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Abstract 

The prevalence of lower limb amputation has been rising rapidly with the primary causes 

associated with dysvascular disease and traumatic injuries. The knowledge of muscle 

coordination during walking could help in the rehabilitation of individuals with limb loss. 

The goal of this research was to investigate the neuromuscular differences between 

healthy subjects (HS) and lower limb amputees during the walking task at different states 

and speeds using different statistical approaches.  

High dimensional (HD) electromyography (EMG) data for ten muscles were 

collected from thirteen healthy subjects’ (HS) dominant leg and eleven transfemoral 

amputees’ (TFA) intact leg (IL) during transient-state walking at three self-selected 

speeds (slow, normal, and fast). This data were analyzed at two levels from two different 

approaches: the HD EMG/muscle activation pattern and low dimensional muscle 

synergy/modular motor control which were obtained using the linear envelope of EMG 

signals and concatenated non-negative matrix factorization (CNMF), respectively, from 

biomechanics and robotic control approach.  

While the biomechanics approach considers the covariance between the HD 

muscle activities and low dimensional temporal components of muscle synergy, robotic 

control accounts for individual muscle activities and temporal components of muscle 

synergy using statistical parametric mapping (SPM). 

HD EMG data for ten muscles were also collected from four HS and one 

transtibial amputee’s (TTA) IL and prosthetic leg (PL) during steady-state walking at a 

self-selected speed. The muscle synergy was analyzed using the developed CNMF 

algorithm among legs in pairwise comparisons.   

The effect of speeds on both HS and TFA muscle activities from biomechanics 

and robotic control perspectives showed statistically significant differences, suggesting 

neuromuscular adaptation mechanism in both groups to satisfy the kinematic and kinetic 

demands of increasing transient-state walking speed. Some differences in HD muscle 

activities related to the plantarflexors could be observed among the groups, indicating 

compensatory adjustment of TFA IL for the lack of push off from the PL. 

The effect of speeds on HS muscle synergy vectors showed reasonable 

correlations as opposed to those of TFA synergy vectors during transient-state walking. 

The high correlation suggests that the central nervous system (CNS) activates the same 

group of muscles synergistically.  

In comparison among HS dominant leg, TTA IL and TTA PL, the primary 

muscle(s) had a significant impact on the level of muscle synergy vectors correlation. 
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The activation coefficient profiles suggested that amputees’ IL and PL were significantly 

different when compared together and to the HS.  

The same number of synergy groups (=4) found in HS, TFA and TTA indicate 

analogous complexity implemented by the CNS which does not depend on the state of 

the gait cycle (transient vs. steady), speed (slow, normal and fast), and level of 

amputation (below knee vs. above knee). These results have important clinical and 

robotic control implications. It could provide useful information to therapists to tailor 

rehabilitation strategy to focus on the muscles and the timing where significant 

differences occur in the gait cycle. As a result, this could decrease the risk of secondary 

physical conditions (e.g., osteoarthritis) and increase gait efficiency. The information may 

also be useful for the prosthetic manufacturers to design prostheses that incorporate 

information from the IL and/or PL to improve the myoelectric prostheses and develop 

synergy-based control frame. 
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Chapter 1  

INTRODUCTION 

1.1 Background 

1.1.1 Prevalence of Amputation 

The incidence of lower limb amputation is increasing drastically in the world. The three 

leading causes of this type of amputation are the vascular disease, war injuries and 

motor vehicle and road accidents [1, 2]. There are more than 32 million amputees all 

around the world in which 75% accounts for lower limb, and 17% accounts for bilateral 

amputees [3, 4]. In the UK, approximately 34,109 persons underwent lower limb 

amputations in 151 hospitals from 2007 to 2010 [5], which is over 11000 amputations 

per year. In the US, about 185,000 amputations are carried out every year, and It is 

estimated that this number will double by 2050 and reach a total of 3.6 million [6].  

1.1.2 Use of Prosthesis in Rehabilitation 

Following amputation, successful rehabilitation is very crucial as patients require 

extensive training to compensate for the loss of muscle function and lack of 

somatosensory feedback as well as to achieve natural and efficient gait when using a 

prosthesis. The gait efficiency is a crucial factor which helps the patients to reduce 

exhaustion or harm when using the prosthesis while performing locomotive tasks. The 

use of the prosthetic device is one of the most important interventions to improve the 

amputees’ quality of life. There have been significant advances in prostheses to 

overcome complications such as high energy consumption, gait deficiency or low 

mobility. However, there is still need for improvement of the lower limb prostheses to 

achieve superior ambulation in amputees, especially in the case of high degree 

amputations (e.g., transfemoral).  

The commercially available prostheses related to lower limb extremity are divided 

into three types: mechanically passive devices, microprocessor-controlled passive 

devices (actively controlled) and powered devices. In addition, there are three categories 

of foot prosthesis including Conventional Feet (CF), Energy Storing-and-Returning 

(ESR) Feet and bionic feet. Mechanically passive knee prosthetic devices and CF (Solid 

Ankle Cushioned Heel (SACH)) are the most commonly used prostheses for amputees 

[7]. Passive devices, including both mechanically passive and microprocessor-

controlled, are capable of dissipating energy at the joints. However; they cannot produce 

net power like a healthy joint in a human during normal locomotion. In addition, they 
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require a significantly larger volitional effort from amputees and complex activities such 

as ascending ramps and stairs cannot be performed very smoothly. However, the 

powered devices may overcome these issues by implementing the control system which 

provides positive power. One of the main hurdles of the powered devices is the high-

power consumption due to their continuous activation. This is opposed to the gait 

strategy of human muscles which become activated and deactivated at different parts of 

the gait cycle (GC) [8]. For instance, in level ground walking, high activity of lower limb 

muscles is observed during the stance phase (SP) as compared to the swing phase [9]. 

Lastly, an increased cognitive load of amputees is required using multi-joint powered 

devices [10].  

Hence, the need for better controlling lower limb prostheses which could mimic 

the human muscle activations has brought the idea of using information from the 

muscles. One of the major sources of biological signals in neural control is surface 

electromyography (EMG). This signal can be detected from the muscles of lower 

extremities using surface EMG electrodes to control lower limb prostheses. Early 

application of surface EMG for control was mostly based on the amplitude-based 

threshold (onset and offset control strategy) to lock/unlock the prosthetic knee joint 

during some activities [11, 12]. EMG signals also have been implemented for direct 

proportional control of different joints of lower limb prosthetics including knee [13] and 

ankle joints [14]. Other studies investigated EMG pattern recognition to identify the user 

intent in different activities and to control the prosthetic device smoothly, intuitively and 

naturally in different terrains [15-19].  

Regardless of the type of prostheses and control systems being used, unilateral 

lower limb amputees tend to overload the intact leg (IL) subconsciously or deliberately 

which seems to play an important role in developing secondary physical conditions 

including osteoarthritis (OA), osteopenia, osteoporosis, and back pain [20, 21]. The most 

common sites of OA are the knee and hip joints of IL [21-23]. Esposito et al. [24] reported 

the increase rate of Knee OA in TFA IL is ten times more than transtibial amputees (TTA) 

and non-amputees. Kellgren et al. [22] found the increased incidence rate of hip OA of 

PL and IL as compared to the non-amputees. Consequently, this may have an impact 

on muscle activation patterns as patients load their muscles differently to perform the 

same task as compared to the non-amputees [25].  

Therefore, the activation patterns of lower limb amputees’ muscles spanning the 

IL and PL joints could provide an understanding of neuromuscular compensation 

strategies in amputees. This can be studied at two levels namely high dimensional (HD) 

EMG/muscle activation pattern and low dimensional muscle synergy/modular motor 
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control from biomechanics and robotic control perspectives as explained in subsequent 

sections.  

1.1.3 HD EMG Studies in Lower Limb Amputees 

Prior studies investigated muscle electrical signal characteristics of lower limb amputees’ 

PL to evaluate biomechanical differences (i.e., muscle coordination and moments) [26-

40] as well as to develop new robotic control paradigms for controlling prosthetic devices 

during activities of daily livings (ADLs) [11, 12, 14-16, 35, 41-45]. In addition, others have 

focused on the IL muscle activations of transtibial [26-28, 32, 38] and transfemoral [35, 

36, 46-50] amputees from biomechanics and robotic control perspectives.  

In most of the gait-related studies investigated steady-state walking, however, it 

is crucial to understand the other aspects of gait in amputees. This includes the transition 

from standing to walking (gait initiation), transition from gait initiation to steady-state 

(transient-state), steady-state walking and transition from steady-state to upright 

standing (gait termination) [51, 52]. Changing states requires complex interaction 

between nervous, muscular and skeletal systems which may result in falls in people with 

a poor score in clinical tests [53, 54] and people with limb loss [55-57] especially when 

changing states (gait initiation and transient-state) [58, 59]. In previous studies, gait 

initiation was examined in healthy subjects (HS) in terms of kinematics and kinetics [52, 

60-68] and muscle activations of lower limbs [52, 53, 61-66, 68]. Other researchers 

investigated gait initiation in lower limb amputees accounting for different biomechanical 

parameters including temporal variables, ground reaction forces, the center of mass and 

center of pressure [51, 67, 69-72] and muscle activations of IL and PL [35, 73]. However, 

none of the prior literature accounts for the characteristics of inter-muscle covariance 

(i.e., inter-muscle co-activation and multi-muscle synergy) and time dependence (i.e., 

whole time-series) in the lower limb amputees’ muscle activations. In addition, little 

attention has been devoted to the first stride after gait initiation (i.e., transient-state) in 

which it is believed that the gait has not yet reached to its consistent natural pattern (i.e., 

steady-state) [52, 62, 66]. 

To the author’s knowledge, no study was found to compare the high dimensional 

muscle activation patterns in HS and TFA during transient-state walking at different 

speeds which accounts for inter-muscle covariance and time dependence.   

1.1.4 Muscle Synergy Studies in HS and Pathological Group 

The complicated HD muscle activation patterns can be decomposed, using a 

mathematical technique i.e., non-negative matrix factorization (NMF), into low-

dimensional subsets namely an independent spatially fixed matrix of weights (known as 

muscle synergies, muscle synergy vectors or motor modules), which represents the 
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relative weighting of each muscle within each synergy group and time-varying activation 

(known as activation coefficient profile), which represents the relative activation of the 

motor modules during the GC [74-77]. Muscle synergy analyses have been proven to 

simplify the construction of motor behaviors [78-81].  

Several authors reported muscle synergies in normal steady-state walking, 

walking at different speeds, backward walking, perturbed walking, inclined locomotion, 

running and sidestepping, the transition from walking to running and vice-versa [82-87]. 

In addition, there have been studies focusing on pathological populations which showed 

the number of muscle synergy groups was lower in people with Parkinson disease, 

cerebral palsy, stroke and spinal cord injuries than the HS [88-91]. The same number of 

muscle synergies were found between HS and lower limb amputees during ADLs, 

indicating analogous complexity implemented by the CNS which does not depend on the 

level of amputation. These studies found activation coefficient was significantly different 

in some regions of the GC [92-95]. However, two main limitations of these studies were 

the low sample size, and they only accounted for the steady-state walking. 

To the author’s knowledge, modular motor control in HS and lower limb amputees 

during transient-state walking at different speeds have not yet been studied in the 

literature.  

1.2 Motivation  

It is clear that there is a real need to understand the neuromuscular behavior of the lower 

limb amputees prior to developing neurorehabilitation program and designing robotic-

aided myoelectric prosthesis. Due to the richness of neural information and non-

invasiveness of surface EMG, extracting muscle information would be a viable and safe 

way to investigate the adjustment strategy of the neuromuscular system in an individual 

with amputation. It is undoubtedly challenging to realize the ideal performance of the PL 

due to the loss of muscles and somatosensory feedback. Thus, the muscle coordination 

of the IL could be used to provide clinically valuable information from biomechanics and 

robotic control perspectives.  

To the best of the author’s knowledge, there is no study in the literature that 

evaluated the neuromuscular coordination in HS and lower limb amputees during gait at 

two levels (i.e., HD EMG and low dimensional muscle synergy) accounting for two 

approaches (i.e., biomechanics and robotic control), at different walking states (transient-

state and steady-state) and different speeds (slow, normal, and fast).  
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Biomechanics approach could contribute in the field of rehabilitation, providing 

valuable information on the functional outcomes of muscle activation, neural structure 

underlying the motor behaviors, and how they alter in pathologies and after rehabilitation. 

Robotic control approach could be implemented in the next generation of 

prosthetic devices to provide a new paradigm for controlling artificial limbs and create a 

better solution for replacing natural motor function in an individual with amputation. 

1.3 Aims and Objectives 

1.3.1 Aims 

The aims of this research are: 

 To examine the neuromuscular coordination behavior of HS and TFA across 

transient-state walking speeds to identify the adjustment and compensatory 

strategies in HS dominant leg and TFA IL from biomechanics and robotic control 

perspectives; 

 To examine low dimensional modular motor control of HS and TTA during steady-

state walking to identify neuromuscular changes in TTA IL and PL. 

1.3.2 Objectives 

The objectives of this project are as follows: 

 To investigate the differences in temporal characteristics of HD sensorimotor 

Modules and all muscles that contribute to the co-contraction of ankle and knee 

joints (biomechanics perspective) as well as individual muscle activations (robotic 

control perspective) for both HS and TFA in response to increasing transient-

state walking speeds (within-subject HD EMG).  

 To investigate the differences in temporal characteristics of HD sensorimotor 

Modules and all muscles that contribute to the co-contraction of ankle and knee 

joints (biomechanics perspective) as well as individual muscle activations (robotic 

control perspective) between HS and TFA during transient-state walking at 

different speeds (slow, normal and fast) (between-subject HD EMG). 

 To develop a reliable and robust algorithm for muscle synergy analysis which 

accounts for the whole population rather than an individual subject.  

 To examine the changes in complexity of control strategy implemented by the 

CNS of HS and TFA with increasing transient-state walking speed.  

 To assess whether the muscle recruitment of spatially fixed muscle synergy 

vectors changes in HS and TFA with increases in transient-state walking speeds.  
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 To assess whether muscle synergies change between HS and TFA at each 

speed.  

 To investigate the differences in low dimensional temporal components of muscle 

synergy (i.e., activation coefficient profiles) of HS and TFA from biomechanics 

and robotic control perspectives in response to increasing transient-state walking 

speeds (within-subject activation coefficient profile). 

 To investigate the differences in low dimensional temporal components of muscle 

synergy (i.e., activation coefficient profiles) between HS and TFA from 

biomechanics and robotic control perspectives during transient-state walking at 

each speed category (between-subject activation coefficient profile).  

 To compare the changes in complexity of control strategy implemented by the 

CNS between HS and TTA during steady-state walking. To determine whether 

muscle synergy complexity changes with respect to the number of recorded 

muscles.  

 To determine whether muscle synergy complexity changes with respect to the 

number of recorded muscles. 

 To assess whether muscle recruitment of spatially fixed muscle synergies 

changes among HS dominant leg, TTA IL, and TTA PL.  

 To investigate the differences in low dimensional temporal components of muscle 

synergy (i.e., activation coefficient profiles among HS dominant leg, TTA IL, and 

TTA PL (case1-4) during normal steady-state walking (between-subject 

activation coefficient profile).  

 To assess commonalities/differences in the statistically significant differences 

between HD sensorimotor Modules and low dimensional activation coefficient 

profiles of HS and TFA across speeds.  

 To assess the commonalities/differences between TTA and TFA muscle 

synergies. 

1.4 Scope of this Research 

This research presents a methodology 1) to understand the neuromuscular 

adjustment strategy in HS dominant leg and TFA IL during transient-state walking (within-

subject analysis) 2) to understand the compensatory mechanism deployed by the TFA 

IL as compared to the HS dominant leg with regard to HD muscle activations and low 

dimensional modular motor control during transient-state walking (between-subject 

analysis) and 3) to investigate modular motor control differences in TTA IL and PL as 

compared to the HS during steady-state walking (between-subject analysis). In this line 

of work, two main studies were conducted as shown in Figure 1.1 and Figure 1.2.  
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Study one focuses on the neuromuscular coordination of HS and TFA at two 

levels: 1) HD EMG or muscle activation pattern and 2) low dimensional muscle synergy 

or modular motor control. While HD muscle activation provides information about the 

activation timing, shape and level of muscle activity, muscle synergy can be used to 

measure the neuromuscular complexity and provide relevant details on the motor 

performance (Figure 1.1). Study two focuses on the neuromuscular coordination of HS 

and TTA from the low dimensional level only (Figure 1.2).  

Study one was regarded as exploratory thereby two approaches were considered 

namely biomechanics and robotic control to investigate a priori hypotheses using 

statistical parametric mapping (SPM). The biomechanics hypotheses of HD muscle 

activation and low dimensional muscle synergy consider the inter-muscle dependence 

and inter-activation coefficient profile dependence, respectively whereas the robotic 

control hypotheses take individual muscle activations and individual activation coefficient 

profiles into account (Figure 1.1). Study two explores the robotic control approach by 

considering individual activation coefficient profiles only (Figure 1.2). 

The findings from these studies could be useful at two levels. On the one hand, 

this allows therapists to focus on the part of the GC in which the significant differences 

occur as compared to the HS in order to improve the muscles performance and better 

control progression and stability during walking. On the other hand, this could be used 

by the prosthetic companies to develop a new control paradigm to compensate for the 

deficiency, and mimic the activity performed by a healthy HD EMG activity or low 

dimensional activation coefficient profile.
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Figure 1.1: Flowchart of study 1; neuromuscular analysis in terms of HD muscle activation and muscle synergy of HS dominant leg and 
TFA IL during transient-state walking at different speeds considering biomechanics and robotic control perspective.   

 

 

Study 1
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Biomechanics

HS (within-
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TFA (within-
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control

HS (within-
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TFA (within-
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HS  (within-
subject)

TFA (within-
subject)

HS vs TFA

Robotic 
control

HS  (within-
subject)

TFA (within-
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Figure 1.2: Flowchart of study 2; neuromuscular analysis in terms of muscle synergy between HS, TTA IL and TTA PL during steady-state 
walking; Abbreviation: upper knee (UKN). 

Study 2

Neuromuscular analysis

Muscle synergy

Robotic control

Case 1

HS vs. TTA IL
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HS UKN vs. TTA UKN IL

Case 3

HS UKN vs. TTA UKN PL

Case 4

TTA UKN IL vs. TTA UKN PL
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1.5 Contribution of this Research  

The biomechanics and robotic control approach proposed in this thesis contribute to the 

healthcare-related applications with the focus on the lower limb amputees and to the 

body of knowledge.  

Major contributions of this research are as follows: 

1. Identifying the differences in muscle activation patterns of HS dominant leg and 

TFA IL during transient-state walking across speeds considering the 

characteristics of inter-muscle dependence (biomechanics perspective), and 

individual muscles (robotic control) as well as time dependence in EMG time-

series within- and between-subject. 

2. Developing a reliable and robust algorithm to decompose the HD EMG signals 

into low dimensional subsets which accounts for the whole population rather than 

an individual subject.  

3. Identifying the complexity of the neuromuscular system in controlling the HS 

dominant leg and TFA IL during transient-state walking across speeds. 

4. Assessing the correlation of spatially fixed muscle synergies in HS and TFA 

within- and between-subject. 

5. Investigating the differences in the temporal component of muscle synergy (i.e., 

activation coefficient profile) of HS dominant leg and TFA IL during transient-state 

walking across different speeds considering the covariance between activation 

coefficient profiles (biomechanics perspective), and individual activation 

coefficient profiles (robotic control perspective) as well as the whole time-series. 

6. Identifying the complexity of the neuromuscular system in controlling the HS 

dominant leg, TTA IL, and PL during steady-state walking. 

7. Assessing the correlation of spatially fixed muscle synergy vector HS and TTA 

during steady-state walking. 

8. Identifying the differences in activation coefficient profile between HS and TTA 

during normal steady-state walking considering individual activation coefficient 

profiles and the whole time-series. 
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1.6 Thesis Outline 

The thesis is presented in seven chapters as shown in Figure 1.3:  

 

Figure 1.3: Flowchart of the thesis organization 

Chapter 1 presents the background, motivation, aims, and objectives for investigating 

the neuromuscular differences in HS and lower limb amputees. Furthermore, it describes 

the contributions of this research.  

Chapter 2 presents an overview of lower limb biomechanics including muscles and 

associated movements as well as the biomechanics terminologies of gait, kinematics, 

kinetics. In addition, different means of gait measurement devices is studied.  

The use of surface EMG at two levels are studied namely HD EMG/muscle activation 

patterns and muscle synergy/modular motor control. Furthermore, the drawbacks 

intrinsic to surface EMG and different methodological concerns using surface EMG in 

muscle synergies are investigated. Comprehensive research is conducted on 

neuromuscular aspects of human motion including the biomechanics variables 

kinematics, and kinetics as well as HD EMG profile and muscle synergies in healthy 

subjects and lower limb amputees during walking. The gait deficiency in lower limb 

amputees and the major secondary complications after amputation are discussed.  

Various lower limb prostheses are studied including knee and ankle joints, focusing on 

the types and control strategies implemented for movement of lower limb amputees. 

CH1

Introduction

CH3

HD muscle 
activation in HS 
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CH4
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CH6

Common discussions
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Chapter 3 forms the first of two neuromuscular studies in this thesis (Figure 1.1 HD 

muscle activation). In this chapter, HD EMG is recorded from HS dominant leg and TFA 

IL during transient-state walking with increases in speed (slow, normal and fast). HD 

muscle activation patterns are compared in HS and TFA intra- and inter-subjectively. The 

chapter closes by discussing the differences in muscle activations of HS and TFA from 

biomechanics and robotic control perspectives.  

Chapter 4 forms another aspect of the first of two neuromuscular studies in this thesis 

(Figure 1.1 muscle synergy). In this chapter, a mathematical technique known as 

concatenated non-negative matrix factorization is developed to investigate the 

components of muscle synergies in HS dominant leg and TFA IL while performing 

transient-state walking with increases in speed. The results highlight the correlation of 

spatially fixed muscles synergies intra- and inter-subjectively. In addition, the temporal 

components of muscle synergy (i.e., activation coefficient profiles) are compared from 

biomechanics and robotic control perspectives intra- and inter-subjectively. The chapter 

closes by discussing the possible adaptation strategies and compensatory adjustment 

implemented by TFA.  

Chapter 5 forms the second of two neuromuscular studies in this thesis (Figure 1.2 

muscle synergy), focusing on modular motor control differences between HS and TTA 

during normal steady-state walking. In this chapter, concatenated non-negative matrix 

factorization which was developed in the previous chapter is implemented to investigate 

the components of muscle synergies in HS dominant leg, TTA IL and TTA PL at a 

different state of walking (steady-state). The results highlight the correlation of spatially 

fixed muscles synergies between HS and TTA legs. In addition, individual temporal 

components of muscle synergy (i.e., activation coefficient profiles) are compared inter-

subjectively between two groups as well as intra-subjectively between TTA IL and PL. 

The chapter closes by discussing the possible adaptation strategies and compensatory 

adjustment implemented by TTA.  

Chapter 6 presents the commonalities/differences between the significant differences of 

HD sensorimotor Modules and low dimensional activation coefficient profiles of HS and 

TFA across speeds. In addition, commonalities/differences between TTA and TFA 

synergy vectors are discussed. The justifications are presented for the selection of 

methodological analyses from the choice of HD and low dimensional activation to 

statistical analysis and choice of the decomposition algorithm. Consequently, the 

possibilities of using the findings of this research in clinics and neurorehabilitation 

robotic-aided prostheses are presented.  

Chapter 7 presents the summary of the research work, highlights the main achievements 

and contributions, limitations and offers the recommendation for future work.
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Chapter 2  

LITERATURE REVIEW 

2.1 Introduction 

This chapter is divided into three main sections. The first section provides general 

information on muscles anatomy and their association with the movements during gait. 

The biomechanics terminologies namely human gait, kinematic and kinetic are 

described; and various gait measurement devices are studied. The second section is 

conducted on the use of surface electromyography for studying muscle coordination, 

focusing on the high dimensional EMG signal and muscle synergies/modular motor 

control. Furthermore, the drawbacks intrinsic to surface EMG and different 

methodological concerns in muscle synergies are investigated. Consequently, this 

section aims at carrying out comprehensive research on the neuromuscular aspects of 

human motion from biomechanics perspectives to high dimensional electromyography 

and muscle synergies/modular motor control in healthy subjects and pathological 

populations during ADLs. In addition, the gait deficiency in lower limb amputees and the 

major secondary complications after amputation are discussed. Lastly, different types of 

prostheses (i.e., knee and ankle) and control strategies (i.e., echo and pattern 

recognition) are briefly studied. In addition, previous studies on the control strategies that 

have used EMG from lower limb muscles to control prostheses are investigated. Finally, 

the gap of knowledge in high dimensional EMG and muscle synergies are discussed. 

2.2 Lower Limb Biomechanics 

2.2.1 Basic Anatomy 

The muscles of the lower limb are divided into two categories: The above/upper knee 

muscles and below knee muscles. The two major groups in the above knee muscles are 

hamstrings and quadriceps. The hamstrings muscles namely semimembranosus 

(SEMIM), semitendinosus (SEM) and biceps femoris long head (BFLH) are located at 

the posterior section of the leg and responsible for knee flexion and hip extension. The 

quadriceps muscles are a group of four muscles including rectus femoris (RF), vastus 

medialis (VM), vastus lateralis (VL), and vastus intermedius (VI) which are located at the 

anterior section of the leg and responsible for the extension of the knee and the shank 

segment. The main two bones of the lower limb are femur and tibia. The femur interacts 

with tibia to move the knee. Another significant bone in the below knee is fibula which 
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connects with the tibia and helps for the movement of the foot. There are around 50 

muscles in the lower limb [96]. The ankle and the foot consist of 26 bones and 33 joints. 

The ankle not only helps to maintain stability but also perform different movements such 

as plantarflexion and dorsiflexion. The main plantarflexor muscles are gastrocnemius 

medialis (GM), gastrocnemius lateralis (GL), and soleus (SOL) which are responsible for 

propelling the body forward by generating push off during walking. Achilles tendon is the 

most important structure in the lower leg responsible for storing the elastic energy 

required for ADLs. It connects three muscles of the calf (gastrocnemius), plantaris, and 

soleus to the heel bone. Lower limb muscles and bones are shown in Figure 2.1 (A) and 

(B), respectively.  

 

(A) 

 

 

(B) 

 

Figure 2.1: Lower limb muscles and bones. (A) superficial lower limb muscles 
[97] and (B) main lower limb bones [98].  

2.2.2 Types of Movements and Muscles 

The muscles can be categorized into different groups based on the movement 

performed. Each movement has its own counter movement (antagonist) in which moves 

in the opposite of the original movement. [99]. The role of the ankle, knee and hip 

muscles have been shown in Appendix A, Table A.1 to Table A.3 in which the agonist 

and antagonist movements corresponding to each muscle group is determined. 

2.2.3 Human Gait 

Human gait is the most common form of physical activities in daily life which comprised 

of the integrated activity of muscles acting across many joints. Rowe et al. [100] defines 

walking process as “a form of a bipedal progression in which the repetitive movements of the 

lower limbs include periods of double support, when both feet are in contact with the ground, 

followed by periods of time when only one foot is supporting the body (single support) while the 
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other is being moved above the ground (swing)”. Bernstein [101] showed different 

combinations of muscle patterns quite possibly achieve the same movement because of 

the synergistic and antagonistic nature of many of these muscles. It has been shown that 

healthy/able-bodied patterns of motion at the ankle, knee, and hip could remain the same 

as opposed to the drastic changes in muscle activities or moment of force [96].  

2.2.3.1 Phases of Gait Cycle 

The gait cycle is defined as the time between two successive step occurrences and often 

begins with the heel touching the ground (known as initial contact) [102]. The gait cycle 

is divided into two major components, the stance phase, and the swing phase. Stance 

phase occurs when the foot is in contact with the ground whereas the swing phase occurs 

when the foot is in the air for forward progression. Generally, at a normal speed, stance 

phase, and swing phase consists of 60% and 40% of a gait cycle, respectively. Each 

stance comprised of two double support phases (each accounting for 10% of gait cycle) 

(Figure 2.2).  

The stance phase is divided into four sub-phases:  

1. Loading response (LR): Time period from after immediate initial contact to the 

toe-off of the contralateral extremity from the ground. This is when the first 

period of double support occurs. 

2. Mid-stance (MS): It starts with contralateral toe-off and ends when both ankles 

are aligned in the frontal plane. 

3. Terminal stance (TS): Period from ankle alignment in the frontal plane to just 

about the contralateral foot contacts the ground.   

4. Pre-swing (PSW): Time intervals from contralateral initial contact to prior toe-

off of the ipsilateral extremity from the ground. 

Swing phase is divided into 3 sub-phases: 

1. Initial swing (ISW): begins with a lift of the limb and continues until maximum 

flexion occurs (60 degrees). 

2. Mid-swing (MSW): is the period of maximum knee flexion until vertical 

positioning of the tibia. 

3. Terminal swing (TSW): Following when the tibia is vertically positioned to just 

prior to IC. 
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Figure 2.2: Gait cycle diagram; break down of single support and double support 
(adapted from [103]) 

Figure 2.3 shows the gait cycle events namely initial contact (IC), opposite toe off 

(OT), heel-rise (HR), opposite initial contact (OI), toe-off (TO), feet adjacent (FA) and 

tibia vertical (TV). In the literature, the event IC is also known as heel contact (HC), heel 

strike (HST) or foot contact (FC). TO event is also termed as a foot-off (FO), end contact 

(EC) and terminal contact (TC). 

The distribution contribution of each sub-phase to the GC is as follows: LR (0–

10% of the gait cycle), MS (10–30%), TS (30-50%), PSW (50–60%), ISW (60–73%), 

MSW (73-87%) and TSW (87–100%) [9].  

 

Figure 2.3: Gait phases and events in the gait cycle, Initiation of gait starts with 
the right leg (grey) (modified from [104]). 

One stride is also known as a gait cycle. Moreover, stride is the linear distance between 

corresponding successive points of contact of the heel of the same foot (e.g., HS of right 
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foot to next HS of the same foot). However, step is the linear distance in the plane of 

progression between corresponding successive contact points of opposite feet [105]. 

2.2.3.2 States of the Gait Cycle 

Gait cycle can be performed in different ways depending on the previous state of the 

human position. This includes the transition from standing to walking (gait initiation), 

transition from gait initiation to steady-state (transient-state), steady-state walking and 

transition from steady-state to upright standing (gait termination) [51, 52].  

Gait initiation involves complex interactions between nervous, muscular and 

skeletal systems that serve to move the body from a quasi-static (standing) to a 

movement-state (walking). Gait initiation is split up into different phases. The first limb 

which initiates the movement is known as the leading limb (swinging limb), and the 

contralateral leg which follows the leading limb is known as the trailing limb. Figure 2.4 

shows the gait patterns in four gait periods. A represents the interval from the leading 

limb onset of the gait initiation until the IC, and C is the next gait cycle of the ipsilateral 

limb (transient-state). On the other hand, B is the interval of the trailing limb onset of the 

gait initiation until IC, and D represents the next gait cycle of the trailing limb (transient-

state).  

There is little agreement in the previous research regarding the number of steps 

required to reach the steady-state walking. Researchers focused on different 

biomechanical parameters to define this. Mann et al. [66] analyzed the joint angles and 

force plate data to conclude that steady-state can be reached in three steps. Nissan and 

Whittle [106] investigated where the largest acceleration occurs in the first two steps. 

Breniere and Do [107] concluded that the steady-state was attained after one step based 

on the force plate data by calculating the body center of mass velocity. Miller et al. [108] 

studied the mechanical energy analysis of gait initiation and showed that steady-state 

was reached by the end of three full steps. Other researchers who conducted kinematics 

of initial walking assumed at least three steps were required to reach the steady-state 

[52, 54, 60, 62]. Kibushi et al. [109] suggested for the EMG data at least 10 strides are 

required to reach the steady-state.  
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Figure 2.4: Gait initiation (A and B) and transient-state gait (C and D) of leading 
and trailing limb, respectively (Adapted from [52]). 

2.2.4 Kinematics and Kinetics  

Kinematic variables are associated with the movement of joints and segments 

independent of the forces such as linear and angular displacements, velocities and 

accelerations. Kinetic variables are associated with the movement as a result of both 

internal (movement of muscles, ligaments, or due to friction between joints) and external 

(ground or external loads) forces.  

2.2.5 Gait Measurement Devices 

A wide variety of measurement systems have been developed to record information of 

temporal, kinematic, kinetic and muscle parameters during locomotive tasks. These 

measurement devices consist of stationary and ambulatory systems. The former is 

confined to limited space (e.g., laboratories) whereas the latter can be attached at 

various location of the human body and be used outdoors. Laboratory equipment 

consists  of devices such as motion capture system (Vicon camera system), force plates 

(e.g., Kistler), pressure mapping insoles (Noraxon insoles) which measure the kinematic 

parameters, GRF and center of pressure, respectively. These devices are more precise, 

have no restriction on power consumption, provide better reproducibility and repeatability 

however they are  generally limited to the indoor spaces, more expensive, heavy and 

large in size. On the contrary, the ambulatory system includes wearable sensors such 

as surface EMG (e.g., Myon), inertial measurement unit (e.g., Shimmer) and foot 

switches (e.g., Noraxon) are small in size, cheap, light and portable, however, they are 

prone to outside noise and inferences, limited battery duration and a fewer gait 

parameters can be recorded [110]. Appendix A, Table A.4 shows the list of most used 

stationary and ambulatory measurement devices. Appendix A, Table A.5 shows the 

advantages and disadvantages of stationary and ambulatory devices. A detailed review 

was conducted on gait measurement devices by [110]. 
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2.3 Surface EMG for Studying Muscle Coordination 

Surface EMG is the electrical signal associated with the muscle contraction which is 

essentially the sum of the action potential made by the active motor units [111]. EMG is 

the primary signal to describe the neural output from the spinal cord [76]. It provides 

information regarding the duration, shape, and level of muscle activity [9]. Mean EMG 

activity level of the whole time-series is the simplest way to report muscle activation. 

However, important information would be lost only focusing on this parameter. Therefore, 

EMG profiles and the activation-deactivation of the muscle contraction are most 

commonly reported to identify the changes in muscle coordination [9, 76].  

2.3.1 Detection of EMG Signal 

In order to detect EMG signals, two approaches are used: surface or non-invasive EMG 

and intramuscular or invasive EMG.  

The former type consists of electrodes which are in contact with the skin. The 

electrodes can be directly connected to the sensors or indirectly connected through a 

cable. The electrode is a bridge between the skin and the sensor to convey electrical 

impulses. The differential amplifiers sensor rejects the common electrical activity from 

both sites and amplifies the difference. Therefore, the common mode between the pairs 

is allowed to be rejected. The current wireless EMG electrodes consist of 2 active and 1 

reference electrodes which convey the information to the receiver. Prior to the conversion 

of the analog to digital signals by the encoder, the EMG signals are amplified and filtered 

by the sensors. Finally, the digital signal is processed, displayed and recorded by 

relevant software [99].  

The latter type consists of the needle which is inserted into muscle via skin. 

Several needles may be required to obtain sufficient EMG. Non-invasive EMG is 

preferred over the invasive because 1) the needle could irritate the skin and muscle as 

well as results in pain during dynamic movement 2) the needle is very small as compared 

to the volume of the muscles thereby the information may not be reflective of the total 

muscle mass involved in the activity [112] 3) the needle placement requires trained and 

specialized medical personnel [76].  

The use of EMG can be perceived in applications such as physical rehabilitation 

(physiotherapy), urology (treatment of incontinence), and biomechanics (sports training, 

and motion analysis). Moreover, it plays an important role in the diagnosis of 

neuromuscular diseases such as muscular dystrophy, pinched nerve or peripheral nerve 

damage [113].  
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2.3.2 EMG Profiles 

The raw EMG signals are noisy and stochastics, however, they have been reported by 

many researchers previously [96, 114-116] to identify the onset and offset. The problems 

arise from the unprocessed EMG are the difficulty in interpreting the amplitude and shape 

of the signals as well as investigating the variation among the recorded cycles. 

Therefore, processing of the raw EMG is required to report muscle activity profiles.  

The signals can break into many electrical firings which occur at different rates 

and the overall signal in the time domain is comprised of these frequencies. The 

frequency is the number of events in which firing occurs per second, and it is measured 

in Hertz (Hz). According to several studies, the common frequency of EMG signals lies 

between 20 and 500Hz [46, 99]. Therefore, filtration is performed by applying a bandpass 

filter to the raw data which removes the unnecessary high and low frequency.  

Following the filtration, several techniques have been reported in the literature as 

a means of signal processing to obtain muscle activity namely 1) Full wave rectification 

(i.e., absolute value) 2) linear envelope (rectified and low pass filter) 3) integration of the 

full wave rectification over the whole time-series 4) integration of the full wave 

rectification for a fixed period of time, reset to zero, then integration cycle repeated 5) 

integration of the full wave rectification to a preset level, reset to zero, then integration 

repeated [117]. The most common technique to report EMG profile is a linear envelope 

[76, 96, 117-121]. Several researchers have used different filtration order and cut-off 

frequency to obtain linear envelope for various applications.  

Appendix A, Table A.6 provides information about the muscles recorded and 

filtering techniques used on healthy subjects and transfemoral amputees.  

 In order to make a meaningful conclusion, several normalization methods have 

been implemented based on a reference point. This depends on the application, however 

the most common ones include 1) maximum voluntary contraction (MVC) 2) peak 

measured amplitude over all trials. The former one is performed against static resistance, 

and the latter is based on the peak value obtained from the dynamic activities of all trials.  

The original time domain (mili-seconds) is converted to a percentage by 

interpolating the data to 100-400 data points depending on the locomotive task and 

speed [76, 122, 123].  

The ensemble average EMG provides the mean curve and a standard deviation 

band (range of plus/minus 1 standard deviation) of the stride to stride variability of the 

linear envelope which improves the signal-to-noise ratio [124]. 
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Depending on the application, a different number of cycles have been used in the 

literature ranging from 3 to 40 cycles [84, 86, 120, 125, 126]. 

Regardless of the signal processing techniques used, many researchers found 

linear relationships between EMG amplitudes and muscle tension [127-131]. Other 

studies showed non-linearity in some of the muscles during the high tension activities 

[127-129]. 

2.3.2.1 Level of Muscle Activity 

In order to compare the muscle activity level between muscles and/or subjects, the 

degree of muscle activation becomes an important parameter. In this context, 

normalization is performed based on the isometric maximal voluntary contraction (IMVC) 

or sub-maximal isometric contraction [132]. These types of normalizations are 

dependent on the arbitrary angle in which the maximum effort is performed. However, 

they can be misinterpreted when applied to the dynamic activities [133].  

It has been reported that there is no consensus on the best normalization method 

to be used [134]. Therefore, accurate information about the level of muscle activity (exact 

value expressed as a percentage of the maximum neural drive) during a certain activity 

cannot be obtained from EMG measurements [76]. That is to say, only approximate 

degree of muscle activity and major muscles involved in the tasks can be determined by 

means of MVC. Notwithstanding, despite the lack of precision, it facilitates the 

comparison between muscle and/or subjects as compared to the raw EMG activity [135]. 

It is worth mentioning that the study of muscle coordination does not necessarily require 

information about the amplitude of muscle activation. Many studies focused on the onset 

and offset or shape of the EMG pattern, deployed normalization based on the peak 

measured amplitude over all trials [90, 91, 136, 137] or mean measured amplitude over 

all trials [118] 

2.3.2.2 Duration of Muscle Activity 

The analysis of EMG often involves identifying rapid transient changes in the muscle 

activation during locomotive tasks. The most common approach for determination of the 

motor-related events from the EMG signal is a visual inspection by a trained person [138-

140]. It has been reported; higher precision is obtained by the expert using visual 

inspection due to the details of the signals can be investigated by the experts’ experience 

and skills [141]. However, others questioned the reliability of the visual inspections and 

reported low reproducibility [142, 143]. The limitations of visual inspections are 

dependency on subjective criteria, time-consuming, offline analysis and based on the 

skills and experience of the inspector [144]. To overcome these issues, computerized 

methods for event detections have been implemented.  
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The onset and offset of EMG activity are identified using a defined threshold 

based on the decision criteria. Single threshold methods calculate the mean power of 

the background noise on the rectified raw EMG [145]. Other techniques involve an 

amplitude threshold based on the noise related to the linear envelope of EMG [146]. In 

the literature, several EMG threshold values have been proposed including 1st, 2nd, or 

3rd standard deviations plus the mean of baseline activity, 15–25% of the peak EMG 

[147], and minimum EMG plus half a range of EMG [126]. Some researchers improved 

upon the accuracy within the Single threshold methods such that the threshold is based 

on the weighted average of N consecutive samples [148, 149] or two adjacent windows 

[143] rather than on its instantaneous value. More advanced methods have been 

proposed using two thresholds with the possibility of correct detection and of setting the 

probabilities false positive occurrence [150]. Other researchers proposed thresholds 

developed based on the abrupt changes of the variance of the EMG signal by 

implementing cumulative sum [144], approximated generalized likelihood ratio [151], and 

approximated cumulative sum [152] using no windowing, a sliding window, and two 

adjacent sliding windows, respectively. The more advanced threshold is in accordance 

with the continuous wavelet transform due to the changes in frequency content on the 

EMG signal at the onset of muscular activation [153]. Staude and Wolf [144] proposed a 

threshold which accounts for the dynamic parameter profile. A parameter such as signal-

to-noise ratio, onset rise time, and background noise level have impacts on detection of 

muscle activity [147]. Li and Aruin [154] used the Teager-Kaiser energy operator to 

reduce the background noise level while accounts for the amplitude and frequency of the 

EMG. Superior precision has been observed in this approach as compared to the 

classical approach particularly when the raw EMG signal has a low signal-to-noise ratio.  

As explained above various onset detection algorithm have been proposed in 

which many of the thresholds rely on the indicator extracted from the EMG signal with a 

threshold. However, they are significantly different from the structure and the individual 

parameter setting implemented for activity [144]. Therefore, the accuracy and reliability 

of the threshold value can be impacted by the detection algorithm. Furthermore, various 

methodologies lead to different representations of the muscle activation. It is important 

to choose a detection algorithm which may provide reliable results for a particular 

application regardless of being subjective.  

2.3.2.3 Factors Influencing Surface EMG  

There are several factors influencing the surface EMG including the detection systems, 

geometrical, physical, physiological fiber membrane properties, non-physiological 

anatomic and motor unit properties (more details are presented in Appendix A, Table 
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A.7) [155]. The subsequent items are the most important factors affecting surface EMG 

which can be avoided during and after data acquisition.  

Cross Talk 

Crosstalk refers to the signal recorded over one muscle that is contaminated from the 

EMG signal by a nearby muscle and conducted through the intervening volume to the 

EMG electrodes [156]. This is one of the most crucial sources of error in surface EMG 

interpretation [76]. Several authors reported the crosstalk could be due to the extinction 

of the action potentials at the ends of the tendon and differences in the sources of the 

non-propagating and propagating signals [155, 157, 158]. Campanini et al. [159] showed 

the higher variability in tibialis anterior muscle activity could be due to electrode 

placement. In addition, a second epoch of activity was observed when the electrodes are 

located towards the peroneus longus which was not shown in other places. The extent 

that the cross talk interfere with the muscle activation is not easy to detect by means of 

surface EMG. Some proposed different ways to reduce the effect of crosstalk using 

cross-correlation [160]. On the other hand, Lowery et al. [161] showed that cross-

correlation is not an appropriate statistical quantity for quantifying crosstalk. In addition, 

the results obtained from the electrical muscle stimulation would not provide accurate 

information regarding the crosstalk due to the differences in motor unit recruitment 

strategy between voluntary and electrically-provoked contractions [161]. It has been 

reported that the double-differential electrodes [162], reducing the electrode distance, 

and placing the electrodes on the muscle bellies [163] would decrease cross-talk [76].  

Amplitude Cancellation 

Amplitude cancellation of positive and negative phases of motor unit action potentials 

can result from the surface EMG underestimating the excitation signal that was sent from 

the spinal cord to the muscle [155, 164]. Algebraic summation of motor-unit action-

potential trains in cats showed a non-linear increase of EMG magnitude [164]. Another 

study confirmed the result by means of computation models, indicating the interpretation 

of changes in the amplitude of the activation signal is confounded by the amplitude 

cancellation [165]. Although the amplitude cancellation has only been observed in 

animals and computational models, its interference with the EMG activity level with 

respect to increased neural drive at a high degree of excitation is known. Additionally, 

the reduction in muscle fiber conduction velocity, due to fatigue, increases the duration 

of motor unit action potentials which increases amplitude cancellations [165]. It is worth 

mentioning; amplitude normalization would reduce the amplitude cancellation. 

Importantly, the studies whose focus are on muscle coordination (i.e., high dimensional 
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EMG pattern and/or modular motor control) are not affected by the amplitude 

cancellation [76].  

Spatial Variability of Muscle Activity 

Inhomogeneities in muscle activation have been shown in animals [166, 167] and 

humans [167]. Other factors such as muscle fiber and mechanical heterogeneity may 

result in different muscle activity level [166]. Two main limitations may lead to wrong 

interpretation of muscle activity namely 1) variability in the location of the electrodes 

placed in different subjects and 2) relative movement of the detection system with 

respect to the muscle. The former can be resolved by selecting the same location on the 

muscle for attachment of the electrode inter-subjectively (e.g., muscle belly). In the 

literature, the optimal detection configuration has been selected by means of a multi-

channel method to estimate the site of innervation zone. The electrodes must be placed 

on one side and over the innervation zone for the entire duration of the dynamic task [76, 

168]. The latter limitation can be avoided using a two-dimensional high-density surface 

EMG which covers a larger surface area [169]. The relative movement of the electrodes 

with respect to the muscle during a dynamic task is estimated using a high-density 

recording by identifying the tendons and innervation zones. However, the main 

limitations of this technique are the number of electrodes for processing and the number 

of muscles that can be recorded during one recording. Due to the difference in 

morphology inter-subjectively, it is a great challenge to place all the electrodes at the 

same location on the muscle for all the subjects [169]. Therefore, the recording must be 

done cautiously using this approach.  

2.3.3 Muscle Synergy/Modular Motor Control 

Human movement stems from the complex interaction between the nervous, muscular, 

and skeletal systems [96]. The musculoskeletal system has redundant degrees of 

freedom because the human body is comprised of many muscles. The lower limb has 

more than 50 muscles and at least half of them contribute to the movement of the leg 

during gait in the sagittal plane [96]. In order to solve the redundancy problem, the CNS 

simplifies the control of muscles by the concept of muscle synergy. That is, the main 

features of muscle activity patterns could be explained by a few underlying components 

which have been proven to simplify the construction of motor behaviors [78-81, 170-172]. 

Therefore, the complicated high dimensional muscle activation patterns can be 

decomposed, using a mathematical technique (i.e., NMF), into low-dimensional subsets 

namely an independent spatially fixed matrix of weights (known as muscle synergies, 

motor modules, modules, synergy vectors or weighting coefficients) which represents 

the relative weighting of each muscle within each synergy group and time-varying 
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activation (known as activation coefficient profiles, activation coefficient, coefficients, 

neural commands, temporal components, motor primitives) represents the relative 

activation of the motor modules during gait cycle. Collectively, one synergy vector and 

its corresponding activation coefficient profile can be termed a synergy or module [78] 

(Figure 2.5). Muscle synergies are considered to be the fundamental control signals 

responsible for producing the HD repertoire of muscle activation required for performing 

specific locomotion [80, 173-175]. 

 

Figure 2.5: Schematic of muscle synergy/modular motor control; C1-C3 are 
activation coefficient profiles, W1-W3 are muscle synergy vectors, and m1-m5 

are original muscle activations (adapted from [176]). 

Muscle synergy analysis has been implemented in animal models [80, 174, 177], 

intact human [176, 178], individuals with neurological problems [91, 179-183] and other 

pathologies [92-95, 126].  

 

2.3.3.1 Muscle Synergy Methodological Consideration 

There are several a priori assumptions regarding muscle synergy analysis that may 

influence the results and interpretation of outcomes. Some of these are including 

decomposition algorithm, signal processing approach, EMG normalization method, 

analysis of dimensionality, data structure, which muscle synergy components remain 

constant and which can vary between trials/subjects, muscle synergy components 

normalization method and means of comparison of muscle synergy components. 

Therefore, great care is needed to understand the consequences of these assumptions 

when comparing the results of studies together.  

Decomposition Algorithm 

Previous studies have proposed several decomposition techniques including principal 

component analysis (PCA), independent component analysis (ICA), and NMF. PCA is a 

factor analysis technique that finds a set of orthogonal components known as principal 

components that represent the covariance of the original dataset [184, 185]. ICA is a 

non-linear blind-source separation technique that identifies the statistically independent 
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components (factors) that can be reconstructed to generate a mixed set of signals [186, 

187]. NMF is a parts-based representation of the original signal using its non-negativity 

constraints [74, 188]. Tresch et al. [75] compared a range of different factorization 

algorithms and found similar results to one another despite different sets of assumption 

used in each algorithm. Another study aimed at comparing variations of the NMF 

algorithm to decrease the cost functions between the original matrix and reconstructed 

components [189].  

Signal Processing Approach 

After decomposition analysis method is selected, several methodological assumptions 

are required throughout the muscle synergy analysis. The typical signal processing 

procedures involve high pass filtering (HPF) before rectification, low pass filtering (LPF) 

after rectification (i.e., linear envelope), amplitude normalization, time normalization.  

Several studies have been conducted with regard to the various filtering types 

and order as well as amplitude normalization strategies [190-192].  

Filtering Type and Order 

No study has been found in the literature that aims to investigate the effect of filter type 

and filter order on muscle synergy analysis. However, Devaprakash et al. [193] studied 

the difference in EMG processing using a 2nd order Butterworth filter and 2nd order 

critically damped filter with a consistent cut off frequency and reported only small 

differences in the EMG data which did not impact clinical interpretation. De Luca et al. 

[194] found that the minimal difference on the spectral shapes between the 2nd and 3rd 

order (>1% difference in root mean square between EMG profiles). Therefore, the 

outcomes of these studies suggest the filter type and filter order may not significantly 

impact the muscle synergy results.  

High Pass Filtering Before Rectification 

Prior research showed a range of HPFs applied before rectification of the EMG signals 

including: 40Hz [91, 195, 196], 35Hz [197, 198], and 20Hz [192, 199]. Merletti and Torino 

[200] recommended an HPF from 5 to 10 which is currently endorsed by the International 

Society of Electrophysiology and Kinesiology (ISEK). De Luca et al. [194] reported that 

a 20 Hz HPF provides the best comprise between retaining EMG desired informational 

content and eliminating movement artifacts. Generally, an HPF is applied to reduce non-

physiological signals (i.e., motion artifacts) [201]. Therefore, it is expected that the HPF 

does not have an impact on muscle synergy analysis. However, this remains to be 

studied thoroughly for future research.  
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Low Pass Filtering After Rectification 

A wide variety of LPFs have been implemented in the prior synergy literature from 1 

[202], 3 [83], 4 [91], 6 [92-95, 136], 10 [90], 15 [58], 20 [203], 30 [204], 35 Hz [198] to 40 

Hz [197]. Hug et al. [192] noted that the number of synergy groups varied in healthy 

subjects during cycling between three different cut-off frequencies (i.e., 4, 10 and 15 Hz). 

It was shown that higher low-pass cut-off frequency would lead to higher number of 

synergies. However, the impact on the muscle synergy components has not been shown. 

