Structural basis for high-affinity adipate binding to AdpC (RPA4515), an orphan periplasmic-binding protein from the tripartite tricarboxylate transporter (TTT) family in Rhodopseudomonas palustris

Leonardo T. Rosa, Samuel R. Dix, John B. Rafferty and David J. Kelly

Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK

Keywords
adipic acid; C6-dicarboxylate; Rhodopseudomonas palustris; substrate-binding protein; tripartite tricarboxylate transporter

Correspondence
D. J. Kelly, Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
Tel: +44 0114 222 4414
E-mail: d.kelly@sheffield.ac.uk

(Received 2 August 2017, revised 27 September 2017, accepted 19 October 2017)

doi:10.1111/febs.14304

The tripartite tricarboxylate transporter (TTT) family is a poorly characterised group of prokaryotic secondary solute transport systems, which employ a periplasmic substrate-binding protein (SBP) for initial ligand recognition. The substrates of only a small number of TTT systems are known and very few SBP structures have been solved, so the mechanisms of SBP–ligand interactions in this family are not well understood. The SBP RPA4515 (AdpC) from Rhodopseudomonas palustris was found by differential scanning fluorescence and isothermal titration calorimetry to bind aliphatic dicarboxylates of a chain length of six to nine carbons, with K_D values in the μM range. The highest affinity was found for the C6-dicarboxylate adipate (1,6-hexanediol). Crystal structures of AdpC, either adipate or 2-oxoadipate bound, revealed a lack of positively charged amino acids in the binding pocket and showed that water molecules are involved in bridging hydrogen bonds to the substrate, a conserved feature in the TTT SBP family that is distinct from other types of SBP. In AdpC, both of the ligand carboxylate groups and a linear chain conformation are needed for coordination in the binding pocket. RT-PCR showed that adpC expression is upregulated by low environmental adipate concentrations, suggesting adipate is a physiologically relevant substrate but as adpC is not genetically linked to any TTT membrane transport genes, the role of AdpC may be in signalling rather than transport. Our data expand the known ligands for TTT systems and identify a novel high-affinity binding protein for adipate, an important industrial chemical intermediate and food additive.

Databases
Protein structure co-ordinates are available in the PDB under the accession numbers 5OEI and 5OKU.

Introduction

Unlike the simple single-protein uptake systems such as those in the major-facilitator superfamily (MFS) [1], bacterial Substrate-Binding Protein (SBP)-dependent transporters can have substrate affinities in the nanomolar range, which make them excellent nutrient scavengers. These transporters contain, in addition to the transmembrane domains, periplasmic or extracytoplasmic SBPs, which bind to the substrate with high

Abbreviations
ABC, ATP-binding cassette; SBP, substrate-binding protein; TM, transmembrane; TRAP, tripartite ATP-independent periplasmic transporter; TTT, tripartite tricarboxylate transporter.
SBP genes were the most abundant class of genes in [11]. This is further confirmed by the fact that TTT suggesting they might have important roles in the cell and that some of them are expressed at high levels, bacteria, possibly reflecting their metabolic diversity, and found in many bacterial species, especially in soil proteins in the TTT SBP family are commonly observed but genome searches have revealed that orphan pro-

brane domains, thus being designated 'orphan' SBPs. ing TTT SBPs, not genetically linked to the transmem-

transport proteins but also with over 90 genes encod-

ing C4-dicarboxylates. Diverse TRAP transporter SBPs and systems have since been extensively charac-

terised and have been found to transport many differ-

ent classes of compounds, but most often those containing carboxylate groups [7,22,23]. These studies raise the possibility that substrates for the TTT family might be far more diverse than previously thought.

One driver for the study of TTT systems is that they might be a new source of transporters for biotechno-

logical processes. *Rhodopseudomonas palustris* is a purple nonsulphur bacterium that presents several biotechnological possibilities [21]. It has become a model organism for the study of the degradation of lignin-derived aromatic compounds, usually toxic even in low concentrations for most other bacteria and a limitation in the industrial degradation process [7,22,23]; for production of hydrogen gas in very high yields [24,25]; for generation of electricity in microbial fuel cells [26,27] and for bioremediation [28,29]. *Rhodopseudomonas palustris* has a complex and versatile metabolism, which allows photo- and chemotrophic growth and survival in a variety of environments. While most bacteria express around 6% of their protein-coding genes as transport-related proteins, *R. palustris* expresses more than 15%, which is likely to be related to its metabolic versatility and the different environments in which it can survive [21]. In this context, *R. palustris* may be a rich source for biotechnologically relevant transporters.
Genomic searches performed previously [11] showed that the TTT family in this bacterium is comprised of two complete tripartite systems (i.e. with each protein encoded by linked genes) plus five additional orphan SBPs. In this study, we show that one of these orphan SBPs (RPA4515), here designated AdpC, binds medium chain dicarboxylates, ranging from adipate (six carbons) to azelate (nine carbons), and that the adpC gene is upregulated in the presence of low adipate concentrations. By solving the crystal structure of AdpC with bound ligands, we identified conserved features for ligand coordination in the TTT family.

