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Abstract

We present a one-field fictitious domain method (FDM) for simulation of general fluid-

structure interactions (FSI). “One-field” means only one velocity field is solved in the whole

(fluid and solid) domain based upon the finite element interpolation. The proposed method has

the same generality and robustness as the FDM with a distributed Lagrange multiplier (DLM):

both of them solve the fluid equations and solid equations as one system. However the one-field

FDM only needs to solve for one velocity field while the FDM/DLM usually solves for fluid

velocity, solid displacement and Lagrange multiplier. The proposed one-field FDM also has

similar features with immersed finite element methods (IFEM): the explicit or implicit IFEM

places all the solid information in a FSI force term which is arranged on the right-hand side of

the fluid equations. The one-field FDM assembles the solid equations and implicitly includes

them with the fluid equations. What we achieve is theoretically equivalent to an implicit IFEM

but avoiding convergence problems, and a wide range of solid parameters can be considered in

this scheme. In short, the one-field FDM combines the FDM/DLM advantage of robustness

and the IFEM advantage of efficiency.

In this thesis, we present a thorough review, summary and categorization of the existing

finite element methods for FSI problems. The finite element weak formulation of the one-

field FDM and discretization in time and space are introduced, followed by a stability analysis

by energy estimate. The proposed scheme is first implemented in implicit form, followed by

numerical validation for the property of non-increasing energy under the conditions of ρf ď ρs

(densities of the fluid and solid respectively) and νf ď νs (viscosities of the fluid and solid

respectively), and numerical tests for stability under the conditions of ρf ą ρs and/or νf ą νs.

The proposed scheme is then implemented based upon three explicit splitting schemes: 2-step

splitting, 3-step splitting and 4-step splitting scheme. The fully coupled implicit FSI system is

decoupled into subproblems step by step, which can be effectively solved. The pros and cons

of these splitting schemes are analysed followed by a selection of numerical tests in order to

illustrate the capabilities and range of applicability of the proposed one-field FDM scheme. The

thesis concludes with a presentation of some topics and open problems that may be worthy of

further investigation.
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Chapter 1

Introduction

In order to understand the following material, we assume that the reader has a basic knowledge

of the finite element method for fluid dynamics and structural mechanics. In this chapter, we

start by introducing some typical problems involving fluid-structure interactions (FSI) and the

existing numerical methods to solve them. We then discuss the motivation for designing a new

approach to FSI problems. Finally the structure of this thesis is presented.

1.1 Applications of fluid-structure interactions

Problems involving FSI are common in many areas, such as wind-turbine aerodynamics [10, 11,

91], dynamics of spacecraft parachutes [14], biomedical science [1, 12, 14, 73], fixed or floating

structures interacting with ocean waves [6, 26, 45, 52], and so on. For most FSI problems,

analytical solutions of the controlling equations are impossible to obtain, whereas laboratory

experiments are complex, expensive and limited in scope. Therefore, numerical simulations

play an important role in order to understand the fundamental physics involved in the complex

interaction between fluids and structures.

Aerodynamics is a major area in which FSI is widely applied. Applications range from

modeling a full scale wind-turbine rotor with composite blades [10, 11] and simulation based on

Isogeometric Analysis (IGA) [14] to large eddy simulation of flow passing airfoils [38]; from the

simulation of flow around a high-speed train [125, 126] to simulation of a parachute interacting

with the air around it [14, 80, 128] (space-time finite element methods in [14, 128] and parallel

implementation in [80]). All these applications are about a solid body, from very large structures

to small solid particles, interacting with its surrounding air flow.

There are also plenty of FSI applications in the area of biomechanics. These include modeling

and simulation of blood flowing in the blood vessel and the interaction between them [9, 12–

14, 20, 37, 93, 100]: applications to arterial blood flow [9, 37] and aneurysms [12, 13, 93],

considering blood vessel tissue prestress [14, 20] and focusing on external tissue support [100];

1
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the simulation of red blood cells interacting with blood vessels [103, 111, 120, 131, 155]: focusing

on the red cell transitions in [103] and deformation in [111, 120] respectively, and the numerical

methods for simulations [131, 155]; the heart valve simulation [28, 32, 141], etc.

Applications in ocean mechanics are very popular as well. For example, the ocean waves

interacting with a fixed [6, 52] or floating [6, 26, 33, 45, 88, 144] structure; the interactions

between waves and algae [85]; the modeling and simulation of underwater vehicles [36, 112];

simulation of seawater intrusion [27, 51]; interactions between internal waves with seamounts

[71, 140], and so on.

