells of R. 

sphaeroides, from approximately 200 ps (closed) to 70 ps (open RCs). The values of 

~350 ps for LH2 lifetimes indicate that the decay kinetics were measured on 

LH2/RCLH1 proteoliposomes with RCs in the closed state. In the FLIM experimental 

setup used in this chapter, the 130 ps instrument response function would not allow 

measurement of the 70 ps lifetimes typical of membranes with open RCs.  
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5.4 Discussion 

In wild type Rba. sphaeroides, light harvesting energy transfer and trapping require 

two types of membrane protein complexes, LH2 and RCLH1, the proportions of which 

vary according to the incident light levels (Adams & Hunter 2012, Cartron et al 2014, 

Timpmann et al 2014). One-way to simplify functional analyses for light harvesting 

and energy transfer, and to examine non-physiological LH2:LH1 ratios and 

photosystem dimensions of microns rather than nanometers, is to reconstitute 

membrane protein complexes into liposomes, which is the approach taken in this 

chapter. 

A fixed ratio of Rhodopseudomonas palustris LH2 and RCLH1 complexes was 

reconstituted into phospholipids and evidence for excitation energy transfer from 

LH2 to RCLH1 was obtained by exciting the LH2 using 800 nm light and recording 

fluorescence emission spectra (Sumino et al 2011b). No time-resolved experiments 

were performed and there were no estimates of energy transfer efficiency between 

the two complexes. Sumino (Sumino et al 2013) subsequently performed several LH2-

only reconstitutions and studied energy transfer efficiency between LH2 complexes 

using time-resolved spectroscopy. Finally, three LH2:RCLH1 ratios were reconstituted 

into liposomes, using LH2 from Rhodopseudomonas acidophila and RCLH1 from 

Blastochloris viridis (Uragami et al 2015). Excitation energy transfer was observed, on 

the basis of fluorescence emission spectroscopy. 

In this chapter, several LH2:RCLH1 reconstitution ratios were examined, using a 

homologous LH2/RCLH1 system based on Rba. sphaeroides, in which the genetically 

engineered loss of carotenoids from RCLH1 complexes established the selectivity of 

excitation of LH2. Also, fluorescence emission and lifetime microscopy were used to 

establish the efficiency of excitation energy transfer.  

5.4.1 LH2 and ΔcrtB RCLH1 complexes have been reconstituted into 

proteoliposomes at the expected ratio with their functional properties retained 

Proteoliposomes of ~200 nm dimeter were formed by extrusion method. Absorption 

spectra showed that photosynthetic complexes had been successfully reconstituted 

into the proteoliposomes, and the calculated ratios match the ratio of protein 

complexes used during reconstitutions.  
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AFM images of the proteoliposomes show that clusters of LH2 have formed, as well 

as protein-free (empty) regions (Figure 5.7) (Pflock et al 2011a). Similarly, clusters of 

protein complexes are observed for the ΔcrtB RCLH1 proteoliposome sample (Figure 

5.9). For proteoliposome samples with both LH2 and ΔcrtB RCLH1, AFM images show 

evidence of both complexes in the proteoliposome (Figures 5.10, 5.11 and 5.12), with 

evidence for some segregation into LH2-only and RCLH1-only zones, as well as some 

intermixing. Segregation is a likely consequence of shape and curvature mismatches 

between the two types of complex, as shown in Monte Carlo simulations of 

LH2/RCLH1 interactions (Frese et al 2008).  

5.4.2 LH2 and ΔcrtB RCLH1 complexes retain their light-harvesting and energy 

transfer properties when reconstituted in proteoliposomes 

The fluorescence emission spectra of LH2 and the ΔcrtB RCLH1 complexes 

reconstituted separately into proteoliposomes show consistent spectral shapes, 

comparable with fluorescence spectra of purified complexes solubilised in detergent 

(Figure 5.13A), indicating retention of function following reconstitution. Comparing 

with purified LH2 complexes in detergent, a 2nm red shift of the emission maxima 

was observed when LH2 complexes were reconstituted in proteoliposomes (Pflock et 

al 2008). Mixed LH2/RCLH1 proteoliposomes create the conditions for excitation 

energy transfer, which can be clearly assigned because of the selective excitation of 

carotenoid-containing LH2 complexes by the 485 nm light source used. Solubilisation 

of the samples by 2% β-DDM reversed the reconstitution process, and provided a 

useful negative control. 