Results

Overproduction and purification of recombinant RPA4515

Protein BLAST searches in the *R. palustris* CGA009 genome using BugE from *B. pertussis* [18] as a protein query retrieved RPA4515 with 38% identity and 55% similarity, annotated as an uncharacterised protein containing a twin-arginine translocase (Tat) pathway signal peptide for periplasmic translocation. RPA4515 has 335 amino acid residues, of which 300 would be present in the 31.9-kDa mature protein after signal peptide cleavage. Genome context analysis of *rpa4515*, shown in Fig. 1A, shows no membrane components of any transport systems encoded nearby, but reveals the presence of some regulatory protein genes. *rpa4516*, immediately downstream of *adpC*, encodes a cyclic diguanylate phosphodiesterase (EAL-family) gene. On the opposite strand, *rpa4512/13* were shown by BLAST results to encode a two-component sensor-regulator system. Further bioinformatics investigations (not shown) predicted no transmembrane domains for the kinase component of this system, giving highest identities to HWE histidine kinases, cytoplasmic soluble kinases, cytoplasmic soluble kinases that respond to blue light [30].

Recombinant His-tagged RPA4515 was readily overproduced and purified in a single step by nickel affinity chromatography, as described in Materials and Methods. Elution from the nickel column was observed between 220 mM and 280 mM imidazole, and analysis of the eluate by SDS/PAGE, shown in Fig. 1B, shows the presence of the expected 35.6-kDa protein, equivalent to the His-tag and linker fused to the 31.9-kDa mature protein, as a single major band after fractionation. Some additional low abundance bands were observed, most likely breakdown products or copurifying minor contaminants. Mass spectrometry analysis of the purified sample gave an accurate mass of 35 549 Da for the RPA4515 protein (as predicted from the sequence) and peak integration of the chromatograms showed that the purity was ~96%. Size exclusion chromatography experiments, shown in Fig. 1C,D, demonstrated that the protein exists in solution as a monomer, as the elution peak was consistent with a protein of ~39 kDa. After discovery of adipate as a substrate (see below), a gel filtration experiment was performed in the presence of 1 mM adipate and the same elution pattern was observed, suggesting the protein remains as a monomer upon ligand binding.

Differential scanning fluorimetry shows that medium chain length dicarboxylates bind to RPA4515

RPA4515 was screened for ligand binding against a library of chemicals comprising 150 compounds of different classes (Table 1), using a differential scanning fluorescence assay in which the thermal denaturation curve of the protein will be slightly shifted due to the increased stabilisation provided by ligand binding. The raw denaturation curves in the presence of all substrates that improved protein thermal stabilisation are shown in Fig. 2A, the degree of thermal shift is plotted in Fig. 2B; the structure of the compounds used in these screens are shown in Fig. 2C. A shift of 9.7 ± 0.1 °C in the melting temperature was initially observed in the presence of the C6-dicarboxylate adipate (Fig. 2B). Expanding the screen to use compounds of similar structure, a shift of 5.2 ± 0.3 °C and 4.7 ± 0.1 °C was observed in the presence of 2-oxoadipate and *trans-trans*-muconate, respectively (Fig. 2B), but no thermal stabilisation was observed in the presence of hexanoate, 6-amino-hexanoate, 2-oxohexanoate, *cis-cis*-muconate, 6-amino-1-hexanol or hexamethylenediamine. The initial data thus suggested that two carboxylate groups and also a linear structure of the ligand are essential for coordination in the binding pocket of the protein and that neutral or positively charged functional groups were unable to provide stabilisation. In order to test whether longer and shorter chain lengths were also capable of providing thermal stabilisation, a new screen was performed with dicarboxylic acid salts from 4 to 9 carbons in length; pimelate (C7), suberate (C8) and azelate (C9) showed thermal stabilisations of 4 ± 0.1 °C, 6.3 ± 0.4 °C and 1.5 ± 0.1 °C, respectively (Fig. 2B), but no shift was observed for succinate, glutarate or sebacate, demonstrating that the protein could only accommodate dicarboxylates ranging from six to nine carbons in length in the binding pocket.
Isothermal Titration Calorimetry of RPA4515 reveals tight binding of adipate

The differential scanning fluorescence assay revealed important features regarding the substrate specificity for RPA4515. In order to obtain the thermodynamic parameters of binding and the affinity of the interactions, isothermal titration calorimetry experiments were performed. The corrected heat rates and normalised fits are shown in Fig. 3. The K_D values for the six tested substrates, shown in Table 2, reveal dissociation constants in the µM range and a ligand preference order similar to the degree of thermal shift in the differential scanning fluorescence assay, with adipate having the highest affinity with a K_D of ~0.5 µM. Considering this is the first report of an SBP with high affinity for this substrate and being consistent with the nomenclature for proteins belonging to the TTT transporters family, we propose RPA4515 to be designated as AdpC. The lower affinity of azelate binding, with a K_D 40 times higher than for adipate and considerably higher than all the remaining substrates, reinforces the conclusion that nine carbons are the upper limit supported for coordination in the binding pocket. Attempts to titrate AdpC with glutarate did not retrieve any heat change apart from the substrate dilution (data not shown), suggesting that six carbons is
the shortest chain length possible for an efficient interaction. The data also revealed that while binding of dicarboxylates comprising eight and nine carbons produces an exothermic reaction, those of six and seven carbons generate an endothermic effect.

