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Abstract 

The inadequacy of available pharmacotherapy for managing chronic pain imposes a 

huge burden on both patients, healthcare services and the economy. The exploitation of 

biologics, specifically botulinum neurotoxin A (BoNT/A), is important for the development 

of novel long-acting analgesics. BoNT/A induces analgesia in numerous chronic pain 

models, via the disruption of SNARE-mediated cellular processes. To aid translation into 

humans, reengineering BoNT/A can eliminate its paralytic effects and improve its safety 

profile. BiTox/A, an elongated version of BoNT/A, was generated using SNARE-stapling 

technology and effectively reduced mechanical hypersensitivity in multiple pain models, 

presumably via actions at the A-nociceptors. Producing a chimera as efficacious against 

other clinical features of pain, including thermal hyperalgesia, requires the retargeting of 

BoNT/A’s catalytic activity to different sensory neuron subpopulations. The light chain-

translocation domain of BoNT/A (LcTd/A) was thus conjugated to the receptor binding 

domain (Rbd) of alternate BoNT serotypes, /C to /E. Staining of cultured sensory neurons 

revealed that conjugation of LcTd/A to BoNT/D-derived Rbd produced SNAP25 cleavage 

in a subpopulation of smaller myelinated neurons. Unexpectedly, intraplantar injection of 

the chimera into an inflammatory pain model potentially prolonged thermal hyperalgesia 

and failed to alter mechanical hypersensitivity. Conversely, LcTd/A conjugated to cholera 

toxin-derived binding domain attenuated the development of, and reversed, mechanical 

hypersensitivity in a post-operative pain model and a chemotherapy-induced peripheral 

neuropathy model, yet remained ineffective against thermal hyperalgesia.  

BoNT/A’s analgesic effect is hypothesised to be predominantly centrally-mediated. To 

determine whether this theory was also relevant to BiTox/A, the chimera’s in vivo activity 

was examined. Cleaved SNAP25 was revealed in the ipsilateral ventral horn with sparse 

labelling in the dorsal horn, as well as in the peripheral afferent terminals, thus implying 

that a peripheral and central action contribute to the analgesic effect. After demonstrating 

penetration of the central nervous system, the application of toxin chimeras for drug 

delivery to the spinal cord was investigated using tetanus binding domain (Tbd). Tbd 

successfully chaperoned fluorescent tags and LcTd/A to the spinal cord. Attachment of 

a second Tbd to chimeras significantly increased the detectable fluorescence and 

amount of cleaved SNAP25 in the ventral horn. In conclusion, the smaller Aδ-

nociceptors, targeted by BoNT/D-derived Rbd, likely contribute to the resolution of 

inflammation and the recovery of normal thermal sensation. Targeting of LcTd/A by 

cholera toxin resulted in a functional analgesic that displayed less penetration of the 

ventral horn, indicating a reduced motor effect. This chimera should thus be pursued as 

a potential long-lasting analgesic. Equally, tetanus proved an efficacious tool for spinal 

cord delivery. Attaching a second binding domain successfully increased its potency, 

emphasising the versatility and technical advancement of the SNARE-stapling approach.  



3 
 

Table of Contents 

 

Acknowledgements ......................................................................................................... 1 

Declaration ...................................................................................................................... 1 

Abstract ........................................................................................................................... 2 

Table of Contents ............................................................................................................ 3 

List of Figures ............................................................................................................... 10 

List of Tables ................................................................................................................. 12 

List of Abbreviations ...................................................................................................... 13 

Chapter 1. Introduction ................................................................................................. 16 

1.1 Chronic Pain ........................................................................................................ 16 

1.1.1 The epidemiology of chronic pain ................................................................. 16 

1.1.1.1 Inflammatory Pain .................................................................................. 16 

1.1.1.2 Neuropathic Pain .................................................................................... 17 

1.1.1.3 Chronic Post-Surgical Pain .................................................................... 18 

1.1.2 Pathophysiology of chronic pain ................................................................... 19 

1.1.2.1 Pain signalling pathways ........................................................................ 19 

1.1.2.2 Peripheral Sensitisation ......................................................................... 21 

1.1.2.2.1 Sensitisation of the peripheral terminal ........................................... 21 

1.1.2.2.2 Recruitment of silent nociceptors .................................................... 23 

1.1.2.3 Central Sensitisation .............................................................................. 23 

1.1.2.3.1 Synaptic potentiation ....................................................................... 24 

1.1.2.3.2 Disinhibition within the dorsal horn .................................................. 27 

1.1.2.4 Alterations in the central processing of pain .......................................... 29 

1.2 Botulinum Neurotoxin in chronic pain .................................................................. 30 

1.2.1 The structure of Botulinum Neurotoxin ......................................................... 30 



4 
 

1.2.2 Mechanism of action .................................................................................... 32 

1.2.3 Clinical evidence for the antinociceptive effect of BoNT/A ........................... 34 

1.2.4 Pre-clinical evidence for BoNT/A’s analgesic effect ..................................... 37 

1.2.5 Protein engineering to optimise BoNT/A’s anti-nociceptive activity .............. 42 

1.2.5.1 SNARE-stapling for protein engineering ................................................ 44 

1.2.5.1.1 TetBot.............................................................................................. 44 

1.2.5.1.2 BiTox ............................................................................................... 46 

1.3 Hypotheses and Aims ......................................................................................... 48 

Chapter 2. General Methods ........................................................................................ 51 

2.1 Materials ............................................................................................................. 51 

2.1.1 Chimeras ...................................................................................................... 51 

2.1.2 Antibodies .................................................................................................... 52 

2.1.3 Media and solutions used ............................................................................ 54 

2.2 Dorsal Root Ganglion Culture ............................................................................. 56 

2.2.1 Coating plates .............................................................................................. 56 

2.2.2 Dissection of dorsal root ganglia .................................................................. 57 

2.2.3 Preparation of culture ................................................................................... 57 

2.2.4 Incubation with chimeras .............................................................................. 57 

2.2.5 Immunocytochemistry .................................................................................. 58 

2.2.6 Epifluorescence microscopy of cell cultures ................................................. 58 

2.2.7 Image analysis ............................................................................................. 59 

2.2.8 Statistical Analysis of DRG culture images .................................................. 60 

2.3 Animals ............................................................................................................... 60 

2.4 Injections ............................................................................................................. 60 

2.4.1 Preparation of clostridial chimeras for injection ............................................ 60 

2.4.2 Intraplantar injection ..................................................................................... 61 

2.4.3 Intraperitoneal injection ................................................................................ 61 

2.5 Experimental pain models................................................................................... 61 

2.5.1 Chronic inflammatory pain model ................................................................. 61 

2.5.2 Incisional post-operative pain model ............................................................ 61 



5 
 

2.5.3 Chemotherapy-induced peripheral neuropathy pain model .......................... 62 

2.6 Behavioural studies ............................................................................................. 62 

2.6.1 Hargreaves Test ........................................................................................... 62 

2.6.2 Electronic von Freys ..................................................................................... 63 

2.6.3 Evaluation of motor function ......................................................................... 63 

2.6.4 Statistical Analysis ........................................................................................ 63 

2.7 Immunohistochemistry ........................................................................................ 64 

2.7.1 Transcardial Perfusion .................................................................................. 64 

2.7.2 Preparation of tissue ..................................................................................... 64 

2.7.3 Sectioning of tissue ....................................................................................... 64 

2.7.4 Immunohistochemical staining ...................................................................... 65 

2.7.5 Imaging and microscopy of sections ............................................................. 65 

2.7.6 Image analysis .............................................................................................. 65 

2.8 Western Blot ........................................................................................................ 66 

2.8.1 Protein extraction from whole Dorsal Root ganglia ....................................... 66 

2.8.2 Protein extraction from cultured neurons ...................................................... 66 

2.8.3 Western Blot ................................................................................................. 66 

Chapter 3. In vivo characterisation of BiTox/A enzymatic activity following intraplantar 

injection ......................................................................................................................... 69 

3.1 Introduction .......................................................................................................... 69 

3.2 Results ................................................................................................................ 70 

3.2.1 Cleaved SNAP25 is visualised in the sensory neurons of the glabrous skin 

following intraplantar injection of BiTox/A .............................................................. 70 

3.2.2 Cleaved SNAP25 is visualised at the neuromuscular junctions of the 

glabrous skin following intraplantar injection of BiTox/A ........................................ 72 

3.2.3 Cleaved SNAP25 is detected in other innervated structures contained within 

the skin .................................................................................................................. 74 

3.2.4 SNAP25 cleavage is not detected in the lumbar dorsal root ganglia following 

intraplantar injection of BiTox/A ............................................................................. 74 

3.2.5 Cleaved SNAP25 is observed in the ventral horn of the lumbar spinal cord 

following intraplantar injection of BiTox/A. ............................................................. 76 



6 
 

3.2.6 Small amounts of cleaved SNAP25 are observed in the dorsal horn following 

intraplantar injection of BiTox/A ............................................................................ 78 

3.3. Discussion ......................................................................................................... 78 

3.3.1 BiTox/A cleaves SNAP25 in myelinated sensory neurons in vivo ................ 78 

3.3.2 The possible significance of SNAP25 cleavage detected at autonomic 

structures .............................................................................................................. 82 

3.3.3. The absence of cleaved SNAP25 in the dorsal root ganglia ....................... 83 

3.3.4 BiTox/A does produce SNAP25 cleavage at the central spinal cord ............ 84 

3.3.5 Cleaved SNAP25 is detected at the neuromuscular junction after peripheral 

injection of BiTox/A ............................................................................................... 87 

3.3.6 Conclusion ................................................................................................... 88 

Chapter 4. The substitution of the receptor binding domain of Botulinum Neurotoxin A 

with that of alternative botulinum serotypes targets the enzymatic activity of Botulinum 

Neurotoxin A to additional subpopulations of sensory neurons .................................... 90 

4.1 Introduction ......................................................................................................... 90 

4.2. Results ............................................................................................................... 92 

4.2.1 Stapling the Light Chain Translocation Domain of Botulinum Neurotoxin A to 

the Receptor Binding domain of alternative botulinums results in functional toxins 

which retain the ability to cleave SNAP25 in vitro ................................................. 92 

4.2.2 The biodistribution of cleaved SNAP25 in cultured dorsal root ganglion 

neurons following incubation with alternative BiTox constructs suggests that 

substitution of Rbd/A can target the enzymatic activity of BoNT/A to additional 

sensory neuron subpopulations. ........................................................................... 93 

4.2.3 Cleaved SNAP25 is detected in a subpopulation of smaller myelinated 

sensory neurons after substitution of Rbd/A for the Rbd of alternative serotypes. 96 

4.2.4 SNAP25 cleavage is not detected in a significantly different subpopulation of 

small diameter neurons after substituting Rbd/A of BiTox/A for the Rbd of 

alternative serotypes. .......................................................................................... 104 

4.2.5 Intraplantar injection of BiTox/D is suspected to prolong thermal hyperalgesia 

in Complete Freund’s Adjuvant rat model of inflammatory pain .......................... 105 

4.2.6 Cleaved SNAP25 is detected in the ventral horn following intraplantar 

injection of BiTox/D in a rat inflammatory pain model ......................................... 111 

4.3 Discussion ........................................................................................................ 114 



7 
 

4.3.1 The in vitro binding profile of BiTox/A generates further support for the 

binding profile recognised in vivo ......................................................................... 114 

4.3.2 In vitro investigation of the binding profiles of alternative BiTox chimeras 

confirms that the enzymatic domain of BoNT/A can be retargeted to alternate 

neuronal subpopulations ...................................................................................... 115 

4.3.3 Pursuing BiTox/D as a potential analgesic ................................................. 119 

4.3.4 Neuronal blockade of Aδ nociceptors potentially causes prolonged thermal 

hyperalgesia in inflammatory pain ....................................................................... 120 

4.3.5 SNAP25 cleavage within the spinal cord suggests that BiTox/D could have a 

centrally mediated effect ...................................................................................... 121 

4.3.6 Conclusion .................................................................................................. 123 

Chapter 5. Utilising clostridial toxins for spinal cord delivery for use in neurological 

diseases ...................................................................................................................... 124 

5.1 Introduction ........................................................................................................ 124 

5.2 Results .............................................................................................................. 125 

5.2.1 Tbd-Cy3 is retrogradely transported to the motor neurons in the ventral horn 

of the lumbar spinal cord following intraplantar injection ..................................... 125 

5.2.2 The penetration of the lumbar spinal cord motor neurons by Tbd-Cy3 is 

increased by the attachment of a second tetanus binding domain ...................... 125 

5.2.3 Attachment of a second tetanus binding domain to TetBot increases the 

efficacy of the BoNT/A enzymatic domain to cleave SNAP25 in the spinal cord. 127 

5.2.4 Cleaved SNAP25 is not readily detected in the lumbar spinal region following 

intraplantar injection of ChoBot ............................................................................ 131 

5.3 Discussion ......................................................................................................... 132 

5.3.1 Attachment of a second targeting domain successfully augments the efficacy 

of chimeras .......................................................................................................... 132 

5.3.2. The potential evidence for transcytosis introduces the possibility of 

delivering therapeutics to higher central nervous system regions ....................... 134 

5.3.3 Tetanus chimeras do not produce motor paralysis despite high levels of 

SNAP25 cleavage detected in the ventral horn ................................................... 135 

5.3.4 Utilising tetanus chimeras to treat lysosomal disorders .............................. 136 



8 
 

5.3.5 The cholera toxin-derived targeting domain is not suitable for delivery of 

therapeutics to the central nervous system ......................................................... 136 

5.3.6 Conclusion ................................................................................................. 138 

Chapter 6. New bacterial chimera for the alleviation of post-operative pain and 

chemotherapy-induced peripheral neuropathy ........................................................... 139 

6.1 Introduction ....................................................................................................... 139 

6.2 Results .............................................................................................................. 139 

6.2.1 ChoBot retains the enzymatic activity of Botulinum Neurotoxin A in vitro .. 139 

6.2.2 ChoBot produces SNAP25 cleavage in myelinated sensory neurons in vitro

 ............................................................................................................................ 141 

6.2.3 Cleaved SNAP25 is detected in the peripheral sensory neurons of the 

glabrous skin following intraplantar injection of ChoBot ...................................... 146 

6.2.4 ChoBot significantly reduced KCl-evoked CGRP release in cultured sensory 

neurons ............................................................................................................... 146 

6.2.5 Cleaved SNAP25 is detected at the neuromuscular junction in the glabrous 

skin of the hindpaw following intraplantar injection of ChoBot ............................ 148 

6.2.6 Pre-emptive intraplantar injection of ChoBot attenuates the development of 

mechanical hypersensitivity following surgery ..................................................... 148 

6.2.7. Post-operative intraplantar injection of ChoBot does not reverse mechanical 

hypersensitivity in a post-operative pain model ................................................... 151 

6.2.8 Pre-emptive intraplantar injection of ChoBot does not prevent the 

development of mechanical hypersensitivity in females following surgery .......... 151 

6.2.9. Intraplantar injection of ChoBot does not reverse the thermal or mechanical 

hypersensitivity observed in Complete Freund’s Adjuvant inflammatory pain model

 ............................................................................................................................ 153 

6.2.10 Intraplantar injection of ChoBot reduces mechanical hypersensitivity in 

paclitaxel-induced peripheral neuropathy ............................................................ 156 

6.2.11 Female rats experiencing paclitaxel-induced peripheral neuropathy show a 

trend towards a reduction in mechanical hypersensitivity following intraplantar 

injection of ChoBot .............................................................................................. 159 

6.2.12 The combined behavioural results of male and female PIPN rats highlights 

an analgesic effect of ChoBot against Paclitaxel-induced mechanical 

hypersensitivity .................................................................................................... 160 



9 
 

6.3 Discussion ......................................................................................................... 162 

6.3.1 ChoBot cleaves SNAP25 at the peripheral injection site ............................ 162 

6.3.2 ChoBot demonstrates potential as a future analgesic ................................ 165 

6.3.3 Justification of the behavioural assessment method utilised ...................... 168 

6.3.4 Considerations for the use of ChoBot as an analgesic ............................... 169 

6.3.5 Conclusion .................................................................................................. 171 

Chapter 7. General Discussion ................................................................................... 172 

7.1 The in vivo activity of clostridial chimeras ......................................................... 172 

7.1.1 Cleaved SNAP25 is consistently detected in the peripheral sensory afferent 

terminals following intraplantar injection of clostridial chimeras .......................... 172 

7.1.2 Clostridial chimeras do not produce muscular paralysis despite cleaving 

SNAP25 at the neuromuscular junction ............................................................... 173 

7.1.3 The relevance of sensorimotor connectivity for the SNAP25 cleavage 

observed within the lumbar spinal cord following peripheral injection ................. 174 

7.2 The development and behavioural assessment of novel chimeras ................... 176 

7.2.1 Methodological considerations for the perceived lack of analgesic effect of 

chimeras in inflammatory pain models ................................................................ 176 

7.3 Additional methodological considerations ......................................................... 178 

7.3.1 The use of the in-house anti-cleaved SNAP25 antibody ............................ 178 

7.3.2 The inclusion of the SNAP25 linker when generating clostridial chimeras . 179 

7.4 Versatility in the SNARE-stapling technology .................................................... 179 

7.5 Conclusions ....................................................................................................... 180 

References .................................................................................................................. 182 

 

 

 

 

 

 



10 
 

List of Figures 

 

Figure 1.1 The properties of sensory neuron subtypes relate to the different pain qualities 

experienced. .......................................................................................................... 19 

Figure 1.2 Primary afferents terminate within distinct laminae of the dorsal horn.. ...... 20 

Figure 1.3 The lateral spinothalamic tract.. .................................................................. 21 

Figure 1.4 Heterosynaptic facilitation promotes allodynia and secondary hyperalgesia.

 .............................................................................................................................. 25 

Figure 1.5 The 3D structure and amino acid sequence of Botulinum Neurotoxin A. .... 31 

Figure 1.6  Schematic depicting the mechanism of action of Botulinum Neurotoxin 

(BoNT) at the neuromuscular junction.. ................................................................. 33 

Figure 1.7 The modular assembly of botulinum neurotoxin A- tetanus toxin chimera by 

SNARE-tagging.. ................................................................................................... 45 

Figure 2.1 The anti-cleaved SNAP25 antibody is specific for the BoNT/A- cleavage 

product................................................................................................................... 54 

Figure 2.2 Selection of the fields of view when imaging dissociated dorsal root ganglion 

cultures. ................................................................................................................. 58 

Figure 2.3 Marking of neurons and image quantification using FIJI.. ........................... 59 

Figure 2.4 Thresholding to quantify in vivo images. ..................................................... 67 

Figure 3.1 Cleaved SNAP25 is detected in the sensory nerve terminals of the glabrous 

skin after intraplantar injection of BiTox/A.. ........................................................... 72 

Figure 3.2 Cleaved SNAP25 is detected at the neuromuscular junction of the hindpaw 

after intraplantar injection of BiTox/A.. ................................................................... 73 

Figure 3.3 Cleaved SNAP25 is detected at the sweat glands and blood vessels of the 

glabrous skin after intraplantar injection of BiTox/A……………………………….....74 

Figure 3.4 Cleaved SNAP25 is absent in the dorsal root ganglia following intraplantar 

injection of BiTox/A. ............................................................................................... 76 

 Figure 3.5 Cleaved SNAP25 is detected in the lumbar spinal cord after intraplantar 

injection of BiTox/A. ............................................................................................... 78 

Figure 3.6 Cleaved SNAP25 is found concentrated around the motor neuron soma in 

lamina IX of the lumbar spinal cord.. ..................................................................... 80 

Figure 3.7 Cleaved SNAP25 is detected in single, sparse nerve fibres in the dorsal horn 

of the lumbar spinal cord. ...................................................................................... 82 

Figure 4.1 SNARE-tagging and stapling enables the production of alternative BiTox 

chimeras.. .............................................................................................................. 91 

Figure 4.2 Clostridial chimeras containing LcTd/A retain the catalytic activity of BoNT/A 

in vitro. ................................................................................................................... 93 



11 
 

Figure 4.3 Substitution of BoNT/A Rbd with the Rbd from alternative BoNT serotypes 

does not significantly alter the targeting of the enzymatic activity BoNT/A to other 

subpopulations of sensory neurons. ...................................................................... 95 

Figure 4.4 Representative images of cleaved SNAP25 staining in chimera-treated dorsal 

root ganglion cultures………………………………………………………………….100 

Figure 4.5 Cleaved SNAP25 is detected in a subset of smaller myelinated (Aβ and Aδ) 

fibre sensory neurons after substitution of Rbd/A for the Rbd of alternative 

serotypes.. ........................................................................................................... 101 

Figure 4.6 Representative images of cleaved SNAP25 staining in myelinated dissociated 

sensory neurons. ................................................................................................. 104 

Figure 4.7 Substitution of Rbd/A does not influence the detection of cleaved SNAP25 in 

small diameter neurons.. ...................................................................................... 105 

Figure 4.8 Representative images of cleaved SNAP25 staining in unmyelinated 

dissociated sensory neurons.. ............................................................................. 108 

Figure 4.9 BiTox/D potentially prolonged thermal hyperalgesia in a Complete Freund’s 

Adjuvant (CFA) inflammatory pain model. ........................................................... 110 

Figure 4.10 Cleaved SNAP25 is detected in the ventral horn following intraplantar 

injection of BiTox/D in an inflammatory pain rat model. ....................................... 112 

Figure 4.11 Higher magnification images of the ipsilateral spinal cord reveal cleaved 

SNAP25 within single neurites.. ........................................................................... 113 

Figure 5.1 Tbd-Cy3 is visualised in the motor neurons of the ventral horn of the lumbar 

spinal cord following intraplantar injection. .......................................................... 126 

Figure 5.2 The penetration of the lumbar spinal cord motor neuron soma by Tbd-Cy3 is 

increased by the attachment of a second tetanus binding domain.. .................... 129 

Figure 5.3 Greater penetration of the lumbar rat spinal cord is observed after intraplantar 

injection of 2xTetBot. ........................................................................................... 131 

Figure 5.4 Limited SNAP25 cleavage is visualised in the lumbar spinal cord after 

intraplantar injection of ChoBot. ........................................................................... 133 

Figure 6.1 ChoBot successfully cleaves SNAP25 in rat cortical neuron cultures. ...... 140 

Figure 6.2 ChoBot cleaves SNAP25 in a subpopulation of cultured sensory neurons..

 ............................................................................................................................. 142 

Figure 6.3 ChoBot cleaves SNAP25 in a subpopulation of myelinated sensory neurons.

 ............................................................................................................................. 144 

Figure 6.4 ChoBot cleaves SNAP25 in a small proportion of unmyelinated sensory 

neurons in vitro. ................................................................................................... 145 

Figure 6.5 ChoBot cleaves SNAP25 in peripheral sensory neurons in vivo and prevents 

KCl-evoked CGRP release in vitro. ...................................................................... 148 



12 
 

Figure 6.6 Cleaved SNAP25 is detected at the neuromuscular junction after intraplantar 

injection of ChoBot.. ............................................................................................ 149 

Figure 6.7 Pre-emptive intraplantar injection of ChoBot prevents the development of 

mechanical hypersensitivity following surgery.. ................................................... 150 

Figure 6.8 Post-operative intraplantar injection of ChoBot does not reverse mechanical 

hypersensitivity in an incisional pain model. ........................................................ 152 

 Figure 6.9 Pre-emptive intraplantar injection of ChoBot does not prevent incision-

induced mechanical hypersensitivity in female rats.. ........................................... 154 

 Figure 6.10 Intraplantar injection of ChoBot does not reverse thermal or mechanical 

hypersensitivity in Complete Freund’s Adjuvant (CFA) inflammatory pain model.

 ............................................................................................................................ 155 

 Figure 6.11 Repeated intraperitoneal injection of paclitaxel successfully produces 

paclitaxel-induced peripheral neuropathy ............................................................ 157 

Figure 6.12 Intraplantar injection of ChoBot reduces mechanical hypersensitivity in 

paclitaxel-induced peripheral neuropathy (PIPN).. .............................................. 158 

Figure 6.13 Male and female rats similarly develop mechanical hypersensitivity after 

repeated injection of Paclitaxel.. .......................................................................... 160 

Figure 6.14 A trend towards reduced Paclitaxel-induced mechanical hypersensitivity is 

observed in female rats after intraplantar injection of ChoBot.. ........................... 161 

Figure 6.15  The combined behavioural results of male and female PIPN rats highlights 

an analgesic effect of ChoBot against Paclitaxel-induced mechanical 

hypersensitivity. ................................................................................................... 163 

 

List of Tables 

 

Table 2.1 Details of chimeras used. ............................................................................. 51 

Table 2.2 Details of all primary antibodies used including the relevant dilutions used for 

Immunocytochemistry (ICC), Immunohistochemistry (IHC) and Western Blot (WB).

 .............................................................................................................................. 52 

Table 2.3 Details of all secondary antibodies used including the relevant dilutions used 

for Immunocytochemistry (ICC) Immunohistochemistry (IHC) and Western Blot 

(WB). ..................................................................................................................... 53 

Table 2.4 Details of the protein conjugate used. .......................................................... 53 

Table 2.5 Details of the medias used. .......................................................................... 54 

Table 2.6 Details of the solutions used. ....................................................................... 55 

Table 2.7 The mean gray value threshold applied to the antibody staining during 

immunocytochemistry. ........................................................................................... 60 



13 
 

List of Abbreviations  

 

AA Amino Acid 

AB5 A subunit interacting with a pentameric B subunit 

ACh Acetylcholine 

ALS Amyotrophic Lateral Sclerosis  

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

ANOVA Analysis of Variance 

ATP Adenosine triphosphate  

BiTox/A SNARE-stapled chimera constructed from LcTd/A conjugated to Rbd/A 

BiTox/C SNARE-stapled chimera constructed from LcTd/A conjugated to Rbd/C 

BiTox/D SNARE-stapled chimera constructed from LcTd/A conjugated to Rbd/D 

BiTox/E SNARE-stapled chimera constructed from LcTd/A conjugated to Rbd/E 

BoNT/A Botulinum Neurotoxin, Serotype A 

BoNT/B Botulinum Neurotoxin, Serotype B 

BoNT/C Botulinum Neurotoxin, Serotype C 

BoNT/D Botulinum Neurotoxin, Serotype D 

BoNT/E Botulinum Neurotoxin, Serotype E 

BoNT/F Botulinum Neurotoxin, Serotype F 

BoNT/G Botulinum Neurotoxin, Serotype G 

BTIII β-Tubulin III  

CaMKII Ca 2+ /calmodulin-dependent protein kinase II 

CFA Complete Freund's Adjuvent 

CGRP Calcitonin gene-related peptide 

ChoBot SNARE-stapled chimera constructed from LcTd/A conjugated to Cholera 

toxin AB5 

cSNAP25 Cleaved SNAP25 

CTB Cholera Toxin Subunit B 

CTB-488 Cholera Toxin Subunit B Alexa Fluor 488 Conjugate 

Cy3 Cyanine Dye 3 

DAPI 4′,6-diamidino-2-phenylindole 

DMEM Dulbecco’s modified Eagle medium 

DRG Dorsal Root Ganglion 

ECL Erythrina Cristagalli  

GABA γ-amino butyric acid  



14 
 

GAD Glutamic Acid Decarboxylase  

HC Heavy Chain 

HTM High Threshold Mechanoreceptors 

ICC Immunocytochemistry 

IHC Immunohistochemistry 

KCl Potassium Chloride 

Lc Light chain 

Lc/A Light Chain of Botulinum Neurotoxin subtype A 

LcTd/A Light chain-Translocation domain of botulinum neurotoxin serotype A 

LTM Low Threshold Mechanoreceptors 

MAG Myelin Associated Glycoprotein 

MAP Mitogen-Activated Protein 

MgCl2 Magnesium Chloride 

MOR μ-opioid receptors  

NeuN Neuronal Nuclei 

NF200 Neurofilament 200 kDA 

NGF Nerve Growth Factor 

NK1 Neurokinin-1 

NMDA  N-methyl-D-aspartate 

NMJ Neuromuscular Junction 

OG Octyl β-D-glucopyranoside 

P2X3 P2X purinoceptor 3 

PAG Periaqueductal Gray 

PBS Phosphate-Buffered Saline 

PDPN  Painful Diabetic Peripheral Neuropathy 

PFA Paraformaldehyde  

PGE2  Prostaglandin E2  

PIPN Paclitaxel-induced Peripheral Neuropathy 

PKA Protein Kinase A 

PKC 

QST 

Protein Kinase C 

Quantitative sensory testing 

Rbd Receptor binding domain 

Rbd/A Receptor binding domain of Botulinum Neurotoxin Serotype A 

Rbd/C Receptor binding domain of Botulinum Neurotoxin Serotype C 

Rbd/D Receptor binding domain of Botulinum Neurotoxin Serotype D 

Rbd/E Receptor binding domain of Botulinum Neurotoxin Serotype E 



15 
 

ROI Region of Interest 

rTMS Repetitive Transcranial Magnetic Stimulation 

RVM Rostral Ventromedial Medulla  

SDS Sodium Dodecyl Sulphate 

SMA Spinal Muscular Atrophy  

SNAP25 Synaptosomal Associated Protein of 25 kDa 

SNARE Soluble N-ethylmaleimide-sensitive factor Attachment Protein Receptor 

SNI Spared Nerve Injury 

SV2 Synaptic Vesicle Protein 2 

SV2/A Synaptic Vesicle Protein 2 Isoform A 

SV2/B Synaptic Vesicle Protein 2 Isoform B 

SV2/C Synaptic Vesicle Protein 2 Isoform C 

Syn Syntaxin 

Tbd Tetanus binding domain 

Td Translocation domain 

TetBot SNARE-stapled chimera constructed from LcTd/A conjugated to Tbd 
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Chapter 1. Introduction 

 

Chronic pain is generally defined to be pain that outlasts the normal recovery period, 

following injury or damage. Clinically, it is recognised as pain that persists beyond 3 to 6 

months (Treede et al., 2015). It is estimated that 19% of the European population suffer 

from chronic pain (Breivik et al., 2006). Analogous statistics have been reported within 

the Australian population with 17% of males and 20% of females identifying as chronic 

pain sufferers (Blyth et al., 2001). For approximately 40% of these chronic pain sufferers, 

pharmacological intervention provides inadequate pain relief (Breivik et al., 2006). This 

primarily results from a lack of medication, specifically intended for use in chronic pain 

conditions. Instead, pharmacological management of chronic pain relies upon a 

combination of anti-inflammatories, anti-epileptics, anti-depressants and opioids to 

acutely manage pain conditions (Dworkin et al., 2007). Often, these medications are 

associated with significant adverse effects which thus limits their use.  

The huge economic burden imposed by chronic pain combined with its increased 

prevalence, associated with age, raises great concern about the future impact that 

chronic pain may have on healthcare services and society, given the aging population 

(Sleed et al., 2005; Phillips, 2009; Kaye et al., 2010). This concern has consequently led 

to an increased interest in developing novel pain therapeutics. Many avenues are being 

explored in order to produce therapeutics that selectively target pain signalling pathways. 

The use of Botulinum neurotoxin (BoNT) represents one such avenue being pursued. 

Specifically, when retargeted through protein modification, BoNT can be used to silence 

distinct populations of neuronal cell types for several months, following localised injection 

(Arsenault et al., 2013; Ferrari et al., 2013; Ma et al., 2014). 

This introduction will now proceed to discuss chronic pain and the mechanisms by which 

it is hypothesised to arise before introducing BoNT subtype A (BoNT/A) and its clinical 

applications in pain at present. In addition, the protein engineering approaches being 

used to improve efficacy of BoNT/A as an analgesic, as well as its safety profile, and the 

success of these techniques will be described. 

 

1.1 Chronic Pain 

 

1.1.1 The epidemiology of chronic pain 

1.1.1.1 Inflammatory Pain 
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Chronic pain forms an umbrella term for a multitude of pain conditions. Chronic 

inflammatory pain is the most prevalent with arthritis being the leading cause of pain, 

accounting for 40% of chronic pain sufferers in Europe (Breivik et al., 2006). 

Inflammatory pain is unique in comparison to other chronic pain conditions because it is 

largely nociceptive, meaning that there is an on-going stimulus which elicits the pain 

response. Inflammatory pain does, however, begin to comprise some neuropathic 

components as the disease progresses which result from the continuous activation of 

the pain signalling pathways (van Laar et al., 2012).  

 

1.1.1.2 Neuropathic Pain 

In contrast to inflammatory pain, neuropathic pain conditions feature pain signalling and 

pain sensation which persist in the absence of a noxious stimulus. Historically, 

neuropathic pain was referred to as “pain initiated or caused by a primary lesion or 

dysfunction in the nervous system” (Merskey and Bogduk, 2012). This definition has now 

been revised and neuropathic pain is instead specified as “pain caused by a lesion or 

disease of the somatosensory system” (Jensen et al., 2011). The latter definition 

prevents complications caused by whether pain is initiated by a primary or secondary 

lesion and also avoids conditions, such as complex regional pain syndrome with more 

complex aetiology, being misappropriated as neuropathic pain conditions (Backonja, 

2003). Current estimates indicate that the prevalence of neuropathic pain is 7-10% in the 

UK population (van Hecke et al., 2014). 

Within the neuropathic pain bracket there are several distinct conditions. For example, 

2.4% of the population are estimated to suffer from peripheral neuropathies. The most 

prominent being painful diabetic peripheral neuropathy (PDPN) which presents in 26.4% 

of all type 2 diabetic patients (Martyn and Hughes, 1997; Davies et al., 2006). This 

statistic then increases to over 50% of type 2 diabetic patients over the age of 60 

experiencing PDPN (Young et al., 1993). Peripheral neuropathies are also commonly 

developed following chemotherapy in cancer patients. They are estimated to occur in 

90% of all cases due to the neurotoxic damage of nerves (Fallon, 2013). Both of these 

peripheral neuropathies typically present with a ‘gloves and stocking’ distribution due to 

the increased vulnerability of the longer peripheral nerves to neurotoxic damage (Said et 

al., 1983; Starobova and Vetter, 2017). 

Alternatively, neuropathic pain can affect a specific body region, resulting from damage 

to a specific nerve. For example, trigeminal neuralgia, a rarer condition, which affects 

0.03%- 0.3% of people, is believed to result from the focal demyelination of the trigeminal 

nerve due to compression of the nerve, most likely by blood vessels (Love and Coakham, 
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2001; De Toledo et al., 2016). Damage to nerves, typically the brachial plexus, commonly 

occurs following road traffic accidents. Brachial plexus injuries were identified in 1.2% of 

trauma patients and were  particularly prevalent in patients involved in motor cyclist 

accidents (Midha, 1997). Notably, brachial plexus injuries account for 36% of all 

traumatic peripheral nerve injuries (Ciaramitaro et al., 2010).  

Additionally, nerve damage can be inflicted by viral infection. For example, post-herpetic 

neuralgia is frequently experienced following herpes zoster infection. An Icelandic study 

stated that pain persisting past 3 months was reported in 1.8% of patients, aged below 

60, infected with herpes zoster, whereas approximately 7% of patients aged over 60 had 

pain persisting beyond 3 months (Helgason et al., 2000). Conversely, an American study 

described post-herpetic neuralgia in 25%-50% of patients aged over 50 who had incurred 

herpes zoster (Schmader, 2002). Both studies, however, emphasised an increased 

severity and incidence associated with age. Postherpetic neuralgia presents in the 

infected nerve and the associated dermatome or dermatomes. This consequently 

produces a focal neuropathy rather than a global neuropathy, as is classically observed 

in PDPN and chemotherapy-induced peripheral neuropathy (Rowbotham et al., 1998). 

 

1.1.1.3 Chronic Post-Surgical Pain 

Post-operative pain occurs following 10–50% of surgical cases. It is most commonly 

associated with surgical procedures such as breast surgery, limb amputation, 

thoracotomy and major heart surgery (Kehlet et al., 2006). The highest incidence for 

post-surgical pain occurs after limb amputation (Kehlet et al., 2006; Macrae, 2008). 

Mastectomy is a frequently used surgical intervention for treating breast cancer. 22–72% 

of breast cancer patients experience postmastectomy pain syndrome, a post-surgical 

pain condition (Gottrup et al., 2000; Andersen and Kehlet, 2011). Within the UK, post-

surgical pain is responsible for introducing an additional 140,000 patients with disabling 

chronic pain each year (Werner and Kongsgaard, 2014). 

The pathophysiology of chronic post-surgical pain is not well understood. It is generally 

accepted that it must arise from a combination of local inflammation due to the cutting of 

tissue at the surgical site causing direct activation of nociceptors, as well as nerve 

damage due to the severing of nerves, or damage inflicted to nerves, during the surgical 

procedure. This subsequently introduces a neuropathic component (Macrae, 2008; 

Reddi and Curran, 2014). There is also a large role for psychological factors in post-

surgical pain, such as catastrophising and attribution of blame, which are known to 

impact the development of chronic post-surgical pain and patient responsiveness to 

intervention (Macrae, 2008; Reddi and Curran, 2014). 
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1.1.2 Pathophysiology of chronic pain 

Although chronic inflammatory pain conditions and neuropathic pain conditions can 

present differently clinically and arise from contrasting aetiologies, the same fundamental 

mechanisms are believed to underlie the development of all subclasses of chronic pain 

(Xu and Yaksh, 2011). 

. 

1.1.2.1 Pain signalling pathways 

Acute nociception relies upon the activation of nociceptors, namely the high-threshold 

unmyelinated C-fibres and the lightly myelinated Aδ-fibres (Fig.1.1A). C-fibre nociceptors 

are polymodal and respond to thermal, mechanical and chemical stimuli, however, some 

 

Figure 1.1 The properties of sensory neuron 

subtypes relate to the different pain qualities 

experienced. (A) The table describes the three main 

classification groups for sensory neurons. Notably, the 

axon diameter (Pocock et al., 2018) and conduction 

velocity (Abraira and Ginty, 2013) are much greater in 

the Aβ-fibres than the other sensory subtypes. These 

properties correspond to the level of myelination. (B) 

Analysis of the compound action potential from a 

peripheral nerve reveals that the quality of pain 

experienced is dependent upon which sensory 

subpopulations are activated and their respective 

conduction velocities. Activation of Aδ-nociceptors 

correlates to a sharp pain (first pain), whereas activation 

of C-nociceptors produces the dull, aching, diffuse pain 

(second pain). Graph from Julius and Basbaum (2001).   
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populations only respond to a subset of these stimuli (Caterina and Julius, 1999; Almeida 

et al., 2004). Additionally, C-fibres can be classified as either peptidergic or non-

peptidergic, depending on their expression of neuropeptides (Caterina and Julius, 1999). 

Whilst Aδ-fibre nociceptors can also be polymodal, they are more commonly responsive 

to either mechanical or thermal stimuli, exclusively (Dubin and Patapoutian, 2010). In 

contrast the large diameter, myelinated Aβ-sensory afferents are low threshold 

mechanoreceptors and are responsive to innocuous stimuli,  for instance, touch (Fig. 

1.1A) (Abraira and Ginty, 2013). 

All sensory neurons, including nociceptors, are pseudopolar neurons whose cell soma 

reside in the dorsal root ganglia, located outside of the spinal cord. The axons of sensory 

neurons project to the dorsal horn of the spinal cord where they form synapses with 

interneurons and wide dynamic range (WDR) neurons. Specifically, the C-fibre 

nociceptors terminate in lamina I-IIo (outer), known as the substantia gelantinosa, and 

the Aδ- nociceptors terminate in lamina I and V (Fig 1.2) (Todd, 2010). Conversely, the 

low threshold mechanoreceptors, the Aβ-fibre sensory afferents, project to lamina IIi 

(inner)-V  (Todd, 2010). Whilst interneurons terminate locally within the spinal cord, the 

wide dynamic range neuron relay information from the peripheral nociceptive afferents 

to the higher regions of the central nervous system, including the somatosensory cortical 

areas, mainly via the lateral spinothalamic tract (Fig 1.3) (Todd, 2017).  

 

 

Figure 1.2 Primary afferents terminate within distinct laminae of the dorsal horn. The central 

terminals of the sensory afferents project to the dorsal horn of the spinal cord. C-fibres terminate 

within the substantia gelatinosa. Specifically, the peptidergic C-nociceptors project to lamina I and 

lamina IIo (outer), whereas the terminals of non-peptidergic C-fibres remain confined to Lamina 

II. Aδ-nociceptors terminate in Lamina I, with some collaterals projecting to Lamina V. Additionally, 

Aδ-fibres which innervate the hair follicles, terminate in Lamina IIi (inner) and Lamina III, however, 

these are not relevant when studying the glabrous skin. The low-threshold Aβ mechanoreceptors 

conversely terminate between laminae IIi and V. Although not shown, projection neurons are 

predominantly found in lamina I, as well as being present in lamina III–VI. The interneurons are 

located largely within Laminae I-III. From Todd (2010).  
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 Figure 1.3 The lateral spinothalamic 

tract. Nociceptors propagate noxious 

information from the periphery to the dorsal 

horn of the spinal cord (green pathway). 

Here, they synapse on to, and activate, 

second order projection neurons. Notably, 

the projection neurons decussate at the 

level of the spinal cord and access the 

contralateral lateral spinothalamic tract, 

before ascending to the ventral 

posterolateral nucleus of the thalamus. 

Information is then conveyed to the 

somatosensory cortices by third order 

neurons. Importantly, many of the projection 

neurons have collaterals which terminate 

within other central areas implicated in pain 

processing. Namely, the rostral ventral 

medulla and periaqueductal gray which are important for the descending inhibitory and facilitatory 

control of pain (orange arrows). Other collaterals project to the parabrachial nucleus and 

contribute to the emotional aspect of pain due to the subsequent activation of the amygdala and 

insula cortex (blue pathway). From Basbaum et al. (2009).  

 

Dissimilar to other the signalling tracts, the wide dynamic range neurons, the projection 

neurons, first decussate to the contralateral lateral spinothalamic tract, via the anterior 

white commissure of the spinal cord, before ascending to the thalamus. Specifically, 

upon reaching the thalamus, the projection neurons terminate within the ventral 

posterolateral nucleus of the thalamus where they synapse on to third order neurons. It 

is the third order neurons which are then responsible for transmitting sensory information 

to the higher cortical regions, such as the somatosensory cortices (Steeds, 2016). There 

is also evidence that within the spinothalamic tract, there are axon collaterals which 

project to other central structures involved in pain processing, such as the periaqueductal 

grey and the lateral brachial nucleus (Al-Khater and Todd, 2009).  

 

1.1.2.2 Peripheral Sensitisation 

1.1.2.2.1 Sensitisation of the peripheral terminal 

It is changes that occur within the pain signalling pathway that lead to the chronification 

of pain. Peripheral sensitisation specifically refers to the increased excitability and 

reduced activation threshold of nociceptive neurons, within the peripheral nervous 

system (Julius and Basbaum, 2001). This is most commonly initiated by either nerve or 
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tissue damage which produces a local inflammatory response, resulting in the release of 

inflammatory mediators, including Adenosine triphosphate (ATP), histamine, bradykinin 

and nerve growth factor (NGF), as well as the recruitment of inflammatory cells (Okuse, 

2007). The inflammatory mediators released bind to and directly activate the nociceptors 

(Amaya et al., 2013) whilst simultaneously stimulating the nociceptors to release their 

own subset of inflammatory mediators, including Substance P and Calcitonin gene-

related peptide (CGRP) (Schaible et al., 2011). The additional release of inflammatory 

mediators from the nociceptors augments the local inflammation by promoting plasma 

extravasation and vasodilation. This process is referred to as neurogenic inflammation 

(Xanthos and Sandkühler, 2014). 

Upon binding to nociceptive neurons, local inflammatory mediators promote the 

activation of intracellular signalling pathways that result in post-translational 

modifications being made to receptors and ion channels, such as phosphorylation, as 

well as increased gene expression and receptor trafficking (Bhave and Gereau IV, 2004). 

One of the best characterised targets of peripheral sensitisation is the capsaicin receptor, 

TRPV1 (transient receptor potential vanilloid receptor-1), which is specifically implicated 

in  the development of thermal hyperalgesia (Huang et al., 2006). For example, it has 

been shown that NGF, a key component of the inflammatory soup, activates mitogen-

activated protein (MAP) kinase signalling pathways in C-fibre nociceptors, resulting in 

increased trafficking of TRPV1 to the peripheral terminal (Ji et al., 2002). Meanwhile, 

other inflammatory mediators, for example, bradykinin, activate the Protein Kinase C 

(PKC) pathway which leads to the sensitisation of TRPV1 receptors already located at 

the plasma membrane, by increasing the probability of the channel opening, thus 

increasing the excitability of the neuron (Premkumar and Ahern, 2000; Huang et al., 

2006).  

Similar mechanisms have been demonstrated with respect to the ion channels. For 

example, prostaglandin E2 (PGE2) causes activation of the PKC and Protein Kinase A 

(PKA) kinases within the nociceptive afferents (Gold et al., 1998). The activation of these 

kinases results in an increased tetrodotoxin-resistant sodium current via the voltage 

gated sodium channels which precipitates in a decreased current threshold, required for 

neuronal firing (England et al., 1996; Gold et al., 1998). Additionally, the increased 

expression of sensory neuron specific tetrodotoxin-resistant PN3 sodium channel has 

been implicated in the development of mechanical allodynia and thermal hyperalgesia 

after injury in rat models of both neuropathic and inflammatory pain  (Porreca et al., 1999) 

Collectively, modifications made to receptors and ion channels, including their increased 

plasma membrane insertion, consequently impact the overall excitability of nociceptors. 

These changes in excitability correspond to the clinical features of chronic pain, such as 
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allodynia and hyperalgesia. The reduced activation threshold of nociceptors means that 

previously innocuous stimuli become sufficient to activate nociceptors, and thus, are now 

perceived to be noxious, analogous to allodynia. Conversely, the increased 

responsiveness of nociceptive neurons results in nociceptors eliciting a much larger 

neuronal response to a noxious stimuli, perceived as primary hyperalgesia, localised to 

the injury site (von Hehn et al., 2012). Additionally, if hyperexcitability develops in the 

neuron, then this can result in ectopic firing, associated with spontaneous pain attacks 

(von Hehn et al., 2012). 