Pflock (Pflock et al 2008) measured the fluorescence decay kinetics of detergent-

solubilized LH2 complexes from R. sphaeroides; the monoexponential fluorescence 

lifetime of 0.93 ns can be compared with the value of 1.3 ns in this chapter (Table 5.5). 

These authors reconstituted R. sphaeroides LH2 complexes into lipid vesicles, and 

observed bi-exponential fluorescence decay curves with time constants of τ1 = 600-

720 ps and τ2 = 70 ps, depending on the lipid:protein ratio. The authors concluded 

that the τ2 = 70 ps decay component arises from clustering of the LH2 complexes 

following reconstitution, which promotes efficient energy transfer between 

complexes and increases the chances of annihilation of excited states. The work 
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reported in this chapter on LH2 in proteoliposomes shows a monoexponential 

fluorescence decay of 725 ps.  

5.4.3 Decreasing LH2/ΔcrtB RCLH1 ratios progressively increase energy transfer 

efficiency in the reconstituted proteoliposomes 

LH2 lifetimes for proteoliposome samples #1 (LH2-only), #3, #4 and #5 were 0.73 ns, 

0.43 ns, 0.36 ns and 0.37 ns respectively. Calculations in Table 5.5 show that LH2/ 

ΔcrtB RCLH1 ratios of 2:1, 1:1 and 1:2 produce energy transfer efficiencies of 67%, 73% 

and 72% respectively, so for these reconstitution experiments at least a 1:1 molar 

ratio of LH2 and LH1 complexes is optimal. The AFM topography of sample #4 (Fig. 

5.11) shows multiple contacts between intermixed LH2 and RCLH1 complexes, 

consistent with an efficiently reconstituted photosystem, so LH2 energy donors are 

likely to sit adjacent to ΔcrtB RCLH1 acceptors. When higher levels of LH2 are present, 

as in the 2:1 LH2:RCLH1 ratio of sample #3, AFM shows evidence for more extensive 

LH2-only domains that might increase the chances of excitation annihilation, as 

proposed by Pflock (Pflock et al 2008). When the LH2/ ΔcrtB RCLH1 ratio is lowered 

1:2, there is no increase in energy transfer efficiency; with abundant ΔcrtB RCLH1 

complexes around as energy acceptors at a 1:1 ratio, all available LH2 donors are 

apparently already connected for energy transfer so increasing the proportion of 

RCLH1 acceptors produces no benefits. 

Recently, two-dimensional electronic spectroscopy was used to follow all energy 

transfer processes in living cells of R. sphaeroides, including the wild-type, LH2-only 

and LH1-only strains (Dahlberg et al 2017). The fluorescence lifetime for LH2-only 

membranes was found to be 250–300 ps, a smaller value than found for LH2-only 

proteoliposomes. For the WT, which in this case had a ratio of approximately 1.8 

LH2:LH1, 83% of excitations were trapped by the RCs present. In these whole cell 

samples, the RCs were maintained in an open (reduced) state, available for efficient 

energy trapping. Timpmann (Timpmann et al 2014) examined a range of R. 

sphaeroides membranes, including LH2-only, RCLH1-only and native membranes with 

contrasting LH2:RCLH1 ratios. Fluorescence lifetimes varied from ~490 ps for LH2-only 

membranes, to ~250 ps for wild-type LH2/RCLH1 membranes. The overall lifetime 

increased as the proportion of LH2 increased, consistent with the data on 

proteoliposome samples #3 (2LH2:1RCLH1) and #4 (1LH2:1RCLH1). Timpmann et al 
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did not examine LH2 lifetimes specifically: some of their lifetime experiments used 

800 nm excitation and fluorescence was integrated between 820 and 940 nm, which 

therefore merges LH2 and LH1 signals. In other experiments, 590 nm excitation was 

used, which was absorbed by both LH2 and LH1 complexes. In the present work, the 

use of carotenoid-containing LH2 and carotenoid-less RCLH1 allowed the 485 nm 

excitation to selectively excite only the LH2 complexes. 