adpC expression is induced at low concentrations of substrate

In order to complement the information provided by the binding assays and genomic context of the adpC gene, RT-PCR experiments to study adpC expression were performed in the absence or presence of dicarboxylates during growth of *R. palustris* in minimal media. In a first approach, expression of adpC was evaluated in the presence of 10 mM of various substrates. As shown in Fig. 4A, instead of an expected induction, a fivefold lower expression was observed in the presence of adipate and pimelate, and a 10-fold lower expression in the presence of suberate and azelate. Given that the TTT transporters are high-affinity transporters, it was speculated whether adpC might be more highly expressed under much lower (and more environmentally relevant) substrate concentrations. An expression analysis was therefore performed using different concentrations of adipate. As shown in Fig. 4B, a 5.8-fold increase in adpC expression was observed in the presence of 1 lM adipate compared to the absence of this compound in the growth medium. As the adipate concentration was increased to 10 lM, 100 lM and 1000 lM, however, adpC expression decreased, showing a 4.3-, 4.1- and 2.4-fold expression when compared to the control. These data suggest adpC expression is carefully modulated by the concentration of extracellular adipate. In order to determine whether *R. palustris* could actually use adipate as the sole carbon source, a growth experiment was performed under phototrophic conditions in minimal media in the
presence of 10 mM adipate. As shown in Fig. 4C, both the growth rate and cell yield (final OD_{660}) were significantly higher with adipate compared to growth with the same concentration of the C4-dicarboxylate succinate. These findings, however, do not show growth on adipate is mediated by AdpC, and our attempts to construct an adpC knockout mutant proved unsuccessful.

High-resolution crystal structures of AdpC with adipate and 2-oxoadipate show conserved coordination mechanisms in the TTT family

Purified AdpC was readily crystallised in the presence of 2 mM ligands and essentially isomorphous structures were obtained with bound adipate and 2-oxoadipate. The AdpC crystal structure was solved using molecular replacement and the overall structure of the 2-oxoadipate bound protein is shown in Fig. 5 and described below. Table 3 summarises the data collection and refinement statistics for AdpC bound with either adipate or 2-oxoadipate.

AdpC is a monomer comprising of 300 amino-acid residues, formed by residues 34–334, where residues 36–334 are included in the 1.8Å structure. It contains nine β-strands (β1–β9), nine α-helices (α1–α9) and three small helices, composed of just three amino acid residues. β-strand 4 is disrupted by Pro136, and for this reason is renumbered β4a and β4b. This secondary structure is organised in the typical type II SBP shape.
a venus flytrap-like conformation, with two globular domains of β-sheets of five strands each surrounded by α-helices, separated by a cleft, where the substrate is coordinated (Fig. 5). The hinge connecting the two domains is composed of β-strand 4 and a loop between h3 and β9, characterising AdpC in the Cluster E-II for SBP classification according to Scheepers et al. [31]. Domain 1 is comprised of residues 36–135 and 261–334, and domain 2 is comprised of residues 136–260 from the N to C terminals. The β-sheets are topologically formed by β2-β1-β3-β9-β4a in domain 1 and β6-β5-β7-β4b-β8 in domain 2. Unlike the other members of the TTT SBP family structurally characterised so far [11,17,18], AdpC contains no cysteines and therefore, no disulphide bridges.

The full substrate coordination of 2-oxoadipate is shown in the LigPlot diagram in Fig. 6A and in comparison to aspartate and glutamate binding in Bug D and BugE, respectively, in Fig. 6B. The structure with 2-oxoadipate shows a conserved mechanism for

Fig. 3. Isothermal titration calorimetry of AdpC with dicarboxylates ranging from six to nine carbons chain length. Experiments were performed with 300 μL of 100 μM protein in TF Buffer (Tris-HCl 50 mM pH 7.4 NaCl 0.1 M), with 25 × 2 μL ligand injections with 4 min between each injection. Corrected heat rates are shown in the top panels and a normalised fit in the bottom panels for each respective ligand. Negative heat rates imply endothermic interactions, whereas positive heat rates imply exothermic interactions.

Table 2. Summary of thermodynamic properties of dicarboxylate binding to AdpC (RPA4515). Isothermal titration calorimetry was used to determine binding properties as described in Materials and Methods. The tightest binding affinity is observed with adipate, while the titration with azelate retrieved a K_D 40 times higher. Attempts to titrate the protein with glutarate (a C5 dicarboxylate) showed no heat change. C6 and C7 dicarboxylates generated an endothermic effect; chains of eight and nine carbons in length, on the other hand, caused an exothermic effect upon binding. (n) represents the protein:ligand stoichiometry. The value in parentheses following the ligand name is the carbon chain length.