 

1.1.2.2.2 Recruitment of silent nociceptors 

In addition to the increased excitability of neurons, peripheral sensitisation also features 

the recruitment of so called “silent nociceptors” (Gold and Gebhart, 2010). Silent 

nociceptors are insensitive to thermal and mechanical stimuli when in a non-pathological 

state and are estimated to account for nearly a quarter of all C-fibre nociceptors (Schmidt 

et al., 1995). After exposure to a chemical irritant, i.e. capsaicin or mustard oil, a 

proportion of these normally insensitive C-fibre nociceptors gain responsiveness to a 

sensory modality (Davis et al., 1993; Schmidt et al., 1995). Furthermore, within the 

population of C-fibre nociceptors already either exclusively mechano- or thermo-

sensitive, a subset develop an additional sensory modality responsiveness to become 

mechano-heat-sensitive (Schmidt et al., 1995).  Interestingly, Kress et al. (1992) reported 

a higher yield of recruited silent nociceptors after exposure to inflammatory mediators, 

compared with exposure to chemical irritation. This could be due to the physiological 

relevance of inflammatory mediators, compared to chemical irritants. Regardless, the 

activation of these previously unresponsive neurons act to increase the peripheral input 

and drive to the central synapse, providing spatial summation of the nociceptive signal 

(Kress et al., 1992; Schmidt et al., 1995).  

 

1.1.2.3 Central Sensitisation 

The enhanced activity of the peripheral nociceptive afferents, resulting from peripheral 

sensitisation, drives potentiation at the central synapse. This consequently augments the 

synaptic efficacy of the synapse which, in turn, causes increased excitability of the 

second order neurons in the central nervous system. The subsequent hyperexcitability 

of the pain signalling pathways, induced by the changes that occur within the central 

nervous system to amplify pain signalling, is thus referred to as central sensitisation. 
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This central mechanism for persistent pain was first realised by Woolf (1983). In the 

study, the flexor reflex withdrawal response, normally elicited to noxious stimuli, was 

measured in the α-motor neurons innervating the biceps femoris muscle in rats. Under 

normal physiological conditions, innocuous stimuli to the hindpaw did not produce a 

reflex response. Only with the application of noxious stimuli was the reflexive response 

observed. Conversely, after repeated application of a noxious heat source to the hindpaw 

that was of sufficient intensity to induce mild localised inflammation, innocuous stimuli 

were then able to elicit a reflex response from the motor neurons of the biceps femoris 

muscle. Additionally, an increased excitability and a reduced activation threshold was 

noted in the motor neurons, as well as an enlarged receptive field, and these changes 

persisted for several hours. 

It was confirmed that the changes identified were due to a central mechanism after 

anaesthetic block, administered locally to the site of injury, failed to reverse the enlarged 

receptive fields of the motor neurons. This indicated that it could not be a peripherally-

mediated mechanism otherwise the receptive fields would have immediately returned to 

their original size. Instead, it demonstrated that the enlarged fields were being centrally 

maintained. Furthermore, electrical stimulation of the low threshold Aβ- sensory neurons, 

normally irresponsive to noxious stimuli, caused the reflex to occur suggesting that Aβ-

fibres were able to access the nociceptive pathway at the central level, again, implying 

a central mechanism. Additionally, the results could be replicated by low-frequency 

stimulation of the sural nerve, specifically at the frequency at which to activate C-fibre 

nociceptors. This stimulation again caused the reflexive response to be elicited by 

innocuous stimuli and provided evidence that it was the repeated activation of the C-fibre 

nociceptors that was driving plasticity within the central nervous system to enable 

nociceptive responses to Aβ-fibre stimulation. Woolf (1983) had inadvertently discovered 

the first evidence for long-term potentiation, a mechanism by which synaptic strength is 

increased and sustained over a period of time, in the dorsal horn.  

 

1.1.2.3.1 Synaptic potentiation 

The primary neurotransmitter used by sensory afferents is glutamate. Under normal 

physiological conditions, the amount of glutamate released is sufficient to cause post-

synaptic depolarisation, however, it does not normally induce any long-term changes to 

the synapse. In contrast, in a pathological state were peripheral sensitisation has already 

been established, the nociceptors display an increased firing rate as well as an increased 

magnitude of action potentials. This consequently results in increased glutamate release 

at the central terminal, located in the dorsal horn, where the nociceptors synapse on to  
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Figure 1.4 Heterosynaptic facilitation promotes 

allodynia and secondary hyperalgesia (A) In 

homosynaptic facilitation, the conditioning stimulus 

(red arrow) activates and potentiates a single 

synapse (red). Adjacent synapses, which are not 

activated by the conditioning stimulus, remain 

unpotentiated (green). Homosynaptic potentiation is 

most commonly associated with primary 

hyperalgesia. (B) During heterosynaptic facilitation, 

activation of one synapse (red) by a conditioning 

stimulus (red arrow) results in facilitation of both the 

activated synapse and non-activated, adjacent 

synapse (green). Consequently, the synapse that 

did not receive the conditioning stimulus (green) displays augmented activity to subsequent 

stimulation (green bars in neuron output). From Latremoliere and Woolf (2009). (C) 

Heterosynaptic facilitation is initiated by the repeated or sustained activation of C-nociceptors at 

the site of injury and potentiates the synapses between the projection neurons and the Aβ low-

threshold mechanoreceptors (LTM) and Aδ-nociceptors (A-fibre noci) that innervate the adjacent 

areas (secondary zone). Facilitation of the Aβ-fibre synapses produces noxious responses to 

innocuous touch (allodynia) whereas facilitation of Aδ-fibre synapses results in enhanced 

activation, following application of noxious stimuli (secondary mechanical hyperalgesia). C-fibres 

innervating the secondary zone do not display potentiation, hence explaining the absence of 

secondary thermal hyperalgesia. From Ziegler et al. (1999).  

 

both WDR projection neurons and interneurons. The increased glutamate release then 

produces a greater activation of amino-3-hydroxy-5-methyl-4-isoxazole propionate 

(AMPA) receptors to promote a much larger post-synaptic depolarisation. The 

simultaneous release of neuropeptides, such as Substance P and CGRP, can also 

contribute to this enhanced depolarisation. Consequently, the larger depolarisation leads 

to the removal of the voltage-dependent Mg2+ block from N-methyl-D-Aspartate (NMDA) 
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receptors which results in the influx of calcium into the neuron, as well as activating 

intracellular calcium stores to be released (Latremoliere and Woolf, 2009). The increase 

in cytosolic calcium initiates many intracellular signalling cascades, similar to peripheral 

sensitisation, mainly resulting in the activation of protein kinases (Basbaum et al., 2009). 

One of the most well-characterised cellular targets of the activated signalling cascades 

is the AMPA receptors. Phosphorylation of AMPA receptors at the GluR1 subunit by PKC 

leads to their increased membrane insertion (Boehm et al., 2006) whilst phosphorylation 

of GluR1 by active CaMKII  (Ca 2+ /calmodulin-dependent protein kinase II) converts 

AMPA receptors to a higher conductance state (Derkach et al., 1999). Likewise, 

activation of PKC has also been shown to induce the trafficking of NMDA receptors to 

the plasma membrane and to increase the frequency of channel opening (Lan et al., 

2001). The increased availability of receptors, as well as their potentiated state, means 

that a larger post-synaptic current can generated by the same original level of 

stimulation, and consequently, a greater depolarisation of the neuron is observed. The 

synapse is thus regarded to be potentiated. The increased synaptic efficacy also means 

that the post-synaptic neuron can be activated by previously subthreshold stimuli and 

this attributes to the maintenance of the potentiation (Latremoliere and Woolf, 2009).  

The mechanism described so far mainly refers to homosynaptic potentiation which is 

when synaptic efficacy is enhanced specifically in the conditioned synapse, meaning the 

synapse which receives and is being activated by the noxious conditioning stimulus (Fig 

1.4A). Homosynaptic potentiation thus amplifies the signal being received directly from 

the activated peripheral afferent and therefore contributes to primary hyperalgesia, the 

exaggerated response to a noxious stimulus, applied to the site of injury (Ikeda et al., 

2006). Heterosynaptic potentiation is more clinically relevant as it is responsible for the 

development of secondary hyperalgesia and allodynia, the additional pain phenotypes 

which cannot be fully accounted for by peripheral sensitisation (Fig 1.4C) (Woolf, 2011).  

Heterosynaptic potentiation occurs when adjacent synapses, that are not activated by 

the conditioning stimulus, display altered synaptic efficacy such that subsequent 

activation of the unconditioned synapse results in an augmented postsynaptic response 

(Fig 1.4B). It has been suggested that diffusible nitric oxide, released from a synapse 

which has been facilitated by homosynaptic potentiation, could promote neurotransmitter 

release from locally situated synapses, that were not activated by the conditioning 

stimulus, to then induce potentiation (Jacoby et al., 2001). Allodynia specifically results 

from the heterosynaptic potentiation of the Aβ-fibre input to the dorsal horn projection 

neurons (Baba et al., 1999). Following heterosynaptic facilitation, information conveyed 

by the Aβ-fibres, regarding innocuous stimuli, now infiltrates and engages the 

nociceptive signalling pathways, due to the potentiation of the synapse. As a result, a 
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previously innocuous stimulus is therefore consequently perceived to be noxious. This 

phenomenon was observed by Woolf (1983) and has been replicated in subsequent 

studies (Thompson et al., 1993).  

Conversely, it is the heterosynaptic potentiation of the central synapses of both Aβ- and 

Aδ-fibres, innervating the areas adjacent to the site of injury or inflammation, that is 

responsible for the development of secondary hyperalgesia (Ziegler et al., 1999; Magerl 

et al., 2001). Again, this potentiation relies upon the activation of C-fibre nociceptors to 

induce heterosynaptic facilitation at the central synapse of Aβ- and Aδ-fibres to dorsal 

horn second order neurons (Ziegler et al., 1999; Magerl et al., 2001). This has been 

demonstrated in human subjects whereby compression block of the A-fibres, confirmed 

by electrophysiological recordings, blocked the perception of secondary hyperalgesia, 

elicited by application of punctate mechanical stimuli, following intradermal injection of 

capsaicin (Ziegler et al., 1999; Magerl et al., 2001). Moreover, even when compression 

blockade of A-fibre conduction was performed, prior to the injection of capsaicin, and 

was then maintained for a period of time after capsaicin injection, mechanical secondary 

hyperalgesia was still perceived once the block was removed. This thus demonstrates 

that secondary hyperalgesia is still able to develop, despite the blockade of A-fibre 

volleys, and confirms that the development of secondary hyperalgesia relies upon the 

activation of C-fibre nociceptors at the immediate site of injury whose signalling remained 

intact throughout. It is the firing of these fibres that ensures that central changes are still 

induced and allows for these synaptic modifications to become effective once the A-fibre 

blockade is removed (Ziegler et al., 1999). This was further confirmed by the 

demonstration that anaesthetic block administered to the skin, prior to injection of 

capsaicin, and used to effectively block the firing of the C-fibres innervating the inflamed 

area, prevented the development of secondary hyperalgesia showing that it is C-fibre 

initiated (LaMotte et al., 1991). 

Essentially, heterosynaptic facilitation results in the recruitment of subthreshold inputs      

by increasing the synaptic efficacy meaning that activity within these inputs is now 

sufficient to generate action potentials in second order neurons. This consequently 

manifests in the wide dynamic range neurons having enlarged receptive fields. They 

hence begin to respond to neurons that are either normally insufficiently activated by 

certain sensory modalities to elicit a response, or that innervate areas outside of the 

normal receptive field (Woolf and King, 1990; Latremoliere and Woolf, 2009).  

  

1.1.2.3.2 Disinhibition within the dorsal horn 
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This understanding of central sensitisation has been expanded to not only acknowledge 

the contribution of synaptic potentiation as the sole cause of hyperexcitability in the pain 

signalling pathways, but now also incorporates the role of disinhibition within the dorsal 

horn. Disinhibition is specifically implicated in the presentation of allodynia and 

secondary hyperalgesia. The dorsal horn is densely populated by GABAergic and 

glycinergic inhibitory interneurons (Todd, 2017). When this inhibitory modulation is 

removed by application of GABA antagonists, an enhancement of A-fibre mediated 

excitation of the second order neurons in the superficial dorsal horn is observed (Baba 

et al., 2003). Reduced inhibitory neurotransmission is consistently demonstrated in 

models of nerve injury (Moore et al., 2002), alongside reports of apoptotic death of 

GABAergic inhibitory interneurons within the dorsal horn (Scholz et al., 2005). It was 

suggested that this apoptosis results from NMDA receptor-mediated excitotoxicity after 

MK-801, an NMDA antagonist, significantly reduced the number of apoptotic neurons 

(Scholz et al., 2005). 

The death of inhibitory interneurons as the cause of reduced inhibitory modulation 

remains contentious as subsequent studies have failed to replicate this finding (Polgár 

et al., 2004). Instead, others have argued that although inhibition is decreased, 

specifically following nerve injury, the inhibitory circuitry remains intact, thus explaining 

why GABA analogues, such as pregabalin, are able to deliver analgesia in chronic pain 

conditions (Basbaum et al., 2009). 

Similarly in inflammatory pain conditions, there is disinhibition of the dorsal horn neurons, 

however, it is instead associated with the loss of glycinergic inhibitory tone (Hösl et al., 

2006). Following peripheral inflammation, PGE2 is produced by cyclo-oxygenase 

enzymes within the spinal cord. Here, PGE2 acts locally to cause the activation of the 

PGE2 receptor subtype, EP2, which subsequently promotes activation of PKA (Reinold 

et al., 2005). Activated PKA then phosphorylates the glycine receptor subtype, GlyRα3, 

which consequently inhibits the activity of the receptor, thus disrupting glycinergic 

inhibition (Harvey et al., 2004). Mice lacking EP2 receptors displayed significantly 

reduced mechanical hyperalgesia compared to wild type mice following direct injection 

of, and induced production of, PGE2 (Reinold et al., 2005). More impressively, mice 

lacking GlyRα3 receptor failed to develop any pain sensitivity after intrathecal injection 

of PGE2 (Harvey et al., 2004). This mechanism of disinhibition is unique to chronic 

inflammatory pain and does not contribute to hyperalgesia developed following 

peripheral nerve injury (Hösl et al., 2006). 

Regardless of the mechanism or cause of the disinhibition in the dorsal horn, the lack of 

inhibitory currents further augments the hyperexcitability observed in the pain signalling 

pathways, initiated by synaptic potentiation, by failing to inhibit the newly facilitated 
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inputs. The disinhibition of these circuits also contributes to the subsequent maintenance 

of the facilitated state as it fails to reverse the increased activity of the synapses and 

allows previously subthreshold inputs to continue to activate pain signalling pathways.  

 

1.1.2.4 Alterations in the central processing of pain 

In addition to the multiple changes to pain processing and signalling that have been 

described within the peripheral nervous system and the central spinal cord, altered pain 

processing has also been demonstrated in the central brain regions, most notably the 

“pain matrix”. The “Pain Matrix” constitutes the areas of the brain involved in the 

processing and subjective experience of pain. These areas include, but are not limited 

to: the somatosensory cortices, the prefrontal cortices, the nucleus accumbens, the 

anterior cingulates cortex, the insula, the amygdala, the periaqueductal gray (PAG), the 

locus coerulus and the rostrovental medulla (Legrain et al., 2011). 

Investigations of the pain matrix have highlighted altered activation patterns in chronic 

pain states. Functional neuroimaging techniques have specifically emphasised that there 

is increased activation of the anterior cingulate cortex, the insula and the prefrontal cortex 

observed in chronic pain patients (Tracey and Mantyh, 2007; Friebel et al., 2011). These 

brain regions all contribute to the emotional element of pain. Furthermore, structural MRI 

scans have consistently revealed reduced gray matter volume within the brains of 

chronic pain patients, compared to healthy controls. The most frequently affected areas 

are the anterior cingulate cortex, the insula and the dorsal pons, all of which are brain 

regions implicated in the pain matrix (May, 2008). Comparatively, cortical reorganisation 

has also been demonstrated specifically within the motor representation of body regions 

affected by chronic pain (Moxon et al., 2014; Nurmikko et al., 2016). Although, historically 

motor cortex reorganisation has been associated almost exclusively with phantom limb 

pain (Karl et al., 2001), more recent studies have shown that this reorganisation is 

apparent across multiple pain conditions, for example, in trigeminal neuropathy 

(Nurmikko et al., 2016).  

Additional supraspinal mechanisms for the development and maintenance of chronic 

pain are attributed to the loss of inhibition and increased facilitation within the descending 

modulatory pathways, originating from the PAG and rostral ventromedial medulla (RVM) 

(Vanegas and Schaible, 2004). Reduced sensitivity to opioids has been identified in the 

PAG and the thalamus within a chronic constriction injury neuropathic pain model in mice 

(Hoot et al., 2011). Responsiveness to opioids is required for the activation of the PAG 

to stimulate descending inhibitory pathways within the RVM (Park et al., 2010). Notably, 

silencing the descending inhibition from the RVM by local application of lidocaine has 
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been shown to precipitate allodynia in wildtype rats (De Felice et al., 2011). The RVM 

also exhibits a descending facilitatory function, whereby it is able to augment and 

facilitate pain signalling in the spinal cord. In appreciation of this function, administrating 

lidocaine to the RVM in allodynic rats, following spinal nerve ligation, reversed allodynia 

(De Felice et al., 2011). This emphasises how an imbalance in the activity of the inhibitory 

and facilitatory pathways, originating from the RVM, can occur in chronic pain and thus 

can be implicated in its maintenance (Porreca et al., 2002; Vanegas and Schaible, 2004). 

 

1.2 Botulinum Neurotoxin in chronic pain 

The mechanisms of peripheral and central sensitisation, discussed above, both heavily 

rely upon SNARE (Soluble N-ethylmaleimide-sensitive factor Attachment Protein 

Receptor) dependent exocytosis. Primarily, SNARE-mediated exocytosis is required for 

the release of neurotransmitters and neuropeptides (Welch et al., 2000; Lisman et al., 

2007; Dolly and O’Connell, 2012). Moreover, SNARE-mediated exocytosis is also 

necessary for the membrane insertion of receptors, implicated in the establishment of 

persistent pain, most notably TRPV1, AMPA and NMDA receptors (Lan et al., 2001; Lu 

et al., 2001; Morenilla-Palao et al., 2004).  

Botulinum neurotoxin (BoNT) inhibits SNARE-mediated exocytosis by cleaving specific 

SNARE- proteins, dependent on the serotype, to thus prevent the formation of SNARE-

complexes and the subsequent fusion of the vesicular and plasma membranes 

(Montecucco et al., 2005). Consequently, BoNT provides a tool by which to block the 

SNARE-dependent neurotransmitter release and membrane insertion of receptors that 

occurs during the induction and maintenance of chronic pain.  

 

1.2.1 The structure of Botulinum Neurotoxin 

Botulinum neurotoxin (BoNT) is produced by anaerobic Clostridium botulinum bacteria 

and exists in seven distinct serotypes, BoNT/A-G (Davletov et al., 2005).  All botulinum 

neurotoxin serotypes are synthesised as a single polypeptide which is then cleaved by 

either bacterial or host cell proteases to form a heavy and a light chain. The two chains 

are linked by a disulphide bond, providing the characteristic multidomain protein structure 

(Fig 1.5A). Once cleaved, BoNT exists in its active form (Montecucco, 1994). 

 



31 
 

  

Figure 1.5 The 3D structure and amino acid sequence of Botulinum Neurotoxin A. (A) 

BoNT/A is expressed as an inactive single polypeptide. Post-translational proteolysis leads to the 

formation of the disulphide bond between the light and heavy chain, producing the active dichain. 

The black brackets indicate where a disulphide bond exists. Noticeably, there is another 

disulphide bond present in the receptor binding domain. (B) A backbone trace of the 3D structure 

of BoNT/A illustrates the catalytic domain (purple), featuring a zinc ion (white sphere) and zinc-

binding motif (red), required for the zinc-endopeptidase activity. The central pair of α-helices 

(green) indicate the translocation domain. The N-terminal of the receptor binding domain (pink) is 

assumed to aid the function of the c-terminal subdomain (blue) which contains the ganglioside 

binding site (orange) and mediates receptor binding. From Lacy and Stevens (1999). (C) The 

amino acid sequence of BoNT/A, determined by Thompson et al. (1990), delineates the catalytic 

domain (purple), translocation domain (green) and receptor binding domain (pink). The sequence 

contains 8 cysteines (C), 4 of which contribute to the disulphide bonds shown in (A).  
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All seven botulinum neurotoxin serotypes share a molecular mass of 150 kDa. This mass 

is split across the heavy chain (HC, Mr ~100 kDA), comprising both the receptor binding 

domain (Rbd, Mr ~50 kDa) and the translocation domain (Td, Mr ~50 kDa), and the light 

chain (Lc, Mr ~50 kDa), which contains the zinc-endopeptidase activity, necessary for 

the cleavage of SNARE-proteins (Schiavo et al., 2000) (Fig. 1.5B).  

 

1.2.2 Mechanism of action 

The Rbd, contained within the heavy chain, provides the neuron specific binding 

associated with the BoNTs. The majority of the serotypes, namely BoNT/A, -B, -E, -F 

and -G, utilise a dual receptor binding mechanism whereby the Rbd selectively binds to 

a protein receptor and a complex ganglioside, found on the membrane of neurons (Fig. 

1.6A) (Rummel, 2012). In contrast, it has been demonstrated that BoNT/C and BoNT/D 

do not require a protein receptor and instead only bind to either gangliosides or 

phospholipids (Tsukamoto et al., 2005). The different serotypes bind to distinct complex 

gangliosides, enriched in neuronal membranes (Montal, 2010). The exact combination 

of protein receptors and gangliosides bound is dependent on the serotype and is 

discussed more in-depth in chapter 4.1.  

The dual receptor binding of surface receptors and gangliosides, specifically, produces 

high affinity binding that allows BoNT to undergo receptor-mediated endocytosis and be 

internalised into cells (Fig 1.6B) (Montecucco, 1994). Once the holotoxin is captured 

inside the endosome, the acidic environment induces a pH-dependent conformational 

change to the Td, such that the Td inserts itself into the endosomal membrane, forming 

a channel that allows the Lc to translocate into the cytosol (Fig 1.6C). Concomitantly, the 

Lc unfolds from its globular structure which enables it to translocate through the narrow 

channel, produced by the insertion of Td (Koriazova and Montal, 2003). The Td thus acts 

a chaperone to allow the endosomal escape of the Lc, and additionally stabilises the Lc 

in its unfolded inactive state, during translocation (Fischer et al., 2008; Pirazzini et al., 

2011).  

Following endosomal escape, reduction of the disulphide bond, connecting the HC and 

the Lc, occurs (Fischer and Montal, 2007). It has been hypothesised that this reduction 

is performed by thioredoxin reductase-thioredoxin, located on the cytosolic surface of the 

endosomes (Pirazzini et al., 2014). The reduction of the disulphide bond results in the 

cytosolic release of the Lc. Subsequently, the return of the Lc to the neutral pH of the 

cytosol induces the refolding of the Lc to its active form (Montal, 2010).  

 



33 
 

 

Figure 1.6  Schematic depicting the mechanism of action of Botulinum Neurotoxin (BoNT) 

at the neuromuscular junction. (A) The BoNT receptor binding domain (Hc, blue) binds to the 

relevant gangliosides and protein receptors located on the presynaptic membrane. (B) This 

initiates receptor-mediated internalisation of BoNT into vesicles. (C) The ATPase pump, located 

on the vesicle membrane, generates an acidic environment. This induces a conformational 

change to promote the insertion of the translocation domain (HN, green) into the vesicular 

membrane, thus allowing the light chain (LC, yellow) to translocate across the membrane, into 

the cytosol, where reduction of the disulphide bond occurs. (D) The LC then diffuses through the 

cytosol to cleaves its SNARE-protein target, via its zinc-endopeptidase activity. The SNARE target 

varies dependent on the BoNT serotype. BoNT/A and -/E cleave SNAP-25 whilst BoNT/ B, -/D, -

/F and -/G cleave VAMP (synaptobrevin). BoNT/C cleaves both syntaxin and SNAP-25. The 

cleavage of SNARE proteins prevents the formation of the SNARE-complex and prevents 

exocytosis of acetylcholine (ACh). Consequently, acetylcholine receptors (AChR) located on 

muscle fibres are no longer activated, producing flaccid paralysis. From Turton et al. (2002).  

 

Once returned to its active form, the Lc is able to mediate the proteolytic cleavage of 

SNARE-proteins via its intrinsic zinc-endopeptidase activity (Fig 1.6D). The specific 

SNARE-target is determined by the BoNT serotype. BoNT/A and -/E both cleave SNAP-

25 (Synaptosomal associated protein 25) whereas BoNT/B, -/D, -/F and -/G cleave 

synaptobrevin, also referred to as vesicle-associated membrane protein (VAMP). In 

contrast, BoNT/C has two SNARE-targets as it cleaves both syntaxin and SNAP-25 

(Davletov et al., 2005).  
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Intact SNARE proteins are necessary for vesicle fusion at the neuronal plasma 

membrane, which is essential for the release of neurotransmitter (Söllner et al., 1993). 

The action of BoNTS is historically associated with the blockade of neurotransmitter 

release from cholinergic presynaptic terminals, situated at the neuromuscular junction 

(Simpson, 1981). In this instance, cleavage of the SNARE proteins prevents vesicle 

fusion thus preventing the release of acetylcholine. This blockade of cholinergic 

neurotransmission consequently results in the failure to initiate muscle contraction and 

therefore produces the clinical manifestation of flaccid paralysis (Turton et al., 2002).  

BoNTs are, however, known to inhibit the release of other neurotransmitters and 

neuropeptides due to the fundamental role of SNARE-proteins in all release mechanisms 

(Purkiss et al., 2000; Welch et al., 2000; Cui et al., 2004; Durham et al., 2004). 

 

1.2.3 Clinical evidence for the antinociceptive effect of BoNT/A 

In addition to targeting different SNARE proteins, the seven BoNT serotypes also vary in 

their duration of action and their potency (Aoki and Guyer, 2001). Specifically, Botulinum 

Neurotoxin A (BoNT/A) has the longest duration of action of the seven serotypes and 

consequently, has been the serotype most frequently utilised for clinical applications 

(Foran et al., 2003). Notably, it is BoNT/A, specifically, that has been approved for the 

clinical management of chronic migraine (Dodick et al., 2010). Consequently, the use of 

BoNT/A in other pain chronic conditions is now being pursued (Drinovac et al., 2013). 

The most clinical and preclinical literature therefore exists with respect to BoNT/A, 

compared to the other serotypes (Pickett, 2010; Matak and Lacković, 2014). Accordingly, 

there has been a much more thorough investigation of its mechanism of action and a 

more comprehensive understanding reached. For the purposes of this project, the 

introduction will now mainly focus on discussing BoNT/A for the reasons detailed above.  

The potential analgesic effect of BoNT was first recognised in conditions characterised 

by excessive muscle contractions and neuromuscular hyperexcitability. Treatment of 

conditions such as cervical and axial dystonia with BoNT/A effectively reduces the 

frequency and intensity of involuntary muscle contractions whilst concomitantly reducing 

the pain experienced in these disorders. In one study by Jankovic et al. (1990), 90% of 

patients with cervical dystonia reported significant global improvement in their condition, 

encompassing both spasms and pain. Furthermore, 93% of cervical dystonia patients 

who reported pain as a feature of their cervical dystonia described a marked reduction. 

On average, patients rated their pain as almost completely resolved, as indicated by an 

average pain response of 3.5 with 0 representing no improvement and 4 representing a 

complete resolution of pain. Likewise, Brin et al. (1987) demonstrated that 64% of 
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patients suffering cervical dystonia benefited from local injection of BoNT/A, reporting 

improved motor symptoms. A further 74% of these patients similarly described 

significantly reduced pain. Additionally, a study focused on the treatment of lower-limb 

spasticity in children with cerebral palsy, using BoNT/A, found that all 26 patients 

included in the study demonstrated significantly reduced pain according to pain scores 

collected at 3 months post-treatment (Lundy et al., 2009). 

It was primarily assumed that the marked reduction in pain observed in spasticity 

disorders related to the paralytic properties of BoNT/A. Excessive muscle contractions 

can cause compression of the local blood vessels resulting in ischemia of the supplied 

tissue. Ischemia initiates an inflammatory response that includes the release of 

inflammatory mediators which, as detailed earlier, results in the activation and 

sensitisation of peripheral nociceptors (Mense, 2004; Pickett, 2010). Similarly, 

adenosine-5-triphosphate, released from cells suffering ischemic damage, will activate 

and sensitise neurons expressing the P2X purinoceptor 3 (P2X3) (Cook and McCleskey, 

2002). Additionally, ischemia can also lead to a decrease in pH which can cause acid-

sensing ion channels to activate and can eventually sensitise chemical-responsive 

nociceptors (Mense, 2004; Pickett, 2010). 

Contrary to this explanation, however, there is evidence that the analgesic effect of 

BoNT/A exists beyond its muscle relaxant properties. For example, pain relief can persist 

after normal muscle contractility has returned. Freund and Schwartz (2003) showed that 

although the onset of muscle relaxation and analgesia occurred concurrently following 

intramuscular injection of BoNT/A to the masseter and temporalis muscles in 

temporomandibular disorder, the pain relief experienced continued after bite force, the 

measure of muscle contractility, returned to, and even surpassed, basal values. 

Conversely, in another study, Relja and Klepac (2002) observed significant pain relief in 

patients with cervical dystonia after injection of doses as low as 50 U BoNT/A, and as 

early as one week post-treatment. Improvement in spasticity, however, was only 

revealed two weeks post-treatment and, furthermore, required higher dosages, 100 and 

150 U BoNT/A, to be observed. Notably, BoNT is more commonly measured in units 

when used in a clinical setting. A unit of BoNT refers to the median lethal dose (LD50) 

following intraperitoneal administration and is determined using a standardised mouse 

lethality assay (Dressler et al., 2012). One Unit is roughly equivalent to 28 pg of BoNT/A 

(Frevert, 2010). 

Moreover, pain relief has been described in conditions with little or no association with 

muscular hyperactivity, for example, in chronic migraine, where BoNT/A is FDA-

approved for clinical use (Dodick et al., 2010). This has led to further investigation of the 

possible applications of BoNT/A in other chronic pain conditions, namely in neuropathic 
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pain. Attal et al. (2016) conducted a randomised, placebo-controlled, multicentre clinical 

trial investigating the efficacy of BoNT/A in peripheral neuropathic pain, primarily 

resulting from either trauma or surgery. Patients were asked to rate their pain according 

to an 11-point numerical rating scale, 0 meaning no pain to 10 meaning maximum pain 

imaginable. Attal et al. (2016) reported an average pain reduction of almost 30% 

following two separate administrations of BoNT/A subcutaneous injections to the painful 

area, 12 weeks apart. Impressively, 50% of patients receiving BoNT/A treatment were 

deemed to be responders, meaning that they experienced an average pain reduction of 

greater than 50%. Interestingly, the severity of allodynia, as assessed using quantitative 

sensory testing, was the best predictor of whether a patient would be a responder. Brush 

evoked allodynia was significantly reduced by treatment with BoNT/A compared to 

placebo. Attal et al. (2016) reported that there was no effect of BoNT/A on normal 

sensation, similarly assessed using quantitative sensory testing (QST).  

This observation of unaltered sensation, combined with the anti-allodynic effect of 

BoNT/A observed, has some important implications for the potential mechanism of action 

for BoNT/A in neuropathic pain. The lack of effect against normal sensation suggests 

that BoNT/A cannot be acting at the peripheral nerve terminals. If this was the case, one 

might expect to observe hypoesthesia, a reduction in normal sensation, resulting from 

reduced activation by stimuli. As described earlier, allodynia results from central 

sensitisation whereby normal activation of Aβ-fibres begins to initiate activity in pain 

signalling pathways, via changes that occur at the central synapse (Baba et al., 1999). 

This therefore implies that BoNT/A must be acting within the central spinal cord to 

somehow interrupt this signalling.  

In contrast, a systematic review regarding the pharmacological management of 

neuropathic pain, conducted by the same research group a year earlier, highlighted that 

subcutaneous injection of BoNT/A should be only used as a third line option for the 

management of neuropathic pain (Finnerup et al., 2015). They advised that BoNT/A is 

particularly applicable for use in peripheral neuropathies that are predicted to result from 

a peripheral insult. Finnerup et al. (2015) did, however, specify that the conclusion of 

BoNT/A’s efficacy was based on, and limited by, the low number of randomised 

controlled trials conducted, as well as their small sample size. These studies did, 

nevertheless, consistently report a therapeutic effect of BoNT/A. Additionally, Finnerup 

et al. (2015) included a larger, unpublished study in the meta-analysis that, in contrast to 

the small studies, reported no analgesic effect of BoNT/A in neuropathic pain. The size 

of this study relative to the others thus greatly impacted the overall perceived efficacy of 

BoNT/A. This led the research group to conduct their own clinical trial, detailed above, in 
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which they demonstrated a clear therapeutic effect, thus supporting the overall 

effectiveness of BoNT/A in neuropathic pain (Attal et al., 2016).  

Such clinical observations verify that BoNT has analgesic properties, separate from its 

actions as a muscle relaxant. This has led to the hypothesis that BoNT/A may act directly 

at nociceptors. The preclinical evidence supporting this hypothesis will now be 

discussed. 

 

1.2.4 Pre-clinical evidence for BoNT/A’s analgesic effect 

Preclinical investigations of the anti-nociceptive effect of BoNT/A in chronic migraine 

were able to elucidate a direct action at the nociceptors. Importantly, it is the meningeal 

afferents, a subpopulation of trigeminal neurons, that receive and propagate sensory 

information from the dura mater, where headaches and migraine are believed to 

originate, to the trigeminal nucleus caudalis (Melin et al., 2017). Incubation of cultured 

trigeminal ganglion neurons with BoNT/A did not affect the basal release of CGRP, 

however, significantly reduced CGRP release evoked by stimulation with potassium, as 

well as the chemical irritant, capsaicin (Durham et al., 2004). This effect was observed 

at clinically relevant doses of BoNT/A and after incubations as short as 3 hours.  

Additional evidence for a direct effect of BoNT/A at the meningeal afferents is provided 

by the reduced trafficking of TRPV1 receptors noted in the trigeminal neurons after 

administration of BoNT/A (Shimizu et al., 2012). Notably, increased trafficking and 

membrane insertion of TRPV1 receptors is specifically implicated in the peripheral 

sensitisation of nociceptors (Ji et al., 2002). Following subcutaneous injection of BoNT/A 

to rats, reduced immunoreactivity for TRPV1 was observed at the soma and the nerve 

terminals of trigeminal ganglion neurons. It was shown that this was not due to decreased 

receptor expression, but instead resulted from decreased trafficking of TRPV1 receptors 

to the membrane. The reduced trafficking consequently rendered receptors to the cytosol 

where they were increasingly vulnerable to proteolytic degradation by the proteasome, 

thus explaining the perceived reduction in immunoreactivity (Shimizu et al., 2012).  

Both studies highlight potential mechanisms by which BoNT/A could be mediating its 

analgesic effect in chronic migraine, predominantly showing that BoNT/A specifically 

acts by preventing modifications that occur during sensitisation. Accordingly, other 

preclinical studies have replicated these findings and recognised similar mechanisms in 

other pain conditions and in vitro models. It is believed that the pathophysiology of pain 

conditions arising from injury or insult to the trigeminal and dorsal root ganglion neurons 

is shared (Dolly and O’Connell, 2012). Consequently, any elucidated mechanisms for 

the analgesic action of BoNT/A in chronic migraine should be equally applicable to pain 
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conditions originating from distal peripheral sites that are instead innervated by DRG 

neurons.  

This hypothesis appears to be valid. When added to DRG cultures, it was demonstrated 

that BoNT/A inhibited calcium-dependent release of substance P in response to both 

capsaicin and potassium stimulation, similar to the reduction of evoked-CGRP release 

observed in trigeminal ganglion cultures (Purkiss et al., 2000; Welch et al., 2000). 

Substance P and CGRP are both neuropeptides that are released from the central 

terminal of sensory afferents and contribute to central sensitisation (Basbaum et al., 

2009). Notably, mice who lack the gene for either substance P or the substance P 

receptor, NK1, fail to display BoNT/A-mediated analgesia when subjected to 

inflammatory or neuropathic pain (Matak et al., 2017). 

Moreover, comparable to Shimizu et al. (2012), Xiao et al. (2013) reported reduced 

immunoreactivity for TRPV1 receptors in the DRG, following intraplantar injection of 

BoNT/A in a rat neuropathic pain model. In the latter study, however, this was attributed 

to the reduced expression of TRPV1 receptors. Nevertheless, it has been repeatedly 

shown that BoNT/A does not alter the expression of TRPV1 but does impact its 

trafficking, mainly by interfering with PKC-induced translocation of TRPV1 receptors to 

the plasma membrane (Morenilla-Palao et al., 2004; Shimizu et al., 2012). It is thus likely 

that the reduced immunoreactivity, recognised by Xiao et al. (2013), was misinterpreted 

as reduced expression of TRPV1, but instead resulted from increased degradation of 

TRPV1 receptors, secondary to reduced receptor trafficking (Shimizu et al., 2012).  

The effects so far described are largely confined to the primary nociceptive afferents, i.e. 

the trafficking of receptors to the peripheral terminal and the release of neuropeptides at 

the central terminal. Both changes are, however, integral to peripheral and central 

sensitisation which underlie the induction and maintenance of chronic pain conditions. It 

is therefore hypothesised that BoNT/A prevents the development of hyperexcitability in 

the pain signalling pathways, rather than simply blocking neurotransmission in 

nociceptive neurons, as might be expected given its silencing effects within the motor 

neurons. This hence explains why BoNT/A does not alter sensory thresholds or acute 

nociception in non-pathological states (Ji et al., 2002; Cui et al., 2004; Bach-Rojecky and 

Lacković, 2005, 2009; Attal et al., 2016).  

The lack of effectiveness of BoNT/A against acute nociception is well demonstrated by 

the application of BoNT/A in the formalin model of inflammatory pain. Intraplantar 

injection of BoNT/A to rats, prior to formalin challenge, is ineffective against the first 

phase of inflammation, however, significantly reduces pain behaviour during the second 

phase (Cui et al., 2004). The first phase of inflammation represents the direct chemical 
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activation of nociceptors, immediately after injury, thus showing that BoNT/A does not 

block neurotransmission in the peripheral nociceptors. In contrast, the second phase 

reflects the hyperexcitability of the pain signalling pathways, resulting from peripheral 

and central sensitisation, indicating a more sustained pain state. Again, this illustrates 

that BoNT/A is acting to prevent the changes that induce sensitisation. The observed 

reduction in pain behaviour during the second phase corresponds to an inhibition of 

glutamate release from the peripheral afferents (Cui et al., 2004). Glutamatergic 

neurotransmission is essential for central sensitisation, thus emphasising that BoNT/A 

prevents the pain signalling necessary for the establishment of persistent pain, rather 

than affecting acute pain nociception (Woolf & Thompson, 1991). 

This study again highlights the effectiveness of BoNT/A against mechanisms of 

sensitisation, specifically those initiated within the primary afferents. It does not, 

however, specify whether BoNT/A is most efficacious at preventing modifications which 

occur at the peripheral or central terminal of sensory afferents. There is now, however, 

a significant amount of literature gathered from in vivo studies, that places a greater 

emphasis on the effectiveness of BoNT/A against changes that occur at the central 

terminal, rather than at the peripheral terminal. 

BoNT/A has been shown to produce analgesia in a number of animal models for a range 

of chronic pain conditions, including: inflammatory pain (Cui et al., 2004; Matak et al., 

2017), orofacial pain (Matak et al., 2011), trigeminal neuropathy (Filipović et al., 2012), 

trigeminal neuralgia (Wu et al., 2016), muscle hyperalgesia “mirror pain” (Bach-Rojecky 

and Lacković, 2009; Drinovac et al., 2016), peripheral neuropathy (Bach-Rojecky et al., 

2010; Marinelli et al., 2012; Drinovac et al., 2013; Matak et al., 2017), cancer tumour pain 

(Olbrich et al., 2017) and chemotherapy-induced peripheral neuropathy (Favre-Guilmard 

et al., 2009). In a number of these studies, intraneural injection of colchicine, an axonal 

transport blocker, consistently abolished the analgesia observed after peripheral 

injection of BoNT/A (Bach-Rojecky and Lacković, 2009; Matak et al., 2011; Filipović et 

al., 2012; Wu et al., 2016). This consequently indicates that axonal transport of BoNT/A 

to the central nervous system is essential for it to mediate its analgesic effect and 

suggests that the perceived analgesia does not result from the actions of BoNT/A at the 

peripheral terminal.  

Further to this, it has been suggested that transcytosis of BoNT/A into second order 

neurons might contribute to its perceived analgesic effect. This hypothesis has mainly 

arisen after the observation of bilateral analgesia in global pain conditions, namely DPN 

and chemotherapy-induced peripheral neuropathy, following unilateral peripheral 

injection of BoNT/A (Favre-Guilmard et al., 2009; Bach-Rojecky et al., 2010). 

Accordingly, immunohistochemical studies have confirmed transcytosis of BoNT/A 
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(Antonucci et al., 2008; Restani et al., 2011). In one study, cleaved SNAP25 was 

produced in the tectum of rats following intravitreal injection of BoNT/A (Restani et al., 

2011). Within the tectum, cleaved SNAP25 was not present in the terminals of the retinal 

ganglion cells but was instead detected in the adjacent structures, thus implying that 

cleaved SNAP25 was contained within the terminals of the second order tectal cells 

(Restani et al., 2011). The appearance of cleaved SNAP25 was prevented by injection 

of colchicine, highlighting that cleavage was due to the axonal transport of BoNT/A, and 

not via systemic diffusion, whilst an additional experiment confirmed that it was the active 

protease that undergoes axonal transport, and not the cleavage product (Restani et al., 

2011).  

In support of these claims, cleaved SNAP25, the cleavage product of BoNT/A, has been 

detected at the level of the lumbar spinal cord, following intraplantar injection of BoNT/A. 

Specifically, cleaved SNAP25 was visible in the ipsilateral ventral horn, surrounding the 

motor neurons, and in single nerve fibres, labelled in the ipsilateral dorsal horn (Matak 

et al., 2011, 2012; Drinovac et al., 2016). This demonstrates that the axonal transport of 

BoNT/A, and possibly the transcytosis, might also occur within the motor system and is 

likely to not be exclusively observed in the visual system.  

Behavioural studies have also elucidated how BoNT/A might interact with inhibitory 

networks, thus contributing to the theory of its centrally-mediated analgesic effect. 

GABA-mediated inhibition was implicated in the anti-nociceptive effect of BoNT/A after 

intraperitoneal injection of GABA-A receptor antagonist, bicuculline, reversed the 

BoNT/A-associated analgesia in a formalin-induced inflammatory pain model and in a 

partial sciatic nerve transection neuropathic pain model (Drinovac et al., 2014). 

Importantly, in this study, as well as in a consequent study, intraplantar, intraperitoneal 

and intrathecal injection of bicuculline all successfully prevented the BoNT/A-induced 

anti-nociceptive effect, however, intracisternal injection of bicuculline, used to gain 

access to the brain regions where the descending inhibitory pathways originate from, did 

not (Drinovac et al., 2014, 2016). It was thus concluded that BoNT/A alters GABAergic 

transmission at the level of the spinal cord, and not supraspinally, in chronic pain 

conditions. 

It has, however, been documented that intrathecal administration of antagonists to 

GABAergic and glycinergic receptors does precipitate a pain phenotype, akin to that 

observed following peripheral injury, most notably featuring tactile allodynia (Sivilotti and 

Woolf, 1994; Malan et al., 2002; Drew et al., 2004; Basbaum et al., 2009). Given that this 

assumed interaction between BoNT/A and the GABAergic network is solely based on 

the use of bicuculline, and provided that the pronociceptive effect of bicuculline is so 

pronounced even in naïve animals, it is possible that bicuculline could be acting 
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separately, away from interfering with the mechanism by which BoNT/A mediates 

allodynia, to still induce a pain phenotype.  

There is, however, evidence to suggest that BoNT/A also influences the endogenous 

opioid system, present within the spinal cord (Drinovac et al., 2013, 2016). The activation 

of opioid receptors is an important mechanism by which inhibition is again initiated within 

the spinal cord (Dickenson, 1995). Injection of non-specific opioid receptor antagonist, 

naltrexone, prior to behavioural testing, prevented the observed anti-nociceptive effect 

of BoNT/A in both formalin-induced inflammatory pain and the partial sciatic nerve 

transection model of neuropathic pain (Drinovac et al., 2013). Moreover, injection of the 

selective µ-opioid receptor antagonist, naloxonazine, inhibited BoNT/A-induced 

analgesia in formalin-induced inflammatory pain and in carrageenan-induced mirror pain, 

hence emphasising the predominant involvement of µ-opioid receptors (Drinovac et al., 

2016). This is not surprising given that µ-receptors represent 70% of the opioid receptors, 

present in the dorsal horn (Dickenson, 1995). Finally, similar to that demonstrated with 

bicuculline, a central action, specifically confined to the level of the spinal cord, was 

confirmed after intrathecal injection effectively abolished the analgesic effect in 

carrageenan-induced mirror pain whereas intercerebroventricular injection of 

naloxonazine failed to prevent the perceived analgesia (Drinovac et al., 2016). This again 

highlights a potential link between BoNT/A-mediated analgesia and the inhibitory 

networks of the spinal cord. It subsequently generates a more convincing argument of 

how BoNT/A might correct this disinhibition, characteristic of pain conditions.  

In contrast to the neuron-specific actions so far described, some studies have suggested 

that BoNT/A might somehow interact with non-neuronal inflammatory cells to elicit an 

anti-inflammatory effect. Cleaved SNAP25 has been detected colocalised with markers 

of astrocytes and microglia following intraplantar injection of BoNT/A to mice (Marinelli 

et al., 2012). Another study demonstrated, using western blot, that intraplantar injection 

of BoNT/A to rats prevented the upregulation of pro-inflammatory interleukins, important 

to microglia activation, however, no immunohistochemical staining was either conducted 

or eluded to in order to confirm the colocalisation of cleaved SNAP25 with microglia 

(Zychowska et al., 2016). Similarly, it was highlighted that intraplantar injection of 

BoNT/A can reduce astrocyte expression and activation at the spinal cord of rats (Vacca 

et al., 2012). Again, although this study used immunohistochemistry to quantify the 

expression and activation of astrocytes, it did not investigate the colocalisation with 

cleaved SNAP25.  

Interestingly, this inflammatory theory remains contentious as many studies have failed 

to detect any colocalisation between cleaved SNAP25, indicative of BoNT/A activity, and 

inflammatory cells, for example, astrocytes (Restani et al., 2011; Matak et al., 2012; Cai 
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et al., 2017). This is not unexpected given that astrocytes and other glial cells are known 

to express SNAP23, which is resistant to BoNT/A cleavage, rather than the neuronal 

SNAP25  (Hepp et al., 1999). It is thus logical to assume that any anti-inflammatory effect 

associated with BoNT/A, is most likely due to an indirect effect, resulting from the 

reduced neurotransmitter and neuropeptide release at the afferent terminals. This would 

then consequently prevent the recruitment and activation of inflammatory cells.  