5.4.5 Conclusion 

This work demonstrates that photosynthetic complexes LH2 and ΔcrtB RCLH1 can be 

reconstituted into proteoliposomes and that they perform light harvesting and 

energy transfer functions. The energy transfer efficiency between LH2 and ΔcrtB 

RCLH1 is related to the ratio between the two types of complexes in the 

proteoliposomes. This approach opens up new possibilities for the creation of mix-

and-match photosynthetic systems, for instance studying the possibility of energy 

transfer between photosynthetic complexes from different types of photosynthetic 

organisms, or between natural and artificial maquettte proteins. 
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Chapter 6 

Excitation energy transfer from LHCII to RCLH1 in 
fabricated microarrays of bacterial/plant 
photosynthetic complexes  

6.1 Summary 

LCHII complexes purified from spinach and ΔcrtB RCLH1 purified from Rba. 

sphaeroides were cross-patterned on glass surfaces, to form a hybrid plant/bacterial 

photosynthetic system. Fluorescence spectral and lifetime measurements show that 

both complexes retained their optical properties following immobilisation. In cross-

patterned areas, where LCHII and ΔcrtB RCLH1 are in very close proximity, a decrease 

in the LHCII fluorescence emission intensity is observed, accompanied by a lowered 

LHCII fluorescence lifetime to 0.7-1.0 ns, relative to 1.4-1.9 ns in LHCII-only areas. 

These measurements indicate a coupling of LHCII energy transfer donors to ΔcrtB 

RCLH1 acceptors, and formation of a biohybrid photosynthetic unit.  

6.2 Introduction 

Photosynthesis in living organisms starts when solar energy is absorbed by light-

harvesting (LH) pigment-protein complexes, such as the LH2 in the phototrophic 

bacterium Rhodobacter (Rba.) sphaeroides, or the light-harvesting complex II (LHCII) 

in plants. These LH complexes are the major membrane proteins in their respective 

organisms, and form extensive networks that capture light energy and transfer it to 

the reaction center complexes (RC), such as the RC in the phototrophic bacterium 

Rhodobacter (Rba.) sphaeroides, and the photosystem I (PSI) and photosystem II (PSII) 

complexes in plants (Blankenship 2013, Johnson 2016, Saer & Blankenship 2017). In 

the RC, this energy is trapped as a charge separation (Bixon et al 1991, Dekker & Van 

Grondelle 2000). There are many examples of immobilisation of RCs on various 

materials, examining their ability to generate electric current in response to light (Das 

et al 2004, den Hollander et al 2011, Friebe et al 2016, Frolov et al 2005, Gerster et al 

2012, Kamran et al 2015, Liu et al 2018, Tan et al 2012). There are also examples of 
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immobilization of LH complexes on different surfaces, where they retain their 

functional properties (Lauterbach et al 2010, Liu et al 2008, Nagata et al 2012).  

The development of lithographic techniques, such as nanoimprinting (Escalante et al 

2008a, Escalante et al 2008b) and light-based photolithography (Reynolds et al 2007) 

have allowed patterning of a single type of photosynthetic complex of either LH or RC 

on surfaces, while controlling their distribution and organisation, which creates the 

possibility of studying their light-harvesting and energy transfer properties. However, 

the assembly of extensive two-dimensional architectures that not only harvest energy 

but also transfer it to a RC trap requires the ability to direct the relative positions of 

two or more types of photosynthetic complex on the same surface. Vasilev et al 

(Vasilev et al 2014b) reported nanopatterning of ‘two-colour’ arrays of 

photosynthetic complexes (LHCII) and YFP proteins, but there was no evidence of 

energy transfer between the YFP and the LHCII components. Chapter 3 in this thesis 

discussed methods to co-pattern two photosynthetic complexes, the LH2 antenna of 

Rhodobacter sphaeroides, and its native energy acceptor, the RCLH1 complex 

(Cartron et al 2014, Qian et al 2013) on the same surface and observed energy 

transfer between these complexes. The short distances between the two types of 

complexes ensure the rapid delocalization of excited states and their transfer within 

and between complexes, as also found in the native membrane (Freer et al 1996, Noy 

et al 2006, Şener et al 2009). This inspires the fabrication of patterns of ‘mix and 

match’ combinations of molecules on the same surface that could not be created 

through genetic means, such as arrays comprising mixed bacterial/plant, or 

plant/artificial maquette complexes. 