Other FSI problems, such as particle dynamics of polymers [127, 148], sediment transport

[39, 153] and lubricated motion [21, 130] can also be found in the literature.

All in all, fluid-structure interaction problems exist in a variety of areas. Numerical simu-

lation for such kinds of problem plays an important role due to the limitation of analysis and

laboratory experiments.

1.2 Numerical methods for fluid-structure interactions

Numerical simulation of fluid-structure interaction is often a computational challenge because

of its strong nonlinearity, especially when large deformation is considered. Different kinds

of numerical methods are used to solve FSI problems. Generally speaking, there are finite

difference methods [48, 64, 92, 161], finite element methods [8, 14, 47, 69, 84, 137, 156, 157], finite

volume methods [78, 81, 122], particle/meshless methods [76, 77, 113, 149], Lattice-Boltzmann

methods [49, 82, 105, 129], and so on.

The finite difference methods directly discretize the partial differential equation, which is

straightforward to implement. For FSI numerical schemes, such as the immersed boundary

method (IBM), the finite difference method may be used to solve the fluid equation with a FSI

force term on the right-hand side [48, 159]. However it is difficult to use finite difference scheme

for problems with complex geometry.

The finite element method works with the weak form of a partial differential equation, which

can adopt an unstructured mesh to treat complex geometry. In addition the Neumann boundary

condition may be naturally treated in the framework of finite element methods. Coming to the

FSI numerical algorithm, the finite element method may be adopted to solve both the fluid and

solid equations sequentially [40, 84] or simultaneously [68, 69, 102].

The finite volume method only needs to evaluate fluxes on the boundaries of a cell, which

makes it powerful for handling conservation laws. The finite volume method is convenient to

deal with the non-linear convection term when solving large Reynolds number problems, which

may be advantageous in a FSI numerical scheme to solve the fluid problem [81, 122].

The particle methods are naturally good at dealing with moving boundary, contact and

fracture in the FSI problems. One could describe both the fluid and solid as particles [76, 77,

145], or just describe the solid as particles which are moving over a fixed Eulerian mesh [149].
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Solving the Lattice-Boltzmann equation can be much faster than solving the Navier-Stokes

equation, which makes the Lattice-Boltzmann Methods (LBM) popular in computational fluid

dynamics. For FSI problems the LBM may be combined with schemes such as immersed

boundary methods (IBM) [49, 129] or particle methods [82].

In this thesis, our discussion will be based upon the finite element method for both the fluid

and solid part. The existing finite element schemes for FSI problems will be presented and a

new numerical scheme will be introduced.

The FSI finite element methods discretize both the fluid and solid domain as a set of locally

connected nodes, termed a mesh. A fitted mesh means that the fluid and solid meshes match

each other at the interface, and the nodes on the interface are shared by both the fluid and the

solid, which leads to the fact that each interface node has both a fluid velocity and a solid velocity

(or displacement) defined on it. It is apparent that the two velocities on each interface node

should be consistent. There are typically two methods to handle this: partitioned/segregated

methods [40, 84] and monolithic/fully-coupled methods [68, 69, 102]. The former solve the

fluid and solid equations sequentially and iterates until the velocities become consistent at the

interface. The latter solve the fluid and solid equations simultaneously and often use a Lagrange

Multiplier to weakly enforce the continuity of velocity on the interface [102]. The two-mesh

methods represent the fluid and solid separately and these do not generally conform to each

other on the interface. Popular approaches include the Immersed Finite Element Method

(IFEM) [136–138, 156, 157] and the Fictitious Domain method (FDM) [5, 59, 70, 79, 150]. The

classical IFEM does not solve solid equations at all. Instead, the solid equations are arranged

on the right-hand side of the fluid equations as an FSI force, and these modified fluid equations

are solved on the augmented domain (occupied by fluid and solid). The FDM approach usually

uses a distributed Lagrange multiplier (DLM) to enforce the constraint and the FSI equations

are either solved sequentially [59, 150] or simultaneously [18, 79].

1.3 Motivation for the one-field fictitious domain method

We aim to design a general FEM scheme for FSI problems that can

– cheaply and accurately simulate large solid deformation,

– simulate FSI problems with a wide range of physical parameters.