 

1.2.5 Protein engineering to optimise BoNT/A’s anti-nociceptive activity 

Despite the discrepancy on whether the actions of BoNT/A responsible for its anti-

nociceptive effect are restricted to the primary afferents, or whether it does transcytosis 

into second order neurons of the spinal cord, the studies detailed above clearly and 

consistently demonstrate that BoNT/A does have an important action within the 

nociceptive pathway. All of these findings are, however, based on the use of BoNT/A in 

its native form whereby it is still able to access and block neurotransmission at the 

neuromuscular junction and, therefore, retains its paralytic activity. This thus limits the 

dosage of BoNT/A which can be safely used to induce analgesia without eliciting a 

paralytic effect. Reengineering techniques seek to remove the paralytic activity of 

BoNT/A and redirect its binding specifically to sensory neurons. In theory, this can be 

effectively achieved by replacing the Rbd of BoNT/A with an alternative targeting 

molecule, which displays greater affinity and specificity for subpopulations of sensory 

neurons, selective to pain pathways. 

One method by which this is achievable is recombinant protein expression. This 

technique has been used to express a novel protein by fusing the gene that encodes 

BoNT/A, purposely excluding the gene section which encodes the C-terminal of the Rbd 

and that constitutes the ganglioside-binding pocket, with a gene encoding a single-chain 

variable fragment antibody against P2X purinoceptor 3 (P2X3), a receptor specific to 

nociceptive neurons (Ma et al., 2014). Accordingly, the protein produced specifically 

bound to cultured DRG neurons expressing P2X3. Cleaved SNAP-25 was successfully 

detected in DRG cultures after exposure to 0.1 nM of the chimera. Furthermore, the 

percentage of SNAP25 cleaved correlated with the degree of inhibition of CGRP release 

from treated DRG cultures, compared to untreated cultures. This indicates that the 

recombinant protein was successfully internalised via the intended target and retained 

BoNT/A’s endopeptidase activity to provide a functional pain-specific outcome. 

Additionally, the reengineered protein displayed a 2 × 108 greater LD50 than native 

BoNT/A, indicating a much improved safety profile (Ma et al., 2014).  
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Recombinant expression is limited by the size of protein that can be produced, alongside 

additional issues with protein misfolding (Rosano and Ceccarelli, 2014). An alternative 

method for protein engineering is chemical conjugation. This method was previously 

used to conjugate LcTd/A to a lectin isolated from Erythrina cristagalli (ECL), after it was 

established that the lectin specifically bound gangliosides found on nociceptive neurons 

(Duggan et al., 2002). In this case, a protein cross-linking reagent was used to introduce 

reactive sulphydryl groups to both LcTd/A and ECL to enable the formation of a 

disulphide bond between the two components. The novel protein was able to internalise 

into neurons, and subsequently inhibited both substance P and glutamate release from 

embryonic DRG cultures. Additional in vivo lumbar recordings, following intrathecal 

injection, revealed that the LcTd/A-ECL conjugate reduced C-fibre responses by 75.8% 

and Aδ-fibre activity by 42.3% at the injection site, while Aβ-fibre responses were 

unaffected, highlighting selectivity for pain pathways (Duggan et al., 2002). Notably, 

however, neither of the two studies so far described attempted to assess the analgesic 

effect of the respective chimeras in behavioural pain models (Drew et al., 2004; Ma et 

al., 2014). It is therefore unknown whether their efficacy translates in vivo. 

Another popular method of chemical conjugation is maleimide conjugation. This method 

was used by a separate group to conjugate the light chain of BoNT/A (Lc/A) to Substance 

P, thus deliberately excluding both the Rbd and the translocation domain of BoNT/A from 

the construct (Mustafa et al., 2013). The novel chimera was reportedly internalised by 

cultured diencephalon neurons and retained the ability to cleave SNAP25. This finding 

is surprising given that the translocation domain is required for the endosomal release of 

the Lc (Koriazova and Montal, 2003). It consequently suggests that the Lc can reach the 

cytosol unaided, and therefore, negates the importance of the translocation domain. 

Unconjugated Lc/A failed to internalise into cells, however, thus emphasising that a 

targeting domain is required for internalisation. Additionally, intracisternal injection of the 

Lc/A-Substance P construct significantly reversed thermal hypersensitivity in mice 

subjected to the paclitaxel-induced peripheral neuropathy model, compared to vehicle 

(Mustafa et al., 2013). Although not definitely shown, this implies that Lc/A-Substance P 

remained functional in vivo and indicates that the ability of Lc to access the cytosol, in 

the absence of the translocation domain, is not an artefact of culture.  

Unfortunately, although maleimide conjugation produces uncleavable bonds, there are 

concerns about the long-term stability of the chimeras generated, specifically when 

subjected to blood plasma (Christie et al., 2015). Chemical reactions, such as thiol 

exchange, can promote instability in chimeras and are also capable of affecting the 

efficacy of the therapeutic unit of the chimera, even within a stable chimera. This issue 
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has even been recognised to affect certain FDA-approved maleimide conjugated drugs 

(Fontaine et al., 2015).  

 

1.2.5.1 SNARE-stapling for protein engineering 

The limitations associated with the current methods of recombinant protein expression 

and chemical conjugation have encouraged others to establish novel methods by which 

to achieve protein reengineering. Our own research group developed a ‘stapling’ 

technology which combines and exploits the two platforms of protein engineering, 

recombinant and protein conjugation, whilst acting within their limitations to overcome 

the issues so far described (Darios et al., 2010).  

For this technique, individual functional protein domains are tagged with short SNARE-

peptides, namely synaptobrevin and SNAP25, using recombinant protein expression 

(Darios et al., 2010; Ferrari et al., 2012). Since only single subunits are being expressed 

at one time, the protein size of the individual subunits remains within the constraints of 

recombinant protein expression. Once successfully expressed with the fused SNARE-

tags, the individual subunits can then be assembled into a single multidomain protein by 

the addition of the SNARE-staple, syntaxin. The SNARE-peptides assemble into an 

irreversible, correctly orientated, tetrahelical complex, known as the SNARE-complex 

(Fig 1.7A). This assembly occurs within an hour at room temperature. Specifically, the 

assembly of the SNARE-complex does not require a chemical reaction and therefore is 

not susceptible to other reactive groups. The resultant complex is resistant to harsh 

detergents, including Sodium dodecyl sulphate (SDS), and therefore the assembled 

chimera can be detected by SDS-page gel (Fig 1.7B) (Darios et al., 2010). Additionally, 

this method enables a combinatorial approach to protein engineering. When all of the 

subunits of interest have been expressed with the relevant SNARE-tags, numerous 

combinations of distinct subunits can be produced which can then be tested to identify 

the optimum combination for a given function or outcome (Darios et al., 2010; Ferrari et 

al., 2012). 

 

1.2.5.1.1 TetBot 

This stapling method has so far been used to produce two novel chimeras that have both 

demonstrated analgesic properties in behavioural pain models. One of the chimeras, 

TetBot, was produced by conjugating the LcTd/A, expressed with the fused SNAP25 tag, 

to the Rbd of tetanus toxin, fused to the synaptobrevin tag, by addition of the syntaxin 

staple (Fig 1.7A) (Ferrari et al., 2013). Native Tetanus toxin undergoes retrograde  
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Figure 1.7 The modular assembly of botulinum 

neurotoxin A- tetanus toxin chimera by SNARE-

tagging. (A) The schematic illustrates the 

conjugation of LcTd/A, fused to SNAP25 (Botulinum 

Enzyme), to the tetanus binding domain (Tbd), fused 

to synaptobrevin, by addition of a staple, syntaxin. 

Central to the chimera (right), the tetrahelical 

SNARE-complex can be seen. (B) The coomassie-

stained SDS-page gel shows that the conjugation 

reaction only occurs in presence of the staple and is 

successful at producing an irreversible, SDS-page 

resistant product. From Ferrari et al. (2013).  

 

transport to the spinal cord to elicit spastic paralysis (Surana et al., 2017). TetBot was 

therefore generated with the intention of targeting the active domain of BoNT/A to central 

neurons, whilst attempting to exclude its normal paralytic activity.  

The introduction of the SNARE-complex into the centre of the chimera produced an 

elongated protein of approximately 23 nm which is almost double the length of native 

BoNT/A (Ferrari et al., 2013). When applied to isolated mouse hemidiaphragm muscles, 

TetBot was shown to be 11000 less effective at blocking muscle twitches than native 

BoNT/A. Impressively, intramuscular injection of 500 ng TetBot to mice did not produce 

any signs of motor paralysis and was not associated with any lethality. Consequently, it 

can be confirmed that TetBot displays a LD50 that is at least 105 fold greater than the 

LD50 of native BoNT/A. It has therefore been inferred that the chimera has restricted 

access to the neuromuscular junction (NMJ), resulting from the increased size of the 

protein combined with the tight synaptic cleft and ensheathing, characteristic of the NMJ 

(Ferrari et al., 2011). 

TetBot was applied to hippocampal neuron cultures to examine its efficacy at central 

neurons. TetBot was imaged internalised into the synaptic terminals of hippocampal 

neurons and was shown, by western blot, to successfully cleave SNAP25 and thus 

retained the catalytic activity of BoNT/A (Ferrari et al., 2013). Furthermore, brain slices 
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containing the suprachiasmatic nucleus displayed significantly reduced circadian 

rhythms following incubation with TetBot, indicating a functional effect.  

After confirming the lack of paralysis and retained functionality of the chimera, TetBot 

was trialled in the complete Freund's adjuvant (CFA)-induced inflammatory pain model. 

100 ng TetBot was injected intrathecally to rats prior to induction of the pain model. 

TetBot did not influence basal mechanical sensitivity, however, significantly attenuated 

the mechanical hypersensitivity developed after intraplantar injection of CFA (Ferrari et 

al., 2013). Importantly, this analgesic effect was still apparent at 11 days post-CFA when 

the experiment was terminated, emphasising a long-lasting effect. Again, the analgesia 

occurred in the absence of any motor impairment.  

In the experiments detailed, TetBot was administered directly to the target neurons. For 

example, intrathecal injection was used when targeting the central neurons of the spinal 

cord in the CFA-induced inflammatory pain model. This delivery method would have 

therefore provided direct access to the target neurons. Consequently, the experimental 

conditions did not attempt to exploit the axonal transport, associated with Tetanus toxin, 

although this was the original aim. Ideally, TetBot should have been injected to a 

peripheral site to investigate whether it would then undergo retrograde transport to 

penetrate the central neurons. Additionally, the vast majority of humans are immunised 

against tetanus toxin, and consequently, TetBot would most likely not be suitable for use 

in human medical care (Maple et al., 2000). Instead, TetBot would be most applicable 

for pain management in animals.  

 

1.2.5.1.2 BiTox 

The other chimera generated was BiTox which is an elongated version of native BoNT/A 

(Ferrari et al., 2011). BiTox was again constructed from the LcTd/A fused to the SNAP25 

SNARE-peptide tag. The fused-subunit was then conjugated to the Rbd of BoNT/A, 

tagged with synaptobrevin, by addition of the SNARE-staple, syntaxin. This once more 

led to the formation of a truncated SNARE-complex within the chimera, which hence 

significantly increased the length of the protein. Accordingly, BiTox demonstrated 

reduced potency at blocking neurotransmission at the NMJ, similar to TetBot. 

Specifically, 75 minute incubation with 190 pM BiTox was required to reduce the 

amplitude of contractile responses in mouse hemidiaphragm preparations by 50% 

(Darios et al., 2010). By contrast, it has been separately shown that 2 pM of native 

BoNT/A was sufficient to reduce the amplitude of muscle twitches in hemidiaphragm 

preparations by 50%, within the same time allowance (Ferrari et al., 2013). This again 
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highlights that the paralytic activity of BoNT/A is greatly impaired by the SNARE-stapling 

approach.  

Correspondingly, BiTox demonstrated greatly reduced lethality compared to native 

BoNT/A. Lethality with native BoNT/A was observed within 24 hours in mice after 

intraperitoneal injection of doses as low as 2 ng/kg (Ferrari et al., 2011). In contrast, mice 

receiving intraperitoneal injection of up to 200 ng/kg BiTox did not display any indication 

of muscular paralysis or compromised well-being. Again, this reveals an increased safety 

profile, associated with the reengineered proteins.  

Subsequent in vitro investigations confirmed the functionality of BiTox. Specifically, 

incubation of isolated brain synaptosomes with BiTox inhibited both calcium-dependent 

and potassium-evoked glutamate release (Darios et al., 2010). The impairment of 

glutamate release was equivalent to that observed following incubation with BoNT/A, 

therefore emphasising that BiTox is as efficacious as native BoNT/A at blocking 

neurotransmission and neuronal function of central neurons. The compromised efficacy 

of BiTox is instead exclusive to the encapsulated NMJs.  

The selectivity of BiTox for silencing other neuronal populations in preference to the 

motor neurons, in addition to its improved safety profile, encouraged the antinociceptive 

potential of BiTox to be assessed. Similar to native BoNT/A, intraplantar injection of 

BiTox did not affect basal mechanical or thermal sensory thresholds in naïve rats 

(Mangione et al., 2016). 200 ng BiTox administered via intraplantar injection, 1 day after 

pain model induction, produced only a partial and transient recovery of the basal 

mechanical withdrawal threshold in both CFA-induced inflammatory pain and the plantar 

incision post-operative pain model, compared to vehicle control. 

By contrast, in a subsequent experiment, CFA was instead injected into the ankle joint, 

rather than intraplantar, while the mechanical withdrawal threshold continued to be 

measured at the plantar surface of the ipsilateral hindpaw. Under these conditions, 

intraplantar injection of BiTox 3 days after CFA-injection, significantly reduced 

mechanical hypersensitivity. Likewise, intraplantar injection of BiTox, prior to exposure 

to capsaicin, failed to alter primary thermal hyperalgesia, localised to the capsaicin 

injection site. Injection of BiTox did, however, effectively reduce secondary mechanical 

hyperalgesia in the adjacent area on the plantar surface of the hindpaw. The study did 

not, however, measure mechanical primary hyperalgesia following capsaicin injection. It 

is therefore not clear from this experiment whether BiTox is more effective against the 

sensory modality, i.e. thermal or mechanical pain, or the site of hyperalgesia, primary or 

secondary. Mechanical threshold was, however, assessed in both CFA-models and this, 

therefore, consequently implies that BiTox exhibits an effectiveness specifically against 
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secondary hyperalgesia, highlighting a potential action against central sensitisation 

(Mangione et al., 2016).  

Separately, when intraplantar injection of 200 ng BiTox was administered 3 days post-

spared nerve injury (SNI), a model of peripheral neuropathic pain, a significant reversal 

of the developed mechanical hypersensitivity was observed whereby the mechanical 

threshold returned to basal values. In contrast, vehicle-injected SNI rats continued to 

develop further mechanical hypersensitivity. Additionally, intraplantar injection of BiTox, 

14 days prior to SNI, greatly attenuated the development of mechanical hypersensitivity. 

Notably, only a marginal decrease in mechanical threshold from basal values was 

detected in BiTox-injected rats, compared to vehicle injected rats (Mangione et al., 2016).  

Mechanical hypersensitivity in neuropathic pain, likewise, results from central 

sensitisation (Nickel et al., 2012). Collectively, it suggests that, similar to native BoNT/A, 

BiTox might produce its analgesic effect predominantly via a centrally-mediated 

mechanism. In agreement with this, a delay in the analgesic effect following intraplantar 

injection of BiTox was consistently noted hence suggesting that this time might be 

necessary to allow for the axonal transport of the chimera. Opposingly, however, western 

blot analysis failed to reveal cleaved SNAP25 at the level of the dorsal horn in BiTox-

injected animals (Mangione et al., 2016). Furthermore, evidence was provided for a 

peripheral mechanism after reduced capsaicin-induced plasma extravasation was 

observed in the BiTox-injected hindpaw compared to the uninjected contralateral paw 

(Mangione et al., 2016). A direct action at A-nociceptors was also suggested after 

mechanical, but not thermal hypersensitivity, was reduced, as thermal nociception is 

communicated by C-fibre nociceptors (Mangione et al., 2016). As a result of the 

conflicting evidence, it is currently unclear how BiTox mediates its analgesic effect and 

subsequently still remains to be clarified.  

 

1.3 Hypotheses and Aims 

Chronic pain represents a huge unmet clinical need. Whilst no chronic pain-specific 

pharmacotherapy exists, and while the aging population proceeds to grow, chronic pain 

will continue to place massive strain on both present and future healthcare services, as 

well as imposing ever-increasing pressure on the economy. In order to resolve this issue, 

it is important that therapeutics specifically intended for use in chronic pain conditions 

are developed. Between them, the studies described here illustrate how chemical and 

recombinant protein engineering methods can be utilised to design chimeras that 

incorporate the potent BoNT/A, in order to provide novel analgesics.  
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Within these studies, several important aims have already been achieved. Novel 

chimeras have repeatedly been demonstrated to effectively retain the catalytic activity of 

BoNT/A, via the detection of cleaved SNAP25 (Mustafa et al., 2013; Ma et al., 2014). 

Furthermore, the novel chimeras have displayed functionality by inhibiting pain mediator 

release from cultured neurons, and by producing analgesia in behavioural pain models 

(Duggan et al., 2002; Mustafa et al., 2013; Ma et al., 2014). Specifically, the chimeras 

generated using the pioneered SNARE-stapling technique exhibited reduced potency at 

the neuromuscular junction, thus circumventing the motor paralysis and lethality 

associated with BoNT/A, whilst simultaneously continuing to provide long-lasting pain 

relief (Ferrari et al., 2013; Mangione et al., 2016). It is essential that the mechanisms of 

action of these chimeras begin to be understood. From this perspective, Chapter 3 will 

focus on elucidating the in vivo activity of BiTox/A, the most successful chimera so far 

produced using the SNARE-stapling technology.  

It is also important that novel chimeras continue to be developed. This is required in 

order to assess whether alternative combinatorial chimeric designs are more effective at 

producing analgesia in other pain conditions or are more efficacious at treating certain 

clinical presentations of chronic pain, e.g. thermal versus mechanical hypersensitivity. 

By maintaining the inclusion of LcTd/A, the future resultant chimeras will persist to cleave 

SNAP25 in neurons, and consequently block SNARE-mediated cellular processes. 

However, by combining LcTd/A with alternative targeting domains, using the 

combinatorial approach, possible with the SNARE-stapling technology, the catalytic 

activity of BoNT/A can be retargeted to separate subpopulations of sensory neurons. 

Based on the distinct combinations of gangliosides and protein receptors bound by the 

alternative BoNT serotypes, it is hypothesised that the Rbd of the respective serotypes, 

conjugated to LcTd/A, will retarget the catalytic activity to distinct populations of sensory 

neurons, whilst continuing to avoid action at the NMJ (Chapter 4). The in vitro binding 

profile of BiTox, henceforth referred to as BiTox/A, due to the inclusion of Rbd/A, will thus 

be assessed and then compared to the binding profile of chimeras composed of the 

alternative BoNT Rbds, to investigate whether they do exhibit preferential binding to 

distinct sensory neuron subpopulations and whether this consequently conveys an 

alternate therapeutic effect in vivo. There is also the possibility of utilising the binding 

domains of unrelated toxins, such as cholera toxin. This will be investigated using the 

same technique in Chapter 6. 

Additionally, a potential alternative clinical application for chimeras, separate from the 

management of chronic pain, will be explored (Chapter 5). Axonal transport to the central 

terminal of neurons has been either demonstrated or suggested for both native and re-

engineered clostridial neurotoxins (Bach-Rojecky and Lacković, 2009; Mangione et al., 
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2016; Matak et al., 2017), however, it is already known and accepted that tetanus toxin 

does undergo retrograde transport to reach the inhibitory interneurons, located in the 

spinal cord (Surana et al., 2017). It will therefore be investigated whether the binding 

domain of tetanus toxin can be exploited for the drug delivery of therapeutics to the 

central nervous system, as a proof of principle experiment, and whether optimisation and 

advancement of the SNARE-stapling method can augment this delivery. Furthermore, 

cholera toxin is similarly able to undergo axonal transport and therefore is well-

established as a neuronal tracer (Angelucci et al., 1996). For this reason, the use of 

cholera toxin binding domain for drug delivery will also be examined. 

The ultimate objective of this thesis does, however, remain the development of a novel 

pain therapeutic for use in chronic pain conditions. This will again be the investigated in 

Chapter 6, subsequent to findings made in Chapter 5, regarding a novel chimera 

constructed from the binding domain of cholera toxin conjugated to LcTd/A. In Chapter 

6, the analgesic potential of the novel chimera, which utilises the binding domain of a 

non-clostridial toxin, will be determined. 

Collectively, this thesis will demonstrate how the SNARE-stapling conjugation approach 

allows for the production of safe, long-lasting, non-paralytic analgesics, with the potential 

for use in human pain management. 
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Chapter 2. General Methods 

 

2.1 Materials 

2.1.1 Chimeras 

All the chimeras and proteins that were used for either treating cell cultures or that were 

injected into animals are listed in the table below: 

 

Table 2.1 Details of chimeras used. 

   

Proteins and 
Chimeras 

Enzymatic 
domain 

Receptor 
binding 
domain 

Source Reference 

BiTox/A LcTd/A Rbd/A 
Recombinant 
(Expressed and purified 
by Dr Charlotte Leese) 

(Ferrari et al., 
2011; 
Mangione et 
al., 2016) 

BiTox/C LcTd/A Rbd/C 
Recombinant 
(Expressed and purified 
by Dr Charlotte Leese) 

 

BiTox/D LcTd/A Rbd/D 
Recombinant 
(Expressed and purified 
by Dr Charlotte Leese) 

 

BiTox/E LcTd/A Rbd/E 
Recombinant 
(Expressed and purified 
by Dr Charlotte Leese) 

 

ChoBot LcTd/A AB5 
Recombinant 
(Expressed and purified 
by Dr Charlotte Leese) 

 

Cholera Toxin 
Subunit B 
Alexa Fluor 
488 

- CTB 

Recombinant 
(Purchased from 
ThermoFisher, Product 
No. C34775)  

(Conte et al., 
2009) 

Tbd-Cy3 - Tbd 
Recombinant 
(Expressed and purified 
by Dr Charlotte Leese) 

(Mavlyutov et 
al., 2016) 

2xTbd-Cy3 - 2xTbd 
Recombinant 
(Expressed and purified 
by Dr Charlotte Leese) 

 

TetBot LcTd/A Tbd 
Recombinant 
(Expressed and purified 
by Dr Charlotte Leese) 

(Ferrari et al., 
2013) 

2xTetBot LcTd/A 2x Tbd 
Recombinant 
(Expressed and purified 
by Dr Charlotte Leese) 
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2.1.2 Antibodies 

Below is a table documenting all the primary antibodies used for immunocytochemistry, 

immunohistochemistry and western blot. 

 

 Table 2.2 Details of all primary antibodies used including the relevant dilutions used for 

Immunocytochemistry (ICC), Immunohistochemistry (IHC) and Western Blot (WB).  

 

 
 
 

 
 
 

 
 

Primary 
antibody 

Abbreviation 
Species 
raised 

in 
Dilution 

Catalogue 
number 

Source 

βIII-Tubulin BTIII Mouse 
1:500 
(ICC/IHC) 

MAB1195 
R&D 
systems 

Calcitonin 
gene-related 
peptide 

CGRP Mouse 1:200 (IHC) 
 
ab81887 

Abcam 

Cholera toxin 
B subunit 

CTB Rabbit 
1:10000 
(IHC) 

C3062 Sigma 

Cleaved 
SNAP25 

cSNAP25 Rabbit 

1:1500 
(ICC)  
1:2000 
(IHC/WB) 

 In-house 

Neurofilament 
200 

NF200 Mouse 
1:400 (ICC)  
1:200 (IHC) 

 In-house 

Neuronal 
Nuclei (clone 
A60) 

NeuN Mouse 
1:1000 
(IHC) 

MAB377 
Merck 
Millipore 

Peripherin Peripherin Mouse 1:200 (ICC) MAB1527 
Merck 
Millipore 

SNAP25 SNAP25 Mouse 
1:1000 
(IHC) 

SMI 81 Biolegend 

SNAP25 SNAP25 Rabbit 1:3000 (WB)  In-house 

Syntaxin 1 Syn1 Rabbit 1:2000 (WB)  In-house 

 

 

The specificity of the in-house anti-cleaved SNAP25 antibody has been repeatedly 

verified within the laboratory (Fig. 2.1). Similarly, the inhouse anti-Neurofilament 200 

antibody has been validated by Dr Ciara Doran who demonstrated that immunolabelling 

produced by the inhouse antibody colocalised to that produced by a commercial anti-

Neurofilament 200 antibody (data not shown).  
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All secondary antibodies used for immunocytochemistry, immunohistochemistry and 

western blot are listed in the table below: 

 

Table 2.3 Details of all secondary antibodies used including the relevant dilutions used for 

Immunocytochemistry (ICC), Immunohistochemistry (IHC) and Western Blot (WB).  

 
 

 
 
 

 
 

Secondary antibody 
Species 
raised 

in 
Dilution 

Catalogue 
number 

Source 

Anti-mouse IgG (H+L) 
Cross-adsorbed Alexa 
Fluor 488 

Goat 
1:2000 (ICC) 
1:500 (IHC) 

A11029 Life Technologies 

Anti-rabbit IgG (H+L) 
Cross adsorbed Alexa 
Fluor 488 

Goat 
1:2000 (ICC) 
1:500 (IHC) 

A11034 Life Technologies 

Anti-mouse IgG (H+L) 
Cross adsorbed Alexa 
Fluor 594 

Goat 
1:2000 (ICC) 
1:500 (IHC) 

A11005 Life Technologies 

Anti-rabbit IgG (H+L) 
Cross adsorbed Alexa 
Fluor 594 

Goat 
1:2000 (ICC) 
1:500 (IHC) 

A11012 Life Technologies 

Anti-rabbit IgG HRP 
linked 

Donkey 1:24000 (WB) NA934V Amersham 

 

 

 

A protein conjugate was also used for immunohistochemistry. Its details are documented 

in the table below. 

 

Table 2.4 Details of the protein conjugate used.  
 

Protein Conjugates Abbreviation Dilution 
Catalogue 
Number 

Source 

α-Bungarotoxin 
Alexa Fluor 488 
Conjugate 

α-BTX-488 1:250 (IHC) B13422 ThermoFisher 
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Figure 2.1 The anti-cleaved SNAP25 

antibody is specific for the BoNT/A- 

cleavage product. (A) Western blot analysis 

of dissociated dorsal root ganglion cultures, 

incubated with multiple concentrations of 

Botulinum neurotoxin A (BoNT/A), display 

dose-dependent cleavage of SNAP25. When 

the western blot is probed with the total 

SNAP25 antibody, immunoreactive to both 

whole, uncleaved SNAP25 and cleaved 

SNAP25, two bands are detected in each lane 

of the treated cultures. The top band 

represents full length, uncleaved SNAP25 whilst the bottom band represents the shorter, BoNT/A-

cleavage product. Accordingly, only one band is detected in the untreated sample, representing 

whole SNAP25 and indicating that no cleavage of SNAP25 has occurred. (B) In contrast, probing 

using the specific anti-cleaved SNAP25 antibody reveals only one band. Thus, highlighting the 

specificity of the antibody for the BoNT/A-cleavage product and the lack of immunoreactivity for 

whole SNAP25. Resultantly, no band is detected in the untreated sample. Data provided courtesy 

of Dr C. Leese.  

 

2.1.3 Media and solutions used 

All medias used are detailed in the table below, alongside their composition. 

 

Table 2.5 Details of the medias used. 

 Media Components 

DRG wash 

media 

DMEM/F12 with Glutamax (31331, Life Technologies), 10% heat-

inactivated Horse serum (26050, Life Technologies) and 1% penicillin-

streptomycin (P0781, Sigma) 

DRG low-

serum media 

Neurobasal A medium (10888, Life Technologies), 1% heat-

inactivated Horse serum (26050, Life Technologies), 1% penicillin-

streptomycin (P0781, Sigma), 20 ng/ml NGFβ (SRP4304, Sigma), 1x 

B27 (17504-044, Life Technologies), 1% Glutamax (35050-061, Life 

Technologies) 20 μM uridine (U3003, Sigma), 20 μM 5'-Fluoro-2'-

deoxyuridine (F0503, Sigma). 

Cortical 

neuron 

media 

Neurobasal medium (21103, Life Technologies), 1% penicillin-

streptomycin (P0781, Sigma), 1x B27 (17504-044, Life Technologies), 

1% Glutamax (35050-061, Life Technologies) 
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All solutions used are documented in the table below, alongside their composition.  

 

Table 2.6 Details of the solutions used.  
 

Solution Composition 

Blocking solution for 

Immunohistochemistry 

5% (v/v) Goat serum (005-000-121, Jackson 

ImmunoResearch Laboratories, Inc), 0.3% (v/v) Triton X-100 

(BP151-500, Fisher BioReagents) in 1x PBS. 

Blocking solution for 

Western Blot 

5% (w/v) Skim milk powder (70166, Sigma), 0.1% (v/v) 

Tween 20 (B337-500, Fisher BioReagents) in 1x PBS. 

15% Bovine Serum 

Albumin 

15% (w/v), DMEM/F12 with Glutamax (31331, Life 

Technologies), 10% heat-inactivated Horse serum (26050, 

Life Technologies) and 1% penicillin-streptomycin (P0781, 

Sigma). 

DRG Lysis Buffer 

50 mM HEPES, 150 mM NaCl, 1 mM EDTA, 1.5 mM MgCl2, 

10% glycerol, 1% Triton-X100 and 1:40 protease inhibitor in 

deionised water (Gift from Dr M. A. Nassar’s Lab). 

70% Ethanol 
70% (v/v) Ethanol (20821.330, VWR Chemicals) in deionised 

water. 

HEPES-buffered 

dissociation solution 

(pH 7.3) 

1 mg/ml Dispase II (D4693, 0.85 U/mg, Sigma), 0.6 mg/ml 

Collagenase XI (C7657,1594 U/mg Sigma) in 155 mM NaCl 

(S/3160/60, Fisher Scientific), 4.8 mM HEPES sodium salt 

(H8651,Sigma), 5.6 mM HEPES (B299-500, Fisher 

BioReagents), 1.5 mM KH2PO4  (P/5240/53, Fisher Scientific) 

and 10 mM D-(+)-Glucose (G7528, Sigma) in deionised 

water.  

Laminin 10 μg/ml laminin (L2020, Sigma), Sterile PBS 

Membrane Transfer 

Buffer 

20% (v/v) methanol and 10% (v/v) 10x transfer buffer (Fluka) 

in deionised water. 

MES SDS running 

buffer 

5% (v/v) 20x NuPAGE MES SDS running buffer (Life 

Technologies) in deionised water. 

4% Paraformaldehyde 

(pH 7.4) 

4% (w/v) Paraformealdehyde (A11313, Alfa Aesar and 

158127, Sigma) in 1x PBS. 
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Solution Composition 

1x Phosphate-

Buffered saline (PBS) 

10% (v/v) 10x Phosphate-Buffered saline (1.37 M Sodium 

chloride, 0.027 M Potassium Chloride and 0.119 M 

Phosphate buffer) (BP399-20, Fisher Scientific) in deionised 

water (pH 7.4).  

4x SDS Lysis Buffer 

224 mM SDS, 250 mM Tris-HCl pH 6.8, 6.4 mM EDTA, 25% 

(v/v) glycerol, 1 mM MgCl2 (223210010, ACROS organics) 

and 0.1 % (v/v) Benzonase nuclease (E1014-2KU, Sigma) 

and traces of bromophenol blue (BDH Chemical) in deionised 

water. 

5% Sucrose 5% (w/v) sucrose (S/8600/53, Fisher Scientific) in 1x PBS. 

30% Sucrose 30% (w/v) sucrose (S/8600/53, Fisher Scientific) in 1x PBS. 

0.3% Triton in PBS 
0.3% (v/v) Triton X-100 (BP151-500, Fisher Bioreagents) in 

1x PBS. 

0.1% Tween in PBS 
0.1% (v/v) Tween 20 (B337-500, Fisher BioReagents) in 1x 

PBS. 

Working solution for 

immunohistochemistry 

2% (v/v) Goat serum (005-000-121, Jackson 

ImmunoResearch Laboratories, Inc), 0.3% (v/v) Triton X-100 

(BP151-500, Fisher BioReagents) in PBS. 

 

 

2.2 Dorsal Root Ganglion Culture 

 

2.2.1 Coating plates 

μClear 96-well plates (655090, Greiner Bio-One) were used for imaging experiments. 

96-well plates were coated with 40 μl per well of 10 μg/ml laminin in PBS and left for 1 

hour at 37 oC. Alternatively, for western blot experiments using dissociated dorsal root 

ganglion cultures, 24-well plates (3526, Costar) were used. 120 μl of 10 μg/ml laminin 

was added per well and again plates were then left for 1 hour at 37 oC. After 1 hour, the 

laminin solution was aspirated from the wells and the wells were then washed twice, 

firstly for 2 minutes and then for 5 minutes, with PBS before seeding cells. 
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2.2.2 Dissection of dorsal root ganglia 

3-5 week old Sprague Dawley rats were culled by schedule 1 method (cervical 

dislocation followed by exanguination) in accordance with the UK Animals (Scientific 

Procedures) Act 1986. The skin overlying the spinal column was removed and the 

excess adipose tissue trimmed away using a blade (15C, Swann-Morton). The spinal 

column was excised from situ using iris scissors (WPI) and a dorsal laminectomy was 

performed using microscissors (WPI) to remove the dorsal roof and expose the spinal 

cord. The ventral body of the spinal column was then hemisected, again using iris 

scissors (WPI). The spinal cord was gradually pulled away from each hemisection to 

reveal the dorsal root ganglia. Each dorsal root ganglion was dissected out using fine 

tweezers (Dumont) and microscissors (WPI) and the central and peripheral spinal root 

were trimmed away. Trimmed DRG were collected into 1 ml PBS in a 1.5 ml eppendorf 

tube. 

 

2.2.3 Preparation of culture 

The PBS was removed from the DRGs in a culture hood (Class II biological safety 

cabinet, Airstream) and 1 ml of 1 mg/ml Dispase II (D4693, 0.85 U/mg, Sigma) and 0.6 

mg/ml Collagenase XI (C7657,1594 U/mg Sigma) in HEPES-buffered dissociation 

solution was added (Baker and Bostock, 1997). The DRGs were incubated at 37 oC for 

1.5 hour in a carbon dioxide incubator to allow for dissociation (Galaxy 170 S CO2 

Incubator, New Brunswick). After 1.5 hr, DRGs were transferred to a 15 ml falcon tube 

and triturated rapidly in 1 ml of DRG wash media. The resuspended DRG mixture was 

then carefully pipetted and transferred to form a separate layer on top of 3 ml 15% BSA 

(in DRG Wash Media) and centrifuged for 10 minutes at 1500 rpm (21 oC, Asc 9, Desc 

2) using a Rotina 46 R centrifuge (Hettich) centrifuge. The supernatant containing both 

DRG wash media and 15% BSA was next removed leaving a pellet of DRG neurons. 4 

ml of DRG wash media was then added, the pellet resuspended, and the spin repeated 

(10 mins at 1500 rpm, 21 oC, Asc 9, Desc 2) using the same centrifuge. The supernatant 

was again removed, and the pellet was resuspended in the appropriate amount of DRG 

low-serum media to allow the cells to plated in 200 µl per well. 

 

2.2.4 Incubation with chimeras 

Dissociated dorsal root ganglia cultures were grown for 2 days prior to the addition of 

chimeras. Half (100 μl) of the low serum media was removed and replaced with fresh 

low serum media, containing the chimera, to give an end concentration of 10 nM of 
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chimera. The culture was then incubated with the chimera for 65 hours at 37 oC, 5% CO2 

in the cell culture incubator.  

 

2.2.5 Immunocytochemistry 

After 65 hours incubation with the respective chimeras, 170 μl of the media containing 

the chimera was removed from the wells and the cells were washed with 150 μl of ice 

cold PBS for 5 minutes before 10 minute fixation with 150 μl 4% PFA. Both steps were 

carried out on ice. The wells were then washed once with 150 μl PBS for 5 min before 

permeabilising the cells with 150 μl of 0.3% triton in PBS. The wells were then washed 

a further two times with 150 μl PBS (first wash 2 minutes, second wash 5 minutes). The 

cells were then incubated in 150 μl blocking solution for immunocytochemistry for 1 hour. 

Next, the blocking solution was removed from the wells and the cells were incubated for 

a further 1 hour with primary antibodies diluted in 150 μl immunocytochemistry specific 

blocking solution. This was again followed by two washes with 150 μl PBS, the first for 2 

minutes and the second for 5 minutes, before incubation with the respective secondary 

antibodies and DAPI (Sigma), again diluted in 150 μl blocking solution, for 45 minutes. 

The cells were then washed at least 3 times with 150 μl PBS (the first wash for 2 minutes 

and then subsequent washes for 5 minutes), prior to imaging.  

 

2.2.6 Epifluorescence microscopy of cell cultures  

Images were acquired on a Leica DM IRB epifluorescence microscope at 20x 

magnification using MicroManager software. Three fields of view were imaged per well. 

To avoid investigator bias, the fields of view were selected by viewing the well at 5x 

magnification and positioning the field of view to be central to each of three set positions 

per well (Fig. 2.2), before then increasing the magnification to 20x. Each experiment was 

completed in triplicates.  

 

Figure 2.2 Selection of the fields of view when imaging 

dissociated dorsal root ganglion cultures. The well of the 

96 well plate was first viewed under 5x magnification to 

position the centre of the field of view at one of the three 

positions depicted. The magnification was then increased to 

20x and the epifluorescent image was taken. This process 

was repeated until epifluorescent images had been taken at 

all three fields of view.  
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2.2.7 Image analysis 

Image analysis and quantification was performed using FIJI. Cells were judged to be 

neurons if they labelled positively with β-Tubulin-III (or Neurofilament 200 or Peripherin, 

dependent on the neuronal marker used) with an intact, healthy nucleus, assessed using 

the DAPI stain, and an intact cell membrane. The region of interest (ROI) of healthy 

neurons was then marked on the brightfield image, using the FIJI freehand selections 

tool (Fig 2.3). The multi-measure function was used to measure the area of the marked 

ROIs and the mean gray value intensity of the pixels contained within the individual ROIs, 

across the multiple image slices. This produced an Excel sheet which was then 

transferred to Microsoft Excel. Here, the cell diameter of neurons was calculated from 

the measured ROI area using the equation “=2*(SQRT(CELL/PI()))”.  

Colocalisation of cleaved SNAP25 with the neuronal markers was determined by a 

thresholding technique. The mean gray value threshold for each antibody stain is listed 

in Table 2.5. A higher threshold was set for the cleaved SNAP25 stain because this 

antibody produced a much brighter, more intense stain than the neuronal markers, 

possibly due to the use of the Anti-mouse IgG (H+L) Cross adsorbed Alexa Fluor 594 

secondary antibody, opposed to Alexa Fluor 488, used to label the neuronal markers. 

The conditional formatting function within Microsoft Excel was used to highlight neurons 

whose immunofluorescence exceeded the set threshold. 

 

  

Figure 2.3 Marking of neurons and image quantification using FIJI. Neurons were identified 

using the βIII-Tubulin stain (left panel). The health of neurons was then determined by identifying 

a DAPI-stained nucleus (3rd panel). Only the healthy neurons with intact nuclei were then outlined 

in the brightfield image (4th panel), using the freehand selection tool. The arrows indicate cells 

which appeared weakly positive for βIII-Tubulin but did not have a nucleus when viewing the DAPI 

image. The dead cells can be seen to produce non-specific immunofluorescence in the Cleaved 

SNAP25 image (2nd Panel).  
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Table 2.7 The mean gray value threshold applied to 

the antibody staining during immunocytochemistry.  

 

 

 

 

 

 

2.2.8 Statistical Analysis of DRG culture images 

One-way analysis of variance (ANOVA) was used to assess the statistical relevance of 

immunocytochemistry data. Statistical significance was defined as P<0.05. In Chapter 4, 

Dunnett’s multiple comparisons was used to specifically compare the binding of BiTox/A 

to each of the alternative botulinum chimeras. In chapter 6, however, the binding profile 

of three chimeras, BiTox/A, TetBot and ChoBot, was compared against each other. This 

meant that all pairwise comparisons were conducted, and therefore the Tukey’s multiple 

comparisons test was used instead. All statistical analysis was conducted using 

GraphPad Prism 7. Results are presented as mean ± S.E.M. 

 

2.3 Animals 

All animal experiments were conducted under a UK Home Office Project License and 

complied with the UK Animals (Scientific Procedures) Act, 1986. Male and female rats 

were purchased from Charles River and breeding pairs were established. Male Sprague-

Dawley rats (150-200 g) from the subsequent litters were then used in experiments. All 

animals were housed in a 12 hour light/dark cycle at 21 oC and in 55% relative humidity. 

Food and water was available ad libitum. 

 

2.4 Injections 

2.4.1 Preparation of clostridial chimeras for injection 

Chimeras were prepared courtesy of Dr C. Leese. The appropriate amount of chimera 

was dissolved in the relevant volume of Buffer A to achieve the desired injection volume, 

most commonly 30 or 50 μl. For the vehicle control, the equivalent volume of 0.4% OG 
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(Octyl β-D-glucopyranoside) used to prepare the chimera, was diluted in Buffer A. Prior 

to injection, both solutions were maintained on ice to ensure their stability. 

 

2.4.2 Intraplantar injection 

Rats were individually anaesthetised in an induction chamber with 4% isoflurane (IsoFlo, 

Zoetis) in oxygen. Once immobile, the rat was then moved to an anaesthesia mask and 

placed in the prone position. The depth of anaesthesia was confirmed by loss of the 

pedal withdrawal reflex in the right hindpaw. The left hindpaw was next cleaned using 

70% ethanol and a 0.3 ml U-100 Insulin syringe (Terumo), coupled to a 29-gauge needle, 

was inserted subcutaneously into the plantar aspect of the left hindpaw. The desired 

volume was then injected into the centre of the footpad, over approximately 5-10 

seconds. The animal was then placed in a recovery cage and monitored for several 

minutes before being returned to its normal cage.  

 

2.4.3 Intraperitoneal injection 

Rats were anaesthetised with 4% isoflurane (in oxygen) in an induction chamber. Once 

anaesthetised, the rats were then removed and gently restrained whilst a 1ml syringe 

coupled to a 27-gauge needle (302200, BD Microlance) was inserted into the posterior 

quadrant of the abdomen, in order to access the peritoneum. The needle was angled so 

that it ran parallel to the line of the hind leg, as to avoid the abdominal organs. The 

necessary volume of substance was then delivered, and the needle withdrawn.  

 

2.5 Experimental pain models 

2.5.1 Chronic inflammatory pain model 

Either 15 μl (Chapter 6) or 30 μl (Chapter 4) of Complete Freund’s Adjuvant (F5881, 

Sigma) was delivered via intraplantar injection (as described in 2.4.1) to the central 

footpad to produce a stable inflammatory state (Stein et al., 1988).  

 

2.5.2 Incisional post-operative pain model 

For the post-operative pain model, rats were deeply anaesthetised in an anaesthesia 

induction chamber, using 4% isoflurane in oxygen, before being secured to an external 

anaesthesia mask in the prone position. The depth of anaesthesia was confirmed by loss 

of the pedal withdrawal reflex in the right hindpaw. The left hindpaw was then cleaned 
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thoroughly using 70% ethanol. An incision, approximately 1 cm in length, was then made 

to the left hindpaw, using a sterile blade (15A, Swann-Morton), extending from the centre 

of the foot pad towards the heel of hindpaw (Brennan et al., 1996). Pressure was then 

applied to the hindpaw for 1-2 minutes until any bleeding had stopped and the incision 

was sealed using VetBond tissue adhesive (3M). The rat was then returned to a recovery 

cage and monitored for 20 minutes to ensure the incision was effectively sealed before 

being returned to a clean cage. 

 

2.5.3 Chemotherapy-induced peripheral neuropathy pain model 

Rats were injected intraperitoneally (described in 2.4.2) with 2 mg/kg paclitaxel (10461, 

Cayman Chemicals), delivered in an injection volume of 1 ml/kg, as described previously 

(Polomano et al., 2001). The correct concentration of paclitaxel was prepared by diluting 

paclitaxel to 2 mg/ml in saline and then injecting the calculated volume, dependent on 

the weight of the individual rat. Rats received a total of 4 intraperitoneal injections of 

paclitaxel, administered on alternate days (day 0, 2, 4 and 6), providing a cumulative 

dose of 8 mg/kg paclitaxel per animal. A separate group of animals simultaneously 

received 4 IP doses of Cremophor EL (C5135, Sigma)/ Ethanol (1:1), used to dissolve 

paclitaxel, to provide a vehicle only group.  

 

2.6 Behavioural studies 

2.6.1 Hargreaves Test 

Rats were placed in clear plastic boxes (20 cm x 20 cm x 14 cm) on top of a glass surface 

and allowed 30-45 minutes to acclimatise. Longer, however, specifically up to 1 hour, 

was allowed during initial baseline measurements. During the acclimatisation period, the 

rats were observed for exploratory behaviour. Only once this behaviour seized and rats 

appeared calm and less mobile, with only occasional bouts of grooming, was the test 

started. Thermal thresholds were determined by Hargreaves test using the Plantar 

Hargreaves' Test Apparatus (37370, Ugo Basile) (Hargreaves et al., 1988). Here, a laser 

heat source (60 IR), situated beneath the glass surface, was positioned under the central 

footpad of both the affected and unaffected hind paw. Once correctly positioned, a switch 

was used to activate the heat source and start an in-built electronic timer. The withdrawal 

latency for when the rat removed its paw from the heat source was electronically 

measured and confirmed by observation. To ensure that no tissue damage occurred 

during testing, a maximum withdrawal latency cut-off value of 20 seconds was imposed. 

A total of four readings were taken for each hindpaw and recorded with a minimum wait 
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of 5 minutes between each consecutive reading. The average withdrawal latency was 

then calculated from the four readings. 

Urine and faeces were cleared for the duration of the test. Urine, especially, interferes 

with the heat absorption of the plantar surface of the paw, and with the reflection of the 

infrared beam, thus disrupting the reading (Ugo Basile, 2013). 