Here, a simple, robust lithographic procedure is used to construct intersecting lines of 

the LHCII antenna from plants and bacterial RCLH1 complexes, effectively creating a 

new micron-scale ‘photosynthetic unit’. A two-stage micro-contact printing method 

was used to fabricate a 2-D grid of cross-patterned LHCII and ΔcrtB RCLH1 proteins, 

which was interrogated by fluorescence microscopy. The presence of carotenoids in 

donor LHCII, but not in the acceptor ΔcrtB RCLH1 complexes, ensured the 

directionality of energy migration. Spectral and lifetime imaging were used to show 

transfer of light energy absorbed by the LHCII antenna to ΔcrtB RCLH1 complexes; 

thus, these arrays contain functionally coupled components for absorbing and 
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transferring excitation energy, thereby performing the first two steps of 

photosynthesis. 

6.3 Results 

6.3.1 Directed formation of crossed-patterned LHCII and ΔcrtB RCLH1 complexes on 

glass  

Based on the same micro-contact printing approach described in Section 3.3.1 (Alom 

Ruiz & Chen 2007, Bernard et al 2000, Xia & Whitesides 1998), artificial light-

harvesting networks of crossed-patterned LHCII and ΔcrtB RCLH1 complexes were 

created on a glass surface functionalized with poly-L-lysine (Figure 6.1). The optically 

transparent glass facilitates characterisation of immobilized protein complexes by 

fluorescence microscopy. As a first step, the LHCII complexes (in green, Figure 6.1G 

and H) were printed onto the substrate using a soft PDMS stamp (Figure 6.1B and C) 

inked with the protein solution (Figure 6.1D), followed by the printing of ΔcrtB RCLH1 

complexes (in red, Figure 6.1I), performed in a similar way but at a 90° angle to the 

LHCII lines. Sample was sealed in an argon protective atmosphere to minimise photo-

oxidative damage to the ΔcrtB RCLH1 complex. 

Glass

Si

PDMS

PDMS PDMS

Protein

PDMS

Glass Glass Glass

Si

10μm
5μm

1.35μm

A B C D E

F G H I

 

Figure 6.1. Schematic diagram of the micro-contact printing method used to 

fabricate cross-patterned LHCII and ΔcrtB RCLH1 protein arrays.   

A. Si master with rectangular arrays of 5 µm width, 10 µm pitch and 1.35 µm step 
height. 

B. Casting a PDMS replica of the master. 
C. PDMS replica.  
D. Inking the stamp with LHCII (green).  
E. PDMS stamped covered with LHCII ink. 
F. PLL coated glass activated by DMS (yellow).  
G. Printing LHCII on glass. 
H. LHCII arrays on glass. 
I. Printing ΔcrtB RCLH1 complexes (red) on glass orthogonally to LHCII arrays.  
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6.3.2 Absorption spectra of purified LH2CII and ΔcrtB RCLH1 complexes in detergent  

The absorption and fluorescence emission spectra of LHCII complexes, and the 

absorption spectrum of the ΔcrtB RCLH1 complexes, are shown in Figure 6.2. The 

LHCII contains carotenoid whilst the ΔcrtB RCLH1 does not, therefore the absorption 

of LHCII in the 450 - 570 nm carotenoid region is much greater than for ΔcrtB RCLH1; 

the absorbance values of LHCII and ΔcrtB RCLH1 are 1.12 and 0.02, respectively at 485 

nm, and at 470 nm these values are 1.37 and 0.02, respectively. The LHCII 

fluorescence emission spectrum (green; excitation at 485 nm) and the ΔcrtB RCLH1 

absorption spectrum (red) overlap between 650 – 750 nm, which presents the 

possibility of transfer of excitation energy from LHCII to the ΔcrtB RCLH1 by the 

Förster resonance transfer mechanism, as long as the two types of complex are 

within a 10 nm distance. Accordingly, we can monitor the energy transfer between 

the LHCII and the ΔcrtB RCLH1 complexes in the crossed-patterned fabrication by 

exciting the fabricated pattern at either 470 nm or 485 nm and recording emission 

from RCLH1 complexes at 890 nm. 
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Figure 6.2. Spectra of purified LHCII and ΔcrtB RCLH1 complexes. 

The 470 nm and 485 nm dashed lines show the normalised protein absorbance at the 470 nm 

and 485 nm excitation wavelength. 