<table>
<thead>
<tr>
<th>Ligand</th>
<th>K_D (μM)</th>
<th>ΔH (kJ·mol⁻¹)</th>
<th>ΔS (J·mol⁻¹·K⁻¹)</th>
<th>ΔG (kJ·mol⁻¹)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adipate (C6)</td>
<td>0.55 ± 0.49</td>
<td>14.51 ± 0.95</td>
<td>167.70</td>
<td>−36.32</td>
<td>0.63 ± 0.02</td>
</tr>
<tr>
<td>2-Oxoadipate (C6)</td>
<td>1.60 ± 0.67</td>
<td>8.16 ± 0.39</td>
<td>137.90</td>
<td>−33.63</td>
<td>0.61 ± 0.02</td>
</tr>
<tr>
<td>trans-trans-muconate (C6)</td>
<td>4.66 ± 1.45</td>
<td>30.91 ± 2.05</td>
<td>204.00</td>
<td>−30.94</td>
<td>0.52 ± 0.02</td>
</tr>
<tr>
<td>Pimelate (C7)</td>
<td>3.60 ± 2.78</td>
<td>6.14 ± 0.69</td>
<td>124.50</td>
<td>−31.59</td>
<td>0.62 ± 0.07</td>
</tr>
<tr>
<td>Suberate (C8)</td>
<td>0.93 ± 0.60</td>
<td>(−)15.70 ± 0.33</td>
<td>96.70</td>
<td>−35.01</td>
<td>0.73 ± 0.03</td>
</tr>
<tr>
<td>Azelate (C9)</td>
<td>20.02 ± 10.46</td>
<td>(−)15.50 ± 1.34</td>
<td>71.80</td>
<td>−27.27</td>
<td>0.69 ± 0.12</td>
</tr>
</tbody>
</table>
coordination of the proximal carboxylic group between AdpC, BugD and BugE, with participation of a β-turn-α segment between β1 and α1 and between β6 and α5 forming a ‘pincer’ structure, as described previously [16], with a Thr54 side chain and Thr49 and Ser198 main chains participating in this process. Two water molecules play a major role in coordination, bridging several hydrogen bonds with the main chain of three residues present in the pincer structure, Thr49, Asp55 and Ala199 (Fig 6A,B). Although it is the main chain, and not the side chains of the residues, which are responsible for most interactions, these residues are well conserved among the TTT family [11], with the exception of Thr49. Hydrophobic interactions also play a role in ligand coordination. Phe48 is very well conserved among the TTT SPBs [11] and seems to act as a hydrophobic platform for the aliphatic regions of the substrates characterised so far. Gly52 and Gly197 are also conserved, and seem to help organise the structure around the carboxylic group of the substrate. The carbonyl group in 2-oxoadipate is bound by the side chain of two serines, Ser169 and Ser198 (Fig. 6A), conserved in BugE but not BugD. The distal carboxylate group on the substrate is coordinated by hydrogen bonds with the side chain and main chain of Thr174 and the side chain of Ser261 and Asn216, and interestingly, by two additional water molecules which bridge hydrogen bonds with Gly106, Ser173, Gly175 and Asp215 (Fig. 6A,B). The residues and water molecules coordinating this distal carboxyl group are much less conserved, where only Asp215 is present in the three proteins. Gly106 is present in BugD and Asn216 is also found in BugE and is present as a conservative change as a Gln in BugD, but absent in Bug27. Interestingly, there are no positively charged residues in the binding pocket to counteract the negative charge of the substrate carboxylate groups, as is well described for arginine residues in TRAP transporter SBPs [9].

Discussion

In this study, we characterised the first SBP belonging to the TTT family in *R. palustris* through genetic and
transcriptional analysis, ligand binding properties and 3D structure determination with two bound ligands. Genome analysis did not show any membrane component of a transport system coencoded with the *rpa4515* SBP gene, characterising it as encoding an orphan SBP. Such genes are frequently found in higher numbers than the membrane components, especially in β-proteobacteria, where over a hundred SBP genes can sometimes be found in contrast to perhaps a few complete systems, as shown by Antoine et al. [11] for *Bordetella*. As a poorly characterised family, it is as yet unclear whether these SBPs interact in a promiscuous manner with the much smaller number of transmembrane proteins or participate in signal transduction pathways, but the participation of other types of SBPs in signalling processes is known and has been reviewed by Piepenbreier et al. [14]. In the study performed by Antoine et al. [15], it was shown that the citrate uptake SBP BctC from *B. pertussis* is not only involved in citrate transport but also plays a role in gene regulation, interacting with the two-component system BctDE in order to modulate expression levels of the *bctCBA* system itself. Participation of TTT SBPs in signalling processes were further suggested for *Bacillus subtilis* and *Salmonella typhimurium* [5,32]. Although a two-component system is directly upstream of *adpC* on the opposite strand, bioinformatics analysis showed that the sensor domain in RPA4513, contains no transmembrane regions and encodes for a histidine kinase of the HWE family, which are soluble.

Fig. 5. A 1.8Å structure of AdpC, with 2-oxoadipate coordinated in the binding pocket. The overall structure reveals a venus flytrap-like conformation, comprised of two globular domains separated by a cleft, connected by β4 and a loop, characterising the protein as belonging to cluster E-II in the SBP classification. Each domain is constituted of a 5-strand β-sheet surrounded by α-helices. The β-sheets are topologically formed by β2-β11-β3-β9-β4a in domain 1 and β6-β5-β7-β4b-β8 in domain 2. Substrate coordination occurs in part due to a ‘pincer’ structure, formed by two β-loops between β1 and α1 and β6 and α5.
in the cytoplasm and are known to respond to light stimuli [30]. Thus, it seems unlikely that AdpC interacts with this kinase but further investigations are needed to determine if there is a membrane transport protein that AdpC interacts with and indeed the precise physiological function of AdpC.