 

2.6.2 Electronic von Freys 

Rats were placed in individual plastic chambers (15cm x 36 cm x 18 cm) on top of an 

elevated wire mesh. Rats were allowed 30-45 minutes to acclimatise, however, a longer 

acclimatisation period was allowed during the initial baseline measurements. Once 

exploratory behaviour had stopped, and rats were still with only occasional short 

grooming periods, the test was started. Mechanical thresholds were assessed using 

electronic Von Frey equipment (EVF3, BioSeb) applied to the centre of the footpad of 

the affected and unaffected hind paw (Ängeby Möller et al., 1998). Pressure was evenly 

applied until the rat withdrew its hindpaw. The force at which the paw was removed was 

then electronically recorded. Four readings were taken per paw and a minimum interval 

of 5 minutes was imposed between consecutive readings. The average mechanical 

withdrawal threshold was then calculated from the four readings for each individual rat. 

 

2.6.3 Evaluation of motor function 

Two separate methods were used to assess motor function. Firstly, hindpaw digit 

spreading, following tail suspension, was used to examine motor innervation. Successful 

digit spreading of the hindpaw indicated sufficient intact motor innervation of the hindpaw 

(Wen et al., 2015). Secondly, a suspension test was used to assess muscle weakness 

and loss of muscle tone (Mangione et al., 2016). During this test, the rats were placed 

on a wire mesh. The mesh was then inverted and held approximately 30 cm over a 

cushioned cage. It was recorded whether rats were able to successfully grip the wire 

mesh or whether they fell immediately. Additionally, rats were observed for any signs of 

limping or dragging of the hindlimb, indicative of muscular paralysis, during normal 

exploratory behaviour.  

 

2.6.4 Statistical Analysis  

Two-way ANOVA was used to determine the statistical significance of the behavioural 

results. Sidak’s multiple comparisons test was used, post-hoc, to determine whether any 
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statistical differences existed between treatment groups at each individual time point. 

Statistical significance was defined as P<0.05. All statistical analysis was conducted 

using GraphPad Prism 7. Results are presented as mean ± S.E.M.  

  

2.7 Immunohistochemistry 

2.7.1 Transcardial Perfusion 

Rats were euthanized by an overdose of anaesthetic via intraperitoneal injection 

(described in 2.4.2) of pentobarbital (150 mg/kg) (JML), delivered under 4% isoflurane. 

Loss of the pedal withdrawal reflex and corneal reflex was used to confirm the depth of 

anaesthesia before proceeding with the perfusion. The rat was then placed in the supine 

position and a midline incision was made, extending up to the chest. The heart was 

accessed by cutting through the diaphragm and removing the ribcage using iris scissors 

(WPI). Once exposed, a 19-gauge needle (BD Microlance) was inserted into the left 

ventricle of the heart and secured using a needle holder (Arnold). Microscissors (WPI) 

were used to make an incision to the right atrium to allow the exit of fluids. The animal 

was perfused with 300 ml PBS followed by 300 ml 4% PFA. The animal was then 

released from the perfusion system and the relevant tissues were collected. These 

included the spinal cord, the dorsal root ganglia and glabrous skin, taken from the plantar 

surface of both hindpaws.  

 

2.7.2 Preparation of tissue 

Following the dissection, the tissues were post-fixed in 4% PFA for 4 hours at room 

temperature. The tissues were then transferred to 30% sucrose and stored at 4oC until 

sectioned. Additionally, with regards to the spinal cord collected, an incision was made 

to the contralateral ventral horn using a blade (15C, Swann-Morton) to enable 

identification of the contralateral spinal cord during image analysis. 

 

2.7.3 Sectioning of tissue 

All tissue specimens to be processed were emerged in Cryo-M-Bed OCT embedding 

medium (53581-1, Bright) and frozen at -40 oC. 30 μm sections were prepared using a 

cryostat (OFT5000, Bright Instruments). Transverse spinal cord sections and glabrous 

skin sections were collected and consequently stored at 4 oC in 5 % sucrose in PBS as 

free-floating sections. Conversely, dorsal root ganglion sections were mounted directly 
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onto SuperFrost plus slides (ThermoFisher) and then stored at -20 oC until further 

immunohistochemical processing. 

 

2.7.4 Immunohistochemical staining  

Free-floating sections received three 10 minutes washes in PBS. Sections were then 

incubated with blocking solution (5% Goat serum, 0.03% Triton X-100 in 1x PBS) for one 

hour at room temperature before overnight incubation at 4 oC with the relevant primary 

antibodies, diluted in working solution (2% Goat serum, 0.03% Triton X-100 in 1x PBS). 

The next day, the sections were washed a further three times in 1x PBS. Again, each 

wash was 10 minutes long. Sections were then incubated with the corresponding 

secondary antibodies, diluted in the working solution for 2 hours. DAPI (Sigma) was also 

added at this stage. Sections underwent an additional three 10 minute washes in PBS 

before being mounted onto SuperFrost plus slides (ThermoFisher). The DRG slide-

mounted sections were processed identically except for each set of three 10 minutes 

washes, the slides were instead washed 5 times for 5 minutes. PBS was again used for 

the washes. In both instances, the slides were allowed to air dry before adding 

Fluoromount aqueous mounting medium (Sigma) and applying a 22x64 mm coverslip 

(401/0188/52, BDH) to the slides, ready for immunofluorescent and confocal microscopy.  

 

2.7.5 Imaging and microscopy of sections 

Sections were imaged on a Leica DM IRB epifluorescence microscope at 5x, 10x, 20x 

and 40x magnifications, using MicroManager software. Where specified, images were 

acquired on a Nikon A1 TIRF confocal microscope at 40x magnification. 

  

2.7.6 Image analysis 

Image analysis and quantification was performed using FIJI. Similar to that described in 

2.2.8, thresholding was again applied to quantify in vivo images. This technique is 

specifically used in Chapter 5. A predetermined threshold was first applied to the chosen 

image to select either the motor neurons of the ventral horn (5.3.2), or the whole of the 

tissue section (5.3.3). The FIJI analyse particles function was then used to generate an 

outline and calculate the area contained within the marked outline (tissue section, 5.3.3) 

or outlines (motor neurons, 5.3.2). Another threshold was then applied to highlight the 

area containing the other relevant immunofluorescent stain. Again, the analyse particles 

function was executed to create, outline and measure the area of the selected 
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immunofluorescence. This generated a summary excel sheet, detailing the total area 

measured within the outlines, which was then exported to Microsoft excel. The 

immunofluorescence was subsequently expressed as a percentage of the total area, 

either of the tissue section or of the motor neurons. A working example is shown in 

Figure. 2.4. 

 

2.8 Western Blot 

2.8.1 Protein extraction from whole Dorsal Root ganglia 

Dorsal root ganglia from L3-L6 were collected as described in 2.2.2. In this instance, 

however, they were collected into ice cold PBS in individually labelled 1.5 ml Eppendorf 

tubes. Once the dissection was complete, the eppendorf tubes containing the individual 

DRGs were centrifuged at 13200 RPM for 1 minute and the excess PBS was removed. 

Each DRG was then individually transferred to a 0.1ml homogeniser and 40 μl of DRG 

lysis buffer was added. The DRG was homogenised for several minutes whilst being 

maintained on ice. Once sufficiently homogenised, the lysate was transferred back into 

an eppendorf tube which was then placed on a rotator for 1 hr and vortexed every 15 

mins, whilst kept at 4 oC. The eppendorf tubes containing the lysate were then 

centrifuged at 13200 RPM for 1 minute. The supernatants were then collected into fresh 

eppendorfs before being placed in a heat block, set at 90 oC, for 3 minutes. The 

supernatant was then either loaded immediately onto a gel or stored in -20 oC until 

required. 

 

2.8.2 Protein extraction from cultured neurons  

1x SDS sample buffer was prepared by diluting 4x SDS buffer in deionised water and 

then adding 1 mM MgCl₂ and 0.1 % benzonase nuclease (Sigma). All media was 

aspirated from the wells of the 24-well plate. 60 μl of 1x sample buffer was added per 

well and the plate was then shaken for 10 minutes at 650 rpm, at room temperature, to 

lyse cells. The lysates were then collected into 1.5 ml eppendorf tubes and boiled for 3 

minutes (>90 oC) before being centrifuged at 13200 RPM for 1 minute. Lysates were 

then either immediately loaded into a gel for western blot or stored at -20 oC for later use. 

 

2.8.3 Western Blot 

NuPAGE 12 % Bis-Tris pre-cast gels (Life Technologies) were loaded with a 5 μl Dual 

Colour protein ladder (Biorad) in the first lane and 13 μl of sample in the subsequent 
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Figure 2.4 Thresholding to 

quantify in vivo images. (A) An 

epifluorescent image of cleaved 

SNAP25 (green) in the lumbar 

spinal cord, following intraplantar 

injection of 2xTetBot (Chapter 5). 

(B) A low threshold was applied 

to the epifluorescent image to 

select the whole of the tissue 

section (left). The FIJI analyse 

particles function was then used 

to generate an outline and 

calculate the area contained 

within (right). (C) A higher 

threshold was then applied to 

highlight only the area containing 

the cleaved SNAP25 stain (left). 

Again, the analyse particles 

function was performed to 

create, outline and measure the 

area of the cleaved SNAP25 

stain (right). (D) The 

measurements were transferred 

to Microsoft excel to express the 

cleaved SNAP25 stain as a 

percentage of the total section 

area.  
 
 
 
 

 

lanes. Gels were run at 180 V constant and 300 W for 1 hour 50 min in an XCell SureLock 

system (Life Technologies) filled with NuPAGE MES SDS running buffer. Approximately 

5 minutes before completion, an immunoblot PVDF membrane (BioRad) was activated 

by soaking it in methanol for 10-20 seconds. The membrane was then soaked in transfer 

buffer, along with two pieces of Whatmann paper. Once ran, the gel was then loaded 

into a transfer cassette and placed into a transfer tank (BioRad), filled with transfer buffer. 

The transfer cassette was ordered such that it contained: a foam sponge, whatmann 

paper, gel, a methanol-activated Immuno-Blot PVDF membrane, a second whatmann 

paper and a foam sponge. A freezer block was placed in the transfer tank and the transfer 

was run for 1 hour at constant 250 mA, 300 V and 300 W.  
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Once the transfer was complete, the membrane was gently washed with deionised water 

before incubation with 12 ml western blot blocking solution for 30 minutes at room 

temperature. The primary antibodies were then added directly to the blocking solution 

for overnight incubation at 4 oC. For all incubation and wash steps, the membrane was 

placed on a rocker. The following day, the membrane was rinsed and then received three 

5 minutes washes in PBS with 0.1 % Tween-20. Next, the membrane was incubated with 

the respective secondary antibodies, again diluted in western blot blocking solution, for 

30 minutes at room temperature. The membrane was then rinsed and underwent a 

further three 5 minutes washes in PBS with 0.1 % Tween-20. 0.4 ml of chemiluminescent 

solution (SuperSignal West Dura extended duration substrate, Thermo Scientific) was 

then added per membrane. The subsequent luminescence was visualised by exposing 

X-ray film (Amersham) to the membrane and then developing the X-ray film using an 

Optimax 2010 X-ray developer (Protec).  
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Chapter 3. In vivo characterisation of BiTox/A enzymatic activity following 

intraplantar injection 

 

3.1 Introduction 

BiTox/A has been shown to be analgesic in neuropathic pain conditions, however, it is 

not yet clear how BiTox/A is producing these therapeutic effects. It has been suggested 

that BiTox/A binds to, and is enzymatically active in, A-nociceptors (Mangione et al., 

2016). This theory is largely based on the observation that native BoNT/A, when added 

to dorsal root ganglion (DRG) cultures, inhibits calcium-dependent release of substance 

P in response to both capsaicin and potassium stimulation (Purkiss et al., 2000; Welch 

et al., 2000). It is namely the C-fibre and the Type I Aδ-fibre mechano-heat sensitive 

nociceptors that are responsive to capsaicin stimulation (Magerl et al., 2001). For this 

reason, it was assumed that one of these fibres types must be targeted by BiTox/A.  

Data generated by Mangione et al. (2016) then demonstrated that administration of 

BiTox/A specifically attenuated secondary hyperalgesia in pain models whilst primary 

hyperalgesia remained unaffected. This again indicates the involvement of Aδ- 

nociceptors, as well as possibly, Aβ- sensory neurons. Secondary hyperalgesia arises 

from increased input from the low threshold mechanoreceptors, the Aβ-fibre neurons, 

and the Aδ-nociceptors, to the pain signalling pathways, such that they begin to drive, 

and augment, the activity of these pain pathways (Ziegler et al., 1999). This occurs at 

the level of the central spinal cord and is believed to result from heterosynaptic 

facilitation, as a consequence of central sensitisation (Treede et al., 1992; Ziegler et al., 

1999; Woolf, 2011). From the collective evidence, it was thus suggested that the A-

nociceptors must be implicated in the analgesic effects of BiTox/A (Mangione et al., 

2016).  

Regardless of which sensory neuron subtypes are involved, it still remains unclear 

whether these analgesic effects are peripherally or centrally mediated. A central effect 

was suggested due to the perceived delay noted in the therapeutic effect of BiTox/A 

(Mangione et al., 2016). Western blot analysis of tissue taken from BiTox/A-injected 

animals, nevertheless, failed to detect cleaved SNAP25 at the central level of dorsal horn 

in the spinal cord, or in the dorsal root ganglia, implying a peripherally-mediated effect 

(Mangione et al., 2016). Skin tissue from the plantar surface of the injected hindpaw was 

not, however, included in the western blot analysis. It is therefore unknown whether 

cleaved SNAP25 would have been detected in the periphery either. As a result, this data 

does not completely discredit a central effect.  
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Consequently, here, the binding profile of BiTox/A will be investigated in vivo, using the 

in-house anti-cleaved SNAP25 antibody as a marker of BiTox/A’s enzymatic activity, and 

as an indirect reporter to determine the location of BiTox/A. This method will be used to 

confirm whether BiTox/A is active in the A-nociceptors in vivo, and potentially, will help 

to elucidate the mechanism by which BiTox/A-induced analgesia is produced. 

Specifically, whether this is by blocking neurotransmission in the peripheral afferents, or 

by preventing the development of central sensitisation at the level of the spinal cord.  

 

3.2 Results 

3.2.1 Cleaved SNAP25 is visualised in the sensory neurons of the glabrous skin 

following intraplantar injection of BiTox/A 

Immunohistochemical processing of glabrous skin sections, isolated from the plantar 

surface of the BiTox/A-injected hindpaw, revealed SNAP25 cleavage within the sensory 

neurons (Fig. 3.1A). Briefly, the sensory neurons were identified using pan-neuronal 

marker, βIII-Tubulin, which labels all nerve fibres, including both sensory and motor 

fibres. The location of the nerve terminals can, however, be used to distinguish the 

sensory nerve fibres from the motor nerve fibres. Sensory nerve fibres terminate more 

superficially within the dermis. Specifically, sensory nerve terminals are concentrated 

proximal to the epidermis. Motor neurons instead project to muscle fibres which are 

located much deeper in the skin, beneath the dermis.  

Cleaved SNAP25 was not visualised in the sensory neurons of the contralateral hindpaw 

or in ipsilateral paw of vehicle-injected animals. Neither was cleaved SNAP25 observed 

in the paw skin tissue of naïve animals.  

Further immunostaining indicated that cleaved SNAP25 colocalises with neurofilament 

200 (NF200) -positive nerve fibres, a marker of myelinated neurons (Fig. 3.1B, Top 

panel), as well as IB4 (Fig. 3.1B, Middle panel) which labels non-peptidergic neurons 

(Stucky and Lewin, 1999). Cleaved SNAP25 was visualised within a subset of CGRP 

positive neurons (Fig. 3.1B, Bottom panel). Subjective observations, however, suggest 

that cleaved SNAP25 colocalised most readily with NF200. Importantly, the labelling for 

cleaved SNAP25 was shown to colocalise with the staining produced by the anti-

SNAP25 antibody, which is immunoreactive to both whole and cleaved SNAP25, in 

BiTox/A-injected animals (Fig. 3.1C). 
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Figure 3.1 Cleaved SNAP25 is detected in the sensory nerve terminals of the glabrous skin 

after intraplantar injection of BiTox/A. 4-5 week old male Sprague-Dawley rats received 

intraplantar injection of either 200 ng/ 30 µl BiTox/A (N=3) or 30 µl vehicle (N=2). 7 days post-

injection rats were perfused and glabrous skin tissue was taken from both hindpaws. (A) 

Epifluorescent images of 30 µm glabrous skin sections, isolated from the ipsilateral hindpaw, 

revealed cleaved SNAP25 (red) in the sensory neurons, marked using βIII-Tubulin (green), within 

the dermis (N=3). Cleaved SNAP25 was not detected in the contralateral hindpaw of BiTox/A-

injected rats (N=3), in the ipsilateral hindpaw of vehicle-injected rats (N=2) or in naïve rats (N=2). 

Scale bar = 100 µm (B) Cleaved SNAP25 (red) colocalised with both NF200 (top panel, green, 

N=2) and IB4 labelled neurons (middle panel, green, N=2) and was also observed in a subset of 

CGRP-positive neurons (bottom panel, green, N=2) in the BiTox/A-injected hindpaw. Scale bar = 

100 µm (C) Cleaved SNAP25 staining (red) also colocalised with staining produced by a SNAP25 

antibody, reactive to both full length and cleaved SNAP25 (green). Scale bar = 50 µm. Positive 

cleaved SNAP25 staining is indicated by the white arrowheads. The large, intense area of green 

and red fluorescence visible at the superior edge of the images is due to autofluoroscence 

generated by the dermis and epidermis of the skin sections and can thus be ignored. 

 

 

 

3.2.2 Cleaved SNAP25 is visualised at the neuromuscular junctions of the glabrous 

skin following intraplantar injection of BiTox/A 

In agreement with previous studies, no motor paralysis was observed following 

intraplantar injection of 200 ng BiTox/A (Ferrari et al., 2011; Mangione et al., 2016). Rats 

continued to span the digits of their hindpaws normally when elevated and continued to 

be able to successfully grasp and remain suspended from an inverted wire mesh. 

Despite the perceived lack of motor paralysis, cleaved SNAP25 staining was detected at 

the neuromuscular junction (NMJ), labelled using α-Bungarotoxin-AlexaFluor488 (αBTX-

488), and moreover, could also be seen in the nerve fibres innervating the NMJ (Fig. 

3.2A, Top panel). Unexpectedly, SNAP25 cleavage was similarly visualised at the NMJ 

in skin isolated from the contralateral hindpaw (Fig. 3.2A, Second panel). Cleaved 

SNAP25 was not, however, present at the neuromuscular junction of vehicle-injected 

rats or naïve rats (Fig. 3.2A, Third and Bottom panel). 

Again, cleaved SNAP25 was shown to colocalise with whole SNAP25 labelling following 

BiTox/A injection, confirming that the cleaved SNAP25 antibody is labelling neurons 

which normally express SNAP25 (Fig. 3.2B).  
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Figure 3.2 Cleaved SNAP25 is detected at the neuromuscular junction of the hindpaw after 

intraplantar injection of BiTox/A. (A) Cleaved SNAP25 immunolabelling (red) was detected at 

the neuromuscular junction, marked using α-bungarotoxin-488 (green), in the ipsilateral (N=3) 

and contralateral hindpaw (N=3) in 200 ng/ 30 µl BiTox/A-injected animals. Cleaved SNAP25 was 

not detected in the ipsilateral paw of vehicle-injected rats (N=2) or naïve animals (N=2). Scale bar 

= 50 µm (B) Immunolabelled cleaved SNAP25 (red) colocalised with SNAP25 staining (green), 

immunoreactive to both full length and cleaved SNAP25, at the neuromuscular junction. Scale 

bar = 50 µm. 
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3.2.3 Cleaved SNAP25 is detected in other innervated structures contained within 

the skin 

Cleaved SNAP25 was also found localised to other structures within the skin. Namely, 

cleaved SNAP25 was detected at the sweat glands (Fig. 3.3, Top panel) and blood 

vessels (Fig. 3.3, Bottom panel). Both of which receive neuronal innervation from the 

sympathetic nervous system. 

 

3.2.4 SNAP25 cleavage is not detected in the lumbar dorsal root ganglia following 

intraplantar injection of BiTox/A  

Although SNAP25 cleavage was detected in the peripheral sensory nerve terminals, 

cleaved SNAP25 could not be detected at the level of the dorsal root ganglia (DRGs). 

Multiple methods were used to confirm this. Firstly, DRG cultures were produced from 

ipsilateral and contralateral DRG, taken from the lumbar levels L3-L5, of rats which, 5 

days previously, had received intraplantar injection of 300 ng BiTox/A. Staining of these 

cultures did not reveal positive labelling for cleaved SNAP25 in any of the DRG from the 

investigated lumbar levels, ipsilateral or contralateral to the injected paw (Fig. 3.4A). To 

confirm that this was not a result of cells potentially being lost during the culturing 

protocol,

  

Figure 3.3 Cleaved SNAP25 is detected at the sweat glands and blood vessels of the 

glabrous skin after intraplantar injection of BiTox/A. Cleaved SNAP25 immunolabelling (red) 

is found colocalised with SNAP25 staining (green), labelling both whole and cleaved SNAP25, at 

the sweat glands and the blood vessels located in the glabrous skin of the 200 ng/ 30 µl BiTox/A-

injected hindpaw (N=3). Scale bars = 50 µm. 
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Figure 3.4 Cleaved SNAP25 is absent in the dorsal root ganglia following intraplantar 

injection of BiTox/A. (A) A 6 week old female Sprague-Dawley rat (N=1) received intraplantar 

injection of 300 ng/ 30 µl BiTox/A and was culled 5 days later. Dissociated dorsal root ganglia 

cultures were prepared from the ipsilateral and contralateral L3-L6 DRGs. Cleaved SNAP25 

immunofluorescence (red) was not detected in any sensory neurons, marked by βIII-Tubulin 

(green), in DRG cultures from any level, either ipsilateral or contralateral to the injected paw. 

Scale bar = 50 µm. (B) Cleaved SNAP25 (red) was not detected in 30 µm DRG sections, prepared 

from the ipsilateral L4 and L5 DRG, taken from a 4 week old male rat (N=1) which had received 

intraplantar injection of 100 ng/ 20 µl BiTox/A 8 days previously. NeuN marks the sensory neuron 

soma (green). Scale bar = 50 µm. (C) Western blot analysis was performed on lysates prepared 

from ipsilateral and contralateral DRGs (L3-L6) dissected from a 6 week old female Sprague-

Dawley rat (N=1) which had received intraplantar injection of 300 ng/ 30 µl BiTox/A 5 days earlier. 

Western blot, probed with an antibody immunoreactive to whole and cleaved SNAP25, displayed 

bands for whole SNAP25 for each DRG. No bands for cleaved SNAP25 were detected. Syntaxin 

was included as a loading control. 

 

protocol, the DRG of 100 ng BiTox/A-injected rats were removed and cryosectioned. 

Immunolabelled DRG sections were also negative for cleaved SNAP25 (Fig. 3.4B). 

Finally, lysates were prepared from individual DRGs, again taken from the lumbar levels 

L3-L5, both ipsilateral and contralateral to the 300 ng BiTox/A-injected hindpaw. Western 

blot, likewise, failed to recognise any cleaved SNAP25 in DRG isolated from the lumbar 

region (Fig. 3.4C). 

 

3.2.5 Cleaved SNAP25 is observed in the ventral horn of the lumbar spinal cord 

following intraplantar injection of BiTox/A. 

Again, despite the lack of motor paralysis observed, cleaved SNAP25 was detected 

within the ventral horn of the lumbar spinal cord of rats receiving intraplantar injection of 

BiTox/A. Specifically, cleaved SNAP25 was identified between levels L3-L5 of the spinal 

cord, as well as at the sacral region, S1 (Fig. 3.5A) with the strongest labelling visualised 

at L5. This staining was absent at L5 in vehicle-injected and naïve rats (Fig. 3.5B).  

Labelling of the spinal cord sections with SNAP25 showed that although SNAP25 is 

expressed globally across the spinal cord, both in the dorsal and ventral horn, cleaved 

SNAP25 is only detected in a proportion of these nerve fibres and these fibres centre 

around the ipsilateral motor neurons of Lamina IX (Fig. 3.6A). Specifically, cleaved 

SNAP25 is not detected within the motor neuron soma themselves and is not present at 

the outer membrane. Instead, it appears to be contained within the neurons, presumably 
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Figure 3.5 Cleaved SNAP25 is detected in the lumbar spinal cord after intraplantar injection 

of BiTox/A 4-5 weeks old male Sprague-Dawley rats (N=3) received intraplantar injection of 200 

ng/ 30 µl BiTox/A. (A) Representative images were taken of cleaved SNAP25 staining (green) at 

L3-6 and S1 of the spinal cord. NeuN was used to label the neuronal soma (red). Cleaved 

SNAP25 staining was most intense at L5. (B) Cleaved SNAP25 staining is not observed in the 

lumbar spinal cord of vehicle-injected or naïve rats. Scale bar = 0.5 mm. 

 

interneurons, which synapse on to the motor neurons (Fig. 3.6B). This is clearly 

demonstrated by the absence of any overlap between the cleaved SNAP25 and NeuN 

stains when images are taken at different slices throughout a single spinal cord section 

(Fig. 3.6C). 

 

3.2.6 Small amounts of cleaved SNAP25 are observed in the dorsal horn following 

intraplantar injection of BiTox/A 

With regards to the dorsal horn, cleaved SNAP25 was sparsely detected in the dorsal 

horn in comparison to large area of SNAP25 cleavage visualised in the ventral horn (Fig. 

3.6B). Specifically, single neurites containing cleaved SNAP25 were detected in the 

ipsilateral dorsal horn (Fig. 3.7, Top panel) which were largely absent in the contralateral 

dorsal horn (Fig. 3.7, Bottom panel). 

 

3.3. Discussion 

Here, the experimental conditions of Mangione et al. (2016) were replicated by injecting 

200ng BiTox/A intraplantar into the hindpaw of Sprague-Dawley rats, with the intent to 

elucidate the mechanisms by which BiTox/A elicits its analgesic effect. 

Immunohistochemical staining revealed SNAP25 cleavage, considered to be indicative 

of BiTox/A’s enzymatic activity, concentrated in the sensory and motor neurons of the 

glabrous skin of the injected hindpaw and in the ipsilateral ventral horn of the lumbar 

spinal cord. 

 

3.3.1 BiTox/A cleaves SNAP25 in myelinated sensory neurons in vivo 

Specifically, cleaved SNAP25 was visualised in both the NF200-positive neurons and 

the IB4-positive neurons, contained within the glabrous skin. This labelling suggests that 

BiTox/A internalises into myelinated, non-peptidergic neurons. Cleaved SNAP25 was 

also detected within a subset of CGRP-positive neurons. The expression of the 



79 
 

 



80 
 

Figure 3.6 Cleaved SNAP25 is found concentrated around the motor neuron soma in 

lamina IX of the lumbar spinal cord. (A) Spinal cord sections produced from a 4.5 weeks old 

male Sprague-Dawley rat (N=1) injected intraplantar with 200 ng/ 30 µl BiTox/A 7 days previously, 

displayed cleaved SNAP25 (green) colocalised with SNAP25 staining (red), immunoreactive to 

full length and cleaved SNAP25. Scale bar = 0.5 mm. (B) Higher magnification image of the 

ipsilateral L5 spinal cord, isolated from 200 ng/ 30 µl BiTox/A injected rats (N=3), acquired using 

a Nikon A1 TIRF confocal microscope. Cleaved SNAP25 (green) is observed surrounding the 

lateral lamina IX (dashed line) motor neuron pool (NeuN, red). Scale bar = 50 µm. (C) Stacked 

images were acquired using the Nikon A1 TIRF confocal microscope throughout the depth of a 

L5 lumbar spinal cord section and illustrate that cleaved SNAP25 (red) is excluded from the motor 

neuron soma (red). Scale bar = 20 µm. 

 

neuropeptide, CGRP, indicates that these neurons are peptidergic. This is in keeping 

with other in vitro studies that have reported reduced CGRP release from neuronal 

cultures which have been incubated with BiTox/A (Durham et al., 2004) . Similarly, in 

vivo studies have demonstrated decreased CGRP release from the sensory afferents of 

the bladder following intravesical delivery of BoNT/A (Chuang et al., 2004).  

Subjective observation of the skin sections suggested that there was a higher 

colocalisation of cleaved SNAP25 staining with NF200 labelling than CGRP labelling in 

sensory nerve terminals. These observations are subjective and purely speculative. The 

immunofluorescence in sensory neurons was unable to be quantified as it was not clear 

following immunostaining, whereabout in the plantar surface the skin section had been 

isolated from. Additionally, cleaved SNAP25 was not consistently detected within every 

skin section, therefore, a method could not be standardised to allow for a fair comparison 

to be made. Despite this, within a single slice, cleaved SNAP25 would be routinely 

visualised within every NF200 positively labelled neuron present. In contrast, cleaved 

SNAP25 would only be detected within a subset of CGRP-positive nerve fibres, even 

when investigating one individual skin section.  

Regardless, the detection of cleaved SNAP25 at the peripheral injection site suggests 

that the analgesic effect of BiTox/A should at least partially be due to a peripheral 

mechanism. The Aδ- and Aβ- neurons, labelled by NF200, are more strongly implicated 

in central sensitisation (Latremoliere and Woolf, 2009). It is thus possible that the 

cleavage of SNAP25 in these neurons could be having an indirect effect on central 

sensitisation by removing the peripheral drive which leads to increased excitability at the 

central synapse, thus explaining the effectiveness of BiTox/A against secondary 

hyperalgesia (Mangione et al., 2016).  
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Figure 3.7 Cleaved SNAP25 is detected in single, sparse nerve fibres in the dorsal horn of 

the lumbar spinal cord. Higher magnification images of the dorsal horn of spinal cord sections 

prepared from 4-5 week old Sprague-Dawley rats (N=3), 7 day after intraplantar injection of 200 

ng/ 30 µl BiTox/A, show single nerve fibres displaying immunolabelling for cleaved SNAP25 

(green) in the ipsilateral dorsal horn (top panel). Neuronal soma are labelled by NeuN (red). 

Cleaved SNAP25 is not readily detected in the contralateral dorsal horn (bottom panel). A single, 

small cleaved SNAP25- positive nerve fibre can be seen around lamina VI, at the base of the 

dorsal horn. Scale bar = 100 µm. 

 

Cleaved SNAP25 detected in a subset of CGRP-expressing neurons could likely explain 

the reduced plasma extravasation and inflammatory oedema, measures of local 

inflammation, observed in inflammatory models after intraplantar injection of BiTox/A 

(Mangione et al., 2016). CGRP is released from the peripheral nerve terminals of sensory 

afferents and contributes to neurogenic inflammation. It is hence logical that blocking this 

release would reduce local inflammation (Kilo et al., 1997). Surprisingly, however, C-fibre 

mediated thermal hyperalgesia at the site of inflammation remains unaffected by 

intraplantar injection of BiTox/A (Weng et al., 2012; Mangione et al., 2016). This would 

suggest that the reduction in CGRP release is primarily mediated via actions at the Aδ- 

nociceptors, which also display expression of CGRP, although less so than the C-

nociceptors, as C-fibre signalling does not appear to be affected (McCarthy and Lawson, 

1990). This could provide explanation for why, despite the reduction in local inflammation 

by BiTox/A observed, that C-fibre mediated thermal hyperalgesia is still developed. 

 

3.3.2 The possible significance of SNAP25 cleavage detected at autonomic 

structures 

Notably, SNAP25 cleavage was also detected at the blood vessels and sweat glands, 

located in the glabrous skin, following intraplantar injection of BiTox/A. Cleaved SNAP25 

is normally reported at these structures following administration of native BoNT/A 

(Rhéaume et al., 2015) and represents the internalisation of BoNT/A into cholinergic 

autonomic neurons (McCorry, 2007). Accordingly, BoNT/A is used to treat conditions 

such as axillary hyperhidrosis, characterised by excessive sweating (Heckmann et al., 

2001; Mirkovic et al., 2018).  

The SNAP25 cleavage noted in the autonomic nervous system could potentially 

represent another, yet unexplored, possible therapeutic mechanism for the analgesic 

effect of BiTox/A. Sympathetic blockade and sympathectomy have been used to treat 

chronic pain conditions, such as complex regional pain syndrome (Straube et al., 2013; 
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O’Connell et al., 2016) and post-herpetic neuralgia (Kumar et al., 2004). Xie et al. (2016) 

demonstrated that performing a microsympathectomy reduced local inflammation and 

subsequent pain behaviour in a model of lower back pain in Sprague-Dawley rats. During 

this procedure, the ipsilateral gray rami, containing the postganglionic sympathetic fibres 

that project to the L4 and L5 sensory nerve branches, were severed. BiTox/A could be 

eliciting a similar effect by blocking neurotransmission in the sympathetic neurons, 

specifically those which innervate the hindpaw, thus limiting the inflammation which 

occurs in, and augments, pain conditions. 

Native botulinum neurotoxin has already been used to successfully prolong the analgesic 

effect of a sympathetic nerve block (Choi et al., 2015). Importantly, however, this finding 

was based on a case study including only two patients. Furthermore, although 

sympathetic blockade has been routinely used to treat chronic pain conditions, its 

efficacy remains questionable (Straube et al., 2013; O’Connell et al., 2016). Lack of 

adequate controls and the poor quality of data consequently generated by these trials, 

means that conclusions about the efficacy of sympathetic blocks cannot be made. 

Moreover, Xie et al. (2016) noted the beneficial effect of microsympathectomy 

specifically with reference to a condition with a large inflammatory component. The 

analgesic effect of BiTox/A was most prominent in neuropathic conditions which do not 

have a strong inflammatory component (Mangione et al., 2016). Overall, it is therefore 

unlikely that an action at autonomic neurons is the mechanism by which BiTox/A is 

eliciting its analgesic effect.  

 

3.3.3. The absence of cleaved SNAP25 in the dorsal root ganglia 

Despite the SNAP25 cleavage detected at the peripheral nerve terminals, cleaved 

SNAP25 was not detected in dorsal root ganglia where the somas of the pseudopolar 

sensory neurons are located. Although all three methods used to detect SNAP25 

cleavage employed only an N of one, each method repeatedly confirmed the absence of 

cleaved SNAP25 within the dorsal root ganglia, thus increasing the overall validity of this 

observation. This finding is not entirely surprising given that SNAP25 is a synaptic 

protein, involved in the release of neurotransmitter, and is thus more localised to the 

axons and axonal terminals, rather than the neuronal soma (Oyler et al., 1989; Tao-

Cheng et al., 2000). Consequently, high levels of SNAP25 would not be expected in the 

dorsal root ganglia which could explain the absence of SNAP25 cleavage. It would thus 

be recommended to investigate the distribution of the SNAP25 in the dorsal root ganglia, 

by immunolabelling with the SNAP25 antibody, to determine whether this is the case.  
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Interestingly, Matak et al. (2011) investigated the analgesic effect of BoNT/A, following 

intraganglionic injection, after observing that peripheral injection of BoNT/A to the 

whisker pad of rats reduced formalin-induced orofacial pain and produced cleaved 

SNAP25 in the dorsal horn of the ipsilateral trigeminal nucleus caudalis. While they 

similarly observed a reduction in formalin-induced orofacial pain behaviours following 

intraganglionic injection, this effect was only observed when BoNT/A was injected two 

days prior to formalin challenge. BoNT/A injected 24 hours before the formalin test, or 

co-administered with colchicine, which blocks axonal transport, failed to elicit an 

antinociceptive effect. This consequently implies that the dorsal root ganglia are not the 

site of action for BoNT/A. Instead, the delay necessary to observe the analgesic effect 

indicates that BoNT/A still requires axonal transport to another area to produce 

analgesia, thus supporting the absence of cleaved SNAP25 in the DRG reported here.  

 

3.3.4 BiTox/A does produce SNAP25 cleavage at the central spinal cord 

In contrast, whilst investigating whether BiTox/A might have a centrally-mediated 

analgesic effect, cleaved SNAP25 was found readily detected at the level of the spinal 

cord, specifically concentrated around lamina IX of the ipsilateral ventral horn, as 

reported previously following intraplantar injection of native BoNT/A (Matak et al., 2012, 

2017; Drinovac et al., 2016). Comparable to other studies that investigated native 

BoNT/A, sparse individual nerve fibres, displaying cleaved SNAP25 immunolabelling, 

were identified within the ipsilateral dorsal horn after intraplantar injection of BiTox/A 

(Matak et al., 2011, 2012, 2017; Drinovac et al., 2016). This strongly suggests that axonal 

transport of BiTox/A to the central nervous system does occur. Notably, cleaved SNAP25 

was not detected within the motor neuron cell bodies, as delineated by NeuN, but instead 

appeared to be present in a network of nerve fibres, surrounding the motor neurons, 

hypothesised to be interneurons.  

Cai et al. (2017) dispute this observation, claiming that cleaved SNAP25 is instead 

confined within the dendritic arborisations of the motor neuron pool. They were able to 

demonstrate this by injecting Cholera toxin B subunit Alexa Fluor 488 conjugate (CTB-

488), a neuronal tracer, used to label the motor neurons of the ventral horn, and showed 

that this colocalised with the cleaved SNAP25 immunostain. There were, however, many 

fibres displaying cleaved SNAP25 that did not colocalise with CTB-488. Similar to the 

findings reported here, cleaved SNAP25 was visualised adjacent to the plasma 

membrane, outside of the external edge of the NeuN stain here, and the CTB-488 stain 

in their study. This cleaved SNAP25 staining appeared to look like end-feet, projecting 

to the motor neurons, which they did not acknowledge or account for. As stated earlier, 
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SNAP25 is a synaptic protein and therefore it would be expected that SNAP25 would be 

concentrated at the axonal terminals, and not at the plasma membrane of the cell soma 

(Tao-Cheng et al., 2000) as Cai et al. (2017) suggest. 

Cleaved SNAP25 being contained solely within the motor neuron dendritic arborisations 

seems unlikely given the expanse and density of the cleaved SNAP25 stain. Specifically, 

at L5, the cleaved SNAP25 staining can be seen extending into the white matter of the 

spinal cord, as well as in single fibres projecting up to the dorsal horn. This data instead 

suggests that BiTox/A might transcytose into second order neurons. Evidence for the 

transcytosis of BoNT/A has been already provided by two separate studies (Antonucci 

et al., 2008; Restani et al., 2011). For example, Restani et al. (2011) demonstrated this 

by intravitreal injection of BoNT/A to the eye of rats which resulted in detectable cleaved 

SNAP25 in the tectum. 3 days post-BoNT/A intraocular injection, the optic nerve was 

severed, thus preventing any further axonal transport of BoNT/A protease before BoNT/E 

was then injected directly into the tectum. BoNT/E also cleaves SNAP25, however, 

BoNT/E removes 26 amino acids from the c-terminal, whereas BoNT/A only cleaves a 9 

amino acid fragment. This enables the two cleavage products to be easily distinguished. 

After injection of BiTox/E, BiTox/A-cleaved SNAP25 was no longer detected in the 

tectum. BoNT/A-cleaved SNAP25 was, however, able to be detected again after the 

duration of action for BoNT/E had passed. The re-emergence of BoNT/A- cleaved 

SNAP25 indicated that the active protease had transcytosed into these second order 

neurons, rather than simply the BoNT/A cleavage product. Moreover, in both studies they 

were able to show that the cleavage of SNAP25 resulted from the axonal transport of 

BoNT/A, and not systemic spread, as SNAP25 cleavage was no longer detected 

following pre-injection of colchicine (Antonucci et al., 2008; Restani et al., 2011). Restani 

et al. (2011) also pre-emptively administered colchicine to the ipsilateral eye to show that 

detection of cleaved SNAP25 in the contralateral dorsal horn, likewise, relied upon 

axonal transport and discredited a systemic effect, thus contradicting Cai et al. (2017) 

who attributed the distal cleavage of SNAP25 to the systemic diffusion of BoNT/A. 

Provided the limited amount of SNAP25 cleavage detected in the dorsal horn compared 

to the much larger amount of cleavage visualised in the ventral horn, the SNAP25 

cleavage localised around the motor neurons could hold significance for the analgesic 

effect of BiTox/A. Although sensori-motor connectivity is described within the spinal cord, 

it is mainly concerned with the sensory input modulating reflexive responses elicited by 

the motor neurons (Cook and Woolf, 1985; Sivilotti and Woolf, 1994). Interestingly, 

however, repetitive transcranial magnetic stimulation (rTMS), targeted to the motor 

cortex, successfully produces analgesia in approximately 40% of refractory neuropathic 

pain patients (Lefaucheur et al., 2004, 2006, 2011, 2014; Lima and Fregni, 2008; 
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Nurmikko et al., 2016) whereas rTMS is ineffective against pain when targeted to the 

sensory cortex (Hirayama et al., 2006). It could thus be a possibility that modulation of 

the motor pathways, in the case of rTMS, the descending inhibitory motor pathways, 

could be beneficial in pain conditions.  

In contrast, a range of behavioural studies have demonstrated the involvement of a 

number of neurotransmitters, specifically associated with pain signalling, in BoNT/A-

induced analgesia including Substance P and its receptor, NK1 (Matak et al., 2017), 

GABA (Drinovac et al., 2014, 2016), and µ-opioids (Drinovac et al., 2013, 2016). Others 

have identified an anti-inflammatory component to the analgesic effect of BoNT/A, 

suggesting the involvement of Schwann cells (Marinelli et al., 2012), astrocytes (Marinelli 

et al., 2012; Vacca et al., 2012) and interleukins (Zychowska et al., 2016). Multiple 

studies have, however, contradicted this theory, reporting that there was no 

colocalisation of cleaved SNAP25 with GFAP, a marker of astrocytes, during 

immunostaining (Restani et al., 2011; Matak et al., 2012; Cai et al., 2017). Additionally, 

western blot analysis has further shown that BoNT/A has no effect on the expression of 

GFAP in the spinal cord or DRG (Zychowska et al., 2016).  

The involvement of Substance P was recognised after using two strains of knockout 

mice. In one strain the gene encoding Substance P had been removed, whilst the other 

strain lacked the NK1 receptor gene (Matak et al., 2017). The anti-nociceptive effect of 

intraplantar BoNT/A in both an inflammatory pain model and a neuropathic pain model 

could not be replicated in either strain, hence implying that Substance P must have a 

role in the BoNT/A-induced analgesia. This is consistent with in vitro findings that 

incubation of neuronal cultures with BoNT/A inhibits the stimulated release of Substance 

P (Purkiss et al., 2000; Welch et al., 2000).  

Conversely, GABA and µ-opioids were both implicated in the centrally-mediated 

therapeutic action of BoNT/A after intrathecal injection of GABA-A receptor antagonist, 

bicuculline, and µ-opioid receptor antagonist, naloxonazine, in rats, prevented the 

analgesic effect of BoNT/A against mechanical hypersensitivity in a mirror pain model 

(Drinovac et al., 2016). Furthermore, intraperitoneal injection of naloxonazine was also 

able to prevent the anti-nociceptive effect of BoNT/A in both a formalin inflammatory pain 

model and a sciatic nerve partial transection neuropathic pain model (Drinovac et al., 

2013). Both experiments also demonstrated decreased formalin-evoked c-Fos activation 

in the dorsal horn of the spinal cord following intraplantar injection of BoNT/A. This effect 

was eliminated by knockout of substance P related genes (Matak et al., 2017) and 

separately, by injection of opioid antagonist, naltrexone (Drinovac et al., 2013) and  

GABA antagonist, bicuculline (Drinovac et al., 2014). None of these studies, however, 

investigated or demonstrated the colocalisation of cleaved SNAP25 with any markers of 
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the proteins mentioned. From this perspective, it would be recommended to conduct 

further immunolabelling of the spinal cord, isolated from BiTox/A-injected rats, to 

investigate whether any of the aforementioned proteins are co-expressed in the nerve 

fibres displaying cleaved SNAP25. 

One study, however, argues that regardless, the amount of SNAP25 cleavage that 

occurs at the level of spinal cord is not sufficient to block neurotransmission at the central 

synapse (Lawrence et al., 2012). This was suggested after compartmentalised exposure 

of the neurites of cultured superior cervical ganglion neurons to native BoNT/A did not 

influence synaptic transmission between the cell bodies contained within the central 

compartment, despite that, at this time point, SNAP25 cleavage was readily detected in 

the cell soma. In contrast, global administration of BoNT/A to all culture chambers, 

consequently meaning that BoNT/A would gain direct access to the cell bodies, did 

significantly reduce the frequency of spontaneous excitatory postsynaptic currents, with 

currents completely abolished in four of the seven cells recorded (Lawrence et al., 2012). 

This suggests that although BoNT/A protease does reach the soma, it does not do so in 

sufficient amounts as to block neurotransmission. 

This theory does, however, help to explain the lack of motor paralysis observed following 

intraplantar injection of BiTox/A (Ferrari et al., 2011; Mangione et al., 2016) and native 

BoNT/A (Cui et al., 2004; Matak et al., 2012; Wu et al., 2016), despite the SNAP25 

cleavage noted in the ventral horn in both instances. Nevertheless, the study was 

conducted in vitro and, therefore, might not truly represent the actions of BoNT/A in vivo. 

For example, it has repeatedly been demonstrated that the anti-nociceptive effect of 

BoNT/A requires axonal transport after observing that injection of colchicine abolished 

BoNT/A-induced analgesia (Antonucci et al., 2008; Bach-Rojecky and Lacković, 2009; 

Matak et al., 2011, 2012; Restani et al., 2011; Wu et al., 2016). This provides strong 

evidence that BoNT/A does have a centrally mediated analgesic effect and further 

suggests that, in vivo, SNAP25 cleavage at the central level is adequate to block 

neurotransmission.  

 

3.3.5 Cleaved SNAP25 is detected at the neuromuscular junction after peripheral 

injection of BiTox/A 

With regards to the absence of any motor impairments following intraplantar injection of 

BiTox/A, it is important to acknowledge that cleaved SNAP25 was, however, detected at 

the neuromuscular junction, notably, of both the ipsilateral and contralateral hindpaw. 

This observation proved contrary to the theory proposed by Ferrari et al. (2011), that the 

increased molecular size of BiTox/A, compared to native BoNT/A, would negate its 
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access to the tight cleft of the NMJ. Instead, it appears that BiTox/A must still retain the 

ability to access the NMJ but may do so on a more restricted basis, provided the lack of 

paralysis observed. Specifically, the nerve terminals of the C- and Aδ nociceptors lack 

encapsulation and therefore could be more susceptible to penetration by BiTox/A, 

consequently creating a preference for binding of the sensory neurons above the motor 

neurons (Hall and Treinin, 2011). In future, however, more sensitive methods for the 

assessment of motor function should be used. For example, using the Digit Abduction 

Scale to systematically score digit spreading rather than a more subjective all or nothing 

approach (Broide et al., 2013), or by using CatWalk gait analysis to reveal any less 

obvious alterations in gait (Kappos et al., 2017).  