 

6.3.3 LH complexes retain their optical properties following immobilisation on glass 

In bacterial photosynthetic systems the LH2 antenna complexes harvest light energy 

and transfer it to the RCLH1 core complex, where the excitation energy is stabilized as 
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a photo-chemical charge separation. In this work, the plant photosynthetic complex 

LHCII was used to replace the LH2 bacterial complex, and to test if the mix-match 

artificial system can fulfill the tasks of light harvesting and energy transfer. For such 

processes to happen, it is important to ensure that the protein complexes retain their 

optical properties following their immobilization on the substrate. Thus, the artificial 

microarrays of cross-printed LHCII and ΔcrtB RCLH1 complexes were characterized by 

florescence lifetime and spectral imaging in a home-built FLIM set-up. Figure 6.3A 

shows the false colour wide-field fluorescence emission image of the artificial 

microarrays, acquired in epi-fluorescence mode and illuminated by a 470 nm LED 

source. Emission from the green horizontal arrays was recorded through a 679/41 nm 

bandpass filter, and corresponds to LHCII fluorescence; emission from the red vertical 

arrays was recorded through a 900/32 nm bandpass filter, and corresponds to RCLH1 

emission. Clearly, the LHCII can efficiently absorb 470 nm light and shows a bright 

fluorescence emission whilst the ΔcrtB RCLH1 is barely visible. The lowered 

fluorescence amplitude of LHCII at the intersections with the RCLH1 lines, suggests 

some quenching of LHCII emission by RCLH1. 

The fluorescence emission spectrum of the LHCII from the crossed-patterns was 

recorded, which is similar in shape and maximum to the spectrum of purified LHCII 

complexes in detergent solution (Figure 6.3B). Due to the poor absorption at 485 nm, 

the fluorescence emission from the ΔcrtB RCLH1 is very weak and noisy, but still 

shows a similar trend when comparing with the spectrum of purified RCLH1 

(containing carotenoids) complexes in detergent solution (Figure 6.3C).   
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Figure 6.3. False colour fluorescence image of crossed-patterns of LHCII and ΔcrtB 
RCLH1, and fluorescence emission spectra of LHCII and ΔcrtB RCLH1 complexes 

A. False colour fluorescence image (wide field excitation at 470 nm), showing the LHCII 
(green) and ΔcrtB RCLH1 (red) lines in a grid-like pattern with a period of 10 µm and 
line width of 5 µm;  

B. Fluorescence emission spectra from LHCII patterned on glass and purified LHCII in 
detergent buffer, excited by a 485 nm laser. 

C. Fluorescence emission spectra from the ΔcrtB RCLH1 patterned on glass and the 
purified RCLH1 (contains carotenoids) in detergent buffer, excited by a 485 nm laser. 

 

6.3.4 Energy transfer from LHCII to ΔcrtB RCLH1 in a biohybrid plant/bacterial 

artificial photosystem 

Figure 6.4 shows fluorescence data acquired from the cross-printed LHCII and ΔcrtB 

RCLH1 complexes on glass; the sample was sealed in an argon protective atmosphere 

to minimise photo-oxidative damage to the ΔcrtB RCLH1 complex. Under scanning 

confocal mode, and using 485 nm pulsed laser excitation, we were able to record the 

pixel-by-pixel spectral intensity map of fluorescence emission of the sample. The 

fluorescence intensity maps acquired at 680 nm and at 890 nm (Figure 6.4 A and B, 

respectively), confirm the immobilisation of the LHCII complexes along the near-

horizontal lines and immobilisation of the ΔcrtB RCLH1 complexes along the near-

vertical lines. A striking observation in the cross-over area (marked with number 2 in 

Figure 6.4 A), where LHCII and ΔcrtB RCLH1 complexes are in very close proximity, is 

the ~ 40% decrease in the LHCII emission intensity, compared with the LHCII only area 

(marked with number 1 in Figure 6.4 A). Correspondingly, ΔcrtB RCLH1 complexes in 

the cross-over area (marked with number 3 in Figure 6.4 B) show a slightly increase in 

the fluorescence emission (peaking around 884 nm), comparing with the ΔcrtB RCLH1 

only area (marked with number 4 in Figure 6.4 B). These changes in the fluorescence 
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emission intensity indicates excitation energy transfer (EET) from the LHCII to the 

ΔcrtB RCLH1 in the cross-over area.  
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Figure 6.4. Fluorescence intensity images and florescence spectra from cross-
patterned LHCII and ΔcrtB RCLH1 complexes on a functionalised glass substrate. 