Shuman et al. [201] reported the sensitivity of the number of synergy groups to LPF, 

ranging from 4 to 40 Hz in typically-developing children and children with cerebral palsy. 

They found the number of synergy groups increased for both populations with an 

increase in low pass cut-off frequency.  

EMG Normalization Method 

With regards to the amplitude normalization, several methods were implemented 

in scaling the EMG data for muscle synergy analysis including MVC [87, 126, 205], peak 

measured amplitude over all trials [90, 91, 136] peak measured amplitude per trial [179, 

206], median trial maximum [207], unit magnitude per trial [123], unit variance over all 

trials [208, 209] and unit variance per trial [123] 

Unit variance prevents the large representations of high variance muscles in 

muscle weightings of muscle synergy analysis [203]. Shuman et al. [201] reported small 

changes in total variance accounted for in scaling the data using peak amplitude and unit 

variance prior to the muscle synergy analysis. Banks et al. [123] have shown less 

sensitivity of activation coefficient profiles to EMG normalization method as opposed to 

the synergy vectors which showed the clearest variability using unit magnitude per trial 

EMG.  

Time Normalization  

Due to the differences in duration of the gait cycle between trials, interpolation of each 

trial is performed to have an equal number of points for obtaining the ensemble average. 

Depending on the locomotion task and speed, the trials are interpolated to 100-400 

points [122]. Time-normalization is an important task to obtain representative EMG 

envelope to compare intra- and inter-subject analysis such that scalar point or whole 

time-series can be considered for statistical analyses.  

Therefore, in order to compare between trials/subjects/groups, the cycle is 

linearly converted from the experimentally recorded time units (milliseconds), 

corresponding to the cycle (i.e., heel strike to the heel strike of the ipsilateral leg), to a 

representing cycle percentage [118, 210]. Most gait-related synergy studies interpolated 
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the data to 101 points per gait cycle [85, 91, 211]. However, it is noteworthy that the intra- 

and inter-subject kinematics variability is neglected thus, a certain region of the gait cycle 

might not represent the corresponding phase for all subjects [118]. 

Analysis of Synergy Dimensionality 

The number of muscle synergies to be selected to reconstruct the original signal stems 

from the percentage of variance accounted for (VAF) by a combination of synergies. The 

VAF describes how much of the variability in the linear envelope of the original input data 

is accounted for by the output reconstructed components from the synergy vectors and 

their recruitment activation coefficient profiles [198]. 

Some literature proposed a minimum threshold by means of VAF, the coefficient 

of determination (R2) [208, 211], while others add another criterion such as the addition 

of the next synergy group will not increase VAF by a certain amount [78, 126, 212]. 

Additionally, as a local criterion to determine the number of muscle synergies, some 

researchers account for the reconstruction quality of each muscle by means of the 

coefficient of determination [204] and intra-class correlation (ICC) [92-95, 213]. 

The VAF threshold ranges from 80% [136, 179, 214] to 95% [123, 201], and 

including intermediate values including 85% [83, 176, 215] and 90% [76, 82, 84-87, 91, 

109, 126, 198, 216-218].  

The threshold for each muscle reconstruction quality is determined by either R2 

> 0.6 [204], ICC > 0.5 [92-95, 213] or VAF > 0.75 [87] and 0.8 [204]. Other researchers 

studied the changes in the slope of the VAF or R2 and by adding a synergy up until a 

considerable change in either of these parameters is perceived [79, 179, 219]. 

Comprehensive research has been conducted on muscle synergy analysis of the 

HS and different pathological populations, investigating different parameters including 

activity, muscle, filtration type and order, cut off frequency, VAF threshold and number 

of synergy groups (Appendix A, Table A.8). 

Data Structure  

Oliveira et al. [84] illustrated the number of trials as well as the data structure (i.e., 

individual, averaged, or concatenated into one matrix) has no significant effect on the 

number of muscle synergy groups extracted. However, they reported reconstruction 

quality has decreased when ensemble average and concatenation of small data sets are 

used.  
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Types of Synergy Vectors 

The muscle synergy vector calculation approaches either hold the synergy vector 

constant across all trials [91-95] or allow it to vary from trial to trial [185, 190]. Banks et 

al. [123] revealed using varying synergy vectors lead to great differences in trial-to-trial 

activation coefficient profiles by means of cosine similarities.  

Sorting Method 

Due to the local minima issue, the functional sorting was implemented to rearrange the 

indices of synergy and coefficient of one trial/subject/group based on the other 

trial/subject/group. An arbitrary reference was chosen to sort muscle synergy based on 

the similarity of synergy vectors and/or activation coefficient profiles values by means of 

maximum coefficient of determination [81, 84]. Other researchers implemented maximal 

cosine similarity to ensure that each synergy was similar across trials within each subject 

[109, 191, 220, 221]. However, other quantities such as intra-class correlation can be 

implemented which accounts for the patterns and consider multiple inputs [213, 222]. 

Investigators provided little to no details regarding sorting method which makes a 

comparison of results a challenge.  

Muscle Synergy Components Normalization Methods 

To facilitate the comparison of the muscle synergy components, the muscle synergy 

vectors and activation coefficient profile are typically normalized in some fashion [123, 

136]. The most common output normalization approaches include synergy vectors by 

unit magnitude [123], synergy vector by maximum value [85, 88, 223], and activation 

coefficient profile by maximum value [83, 190]. If synergy vectors were normalized, then 

activation coefficient profiles were normalized by the inverse of the normalization synergy 

vector, so their products remain the same and vice versa [92-95].  

Banks et al. [123] studied the effect of different synergies output normalization to 

differentiate between responder and non-responder post-stroke patients with intrinsic 

physiologic differences based on muscle synergy analysis results. They reported no 

significant influence on results.   

Means of Comparison of Muscle Synergy Components 

Similarities between subjects/population are investigated for muscle synergy vectors and 

activation coefficient profiles by means of coefficient of correlation [58, 82, 85, 88, 126, 

185, 190, 195, 201, 209, 211, 215, 217, 221, 224], coefficient of determination [92-95, 

136], cross correlation [83, 86, 91, 123, 170, 179, 218], normalized scalar product [80, 

81, 202, 216], cosine similarities [109, 123, 221], SPM [92-95]. SPM is a promising 

statistical tool which facilitates the analysis of biomechanical variables by considering a 
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priori assumptions. The following section presents the SPM in more details and its 

advantages over the traditional/classical statistical analyses.  

2.3.4 Statistical Parametric Mapping (SPM) 

Biomechanical variables are often manifested as one-dimensional scalar trajectories in 

which they are used in either directed or non-directed null hypotheses. In case of directed 

hypothesis, the statistical analysis pertains to the specific biomechanical variables in 

particular points (e.g., 30% gait cycle) or windows (e.g., 20-30% gait cycle). Testing other 

time points or windows than the original a priori hypothesis would constitute bias because 

the number of tests increases the risk of incorrectly not accepting the null hypothesis. 

This bias is known as post hoc regional focus. That is, traditionally, in biomechanics, 

discrete points such as maximum value or the time that the maximum occurs is 

considered. However, if there is no a priori hypothesis, the whole trajectory needs to be 

considered. In case of non-directed hypothesis which pertains to the specific 

biomechanical variable (e.g., moments), it would be biased only to investigate one plane 

of motion (e.g., sagittal) thus decreasing the number of null hypotheses. Another 

potential bias is considering the components of the biomechanical variables as an 

independent component. If a priori hypothesis does not pertain to the individual 

component, it would introduce a source of bias known as inter-component covariance. 

Both post hoc regional focus bias and inter-component covariance bias have shown to 

impact the outcomes of statistical analysis if a priori hypothesis does not pertain to 

particular time point or widows and independent biomechanical component, respectively 

[225, 226]. Statistical parametric mapping is a vector field statistical test for continuous-

level statistical analysis which mitigates both biased sources [225]. The SPM technique 

was first implemented in three dimensional functional Brain Images research [227] and 

was extended into biomechanics field [225, 226, 228]. The multi-component vector which 

is represented in 1D time or space uses random field theory (RFT) [225, 229] to calculate 

the probability that observed vector field changes resulted from chance vector field 

fluctuations [225]. For a detailed explanation and mathematical implementation of SPM 

refer to [225]. Important key statistical variables and their description were stated in 

Appendix A, Table A.9. 

To account for inter-component covariance, SPM paired Hotelling’s T2 and 

Hotelling’s T2 statistics (i.e., multivariate one-dimensional (1D) SPM) are used within- 

and between-subject, respectively. In addition, 1D analysis of variance (ANOVA) 

repeated-measures (RM) and two-sample t-test (univariate 1D SPM) are implemented 

for the null hypothesis which pertains to independent-component (variable) analysis 

within- and between-subject, respectively.  
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In this thesis, the multivariate and univariate 1D SPM tests are considered for the 

null hypotheses pertains to the biomechanics and robotic control approaches, 

respectively.  

 

2.3.4.1 Multivariate 1D SPM Test (Paired Hotelling’s T2) 

There are different techniques that can be used in SPM. Paired Hotelling’s T2 is similar 

to the paired t-test, which is given by the one-sample T2 statistics (Equation 2.1). SPM 

calculates the test statistic, critical t threshold, and p-values by considering vector 

covariance, field smoothness, and random field behavior, respectively [225, 226].  

 

 

(2.1) 

Where J, y(q) and W are the number of vector fields, the mean vector field, and the (I × 

I) sample covariance matrix, respectively. Equation 2.2 shows pooled variance matrix. 

 

 

(2.2) 

W indicates the variances within and correlations between vector components across 

the J responses.  

2.3.4.2 Multivariate 1D SPM Test (Hotelling’s T2) 

Another statistical analysis is Hotelling’s T2 which is conceptually similar to the scalar 

two-sample t-test, but it is equivalent to vector fields of scalar values (Equation 2.3). 

 

 

(2.3) 

where J is the number of vector fields, y(q) is the mean vector field, ∆y(q) is the vector 

field difference, W is the pooled variance matrix (Equation 2.4) and subscripts “1” and 

“2” refers to case 1 (group 1) and case 2 (group 2), respectively [225].  

 

 

(2.4) 

representing the variances-within and correlations-between vector components across 

the J responses [225]. The probability that the suprathreshold cluster (i.e., statistically 

significant difference) occurred by chance is calculated based on the random field 

behavior of the vector to maintain the error rate of α=0.05. 
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2.3.4.3 Univariate 1D Test (Two-Sample t-test) 

t value continuum (Equation 2.5) (t value trajectory, t value waveform or t value) is:  

 t = (Mean Difference) / (Normalized Variance) (2.5) 

case 1 > case 2 (below t = 0) and case 1 < case 2 (above t = 0) indicate a greater and 

lower mean difference in case 1 as compared to case 2 during the time-registered period 

(e.g., GC), respectively. In addition, t-values above the upper threshold (t-critical) 

suggest significantly greater case 2 values, and t values below the lower threshold 

suggest significantly greater case 1 values [92, 93, 95, 230]. For regions of the SPM (t) 

which fail to cross the threshold, the interpretation is the same as in all classical 

hypothesis tests: insufficient evidence to reject the null hypothesis. More simply, in areas 

which do not cross the threshold the mean difference is not large relative to the variance 

[225, 226].  
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2.4 Neuromuscular Aspects of Human Motion 

2.4.1 Able-bodies Gait Biomechanics 

2.4.1.1 Functional Tasks of the Gait Cycle 

Task1: Weight Acceptance/Loading Response 

The lower limb joint angles and muscle activation during walking can be described in 

reference to the functional tasks namely weighting acceptance, single limb support and 

limb advancement (acceleration and deceleration). 

Weighting acceptance begins with the IC or heel strike. This coincides with the 

first double support phase in which the body weight transferred to the supporting limb. 

At this moment the contralateral limb is preparing for TO. In the sagittal plane, the ankle 

and knee begin to plantarflex (10-15°) and flex (15-20°) for shock absorption after IC, 

respectively. During this time, hip is in flexion (30°) and remain constant (Figure 2.6).  

During the IC, the kinetic information reveals increase vertical ground reaction 

force (GRF) reaching 100% of body weight. Anterior-posterior reaction force reaches a 

peak during the LR (13% body weight). The medio-lateral ground reaction force occurs 

in the middle of LR which is small and highly variable (5% body weight) (Figure 2.7).  

During the IC, the vertical GRF is located behind the ankle joint and in front of 

the knee and hip joints. The ankle dorsiflexor is caused by eccentric contraction of tibialis 

anterior to control the lowering of the foot and prevent from slapping, the extension of 

the knee is allowed by eccentric contraction of quadriceps to counteract the flexion 

moment and stabilize the knee, flexion is caused by a contraction of hamstrings, and the 

flexion of hip is caused by the contraction of rectus femoris. This would lead to ankle 

dorsiflexor, knee flexor and hip extensor moments at the IC (Figure 2.8 (A)) [56].  

The internal ankle moment becomes plantarflexor as the vertical GRF moves 

anteriorly. Knee and hip moments become extensor during this time. The knee extensor 

muscles serve to control the amount of knee flexion (K1 - power absorption at the knee 

in loading). Hip extensor muscles (hamstrings) contract concentrically to extend the 

femur and pull the body forward over the stance leg during weighting acceptance (H1 - 

power generation at the hip in loading) (Figure 2.8 (B)) [118].  

Task 2: Single Limb Support  

Single limb support begins when the contralateral limb is in swing phase. The stance 

limb supports the entire body mass during foot flat and late stance and ensures the safe 

progression of the swinging limb.  
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As the shank advances over the stance foot, ankle moves into plantarflexion, and 

the knee and hip are in extension during mid-stance (10-30% GC). Both quadriceps and 

hip extensors contract concentrically (Figure 2.9). Plantarflexor muscles are activated to 

stabilize the knee. At this moment the body begins to move from force absorption at 

impact to force propulsion forward. At the end of the MS, hip extensor or flexor muscle 

activity is not presented (Figure 2.9) and the hip flexion moment is eliminated (Figure 2.8 

(A)).  

Terminal stance (30-50% GC) begins with the heel rise and ends when the 

contralateral touches the ground. At the start of heel rise, ankle dorsiflexion decelerates, 

and hip begins to extend, putting the support limb into trailing limb position. 

The vertical GRF moves anteriorly and passes the ankle which leads to the 

contraction of plantarflexor muscles to stabilize the ankle joint and create a peak ankle 

plantarflexor moment of 1.5-2 Nm/Kg during the TS (Figure 2.8 (A)). The knee joint 

approach zero and then become flexor as the vertical GRF passes behind, through and 

in front of the joint (Figure 2.8 (A)). The power is positive meaning power generation in 

mid-stance (K2). According to Winter [118, 231], this represents 10-15% of the power 

generation during gait. During mid-stance to terminal stance, the vertical GRF passes 

through the joint and then behind the hip joint which produces relatively small moment 

and flexor in orientation (Figure 2.8 (A)). Power absorption is observed as the thigh 

begins to rotate backward and the hip flexors contract eccentrically (H2 – power 

absorption at the hip in stance) (Figure 2.8 (B)) [118, 231].  

The changes in GRF components are as follows: vertical GRF hit the trough 

approximately 0.6-0.9 N/kg, the anterior-posterior GRF changes anteriorly and the 

medial-lateral become medial in direction during normal steady-state walking peed 

(Figure 2.7). 

Task 3 Limb Advancement (Acceleration and Deceleration) 

Limb advancement begins with PSW phase or second double support (50-60% GC) 

where the trailing limb is preparing the body for leg swing and provide adequate foot 

clearance during swing phase. The main role of the double support phase is the weight 

transition from the trail, supporting onto the lead, swinging limb.  

During the PSW phase (50-60%), plantarflexor muscles concentrically 

contracting cause the foot to actively plantarflex (A2 – power burst at the ankle in SPW) 

and ankle joint rapidly plantarflexes to approximately 20° (Figure 2.6). The muscles 

create enough push off to advance swing limb, causes the flexion in the knee (35-40°), 

and providing adequate foot clearance in swing phase. The vertical GRF passes behind 

the knee and hip joints create small knee extensor to decelerate the backward swinging 
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leg and foot (K3 – power burst at the knee in PSW) and hip flexor moments to pull the 

leading limb forward (H3 – power generation at the hip in PSW), respectively (Figure 2.8 

(A) and (B)) [96, 231].   

During the ISW phase (60-73%), due to the increase in knee and hip flexion, the 

foot is lifted off the ground. The low level of plantarflexor activity remains during the swing 

to provide adequate knee flexion which co-contracts against the rectus femoris and vasti 

during this time. Ankle changes from 20° plantarflex to dorsiflex position due to the 

contraction of tibialis anterior. Because of the absence of vertical GRF and negligible 

inertial properties of the foot, the ankle moment is reduced. To avoid trips and ensure 

the foot clearance, the peak knee flexion of 50-60° (Figure 2.6) is required which is 

allowed by the concentric contraction of the hamstrings (Figure 2.9). The hip first extends 

to 10° and then flexes to 20° (Figure 2.6) due to concentric contraction of the hip flexors 

(iliopsoas) (Figure 2.9). 

During the MSW phase (73-87% GC), the swinging limb is parallel to the stance 

limb until it is forward and the shank is vertical. Ankle dorsiflexor muscles contract to 

ensure foot clearance as the stance limb is in single support phase. The knee flexes to 

60° but then extends approximately 30° (Figure 2.6) because of the sartorius muscle 

contraction. The hip flexes to 30° (Figure 2.6) by contraction of hip adductors [232, 233].  

During the TSW phase (87-100% GC), the deceleration of the limb occurs in 

order to control the foot during the IC. The ankle angle approaches neutral position 

through the TSW (Figure 2.6). The foot is prepared for IC by the pretibial muscle 

concentrically contracting during this time (Figure 2.9). The quadriceps contract 

concentrically to extend the knee (Figure 2.9), while hip flexion of 25-30° remains 

constant (Figure 2.6). The hamstring muscles act as mainly as a knee flexor to decelerate 

the limb (K4 – power absorption at the knee in TSW) (Figure 2.8 (B)). The quadriceps 

and hamstrings concentrically co-contracts to position the femur for IC.  
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Figure 2.6: Lower limb joint angles for the hip, knee, and ankle during normal 
steady-state walking in the sagittal plane (adapted from [104]). 

 

Figure 2.7: GRF components during the stance phase of steady-state walking 
(adapted from [234]). 
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                                 (A)                     (B) 

 

Figure 2.8: (A) Average joint moments and (B) average joint powers for hip, knee, 
and ankle of able-bodied, transfemoral and transtibial intact limb during stance 

phase when walking at normal steady-state speed. Bold line, dashed line and the 
thin dashed line indicates able-bodied, transfemoral and transtibial IL, 

respectively (adapted from [235]).  

 

Figure 2.9: Lower limb major muscle group activities during normal steady-state 
walking (adapted from [100]). 
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2.4.1.2 Gait Initiation and Transient-State Walking in HS 

Gait initiation is a complex process which involves the neuromusculoskeletal 

systems to control the body against a perturbed situation [52, 66, 68, 117]. Several 

studies reported falls in people with a poor scores in clinical tests [53, 54] and people 

with limb loss [55-57], particularly when changing states (i.e., a transfer from standing to 

walking and transient-state) [58, 59]. In previous studies, gait initiation was examined in 

HS in terms of kinematics and kinetics [52, 60-68]. 

Studies on muscle activation of the HS showed a contraction of the RF, BFLH, 

and GMED in upright standing position prior to movement initiation [52, 64]. After gait 

initiation, GL and TA are contracted. However, BFLH and GMED are relaxed. To lift the 

leading limb TA and RF become activated, but BFLH and GMED stay relaxed. The 

GMED of trailing limb deactivated and TA of the leading limb activated while RF and 

GMED of the leading limb activated. The leading limb knee flexion at the heel off is 

caused by the contraction of RF and TA and deactivation of the GL and BFLH. The 

activation of TA and the deactivation of RF continued during swing phase. At the terminal 

swing, the BFLH was activated to prepare the leg for the IC. TA continued to be activated 

until the mid-stance during the next gait cycle after gait initiation. While activation of 

BFLH and GL during the trailing limb heel off cause the extension of the knee and 

propelling the body forward, the GMED of the trailing limb deactivated and RF of the 

leading limb activated prior to the IC of the leading limb. RF and BFLH of leading limb 

stay contracted until the TO of the trailing limb.  

It has been reported that TA and GL activities are in opposite phase from each 

other during gait initiation [52, 64]. Two studies reported contradictory results regarding 

activation of TA in response to increased walking speeds from upright standing which 

one stated increased activation [62] and the other no change in activation [52].  

2.4.1.3 Muscle Activity in HS during steady-state walking 

It has been shown in the literature than steady-state walking can be achieved after three 

to five steps [52, 54, 60, 62]. Muscle activities have shown to be more consistent during 

steady-state walking as compared to the gait-initiation and transient-state [28, 52, 109].  

The movement of each joint is the result of a group of muscles activation and 

contribution to the different phases of the GC. Perry [9] and winter [96] investigated the 

muscle activation patterns of the HS during steady-state walking. The following 

paragraph is the summary of major muscle groups activation and the epochs where the 

major and minor peaks occur (Figure 2.9).  
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Ankle dorsiflexors (TA and hallicus longus) activity begins at the end of swing 

phase and continues into weight acceptance, peaking at (~5% GC). The second burst 

occurs at around TO (Figure 2.9). Ankle plantarflexors (triceps surae) activity 

commences after weight acceptance phase and rises during stance reaching a peak at 

TS (~45% GC) (Figure 2.9). Knee extensors (quadriceps) major activity begins at 

terminal swing when tibia vertical (TV) event occurs (~90% GC) and continues into 

weight acceptance phase, peaking at ~10% GC. The second minor activity occurs prior 

to the TO (~60) (Figure 2.9) [96]. The knee flexors (hamstrings) muscle group is primarily 

active in the latter half of the swing phase peaking at ~95% GC. However, BFLH major 

activity occurs at ~4% GC (Figure 2.9) [96]. In some cases, the second minor activity 

occurs during ISW peaking at ~70% GC. The hip extensor (gluteus muscles) activity 

starts in the late swing and continues into weight acceptance where the major peak 

occurs at ~10%. The second minor burst occurs in ISW in some individuals (Figure 2.9) 

[96]. The hip flexors (Iliopsoas and RF) major activity commences during ISW (Figure 

2.9).  

2.4.1.4 Muscle Activity in HS with Increased Walking Speeds 

The ability to modulate muscle recruitment at different speeds and grades is an essential 

part of the human motor control. In general, muscle activity in the able-bodied has shown 

a similar pattern, and duration, however, with heightened amplitude in response to 

increasing steady-state walking speeds [125, 236-240]. In addition, the contribution of 

muscles for achieving walking subtasks is dependent on the walking speed.   

The triceps surae was activated during the late stance and increased in amplitude 

with changes in walking speeds [236, 241]. However, ankle plantarflexor showed to be 

insensitive to increased speed during the weighting acceptance of the GC. It has been 

shown that the mechanical work of GM and SOL, contributed toward forward propulsion 

during the PSW, and is larger than all the other muscles work together [242].  

TA activity was reported to be insensitive to the increase walking speeds during 

the early swing (first burst) however; the activity was heightened during the early stance 

(second burst) [236]. While the first burst contributed to foot clearance, the second burst 

represented an anticipatory response to the loading during the IC which increased in 

amplitude with respect to the change of speeds [236]. Den Otter et al. [236] reported the 

epoch where the second burst occurred was disappeared at slower speeds.  

Non-linear change of muscle activities is observed with increased walking speeds 

in previous studies [125, 236, 243, 244]. An additional BFLH activity was found during 

the late stance to ISW at a very slow speed (0.28 ms-1) which may be related to the 

external rotation of the lower leg [236, 243, 244]. The peak burst of gluteus medius has 
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shown to increase in amplitude during MS to TS at slow walking speeds as compared to 

the fast walking speeds [125]. Additionally, at extremely slow walking speeds, the peak 

amplitude of hip extensor muscle activity is heightened during the MS as compared to 

the normal speeds [236]. This suggests, the large contribution of the muscle activity in 

single-leg support phase at slow walking speeds.  

The RF activity has been reported in prior research to increase during the PSW 

to ISW as it contributes to advancing the leg forward and decelerating the shank during 

the ISW. An extra epoch of RF activity was observed during the TSW at very slow speed 

(<0.28 ms-1) walking which provides hip flexion to forward the leg [9, 236, 243-245]. 

Murray et al. [125] showed the highest variability in hip abductor amplitude 

between able-bodied with respect to the change of speeds. This was evident during slow 

walking in which high variability was observed in side to side displacement of the pelvis. 

In addition, walking speed influences the peak activation timing. For example, 

gastrocnemius activity occurred earlier during the propulsion phase at fast walking 

speeds as compared to the slow walking speeds. Therefore, the neuromuscular 

activation changes non-linearly in repose to the increase and decrease speeds [109].   

2.4.1.5 Muscle Synergy in HS 

Several authors reported muscle synergies in normal steady-state walking, walking at 

different speeds, backward walking, perturbed walking, inclined locomotion, running and 

sidestepping, the transition from walking to running and vice-versa [82-87]. These 

studies found the number of muscle synergy groups during walking is between 4 and 6.  

Although systematic correlations have been shown between the timing of the 

activation coefficient profiles and occurrence of specific biomechanical events of the 

locomotion tasks [170, 185], the specific modulation of muscle synergy components may 

vary across gait cycles. This variability accounts for the observed variability in high 

dimensional EMG patterns from cycle to cycle [246]. 

The activation coefficient profiles of neonate have been shown to share 

similarities to the pattern of adults’ temporal component muscle synergies (no. 2 and no. 

4) however, longer in duration. In adults, no. 2 contributed to the body support during the 

stance phase and no. 4 acted to propel the body forward during swing phase. In the 

neonate, no particular activation was found during touch-down and lift-off. In toddlers 

(around 1-year-old), in addition to the two activation coefficient profiles similar to the 

neonate, two new profiles were found which contributed to the touch-down (no. 1) and 

lift-off (no. 3). These events contributed to the deceleration and acceleration of the body 

which is similar to the adults’ profile no.1 and no.3. In preschoolers (2–4years), the four 

profiles illustrated transitional patterns, intermediate average peak timing between 
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toddlers and adults. The older child’s profile became closer to the adult suggesting the 

continuous development of the modular motor control (Appendix A, Figure A.1).  

Neptune et al. [77] showed five muscle activation modules was sufficient to 

generate forward dynamics simulation of gait and their associations with biomechanical 

subtasks of walking. They reported, knee and hip extensors contribute to body support 

in early stance while acting to decelerate forward motion (Module 1), plantarflexors 

contribute to loading and propulsion in late stance (Module 2), dorsiflexor and hip flexor 

contribute to foot lift-off and deceleration of the leg in early and late swing as well as 

trunk stabilization throughout swing phase (Module 3), knee flexors decelerates leg in 

late swing (Module 4) and hip flexors contribute to acceleration of the leg forward in pre- 

and early swing (Module 5).  

Gui et al. [218]. investigated the relationship of muscle synergies and 

biomechanical subtasks in response to increasing walking speeds. They concluded the 

muscle synergies are shared as walking speed changes. Furthermore, the four muscle 

synergies and biomechanical subtasks stay invariant with increased walking speeds.  

Clark et al. found the complexity and variability of muscle activity could be 

accounted for by four activation coefficient profiles during steady-state walking with 

various speeds.  

Haigo et al. [221] studied the muscle synergies in gait transition from walking to 

running and vice versa. At the spontaneous walk to run transition, the peak activation 

coefficient profiles phases, mainly related to the activation of triceps surae, were shifted 

to an earlier phase. The gradual shift in activation coefficient profile may associate with 

the afferent information whereas the voluntary gait transition can be regulated by 

modulating only the descending neural input to the muscle synergies.   

Monaco et al. [58] noted muscle synergy components did not seem to be 

considerably impacted by aging during walking despite the changes in HD muscle 

activation patterns.  

Several studies showed that the muscle synergies are shared, and basic 

activation coefficient profiles held stable and consistent during steady-state walking over 

the wide range of speeds [83, 91, 218]. That is to say, the CNS implements the same 

groups of muscle synergies, proportionally increase the intensity of the activation 

coefficient profiles to satisfy the kinematic and kinetic demands of increased steady-state 

walking speed. In addition, other studies showed the shape and pattern of the four to six 

activation coefficient profiles have been impacted very little to changes in walking 

direction [247], locomotion mode [82, 83, 185, 221, 247], loading and unloading of the 

body [170, 248]. The similarity of the average activation coefficient profiles suggests 



42 
 

each temporal component is shaped with respect to the total duration of the stride so 

that the resulting muscle activation has a long duration at low speeds and a short duration 

at high speed [176]. 

However, some studies showed the muscle synergies dependency on 

locomotion mode and speed. Kibushi et al. [109] concluded the activation coefficient is 

flexibly controlled by the CNS in the regulation of walking speed. Yokoyama et al. [249] 

reported different sets of muscle synergies were extracted depending on the task and 

speed. Other researcher reported the timing and the weighting of the patterns might 

significantly differ with changes in walking direction, speed and loading and unloading of 

the body [170, 248]. 

2.4.2 Lower Limb Amputee Gait Biomechanics 

2.4.2.1 Types and Prevalence of Amputation 

One of the most physically and mentally devastating events that can occur to a person 

is limb loss. There are two types of amputations: upper extremity and lower extremity. 

The lower limb amputation can be above the knee (transfemoral) and below the knee 

(transtibial) in which surgical procedures are carried out to remove the lower limb above 

and below the knee joint, respectively. There are other types of amputations depending 

on the proximity to the joint of the body (i.e., hip disarticulation and knee disarticulation) 

as shown in Figure 2.10.  

 

Figure 2.10: Different level of amputation (adapted from [250])  

The main cause of limb amputation is a loss of blood supply to a limb. This is the 

most common reason for lower limb amputation which can be due to vascular diseases, 

chronic kidney diseases, diabetes and cerebrovascular diseases (approximately 70%) 

[1]. The second main cause of amputation is associated with the war injuries. In the UK, 

war injuries had left 41,000 and 9,000 major limb injuries in World War I and World War 

II, respectively [2]. Other wars such as the Korean, Afghanistan and Iraq War also added 
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to the amputees’ population. More recently, in spite of several military’s preventive 

programs, Iraq war had led to approximately 3500 traumatic amputations due to 

landmine and shrapnel injuries [2]. The third main cause of amputation is due to motor 

vehicle and road accidents. 

There are more than 32 million amputees all around the world in which 75% are 

for lower limb, and 17% are bilateral amputees [3, 4]. 

In the United Kingdom (UK), approximately 34,109 lower limb amputations were 

performed in 151 hospitals from 2007 to 2010 [5]. According to the UK National Amputee 

Statistical Database (NASDAB), the number of referrals for lower limb amputees was 

considerably higher, approximately 92% of all referred amputees, than upper limb 

amputees between April 2006 and March 2007. Among these amputees, 70% were 

reported due to dysvascular disease and approximately 33% comprised of amputees 

who had diabetes. More than 50% of referrals were above 65 years, with 75 years and 

over accounting for more than a quarter of all referrals. Based on the Information 

Services Division NHS Scotland 2009, the two most common type of amputations were 

transtibial and transfemoral, which accounted for 53% and 39% of all referrals, 

respectively. It is worth mentioning that these statistics do not include other organizations 

such as primary care trusts intermediate care services, social services and private 

providers [251]. In addition, it was reported that during the period of 2007-2010, 

approximately 34,109 persons underwent lower limb amputations in 151 hospitals in the 

UK [5]. 

In the United States (US), the total number of amputees was approximately 1.9 

million in 2012. The number of upper and lower amputations is estimated to be 185,000 

persons each year. By 2030, it is expected that the new lower limb amputation will 

increase to 58,000 annually. Additionally, It is estimated that this number will double by 

2050 and reach a total of 3.6 million [6]. In the US, the etiology of limb loss in lower 

extremities is due to dysvascular disease, including diabetes (54%), trauma (45%) and 

cancer (less than 2%). Elderly patients are most prone to dysvascular disease-related 

amputation whereas younger people are more at risk of trauma-related amputations 

[252]. From the above statistics, one could conclude amputation is a major public health 

issue.    

2.4.2.2 Walking Speed in Lower Limb Amputees 

Unilateral amputees would adopt asymmetrical gait patterns due to the missing 

functionality of the prosthetic limb. It has been shown in TFA IL that double support and 

stance phase is longer and swing phase is shorter than those of HS (Figure 2.11). TTA 

shorter stance phase and longer steps of PL have been observed as compared to the 
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HS [253, 254]. Previous studies reported slower walking speeds in transtibial and 

transfemoral amputees than age-matched normal subjects [37, 235, 255-257]. Kelly et 

al. [258] suggested the increase in transtibial amputees’ intact leg pain with increased 

walking velocities could be due to the significant loading on the intact limb at higher 

speed. The loading asymmetry increases and temporal asymmetry decreases as 

walking speed increased in amputees.  
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Figure 2.11: Distribution of the phases in the GC for HS and TFA; stance (grey) 

and swing (white) (adapted from [255]) 

2.4.2.3 Kinematic, Kinetic and Power Studies in Lower Limb Amputees 

The kinematic differences are evident in lower limb amputees. The largest difference is 

observed at the PL ankle in late stance due to the lack of active plantarflexor to advance 

the body forward as compared to the IL and able-bodied [254]. It was reported that ankle 

plantarflexors generate over 80% of the power during normal gait [231]. Lack of knee 

flexion/extension is one of the other major differences between TFA and HS (K1 and K2) 

during the stance phase as shown in (Figure 2.12 (B)). Since amputees cannot resist the 

knee flexion by generating an adequate extension moment at the knee, knee flexion is 

frequently restricted by the prostheses in the stance phase [259]. Therefore, TFA exhibit 

distinctly abnormal movements and power patterns as compared to the HS. Due to the 

locking mechanism of the passive prosthesis during stance phase, K1 and K2 illustrate 

no power generation or absorption as shown in Figure 2.12 (B). The epoch where K3 

occurs is significantly lagged in TFA IL as compared to the TFA PL and HS (Figure 2.12 

(A) and (B)). Significantly larger concentric hip power is generated by the hip joint of the 

TFA IL in H1 than the HS and TFA PL. More noticeable differences are shown at the 

TFA PL in H2 (negative work) as compared to the HS and TFA IL (Figure 2.12 (B)). This 

is due to the lack of knee flexion during stance phase in sub-phases K1 and K2 (Figure 

2.12 (A)) therefore, significant hip power is required to pull the body over the 

predominantly straight leg [256]. The abrupt transition from H2 to H3 is observed in TFA 

PL in comparison with the HS and TFA IL (Figure 2.12 (B)). The power required to propel 
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the body forward at the beginning of the swing phase H3 is greater and less in PL and 

IL as compared to the HS, respectively. In previous studies, the TFA showed 

approximately three times more hip power on the amputated sidew compared to the HS 

[96, 117]. It has been reported that the metabolic energy expenditure is approximately 

60% more than the HS in level ground walking due to asymmetric gait kinematics and 

absence of net power at the TFA ankle and knee [45, 260]. Consequently, TFA hip 

compensates for the power deficiency in passive devices by generating considerably 

higher hip power 

 

   (A) Joints mean kinematics               (B) joints mean power  

 

Figure 2.12: (A) joints kinematic patterns and (B) power comparison in HS and 
TFA. A: ankle, B: knee, and C: hip (adapted from [256]). HS (solid line), TFA IL 

(dotted dash) and TFA PL (dotted) 

The study on the TTA IL kinematic showed less ankle plantarflexion than the 

able-bodied despite the healthy musculature. On the TTA PL side, the knee flexion 

decreased during the weighting acceptance. However, reasonable peak knee flexion 

was observed (60°) during the MSW and TSW [254, 261]. At the hip level, decrease in 

flexion during the stance phase, however, increase in flexion during the MSW and TSW 

were reported [254, 261]. This is the consequence of not having active dorsiflexion at 

the PL for foot clearance [254].  

In TTA PL, the ankle and knee internal moments are significantly smaller across 

speeds [34, 254]. Previous literature showed the demands on the knee extensor muscles 

decreases considerably because of the knee moments is approximately zero, which 

illustrates the compensatory strategy to avoid the knee from collapsing [254, 262]. Winter 

reported, At the PL knee, power absorption (K1) during early stance and power 

generation (K2) during the terminal stance are missing in TTA PL. As a result, TTA tend 

to keep the thigh and shank in a more extended position to lessen the stress on the IL. 
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At the PL hip, decreased hip extensor moment during the weighting acceptance has 

been observed [34]. Power generation by the hip extensors (H1) during weighting 

acceptance and power generation by the hip flexor (H3) during push off occurred as a 

compensatory mechanism for the lack of plantarflexor muscles to propel the body 

forward and provide adequate foot clearance, respectively [34, 56].   

Generally, the net joint moments and power in the ankle, knee, and hip of 

amputees’ contralateral limb were increased as compared to the normal subjects to 

compensate for the functional loss of the one or more joints (Figure 2.8 (A) and (B)) [21, 

235, 253]. It has been shown in lower limb amputees that peak dorsiflexor moment and 

power generation in PSW increase in the intact limb ankle (Figure 2.8 (A) and (B)). At 

the IL knee, the increase is observed in the power generation in stance phase and the 

extensor moment and power absorption in PSW. At the IL hip, extensor moment and 

power absorption in stance phase, and hip flexor moment and power generation in PSW 

are increased (Figure 2.8 (A) and (B)) [34, 235, 253].  

2.4.2.4 GRF Studies in Lower Limb Amputees 

Studies conducted on the GRF of unilateral amputees found higher force asymmetry 

(23%) as compared to the normal subjects (less than 10%) which depend on the type of 

prostheses being used [20, 263, 264]. Other studies found higher vertical GRF, vertical 

impulse and anterior/posterior on the IL than the PL for amputees [253, 265].  

2.4.2.5 Gait Deficiencies in Lower Limb Amputees 

One of the main purposes of the gait analysis is to identify gait deviations and the causes 

associated with each and thus require detailed information about the principles of 

locomotion, biomechanics, prosthetic fitting and alignment [105]. Gait deviations are 

described as a different walking pattern than in normal walking. Some factors such as 

individual characteristics, walking speed and age may change the normal patterns. 

Symmetry is the most important characteristic of normal locomotion which has been 

affected in individuals with amputation [105]. Poor socket fitting, prosthetic misalignment, 

muscle weakness, pain at the stump are the main results in gait deviation.  

Common gait deficiencies and deviations in transfemoral amputees are summarized as 

follows [105]:  

1. Lateral trunk bending: when the amputee is in stance phase, the subject tends 

to bend toward the amputated side as shown in Figure 2.13 (A). 

2. Wide walking base (Abducted gait): step width is significantly larger than the 

normal range throughout the gait cycle as shown in Figure 2.13 (B). There is 

side to side displacement of the pelvis and trunk. 
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3. Circumduction: the amputee follows a wide arc movement during swing phase 

as shown in Figure 2.13 (C). 

4. Vaulting: during swing phase, the amputee lifts the whole body by excessive 

plantarflexion of the IL as shown in Figure 2.13 (D). 

5. Swing phase whips: heel rotates medially or laterally known as medial whip or 

lateral whip at and just after toe-off as shown in Figure 2.13 (E).  

6. Foot rotation at HS: as the heel touches the ground; the foot rotates laterally 

and sometimes with vibratory motion as shown in Figure 2.13 (F). 

7. Foot slap: the prosthetic foot plantarflexes quickly and just after HS, prosthetic 

foot strikes the ground with a slap as shown in Figure 2.13 (G). 

8. Uneven heel rise: The prosthetic heel rises to a higher position than the intact 

heel during the initial part of swing phase as shown in Figure 2.13 (H). 

9. Terminal impact: the prosthetic shank suddenly comes to a stop with visible and 

audible impact at the end of swing phase when the prosthetic knee has reached 

full extension as shown in Figure 2.13 (I). 

10. Uneven step length: During consecutive periods of double limb support, the 

step length of prosthetic leg differs from that of IL. 

11. Exaggerated lordosis: an exaggerated bending of lordosis during stance phase 

and the trunk may lean towards posterior side as shown in Figure 2.13 (J). 

 

Figure 2.13 Transfemoral amputees gait deficiencies (adapted from [105]).  
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2.4.2.6 Consequences of Gait Deficiencies 

Secondary physical conditions including osteoarthritis, osteopenia, osteoporosis and 

back pain could be associated with having an amputation for a long period of time. Many 

people had their amputation early in life and have dealt with prostheses for several years 

prior to the occurrence of the secondary conditions. This could be a consequence of 

altered gait, uneven loading and higher stress on the intact limb {Miller, 2017 #244}.  

Osteoarthritis of Knee 

Osteoarthritis (OA) of the knee is a common chronic joint disease which is commonly 

associated with pain and impaired mobility. The prevalence of OA in the US is estimated 

to be 12% of the population which mostly affects the elderly over the age of 60 years 

[266]. According to Murphy et al. [267] the lifetime risk of symptomatic knee OA is 

estimated to be 1 in 2 overall, more than 1 in 2 and nearly 2 in 3 for those with a history 

of a knee injury and for obese people, respectively. The occurrence of medial knee OA 

is approximately 10 times more than lateral knee OA [268]. Esposito et al. [24] reported 

the increase rate of Knee OA in the TFA IL is 10 times more than TTA and non-amputees. 

Among the TFA and TTA, the incidence rates of knee OA in veterans have been reported 

to be 63% and 41%, respectively as compared to the civilians which reported to be 41% 

and 39%, respectively [269]. Norvell et al. [270] reported both TFA and TTA higher 

incidence of developing knee OA as compared to the normal subjects.  

2.4.2.7 Changes of EMG in Transfemoral Amputees 

Generally, increased and longer muscle activity duration was observed in TFA normal 

walking than able-bodied individuals [37, 39, 46]. Previous studies carried out on the TFA 

showed the prolonged duration of the hip muscles and a similar sequence of activity in 

the IL as compared to the normal subjects [37]. The once bi-articulated hip muscles 

showed differences in phasic activity to those of able-bodied due to the morphology of 

the resected muscles, prosthesis types and properties and asymmetry in the walking 

pattern [37, 255]. 

Wentink et al. [36] reported longer muscle activity duration of triceps surae of the 

IL, as a compensatory mechanism for the loss of muscles in the PL, to generate larger 

push off at the TO and to advance the body forward.  

Bae et al. [46] found that the hamstrings and quadriceps muscle activity and co-

activity of TFA IL were larger compared to the control during steady-state of gait. the co-

contraction of the knee muscles in the IL was higher than those of the healthy subjects. 

They also reported TA and triceps surae activities of TFA IL were significantly greater 

than the able-bodied.  
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2.4.2.8 Changes of EMG in Transtibial Amputees 

In general, the magnitude of muscle activity heightened with increased speeds because 

of the required muscle force to propel the body forward [236]. Larger activity was 

observed in RF, VAS, and BFLH of the PL from ES to MS as compared to the IL as 

walking speed increased.  

Previous research reported that the TTA PL uni-articular knee extensors, bi-

articular hamstrings, and gluteus maximus activity increased in magnitude and duration 

as compared to the IL [26, 28, 30-34].  

Power et al. [263] showed the heightened activity of the VL in the PL as compared 

to the IL during normal walking. Fey et al. [28] reported increased VL activity in the PL at 

slower walking speed to provide stability and body support in weight-bearing phase as a 

compensatory adjustment for the lack of ankle plantarflexor muscles.  

GMED activity in the IL showed no changes as speed increased during walking. 

This agrees with the primary role of the GMED which is providing body support [28]. 

Some studies have shown the co-contraction of the quadriceps and hamstrings 

in early stance for TTA PL to compensate for the loss of plantar flexor which is indicative 

of decreased stability [32, 34, 261]. Several studies reported hypertrophy on the IL and 

muscle asymmetry with atrophy on the PL depending on the level of amputation [37, 253, 

255, 261].  

2.4.2.9 Muscle Synergy in Pathological Population 

There have been studies focusing on pathological populations which show the number 

of muscle synergy groups was lower in people with Parkinson disease, cerebral palsy, 

stroke and spinal cord injuries than the normal subjects [88-91, 211, 212, 271], 

suggesting a lower complexity in motor control. Clark et al. [91] showed two of the muscle 

synergies in healthy subjects might be merged in post-stroke patients during steady-

state walking. This merging of muscle synergies was observed in incomplete spinal cord 

injury [212], Parkinson’s diseases [88], the upper extremity [271] and lower extremity of 

stroke patients [211]. However, two studies have found no difference in the number of 

modules between healthy subjects and post-stroke patients [179, 208]. The contradiction 

in the results of these studies could be due to the methodology analysis, number and 

choice of muscles included, locomotion performed, chronicity of pathology, and 

heterogeneity of deficits inherently present following stroke.  

2.4.2.10 Muscle Synergy in Lower Limb Amputees 

In previous works, muscle synergy analysis was implemented to investigate motor 

modules of one elderly TTA during steady-state walking [93], ramp ascending (RA) [92] 
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and ramp descending (RD) [94] as well as one highly active transfemoral amputee during 

steady-state walking [95]. The same number of muscle synergies were found between 

the lower limb amputees and HS, indicating analogous complexity implemented by the 

CNS which does not depend on the level of amputation. In addition, these studies found 

activation coefficient was significantly different at some regions of the GC by means of 

statistical parametric mapping [92-95]. However, two main limitations of these studies 

were the sample size, and they only account for the self-selected steady-state walking.  

2.5 Lower Limb Prostheses 

The use of prosthetic devices after amputation is one of the rehabilitation interventions 

to improve the amputees’ quality of life. To be able to perform ADLs, above knee 

amputees require an artificial knee and below knee amputees require an artificial ankle.  

Several researchers categorized the prosthetic knee technology into assistance and 

complexity based organizations. Assistance based organization provide the assistance 

during stance and swing phase of walking which has been described comprehensively 

in [272]. The focus of complexity based organization is on the control design of 

prostheses. The transfemoral prosthesis comprises four main functional components: 1) 

foot-ankle assembly 2) knee assembly 3) socket 4) suspension (Figure 2.14). 

Additionally, there are two structural elements: an ankle pylon which connects foot-ankle 

to the knee and a thigh link connection piece which is located between the knee and the 

socket. In current practice, there are two types of construction endoskeletal and 

exoskeletal. 

 

Figure 2.14: Components of the transfemoral prosthesis (adapted from [105]) 
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2.5.1 Knee Assembly 

The knee assembly consists of an extension stop, a friction device and a knee bolt which 

rotates around a knee shaft which each responsible for allowing the knee to bend, 

stopping the knee from hyperextension, and enhancing swing control, respectively. In 

designing a knee assembly, there are some characteristics that must be taken into 

consideration. These include durability, quite functioning, acceptable cosmetic 

appearance during weight bearing and non-weight bearing activities and not cause 

excessive wear of clothing. The knee assembly is frequently made up of wood, plastic 

or metal. Other materials such as carbon fiber, aluminum, titanium can be used to reduce 

the weight. Knee units are comprised of four characteristics as follows [273]; 1) Axis- 

single or polycentric 2) Friction- mechanical, hydraulic or pneumatic 3) Extension aid- 

internal or external 4) Braking and/or locking mechanism  

The modern era of advanced prostheses began by the two world wars. These 

prostheses were made from scrap materials. One of these prostheses was classic Long 

John Silver peg leg which required the patient to kneel in the prostheses. 

To substitute the peg leg for more functional and natural designs, the constant 

friction and the friction brake design were initially introduced which had some district 

characteristics. According to [274] after World War I, the commercially available 

prostheses were introduced with Otto Bock house; Prostheses as the 3R22 and the 

3R15. Even though these prostheses were significantly enhanced compared to the ones 

before the war, they had major drawbacks such as difficulty to walk at different speeds 

and operate in uneven terrain.  

Subsequently, the new concept was developed by Hans Mauch to operate the 

prosthesis through fluid-control. The advent of fluid actuator prosthesis showed promise 

for providing users with more secure and stable gait cycle. This is due to the high resistive 

torque and the intrinsic property of the fluid which allows the prosthesis to extend before 

initial contact; producing a better harmonic cadence compared to previous designs [275]. 

By 1970, the development in electronics opened new horizons regarding enhancement 

of prostheses towards intelligent prostheses in which the first attempt was implementing 

power generation [276]. However, these approaches were experimental trials and this 

technology become only commercially available in the past few years [277]. Two major 

areas were under investigation since the advancement of electronics. The first one is the 

research done on technical assessment of prosthesis performance and the second one 

is the studies on control systems implemented in the intelligent prosthesis. The 

subsequent sections are descriptions of the three types of lower limb prostheses which 

can be categorized into three main categories 1) purely passive (mechanical), 
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energetically passive (actively controlled), and actively driven (powered) knee 

prostheses. 

2.5.2 Mechanically Passive Prostheses 

Many different types of the prosthetic knee are available which either works with simple 

mechanical joints or computer controlled joints. Mechanical joints have been used in the 

most basic passive prostheses. The two mechanically passive knees can be categorized 

into single-axis (Otto Bock 3R22, 3R49, 3R15 shown in Appendix A, Figure A.2 (A), (B) 

and (C), respectively) and multi-axis (3R66 shown in Appendix A, Figure A.2 (D)). The 

one degrees of freedom prostheses were reliable, low cost, and lightweight as compared 

to the other prosthetic knees. However, due to the lack of stance phase control, these 

types of prostheses require the user to exert more hip extension torque from the PL and 

the IL to avoid buckling [275]. To provide full extension and limit the swinging speed, 

friction pad (dry friction or viscous damping) is added to these prosthetic devices.  

The polycentric knee has four or five bar linkage system in sagittal plane which 

provides multi-axial movement. They showed superior stability, compared to the single-

axis, due to the ability to change the instantaneous center of rotation based on the knee 

flexion/extension angle [278, 279].  

The Ottobock 3R15 (Appendix A, Figure A.2 (C)) is an example of weight 

activated knee with the constant friction property. While it would provide better stability 

during the stance phase, it is inefficient during the swing phase [280]. The Otto Bock 

3R66 (Appendix A, Figure A.2 (D)) is a multiple axis knee prosthesis which provides 

stability during stance phase by kinetically locking mechanism.  

Both single-axis and polycentric knees use the locking system and passive 

hydraulic or pneumatic cylinders to keep the mechanically passive devices stable and to 

prevent from buckling during stance. Mechanically passive knees stability is either can 

be manually or weight-activated mechanism [281]. Manual locking knees are locked and 

unlocked during the stance phase and swing phase, respectively. They are frequently 

used in the patients with muscle weakness and instability issue to prevent buckling in 

the knee extension during stance and to provide stability. In weight-activated stance 

control knee, during the stance phase, the amputee’s body weight is transferred to the 

prosthesis, which due to the high friction the knee will not bend [281]. In swing phase, 

constant friction is applied to the knee’s axis. Constant friction would lead to inefficient 

gait in swing phase when the user changes the walking speed. Therefore, the use of 

hydraulic and pneumatic mechanism helped to provide variable resistance at different 

walking speeds. It has been shown that amputees walk more comfortably at different 

speeds [281]. Example of single-axis (Appendix A, Figure A.3 (A)) and multi-axis 
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prosthetic (Appendix A, Figure A.3 (B)) devices which operate with fluid and provide 

resistance to the knee. As the speed increases by the user, the resistance about the axis 

of the knee increases. The term fluid is used because liquids vapor and gases are the 

main elements that comprise the fluid-control knees. Hydraulic fluid prosthetic knees are 

not compressible. To control the flow of fluid through ports, oil and air both are forced 

through a tube which adjustment screw permit alteration in the orifice size. This allows a 

good performance of knee resistance during swing phase. 

On the other hand, pneumatic knees compress air during knee flexion and use 

the compressed air within the pneumatic cylinder for extension support. The air provides 

the pneumatic knees a springier feel to the users [273].  