The detection of cleaved SNAP25 at the NMJ of contralateral paw also raises concerns 

over systemic diffusion. It seems highly unlikely, however, that the protease would have 

arrived at the NMJ, following systemic diffusion, as cleaved SNAP25 was not detected 

in the sensory neurons of the contralateral paw. As described earlier, cleaved SNAP25 

has previously been demonstrated in structures contralateral to the injection site. The 

appearance of cleaved SNAP25, contralateral to the injection site, was successfully 

prevented by pre-injection of colchicine, thus highlighting the role of axonal transport and 

transcytosis (Restani et al., 2011). Provided the importance of interconnectivity between 

the lumbar motor neuron pools for locomotion (Cazalets et al., 1995), it is feasible that 

BiTox/A could have transcytosed across these pathways to enter the contralateral motor 

neurons. This does, however, remain to be confirmed by injection of colchicine.  

 

3.3.6 Conclusion 

In conclusion, here, the first evidence for the cleavage of SNAP25 by BiTox/A in vivo has 

been successfully demonstrated. Although not definitively shown, after considering both 

the data presented here, and the evidence discussed with respect to native BoNT/A, it 

is most likely that BiTox/A is eliciting its therapeutic effect, via both a peripheral and a 

centrally-mediated mechanism. It is likely that by blocking neurotransmission in the 

peripheral sensory afferents, BiTox/A also indirectly prevents central sensitisation (Aoki, 

2005). Future experiments are, however, necessary to effectively demonstrate this 

hypothesis. Further immunolabelling of the spinal cord sections will be required to 

determine which subtypes of central neurons BiTox/A is catalytically active in. This 

labelling should primarily be based on the observations made during the behavioural 

studies by Matak et al. (2017) and Drinovac et al. (2013, 2014, 2016) and should include 

co-staining of cleaved SNAP25 with anti-GAD65 (a marker for GABAergic neurons), anti-

NK1 (a marker for Substance P receptors) and anti-MOR (a marker for µ-opioid 
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receptors) antibodies. It would also be beneficial to repeat the behavioural studies, 

detailed in Mangione et al. (2016), whilst including a pre-emptive injection of colchicine 

to confirm that the analgesic effect of BiTox/A is at least partly dependent upon a central 

mechanism. This will also verify that any central or contralateral cleaved SNAP25 

staining observed does result from axonal transport of the active protease, and not from 

systemic diffusion. During these behavioural studies, additional motor assessments 

should also be carried out to ensure that any subtler motor impairments have not gone 

undetected. After conducting the further experiments detailed, the true significance of 

the enzymatic activity observed can then be appropriately deduced. 
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Chapter 4. The substitution of the receptor binding domain of Botulinum 

Neurotoxin A with that of alternative botulinum serotypes targets the 

enzymatic activity of Botulinum Neurotoxin A to additional subpopulations 

of sensory neurons  

 

4.1 Introduction 

It was recently demonstrated that intraplantar injection of BiTox/A, investigated in the 

previous chapter, prevents the development of, and reverses, the mechanical 

hyperalgesia observed in a rat model of peripheral neuropathic pain (Mangione et al., 

2016). Unfortunately, however, the therapeutic application of BiTox/A in inflammatory 

pain conditions appears to be more limited. BiTox/A promoted a prolonged reduction in 

secondary hyperalgesia in an inflammatory pain model but was largely ineffective at 

reversing thermal hypersensitivity at the site of injury. Secondary hyperalgesia is 

hypothesised to result from the Aβ-fibres of low-threshold mechanoreceptors gaining 

access to the nociceptive signalling pathway, as a result of central sensitisation (Cervero 

et al., 2003; Latremoliere and Woolf, 2009). This suggests that the analgesic benefits of 

BiTox/A are largely due to its actions at the large Aβ-fibres rather than C-fibre nociceptors 

which would be activated direct at the site of injury. To effectively treat inflammatory pain 

conditions, it is thus necessary to retarget BiTox/A to a different subpopulation of sensory 

neurons, namely the nociceptors. 

One way by which to achieve this is by utilising the other serotypes of Botulinum 

Neurotoxin (BoNT), of which seven exist, BoNT/A-G. The different serotypes are known 

to bind to different combinations of polysiagangliosides and membrane proteins, due to 

variations in the amino acid sequence of the Hc domain (Tsukamoto et al., 2005; Montal, 

2010; Strotmeier et al., 2010). For example, BoNT/A binds to the ganglioside GT1b, and 

preferentially, the protein receptor, synaptic vesicle 2C (SV2C), although it does retain 

affinity for all three isoforms (SV2A, SV2B and SV2C) (Rummel et al., 2004; Dong et al., 

2006; Rossetto, 2017). BoNT/E meanwhile, also displays affinity for GT1b but only binds 

two of the synaptic vesicle isoforms, SV2A and SV2B (Dong et al., 2008; Montal, 2010; 

Rossetto, 2017). Conversely, BoNT/C binds to GD1b, in addition to GT1b, but does not 

require a protein receptor for internalisation (Tsukamoto et al., 2005; Rummel et al., 

2009). Similarly, there is no known protein receptor for BoNT/D (Rummel et al., 2009) 

and it further lacks the ganglioside-binding pocket present in the other serotypes. 

Instead, BoNT/D is believed to utilise the phospholipid, phosphatidylethanolamine 

(Tsukamoto et al., 2005).  

The differential ganglioside binding profiles of the BoNT serotypes suggests that they 

would display different patterns of neuronal binding, dependent on the expression of  
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Figure 4.1 SNARE-tagging and stapling enables the production of alternative BiTox 

chimeras. (A) Native BoNT/A consists of an enzymatic domain (light chain, Lc, blue), a 

translocation domain (Td, orange) and a receptor binding domain (Rbd, red). (B) For SNARE-

stapling, BoNT/A was separated into the LcTd/A (blue, orange) and the Rbd/A (red). LcTd/A was 

expressed fused with a SNAP25 tag (green), whilst Rbd/A was expressed fused to synaptobrevin 

(blue). The chimera, BiTox/A (right), was produced after addition of the syntaxin staple (yellow). 

The assembled SNARE-complex is visible central to the chimera. (C) To generate the alternate 

BiTox chimeras, the Rbd of other serotypes were separately expressed fused to synaptobrevin (-

brevin), as depicted in the schematic. Importantly, LcTd/A-SNAP25 and syntaxin were used 

consistently in the formation of each chimera. The substitution of Rbd/A-Brevin for Rbd/C-Brevin, 

Rbd/D-Brevin and Rbd/E-Brevin produces BiTox/C, BiTox/D and BiTox/E, respectively (Right). 

The clostridial chimera molecular model was created using the following structures, accessible in 

the Protein Data Bank archive (http://www.rcsb.org): 3BTA (BoNT/A), 1N7S (SNARE complex). 
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certain gangliosides and protein receptors by different subpopulations of sensory 

neurons (Ashton et al., 1990; Bajjalieh et al., 1994). The receptor binding domains of the 

botulinum serotypes could thus be utilised to selectively retarget the enzymatic activity 

of BoNT/A to specific subpopulations of sensory neurons, including those involved in 

inflammatory pain. 

Here, it will be investigated whether retargeting BoNT/A by recombining the cleavage 

promoting, enzymatic domain of BoNT/A, with the receptor binding domain (Rbd) of 

alternative botulinum serotypes, will alter the population of sensory neurons to which 

BoNT/A natively targets, and furthermore, whether this will augment its analgesic 

properties. 

 

4.2. Results 

4.2.1 Stapling the Light Chain Translocation Domain of Botulinum Neurotoxin A to 

the Receptor Binding domain of alternative botulinums results in functional toxins 

which retain the ability to cleave SNAP25 in vitro 

The Light Chain-Translocation domain of Botulinum Neurotoxin A (LcTd/A), containing 

the enzymatic domain, was recombined with the receptor binding domain (Rbd) of 

BoNT/A, using our established stapling technology, to create the previously published 

BiTox/A (Fig. 4.1B) (Ferrari et al., 2011). LcTd/A was further conjugated to the Rbd of 

alternative botulinum neurotoxin serotypes C, D and E, to produce the chimeras: 

BiTox/C, BiTox/D and BiTox/E, respectively (Fig. 4.1C). LcTd/A contains the zinc-

endopeptidase activity of BoNT/A which mediates the cleavage of SNAP25. The 

functionality of the novel chimeras was first assessed to evaluate whether they retained 

the catalytic activity of LcTd/A after reengineering.  

Western blot revealed that after 65 hour incubation with 10 nM of each chimera, all four 

novel chimeras successfully produced SNAP25 cleavage in dissociated dorsal root 

ganglion cultures (Fig. 4.2A) confirming that they retained their efficacy. Incubation with 

10 nM LcTd/A-αSNAP25, containing only the enzymatic activity of BoNT/A, without any 

targeting domain, also resulted in detectable SNAP25 cleavage, however, the 

percentage of total SNAP25 cleaved was significantly lower than that observed after 

incubation with the engineered chimeras, with the exclusion of BiTox/E (One-way 

ANOVA, F(5, 18)=22.61; BiTox/A vs. LcTd/A-αSNAP25, P<0.05; BiTox/C vs. LcTd/A-

αSNAP25, P<0.01; BiTox/D vs. LcTd/A-αSNAP25, P<0.05; BiTox/E vs. LcTd/A-

αSNAP25, P=0.18, Fig. 4.2B). No cleavage was detected following the addition of 0.4% 

OG, the vehicle control that peptide staples are dissolved in to enable the formation of 

chimeras, or in untreated cultures.  
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Figure 4.2 Clostridial chimeras containing LcTd/A retain the catalytic activity of BoNT/A in 

vitro. (A) Western blots of dorsal root ganglion cultures were probed with a whole SNAP25 

antibody following 65 hour incubation with 10 nM of each Chimera (N=4). Cleaved SNAP25 was 

detectable in all cultures incubated with active chimeras but was absent in untreated cultures and 

cultures incubated with 0.4% OG vehicle control. Syntaxin was included as a loading control. (B) 

The graph shows cleaved SNAP25 expressed as a percentage of total SNAP25, after 

quantification of the immunoblots. In the chimeras BiTox/A-/D, the conjugation of a Rbd to LcTd/A 

increased the percentage of SNAP25 cleaved compared to unconjugated LcTd/A-αSNAP25. All 

data is presented as mean ± S.E.M, * p<0.05, ** p<0.01, **** p<0.0001.  

 

Notably, Syntaxin 1 was chosen as a loading control. Syntaxin is an essential component 

of the SNARE complex and therefore is indicative of the number of SNARE complexes 

in the culture (Wilhelm et al., 2014). Syntaxin levels remained consistent between culture 

conditions, thus indicating that the separate cultures had a similar level of SNARE 

proteins available for cleavage.  

 

4.2.2 The biodistribution of cleaved SNAP25 in cultured dorsal root ganglion 

neurons following incubation with alternative BiTox constructs suggests that 

substitution of Rbd/A can target the enzymatic activity of BoNT/A to additional 

sensory neuron subpopulations. 
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After confirming that the novel chimeras remained potent, it was next assessed whether 

the attachment of an alternative receptor binding domain was able to retarget the 

catalytic activity of LcTd/A to different subpopulations of sensory neurons. After 65 hour 

incubation with 10 nM of each chimera, an inhouse anti-cleaved SNAP25 antibody, 

specific for cleaved SNAP25 and lacking immunoreactivity for whole SNAP25, was used 

to report the proteolytic activity of LcTd/A in healthy, viable sensory neurons, as identified 

using anti-βTubulin III antibody, a pan-neuronal marker, in combination with DAPI, a 

nuclear marker.  

Immunolabelling of dorsal root ganglion cultures indicated that the novel chimeras, 

BiTox/C, /D and /E, did not produce SNAP25 cleavage in a significantly distinct 

population of sensory neurons, based on soma size, compared to BiTox/A (One-way 

ANOVA, F (4,154) =2.265, P=0.065, Fig. 4.3A). BiTox/C did cleave SNAP25 in neurons 

with a slightly larger mean cell diameter (29.7 ± 1.5 µm) than BiTox/A (27.6 ± 1.3 µm), 

although the difference was not significant. Cleaved SNAP25 was, however, detected in 

a smaller percentage of neurons following incubation with BiTox/C, opposed to BiTox/A 

(Fig. 4.3B). Again, this difference was not significant (One-way ANOVA, F (6,24) = 3.589, 

P=0.772).  

In contrast, SNAP25 cleavage was detected in a slightly larger percentage of neurons 

following incubation with BiTox/D than after incubation with BiTox/A (Fig. 4.3B). The 

mean cell diameter of neurons displaying SNAP25 cleavage after incubation with 

BiTox/A and BiTox/D was very similar (27.6 ± 1.3 µm and 27.3 ± 1.2 µm respectively, 

Fig. 4.3A), however, the distribution of neurons displaying cleaved SNAP25 differed 

between the two. Neurons displaying positive SNAP25 cleavage post-incubation with 

BiTox/A, as well as with BiTox/C, were mainly congregated at the upper values of the 

histogram whereas the distribution of neurons displaying SNAP25 cleavage after 

incubation with BiTox/D appeared almost bimodal with one peak visible around 18 µm 

and a second around 26-28 µm (Fig. 4.4B). Conversely, the neurons positive for cleaved 

SNAP25 after incubation with BiTox/E were evenly distributed between 20 and 30 µm. 

In accordance with this observation, the average cell diameter of neurons showing 

SNAP25 cleavage after incubation with BiTox/E was 25.0 ± 2.0 µm suggesting that 

BiTox/E binds to a population of smaller sensory neurons than BiTox/A. Incubation with 

BiTox/E, however, resulted in an approximately 60% reduction in the number of neurons 

displaying SNAP25 cleavage compared to after incubation with BiTox/A. Even so, this 

difference was not shown to be significant (One-way ANOVA, F (6,24) = 3.589, P=0.217). 
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Figure 4.3 Substitution of BoNT/A Rbd with the Rbd from alternative BoNT serotypes does 

not significantly alter the targeting of the enzymatic activity BoNT/A to other 

subpopulations of sensory neurons. (A) 10 nM of each chimera was added to 2 day old dorsal 

root ganglion cultures and incubated for a further 65 hours (BiTox/A - BiTox/E, LcTd/A-αSNAP25: 

N=5, n=3; Untreated, 0.4% OG: N=3, n=3). Neurons were identified using pan-neuronal marker, 

βTubulin III. Incubation with BiTox/A resulted in SNAP25 cleavage, as detected using anti-cleaved 

SNAP25 antibody, in neurons with a soma diameter of 27.6 ± 1.3 μm. BiTox/C (29.7 ± 1.5 μm) 

and BiTox/D (27.3 ± 1.2 μm) failed to result in SNAP25 cleavage in a significantly different 

population of neurons. There was a trend for BiTox/E (25.0 ± 2.0 μm) and LcTd/A-αSNAP25 (20.8 

± 1.9 μm) to produce SNAP25 cleavage in neurons with a smaller mean cell diameter. (B) The 

number of neurons displaying detectable SNAP25 cleavage was expressed as a percentage of 

the total number of neurons identified in each culture. The percentage of neurons displaying 

SNAP25 was not significantly affected by the substitution of Rbd/A for the Rbd of another 

botulinum serotype. All data is presented as mean ± S.E.M.  

 

Similarly, 10 nM LcTd/A-αSNAP25 produced SNAP25 cleavage in neurons with a 

smaller average cell diameter (20.8 ± 1.9 µm), and in a yet smaller percentage of neurons 

(3.3 ± 1.2 %) than BiTox/A. Although, again, neither difference was significant (One-way 

ANOVA for cell diameter, F (4,155) =2.265, P=0.1054, Fig. 4.3A; One-way ANOVA for % 

of neurons displaying SNAP25 cleavage, F (6,24) = 3.589, P=0.1297, Fig. 4.3B). No trend 

in the cell diameter of neurons displaying cleaved SNAP25 was observed after 

incubation with LcTd/A-αSNAP25. Instead, cells displaying positive cleaved-SNAP25 

staining appeared randomly throughout the frequency distribution histogram, thus 

supporting the hypothesis that a receptor binding domain is required for specific binding 

and internalisation into discreet neuronal subpopulations (Fig. 4.4B). 
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In agreement, a previous study showed that the LcTd portion of BoNT alone, is sufficient 

for entering neurons (Fischer et al., 2008). The LcTd is believed to exploit the constitutive 

endocytic pathway, to gain access to cells, rather than undergoing receptor-mediated 

endocytosis, normally associated with BoNTs. This mechanism is augmented by the 

presence of the attached -αSNAP25 peptide. This would most likely interact with the 

other components of the SNARE complex that might become exposed at the cell 

membrane, post-exocytosis, thus aiding nonspecific uptake into cells. The Rbd is instead 

only necessary to act as a chaperone, mediating neuronal specificity, and increasing the 

efficiency of neuronal uptake, hence explaining the lower percentage of neurons 

displaying SNAP25 cleavage. Being satisfied by this explanation, together with only 

being interested in determining a way to direct the LcTd/A of BiTox/A to specific, alternate 

populations of neurons, the binding profile of LcTd/A-αSNAP25 was not further 

investigated. Importantly, cleaved SNAP25 staining was not observed in cultures 

incubated with vehicle or in untreated cultures, thereby confirming that SNAP25 cleavage 

resulted from the addition of active protease to the cultures.  

In summary, although certain trends were noted, none of the observed differences were 

shown to be significant. This lack of significance could be due to the negatively skewed 

distribution of the cell soma size observed in DRG cultures. This skew can be clearly 

seen in the frequency distribution histograms (Fig. 4.4B). The data sets display a natural 

bias towards smaller diameter neurons. This is because the protocol used to prepare 

DRG cultures favours the yield of smaller neurons, opposed to larger diameter neurons, 

as the larger neurons are more prone to being ruptured and lost during the trituration 

steps. Therefore, even if SNAP25 cleavage is detected in a very small proportion of small 

diameter neurons, it could severely distort the mean cell diameter of neurons displaying 

cleaved SNAP25, mitigating any perceived difference between the alternative BiTox 

constructs. For this reason, it was important to investigate the two populations of 

neurons, the larger myelinated neurons and the small unmyelinated neurons, separately. 

The neuronal markers, Neurofilament 200 and Peripherin, were used to identify and 

distinguish the two populations of neurons, respectively (Goldstein et al., 1991; Fornaro 

et al., 2008).  

 

4.2.3 Cleaved SNAP25 is detected in a subpopulation of smaller myelinated 

sensory neurons after substitution of Rbd/A for the Rbd of alternative serotypes. 

Anti-Neurofilament 200 antibody recognises heavy weight (200 kDa) neurofilament and 

is used to identify myelinated fibres. It labels large Aβ sensory neurons as well as more 

thinly myelinated Aδ sensory neurons. Both are described as large-light coloured 
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neurons. It does not, however, show immunoreactivity for unmyelinated C-fibres 

(Lawson et al., 1984; Lawson and Waddell, 1991).  

After using anti-NF200 antibody to isolate only the myelinated neurons, it was shown 

that substituting the Rbd/A of BiTox/A for that of other serotypes had a significant effect 

on the mean cell diameter of NF200-positive neurons, displaying cleaved SNAP25 (One-

way ANOVA, F (3,120) = 6.291, P=0.0005, Fig. 4.4A). SNAP25 cleavage was detected in a 

subpopulation of significantly smaller NF200-positive neurons after 65-hour incubation 

with BiTox/D (23.7 ± 1.2 µm) and BiTox/E (20.6 ± 1.3 µm), compared to BiTox/A (28.2 ± 

1.2 µm) (One-way ANOVA, Dunnett's multiple comparisons test, F (3,120) = 6.291; BiTox/A 

vs BiTox/D P=0.0204; BiTox/A vs BiTox/E P=0.0002, Fig. 4.4A). More notably, the two 

peaks first observed in the frequency distribution histogram of neurons, identified using 

BTIII, and displaying SNAP25 cleavage after incubation with BiTox/D (Fig. 4.4B), were 

 

 

 

Figure 4.5 Cleaved SNAP25 is detected in a subset of smaller myelinated (Aβ and Aδ) fibre 

sensory neurons after substitution of Rbd/A for the Rbd of alternative serotypes. 10 nM of 

each chimera was added to 2 day old dorsal root ganglion cultures and incubated for a further 65 

hours (BiTox/A, -/C, -/D: N=4, n=3; BiTox/E: N=3, n=3). (A) Quantification of cleaved SNAP25 in 

myelinated neurons, identified using anti-neurofilament 200 antibody (NF200), revealed that 

BiTox/A (28.2 ± 1.2 µm) produced SNAP25 cleavage in a subset of significantly larger myelinated 

neurons compared to BiTox/D (23.7 ± 1.2 µm) and BiTox/ E (20.6 ± 1.3 µm). (B) Expressing the 

number of NF200-positive neurons co-labelled for cleaved SNAP25 as a percentage of the total 

number of NF200-positive neurons per culture revealed no significant differences between 

chimeras. All data is presented as mean ± S.E.M, * p<0.05, *** p<0.001.  
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Figure 4.6 Representative images of cleaved SNAP25 staining in myelinated dissociated 

sensory neurons. (A) An epifluorescent microscope was used to take representative images of 

dorsal root ganglion cultures (BiTox/A, -/C, -/D: N=4, n=3; BiTox/E: N=3, n=3) showing the 

colocalisation of cleaved SNAP25 (red) and Neurofilament 200 (green) after 65 hr incubation of 

2 day old cultures with BiTox/A-E. DAPI (blue) indicates the nucleus of cells. (B) Frequency 

distribution histograms illustrate the distribution of the cell diameter of NF200 positive neurons 

displaying cleaved SNAP25 (dark green) after incubation with the alternative chimeras, compared 

to NF200 positive neurons which were negative for cleaved SNAP25 (light green). The pie charts 

in the top right corner of the histograms illustrate the percentage of the neurons, labelled positively 

for cleaved SNAP25 (black), from the total number of NF200 positive neurons identified. Scale 

bar=50 μm.  

 

replicated in the BiTox/D histogram of NF200-positive neurons (Fig. 4.6B). There was no 

significant difference between the average cell diameter of neurons positively co-labelled 

for both NF200 and cleaved SNAP25, following incubation with BiTox/A and BiTox/C 

(One-way ANOVA, Dunnett's multiple comparisons test, P=0.4625). Furthermore, there 

was no significant difference in the percentage of NF200-positive neurons displaying 

cleaved SNAP25 between BiTox/A and any of the alternative BiTox constructs (One-way 

ANOVA, F (3,11) = 0.7355, P= 0.5524, Fig. 4.5B). 

 

4.2.4 SNAP25 cleavage is not detected in a significantly different subpopulation of 

small diameter neurons after substituting Rbd/A of BiTox/A for the Rbd of 

alternative serotypes. 

Peripherin is a 57 kDa neuron-specific intermediate filament, predominantly expressed 

in the peripheral nervous system (Portier et al., 1983; Parysek and Goldman, 1988). With 

regards to the dorsal root ganglia, peripherin is preferentially expressed in the small, 

unmyelinated neurons and is thus used to characterise this subpopulation of sensory 

neurons (Parysek and Goldman, 1988; Ferri et al., 1990; Goldstein et al., 1991). Anti-

peripherin antibody was therefore used to identify the small, unmyelinated neurons, 

namely the C-fibres nociceptors, after incubation with the alternative BiTox constructs, 

to investigate whether there were any similar, notable trends in the binding of 

unmyelinated neurons, and consequent cleavage of SNAP25, as was previously 

demonstrated in myelinated neurons. 

Substitution of the Rbd/A in BiTox/A did not have a significant effect on the mean cell 

diameter of peripherin-positive neurons in which cleaved SNAP25 was detected (One-

way ANOVA, F (3,59) = 1.806, P= 0.1560, Fig. 4.7A). Incubation with BiTox/C did result in 

SNAP25 cleavage being visualised in neurons with a larger mean cell diameter (22.9 ± 
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F   
Figure 4.7 Substitution of Rbd/A does not influence the detection of cleaved SNAP25 in 

small diameter neurons. 10 nM of each chimera (BiTox/A-E) was added to 2 day old Dorsal root 

ganglion cultures (N=4, n=3) for a 65 hour incubation. (A) Immunolabelling of treated cultures 

using peripherin to identify the unmyelinated sensory neurons did not reveal any significant 

differences in the mean cell diameter of neurons colabelled for peripherin and cleaved SNAP25, 

dependent on treatment with an alternative chimera. (B) The number of neurons colabelled for 

peripherin and cleaved SNAP25 was calculated as a percentage of the total number of peripherin 

positive neurons per culture (N=4). Incubation with alternative chimeras did not significantly affect 

the percentage of colabelled neurons. All data is presented as mean ± S.E.M. 

 

1.3 µm) than BiTox/A (19.3 ± 1.3 µm) but this difference was not shown to be significant 

(One-way ANOVA, F (3,59) = 1.806, P= 0.1040, Fig. 4.7A). Incubation with BiTox/D (19.8 

± 1.9 µm) and BiTox/E (19.7 ± 1.4 µm) produced SNAP25 in a subpopulation of 

peripherin-positive neurons with a very similar mean cell diameter to BiTox/A. Incubation 

with the alternative BiTox chimeras had no significant effect on the percentage of 

peripherin-positive neurons displaying cleaved SNAP25 (One-way ANOVA, F (3,12) 

=0.3058, P= 0.8208, Fig. 4.7B). 

 

4.2.5 Intraplantar injection of BiTox/D is suspected to prolong thermal 

hyperalgesia in Complete Freund’s Adjuvant rat model of inflammatory pain 

Following the observations made in the previous experiments, BiTox/C was not pursued 

any further as it did not produce SNAP25 cleavage in a statistically different population 

of sensory neurons compared to BiTox/A. In contrast, both BiTox/D and -/E produced 

SNAP25 cleavage in a subpopulation of significantly smaller myelinated neurons.  
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Figure 4.8 Representative images of cleaved SNAP25 staining in unmyelinated dissociated 

sensory neurons. (A) Representative images of dorsal root ganglion cultures were taken using 

an epifluorescent microscope after 65 incubation with chimeras, BiTox/A-/E (N=4, n=3). Cleaved 

SNAP25 (red) is visualised in both peripherin-positive neurons (green) and peripherin-negative 

neurons. DAPI (blue) marks the cell nuclei. (B) Frequency distribution histograms illustrate the 

distribution of the cell diameter of peripherin positive neurons, displaying cleaved SNAP25 (red), 

after incubation with the alternative chimeras, combined with the distribution of peripherin-positive 

neurons which were negative for cleaved SNAP25 (pink). In the inserted pie charts, peripherin-

positive neurons displaying cleaved SNAP25 (black) are expressed as a percentage of the total 

number of peripherin-positive neurons counted. Scale bar=50 μm.  

 

After reviewing the data for both chimeras, BiTox/D and BiTox/E, it was decided that 

BiTox/D would be investigated further. Incubation with BiTox/E consistently produced 

SNAP25 cleavage in a smaller proportion of neurons than the other chimeras, thus 

implying that BiTox/E might not be as efficacious. In contrast, the percentage of neurons 

displaying cleaved SNAP25 after incubation with BiTox/D was very similar to that after 

incubation with BiTox/A. BiTox/D also had the added benefit of cleaving SNAP25 in what 

appeared to be two separate subpopulations of sensory neurons, one subpopulation of 

smaller diameter, myelinated neurons and another subpopulation of larger diameter, 

myelinated neurons. This suggests that BiTox/D may be binding to the large Aβ- neurons 

and the medium sized Aδ-fibre nociceptors.  

It was specifically chosen to trial BiTox/D in an inflammatory pain model given the 

implications of Aδ- and C-fibre nociceptor activation in chronic inflammatory pain. During 

inflammation, inflammatory mediators are released which activate and sensitise the C-

fibre and Aδ-fibre nociceptors, whilst also stimulating them to release their own 

inflammatory mediators (Averbeck et al., 2000; von Hehn et al., 2012). This increased 

excitability and activity of peripheral nociceptors, consequently drives increased firing 

and glutamate release at the central synapse in the dorsal horn, resulting in central 

sensitisation (Latremoliere and Woolf, 2009). Cleavage of SNAP25 in the primary 

afferents should prevent the initial neurotransmission of pain from nociceptors to second 

order neurons, during the acute stage of CFA-induced inflammation, but also, the 

chronification of pain due to changes which occur at the central synapse, secondary to 

the increased firing of primary afferents.  

Consequently, based on this hypothesis, the analgesic effects of BiTox/D were 

investigated in the Complete Freund’s Adjuvant model of inflammatory pain. At baseline, 

prior to injection of either vehicle or BiTox/D, the thermal (Sidak’s multiple comparisons 

test, Baseline, P= 0.9976, Fig. 4.9A) and mechanical (Sidak’s multiple comparisons test, 
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Baseline, P= 0.8899, Fig. 4.9B) thresholds were not significantly different between the 

two groups of animals. The thermal and mechanical thresholds remained comparable 

between the two groups following intraplantar injection of vehicle and BiTox/D to the left 

hindpaw on day -4 (Sidak’s multiple comparisons test, Thermal Day -3, P= 0.9923, Day 

0, P= 0.5161, Mechanical Day -3 and 0, P> 0.9999). Both vehicle and BiTox/D-injected 

rats developed thermal hyperalgesia (Fig. 4.9A) and mechanical hypersensitivity (Fig. 

4.9B) following intraplantar injection of Complete Freund’s Adjuvant (CFA) to the 

ipsilateral hindpaw on day 0. By day 14-post CFA injection, rats receiving intraplantar 

injection of vehicle showed an almost complete recovery to basal thermal threshold 

values. Rats which received BiTox/D, however, displayed significantly lower thermal 

thresholds compared to vehicle-injected rats (Sidak’s multiple comparisons test, Day 14, 

P= 0.0317, Fig. 4.9A). Further to this, the average thermal threshold for BiTox/D injected 

rats appeared to plateau by day 3 post-CFA with the average withdrawal latency 

remaining stable around 6 s, even at day 14 post-CFA, thus suggesting a prolonged 

period of thermal hyperalgesia.  

Although there was no main effect of treatment on the average thermal threshold (Two-

way ANOVA, Treatment, F (1,10) = 1.362, P= 0.2703, Fig. 4.9A), there was a significant 

interactive effect of treatment over time (Two-way ANOVA, Interaction, F (8, 80) = 2.885, 

P= 0.0071). When taken and analysed separately, treatment with BiTox/D, opposed to 

vehicle, did not influence thermal threshold measurements taken prior to injection of CFA 

(Two-way ANOVA, Treatment: BL - Day 0, F (1,10) = 0.4429, P= 0.5208) but did 

significantly affect thermal threshold after the establishment of the pain model (Two-way 

ANOVA, Treatment: Day 1-14 t F (1,10) = 5.821, P= 0.0365). This demonstrates that whilst 

BiTox/D does not affect basal thermal thresholds, it does affect thermal hypersensitivity 

once a pain phenotype has been induced.  

With regards to the mechanical threshold, there was no main effect of treatment with 

BiTox/D opposed to vehicle (Two-way ANOVA, Treatment, F (1,10) = 0.19, P= 0.6722, Fig. 

4.9B), or overall interactive effect of treatment over time (Two-way ANOVA, Interaction 

F (8, 80) = 0.668, P= 0.7180). The reversal of mechanical hypersensitivity was unaffected 

by injection of BiTox/D with both groups of animals following the same recovery 

trajectory. 

The recovery of the mechanical threshold does, however, appear to be much slower than 

that observed of the thermal threshold. It was attempted to extend the experiment to 

investigate when either sensory threshold would fully recover, however, the experiment 

had to be terminated on day 18 after lacerations were noticed on left hindpaw of two of 

the BiTox/D-injected rats (Fig. 4.9E). This again supports the notion that BiTox/D-injected 

rats remained hypersensitive, even to the point of what appears to be self-injury. 
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Figure 4.9 BiTox/D potentially prolonged thermal hyperalgesia in a Complete Freund’s 

Adjuvant (CFA) inflammatory pain model. 7 week old Sprague Dawley rats received a 30 μl 

intraplantar injection of either 300 ng of BiTox/D (N=6) or vehicle (N=6), followed by an intraplantar 

injection of 30 μl CFA 4 days later (Day 0). The thermal and mechanical basal thresholds were 

assessed during two separate sessions. Consequently, the Baseline value represents the 

average of the two baseline readings. (A) The average basal withdrawal latency, measured using 
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Hargreaves Plantar test, was not significantly different between BiTox/D- and vehicle-injected 

rats, and was not affected by injection of BiTox/D. A reduced paw withdrawal latency was 

observed 24 hours after CFA injection in both groups, with no significant difference in thermal 

thresholds detected between groups (Day 1). BiTox/D- injected rats consistently displayed lower 

thermal thresholds than vehicle-injected rats following CFA injection. On day 14, this difference 

was shown to be significant. (B) There was no significant difference in mechanical threshold, 

assessed using Electronic von Frey, between groups at baseline. Both groups developed 

mechanical hyperalgesia 24 hours after CFA injection with no significant differences detected in 

mechanical threshold between the two groups at any later time point. (C) Thermals thresholds 

and (D) mechanical thresholds were also measured in the contralateral, uninjected paw. Both 

modalities remained stable in the contralateral paw of both groups and were unaffected by 

injection of CFA or BiTox/D to the ipsilateral paw. (E) On day 18, it was observed that two of 

BiTox/D injected rats had wounds on the foot pad of the CFA-injected hindpaw. Consequently, 

the experiment was terminated meaning that no later time points could be recorded. All data 

points are shown as mean ± S.E.M, * p<0.05. 

 
Importantly, the thermal (Two-way ANOVA, Treatment, F (1,10) = 3159, P= 0.5865, Fig. 

4.9C) and mechanical thresholds (Two-way ANOVA, Treatment, F (1,10) = 1.468, P= 

0.2535, Fig. 4.9D) of the contralateral paw were unaffected by intraplantar injection of 

BiTox/D to the ipsilateral paw.  

 

4.2.6 Cleaved SNAP25 is detected in the ventral horn following intraplantar 

injection of BiTox/D in a rat inflammatory pain model 

Immunohistochemical processing of spinal cord sections revealed SNAP25 cleavage in 

the lateral portion of the ventral horn within the lumbar regions L5 (Fig. 4.10, second 

panel) and L6 (Fig. 4.10, fourth panel), ipsilateral to the intraplantar injection site in 

BiTox/D- injected rats. No SNAP25 cleavage was detected in vehicle-injected animals 

(Fig. 4.10, first and third panel). Higher magnification images of the ventral horn of rats 

that received BiTox/D demonstrate that cleaved SNAP25 is not present within the motor 

neuron soma or at the membrane of motor neurons, but instead, appears to be localised 

within the interneuron terminals, synapsing on to the motor neurons (Fig. 4.11, top 

panel).  

Higher magnification images of the ipsilateral dorsal horn also revealed single neurites 

displaying SNAP25 cleavage extending up to the substantia gelatinosa, the superficial 

laminae of the dorsal horn where the nociceptors terminate (Fig. 4.11, bottom panel). 

These neurites appear to project from the network of interneurons, contained within the 

ventral horn, showing SNAP25 cleavage.  
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Figure 4.10 Cleaved SNAP25 is detected in the ventral horn following intraplantar injection 

of BiTox/D in an inflammatory pain rat model. Vehicle-injected rats (N=3) and BiTox/D-injected 

rats (N=3) were perfused with 4% paraformaldehyde on day 15 post-CFA injection and 30 μm 

spinal cord sections were prepared and stained. The spinal cord was marked with an incision to 

the ventral horn, contralateral to the injection site. SNAP25 cleavage (green) was detected 

ipsilateral to the intraplantar injection site at the spinal cord levels, L5 (2nd panel) and L6 (4th 

panel) in BiTox/D-injected rats, but not in vehicle injected rats (1st and 3rd panels). Scale bar= 

0.5 mm 
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Figure 4.11 Higher magnification images of the ipsilateral spinal cord reveal cleaved 

SNAP25 within single neurites. Higher magnification epifluorescent microscopy images of 

spinal cord sections isolated from BiTox/D-injected rats revealed that cleaved SNAP25 (green) 

does not colocalise with the motor neurons, marked using NeuN (red), of the ipsilateral ventral 

horn following BiTox/D injection (top). Instead, cleaved SNAP25 is visualised within a network of 

neurites surrounding the motor neurons. Further investigation of the ipsilateral dorsal horn 

(bottom) showed single neurites (white arrowheads), containing cleaved SNAP25, projecting to 

the outer layers of the dorsal horn, termed the substantia gelatinosa. Scale bar=50 μm.  
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4.3 Discussion 

The ability to silence distinct subpopulations of sensory neurons is important for the 

future design of long-lasting analgesics. It presents the opportunity to be able to treat the 

various clinical features of chronic pain conditions. For example, primary thermal 

hyperalgesia occurs due to the peripheral sensitisation of nociceptors at the site of injury, 

the Aδ- and C- fibres. By contrast, secondary hyperalgesia is due to changes in the 

phenotype of Aβ-fibres, such that they begin to produce a noxious response to innocuous 

stimuli (Latremoliere and Woolf, 2009). By discovering therapeutics that can target both 

small and large diameter neurons, it may be possible to prevent both peripheral and 

central sensitisation, and consequently, the establishment and maintenance of certain 

pain conditions. 

Based on the knowledge that the different serotypes of botulinum neurotoxin utilise 

distinct combinations of gangliosides and protein receptors to gain entry into neurons 

(Montal, 2010), and that the composition of these respective gangliosides and proteins 

varies between subtypes of sensory neurons (Ashton et al., 1990), it was hypothesised 

that the different serotypes would preferentially bind to selective subpopulations of 

sensory neurons. To test this hypothesis, the LcTd/A of BoNT/A, containing the zinc-

endopeptidase activity, and thus responsible for cleaving SNAP25, was conjugated to 

the receptor binding domain of BoNT/A, /C, /D and /E, to produce the chimeras, BiTox/A, 

/C, /D and /E, respectively. LcTd/A was specifically chosen as the active domain so that 

the inhouse anti-cleaved SNAP25 antibody could then be used as a reporter to provide 

an indirect measure of the novel chimeras’ activity.  

 

4.3.1 The in vitro binding profile of BiTox/A generates further support for the 

binding profile recognised in vivo 

The in vitro investigation of the binding profile of BiTox/A, conducted in this chapter, 

highlighted that BiTox/A most likely preferentially binds to the larger Aβ-sensory neurons. 

Following incubation with BiTox/A, SNAP25 cleavage was detected in sensory neurons 

with the largest cell diameter as well as in neurons showing the highest level of 

immunoreactivity for NF200, indicative of heavy myelination, associated with the larger 

Aβ-sensory fibres. These observations are consistent with that reported during the in 

vivo investigation of BiTox/A’s sensory binding profile (See 3.2.1). Following intraplantar 

injection of BiTox/A, cleaved SNAP25 was readily detected in both NF200- and IB4- 

positive sensory neurons, located in the glabrous skin of the injected hindpaw, thus 

representing the larger, myelinated, non-peptidergic neurons. Namely, the Aβ- fibres. 
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Additionally, cleaved SNAP25 was visualised in a subset of CGRP-positive neurons 

following intraplantar injection of BiTox/A. Expression of CGRP has been recognised in 

all subclasses of sensory neurons, Aβ-, Aδ- and C- fibres, however, CGRP is 

predominantly expressed in the small, unmyelinated C-fibres (McCarthy and Lawson, 

1990; Lawson et al., 2002; Bae et al., 2015). It is thus possible that this population of 

CGRP-positive nerve fibres, displaying cleaved SNAP25, noted in vivo, could be 

equivalent to the small subpopulation of the peripherin-positive neurons, recognised to 

be unmyelinated, C-nociceptors, that showed SNAP25 cleavage during the present in 

vitro investigation. This, however, remains to be confirmed by further in vitro 

immunolabelling using the anti-CGRP antibody. It is, nevertheless, possible that any 

discrepancies in the predicted binding of BiTox/A could derive from the method of 

investigation, i.e. in vitro investigation performed here, opposed to observations made in 

vivo in the previous chapter. 

 

4.3.2 In vitro investigation of the binding profiles of alternative BiTox chimeras 

confirms that the enzymatic domain of BoNT/A can be retargeted to alternate 

neuronal subpopulations 

Here, it was demonstrated that all four chimeras successfully retained their functionality 

in vitro following conjugation and persisted to cleave SNAP25 in sensory neurons. 

Subsequent staining of dorsal root ganglion cultures with pan-neuronal marker, βIII-

tubulin, proved to be minimally informative due to the skewed size distribution of neurons 

in culture. Although soma size has historically been used to determine cell type, this 

method is flawed as it does not consider the overlap in soma size between large and 

small sensory neurons (Harper and Lawson, 1985). The emergence of neuronal markers 

specific to subtypes of sensory neurons, in combination with soma size, has greatly 

improved the ability to distinguish the classic subtypes: Aβ-, Aδ- and C-fibre sensory 

neurons (Usoskin et al., 2010).  

Consequently, Neurofilament 200 and peripherin were chosen to identify the large, 

myelinated neurons and small, unmyelinated neurons, respectively. This was done with 

the intention that separating the two populations would eliminate the skewness of the 

data and help to elucidate any significant differences in the binding profiles of the 

alternative chimeras (Goldstein et al., 1991). After isolating only the myelinated neurons, 

significant differences were successfully demonstrated between the mean cell diameter 

of neurons in which cleaved SNAP25 was detected following incubation with the four 

chimeras. Both BiTox/A and -/C produced SNAP25 cleavage in myelinated neurons, as 

identified using NF200, with a larger cell diameter, indicative of large diameter Aβ-fibre 
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neurons. The neurons responsible for normal touch sensation and implicated in the 

development of secondary hyperalgesia. Conversely, following incubation with BiTox/D 

and BiTox/E, SNAP25 cleavage was observed in a subpopulation of significantly smaller 

myelinated neurons, suggestive of the smaller diameter, lightly myelinated Aδ-fibre 

nociceptors.  

There was still no significant difference noted between the mean cell diameter of 

peripherin-positive neurons, identified to be unmyelinated nociceptive neurons, which 

displayed cleaved SNAP25 after incubation with the alternative BiTox chimeras, 

compared to BiTox/A. This finding is not surprising given that the gangliosides found in 

the cell membrane of neuronal axons, which BoNTs utilise during the internalisation 

process, specifically GT1b, GD1a and GM1, are also known to act as ligands for myelin-

associated glycoprotein (MAG) (Ogawa-Goto et al., 1992; Yang et al., 1996; Vinson et 

al., 2001; Vyas et al., 2002). MAG serves as an adhesion molecule, recruiting 

myelinating glial cells, i.e. the Schwann cells, to the axonal membrane, and is thus 

integral for the maintenance of myelination (Posse de Chaves and Sipione, 2010). The 

neuronal membranes expressing the correct ganglioside combinations for the binding of 

BoNTs are, therefore, most likely to be myelinated neurons. It is thus expected that any 

difference in binding profiles between botulinum serotypes would be detected within the 

population of myelinated neurons. Furthermore, this concept is supported by the 

observation that cleaved SNAP25 was consistently detected in a larger percentage of 

neurofilament-positive neurons than peripherin-positive neurons, inferring that BoNTs 

show a higher affinity for myelinated neurons. 

Even with the use of the two antibodies, anti-NF200 and anti-peripherin, to separate the 

two populations of sensory neurons, there was still considerable similarity visible 

between the histograms of peripherin- and NF200- positive neurons. The histograms did, 

however, resemble those depicted by Ferri et al. (1990) who showed all peripherin-

positive neurons to be between 10-40 µm in cell diameter, and all NF200-positive 

neurons be between 20-60 µm in cell diameter, thus highlighting that there is substantial 

overlap between the size distribution of the two populations. Not dissimilarly, here, 

peripherin positive neurons were described to be 10-30 µm and NF200 positive neurons 

10-50 µm in cell diameter. Despite this overlap, the two antibodies have previously been 

shown to be largely mutually exclusive in their expression in dorsal root ganglion neurons 

(Ferri et al., 1990; Goldstein et al., 1991; Fornaro et al., 2008). Accordingly, any similarity 

in the size distributions does not mitigate the validity of the antibodies. 

Contrary to this, in another in vivo study, it was reported that almost a quarter of all 

NF200 positive neurons were actually unmyelinated neurons, and vice versa, that a 

significant proportion peripherin positive fibres were actually large-Aβ myelinated fibres 
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(Bae et al., 2015). These observations were made whilst utilising an in vivo method, 

staining whole sections, and in the absence of any injury. It does,  therefore, question 

the suitability of the two antibodies. Instead, they suggest that Substance P, Calcitonin 

Gene-Related Peptide, and isolectin-IB4 are more appropriate markers when assessing 

subpopulations of neurons.  

The observed differences in the staining of neurons could, however, be due to the nature 

of the tissue used. Bae et al. (2015) specifically examined the localisation of 

neurofilaments in the  trigeminal ganglia whereas, all the aforementioned studies, which 

verified the exclusive nature of NF200 and peripherin, were all conducted on dorsal root 

ganglia. Although not with specific reference to the expression of neurofilaments, RNA 

sequencing has demonstrated significant differences in the protein expression profiles 

between dorsal root and trigeminal ganglion neurons (Kogelman et al., 2017). This 

therefore suggests that although the two antibodies are mutually exclusive in DRG, these 

findings cannot be applied or extrapolated to the trigeminal ganglion neurons. 

The exclusiveness of the two antibodies has, however, been demonstrated whilst 

conducting in vivo staining of whole DRG sections, opposed to in dissociated cultures, 

as was the method used here. With regards to the protocol for producing dissociated 

DRG cultures, it is important to realise that the removal of DRGs requires mutliple 

axotomies, making it, essentially, an in vitro model of neuropathic pain. Interestingly, 

Fornaro et al. (2008) compared the perceived expression of NF200 and peripherin in 

vivo and in vitro, using DRG sections and DRG explant cultures, respectively. The two 

neurofilaments were again shown to be expressed in almost entirely separate 

populations of neurons in vivo. In contrast, whilst neurofilament 200 and peripherin were 

still exclusively detected in two distinct populations of neurons immediately after explant, 

staining 2 days post-explant instead revealed that all neuronal somas were postive for 

peripherin but  yet none were immunoreactive for NF200. Furthermore, by day 10 only a 

small proportion of DRG neurons in the explant were reported to be NF200-positive and 

these were located mostly at the peripheral edge of the explant. Additionally, RNA 

analysis conducted at the same time points indicated that whilst peripherin expression 

was reduced 2 days after explant, its expression levels greatly increased between days 

2 and 10 post-explant, thus suggesting that peripherin has a role in axonal regrowth and 

regeneration in sensory fibres, consistent with other studies (Larivière et al., 2002). 