A. Spectral intensity map showing the emission intensity at 680 nm (LHCII emission). The 
excitation is by a 485 nm pulsed laser (1 MHz repetition rate, 2x1014 photons pulse-1 
cm-2), scan size 26 µm. 

B. Spectral intensity map showing the emission intensity at 890 nm (ΔcrtB RCLH1 
emission), with excitation as in A.   

C. Individual emission spectra recorded in the pixels of the images in panels A marked 
with 1 (LHCII only) and 2 (ΔcrtB RCLH1 + LHCII crossed-over), respectively.  

D. Individual emission spectra recorded in the pixels of the images in panels B marked 
with 3 (ΔcrtB RCLH1 + LHCII crossed-over) and 4 (ΔcrtB RCLH1 only), respectively.  

 

In order to study the EET in more detail, we recorded a fluorescence lifetime map of 

the LHCII complexes from the cross-patterned fabrication, under scanning confocal 

mode, and using 485 nm pulsed laser excitation. Lifetime decay data from each 

scanning pixel was fitted by bi-exponential decay function (Section 2.7.5). The 

amplitude-averaged lifetime image of the cross-patterned sample, recorded at 680 

nm (LHCII peak emission wavelength), is shown in Figure 6.5A with two individual 

fluorescence decay curves shown in Figure 6.5B. From Figure 6.5A, the LHCII-only 
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areas (orange) generally have a longer lifetime of between 1.4-1.9 ns, when 

comparing with the LHCII-ΔcrtB RCLH1 cross-over area (blue) of between 0.7-1.0 ns. 

In Figure 6.5B, the green decay curve was extracted from the pixel marked 1 (Figure 

6.5A) corresponding to the LHCII-only area, and the bi-exponential decay function 

fitting result shows an amplitude-averaged lifetime τav = 1.53 ns, with components A1 

= 0.18 , τ1 = 2.51 ns  and A2 = 0.82, τ2 = 0.55 ns; the red curve represents the 

fluorescence decay in the cross-over area (marked 2, Figure 6.5A) and the bi-

exponential decay function fitting result shows an amplitude-averaged lifetime τav = 

0.77 ns, with components A1 = 0.06, τ1 = 1.9 ns  and A2 = 0.94, τ2 =  0.41 ns. This 

reduction of the LHCII fluorescence lifetime indicates EET from the LHCII complex to 

ΔcrtB RCLH1 complex in the cross-over areas where the two types of protein complex 

must be in very close proximity.  
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Figure 6.5. Fluorescence lifetime data from cross-patterned LHCII and ΔcrtB RCLH1 
complexes on a functionalised glass substrate.  

A. Amplitude weighted average lifetime image obtained at 485 nm excitation (1 MHz 
repetition rate, 2x1014 photons pulse-1 cm-2), and 680 nm emission (LHCII complex 
emission peak), clearly showing a decrease in the lifetime in the cross-over areas, 
where the two complexes are in close proximity, scan size 26 µm;  

B. Individual decay curves recorded in the pixels of the lifetime image in panel A marked 
with 1 (green, LHCII only) and 2 (red, LHCII+ ΔcrtB RCLH1 crossed-over), respectively.  
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6.4 Discussion 

Previous work has shown energy transfer in mixed assemblies of LH2 and RCLH1 

complexes (Hunter et al 1979, Sumino et al 2011a, Uragami et al 2015), but there was 

no control over the 2-D arrangement location of the photosynthetic complexes. 

Various lithography techniques can overcome the challenges of constructing 

nanoarrays of single types of photosynthetic complex, starting with the light-

harvesting LH2 complex of Rba. sphaeroides (Escalante et al 2008a, Escalante et al 

2008b, Reynolds et al 2007), and later the RCLH1 complex (Patole et al 2015) and the 

LHCII complex of plants (Vasilev et al 2014b). In each case, those immobilised 

complexes retained their structural and optical functions. Specifically, the 

immobilised LHCII retained the capability to switch between fluorescent and 

quenched states (Vasilev et al 2014b); long-range energy transfer was observed in the 

80 nm-wide nanolines of LH2 complexes (Escalante et al 2010), the micron length 

scale of which greatly exceeds its natural energy propagation length of 50-100 nm.  