The differential scanning fluorescence assay showed evidence for binding of dicarboxylates ranging from six to nine carbons in length. The binding of trans-
aldehydes but not cis-
aldehydes revealed the need for a linear substrate structure. Furthermore, the absence of binding of 1-hexanol suggested that both carboxylate groups were necessary for binding, and that replacing one or two of these groups with polar or positively charged groups did not result in binding, as shown by the lack of interaction with 6-amino-1-hexanol and hexamethylenediamine. The few TTT SBPs characterised so far seem to bind to substrates containing at least two or more carboxylate groups, as observed with the citrate binding TctC [33], the terephthalate-binding protein TphC [13], the disulphide 3,3′-dithiodipropionic acid (DTDP)-binding protein TctC [20] and the sulpholactate-binding protein SlcH [19], where a sulphate group gives a similar polarity to the molecule as a carboxylate group would, raising the question as to whether this would be a prevalent characteristic of this family. So far the only exception to this pattern is the Bug27 protein, which was shown to bind to nicotinate [16].

Isothermal titration calorimetry assays showed µM range dissociation constants for a range of dicarboxylates. Although the highest affinity was observed with adipate, with a K_D of -0.5 µM, tight binding was maintained with pimelate and suberate, but azelate showed a 40-times lower affinity, reinforcing the notion that nine carbons is the upper limit that the binding pocket can accommodate. Substrates of six and seven carbons in length showed an endothermic effect, in a binding event likely to be driven by the entropy generated from displacement of solvent molecules and hydrogen bonds in the binding pocket, using the energy of positive enthalpy change derived from the ligand molecule kinetic and hydrophobic interactions [7]. The exothermic binding of the longer chain compounds, on the other hand, is driven to a minor extent by this effect, and more by the negative enthalpy deriving from the formation of hydrogen bonds, suggesting hydrogen bonds and solvent displacement have different weights in each case [34].

Structures of AdpC were successfully obtained with either adipate or 2-oxoadipate bound. The 1.8 Å structure with 2-oxoadipate in the binding pocket reinforced the ubiquity in the TTT family of a pincer structure shown to coordinate the ligand’s proximal carboxylate group formed by β-loops between β1 and α1 and β6 and α5, making hydrogen bonds bridged by two water molecules in very conserved positions [16–18]. Further structures might reveal whether this is a feature common to the whole family, as suggested by sequence alignments [11]. Our structures also revealed an absence of positively charged residues in the binding pocket to counterbalance the negative charge of the substrate, and although it might be expected that substrates containing amino groups would better suit the pocket due to its small overall net negative charge caused by the presence of Asp215, our data strongly

Table 3: Data collection and refinement statistics for AdpC. Values in parentheses are for the outer resolution shell.

<table>
<thead>
<tr>
<th>Data collection</th>
<th>AdpC + 2-oxoadipate</th>
<th>AdpC + adipate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength (Å)</td>
<td>0.92619</td>
<td>0.97628</td>
</tr>
<tr>
<td>Resolution range (Å)</td>
<td>59.0–1.78</td>
<td>41.65–2.07</td>
</tr>
<tr>
<td></td>
<td>(1.81–1.78)</td>
<td>(2.11–2.07)</td>
</tr>
<tr>
<td>Space group</td>
<td>C 2 2 2 1</td>
<td>C 2 2 2 1</td>
</tr>
<tr>
<td>Cell dimensions</td>
<td>a = 47.3, b = 168.5, c = 82.5</td>
<td>46.9, 166.6, 82.2</td>
</tr>
<tr>
<td></td>
<td>(Å)</td>
<td>(Å)</td>
</tr>
<tr>
<td>Total reflections</td>
<td>234 875 (11 301)</td>
<td>189 647 (9713)</td>
</tr>
<tr>
<td>Unique reflections</td>
<td>32 190 (1594)</td>
<td>20 144 (1010)</td>
</tr>
<tr>
<td>Multiplicity</td>
<td>7.3 (7.1)</td>
<td>9.4 (9.6)</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>100 (99.6)</td>
<td>100 (100)</td>
</tr>
<tr>
<td>Rmerge</td>
<td>0.15 (0.95)</td>
<td>0.63 (2.59)</td>
</tr>
<tr>
<td>Rmeas</td>
<td>0.17 (1.03)</td>
<td>0.67 (2.76)</td>
</tr>
<tr>
<td>Rpim</td>
<td>0.08 (0.53)</td>
<td>0.21 (0.9)</td>
</tr>
<tr>
<td>CC half</td>
<td>0.997 (0.572)</td>
<td>0.977 (0.490)</td>
</tr>
<tr>
<td>Refinement</td>
<td>Resolution range (Å)</td>
<td>59.0–1.78</td>
</tr>
<tr>
<td></td>
<td>No. of reflections used</td>
<td>30 497</td>
</tr>
<tr>
<td></td>
<td>No. of reflections</td>
<td>19 116</td>
</tr>
<tr>
<td>Rfree/Rw set</td>
<td>0.181/0.217</td>
<td>0.207/0.254</td>
</tr>
<tr>
<td>No. of protein protomers</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>No. of protein atoms</td>
<td>2242</td>
<td>2237</td>
</tr>
<tr>
<td>No. of ligand atoms</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>No. of water molecules</td>
<td>111</td>
<td>101</td>
</tr>
<tr>
<td>R.m.s.d., bonds (Å)</td>
<td>0.021</td>
<td>0.017</td>
</tr>
<tr>
<td>R.m.s.d., angles (°)</td>
<td>1.961</td>
<td>1.893</td>
</tr>
<tr>
<td>Mean B values (Å²)</td>
<td>998</td>
<td>998</td>
</tr>
<tr>
<td>Protein</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td>Ligand</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>Water</td>
<td>23</td>
<td>25</td>
</tr>
<tr>
<td>Ramachandran plot (%)</td>
<td>98.3</td>
<td>98.0</td>
</tr>
<tr>
<td>Favoured</td>
<td>98.3</td>
<td>98.0</td>
</tr>
<tr>
<td>Allowed</td>
<td>1.7</td>
<td>2.0</td>
</tr>
<tr>
<td>Disallowed</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PDB code</td>
<td>5OEI</td>
<td>5OKU</td>
</tr>
</tbody>
</table>
suggest otherwise. This repulsive negative charge might, however, be compensated somewhat by the dipoles of helices α_1 and α_4 and possibly to some extent α_5 which are directed towards the carboxylate groups of the substrate. In addition, the solvation provided by the presence of water molecules may dissipate the charge, as shown previously for TRAP transporters [35]. Given the space restrictions created in the binding pocket of AdpC by h1 and the N-terminal region of α_4 in one end and the ‘pincer’ structure in the other, it is unclear how this protein is able to accommodate substrates containing up to nine carbons in length and this will require further structural studies. Overall, using water molecules as part of the binding mechanism might give more flexibility in the types of ligands that can be bound in a given TTT SBP, exemplified for example by the Bug27 protein (nicotinate, nicotinamide, citrate, benzoate, quinaldic acid) and TphC (terephthalate, protocatechuic acid) [13,16]. Identification of additional ligands for uncharacterised TTT SBPs should reveal the extent of this versatility in this family of substrate-binding proteins.