2.5.3 Microprocessor Knee 

The intelligent prostheses or known as microprocessor controlled has a microprocessor 

which controls the response of actuators. Microprocessor knees consist of sensors which 

detect the conditions around the joint and make internal adjustment accordingly. The 

adjustment is made when sensors convey the information (e.g., joint angle and forces) 

to the microprocessor. Opening and closing of valves vary the resistance of the knee by 

increasing and decreasing the fluid/magnetorheolic flow through the knee’s internal port. 

The superiority of the microprocessor compared to mechanically passive knees is the 

fast response of microprocessor to the tasks performed by the users regardless of tasks 

complexity [282]. These prostheses are programmable (Appendix A, Figure A.4). 

Therefore, the stability and safety can vary by altering the program. One of the most 

important features of these prostheses is the ability to recover stumble.   

2.5.4 Motorised Knee/Power Knee 

Power knee is the first commercially available active prosthesis designed for 

transfemoral amputees in 2007 (Appendix A, Figure A.5 (A)) ([275]. This prosthesis 

consists of a motorized knee which provides extension and flexion for the users; this is 

an added technology on microprocessor knees. Some complex tasks (e.g., stair 

ascent/descent or walking backward) that cause energy to dissipate in joint become 

easier to perform by patients as the motorized knee generates net power which mimics 

the function of lost muscle [275]. The working mechanism of these devices is as the 

sensors are placed in the IL to measure motion, load, and position which then data 

obtained is transmitted to the knee via Bluetooth technology. In order to determine the 

power or force required from the knee, the microprocessor analyses the transmitted 

information to produce adequate knee flexion or extension [273]. This prosthesis is large 

and heavy weighted due to the motors required to replace the loss of biological 

musculature functions.  
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Ossur developed the second generation of Power Knee which is the first motor 

powered prosthesis for the TFA in 2010 (Appendix A, Figure A.5 (B)). This prosthetic 

device not only provides active motion and stance stability but also has the ability to 

perform the locomotion tasks without thinking their next movement. However, the 

drawbacks of Power Knee are the expensive cost ($120,000), the heavyweight (3 times 

the mass of passive prosthesis), the short battery life (4 hours), being loud and not being 

able to be used by bilateral amputees as it uses echo control system [283].  

In 2009, a new powered prosthesis was designed by Martinez-Villalpando and 

Hugh Herr [284] which uses a pair of series elastic actuators, proposed by Robinson et 

al. [285], positioned in an agonist and antagonist arrangement.  

2.5.5 Semi-Active Prosthetic Devices 

A novel semi-active prosthetic device (hybrid) has been developed for transfemoral 

amputee in 2009 (Appendix A, Figure A.6 (A)). The power source has been added to the 

hydraulic knee joint such that the device benefits from the state of the art microprocessor 

control as well as well-established mechanically passive damped system [286]. The 

passive mechanism work during the stance phase (IC) providing an adequate impedance 

to avoid buckling. During the swing phase, the impendence was reduced to provide knee 

flexion for adequate heel rise. The advantage of the semi-active prosthetic approach is 

the improved battery life thus higher number of steps can be performed than the 

averaged TFA take daily [287]. Another semi-active prosthetic device was designed at 

the University of Leeds (Appendix A, Figure A.6 (B)). This device is comprised of various 

sensors which provide kinematic information, using a potentiometer and inertial 

measurement unit (IMU), and kinetic information, using FlexiForce sensors, strain 

gauges, and load cells, to modulate the prosthetic device in different terrain and 

environment [8].   

Appendix A, Table A.10 illustrates the most common commercially available 

prostheses. 

2.5.6 Transtibial Prostheses  

Foot-ankle assembly is the terminal section of all the prosthesis which replaces the 

anatomical foot and ankle and fulfills some of the basic requirements. The assembly 

should: 1) provide a base for weight bearing 2) absorb shock at heel contact and reach 

foot-flat position quickly 3) provide for metatarsophalangeal hyperextension late in 

stance phase 4) resemble the general contour of the missing foot. Additional functions 

such as mediolateral motion or energy storage and return are offered by other 

components. There are three categories of foot prosthesis including CF, ESR and bionic 

feet. SACH is the most commonly CF which provides “pseudo-plantar flexion” and 
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stability during the ES and MS, respectively [7]. This type of foot is directly attached to 

the shank without any articulating movements. This prosthesis is the most prescribed 

foot in low-income countries and is famous for their streamlined appearance at the ankle, 

their relative durability, lightweight, inexpensiveness, robustness and quite as compared 

to the articulated Foot-ankle. One of the other frequently used prosthesis is the Single-

Axis foot with a sagittal joint. Similar to the SACH (Appendix A, Figure A.7 (A)), Single-

Axis does not provide lateral movement during the MS. However, it is heavier, and it 

requires more maintenance as the bumper mechanism is prone to dirt.  Since the Single-

Axis feet comprised of springs which have fixed stiffness properties, they can only flex 

back to the neutral position from the instant TO. This is different from the healthy foot 

which establishes plantarflexion relative to the standing upright. One of the most 

advanced foot that has been commercialized is ‘Proprio Foot’ by Ossur (Appendix A, 

Figure A.7 (C)). It is a motor-powered ankle prosthesis which has several features: 

increases ground clearance, provide a high degree of terrains compliance, improves the 

stability for sloped surfaces and stairs, decreases the risk of trips and fall, improves 

safety and gait quality [260, 261, 288-290]. Although improved performance has been 

observed using the ESR prostheses (Appendix A, Figure A.7 (B)), none of them is 

capable of reducing gait asymmetries and energy cost of walking [7].   

2.6 Control Strategies in Lower Limb Prostheses 

Control approaches that have been proposed in the active TFA prostheses are 

categorized into the ‘echo control’ and ‘pattern recognition’ [45]. Echo control is a 

combination of time-based and normalized-trajectory control from different sensor 

modalities recorded from the IL and replayed on the PL with some time delay [291]. 

Pattern recognition (PR) is the most commonly used control strategy for powered 

prostheses. Intent and activity recognition based on pattern recognition approach to 

control powered prostheses has been studied using different sensor modalities [16, 292-

295]. One of the sensor modalities which is a major source of biological signals in neural 

control is surface EMG. This signal can be detected from the muscles of lower extremities 

using EMG electrodes to control lower limb prostheses. EMG electrodes have been used 

to record muscle activities signals from amputees wearing passive prostheses [12] and 

powered prostheses [295]. Early application of EMG for control was mostly based on the 

amplitude-based threshold (onset and offset control strategy) to lock/unlock the 

prosthetic knee joint during some activities [11, 12]. EMG signals also have been used 

for direct proportional control of different joints of lower limb prosthetics including knee 

[13] and ankle joints [14]. Other studies investigated EMG pattern recognition to identify 

the user intent in different activities [15-19]. The purpose of using the EMG pattern 
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recognition is to control the prosthetic device in different terrains and activities smoothly, 

intuitively and naturally. Appendix A, Table A.11 shows more studies that have used 

EMG from lower limb muscles to control prostheses.  

2.7 Gap of Knowledge 

Neuromuscular behavior can be studied at two levels namely HD EMG/muscle activation 

pattern and low dimensional muscle synergy/modular motor control. Based on the 

previous studies discussed in this chapter, muscle coordination in terms of HD EMG and 

low dimensional muscle synergy have been investigated in healthy subjects during a 

range of ADLs using traditional statistical analysis. However, there is little information on 

lower limb amputees. Furthermore, not much work has been done on muscle 

coordination in high and low dimensions in response to increasing transient-state (the 

stride after gait initiation) walking speeds for both healthy subjects and transfemoral 

amputees. Therefore, the motivation of this research is to fill this gap of knowledge by 

focusing on understanding neuromuscular modularity of HS and lower limb amputees 

during transient-state walking at different speeds from biomechanics (considers inter-

neuromuscular variable covariance) and robotic control (considers individual 

neuromuscular variable) perspectives. In addition, the developed muscle synergy 

algorithm is applied to elucidate the muscle recruitment strategies in transtibial amputee 

to investigate modular motor control at a different state of walking task (i.e., steady-

state), accounting for intact leg and prosthetic leg and a different number of muscles. 

2.8 Summary 

A general overview of lower limb biomechanics including muscles and movements as 

well as the biomechanics terminologies in association with the gait, kinematics and 

kinetics were discussed. In addition, information about the different means of gait 

measurement devices was studied. In the second part of this chapter, the use of surface 

EMG in two aspects namely high dimensional EMG and muscle synergies were studied. 

Furthermore, the drawbacks intrinsic to surface EMG and different methodological 

concerns using surface EMG in muscle synergies were investigated. Comprehensive 

research has been conducted on some of the biomechanics variables including EMG 

profile and muscle synergies in healthy subjects and lower limb amputees during 

walking. The biomechanics aspects of amputation (e.g., gait deficiencies) and 

consequences of gait deficiencies (e.g., osteoarthritis) were studied. Various lower limb 

prostheses were studied including knee and ankle joints, focusing on the types and 

control strategies implemented for movement of lower limb amputees.  
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Chapter 3  

HIGH DIMENSIONAL MUSCLE ACTIVATION PATTERNS IN 

TRANSFEMORAL AMPUTEES DURING TRANSIENT-STATE 

WALKING  

3.1 Introduction 

This chapter reports on the EMG recorded from muscles of healthy subjects’ (HS) 

dominant leg and transfemoral amputees’ (TFA) intact leg (IL) during transient-state 

walking at three different speeds (slow, normal and fast). The muscle activation patterns 

are obtained by calculating the linear envelope of the EMG signals for each group. The 

muscle activation patterns are compared within- and between-subject by means of 

statistical parametric mapping (SPM). This study is regarded as exploratory; thereby two 

approaches are taken into account, namely biomechanics, and robotic control to 

investigate a priori hypotheses. The biomechanics related hypotheses consider the inter-

muscle covariance which effectively accounts for high dimensional sensorimotor 

modules (multi-muscle synergy) concept whereas the robotic control related hypotheses 

take individual muscle activations into account. A total of six hypotheses is tested to 

compare the effect of speed on muscle activities of HS and TFA as well as to assess the 

differences between groups at each speed. Therefore, the within-subject analysis is 

performed for each group separately across speeds, and the between-subject analysis 

accounted for individual speed as a different task under the walking control. Previous 

literature on HS and TFA predominantly focused on the individual muscle activity during 

steady-state walking and taking into account parts of the gait cycle (phasic activity) rather 

than the whole time-series for statistical analysis [36, 37, 255]. To the best of the author’s 

knowledge, little to no details are provided regarding the differences in muscle activation 

patterns of HS and TFA during transient-state walking across speeds, accounting for 

inter-muscle covariance (biomechanics perspective), individual muscle activities (robotic 

control perspective) and the whole time-series.  

3.2 Experimental Protocol 

3.2.1 Methodology 

In this study, thirteen HS (mean (SD): age 41 (14) years, weight 82.9 (11.8) kg, height 

174.2 (3.1) cm) and eleven unilateral above knee male amputees (mean (SD): age 55 

(8) years, weight 78 (15.3) kg, height 170.9 (7.9) cm) were involved (anthropometric 

characteristics of individual HS and TFA, as well as details of prosthesis used by each 
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one of the TFA, are presented in Appendix B, Table B.1, Table B.2 and Table B.3, 

respectively). The TFA subjects were recruited from the “Disabled Iranian Veterans” 

prosthetic clinic, a sports complex related to the “Disabled Iranian Veterans” community 

and the “Iranian Handicapped Society” in Tehran, Iran. All subjects were free from any 

orthopedic or neurological pathology. The amputee subjects were above knee 

amputees, and they were able to walk comfortably with their prosthesis at least for a year 

without the use of an additional ambulation aid. Bilateral amputees regardless of the level 

of amputation were excluded from the study. All TFA subjects were fitted with 

mechanically passive devices with the SACH foot. All subjects wore their own normal 

daily activity shoes. The experiment conducted in the Motion Laboratory at “Djavad 

Mowafaghian Research Centre of Intelligent Neuro-Rehabilitation Technologies”; the 

Sharif University of Technology in Tehran-Iran.  

Myon wireless surface EMG (Myon AG, Schwarzenberg, Switzerland) at a 

sampling rate of 1200 Hz and disposable, self-adhesive Ag/AgCl dual snap electrodes 

with inter-electrode distance of 20 mm (Noraxon System, Inc., Scottsdale, AZ, USA) 

were attached to the muscles to record electrical activity during self-initiated gait at three 

self-selected speeds (slow, normal and fast) (Table 3.1). This system consists of a 

receiver which has 12 electrodes and channels connected to a computer with a visual 

feedback program (Vicon Nexus software). The electrodes were attached to twelve lower 

limb muscles of HS dominant leg and TFA IL including rectus femoris (RF), and vasti 

(i.e. vastus medialis (VM) and vastus lateralis (VL)), biceps femoris long head (BFLH), 

semitendinosus (SEM), gluteus medius (GMED), tensor fascia latae (TFL), gracilis (GR), 

tibialis anterior (TA) and triceps surae (i.e. gastrocnemius medialis (GM), gastrocnemius 

lateralis (GL), and soleus (SOL)). However, GMED and GR were eliminated because of 

lost (the prosthesis belt covering the gluteus muscles of the IL in six of TFA subjects and 

not being able to record from the deep adductor muscle). Therefore, ten muscles were 

chosen for data analysis in this chapter. Prior to the electrodes attachment, the skin was 

shaved and cleaned with an alcohol pad to reduce impedance. Surface EMG for Non-

Invasive Assessment of Muscles (SENIAM) was followed to find the muscle bellies and 

electrodes were attached longitudinally with respect to the underlying muscle fiber 

direction [296]. 

Table 3.1: Participants’ walking speed; mean ± standard deviation (m/s) 

 Slow Normal Fast 

HS 0.78 ± 0.08 1.02 ± 0.07 1.45 ± 0.1 

TFA 0.61 ± 0.09 0.76 ± 0.16 0.97 ± 0.14 

The subjects walked across a 7-m walkway in the laboratory with two 

40cm×60cm and 80cm×60cm Kistler force platforms embedded in the floor and six 
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infrared cameras which were fixed on the wall in the height of 2m around a 2m×5m 

walking path to cover a measurement field of view approximately 1.5m×4m×2m around 

the force platform area. Calibration was done, so the spatial accuracy of the system was 

lower than 1 mm (root mean square). Calibration of the system was done for each test 

session separately according to Vicon protocol and guidelines. The GRF from 2 Kistler 

force platforms and position of markers were recorded synchronically in sampling 

frequency of 1200 Hz and 120 Hz respectively during each test. 

The marker placement and tests protocols were same for all participants. After calibration 

of the movement space according to the calibration protocol of related motion analysis 

system; 14 mm spherical passive reflective markers were attached to the skin by using 

double-sided adhesive tape to define body segments. The anatomical landmarks were 

identified for marker placement according to Qualysis Track Manager’s user manual and 

body modeling requirements in Visual 3D software on basis of the markers to be visible 

as much of the test time as possible. The anatomical landmarks were: right and left 1st 

and 5th metatarsal heads and bases, right and left medial and lateral calcaneus, right and 

left medial and lateral malleolus, right and left medial and lateral epicondyles of femurs, 

right and left greater trochanters, right and left iliac crests, right and left anterior superior 

iliac spine (ASIS), right and left posterior superior iliac spine (PSIS), right and left 

acromion processes, right and left coracoid processes, right and left medial and lateral 

epicondyles of humorous, medial and lateral of wrists for right and left upper limbs, 7th 

cervical spine and sternum. In addition, 4 markers in the quadrilateral arrangement were 

attached to shanks, femurs, arms and 3 markers with fixed positions were attached to 

forearms in left and right sides as tracking targets. The markers for the prosthetic side 

were placed in accordance with the intact side and rotational axis of the prosthetic knee. 

After marker placement and at the starting of each test session, the participants stood in 

anatomical posture in the middle of calibrated space to record a static data set.  

A Minimum of three successful trials was recorded from each subject with an 

increased self-selected walking speed which was determined as a consequent contact 

of HS dominant leg and TFA IL with one of the force platforms. In addition, the trajectories 

from reflective markers placed on the instrumented foot (calcaneus and 1st metatarsal) 

were used to identify the GC. It is worth noting, the next gait cycle after gait initiation of 

leading or trailing limbs was considered such that the gait would still be in transient-state 

(Figure 2.4 C and/or D) [52, 54, 60, 109]. This was done due the nature of study however, 

it noteworthy that pragmatic difficulties such as space limitation did not allow recording 

of steady-state walking for all subjects (chapter 3 and chapter 4). Vicon software was 

used to display EMG signals from each subject when performing gait. The data was then 

extracted and exported to Excel Microsoft for further modification. MATLAB R2017 
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software (The Mathworks, Natick, Massachusetts) was used for data analyses. Figure 

3.1 shows the electrodes and reflective markers attachment configuration on one of the 

TFA. Appendix B, Figure B.1 shows markers and electrode attachment on one of the 

HS. 

   

Figure 3.1: EMG attachments on TFA (A) front IL, (B) back IL, and (C) side PL. 

The study carried out on thirteen HS, and eleven TFA received approval from the 

University of Leeds Ethical Review board and the ethics committee of “Djavad 

Mowafaghian Research Centre of Intelligent Neuro-Rehabilitation Technologies”; the 

Sharif University of Technology in Tehran-Iran. The information sheet was provided, and 

consent was obtained from the participants. In addition, consent for participation and the 

agreement to photographic and video records were signed by participants before the 

experiment. 

3.2.2 Surface EMG Signal Processing 

This section outlines the methodology used to process the EMG signals prior to the EMG 

comparison within- and between-subject. The author adopted the signal processing 

according to the SENIAM recommendation [296]. To illustrate the procedures, the data 

acquired from one of the HS was used as an example (Appendix B, Figure B.2). Ten 

muscles were recorded and processed. The analytical work was implemented in 

MATLAB R2013 (Mathworks, Inc, Natick, MA). In order to scale down the data, the mean 

of the amplitude of each muscle was subtracted from the corresponding data column. 

Furthermore, the raw EMG data was filtered using bandpass filter. The data was rectified 

and low pass filtered. Amplitude normalization was performed with respect to the highest 

peak obtained from the fast walking condition. By. The data were normalized to 101 

points to represent a GC from 0% to 100%. 

3.2.2.1 Raw Surface EMG 
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EMG signals can be detected by placing one or more differential electrodes on the skin 

of the subject. Appendix B, Figure B.2 shows the raw EMG taken from one subject’s 

muscles. In this case, the x-axis was time normalized to 101 points using the interpolation 

technique. The Y-axis shows amplitude in Volts (V). The signal passes zero from both 

negative and positive sides. The muscle contraction causes the amplitude of the EMG 

signal increases whereas, during muscle relaxation, the amplitude of EMG signals 

decreases. The signal obtained from each muscle was separated, and similar filtering 

technique was applied to all the acquired signals of all subjects. 

3.2.2.2 Filtration Technique 

Following the EMG signal detection, filtration was applied to the EMG signals of both HS 

and TFA. Due to baseline drifts associated with motion (e.g., wires being pulled) and 

equipment noise, a high pass filter (HPF) was used. A low pass filter (LPF) was 

implemented to remove high frequency components due to unsteadiness of the interface 

between skin and electrode. According to several studies, the range of sampling rate 

used in EMG is 1000-2000 Hz and the commonly used cut off frequency for low, and 

high pass filter is approximately 450-500 Hz and 5-20 Hz, respectively [296-298]. In this 

study, A fourth order Butterworth with the HPF of 20 Hz, and an LPF of 500 Hz were 

applied (Appendix B, Figure B.2). In order to prevent phase shift after filtration, a 

Butterworth filter was used. This type of filtration is “infinite impulse response” filters 

which are applied in both the forward and backward direction to avoid phase shift [299]. 

3.2.2.3 Linear Envelope  

The linear envelope was obtained by performing the rectification and LPF of the EMG 

signal. The full wave rectification was done by taking an absolute value of the signal. The 

rectified signal was then filtered using the 2nd order Butterworth with the cut off frequency 

of 6Hz to get the shape of “envelope” (Appendix B, Figure B.2). An ensemble average 

of each EMG was obtained from all the GCs of each subject. 

3.2.3 Statistical Parametric Mapping (High Dimensional EMG) 

All linear envelopes were statistically evaluated over the GC since a priori hypothesis 

pertains to the whole time-series rather than specific time points. Therefore, the scalar 

and qualitative analyses were not performed in this chapter.   

Muscle synergies consider inter-muscle covariance, however; the hypothesis may also 

pertain to a specific muscle and/or application. Here, statistical analyses were selected 

based on a priori null hypotheses made before the experiment was conducted: 

1) Non-directed null hypothesis (biomechanics perspective): There is no 

difference between muscles corresponded to each biomechanical subtask 
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(associated with muscle synergies) as well as muscles contribute to the ankle 

and knee co-contraction for both HS dominant leg and TFA IL during gait across 

different speeds. 

2) Non-directed null hypothesis (robotic control perspective): There is no 

difference between individual EMG signals of HS dominant leg and TFA IL during 

gait across different speeds 

The biomechanics hypothesis considers the inter-muscle activation covariance whereas 

the robotic control involves individual muscle activations comparison. The rationale 

behind the first hypothesis is the concept of inter-muscle co-activation [300], and multi-

muscle synergy [80] implying groups of muscles contribute primarily to high dimensional 

sensorimotor Modules based on their temporal covariance. In addition, the high similarity 

was observed in the temporal EMG profiles of functionally related muscles [171, 172, 

238]. Therefore, muscles were selected based on their contribution to biomechanical 

subtasks, which also associated with the low dimensional muscle synergies, according 

to the study conducted by [77]. High dimensional sensorimotor Module 1 (HD M1) 

consisted of knee and hip extensors muscles which contributed to body support in early 

stance while acting to decelerate forward motion. High dimensional sensorimotor Module 

2 (HD M2) comprised plantarflexor muscles which contributed to loading and propulsion 

in late stance. High dimensional sensorimotor Module 3 (HD M3) comprised dorsiflexors 

and hip extensors which contributed to deceleration of the leg in early and late swing as 

well as trunk stabilization throughout swing phase. High dimensional sensorimotor 

Module 4 (HD M4) consisted primarily of knee flexors which contributed to deceleration 

of leg in late swing. In this chapter, the muscles contributing to the ankle and knee co-

contraction have been considered because it is believed that the CNS implements co-

contraction as a task-independent strategy to improve the stability and increase the 

stiffness of the joints [301-304]. Therefore, all the ankle muscles (which consisted of 

plantarflexors and dorsiflexor) in one group and all the knee muscles (which consisted 

of all knee extensors and flexors) in another group were studied to account for co-

contraction of the agonist and antagonist muscles in ankle and knee, respectively.  

It is worth mentioning, the null hypotheses with regards to the high dimensional 

Modules were formulated prior to the muscle synergy analyses. Therefore the selection 

of muscles was based on the literature [77] rather than the exact contribution of the 

muscle synergy vectors of HS and TFA in the present study (chapter 4). Table 3.2 divides 

the muscles into the corresponding category based on the task-specific biomechanical 

function and temporal relevance (HD M1-M4), and co-contraction (ankle and knee). 
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Table 3.2: Muscles corresponded to each HD Module which is associated with 
the biomechanical subtasks are considered for biomechanics hypotheses.   

 
HD 

Module 1 
HD 

Module 2 
HD 

Module 3 
HD 

Module 4 
Ankle Co-

contraction 
Knee Co-

contraction 

Muscles 
RF, VM, 

VL 
GM, GL, 

SOL 
RF, TA 

BFLH, 
SEM 

TA, GM, 
GL, SOL, 

RF, VM, VL, 
BFLH, SEM 

With regards to the robotic control hypothesis, individual muscle activities 

become important in within- and between-subject comparison. This has an important 

application in controlling robotic devices similar to the clinical state of the art myoelectric 

prostheses in upper and lower limb prostheses [13, 18, 44, 113, 297, 305-309]. In this 

chapter, six different null hypotheses were proposed based on the biomechanics and 

robotic control perspectives before observing the data. 

3.2.3.1 Within-Subject Hypotheses 

1) Biomechanics null hypothesis 1: There is no effect of walking speeds on HS 

temporal EMG profiles of functionally related muscles contributing to 

biomechanical subtasks of gait as well as all muscles that contribute to the co-

contraction of ankle and knee joints during gait. The following hypotheses were 

tested: 

a. There is no difference in HD M1 activity of the HS across speeds. 

b. There is no difference in HD M2 activity of the HS across speeds. 

c. There is no difference in HD M3 activity of the HS across speeds. 

d. There is no difference in HD M4 activity of the HS across speeds. 

e. There is no difference in the activation of muscles contribute to the HS 

ankle co-contraction across speeds. 

f. There is no difference between the activation of muscles contribute to the 

HS knee co-contraction across speeds. 

2) Robotic control null hypothesis 2: There is no effect of walking speeds on HS 

individual muscle activities during gait. 

3) Biomechanics null hypothesis 3: There is no effect of walking speeds on TFA 

temporal EMG profiles of functionally related muscles contributing to 

biomechanical subtasks of gait as well as all muscles that contribute to co-

contraction of ankle and knee joints during gait. The following hypotheses were 

tested: 

a. There is no difference in HD M1 activity of the TFA across speeds. 

b. There is no difference in HD M2 activity of the TFA across speeds. 

c. There is no difference in HD M3 activity of the TFA across speeds. 

d. There is no difference in HD M4 activity of the TFA across speeds. 
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e. There is no difference in the activation of muscles contribute to the TFA 

ankle co-contraction across speeds. 

f. There is no difference in the activation of muscles contribute to the TFA 

knee co-contraction across speeds. 

4) Robotic control null hypothesis 4: There is no effect of walking speeds on TFA 

individual muscle activities during gait. 

3.2.3.2 Between-Subject Hypotheses 

5) Biomechanics null hypothesis 5: There is no difference in temporal EMG profiles 

of functionally related muscles contributing to biomechanical-subtasks of gait as 

well as all muscles that contribute to co-contraction of ankle and knee joints 

between HS and TFA during transient-state walking at different speeds. The 

following hypotheses were tested for each speed separately  

a. There is no difference in HD M1 activity between the HS and TFA at each 

speed. 

b. There is no difference in HD M2 activity between the HS and TFA at each 

speed. 

c. There is no difference in HD M3 activity between the HS and TFA at each 

speed. 

d. There is no difference in HD M4 activity between the HS and TFA at each 

speed. 

e. There is no difference in activation of muscles contribute to the ankle co-

contraction between HS and TFA at each speed. 

f. There is no difference in activation of muscles contribute to the knee co-

contraction between HS and TFA at each speed. 

6) Robotic control null hypothesis 6: There is no difference in individual muscle 

activities between HS and TFA during walking at each speed (two-sample t-test). 

To account for inter-muscle covariance (biomechanics hypotheses), SPM paired 

Hotelling’s T2 (hypothesis 1 (a-f) and 3 (a-f)) and Hotelling’s T2 (hypothesis 5 (a-f)) 

statistics were used within- and between-subject, respectively. Furthermore, a pairwise 

comparison was made using a Bonferroni correction to correct for the alpha, due to the 

limited multivariate ANOVA (MANOVA) functionality in the SPM, within each population 

between speeds to test the biomechanics null hypotheses, i.e., HS (Normal vs Slow), 

HS (Fast vs Normal) and HS (Fast vs Slow). A similar approach was followed for the 

TFA. The muscles were analyzed in HD Modules contribute to biomechanical subtask 

as well as contribute to the ankle and knee co-contraction. Therefore,  
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For HD M1, 3-component vector-field I = 3 (number of muscle), J = 24 (total number of 

subjects HS and TFA), Q = 100 (time normalized) (i.e. HS HD M1 = [13x100x3] and TFA 

HD M1 = [11x100x3] at each speed). 

For HD M2, HS HD M2 = [13x100x3] and TFA HD M2 = [11x100x3] at each speed. 

For HD M3, HS HD M3 = [13x100x2] and TFA HD M3 = [11x100x2] at each speed. 

For HD M4, HS HD M4 = [13x100x4] and TFA HD M4 = [11x100x4] at each speed. 

For ankle muscles, HS ankle = [13x100x4] and TFA ankle = [11x100x4] at each speed. 

For knee muscles, HS knee = [13x100x5] and TFA knee = [11x100x5] at each speed. 

Hotelling’s T2 is conceptually similar to the scalar two-sample t-test, but it is 

equivalent to vector fields of scalar values [225]. The comparison was made between 

two populations with the same speed category (hypothesis 5), i.e., HS slow Vs. TFA 

slow; HS normal Vs. TFA normal and HS fast Vs. TFA fast rather than mataching group’s 

similar speed (i.e., HS slow vs TFA normal or HS normal vs TFA fast). The EMG signals 

were analyzed as an I, J and Q stated in paired Hotelling’s T2. For the robotic control 

hypotheses, SPM RM ANOVA (hypothesis 2 and 4) and two-sample t-test (hypothesis 

6) was implemented within- and between-subject, respectively. For more information 

about the SPM tests refer to chapter 2, section 2.3.4 (page 30). All SPM statistics was 

implemented in MATLAB R2017 (Mathworks, Inc, Natick, MA). 

3.2.4 Justification for Separating Group and Speed Factors for 

Statistical Analysis  

This study is regarded as exploratory, and a priori hypotheses are formulated in such a 

way that no interactions from the other group were considered in within-subject 

comparison as well as no interaction from other speeds was considered in between-

subject comparison. Therefore, the effect of speeds (intra or within-subject) on 

neuromuscular modulation (i.e., HD EMG) was considered for each population (i.e., 

biomechanics (paired-Hotelling’s T2) and robotic control (RM ANOVA)) and the effect of 

groups (inter- or between-subject) on neuromuscular modulation (i.e., HD EMG) was 

considered at each speed category separately (i.e., HS slow speed vs TFA slow speed). 

Therefore, each speed was considered as a different task under walking control.  

3.3 Results 

Figure 3.2 and Figure 3.3 show HS and TFA EMG ensemble averages of individual 

muscle activities during transient-state walking at slow, normal, and fast speeds (the 

process of obtaining linear envelope is given in Appendix B, Figure B.2).   
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Figure 3.2: HS EMG ensemble averages of individual muscle over all trials at 
slow, normal, and fast speeds. The thick line and shaded area indicate mean 

EMG and ± one standard deviation, respectively.  
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Figure 3.3: TFA EMG ensemble averages of individual muscle over all trials at 
slow, normal, and fast speeds. The thick line and shaded area indicate mean 

EMG and ± one standard deviation, respectively. 
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3.3.1 Muscle Activation Patterns and Magnitudes Description 

3.3.1.1 Slow Transient-State Walking 

Figure 3.4 shows EMG ensemble averages of HS and TFA (averaged over all trials) for 

each muscle during the transient-state walking at slow speed. The descriptive analysis 

of each muscle activity patterns was described for HS and TFA. 

RF 

One major burst was observed in both HS and TFA RF activity at slow speed which 

contributed to control knee flexion as well as to extend the knee during the MS. In HS, 

the major activity occurred during the weighting acceptance peaking at 10% of GC. In 

TFA, RF activity started from TSW and continued to the weighting acceptance however 

the peak occurred at 4% of GC. In addition, on some HS, RF second minor peak occurred 

approximately prior to the TO continuing to the ISW peaking approximately at 60%. This 

served to control the swinging leg and foot by knee extension and flexing the hip to 

forward the swinging leg  

Vasti 

One major burst was observed in both HS and TFA vasti activity at slow speed which 

contributed to control the knee flexion as well as to assist the knee in extension during 

the MS. In HS, VM major activity began during the TSW and continued into weighting 

acceptance peaking at 7% of GC and VL activity occurred only during the weighting 

acceptance peaking at 9% of GC. In TFA, vasti activity started from TSW and continued 

into the weighting acceptance peaking at 5% of GC. In addition, on some HS and TFA, 

VM minor peak occurred approximately around the TO continuing to the ISW peaking at 

66% and 81%, respectively, which contributed to deceleration of backward swinging leg 

and foot by assisting RF. 

Hamstrings 

One major burst was observed in both HS and TFA hamstring activities at slow speed 

which contributed to deceleration of the leg in the transition from swing to stance phase 

as a hip extensor assisting gluteus maximus. HS hamstrings major activity began during 

the TSW and continued into weighting acceptance, peaking at 5% (BFLH) and 7% (SEM) 

of GC, where they act as hip extensors to control the forward rotation of the thigh. In 

TFA, hamstrings major activity began during the TSW and continued into weighting 

acceptance peaking at 3% (BFLH) and 2% (SEM) of GC. Another major activity occurred 

in TFA BFLH and SEM during the TS peaking at 56% and 59% of GC, respectively.    
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TFL 

The major burst in both HS and TFA TFL contributed to controlling the pelvis drop during 

weighting acceptance. HS TFL major activity began in ES and continued into MS peaking 

at 11% of GC. In addition, a minor peak occurred in HS during the MS peaking at 35% 

of GC. In TFA, TFL major activity started during the TSW and continued into weighting 

acceptance peaking at 7% of GC. The second minor peak occurred at 42% of GC.  

TA  

The major activity in both HS and TFA TA began in TSW and continued into weighting 

acceptance peaking at 5% of GC which contributed to dorsiflexion of the foot. Additional 

peaks occurred in HS at 74% and TFA at 62% and 74% of GC. 

Triceps Surae  

The major burst in HS and TFA triceps surae contributed to plantarflexion of the foot 

during push off. HS GM, GL and SOL major activities began in MS and continued into 

TS peaking at 46%, 48% and 47% of GC. In TFA, GM, GL and SOL major activity started 

during the foot-flat phase, peaking at 9%, 7% and 15% of GC, to reduce the tibia rotation. 

In addition, the most important mechanical power burst occurred at TS, peaking at 51% 

(GM), 52% (GL) and 49% (SOL) to plantarflex the foot.  

3.3.1.2 Normal Transient-State Walking 

Figure 3.5 shows the EMG ensemble averages of HS and TFA (averaged over all trials) 

for each muscle during the transient-state walking at normal speed. The descriptive 

analysis of each muscle activity patterns was described for HS and TFA. 

RF 

One major burst was observed in both HS and TFA RF activity at normal speed which 

contributed to control the knee flexion as well as to extend the knee during the MS. In 

HS, the major activity occurred during the weighting acceptance peaking at 10% of GC. 

In TFA, RF activity started from TSW and continued to the weighting acceptance 

however the peak occurred at 6% of GC. In addition, on some HS, RF second minor 

peak occurred approximately prior to the TO continuing to the ISW peaking 

approximately at 63%. This served to control the swinging leg and foot by knee extension 

and flexing the hip to forward the swinging leg.  

Vasti  

One major burst was observed in both HS and TFA vasti activity at normal speed which 

contributed to control the knee flexion as well as to assist the knee in extension during 

the MS. In HS, In HS, VM and VL major activities began during the TSW and continued 
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into weighting acceptance peaking at 7% and 9% of GC, respectively. In TFA, VM and 

VL activities started from TSW and continued into the weighting acceptance peaking at 

7% and 5% of GC, respectively. In addition, on some HS and TFA, VM minor peak 

occurred approximately around the TO continuing to the ISW peaking at 66% and 70%, 

respectively, which contributed to deceleration of backward swinging leg and foot by 

assisting RF. 

Hamstrings  

One major burst was observed in both HS and TFA hamstring activities at normal speed 

which contributed to deceleration of the leg in the transition from swing to stance phase 

as a hip extensor assisting gluteus maximus. HS hamstrings major activity began during 

the TSW and continued into weighting acceptance, peaking at 0% (BFLH) and 7% (SEM) 

of GC, where they act as hip extensors to control the forward rotation of the thigh. In 

TFA, hamstrings major activity began during the TSW and continued into MS peaking at 

99% (BFLH) and 2% (SEM) of GC. Another major activity occurred in TFA BFLH during 

the TS peaking at 50% of GC, respectively.   

TFL  

The major burst in both HS and TFA TFL contributed to controlling the pelvis drop during 

weighting acceptance. HS TFL major activity began during the TSW and continued into 

MS peaking at 11% of GC. In addition, a minor peak occurred in HS during the MS 

peaking at 28% of GC. In TFA, TFL major activity started during the TSW and continued 

into weighting acceptance peaking at 4% of GC. The second minor peak occurred at 

42% of GC.  

TA  

The major activity in both HS and TFA TA began in TSW and continued into weighting 

acceptance peaking at 6% of GC which contributed to dorsiflexion of the foot. Additional 

peaks occurred in HS at 65% and TFA at 52% and 69%.  

Triceps Surae  

The major burst in HS and TFA triceps surae contributed to plantarflexion of the foot 

during push off. HS GM, GL and SOL major activities began in MS and continued into 

TS peaking at 43%, 44% and 43% of GC. In TFA, GM, GL and SOL major activity started 

during the foot-flat phase, peaking at 9%, 8% and 19% of GC, to reduce the tibia rotation. 

In addition, the most important mechanical power burst occurred at TS, peaking at 51% 

(GM), 54% (GL) and 50% (SOL) to plantarflex the foot.   
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3.3.1.3 Fast Transient-State Walking 

Figure 3.6 shows the EMG ensemble averages of HS and TFA (averaged over all trials) 

for each muscle during the transient-state walking at slow speed. The descriptive 

analysis of each muscle activity patterns was explained for HS and TFA. 

RF 

One major burst was observed in both HS and TFA RF activity at fast speed which 

contributed to control the knee flexion as well as to extend the knee during the MS. In 

HS, the major activity occurred during the weighting acceptance peaking at 10% of GC. 

In TFA, RF activity started from TSW and continued to the weighting acceptance 

however the peak occurred at 7% of GC. In addition, on some HS, RF minor second and 

third peaks occurred approximately prior TO continuing to the ISW peaking 

approximately at 35% and 63%. Similarly, two minor bursts were observed in TFA RF 

peaking at 35% and 71%. The peak around the TO acted to decelerate the backward 

swinging leg and foot by extending the knee as well as flexing the hip to pull the swinging 

leg forward.  

Vasti  

One major burst was observed in both HS and TFA vasti activity at fast speed which 

contributed to control the knee flexion as well as to assist the knee in extension during 

the MS. In HS, VM and VL major activities began during the TSW and continued into 

weighting acceptance peaking at 6% and 7% of GC, respectively. In TFA, VM and VL 

activities started from TSW and continued into the weighting acceptance peaking at 7% 

and 6% of GC, respectively. In addition, on some HS and TFA, VM minor peak occurred 

approximately around the TO continuing to the ISW peaking at 63% and 70%, 

respectively, which contributed to deceleration of backward swinging leg and foot by 

assisting RF. 

Hamstrings 

One major burst was observed in both HS and TFA hamstring activities at fast speed 

which contributed to deceleration of the leg in the transition from swing to stance phase 

as hip extensor assisting gluteus maximus. HS hamstrings major activity began during 

the TSW and continued into weighting acceptance, peaking at 97% (BFLH) and 96% 

(SEM) of GC, where they act as hip extensors to control the forward rotation of the thigh. 

In TFA, hamstrings major activity began during the TSW and continued into MS peaking 

at 10% (BFLH) and 7% (SEM) of GC. 
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TFL   

The major burst in both HS and TFA TFL contributed to controlling the pelvis drop during 

weighting acceptance. HS TFL major activity began during the TSW and continued into 

MS peaking at 10% of GC. In addition, a minor peak occurred in HS around TO peaking 

at 66% of GC. In TFA, TFL major activity started during the TSW and continued into 

weighting acceptance peaking at 6% of GC. The second minor peak occurred at 55% of 

GC. 

TA  

The major burst in both HS and TFA TA began in TSW and continued into weighting 

acceptance peaking at 5% of GC which contributed to dorsiflexion of the foot. In addition, 

the minor bursts occurred in HS peaking at 63% and in TFA peaking at 49% and 71% 

which contributed to the dorsiflexion of the foot in swing phase for foot clearance. 

Triceps Surae  

The major burst in HS and TFA triceps surae contributed to plantarflexion of the foot 

during push off. HS GM, GL and SOL major activities began in MS and continued into 

TS peaking at 40%, 43% and 43% of GC. In addition, in GL and SOL, the earlier peak 

occurred during the foot-flat peaking at 10% of GC. In TFA, GM, GL and SOL major 

activity started during the foot-flat phase, peaking at 23%, 23% and 22% of GC, to reduce 

the tibia rotation. In addition, the most important mechanical power burst occurred at TS, 

peaking at 52% (GM), 53% (GL) and 50% (SOL) to plantarflex the foot.  

Table 3.3 shows the major and minor peaks occurred in HS and TFA during transient-

state walking at different speeds. In addition, literature review results were also included. 

Table 3.3: HS and TFA major and minor bursts (peaks) muscle activities during 
transient-state walking at each speed. The approximate peak values available 

from the muscles in the literature review are included for HS [9, 96] and TFA [36, 
47]. NF indicates not found. 

Major and Minor Peaks 

 Slow (%) Normal (%) Fast (%) 
Literature 

Review 

 HS TFA HS TFA HS TFA HS TFA 

RF 10,43,60 4,39 10,63,41 6,31 10,35,63 7,35,71 10,66 NF 

VM 7,66 5,81 7,66 7,70 6,63 7,70 15,60 NF 

VL 9,24 5,24 9,60 5,32 7,65 6,56 10,70 22 

BFLH 0,55 3,56 0,50 99,10 97,42 10,96 4,70 14 

SEM 7,66 2,59 7,3 2,32 96,70 7,23 95,65 NF 

TFL 11,35 7,42 11,28 4,42 10,66 6,55 15,40 NF 

TA 5,74 5,62,74 6,65 5,69,52 5,63 4,49,71 5,75 8,68 

GM 46,6 51,9 43,8 51,9 40,9 52,23 45,10 60,24 

GL 48,9 52,7 44,9 54,8 43,10 53,23 45,10 52 

SOL 47,21 49,15 43,9 50,19 43,10 50,22 50,20 53,20 
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Figure 3.4: EMG ensemble averages of HS and TFA (averaged over all trials) for 
each muscle at slow speed. The thick line and shaded area indicate mean EMG 

and ± one standard deviation. The vertical dashed line indicates TO. 
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Figure 3.5: EMG ensemble averages of HS and TFA (averaged over all trials) for 
each muscle at normal speed. The thick line and shaded area indicate mean EMG 

and ± one standard deviation. The vertical dashed line indicates TO.  
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Figure 3.6: EMG ensemble averages of HS and TFA (averaged over all trials) for 
each muscle at fast speed. The thick line and shaded area indicate mean EMG 

and ± one standard deviation. The vertical dashed line indicates TO. 
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3.3.2 Statistical Parametric Mapping 

3.3.2.1 Within-Subject (Biomechanics Perspective) 

Due to the limitations of SPM, repeated-measures MANOVA could not be performed. In 

addition, the design of this study is regarded as exploratory which searches for the effect 

of speeds on EMG profiles of functionally related muscles contributing to biomechanical 

subtasks of gait as well as all muscles that contribute to the co-contraction of ankle and 

knee joints during walking in each group separately. Therefore, paired Hoteling’s T2 for 

hypothesis 1 (a-f) and 3 (a-f) was deployed using a Bonferroni correction across speeds. 

Post hoc SPM vector field analysis was performed pairwise between speeds. The 

threshold was corrected for the Bonferroni threshold of 0.02.  
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Speed Dependence of the HS HD Module 1  

As shown in Figure 3.7, HS HD M1 were significantly greater at 4-13% (p=0.002) and 0-

1% (p=0.016) in normal-slow and fast-normal speed comparison, respectively. In 

addition, two suprathreshold clusters were found in HS HD M1 between fast-slow at 0-

22% (p=0.001) and 92-100% (p=0.001) GC. Therefore, null hypothesis 1a was rejected 

as significant differences were observed in activations of muscles consisted in HD M1 of 

HS between speeds.  

  

 

Figure 3.7: HS M1 non-parametric post hoc SPM vector field results (paired 
Hotelling’s T2 test) depicting significant differences between speeds. The red 
dashed lines indicate critical thresholds of T2* = 41.443, 40.591 and 31.575 for 

(A), (B), and (C), respectively. Suprathreshold clusters are shown in grey where 
p<0.02. 

As an example, Figure 3.7 (C) has been annotated to facilitate understanding of 

the SPM figures. T2-values above the threshold (T2 critical threshold) suggest 

significantly difference between the two speeds. For regions of the SnPM {T2} which fail 

to cross the threshold, the interpretation is the same as in all classical hypothesis tests: 

insufficient evidence to reject the null hypothesis. More simply, in areas which do not 

cross the threshold the mean difference is not large relative to the variance. It is 

noteworthy that if results fail to reach significance, but come close to breaching the 

critical threshold, it is possible that other post hoc analyses would find them statistically 

significant. It is, therefore, best to interpret non-significant results cautiously when using 

Bonferroni corrections.  

(A) (B) 

(C) 

Suprathreshold 
clusters (statistical 
significant difference) 

P_value 
Critical 
threshold 

Alpha level 
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Speed Dependence of the HS HD Module 2  

As shown in Figure 3.8, no significant differences were found in HS HD M2 between 

normal-slow. In fast-normal and fast-slow speed comparison, HS HD M2 was 

significantly greater at 76% (p=0.045) and 36-40% (p=0.006) GC, respectively. 

Therefore, null hypothesis 1b was rejected as significant differences were observed in 

activations of muscles consisted in HD M2 of HS between speeds.  

 

  

 

Figure 3.8: HS M2 non-parametric post hoc SPM vector field results (paired 
Hotelling’s T2 test) depicting significant differences between speeds. The red 
dashed lines indicate critical thresholds of T2* = 40.389, 37.189 and 43.900 for 

(A), (B), and (C), respectively. Suprathreshold clusters are shown in grey where 
p<0.02.  

  

(A) (B) 

(C) 
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Speed Dependence of the HS HD Module 3  

As shown in Figure 3.9, HS HD M3 were significantly greater between normal-slow at 

97-100% (p=0.013), between fast-normal at 0-1% (p=0.005), 15-21% (p=0.001) and 97-

100% (p=0.021%), and between fast-slow at 0-8% (p=0.001), 16-21% (p=0.001), 57-

65% (p=0.007) and 93-100% (p=0.001) GC. Therefore, null hypothesis 1c was rejected 

as significant differences were observed in activations of muscles consisted in HD M3 of 

HS between speeds.  

 

  

 

Figure 3.9: HS M3 non-parametric post hoc SPM vector field results (paired 
Hotelling’s T2 test) depicting significant differences between speeds. The red 
dashed lines indicate critical thresholds of T2* = 30.117, 23.659 and 24.881 for 

(A), (B), and (C), respectively. Suprathreshold clusters are shown in grey where 
p<0.02. 

  

(A) (B) 

(C) 
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Speed Dependence of the HS HD Module 4  

As shown in Figure 3.10, no significant differences were found in HS HD M4 between 

fast-normal. HS HD M4 was significantly greater between normal-slow at 90% (p=0.045) 

and between fast-slow at 85-95% (p=0.01) GC. Therefore, null hypothesis 1d was 

rejected as a significant difference was observed in activations of muscles consisted in 

HD M4 of HS between speeds.  

 

  

 

Figure 3.10: HS M4 non-parametric post hoc SPM vector field results (paired 
Hotelling’s T2 test) depicting significant differences between speeds. The red 
dashed lines indicate critical thresholds of T2* = 28.181, 25.618 and 22.417 for 

(A), (B), and (C), respectively. Suprathreshold clusters are shown in grey where 
p<0.02. 

  

(A) (B) 

(C) 
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Speed Dependence of the HS Ankle Co-Contraction 

As shown in Figure 3.11 no significant differences were found in HS ankle muscles 

between normal-slow and fast-normal. In fast-slow speed comparison, HS ankle was 

significantly greater at 47-40% (p=0.023) GC. Therefore, null hypothesis 1e was rejected 

as a significant difference was observed in activations of muscles consisted in the ankle 

co-contraction of HS between speeds. 

 

  

 

Figure 3.11: HS ankle co-contraction non-parametric post hoc SPM vector field 
results (paired Hotelling’s T2 test) depicting significant differences between 

speeds. The red dashed lines indicate critical thresholds of T2* = 73.966, 57.406 
and 62.223 for (A), (B), and (C), respectively. Suprathreshold clusters are shown 

in grey where p<0.02. 

  

(A) (B) 

(C) 
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Speed Dependence of the HS Knee Co-Contraction  

As shown in Figure 3.12, no significant differences were found in HS knee muscles 

between fast-normal. HS knee muscles was significantly greater between normal-slow 

at 98-100% (p=0.032) and between fast-slow at 0% (p=0.049) and 99% (p=0.049) GC. 

Therefore, null hypothesis 1f was rejected as a significant difference was observed in 

activations of muscles consisted in the knee co-contraction of HS between speeds.  

 

  

 

Figure 3.12: HS knee co-contraction non-parametric post hoc SPM vector field 
results (paired Hotelling’s T2 test) depicting significant differences between 

speeds. The red dashed lines indicate critical thresholds of T2* = 111.957, 93.062 
and 102.976 for (A), (B), and (C), respectively. Suprathreshold clusters are shown 

in grey where p<0.02. 

  

(A) (B) 

(C) 
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Speed Dependence of the TFA HD Module 1  

As shown in Figure 3.13, no significant differences were found in TFA HD M1 between 

normal-slow and fast-normal. In fast-slow speed comparison, TFA HD M1 was 

significantly greater at 0-1% (p=0.028), 6-11% (p=0.015) and 92-100% (p=0.001) GC. 

Therefore, null hypothesis 3a was rejected as significant differences were observed in 

activations of muscles consisted in HD M1 of TFA between speeds.  

 

  

 

Figure 3.13: TFA M1 non-parametric post hoc SPM vector field results (paired 
Hotelling’s T2 test) depicting significant differences between speeds. The red 
dashed lines indicate critical thresholds of T2* = 58.666, 53.322 and 59.779 for 

(A), (B), and (C), respectively. Suprathreshold clusters are shown in grey where 
p<0.02. 

  

(A) (B) 

(C) 
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Speed Dependence of the TFA HD Module 2  

As shown in Figure 3.14, no significant differences were found in TFA HD M2 between 

normal-slow and fast-normal. In fast-slow speed comparison, TFA HD M2 was 

significantly greater at 6-7% (p=0.007) and 51-54% (p=0.003) GC. Therefore, null 

hypothesis 3b was rejected as significant differences were observed in activations of 

muscles consisted in HD M2 of TFA between speeds.  

 

  

 

Figure 3.14: TFA M2 non-parametric post hoc SPM vector field results (paired 
Hotelling’s T2 test) depicting significant differences between speeds. The red 

dashed lines indicate critical thresholds of T2*= 75.525, 42.075 and 54.108 for (A), 
(B), and (C), respectively. Suprathreshold clusters are shown in grey where 

p<0.02. 

  

(A) (B) 

(C) 
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Speed Dependence of the TFA HD Module 3  

As shown in Figure 3.15, no significant differences were found in TFA HD M3 between 

normal-slow. TFA HD M3 was significantly greater between fast-normal at 0-11% 

(p=0.001) and between fast-slow at 0-12% (p=0.001) and 92-100% (p=0.001) GC. 

Therefore, null hypothesis 3c was rejected as significant differences were observed in 

activations of muscles consisted in HD M3 of TFA between speeds.  

 

  

 

Figure 3.15: TFA M3 non-parametric post hoc SPM vector field results (paired 
Hotelling’s T2 test) depicting significant differences between speeds. The red 
dashed lines indicate critical thresholds of T2* = 30.186, 31.389 and 26.218 for 

(A), (B), and (C), respectively. Suprathreshold clusters are shown in grey where 
p<0.02. 