Conversely, the expression levels of NF200 remained low and, although they did recover 

slightly, the expression levels were not significantly regained.  

This data illustrates that the process of axotomy, even more so a feature in the protocol 

for dissociated dorsal root ganglion cultures, than explants, could greatly disturb the 

normal expression levels of both NF200 and peripherin, and therefore, impact any 
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conclusions made. Similarly, in another study, Ferri et al. (1990) showed that capsaicin 

treatment of rodent neonates increased the percentage of neurons costained for both 

NF200 and peripherin, reiterating, again, that injury impacts the expression of these 

filaments. They specifically suggest that there is a shift in NF200-positive neurons 

towards expressing peripherin after treatment with capsaicin. This could explain why the 

negative skew is still apparent in the NF200 frequency distribution histograms shown 

here.  

In consideration of this, it would be recommended to use cultures which have been 

maintained for longer periods of time before studying the effects of BoNTs. By this time 

point, it would be expected that the axons should have seized growing and that protein 

expression levels should stabilise back to normal physiological levels. For this study, 

chimeras were added 2 days post-culture and cultures were not then collected until 5 

days post-culturing. According to Fornaro et al. (2008), the expression levels should 

begin recovering from 2 days post-culture so, although expression would be low, the 

proteins should be expressed in their correct populations and, therefore, minimally 

impact the data presented here. Furthermore, in contrast to their findings, the data 

presented here clearly shows a substantial proportion of NF200-positive neurons 5 days 

after culturing. This suggests that perhaps there is a quicker recovery of expression 

levels in dissociated cultures than in DRG explants. 

It is also worth noting that there is a slight disparity in cell diameter shown here, 

compared to that described elsewhere. The maximum diameter of peripherin-positive 

and NF200-positive neurons, reported by Ferri et al. (1990), was around 10 µm larger 

than that reported here. This could again be explained by the method used. As discussed 

earlier, the process of trituration during the culturing of dorsal root ganglion cells subjects 

the larger neurons to a great deal of sheer force, potentially rupturing them, and 

consequently mitigating them from the culture. It could, therefore, also be beneficial to 

utilise DRG explant cultures, rather than dissociated cultures, in order to avoid the loss 

of the larger diameter neurons. Dissociated cultures do, however, have the added 

advantage of allowing equal, as well as increased penetration of all neurons. Hence why 

they were selected for the screening of BoNTs in this study (Passmore, 2005).  

Another consideration to make is the age of the animals used. The majority of studies 

collected DRGs from rats weighing 300-350 g which suggests that they were 

approximately 8-11 weeks old, and would thus be considered young adults (McCutcheon 

and Marinelli, 2009; Brower et al., 2015). In this current work, the rats used were 3-4 

week old, weighing less than 100 g, and equivalent to pubescents (McCutcheon and 

Marinelli, 2009). This could account for the overall smaller cell diameter noted. It has 

previously been documented that neurons continue to increase in soma size with age, 
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as well as there being a shift noted in the proportion of large versus small diameter 

neurons (Hatai, 1902). The use of pubescent rats was jusitified as it achieved a 

compromise between the ease of imaging and the increased viability of neurons taken 

from animals of a younger age (Manfridi and Forloni, 1992; McCutcheon and Marinelli, 

2009) versus the maturity of neurons and expression profiles associated with adult 

cultures, compared to embryonic neurons (Melli and Höke, 2009). 

In summary, NF200 and peripherin are reliable markers for separating the respective 

populations of myelinated and unmyelinated sensory neurons, when isolated from dorsal 

root ganglia, and have therefore been used appropriately in this study. Furthermore, the 

size distribution of both peripherin- and NF200-positive neurons shown here are 

analogous to that reported previously in vivo (Ferri et al., 1990). It was therefore 

acceptable to reach the conclusion that BiTox/D and BiTox/E do bind to a subpopulation 

of significantly smaller NF200- positive neurons and to proceed on this basis.  

 

4.3.3 Pursuing BiTox/D as a potential analgesic 

Upon reflection of the data, BiTox/D was chosen to be investigated as a potential 

analgesic. Although both BiTox/D and BiTox/E produced SNAP25 cleavage in a 

subpopulation of significantly smaller myelinated neurons than BiTox/A, incubation with 

BiTox/D led to cleaved SNAP25 being detected in a greater proportion of neurons 

compared to Bitox/E. This was shown on both Western Blot and following quantification 

of all neurons, marked using βTubulin III. Furthermore, the observation was made that 

BiTox/D consistently cleaved SNAP25 in two distinct subpopulations of sensory neurons, 

one subpopulation of smaller diameter, myelinated neurons, around 18 µm in cell 

diameter, and another of larger diameter, myelinated neurons, around 28 µm in cell 

diameter. This suggests that BiTox/D may be binding to both the myelinated large Aβ- 

neurons and the smaller, more thinly myelinated Aδ-fibre nociceptors.  

It is not surprising, however, that BiTox/D displays the most distinct binding profile 

compared to the other chimeras investigated. BoNT/D displays the least homology in its 

amino acid sequence compared to other serotypes (Rummel et al., 2009; Strotmeier et 

al., 2010) and its method of internalisation remains the most contested. One theory 

states that, unlike other serotypes, Rbd/D does not utilise gangliosides but instead binds 

to the phospholipid, phosphatidylethanolamine (Tsukamoto et al., 2005). Conflicting 

evidence, however, claims that whilst Rbd/D is missing key residues in the ganglioside 

binding pocket, conserved between the other serotypes, it instead contains two 

carbohydrate binding pockets, one believed to have affinity for sialic acid, similar to 

tetanus, and another for which the ligand has yet to be identified (Strotmeier et al., 2010). 
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Accordingly, it has also been reported that Rbd/D binds to the b-series of gangliosides, 

GT1b and GD1b, comparable to the other serotypes, as well as GD2 (Strotmeier et al., 

2010; Kroken et al., 2011). Additionally, there is no known protein receptor for BoNT/D. 

It is however, agreed that BoNT/D must utilise some component of the synaptic vesicles 

as its uptake is greatly increased upon stimulation of the neurons (Rummel et al., 2009; 

Kroken et al., 2011).  

Overall, the internalisation method of Rbd/D remains relatively unclear. The unique 

neuronal binding profile determined here for BiTox/D does, however, support the notion 

that BoNT/D displays affinity for, and interacts with, alternate lipids, and possibly 

proteins, compared to the other serotypes. 

 

4.3.4 Neuronal blockade of Aδ nociceptors potentially causes prolonged thermal 

hyperalgesia in inflammatory pain 

BiTox/A is hypothesised to bind to the larger Aβ fibres based on its ability to successfully 

reduce secondary hyperalgesia in inflammatory pain conditions and its lack of 

effectiveness at treating primary hyperalgesia, localised to the site of injury (Mangione 

et al., 2016). Correspondingly, here it was shown that following incubation of cultures 

with BiTox/A, cleaved SNAP25 was detected in the larger myelinated neurons. Most 

noticeably, all NF200-positive neurons with a cell diameter greater than 30 µm displayed 

positive SNAP25 cleavage.  

It was therefore speculated that incubation with BiTox/D, similar to BiTox/A, would 

continue to block the activity of the larger Aβ low-threshold mechanoreceptors that 

innervate the area adjacent to site of injury and are responsible for the phenomenon of 

secondary hyperalgesia, as well as the Aδ nociceptors, located at the site of 

inflammation. The additional action at Aδ-nociceptors would thus block 

neurotransmission from these neurons and consequently prevent primary hyperalgesia 

and the development of neurogenic inflammation (Latremoliere and Woolf, 2009). It was 

therefore believed that BiTox/D would effectively treat both clinical features, primary and 

secondary hyperalgesia, of inflammatory pain conditions.  

Unfortunately, it was instead suspected that pre-treatment with BiTox/D might prolong 

thermal hyperalgesia at the site of inflammation. Only partial recovery of the thermal 

threshold was seen. Interestingly, immunotherapy treatment of neuroblastoma using 

anti-GD2 antibodies, whilst being very successful at treating neuroblastoma, is 

associated with severe visceral pain, requiring management with morphine (Cheung et 

al., 1987; Handgretinger et al., 1992, 1995). This perceived pain has been attributed to 

the activation of the complement cascade system which acts to heighten an inflammatory 
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response (Sorkin et al., 2010). GD2 has previously been demonstrated to be one of the 

possible interactive partners of BoNT/D (Kroken et al., 2011). If correct, it is therefore 

possible that the binding of BiTox/D to GD2 could augment the inflammatory response 

to CFA, by activating the complement system, thus maintaining the inflammatory state 

in BiTox/D-injected animals, whilst vehicle-injected animals recover.  

Administration of anti-GD2 antibodies in rats is, however, more associated with 

producing mechanical hyperalgesia, consistent with a neuropathic pain phenotype, 

opposed to thermal hyperalgesia, which is affected here, and is more characteristic of 

inflammatory pain conditions (Sorkin et al., 2002). Nevertheless, induction of pain by 

bolus injection of anti-GD2 antibodies results in a lower mechanical threshold being 

required for the activation of Aδ- fibres specifically, compared to saline-treated animals. 

Contrarily, no significant difference in mechanical activation threshold for C-fibres is 

noted (Xiao et al., 1997). This suggests a preference of anti-GD2 antibodies to target 

Aδ- nociceptors, presumably due to GD2 expression. Together with the data presented 

here, indicating that BiTox/D is targeting Aδ-nociceptors, this proposes that BiTox/D and 

anti-GD2 antibodies could display similar binding patterns and thereby supports the 

theory that they could potentially share similar pathophysiologic mechanisms.  

Furthermore, Weng et al. (2012) showed that only C-fibre firing and excitability is altered 

in CFA-induced inflammatory pain. This therefore negates the involvement of Aδ- 

nociceptors in primary hyperalgesia. The ineffectiveness of BiTox/D at treating thermal 

hyperalgesia consequently supports the notion that BiTox/D specifically binds the Aδ-

nociceptors because, if these findings are correct, then only blockade of 

neurotransmission in the C-fibres would be expected to produce analgesia.  

Regardless, the retargeting of LcTd/A to the smaller myelinated neurons, hypothesised 

to be Aδ -fibre nociceptors, using Rbd/D, did not affect the development of mechanical 

or thermal hyperalgesia following injection of CFA, thus implying that these neurons are 

not implicated in the establishment of chronic inflammatory pain conditions. The 

observation that thermal hyperalgesia persisted past the normal recovery experienced 

by vehicle-injected rats suggests that Aδ-nociceptors may, however, be important for the 

resolution of inflammation, and the subsequent reversal of thermal hyperalgesia. 

 

4.3.5 SNAP25 cleavage within the spinal cord suggests that BiTox/D could have a 

centrally mediated effect 

Comparable to that demonstrated following intraplantar injection of BiTox/A, cleaved 

SNAP25 was detected at the level of the spinal cord in animals that received intraplantar 

injection of BiTox/D, thus confirming that BiTox/D successfully retains the enzymatic 
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activity of LcTd/A in vivo. It also indicates that BiTox/D must be retrogradely transported 

from the peripheral injection site to the spinal cord. Retrograde transport of both BoNT/A 

and BoNT/B has previously been demonstrated in vivo (Antonucci et al., 2008; Restani 

et al., 2011; Matak et al., 2012). This retrograde transport was shown to be essential for 

the analgesic effect of BoNT/A in formalin-induced pain (Bach-Rojecky and Lacković, 

2009) and acidic saline-induced hyperalgesia (Matak et al., 2011), after the observed 

analgesia was eliminated by intraneural injection of colchicine, an axonal transport 

blocker, to the sciatic nerve. With regards to BiTox/D, this could mean that the prolonged 

thermal hyperalgesia, suspected to occur, might not be due to the actions of BiTox/D at 

the sensory afferents in the periphery, as so far discussed, but could instead, at least in 

part, be due to changes in spinal cord processing.  

A central mechanism for the analgesia produced by BoNT/A was first demonstrated in 

the formalin inflammatory pain model. Treatment with intraplantar BoNT/A injection, prior 

to formalin challenge, was ineffective against the first phase of inflammation, however, 

significantly reduced pain behaviour during the second phase (Cui et al., 2004). The first 

phase of inflammation represents the direct chemical activation of nociceptors by 

formalin at the periphery, whereas the second phase reflects changes in excitability, 

resulting from peripheral and central sensitisation. Similarly, BoNT/B was shown to 

reduce substance P release in the ipsilateral dorsal horn, subsequent to intrathecal 

injection of capsaicin (Marino et al., 2014), as well as preventing phosphorylation of 

pGluA1 and Akt, known markers of central sensitisation, following intrathecal injection of 

the glutamate receptor agonist, N-methyl-D-aspartate (NMDA) (Sikandar et al., 2016). 

BoNT/B did not, however, reduce local edema in the carrageenan-injected paw 

(Sikandar et al., 2016). Again, this suggests that the main analgesic effect of BoNTs is 

mediated at the level of the spinal cord by preventing the increase in neuronal excitability 

associated with central sensitisation. The evidence presented, however, explains a pro-

analgesic effect, whereas, here, BiTox/D has been described to be pro-hyperalgesic. 

Nevertheless, this effect could likewise be due to a centrally mediated mechanism.  

Specifically, cleaved SNAP25 is visualised in close proximity to the motor neurons in the 

ipsilateral ventral horn of the lumbar spinal cord, isolated from BiTox/D-injected rats. 

However, it is absent in the soma and at the membrane of motor neurons. Again, this is 

reminiscent of the SNAP25 cleavage noted after peripheral injection of BiTox/A. It is 

important to note that there were no signs of motor paralysis or motor deficits visible in 

either vehicle- or BiTox/D injected rats. Both groups were able to suspend from an 

inverted wire mesh for prolonged periods of time, indicative of normal motor function and 

tone (Marino et al., 2014; Mangione et al., 2016). This consequently questions the 

significance of the SNAP25 cleavage observed in the ventral horn.  
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Cleaved SNAP25 was also found present in a few single neurites which extended up to 

the substantia gelatinosa, the superficial laminae of the dorsal horn, where the Aδ- and 

C- fibre nociceptors terminate (Todd, 2010). It is unclear whether the SNAP25 cleavage 

present in the dorsal horn is being detected in fibres projecting up from the main network 

of cleaved SNAP25-positive fibres, originating in the ventral horn, possibly from 

interneurons or fibres involved in proprioception (Betley et al., 2009) or nocifensive spinal 

motor reflexes to noxious stimuli (Sivilotti and Woolf, 1994), or whether it is being 

detected in a remote population of dorsal horn neurons, secondary to anterograde 

transport in the peripheral afferents. Matak et al. (2012) likewise detected small amounts 

of cleaved SNAP25 in the dorsal horn after intramuscular injection of BoNT/A, but 

attributed this to the axonal transport of BoNT/A in spinal sensory neurons. The cleavage 

was consequently used to explain BoNT/A’s observed analgesic effects. 

Further investigation is still required to confirm whether this staining is indeed contained 

within interneurons, and if so, to determine the nature of these neurons, specifically, 

whether they are excitatory or inhibitory. It is thus possible that if cleaved SNAP25, 

produced by BiTox/D, is localised within GABAergic interneurons, specifically in the 

dorsal horn, that it could then suggest that BiTox/D is leading to the disinhibition of the 

pain signalling pathway, thereby augmenting the pain response, and subsequently 

maintaining central sensitisation. All claims remain purely speculative at present and 

require further investigation.  

 

4.3.6 Conclusion 

Based on the behavioural evidence provided, BiTox/D was not further pursued for testing 

in other pain models. BiTox/A thus currently remains the most promising analgesic. 

Provided the lack of success in generating a chimera specifically for treating 

inflammatory conditions, alternate uses of clostridial chimeras were consequently 

explored.  
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Chapter 5. Utilising clostridial toxins for spinal cord delivery for use in 

neurological diseases 

 

5.1 Introduction 

There is currently a large amount of interest in utilising tetanus toxin, as well as other 

clostridial neurotoxins, as a drug delivery tool to treat diseases of the central nervous 

system (Toivonen et al., 2010). Native tetanus toxin binds to the presynaptic motor 

neuron terminals at the neuromuscular junction. Tetanus then undergoes retrograde 

transport to the motor neuron soma, located in the ventral horn of the spinal cord (Surana 

et al., 2017). By selectively expressing only the binding domain of tetanus toxin (Tbd), 

and conjugating or fusing this to a potential therapeutic, for example, a small molecule 

drug, a protein of interest or a gene for expression, the binding domain can be used to 

navigate the conjugated therapeutic to the motor neuron presynaptic terminals. The Tbd 

can consequently chaperone the conjugated therapeutic to the motor neuron soma in 

the spinal cord, via axonal transport. This mechanism of drug delivery circumvents the 

blood-spinal cord barrier to penetrate the central nervous system. Its specificity of binding 

also prevents off-target effects thus making it an attractive tool for application in central 

nervous system diseases. Specifically, those involving the motor system, such as 

Amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) (Figueiredo et 

al., 1997; Francis et al., 2004; Ciriza et al., 2008; Chian et al., 2009). 

These investigations so far, have focused on the attachment of a single Tbd to a single 

therapeutic molecule, using a simple one to one ratio. The attachment of a second 

binding domain should augment the efficacy of Tbd during drug delivery. The binding of 

a ligand to a receptor is determined by specific binding kinetics, most notably including 

on- and off-rate constants (Peuker et al., 2013). During binding, the ligand and receptor 

associate (the on-rate) and dissociate (the off-rate) several times (Corzo, 2006; Peuker 

et al., 2013). The presence of two binding domains would imply that as one receptor 

binding domain dissociates away from the receptor, the other binding domain which, as 

part of the same chimera, would be in close proximity to the receptor, would then be 

available to associate with the now vacant receptor. This hence increases the overall 

association time of the chimera with the receptor, and prevents the chimera from drifting 

away from the receptor during dissociation. In principle, this should increase the binding 

of the chimera to its receptor, thus improving its availability for, and overall rate of, 

internalisation, subsequently increasing the chimera’s efficacy. 

There are, however, concerns for the immunogenicity associated with tetanus toxin when 

pursuing it as a potential drug delivery tool. It is estimated that over 80% of the English 
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population under 40 years of age, and 53% of those over 60 years of age, are immunised 

against tetanus toxin (Maple et al., 2000). This means that a chimera containing Tbd 

could potentially be attacked and removed by immune cells before being able to produce 

any therapeutic effect. Only if the Tbd- containing chimera is internalised rapidly by 

neurons before eliciting an immune response, will the chimera be able to provide any 

therapeutic benefit (Toivonen et al., 2010). For this reason, here, the alternate toxin, 

Cholera toxin, was also investigated for use in drug delivery. 

Similar to Tbd, the b subunit of cholera toxin is capable of undergoing both anterograde 

and retrograde transport after peripheral application, and is subsequently used as a well-

established, effective neuronal tracer (Stoeckel et al., 1977; Angelucci et al., 1996; Conte 

et al., 2009). The majority of humans are not immunised against cholera toxin due to its 

low prevalence in developed countries, as a result of increased sanitation (Azurin and 

Alvero, 1974), thus making it an ideal candidate for development.  

Consequently, in this chapter, it will be investigated whether the attachment of a second 

receptor binding domain can improve the efficacy of protein delivery to the central 

nervous system. Additionally, it will be determined whether cholera toxin does offer an 

efficacious alternative to Tbd for drug delivery.  

 

5.2 Results 

5.2.1 Tbd-Cy3 is retrogradely transported to the motor neurons in the ventral horn 

of the lumbar spinal cord following intraplantar injection  

Tbd-Cy3 was prepared by Dr C. Leese, using the established stapling technique. Briefly, 

Tbd was fused to synaptobrevin whilst Cy3 was conjugated, via maleimide chemical 

conjugation, to the SNARE peptide SNAP25. Following the addition of syntaxin, the 

staple, a stable fluorescent chimera was produced (Mavlyutov et al., 2016). The 

attachment of the fluorescent label, -Cy3, enabled the location of Tbd to be inferred. 

Following intraplantar injection of 7.5 µg Tbd-Cy3 to the left hindpaw, Cy3 

immunofluorescence was detected in the soma of motor neurons, located in the ventral 

horn of the lumbar spinal cord, ipsilateral to the injection site. Specifically, at the L5 region 

of the spinal cord (Fig. 5.1). No Cy3 immunofluorescence was observed in the 

contralateral ventral horn.  

 

5.2.2 The penetration of the lumbar spinal cord motor neurons by Tbd-Cy3 is 

increased by the attachment of a second tetanus binding domain 
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Figure 5.1 Tbd-Cy3 is visualised in the motor neurons of the ventral horn of the lumbar 

spinal cord following intraplantar injection. Male 5 week old Sprague-Dawley rats received 

intraplantar injection of 7.5 µg/ 50 µl Tbd-Cy3 (N=2). Rats were perfused 7 days post-injection 

and the spinal cord was collected and cryosectioned. Representative images taken on a Nikon 

A1 TIRF confocal microscope show -Cy3 immunofluorescence (red) detected in the ipsilateral 

ventral horn of the lumbar spinal cord, specifically within the motor neurons marked by NeuN 

(green). Cy3 immunofluorescence was absent in the contralateral ventral horn. Scale bar= 20 μm  

 

The previous experiment confirms that Tbd remains functional after attachment of a 

fluorescent label. It was demonstrated that Tbd can still effectively internalise into 

neurons and undergo retrograde transport to the spinal cord, resulting in detectable 

immunofluorescence in the ventral horn. Consequently, the amount of 

immunofluorescence in the motor neurons of the spinal cord was utilised to provide an 

indirect measure of internalisation and retrograde transport.  

To investigate whether the attachment of a second receptor binding domain could 

significantly enhance the binding of a protein, a second Tbd was attached to the 

fluorescent Tbd-Cy3 chimera. In short, the first Tbd and the -Cy3 label both remained 

fused to the same SNARE peptides. The second Tbd was expressed fused to the 

syntaxin peptide which was originally utilised as the “staple” peptide. Accordingly, no 

additional staple was required as all components of the SNARE complex were now 

contained within the individual subunits. Additionally, at this stage, the efficacy of cholera 
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toxin subunit B was also studied using a commercially available recombinant Cholera 

Toxin Subunit B Alexa Fluor 488 Conjugate (CTB-488) to determine whether cholera 

might provide a possible alternative delivery tool to tetanus toxin. 

All three chimeras were administered via intraplantar injection. Rats received a single 

injection of either 7.5 µg of Tbd-Cy3, 7.5 µg of 2xTbd-Cy3 or 20 µg of CTB-488 to left 

hindpaw. Quantification of immunofluorescence in the motor neuron soma in the spinal 

cord revealed that injection of the different compounds did significantly affect the amount 

of immunofluorescence detected in the motor neuron soma located in the ipsilateral 

ventral horn to the injected hindpaw (One-way ANOVA, F (2,15) =11.43, P=0.001, Fig. 

5.2C). Specifically, attachment of the second Tbd resulted in an almost ten-fold increase 

in the amount of immunofluorescence detected in motor neurons compared to Tbd-Cy3, 

consisting of only a single binding domain (Tukey’s  multiple comparisons test, P <0.001, 

Fig. 5.2A and 5.2C). Additionally, significantly more immunofluorescence was observed 

after injection of 2xTbd-Cy3 compared to CTB-488 (Tukey’s multiple comparisons test, 

P<0.05, Fig. 5.2A, 5.2B and 5.2C). CTB-488 did produce more immunofluorescence than 

Tbd-Cy3 in the motor neurons, however, this difference was not shown to be significant.  

 

5.2.3 Attachment of a second tetanus binding domain to TetBot increases the 

efficacy of the BoNT/A enzymatic domain to cleave SNAP25 in the spinal cord. 

Next, it was important to determine whether Tbd can deliver a large protein or enzyme 

to the spinal cord, and whether this ability to deliver a large protein is once more improved 

by the attachment of a second binding domain. Fluorescent probes such as Cy3 are 

usually very small in comparison to fully functional proteins. Cyanine fluorescent dyes 

specifically have a molecular weight below 1 kDa (Southwick et al., 1990; Mujumdar et 

al., 1993). Consequently, fluorescent probes do not largely impact the motility or binding 

of the proteins to which they are fused. In contrast, the enzymatically-active LcTd/A has 

a molecular weight of 100 kDa and can therefore greatly perturb the native binding and 

transportation of a targeting protein.  

To test this hypothesis, two separate chimeras were prepared. In the first chimera, 

LcTd/A was conjugated to a single Tbd, and in the second, LcTd/A was conjugated to 

two Tbds, using a similar method to that previously described in this chapter. The two 

chimeras were thus referred to as TetBot and 2xTetBot, respectively. The inclusion of 

LcTd/A meant that the cleaved SNAP25 antibody could again be used to provide a 

reliable reporter for LcTd/A enzymatic activity. It could therefore be easily recognised 

where LcTd/A had been active, and from this, then surmise where the LcTd/A had been 

transported to, and how effectively.  
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consisting of only a single binding domain (Tukey’s  multiple comparisons test, P <0.001,  
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Figure 5.2 The penetration of the lumbar spinal cord motor neuron soma by Tbd-Cy3 is 

increased by the attachment of a second tetanus binding domain. Male 5 week old Sprague-

Dawley rats received an intraplantar injection to the left hindpaw of either 7.5 µg/ 50 µl Tbd-Cy3 

(N=2), 7.5 µg/ 50 µl 2xTbd-Cy3 (N=2) or 20 µg/ 30 µl CTB-AlexaFluor488 (N=2). Animals were 

then perfused 7 days later. The fixated spinal cord was taken and cryosectioned for 

immunohistochemistry. Images were acquired using a Nikon A1 TIRF confocal microscope. (A) 

Immunolabelling of ipsilateral lumbar spinal cord sections revealed -Cy3 (red) 

immunofluorescence colocalised with the NeuN stain, used to visualise the motor neurons 

(green), after injection of both Tbd-Cy3 and 2xTbd-Cy3. Scale bar= 20 μm (B) Spinal cord 

sections isolated from CTB-AlexaFluor488-injected animals similarly displayed Alexa-488 

immunofluorescence (green) contained within the ipsilateral motor neurons (red). Scale bar= 20 

μm (C) Quantification of the resultant immunofluorescence, using a thresholding technique, 

showed that injection of 2xTbd-Cy3 produced significantly more detectable immunofluorescence 

than injection of either Tbd-Cy3 and CTB-AlexaFluor488. All data presented as mean ± S.E.M., * 

p<0.05, *** p<0.001. 

 

Western blot analysis of dorsal root ganglion cultures incubated with increasing 

concentrations of both TetBot and 2xTetBot demonstrated that cleaved SNAP25 can be 

readily detected following 65 hour incubation with 2xTetBot at concentrations as low as 

3.2 pM. In contrast, SNAP25 cleavage was only visualised following incubation with 

concentrations of 80 pM TetBot and above (Fig. 5.3C). This therefore implies that 

2xTetBot has a higher efficacy than TetBot. 

Similarly, quantification of the cleaved SNAP25 staining following intraplantar injection 

of 300 ng TetBot and 300 ng 2xTetBot into separate groups of animals, revealed that a 

significantly larger area of the spinal cord displayed positive SNAP25 cleavage following 

administration of 2xTetBot compared to TetBot (Unpaired t-test, t (4) =4.775, P=0.009, 

Fig. 5.3B). SNAP25 cleavage was visible in the ipsilateral ventral horn of the lumbar 

spinal cord following injection of both 2xTetBot and TetBot (Fig. 5.3A). Lumbar spinal 

cord sections prepared from 2xTetBot injected rats, however, showed a much greater 

medial spread of SNAP25 cleavage. Dense cleaved SNAP25 staining was seen reaching 

to the central canal of the spinal cord with additional projections decussating to the 

contralateral spinal cord (Fig. 5.3A). Furthermore, following intraplantar injection of 

2xTetBot, the dense SNAP25 cleavage staining was observed as far dorsal as laminae 

V and VI of the dorsal horn. Additionally, single cleaved SNAP25-positive neurites were 

also seen extending more sparsely through to the superficial dorsal horn (Fig. 5.3A). In 

contrast, spinal cord sections prepared from TetBot injected rats displayed SNAP25 

cleavage in a smaller area which was concentrated around laminae IX of the ventral 

horn, and was restricted to the ipsilateral spinal cord (Fig. 5.3A).  
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LcTd/A meant that the cleaved SNAP25 antibody could again be used to provide a 

reliable reporter for LcTd/A enzymatic activity. It could therefore be easily recognised  
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Figure 5.3 Greater penetration of the lumbar rat spinal cord is observed after intraplantar 

injection of 2xTetBot. Male 6 week old Sprague-Dawley rats received an intraplantar injection 

to the left hindpaw of either 300 ng/ 50 µl TetBot (N=3) or 300 ng/ 50 µl 2xTetBot (N=3). After 6 

days, the animals were culled and the spinal cord was isolated. The spinal cord was marked by 

an incision to the contralateral ventral horn before sectioning. (A) Images were acquired using 

the Leica epifluorescence microscope. Cleaved SNAP25 (green) was visualised in the ipsilateral 

ventral horn of both TetBot- and 2xTetBot-injected rats but was absent in the neuronal soma, 

labelled using NeuN (red). Scale bar= 0.5 mm (B) Quantification of the staining at L5 of the spinal 

cord revealed that 2xTetBot (N=3, n=2) resulted in a significantly larger area of cleaved SNAP25 

staining relevant to the total section area (44.7 ± 5.4%) than single TetBot (N=3, n=2) (15.6 ± 

2.8%) (C) Western blot (N=1) of dorsal root ganglion cultures following 65 hr incubation with 

TetBot and 2xTetBot were probed with a cleaved SNAP25 antibody. SNAP25 cleavage was 

clearly detectable at concentrations as low as 3.2 nM after incubation with 2xTetBot, in 

comparison to 80 pM TetBot. (D) Staining of the thoracic lumbar region revealed bilateral SNAP25 

cleavage in 2xTetBot-injected rats. This staining was absent in TetBot-injected rats. Scale bar= 

0.5 mm. All data presented as mean ± S.E.M. ** p<0.01. 

 

Moreover, cleaved SNAP25 was detected at the thoracic level of the spinal cord after 

intraplantar injection of 2xTetBot (Fig. 5.3D) but not after intraplantar injection of TetBot. 

This suggests that the attachment of a second Tbd encourages transcytosis into second 

order projections neurons meaning that 2xTetBot may have transcytosised twice.  

As was observed after injection of BiTox/A and BiTox/D, neither TetBot- or 2xTetBot- 

injected animals exhibited any visible signs of muscular paralysis, such as lameness or 

inability to grasp, despite the widespread SNAP25 cleavage observed at the level of the 

spinal cord. This is particularly surprising given the great expanse of SNAP25 cleavage 

detected in 2xTetBot injected animals, specifically. 

 

5.2.4 Cleaved SNAP25 is not readily detected in the lumbar spinal region following 

intraplantar injection of ChoBot 

The utility of Cholera Toxin Subunit B to deliver proteins of interest to the spinal cord was 

still investigated despite that CTB-488 was not shown to be more efficacious than single 

Tbd-Cy3 at internalising to neurons and undergoing retrograde transport, and remained 

less efficacious than 2xTbd-Cy3, due to the concerns over the immunogenicity predicted 

to occur when using tetanus toxin.  

LcTd/A was again used as the protein of interest to study the ability of cholera binding 

domain to deliver proteins to the spinal cord. In this instance, LcTd/A was conjugated to 

the AB5 domain of cholera toxin (for a more in-depth description, see 6.2.1). Briefly, AB5 
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contains the receptor binding domain of cholera, the previously investigated B subunit, 

which interacts in a pentameric arrangement (B5) with the rod-like structure, the A2 

domain (A). The A1 domain which mediates the enzymatic active of cholera toxin was 

purposely excluded from the chimera. Resultantly, the chimera includes five binding 

domains.  

In contrast to TetBot and 2xTetBot, immunohistochemical staining of the lumbar spinal 

cord showed few single fibres containing cleaved SNAP25 in the ipsilateral ventral horn 

after intraplantar injection of ChoBot (Fig. 5.4A). Staining of spinal cord sections using 

anti-CTB antibody, however, revealed positive CTB staining in the motor neurons of the 

ipsilateral ventral horn (Fig. 5.4B). This consequently suggests that CTB is unable to 

effectively chaperone LcTd/A to the central spinal cord. 

 

5.3 Discussion 

The blood-brain barrier remains a major obstacle for the delivery of therapeutic proteins 

to the central nervous system. Clostridial neurotoxins gain entry to the central nervous 

system via retrograde transport within nerve fibres, thereby circumventing the blood-

brain barrier (Caleo and Schiavo, 2009). Consequently, clostridial neurotoxins represent 

one avenue being explored to achieve neuronal drug delivery. Here, it has been 

demonstrated that tetanus toxin can be used to effectively deliver both small fluorescent 

compounds, and much larger functional enzymes, to neuronal soma, situated within the 

central nervous system. Furthermore, it has been shown that the established stapling 

technique can be successfully used to enhance the efficacy of chimeras by constructing 

a chimera comprising of two receptor binding domains. 

 

5.3.1 Attachment of a second targeting domain successfully augments the efficacy 

of chimeras 

Here, the attachment of a second Tbd to the Tbd-Cy3 construct resulted in an almost 

ten-fold increase in the amount of fluorescence detected in the motor neuron soma in 

the ventral horn. Similarly, the conjugation of a second binding domain to the active 

chimera, TetBot, produced nearly three times as much SNAP25 cleavage in the lumbar 

spinal cord. The evidence from both experiments clearly supports the hypothesis that the 

presence of two targeting domains significantly increases the binding of chimeras. As a 

result, more material is being internalised into neurons and is consequently then reaching 

the central nervous system, following retrograde transport. Hence, enhancing the 

perceived efficacy of the chimeras. 
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Figure 5.4 Limited SNAP25 cleavage is visualised in the lumbar spinal cord after 

intraplantar injection of ChoBot. 4 weeks old male Sprague-Dawley rats (N=2) received 

intraplantar injection of 200 ng/ 30 µl ChoBot. (A)  Imaging of the lumbar spinal cord was 

conducted using a Nikon A1 TIRF confocal microscope. Lumbar spinal cord sections isolated 

from ChoBot-injected rats (N=2) show only single fibres positive for cleaved SNAP25 (green) 

within the ipsilateral ventral horn. No SNAP25 cleavage was detected in the contralateral ventral 

horn. Motor neurons are labelled using NeuN (red). Scale bar= 20 μm (B) Low magnification 

images of the spinal cord were acquired using the Leica epifluorescence microscope. Anti-CTB 

antibody (red) was used to detect the Cholera B subunit (CTB) at the level of the spinal cord whilst 

NeuN (green) was used to label all neuronal soma. Positive staining in the lumbar spinal cord for 

CTB (red) colocalised with the motor neurons of the ventral horn, following intraplantar injection, 

demonstrating that the B-subunit of ChoBot is retrogradely transported to the spinal cord. Scale 

bar= 0.5 mm  
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This is most likely due to an increased interaction time between the chimera and the 

receptor of interest. As described earlier, the theory of binding kinetics depicts an on- 

(association) and off- (dissociation) rate constant for ligand-receptor interactions (Corzo, 

2006; Peuker et al., 2013). The presence of a second binding domain would greatly 

increase the probability of the chimera continuing to interact with the receptor. As one 

binding domain dissociates away from the receptor, the other binding domain would be 

immediately available to bind to the now vacant receptor. This would thus prevent drift 

and would increase the overall chimera-to-receptor interaction time, henceforth, 

improving the internalisation rate. A similar finding has been demonstrated in native 

proteins that naturally contain two binding domains. For example, fibronectin-binding 

proteins, F1 and F2, of the bacterium, streptococcus, require both binding domains for 

optimal binding of the proteins to their targets (Jaffe et al., 1996). 

The attachment of a second binding domain to a functional enzyme was important to 

demonstrate that Tetanus toxin could be used to deliver large cargo, opposed to small 

fluorescent markers. The SNAP25 cleavage detected confirmed that the attachment of 

two separate binding domains did not interfere with the enzymatic activity of LcTd/A. In 

contrast, the presence of a second binding domain greatly augmented the perceived 

catalytic activity of the chimera, as demonstrated by the large expanse of SNAP25 

cleavage, both dorsally and medially, visualised in the spinal cord of rats injected 

intraplantar with 2xTetBot. Conversely, SNAP25 cleavage was mostly contained within 

the ipsilateral ventral horn following injection of TetBot. Noticeably, cleaved SNAP25 was 

detected in fibres extending to the contralateral spinal cord and into the ipsilateral dorsal 

horn of the lumbar spinal cord. Additionally, cleaved SNAP25 was detected at the higher 

thoracic level of the spinal cord in rats receiving intraplantar injection of 2xTetBot. 

Together, the evidence suggests that the presence of the double binding domain, aids 

the transcytosis of the LcTd/A into second order neurons. In its native form, tetanus is 

retrogradely transported, via motor neurons, to the ventral horn, where it transcytoses 

into interneurons (Surana et al., 2017). The SNAP25 cleavage observed in the thoracic 

region implies that the chimera may be capable of transcytosing across multiple 

synapses, after the addition of a second Tbd, whereas the transcytosis of the single 

binding domain TetBot appears to be more restricted. 

 

5.3.2. The potential evidence for transcytosis introduces the possibility of 

delivering therapeutics to higher central nervous system regions 

Moreover, the fact that SNAP25 cleavage was detected in the thoracic region generates 

interest as to whether peripheral injection of 2xTetBot could be used to deliver 
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therapeutic proteins to higher regions of the central nervous system, for example, the 

brainstem. Cleaved SNAP25 appears to be visualised in the lateral reticulospinal tract, 

a descending motor pathway, important for locomotion (Watson and Harvey, 2009). It is 

therefore possible that cleaved SNAP25 would be detected in the reticular formation in 

the brainstem, where this tract orginates. Tissue from the brainstem was not analysed 

on this occasion, however, this staining would be conducted if this experiment was to be 

repeated.  

Although likely, it has not yet been confirmed that the cleaved SNAP25, detected in the 

thoracic spinal cord, is specifically contained within the lateral reticulospinal tract. The 

intermediolateral nucleus, which contains preganglionic sympathetic neurons, is located 

proximal to the lateral reticulospinal tract. It is thus possible that the SNAP25 cleavage 

visualised could instead be contained within the preganglionic sympathetic neurons of 

the intermediolateral nucleus, that innervate the abdominal viscera. This would thus 

suggest that 2xTetBot had somehow enterred the systemic circulation, from the 

peripheral injection site, to gain access to the abdomen.  

It is important that this matter is resolved before further developing double tetanus 

binding domain as a delivery tool. One way to achieve this would be to retrogradely label 

the preganglionic neurons by injection of Fluorogold to the abdomen, and then 

investigate whether the cleaved SNAP25 staining colocalises with the tracer (Appel and 

Elde, 1988; Clemens et al., 2005). Alternatively, tyrosine hydroxylase could be used to 

label the sympathetic neurons, again looking for colocalisation with the cleaved SNAP25 

marker. Notably, the cleaved SNAP25 staining demonstrated here does appear very 

similar to the tyrosine hydroxylase labelling of the IML, reported by Clemens et al. (2005), 

who described this labelling to be descending inhibitory dopaminergic axonal 

arborisations. Notably, the descending pathways regulating the activity of the 

sympathetic neurons project from the ventrolateral medulla (Zagon and Smith, 1993), 

again suggesting that it is possible that LcTd/A could reach the brainstem, after 

peripheral injection of 2xTetBot, albeit, via an alternative pathway to that previously 

considered.  

 

5.3.3 Tetanus chimeras do not produce motor paralysis despite high levels of 

SNAP25 cleavage detected in the ventral horn 

One of the most suprising findings, following intraplantar injection of 2xTetBot, was the 

absence of any signs of motor paralysis or motor impairment despite the large amount 

of SNAP25 cleavage detected in the ventral horn of the lumbar region. Laminae IX, 

located in the lateral ventral horn of the spinal cord, is responsible for the motor 
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innervation of the distal flexor muscles and appears to be the centre point of the SNAP25 

cleavage in both the 2xTetBot- and TetBot- injected rats. Native tetanus toxin 

transcytoses from motor neurons into synapsing inhibitory interneurons where it cleaves 

the SNARE protein, synaptobrevin, thus blocking the release of inhibitory 

neurotransmitters, and consequently producing spastic paralysis (Surana et al., 2017). 

Accordingly, it would be expected that both TetBot and 2xTetBot would likewise produce 

spastic paralysis provided that the Tbd should target the chimera to the neurons natively 

targeted by tetanus, the inhibitory interneurons. This, however, remains to be confirmed 

by immunostaining.  

In support of the observations made here, Ferrari et al. (2013) likewise did not observe 

any signs of motor paralysis in mice, even after intramuscular injection of 500 ng TetBot, 

equivalent to 100,000 times the lethal dose of native BoNT/A. It is, however, possible 

that while no obvious muscle paralysis was perceived, that the rats could have 

experienced compromised function of the hindpaw. In future, a grip test should be used 

to discriminate whether rats have any less obvious muscular paralysis. 

 

5.3.4 Utilising tetanus chimeras to treat lysosomal disorders 

The potential for motor paralysis associated with drug delivery to the interneurons and 

higher motor pathways by Tbd would not be a concern if the aim was to deliver a 

therapeutic protein, such as a neuroprotective factor, to neurons rather than a functional 

enzyme. It remains to be investigated whether Tetanus toxin can be used to deliver other 

proteins, rather than another clostridial subunit, as shown here. Tbd has previously been 

used to target the enzyme, beta-hexosaminidase, responsible for the degradation of the 

ganglioside GM2 in neurons, to the lysosomes of neurons to treat GM2 gangliosidosis, 

a neurodegenerative lysosomal storage disease (Dobrenis et al., 1992). A reduction in 

the accumulation of GM2 was noted after the incubation of neuronal cultures with the 

Tbd-beta-hexosaminidase construct. It was thus concluded that Tbd had successfully 

chaperoned the enzyme to the lysosome, to enable effective degradation of GM2. The 

stapling technology could therefore conceivably be applied to enhance drug delivery for 

the treatment of lysosomal disorders.  

 

5.3.5 The cholera toxin-derived targeting domain is not suitable for delivery of 

therapeutics to the central nervous system 

In contrast, potentially undetected motor effects remain an issue with regards to the other 

objective of this thesis, to design a neuronal blocker to be used as a novel analgesic, as 
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this would require the inclusion of the LcTd/A catalytic domain. Although a greater 

amount of fluorescence was visualised in the motor soma of the ventral horn following 

intraplantar injection of CTB-488, than single Tbd-Cy3, the cholera targeting subunit, 

AB5, was largley unsuccessful at chaperoning and delivering LcTd/A to the spinal cord. 

The lack of retrograde transport demonstrated could prove beneficial, however, when 

developing an analgesic for pain conditions where the pain is restricted to a peripheral 

site. If the catalytic activity of ChoBot is equally confined to the peripheral injection site 

then this would greatly reduce the risk of off-target, central effects.  

It is worthwhile to note, however, that although more fluorescence was detected after 

intraplantar injection of CTB-488, compared to TetBot, a larger amount of CTB-488 than 

Tbd-Cy3 was injected, almost three times as much (20 µg CTB-488 opposed to 7.5 µg 

Tbd-Cy3), in line with recommendations gathered from previous studies (Conte et al., 

2009; Mantilla et al., 2009). Accordingly, there was approximately a 3.5 fold increase in 

the amount of fluorescence detected, thus implying that, overall, cholera CTB subunit 

did not offer a huge advantage over single Tbd, with regards to the delivery of fluorescent 

dyes. Additionally, CTB was conjugated to AlexaFluor488, opposed to Cy3. The 

AlexaFluor dyes provide much greater photostability than the traditional fluorophores 

(ThermoFisher, n.d.; Mahmoudian et al., 2011) and are therefore more resistant to 

photobleaching. This could prove particularly advantageous when using confocal 

microscopy and thus might haved biased the perceived fluorescence.  

It should also be acknowledged that CTB-488 was not constructed using the SNARE 

stapling technology used to produce Tbd-Cy3 and 2xTbd-Cy3. It was instead purchased 

as a recombinantly expressed protein, whereby the genes encoding CTB and 

AlexaFluor488 were fused, prior to expression (ThermoFisher, 2003). The ChoBot 

chimera used later in the experiment was, however, constructed using the stapling 

technology. It would therefore be of benefit to construct AB5-Cy3, using the SNARE-

stapling approach, to determine whether fluorscence can still be detected in the spinal 

cord when using the same method of conjugation, and the same fluorophore. 

Notably, in contrast to the CTB-488 conjugate, when constructing ChoBot, the LcTd/A 

was conjugated to the AB5 domain, rather than directly to the B subunit. It has been 

reported that the B subunit dissociates from the pentameric structure at low pH, typically 

lower than pH 4.0 (De Wolf et al., 1987). BoNT/A must enter acidic vesicles, upon 

internalisation, to permit the unfolding of the translocation domain, in order for the 

enzymatic light chain to escape to the cytosol (Pirazzini et al., 2011). There are therefore 

two possible theories for the perceived lack of SNAP25 cleavage in the spinal cord. 

Firstly, ChoBot could have entered the acidic vesicles, consequently causing the 

targeting domain, CTB, to dissociate away from the chimera. This would have resulted 
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in LcTd/A being left at the peripheral terminal whilst CTB continued to be retrogradely 

transported to the central synapse, hence explaining the immunoreactivity for CTB 

detected in the motor soma post-intraplantar injection of ChoBot, and the absence of 

SNAP25 cleavage. Conversely, the AB5 domain could have chaperoned LcTd/A into 

neutral vesicles, resulting in the catalytic light chain being unable to escape the vesicle, 

and therefore, the Lc would have been delivered to the central motor neuron soma but 

remained trapped inside the endosome, rendering LcTd/A inactive. This again provides 

valid explanation for the positive CTB staining, despite the lack of cleaved SNAP25. 

 

5.3.6 Conclusion 

In conclusion, it has been shown that tetanus toxin is an efficacious tool for drug delivery 

to the central nervous system. The in vivo data collected from TetBot and 2xTetBot 

injected-rats highlights that the pioneered stapling technique can be successfully used 

to enhance the efficacy of chimeras by attachment of a second targeting domain. 

2xTetBot remains a proof of principle due to the associated immunogenicity of tetanus 

toxin in humans (Maple et al., 2000). The transferability of the technology to other 

chimeras still requires further investigation but appears promising. Moreover, the 

opportunity exists to attach another binding domain, or therapeutic protein, by splitting 

the SNARE complex into 4 individual peptides. Each of SNARE peptides could, in theory, 

be recombinantly expressed with an attached protein, creating a 4-domain SNARE-

stapled chimera.  