The study of $adpC$ expression by RT-PCR showed that the presence of 10 mM of any of the ligands tested resulted in a 5–10-fold lower expression of the $adpC$ gene. Further investigation showed that a 5.8-fold increase in expression was observed in the presence of 1 μM adipate, and that this increased expression became progressively smaller as the adipate concentration was increased. If AdpC is indeed involved in transport rather than signalling, it is possible the high-affinity properties of the TTT transporter might be only required at low-substrate concentrations. Uptake in higher substrate concentrations might be performed by other types of secondary transporters, such as the ones from the MFS family [1]. On the other hand, if AdpC acts as a signal transduction protein, its synthesis may need to be exquisitely sensitive to low environmental concentrations of adipate. In either case, the adipate-dependent expression of $adpC$ suggests that a fine-tuned regulatory system exists to modulate AdpC production. Harrison and Harwood [36] demonstrated the ability of $R. palustris$ to grow in minimal media using dicarboxylic acids from seven to nine carbons in

Fig. 6. (A) Ligplot showing coordination of 2-oxoadipate in AdpC-binding pocket. Water molecules play an important role in bridging hydrogen bonds with the main chain in surrounding residues of the ‘pincer’ structure. Interestingly, no positively charged residues are found to counteract the substrate negative charge. The keto oxygen on the 2-oxoadipate ligand is coordinated by the side chains of Ser169 and Ser198; (B) Comparison between substrate coordination for 2-oxoadipate in AdpC (red), aspartate in BugD (green) and glutamate in BugE (blue). The two water molecules coordinated by the ‘pincer’ structure are conserved in position (red spheres at the top of the figure). However, most of the other residues involved in the water coordination are not conserved among the three proteins. The coordination of the second carboxylic group of each substrate is not only much less conserved but also seems to involve at least one water molecule. Dashed lines represent hydrogen bonds between the substrate and the binding pocket.
length as the sole carbon sources, and our observations show it can also grow well in the presence of the C6 dicarboxylate adipate. In nature, adipate is a known intermediate of a cyclohexanol degradation pathway, which is then metabolised by β-oxidation [37]. In R. palustris, anaerobic aromatic acid degradation generates cyclohexane carboxylate and pimelate as intermediates [36,38]. Considering that the affinity constants of AdpC for adipate, 2-oxoadipate, pimelate and suberate are rather similar, it might be that the physiological role of AdpC involves binding of several of these related dicarboxylates. 3-oxoadipate, for example, is a central intermediate in the degradation of protocatechuate and catechol, via a pathway widespread among soil bacteria, including R. palustris [21,39]. Moreover, pimelate is a key intermediate in the degradation of lignin-derived aromatic compounds in the benzoate catabolic pathway after the ring is cleaved [23] and is further degraded through β-oxidation in R. palustris by proteins encoded by the pim- FABCDE operon, which would also be responsible for suberate degradation [36]. Encoded adjacent to this operon are ABC SBPs which were shown to bind to a range of dicarboxylates and fatty acid analogs, ranging from 7 to 14 carbons in length, but interestingly not to adipate [40]. As a precursor, pimelate production is needed in the cell for biotin synthesis [41,42].Dicarboxylic acids are a key class of molecules for photosynthetic bacteria, representing for many of them the best carbon sources for growth [43]. Thus, the presence of high-affinity binding proteins in R. palustris for these compounds might reflect the lignin-rich environments in which this bacterium is found, potentially helping to regulate the chemotaxis, uptake and metabolism of these aliphatic degradation products of aromatic compounds [44,45].