  

(A) (B) 

(C) 
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Speed Dependence of the TFA HD Module 4  

As shown in Figure 3.16, no significant differences were found in TFA HD M4 between 

normal-slow and fast-slow. TFA HD M4 was significantly greater between fast-normal at 

89-91% (p=0.004) GC. Therefore, null hypothesis 3d was rejected as a significant 

difference was observed in activations of muscles consisted of HD M4 of TFA between 

speeds.  

 

  

 

Figure 3.16: TFA M4 non-parametric post hoc SPM vector field results (paired 
Hotelling’s T2 test) depicting significant differences between speeds. The red 
dashed lines indicate critical thresholds of T2* = 34.853, 29.822 and 34.865 for 

(A), (B), and (C), respectively. Suprathreshold clusters are shown in grey where 
p<0.02. 

  

(A) (B) 

(C) 
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Speed Dependence of the TFA Ankle Co-Contraction  

As shown in Figure 3.17, no significant differences were found in TFA ankle muscle 

between fast-normal. TFA ankle muscles were significantly greater between normal-slow 

at 53-54% (p=0.013) and fast-slow at 74% (p=0.037) GC. Therefore, null hypothesis 3e 

was rejected as significant differences were observed in activations of muscles consisted 

in the ankle co-contraction of HS between speeds.  

 

  

 

Figure 3.17: TFA ankle co-contraction non-parametric post hoc SPM vector field 
results (paired Hotelling’s T2 test) depicting significant differences between 
speeds. The red dashed lines indicate critical thresholds of T2* = 144.184, 

109.896 and 88.846 for (A), (B), and (C), respectively. Suprathreshold clusters are 
shown in grey where p<0.02. 

  

(A) (B) 

(C) 
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Speed Dependence of the TFA Knee Co-Contraction  

As shown in Figure 3.18, no significant differences were found in TFA knee muscles 

between normal-slow. TFA knee muscles were significantly greater between fast-normal 

at 1% (p=0.049) and between fast-slow at 97-100% (p=0.001) GC. Therefore, null 

hypothesis 3f was rejected as a significant difference was observed in activations of 

muscles consisted in the knee co-contraction of TFA between speeds.  

 

  

 

Figure 3.18: TFA knee co-contraction non-parametric post hoc SPM vector field 
results (paired Hotelling’s T2 test) depicting significant differences between 
speeds. The red dashed lines indicate critical thresholds of T2* = 204.491, 

203.579 and 286.709 for (A), (B), and (C), respectively. Suprathreshold clusters 
are shown in grey where p<0.02. 

  

(A) (B) 

(C) 
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3.3.2.2 Within-Subject (Robotic Control Perspective) 

A priori hypothesis in this section was to investigate the effect of speeds on individual 

muscle activities during transient-state walking in each group separately. Therefore, one-

way RM ANOVA (represented as a black trajectory in Figure 3.19) was implemented to 

investigate the within-subject F statistics for hypothesis 2 and 4.  

It is worth mentioning that one-way ANOVA was performed between-subject for 

demonstration (represented as a red trajectory in Figure 3.19) however, this is not an 

appropriate test since the same subjects performed transient-state walking at different 

speeds. Moreover, the between-subject analysis yields a small F value because 

between-subject variability is large relative to between-condition variability. The within-

subject analysis yields a large F value because paired effects are large relative to paired 

variability. 

Post hoc analysis was done to investigate further the differences between 

speeds. Multiple post hoc paired t-tests increases the chances of making a type I error 

(false positive). Therefore, alpha was corrected according to the number of comparisons 

made to decrease the likelihood of a type I error, to increase the critical threshold, and 

to ensure the false positive error rate is appropriate for the number of comparisons made. 

In this case, Bonferroni threshold of p = 0.017 was adopted for the three walking speeds 

to retain a family-wise error of α = 0.05 which was then used for inference calculation.  

It is noted that the post hoc analyses are meant to qualify the original hypotheses 

provided - they do not disagree with the main analyses. Where differences exist, one 

must not make the conclusion that disagrees with the main results. Therefore, the main 

analysis answered the null hypothesis completely in the case of those muscles whose 

main and post hoc disagreed. 
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Speed Dependence of the HS Muscles  

HS RF 

As shown in Figure 3.19, statistically significant differences occurred in HS RF across 

different speeds. Three suprathreshold clusters were found at 0-23% (p=0.001), 63-67% 

(p=0.022) and 92-100% (p=0.008) GC intra-subjectively. Post hoc paired t-test revealed 

RF was significantly greater between fast-normal at approximately 0-1% (p=0.041), 19-

21% (p=0.020) and 97-100% (p=0.020) GC as well as between fast-slow 0-3% 

(p=0.023), 15-21% (p=0.001) and 94-100% (p=0.005) (Figure 3.20).  

 

Figure 3.19: HS RF parametric RM ANOVA within- and between-subjects, 
depicting significant differences between speeds. The horizontal red dotted line 
indicates the critical threshold of 7.908. Suprathreshold clusters are shown in 

grey where p<0.05. 

  

 

Figure 3.20: HS RF within-subject post hoc paired t statistic between speeds. The 
red dashed lines indicate critical thresholds of t* = 4.77, 4.78 and 4.69 for (A), (B), 
and (C), respectively. Suprathreshold clusters are shown in grey where p<0.02.  

(B) 

(C) 

(A) 
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HS VM 

As shown in Figure 3.21, SPM analysis revealed two suprathreshold clusters between 

three speeds in VM intra-subjectively at approximately 0-19% (p=0.00) and 92-100% 

(p=0.015) GC. Post hoc paired t-test was conducted between speeds where significant 

differences occurred between normal-slow at 5-8% (p=0.014), fast-normal at 95-98% 

(p=0.020) and fast-slow at 0-2% (p=0.037) and 96-100% (p=0.034) GC (Figure 3.22). 

 

Figure 3.21: HS VM parametric RM ANOVA within- and between-subjectss, 
depicting significant differences between speeds. The horizontal red dotted line 
indicates the critical threshold of 7.502. Suprathreshold clusters are shown in 

grey where p<0.05. 

  

 

Figure 3.22: HS VM within-subject post hoc paired t statistic between speeds. 
The red dashed lines indicate critical thresholds of t* = 4.65, 4.54 and 4.48 for (A), 

(B), and (C), respectively. Suprathreshold clusters are shown in grey where 
p<0.02.  

(B) 

(C) 

(A) 
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HS VL 

As shown in Figure 3.23, SPM analysis revealed two suprathreshold clusters between 

three speeds in VL intra-subjectively at approximately 0-20% (p=0.00) and 97-100% 

(p=0.040) GC. In post hoc paired t-test, significant differences were observed between 

normal-slow at 0-14% (p=0.00) and fast-slow at 11-23% (p=0.00) GC (Figure 3.24). 

 

Figure 3.23: HS VL parametric RM ANOVA within- and between-subjects, 
depicting significant differences between speeds. The horizontal red dotted line 
indicates the critical threshold of 7.750. Suprathreshold clusters are shown in 

grey where p<0.05. 

  

 

Figure 3.24: HS VL within-subject post hoc paired t statistic between speeds. The 
red dashed lines indicate critical thresholds of t* = 4.71, 4.55 and 4.68 for (A), (B), 
and (C), respectively. Suprathreshold clusters are shown in grey where p<0.02.  

(B) 

(C) 

(A) 



93 
 

HS BFLH 

As shown in Figure 3.25, SPM analysis revealed two suprathreshold clusters between 

three speeds in BFLH intra-subjectively at approximately 16-19% (p=0.032) and 82-

100% (p=0.00) GC. In post hoc paired t-tests, significant differences occurred between 

normal-slow at 90-91% (p=0.025) and fast-slow at 85-94% (p=0.00) GC (Figure 3.26). 

 

Figure 3.25: HS BFLH parametric RM ANOVA within- and between-subjects, 
depicting significant differences between speeds. The horizontal red dotted line 
indicates the critical threshold of 7.487. Suprathreshold clusters are shown in 

grey where p<0.05. 

  

 

Figure 3.26: HS BFLH within-subject post hoc paired t statistic between speeds. 
The red dashed lines indicate critical thresholds of t* = 4.79, 4.65 and 4.71 for (A), 

(B), and (C), respectively. Suprathreshold clusters are shown in grey where 
p<0.02.  

(B) 

(C) 

(A) 
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HS SEM 

As shown in Figure 3.27, SPM analysis revealed one suprathreshold cluster between 

three speeds in SEM intra-subjectively at approximately 87-93% (p=0.021) GC. Post hoc 

test showed no significant difference between speeds (Figure 3.28). 

 

Figure 3.27: HS SEM parametric RM ANOVA within- and between-subjects, 
depicting significant differences between speeds. The horizontal red dotted line 
indicates the critical threshold of 7.423. Suprathreshold clusters are shown in 

grey where p<0.05. 

  

 

Figure 3.28: HS SEM within-subject post hoc paired t statistic between speeds. 
The red dashed lines indicate critical thresholds of t* = 4.68, 4.62 and 4.55 for (A), 

(B), and (C), respectively. Suprathreshold clusters are shown in grey where 
p<0.02.  

(B) 

(C) 

(A) 
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HS TFL 

As shown in Figure 3.29, SPM analysis revealed three suprathreshold clusters between 

three speeds in TFL intra-subjectively at approximately 4-17% (p=0.00), 66-69% 

(p=0.026) and 95-100% (p=0.025) GC. In Post hoc paired t-test, a significant difference 

was observed between normal-slow at 4-9% (p=0.00) GC (Figure 3.30). 

 

Figure 3.29: HS TFL parametric RM ANOVA within- and between-subjects, 
depicting significant differences between speeds. The horizontal red dotted line 
indicates the critical threshold of 7.850. Suprathreshold clusters are shown in 

grey where p<0.05. 

  

 

Figure 3.30: HS TFL within-subject post hoc paired t statistic between speeds. 
The red dashed lines indicate critical thresholds of t* = 4.87, 4.65 and 4.75 for (A), 

(B), and (C), respectively. Suprathreshold clusters are shown in grey where 
p<0.02.  

(B) 

(C) 

(A) 
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HS TA 

As shown in Figure 3.31, SPM analysis revealed three suprathreshold clusters between 

three speeds in TA intra-subjectively at approximately 0-10% (p=0.008), 55-67% 

(p=0.003) and 92-100% (p=0.019) GC. In Post hoc paired t-test, significant differences 

were observed between fast-slow at 5-7% (p=0.039), 59-61% (p=0.029) and 97-100% 

(p=0.037) GC (Figure 3.32). 

 

Figure 3.31: HS TA parametric RM ANOVA within- and between-subjects, 
depicting significant differences between speeds. The horizontal red dotted line 
indicates the critical threshold of 7.265. Suprathreshold clusters are shown in 

grey where p<0.05. 

  

 

Figure 3.32: HS TA within-subject post hoc paired t statistic between speeds. The 
red dashed lines indicate critical thresholds of t* = 4.60, 4.51 and 4.69 for (A), (B), 
and (C), respectively. Suprathreshold clusters are shown in grey where p<0.02.  

(B) 

(C) 

(A) 



97 
 

HS GM 

As shown in Figure 3.33 , SPM analysis revealed one suprathreshold cluster between 

three speeds in GM intra-subjectively at approximately 34-39% (p=0.001) GC. No 

significant difference was observed in the post hoc paired t-test (Figure 3.34). 

 

Figure 3.33: HS GM parametric RM ANOVA within- and between-subjects, 
depicting significant differences between speeds. The horizontal red dotted line 
indicates the critical threshold of 7.810. Suprathreshold clusters are shown in 

grey where p<0.05. 

  

 

Figure 3.34: HS GM within-subject post hoc paired t statistic between speeds. 
The red dashed lines indicate critical thresholds of t* = 4.84, 4.66 and 4.68 for (A), 

(B), and (C), respectively. Suprathreshold clusters are shown in grey where 
p<0.02.  

(B) 

(C) 

(A) 
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HS GL 

As shown in Figure 3.35, SPM analysis revealed three suprathreshold clusters between 

three speeds in GL intra-subjectively at approximately 0-8% (p=0.008), 33-42% 

(p=0.005) and 99-100% (p=0.049) GC. In Post hoc paired t-test, a significant difference 

was observed between fast-slow at 35-40% (p=0.007) GC (Figure 3.36).  

 

Figure 3.35: HS GL parametric RM ANOVA within- and between-subjects, 
depicting significant differences between speeds. The horizontal red dotted line 
indicates the critical threshold of 7.556. Suprathreshold clusters are shown in 

grey where p<0.05. 

  

 

Figure 3.36: HS GL within-subject post hoc paired t statistic between speeds. 
The red dashed lines indicate critical thresholds of t* = 4.69, 4.62 and 4.60 for (A), 

(B), and (C), respectively. Suprathreshold clusters are shown in grey where 
p<0.02.  

(B) 

(C) 

(A) 
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HS SOL 

As shown in Figure 3.37, SPM analysis revealed three suprathreshold clusters between 

three speeds in SOL intra-subjectively at approximately 7-13% (p=0.014), 30-44% 

(p=0.00) and 98-100% (p=0.046) GC. In Post hoc paired t-test, a significant difference 

was observed between fast-slow at 34-36% (p=0.025) GC (Figure 3.38). 

 

Figure 3.37: HS SOL parametric RM ANOVA within- and between-subjects, 
depicting significant differences between speeds. The horizontal red dotted line 
indicates the critical threshold of 7.615. Suprathreshold clusters are shown in 

grey where p<0.05. 

  

 

Figure 3.38: HS SOL within-subject post hoc paired t statistic between speeds. 
The red dashed lines indicate critical thresholds of t* = 4.64, 4.67 and 4.67 for (A), 

(B), and (C), respectively. Suprathreshold clusters are shown in grey where 
p<0.02.  

(B) 

(C) 

(A) 
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Speed Dependence of the TFA Muscles 

TFA RF 

As shown in Figure 3.39, statistically significant differences occurred in TFA RF across 

speeds. Two suprathreshold clusters were found at 0-15% (p=0.000) and 92-100% 

(p=0.007) GC intra-subjectively. Post hoc paired t-test revealed RF was significantly 

greater between fast-normal at approximately 5-10% (p=0.003) GC and between fast-

slow at 3-12% (p=0.000) and 92-100% (p=0.001) (Figure 3.40).  

 

Figure 3.39: TFA RF parametric RM ANOVA within- and between-subjects, 
depicting significant differences between speeds. The horizontal red dotted line 
indicates the critical threshold of 8.217. Suprathreshold clusters are shown in 

grey where p<0.05. 

  

 

Figure 3.40: TFA RF within-subject post hoc paired t statistic between speeds. 
The red dashed lines indicate critical thresholds of t* = 5.09, 4.96 and 4.99 for (A), 

(B), and (C), respectively. Suprathreshold clusters are shown in grey where 
p<0.02.  

(B) 

(C) 

(A) 
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TFA VM 

As shown in Figure 3.41, SPM analysis revealed three suprathreshold clusters between 

three speeds in VM intra-subjectively at approximately 0-17% (p=0.00), 69-74% 

(p=0.010) and 92-100% (p=0.004) GC. Post hoc paired t-test was conducted between 

speeds where significant differences occurred between fast-normal at 93-95% (p=0.022) 

and fast-slow at 0-1% (p=0.040) and 93-100% (p=0.000) GC (Figure 3.42).  

 

Figure 3.41: TFA VM parametric RM ANOVA within- and between-subjects, 
depicting significant differences between speeds. The horizontal red dotted line 
indicates the critical threshold of 8.478. Suprathreshold clusters are shown in 

grey where p<0.05. 

  

 

Figure 3.42: TFA VM within-subject post hoc paired t statistic between speeds. 
The red dashed lines indicate critical thresholds of t* = 5.39, 4.25 and 5.18 for (A), 

(B), and (C), respectively. Suprathreshold clusters are shown in grey where 
p<0.02.  

(B) 

(C) 

(A) 
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TFA VL 

As shown in Figure 3.43, SPM analysis revealed two suprathreshold clusters between 

three speeds in VL intra-subjectively at approximately 0-20% (p=0.00) and 93-100% 

(p=0.019) GC. In post hoc paired t-test, significant differences were observed between 

fast-slow at 0-13% (p=0.000), 19-21% (p=0.032), and 92-100% (p=0.000) GC (Figure 

3.44). 

 

Figure 3.43: TFA VL parametric RM ANOVA within- and between-subjects, 
depicting significant differences between speeds. The horizontal red dotted line 
indicates the critical threshold of 8.003. Suprathreshold clusters are shown in 

grey where p<0.05. 

  

 

Figure 3.44: TFA VL within-subject post hoc paired t statistic between speeds. 
The red dashed lines indicate critical thresholds of t* = 4.75, 4.71 and 5.07 for (A), 

(B), and (C), respectively. Suprathreshold clusters are shown in grey where 
p<0.02.  

(B) 

(C) 

(A) 
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TFA BFLH 

As shown in Figure 3.45, SPM analysis revealed two suprathreshold clusters between 

three speeds in BFLH intra-subjectively at approximately 87-95% (p=0.001) GC. In post 

hoc paired t-test, significant differences occurred between fast-normal at 89-91% 

(p=0.020) GC (Figure 3.46). 

 

Figure 3.45: TFA BFLH parametric RM ANOVA within- and between-subjects, 
depicting significant differences between speeds. The horizontal red dotted line 
indicates the critical threshold of 8.637. Suprathreshold clusters are shown in 

grey where p<0.05. 

  

 

Figure 3.46: TFA BFLH within-subject post hoc paired t statistic between speeds. 
The red dashed lines indicate critical thresholds of t* = 4.953, 5.167 and 5.153 for 
(A), (B), and (C), respectively. Suprathreshold clusters are shown in grey where 

p<0.02.  

(B) 

(C) 

(A) 
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TFA TA 

As shown in Figure 3.47, SPM analysis revealed three suprathreshold clusters between 

three speeds in TA intra-subjectively at approximately 0-3% (p=0.033), 42-43% 

(p=0.044) and 94-98% (p=0.019) GC. No differences were found in post hoc analyses 

within-subject even though the main SPM analysis showed significant differences 

(Figure 3.48). The null hypothesis was answered completely by the main RM ANOVA.  

 

Figure 3.47: TFA TA parametric RM ANOVA within- and between-subjects, 
depicting significant differences between speeds. The horizontal red dotted line 
indicates the critical threshold of 8.381. Suprathreshold clusters are shown in 

grey where p<0.05. 

  

 

Figure 3.48: TFA TA within-subject post hoc paired t statistic between speeds. 
The red dashed lines indicate critical thresholds of t* = 5.31, 5.20 and 5.15 for (A), 

(B), and (C), respectively. Suprathreshold clusters are shown in grey where 
p<0.02.  

(B) 

(C) 

(A) 
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TFA GM 

As shown in Figure 3.49, SPM analysis revealed three suprathreshold clusters between 

three speeds in GM intra-subjectively at approximately 3% (p=0.018), 11-19% (p=0.004) 

and 46-56% (p=0.00) GC. In Post hoc paired t-test, a significant difference was observed 

between fast-slow at 47-55% (p=0.00) GC (Figure 3.50). 

 

Figure 3.49: TFA GM parametric RM ANOVA within- and between-subjects, 
depicting significant differences between speeds. The horizontal red dotted line 
indicates the critical threshold of 7.365. Suprathreshold clusters are shown in 

grey where p<0.05. 

  

 

Figure 3.50: TFA GM within-subject post hoc paired t statistic between speeds. 
The red dashed lines indicate critical thresholds of t* = 5.21, 5.04 and 4.24 for (A), 

(B), and (C), respectively. Suprathreshold clusters are shown in grey where 
p<0.02.  

(B) 

(C) 

(A) 
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TFA GL 

As shown in Figure 3.51, SPM analysis revealed three suprathreshold clusters between 

three speeds in GL intra-subjectively at approximately 26-30% (p=0.034) and 47-55% 

(p=0.008) GC. In post hoc paired t-test, a significant difference was observed between 

fast-slow at 51-54% (p=0.006) GC (Figure 3.52). 

 

Figure 3.51: TFA GL parametric RM ANOVA within- and between-subjects, 
depicting significant differences between speeds. The horizontal red dotted line 
indicates the critical threshold of 7.897. Suprathreshold clusters are shown in 

grey where p<0.05. 

  

 

Figure 3.52: TFA GL within-subject post hoc paired t statistic between speeds. 
The red dashed lines indicate critical thresholds of t* = 5.21, 4.89 and 5.13 for (A), 

(B), and (C), respectively. Suprathreshold clusters are shown in grey where 
p<0.02.  

(B) 

(C) 

(A) 
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TFA SEM, TFL, and SOL 

No significant differences were found in SEM (Figure 3.53), TFL (Figure 3.54) and SOL 

(Figure 3.55) across speeds intra-subjectively.  

 

Figure 3.53: TFA SEM parametric RM ANOVA within- and between-subjects, 
depicting significant differences between speeds. The horizontal red dotted line 
indicates the critical threshold of 8.497. Suprathreshold clusters are shown in 

grey where p<0.05. 

 

Figure 3.54: TFA TFL parametric RM ANOVA within- and between-subjects, 
depicting significant differences between speeds. The horizontal red dotted line 
indicates the critical threshold of 8.291. Suprathreshold clusters are shown in 

grey where p<0.05. 
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Figure 3.55: TFA SOL parametric RM ANOVA within- and between-subjects, 
depicting significant differences between speeds. The horizontal red dotted line 
indicates the critical threshold of 8.081. Suprathreshold clusters are shown in 

grey where p<0.05. 

 

3.3.2.3 Between-Subject (Biomechanics Perspective)  

A priori hypothesis accounted for individual speed as a different task under the walking 

control between-subject. Therefore, the effect of groups on HD EMG profiles of 

functionally related muscles contributed to biomechanical subtasks of gait as well as all 

muscles that contribute to co-contraction of ankle and knee joints during walking was 

compared at each speed category. Consequently, Hoteling’s T2 was implemented for 

hypothesis 5 (a-f).  
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HS vs. TFA HD Module 1 (Slow)  

As shown in Figure 3.56, no significant differences were observed between HD M1 of 

HS and TFA at slow speed.   

 

Figure 3.56: HD M1 SPM vector field result (Hotelling's T2) depicting HS vs. TFA 
differences at slow speed. The red dashed line indicates critical threshold of 

T2*=22.255. Suprathreshold clusters are shown in grey where p<0.05. 

HS vs. TFA HD Module 2 (Slow)   

As shown in Figure 3.57, SPM vector field found one suprathreshold cluster indicating a 

significant difference between HD M2 of HS and TFA at 53-61% during slow gait. 

Identically, smooth random 1D data would produce clusters of this breadth with a 

probability of p=0.006. Therefore, the null hypothesis was rejected as significant 

differences were observed between HS and TFA HD M2 in slow gait.  

 

Figure 3.57: HD M2 SPM vector field result (Hotelling's T2) depicting HS vs. TFA 
differences at slow speed. The red dashed line indicates critical threshold of 

T2*=21.933. Suprathreshold clusters are shown in grey where p<0.05. 
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HS vs. TFA HD Module 3 (Slow)   

As shown in Figure 3.58, no significant differences were observed between HD M3 of 

HS and TFA at slow speed.   

 

Figure 3.58: HD M3 SPM vector field result (Hotelling's T2) depicting HS vs. TFA 
differences at slow speed. The red dashed line indicates critical threshold of 

T2*=16.906. Suprathreshold clusters are shown in grey where p<0.05.  

HS vs. TFA HD Module 4 (Slow)   

As shown in Figure 3.59, no significant differences were observed between HD M4 of 

HS and TFA at slow speed.   

 

Figure 3.59: HD M4 SPM vector field result (Hotelling's T2) depicting HS vs. TFA 
differences at slow speed. The red dashed line indicates critical threshold of 

T2*=17.073. Suprathreshold clusters are shown in grey where p<0.05. 
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HS vs. TFA HD Ankle Co-Contraction (Slow) 

As shown in Figure 3.60, SPM vector field found one suprathreshold cluster indicating a 

significant difference between ankle muscles of HS and TFA at 54-61% during slow gait. 

Identically, smooth random 1D data would produce clusters of this breadth with a 

probability of p=0.009. Therefore, the null hypothesis was rejected as significant 

differences were observed between HS and TFA HD M2 in slow gait.  

 

Figure 3.60: Ankle SPM vector field result (Hotelling's T2) depicting HS vs. TFA 
differences at slow speed. The red dashed line indicates critical threshold of 

T2*=28.134. Suprathreshold clusters are shown in grey where p<0.05. 

HS vs. TFA HD Knee Co-Contraction (Slow) 

As shown in Figure 3.61, no significant differences were observed between knee 

muscles of HS and TFA at slow speed.   

 

Figure 3.61: Knee SPM vector field result (Hotelling's T2) depicting HS vs. TFA 
differences at slow speed. The red dashed line indicates critical threshold of 

T2*=35.649. Suprathreshold clusters are shown in grey where p<0.05. 
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HS vs. TFA HD Module 1 (Normal) 

As shown in Figure 3.62, no significant differences were observed between HD M1 of 

HS and TFA at normal speed.  

 

Figure 3.62: HD M1 SPM vector field result (Hotelling's T2) depicting HS vs. TFA 
differences at normal speed. The red dashed line indicates critical threshold of 

T2*=22.875. Suprathreshold clusters are shown in grey where p<0.05. 

HS vs. TFA HD Module 2 (Normal) 

As shown in Figure 3.63, SPM vector field found one suprathreshold cluster indicating a 

significant difference between HD M2 of HS and TFA at 49-60% during normal gait. 

Identically, smooth random 1D data would produce clusters of this breadth with a 

probability of p=0.001. Therefore, the null hypothesis was rejected as significant 

differences were observed between HS and TFA HD M2 in normal gait.  

 

Figure 3.63: HD M2 SPM vector field result (Hotelling's T2) depicting HS vs. TFA 
differences at normal speed. The red dashed line indicates critical threshold of 

T2*=22.351. Suprathreshold clusters are shown in grey where p<0.05. 
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HS vs. TFA HD Module 3 (Normal) 

As shown in Figure 3.64, no significant differences were observed between HD M3 of 

HS and TFA at normal speed.   

 

Figure 3.64: HD M3 SPM vector field result (Hotelling's T2) depicting HS vs. TFA 
differences at normal speed. The red dashed line indicates critical threshold of 

T2*=17.296. Suprathreshold clusters are shown in grey where p<0.05. 

HS vs. TFA HD Module 4 (Normal)  

As shown in Figure 3.65, no significant differences were observed between HD M4 of 

HS and TFA at normal speed.   

 

Figure 3.65: HD M4 SPM vector field result (Hotelling's T2) depicting HS vs. TFA 
differences at normal speed. The red dashed line indicates critical threshold of 

T2*=16.573. Suprathreshold clusters are shown in grey where p<0.05. 
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HS vs. TFA HD Ankle Co-Contraction (Normal) 

As shown in Figure 3.66, SPM vector field found one suprathreshold cluster indicating a 

significant difference between ankle muscles of HS and TFA at 50-58% during normal 

gait. Identically, smooth random 1D data would produce clusters of this breadth with a 

probability of p=0.002. Therefore, the null hypothesis was rejected as significant 

differences were observed between HS and TFA ankle muscles in normal gait.  

 

Figure 3.66: Ankle SPM vector field result (Hotelling's T2) depicting HS vs. TFA 
differences at normal speed. The red dashed line indicates critical threshold of 

T2*=28.565. Suprathreshold clusters are shown in grey where p<0.05. 

HS vs. TFA HD Knee Co-Contraction (Normal) 

As shown in Figure 3.67, no significant differences were observed between knee 

muscles of HS and TFA at normal speed.   

 

Figure 3.67: Knee SPM vector field result (Hotelling's T2) depicting HS vs. TFA 
differences at normal speed. The red dashed line indicates critical threshold of 

T2*=35.814. Suprathreshold clusters are shown in grey where p<0.05. 
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HS vs. TFA HD Module 1 (Fast)   

As shown in Figure 3.68, no significant differences were observed between HD M1 of 

HS and TFA at fast speed.   

 

Figure 3.68: HD M1 SPM vector field result (Hotelling's T2) depicting HS vs. TFA 
differences at fast speed. The red dashed line indicates critical threshold of 

T2*=22.591. Suprathreshold clusters are shown in grey where p<0.05. 

HS vs. TFA HD Module 2 (Fast)   

As shown in Figure 3.69, SPM vector field found one suprathreshold cluster indicating a 

significant difference between HD M2 of HS and TFA at 17-21% and 48-59% during fast 

gait. Identically, smooth random 1D data would produce clusters of this breadth with a 

probability of p=0.023 and p=0.001. Therefore, the null hypothesis was rejected as 

significant differences were observed between HS and TFA HD M2 in fast gait.  

 

Figure 3.69: HD M2 SPM vector field result (Hotelling's T2) depicting HS vs. TFA 
differences at fast speed. The red dashed line indicates critical threshold of 

T2*=22.290. Suprathreshold clusters are shown in grey where p<0.05. 
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HS vs. TFA HD Module 3 (Fast)   

As shown in Figure 3.70, no significant differences were observed between HD M3 of 

HS and TFA at fast speed.   

 

Figure 3.70: HD M3 SPM vector field result (Hotelling's T2) depicting HS vs. TFA 
differences at fast speed. The red dashed line indicates critical threshold of 

T2*=16.686. Suprathreshold clusters are shown in grey where p<0.05. 

HS vs. TFA HD Module 4 (Fast)   

As shown in Figure 3.71, no significant differences were observed between HD M4 of 

HS and TFA at fast speed.   

 

Figure 3.71: HD M4 SPM vector field result (Hotelling's T2) depicting HS vs. TFA 
differences at fast speed. The red dashed line indicates critical threshold of 

T2*=16.709. Suprathreshold clusters are shown in grey where p<0.05. 
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HS vs. TFA HD Ankle Co-Contraction (Fast) 

 As shown in Figure 3.72, SPM vector field found one suprathreshold cluster indicating 

a significant difference between ankle muscles of HS and TFA at 18-19% and 48-58% 

during fast gait. Identically, smooth random 1D data would produce clusters of this 

breadth with a probability of p=0.048 and p=0.001. Therefore, the null hypothesis was 

rejected as significant differences were observed between HS and TFA ankle muscles 

in fast gait.  

 

Figure 3.72: Ankle SPM vector field result (Hotelling's T2) depicting HS vs. TFA 
differences at fast speed. The red dashed line indicates critical threshold of 

T2*=28.333. Suprathreshold clusters are shown in grey where p<0.05. 

HS vs. TFA HD Knee Co-Contraction (Fast) 

As shown in Figure 3.73, no significant differences were observed between ankle 

muscles of HS and TFA at fast speed.   

 

Figure 3.73: Knee SPM vector field result (Hotelling's T2) depicting HS vs. TFA 
differences at fast speed. The red dashed line indicates critical threshold of 

T2*=35.681. Suprathreshold clusters are shown in grey where p<0.05.  
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3.3.2.4 Between-Subject (Robotic Control Perspective) 

A priori hypothesis accounted for individual speed as a different task under the walking 

control between-subject. Therefore, the effect of groups on individual muscle activities 

during walking at each speed. Consequently, SPM two-sample t-test (α=0.05) was 

implemented for hypothesis 6. 

As shown in Figure 3.74, RF, VM, SEM and GMED showed no significant 

differences between HS and TFA at slow speed. TFA VL was significantly greater than 

HS VL at 0-6% (p=0.014), 18-22% (p=0.027) and 26-32% (p=0.011) GC. One 

suprathreshold cluster was found in BFLH at 48-62% (p=0.00), TFL at 73-75% (p=0.033) 

and TA at 53-63% (p=0.001) in which TFA was significantly greater than HS at slow 

speed. TFA was significantly greater than HS in GM at 6-25% (p=0.00), 51-73% (p=0.00) 

and 84-91% (P=0.006) gait, in GL at 13-26% (p=0.00) and 52-100% (p=0.00) gait as well 

as in SOL at 0-26% (p=0.00) and 50-100% (p=0.00) gait at slow speed.  

As shown in Figure 3.75, VL, SEM and TFL showed no significant differences 

between HS and TFA at normal speed. HS was significantly greater than TFA in RF at 

11% (p=0.046) and 60-66% (p=0.012), in VM at 93-97% (p=0.024), in GM at 39-42% 

(p=0.033) and in GL at 39-42% (p=0.027) gait. One suprathreshold cluster was found in 

BFLH at 55-58% (p=0.033) and TA at 34-58% (p=0.00) in which TFA was significantly 

greater than HS at normal speed. TFA was significantly greater than HS in GM at 15-

23% (p=0.004) and 48-61% (p=0.00) gait, in GL at 0-2% (p=0.00), 13-27% (p=0.00) and 

49-100% (p=0.00) gait as well as in SOL at 0-28% (p=0.00) and 84-100% (p=0.00) gait 

at normal speed.  

As shown in Figure 3.76, SEM and TFL showed no significant differences 

between HS and TFA at fast speed. HS was significantly greater than TFA in RF at 56-

65% (p=0.004), in VM at 91-95% (p=0.03), and in GM at 36-38% (p=0.037) gait. TFA 

was significantly greater than HS in RF at 41-55% (p=0.03) and 73-75% (p=0.043%), in 

VM at 71-75% (p=0.028), in VL at 0-8% (p=0.009), 17-46% (p=0.00), 80-88% (p=0.00) 

and 95-100% (p=0.031) and in BFLH at 25-37% (p=0.001), 47-56% (p=0.004) and 74-

75% (p=0.045) gait in fast speed. One suprathreshold cluster was found in TA at 39-54% 

(p=0.001) in which TFA was significantly greater than HS at fast speed. TFA was 

significantly greater than HS in GM at 0-27% (p=0.00) and 46-61% (p=0.00) gait, in GL 

at 16-30% (p=0.00) and 48-100% (p=0.00) gait as well as in SOL at 0-28% (p=0.00) and 

48-100% (p=0.00) gait at fast speed.  
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HS vs. TFA (Slow) 

  

  

  

  

  
Figure 3.74: A statistical inference curve indicating a significant relationship 

between HS and TFA muscles at slow speed. Red dashed line indicates critical 
threshold (t*RF=3.076, t*VM=3.071=, t*VL=3.122, t*BFLH=3.096, t*SEM=3.160, 

t*TFL=.154, t*TA=3.094, t*GM=3.143, t*GL=3.108, t*SOL=3.087). Suprathreshold 
clusters are shown in grey where p<0.05. 
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HS vs. TFA (Normal) 

  

  

  

  

  
Figure 3.75: A statistical inference curve indicating a significant relationship 

between HS and TFA muscles at normal speed. Red dashed line indicates critical 
threshold (t*RF=3.140, t*VM=3.117, t*VL=3.075, t*BFLH=3.075, t*SEM=3.093, 

t*TFL=3.130, t*TA=3.085, t*GM=3.120, t*GL=3.108, t*SOL=3.096). Suprathreshold 
clusters are shown in grey where p<0.05. 
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HS vs. TFA (Fast) 

  

  

  

  

  
Figure 3.76: A statistical inference curve indicating a significant relationship 

between HS and TFA muscles at fast speed. Red dashed line indicates critical 
threshold (t*RF=3.079, t*VM=3.077, t*VL=3.069, t*BFLH=3.069, 

t*SEM=3.063,.t*TFL=3.096, t*TA=3.025, t*GM=3.113, t*GL=3.041, t*SOL=3.063). 
Suprathreshold clusters are shown in grey where p<0.05. 
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3.4 Discussion 

3.4.1 Statistical Analyses (HD Muscle Activation Patterns) 

In this chapter, two different approaches were investigated to assess the differences 

between HS and TFA within- and between-subject. The first approach, i.e., biomechanics 

approach was based on the concept of inter-muscle co-variance and muscle synergies 

hence the muscles were divided up into Modules corresponded to biomechanical 

subspecific tasks. The second approach, i.e., robotic control was inspired by the concept 

of the clinical state of the art myoelectric control in which individual muscles activation 

becomes crucial. Therefore, each muscle was compared individually.  

To the best of the author’s knowledge, no study was found to investigate the 

differences in muscle activities between HS and TFA IL in response to increasing 

transient-state walking speeds considering the HD sensorimotor Modules (biomechanics 

perspective), individual muscle activities (robotic control perspective) and whole EMG 

time-series (SPM). However, the previous literature examined the differences in 

individual muscle activities of HS and TFA IL on discrete points in GC using traditional 

statistical analysis [36, 37, 46, 47]. The between-subject analysis was the comparison 

based on the speed category (i.e., HS slow vs. TFA slow or HS normal vs. TFA normal) 

rather than mataching group’s similar speed (i.e., HS slow vs TFA normal or HS normal 

vs TFA fast). Therefore, results could be biased as the interaction between different 

speeds have not been considered. In addition, both groups walking at the same speed 

may have similar mechanics. However, similar speed does not mean it is their 

comfortable speed (especially in TFA) thereby, the speeds were comapred categorically 

between-subject.  

3.4.1.1 Within-Subject (Biomechanics Perspective) 

The goal of this section was to investigate the effect of speeds on the groups of muscles 

which has similar activation pattern and/or contributed to the same biomechanical 

subtask (i.e., HD sensorimotor Modules). In addition, the muscles contributed to the co-

contraction of the ankle and knee were compared with respect to the change of speeds.  

Generally, in this study, the basic structure, i.e., the pattern of muscle activations 

was relatively consistent across speeds for both HS and TFA. However, the major burst 

in muscles heightened with increased speed (Figure 3.2 and Figure 3.3, respectively) 

which agree with the earlier investigations [28, 52, 96, 239]. In addition, as suggested by 

[240], tight coupling occurred between the EMG bursts and events in the GC. In other 

words, the timing where the major peaks occurred for all muscles across speeds were 

approximately in a close range for both HS and TFA (Table 3.3).  
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The change in the motor output of the extensor and flexor groups across speeds 

could be the result of pre-programmed neural control [240, 290, 310]. Notwithstanding, 

this does not exclude the possible influence the reflex activity has on the overall muscle 

activation [239, 289, 311]. Moreover, previously it has been shown that descending 

activity influenced the transition from the quiet state to movement by a specific tuning of 

spinal cord circuitry [312, 313].  

Speed Dependence of the HS HD Modules  

HS HD M1 muscles were activated at the weighting acceptance to support the body, 

control the knee flexion and extend the knee during the MS. The hypothesis 

(biomechanics null hypothesis 1a) that there would be no difference in M1 muscle activity 

with increased transient-state walking speed was not supported as significant differences 

were observed in ES, MS, and TSW where the main bursts occurred. These differences 

were more prominent in HD M1 between fast-slow (Figure 3.7).  

HS HD M2 muscles were activated in TS which contributed to body support and 

plantarflexion during propulsion. The hypothesis (biomechanics null hypothesis 1b) that 

there would be no difference in HD M2 muscle activity with increased transient-state 

walking speed was not supported as significant differences were observed in MSW (fast-

normal) and TS (fast-slow) (Figure 3.8).  

HS HD M3 muscles were activated in TSW to ES. TA contributed to dorsiflexion 

of the foot in TSW and acted to decelerate the foot during the foot flat phase after IC. 

Moreover, TA second burst occurred in PSW where TA activated for foot clearance. In 

addition, RF in HD M3 contributed to decelerate the leg in ES and TSW. The hypothesis 

(biomechanics null hypothesis 1c) that there would be no difference in HD M3 muscle 

activity with increased transient-state walking speed was not supported as significant 

differences were observed in ES, MS, PSW-ISW, and TSW. These differences were 

more prominent in HD M3 between fast-slow (Figure 3.9).  

HS HD M4 muscles were activated in TSW and ES which contributed to 

decelerate the leg while increasing the leg energy during weight acceptance. The 

hypothesis (biomechanics null hypothesis 1d) that there would be no difference in HD 

M4 muscle activity with increased transient-state walking speed was not supported as a 

significant difference was observed in HD M4 during TS between normal-slow and fast-

slow (Figure 3.10).  

HS co-contraction of ankle and knee muscles were considered in this study. The 

hypotheses (biomechanics null hypothesis 1e and 1f) that there would be no difference 

in activation of muscles contributed to the HS ankle and knee co-contractions with 

increased transient-state walking speed were not supported as significant differences 
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were observed during TS (ankle co-contraction) and ES and TSW (knee co-contraction) 

(Figure 3.11 and Figure 3.12).  

The observed significant differences in HS HD sensorimotor Modules between 

speeds are indicative of neuromuscular adaptation to the kinematic and kinetic demands 

of increased transient-state walking speed. Similarly, the muscles contributed to the co-

contraction showed adaptation mechanism required to stabilize HS ankle and knee joints 

with increased speeds which should not be considered as a pathological issue.  

Speed Dependence of the TFA HD Modules  

TFA HD M1 muscles were activated at the weighting acceptance to support the body, 

control the knee flexion and extend the knee during the MS. The hypothesis 

(biomechanics null hypothesis 3a) that there would be no difference in HD M1 muscle 

activity with increased transient-state walking speed was not supported as a significant 

difference was observed in ES, MS, and TSW between fast-slow (Figure 3.13 ). 

TFA HD M2 showed two main bursts; one occurred during the foot-flat which 

contributed to body support and deceleration of the tibial rotation, and the other one 

occurred during propulsive phase to generate enough force to plantarflex. The 

hypothesis (biomechanics null hypothesis 3b) that there would be no difference in HD 

M2 muscle activity with increased transient-state walking speed was not supported as 

significant differences were observed during foot flat and TS between fast-slow (Figure 

3.14). 

TFA HD M3 muscles were activated in TSW to ES. TA contributed to dorsiflexion 

of the foot in TSW and acted to decelerate the foot during the foot flat phase after IC. 

Moreover, TA second burst occurred in PSW where TA activated for foot clearance. In 

addition, RF in HD M3 contributed to decelerate the leg in ES and TSW. The hypothesis 

(biomechanics null hypothesis 3c) that there would be no difference in HD M3 muscle 

activity with increased transient-state walking speed was not supported as significant 

differences were observed in ES and TSW. These differences were more prominent in 

HD M3 between fast-slow ( Figure 3.15).  

TFA HD M4 muscles were activated in TSW and ES which contributed to 

decelerate the leg while increasing the leg energy during weight acceptance. The 

hypothesis (biomechanics null hypothesis 3d) that there would be no difference in HD 

M4 muscle activity with increased transient-state walking speed was not supported as a 

significant difference was observed in TSW between fast-normal (Figure 3.16). 

TFA co-contraction of ankle and knee muscles were considered in this study. The 

hypotheses (biomechanics null hypothesis 3e and 3f) that there would be no difference 
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in activation of muscles contributed to the TFA ankle and knee co-contractions with 

increased transient-state walking speed were not supported as a significant difference 

was observed in ankle muscles during the TS (between normal-slow) and ISW (between 

fast-normal) as well as in knee muscles during the ES (between fast-normal) and TSW 

(between fast-slow) (Figure 3.17 and Figure 3.18).  

The observed significant differences in TFA HD sensorimotor Modules between 

speeds are indicative of neuromuscular adaptation to the kinematic and kinetic demands 

of increased transient-state walking speed. The TFA co-contraction may be indicative of 

compensatory mechanism required to stabilize TFA IL joints as transient-state walking 

speed increased. However, the regions which found to be statistically significant were 

similar to those of HS; thereby this may be just the adaptation adjustment to change of 

speeds rather than a compensatory mechanism.   

3.4.1.2 Within-Subject (Robotic Control Perspective) 

The goal of this section was to investigate the changes in HS and TFA individual muscle 

activity as speed increased during transient-state walking. Generally, the magnitude of 

muscle activity heightened with increased speeds because of the required muscle force 

to propel the body forward [236]. It has been shown in the literature that, in slow walking, 

larger muscular efforts required to provide the balance of frontal plane [236, 314]. 

Neptune et al. [315] reported the functional role of individual muscles does not change 

with an increase in speeds. However, none of the previous studies considered the whole 

time-series and statistical parametric mapping as means of comparison.  

Speed Dependence of the HS Muscles  

The robotic control null hypothesis 2 regarding the effect of speeds on HS muscle activity 

was not supported in all the muscles. The results showed increased activity in the HS 

quadriceps as speed increased in the transient-state walking (Figure 3.2). 

The main analysis (RM ANOVA) showed significant differences of HS RF, VM, 

and VL in ES, MS, and TSW across speeds. In, addition, another suprathreshold cluster 

was observed in RF during the ISW across speeds. This is also evident in the previous 

study by [236]. The post hoc analysis between fast-normal and fast-slow illustrated RF 

fast was significantly greater than normal and slow, respectively (Figure 3.20) which is 

consistent with the literature on HS showing RF activity increased to a greater extent at 

higher speeds [28, 236, 238, 240].  

HS VM post hoc test showed normal was significantly greater than slow and fast 

was significantly greater than normal and slow (Figure 3.22). HS VL post hoc analysis 
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showed normal and fast was significantly greater than slow in normal-slow and fast-slow 

comparison, respectively (Figure 3.24).  

HS BFLH analysis showed significant differences in MS and TSW. Post hoc 

analysis showed normal and fast was significantly greater than slow between normal-

slow and fast-slow comparison, respectively (Figure 3.26) which agreed with previous 

studies [28, 236, 238, 240]. 

HS TFL main analysis showed significant differences in ES-MS, ISW, and TSW. 

The post hoc test showed normal was significantly greater than slow (Figure 3.30).  

HS TA main analysis showed significant differences in ES to MS, PSW to ISW 

and TSW. TA fast showed to be significantly greater than slow in the post hoc test (Figure 

3.32). The significant differences in TSW and ES of TA were supported by [236] as they 

concluded the activities during the weight bearing phase is velocity-dependent. However, 

they pointed out that TA activity during ISW was insensitive to change of speeds which 

are not in agreement with the results obtained in this study. The possible explanation is 

that the gait was performed in steady-state and the range of walking speeds was different 

from the present study.  

The main significant difference in triceps surface muscles was observed in TS 

(Figure 3.33, Figure 3.35 and Figure 3.37). In addition, during ES and TSW, GL and SOL 

were significantly different across speeds. The post hoc results illustrated GL and SOL 

at fast was significantly greater than slow. This is in agreement with [236] showing that 

triceps surae affected strongly by increased speeds during the TS (50-80% of the stance 

phase). An extra burst occurred during the foot flat in triceps surae at fast speed (Figure 

3.2). In addition, [236] and [231] found no change in triceps surae activity during 

weighting acceptance across speeds which contradicted the present study as significant 

differences were found during this time. The discrepancy between the results may be 

due to the change in neuromuscular strategy between the transient-state and steady-

state walking and the difference in the range of walking speeds.  

Even though HS SEM in MSW (Figure 3.27) and GM in MS (Figure 3.33) showed 

a significant difference across speeds, no significant difference was observed in their 

post hoc analysis. It is worth mentioning, the null hypothesis was answered completely 

by the main RM ANOVA, and the discrepancy between main and post hoc is due to the 

Bonferroni post hoc procedures which are approximate. Different post hoc procedures 

are needed to yield a precise probabilistic agreement between the main analysis and 

post hoc result.  

The post hoc results showed no significant differences in HS RF normal-slow, VL 

fast-normal, BFLH fast-normal, TFL fast-normal, TA normal-slow and fast-normal, GL 
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normal-slow and SOL normal-slow, suggesting the muscle activation was less affected 

by the change of speeds.  

It is noteworthy that if results fail to reach significance, but come close to 

breaching the critical threshold (TFL fast-slow, GL fast-normal, SOL fast-normal), it is 

possible that other post hoc analyses would find them statistically significant. It is, 

therefore, best to interpret non-significant results cautiously when using Bonferroni 

corrections. 

In general, the previous studies on the HS reported higher activity and heightened 

magnitude with increasing steady-state walking speed irrespective of the EMG 

processing method for quantification (absolute mean value, peak magnitude, integrated 

of full wave rectification, gain functions) [28, 236, 238, 239, 316]. Although the present 

study was associated with the transient-state walking, increased activity was perceived 

in some of the muscles more than the others throughout GC. The hamstring muscles 

showed less increase in magnitude during the stance phase, however, heightened 

magnitude in MSW to TSW across speeds.  

Speed Dependence of the TFA Muscles 

The null hypothesis 4 (robotic control) that there would be no effect of speeds on TFA 

muscle activity was not supported in all the muscles except SEM, TFL, and SOL with 

increased speed. One possible explanation is that other functionally related muscles are 

compensating for those which no significant differences were observed. Therefore, 

BFLH which has a similar functional role to SEM showed to be statistically significant 

across speeds. Likewise, the activity of SOL was insensitive to change of speed which 

seems to be compensated by higher activation in GM and GL. However, this is in contrast 

with the results found in the HS muscle activities of the literature [236]. The information 

from SEM and SOL could be used in prosthetic application to control the onset of stance 

and swing at a different range of speeds, respectively. In addition, the temporal features 

of these muscles may facilitate the middle level control complexity (phase/event 

detection) to modulate prosthetic devices without any concerns about the effects of 

walking speeds.  

TFA quadricep muscles were significantly different in ES to MS and TSW across 

speeds. In addition, VM was statistically significant in PSW to ISW as speed increased. 

The post hoc analysis of TFA between fast-normal and fast-slow illustrated RF and VM 

at fast was significantly greater than normal and slow, respectively (Figure 3.40 and 

Figure 3.42). VL was significantly greater at fast compared to slow only (Figure 3.44).  

TFA BFLH showed significant differences in MSW to TSW. Post hoc analysis 

showed fast was significantly greater than normal (Figure 3.46). 
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The main analysis showed significant differences in TFA GM in ES, foot flat and 

MS to TS between speeds (Figure 3.49). Similarly, TFA GL was statistically significant 

during foot flat and MS to TS (Figure 3.51). Post hoc analysis showed GM (Figure 3.50), 

and GL (Figure 3.52) were significantly greater at fast compared to slow.  

TFA SEM (Figure 3.53), TFL (Figure 3.54) and SOL (Figure 3.55) showed no 

significant differences across speeds.  

TA was significantly different in ES, MS, and TSW (Figure 3.47). No significant 

difference was observed in TA post hoc analysis, but the null hypothesis was answered 

completely by the main RM ANOVA (Figure 3.48).   

Significant differences were not observed in post hoc analyses of RF normal-

slow, VM normal-slow, VL normal-slow and fast-normal, BFLH normal-slow, GM normal-

slow, as well as GL normal-slow and fast-normal. This suggests less dependency of 

these muscles activities to the change of speeds.  

Generally, the results showed increased activity in the TFA quadriceps, 

dorsiflexor, GM, and GL more than the other muscles with increased transient-state 

walking. Two bursts occurred in triceps surae in which the first was long, and both peaks 

were heightened with increased walking speed. This can be due to the fact that the IL 

compensates for the lack of push off on the PL in order to contribute to the propulsion in 

TS [36]. 

3.4.1.3 Between-Subject (Biomechanics Perspective)  

Since the biomechanics hypothesis does not pertain to a specific muscle and time point, 

inter-muscle covariance and whole time-series have been considered for statistical 

testing. No significant difference was observed between groups for HD M1, HD M3, HD 

M4 and knee co-contraction muscles at slow, normal and fast speed. However, SPM 

analysis rejected the biomechanics null hypothesis between groups for HD M2 and ankle 

co-contraction at slow, normal and fast speed (biomechanics hypothesis 5b and 5e 

across speeds). 