Separately, Cholera toxin was investigated as an alternative toxin for development as a 

drug delivery tool but failed to deliver large proteins to the central nervous system. The 

suspected limited penetration of the central nervous system by ChoBot could, however, 

prove beneficial in the development of analgesics. Although no motor paralysis following 

injection of either TetBot or 2xTetBot was observed, the long-term effects of SNAP25 

cleavage within the motor area of the spinal cord are unknown and should thus be 

avoided when developing a future analgesic. Furthermore, if SNAP25 cleavage is only 

observed in the periphery following intraplantar injection of ChoBot, it could help to 

resolve the earlier questions of whether the therapeutic effect of BoNT/A is due to its 

peripheral or central catalytic activity. The use of ChoBot as a novel analgesic will 

consequently be explored in the next chapter.  
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Chapter 6. New bacterial chimera for the alleviation of post-operative pain 

and chemotherapy-induced peripheral neuropathy 

 

6.1 Introduction 

Two aforementioned novel clostridial chimeras, BiTox/A (Mangione et al., 2016) and 

TetBot (Ferrari et al., 2013), have been shown to be analgesic against mechanical 

hypersensitivity in separate pain conditions. Further investigation here has demonstrated 

that both chimeras produce large amounts of SNAP25 cleavage at the level of spinal 

cord, thus indicating that they must undergo retrograde transport from the periphery to 

the spinal cord. Consequently, although no signs of motor paralysis or compromised 

well-being were observed, there are concerns about any possible long-distance, off-

target adverse effects, associated with the retrograde transport of these chimeras.  

By comparison, ChoBot, containing the binding domain of Cholera Toxin (AB5) and the 

light chain translocation domain of Botulinum Neurotoxin A (LcTd/A), produced negligible 

amounts of cleaved SNAP25 in the spinal cord following intraplantar injection. This 

therefore implies that there is minimal retrograde transport of LcTd/A to the central spinal 

cord and that the catalytic activity of LcTd/A is instead restricted to the peripheral 

injection site. Not only is this beneficial to prevent off target effects but, if ChoBot was 

similarly shown to be analgesic, it would help to further elucidate whether the therapeutic 

benefit of SNAP25 cleavage by LcTd/A is due to a peripheral or central mechanism 

(Mangione et al., 2016).  

Firstly, this chapter aims to confirm whether ChoBot does retain the catalytic activity of 

LcTd/A in vivo, and, if so, determine whether this catalytic activity is largely constrained 

to the injection site. If shown to be true, it will next be pursued whether ChoBot can 

similarly provide analgesia in pain models. Thus, either generating support for, or 

negating, the hypothesis that the analgesic effect of LcTd/A is peripherally mediated.  

 

6.2 Results 

6.2.1 ChoBot retains the enzymatic activity of Botulinum Neurotoxin A in vitro 

As described in the previous chapter, the novel chimera, ChoBot, was constructed from 

a truncated version of the AB5 cholera toxin, which was then stapled to the LcTd/A, by 

the addition of a SNARE peptide staple.  

The native Cholera Toxin A subunit is expressed as a single polypeptide consisting of 

two domains, A1 and A2, which are joined by a disulphide bond. The A1 domain contains 
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the catalytic activity of cholera toxin (Beddoe et al., 2010). Consequently, the truncated 

A subunit used here to form the chimera contained only the rod-like, linker portion of the 

A subunit, the A2 domain, fused to the SNARE peptide, synaptobrevin. Specifically, the 

A2 domain is an α-helix which associates with the B subunit, via the central pore. There 

is a total of five B subunits which assemble into a pentameric arrangement, around the 

A2 domain, hence the name, AB5. The removal of the A1 subunit eliminated the catalytic 

activity associated with Cholera toxin. Instead, here, the chimera’s catalytic activity was 

inferred by the addition of the LcTd/A, which facilitates the cleavage of SNAP25. LcTd/A 

was fused to the SNARE- peptide, α-SNAP25, which, with the addition of the staple, 

syntaxin, enabled the formation of a SNARE complex between the two separate 

components of the chimera, the truncated AB5-synaptobrevin and LcTd/A-αSNAP25, to 

form an irreversibly conjugated chimera (Fig. 6.1A). 

The stability of the chimera is highlighted during the running of a coomassie-stained 

SDS-PAGE gel. In the unboiled sample, the chimera is seen as a single band and does 

not dissociate back into the separate LcTd/A-αSNAP25 and A2-synaptobrevin domains, 

showing that the SNARE-complex is SDS-page resistant (Fig. 6.1A). The A2-

synaptobrevin band represents excess material that was unable to conjugate to LcTd/A-

αSNAP25 due to there being no more available to conjugate to, hence the absence of  

 

Figure 6.1 ChoBot successfully cleaves SNAP25 in rat cortical neuron cultures (A) A 

coomassie-stained SDS-PAGE gel showing the assembly of the chimera, ChoBot. (B) Western 

blot showing cleavage of SNAP25 in rat cortical neuron cultures following 65 hour incubation with 

0.64 pM- 10 nM ChoBot (N=2). Complete cleavage of SNAP25 is observed at concentrations of 

2 nM and greater. Quantification of the western blot data displayed in the dose-response curve 

shows that the EC50 for SNAP25 cleavage was 71.58 pM. Data provided courtesy of Dr C. Leese. 
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a LcTd/A-αSNAP25 band in the unboiled sample. Conversely, in the boiled sample, all 

components can be seen in their individual bands. It is noted on the gel, however, that 

the pentameric and singular B-subunits dissociate from the A subunit in all lanes, 

including in the unboiled sample. This is because the A2 subunit is non-covalently bound 

to the B-pentamer meaning that the two easily dissociate with the addition of SDS-page. 

Hence, also explaining the B-pentamer and singular B-subunit bands visible in each lane 

(Fig. 6.1A) (Beddoe et al., 2010). 

After demonstrating the successful assembly of the chimera, the functionality of ChoBot 

was assessed in vitro to ensure that ChoBot remained capable of binding and 

internalising into neurons, as well as effectively retaining the catalytic activity of BoNT/A. 

ChoBot was added to dissociated cortical neuron cultures in varying concentrations. 

Complete cleavage of SNAP25 was shown in rat cortical neurons after 65 hour 

incubation with concentrations of 2 nM ChoBot and higher. Moreover, SNAP25 cleavage 

was produced by concentrations as low as 16 pM, thus demonstrating that ChoBot can 

effectively bind and internalise into neurons, and cleave SNAP25, in vitro (Fig. 6.1B). 

 

6.2.2 ChoBot produces SNAP25 cleavage in myelinated sensory neurons in vitro 

The ultimate intention is to design a chimera to be used as an analgesic. ChoBot’s 

enzymatic activity was therefore further assessed in dorsal root ganglion cultures to 

determine whether ChoBot is able to preferentially bind to, and consequently cleave 

SNAP25 in, a subset of sensory neurons, specifically nociceptive neurons. For this 

purpose, we compared the binding profile of ChoBot to the two chimeras which have 

previously been demonstrated to produce analgesia in animal models, TetBot and 

BiTox/A (Ferrari et al., 2013; Mangione et al., 2016). 

After 65 hour incubation with 10 nM ChoBot, cleaved SNAP25 was observed in a subset 

of sensory neurons with an average cell diameter of 21.0 ± 1.0 µm, again identified using 

the pan-neuronal marker, βTubulin III (Fig. 6.2A). According to the frequency distribution 

histogram, cleaved SNAP25 was most often visualised in neurons with a cell diameter 

between 18-20 µm. Another peak was noted at 28 µm cell diameter, (Fig. 6.2B), 

reminiscent of the frequency distribution histograms associated with incubation of 

cultures with BiTox/D (Fig. 4.4B). 

Similarly, incubation with TetBot resulted in detectable SNAP25 cleavage in a subset of 

neurons with a mean cell diameter of 22.1 ± 1.1 µm (Fig. 6.2A). Again, two peaks were 

noted in the frequency distribution histogram, one peak at 16-20 µm cell diameter, and 

the other at 26 µm cell diameter (Fig. 6.2B). There was no significant difference between  
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Figure 6.2 ChoBot cleaves SNAP25 in a subpopulation of cultured sensory neurons. (A)  

Epifluorescent images of SNAP25 cleavage (red) in dissociated dorsal root ganglion neurons, 

identified using pan-neuronal marker, βTubulin III (BTIII) (green) after 65 hour incubation of 

cultures with 10 nM ChoBot (N=3, n=3), 10 nM TetBot (N=3, n=3) and 10 nM BiTox/A (N=5, n=3). 

The health of sensory neurons was confirmed by identification of an intact nucleus using DAPI 

(blue). Cleaved SNAP25 immunoreactivity was not detected in vehicle or untreated neuronal 

cultures (data not shown). (B) Images were quantified to produce frequency distribution 

histograms showing the number and diameter of neurons displaying both BTIII and cSNAP25 

staining (black) compared to neurons displaying BTIII staining only (grey). Inserted pie charts (top 

right) show the percentage of the total neurons identified, that displayed SNAP25 cleavage 

(black). Scale bar = 50 μm. (C) The data points plotted represent the identified neurons positive 

for cleaved SNAP25 after incubation with each of the chimeras. Incubations with BiTox/A (27.6 ± 

1.3 µm) resulted in cleaved SNAP25 being detected in neurons with a significantly higher mean 

cell diameter compared to ChoBot (21.0 ± 1.0 µm) and TetBot (22.1 ± 1.1 µm). All data is 

presented as mean ± S.E.M.** P=0.01, *** P=0.001. 
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the average cell diameter of neurons displaying cleaved SNAP25 after incubation of 

ChoBot compared to TetBot (One-way ANOVA, F (2,100) = 9.355, P=0.8158, Fig 6.2C). 

In contrast, incubation with BiTox/A produced cleaved SNAP25 in a subpopulation of 

neurons with significantly larger mean cell diameter (27.6 ± 1.3 µm) than following 

incubation with ChoBot (One-way ANOVA, F (2,100) = 9.355, P=0.0005) and TetBot (One-

way ANOVA, F (2,100) = 9.355, P=0.0045, Fig 6.2C). This is well exemplified by the 

frequency distribution histogram were the neurons displaying positive cleaved SNAP25 

can be seen distributed across the upper values of the histogram. There was no 

significant difference in the percentage of neurons showing positive-cleaved SNAP25 

staining between the three chimeras (One-way ANOVA, F (2, 8) = 0.34433, P=0.7187, Fig. 

6.2B). 

The neuronal markers, Neurofilament 200 and peripherin, were subsequently used to 

distinguish whether this difference in binding between BiTox/A and the two other 

chimeras, ChoBot and TetBot, occurred within the population of larger, myelinated Aβ- 

and thinly myelinated Aδ- sensory neurons, or within the population of smaller 

unmyelinated neurons. Labelling the larger, myelinated neurons, using anti-NF200 

antibody, likewise revealed that the neurons displaying positive cleaved SNAP25 

staining after incubation with BiTox/A had a significantly larger mean cell diameter (28.2 

± 1.2 µm) in comparison to those showing cleaved SNAP25 after addition of ChoBot 

(20.9 ± 1.3 µm; One-way ANOVA, F (2,90) = 10.68, P=0.0004) and TetBot (21.5 ± 1.3 µm; 

One-way ANOVA, F (2,90) = 10.68, P=0.0015) (Fig. 6.3C). For both ChoBot and TetBot, 

the frequency distribution histogram indicated that the peak in the number of neurons 

displaying SNAP25 cleavage occurred below 20 µm (Fig. 6.3B). BiTox/A again produced 

a histogram were the neurons displaying cleaved SNAP25 spanned the upper values of 

the histogram, with a peak specifically observed at 30 µm cell diameter (Fig. 6.3B). There 

was, however, no perceived difference in the percentage of neurons displaying cleaved 

SNAP25, dependent on the treatment of cultures with the different chimeras (One-way 

ANOVA, F (2,7) = 0.1389, P=0.8727, Fig 6.3B). 

In contrast, identification of the unmyelinated, peripherin-positive neurons did not 

indicate any significant differences in either the mean cell diameter of the neurons co-

labelled for cleaved SNAP25 (One-way ANOVA, F (2,27) = 0.3012, P=0.7423; Fig. 6.4C), 

or in the percentage of peripherin-positive neurons displaying cleaved SNAP25 (One-

way ANOVA, F (2,6) = 0.6665, P=0.5478, Fig. 6.4B), following incubation with the different 

chimeras. All three chimeras produced cleaved SNAP25 in a subpopulation of 

unmyelinated neurons with a mean cell diameter below 20 µm (Fig. 6.4C).  
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Figure 6.3 ChoBot cleaves SNAP25 in a subpopulation of myelinated sensory neurons. (A)  

Representative images of cleaved SNAP25 (red) in myelinated sensory neurons, defined using 

anti-neurofilament 200 (NF200) antibody (green), following 65 hour incubation of dissociated 

dorsal root ganglion cultures with 10 nM ChoBot (N=3, n=3), TetBot (N=3, n=3) and BiTox/A (N=4, 

n=3). The nucleus is indicated by DAPI (blue). Scale bar= 50 μm. (B) Quantification of images 

was used to generate frequency distribution histograms which show the distribution of NF200-

labelled neurons displaying cleaved SNAP25 (black), dependent on cell diameter, compared to 

NF200-positive neurons negative for cleaved SNAP25 (grey). Pie charts (top right) display the 

percentage of total NF200-positive neurons that were colabelled for cleaved SNAP25 (black). (C) 

Plotting the cell diameter of individual neurons colabelled for NF200 and cleaved SNAP25, after 

incubation with each of the chimeras, revealed that BiTox/A cleaves SNAP25 in myelinated 

sensory neurons with a larger mean cell diameter (28.2 ± 1.2 µm) than ChoBot (20.9 ± 1.3 µm) 

and TetBot (21.5 ± 1.3 µm). All data is presented as mean ± S.E.M.** P=0.01, *** P=0.001. 
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Figure 6.4 ChoBot cleaves SNAP25 in a small proportion of unmyelinated sensory neurons 

in vitro. (A) Representative epifluorescent images of cleaved SNAP25 (red) in unmyelinated 

sensory neurons, marked using anti-peripherin antibody (green), taken after 65 hour incubation 

of 2 day old dissociated dorsal root ganglion cultures with 10 nM ChoBot (N=2, n=3), 10 nM TetBot 

(N=3, n=3) and 10 nM BiTox/A (N=4, n=3). DAPI (blue) marks the cell nuclei. Scale bar = 50 μm. 

(B) Frequency distribution histograms show the distribution of peripherin-positive neurons 

displaying cleaved SNAP25 (black), dependent on cell diameter, compared to peripherin marked 

neurons, negative for cleaved SNAP25 (grey). Pie charts (top right) illustrate the number of 

neurons colabelled for peripherin and cleaved SNAP25 (black) expressed as a percentage of the 

total number of peripherin-positive neurons. (C) The cell diameter of neurons colabelled for 

peripherin and cleaved SNAP25 was plotted to reveal no significant difference in the mean cell 

diameter of unmyelinated neurons displaying cleaved SNAP25 after incubation with each of the 

chimeras. All data is presented as mean ± S.E.M. 
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6.2.3 Cleaved SNAP25 is detected in the peripheral sensory neurons of the 

glabrous skin following intraplantar injection of ChoBot 

Subsequent in vivo investigations were used to evaluate whether the in vitro binding 

profile of ChoBot could be replicated in vivo. The pan-neuronal marker, βIII-Tubulin, was 

firstly used to label the neuronal fibres, innervating the glabrous skin. βIII-Tubulin 

recognises all nerve fibres and subsequently stains both motor and sensory neurons. 

The location of the nerve terminals was therefore used to distinguish the sensory nerve 

fibres from the motor nerve fibres. Sensory neurons terminate inside the dermis, proximal 

to the epidermis. Conversely, motor neurons project directly to the muscle fibres which 

are located much deeper in the dermis and are easily identified by their striated 

appearance.  

Subsequent immunostaining using anti βIII-Tubulin antibody, revealed positive cleaved 

SNAP25 staining in the sensory neurons of the glabrous skin of the ipsilateral paw, 

following intraplantar injection of 200 ng ChoBot (Fig. 6.5A). SNAP25 cleavage was not 

detected in the sensory neurons of contralateral paw of ChoBot-injected animals (Fig. 

Fig. 6.5A). Likewise, cleaved SNAP25 was not observed in the ipsilateral paw of vehicle-

injected or naïve rats.  

Further staining was next conducted to elucidate which subtype of sensory neurons, 

specifically, contained cleaved SNAP25. Comparable to the in vitro labelling, cleaved 

SNAP25 was visualised in the larger, myelinated NF200 positive-neurons, however, it 

was not present in all NF200-stained neurons (Fig. 6.5B). SNAP25 cleavage was also 

seen in neurons expressing CGRP, described to be peptidergic neurons (Fig. 6.5B). 

 

6.2.4 ChoBot significantly reduced KCl-evoked CGRP release in cultured sensory 

neurons   

Consequent to the evidence that ChoBot can internalise into peptidergic neurons, it was 

investigated whether ChoBot could modulate neuropeptide release. Peptidergic neurons 

are heavily involved in neurogenic inflammation and are implicated in inflammatory pain 

conditions (Kilo et al., 1997; Benemei et al., 2009). In a CGRP release ELISA assay, 

conducted by Dr Marta L.A. Simoes, 65 hour incubation of dissociated mouse dorsal root 

ganglion cultures with 10 nM ChoBot significantly reduced KCl-evoked CGRP release 

(Fig. 6.5C). Incubation with ChoBot did not, however, significantly impact either basal or 

capsaicin-induced CGRP release, although there was a trend for both to be reduced. 

This therefore confirms that, in vitro, ChoBot has a functional effect on the sensory 

neurons implicated in pain and the development of pain conditions. 
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Figure 6.5 ChoBot cleaves SNAP25 in peripheral sensory neurons in vivo and prevents 

KCl-evoked CGRP release in vitro. ChoBot-injected rats (200 ng/ 30 µl, N=2) and vehicle-

injected rats (30 µl 0.4% OG in Buffer A, N=2) were perfused with 4% paraformaldehyde 7 days 

post-injection. Naïve rats were also perfused but received no prior treatment. (A) Epifluorescent 

images of 30 µm glabrous skin sections, isolated from the plantar surface of the hindpaw, reveal 

cleaved SNAP25 (red) in the sensory neurons, marked using βIII-Tubulin (green), within the 

dermis of the ChoBot-injected paw (ipsilateral paw, N=2). Cleaved SNAP25 was absent in the 

paw contralateral to the ChoBot-injected paw (N=2), in the ipsilateral hindpaw of vehicle-injected 

rats (N=2) and in naïve animals (N=2). Autofluorescence is generated by the dermal layer and is 

visible at the top of all of the images. It can thus be ignored. Scale bar = 100 µm (B) Cleaved 

SNAP25 colocalised with both CGRP-positive and NF200-positive neurons (N=2). Scale bar = 50 

µm. (C) 65 hour incubation with 10 nM ChoBot significantly attenuated KCl-evoked CGRP release 

from dissociated mouse dorsal root ganglion neuron cultures (N=3). Reduced capsaicin-evoked 

CGRP release was also noted but was not significant. All data presented as mean ± S.E.M, *** 

P<0.001. ELISA data provided courtesy of Dr. M.L.A. Simoes. 

 

6.2.5 Cleaved SNAP25 is detected at the neuromuscular junction in the glabrous 

skin of the hindpaw following intraplantar injection of ChoBot 

It was also of importance to determine whether ChoBot would display any affinity for 

motor neurons, provided the paralytic nature of native BoNT/A. Visualisation of the 

neuromuscular junction, using α-Bungarotoxin-488, showed cleaved SNAP25 localised 

to the neuromuscular junction, as well as in some of the motor nerve fibres innervating 

the synapse (Fig. 6.6). Cleaved SNAP25 was absent at the neuromuscular junction in 

the contralateral paw. Expectedly, cleaved SNAP25 was not detected at the 

neuromuscular junction in vehicle-injected rats or in naïve animals (Fig. 6.6). 

 

6.2.6 Pre-emptive intraplantar injection of ChoBot attenuates the development of 

mechanical hypersensitivity following surgery 

The identification of SNAP25 cleavage in the peripheral sensory neurons combined with 

the overall absence of cleaved SNAP25 in the ventral lumbar spinal cord, or the 

contralateral paw, suggests that the catalytic activity of ChoBot is largely restricted to the 

peripheral injection site. The analgesic potential of ChoBot was consequently 

investigated as it would circumvent the concerns over the long-distance effects of BoNT 

chimeras, resulting from the retrograde transport, and possible transcytosis, routinely 

observed with these chimeras. ChoBot was primarily trialled in an incisional post-

operative pain model. Briefly, 200 ng ChoBot was administered via intraplantar injection 

to the left hindpaw of rats, five days prior to the induction of the incisional post-operative 

pain model. Post-operative pain was induced by performing a longitudinal incision to the 

ipsilateral hindpaw (Brennan et al., 1996). 
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Figure 6.6 Cleaved SNAP25 is detected at the neuromuscular junction after intraplantar 

injection of ChoBot. α-Bungarotoxin-488 was used to identify the neuromuscular junction 

(green) in glabrous skin sections, cryosectioned from the plantar surface of the hindpaw. Cleaved 

SNAP25 (red) was found colocalised to neuromuscular junction in the ipsilateral ChoBot-injected 

hindpaw, 7 days post intraplantar injection (N=2). Cleaved SNAP25 was not detected at the 

neuromuscular junction of contralateral hindpaw (N=2), in the ipsilateral paw of vehicle injected 

rats (N=2), or naïve rats (N=2).  

 

Injection of ChoBot did not influence either thermal (Two-way ANOVA, Treatment: 

Baseline - Day -1: Ipsilateral paw, F (1, 8) =0.4712, P= 0.5118, Fig. 6.7B; Contralateral 

Paw, F (1, 8) =0.0060, P= 0.9404, Fig. 6.7D) or mechanical basal thresholds (Two-way 

ANOVA, Treatment: Baseline - Day -1: Ipsilateral paw, F (1, 8) =1.275, P= 0.2915, Fig. 

6.7A; Contralateral Paw, F (1, 8) = 0.0358, P= 0.8546, Fig. 6.7C). Pre-treatment with 

ChoBot did, however, significantly attenuate the development of mechanical 

hypersensitivity in the ipsilateral paw following incision, compared to rats that received 

vehicle injection (Two-way ANOVA, Treatment: Day -1 – Day 7, F (1, 8) = 23.6, P= 0.0013, 

Fig. 6.7A). ChoBot-injected rats maintained a significantly higher mechanical withdrawal 

threshold in the ipsilateral paw, than vehicle-injected rats, between days 1-3 post-incision 

(Sidak’s multiple comparisons test, Day 1, P= 0.0065; Day 2 and 3, P= 0.0033). By day 
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Figure 6.7 Pre-emptive intraplantar injection of ChoBot prevents the development of 

mechanical hypersensitivity following surgery. 5 week old male Sprague-Dawley rats 

received intraplantar injection of 200 ng/ 30 µl ChoBot (N=5) or vehicle (N=5) 5 days prior to the 

induction of the incisional post-operative pain model (A) Injection of ChoBot partially prevented 

the development of mechanical hypersensitivity in the ipsilateral paw, as shown by the increased 

mechanical withdrawal threshold, assessed using Electronic von Frey, between days 1 and 3 

post-surgery compared to vehicle-injected rats. (B) The paw withdrawal latency, measured using 

Hargreaves Plantar test, revealed that ChoBot had no effect on thermal hyperalgesia produced 

in the ipsilateral paw following incision. (C) The mechanical threshold and (D) the thermal 

threshold of the contralateral hindpaw remained unaffected by either incision and intraplantar 

injection of ChoBot to the ipsilateral paw. All data presented as mean ± S.E.M, ** P<0.01. 
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7 post-incision, the mechanical threshold had returned to basal levels for both ChoBot- 

and vehicle-injected rats and there was no longer a significant difference in mechanical 

threshold between the two groups (Sidak’s multiple comparisons test, Day 7, P= 0.5056). 

By comparison, ChoBot had no effect on the development of thermal hypersensitivity in 

the ipsilateral paw following incision (Two-way ANOVA, Treatment: Day -1 – Day 7, F (1, 

8) = 0.1672, P= 0.6933, Fig. 6.7B). Additionally, it was evident that the mechanical 

threshold (Two-way ANOVA, Interaction, F (7, 56) = 0.6173, P= 0.7393, Fig. 6.7C) and 

thermal threshold (Two-way ANOVA, Interaction, F (7, 56) = 0.4969, P= 0.8328, Fig. 6.7D) 

of the contralateral paw remained stable throughout the experiment and were unaffected 

by either injection of ChoBot or incision to the opposing hindpaw.  

 

6.2.7. Post-operative intraplantar injection of ChoBot does not reverse mechanical 

hypersensitivity in a post-operative pain model 

Encouraged by these results, it was next investigated whether ChoBot could be 

administered post-incision to reverse the mechanical hypersensitivity normally 

developed. In contrast, ChoBot injected intraplantar 1 day post-incision failed to 

significantly reduce the mechanical hypersensitivity developed in the ipsilateral paw 

(Two-way ANOVA, Treatment: Day 1 – Day 4, F (1, 7) = 1.339, P= 0.2852, Fig. 6.8A) and 

remained ineffective against the thermal hypersensitivity component (Two-way ANOVA, 

Treatment: Day 1 – Day 4, F (1, 7) = 0.1988, P= 0.6692, Fig. 6.8B). Again, the mechanical 

threshold (Two-way ANOVA, Interaction, F (5, 35) 0.7433, P= 0.5964, Fig. 6.8C) and 

thermal threshold (Two-way ANOVA, Interaction, F (5, 35) = 1.594, P= 0.1876, Fig. 6.8D) 

of the contralateral paw remained unaffected throughout the experiment.  

 

6.2.8 Pre-emptive intraplantar injection of ChoBot does not prevent the 

development of mechanical hypersensitivity in females following surgery  

Over more recent years, there has been an increased emphasis placed on the need to 

include female subjects in pain studies (Mogil and Chanda, 2005). A large volume of 

evidence has shown that females not only experience more severe clinical pain, but also 

differ in their responsiveness to analgesic drugs (Greenspan et al., 2007; Fillingim et al., 

2009; Hurley and Adams, 2009). With specific reference to post-operative pain, it has, 

however, been demonstrated that both male and female rodents develop mechanical 

hypersensitivity to an equal degree in the incisional post-operative pain model (Kroin et 

al., 2003; Banik et al., 2006). Consequently, the analgesic potential of ChoBot was 

studied in female Sprague-Dawley rats, undergoing the incisional post-operative pain 
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Figure 6.8 Post-operative intraplantar injection of ChoBot does not reverse mechanical 

hypersensitivity in an incisional pain model. 5 weeks old male Sprague-Dawley rats received 

intraplantar injection of either 30 µl vehicle (N=4) or 200 ng/ 30 µl ChoBot (N=5) one day post 

incision, after day 1 behavioural testing had been conducted. Injection of ChoBot post-incision did 

not significantly reverse the observed (A) mechanical hypersensitivity or (B) thermal 

hypersensitivity in the ipsilateral hindpaw. (C) The mechanical threshold and (D) the thermal 

threshold of the contralateral hindpaw remained stable and were unaffected by either incision or 

intraplantar injection to the ipsilateral paw. All data presented as mean ± S.E.M. 

 

model, to evaluate whether ChoBot was similarly as efficacious at attenuating the 

development of mechanical hypersensitivity in females, as was demonstrated in males.  
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There was no significant difference observed in either the mechanical (Two-way ANOVA, 

Sex, F (1,16) = 0.2569, P= 0.6191) or thermal threshold (Two-way ANOVA, Sex, F (1, 16) = 

3.034, P= 0.1007) of the ipsilateral hindpaw between males and females, recorded at 

baseline. Again, intraplantar injection of ChoBot did not significantly affect either the 

basal mechanical threshold of the contralateral paw (Two-way ANOVA, Treatment: 

Baseline 1 - Day -1, F (1, 6) = 0.2291, P= 0.6491, Fig. 6.9C) or the thermal threshold of the 

contralateral or ipsilateral paw in female rats (Two-way ANOVA, Treatment: Baseline 1 

- Day -1: Ipsilateral paw, F (1, 6) = 0.8546, P= 0.3909, Fig. 6.9B; Contralateral Paw, F (1, 6) 

= 3.316, P= 0.1185, Fig. 6.9D). A significant effect on the mechanical threshold of the 

ipsilateral hindpaw was detected (Two-way ANOVA: Baseline 1 - Day -1: Ipsilateral paw, 

F (1, 6) = 6.12, P=0.0482, Fig. 6.9A), however, this was due to differences observed in the 

initial baseline measurement of the ipsilateral paw between the two treatment groups, 

prior to injection of either vehicle or ChoBot. Once this data point was removed, injection 

of ChoBot was no longer shown to have a significant effect on the basal mechanical 

threshold of the ipsilateral hindpaw (Two-way ANOVA, Treatment: Baseline 2 - Day -1: 

Ipsilateral paw, F (1, 6) = 1.438, P=0.2756, Fig. 6.9A). 

In contrast to that observed in male rats, pre-emptive intraplantar injection of ChoBot in 

female rats did not hinder the development of mechanical hypersensitivity in the 

ipsilateral paw, following plantar incision (Two-way ANOVA, Treatment, F (1, 6) = 0.9955, 

P= 0.3569, Fig. 6.9A). Again, ChoBot did not significantly alter the thermal 

hypersensitivity observed post-incision (Two-way ANOVA, Treatment, F (1, 6) = 3.744, P= 

0.1012), although a trend for a reduced thermal threshold was noted in the ipsilateral 

paw of ChoBot-injected females (Fig. 6.9B). There does, however, appear to be a much 

larger variation in the paw withdrawal latency in female rats, compared to male rats, 

which could explain the observed trend.  

Once more, neither injection of ChoBot, nor the establishment of the post-operative pain 

model, had any significant effect on the mechanical threshold of the contralateral paw 

(Two-way ANOVA, Interaction, F (8, 48) = 1.051, P= 0.4123, Fig. 6.9C) or the thermal 

threshold (Two-way ANOVA, Interaction, F (8, 48) = 0.8011, P= 0.6046, Fig. 6.9D). 

 

6.2.9. Intraplantar injection of ChoBot does not reverse the thermal or mechanical 

hypersensitivity observed in Complete Freund’s Adjuvant inflammatory pain 

model  

Post-operative pain encompasses clinical features from a range of different pain 

conditions including nociceptive pain, inflammatory pain and neuropathic pain (Kehlet et 

al., 2006; Pogatzki-zahn et al., 2017). The observation that ChoBot had no effect on 
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Figure 6.9 Pre-emptive intraplantar injection of ChoBot does not prevent incision-induced 

mechanical hypersensitivity in female rats. Intraplantar injection of 30 µl vehicle (N=4) or 200 

ng/ 30 µl ChoBot (N=4) was administered to the left hindpaw of 6 week old female Sprague-

Dawley rats 5 days prior to plantar incision of the ipsilateral paw. (A) Pre-emptive injection of 

ChoBot did not attenuate the development of mechanical hypersensitivity in the ipsilateral 

hindpaw. (B) ChoBot was also ineffective against the development of thermal hyperalgesia in the 

ipsilateral paw. ChoBot- injected rats remained hyperalgesic to thermal stimuli 7 days post-

incision whereas the thermal threshold of vehicle-injected recovered to approximately basal 

values. (C) The mechanical threshold and the (D) the thermal threshold of the contralateral paw 

were unaffected by injection of vehicle or ChoBot or incision to the ipsilateral paw. All data 

presented as mean ± S.E.M, * P<0.05. 

basal pain thresholds indicates that ChoBot is not affecting acute nociception and 

therefore implies that ChoBot must instead be combatting either the inflammatory or 
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Figure 6.10 Intraplantar injection of ChoBot does not reverse thermal or mechanical 

hypersensitivity in Complete Freund’s Adjuvant (CFA) inflammatory pain model. 

Intraplantar injection of either 30 µl vehicle (N=2) or 200 ng/ 30 µl ChoBot (N=3) was delivered to 

the left hindpaw of 6 week old male Sprague-Dawley rats 24 hours after injection of 15 µl CFA to 

the ipsilateral hindpaw. Day 1 behavioural testing was conducted prior to injection of ChoBot and 

vehicle. Injection of ChoBot failed to reverse CFA-induced (A) mechanical hypersensitivity or (B) 

thermal hypersensitivity in the ipsilateral hindpaw. (C) The mechanical threshold and (D) the 

thermal threshold remained consistent in the contralateral hindpaw in both groups, regardless of 

treatment. All data presented as mean ± S.E.M.  

neuropathic component of postoperative pain. To elucidate whether the perceived 

analgesic effect of ChoBot was due to an effect on inflammation, ChoBot was injected 

intraplantar in the Complete Freund’s Adjuvant inflammatory pain model to determine 

whether it would similarly reverse the pain phenotype.  
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ChoBot administered to the hindpaw 1 day after intraplantar injection of CFA did not 

influence the recovery of either the mechanical (Two-way ANOVA, Treatment, F (1, 3) = 

0.9798, P= 0.3952, Fig. 6.10A) or the thermal threshold (Two-way ANOVA, Treatment, 

F (1, 3) = 0.1846, P= 0.6964, Fig. 6.10B) compared to rats which instead received vehicle. 

Mechanical (Two-way ANOVA, Time, F (6, 18) = 0.387, P= 0.8777, Fig. 6.10C) and thermal 

thresholds (Two-way ANOVA, Time, F (6, 18) = 2.017, P= 0.1163, Fig. 6.10D) measured in 

the contralateral paw remained consistent throughout the experiment and were therefore 

unaffected by either injection of CFA or ChoBot to the ipsilateral paw.  

 

6.2.10 Intraplantar injection of ChoBot reduces mechanical hypersensitivity in 

paclitaxel-induced peripheral neuropathy 

The lack of effect of ChoBot observed on both acute nociception and inflammatory pain 

suggests that ChoBot might instead be mediating its therapeutic effect against the 

possible neuropathic component of post-operative pain. Consequently, it was 

investigated whether ChoBot would produce analgesia in a neuropathic pain model.  

Repeated intraperitoneal injection of Paclitaxel (2 mg/ml/kg), a chemotherapy drug, was 

successfully used to establish paclitaxel-induced peripheral neuropathy (PIPN), the 

chosen neuropathic pain model (Polomano et al., 2001). Rats who received repeated 

injection of paclitaxel displayed significant mechanical hypersensitivity in both paws 

compared to rats that received intraperitoneal injection of the vehicle control (Two-way 

ANOVA, Treatment: Ipsilateral Hindpaw, F (1, 8) = 38.02, P= 0.0003; Treatment: 

Contralateral Hindpaw, F (1, 8) = 91.48, P< 0.0001 Fig. 6.11A).  

The perceived mechanical hypersensitivity in paclitaxel-treated rats was significantly 

reversed by intraplantar injection of ChoBot to left hindpaw, subsequently referred to as 

the ipsilateral paw (Two-way ANOVA, Treatment: Day 14 - 28, F (1, 10) = 13.47, P= 0.0043, 

Fig. 6.12A). A significant overall reduction in mechanical hypersensitivity following 

injection of ChoBot was also observed in the contralateral paw (Two-way ANOVA, 

Treatment: Day 14 - 28, F (1, 10) = 9.227, P= 0.0125, Fig. 6.12B). The mechanical threshold 

of ChoBot-injected PIPN animals was, however, only shown to be significantly higher 

than vehicle-injected PIPN animals at one time point (Sidak’s multiple comparisons test, 

Day 17, P= 0.0296). The analgesic effect was apparent in both paws by day 17 and 

persisted until the experiment was terminated on day 28 (Fig. 6.12A and Fig. 6.12B).  

Although thermal hyperalgesia has previously been described in the PIPN model, it was 

only observed in animals treated with lower doses of paclitaxel and was absent in 

animals receiving the higher dosage of 2 mg/ kg Paclitaxel (Polomano et al., 2001). 

Similarly, here, thermal hyperalgesia was not observed following repeated injection of 2 
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Figure 6.11 Repeated intraperitoneal injection of paclitaxel successfully produces 

paclitaxel-induced peripheral neuropathy (A) 6 week old male Sprague-Dawley rats received 

four intraperitoneal injections of either vehicle (1:1 ethanol:kolliphor) (N=4) or 2 mg/ml/kg 

Paclitaxel (N=6) on four alternate days (Day 0, 2, 4, 6). Repeated IP injection of paclitaxel (Px) 

successfully established paclitaxel-induced peripheral neuropathy (PIPN), as demonstrated by 

the development of mechanical hypersensitivity (decreased paw withdrawal threshold) in both the 

ipsilateral and contralateral paw of paclitaxel-injected rats, apparent by day 6. The mechanical 

threshold was not affected by intraplantar injection of vehicle (30 µl 0.4% OG in Buffer A) to the 

left hindpaw (ipsilateral paw) of both groups on day 15. (B) Plotting the mean weight per treatment 

group, including Px + ChoBot (N=6), revealed no significant difference in the average weight gain 

dependent on treatment group. Repeated injection of Px did not produce robust (C) thermal 

hypersensitivity or (D) cold allodynia, as assessed by acetone test. All data presented as mean ± 

S.E.M. Significance between groups for the ipsilateral paw: * P<0.05, ** P<0.01, *** P<0.001, **** 

P<0.0001; Significance between groups for the contralateral paw: # P<0.05, ## P<0.01, ### 

P<0.001, #### P<0.0001. 
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mg/kg paclitaxel treatment (Two-way ANOVA, Treatment: Ipsilateral Hindpaw, F (1, 2) = 

4.341, P= 0.1726; Treatment: Contralateral Hindpaw, F (1, 2) = 10.36, P= 0.0845, Fig. 

6.11C). In contrast, cold allodynia has been reported by previous studies were rats 

received 2 mg/kg paclitaxel (Polomano et al., 2001; Flatters and Bennett, 2004). This 

pain phenotype was not, however, replicated in this current study (Fig. 6.11D). All data 

points were shown to be statistically insignificant, except for day 13 when paclitaxel-

treated rats displayed a significantly higher score in the contralateral paw during the 

acetone test, compared to vehicle-treated rats, implying the development of cold 

allodynia (Mann–Whitney unpaired t-test, Day 13, P= 0.0095). Yet, this result was not 

reproduced at the succeeding time point, highlighting major inconsistency in the acetone 

test scores. The lack of overall significance could therefore be due to the high level of 

variation in the test scores as well as inadequate power due to limited N numbers. As a 

result, the acetone test was abandoned in subsequent experiments. 

 

 

Figure 6.12 Intraplantar injection of ChoBot reduces mechanical hypersensitivity in 

paclitaxel-induced peripheral neuropathy (PIPN). 6 week old male Sprague-Dawley rats 

received four intraperitoneal injections of 2 mg/ml/kg Paclitaxel (N=6) on four alternate days (Day 

0, 2, 4, 6). Maximal mechanical hypersensitivity was observed in the ipsilateral (left) hindpaw and 

contralateral (right) hindpaw by day 10. On day 15, rats received intraplantar injection of either 30 

µl vehicle (N=6) or 200 ng/ 30 µl ChoBot (N=6) to the ipsilateral hindpaw. (A) Injection of ChoBot 

reversed the paclitaxel-induced mechanical hypersensitivity whereas vehicle-injected PIPN rats 

remained hypersensitive. (B) ChoBot also reversed mechanical hypersensitivity in the 

contralateral paw, compared to vehicle-injected PIPN rats, but with a less pronounced effect than 

that observed in the ipsilateral paw. All data presented as mean ± S.E.M, * P<0.05, ** P<0.01. 
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Notably, the three groups of rats all continued to gain weight normally throughout the 

experiment, regardless of the induced-neuropathy or treatment condition (Two-way 

ANOVA, Treatment, F (2, 13) =0.7047, P= 0.5122, Fig. 6.11B). Neither group displayed any 

signs of ill-health, decreased well-being or motor impairment. 

 

6.2.11 Female rats experiencing paclitaxel-induced peripheral neuropathy show a 

trend towards a reduction in mechanical hypersensitivity following intraplantar 

injection of ChoBot 

After the earlier post-operative pain experiment revealed that ChoBot was efficacious at 

preventing the development of mechanical hyperalgesia following surgical incision in 

males, but not females, and furthermore, after confirming that ChoBot was again 

analgesic in a neuropathic pain model, it was deemed important that the current 

neuropathic pain model should be repeated in female rats, to determine whether the 

effects of ChoBot are indeed gender-specific.  

It has previously been demonstrated that there are no sex-differences in the 

development of PIPN between male and female Sprague-Dawley rats (Hwang et al., 

2012). Similarly, here, no significant difference in the paw withdrawal threshold between 

male and female rats who received vehicle treatment (Two-way ANOVA, Sex, F (1, 5) = 

5.408, P= 0.0676) or paclitaxel treatment was detected (Two-way ANOVA, Sex, F (1, 7) 

=0.4492, P= 0.512, Fig. 6.13). Likewise to the male rats, the female rats which received 

repeated injection of paclitaxel showed a reduced mechanical withdrawal threshold 

compared to female rats that received repeated injection of vehicle. This trend, however, 

was not shown to be significant (Two-way ANOVA, Treatment: Ipsilateral Hindpaw, F (1, 

4) = 2.183, P= 0.2136; Treatment: Contralateral Hindpaw, F (1, 4) = 6.605, P= 0.062, Fig. 

6.14A). Furthermore, following injection of ChoBot on day 15 post-first paclitaxel 

injection, a recovery of the mechanical threshold was observed. Again, however, this 

was not shown to be significant (Two-way ANOVA, Treatment Day 14 - 28, F (1, 4) = 4.94, 

P= 0.0903, Fig. 6.14C). This lack of significance is most likely due to low n numbers 

rather than a lack of effect.  

The analgesic effect observed in the contralateral hindpaw following injection of ChoBot 

to the ipsilateral paw was not as clear in female rats (Two-way ANOVA, Treatment Day 

14 - 28, F (1, 4) = 0.3788 P= 0.5715, Fig. 6.14D). Only one timepoint indicated an increased 

mechanical threshold in the contralateral paw of ChoBot-injected rats compared to 

vehicle-injected rats. Conversely, in male rats, a higher mechanical withdrawal threshold 

was consistently measured in the contralateral paw at every time point, subsequent to 

ChoBot injection in comparison to vehicle-injected rats (Fig. 6.12B). 
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Figure 6.13 Male and female rats similarly 

develop mechanical hypersensitivity after 

repeated injection of Paclitaxel. 6 week old 

male and 7 week old female Sprague-Dawley 

rats received four intraperitoneal injections of 

either vehicle (1:1 ethanol:kolliphor) (Male, N=4; 

Female, N=3) or 2 mg/ml/kg Paclitaxel (Px) 

(Male, N=6; Female, N=3) on four alternate days 

(Day 0, 2, 4, 6). Reduced mechanical withdrawal 

threshold was observed in left hindpaw following 

repeated IP injection of Px in both male and 

female rats. No significant difference in the 

mechanical withdrawal threshold of the left 

hindpaw between male and female vehicle-

injected rats, or between male and female Px-injected rats was detected. Intraplantar injection of 

vehicle (30 µl 0.4% OG in Buffer A) to the ipsilateral (left) paw of all groups on day 15 did not 

affect mechanical withdrawal threshold. All data presented as mean ± S.E.M. 

 

As previously demonstrated, all three groups of female rats continued to gain weight 

normally throughout the experiment (Two-way ANOVA, Treatment, F (2, 22) = 0.1609, P= 

0.8523, Fig. 6.14B). No signs of decreased well-being or motor impairment were 

detected in any of the animals.  

 

6.2.12 The combined behavioural results of male and female PIPN rats highlights 

an analgesic effect of ChoBot against Paclitaxel-induced mechanical 

hypersensitivity 

Subsequently, after confirming that the mechanical pain thresholds were not significantly 

different between male and female rats undergoing the PIPN pain model, and after 

observing similar trends in the pain thresholds of female rats to those observed in male 

rats, it was decided that the data collected from both male and female rats could be 

effectively combined to increase the number of subjects, and consequently increase the 

statistical power of the data analysis.  

Combining the results from both the male and female rats once more highlighted a 

significant decrease in the mechanical withdrawal threshold of both the ipsilateral and 

the contralateral hindpaw in animals that received repeated injection of paclitaxel, 

opposed to vehicle control (Two-way ANOVA, Treatment: Ipsilateral Hindpaw, F (1, 14) = 

22.8, P= 0.0003; Treatment: Contralateral Hindpaw, F (1, 14) = 49.25, P< 0.0001, Fig.  
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Figure 6.14 A trend towards reduced Paclitaxel-induced mechanical hypersensitivity is 

observed in female rats after intraplantar injection of ChoBot. 7 week old female Sprague-

Dawley rats received four intraperitoneal injections of either vehicle (1:1 ethanol:kolliphor) (N=3) 

or 2 mg/ml/kg Paclitaxel (N=3) on four alternate days (Day 0, 2, 4, 6). (A) Repeated injection of 

(Px) resulted in a reduced mechanical threshold in the ipsilateral and contralateral paw of Px-

injected rats which was maximal by day 14. This reduction was not shown to be significant when 

compared to vehicle-injected females. The mechanical threshold was not affected by intraplantar 

injection of vehicle (30 µl 0.4% OG in Buffer A) to the left (ipsilateral) hindpaw on day 15. (B) The 

mean weight of each treatment group, including Px + ChoBot (N=3), was plotted to reveal no 

significant difference in the average weight gain between treatment groups. (C) Injection of 

ChoBot appeared to reverse the paclitaxel-induced mechanical hypersensitivity. Treatment was 

not shown to have an overall significant effect on mechanical threshold (P= 0.09), however, the 

mechanical withdrawal threshold was consistently higher in ChoBot-injected females and 

significance was reported on day 24. (D) The mechanical withdrawal threshold was also 

measured in the contralateral hindpaw. A reduced mechanical threshold is visualised by day 10 

but does not show a clear recovery after intraplantar injection of ChoBot to the ipsilateral hindpaw. 