Our identification of a high-affinity, adipate-binding protein is also relevant in the context of biotechnology. Adipate is one of the most frequently used carboxylates industrially, with a global production of ~2.6 million ton/year [46]. Its main use is as a precursor for nylon 6-6 fibres, but it is also used in polyurethane production and as a food additive in foods that require acidity regulation [47]. Conventionally produced from benzene chemical transformations, there is intense research aiming to produce adipate from renewable sources such as lignin, lipids and TCA cycle intermediates, using both natural and synthetic pathways, as reviewed by Kruyer and Peralta-Yahya [48]. An adipate biosensor would be useful in measuring adipate concentrations and optimising yields from such processes. AdpC could be employed in this way, by detecting the conformational change upon ligand binding using a variety of biophysical techniques, as has been extensively demonstrated for the maltose-binding protein, reviewed by Medintz et al. [49,50].

In conclusion, the present study has described the first SBP from the TTT family to bind with high affinity to medium chain length dicarboxylates, showing that this family is involved in the metabolism of a wider variety of substrates than those recognised so far. Moreover, the binding pocket of AdpC shows flexibility, binding to substrates from six to nine carbons in length. We also show that AdpC expression is regulated by low substrate concentrations, suggesting that it may play a role in regulatory switching for different substrate availability. Taken together, these data help to further characterise the mechanisms and physiological role of TTT systems.

Materials and methods

Media and strains

Rhodopseudomonas palustris CGA009 (ATCC® BAA-98™) was used in this study [51]. Growth in rich media was in PYE, composed of 5 g·L⁻¹ each of peptone, yeast extract and sucinate. RCV was used as minimal media, using 40 mM succinate as carbon source [52]. Liquid growth was performed at 30 °C anaerobically in the light, with two 9W warm white LED bulbs positioned at 20 cm from the cultures, while growth on solid agar media was performed aerobically in the dark. All Escherichia coli strains were grown in LB media at 37 °C. When used, antibiotic concentrations for R. palustris and E. coli were respectively: Chloramphenicol 20 µg·mL⁻¹ and 34 µg·mL⁻¹; Carbenicillin (not used) and 50 µg·mL⁻¹; gentamycin 100 µg·mL⁻¹ and 20 µg·mL⁻¹.

Protein overproduction and purification

CGA009 genomic DNA was extracted with the ‘GenElute™ Bacterial genomic DNA kit’ (Sigma, Poole, UK). The rpa4515 gene was PCR amplified using the primers rpa4515_F (5’-ATAGAGCTCAGACTGGCCGACCGG-3’, SacI site underlined) and rpa4515_R (5’-TTAAAGCTTCTACAGGCGGCAATTCC-3’, HindIII site underlined), which excludes the protein N-terminal signal sequence comprising of the first 35 amino acids. The amplified DNA was cloned into the pBAD-HisB vector (Invitrogen, Carlsbad, CA, USA) through SaeI and HindIII restriction sites to add an N-terminal His₆a tag to the protein. The resulting pBAD-4515 plasmid was transformed into E. coli DH5α and subsequently into E. coli Top10(DE3) (Invitrogen) for overexpression. rpa4515 was overexpressed under the control of the araBAD promoter contained in pBAD-4515. E. coli TOP10 (DE3)(pBAD-4515) cells were grown to OD₆₀₀ 0.6 under
carbenicillin selection and then induced with 0.2% (w/v) of L-arabinose for 24 h at 37 °C before harvesting by centrifugation (16 000 g, 10 min). Harvested cells were resuspended in 20 mL of Binding Buffer (20 mM sodium phosphate buffer pH 7.4, 500 mM sodium chloride, 20 mM imidazole) and lysed by sonication (MSE soniprep 5 × 20 s at 16 microns amplitude with cooling by ice). The resulting cell-free extracts (CFFE) were fractionated on a 5 mL HisTrapTM HP crude column (GE Healthcare, Little Chalfont, UK), with the recombinant protein eluted using a 0−500 mM imidazole gradient (Elution buffer; 20 mM sodium phosphate buffer pH 7.4, 500 mM sodium chloride, 500 mM imidazole). Size exclusion chromatography of RPA4515 was performed using a 24-mL Superdex200 column at 0.5 mL flow rate in an AKTA protein purification system, using TF Buffer (Tris 50 mM; NaCl 0.1 M pH 7.4). A calibration curve was generated using thyroglobulin (669 kDa), conalbumin (75 kDa), carbonic anhydrase (29 kDa) and aprotinin (6.5 kDa), and

\[
K_v = \frac{V_e - V_o}{V_o - V_e}
\]

where \(V_e\) is the elution volume for a given protein, \(V_o\) is the void volume and \(V_t\) is the total volume of the column.