To explore the geometries of energy transfer and trapping, it would be meaningful to 

pattern two or more types of photosynthetic complex on the same surface, with one 

type of antenna and the other type of trap in very close proximity. However, there 

are no published successes in co-patterning two or more types of photosynthetic 

complex on the same surface for spectral and time-resolved microscopies to assess 

the functional state of immobilised assemblies. Recent developments in surface 

chemistries do allow multiprotein patterning (El Zubir et al 2017), and an alternating 

linear LHCII/EGFP pattern has been reported (Vasilev et al 2014b). Here, we have 

used a soft lithographic method to cross-print LHCII and ΔcrtB RCLH1. Energy transfer 

was observed between the LHCII and the ΔcrtB RCLH1 complexes in the cross- 

patterned areas, by monitoring the fluorescence emission intensity from the LHCII 

and the ΔcrtB RCLH1 along with the fluorescence lifetime decrease from the energy 

donor LHCII complexes. This is the first time that plant antenna complexes have been 

functionally coupled with bacterial RC complexes, a combination that would not be 

possible to achieve through genetic means in a bacterial or plant host. This assembly 

can be regarded as a new type of biohybrid ‘photosynthetic unit’, where the 

complexes adopt a predetermined, geometric configuration and perform basic energy 

transfer functions. The mixed bacterial/plant arrays from natural organisms have 
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showed their energy transfer capability as a working system, and future work can be 

extended to create mix-and-match combinations such as construction of 

plant/artificial maquette complex arrays. Further explorations can also include 

patterning mix-and-match complexes on conductive surfaces to test the electrical 

properties of RC traps in the biohybrid and bioinspired photosynthetic arrays. This 

would help us to measure charge separation and energy trapping in the assembled 

artificial system demonstrated in the present work. 
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Chapter 7 

7.1 Concluding remarks 

In this research diverse fabrication techniques were used to direct the assembly of 

purified photosynthetic complexes from Rhodobacter sphaeroides and spinach on 

different surfaces. Artificial light-harvesting systems were created by fabricating 

multiple types of photosynthetic complexes on micro- and nanometre scales, and 

energy transfer behaviours were explored. Another artificial light-harvesting system 

used for energy transfer study was the proteoliposome reconstituted using 

photosynthetic complexes from Rhodobacter sphaeroides. AFM imaging in 

combination with FLIM imaging were applied to characterize the photosynthetic 

complexes localizations and energy transfer in these artificial systems. 

Chapter 3 details a pilot study to explore the light harvesting and energy transfer in a 

surface-assembled artificial light-harvesting system. LH2 and RCLH1 complexes 

purified from Rhodobacter sphaeroides were cross-printed on a PLL coated glass 

surface to form micron-scale ‘photosynthetic units’. The carotenoid-less RCLH1 

complexes were used to ensure the directionality of energy migration, and we 

demonstrated light collection by one complex, LH2, and its subsequent transfer to the 

RCLH1 complex. A 60-day test of the ‘photosynthetic units’ sealed in argon and stored 

at 4°C in the dark showed that, the artificial ‘photosynthetic units’ are extremely 

stable. To my knowledge, this is the first time that a systematic study has been done 

on the long-term stability of immobilised photosynthetic complexes.  

As photosynthetic membrane vesicles in Rhodobacter sphaeroides are of 50-100 nm 

in diameters, it would be desirable to bring the micrometre ‘photosynthetic units’ 

down to a nanometre scale, in order to mimic nature more accurately. The 

photolithography method reported by Xia et al (2016) and the nanolithography 

method reported by Vasilev et al (2014b) show approaches to create nano-scale 

arrays of photosynthetic complexes patterns on glass surfaces. Furthermore, to test 

the nanoelectrical properties of RC traps, photosynthetic need to be deposited on 

conducting substrates, as reported by Kamran et al (2015) and Tan et al (2012). These 

ideas lead to the study in chapter 4. 
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In chapter 4 shows how photosynthetic complexes can be patterned on 

semiconductive silicon surface using a local oxidation nanolithography. Multiple types 

of complexes were patterned on the nanometre scale with high protein occupancy. 

Fluorescence emission spectra and AFM images proved these complexes retained 

their structural and fluorescence properties on silicon. However, as reported by 

Escalante et al (2009) and Magis et al (2010), the fluorescence emission intensity 

dropped dramatically when LH2 complexes were adsorbed on a gold surface 

compared with glass. The same drop was observed for both LH2 and RCLH1 when 

immobilised on silicon, which hindered us from acquiring strong evidence for 

excitation energy transfer between the two complexes. Furthermore, the low 

conductivity of the silicon substrate apparently led to failure to obtain photocurrent 

from the immobilised RCs. Nevertheless, this study opens up the possibilities of 

patterning artificial light-harvesting systems on conductive surfaces and using Peak-

force TINA AFM to explore the locally light induced photocurrent from the RC. Future 

work can focus on patterning artificial light-harvesting complexes on a transparent 

and conductive ITO substrate, which hopefully will allow the fluorescence emission 

and the photocurrent acquisition.  