The hypothesis (biomechanics null hypothesis 5b) that there would be no 

difference between groups for HD M2 at all speeds was not supported as significant 

differences were observed approximately where the major burst of TFA triceps surae 

occurred. In addition, HD M2 showed another significant difference at fast speed in MS 

where TFA plantarflexor were highly activated. The difference attributed to the TFA 

longer stance phase, heightened activity, prolonged duration and the need for larger 

push off of the HD M2 muscles to compensate for the lack of plantarflexor in the PL which 

agreed with the results in [46]. This was also supported by the kinetic studies of TFA in 

which greater work at hip and plantarflexors of IL were observed [36, 39, 235, 256].  
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The hypothesis (biomechanics null hypothesis 5E) that there would be no 

difference between groups for the muscles contributed to the ankle co-contractions of 

HS at each speed was not supported as a significant difference was observed 

approximately before the transition from stance to swing phase. This may suggest 

compensatory mechanism required to stabilize TFA IL ankle joint during double support 

before PL enter the single limb support phase which could be indicative of reduced 

stability during this time. In addition, another significant difference occurred at fast speed 

in MS where TFA plantarflexors were highly activated. This may suggest increased ankle 

stiffness to control the balance concerns during single limb support [304]. These results 

are in agreement with the findings of [46] which reported increased activity and co-activity 

of IL dorsiflexor and plantarflexor muscles during gait as compared to the HS.   

3.4.1.4 Between-Subject (Robotic Control Perspective) 

The null hypothesis 6 (robotic control) that there would be no difference in individual 

muscle activity between HS and TFA during walking at different speeds was supported 

for RF, VM and SEM during slow, for VL, SEM, TFL during normal and for SEM and TFL 

during fast. Commonly, SEM activity was similar between groups at all speeds which 

suggests a similar neuromotor mechanism underlying the motor control regulation of 

both groups. 

HS vs. TFA (Slow) 

No significant difference was observed in RF and VM activity between HS and TFA. In 

contrast, significant differences occurred in VL during the LR and MS due to the TFA VL 

activity was heightened to a greater extent as compared to the HS.  

No significant difference was observed in SEM whereas BFLH significant 

difference occurred during the TS to PSW where the second major contraction presented 

in TFA. This could be the compensatory reaction of the knee flexor during push off to 

bring the intact limb forward due to the instability of PL during the weighting acceptance.  

A significant difference was observed between groups during the ISW due to the 

larger activity variation of the TFL in that region. One possible explanation is that TFL 

contributed as a minor hip flexor as well as co-contracting with the hip adductors to 

stabilize the hip joint in ISW.  

A significant difference was observed between groups during the TS to PSW 

where the second peak occurred in TFA TA. One possible explanation is that TA 

contributed more to dorsiflexion of the foot for foot clearance around the transition 

between stance to swing phase as compared to the HS.  
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GM showed three suprathreshold clusters during the foot-flat, TS to ISW and 

MSW. GL illustrated two suprathreshold clusters in foot-flat and TS to the whole swing 

phase. SOL showed two suprathreshold clusters during the weighting acceptance and 

TS to the whole swing phase. The significant differences were due to the foot-flat 

activation and heightened activity of triceps surae in TFA as compared to the HS. Even 

though the activity of triceps surae decreased significantly after TO, there is minimal low 

activity in both groups during swing phase, however, larger in TFA. This could be caused 

by the fact that triceps surae co-contracted against the quadriceps muscle in order to 

provide enough knee flexion during swing phase. Refer to Figure 3.74 for the comparison 

between HS and TFA during slow transient-state walking.   

HS vs. TFA (Normal) 

RF activity showed two suprathreshold clusters during the LR and PSW where the first 

and second peaks in HS heightened as compared to TFA.  

No significant difference was observed in VL activity between HS and TFA. 

However, a significant difference occurred in TSW due to the HS VM activity was 

heightened to a greater extent than the TFA.   

No significant difference was observed in SEM whereas in BFLH a significant 

difference occurred during the TS where the second major contraction presented in TFA. 

This could be the compensatory reaction of the knee flexor during push off to bring the 

intact limb forward due to the instability of PL during the weighting acceptance. No 

significant difference in TFL was observed between HS and TFA at normal speed.  

A significant difference was observed between groups during the TS to PSW 

where the second peak is occurring in TFA TA. One possible explanation is that TA 

contributed to dorsiflexion of the foot for foot clearance in transition between stance to 

swing phase.  

GM showed three suprathreshold clusters during the foot-flat, TS and TS to PSW. 

GL illustrated four suprathreshold clusters in weighting acceptance, foot-flat and TS and 

TS to the whole swing phase. SOL showed three suprathreshold clusters during the 

weighting acceptance, TS, and TS to the whole swing phase. The significant differences 

occurred during the ES and MS were due to the foot-flat activation and heightened 

activity of triceps surae in TFA as compared to the HS. The significant difference in TS 

was due to the HS peak presented earlier than the TFA. The significant difference in TS 

to swing phase was due to the heightened activity of TFA triceps surae caused by co-

contraction against quadriceps muscle in order to provide enough knee flexion during 

swing phase. Refer to Figure 3.75 for the comparison between HS and TFA during 

normal transient-state walking.  
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HS vs. TFA (Fast) 

RF activity showed three suprathreshold clusters during the TS, PSW, and ISW. The TS 

and ISW significant differences were due to the TFA RF higher activation and shifted 

second and third minor bursts as compared to the HS, respectively. The PSW significant 

difference was due to the heightened activity of HS RF third peak.  

Two suprathreshold clusters were observed in VM activity during the PSW and 

TSW between HS and TFA at fast speed. The PSW significant difference was associated 

with the shift observed in TFA VM minor burst as compared to the HS. The TSW 

significant difference was due to the heightened activity of HS VM to a greater extent 

compared to the TFA.  

Four suprathreshold clusters were observed during the ES, MS, MSW, and TSW 

due to the heightened activity of TFA VL to a greater extent as compared to the HS. 

BFLH significant differences occurred during the MS, TS, and ISW due to the 

higher activation of TFA as compared to the HS at fast speed. The difference in ISW 

could be due to the TFA BFLH activity to assist in knee flexion. No significant difference 

was observed in SEM between HS and TFA fast speed.  No significant difference was 

observed between HS and TFA at fast speed.  

A significant difference was observed during the TS prior to the second peak of 

TFA TA which was heightened to a greater extent as compared to the HS. One possible 

explanation is that TA contributed to dorsiflexion of the foot for foot clearance in transition 

between stance to swing phase.  

GM showed three suprathreshold clusters in weighting acceptance to foot-flat, 

MS, and TS to PSW. GL illustrated two suprathreshold clusters in foot-flat and TS and 

TS to the whole swing phase. SOL showed two suprathreshold clusters in weighting 

acceptance to foot-flat, TS to the whole swing phase. The significant differences 

occurred during the ES and MS were due to the foot-flat activation and heightened 

activity of triceps surae in TFA as compared to the HS. The significant difference in TS 

was due to the HS peak presented earlier than the TFA. The TS to phase significant 

difference was due to the heightened activity of TFA triceps surae caused by co-

contraction against quadriceps muscle in order to provide enough knee flexion during 

swing phase. Refer to Figure 3.76 for the comparison between HS and TFA during fast 

transient-state walking.  

3.4.1.5 Comparing Individual Muscle Activities to the Literature  

In general, in this chapter, the results presented for HS were in agreement with the 

previous literature to a great extent in terms of the major burst occurrence intervals [239, 
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288, 317]. However, discrepancies do exist, which are likely to be attributed to 

differences in methodology (e.g., signal processing and transient-state) and in subjects’ 

selection (e.g., age and demographic). The following is a discussion of the similarities 

and differences in the results obtained from the present study and literature. It is worth 

mentioning, none of the previous studies considered the whole time-series or SPM as a 

means of comparison within- and between-subject.  

The self-selected walking speed in TFA was lower than HS at each speed 

category which agrees with the literature [37, 235, 255, 256].  

The results obtained from the present study were comparable to the literature 

even though the strides after gait initiation were considered (i.e., transient-state). 

Moreover, the muscle activation patterns of HS in the present study were comparable to 

the study conducted by [52] on HS during four steps from gait initiation as well as a study 

conducted by [96] during steady-state walking. In addition, the major and minor bursts 

occurred during transient-state gait are approximately within the same range of the 

previous findings [96, 118].  

Previous studies reported [52, 62-64] HS TA contraction increased when walking 

speed increased, and TA coincided with the triceps surae deactivation during gait 

initiation which agreed with the results obtained in the present study. 

Jaegers et al. [37, 64] found TFA BFLH activity in ISW was to assist the flexion 

of the knee which was also observed in TFA of present study at fast speed.  

Wentink et al. [36] studied the differences in muscle activities of TFA and HS 

during gait. They reported the prolonged duration of plantarflexor and dorsiflexor of TFA 

IL as compared to control which agree with the muscle activities of TFA triceps surae 

obtained in the present study. However, the TFA TA in the present study was only 

significantly different in terms of magnitude and pattern as the duration of activation was 

not compared objectively in this study. 

The major and minor bursts occurred in TFA IL of the present study are of 

comparable with the findings of the previous literature (Table 3.3) [36, 47].  

Bae et al. [46] found that the hamstring and quadriceps muscle activity and co-

activity of TFA IL were larger compared to the control during steady-state of gait. In the 

present study, significantly greater differences were observed in the TFA activities of VL 

and BFLH during slow walking (Figure 3.74), TFA activities of RF, VM, and BFLH during 

normal (Figure 3.75) and TFA activities of quadriceps and BFLH during fast (Figure 3.76) 

as compared to the HS. They also reported TA and triceps surae activities of TFA IL 

were significantly greater than HS which agrees with the results of this study across 

speeds (Figure 3.74, Figure 3.75 and Figure 3.76) [46].  
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3.5 Summary 

The HD EMG is a reflection of both peripheral and central properties of the 

neuromuscular system. Therefore, the information from the brain, spinal cord, and 

muscular level are converged and extracted by means of a non-invasive approach, i.e., 

surface EMG. This study was carried out to investigate the HD EMG patterns of the HS 

and TFA IL across speeds. Generally, muscle activation patterns were similar. However, 

the magnitude was increased for both HS and TFA with increased transient-state walking 

speed. The muscle activity analysis was performed within- (across all speeds) and 

between-subject (between groups at each speed category) from biomechanics and 

robotic control perspectives. SPM 1D analysis was performed to consider the whole time-

series (i.e., between 0% and 100% time). Significant differences occurred between 

muscle activities of HS and TFA at different regions of the GC especially in plantarflexor 

muscles during stance phase, indicating the TFA adjustment strategy to create large 

push off in the IL to compensate for the loss of muscle in PL during transient-state 

walking. These results have important implications for adjusting the rehabilitation 

strategy to focus on the muscles and the timing where the differences occurred in the 

GC. This may help therapists to reduce the TFA dependency of their IL. Consequently, 

decrease the risk of secondary physical conditions (e.g., osteoarthritis). The information 

may be useful for the prosthetic companies to build prostheses that incorporate 

information from the IL to improve the myoelectric control strategy. 

3.6 Conclusion 

The effect of speeds on both HS and TFA HD sensorimotor Modules and ankle and knee 

co-contraction muscles from biomechanical perspective showed significant differences, 

suggesting neuromuscular adaptation mechanism in both groups to satisfy the kinematic 

and kinetic demands of increasing transient-state walking speed.  

The effect of speeds on HS individual muscle activities (robotic control 

perspective) showed significant differences at different regions of the GC, suggesting, 

walking at different speeds should be considered as a separate task. The effect of 

speeds on TFA individual muscle activities (robotic control perspective) showed 

significant differences in different regions of GC, except in SEM, TFL, and SOL. The 

information from these muscles could be used in the robotic perspective which reduces 

the control complexity of prosthetic devices across different speeds. In addition, the 

temporal features of these muscles would help to control the onset of stance and swing 

at different speeds (i.e., mid-level control).  
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The HD sensorimotor Modules comparison between HS and TFA showed 

significant differences in HD M2 at all speeds. The difference attributed to the TFA longer 

stance phase, heightened activity, prolonged duration and the need for larger push off of 

the HD M2 muscles to compensate for the lack of plantarflexor in the PL. The muscles 

contributed to the ankle co-contraction were significantly different at all speeds, 

suggesting compensatory mechanism required to stabilize TFA IL ankle joint during 

double support before PL enters the single limb support phase which is indicative of 

reduced stability during this time. Individual muscle activity showed no significant 

differences in SEM and TFL activity between HS and TFA at all speeds, suggesting a 

similar neuromotor mechanism underlying the motor control regulation of both groups. 

The significant difference in the muscles is mainly associated with the stance phase 

which could be due to the TFA effort to stabilize their joints and body weight during this 

time. Notwithstanding, the triceps surae showed to be significantly different during swing 

phase, indicating the importance of TFA plantarflexor after push off to propel the body 

forward and decelerate the ankle joint at the end of the swing phase.
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Chapter 4  

MODULAR MOTOR CONTROL IN TRANSFEMORAL 

AMPUTEES DURING TRANSIENT-STATE WALKING  

4.1 Introduction 

This Chapter is the extension of the previous research conducted on high dimensional 

(HD) EMG between healthy subjects (HS) and transfemoral amputees (TFA) during 

transient-state walking at different speeds. The main aim is to investigate changes in HS 

and TFA control strategy during transient-state walking at three different speeds (slow, 

normal, and fast) from a low dimensional motor module viewpoint. Muscle synergy 

analysis is performed on thirteen HS dominant leg and eleven TFA IL. Previous reports 

found that the kinematics, kinetics, and HD muscle activities change with increasing 

steady-state walking speed within the same group of homogenous subjects [88, 318, 

319]. However, there have been no studies considering the transient-state walking in HS 

and TFA in terms of muscle synergies/module motor control. Muscle synergy analysis is 

performed by means of a mathematical technique known as concatenated non-negative 

matrix factorization (CNMF) to linearly decompose HD EMG activation patterns into two 

low dimensional components including time-varying activation coefficient profiles and 

spatially fixed muscle synergy vectors. This study is regarded as exploratory thereby two 

approaches were taken into account, namely biomechanics and robotic control to 

investigate a priori hypotheses. The biomechanics related hypotheses consider the 

covariance between inter-activation coefficient profiles whereas the robotic control 

related hypotheses account for individual activation coefficient profiles. Six hypotheses 

were tested to compare the effect of speed on activation coefficient profile of HS and 

TFA as well as to assess the differences between groups at each speed. Therefore, the 

within-subject analysis was performed for each group separately across speeds, and the 

between-subject analysis accounted for individual speed as a different task under the 

walking control. 

  



136 
 

4.2 Experimental Protocol 

4.2.1 Methodology 

The same subjects, data, and protocol have been used to those of chapter 3 (section 

3.2.1, page 57).  

4.3 Algorithm Description  

CNMF was implemented as a mathematical technique to investigate the differences 

between muscle synergy components of the HS and TFA within- and between-subject.  

4.3.1 Signal Processing 

Prior to the muscle synergy analysis, HD EMG signals were processed implementing 

these subsequent steps: 1) filtering: raw EMG signals were bandpass filtered at a cut off 

frequency of 20-500 Hz with zero-lag Butterworth filter to remove motion artefacts and 

high-frequency noise from the signals; 2) Linear envelope: the muscle activation pattern 

was obtained by full-wave rectification and a low pass filter (zero lag 2nd order 

Butterworth at 6 Hz); 3) amplitude normalization: the data were normalized with respect 

to the peak processed EMG values obtained from all walking trials at different speeds. 

Therefore, all values of each muscle were ranged between zero and one. 4) time 

normalization: the data were then interpolated to 101 data points corresponding to the 

instrumented leg GC (for detailed information on signal processing refer to chapter 3, 

section 3.2.2) [77, 79, 84, 126, 312].  

4.3.2 Non-Negative Matrix Factorization (NMF) 

NMF is a multivariate statistical data analysis technique which linearly decomposes high 

dimensional EMG activation patterns into low dimensional subsets including time-varying 

activation referred to as C (known as activation coefficient profiles, activation coefficient, 

coefficients, neural commands, temporal components, motor primitives) and an 

independent spatially fixed matrix of weights referred to as S (known as muscle 

synergies, motor modules, modules, synergy vectors or weighting coefficients).  

Activation coefficient profiles (C) are sets of basis functions that represent the 

timing of muscle synergies being active over time, i.e., GC [185, 190]. Muscle synergies 

(S) are scalar values which represent the relative weighting of each muscle within the 

corresponding synergy. Therefore, one synergy group or module consists of a muscle 

synergy vector and its corresponding activation coefficient profile [77, 84].    
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4.3.3 NMF Frameworks 

Standard non-negative matrix factorization (NMF) is a multiplicative update rules-based 

algorithm to build two matrices of S and C [174, 218, 320]. Therefore, the basic formula 

for the NMF is (Equation 4.6):  

 A = S*C + E (4.6) 

Where A is an m-by-n initial matrix (m = number of muscles and n = number of time 

points), S is an m-by-k matrix (k = number of synergy groups), C is a k-by-n matrix and 

E is an m-by-n matrix. A is the original EMG signal which represents the normalized 

linear envelope signal, S is an independent of time which represents relative weighting 

of each muscle within each module, C is the time-varying component of the signal which 

represents recruitment of the muscle synergy over time and E is the residual (A – S*C) 

which represents an error matrix. 

4.3.4 Concatenated Non-Negative Matrix Factorization (CNMF) 

Frameworks 

CNMF approach is a new technique which concatenates A and a decomposition vector 

i.e., C such that the original matrix AC is an n-by-m (n = number of subjects × number of 

GCs × 101 and m = number of muscles) and concatenated C, i.e., CC is an n-by-k (k = 

number of synergy groups) whereas S is a k-by-m (fixed synergy) [92, 93, 95, 213, 230]. 

The objective function for CNMF is as follows (Equation 4.7)  

 𝐽 =∑
‖𝐴𝑖

𝑐 − 𝐶𝑖
𝐶𝑆‖𝐹

‖𝐴𝑖
𝑐‖𝐹

𝑁𝑠

𝑖=1

 (4.7) 

Where ‖𝐴𝑖
𝑐‖𝐹 represents Frobenius norm of a vector defined as √tr(AAT) (tr =matrix 

trace and AT = matrix A conjugate transpose, 𝐶𝑖
𝐶

 is a concatenated coefficient, 𝑆 is a 

fixed synergy vector, and 𝑁𝑠 is the number of subjects. In this thesis, CNMF has been 

implemented due to a priori hypothesis that accounts for the similarities in a population 

which can be considered as a model of a variation of homogeneous people rather than 

an individual (more details in chapter 6, section 4.3.6).  

4.3.5 Justification for not Using Other Factorization Techniques  

Apart from NMF or CNMF, other factorization techniques such as principal component 

analysis and independent component analysis can also be used. However, they require 

assumptions such as orthogonality and independency of parameters [78]. On the other 

hand, NMF or CNMF is more physiologically relevant because of the non-negative nature 
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of linear envelope data as well as muscles can only pull (exert a contracting force) rather 

than push which also explains the non-negative parts of the NMF or CNMF algorithm 

[218, 320]. Notwithstanding, it has been shown that the components of muscle synergy 

analysis obtained from the NMF (i.e., muscle synergy vector and activation coefficient 

profiles) are highly correlated to other decomposition methods [185, 190]. Greater 

generalizability of the results can be obtained from the CNMF/NMF because it is the 

most commonly used technique in prior literature.  

4.3.6 Justification for Using CNMF Factorization Techniques over 

NMF 

NMF has been used widely in the literature for static and dynamic activities [77, 79, 83, 

91, 126, 213, 218]. However, repeatability issue is one of the main hurdles of 

implementing NMF. This is due to the inherent property of the NMF algorithms which are 

known to be convex in terms of either C or S [213, 320]. Therefore, NMF solver might 

not find a global minimum for C and S due to 1) scaling optimal C and S by an invertible 

matrix so that their errors remain the same, 2) the order switch of C and S indices, and 

3) the optimization problem might not converge which results in unrepeatable solutions 

[92, 93, 213]. In addition, in CNMF, optimization variables are less due to the 

concatenation of the data (C: number of subjects × (n-by-k), S: k-by-m) as opposed to 

NMF approach which is subject dependent thereby each subject will have (C: (n-by-k), 

S: (k-by-m)) variables. As a result of search space reduction in CNMF, the significant 

decrease can be perceived in the number of local minima as compared to NMF. One of 

the main advantages of CNMF is that the results obtained from S reflect the similarities 

in a population which can be considered as a model of a variation of homogeneous 

people rather than an individual. This also facilitates the comparison between 

populations in terms of biomechanics and robotic control. Therefore, CNMF has shown 

to be reliable and provides a more robust solution.  

4.3.7 CNMF MATLAB Implementation 

Random values of C and S were chosen (rand function in MATLAB) in order to initiate 

the CNMF. An alternating least squares algorithm was implemented to attain optimal C 

and S. These values must satisfy the Frobenius norm to minimize the error J=||A - CS||F.
 

To ensure the value is reliable, perturbation was introduced to the data. In order to find 

the final optimal solution of S and C, three iterations were performed for the whole 

framework. However, the error was not applied in the last iteration [92, 94, 213, 230 ].  

4.3.8 Variance Accounted For (VAF) 
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The number of synergy groups needs to be determined in order to reconstruct the original 

signal. This is done by the changes in total Variance Accounted For (VAF) as a function 

of the number of muscle synergies [79, 84]. The most common technique is to vary the 

number of synergies based on the number of muscles minus one (i.e., 1-9) and select 

the lowest number of synergies that accounted for > 0.80 of VAF (grouped-muscle 

criterion) [136, 179, 214]. The other criterion is to check if the addition of the next synergy 

group will not increase VAF by more than 0.05 [91, 123]. Additionally, the goodness of 

fit between each muscle’s reconstruction and the original signal at each speed is 

performed by means of the coefficient of determination and intra-class correlation 

(individual-muscle criterion).  

VAF was defined according to [204], as the uncentered Pearson correlation coefficient 

between the reconstructed and the original EMG data (Equation 4.8).  

 VAFc = (1 − ∑ ∑ 𝑒𝑜𝑝
2𝑚

𝑝=1
𝑛
𝑜=1 /∑ ∑ 𝐴𝑜𝑝

2𝑚
𝑝=1

𝑛
𝑜=1 ) ×100 (4.8) 

Where e is the error, i.e., A - CS, and the indices o and p represent the rows and the 

columns of the quantities e and A. The VAF > 0.80 has been accepted as a standard 

threshold for determining the appropriate number provided that an extra synergy 

improves the VAF for less than 0.05 [136, 179, 219]. The threshold for each muscle 

reconstruction quality was determined by either R2 > 0.6 [204] or ICC > 0.5 [92-95] 

however; this criterion was not considered as the primary choice to determine the 

number of muscle synergies.  

4.3.9 Synergy Output Normalization 

The activation coefficient profile was normalized with respect to their maximum value. 

Each module was then scaled by the inverse of the normalization activation coefficient 

profile. Hence, the activation coefficient profile and muscle synergy vector are varied 

between 0 and 1 representing temporal modulation of muscle recruitment and amplitude 

information in arbitrary unit [136]. 

4.3.10 Functional Sorting 

After determining the minimum number of synergy groups and normalizing the synergies 

components, functional sorting was implemented to resolve the large differences in 

contribution to the total data variability by rearranging the indices of synergy and 

coefficient of one group based on the other group or between the speeds of the same 

group [81, 84]. Arbitrary reference was chosen to sort muscle synergy based on the 

similarity of S and/or C values by means of maximum R2. The order switch of synergy 

components allows comparison to be made statistically between groups. In this study, 

HS were sorted based on speeds intra-subjectively, i.e., HS normal was used to sort 
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synergy indices of HS slow and HS fast. However, for TFA, two types of sorting were 

performed:  

Sorting 1: The sorting was done pairwise based on HS with similar speed category. That 

is, the synergy indices from TFA on one speed has been sorted based on their 

counterpart HS with the same speed. i.e., TFA slow was sorted based on HS slow, TFA 

normal was sorted based on HS normal, and TFA fast was sorted based on HS fast.  

Sorting 2: Consequently, the previously sorted TFA (based on HS) slow and fast were 

sorted based on TFA normal walking speed for intra-subjective comparison. i.e., TFA 

fast was sorted based on TFA normal, and TFA slow was sorted based on TFA Normal. 

4.3.11 Correlation Analysis 

The coefficient of determination (R2) and intra-class correlation (ICC) was calculated 

between each muscle’s reconstructed and original signal to identify similarity in 

magnitude and pattern, respectively. In addition, to assess the similarity of the 

concatenated C between trials/subjects, ICC based on two-way mixed models for 

average measurements with no interactions (ICC(C,k)) was applied. According to [222], 

ICC < 0.5, 0.5 < ICC and R2 < 0.75, and ICC and R2 > 0.75 imply low, moderate, and 

high correlation, respectively. The degree of similarity in spatially fixed synergy vectors 

of HS and TFA were compared in pairwise fashion within-and between-subject by means 

of R2. 

4.3.12 Statistical Parametric Mapping 

All activation coefficients were statistically evaluated over the GC since the hypothesis 

pertains to the whole times series rather than specific time points. Therefore, the scalar 

and qualitative analyses were not performed in this chapter. Muscle synergies consider 

inter-activation coefficient profiles covariance, however; the hypothesis may pertain to a 

specific coefficient and/or application. Here, statistical analyses were selected based on 

a priori null hypotheses made before the experiment including: 

1) Non-directed null hypothesis (biomechanics perspective): There is no 

difference between all activation coefficient profiles of HS and TFA IL during gait 

at different speeds. 

2) Non-directed null hypothesis (robotic control perspective): There is no 

difference between individual activation coefficient profiles of HS and TFA IL 

during gait at different speeds. 

The biomechanics hypothesis considers the covariance of the inter-activation 

coefficient profile whereas the robotic control hypothesis involves individual activation 

coefficient comparison. The rationale behind the first hypothesis is that the CNS possibly 
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employs activation coefficient profiles to control neuro-modularity of muscle synergies 

simultaneously. In addition, even though these activations are distinct, there is some 

degree of similarity in the temporal characteristics of synergy components as well as 

some commonalities in muscles involved. However, in the robotic control perspective, 

which has application in the controlling of robotic devices for rehabilitation such as the 

clinical state of the art myoelectric prosthesis, individual muscle synergy, i.e., the 

activation coefficient becomes important, and comparison would be useful to distinguish 

between populations. In this chapter, six different null hypotheses were proposed based 

on biomechanics and robotic control perspectives before observing the data. 

4.3.12.1 Within-Subject Hypotheses 

1) Biomechanics null hypothesis 1: There is no effect of walking speeds on HS 

activation coefficient profiles during walking (paired HotellingT2). 

2) Robotic control null hypothesis 2: There is no effect of walking speeds on HS 

individual activation coefficient profiles during walking (RM ANOVA). 

3) Biomechanics null hypothesis 3: There is no effect of walking speeds on TFA 

activation coefficient profiles during walking (paired HotellingT2). 

4) Robotic control null hypothesis 4: There is no effect of walking speeds on TFA 

individual activation coefficient profiles during walking (RM ANOVA). 

4.3.12.2 Between-Subject Hypotheses 

5)  Biomechanics null hypothesis 5: There is no difference between HS and TFA 

activation coefficient profiles during walking at each speed category (Hotelling’s 

T2).  

6) Robotic control null hypothesis 6: There is no difference between individual 

activation coefficient profiles of HS and TFA during walking at each speed (two-

sample t-test). 

To account for inter-activation coefficient profile covariance (biomechanics 

hypotheses), SPM paired Hotelling’s T2 (hypothesis 1 and 3), and SPM Hotelling’s T2 

statistics (hypothesis 5) were used within- and between-subject, respectively. 

Furthermore, a pairwise comparison was made using a Bonferroni correction to correct 

for the alpha, due to the limited multivariate ANOVA functionality in the SPM, within each 

population between speeds to test the biomechanics null hypotheses, i.e., HS (Normal 

vs. Slow), HS (Fast vs. Normal) and HS (Fast vs. Slow). A similar approach was followed 

for the TFA within-subject.  The coefficients were analysed as a 4-component vector-

field I = 4 (number of synergy), J = 24 (total number of subjects HS and TFA), Q = 100 

(i.e. HS = [13x100x4] and TFA = [11x100x4] at each speed). 
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Hotelling’s T2 is conceptually similar to the scalar two-sample t-test, but it is 

equivalent to vector fields of scalar values. The comparison was made between two 

populations with the same speed category (hypothesis 5), i.e., HS slow vs. TFA slow; 

HS normal vs. TFA normal and HS fast vs. TFA fast. The coefficients were analyzed as 

an I, J and Q stated in paired Hotelling’s T2. 

For the robotic control hypotheses, SPM RM ANOVA (hypothesis 2 and 4) and SPM 

two-sample t-test (hypothesis 6) were implemented within- and between-subject, 

respectively. For more information about the SPM statistical tests refer to the literature 

review (Chapter 2). All SPM statistics were implemented in MATLAB R2017 (Mathworks, 

Inc, Natick, MA). 
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4.4 Results 

4.4.1 Analysis of Dimensionality  

4.4.1.1 Within-Subject 

The VAF comparison was performed for each group between speeds. The group-muscle 

criterion is to select the lowest number of synergies that accounted for > 0.80, and the 

next synergy group will not increase VAF by more than 0.05. 

HS VAF 

Figure 4.1 shows VAF of HS during transient-state walking at different speeds. Four to 

seven synergy groups in slow and normal, and three to seven in fast met the group-

muscle criterion (< 80%). However, four synergies were selected as the optimal number 

of groups based on the 5% criterion for all speeds.    

 

Figure 4.1: VAF comparison as a function of the number of synergies in HS at 
slow, normal and fast speeds. 

TFA VAF 

Figure 4.2 shows VAF of TFA during transient-state walking at different speeds. Three 

to seven synergy groups in slow and normal and two to seven in fast met the group-

muscle criterion (> 80%). However, four synergies were selected as the optimal number 

of groups based on the 5% criterion for all speeds.   

 

Figure 4.2: VAF comparison as a function of the number of synergies in TFA at 
slow, normal and fast speeds.  

 

 



144 
 

4.4.1.2 Between-Subject 

The VAF comparison between groups was performed pairwise in terms of gait speed. 

The group-muscle criterion is to select the lowest number of synergies that accounted 

for > 0.80.  

HS vs.TFA (Slow) 

Figure 4.3 illustrates HS and TFA analysis of dimensionality during slow walking where 

four modules accounted for 85 % and 88% of the total VAF, respectively. Three synergy 

groups were lower than the critical threshold in HS (79%) however, TFA showed a VAF 

value of 83%. Additional of a fifth synergy increased the HS VAF to 87% and TFA VAF 

to 90.9% which was less than the 5% criterion.    

 

Figure 4.3: VAF comparison as a function of the number of synergy groups in HS 
and TFA at slow speed. 

HS vs.TFA (Normal) 

Figure 4.4 illustrates HS and TFA VAF values of 85% and 86% when four synergy groups 

were selected during normal walking, respectively. The third module was able to account 

for 79% and 81% of the original EMG variance in HS and TFA, respectively. An additional 

fifth synergy produced less than 5% improvement (HS = 89% and TFA = 89%).  

 

Figure 4.4: VAF comparison as a function of the number of synergy groups in HS 
and TFA at normal speed. 
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HS vs.TFA (Fast) 

Figure 4.5 illustrates four modules could reproduce the original EMG data with a VAF 

value of 86% and 88% in HS and TFA during fast walking, respectively. However, the 

third synergy groups also passed the critical threshold in both groups and illustrated HS 

VAF of 82% and TFA VAF of 85%. Additional of a fifth synergy increased the VAF to 

89% in HS and 91% in TFA which was less than the 5% criterion.  

 

Figure 4.5: VAF comparison as a function of the number of synergy groups in HS 
and TFA at fast speed. 

4.4.2 Correlation Analysis Using R2 (Individual-Muscle Criterion) 

R2 was performed to assess how well the original muscle signal can be replicated by the 

individual muscle signal reconstruction. R2 is a good statistical analysis that accounts for 

the magnitude of the signal and ranges from 0 (low correlation) to 1 (strong correlation). 

4.4.2.1 Within-Subject  

HS R2 

Figure 4.6 shows moderate to strong correlation between reconstructed and original 

signals in the HS while walking at three different speeds. The lowest and the highest 

correlation was observed in TFL (0.52) during slow and in VL (0.98) during normal 

walking, respectively.  

 

Figure 4.6 HS R2 between the reconstructed and original muscle signal when four 
synergy groups were selected during slow, normal and fast speeds. Standard 

error bars indicate ± one.  
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TFA R2 

Figure 4.7 shows a correlation between the reconstructed and the original individual 

muscle signal in TFA at three different speeds. All muscles within their respective speeds 

showed moderate to high correlation. The lowest and the highest R2 associated with 

SEM (0.53) and TA (0.98) during normal walking, respectively.  

 

Figure 4.7: TFA R2 between the reconstructed and original muscle signal when 
four synergy groups were selected during slow, normal and fast speeds. 

Standard error bars indicate ± one. 

4.4.2.2 Between-Subject  

HS vs.TFA (Slow) 

Figure 4.8 shows a reasonable correlation between the reconstructed individual muscle 

signal and the original signal in HS and TFA during slow transient-state walking. The 

lowest and the highest correlation in HS were found in TFL (0.52) and VM (0.93) whereas 

in TFA, SEM (0.54) and SOL (0.95), respectively.  

 

Figure 4.8: HS R2 between the reconstructed and original muscle signal when 
four synergy groups were selected at slow speed. Standard error bars indicate ± 

one. 

HS vs.TFA (Normal) 

Figure 4.9 shows moderate to strong correlation of the individual reconstructed muscle 

signal and the original signal during normal transient-state walking. HS lowest and 

highest correlation were observed in BFLH (0.56) and VL (0.98), respectively. In TFA, 

the lowest correlation was shown in SEM (0.53) and the highest in TA (0.98).  
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Figure 4.9: HS R2 between the reconstructed and original muscle signal when 
four synergy groups were selected at normal speed. Standard error bars indicate 

± one. 

HS vs.TFA (Fast) 

Figure 4.10 shows moderate to high correlation between reconstructed and original 

muscle signals during fast transient-state walking. The lowest and the highest correlation 

in HS were found in BFLH (0.58) and TA (0.96) whereas in TFA, TFL (0.58) and TA 

(0.98) showed the lowest and the highest correlation, respectively.  

 

Figure 4.10: HS R2 between the reconstructed and original muscle signal when 
four synergy groups were selected at fast speed. Standard error bars indicate ± 

one. 

4.4.3 Correlation Analysis Using ICC  

As opposed to R2, ICC takes the signal pattern comparison into account and allows for 

multiple comparisons to be made. ICC was used for two purposes in this study: 1) to 

assess the similarities between reconstructed and original muscle EMG signal (within-

subject and between-subject for individual-muscle criterion); and 2) to evaluate the 

repeatability of coefficients between trials/subjects. 
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4.4.3.1 Within-Subject  

HS ICC 

Figure 4.11 shows moderate to strong correlation between reconstructed and original 

signals in HS at three different speeds. The results agree with the HS R2.  

 

Figure 4.11: HS ICC between the reconstructed and original muscle signal when 
four synergy groups were selected during slow, normal and fast speeds. 

Standard error bars indicate ± one. 

TFA ICC 

Figure 4.12 shows a correlation between the reconstructed and the original individual 

muscle signals in TFA at three different speeds. All muscles within their respective 

speeds showed moderate to high correlation. The results agree with the TFA R2.  

 

Figure 4.12: TFA ICC between the reconstructed and original muscle signal when 
four synergy groups were selected during slow, normal and fast speeds. 

Standard error bars indicate ± one. 
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4.4.3.2 Between-Subject  

HS vs.TFA (Slow) 

In HS, the lowest and highest similarities between reconstructed and original signals 

were observed in TFL (0.52) and VM (0.93) respectively, whereas in TFA, SEM and SOL 

ICC showed the lowest and highest values of 0.54 and 0.95 respectively (Figure 4.13).  

 

Figure 4.13: HS ICC between the reconstructed and original muscle signal when 
four synergy groups were selected at slow speed. Standard error bars indicate ± 

one. 

HS vs.TFA (Normal) 

In HS, the lowest and highest similarities between reconstructed and original signals 

were observed in BFLH (0.53) and VL (0.98) respectively, whereas in TFA, SEM and TA 

ICC showed the lowest and highest values of 0.53 and 0.98 respectively (Figure 4.14).  

 

Figure 4.14: HS ICC between the reconstructed and original muscle signal when 
four synergy groups were selected at normal speed. Standard error bars indicate 

± one. 
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HS vs.TFA (Fast) 

In HS, the lowest and highest similarities between reconstructed and original signals 

were observed in TA (0.96) and BFLH (0.58) respectively, whereas in TFA, TA and TFL 

ICC showed the lowest and highest values of 0.98 and 0.58 respectively (Figure 4.15).  

 

Figure 4.15: HS ICC between the reconstructed and original muscle signal when 
four synergy groups were selected at fast speed. Standard error bars indicate ± 

one. 

4.4.4 CNMF Activation Coefficient Profile Repeatability 

4.4.4.1 Within-Subject 

As shown in Table 4.1 and Table 4.2, In both groups, high repeatability (ICC > 0.75) was 

perceived as the ICC value for between trials/subjects similarities in each speed category 

was above 0.80 except in TFA C4 normal speed. ICC for TFA C4 showed to be 0.29, 

indicating poor repeatability (ICC < 0.5). 

Table 4.1: HS activation coefficient profile repeatability between trials/subjects 
using ICC. 

HS intra-class correlation 

 C1 C2 C3 C4 

Slow 0.98 0.99 0.95 0.97 

Normal 0.99 0.99 0.97 0.91 

Fast 0.99 0.99 0.99 0.97 

 

Table 4.2: TFA activation coefficient profile repeatability between trials/subjects 
using ICC. 

TFA intra-class correlation 

 C1 C2 C3 C4 

Slow 0.89 0.80 0.97 0.87 

Normal 0.98 0.94 0.90 0.29 

Fast 0.98 0.97 0.94 0.85 
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4.4.5 Muscle Synergy Analysis Description 

4.4.5.1 Within-Subject 

As shown in Figure 4.16 (A) and (B), the descriptive analysis of HS muscle synergy 

vectors (S1-S4) and activation coefficient profiles (C1-C4) was investigated during 

transient-state walking across speeds, respectively (summary of results in Table 4.3 to 

Table 4.6). 

As shown in Figure 4.17 (A) and (B), the descriptive analysis of TFA muscle 

synergy vectors (S1-S4) and activation coefficient profiles (C1-C4) was investigated 

during transient-state walking across speeds, respectively (summary of results in Table 

4.7 to Table 4.10) 

HS Muscle Synergy Description 

HS synergy 1 (S1) consisted of the activation of VM in slow (during ES and TSW), VM, 

TFL and TA in normal (during ES, ISW, and TSW) and TA in fast walking (during ES, 

ISW, and TSW) (Table 4.3). HS synergy 2 (S2) was associated with the forward 

propulsion subtask across speeds, in which plantarflexor muscles were primarily 

involved (Table 4.4). HS synergy 3 (S3) consisted of the activation of knee extensors in 

ES and TSW across speeds (Table 4.5). HS synergy 4 (S4) primary activated knee flexor 

in ES and transition from swing to stance phase across speeds (Table 4.6). HS muscle 

synergy description is based on Figure 4.16 (A) and (B). 

TFA Muscle Synergy Description 

TFA S1 was related to the recruitment of TFL in slow (during ES and TSW), SOL and 

TFL in normal (during ES-MS, TS, and TSW), and knee extensors in fast walking (during 

ES-MS) across speeds (Table 4.7). TFA S2 related to body support and forward 

propulsion, in which the plantarflexor muscles were primarily involved across speeds 

(Table 4.8). TFA S3 was related to the activation of the knee extensors during ES and 

TSW of slow and normal walking and SEM and VL during ES and MS-TSW of fast 

walking (Table 4.9). TFA S4 related to the leg swing as well as the transition from swing 

to stance, in which the dorsiflexor muscle was primarily involved across speeds (Table 

4.10). TFA muscle synergy description is based on Figure 4.17 (A) and (B). 
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Figure 4.16: HS (A) muscle synergy vectors (S1-S4) and (B) activation coefficient 
profiles (C1-C4) during slow, normal and fast speeds. In (A), the bars represent 
muscle weightings within each synergy group. In (B), the thick lines represent 
the mean trajectory of activation coefficient profiles and the shaded area ± one 

standard deviation from the mean.  

  

(A) 

(B) 
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Table 4.3: HS muscle weightings contribution and corresponding activation 
timing profile of S1 across speeds. Early, mid and terminal stance represent ES, 
MS, and TS; initial, mid and terminal swing represents ISW, MSW, and TSW; the 

whole stance and swing phase represents SP and SW respectively. 

HS synergy 1 (All speeds) 

Module Muscle Activation 
 Primary* Secondary*  

Fast TA 
VM, RF, GM, BFLH, VL, SEM, 

SOL 
IC-LR, 

ISW, TSW 

Normal VM, TFL, TA RF, BFLH, SOL, GM, GL 
IC-LR, 

ISW, TSW 

Slow VM BFLH, TA, GL, GM, TFL, VL 
IC-LR, 
TSW 

* Muscle weighting: primary > 0.5, and secondary < 0.05  

Table 4.4: HS muscle weightings contribution and corresponding activation 
timing profile of S2 across speeds.  

HS synergy 2 (All speeds) 

Module Muscle Activation 
 Primary* Secondary*  

Fast SOL, GM, GL TA, BFLH, RF, SEM, TFL TS 

Normal SOL, GM, GL TA, RF, BFLH, TFL TS 

Slow SOL, GL, GM TFL, RF, TA, BFLH TS 
* Muscle weighting: primary > 0.5, and secondary < 0.05  

Table 4.5: HS muscle weightings contribution and corresponding activation 
timing profile of S3 across speeds.  

HS synergy 3 (All speeds) 

Module Muscle Activation 
 Primary* Secondary*  

Fast RF, VL, TFL, VM BFLH, SOL, VL 
ES-MS, 

TSW 

Normal VL RF, BFLH, GL, SEM, VM, TA, SOL 
IC-LR, 
TSW 

Slow RF, VL TA, BFLH, TFL, SOL, GM, GL, VM IC-LR 
* Muscle weighting: primary > 0.5, and secondary < 0.05  

Table 4.6: HS muscle weightings contribution and corresponding activation 
timing profile of S4 across speeds. 

HS synergy 4 (All speeds) 

Module Muscle Activation 
 Primary* Secondary*  

Fast SEM BFLH, VM, TFL, VL, TA, GM, SOL 
IC-LR, 
MSW-
TSW 

Normal SEM TA, TFL, GM, VL, SOL 
IC-LR, 
TSW 

Slow SEM TA, TFL, SOL, RF, GM, VM, BFLH 
IC-LR, 
TSW 

 



154 
 

  

  

  

  

Figure 4.17: TFA (A) muscle synergy vectors (S1-S4) and (B) activation 
coefficient profiles (C1-C4) during slow, normal and fast speeds. In (A), the bars 
represent muscle weightings within each synergy group. In (B), the thick lines 
represent the mean trajectory of activation coefficient profiles and the shaded 

area ± one standard deviation from the mean. 

 

(A) 

(B) 
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Table 4.7: TFA muscle weightings contribution and corresponding activation 
timing profile of S1 across speeds. 

TFA synergy 1 (All speeds) 

Module Muscle Activation 
 Primary* Secondary*  

Fast VM, RF, VL TFL, BFLH, SOL, GM ES, TSW 

Normal SOL, TFL GM, BFLH, VM, RF, VL 
ES*-MS, 
TS, TSW 

Slow TFL TA, VL, SOL, RF, GM, SEM IC-LR, MS 
* Muscle weighting: primary > 0.5, and secondary < 0.05  

Table 4.8: TFA muscle weightings contribution and corresponding activation 
timing profile of S2 across speeds.  

TFA synergy 2 (All speeds) 

Module Muscle Activation 
 Primary Secondary  

Fast SOL, GM, GL BFLH, RF, TFL MS, TS 

Normal GL, SOL GM, SEM, BFLH, VL, RF MS, TS 

Slow SOL GM, GL, BFLH, RF, VM, SEM MS, TS 
* Muscle weighting: primary > 0.5, and secondary < 0.05  

Table 4.9: TFA muscle weightings contribution and corresponding activation 
timing profile of S3 across speeds.  

TFA synergy 3 (All speeds) 

Module Muscle Activation 
 Primary* Secondary*  

Fast SEM, VL BFLH, GL, TA, RF, GM, TFL 
ES, MSW-

TSW 

Normal VL RF, SEM, VM, TA, GL, BFLH, TFL 
IC-LR, 
TSW 

Slow VM, RF, VL 
BFLH, GL, TFL, TA, GM, SOL, 

SEM 
IC-LR, 
TSW 

* Muscle weighting: primary > 0.5, and secondary < 0.05  

Table 4.10: TFA muscle weightings contribution and corresponding activation 
timing profile of S4 across speeds.  

TFA synergy 4 (All speeds) 

Module Muscle Activation 
 Primary* Secondary*  

Fast TA TFL, VM, SOL, SEM 
IC-LR, TS, 
ISW, TSW 

Normal TA GM, SOL, SEM, VL, TFL 
IC-LR, TS-
PSW-ISW, 

TSW 

Slow TA, SEM GL, VL, GM, BFLH 
IC-LR, 

PSW-ISW, 
TSW 

* Muscle weighting: primary > 0.5, and secondary < 0.05  
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4.4.5.2 Between-Subject 

Descriptive analysis was done between HS and TFA muscle synergy vectors (S1-S4) 

and activation coefficient profiles (C1-C4) during transient-state walking at each speed 

category. 

HS Muscle Synergy Description (Slow) 

In HS during slow walking, S1 showed a high activation of VM and to a lesser extent 

BFLH, TA and GL during ES (IC-LR) and TSW. S2 consisted of activity in TS primarily 

from SOL and a lesser activity from GM and GL. S3 was comprised primarily of activity 

in RF and VL and lower activation of TA, BFLH during ES. S4 was mainly composed of 

SEM activation as a primary muscle and TA, TFL, SOL, RF activations as secondary 

muscles during ES and TSW (Table 4.11 and Figure 4.18).  

Table 4.11: HS muscle weightings contribution and activation timing profile 
within each corresponding module during slow speed.  

HS (Slow) 

Module Muscle Activation 
 Primary* Secondary*  

S1 VM BFLH, TA, GL, GM, TFL, VL 
IC-LR, 
TSW 

S2 SOL, GL, GM TFL, RF, TA, BFLH TS 

S3 RF, VL TA, BFLH, TFL, SOL, GM, GL, VM IC-LR 

S4 SEM TA, TFL, SOL, RF, GM, VM, BFLH 
IC-LR, 
TSW 

* Muscle weighting: primary > 0.5, and secondary < 0.05  

TFA Muscle Synergy Description (Slow) 

In TFA during slow walking, S1 was composed of mainly TFL high activation and a lesser 

activity from TA, VL and SOL during ES and MS. S2 consisted of activity in MS and TS 

from SOL and to a lesser extent from GM and GL. S3 comprised primary activity in 

quadriceps and lower activations of BFLH and GL during ES, and TSW. S4 was mainly 

composed of TA and SEM activations as primary muscles and GL and VL activations as 

secondary muscles during ES, PSW-ISW, and TSW (Table 4.12 and Figure 4.18).  

Table 4.12: TFA muscle weightings contribution and activation timing profile 
within each corresponding module during slow speed.  

TFA (Slow) 

Module Muscle Activation 
 Primary* Secondary*  

S1 TFL TA, VL, SOL, RF, GM, SEM IC-LR, MS 

S2 SOL GM, GL, BFLH, RF, VM, SEM MS, TS 

S3 VM, RF, VL 
BFLH, GL, TFL, TA, GM, 

SOL, SEM 
IC-LR, TSW 

S4 TA, SEM GL, VL, GM, BFLH 
IC-LR, PSW-

ISW, TSW 
* Muscle weighting: primary > 0.5, and secondary < 0.05   
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HS vs.TFA (Slow) 

  

  

  

  

Figure 4.18: (A) muscle synergy vectors (S1-S4) and (B) activation coefficient 
profiles (C1-C4) for HS and TFA groups during slow speed. In (A), bars represent 
weighting of each muscle within each synergy group. In (B), thick lines represent 

the mean trajectory of the activation coefficient profiles and the shaded area ± 
one standard deviation from the mean.   

(A) 

(B) 
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HS Muscle Synergy Description (Normal) 

In HS during normal walking, S1 showed a high activation of VM, TFL, and TA as primary 

muscles and to a lesser extent RF and BFLH during ES, ISW, and TSW. S2 consisted 

of activity in TS primarily from triceps surae. S3 was comprised primarily of activity VL 

and lower activation of RF during ES and TSW. S4 was mainly composed of SEM 

activation as a primary muscle and TA, TFL and GM activations as secondary muscles 

during ES and TSW (Table 4.13 and Figure 4.19). 

Table 4.13: HS muscle weightings contribution and activation timing profile 
within each corresponding module during normal speed.  

Healthy (Normal) 

Module Muscle Activation 
 Primary* Secondary*  

S1 VM, TFL, TA RF, BFLH, SOL, GM, GL 
IC-LR, 

ISW, TSW 

S2 SOL, GM, GL TA, RF, BFLH, TFL TS 

S3 VL 
RF, BFLH, GL, SEM, VM, TA, 

SOL 
IC-LR, 
TSW 

S4 SEM TA, TFL, GM, VL, SOL 
IC-LR, 
TSW 

* Muscle weighting: primary > 0.5, and secondary < 0.05  

TFA Muscle Synergy Description (Normal) 

In TFA during normal walking, S1 was composed of mainly SOL and TFL high activations 

and a lesser activity from GM, BFLH, GL and TFL in ES to MS, TS as well as TSW. S2 

consisted of activity in MS and TS from GL and SOL, and to a lesser extent from GM. 

S3 comprised primary activity in VL and lower activations of RF, SEM, VM, TA, GL, and 

BFLH during ES and TSW. S4 was mainly composed of TA activation as a primary 

muscle and GM, SOL and SEM activations as secondary muscles during ES, TS to PSW, 

ISW, and TSW (Table 4.14 and Figure 4.19).  

Table 4.14: TFA muscle weightings contribution and activation timing profile 
within each corresponding module during normal speed.  

Transfemoral (Normal) 

Module Muscle Activation 
 Primary* Secondary*  

S1 SOL, TFL GM, BFLH, VM, RF, VL ES-MS, TS, TSW 

S2 GL, SOL GM, SEM, BFLH, VL, RF MS, TS 

S3 VL 
RF, SEM, VM, TA, GL, 

BFLH, TFL 
IC-LR, TSW 

S4 TA GM, SOL, SEM, VL, TFL 
IC-LR, TS-PSW, 

ISW, TSW 
* Muscle weighting: primary > 0.5, and secondary < 0.05  
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HS vs.TFA (Normal)  

  

  

  

  

Figure 4.19: (A) muscle synergy vectors (S1-S4) and (B) activation coefficient 
profiles (C1-C4) for HS and TFA groups during normal speed. In (A), bars 

represent weighting of each muscle within each synergy group. In (B), thick lines 
represent the mean trajectory of the activation coefficient profiles and the 

shaded area ± one standard deviation from the mean. 

  

(A) 

(B) 
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HS Muscle Synergy Description (Fast) 

In HS during fast walking, S1 showed a high activation of TA and to a lesser extent VM 

and RF during ES, ISW, and TSW. S2 consisted of activity in TS primarily from triceps 

surae. S3 was comprised primarily of activity RF, Vasti and TFL and a lesser activity of 

BFLH during ES to MS and TSW. S4 was mainly composed of SEM activation as a 

primary muscle and BFLH, Vasti and TFL activations as secondary muscles during ES 

and MSW to TSW (Table 4.15 and Figure 4.20). 

Table 4.15: HS muscle weightings contribution and activation timing profile 
within each corresponding module during fast speed.  