Considering efficiency for large deformations, we shall choose two meshes to describe the

fluid and solid respectively, so that there is no need to remesh; considering simulation for a wide

range of physical parameters in one scheme, we shall use a monolithic/fully-coupled method

which is widely acknowledged to be more robust [25, 68, 69].

It can be seen from Section 1.2 that the major methods based on two meshes either avoid

solving the solid equations (IFEM) or solve them with additional variables (two velocity fields

and Lagrange multiplier) in the solid domain. However, physically, there is only one velocity
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field in the solid domain. In this thesis, we follow the one-field spirit and only solve one velocity

variable in the whole/augmented domain. We shall introduce a one-field FDM that (as we

will demonstrate) combines the advantages of IFEM and FDM/DLM: efficiency of IFEM and

robustness of FDM/DLM.

In the one-field spirit, [34, 67, 109, 110] introduces an monolithic Eulerian formulation by

remeshing and [4] presents a 1D model using a one-field FDM formulation but does not discuss

how to compute the integrals arising from the two different domains. There are other similar

Eulerian formulations for FSI problems, such as the eXtended Finite Element Method (XFEM)

[57], local modification of elements [54] and other fully Eulerian formulations [42, 43, 116, 142]

that are coupled with either local adaptivity or ALE methods. However these formulations

are not in the spirit of one-field, usually the velocity of the fluid (including fictitious fluid),

the displacement of the solid and the Lagrange multiplier are solved monolithically, which are

three-field formulations (four fields if the moving mesh is solved for as well).

The main features of the proposed one-field FDM are: (1) only one velocity field is solved in

the whole domain, based upon the use of an appropriate L2 projection; (2) the fluid and solid

equations are solved monolithically; (3) The FSI interactions are decoupled until the final step of

solving the final assembled algebraic equations. This means that the finite element procedures

(weak formulation, discretization, computing element matrices and assembling global matrices)

are carried out separately on the two different meshes for the fluid and solid respectively, and

the final discrete linear system brings the fluid and solid parts together via an isoparametric

interpolation matrix from the augmented fluid mesh to the solid mesh.

1.4 Structure of this thesis

In Chapter 2, existing numerical methods for the FSI problems are introduced in more detail

following the definition of the basic governing partial differential equations. In Chapter 3, the

principle of the one-field fictitious domain method is introduced with the weak formulations and

time and space discretization with corresponding energy analysis. In Chapter 4, an implicit

implementation based upon a neo-Hookean solid model is given, followed by several numerical

tests for validation of stability and energy conservation. In Chapter 5, different explicit splitting

methods are proposed to implement the proposed scheme, followed by a variety of numerical

examples. We discus some topics associated with the proposed scheme which may be worthy

of further study in Chapter 6, and finally draw conclusions in Chapter 7.



Chapter 2

Existing numerical methods for

fluid-structure interactions

Three major questions arise when considering a finite element method for the problem of

Fluid-Structure Interactions (FSI): (1) what kind of meshes are used (interface fitted or un-

fitted); (2) how to couple the fluid-structure interactions (monolithic/fully-coupled or parti-

tioned/segregated); (3) what variables are solved (velocity and/or displacement). Combinations

of the answers to these questions lead to different types of numerical method. For example,

[40, 83] solve for fluid velocity and solid displacement sequentially (partitioned/segregated) us-

ing an Arbitrary Lagrangian-Eulerian (ALE) fitted mesh, whereas [68, 69, 102] use an ALE

fitted mesh to solve for fluid velocity and solid displacement simultaneously (monolithic/fully-

coupled) with a Lagrange Multiplier to enforce the continuity of velocity/displacement on the

interface. The Immersed Finite Element Method (IFEM) [17, 107, 136–138, 156, 157] and the

Fictitious Domain Method (FDM) [5, 18, 59, 70, 79, 150] use two meshes to represent the fluid

and solid separately. Although IFEM could be monolithic [17], the classical IFEM only solves

for velocity, while the solid information is arranged on the right-hand side of the fluid equation

as a prescribed force term. Although the FDM may be partitioned [150], usually the FDM

approach solves for velocity in the whole domain (fluid plus solid) and displacement of the

solid simultaneously via a distributed Lagrange multiplier (DLM) to enforce the consistency

of velocity/displacement in the overlapped solid domain. There are also formulations using

one Eulerian mesh (interface-unfitted), in which case the fluid-structure interface needs to be

captured first, such as using the level-set method [90], or similar method based on an Initial

Point Set [43, 54, 55, 116, 117, 142]. Then the interface may be smoothed by a phase param-

eter [43] or/and the shape functions may be modified locally in order to capture discontinuity

across the interface [54, 134]. In the case of one-field and monolithic numerical methods for FSI

problems, [4] introduces a 1D model using a one-field FDM formulation based on two meshes,

and [67, 110] introduces an energy stable monolithic method (in 2D) based on one Eulerian

5
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mesh and discrete remeshing.