In chapter 5, LH2 and ΔcrtB RCLH1 purified from Rhodobacter sphaeroides were 

reconstituted into proteoliposomes at five different LH2/ΔcrtB RCLH1 ratios. The use 

of carotenoid-containing LH2 and carotenoid-less RCLH allowed the selective 

excitation of LH2 at 485 nm and unequivocal observation of energy transfer from LH2 

to ΔcrtB RCLH1. Fluorescence emission spectra and fluoresce lifetime decay show 

that energy transfer efficiency between LH2 and ΔcrtB RCLH1 is related to the ratio 

between the two types of complexes in the proteoliposomes, and the highest energy 

transfer efficiency of 73% happens at the LH2/ΔcrtB RCLH1 ratio of 1:1. This approach 

shows the possibility of creating ‘mix and match’ photosynthetic systems for studying 

energy transfer between non-native photosynthetic complex pairs. 

Chapter 3 discussed methods to co-pattern the LH2 and its native energy acceptor, 

the RCLH1 complex, on the same surface and observed energy transfer between 

these complexes. This inspires the study in chapter 6, where ‘mix and match’ 

combinations of bacterial/plant complexes were fabricated on glass surface which 

cannot be created through genetic means. The fluorescence spectra and fluorescence 
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lifetime show energy transfer between LHCII and RCLH1. This is the first time that 

plant antenna LHCII complexes have been functionally coupled with bacterial RC 

complexes, in terms of light-harvesting and energy transfer. Future work can explore 

the combination of natural antenna complexes with artificial RC maquettes patterned 

either on glass surfaces for energy transfer study or on conductive surfaces for testing 

the electrical properties of the RC maquettes in the biohybrid photosynthetic arrays.  

 

 

 

 

 

  



 

159 
 

Appendix: Growth medium for Rhodobacter 
sphaeroides M22+ medium (10× stock) 
The following were weighed and mixed in 2 L deionised water: 122.4 g KH2PO4, 120.0 

g K2HPO4, 100.0 g sodium lactate, 20.0 g (NH4)2SO4, 20.0 g NaCl, 173.7 g sodium 

succinate, 10.8 g sodium glutamate, 1.6 g aspartic acid. 800 ml Solution C was added 

and the solution was made up to 4 L with water, pH adjusted to 6.8, then autoclaved. 

Solution C 

The following were weighed and dissolved in 2 L water: 40.0 g nitrilotriacetic acid, 

96.0 g MgCl2, 13.4 g CaCl2, 500 mg EDTA, 1.0 g ZnCl2, 1.0 g FeCl2, 360 mg MnCl2, 37 mg 

ammonium molybdate, 31 mg CuCl2, 50 mg Co(NO3)2, 23 mg orthoboric acid. The 

solution was made up to 4L and stored in 800 ml aliquots at 20 C until required. 

Vitamins (10000× stock) 

The following were weighed and mixed into 100 ml water: 1.0 g nicotinic acid, 0.5 g 

thiamine, 100 mg p-aminobenzoic acid, 10 mg d-biotin. The solution was filter 

sterilised and stored at 4 C. 

M22+ liquid media 

400 ml M22+ 10 × stock and 80 ml 5% (w/v) casamino acids were mixed and made up 

to 4 L with water. The medium was transferred to the required growth vessels, sealed 

with a lid or bung, then autoclaved. Immediately prior to usage, an appropriate 

volume of vitamins was added (to 1× concentration), and antibiotics if required. 

M22+ agar 

100 ml M22+ 10 × stock was made up to 1 L. To 100 ml aliquots, 1.6 g bacto-agar was 

added and then the solution was autoclaved. When required, aliquots were heated in 

a microwave to dissolve the agar and left to cool at ~50 °C in a water bath.  An 

appropriate volume of vitamins was added (to 1× concentration), and antibiotics if 

required.  The molten agar was poured into plastic petri dishes and left to set and dry. 
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