Healthy (Fast) 

Module Muscle Activation 
 Primary* Secondary*  

S1 TA 
VM, RF, GM, BFLH, VL, SEM, 

SOL 
IC-LR, 

ISW, TSW 

S2 SOL, GM, GL TA, BFLH, RF, SEM, TFL TS 

S3 RF, VL, TFL, VM BFLH, SOL, VL 
ES-MS, 

TSW 

S4 SEM 
BFLH, VM, TFL, VL, TA, GM, 

SOL 

IC-LR, 
MSW-
TSW 

* Muscle weighting: primary > 0.5, and secondary < 0.05  

TFA Muscle Synergy Description (Fast) 

In TFA during fast walking, S1 was composed of mainly TA high activation and a lesser 

activity from TFL during ES, TS, ISW, and TSW. S2 consisted of activity in MS and TS 

from triceps surae and to a lesser extent from BFLH. S3 comprised primary activity in 

quadriceps and lower activations of TFL and BFLH during ES and TSW. S4 was mainly 

composed of SEM and VL activations as primary muscles and BFLH, GL, TA and RF 

activations as secondary muscles during ES, MSW to TSW (Table 4.16 and Figure 4.20).  

Table 4.16: TFA muscle weightings contribution and activation timing profile 
within each corresponding module during fast speed.  

Transfemoral (Fast) 

Module Muscle Activation 
 Primary* Secondary*  

S1 TA TFL, VM, SOL, SEM 
IC-LR, TS, 
ISW, TSW 

S2 SOL, GM, GL BFLH, RF, TFL MS, TS 

S3 VM, RF, VL TFL, BFLH, SOL, GM ES, TSW 

S4 SEM, VL BFLH, GL, TA, RF, GM, TFL 
ES, MSW-

TSW 
* Muscle weighting: primary > 0.5, and secondary < 0.05  
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HS vs.TFA (Fast) 

  

  

  

  

Figure 4.20: (A) muscle synergy vectors (S1-S4) and (B) activation coefficient 
profiles (C1-C4) for HS and TFA groups during fast speed. In (A), bars represent 

weighting of each muscle within each synergy group. In (B), thick lines represent 
the mean trajectory of the activation coefficient profiles and the shaded area ± 

one standard deviation from the mean. 

  

(A) 

(B) 
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4.4.6 Module Contribution 

The contribution of each module has been calculated with respect to the total synergies 

contribution at each speed category (Figure 4.21).   

   

Figure 4.21: Individual synergy group contribution with respect to the total 
contribution between HS and TFA at (A) slow, (B) normal and (C) fast.  

Table 4.17 shows the functional muscle group corresponded to the highest and 

lowest contributed module. In slow gait, S4 (mainly related to knee flexors) for HS and 

S3 (mainly activated knee extensors) for TFA had the highest contribution. However, the 

contribution of S3 (mainly activated knee extensor) and S2 (mainly activated 

plantarflexors) for HS and TFA were the lowest, respectively. In walking, the highest and 

lowest module contribution of HS belonged to S1 (mainly activated knee extensors) and 

S4 (mainly activated knee flexors whereas, in TFA, S3 (mainly activated knee extensors) 

and S4 showed (mainly activated dorsiflexor) the highest and lowest contribution, 

respectively. In fast gait, the highest and lowest module contribution of HS was observed 

in S3 (mainly activated knee extensor) and S1 (mainly activated dorsiflexor) however, 

S4 (Mainly activated knee flexors) had the highest and S3 (mainly activated knee 

extensors) the lowest module contribution in TFA. 

Table 4.17: Highest and lowest muscle synergy group contribution and 
corresponding muscle group association. 

 

Highest Lowest 

HS TFA HS TFA 

Slow 
S4  

(Knee flexors) 

S3  

(knee extensors) 

S3  

(knee extensors) 

S2 
(plantarflexors) 

Normal 
S1  

(knee extensors) 

S3  

(knee extensors) 

S4  

(knee flexors) 

S4  

(dorsiflexor) 

Fast 
S3  

(knee extensors) 

S4  

(knee flexors) 

S1  

(dorsiflexor) 

S3  

(knee extensors) 

 

 

  

(A) (B) (C) 
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4.4.7 Statistical Analyses (Spatially Fixed Muscle Synergies) 

R2 was calculated intra-subjectively between speeds as a pairwise analysis to investigate 

the correlation between two muscle synergies. 

4.4.7.1 Within-Subject  

Speed Dependence of the HS Muscle Synergy Vectors 

The goodness of fit between HS normal-slow speed showed moderate to strong 

correlation between modules. The correlation between HS normal-slow speed showed 

low (S3), moderate (S1, S4), and strong correlation (S2) between synergy groups. The 

comparison between HS slow-fast speed showed a low correlation in S1, the moderate 

correlation in S3 and S4, and strong correlation in S2.  

As shown in Table 4.18, HS normal-slow R2 showed moderate (S1 and S3) and 

strong (S2 and S4) correlations between muscle synergies. Comparison between 

modules of normal and fast illustrated low (S3), moderate (S1) and strong (S2 and S4) 

correlations. The results obtained from muscle synergies of HS during fast-slow gait 

exhibited low (S1), moderate (S3) and strong (S2 and S4) correlations. The average 

module goodness of fit for each muscle synergy across speeds illustrated a moderate 

correlation of S1 (0.43) and S3 (0.45), as well as a strong correlation of S2 (0.92) and 

S4 (0.79). Overall average R2 of all four modules combined (S1-S4) in pairwise speed 

comparison showed strong (R2
Average = 0.75), moderate (R2

Average = 0.56) and moderate 

(R2
Average = 0.63) in slow-normal, normal-fast and fast-slow walking, respectively.  

Table 4.18: R2 values for four muscle synergies in HS at different speeds; The 
module average obtained column wise represents the average correlation of 
each module with respect to all paired-wise speed comparison. The overall 

average value obtained row-wise represents the average correlation of all muscle 
synergies with respect to each pair-wise speed comparison. 

 S1 S2 S3 S4 Overall Average 

Normal vs. 
Slow 

0.6 0.95 0.57 0.89 0.75 

Normal vs. 
Fast 

0.53 0.88 0.12 0.71 0.56 

Fast vs. 
Slow 

0.17 0.94 0.66 0.76 0.63 

Module 
Average 

0.43 0.92 0.45 0.79  

Speed Dependence of the TFA Muscle Synergy Vectors/Modules 

As shown in Table 4.19, TFA normal-slow R2 showed a low correlation of S1, moderate 

correlation of S4 and a strong correlation of S2 and S3. The comparison between 

modules of normal and fast illustrated low (S1), moderate (S3) and strong (S2 and S4) 

correlations. The correlation between TFA fast-slow R2 revealed low (S1 and S3), 
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moderate (S4) and strong (S2) relationship between muscle synergies. The module 

average goodness of fit for each muscle synergy across speeds illustrated low 

correlation for S1 (0.04), moderate correlation of S3 (0.53) and S4 (0.65) as well as a 

strong correlation for S2 (0.83). Overall average R2 of all four modules combined (S1-

S4) showed low correlation between fast-slow (R2
Average = 0.40) and moderate correlation 

between normal-slow (R2
Average = 0.53) and normal-fast (R2

Average = 0.61) gait.  

Table 4.19: R2 values for four muscle synergies in TFA at different speeds; Refer 
to Table 4.18 for the meaning of the module average and the overall average. 

 S1 S2 S3 S4 
Overall 
Average 

Normal vs. Slow 0 0.78 0.72 0.61 0.53 

Normal vs. Fast 0.13 0.83 0.66 0.83 0.61 

Fast vs. Slow 0 0.89 0.2 0.5 0.40 

Module Average 0.04 0.83 0.53 0.65  

4.4.7.2 Between-Subject (Muscle Synergy Vector) 

HS vs. TFA (Slow)  

The muscle synergies comparison between HS and TFA showed a poor correlation of 

S1 and S4, moderate correlation of S3 and a strong correlation of S2 during slow walking 

(Table 4.20). 

HS vs. TFA (Normal)  

In normal walking, the differences between modules illustrated S1 and S4 poor, S3 

moderate and S2 strong correlation (Table 4.20). 

HS vs. TFA (Fast)  

Moderate (S4) to strong (S1, S2, and S3) correlations were observed between HS and 

TFA during fast walking (Table 4.20).    

Table 4.20: The comparison between HS and TFA at each speed by means of R2. 

R2 S1 S2 S3 S4 

Slow 0.00 0.91 0.63 0.33 

Normal 0.41 0.80 0.66 0.00 

Fast 0.76 0.97 0.92 0.63 
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4.4.8 Statistical Analyses (Activation Coefficient Profile) 

4.4.8.1 Within-Subject (Biomechanics Perspective) 

Due to the limitations of SPM, repeated-measures MANOVA could not be performed. In 

addition, the design of this study is regarded as exploratory which searches for the effect 

of speeds on temporal components of muscle synergies in each group separately. 

Therefore, paired Hoteling’s T2 for hypothesis 1 and 3 were implemented using a 

Bonferroni correction across three speeds. SPM vector field analysis was performed 

pairwise between speeds. The threshold was corrected for the Bonferroni threshold of 

0.02. 

Speed Dependence of the HS Activation Coefficient Profile 

As shown in Figure 4.22, no significant differences were found in C (fast-normal) and C 

(fast-slow). In normal-slow speed comparison, HS C was significantly greater at 0-13% 

(p<0.001), 38-39% (p=0.041), 61-69% (p<0.001), 92-93% (p=0.030) and 97-100% 

(p=0.011). Therefore, null hypothesis 1 was rejected as a significant difference was 

observed in coefficients of HS.  

  

 

Figure 4.22: HS post hoc SPM vector field results (paired Hotelling’s T2 test) 
depicting significant differences between speeds. The red dashed lines indicate 

critical thresholds of T2* = 83.273, 80.709 and 81.242 for (A), (B), and (C), 
respectively. Suprathreshold clusters are shown in grey where p<0.02.  

  

(A) (B) 

(C) 
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Speed Dependence of the TFA Activation Coefficient Profile 

As shown in Figure 4.23, no significant differences were found in C (fast-normal). In 

normal-slow and fast-slow speed comparison, TFA C was significantly greater at 0-2% 

(p=0.049) and 95-100% (p=0.002), respectively. Therefore, null hypothesis 3 was 

rejected as a significant difference was observed in coefficients of TFA.  

  

 

Figure 4.23: TFA post hoc SPM vector field results (paired Hotelling’s T2 test) 
depicting significant differences between speeds. The red dashed lines indicate 

critical thresholds of T2* = 130.348, 127.465 and 137.54 for (A), (B), and (C), 
respectively. Suprathreshold clusters are shown in grey where p<0.02. 

4.4.8.2 Within-Subject (Robotic Control Perspective) 

A priori hypothesis in robotic control approach was to investigate the effect of speeds on 

individual activation coefficient profiles during gait in each group separately. Therefore, 

one-way repeated-measures ANOVA (represented as a black trajectory in Figure 4.24) 

was implemented to investigate the within-subject F statistics for hypothesis 2 and 4. It 

is worth mentioning that one-way ANOVA was performed between-subject for 

demonstration (represented as a red trajectory in Figure 4.24) however, this is not an 

appropriate test since the same subjects performed transient-state walking at different 

speeds. Moreover, the between-subject analysis yields a small F value because 

between-subject variability is large relative to between-condition variability. The within-

subject analysis yields a large F value because paired effects are large relative to paired 

variability. Post hoc analysis was done to investigate further the differences between 

(A) (B) 

(C) 
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speeds. Multiple post hoc paired or two sample t-test increases the chances of making 

a type I error (false positive). Therefore, alpha was corrected according to the number of 

comparisons made to decrease the likelihood of a type I error, to increase the critical 

threshold, and to ensure the false positive error rate is appropriate for the number of 

comparisons made. In this case, a Bonferroni threshold of p = 0.017 was adopted for the 

three walking speeds to retain a family-wise error of α = 0.05 which was then used for 

inference calculation.   

Speed Dependence of the HS Activation Coefficient Profile 

As shown in Figure 4.24, statistically significant differences occurred in HS C1 across 

different speeds. Three suprathreshold clusters were found at 6-18% (p=0.002), 56-64% 

(p=0.008) and 98-100% (p=0.047) GC intra-subjectively. The between-subject analysis 

showed one significant statistical region (11-17%) which peaked at 14% GC. Since 

significant differences were found in the ANOVA within-subject, post hoc paired t-test 

was conducted in pairwise fashion between speeds, respectively (Figure 4.25). 

As shown in Figure 4.26, SPM analysis revealed two suprathreshold clusters 

between three speeds in C2 intra-subjectively at approximately 2-8% (p=0.012) and 34-

44% (p=0.001) GC. No significant differences were found between-subject. Post hoc 

paired t-test showed significant differences between normal-slow at 36-44% (p=0.001) 

and fast-slow at 35-41% (p=0.003) GC (Figure 4.27). 

As shown in Figure 4.28, SPM vector field analysis found a highly significant 

difference in C3 within-subject. One suprathreshold cluster was found at 12-21% GC 

(p=0.002). SPM failed to find any significance between-subject. Post hoc paired t-test 

was conducted between speeds where significant differences occurred in fast-normal at 

15-20% GC (p=0.012) and fast-slow at 15-19% GC (p=0.008) (Figure 4.29).  

As shown in Figure 4.30, the significant difference was found in C4 at 88-93% 

GC (p=0.027) within-subject but none between-subject. No differences were found in 

post hoc analyses within-subject even though the main SPM analysis showed one 

suprathreshold cluster. It is noteworthy that the null hypothesis was answered completely 

by the RM ANOVA (Figure 4.31).   
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HS C1  

 

Figure 4.24: HS C1 parametric RM ANOVA within- and between-subjects, 
depicting significant differences between speeds. The horizontal red dotted line 

indicates the critical threshold of 7.46. Suprathreshold clusters are shown in 
grey where p<0.05. 

 

  

 

Figure 4.25: HS C1 within-subject post hoc paired t statistic between pairs of 
walking speeds. The red dashed lines indicate critical thresholds of t* = 4.53, 4.44 
and 4.43 for (A), (B), and (C), respectively. Suprathreshold clusters are shown in 

grey where p<0.02. 

  

(A) (B) 

(C) 
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HS C2 

 

Figure 4.26: HS C2 parametric RM ANOVA within- and between-subjects, 
depicting significant differences between speeds. The horizontal red dotted line 

indicates the critical RFT threshold of 7.81. Suprathreshold clusters are shown in 
grey where p<0.05. 

 

  

 

Figure 4.27: HS C2 within-subject post hoc paired t statistic between pairs of 
walking speeds. The red dashed lines indicate critical thresholds of t* = 4.67, 4.70 
and 4.66 for (A), (B) and (C), respectively. Suprathreshold clusters are shown in 

grey where p<0.02.  

(A) (B) 

(C) 
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HS C3 

 

Figure 4.28: HS C3 parametric RM ANOVA within- and between-subjects, 
depicting significant differences between speeds. The horizontal red dotted line 

indicates the critical threshold of 7.82. Suprathreshold clusters are shown in 
grey where p<0.05. 

 

  

 

Figure 4.29: HS C3 within-subject post hoc paired t statistic between pairs of 
walking speeds. The red dashed lines indicate critical thresholds of t* = 4.61, 4.53 
and 4.67 for (A), (B), and (C), respectively. Suprathreshold clusters are shown in 

grey where p<0.02. 

  

(A) (B) 

(C) 
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HS C4 

 

Figure 4.30: HS C4 parametric RM ANOVA within- and between-subjects, 
depicting significant differences between speeds. The horizontal red dotted line 
indicates the critical threshold of 7.4. Suprathreshold clusters are shown in grey 

where p<0.05. 

 

  

 

Figure 4.31: HS C4 within-subject post hoc paired t statistic between pairs of 
walking speeds. The red dashed lines indicate critical thresholds of t* = 4.61, 4.52 
and 4.49 for (A), (B), and (C), respectively. Suprathreshold clusters are shown in 

grey where p<0.02. 

  

(A) (B) 

(C) 
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Speed Dependence of the TFA Activation Coefficient Profile 

As shown in Figure 4.32, main SPM analysis found significant differences in TFA C1 

between three different speeds. Two suprathreshold clusters were found at 0-19% 

(p=0.0) and 94-100% (p=0.27) GC. Post hoc paired t-test was conducted pairwise 

between speeds which revealed C1 was significantly different between fast-normal at 0-

8% (p=0.001) as well as fast-slow at 0-14% (p=0.0) and 95-100% (p=0.014) GC (Figure 

4.33). 

As shown in Figure 4.34, SPM analysis revealed three suprathreshold clusters 

across speeds in C2 within-subject at 19% (p=0.049), 44-53% (p=0.006) and 68% (0.05). 

No significant differences were found between-subject. Post hoc paired t-test showed a 

significant difference between fast-normal at 45-49% (p=0.010) GC (Figure 4.35). 

As shown in Figure 4.36, SPM analysis showed no significant in TFA C3 across 

speeds.  

As shown in Figure 4.37, SPM analysis showed the statistically significant 

difference in C4 within-subject across speeds. One suprathreshold cluster occurred at 

42-47% (p=0.014). No significant differences were found between-subject. Post hoc 

paired t-test showed a significant difference between fast-slow at 42-45% (p=0.013) GC 

(Figure 4.38). 
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TFA C1  

 

Figure 4.32: TFA C1 parametric RM ANOVA within- and between-subjects, 
depicting significant differences between speeds. The horizontal red dotted line 

indicates the critical threshold of 8.02. Suprathreshold clusters are shown in 
grey where p<0.05. 

 

  

 

Figure 4.33: TFA C1 within-subject post hoc paired t statistic between pairs of 
walking speeds. The red dashed lines indicate critical thresholds of t* = 4.79, 5.01 

and 4.9 for (A), (B), and (C), respectively. Suprathreshold clusters are shown in 
grey where p<0.02. 

  

(A) (B) 

(C) 
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TFA C2 

 

Figure 4.34: TFA C2 parametric RM ANOVA within- and between-subjects, 
depicting significant differences between speeds. The horizontal red dotted line 

indicates the critical threshold of 7.89. Suprathreshold clusters are shown in 
grey where p<0.05. 

 

  

 

Figure 4.35: TFA C2 within-subject post hoc paired t statistic between pairs of 
walking speeds. The red dashed lines indicate critical thresholds of t* = 5.04, 5.02 
and 5.14 for (A), (B), and (C), respectively. Suprathreshold clusters are shown in 

grey where p<0.02. 

  

(A) (B) 

(C) 
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TFA C3 

 

Figure 4.36: TFA C3 parametric RM ANOVA within- and between-subjects, 
depicting significant differences between speeds. The horizontal red dotted line 

indicates the critical threshold of 8.12. Suprathreshold clusters are shown in 
grey where p<0.05. 
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TFA C4 

 

Figure 4.37: TFA C4 parametric RM ANOVA within- and between-subjects, 
depicting significant differences between speeds. The horizontal red dotted line 

indicates the critical threshold of 8.32. Suprathreshold clusters are shown in 
grey where p<0.05. 

 

  

 

Figure 4.38: TFA C4 within-subject post hoc paired t statistic between pairs of 
walking speeds. The red dashed lines indicate critical thresholds of t* = 5.03, 5.14 
and 5.12 for (A), (B), and (C), respectively. Suprathreshold clusters are shown in 

grey where p<0.02. 

  

(A) (B) 

(C) 
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4.4.8.3 Between-Subject (Biomechanics Perspective) 

A priori hypothesis accounted for individual speed as a different task under the walking 

control between-subject. Therefore, the effect of groups on individual activation 

coefficient profiles during walking was compared at each speed category. Consequently, 

Hoteling’s T2 was implemented for hypothesis 5. The post hoc test was considered if the 

main analysis showed significant level. The threshold was corrected for the sidak 

corrected threshold of 0.01 for four individual C comparison to retaining a Type I family-

wise error rate of α = 0.05. Table 4.21 shows where significant differences occurred in 

the main (Hotelling T2) and post hoc (two-sample t-test) analyses between-subject. Refer 

to section HS vs. TFA (slow), HS vs. TFA (Normal) and HS vs. TFA (Fast) for more 

details. 

Table 4.21: Summary of the suprathreshold clusters obtained from the main test 
(SPM Hotelling’s T2) and post hoc test (SPM two-sample t-test) between HS and 

TFA at each speed category (biomechanics perspective)  

 Hotelling T2 Post hoc two-sample t-test 

 P < 0.05 P < 0.0127 

 C C1 C2 C3 C4 

Slow [0-3], [54-61] NA [53-64] NA NA 

Normal [2-5], [53-59] NA [38-43] [53-59] [0-5] NA 

Fast [49-58] [44-45] [18-24], [49-60] NA NA 
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HS vs. TFA (Slow)  

As shown in Figure 4.39, SPM vector field found two suprathreshold clusters indicating 

significant differences between HS and TFA at 0-3% and 54-61% during slow speed gait. 

Identically, smooth random 1D data would produce clusters of this breadth with a 

probability of p=0.038 and p=0.009. Therefore, the null hypothesis was rejected as 

significant differences were observed between HS and TFA.  

 

Figure 4.39: SPM vector field result (Hotelling's T2) depicting HS vs. TFA 
differences at slow speed. The red dashed line indicates critical threshold of 

T2*=27.738. Suprathreshold clusters are shown in grey where p<0.05. 

As shown in Figure 4.40, no significant differences were found in C1, C3, and C4. TFA 

C2 was significantly greater than HS C2 at 53-64% (p=0.002).   

  

  

Figure 4.40: Post hoc two sample SPM t-test results comparing HS versus TFA at 
slow speeds for individual C. Red dashed line indicates critical threshold ((A): 

t*C1=3.895, (B): t*C2=3.938, (C): t*C3=3.996, and (D): t*C4=3.964). Suprathreshold 
clusters are shown in grey where p<0.01.  

  

(A) (B) 

(C) (D) 
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HS vs. TFA (Normal)  

As shown in Figure 4.41, SPM vector field found two suprathreshold clusters indicating 

significant differences between HS and TFA at 2-5% and 53-59% during normal speed 

gait. Identically, smooth random 1D data would produce clusters of this breadth with a 

probability of p=0.030. and p=0.013. Therefore, the null hypothesis was rejected as 

significant differences were observed between HS and TFA.  

 

Figure 4.41: SPM vector field result (Hotelling's T2) depicting HS vs. TFA 
differences at normal speed. The red dashed line indicates critical threshold of 

T2*=28.256. Suprathreshold clusters are shown in grey where p<0.05. 

As shown in Figure 4.42, no significant differences were found in C1 and C4. TFA C2 

was significantly greater than HS C2 at 53-59% (p=0.023) whereas HS revealed a 

statistically significant difference at 38-43% (p=0.014). TFA C4 was significantly greater 

than HS C4 at 0-5% (p=0.022).  

  

  

Figure 4.42: Post hoc two sample SPM t-test results comparing HS versus TFA at 
normal speeds for individual C. Red dashed line indicates critical threshold ((A): 
t*C1=3.945, (B): t*C2=3.986, (C): t*C3=3.998, and (D): t*C4=4.006). Suprathreshold 

clusters are shown in grey where p<0.01.  

(A) (B) 

(C) (D) 
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HS vs. TFA (Fast)  

As shown in Figure 4.43, SPM vector field found one suprathreshold cluster indicating a 

significant difference between HS and TFA at 48-58% during fast speed gait. Identically, 

smooth random 1D data would produce clusters of this breadth with a probability of 

p=0.003. Therefore, the null hypothesis was rejected as significant differences were 

observed between HS and TFA. 

 

Figure 4.43: SPM vector field result (Hotelling's T2) depicting HS vs. TFA 
differences at fast speed. The red dashed line indicates critical threshold of 

T2*=28.244. Suprathreshold clusters are shown in grey where p<0.05. 

As shown in Figure 4.44, no significant differences were found in C3 and C4. TFA C1 

was significantly greater than HS C1 at 44-45% (p=0.048). TFA C2 was significantly 

greater than HS C2 at 18-24% (p=0.014) and 49-60% (p=0.001).  

  

  

Figure 4.44: Post hoc two sample SPM t-test results comparing HS versus TFA at 
fast speeds for individual C. Red dashed line indicates critical threshold ((A): 

t*C1=3.993, (B): t*C2=3.982, (C): t*C3=4.016, and (D): t*C4=3.942). Suprathreshold 
clusters are shown in grey where p<0.01.   

(A) (B) 

 

(C) (D) 
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4.4.8.4 Between-Subject (Control Perspective)  

A priori hypothesis accounted for individual speed as a different task under the walking 

control between-subject. Consequently, SPM two-sample t-test (α=0.05) was 

implemented for hypothesis 6. Table 4.22 shows where significant differences occurred 

in the main analysis (two-sample t-test) between-subject. Refer to section HS vs. TFA 

(slow), HS vs. TFA (Normal) and HS vs. TFA (Fast) for more details.  

Table 4.22: Summary of the suprathreshold clusters obtained from the SPM two-
sample t-test between HS and TFA at each speed category (control perspective).  

P < 0.05 

 C1 C2 C3 C4 

Slow [0-14], [97-100] [0-27], [50-100] [0-3] [58-60] 

Normal 
[0-15], [43-48], 

[93-100] 
[33-46], [50-62] 

[0-8], [20-34], 
[95-100] 

[50-57] 

Fast [37-53] 
[4-29], [36-40], 
[46-72], [86-94] 

[0-8], [31-43], 
[69-84], [97-100] 

NA 
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HS vs. TFA (Slow)  

As shown in Figure 4.45, HS C1 was significantly greater than TFA C1 at 0-14% 

(p=0.001) and 97-100% (p=0.045) time at slow speed. TFA C2 was significantly greater 

than HS C2 at 0-27% (p=0.001) and 50-100% (p=0.001). For C3, one suprathreshold 

occurred at 0-3% (p=0.035) where TFA was significantly different from HS. TFA C4 was 

significantly greater than HS C4 at 58-60% (p=0.038). Therefore, the null hypothesis was 

rejected in all activation coefficient profiles at slow speed.  

  

  

Figure 4.45: A statistical inference curve indicating a significant relationship 
between HS C and TFA C at slow speed. Red dashed line indicates critical 

threshold ((A): t*C1=3.019, (B): t*C2=3.097, (C): t*C3=3.083, and (D): t*C4=3.115). 
The period where the critical threshold is exceeded depicted as grey (p<0.05).  

  

(A) (B) 

(C) (D) 
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HS vs. TFA (Normal)  

As shown is Figure 4.46, HS C1 was significantly greater than TFA C1 at 0-15% 

(p=0.001) and 93-100% (p=0.021) where as TFA revealed a statistically significant 

difference at 43-48% (p=0.023). Two suprathreshold clusters were found in C2 at 33-

46% (p=0.0) and 50-62% (p=0.001) indicating greater significance in HS and TFA, 

respectively. For C3, three suprathreshold clusters were found at 0-8% (p=0.01), 20-

34% (p=0.0) and 95-100% (p=0.030) where TFA was significantly different than HS. TFA 

C4 was significantly greater than HS C4 at 50-57% (p=0.006). Therefore, the null 

hypothesis was rejected in all activation coefficient profiles at normal speed.  

  

  

Figure 4.46: A statistical inference curve indicating a significant relationship 
between HS C and TFA C at normal speed. Red dashed line indicates critical 

threshold ((A): t*C1=3.063, (B): t*C2=3.095, (C): t*C3=3.081, and (D): t*C4=3.094). 
The period where the critical threshold is exceeded depicted as grey (p<0.05).  

  

(A) (B) 

(C) (D) 
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HS vs. TFA (Fast)  

As shown in Figure 4.47, TFA C1 was significantly greater than HS C1 at 37-53% 

(p=0.0). TFA C2 was significantly greater than HS C2 at 4-29% (p=0.0), 46-72% (p=0.0) 

and 86-94% (p=0.006) whereas HS revealed a statistically significant difference at 36-

40% (p=0.025). Four suprathreshold clusters were found in C3 at 0-8% (p=0.009) and 

31-43% (p=0.001), 69-84% (p=0.0), 97-100% (p=0.044) indicating greater significance 

in TFA as compared to the HS. No significant difference was found in C4.  

  

  

Figure 4.47: A statistical inference curve indicating a significant relationship 
between HS C and TFA C at fast speed. Red dashed line indicates critical 

threshold ((A): t*C1=3.045, (B): t*C2=3.085, (C): t*C3=3.081, and (D): t*C4=3.049). 
The period where the critical threshold is exceeded depicted as grey (p<0.05).  

  

(A) (B) 

(C) (D) 
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4.5 Discussions 

4.5.1 Analysis of dimensionality (VAF) 

As described in the result section, the number of muscle synergy groupings was 

determined according to the literature (k = 4) [77, 81, 84, 91-93, 95, 204, 230]. The HS 

data illustrated that four modules are an optimal number to match the reconstructed and 

original EMG in slow, normal and fast transient-state walking condition which accounted 

for the VAF of 85%, 85%, and 86%, respectively. Similarly, four modules were selected 

for the TFA in slow, normal, fast transient-state walking which accounted for a VAF of 

88%, 86% and 88%, respectively. In both groups, higher VAF using five synergies were 

obtained. However, four synergies were believed to provide more distinct synergy groups 

of muscle EMG contents. Moreover, since both VAF values were higher than 80% and 

the difference between them was not more than 5%, four synergies was chosen for both 

healthy and amputee groups.   

The similarity in the number of modules suggests that complexity of muscles 

recruitment by the CNS is analogous in both groups. At the level of muscle synergy 

dimensionality, the results are comparable to the previous studies [92, 93, 230] on TTA 

which represents strategy implemented by the CNS does not change with the level of 

amputation. TFA and TTA results in terms of synergistic strategies are in disagreement 

with other pathological groups such as post-stroke patients [91] but in favor of joint injury 

groups such as anterior cruciate ligament deficiency patients [126]. Therefore, level of 

amputation and variation in speeds seem to not have any impacts on the CNS control 

complexity for the number of module recruitment. However, a larger sample size of TFA 

and TTA should be considered (i.e., distal, proximal) to generalize this statement.  

4.5.2 Correlation Analysis (Individual-Muscle Criterion) 

The goodness of fit for every individual muscle was calculated by implementing R2 

(Figure 4.8, Figure 4.9 and Figure 4.10) and ICC (Figure 4.13, Figure 4.14 and Figure 

4.15) between the original and reconstructed data. The results revealed a reasonable 

correlation, suggesting magnitude and pattern similarities between the results obtained 

from C×S (reconstructed signal) and A (original signal) which met the individual-muscle 

criterion.  

4.5.3 CNMF Activation Coefficient Profile Repeatability 

ICC was also used to assess the repeatability and between trials/subjects similarity of 

activation coefficients. This is a crucial step as CNMF fixes an unknown S and allows C 

to be varied. Therefore, an approach such as ICC is required to be able to compare the 

pattern of the signals between all subjects rather than pairwise comparison using a 
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reference subject. A high correlation was observed in both populations across speeds. 

However, TFA C4 showed poor repeatability (high inter-subject variability), indicating 

differences in patterns of coefficients between trials/subjects in normal speed. However, 

ICC does not highlight to which phase this variability is associated with. One possible 

explanation is S4 comprised of primary activity of TA which contributed to the slowing 

down the leg in the early and late swing, ease of foot clearance. Therefore, the instability 

in TFA PL (due to the feeling of insecurity) during the weighting acceptance before IL 

starts swinging may be a factor contributing to the inconsistency in shape of C4 between 

trials/subjects. In addition, due to the presence of triceps surae during weighting 

acceptance, TA co-contracts to stabilize the ankle joint which may lead to discrepancies 

in TFA C4 (Table 4.2). Furthermore, previous research has shown high inter-subject 

variability in the TA activity during walking [76, 321].   

Lastly, one may be able to explain this from a psychological point of view. TFA 

are used to performing normal walking. However, the slow and fast walking (especially 

in transient-state) would be a challenging task for them. Therefore, they will be more 

careful and adopt a more cautious gait pattern when performing gait at other speeds than 

the comfortable, self-selected normal speed. The higher cognitive load may reduce the 

variability in muscle activities [322].  

4.5.4 Module Contribution 

Module contribution is a good indicator of overall muscular contributions which this may 

be useful in therapies to tailor the rehabilitation plan to focus on primary muscles within 

a particular module.  

4.5.5 Within-Subject (Synergy/Module Comparison) 

Previous reports illustrated similarity in the construction of muscle synergies of HS at 

different walking speeds which contradicts the motor modules obtained from HS in the 

present study across transient-state walking speeds [77, 83, 91, 218]. Furthermore, Gui 

and Zhang [218] showed similar motor modules across speeds with modest changes in 

the timing of coefficients of the non-disabled subjects to satisfy the kinematic and kinetic 

requirements of different steady-state walking speeds. However, others found different 

muscle synergies are recruited as the result of a change in steady-state walking speeds 

and locomotion modes which agrees with the findings of the present study [170, 248, 

249]. 

Generally, a reasonable correlation was observed in the majority of the HS 

muscle synergies, indicating shared modular motor control between subjects across 

different walking speeds. The lowest correlation between normal-fast (S3=0.12) and fast-

slow (S1=0.17) was directly associated with the primary muscle weighting suggesting a 
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difference in the weighting contributions of the knee extensor and ankle dorsiflexor 

muscles rather than completely different muscle groups recruitment (Table 4.18). 

Although gait in the present study is performed as a transient-state walking, some of the 

HS modules are comparable to the literature (i.e., S2 and S3) [77, 79, 83, 91, 126, 218].  

TFA R2 results revealed poor (S1), moderate (S3 and S4) and strong (S2) 

correlations across paired-speeds comparisons (i.e., module average). The primary 

muscle weighing in S1 is different across speeds which led to poor correlation. On the 

contrary, analogous muscle group in S2 resulted in a strong correlation between speeds. 

The lowest correlation in S1 (0) and S3 (0.2) between fast-slow walking was due to the 

difference in weighting ratio (Table 4.19). The difference could be attributed to the 

significant change of speeds which resulted in neuromuscular modulation at the 

transition from stance to swing phase and body support phase of the GC [218].  

4.5.6 Between-Subject (Synergy/Module Comparison) 

The lowest correlations were observed in S1 and S4 during slow and normal walking 

speeds, respectively. The strongest correlation was perceived in S2 during slow and fast 

walking speeds, respectively. By investigating the results further, it can be perceived that 

primary muscle weightings have significant impacts on the total correlation results. 

Significant changes in TFA IL muscle adaptation could be due to the inadequate 

proprioceptive feedback, weight-bearing deficiency in PL and prosthesis type [46, 92-

95]. As a result, changes in motor modules occurs. In addition, each of the TFA tends to 

develop their own ambulation patterns because of the rehabilitation training, level of 

amputation, the reason for amputation, and age which may cause neuromuscular 

modulation between amputees themselves and HS. Most importantly, the gait in this 

chapter was performed as a transient-state walking which may lead to inconsistency in 

muscle recruitments, change in the duration of activity, difference in magnitude of the 

burst of both groups as well as postural instability in TFA.  

4.5.6.1 Motor Modules Comparison with Literature  

The muscle synergy components extracted in this study were compared to the literature. 

It is worth mentioning in this chapter; the transient-state walking was carried out across 

three different self-initiated and self-selected speeds for both HS and TFA. Therefore, 

the comparison was made based on the available literature on the steady-state of the 

gait. [84] studied the influence of data structure on the motor synergies during treadmill 

walking, and [77] carried out forward dynamics simulation using muscle synergy 

components. In the present study, the modules extracted from HS during fast transient-

state walking matches well with 4 of their modules in both studies. In addition, in the 

study conducted by [91], the differences between motor modules of HS and post-stroke 
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patients were identified. The same number of synergy groups and similar modules were 

observed to those of the HS during fast transient-state walking in the present study.   

A study carried out by [77] showed five muscle activation modules was sufficient 

to generate forward dynamics simulation of gait and their associations with 

biomechanical subtasks of walking. The study reported, knee and hip extensors 

contribute to body support in early stance while acting to decelerate forward motion 

(Module 1), plantarflexors contribute to loading and propulsion in late stance (Module 2), 

dorsiflexor and hip flexor muscles contribute to deceleration of the leg in early and late 

swing as well as trunk stabilization throughout swing phase (Module 3), knee flexors 

decelerates the leg in late swing (Module 4) and hip flexors contribute to acceleration of 

the leg forward in pre- and early swing (Module 5) [77]. In the present study, in slow 

walking, HS S3, S2, and S4 correspond to Module 1, Module 2 and Module 4 of [77], 

respectively. In HS during normal walking, S2 and S4 corresponded to Module 2 and 

Module 4 of [77], respectively. In HS during fast walking; S3, S2, S1 and S4 

corresponded to Module 1, Module 2, Module 3 and Module 4 of [77], respectively. The 

difference between literature [77] and present study with regards to S1 (primary: VM) 

during slow walking as well as S1 (primary muscle: VM, TFL, and TA) and S3 (primary 

muscle: VL) during normal walking seemed to be affected by the synergy analysis 

methods, task performed (steady-state vs. transient-state), number and choice of 

muscles included, and difference in speed. 

The neuromuscular modulation between muscle synergies of HS across speeds 

agreed with the study conducted by [249], suggesting a change in speeds lead to 

recruitment of different spinal locomotor networks.  

In conclusion, the results obtained from the HS during fast transient-state walking in the 

present study corresponded well with the normal steady-state walking in the previous 

reports [77, 84, 91, 126].  

4.5.7 Statistical Analyses (Activation Coefficient Profile) 

4.5.7.1 Within-Subject (Biomechanics Perspective) 

Speed Dependence of the HS and TFA Activation Coefficient Profile 

The null hypotheses regarding the effect of speeds on activation coefficient of HS 

(hypothesis 1) and TFA (hypothesis 3) were not supported, suggesting adaptation 

strategy implemented by the CNS to fulfill the task-dependent requirements of transient-

state walking at different speeds.  

The post hoc paired Hotelling’s T2 test illustrated suprathreshold clusters in HS 

during body support, foot-flat, and transition from stance to swing phase as well as a 
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swing to stance phase in the comparison between normal-slow speed (Figure 4.22). TFA 

showed to be significantly different in weighting acceptance between normal-slow and in 

the transition from PL to IL at the end of IL swing phase between fast-slow (Figure 4.23).  

The difference could be related to the kinematic and kinetic demands of different 

speeds which led to different intensity in magnitude and time lag in activation timing in 

both groups across speeds. Previous reports indicated small changes in the epoch 

where the peak activation coefficient occurred across speeds during steady-state 

walking which is in contradiction to the findings in the present study [170, 185]. However, 

[109] concluded the activation coefficient is flexibly controlled by the CNS in the 

regulation of walking speed which agrees with the present findings.  

4.5.7.2 Within-Subject (Robotic Control Perspective) 

Speed Dependence of the HS and TFA Activation Coefficient Profile 

SPM RM ANOVA analysis showed that the null hypothesis was not supported as 

significant differences were found in all the HS coefficients across speeds (hypothesis 

2). The reason for those coefficients, whose associated muscle synergies were 

reasonably correlated, to be statistically significant could be due to the CNS adaptation 

strategy to increase the intensity of activation coefficient profile to satisfy the kinematic 

and kinetic requirements of different speeds. This does not necessarily mean that as 

speed increases only the intensity of activation coefficient profiles would increase 

because muscle synergy analysis depends on two factors C and S (Equation 4.7). 

Thereby, increase in muscle synergy vectors ratio can also be perceived. On the other 

hand, those activation coefficient profiles associated with the poor muscle synergies 

correlation between speeds, have different activation timing, patterns, and magnitudes.  

HS C4 post hoc SPM t-values did not reach the Bonferroni significant threshold 

of (p=0.02). The discrepancy between the main RM ANOVA C4 and post hoc paired t-

test might be due to the Bonferroni threshold. Bonferroni post hoc analyses are 

approximate and conservative to avoid type I error. Different post hoc procedures are 

required to yield a precise probabilistic agreement between the main analysis (RM 

ANOVA) and post hoc results. It is worth mentioning, in general, post hoc analyses are 

considered as approximate explanations for the main results where differences occurred. 

Conclusions must not be drawn about the post hoc test which disagrees with the main 

SPM results. Therefore, the null hypothesis was rejected as there is a significant 

difference between the HS C4 within-subject at different speeds (Figure 4.30 and Figure 

4.31).  

SPM RM ANOVA analysis showed a significant difference in TFA C1, C2 and C4 

across speeds (hypothesis 4). The post hoc TFA C1 between fast-normal and between 
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fast-slow showed significant differences in ES and TSW. The muscle synergy 

comparison (i.e., S1 fast-normal and S1 fast-slow) showed to be poorly correlated with 

R2 of 0.13 and 0, respectively. The primary muscles in TFA C1 between slow (mainly 

activated TFL), normal (mainly activated SOL) and fast (mainly activated RF) were 

different. One could suggest the significant differences in activation timing between 

speeds are due to the different group of muscles recruitment thereby each module 

contributed to different biomechanical subtasks (Figure 4.32 and Figure 4.33). 

Although a high correlation was observed between S2 across speeds (pair-wise 

speed comparison), TFA C2 (mainly activated plantarflexor) showed to be significantly 

different in MS, TS, and ISW between fast and normal speed. Since the same set of 

muscles were recruited across speeds, the reason for the discrepancy between the 

speeds may due to the higher activation and intensity required for the plantarflexor 

muscles of the IL to stabilize the ankle joint during single support stance phase and 

generate larger push off in TS with increased speed. This is evident from the significant 

difference that occurred during fast gait as compared to normal gait (Figure 4.34 and 

Figure 4.35). 

TFA C4 (mainly activated TA) was found significantly different in MS between 

fast and slow speed walking. The activation of SEM was coordinated with TA in S4 at 

slow walking in which a moderate correlation (0.5) was observed compared to fast 

walking. The higher magnitude of the second peak in the stance phase of fast walking 

(suprathreshold cluster) occurred before the second peak in slow walking. This could be 

due to the kinematic and kinetic demands which altered TA activation timing (Figure 4.37 

and Figure 4.38). 

Interestingly, TFA C3 showed no significant differences between speeds. The 

same group of muscles (SEM and VL) associated with S3 across speeds, except at fast 

speed. Observing the mean difference t-trajectory, one could observe the black line at 

the end of swing phase is very close to the critical threshold (Figure 4.36). The results 

indicate no adaptation strategy is required to augment the intensity of the temporal 

component. The results agree with the effect of speeds in HD EMG activity of SEM where 

no significant differences were found suggesting the low dimensional and high 

dimensional temporal component would be the same for this muscle (chapter 3).   



191 
 

4.5.7.3 Comparison of Activation Coefficient Profile with Literature  

The results of the present study appear to conflict with the previous reports as they 

suggested a small increase in activation coefficient timing at different walking speeds 

[77, 83, 91, 218]. It is worth mentioning that none of the studies conducted in muscle 

synergies considered the whole time-series as a means of comparison (i.e., using 1D 

SPM). This could be attributed to the fact that discrete points in the traditional statistical 

analysis (i.e., scalar) may result in a different interpretation. Therefore, one should 

consider the time normalized C waveforms especially when there is no a priori 

hypothesis pertains to the point of interest [225, 226]. In addition, the present study did 

not consider the steady-state walking as opposed to the studies conducted in the 

literature [77, 79, 82, 84, 91-93, 95, 126, 136, 179, 217, 218, 221, 230, 323]. In summary, 

the difference could be attributed to the difference in muscle synergy methodological 

consideration, state of walking (steady-state vs. transient-state), number and choice of 

muscles included, and the difference in speed. 

4.5.7.4 Between-Subject (Biomechanics Perspective) 

Since the biomechanics hypothesis does not pertain to a specific C and time point, inter-

activation coefficient profiles covariance and time dependency have been considered 

into statistical testing whilst maintaining a constant error rate of α, respectively. The main 

SPM analysis rejected the null hypothesis across all speeds (hypothesis 5). 

In slow walking, two suprathreshold clusters exceeded the critical threshold in 

weighting acceptance and TS between groups. Post hoc analysis showed C2 was 

significantly greater in TFA as higher peak and forward shift of the main burst was 

observed. This could be due to the compensatory strategy implemented by the CNS to 

stabilize the IL joints during weighting acceptance, to generate larger push off during the 

TS and to compensate for the lack of push off in PL (Figure 4.39 and Figure 4.40).  

In normal walking, two suprathreshold clusters were found in the vector field 

analysis result in weighting acceptance and TS between groups. The post hoc t-test 

illustrated significant differences in C2 and C3. TFA C3 (mainly related to knee extensor 

muscles) is significantly different from HS in ES, suggesting necessities of IL higher 

activation for body support at the transition from PL to IL. The post hoc C2 result of 

significant difference at normal speed is comparable to the post hoc C2 at slow speed 

with the difference that another suprathreshold occurred at the peak activation of HS C2 

instant. The possible explanation for the difference between HS and TFA at normal 

speed is because of the TFA feeling of insecurity which led to a longer stance phase of 

the IL compared to the HS, which agreed with other studies [35, 67, 71, 72]. Therefore, 

a forward shift in the activation can be observed (Figure 4.41 and Figure 4.42).  
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In fast walking, one suprathreshold cluster was observed in the main analysis 

during the TS. Post hoc analysis showed significant differences in the TFA C1 during the 

MS and TFA C2 during the TS. The TFA C1 peak in MS of the GC was significantly 

greater as compared to the HS C1. However, since the result does not agree with higher-

level analyses (main analysis), MS significant difference was rejected. Similar to the slow 

and normal speeds, a significant difference occurred during the TS between groups 

which could be due to the higher TFA IL push off required to compensate for the PL lack 

of push off as compared to the HS (Figure 4.43 and Figure 4.44).  

4.5.7.5 Between-Subject (Robotic Control Perspective) 

The null hypothesis 6 that there would be no difference in individual activation coefficient 

profiles between HS and TFA during transient-state walking at different speeds was 

supported in C4 (mainly activated SEM) during fast. 

Generally, larger variation (represented as a blue shaded cloud) was observed 

in TFA coefficients as compared to the HS across speeds. One of the main possible 

reasons for neuromuscular compensation in TFA could be associated with the lack of 

proprioceptive feedback from PL and type of prostheses (e.g., mechanically passive and 

SACH foot) which fails to provide sufficient push off to move the body forward. This 

results in a higher GRF and greater mechanical work on both IL and PL [21, 24]. 

The TFA C2, which activated plantarflexor muscles, demonstrated two prominent 

peaks during the ES to MS and TS across speeds. These peaks were heightened and 

shifted forward in the GC as compared to the HS at all speeds (except 2nd peak of TFA 

C2 normal speed) (Figure 4.45, Figure 4.46 and Figure 4.47). In addition, TFA C3 

(activated knee extensors primarily) showed higher peaks at the ES as compared to the 

HS across speeds. Consequently, SPM two-sample t-test showed TFA C2, and C3 were 

statistically significantly different than those of HS at the aforementioned regions. The 

difference could be due to the efforts of TFA to stabilize their joints and body weight 

during the single support phase and to provide push off in late stance to propel the body 

forward. Along the same line in HD EMG analysis, TFA plantarflexor muscle showed 

earlier and prolonged activation (chapter 3, Figure 3.3). The comparison between groups 

in C4 illustrated there were common drives in SEM as the SPM results showed no 

significant difference in the temporal component. In addition, the muscle synergy showed 

a reasonable correlation between the two groups indicating a similar neural strategy for 

Module 4 at fast speed (Figure 4.47). Along the same lines of observed results, the SEM 

muscle activity showed the similarity between groups in high dimensional level at all 

speeds. In general, neuromuscular compensation in TFA could be associated with the 

type of prostheses (e.g., mechanically passive) which fails to provide sufficient push off 



193 
 

to move the body forward. This results in a higher GRF and greater mechanical work on 

both IL and PL. 

4.6 Summary 

The study presented CNMF as a robust algorithm which facilitates the comparison of 

muscle synergy analysis between populations by keeping synergies fixed between 

subjects. Four modules were able to account for more than 85% of the variability in the 

original signals for each group. Total module contribution was calculated in which lowest 

and highest synergy were determined. A high correlation was perceived between 

individual muscle’s reconstructed and original signals by means of R2 and ICC. Prior to 

the comparison of the muscle synergy components within- and between-subject, 

functional sorting was done. The strong correlation in muscle synergy implies the same 

group of muscles is controlled by the CNS synergistically. Primary muscles in each 

module had a significant impact on the correlation results. Generally, a reasonable 

correlation was observed in muscle synergies of HS indicating shared motor modules 

within group across different gait speeds. On the contrary, higher variation was found in 

TFA muscle synergies correlations. The between-subject muscle synergy comparison 

showed variability in correlation results between HS and TFA across speeds. The 

coefficient analysis was done within- (across all speeds) and between-subject (between 

each speed category) from biomechanics and robotic control perspectives. SPM 1D 

analysis was performed to consider the whole time-series (i.e., between 0% and 100% 

time). The intra-subject comparison was considered to investigate modulation in 

activation coefficient of muscle synergies across speeds. It was revealed that muscle 

synergies were dependent on the walking speeds as significant differences were 

observed in activation coefficient profile at different epochs of GC for HS and TFA. This 

suggests the adaptation strategy by the CNS to satisfy kinematic and kinetic demands 

of different transient-state walking speeds. Therefore, it was crucial to investigate the 

influence of walking speeds within the homogenous population as a separate analysis to 

constructively distinguish the changes in motor modules of each group. Inter-subject 

activation coefficient comparison showed significant differences between HS and TFA at 

different regions of the GC especially during stance phase, indicating the compensatory 

strategy for stabilization of the TFA IL joints. The findings in this study aid to tailor the 

therapies to improve the quality of movement of amputees as well as providing useful 

information for the development of the new generation of prostheses (synergy-based 

control frame). 
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4.7 Conclusion 

Both HS and TFA illustrated that four synergies are an optimal number of groups to 

match the reconstructed and original EMG at all speeds. This suggests that complexity 

of muscles recruitment by the CNS is analogous in both groups. Therefore, there is no 

compensatory adjustment in TFA.  

Reasonable correlation in muscle synergies of HS was observed across different 

speeds, indicating that the CNS activates the same groups of muscles synergistically. 

The low correlation was directly associated with the primary muscle weighting suggesting 

a difference in the weighting contributions of the knee extensor and ankle dorsiflexor 

muscles rather than recruitment of different muscle groups. The highest correlation in 

TFA was observed between plantarflexor muscles at different speeds. The low 

correlation between TFA muscle synergies across speeds could be attributed to the 

significant change of speeds which resulted in neuromuscular modulations at the 

transition from stance to swing phase and body support phase of the GC. 

The low correlation between HS and TFA muscle synergies could be due to the 

ambulation pattern, inadequate proprioceptive feedback, weight-bearing deficiency in 

PL, type of prostheses, and level of amputation which may cause neuromuscular 

modulation between amputees themselves and HS. 

The effect of speeds on activation coefficient profiles of both HS and TFA were 

compared from biomechanics perspective in which significant differences were found, 

suggesting adaptation strategy implemented by the CNS to fulfill the task-dependent 

requirements of transient-state walking at different speeds. The difference could be 

related to the kinematic and kinetic demands of different speeds which led to different 

intensity in magnitude and time lag of activation timing for both groups across speeds.  

The effect of speeds on individual activation coefficient profiles of HS and TFA 

(robotic control) showed significant differences (except TFA C3), indicating the CNS 

strategy to increase the intensity of activation coefficient profile to satisfy the kinematic 

and kinetic requirements of different speeds. No significant differences were found in 

TFA C3, suggesting no adaptation strategy is required to augment the intensity of the 

temporal component. 