RT-PCR of rpa4515

Rhodopseudomonas palustris was grown phototrophically in RCV minimal media [52], using 10 mM succinate as the sole carbon source, until an OD\(_{600}\) of 0.7 was reached. In one set of experiments, carboxylic acids (pyruvate, adipate, pimelate, suberate or azelate) were then added to replicate cultures to a final concentration of 10 mM. Adipate was added to separate replicate cultures to 1 μM, 10 μM or 1000 μM final concentrations. Cells were then incubated for 2 h before harvesting by centrifugation at 16 000 g for 10 min. RNA was then extracted as described by Guccione et al. [53]. Primers for RT-PCR were designed using PRIMER3 software (http://primer3.ut.ee/), aiming for 20-bp length, with a primer sequence of 100 bp after the mRNA start position. For the housekeeping gene *rpoD*, primers were RpoD_FW (5′-GATCGTAGCCCATGGTCC-3′) and RpoD_rev (5′-GATCGTAGCCCATGGTCC-3′), and for the housekeeping gene *rpoD* primers were RpoD_FW (5′-CGACCTCTGGCGAAGCTATC-3′) and RpoD_rev (5′-GGTTGGTGACTCTTGGCGG-3′). Each reaction was carried out in a 25 μl volume in a MicroAmp® 96-well optical reaction plate (ABI prism). Reactions were performed using the Brilliant III Ultra-fast SYBR Green RT-PCR kit (Agilent, Santa Clara, CA, USA), according to the manufacturer’s instructions. Each reaction using RNA was repeated in biological triplicate, each with a technical triplicate; reactions using genomic DNA for the standard curve, were replicated in duplicate. PCR amplification was carried out in a Stratagene MX3005p thermal cycler (Agilent) according to the manufacturer’s instructions. Data were collected with the associated MXPRO QPCR software (Agilent). A standard curve for each gene was generated using a series of *R. palustris* genomic DNA dilutions. Gene expression between cultures was calculated as relative to *rpoD* expression. The data were analysed as described previously [53].

Differential scanning fluorescence assay

Thermal stability assays were performed according to Vedadi et al. [54], in a Mx3005P RT-PCR machine (Stratagene, La Jolla, CA, USA), in a 96-well plate format, each well containing 50 μL of 5 μM protein, 60 μM of ligand, 1x SYPRO Orange Dye (Invitrogen) final concentrations in TF Buffer (Tris-HCl 50 mM pH 7.4 NaCl 0.1 M). Initial screening was performed against a library comprising of 90 compounds from different classes (aliphatic, amino acids, dicarboxylic acids, aromatics and vitamins). The composition of this library is given in Table 1.

Isothermal titration calorimetry

Isothermal titration calorimetry analyses were carried out in a Nano ITC calorimeter (TA instruments, New Castle, DE, USA). RPA4515 was concentrated to 100 μM and dialysed against TF Buffer (Tris-HCl 50 mM pH 7.4; NaCl 0.1 M). The dialysis buffer was used to prepare stock substrate solutions at 1 mM. The reaction cell contained 300 μL of 100 μM protein. Titration injections were carried out at 30 °C by 25 × 2 μL injections, with a 4-min interval between injections. After optimising the baseline values and discounting the values of ligand dilution, integrations, fitting to an independent-binding model, \(K_D\) determination and statistics were performed using NANOANALYZE software (TA instruments).

Protein crystallisation, data collection and structure determination

Protein crystallisation was done by concentrating the protein in TF buffer to 10 mg·mL\(^{-1}\) with addition of 2 mM of ligand and testing in sitting drop experiments with a range of different commercial screens (Molecular Dimensions Ltd, Newmarket, UK). Screening conditions that produced crystals were optimised in hanging-drop experiments. Ultimately RPA4515 was crystallised in 2 mM ammonium sulphate/0.1 M sodium acetate pH 5.0, after one week incubation at 17 °C. Crystals were flash-cooled in liquid nitrogen in the presence of mother-liquid plus glycerol (20% v/v; added as cryoprotectant), and stored in liquid nitrogen.

Data were collected at the Diamond Light Source (Harwell, UK) on Beamline station I04-1 (2-oxoadipate) and I03 (adipate). Data processing was done with XDS and merging with XSCALE. The crystals of the adipate- and 2-oxoadipate-bound forms were isomorphous. Molecular
replacement was performed with Phaser software, part of the Collaborative Computational Project, Number 4 (CCP4) software suite [55], using Bug27 as a model (PDB accession code 2QPQ). The resultant electron density maps were analysed using COOT [56] and the protein models refined using REFMAC5 [57] software. Validation was performed within COOT and confirmed with MolProbity server [58]. The final model comprises residues 2–300 plus ligands and solvent. The structure factors and co-ordinates can be accessed in the PDB with the accession codes 5OEI (2-oxoadipate bound) and 5OKU (adipate bound). Figures were generated using PYMOL (The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC) and Ligplot+ [59].

Acknowledgements

The present work was accomplished with funding from the Brazilian funding agency CNPQ (National Council for Scientific and Technological Development), through a PhD studentship to LTR (248597/2013-2) in the remit of ‘science without borders’ program.

Conflicts of interest

The authors declare they have no conflicts of interest in connection with the content of this article.

Author contributions

LTR designed and executed most of the experiments, analysed the results and cowrote the paper. JBR and SRD collected protein crystal diffraction data and built the protein structure model. JBR commented on the manuscript. DJK conceived the idea for the project, helped to design the experiments, cowrote and edited the paper and provided supervisory support.

References