All data presented as mean ± S.E.M, Significance between groups for the ipsilateral paw: * 

P<0.05; Significance between groups for the contralateral paw: # P<0.05, ## P<0.01. 
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6.15A). Intraplantar injection of ChoBot, 15 days after the first paclitaxel injection, 

reversed the mechanical hypersensitivity associated with PIPN in the ipsilateral paw 

such that the mechanical threshold returned to basal values (Two-way ANOVA, 

Treatment, F (1, 16) = 20.4, P= 0.0004, Fig. 6.15C). Intraplantar injection of ChoBot to the 

ipsilateral hindpaw was furthermore shown to significantly reduce mechanical 

hypersensitivity in the contralateral paw, compared to rats injected with vehicle (Two-

way ANOVA, Treatment, F (1, 16) = 8.531, P= 0.01, Fig. 6.15D). This was shown despite 

that the mechanical threshold of contralateral hindpaw was only significantly increased 

in the ChoBot-injected rats, compared to the vehicle-injected rats, at day 20 (Sidak’s 

multiple comparisons test, Day 20, P= 0.015). 

 

6.3 Discussion 

Throughout this project, widespread SNAP25 cleavage has been visualised in the ventral 

horn of the lumbar spinal cord after peripheral injection of the clostridial chimeras so far 

tested, namely BiTox/A (Chapter 3), BiTox/D (Chapter 4) and TetBot (Chapter 5). In the 

absence of any perceived motor impairments, the SNAP25 cleavage in the ventral horn 

has raised concerns about the possible off-target effects of the clostridial chimeras and 

has further stimulated discussion about whether any associated analgesic effects are 

centrally or peripherally mediated. In contrast, data collected in the previous chapter 

suggested that the novel chimera, ChoBot, lacked catalytic activity at the central motor 

synapse, and from this, it was surmised that ChoBot might exclusively act at the 

peripheral terminal. Here, it was shown that ChoBot does successfully cleave SNAP25 

in peripheral neurons, located at the intraplantar injection site. Consequent evaluation of 

the analgesic potential of ChoBot, across multiple pain models, revealed that, like 

BiTox/A, ChoBot produces analgesia specifically in pain conditions comprising a 

neuropathic component, and is ineffective against inflammatory pain conditions. 

 

6.3.1 ChoBot cleaves SNAP25 at the peripheral injection site 

The identification of cleaved SNAP25 in the sensory neurons of the hindpaw, following 

intraplantar injection, confirmed that ChoBot was able to internalise into sensory neurons 

in vivo and successfully cleave SNAP25. Immunolabelling in vivo largely agreed with the 

data gathered after in vitro incubation of dorsal root ganglion cultures with ChoBot. 

Cleaved SNAP25 was detected within a subset of NF200-positive, myelinated neurons, 

both in vivo and in vitro. In vitro data specified that ChoBot was enzymatically active in 

myelinated neurons of a significantly smaller average cell diameter than those neurons 

displaying cleaved SNAP25 after incubation with BiTox/A. This was repeatedly shown 

when labelling with both pan-neuronal marker, βIII-Tubulin, and with NF200.  
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Figure 6.15  The combined behavioural results of male and female PIPN rats highlights an 

analgesic effect of ChoBot against Paclitaxel-induced mechanical hypersensitivity. (A) 

Rats received four intraperitoneal injections of either vehicle (1:1 ethanol: kolliphor) (N=7, 4 male, 

3 female) or 2 mg/ml/kg Paclitaxel(Px) (N=9, 6 male, 3 female) on four alternate days. Repeated 

Px injection produced mechanical hypersensitivity in both the ipsilateral and contralateral 

hindpaw. Intraplantar injection of vehicle (30 µl 0.4% OG in Buffer A) on day 15 had no effect on 

the observed mechanical hypersensitivity. (B) Weight gain was not affected by treatment group. 

(C) Intraplantar injection of 200 ng/ 30 μl ChoBot to the left (ipsilateral) hindpaw on day 15 (N=9, 

6 male, 3 female), reversed the paclitaxel-induced mechanical hypersensitivity observed. Vehicle-

injected PIPN rats maintained mechanical hypersensitivity until the experiment was terminated 

on day 28. (D) Injection of ChoBot to the ipsilateral paw also attenuated mechanical 

hypersensitivity displayed in the contralateral paw with ChoBot-injected animals demonstrating a 

significantly higher mechanical withdrawal threshold compared to vehicle-injected PIPN rats on 

day 20. All data presented as mean ± S.E.M. Significance between groups for the ipsilateral paw: 

* P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001; Significance between groups for the contralateral 

paw: # P<0.05, ## P<0.01, ### P<0.001, #### P<0.0001. 
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Notably, however, there were fewer larger diameter neurons present in the cultures that 

were incubated with ChoBot and TetBot, than those incubated with BiTox/A. This could 

potentially bias the mean cell diameter of neurons displaying cleaved SNAP25, after 

incubation with ChoBot and TetBot, to a smaller value. Importantly, however, there was 

a consistently large increase in the number of small diameter neurons in cultures 

incubated with BiTox/A, compared to ChoBot and TetBot, indicating that there was no 

overall difference in the distribution of the cell diameter of neurons between the cultures. 

This is clearly demonstrated by the consistency of the median cell diameter between the 

different culture conditions. For example, with regards to the βIII-Tubulin staining, all 

three median cell diameters were 17 µm -18.1 µm. Consequently, there would have been 

an equal opportunity for both BiTox/A, TetBot and ChoBot to enter neurons of varying 

cell diameters, thus implying that the mean cell diameter should not have been drastically 

influenced by the number of large diameter neurons present. This is well demonstrated 

in the frequency histogram for neurons, identified using βIII-Tubulin, where only one 

larger neuron with a cell diameter greater than 30 µm displayed cleaved SNAP25 after 

incubation with ChoBot. The other five large neurons available remained negative for 

cleaved SNAP25. The mean cell diameter therefore remains a true representation of the 

neurons in which the chimeras preferentially cleave SNAP25.  

The presence of cleaved SNAP25 in myelinated neurons agrees with previous studies 

that demonstrated immunofluorescence in laminae III-V of the dorsal horn, where the 

myelinated Aβ fibres terminate, following intraneural injection of labelled-cholera subunit 

B (Woolf et al., 1992; Tong et al., 1999; Shehab et al., 2003). Minimal CTB labelling was 

detected in lamina I and II where the unmyelinated neurons terminate. Accordingly, here, 

cleaved SNAP25 is visualised in a much smaller percentage of peripherin-labelled 

unmyelinated neurons, than NF200- labelled myelinated neurons, following incubation 

with ChoBot, similarly demonstrating that ChoBot has a greater affinity for myelinated 

neurons.  

In contrast here, however, ChoBot produced cleaved SNAP25 in a subset of smaller 

myelinated neurons, more suggestive of Aδ-nociceptors, rather than Aβ low-threshold 

mechanoreceptors. Nevertheless, following nerve transection, previous studies did 

characterise increased immunoreactivity in lamina I-II of the dorsal horn, where the C- 

and Aδ-neurons project, and reported increased CTB labelling in smaller neurons  (Woolf 

et al., 1992; Tong et al., 1999; Shehab et al., 2003). This was suggested to be due to the 

increased uptake of CTB by undamaged unmyelinated and lightly myelinated neurons, 

post-nerve injury. This possibly results from the increased expression of the ganglioside 

to which CTB binds, GM1, which is associated with nerve repair and regeneration 

(Toffano et al., 1983; Leon et al., 1984). As described earlier, the protocol for producing 
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dissociated DRG cultures involves mutliple axotomies, required to excise DRGs. Again, 

this methodological process could perturb the expression levels of gangliosides and 

consequently impact the perceived in vitro binding profile of ChoBot.  

The presence of cleaved SNAP25 in CGRP-positive neurons following intraplantar 

injection of ChoBot, however, negates that the in vitro binding profile is solely a product 

of the culturing process. Although CGRP can be expressed by all subpopulations of 

sensory neurons, its expression is most prevalent in the smaller neurons, the C- and Aδ 

nociceptors  (Ferri et al., 1990; McCarthy and Lawson, 1990; Lawson et al., 2002; Bae 

et al., 2015). Cleaved SNAP25 was detected in both NF200- positive and CGRP-positive 

neurons in vivo, again suggesting that ChoBot could be catalytically active in Aδ 

nociceptors as this neuronal subtype would be most likely to produce immunoreactivity 

to both markers. Additional triple immunolabelling is, however, still required to confirm 

this.  

 

6.3.2 ChoBot demonstrates potential as a future analgesic 

Regardless, together, the verification of the catalytic activity of ChoBot in the peripheral 

sensory neurons, presumed to be Aδ-nociceptors, and the lack of activity noted at the 

central terminal, supported the decision to investigate ChoBot as a potential analgesic. 

ChoBot was shown to significantly attenuate the development of mechanical 

hypersensitivity following surgical incision to the hindpaw. Post-operative pain occurs in 

10–50% of surgical cases, for example, following breast surgery, amputation, and major 

heart surgery (Kehlet et al., 2006). Effective management of post-operative pain is 

essential to increase early mobilisation, reduce hospital stay length and to lessen the 

associated medical costs (Gupta et al., 2010).  

This analgesic effect was only observed when ChoBot was delivered pre-emptively, prior 

to surgery. Provided that cleaved SNAP25 was detected in the peripheral sensory 

neurons, this suggests that ChoBot could be preventing the initial sensitisation of 

peripheral afferents, which occurs around the incision site, and potentially the central 

sensitisation which occurs secondary to the increased nociceptive input from the 

peripheral afferents, by blocking neurotransmission (Pogatzki-zahn et al., 2017). The 

inefficacy of ChoBot post-incision suggests that once this hypersensitivity has been 

established, ChoBot is unable to reverse these changes. 

Pre-emptive analgesia is highly desirable from a clinical perspective as it reduces the 

need for post-operative pain management, for example, with the use of opioids which 

are prone to abuse. It has also been suggested that pre-emptive treatments are more 

effective methods for treating postoperative pain  (Møiniche et al., 2002). There is a huge 
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emphasis placed on the need for pre-emptive analgesia to be preventative, meaning that 

the treatment must stop peripheral and central sensitisation which leads to the 

chronification of post-operative pain, rather than simply blocking the initial perioperative 

nociceptive signalling. 

Unfortunately, this analgesic effect was not reproduced in females. Clinical studies show 

that female patients experience more severe post-operative pain than males, according 

to reported visual analogue scale (VAS) pain scores, and require more frequent 

analgesics to manage their pain (Logan and Rose, 2004; Uchiyama et al., 2006; Pereira 

and Pogatzki-Zahn, 2015). These sex differences have so far not been replicated in 

rodents. Instead, there were no perceived differences in the development of either 

mechanical or thermal hypersensitivity between male and female rodents in the incisional 

post-operative pain model, and both sexes responded equally to analgesic interventions 

(Kroin et al., 2003; Banik et al., 2006).  It is therefore unclear why male and female rats 

responded differently to incision following intraplantar injection of ChoBot 

Notably, here, the stage of the menstrual cycle was not measured. Recently, in light of 

mixed reports on the significance of the estrous cycle on pain thresholds, it has been 

shown that the estrous cycle in females does not introduce any additional variability in 

pain measurements, compared to male rodents, thus negating the need to record the 

stage of the estrous cycle (Mogil and Chanda, 2005; Prendergast et al., 2014; Becker et 

al., 2016). Instead, both studies suggest that males display their own intrinsic variability 

resulting from fighting, aggressive behaviours and instinctive hierarchy, behaviours 

which are largely absent in females. Therefore, the frequency of these behaviours should 

be equally considered when making a case for measuring the hormone levels in females. 

Although the menstrual cycle itself has been revealed to have little impact on pain 

thresholds, the mechanisms for the establishment of chronic pain have, however, been 

found to differ greatly between males and females (Mapplebeck et al., 2016). It has been 

shown that the development of mechanical allodynia in males relies upon the activation 

of microglia post-injury. This was demonstrated after the inhibition of, and the depletion 

of, microglia both significantly reversed mechanical allodynia in males separately 

subjected to the spared nerve injury model and the CFA model (Sorge et al., 2015). 

Conversely, although similar levels of microgliosis were observed in females, microglia 

were not implicated in the establishment of mechanical hypersensitivity in females as 

depletion and inhibition of microglia had no effect on mechanical pain thresholds. 

Consequently, this highlights that the difference in the efficacy of ChoBot, between the 

sexes, could potentially arise from a mechanism for the establishment of chronic pain 

which might only be active in males.  
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Despite the inflammatory component apparent in post-operative pain, ChoBot failed to 

induce analgesia in the Complete Freund’s Adjuvant inflammatory pain model in male 

rats, thus demonstrating a lack of effectiveness of ChoBot in inflammatory pain 

conditions. It was hypothesised that ChoBot would have an analgesic effect in 

inflammatory conditions after in vitro incubation of DRG cultures with ChoBot caused a 

reduction in CGRP release, a process which occurs in neurogenic inflammation and 

contributes to both peripheral and central sensitisation (Benemei et al., 2009). It would 

thus be useful to repeat this assay, using rat DRG cultures, to ascertain whether the 

results are reproducible or are indeed species-dependent.  

Conversely, when ChoBot was investigated in a neuropathic pain model, ChoBot had a 

profound analgesic effect. Interestingly, ChoBot was able to reverse the mechanical 

hypersensitivity observed in male and female PIPN rats. A full reversal of mechanical 

hypersensitivity was observed in the ipsilateral paw. Additionally, a partial, yet significant, 

recovery of the mechanical withdrawal threshold was demonstrated in the contralateral 

paw.  

A bilateral analgesic effect has previously been shown following unilateral injection of 

BoNT/A, including after intraplantar injection specifically. This was reported in two 

separate neuropathic pain models, in the streptozotocin-induced model of diabetic 

peripheral neuropathy (Bach-Rojecky et al., 2010) and in the paclitaxel-induced 

peripheral neuropathy model, as used here (Favre-Guilmard et al., 2009). In a separate 

study, the bilateral analgesic effect, produced after intraplantar injection of BoNT/A in a 

saline-induced model of muscular hyperalgesia model, was abolished by intraneural 

injection of colchicine, a blocker of axonal transport, to the sciatic nerve (Bach-Rojecky 

and Lacković, 2009). Thus, highlighting that the observed analgesia was due to a central 

effect of BoNT/A, subsequent to retrograde transport. This was further accredited in a 

subsequent follow-on study whereby axonal transport within the sensory nerves 

specifically, was demonstrated (Matak et al., 2011).  

In contrast, here, a negligible amount of cleaved SNAP25 was detected at the level of 

the spinal cord. This therefore opposes the theory for a central cause for the bilateral 

analgesia associated with peripherally-injected ChoBot. Due to the expansive cleavage 

of SNAP25 normally observed in the spinal cord after intraplantar injection of the other 

chimeras, it could be that investigation of the dorsal horn was neglected and that 

observations of cleaved SNAP25 were subsequently missed. This seems unlikely due to 

the thorough investigation of the tissue. Instead, the data suggests that ChoBot has a 

peripheral action, resulting in the blockade of neurotransmission in presumably the Aδ-

nociceptors, although it is unclear how this would provide analgesia in the contralateral 

paw. To ascertain that there is no role for retrograde transport in the analgesic effect of 
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ChoBot, colchicine could be injected intraneurally at the same time, or prior to, injection 

of ChoBot. If analgesia was still produced in the contralateral hindpaw then this would 

prove that it was due to another mechanism, other than a centrally-mediated effect of 

ChoBot.  

It is not yet clear why ChoBot produced an analgesic effect in both sexes experiencing 

PIPN but was only efficacious in males with regards to post-operative pain. Of note, 

however, the analgesic effect in the contralateral hindpaw was not as pronounced in 

female rats. There was only one data point that demonstrated a noticeably higher 

mechanical withdrawal threshold in the contralateral paw of ChoBot-injected PIPN 

females, compared to those receiving vehicle. It would be of interest to repeat this 

experiment, with a higher number of females, to allow a comprehensive comparison to 

made between the PIPN pain phenotype, and responsiveness to ChoBot, between males 

and females, to fully ascertain whether any subtler sex-differences do exist.  

Given the therapeutic benefit of ChoBot administered pre-emptively in post-operative 

pain, it raises the additional question of whether ChoBot injected before repeated 

Paclitaxel exposure might similarly prevent the development of mechanical hyperalgesia. 

64% of patients complain of chemotherapy-induced peripheral neuropathy whilst still 

receiving chemotherapy treatment. For 27% of these patients, this peripheral neuropathy 

develops into a long-lasting chronic neuropathic pain condition (Reyes-Gibby et al., 

2009). From this perspective, an earlier interventive treatment could be beneficial to 

block the development of the neuropathy. Consequently, another promising future 

experiment to conduct would be to inject ChoBot in the days before paclitaxel injection, 

to determine whether ChoBot would similarly prevent the development of the neuropathic 

pain condition. 

 

6.3.3 Justification of the behavioural assessment method utilised  

All of the observations made above relied upon the use of an electronic von Frey 

aesthesiometer to assess the mechanical withdrawal threshold. Electronic von Frey has 

been highlighted as a sensitive test by which to assess mechanical hypersensitivity 

(Ängeby Möller et al., 1998; Vivancos et al., 2004). The major advantage associated with 

using electronic von Frey is the reduced experimental time. Each animal requires a 

maximum of 4 applications of the electronic von Frey aesthesiometer compared to the 

repeated applications of single filaments, during manual von Frey testing. This lead can 

to the sensitisation of the paw, as well as learnt behaviours to subsequent von Frey 

filament applications (Deuis et al., 2017).  
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The accuracy and suitability of electronic von Frey for the evaluation of mechanical 

threshold, compared to manual methods, specifically in neuropathic pain models has, 

however, been questioned. It was found that electronic von Frey was unable to produce 

reliable readings of the mechanical threshold in neuropathic pain models which feature 

severe deformity of the hindpaw, resulting from denervation. For example, in the chronic 

constriction injury model were all three branches of the sciatic nerve are damaged (Nirogi 

et al., 2012). In the partial sciatic nerve ligation model, however, were the hindpaw 

maintains postural control due to the partial innervation that remains, electronic von Frey 

provided consistent readings. From this perspective, electronic von Frey would be able 

to reliably assess the mechanical threshold in the PIPN model as this model does not 

produce a motor deficit and does not feature any degeneration of the motor fibres, 

meaning that the posture and form of the hindpaws are unaffected (Polomano et al., 

2001). Furthermore, Electronic von Frey has already been successfully used to 

investigate mechanical threshold in both the incisional post-operative pain model 

(Whiteside et al., 2004) and the PIPN model (Rahn et al., 2008). Importantly, the values 

generated here, match those previously reported in the literature whilst using an 

electronic von Frey aesthesiometer, highlighting the high reproducibility between 

investigators (Moalem et al., 2004; Papers et al., 2004; Rahn et al., 2008). Furthermore, 

specifically, in this study, electronic von Frey has produced consistent results and its’ 

use is therefore justified. 

 

6.3.4 Considerations for the use of ChoBot as an analgesic  

For a novel chimera to be used as an analgesic, it is important that it can be easily 

administrated, and that the method of delivery is minimally invasive. The previously 

designed chimera, TetBot, produced analgesia in an inflammatory pain model (Ferrari et 

al., 2013), however, this effect was only noted after intrathecal injection and could not be 

replicated following peripheral injection (data unpublished). In humans, intrathecal 

injection is a complicated procedure that requires administration by a trained anaesthetist 

and is associated with serious adverse complications such as persistent parathesias, 

arachnoiditis, and, more rarely, temporary respiratory depression (Goodman et al., 

2008). The analgesic effects of ChoBot were reported after intraplantar injection. ChoBot 

could therefore be easily delivered by subcutaneous injection to a chosen peripheral site. 

Subcutaneous injection would not require highly specialist medical personnel, thus 

reducing any associated medical costs. Furthermore, whilst TetBot contains the receptor 

binding domain of Tetanus toxin, which the majority of humans are immunised against 

(Maple et al., 2000), most humans are not immunised against cholera toxin meaning that 
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it can be developed into a therapeutic intervention for humans. By contrast, TetBot is 

essentially redundant for human use. 

Unfortunately, however, ChoBot was no more efficacious at producing analgesia in 

inflammatory pain conditions than BiTox/A. Thus far, TetBot is the only chimera which 

has been demonstrated to be analgesic in inflammatory pain conditions. Notably, the 

clostridial toxins bind to specific gangliosides expressed within the cell membrane. As 

described in Chapter 4, specific gangliosides, including GT1b, GD1a and GM1, associate 

with myelin-associated glycoprotein (MAG), which is essential for the stability of the 

myelin sheath of neurons (Yang et al., 1996; Schnaar, 2010). Expression of these 

gangliosides is hence, more associated with myelinated neurons. Therefore, in order to 

target the unmyelinated c-fibres which are more commonly implicated in chronic 

inflammatory pain conditions (Weng et al., 2012), it may be important to expand the 

search for a targeting domain, away from toxins, and perhaps towards neuropeptides. If 

this was successful, then LcTd/A could, in theory, be targeted to neurons which normally 

become sensitised following neuropeptide release from peptidergic neurons, for 

example, during neurogenic inflammation (Xanthos and Sandkühler, 2014). 

Before further pursuing the use of ChoBot as an analgesic, it will be important to fully 

determine the stability of the chimera in vivo. During SDS-page, ChoBot can be seen to 

dissociate into LcTd/A-SNARE-A2 and the singular and pentameric B subunit. In 

contrast, the previous chimeras, BiTox/A (Ferrari et al., 2011) and TetBot (Ferrari et al., 

2013) remained stable following SDS-page, demonstrating that an irreversible assembly 

of the individual components had occurred. Moreover, immunoreactivity for the CTB 

subunit was still detected in the ventral spinal cord in the absence of any SNAP25 

cleavage. It is thus possible that the B subunit had dissociated away from the chimera, 

whilst in the periphery, before retrogradely transporting to the soma, leaving LcTd/A-

SNARE-A2 in the peripheral terminals, hence explaining why cleaved SNAP25 was only 

detected in the peripheral neurons. From this perspective, it might be necessary to 

conjugate LcTd/A directly to the singular CTB subunit, to avoid any potential adverse 

effects associated with any dissociated CTB subunits.  

Further to this, there were additional concerns about the significance of cleaved SNAP25 

detected at the neuromuscular junction. Rats injected with ChoBot were observed for 

any signs of stress or compromised wellbeing. Specifically, they were observed for 

indications of dehydration, such as weight loss, symptomatic of cholera, and for flaccid 

muscle paralysis, indicative of botulism. The ChoBot-injected rats continued to gain 

weight after receiving the injection of ChoBot and did not exhibit any visible signs of 

muscular paralysis, such as lameness or inability to grasp during the inverted wire mesh 

test. Furthermore, it has repeatedly been demonstrated that the engineered clostridial 
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chimeras do not cause muscular paralysis. For example, in Chapter 3 it was shown that 

BiTox/A produces cleaved SNAP25 at both the NMJ, as well as in the ventral horn, but 

fails to elicit muscular paralysis (Ferrari et al., 2011, 2013; Mangione et al., 2016). This 

suggests that the lethality and toxic effects associated with the two native toxins were 

successfully eliminated from the chimera, despite the cleavage visualised at the 

neuromuscular junction. 

 

6.3.5 Conclusion 

In summary, it has been demonstrated that ChoBot can be effectively assembled using 

the established protein-stapling technology. The novel chimera, ChoBot, successfully 

retained the catalytic activity of LcTd/A, both in vitro and in vivo. Here, ChoBot is 

highlighted as a promising analgesic for pre-emptive use in post-operative pain and for 

the management of chemotherapy-induced neuropathies. It would be of great interest to 

investigate whether ChoBot can similarly reverse the mechanical hypersensitivity, 

characteristic of other neuropathic pain conditions. Importantly, considering that cleaved 

SNAP25 was largely absent at the level of the spinal cord, the analgesia associated with 

ChoBot provides evidence for a peripheral action, namely at the peripheral afferents, 

being at least partially accountable for the analgesia observed with BiTox/A. 
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Chapter 7. General Discussion 

 

The primary objective of this project was to identify a novel analgesic to provide long-

lasting pain relief in a variety of chronic pain conditions. Botulinum Neurotoxin A was 

chosen as the ideal biologic for development because of its well-known ability to silence 

neurons and effectively block neurotransmission. The multidomain structure of BoNT/A, 

combined with the expertise and knowledge of biochemistry and protein modification in 

the laboratory, made BoNT/A highly suitable for protein engineering. By exploiting protein 

modification techniques, it was hypothesised that BoNT/A would be safely retargeted to 

the sensory neurons, selectively involved in pain signalling pathways, whilst 

simultaneously excluding its entry to the neuromuscular junction to remove the flaccid 

motor paralysis, normally associated with botulism.  

Previous efforts to reengineer BoNT/A have resulted in the chimera, BiTox/A. For the 

chimera, BiTox/A, the LcTd/A, responsible for the enzymatic activity of BoNT/A, was 

reassembled to the receptor binding domain of BoNT/A, using the pioneered stapling 

technology, to produce an elongated version of native BoNT/A (Ferrari et al., 2011). 

Subsequent behavioural investigations had demonstrated that BiTox/A is analgesic in 

certain pain conditions, and is especially effective at reducing the mechanical 

hypersensitivity developed in neuropathic pain (Mangione et al., 2016). A significant 

portion of this project focused on the investigation of the in vivo behaviour of the 

published chimera, BiTox/A, to elucidate the mechanisms by which it might mediate its 

analgesic effect, subsequent to peripheral delivery (Mangione et al., 2016). 

 

7.1 The in vivo activity of clostridial chimeras 

Despite that, previously, Mangione et al. (2016) had failed to detect SNAP25 cleavage 

at either the peripheral injection site or in the lumbar dorsal horn after intraplantar 

injection of BiTox/A using western blot, here, immunohistochemical staining successfully 

revealed cleaved SNAP25 at both locations. This consequently provides the first 

evidence for both a peripherally- and centrally- mediated mechanism for the analgesia 

produced by BiTox/A. 

 

7.1.1 Cleaved SNAP25 is consistently detected in the peripheral sensory afferent 

terminals following intraplantar injection of clostridial chimeras 
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Specifically, cleaved SNAP25 staining was visualised in the peripheral sensory afferents 

following intraplantar injection of BiTox/A and colocalised with Neurofilament 200, the 

marker of myelinated neurons, and IB4, indicative of non-peptidergic neurons. This 

binding profile, established in vivo, was subsequently replicated in vitro, following 

immunolabelling of dissociated DRG cultures. In vitro, BiTox/A produced cleavage in the 

larger, myelinated neurons, suggestive of Aβ sensory neurons. Interestingly, in vivo, 

cleaved SNAP25 also partially colocalised with CGRP, a neuropeptide released by 

sensory afferents which contributes to pain signalling and neurogenic inflammation 

(Benemei et al., 2009). This was reminiscent of the peripherin-positive subpopulation of 

sensory neurons that were identified to contain cleaved SNAP25 in BiTox/A-incubated 

cultures, given that CGRP is primarily expressed by the unmyelinated C-fibre nociceptors 

(McCarthy and Lawson, 1990; Lawson et al., 2002).  

Likewise, ChoBot, investigated in chapter 6, was shown to produce SNAP25 cleavage 

in the peripheral sensory afferents, specifically within a subset of NF200 and CGRP-

positive afferents. This thus suggests that this peripheral action at the sensory afferents 

is conserved across the clostridial chimeras.  

 

7.1.2 Clostridial chimeras do not produce muscular paralysis despite cleaving 

SNAP25 at the neuromuscular junction 

Despite successfully demonstrating the enzymatic activity of BoNT/A in the peripheral 

sensory afferents, the issue with all the chimeras so far tested, including ChoBot, is the 

unexpected presence of cleaved SNAP25, repeatedly detected at the neuromuscular 

junction of the glabrous skin. It has, however, been consistently reported that animals 

injected with clostridial chimeras, do not display any visible signs of motor paralysis or 

impaired motor function of the hindlimb. More thorough assessments are, however, 

required to effectively disprove this concern before developing the chimeras for use in 

humans. As explained earlier, CatWalk gait analysis could elucidate any more subtle 

change in gait as a result of less obvious motor paralysis (Kappos et al., 2017). 

Electromyography recordings would also be recommended to ensure that there is no 

change in the electrical activity of the skeletal muscle, as this would likely be the most 

convincing argument to confirm that there is no motor effect.  

It is, however, possible that the function of the hindpaw muscles could be preserved, 

despite the cleavage of SNAP25 at the neuromuscular junction, if a suboptimal amount 

of SNAP25 has been cleaved. Keller and Neale (2001) depicted a model which predicted 

that for each percentage of SNAP25 cleaved, there is a two times equivalent reduction 

in the percentage of neurotransmitter released. The model illustrates that cleaved 
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SNAP25 is a competitive antagonist of full length SNAP25. In accordance with this, it 

has previously been described that half of the SNAP25 present is required to be cleaved 

to effectively block glutamate release from synaptosomes (Otto et al., 1995). 

Consequently, this shows that the negative effect of cleaved SNAP25 can be overcome 

if there is enough full length cleaved SNAP25 available to out-compete the cleaved, non-

functional SNAP25. These observations are therefore consistent with the proposed 

hypothesis that BiTox/A displays reduced penetration of the neuromuscular junction 

(Darios et al., 2010; Ferrari et al., 2011). If a lower level of SNAP25 is cleaved by BiTox/A, 

due to the reduced penetration and internalisation rate compared with native BoNT/A, 

then the limited amount of cleaved SNAP25 present could be successfully out-competed, 

and thus compensated for, by the full-length SNAP25. This could thereby justify the lack 

of motor impairment observed, despite the SNAP25 cleavage which occurs.  

 

7.1.3 The relevance of sensorimotor connectivity for the SNAP25 cleavage 

observed within the lumbar spinal cord following peripheral injection 

Further to the SNAP25 cleavage detected at the neuromuscular junction, the significance 

of the large area of SNAP25 cleavage reported in the ventral spinal cord, surrounding 

the motor neurons, following peripheral injection of not only BiTox/A, but also BiTox/D, 

TetBot and 2xTetBot, remains to be elucidated. As suggested previously, this could 

represent SNAP25 cleavage in the sensorimotor pathways within the spinal cord, which 

modulate motor output and are important for proprioception (Cai et al., 2017). For 

example, there are sensory neurons, namely the Ia sensory afferents, which respond to 

muscle stretch and project from the dorsal horn to then form synapses directly with the 

proximal dendrites and soma of the motor neurons in laminae IX (Snider et al., 1992). 

These afferents could thus provide direct access for BiTox/A, to the dorsal horn, via 

retrograde axonal transport, and could potentially represent the single fibres of SNAP25 

cleavage in the dorsal horn. Furthermore, there are also GABAergic interneurons, 

present in the spinal cord, which modulate the sensory input to motor neurons, both by 

presynaptic inhibition of sensory neurotransmitter release to motor neurons, as well as 

inhibition of the motor neurons post-synaptically to reduce excitability (Betley et al., 

2009). Again, this emphasises the interconnectivity which exists between the dorsal and 

ventral horn, even beyond direct contacts.  

Additionally, there is also the corticospinal tract which projects from the somatosensory 

and motor cortices to both the dorsal and ventral horn of the spinal cord. It is important 

for the execution of voluntary motor movements and sensory feedback (Scheibel and 

Scheibel, 1966; Moreno-López et al., 2016). The corticospinal tract thus represents yet 
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another interface between the sensory and motor systems, and collectively illustrates 

how well interconnected these two systems are. This hence demonstrates that even if 

the BiTox/A protease is solely transported by the motor neurons to reach the central 

spinal cord, considering that cleaved SNAP25 cannot be detected in the DRG, the 

protease could still gain indirect access to the neurons which constitute the sensory 

system, in order to impact sensory processing. 

In view of this, future experiments will be required to identify the neuronal subtypes which 

contain cleaved SNAP25, indicating the presence of active BiTox/A protease in the spinal 

cord to effectively delineate the neuronal networks by which BiTox/A might mediate its 

possible central effect. Two methods by which to achieve this would firstly be the use of 

neuronal tracers, such as Dil and DiA, that can be injected using a microelectrode to 

either the DRG or the dorsal root to label the sensory neurons, or to the ventral root to 

separately label the motor neurons (Snider et al., 1992). Alternatively, neuronal subtypes 

can be identified by immunolabelling, using specific markers. For example, vGlut1 can 

be used to selectively label the sensory terminals in the spinal cord, whilst parvalbumin 

can be used to label the motor neurons (Betley et al., 2009). Furthermore, vGlut2 and 

GAD65 can be used to identify the excitatory and inhibitory interneurons, respectively 

(Betley et al., 2009). Both techniques should label the entirety of the neuron, including 

the axonal and dendritic projections, rather than being confined to the neuronal nucleus 

and cytoplasm as is seen with the NeuN marker, used here. This will help to conclude 

whether the cleaved SNAP25 detected in the dorsal and ventral horn, is present within 

the dendritic arborisations of the motor neurons or within the spinal interneurons. 

Interestingly, the synaptic bouton labelling of sensory terminals, produced by vGlut1 

(Betley et al., 2009), resembles the cleaved SNAP25 staining observed immediately 

adjacent to the motor neurons, following intraplantar injection of BiTox/A, which was 

hypothesised to represent synaptic end-feet. This theory contrasts Cai et al. (2017) who 

claimed that the cleaved SNAP25 stain, resultant from peripheral injection of BoNT/A, 

remained contained within motor neurons. The two techniques detailed could be used to 

effectively disprove this theory if cleaved SNAP25 staining was found colocalised with 

either a tracer, or a respective neuronal marker, used to label the sensory afferents. If 

shown to be true, this experiment would further determine whether BiTox/A might enter 

the sensory afferents directly, or whether it instead enters connective interneurons.  

It will also be important to conduct an experiment whereby colchicine, a blocker of axonal 

transport, is injected intraneurally prior to intraplantar injection of BiTox/A (Bach-Rojecky 

and Lacković, 2009; Matak et al., 2012). This will delineate whether it is necessary for 

BiTox/A to reach the central spinal cord, regardless of which neuronal subtype it is active 

in, in order to elicit its analgesic effect. It will also verify that the SNAP25 cleavage 
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detected distal from the injection site, for example at the spinal cord and in the 

contralateral paw, results from axonal transport of the BiTox/A protease and not from 

systemic diffusion. 

Nevertheless, the lack of penetration of the spinal cord by ChoBot does, however, make 

it an attractive candidate for future development as an analgesic. Restricting the 

enzymatic activity of BoNT/A protease to the periphery greatly reduces the likelihood of 

any adverse off-target effects and improves the chimera’s safety profile, accordingly. 

 

7.2 The development and behavioural assessment of novel chimeras 

In addition to attempting to elucidate the in vivo activity of clostridial chimeras, an effort 

was made to produce a chimera efficacious against thermal hyperalgesia. Consequently, 

it was investigated whether chimeras produced by combining LcTd/A with the binding 

domains of other botulinum serotypes, namely Rbd/C, -/D and -/E, would show specificity 

for other sensory neuron subpopulations. If shown to be correct, this method would 

enable the targeting of separate sensory neuron subpopulations, whilst maintaining the 

long-duration blockade, characteristic of BoNT/A (Eleopra et al., 1998). It was 

hypothesised that the novel chimeras would then preferentially silence other distinct 

subpopulations of sensory neurons, and thus, be more efficacious against other pain 

conditions, such as inflammatory pain. 

Two of the novel chimeras, BiTox/D and -/E, did actively target LcTd/A to a different 

subpopulation of sensory neurons, however, when further pursued in a behavioural 

model of inflammatory pain, BiTox/D was unfortunately suspected to be pro-

hyperalgesic. Specifically, the behavioural assessment of BiTox/D in CFA-injected rats 

suggested that it might instead prolong the period of thermal hyperalgesia. This is not, 

however, to say that this stapling technology, or this approach, is therefore redundant. 

Recent research in collaboration with the Hunt lab at the University College London, 

investigated the conjugation of LcTd/A to neuropeptides, implicated in pain signalling, 

such as substance P, again using the stapling technique described (Maiarù et al., 2016). 

Given intrathecally, LcTd/A conjugated to Substance P successfully reduced mechanical 

hypersensitivity in both a chronic inflammatory pain model, induced by CFA injection, 

and in the spared nerve injury model of neuropathic pain. 

 

7.2.1 Methodological considerations for the perceived lack of analgesic effect of 

chimeras in inflammatory pain models  
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Here, in this project, the stapling technology was used to construct the chimera, ChoBot. 

Again, ChoBot consisted of the LcTd/A which was then attached to the AB5 cholera toxin 

binding domain. ChoBot was similarly shown to be analgesic. However, like with BiTox/A, 

this therapeutic effect was specifically observed against the mechanical component of 

pain conditions. Specifically, ChoBot was effective at attenuating the mechanical 

hypersensitivity experienced in the incisional pain model for post-operative pain and in 

the PIPN model of neuropathic pain. ChoBot was not, however, shown to relieve thermal 

hyperalgesia or to produce analgesia in purely inflammatory conditions, i.e. the CFA-

induced inflammatory pain model. This finding was demonstrated despite that, in vitro, 

ChoBot produced SNAP25 cleavage in a subpopulation of neurons which, based on their 

size distribution and myelination, were significantly distinct from the subpopulation in 

which BiTox/A cleaves SNAP25. Instead, the subpopulation of sensory neurons 

appeared very similar to that which TetBot is catalytically active in. Notably, TetBot was 

previously shown to reduce mechanical hypersensitivity in CFA-induced inflammatory 

pain (Ferrari et al., 2013). It is thus surprising that ChoBot did not also display an anti-

nociceptive effect in an inflammatory pain model. This could, nevertheless, result from 

the method of administration.  

The analgesic effect of TetBot was observed after intrathecal injection whereas, for this 

project, ChoBot was injected intraplantar. Similarly, the aforementioned BoNT/A-

Substance P construct, which reduced mechanical hypersensitivity in the CFA 

inflammatory pain model, was delivered via intrathecal injection (Maiarù et al., 2016). 

The method of administration could thus be essential for the observed therapeutic effect 

of clostridial chimeras in inflammatory pain conditions as, noticeably, all of BiTox/A 

behavioural experiments likewise utilised intraplantar injection (Mangione et al., 2016). 

Besides which, interestingly, immunolabelling of spinal cord sections, isolated from 

ChoBot-injected rats, showed minimal immunoreactivity for cleaved SNAP25 in the 

spinal cord, thereby suggesting that there had been insufficient transport of the BoNT/A 

protease to the spinal cord. Together, this suggests that clostridial chimeras might 

require direct access to the central terminal in order to elicit an analgesic effect in 

inflammatory pain conditions. Given the consistency of the results, dependent on the 

method of delivery, this might occur regardless of the targeting domain utilised.  

An alternative explanation regards the timing of the delivery of the chimeras. Both of the 

peripherally-injected chimeras, BiTox/A and ChoBot, were administered to the hindpaw 

one day after CFA injection. At this time point, one day post-CFA injection, significant 

oedema is already observed in the CFA-injected hindpaw, indicative of an inflammatory 

response (Iadarola et al., 1988; Stein et al., 1988). Accordingly, in both behavioural 

experiments, pain behaviour was maximal after 24 hours, consistent with previous 
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reports (Fehrenbacher et al., 2012; Mangione et al., 2016). The heightened immune 

response in the hindpaw at this time, and the infiltration of immune cells could result in 

the quick removal of the injected chimera before it is able to internalise into the sensory 

neurons that innervate the site of inflammation, thus leading to a diminished analgesic 

effect.  

Interestingly, BiTox/A administered to the hindpaw one day post-CFA injection elicited a 

very transient relief of mechanical hypersensitivity in the CFA-inflammatory pain model 

between days 2-3 post CFA-injection. Although the difference was shown to be 

significant, the improvement in the mechanical threshold was minimal. By comparison, 

when CFA was instead injected into the ankle joint, intraplantar injection of BiTox/A, 3 

days after CFA induction, resulted in a more significant, sustained reversal of the 

mechanical hypersensitivity, observed in the hindpaw. In this instance, BiTox/A was 

injected distal to the site of inflammation and would thus be less vulnerable to immune 

cells clearance which, consequently, could explain the improved analgesic effect 

observed. 

 

7.3 Additional methodological considerations 

7.3.1 The use of the in-house anti-cleaved SNAP25 antibody 

One of the major limitations of this project is the reliance of the conclusions made on the 

validity of the in-house anti-cleaved SNAP25 antibody. Rhéaume et al. (2015) previously 

questioned the specificity of some of the commercially available anti-cleaved SNAP25 

antibodies. Consequently, they tested the validity of these antibodies alongside their own 

in-house anti-cleaved SNAP25 antibodies. It was found that the validity of the 

commercial antibodies depended on the assay in which they were used, whether that be 

western blot or immunohistochemistry, and moreover, with specific reference to 

immunohistochemistry, the type of tissue used. The presence of immunoreactivity in 

vehicle-treated samples was regarded as evidence that the antibody lacked specificity 

and was instead binding both cleaved and full length SNAP25. The in-house anti-cleaved 

SNAP25 used here did not produce an immunofluorescent signal in tissue taken from 

either vehicle-injected or naïve animals or in vehicle or untreated DRG cultures, thus 

validating the antibody used here. It can thus be confirmed that the conclusions made 

are valid and based upon reliable evidence. It would, however, be recommended to 

ensure that these findings can replicated using an alternative anti-cleaved SNAP25 

antibody to negate any reservations and create more support for the hypothesis. 
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7.3.2 The inclusion of the SNAP25 linker when generating clostridial chimeras  

With regards to the cleaved SNAP25 immunoreactivity, it has repeatedly been 

questioned whether the chimeras themselves would contribute to the positive cleaved 

SNAP25 signal. The chimeras have all been constructed using the SNARE stapling 

approach which involves the assembly of a SNARE complex at the centre of the 

conjugated subunits (Darios et al., 2010; Ferrari et al., 2011, 2013; Mangione et al., 2016; 

Mavlyutov et al., 2016). Consequently, all the chimeras contain the SNAP25 peptide, the 

cleavage target of BoNT/A protease. The presence of the BoNT/A protease within the 

chimera can thus result in self-cleavage. As detailed by Rhéaume et al. (2015), the 

amount of BoNT/A injected to elicit therapeutic effects is fairly negligible and therefore it 

would be extremely difficult to detect BoNT/A directly. This is why the proteolytic product 

is instead labelled as this provides signal amplification and acts as a reporter for the 

location of the BoNT/A protease. Similarly, the positive cleaved SNAP25 staining, 

generated directly by the cleaved SNAP25 linker-peptide contained within the chimeras, 

should be insignificant, perhaps even undetectable, compared to the signal produced by 

the cleavage of cellular SNAP25, the intended proteolytic product of the chimeras, due 

to the nanogram amounts injected.  

The other concern generally expressed regards the ability of the chimera to form in 

addition to its subsequent stability, following self-cleavage. Interestingly, SNAP25 which 

has been cleaved by BoNT/A, fully retains the ability to assemble into the SNARE-

complex (Hayashi et al., 1994; Otto et al., 1995). Once BoNT/A-cleaved SNAP25 enters 

the SNARE-complex, however, the complex is rendered non-functional and is 

consequently unable to fuse the vesicular and the plasma membrane, hence explaining 

why cleaved SNAP25 acts as a competitive antagonist to full length SNAP25 (Keller and 

Neale, 2001). Likewise, in the context of the SNARE-stapling technique, self-cleavage 

of the SNAP25 linker does not interfere with the assembly of the SNARE complex, and 

thus, does not impact chimera formation (Darios et al., 2010). Additionally, BoNT/A is 

unable to access and cleave SNAP25 once it is already engaged in a SNARE complex 

(Hayashi et al., 1994). Therefore, if the chimera assembles before self-cleavage occurs 

then the chimera will comprise full-length SNAP25 thus making the above justification 

inconsequential. 

 

7.4 Versatility in the SNARE-stapling technology 

Apart from demonstrating novel chimeras as potential future analgesics, this project also 

illustrated how advancements can be made to the stapling technology to successfully 

increase the efficacy of chimeric proteins. At this time, the project moved away from the 



180 
 

original aim of developing a novel pain therapeutic and instead concentrated on spinal 

cord delivery. It was shown that instead of using syntaxin solely as a staple, syntaxin 

could equally be utilised to attach an additional domain to the chimeric protein, via 

recombinant expression, comparable to that demonstrated with the other SNARE 

components. The additional subunit, here, an extra binding domain, did not interfere with 

the normal activity of the chimera but, instead, augmented it. One of the other linker 

peptides, α-SNAP25 is in fact composed of two individual helixes and could thus be split 

to enable the attachment of another additional domain. In theory, the potential exists to 

join a total of 8 individual subunits, if both ends of each of the four helices of the 

tetrahelical SNARE complex were utilised (Darios et al., 2010).  

 

7.5 Conclusions 

In conclusion, this project has demonstrated the ability of the SNARE-stapling technology 

to produce safer, novel analgesics for use in a range of chronic pain conditions. During 

this project, ChoBot, specifically, has been highlighted as a promising analgesic for pre-

emptive use in post-surgical pain and for the management of neuropathic pain 

conditions. Meanwhile, the potential mechanisms by which BiTox/A might mediates its 

analgesic effect have been elucidated. All chimeras were administered without producing 

motor paralysis or compromising the wellbeing of animals.  

This project has also emphasised the versatility of the stapling technology. In chapter 4, 

it was shown how the stapling technology allows for the combinatorial engineering of 

proteins. This enabled the efficient substitution of receptor binding domain of the BiTox 

chimera and consequently, allowed for the exploration of the differential binding profiles 

resulting from the alternative targeting of the BoNT/A protease. Furthermore, it has been 

demonstrated that the stapling technology is not restricted to use with clostridial 

neurotoxin subunits, exclusively. ChoBot utilised the binding domain of an alternative 

bacterial toxin, cholera toxin. Additionally, the stapling technology has also been used to 

conjugate BoNT/A protease to neuropeptides implicated in pain signalling (Maiarù et al., 

2016), as well as to surrogate targeting domains intended to target the protease to 

neuroblastoma cell lines, for the treatment of cancer (Rust, 2016; Hart, 2017).This further 

demonstrates the multiple disease applications for the stapling technology.  

In this project, the use of chimeras for spinal cord delivery was investigated. With further 

development, chimeras could provide a therapeutic delivery tool for use in central 

nervous system conditions, including amyotrophic lateral sclerosis (ALS) and spinal 

muscular atrophy (SMA), which, with the aid of advancements to the stapling technology 

such as the attachment of additional targeting domains, could lead to an augmented 
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therapeutic effect. The most promising application does, however, remain the use of 

clostridial chimeras in chronic pain.  

Multiple chimeras have now been tested across multiple pain models to successfully 

produce analgesia (Ferrari et al., 2013; Maiarù et al., 2016; Mangione et al., 2016). 

These chimeras have the capability to selectively target and provide long-term silencing 

of pain signalling pathways. With the aid of future experiments to further validate the 

safety profile of clostridial chimeras, they offer a potential solution to the inadequacy of 

current pharmacological intervention for chronic pain and could provide the first 

therapeutic designed specifically for use in chronic pain conditions.  
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