Significant differences were observed in activation coefficient profiles (biomechanics 

approach) between HS and TFA at each speed category. A common significant 

difference (i.e., suprathreshold cluster) occurred between both groups during the TS at 

all speeds which could be due to the higher TFA IL push off required to compensate for 

the PL lack of push off as compared to the HS. 
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Individual activation coefficient profile (robotic control approach) showed no 

significant differences in C4 at fast speed between HS and TFA which shows common 

drives in SEM. The significant difference in the other activation coefficient profiles mainly 

associated with the stance phase which could be due to the TFA effort to stabilize their 

joints and body weight during this time. The significant differences in C2 were in late 

stance and PSW and epochs of swing phase which shows the importance of TFA 

plantarflexor after push off to propel the body forward and to control the ankle during 

swing phase. 
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Chapter 5  

MODULAR MOTOR CONTROL IN TRANSTIBIAL AMPUTEE 

DURING STEADY-STATE WALKING  

5.1 Introduction 

This chapter presents the implementation of concatenated non-negative matrix 

factorization (CNMF) algorithm developed in the previous chapter on a new set of data 

and walking condition. Muscle synergy analysis is performed on a transtibial amputee 

(TTA) to investigate the modular motor control in steady-state walking (i.e., after 

transient-state), accounting for the intact leg (IL) and prosthetic leg (PL), and modulating 

the number of muscles. The study is carried out with four healthy subjects (HS), and one 

TTA during ramp ascending (RA), ramp descending (RD) and steady-state walking. 

However, in this chapter, only modular motor control comparison between HS and TTA 

during steady-state walking is presented (publications related to the RA and RD are 

presented in Appendix E). Previous literature reported on TTA high dimensional (HD) 

EMG activities across a range of speeds during steady-state walking. However, to the 

best of the author’s knowledge, no studies are available in the literature to use muscle 

synergy analysis in TTA during steady-state walking. 

5.2 Experimental Protocol 

5.2.1 Methodology 

The pilot study involved participation of four active HS (mean (SD): age 21.3 (0.4) years, 

weight 72.2 (5.9) kg, height 175.7 (6.0) cm) and one active elderly TTA (age: 76; weight: 

69.3 kg; height: 185.1 cm) during steady-state walking (Appendix C, Table C.1, Table 

C.2 and Table C.3 show the anthropometric characteristics of HS and TTA, and details 

of prosthesis used by the TTA, respectively). The HS and TTA were free of any lower 

limb injury, any skin condition or neurodegenerative disease except the amputation of 

the TTA PL. All subjects wore their own daily shoes. Noraxon surface EMG electrodes 

(Telemyo, Noraxon, Scottsdale, USA) were used to collect electrical signals unilaterally 

from HS dominant leg and TTA IL and PL (PL) during LGW (Figure 5.1 (A)). EMG system 

consists of a 2400R receiver in which 10 channels were used to record from 6 upper 

knee muscles and 4 shank muscles. LGW was performed on a 10-meter walkway at the 

self-selected speed. Two AMTI force plates (Advanced Medical Technology Inc, 
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Massachusetts, USA) were installed in the middle of the walkway. The subjects 

performed at least 5 strides to reach the steady-state walking. Gait cycles were extracted 

using the kinetic information obtained from these force plates. Moreover, four foot-

switches located at (1) heel, (2) 1st metatarsal, (3) 5th metatarsal (4) toe to detect heel 

strikes and TO outside the force plates (Figure 5.1 (B)). In addition, an ultrasound 

scanner (LogiQ e, GE Healthcare, USA) was utilized by an experienced sports medicine 

doctor to attach the surface EMG electrodes to the belly of ten muscles (Figure 5.1 (C) 

and (D)). 

 

(A) 

 

(B) 

 

(C) 

 

(D) 

Figure 5.1: Experimental setup: (A) surface EMG, (B) foot switches location; 1: 
Heel; 2 & 3: 1st & 5th Metatarsal; 4: Toe, (C) ultrasound scanner, and (D) muscle 

view using ultrasound 

Among the recorded muscles, six were from upper knee muscles (UKN) including 

rectus femoris (RF), and vasti (i.e. vastus medialis (VM) and vastus lateralis (VL)), biceps 

femoris long head (BFLH), gluteus medius (GMED), tensor fascia latae (TFL) and four 

was from below knee including; tibialis anterior (TA) and triceps surae (i.e. 

gastrocnemius medialis (GM) and gastrocnemius lateralis (GL), soleus (SOL)). The 

captured information sampled at 1500 Hz and amplified by a gain of 1000. The data were 

displayed on a computer with a visual feedback program called Qualisys Track Manager 

[324]. The TTA had used his prosthesis for a long period of time. An information sheet 

containing the research background, description of the experiments and consequences 

of participating were given to each subject and consent form was signed by all 

participants prior to the experiment. University of Leeds Ethical Review Board approved 

all experimental procedures in this study. Figure 5.2 and Figure 5.3 show attachment of 

surface EMG on HS dominant leg and TTA IL and PL, respectively.   
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Figure 5.2 EMG and reflective markers attachments on HS. (A) front dominant 
leg, (B) back dominant leg, (C) side dominant leg, (D) side non-dominant leg. 

 

 
(A) 

 
(B) 

 
(C) 

 
(D) 

 
(E) 

 
(F) 

Figure 5.3: EMG and reflective markers attachments on TTA IL and PL. (A) front 
IL, (B) posterior IL, (C) side IL, (D) front PL, (E) posterior PL and (F) side PL.  

(A) (B) (C) (D) 
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After all EMG electrodes were attached to the belly of the muscles, the subjects 

were asked to familiarize themselves with a walkway in the lab. Based on the protocol, 

HS and TTA performed at least six trials for each activity and were asked to hit their 

dominant leg, IL, and PL on the force plate, respectively. The trajectories from reflective 

markers placed on the instrumented foot (calcaneus and 1st metatarsal) as well as the 

foot switches on heel and toe were used to identify the GC. 

Subjects were given 10 minutes break between each activity to avoid fatigue. 

Figure 5.4 shows subjects performing steady-state walking. 

 

(A) 

 

(B) 

Figure 5.4: (A) HS and (B) TTA walking (length: 10 m; Inclination: 0°pathway) 
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5.3 Algorithm Description for Muscle Synergy Analysis 

5.3.1 Signal Processing 

A MATLAB script (Mathworks, Inc, Natick, MA) processed all data. A bandpass filter 

(zero-lag Butterworth filter with a cut off frequency of 20-500 Hz) was used to remove 

motion artifacts and high frequency noise from the signals. In order to obtain the muscle 

activation pattern (linear envelope), full wave rectification and a low-pass filter (a zero-

lag 2nd order Butterworth at 6 Hz) were performed. The data were normalized to the 

maximum peak value obtained from each muscle overall selected GCs. Therefore, all 

values of each muscle were ranged between zero and one. The data were then 

interpolated to 101 data points corresponding to the instrumented leg GC. 

5.3.2 Concatenated Non-Negative Matrix Factorization (CNMF) 

Concatenated non-negative matrix factorization (CNMF) approach was implemented to 

linearly decompose the concatenated data into a linear combination of activation 

coefficient profile (C) and muscle synergy vector (S) [92, 213]. The norm-2 length of S 

was constrained to be 1 to minimize the indeterminacy of the factorization. A matrix Ac 

(n×m) was created to combine and concatenate the surface EMG data, where n 

represents the number of subjects × number of GCs × 101 and m accounts for the 

number of muscles. The results of CNMF populated: (1) the concatenated coefficient (Cc 

= n×k) and (2) the fixed muscle synergy (S = k×m), where k represents the number of 

synergy groups. The summation of the product of muscle weightings in all the synergies 

and their corresponding coefficients provides the reconstructed signals.  

5.3.3 CNMF Frameworks 

Random values of C and S were chosen (rand function in MATLAB) in order to initiate 

the CNMF. An alternating least squares algorithm was implemented to attain optimal C 

and S. These values must satisfy the Frobenius norm to minimize the error J=||A - CS||F.
 

To ensure the value is reliable, perturbation was introduced to the data. In order to find 

the final optimal solution of S and C, three iterations were performed for the whole 

framework. However, the error was not applied in the last iteration [92, 213]. 

5.3.4 Variance Accounted For (VAF) 

In order to find the appropriate number of muscle synergy groups in HS and TTA groups 

and adequately reconstruct the original signals, concatenated variance accounted for 

(VAF) was calculated. The VAF > 0.80 has been accepted as a standard threshold for 

determining the appropriate number provided that an extra synergy improves the VAF 

for less than 0.05 [136, 179]. 
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5.3.5 Functional Sorting 

The functional sorting was performed because each group might use muscle synergies 

differently and subsequently to facilitate inter-subjective comparison. This method 

resolves the large differences in contribution to the total data variability by rearranging 

the indices of synergy and coefficient of one group based on the other group. The sorting 

in most cases was done by choosing the HS synergy and coefficient vectors as a 

reference to sort the TTA results. For TTA within-subject comparison, TTA IL was 

selected as the reference to sort the synergy components of PL. To rearrange the 

synergy and coefficient vectors coefficient of determination was used. 

5.3.6 Correlation Analysis 

Coefficient of determination (R2) was used to investigate the goodness of fit between the 

reconstruction signal (C * S) and original signal (A). In addition, Intra-class correlation 

(ICC) was performed to investigate the reconstruction quality of each muscle intra-

subjectively by assessing the shape and pattern of the reconstructed signal. Two-way 

mixed models for average measurements with no interactions (ICC(C,k)) were used. 

According to [222], ICC < 0.5, 0.5 < ICC and R2 < 0.75, and ICC and R2 > 0.75 imply 

low, moderate, and high correlation, respectively. Spatially fixed synergy vectors were 

compared pairwise between legs by means of R2. 

5.3.7 Statistical Parametric Mapping (SPM) 

Temporal components of muscle synergy analysis (i.e., activation coefficient profiles) 

were compared inter-subjectively (SPM two-sample t-test) between two groups as well 

as intra-subjectively between TTA IL and PL (SPM paired t-test).  

The null hypothesis was presented in four different cases between HS dominant leg, TTA 

IL, and TTA PL during steady-state walking only accounting for individual activation 

coefficient profiles: 

Case 1) HS dominant leg versus amputee’s IL (10 muscles); 

Null hypothesis Case 1: There is no difference between individual activation coefficient 

profiles of HS dominant leg and TTA IL during normal steady-state walking (two-sample 

t-test) 

Case 2) HS UKN versus amputee’s UKN IL (6 muscles);     

Null hypothesis Case 2: There is no difference between individual activation coefficient 

profiles of HS UKN dominant leg and TTA UKN IL during normal steady-state walking 

(two-sample t-test) 

Case 3) HS UKN versus amputee’s UKN PL (6 muscles);  
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Null hypothesis Case 3: There is no difference between individual activation coefficient 

profiles of HS UKN dominant leg and TTA UKN PL during normal steady-state walking 

(two-sample t-test) 

Case 4) amputee’s UKN IL versus amputee’s UKN PL (6 muscles): 

Null hypothesis Case 4: There is no difference between individual activation coefficient 

profiles of TTA UKN IL and TTA UKN PL during normal steady-state walking (paired t-

test). 

5.4 Results 

Muscle synergy analysis was performed between HS and TTA during LGW, RD and RA 

activities. Similarly, the comparison between synergy components of HS and TFA was 

made during LGW. In this chapter, only the results between HS and TTA during normal 

steady-state walking were presented. For other activities, refer to the publications lists. 

5.4.1 Variance Accounted For (VAF) 

The similarity of reconstructed and original signals was calculated by the VAF. The total 

VAF showed to be higher than 0.8 when four (case 1) and three (cases 2-4) synergy 

groups were chosen. In cases 2-4, three synergy groups satisfied the VAF criteria. shows 

changes in a number of synergy groups in all four cases by means of VAF (Figure 5.5).  

 

Figure 5.5: VAF comparison as a function of the number of synergies in cases 1-
4. 

5.4.2 Intra-class Correlation (ICC) 

An individual muscle signal reconstruction showed a reasonable correlation to the 

original signal in all four cases (Figure 5.6). The lowest and highest ICC illustrated in RF 
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(case 2: healthy) and TA (case 1: amputee) with a correlation value of 0.31 and 0.99, 

respectively.  

 

Figure 5.6: ICC of reconstructed signals compared to the original signal for each 
muscle in cases 1-4.  

 

5.4.3 Muscle Synergy Analysis Description 

Figure 5.7 (A) and (B) show muscle synergy vectors (S1-S4) and activation coefficient 

profiles (C1-C4) of cases 1-4, respectively. The muscle synergy is divided into two 

muscle groups based on their weighting; primary > 0.5 and secondary < 0.5 (Figure 5.7 

(A)). The subsequent section is the interpretation of each case.  

It is worth noting, functional sorting in this study was performed choosing HS 

synergy components as references to sort the amputee’s results (cases 1-3). However, 

in case 4, amputee’s IL was chosen as a reference to sort amputee’s PL. 
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Figure 5.7: (A) Muscle weighting within each synergy and (B) activation 
coefficient profiles of cases 1-4.  

 

Case 1: In HS, synergy 1 (S1) showed a high activation of vasti, TFL and GMED muscles 

as well as a lesser activity of RF, SOL, and TA during the ES and TSW. Synergy 2 (S2) 

consisted of primarily triceps surae muscles and to a lesser extent TFL and GMED during 

the MS-TS. Synergy 3 (S3) composed of primarily TA activation, and GMED and RF as 

secondary muscles during the ES and ISW and TSW. Synergy 4 (S4) comprised of BFLH 

as primary and vasti, RF and TA as secondary muscles during the ES and TSW (Table 

5.1).   

(A) 

(B) 
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Table 5.1: Muscle weightings contribution and activation timing profile within 
each corresponding module (case 1: HS dominant leg). 

Case 1: HS Dominant Leg 

Module Muscle Activation 
 Primary* Secondary*  

S1 
Vasti, TFL, 

GMED 
RF, SOL, TA ES. TSW 

S2 Triceps surae TFL, GMED MS, TS 

S3 TA GMED, RF, GL 
ES, ISW, 

TSW 

S4 BFLH Vasti, RF, TA, SOL ES, TSW 
    * Muscle weighting: primary > 0.5, and secondary < 0.05 

Case 1: In amputee’s IL, S1 was composed of mainly vasti high activation and lower 

activation of TFL, BFLH GMED, SOL, and TA during the ES-MS and TSW. S2 consisted 

of triceps surae and to lesser extent TFL and BFLH during the MS-TS. S3 composed of 

primarily TA muscle during the ES-MS and whole swing phase. S4 consisted of RF as a 

primary with the highest activation along with a lesser activity of TFL, VM, and TA as 

secondary muscles during the ES-MS and ISW (Table 5.2).   

Table 5.2: Muscle weightings contribution and activation timing profile within 
each corresponding module (case 1: TTA IL). 

Case 1: TTA IL 

Module Muscle Activation 
 Primary* Secondary*  

S1 Vasti, TFL, BFLH GMED, SOL, TA 
ES, MS, 

TSW 

S2 Triceps surae TFL, BFLH MS, TS 

S3 TA BFLH, SOL, RF 
ES, MS, 

TSW 

S4 RF TFL, VM, TA ES, MS, ISW 
    * Muscle weighting: primary > 0.5, and secondary < 0.05 

Case 2 and 3: In HS UKN, S1 showed a high activation of GMED and lesser activity of 

RF, VM, and BFLH during the MS-TS. S2 consisted of mainly vasti muscles and to a 

lesser extent RF and TFL muscles during ES-MS and ISW. S3 composed of high 

activation of TFL, and lower activation of BFLH, VL, RF, and GMED during ES-MS and 

TSW (Table 5.3).  

Table 5.3: Muscle weightings contribution and activation timing profile within 
each corresponding module (case 2 & 3: HS UKN). 

Case 2 & 3: HS UKN 

Module Muscle Activation 
 Primary* Secondary*  

S1 GMED RF, VM, BFLH MS, TS 

S2 Vasti RF, TFL MS, TS, ISW 

S3 TFL BFLH, VL, RF, GMED ES, MS, TSW 
    * Muscle weighting: primary > 0.5, and secondary < 0.05 

Case 2 and 4: In amputee’s UKN IL, S1 was comprised of primarily RF high activation 

and lower activation of VM during the stance phase and ISW. S2 consisted of mainly 
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vasti and BFLH muscles and lesser activity of GMED and RF during ES-MS stance and 

TSW. S3 showed a high activation of TFL as primary muscle and low activation of VL, 

GMED, and BFLH as secondary muscles during the whole stance phase (SP) (Table 

5.4). 

Table 5.4: Muscle weightings contribution and activation timing profile within 
each corresponding module (case 2 & 4: TTA UKN IL). 

Case 2 & 4: TTA UKN IL 

Module Muscle Activation 
 Primary* Secondary*  

S1 RF VM SP, ISW 

S2 Vasti, BFLH GMED, RF ES, MS, TSW 

S3 TFL VL, GMED, BFLH SP 
    * Muscle weighting: primary > 0.5, and secondary < 0.05  

Case 3: In amputee’s UKN PL, S1 showed a high activation of TFL and GMED muscles 

and to a lesser extent VM and RF muscles during the ES. S2 consisted of mainly vasti 

and RF muscles as primary and lower activation of GMED during ES-MS and TSW. S3 

was composed of primarily BFLH muscle and lesser activity of GMED, VM, and RF as 

secondary muscles during the whole stance phase and TSW (Table 5.5).  

Table 5.5: Muscle weightings contribution and activation timing profile within 
each corresponding module (case 3: TTA UKN PL). 

Case 3: TTA UKN PL 

Module Muscle Activation 
 Primary* Secondary*  

S1 TFL, GMED VM, RF ES 

S2 Vasti, RF GMED ES, MS, TSW 

S3 BFLH GMED, VM, RF SP, TSW 
    * Muscle weighting: primary > 0.5, and secondary < 0.05 

Case 4: The interpretation of TTA UKN PL is similar to the case 3 but the order of synergy 

group 1 and 3 switches because the functional sorting was done based on TTA UKN IL 

(Table 5.6).  

Table 5.6: Muscle weightings contribution and activation timing profile within 
each corresponding module (case 4: TTA UKN PL). 

Case 4: TTA UKN PL 

Module Muscle Activation 
 Primary* Secondary*  

S1 BFLH GMED, VM, RF SP, TSW 

S2 Vasti, RF GMED ES, MS, TSW 

S3 TFL, GMED VM, RF ES 
    * Muscle weighting: primary > 0.5, and secondary < 0.05 

5.4.4 TTA Muscle Synergy Comparison with TFA 

Figure 5.8 illustrates the comparison between muscle synergies of TTA during normal 

steady-state walking and TFA during transient-state walking across different speeds (the 

description is presented in chapter 6, section 6.3). 
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Figure 5.8: Comparison between muscle synergies of TTA and TFA. 
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5.4.5 Statistical Analyses (Spatially Fixed Muscle Synergies) 

To assess the differences in the muscle synergies of each case, R2 was performed. 

5.4.5.1 Correlation Analysis using R2 

Table 5.7 shows muscle synergies correlation in all cases. In case 1, the highest and 

lowest correlation occurred in S2 and S4, respectively. Case 2 showed a low, moderate 

and strong correlation in S1, S2, and S3 between the two groups, respectively. In case 

3, low correlation of S1 and S3 and moderate correlation of S2 were observed. In case 

4, S1 showed low correlation, but S2 and S3 revealed moderate correlation.  

Table 5.7: Muscle synergy comparison in case 1-4 using R2. NA indicates not 
applicable. 

 S1 S2 S3 S4 

Case 1 0.74 0.97 0.92 0 

Case 2 0 0.57 0.84 NA 

Case 3 0 0.70 0 NA 

Case 4 0 0.57 0.48 NA 

5.4.6 Statistical Analyses (Activation Coefficient Profile) 

In the SPM analysis, the t-value is zero when there is no difference between the 

mean activation coefficient profiles of the two groups. When it is positive; meaning CHS 

> CTTA and when it is negative; vice versa. The critical value is calculated through 

inference based on random field theory. If the t-curve exceeds the threshold (red line), 

then this shows the statistically significant difference in activation coefficient profile. 

Case 1: The statistically significant difference between HS and TTA C1 occurred at 15-

32% (p<0.001) GC. This is where the t-trajectory passed Critical thresholds (t*) and 

cluster-level probability values was less than 0.05. In C2, three suprathreshold clusters 

were obtained at 0-2% (p=0.042), 49-55% (p=0.008) and 94-100% (p=0.018) GC. In C3, 

the significant differences occurred in only one region GC (57-62% (p=0.008)). C4 

showed the highest percentage where the t-trajectory passed the threshold (25-34% 

(p<0.001), 58-71% (p<0.001), and 88-97% (p<0.001)) indicating the major difference 

between the two groups (Figure 5.9).  
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Figure 5.9: A statistical inference curve indicating a significant relationship 

between HS C and TTA IL C (case 1) at normal speed. Red dashed line indicates 
critical threshold ((A): t*C1=3.362, (B): t*C2=3.341, (C): t*C3=3.408, (D): 

t*C4=3.433). The period where the critical threshold is exceeded depicted as grey 
(p<0.05). 

Case 2: The statistically significant difference in C1 occurred at 42-51% (p=0.001) and 

60-68% (p=0.002) GC. In C2, two suprathreshold clusters were found where the 

significant difference between the two groups illustrated at 0-2% (p=0.037) and 12-31% 

(p<0.001) GC. C3 showed the highest number of clusters where the differences occurred 

at 6-11% (p=0.013), 23-50% (p<0.001) and 89-95% (p=0.008) GC (Figure 5.10).  

  

 
Figure 5.10: A statistical inference curve indicating a significant relationship 

between HS UKN C and TTA UKN IL C (case 2) at normal speed. Red dashed line 
indicates critical threshold ((A): t*C1=3.360, (B): t*C2=3.473, (C): t*C3=3.384). The 

period where the critical threshold is exceeded depicted as grey (p<0.05).  

Case 3: In C1, the suprathreshold occurred at 0-13% (p<0.001) and 29-51% (p<0.001) 

of GC. C2 revealed statistically significant differences at 0-5% (p=0.003), 13-24% 

C1 C2 

C3 C4 

C1 C2 

C3 

(A) (B) 

(C) (D) 

(A) (B) 

(C) 
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(p<0.001) and 90-100% (p<0.001) GC. Two clusters were found in C3 at 24-33% 

(p<0.001) and 90-91% (p=0.045) GC (Figure 5.11).  

  

 

Figure 5.11: A statistical inference curve indicating a significant relationship 
between HS UKN C and TTA UKN PL C (case 3) at normal speed. Red dashed line 
indicates critical threshold ((A): t*C1=3.379, (B): t*C2=3.511, (C): t*C3=3.421). The 

period where the critical threshold is exceeded depicted as grey (p<0.05). 

Case 4: In C1, the significant difference occurred at 59-69% (p<0.001) GC. In C2, the 

suprathreshold resulted in significant difference at 92-98% (p<0.001) GC. Two clusters 

were found in C3 at 34-38% (p=0.004) and 44-48% (p=0.005) GC (Figure 5.12).  

  

 
Figure 5.12: A statistical inference curve indicating a significant relationship 

between TTA UKN IL C and TTA UKN PL C (case 4) at normal speed. Red dashed 
line indicates critical threshold ((A): t*C1=4.633, (B): t*C2=4.578, (C): t*C3=4.395). 

The period where the critical threshold is exceeded depicted as grey (p<0.05). 

C1 C2 

C3 

C1 C2 

C3 

(A) (B) 

(C) 

(A) (B) 

(C) 
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Table 5.8 shows the summary of regions where statistically significant differences (t 

curve passed the t-critical values) occurred in all four cases during steady-state gait 

(Figure 5.9 to Figure 5.12).  

Table 5.8: Summary of the suprathreshold clusters of case 1-4 occurred during 
the GC. Early, mid and terminal stance represent ES, MS, and TS; initial, mid and 

terminal swing represents ISW, MSW, and TSW, respectively. 

P < 0.05 

 C1 C2 C3 C4 

Case 1 MS* 
ES*, TS*, 

TSW* 
TS 

MS*, ISW*, 
TSW 

Case 2 TS, ISW* ES*, MS* 
ES*, MS-TS*, 

TSW 
NA 

Case 3 ES*, MS-TS 
ES*, MS*, 

TSW* 
MS*, TSW NA 

Case 4 ISW TSW* MS, TS NA 

* indicates the region where TTA is significantly greater than HS within the respective case.  

5.5 Discussion 

In this chapter, the differences between the synergy components of the HS and TTA 

were investigated during self-selected steady-state walking. The VAF results revealed a 

similar number of synergies between the two groups in all cases. This indicates the 

complexity acquired by the CNS to control the muscles of both groups in each case is 

similar, in agreement with other studies which analyzed the TFA (Chapter 4) and ACL 

deficiency patients [95, 126] and in contrast with the paretic (post-stroke) subjects study 

[91]. The increase in the number of synergy groups resulted in a higher VAF. However, 

the optimal number was chosen based on the VAF criteria. In addition, it was checked if 

the optimal group number provided better distinct synergy groups and physiological 

relevance of muscle EMG contents. There were observable differences in modular motor 

control dimension depending on the number of muscles included in the analysis. Cases 

2-4 in which only thigh muscles were involved, three synergy groups were able to 

account for more than 90% of the variation in the original signals. This result is in 

agreement with the concept that the number and choices of muscles have an impact on 

the modular motor control dimensionality [209].  

In order to compare the muscle synergy vectors of all cases, R2 was performed. 

In case 1, triceps surae had the highest weightings in S2, indicating a strong correlation 

between HS and TTA. However, S4 showed the lowest correlation due to the difference 

in the primary muscle of the HS (related to the BFLH activation) and TTA (related to the 

RF activation). The weighting of the primary muscle showed to have a significant effect 
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on the synergies correlation between the two groups. In case 2 and 4, TTA UKN IL S2 

showed knee extensors as well as a knee flexor as primary muscles with higher weighing 

compared to the HS UKN and TTA UKN PL, respectively. The presence of the two 

agonist and antagonist muscles in one muscle synergy group shows higher co-

contraction at the knee of IL as compared to the PL and HS. This is indicative of reduced 

stability during the stance phase. Previous reports suggested co-contraction of BFLH 

and VAS of PL in ES. However, they only considered the high dimensional muscle 

activity patterns rather than motor modules in TTA [28, 34]. Along similar lines of the 

observed results in SPM, C2 showed significant differences in ES and MS in case 2 

(Figure 5.10) as well as statistical differences at the transition from swing to stance phase 

in case 4 (Figure 5.12). The lowest correlation was found in case 3 in which S1 and S3 

showed no common primary muscles. The low correlation could be attributed to the fact 

that significantly higher activities of the TTA UKN PL were reported in the literature as 

compared to the HS UKN [28]. Therefore, the compensation from the UKN PL could be 

caused by the fact that TTA tried to stabilize the knee joint especially at the transition 

from swing to stance and at the single limb support phase GC (the grey area in C1 and 

C3 of Figure 5.11). The highest correlation was found in case 1 where the first three 

synergy groups (S1-S3) had the strongest correlation between HS dominant leg and TTA 

IL. R2 in case 4 showed a moderate correlation of S2 and S3 and a low correlation of S1 

between amputee’s UKN IL and UKN PL. In S1, a different group of muscles was 

recruited, and the low correlation of S1 could be due to the fact that higher activation in 

BFLH of PL during braking and lower activation in swing phase were expected than that 

of IL, as reported in [28]. The high correlation (case 1: S1, S2, and S3; case 2: S3, case 

3: S2) between muscle synergies suggesting the CNS synergistically activates the same 

group of muscles in both groups. The low to moderate correlation between some synergy 

groups (case 1: S4; case 2: S1 and S2; case 3: S1 and S3; case 4: S1-S3) are indicative 

of alteration in muscle synergies which could be due to the weight bearing deficiency 

and inadequate proprioceptive feedback of the PL as well as type of prosthesis 

(mechanically passive). 

The results of the t-test in SPM showed activation of the two groups, regardless 

of a high correlation in S, could be significantly different in some regions GC, i.e., all null 

hypotheses were not supported. As an example, case 1 showed amputee’s C1 and C2 

were significantly different from HS although a high correlation of 0.74 and 0.97 was 

perceived between S of the two groups. The largest significant differences have been 

observed in case 1 (C4), case 2 (C3), case 3 (C1) and case 4 (C1). This indicated that 

the activation coefficient profile controlling the muscle synergy was not similar in terms 

of timing and level of activation (intensity) at multiple regions GC between groups of all 

cases. One of the possible reasons for the differences between groups in all cases is 
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TTA effort to stabilize his joints and body weight during the single limb support phase, at 

the transition from stance to swing phase and swing to stance phase.  

The neuromuscular compensation in TTA could be associated with the type of 

prostheses (e.g., stiffness) which fails to provide sufficient push off to move the body 

forward. This results in a higher GRF and greater mechanical work on both IL and PL 

[21]. Furthermore, the physiological modifications of the CNS and different strategy 

deployed by elderly to manage the age-related modifications of the human 

neuromusculoskeletal system have been reported in the prior literature [58, 304] which 

may have affected the synergy outcomes. In addition, sarcopenia (loss of muscle 

strength and volume) could play a major role in modifying the muscle activation of elderly 

TTA.  

It is not easy to draw a far-reaching conclusion from one elderly TTA, and further 

investigation on a larger pool of subjects is needed to be able to generalize the 

interpretation of the present study. Therefore, the potential limitations of this chapter 

were the low number of participants and the age difference between them. In addition, 

each activation coefficient profile was compared separately (robotic control perspective). 

Thus the covariance between the temporal components of muscle synergy was not 

considered in this study.  

5.6 Summary 

In this study, muscle synergy analysis was used to elicit neuromuscular changes in TTA. 

It was revealed that TTA CNS complexity to recruit muscles is analogous to those of 

non-amputees. In each case, the primary muscle(s) had a significant impact on the level 

of muscle synergy vectors correlation. The results of activation coefficient profile 

suggested that amputee’s IL and PL were significantly different when compared together 

and to the HS. These findings could provide useful information to therapists to tailor 

rehabilitation methods in TTA. Also, this study will help the prosthetic companies to 

develop synergy-based control prostheses. 

5.7 Conclusion 

Four synergies in case 1 and three synergies in cases 2 and 3 were found during normal 

steady-state walking. This indicates the complexity acquired by the CNS to control the 

muscles of both groups in each case is similar.  
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The fewer number of muscles in cases 2-4 showed one less synergy group as 

compared to case 1, indicating the number and choices of muscles have an impact on 

the modular motor control dimensionality.  

The high correlation between muscle synergies suggests the CNS synergistically 

activates the same group of muscles in both groups. The low to moderate correlations 

between some synergy groups are indicative of an alteration in muscle synergies which 

could be due to the weight bearing deficiency and inadequate proprioceptive feedback 

of the PL as well as the type of prosthesis (mechanically passive). 

Significant differences were observed in individual activation coefficient profiles 

between groups in cases 1-4 which indicate the changes in timing and level of activation 

(i.e., intensity) in multiple regions of the GC. This could be due to the TTA effort to 

stabilize their joints and body weight during the single support phase, at the transition 

from stance to swing phase and swing to stance phase.  
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Chapter 6  

COMMON DISCUSSIONS 

6.1 Introduction 

This chapter is divided into three main sections. The first section is speculation on the 

commonalities/differences in the statistically significant differences between high 

dimensional (HD) sensorimotor Modules (M1-M4) and low dimensional activation 

coefficient profiles (C1-C4) of healthy subjects (HS) and transfemoral amputees (TFA) 

across different walking speeds. In addition, commonalities/differences between 

transtibial amputee (TTA) and TFA muscle synergies are investigated. The second 

section provides the rationale behind investigating the muscle coordination from high 

level and low level analysis, separating group and speed, implementing statistical 

parametric mapping (SPM) instead of traditional statistical analysis, using both 

multivariate and univariate as a means of biomechanics and robotic control comparison, 

not using other factorization techniques, using concatenated non-negative matrix 

factorization (CNMF) instead of non-negative matrix factorization (NMF). The third part 

presents the implications of using the outcomes of this research in clinics and robotic 

control.  

6.2 Comparison Between HD Sensorimotor Modules and HS 

Low Dimensional Temporal Component of Muscle Synergy 

The commonalities/differences in suprathreshold clusters (i.e., statistically significant 

differences) occurred between the HD sensorimotor Modules (M1-M4), and low 

dimensional activation coefficient profiles (C1-C4) in each population during transient-

state walking at different speeds were investigated. 

6.2.1 HS HD Sensorimotor Modules vs. HS Low Dimensional 

Activation Coefficient Profiles (Within-Subject) 

HS HD M1 vs. HS C3 

HS HD M1 (Figure 3.7) and HS C3 (Figure 4.28) (mainly related to activation of knee 

extensor muscles) contributed to weight acceptance at heel contact in early stance. A 

common suprathreshold cluster was observed during the MS between the HD 
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sensorimotor Module and low dimensional activation coefficient profile with increased 

transient-state walking speed.  

HS HD M2 vs. HS C2 

HS HD M2 (Figure 3.8) and HS C2 (Figure 4.26) (mainly related to activation of ankle 

plantarflexors) contributed to body support and forward propulsion in late stance. A 

common suprathreshold cluster was observed during the TS between the HD 

sensorimotor Module and low dimensional activation coefficient profile with increased 

transient-state walking speed.  

HS HD M3 vs. HS C1 

HS HD M3 (Figure 3.9) and HS C1 (Figure 4.24) (mainly related to activation of ankle 

dorsiflexor and hip flexors) contributed to foot lift-off in early- to mid-swing. Common 

suprathreshold clusters were observed during the MS, PSW-ISW, and TSW between the 

HD sensorimotor Module and low dimensional activation coefficient profile with 

increased transient-state walking speed.  

HS HD M4 vs. HS C4 

HS HD M4 (Figure 3.10) and HS C4 (Figure 4.30) (mainly related to activation of 

hamstrings) contributed to deceleration of the leg in late swing in preparation for heel 

contact and then stabilizes the pelvis after initial contact. A common suprathreshold 

cluster was observed during the TSW between the HD sensorimotor Module and low 

dimensional activation coefficient profile with increased transient-state walking speed. 

6.2.2 TFA HD Sensorimotor Modules vs. TFA Low Dimensional 

Activation Coefficient Profiles (Within-Subject) 

TFA HD M1 vs. TFA C3 

Both TFA HD M1 (Figure 3.13) and TFA C3 (Figure 4.36) mainly involved knee extensor 

muscles activation at the beginning of the stance period. No common suprathreshold 

cluster was observed between the HD sensorimotor Module and low dimensional 

activation coefficient profile with increased transient-state walking speed as TFA C3 

showed no significant difference. 

TFA HD M2 vs. TFA C2 

Both TFA HD M2 (Figure 3.14) and TFA C2 (Figure 4.34) mainly involved plantarflexor 

muscles activation which contributed to both body support and propulsion. A common 

suprathreshold cluster was observed during the TS between the HD sensorimotor 
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Module and low dimensional activation coefficient profile with increased transient-state 

walking speed. 

TFA HD M3 vs. TFA C1 

TFA HD M3 (Figure 3.15) involved dorsiflexor, and hip flexor muscle activation and TFA 

C1 (Figure 4.32) involved hip abductor and knee extensor activation. Although there are 

similarities in the occurrence of the suprathreshold clusters in TFA HD M3 and TFA C1 

(low dimensional modular motor control) during the ES and TSW, the primary muscles 

comprised HD Modules, and low dimensional muscle synergies were different to a great 

extent. One possible explanation for commonalities between the HD and low dimensional 

modules is the major activation burst that occurred almost at the same time. The change 

in speeds reflects the magnitude of these bursts which happened to be the same in both 

cases. It is noteworthy that the changes in muscle recruitments may be due to the 

overloading of the IL as compared to the HS [21, 23].  

TFA HD M4 vs. TFA C4 

TFA HD M4 (Figure 3.16) involved hamstrings activation and TFA C4 (Figure 4.37) 

mainly activated the dorsiflexor muscle. No Common suprathreshold cluster was 

observed between the HD sensorimotor Module and low dimensional activation 

coefficient profile with increased transient-state walking speed. Since the muscles 

included in the HD and low dimensional are different, the significant difference in the 

temporal component is also different, and there are no commonalities between both 

analysis.  

In summary, the commonalities in significant differences were speculated 

between the HS HD sensorimotor Modules (HD M1-M4) and temporal components (C1-

C4) from muscle synergy analysis in response to increasing transient-state walking 

speeds. In HS, the HD Modules and low dimensional activation coefficient profiles 

partially agreed in terms of the epochs where the significant differences occurred in the 

gait cycle. There are some differences which can be due to the computation methodology 

and several assumptions which have been made to calculate muscle synergy 

components. In addition, the differences may also arise from the physiological factors 

including the effect of local sensory feedback, descending and ascending pathways and 

proprioceptive feedback. Previous reports have shown that the activation coefficient 

profiles are relatively stable across subjects in spite of the fact that inter-individual 

variability is higher in the HD EMG [312, 325]. 

The commonalities in significant differences between TFA HD sensorimotor 

Modules (HD M1-M4) and activation coefficient profiles (C1-C4) from muscle synergy 

analysis have been observed in one module mainly related to activation of plantarflexor 
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muscles (TFA HD M2 vs. TFA C2). No commonalities found in other HD Modules and 

associated lower dimensional counterparts could be attributed to the fact that the 

muscles involved in the former were different from the latter. Other factors associated 

with the computational analysis and physiological aspects as mentioned above may also 

contribute to the differences.  

It is worth noting that the comparison between HD Modules and low dimensional 

activation coefficient profiles is simple speculation from the results obtained using SPM. 

Therefore, objective analyses must be performed for generalization of the outcomes.  

6.3 Motor Modules Comparison between TTA and TFA 

Mehryar et al. [92, 93, 230] investigated the modular motor control in one transtibial 

amputee during several activities of daily living. They reported a reasonable correlation 

between the HS and TTA during the slope waking, however, in normal steady-state 

walking, a poor correlation was observed in S4 (mainly activity of RF in TTA) as 

compared to the HS [92, 94].  

Four synergy groups explained the variability in the EMG (VAF > 80%) signals of 

HS, TTA and TFA during walking at different walking states (i.e., transient and steady) 

and speeds (slow, normal, fast), indicating that different walking states, variation in 

speeds, and level of amputation do not have any impacts on the CNS control complexity. 

In spite of certain variability between the synergy vectors of TTA normal steady-

state walking and TFA fast transient-state walking, it was speculated, three of TTA 

modules corresponded to the TFA modules (S1, S2, and S3) (Figure 5.8). S1 was mainly 

loaded by knee extensor and hip extensor muscles (VM, VL, and BFLH), S2 was mainly 

loaded by plantarflexor muscles (SOL, GM, and GL), S3 was mainly loaded by the ankle 

dorsiflexor (TA). A low correlation was observed in S4 between TTA (mainly activated 

knee extensor and hip abductor in ES, MS, and ISW) and TFA (mainly activated knee 

flexor in ES and MS-TSW). The difference in choice of the muscles included (SEM 

excluded in TTA and GMED excluded in TFA), walking state (steady vs. transient), level 

of amputation (below knee vs. above knee), prosthesis type (ESR vs. SACH) and small 

sample size (1 subject vs. 11 subjects) may have led to differences in the results. 

Therefore, a larger pool of homogenous amputees with a similar prosthesis is required 

to be able to generalize the interpretation of this study. 
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6.4 Applicability of This Study 

6.4.1  Clinical Implications 

It is not possible to directly measure neural activity thereby; muscle activation signals are 

recorded through surface EMG. The behavioral output is the result of force generated by 

the muscle activity which in turn is the reflection of the motoneuron activity [329]. 

Therefore, recording electrical activity from the muscles has been the focus of many 

studies to identify neural behavior. However, the high dimensional muscle activation 

alone would not provide adequate information about functional deficits as a higher 

variation of muscle activity has been reported in individuals with pathology [246]. 

Computational analyses have been developed to help in this context. Information about 

muscle synergies provides valuable clinical implications of the neural structure 

underlying the motor behaviors, functional outcomes of muscle activation and how they 

alter in pathologies and after rehabilitation [192].  

Muscle synergies could be used for identifying the degree to which the 

amputation has led to an alteration in descending neural pathways [246, 330]. Therefore, 

the number of muscle synergies is a good indicator of the CNS complexity in controlling 

the lower extremity after limb loss. Furthermore, this type of analysis is a potential means 

for identification of the degrees of impairment, gait asymmetry, level of amputation and 

effect of prosthesis types and setting.  

The significant differences in activation coefficient profiles between HS and lower 

limb amputees provide valuable information on biomechanical subtasks that have been 

affected in terms of magnitude and/or morphology. Therefore, the focus of rehabilitation 

could be on those muscles contributing to the associated biomechanical subtasks. 

Despite no change in the number of muscle synergies grouping between HS and 

lower limb amputees, spatially fixed synergy vector results showed changes in some of 

the muscle synergy recruitment of the lower limb amputees which could be the reflection 

of the ascending and proprioceptive feedback due to the type and mechanical properties 

of the prosthesis.  

The structure of the existing muscle synergies can be subject to change, or even 

new muscle synergies could be developed if proper training programme is implemented 

[331]. Therefore, muscle synergies could elucidate the changes in muscle activation 

pattern, recruitment, number and structure after a rehabilitation course has been 

completed for the lower limb amputees.  

The muscle synergy analysis could indicate the presence of co-contraction at 

ankle and knee joints based on the weighting of the muscles (i.e., synergy vector) and 
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the timing of occurrence (i.e., activation coefficient profiles). Along similar lines of the 

observed results in HD EMG, the significant differences occurred in muscles involved in 

co-contraction of ankle and knee may provide valuable information on the epochs in the 

GC where larger stability is required as speed changes and as a comparison between-

populations. Furthermore, the co-contraction can significantly change the internal forces 

being applied to the joint which may have an indication of secondary physical conditions 

in lower limb amputees such as osteoarthritis [330]. Therefore, it may be possible to 

recognize the progression of the degenerative disease by investigating muscle 

coordination by means of HD EMG and low dimensional muscle synergies.  

Finally, since factors such as type, level, and reason of amputation as well as 

age influence the rehabilitation strategy, muscle synergy would be an effective tool to 

evaluate the therapy results, to assess the effect of rehabilitation, and to alter treatments.  

6.4.2  Robotic Control Implications 

Lack of robust control strategy has limited the application of robotic devices in 

rehabilitation and prostheses. Current assistive technologies are still quite limited in 

interacting physically with human body mostly because they do not operate according to 

the same principles. Even though there are several sensor modalities which could be 

used for extracting neural information, surface EMG is the key to existing robotic-aided 

prostheses for intuitive control [332].  

6.4.2.1 Clinical State of the Art (Direct Control) 

The use of muscle activation signal to control prostheses known as myoelectric control 

is the clinical state of the art. Surface EMG is recorded from two muscle groups (agonist 

or antagonist). The patients could control these two group of muscles independently, so 

the electrical activity of one muscle is associated with the task (e.g., flexion); and the 

electrical activity of the antagonist is used to control the other DOF (e.g., extension). The 

user can act in one DOF and in some clinical systems it is possible to switch between 

the DOF with some prefix (e.g., co-contracting of the two muscles) to switch the state 

machine, and the same control is applied for the other DOF (e.g., internal/external 

rotation). This approach is very simple for control, and it has the advantage of being very 

robust. However, the limitations of this system are not being able to simultaneously 

control multiple DOF as well as limited recovery of the functionality.  

6.4.2.2 Model-free Approaches 

The temporal information from HD EMG can be used in machine learning to estimate a 

numerical function that maps between biomechanical variables (i.e., EMG and joint 

angles or EMG and moments) as well as to detect locomotion tasks (i.e., activity 
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recognition). In this context, the number of EMG signals recorded from different sites 

transform into a two-dimensional feature space and a system which is usually a 

supervised machine learning classifier decides, based on the position in the feature 

space, which task the patients want to activate. The most frequent pattern recognition 

techniques used in previous studies are the artificial neural network (classification), and 

linear and/or nonlinear regression. The former has been implemented in human 

performing ADLs to approximate joint moments and joint angles [333]. The latter was 

deployed in an approximation of the EMG and hand kinematics [334, 335] and wrist 

angles [334, 336, 337]. Even though using machine learning techniques in multi-joints 

and multi-degrees of freedom upper limb prostheses has shown superior and more 

natural control (i.e., no direct association of each signal with each DOF is required) as 

compared to the commercialized prosthetic devices, there are some demerits using this 

type of approaches including: 1) model-free based approaches are regarded as black 

box because they do not give an insight into neuro mechanics process (i.e., no explicit 

equation used) [338], 2) they are good at training but not good at extrapolating (i.e., novel 

condition may not be generalizable with the previous training condition) [333, 339, 340], 

3) classic overfitting problem (i.e., lack of generalization if a complex relationship exists 

between the input variables which cannot be explained by a single macroscopic 

nonlinear transfer function (e.g., including many HD EMG signals as an input)), 4) not 

able to directly understand underlying mechanics of the input parameters (e.g., not able 

to know how population of neurons contributes to accelerating the joint just because all 

the transformations are summarized by regression equation) 5) they are limited to 

execution of simple movements (i.e., arm and hand functions and only validated in 

laboratory settings) [338], 6) there have been a very limited translation into the market 

and consequently to the patients, and 7) lack of robustness (i.e., this system works well 

in the restricted laboratory condition).  

In order to overcome some of these limitations and have a more natural control 

(i.e., simultaneous control), the synergistic approach can be used. Furthermore, the 

abundance and multi-muscle activation increase the dimensionality and complexity of 

robotic devices control. A prosthesis controlled by a large number of muscles signals 

could be susceptible to the artifacts and sensor noise during locomotion tasks. This limits 

the utility of myoelectric control. Muscle synergy analysis has been implemented to 

reduce the complexity of the HD muscle activation thus decrease in complexity of control 

strategy. That is, taking the HD EMG to calculate set of low dimensional activation 

coefficient profiles which are the signals that are sent by the spinal cord circuits and then 

they are transmitted to the motor neuron pools to generate the muscle electrical signals.  
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It has been shown in the previous research that upper limb amputees are capable 

of controlling mechanical prosthetic hand simultaneously and proportionally (i.e., 

meaning that the user can control the speed of each DOF independently and 

simultaneously) using a synergistic controller [329, 332]. However, there is still lack of 

robustness in synergistic machine learning approaches. 

6.4.2.3 Neuro-mechanical Modeling (Model-based Approach) 

Even though recent advancements in lower limb prostheses have shown improvement 

in fall prevention and mobility, the commercialized prostheses are still inferior in terms of 

modulation and viscoelastic forces as well as they do not provide positive net energy 

during demanding ADLs as compared to their biological counterparts [341]. As a result, 

metabolic energy consumption is much higher in lower limb amputees when performing 

different tasks across different grades and speeds or transitioning across locomotion 

tasks. Furthermore, higher dependency on the IL would lead to the secondary physical 

conditions such as osteoarthritis [21, 269, 270, 323].  

The bio-inspired approach can be implemented to provide a new paradigm for 

controlling artificial limbs and create a better solution for replacing natural motor function 

in an individual with amputation. Neuro-mechanical modeling allows converting neural 

information into estimates of mechanical output [136, 338]. That is, the neuromuscular 

information can be recorded using EMG from amputees’ lower limb. The mechanical 

model will use forward dynamics simulation to understand how muscle activates, 

generate forces and accelerates specific degrees of freedom in the IL. The mechanical 

forces predicted from the IL muscles are projected on to the amputated limb to predict 

the joint torque that is needed to actuate the prosthesis (echo-control strategy). In this 

context, electrophysiological information can be used to control individual muscle-tendon 

units in a subject-specific model of the musculoskeletal system. 

In the model-based approach, the biomechanical model constrains the space of 

the potential solution. Thereby, the muscle activations will generate the command that is 

biomechanically relevant otherwise the model would not recognize the non-relevant task 

as a physiological activation, so it does not translate it into action. As a result, the system 

becomes much more robust as compared to the data-driven model (model-free 

approach). The downside is more information is required to be put into the system 

because of the need to build the musculoskeletal model. In addition, model-based 

approaches allow estimating the internal forces which cannot be measured directly 

without invasive methods as well as the possibility of estimating amputee-prosthesis 

interaction. One of these important forces is the knee medial compartment force which 

has shown to associate with the knee osteoarthrosis [323, 342]. Consequently, this 
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approach would help to develop rehabilitation strategy to alleviate the force on medial 

knee compartment by designing better prostheses.  

6.4.2.4 Mid-level Control 

Other use of HD EMG and temporal components of muscle synergies (i.e., activation 

coefficient profiles) could be in the implementation of the mid-level control to investigate 

the occurrence of the important events/phases in the GC [35, 343]. The detection of the 

events/phases could potentially be used in the development of the control systems for 

lower limb prostheses to switch between states based on events/phases [344, 345]. 

Knowing the time intervals of the event/phase and the electromechanical delay naturally 

occurring (10 – 80 mili-seconds) (i.e., the mechanical force produced after the onset of 

activity detection) allow enough time to predict the intended movement/phase/state and 

modulate the prosthesis based on the detection of the events/phases.  

6.4.2.5 Mimicking Healthy Subjects Control 

Lastly, the significant differences observed from the SPM results of HD muscle activities 

and low dimensional activation coefficient profiles between HS and lower limb amputees 

allow identifying where the functional deficits or overloading may occur. Therefore, the 

necessary interventions could be applied at the onset of affected regions (similar to the 

technological interventions used in the powered and semi-active prostheses or utility of 

functional electrical stimulation to overcome the deficit). In this way, the mimicked healthy 

neuromuscular information could be deployed to control prosthetic devices in order to 

replicate the HS performance.  

6.5 Summary 

The commonalities of significant differences between the HD sensorimotor Modules and 

low dimensional activation coefficient profiles of HS and TFA were speculated. In 

addition, the comparison between TTA and TFA muscle synergy vectors were discussed. 

The justification behind the study of muscle coordination and selection of methodological 

analyses from the choice of signals to statistical analysis and choice of the algorithm has 

been explained. The possibilities of using the findings of this research in clinics and 

neurorehabilitation robotic-aided prostheses were also presented.  

6.6 Conclusion 

The differences in suprathreshold clusters occurred between the HD sensorimotor 

Modules and low dimensional activation coefficient profiles in each population could be 

due to the computational analysis (i.e., CNMF) and physiological aspects (i.e., the effect 
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of local sensory feedback, descending and ascending pathways and proprioceptive 

feedback). 

The same number of synergy groups (=4) found in HS, TFA and TTA indicates 

analogous complexity implemented by the CNS which does not depend on the state of 

the GC (transient vs. steady), speed (slow, normal and fast), and level of amputation 

(below knee vs. above knee). 

The differences in muscle synergies of the TTA and TFA could be due to the 

difference in choice of the muscles included, walking state, level of amputation, 

prosthesis type, and small sample size. 
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Chapter 7  

SUMMARY, CONCLUSIONS, LIMITATIONS AND FUTURE 

WORK 

7.1 Summary and Assessment of Research Objectives 

The changes in the neuromuscular behavior of the lower limb amputees during ADLs 

have been receiving widespread attention over the past few years in order to improve 

quality of their life [16, 26-28, 34, 36-38, 46, 48, 50, 66, 73]. The consequence of lower 

limb amputations has been discussed in the previous research from the kinematics and 

kinetics viewpoint [20, 21]. However, this thesis focuses on the lower limb amputees’ 

neuromuscular coordination function by investigating the HD EMG and low dimensional 

motor modules from biomechanics and robotic control perspectives.  

In chapter 1, a set of research aims, and objectives were outlined. The aims of the 

current research were to examine the HD EMG and low dimensional motor modules 

across transient-state walking speeds to identify the adjustment and compensatory 

strategies in HS dominant leg and TFA IL from biomechanics and robotic control 

perspectives. In addition, the low dimensional motor modules were examined between 

HS and TTA during steady-state walking to identify neuromuscular changes in TTA IL 

and PL adapted by the TTA IL and PL. This section evaluates the research objectives 

and the results found in this work.  

 To investigate the differences in temporal characteristics of HD sensorimotor 

Modules and all muscles that contribute to the co-contraction of ankle and knee 

joints (biomechanics perspective) as well as individual muscle activations (robotic 

control perspective) for both HS and TFA in response to increasing transient-

state walking speeds (within-subject HD EMG). 

Biomechanics: This is reported in chapter 3. The effect of speeds on HS and TFA 

muscle activities were compared from the biomechanics perspective. Significant 

differences were observed in all of the HD sensorimotor Modules (M1 to M4) and 

muscles contributed to the co-contraction of the ankle and knee at different regions of 

the GC, suggesting neuromuscular adaptation mechanism in both groups to satisfy the 

kinematic and kinetic demands of increasing transient-state walking speed.   

Robotic control: This is reported in chapter 3. The effect of speeds showed that while 

HS individual muscle activities (robotic control approach) were statistically significant at 
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different regions of the GC, TFA did not show significant differences in all muscles 

including SEM, TFL, and SOL. The information from these muscles could be used in the 

robotic perspective which reduces the mid-level control complexity for event detection. 

 To investigate the differences in temporal characteristics of HD sensorimotor 

Modules and all muscles that contribute to the co-contraction of ankle and knee 

joints (biomechanics perspective) as well as individual muscle activations (robotic 

control perspective) between HS and TFA during transient-state walking at 

different speeds (slow, normal, and fast) (between-subject HD EMG). 

Biomechanics: This is reported in chapter 3. The biomechanics approach has shown 

that HD M2 is significantly different in late stance between HS and TFA at slow, normal 

and fast walking speeds. On the other hand, no significant difference was found in HD 

M1, M3, and M4. The muscles contributed to the ankle co-contraction were significantly 

different at the transition from stance to swing phase at all speeds. In addition, both HD 

M2 and ankle co-contraction muscles were statistically significant in MS at fast speed.   

Robotic control: This is reported in chapter 3. At slow transient-state walking, significant 

differences were observed in VL, BFLH, TFL, TA, GM, GL and SOL between HS and 

TFA. At normal transient-state walking, significant differences were observed in RF, VM, 

BFLH, TA, GM, GL, SOL. At fast transient-state walking, significant differences were 

observed in RF, VM, VL, BFLH, TA, GM, GL, SOL. The results showed SEM and TFL 

were similar between HS and TFA at different speeds, suggesting an analogous 

neuromotor mechanism for controlling those muscles. 

 To develop a reliable and robust algorithm for muscle synergy analysis which 

accounts for the whole population rather than an individual subject.  

This is reported in chapter 4. CNMF was written in MATLAB to calculate muscle 

synergies/motor modules from HD EMG data. Two components of muscle synergy 

analysis are a time-varying component (activation coefficient profile) representing 

recruitment of the muscle synergy over time and spatially fixed muscle synergy vectors 

(i.e., muscle synergy vectors, modules) representing relative weighting of each muscle 

within each module.   

 To examine the changes in complexity of control strategy implemented by the 

CNS of HS and TFA with increasing transient-state walking speed. 

This is reported in chapter 4. The number of synergy groups reflects the complexity of 

the neuromuscular system which was determined by means of VAF. The criteria were to 

select the lowest number of synergies that accounted for > 0.80 of VAF and to check if 

the addition of the next synergy group will not increase VAF by more than 0.05. Both HS 
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and TFA showed to have four synergy groups during transient-state walking at all 

speeds.  

 To assess whether the recruitment of spatially fixed muscle synergy vectors 

changes in HS and TFA with increases in transient-state walking speeds. 

This is reported in chapter 4. Generally, a reasonable correlation was observed in the 

majority of the HS muscle synergies across speeds. The low correlation mainly related 

to the knee extensor and ankle dorsiflexor muscles synergy groups. The TFA high 

correlation was observed in S2 across speeds. In both groups, the low correlation was 

mainly related to the primary muscles weighting contributions rather than recruitment of 

different functionally related muscles.  

 To assess whether muscle synergies change between HS and TFA at each 

speed. 

This is reported in chapter 4. The lowest correlations were observed in S1 and S4 during 

slow and normal walking speeds, respectively. The strongest correlation was perceived 

in S2 during slow and fast walking speeds, respectively. 

 To investigate the differences in low dimensional temporal components of muscle 

synergy (i.e., activation coefficient profiles) of HS and TFA from biomechanics 

and robotic control perspectives in response to increasing transient-state walking 

speeds (within-subject activation coefficient profile). 

Biomechanics: This is reported in chapter 4. The effect of speeds on the covariance 

between the activation coefficient profiles of HS and TFA were compared (within-

subject). HS showed significant differences during body support, foot-flat, and transition 

from stance to swing phase as well as swing to stance phase. TFA showed to be 

significantly different in weighting acceptance between and in the transition from PL to 

IL at the end of IL swing phase.  

Robotic control: This is reported in chapter 4. The effect of speeds on individual 

activation coefficient profiles of HS and TFA were compared (between-subject). HS 

showed significant differences in all the activation coefficient profiles at different regions 

of GC. TFA showed to be significantly different in TFA C1, C2, and C4.  

 To investigate the differences in low dimensional temporal components of muscle 

synergy (i.e., activation coefficient profiles) between HS and TFA from 

biomechanics and robotic control perspectives during transient-state walking at 

each speed category (between-subject activation coefficient profile). 

Biomechanics: This is reported in chapter 4. The biomechanics approach has shown 

that the activation coefficient profiles commonly were significantly different in late stance 
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between HS and TFA at slow, normal and fast as well as in weight-bearing phase at slow 

and normal speeds.  

Robotic control: This is reported in chapter 4. The robotic control approach showed 

significant differences in individual activation coefficient profiles between HS and TFA at 

different regions of the GC at all speeds (except C4 fast speed). Most significant 

differences occurred during the stance phase.  

 To compare the changes in complexity of control strategy implemented by the 

CNS between HS and TTA during steady-state walking. 

This is presented in chapter 5. The optimal number of synergy groups were calculated 

by means of VAF. The results revealed four synergy groups for case 1 and three synergy 

groups for cases 2-4.   

 To determine whether muscle synergy complexity changes with respect to the 

number of recorded muscles. 

This is reported in chapter 5. Cases 2-4 represent the upper knee muscles of HS, TTA 

IL and TTA PL in which the results showed one fewer synergy groups as compared to 

the case 1 which consists of upper knee and shank muscles.  

 To assess whether muscle recruitment of spatially fixed muscle synergies 

changes among HS dominant leg, TTA IL, and TTA PL. 

This is reported in chapter 5. The highest correlation was observed in case 1: S1, S2, 

and S3; case 2: S3, case 3: S2 and the low and moderate correlation was found in case 

1: S4; case 2: S1 and S2; case 3: S1 and S3; case 4: S1-S3.  

 To investigate the differences in low dimensional temporal components of muscle 

synergy (i.e., activation coefficient profiles) among HS dominant leg, TTA IL, and 

TTA PL during normal steady-state walking (between-subject activation 

coefficient profile). 

This is reported in chapter 5. Significant differences were observed in individual 

activation coefficient profiles in cases 1-4 at different regions of the GC. The largest 

significant differences have been observed in case 1 (C4), case 2 (C3), case 3 (C1) and 

case 4 (C1).  

 To assess commonalities/differences in the statistically significant differences 

between HD sensorimotor Modules and low dimensional activation coefficient 

profiles of HS and TFA across speeds.  

This is reported in chapter 6. In HS, the HD Modules (HD M1-M4) and low dimensional 

activation coefficient profiles (C1-C4) partially agreed in terms of the epochs where the 
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significant differences occurred in the GC across different speeds. In TFA, only the HD 

sensorimotor M2 showed commonalities with the low dimensional activation coefficient 

profile 2 (C2) in terms of the epochs where the significant differences occurred in the GC 

across different speeds. 

 To assess the commonalities/differences between TTA and TFA muscle 

synergies. 

This is reported in chapter 6. Four synergy groups explained the variability in the EMG 

(VAF > 80%) signals of HS, TTA, and TFA during walking at different walking states (i.e., 

transient and steady) and speeds (slow, normal, and fast). In spite of certain variability 

between the synergy vectors of TTA normal steady-state walking and TFA fast transient-

state walking, it was speculated that three of TTA modules corresponded to the TFA 

modules (S1, S2, and S3). 

7.2 Conclusions 

1. The effect of speeds on both HS and TFA HD sensorimotor Modules and ankle 

and knee co-contraction muscles from biomechanical perspective showed 

significant differences, suggesting neuromuscular adaptation mechanism in both 

groups to satisfy the kinematic and kinetic demands of increasing transient-state 

walking speed. 

2. The effect of speeds on HS individual muscle activities (robotic control 

perspective) showed significant differences at different regions of the GC, 

suggesting, walking at different speeds should be considered as a separate task.  

3. The effect of speeds on TFA individual muscle activities (robotic control 

perspective) showed significant differences in different regions of GC, except in 

SEM, TFL, and SOL. The information from these muscles could be used in the 

robotic perspective which reduces the control complexity of prosthetic devices 

across different speeds. In addition, the temporal features of these muscles 

would help to control the onset of stance and swing at different speeds (i.e., mid-

level control).  

4. The HD sensorimotor Modules comparison between HS and TFA showed 

significant differences in HD M2 at all speeds. The difference attributed to the 

TFA longer stance phase, heightened activity, prolonged duration and the need 

for larger push off of the HD M2 muscles to compensate for the lack of 

plantarflexor in the PL. The muscles contributed to the ankle co-contraction were 

significantly different at all speeds, suggesting compensatory mechanism 

required to stabilize TFA IL ankle joint during double support before PL enters 
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the single limb support phase which is indicative of reduced stability during this 

time. 

5. Individual muscle activity showed no significant differences in SEM and TFL 

activity between HS and TFA at all speeds, suggesting a similar neuromotor 

mechanism underlying the motor control regulation of both groups. The 

significant difference in the muscles is mainly associated with the stance phase 

which could be due to the TFA effort to stabilize their joints and body weight 

during this time. Notwithstanding, the triceps surae showed to be significantly 

different during swing phase, indicating the importance of TFA plantarflexor after 

push off to propel the body forward and decelerate the ankle joint at the end of 

the swing phase. 

6. Both HS and TFA illustrated that four synergies are an optimal number of groups 

to match the reconstructed and original EMG at all speeds. This suggests that 

complexity of muscles recruitment by the CNS is analogous in both groups. 

Therefore, there is no compensatory adjustment in TFA.  

7. Reasonable correlation in muscle synergies of HS was observed across different 

speeds, indicating that the CNS activates the same groups of muscles 

synergistically. The low correlation was directly associated with the primary 

muscle weighting suggesting a difference in the weighting contributions of the 

knee extensor and ankle dorsiflexor muscles rather than recruitment of different 

muscle groups. The highest correlation in TFA was observed between 

plantarflexor muscles at different speeds. The low correlation between TFA 

muscle synergies across speeds could be attributed to the significant change of 

speeds which resulted in neuromuscular modulations at the transition from 

stance to swing phase and body support phase of the GC. 

8. The low correlation between HS and TFA muscle synergies could be due to the 

ambulation pattern, inadequate proprioceptive feedback, weight-bearing 

deficiency in PL, type of prostheses, and level of amputation which may cause 

neuromuscular modulation between amputees themselves and HS. 

9. The effect of speeds on activation coefficient profiles of both HS and TFA were 

compared from biomechanics perspective in which significant differences were 

found, suggesting adaptation strategy implemented by the CNS to fulfill the task-

dependent requirements of transient-state walking at different speeds. The 

difference could be related to the kinematic and kinetic demands of different 

speeds which led to different intensity in magnitude and time lag of activation 

timing for both groups across speeds.  

10. The effect of speeds on individual activation coefficient profiles of HS and TFA 

(robotic control) showed significant differences (except TFA C3), indicating the 
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CNS strategy to increase the intensity of activation coefficient profile to satisfy 

the kinematic and kinetic requirements of different speeds. No significant 

differences were found in TFA C3, suggesting no adaptation strategy is required 

to augment the intensity of the temporal component. 

11. Significant differences were observed in activation coefficient profiles 

(biomechanics approach) between HS and TFA at each speed category. A 

common significant difference (i.e., suprathreshold cluster) occurred between 

both groups during the TS at all speeds which could be due to the higher TFA IL 

push off required to compensate for the PL lack of push off as compared to the 

HS. 

12. Individual activation coefficient profile (robotic control approach) showed no 

significant differences in C4 at fast speed between HS and TFA which shows 

common drives in SEM. The significant difference in the other activation 

coefficient profiles mainly associated with the stance phase which could be due 

to the TFA effort to stabilize their joints and body weight during this time. The 

significant differences in C2 were in late stance and PSW and epochs of swing 

phase which shows the importance of TFA plantarflexor after push off to propel 

the body forward and to control the ankle during swing phase. 

13. Four synergies in case 1 and three synergies in cases 2 and 3 were found during 

normal steady-state walking. This indicates the complexity acquired by the CNS 

to control the muscles of both groups in each case is similar.  

14. The fewer number of muscles in cases 2-4 showed one less synergy group as 

compared to case 1, indicating the number and choices of muscles have an 

impact on the modular motor control dimensionality.  

15. The high correlation between muscle synergies suggests the CNS synergistically 

activates the same group of muscles in both groups. The low to moderate 

correlations between some synergy groups are indicative of an alteration in 

muscle synergies which could be due to the weight bearing deficiency and 

inadequate proprioceptive feedback of the PL as well as the type of prosthesis 

(mechanically passive). 

16. Significant differences were observed in individual activation coefficient profiles 

between groups in cases 1-4 which indicate the changes in timing and level of 

activation (i.e., intensity) in multiple regions of the GC. This could be due to the 

TTA effort to stabilize their joints and body weight during the single support 

phase, at the transition from stance to swing phase and swing to stance phase.  

17. The differences in suprathreshold clusters occurred between the HD 

sensorimotor Modules and low dimensional activation coefficient profiles in each 

population could be due to the computational analysis (i.e., CNMF) and 
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physiological aspects (i.e., the effect of local sensory feedback, descending and 

ascending pathways and proprioceptive feedback). 

18. The same number of synergy groups (=4) found in HS, TFA and TTA indicates 

analogous complexity implemented by the CNS which does not depend on the 

state of the GC (transient vs. steady), speed (slow, normal and fast), and level of 

amputation (below knee vs. above knee). 

19. The differences in muscle synergies of the TTA and TFA could be due to the 

difference in choice of the muscles included, walking state, level of amputation, 

prosthesis type, and small sample size. 

7.3 Limitations 

1. The focus of this thesis was on the transient (chapter 3 and 4) and steady-state 

(chapter 5) walking. For the better understanding of how CNS recruit muscles in 

the lower limb amputees during gait, it is crucial to investigate the neuromuscular 

modulation in other states of walking as well as other activities of daily living.  

2. Due to space limitation, only one gait per recording was extracted such that the 

intact and prosthetic leg hit the force plates. As a result, at least three separate 

trials were picked for data analyses. One may consider consecutive cycles, 

before entering to the steady-state, within the same trial to investigate step by 

step variability. Notwithstanding, [84] reported, the number of step cycles did not 

impact the modularity dimension.  

3. Only ten muscles have been included in this study for all groups. In the literature, 

the number varies from 8 to 31 muscles during gait [82, 91, 190, 209]. As reported 

by [209], the number of muscles has an impact on the neuromuscular results. 

Therefore, the results may have varied if more muscles were included in the 

study.  

4. Only superficial muscles were included in the present study. Prior research 

focused on the effect of deeper muscles during activities of daily livings. However, 

it has been shown that the number of synergies is invariant when compared to 

synergies extracted only from superficial muscles [82]. 

5. Due to the use of prosthetic strap by some of the amputees, GMED was not 

recorded for all of the TFA. Hence, it was removed from the analysis. Had GMED 

activity been included in the muscle synergy analysis; it most likely would have 

appeared as the primary muscle contributing to TFA S3 across different speeds.  

6. Had two-way MANOVA been performed for the biomechanics hypotheses, it 

most likely would have yielded similar results to those that were produced by the 

Hotelling’s T2 tests. However, it is important to note; the results may not be 
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exactly the same for the reason that multivariate tests use different types of 

corrections as compared to the Bonferroni correction used in this thesis.  

7. The differences between the results of the main vector field and the post hoc 

scalar analyses could be due to the inter-component covariance. Therefore, the 

post hoc analyses are meant to qualify the original hypotheses provided they do 

not disagree with higher-level analyses. Where differences occurred, one must 

not draw the conclusion that disagrees with the main results.  

8. Finally, a larger pool of homogenous amputees with a similar prosthesis is 

required to be able to generalize the results of this study. The mean age (55) of 

TFA was larger than that of HS (41), and only one TTA participated in this thesis 

(78). Literature has shown that a higher variation in muscle activities may be the 

result of aging which has an impact on spinal cord level and walking speeds [58, 

312]. Therefore age-matched groups would be ideal for such comparison.  

7.4 Future Work 

1. In chapter 3 and 4 transient-state and in chapter 5 steady-state walking were 

considered. For a better understanding of the neuromuscular modulation in TFA 

and TTA, it is crucial to consider the other states of gait such as gait initiation and 

gait termination. 

2. Due to space limitation, only one gait per recording was extracted from each trial. 

One may consider the same trial to investigate step by step variability.  

3. Recording from a higher number of muscles (i.e., superficial and deep) certainly 

help to elucidate the motor control behavior and the existence of additional 

muscle synergies corresponded to the deeper muscles in lower limb amputees.  

4. The methodology implemented in this thesis was based on the global muscle 

synergy analysis (i.e., time domain) in which linear envelope of signals was input 

to the algorithm. Another approach to investigating the neuro structure underlying 

the muscle activation is to extract spectral properties (i.e., time-frequency 

domain). This has been proposed by Frere [79], to distinguish between 

descriptive and prescriptive analysis.  

5. Chapters 3 and 4 focused on the TFA IL. Future work should also investigate the 

muscle activities and muscle synergies extracted from the PL to identify the 

differences from the biomechanical and robotic control perspectives.  

6.  Further experimental validation needs to be carried out due to the low number 

of amputees involved in this study. Chapter 5 only included one transtibial 

amputee. Therefore, one must not generalize the results for all amputees.  
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7. The exact level of amputation in the TFA subjects was not known. This 

information would have been useful to categorize the amputees into different 

groups and to understand the differences between them. Notwithstanding, the 

same number of muscle synergy groups between TTA and TFA groups illustrated 

muscle synergies do not depend on the level of amputation. Prosthetics 

components and stiffness were not controlled in this study. Future research 

should focus on the relationship between the prosthetic setting adjustment, level 

of amputation, and neuromuscular results.  

8. The next step in muscle synergy analysis is the possibility of using HS motor 

modules to describe the muscle activation pattern of TFA accurately. 

9. Future work should focus on the compensatory mechanism of lower limb 

amputees performing other ADLs such as ramp ascending/descending, stair 

ascending/descending that are more biomechanically challenging.  

10. A larger pool of homogenous amputees with a similar prosthesis is required to be 

able to generalize the results of this study. The mean age (55) of TFA was larger 

than that of HS (41). Literature has shown a higher variation in muscle activities 

may be the result of aging which has an impact on spinal cord level and walking 

speeds [58, 312]. Therefore age-matched groups would be ideal for such 

comparison. 

11. One of the main future works is to use the information obtained from HD EMG 

and low dimensional modular motor control (robotic control perspective) in mid-

level control to detect important events occurring in the gait cycle. The temporal 

information in muscle synergies can be used in the detection of the high-level 

control in activity recognition.   

12. Future research should focus on the comparison between the experimental EMG 

and the muscle activation obtained from the multi-body dynamics simulation 

which provides an inside into changes in the muscle forces and stress around the 

joints affected by the secondary physical conditions (knee and hip OA). 

Therefore, modifications in gait and orthopedic interventions (laterally wedged 

shoes and valgus braces) can be used to alleviate such impacts to the joints 

[323].  

13. Future research could focus on the integration of the EMG and multi-body 

dynamics simulation (e.g., a combination of the linear envelope and moments) in 

order to better understand the mechanical behavior of muscle-tendon units which 

could not be concluded only from the EMG studies [261].  

14. The information from the HD EMG and low dimensional modular motor control 

can be used in the bio-inspired approach to provide a new paradigm for 

controlling artificial limbs and create a better solution for replacing natural motor 
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function in the individual with amputation. The future research should establish 

neuromechanical modeling which allows converting neural information into 

estimates of mechanical output. The mechanical model will use forward dynamics 

simulation to understand how muscle activates, generates forces and 

accelerates specific degrees of freedom in the intact leg. The mechanical forces 

predicted from the intact leg muscles are projected on to the amputated limb to 

predict the joint torque that is needed to actuate the prosthesis. In this context, 

electrophysiological information can be used to control individual muscle-tendon 

units in a subject-specific model of the musculoskeletal system.  
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Appendix A  

Literature Review Supplements  

The ankle, knee and hip muscles and the moments they can generate. 

Table A.1: Ankle muscles and corresponding movements (adapted from [99]). 

Movement Dorsiflexion Plantarflexion 

Involved Muscles Extensor digitorum longus 
Extensor hallucis longus 

Peroneus tertius 
Tibialis anterior 

Flexor digitorium longus 
Flexor hallucis longus 

Gastrocnemius 
Peroneus brevis 
Peroneus longus 

Plantaris 
Soleus 

Tibialis posterior 

Movement Eversion Inversion 

Involved Muscles Extensor digitorum longus 
Peroneus brevis 
Peroneus longus 
Peroneus tertius 

Flexor digitorum longus 
Tibialis anterior 
Tibialis posterior 

 

Table A.2: Knee muscles and corresponding movements (adapted from [99]). 

Movement Flexion Extension 

Involved Muscles Biceps femoris 
Gastrocnemius 

Gracilis 
Popliteus 
Sartorius 

Semimembranosus 
Semitendinosus 

Rectus femoris 
Vastus intermedius 

Vastus lateralis 
Vastus medialis 

Movement Medial Rotation Lateral Rotation 

Involved Muscles Gracilis 
Popliteus 
Sartorius 

Semimembranosus 
Semitendinosus 

Biceps femoris 
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Table A.3: Hip muscles and corresponding movements (adapted from [99]). 

Movement Flexion Extension 

Involved 
Muscles 

Adductor brevis 
Adductor longus 

Iliacus 
Pectineus 

Psoas major 
Rectus femoris 

Sartorius 
Tensor Fascia latae 

Adductor magnus 
Biceps femoris 

Gluteus maximum 
Semimembranosus 

Semitendinosus 

Movement Abduction Adduction 

Involved 
Muscles 

Gemellus inferior 
Gemellus Superior 
Gluteus maximus 
Gluteus medius 
Gluteus minimus 

Piriformis 
Tensor fascia latae 

Adductor brevis 
Adductor longus 

Adductor magnus 
Biceps femoris 

Gluteus maximus 
Gracilis 

Pectineus 
Psoas major 

 

Movement Medial rotation Lateral rotation 

Involved 
Muscles 

Gluteus medius 
Gluteus minimus 

Tensor fascia latae 

Adductor brevis 
Adductor longus 

Adductor magnus 
Biceps femoris 

Gemellus inferior 
Gemellus superior 
Gluteus maximus 
Gluteus medius 

Obturator externus 
Obturator internus 

Piriformis 
Quadratus femoris Sartorius 
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Table A.4: Ambulatory measurement devices. Compiled from [9, 104, 110, 117, 
346]. 

No Device Type Brief Details Example 

1 Electromyography Ambulatory Record muscle 
activation 

Surface & invasive 
electrodes 

2 Electrogoniometer Ambulatory Measure kinematics 
angular information 

Potentiometer, 
Flexible strain 

gauges, 

3 Camera (Motion 
Capture System) 

Stationary Consists of infrared 
cameras. Record from 

active or passive 
markers placed on 

anatomical positions to 
measure kinematic 

data of joints and body 
segments 

Vicon Motion 
Camera, Qualisys 

Track Manage 

4 Force Platform Stationary Consists of an array of 
load cells and measure 

the kinetic data 
(ground reaction force) 

Kistler, AMTI 

5 Video Tape Stationary Record movement 
from different angles 

and used for qualitative 
observation of the 
locomotion tasks 

Any video recorder 

6 Pressure Sensor 
Mats 

Stationary/ 
Ambulatory 

measure kinetic data 
using mapping 

pressure distribution 

Force sensitive 
resistor, Pressure 

map Pedar-X, 
Tekccan, 

7 Foot-switch Ambulatory Consists of resistors 
which identifies the 
events occurring 
during locomotion 

tasks 

Force sensitive 
resistor, 

Microswitch 

8 Gyroscope Ambulatory Used to record the 
kinematic data such as 

angular velocities 

Uni axis, Multi axis 

9 Accelerometer Ambulatory Used to record linear 
acceleration and static 

tilt angles 

Uni axis, Multi axis 

10 Ultrasound Ambulatory Used to record spatial 
(distance) parameters 
such as step length, 

stride length 

Ultrasonic sensor 
(HCSR04) 
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Table A.5: Comparison between gait analysis systems. Compiled from [110, 346, 
347]. 

System Type Advantages Disadvantages 

Stationary better repeatability and 
reproducibility, High 
precision, no restriction on 
power consumption, less 
external interference, 

expensive, heavy, large in 
size, restricted to use 
indoor environments (lab-
based) 

Ambulatory small size, Portability, 
long-term monitoring, 
lightweight, inexpensive, 
indoor/outdoor 
applications, 

Susceptible to noise and 
interference of external 
factors, limited battery 
duration, limited gait 
parameters can be 
analyzed 

Table A.6: Summary of the studies on lower limb surface EMG, filtration 
techniques used on HS and TFA during ADLs. 

 

  

No Activity Muscle Filtration Linear Envelope 

[307] SA RF, VL, VM, BF, 
SEM 

2nd order Butterworth 

HPF = 20 

LPF = 450 

2nd order Butterworth 

LPF= 2.5 

[309] Nonwei
ght 

bearing 
activity 

QUAD and HAM 1st order Butterworth 

HPF = 20 

1st order Butterworth 

LPF= 2 

[35] LGW, 
STD, 

postural 
sway 

GMAX, GMED, 
TFL, RF, VL, 

BFLH, TA, GM, 
SOL 

2nd order Butterworth 

HPF = 20 

 

2nd order Butterworth 

LPF = 9 

[37] LGW SAR, RF, TFL, 
BFLH, SEM, 
SEMIM, ADL, 

ADM, GR 

NM 3rd order 

LPF = 25 

[47] LGW VL, BFLH, TA, 
GL 

NM 2nd order Butterworth 

LPF = 5 
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Table A.7: Factors impact surface EMG. Compiled from [111, 155, 157]. 

Detection system 

Impedance, Inter-electrode distance, electrode size and shape, 

placement of the electrodes on the muscles, position of the 

sensors with respect to the fiber orientation, Spatial filter for 

signal detection 

Geometrical 
Movement of the muscles with respect to the electrodes, 

shortening of muscle fiber 

Physical Tissue conductivity, cross talk from other muscles 

Physiological 

Fiber membrane 

properties 

Average muscle fiber conduction velocity, intracellular action 

potentials shape, Distribution of conduction velocities of the 

fibers within the motor units, Distribution of motor unit 

conduction velocities 

Nonphysiological 

Anatomic 

Thickness of subcutaneous fat, shape of volume conductor, 

fibers length, distribution of the end plate and tendon junctions 

within the motor unit, amount of cross talk from adjacent 

muscles, tissue conductivity, number and distribution of fibers in 

the motor unit territories, distribution of the motor unit territories 

in muscle, size of the motor unit territories, volume conductor 

shape, Tissue inhomogeneities, Spread of the innervation zones 

and tendon regions among motor units, variety of pinnation 

angle 

Motor unit 

properties 

Synchronization of motor unit, discharge rate coefficient of 

variation and statistics, Distribution of motor unit discharge rates, 

Number of recruited motor units 



262 
 

 

Table A.8: Literature review on muscle synergies during ADLs. 

No Activity Muscle Filtration (Hz) 
Linear Envelope 

(Hz) 

VAF 
Thresh
old (%) 

No. Synergy 
Groups 

[198] 

LGW, narrow 
beam-walking, 

wide beam-
walking, 

TA, PERL, MG, SOL, 
VM, VL, BFLH, SEM, 

GMAX, GMED, RF, TFL, 
ADM, RAB, EO, ERE 

3rd order Butterworth 

(HPF = 35) 

3rd order 
Butterworth 

(LPF = 40) 

90 HS = 4-6 

[109] 
Treadmill 
walking 

GM, GL, SOL, TA, VL, 
RF, BFLH, TFL, ADDL, 

GMED, GMAX, ERE 

4th order Butterworth 

(HPF = 40) 

4th order Butterworth 

(LPF = 10) 
90% HS = 4-5 

[216] LGW, cycling 
GMED, RF, VL, BFLH, 

SEM, GM, SOL, TA 

3rd order Butterworth 

(HPF = 20) 

3rd order Butterworth 

(LPF = 10) 
90 HS = 4 

[217] LGW 
TA, SOL, GM, VL, RF, 
BFLH, GMED, SEMIM, 

4th order Butterworth 

(HPF = 10 

LPF = 50) 

NA 

RMS (100 ms 
window) 

 

90 HS = 4 

[218] 

Treadmill 
walking 

(different 
speeds) 

TA, SOL, GM, VL, RF, 
BFLH, GMED, SEM, 

4th order Butterworth 

(HPF = 20 

LPF = 450) 

2nd order Butterworth 

(LPF = 5) 

 

90 HS = 4 

[185] LGW, RN 
TA, FDB, GL, SOL, 

PERL, VL, VM, RF, SAR, 
BFLH, SEM, ADDL, TFL, 

NM 

(HPF = 20 

LPF = 450) 

NM 

(LPF = 10) 
NM HS = 5 
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GMAX, GMED, EO, IO, 
LD, IL, RAS, ERE 

[215] 

LGW (slow 
and normal), 

perturbed 
LGW 

VAS, RF, REAB, BFLH, 
SEM, ADM, ERE, EXOB, 
VM, TA, GM, GL, SOL, 

PERL, TFL, GMED 

NM 

(HPF = 35) 

NM 

(LPF = 40) 
85 HS = 6 

[91] 
LGW at 

(different 
speeds) 

TA, SOL, GM, VM, RF, 
SEM, BFLH, GMED 

4th order Butterworth 

(HPF = 40) 

4th order Butterworth 

(LPF = 4) 
90% 

Stroke = 2-4 

HS = 4 

[79] 
LGW (fast and 

normal) 

TA, SOL, GL, GM, VL, 
RF, VM, BFLH, SEM, 

TFL, GMAX 

4th order Butterworth 

(HPF = 20 

LPF = 450) 

2nd order Butterworth 

(LPF = 5) 
90 HS = 5 

[221] 

LGW, RN, 
transition LGW 
to RN and vice 

versa 

SOL, GM, GL, TA, RF, 
VL, VM, BFLH, BFSH, 

GMED, GMAX 

4th order Butterworth 

(HPF = 100) 

NM 

(LPF = 15) 
95 Transition = 9 

[77] LGW 
TA, SOL, GM, VM, RF, 

SEM, BFLH, GMED 

4th order Butterworth 

(HPF = 40) 

4th order Butterworth 

(LPF = 4) 
90% HS = 4-5 

[214] 

LGW (different 
speeds), LGW 

(with body 
weight 

support) 

TA, SOL, GM, VL, RF, 
BFLH, RAB, ERE 

4th order Butterworth 

(HPF = 20 

LPF = 400) 

4th order Butterworth 

(LPF = 10) 
80% 

HS = 4 

Robotic aided 
device = 4 

[83] 

Treadmill 
(different 

speeds and 
slopes) 

TA, SOL, PERL, VL, VM, 
RF, SAR, ADM, ADDL, 

GMED, TFL, GLAT, 
GMED, BFLH, SEMIM, 

GMAX 

4th order Butterworth 

(HPF = 30 

LPF = 300) 

2nd order Butterworth 

(LPF = 3) 
85 HS = 4 
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[82] 
Treadmill LGW 

(different 
speeds), RA 

VI, VM, RF, BFLH, SEM, 
ADM, ADDL, GM, TA, 

NM 

(HPF = 20 

LPF = 450) 

4th order Butterworth 

(LPF = 9) 
90 HS = 4 

[136] 
FW, RN, SS, 

CO 

TA, SOL, PERL, VL, VM, 
RF, SAR, ADM, ADDL, 

GMED, TFL, GLAT, 
GMED, BFLH, SEM, 

GMAX 

NM 

(HPF = 30 

LPF = 450) 

NM 

(LPF = 6) 
80 HS = 5 

[84] 
Treadmill 
walking 

TA, GM, GL, SOL, VL, 
VM, RF, BFLH, SEM, 

GMAX 

NM 

(HPF = 20 

LPF = 500) 

NM 

(LPF = 10) 
90 HS = 5 

[87] 
WF, WB, WL, 

WR, SIP 

ERE, GMAX, GMED, 
VM, VL, RF, BFLH, 

BFSH, SEM, SAR, IP, 
ADDL, ADM, TFL, GM, 
GL, SOL, TA, PERL, 

PERB, EHB, EDB, FDB, 
EHL, FHL, FDL 

3rd order Butterworth 

(HPF = 30) 

4th order Butterworth 

(LPF = 10) 
90 HS = 5-8 

[86] 
Cutting 

manoeuvres, 
RN 

TA, PER, SOL, GM, VM, 
VL, RF, BFLH, SEM, 
ADM, ADDL, GMED, 

GMAX, TFL, ERE, RAB, 
EO 

2nd order Butterworth 

(HPF = 10 

LPF = 500) 

NM 

(LPF = 10) 
80 HS = 5 

[126] LGW 
TA, SOL, GL, GMAX, 

RF, VL, SEM, EDL 

NM 

 

2nd order Butterworth 

(LPF = 6) 
90 

ACL = 5 

HS  5 
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[206] LGW 
BFLH, SEMIM, GM, GL, 
TFL, VL, RF, SAR, GR, 
SOL, TA, PERL, ADM 

4th order Butterworth 

(HPF = 30) 

4th order Butterworth 

(LPF = 6) 
95 

Knee replacement 
= 5 

[348] 

Walking on 
slippery 

ground, narrow 
bean 

TA, GM, GL, SOL, 
PERL, VL, VM, RF, 

BFLH, SEM, TFL, GMED 

3rd order Butterworth 

(HPF = 20 

LPF = 450) 

4th order Butterworth 

(LPF = 10) 
90 

cerebellar ataxic = 
4 

HS = 4 

[180] 

LGW, postural 
tasks after 

Dance (tango) 
rehab 

RAB, EO, ERE, GMED, 
TFL, BFLH, RF, VM, 

GASTMED, GASTLAT, 
SOL, PERL, TA, 

NM 

(HPF = 35) 

NM 

(LPF = 40) 

85, 90, 
95 

Parkinson = 4 

[88] 

Treadmill 
walking 

 

SOL, GM, TA, VM, RF, 
SEM, BFLH, GMED 

4th order Butterworth 

(HPF = 35) 

4th order Butterworth 

(LPF = 7) 
95 

Parkinson = 3-5 

HS = 3-6 

[211] 
LGW (different 

speeds) 
TA, SOL, GM, VM, RF, 

SEM, BFLH, GMED 

4th order Butterworth 

(HPF = 40) 

4th order Butterworth 

(LPF = 4) 
90 

Post-stroke = (2-4) 

HS = 4 

[58] 

LGW (different 
speeds) 

 

PERL, GL, SOL, RF, 
VM, TA, BFLH, SEM, 
ADDL, TFL, GMAX, 

GMED 

NM 
4th order Butterworth 

(LPF = 15) 
90 

Elderly = 5 

HS = 5 

[216] LGW 
ERE, GMA, GMED, TFL, 

ADDL, RF, VL, BFLH, 
GM, SOL, TA 

4th order Butterworth 

(HPF = 20) 

4th order Butterworth 

(LPF = 5) 
90 

Paretic =3 – 4 

Non-paretic = 3 - 5 

[181] 

Treadmill 
walking 

(different 
speeds) 

PERL, GL, SOL, TA, RF, 
VM, BF, SEM, ADDL, 

TFL, GMA, GMED 
NM 

4th order Butterworth 

(LPF = 10) 

Eval > 
0.5 

Paretic =4 

Non-paretic = 4 

HS = 5 
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[349] 
LGW and 
Treadmill 

GMAX, RF, VM. SEM, 
BFLH, GM, TA 

3rd order Butterworth 

(HPF = 40 

LPF = 400) 

3rd order Butterworth 

(LPF = 5) 
90 

Paretic = 3 

Paretic after FES = 
4 

HS = 4 

[179] 
6-meter long 

LGW 

TA, GM, SOL, VL, RF, 
BFLH, GMAX, RAB. 

ERE. LD, BB, TB, AD, 
UT, ST, SPL, 

4th order Butterworth 

(HPF = 20 

LPF = 400) 

4th order Butterworth 

(LPF = 10) 
80 

Paretic = 4 

Non-paretic = 4 

HS = 4 

[182] LGW 
TA, GL, SOL, GMED, 
RF, VM, BFLH, SEM 

NM 

(HPF = 20 

LPF = 250) 

NM 

(LPF = 10) 
90 

Sub-acute = 2-5 

After rehab = 2 - 5 

[183] 

LGW, 

Treadmill 

(normal, fast) 

TA, SOL, GM, VM, RF, 
SEM, BFLH, GMED 

4th order Butterworth 

(HPF = 40) 

4th order Butterworth 

(LPF = 4) 
90 

Paretic LGW & 
treadmill = 2 

HS LGW & 
treadmill = 4 

[212] LGW 

TA, GM, GL, SOL, VL, 
VM, RF, SEM, BFLH, 
GMED, GMAX, TFL, 

SAR, ADM 

4th order Butterworth 

(HPF = 30) 

4th order Butterworth 

(LPF = 4) 
90 

ISCIs = 4 

HS = 6 

[350] LGW, treadmill 
TA, GM, VM, RF, SEM, 

GM, 

4th order Butterworth 

(HPF = 30) 

4th order Butterworth 

(LPF = 4) 
90 

ISCIs LGW = 2 

ISCIs Treadmill = 4 

HS LGW & 
treadmill = 4 

[201] 
LGW (different 

speeds) 
GMED, BFLH, SEM, VL, 

RF, GL, SOL, TA 

4th order Butterworth 

(HPF = 40) 

4th order Butterworth 

(LPF = 4) 
90 

CP = changes with 
speeds (2-5) 
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 HS = changes with 
speeds (2-5) 

[90] 
LGW 

 
RF, SEM, BFLH, GM, TA 

NM 

(HPF = 20 

LPF = 400) 

NM 

(LPF = 10) 
90 

CP = 1-2 

HS = 3 

gastrocnemius medialis (GM), gastrocnemius lateralis (GL), soleus (SOL), tibialis anterior (TA), vastus lateralis (VL), vastus 
internus (VI), vastus medialis (VM), rectus femoris (RF), sartorius (SAR), and vastus externus (VE), external oblique (EO), internal 
oblique (IO), biceps femoris long head (BFLH), biceps femoris short head (BFSH), semimembranosus (SEMIM), semitendinosus 

(SEM), tensor fasciae latae (TFL), adductor longus (ADDL), adductor magnus (ADM), gracilis (GR), gluteus medius (GMED), 
gluteus maximus (GMAX), iliopsoas (IP), erector spinae (ERE), rectus abdominis (RAB), peroneus longus (PERL), peroneus 

brevis (PERB), extensor hallucis brevis (EHB), extensor digitorum brevis (EDB), flexor digitorum brevis (FDBError! Bookmark 
not defined.), extensor hallucis longus (EHL), flexor hallucis longus (FHL), flexor digitorum longus (FDL), latissimus dorsi (LD), 

biceps brachii (BB), triceps brachii (TB), anterior deltoid (AD), upper trapezius (UT), sternocleidomastoideus (ST), splenius capitis 
(SPL), quadriceps (QUAD), hamstrings (HAM), rectus abdominis superior portion (RAS), 

steady-state level ground walking (LGW), running (RN), sidestepping (SS), and crossover (CO), walking forward (WF), walking 
backward (WB), walking leftward (WL), walking rightward (WR), stepping in place (SIP), rehabilitation (Rehab), prosthetic leg (PL), 

intact leg (IL), finite impulse response (FIR), root mean square (RMS), eigenvalue (Eval), functional electrical stimulation (FES), 
incomplete spinal cord injuries (ISCIs), 
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Table A.9: Key statistical output variables 

alpha the user-specified Type I error rate (default: 0.05) 

nClusters number of threshold surviving clusters 

clusters cell array containing cluster properties 

df degrees of freedom 

H0rejects null hypothesis rejection decision 

P_set the probability than smooth, random Gaussian 1D data would 
produce C upcrossings with a minimum width of K; by definition 
p_set ≤ alpha; p_set and p (below) are identical if there is only one 
upcrossing (C=1) 

P a list of probability values, one for each threshold-surviving cluster; 
the probability than smooth, random Gaussian 1D data would 
produce an upcrossing with a width of K; by definition each p ≤ 
alpha 

z the 1D test statistic continuum (or “test statistic field” or “test 
statistic trajectory”) 

zstar the critical Random Field Theory threshold 
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Figure A.1: (A) Ensemble average EMG profiles of neonates, toddlers, 
preschoolers and adults for both legs during the GC. (B) Activation coefficient 

profiles extracted from the ensemble EMG average (adapted from [224]).  

 

 

Figure A.2: Examples of mechanically passive lower limb prostheses (adapted 
from [275, 280]).  
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(A)  

 

(B)  

Figure A.3: Examples of Mechanically passive prostheses. (A) Single-axis knee 
with hydraulic cylinder [351], and (B) KX06: Polycentric prosthetic knee with 

hydraulic [352]. 

 

 

 

Figure A.4: Examples of microprocessor lower limb prostheses (adapted from 
[353]).  

 

 

Figure A.5: Commercially available power knee prostheses (adapted from [354]).  
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                    (A)                                       (B) 

 

Figure A.6: Semi-active lower limb prosthetic device. (A) Adapted from [286] (B) 
University of Leeds prosthetic device (adapted from [8]). 

Table A.10 Some of the most commercially available prostheses. 

Name Year Company Type of sensors 
Actuation 

Methodology 

C-Leg 1997 Otto Bock 
Knee angle sensor, 
tube adapter with 
moment sensor 

Motor controlled 
hydraulic valve and 

cylinder 

IP and IP+ 1998 
Blatchford/ 

Endolite 
Speed sensor and knee 

angle sensor 

Motor controlled 
pneumatic valve 

and cylinder 

Smart 
Adaptive 

2005 
Blatchford/ 

Endolite 

Gyroscope, force 
sensor, and knee angle 

sensor 

Combination of 
pneumatic and 

hydraulic actuators 

RHEO 2005 Ossur 
Force sensor and knee 

angle sensor 
magnetorheolic 
fluid actuator 

Orion 2011 
Blatchford/ 

Endolite 
IMU, force sensor, and 

knee angle sensor 

Combination of 
pneumatic and 

hydraulic actuators 

Genium 2011 Otto Bock 
IMU (six DOF), knee 

angle sensor and knee 
torque sensor 

Motor controlled 
hydraulic valve and 

cylinder 

1st 
Generation 

Power 
KneeTM 

2006
-

2007 
Ossur 

Force sensors, 
pressure sensors, knee 

angle sensor, speed 
sensor and 

instrumented plantar 
orthosis connected to 

the intact leg 

Ball screw and 
brushless DC 

motor 

AgonistAntag
onist Knee 

2008 
Biomechatro
nics Group 

(MIT) 

Force sensor, ankle 
angle sensor, and 

motor displacement 
sensor 

Pair of SEA in 
parallel and in an 
agonist-antagonist 

arrangement 

Vanderbilt 
Prosthesis 

2006
-

2012 

Vanderbilt 
University 

Knee and angle sensor, 
load cell, moment 

sensor and some EMG 
sensors 

Pneumatic cylinder 
Brushless DC 

motor 
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Figure A.7: Prosthetic foot examples (adapted from [355]). 
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Table A.11: Summary of the EMG signals and classifiers implemented for predicting intended 

control output in lower limb prostheses. 

Ref 
Subjects 

Sensor Placement Activity 
Type of 

Classifiers 
Results 

HS TFA 

[16] 12 1 
EMG, 
FSR 

RF, ADDL, GMAX, 
GMED, TFL, HAM 

LGW, RA, RD Finite state  

[15] 8 2 
EMG, 
FSR, 

MoCap 

GMAX, GMED, 
SAR, RF, VL, VM, 
GR, BFLH, SEM, 
BFSH, TA, PERL, 

GL, GM, SOL, EDL 

LGW, O, SA, 
SD, turning 

 

LDA 80-95% (offline) 

[356
] 

5 1 
EMG,  
FSR, 

MoCap 

GMA, GME, SAR, 
RF, VL, VM, GRA, 
BFL, SEM, BFS, 

ADM 

LGW, O, SA, 
SD 

LDA 

 
90% (offline) 

[309
] 

0 3 EMG HAM, QUAD STG 
QDA 

 
(real time) 

[294
] 

6 6 EMG 
SEM, SAR, TFL, 
ADM, GRA, VM, 

RF, VL, BFL 

Knee F/E, 
Ankle PF/DF, 
Femoral and 
Tibial rotation 

LDA 90% (real time) 

[3] 1 1 
EMG, 

pressure 
sensors 

gluteal, 

thigh 
STG, STD LDA (real time) 
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Table A.11: Summary of the EMG signals and classifiers implemented for predicting intended 

control output in lower limb prostheses. 

[43] 0 5 
EMG, 
GRF, 
IMU 

SAR, RF, VL, VM, 
GR, BFL, SEM, 

BFSH, ADM 

LGW, O SA, 
SD, RA, RD 

Fusion-
based SVM 

99% in stance 

phase and 95% in 

swing phase 

[357
] 

0 4 

EMG 
GRF, 
IMU 

MoCap 

RF, VL, VM, TFL, 
BFLH, SEM, BFSH 

ADM 

 

LGW, SA, SD, 
RA, RD, STG 

& STD 

Nonlinear 
SVM 

95% 

[35] 10 0 
EMG 
IMU, 
FSR 

GMAX, ERE TFL, 
RF, GMED, VL, 

BFLH 

LGW, postural 
sway 

Based on 
muscle 
activity 

NA 

[358
] 

0 8 

EMG, 
Mechani

cal 
sensors 

SEM, GR, BFLH, 
TFL, RF, VL, VM, 

SAR, ADM, 
LGW LDA NA 

force sensitive resistor: FSR, inertial measurement unit: IMU, mechanical sensors: load cell, pressure 
insoles and IMU, MoCap: motion capture, level ground walking: LGW, walking over obstacle: O, stair 

ascending: SA, stair descending: SD, ramp ascending: RA, ramp descending: RD, sitting: STG, standing: 
STD, jumping: JMP, running: RN, flexion/extension: F/E, plantarflexion/dorsiflexion: PF/DF, linear 
discriminant analysis: LDA, support vector machine: SVM, quadratic discriminant analysis: QDA 
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Appendix B  

Chapter 3 Supplements 

Table B.1: Demographic data of HS. 

Subject Gender Age Height (cm) Weight (Kg) 
Health 

Status 

HS-01 Male 22 174.5 67.6 Good 

HS -02 Male 24 178 91.8 Good 

HS -03 Male 25 174 74.6 Good 

HS -04 Male 25 177 77.3 Good 

HS -05 Male 59 173 88 Good 

HS -06 Male 50 179 92.8 Good 

HS -07 Male 39 175 88.6 Good 

HS -08 Male 57 172.5 81.5 Good 

HS -09 Male 50 166 75 Good 

HS -10 Male 61 176 56 Good 

HS -11 Male 54 172 92 Good 

HS -12 Male 33 174 92 Good 

HS -13 Male 34 173 100 Good 

Mean (SD)  41 (14) 174.2 (3.1) 82.9 (11.8)  
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Table B.2: Demographic data of TFA. 

Subject Gender Age 
Height 
(cm) 

Weight 
(Kg) 

Side of 
Amputatio

n (L/R) 

TFA -1 Male 48 168 88 RIGHT 

TFA -2 Male 51 168 59 LEFT 

TFA -3 Male 48 179 76.7 RIGHT 

TFA -4 Male 55 165 68.8 RIGHT 

TFA -5 Male 61 163 50.4 LEFT 

TFA -6 Male 53 175 99.2 RIGHT 

TFA -7 Male 66 170 84.5 LEFT 

TFA -8 Male 58 165 73 RIGHT 

TFA -9 Male 57 187 85 LEFT 

TFA -10 Male 70 160 70 LEFT 

TFA -11 Male 40 180 103 RIGHT 

Mean (SD)  55 (8) 170.9 (7.9) 78 (15.3)  
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Table B.3: Details of TFA. 

Subject 
Type of Prosthetic 

Knee 

Type of 
Prosthetic 

Foot 

Amputation 
reason 

Year of 
Amputation 

TFA -1 
Mechanically 

Passive 
SACH War Field 1985 

TFA -2 
Mechanically 

Passive 
SACH War Field 1985 

TFA -3 
Mechanically 

Passive 
SACH War Field 1986 

TFA -4 
Mechanically 

Passive 
SACH War Field 1988 

TFA -5 
Mechanically 

Passive 
SACH 

Trauma (Road 
Traffic Accident) 

1970 

TFA -6 
Mechanically 

Passive 
SACH 

Trauma (Road 
Traffic Accident) 

1978 

TFA -7 
Mechanically 

Passive 
SACH 

Trauma (Road 
Traffic Accident) 

1978 

TFA -8 
Mechanically 

Passive 
SACH War Field 1980 

TFA -9 
Mechanically 

Passive 
SACH 

Trauma (Road 
Traffic Accident) 

1987 

TFA -10 
Mechanically 

Passive 
SACH 

Trauma (Road 
Traffic Accident) 

1971 

TFA -11 
Mechanically 

Passive 
SACH 

Trauma (Road 
Traffic Accident) 

1998 

 

 

(A) 

 

(B) 

 

(C) 

Figure B.1: EMG and reflective markers attachments on one of the HS. (A) front 
dominant leg, (B) back dominant leg, and (C) side non-dominant leg. 
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Figure B.2: An example of HS EMG data process during one trial. The first, second, third and fourth 
rows show raw, bandpass filter (4th order Butterworth HPF 20Hz, LPF 500Hz), rectified and linear 
envelope (2nd order Butterworth LPF with the cut of frequency of 6 Hz) data during transient-state 

gait, respectively. 
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Appendix C  

Chapter 5 Supplements 

Table C.1: Demographic data of HS during steady-state walking. 

Subject Gender Age Height (cm) Weight (Kg) 
Health 
Status 

HS-01 Male 22 167.8 63.3 Good 

HS-02 Male 21 175 72.3 Good 

HS-03 Male 21 184.6 80.0 Good 

HS-04 Male 21 175.2 73.1 Good 

 

Table C.2: Demographic data of TTA during steady-state walking. 

Subject Gender Age 
Height 
(cm) 

Weight 
(Kg) 

Amputati
on side 

(L/R) 

TTA Male 76 185.1 69.3 L 

 

Table C.3: Details of TTA. 

Subject 

Type of 

Prosthetic 

Knee 

Type of 

Prosthetic 

Foot 

Amputation reason 
Year of 

Amputation 

TTA NA 
Panthera CF I 

Medi 

Trauma (Road 

Traffic Accident) 
2004 
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