Combinations of the answers to the three questions at the start of this chapter give the

methods shown in Table 2.1. Although there are some types of approach in this table that have

not been found by the author in the literature, it may be possible for them to exist as well.

In theory at least, every method introduced here could be designed to be an implicit scheme

or explicit scheme. However, we shall not distinguish between implicit or explicit forms when

introducing the methods in the following sections.

Solve for velocity and displacement Only solve for velocity
Partitioned Monolithic Partitioned Monolithic

One mesh
(interface fitted)

1 2 3 4

Two meshes 5 6 7
DLM: 8
FEII: 9

One mesh
(interface unfitted)

10 11

Table 2.1: A categorization of the existing methods for FSI problems. DLM: Distributed
Lagrange Multiplier, FEII: Finite Element Isoparametric Interpolation.

The following list provides examples of studies from the different catergories introduced in Table 2.1 :

1. Partitioned/Segregated methods [29, 40, 41, 50, 53, 63, 83, 87, 98, 101, 135].

2. Monolithic/Fully-coupled methods [68, 69, 73, 74, 102].

3. This combination has not been observed in literature by the author.

4. Monolithic Eulerian methods [34, 67, 109, 110].

5. Modified immersed finite element methods [138].

6. Fictitious domain methods with distributed Lagrange multiplier (FDM/DLM) [5, 16–
18, 58–60, 66, 70, 79, 106, 118, 121, 146, 150, 151].

7. Immersed finite element methods [17, 72, 96, 107, 136–138, 156, 157].

8. This combination has not been observed in the literature by the author.

9. The proposed method in this thesis: a one-field fictitious domain method [139].

10. A fully Eulerian formulation [42, 43, 54, 116, 117, 134, 142]. For one mesh without
interface fitting, the coupling strategy may always be monolithic/fully-coupled. It might
not be reasonable to consider a partitioned algorithm based on one mesh without interface
fitting.

11. This combination has not been observed in the literature by the author.

In this chapter, we first present the governing equations for FSI problems with general
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initial and boundary conditions in Section 2.1. Then a compressible Saint Venant-Kirchhoff

solid model and an incompressible neo-Hookean solid model are given in Section 2.2 and 2.3

respectively. Finally, the existing methods for FSI problems are presented in more detail in the

remaining sections. We first broadly categorize the existing methods into three wide groups

based upon the meshes they use, i.e., one interface-fitted mesh, two meshes, and one mesh

without interface fitting. The specific approaches are then discussed under these three wide

categories.

2.1 Governing partial differential equations

In the following context, Ωft Ă Rd and Ωst Ă Rd with d “ 2, 3 denote the fluid and solid domain

respectively which are time dependent regions as shown in Figure 2.1. Ω “ Ωft Y Ωst is a fixed

domain (with outer boundary Γ) and Γt “ BΩft X BΩ
s
t is the moving interface between fluid

and solid. We denote by X the reference (material) coordinates of the solid, by x “ xp¨, tq the

current coordinates of the solid, and by x0 is the initial coordinates of the solid. We assume

xp¨, tq : ΩsX Ñ Ωst is one-to-one and invertible.

Figure 2.1: Schematic diagram of FSI, Ω “ Ωft Y Ωst , Γ “ ΓD Y ΓN .

Let ρ,u,σ,g denote the density, velocity vector (column), Cauchy stress tensor and acceler-

ation due to gravity respectively. We assume both an incompressible fluid and incompressible

solid, then the conservation of momentum and conservation of mass take the same form as

follows:

Momentum equation:

ρ
du

dt
“ ∇ ¨ σ ` ρg. (2.1)

Continuity equation:
d pJρq

dt
“ 0. (2.2)

Jρ “ ρ0, where ρ0 is the initial density. J “ detF is the determinant of F, with F “ Bx
BX “
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Bx
Bx0

Bx0

BX =∇0x∇Xx0 being the deformation tensor. Using Jacobi’s formula [97], we have

dJ

dt
“ Jtr

ˆ

F´1 dF

dt

˙

. (2.3)

Since dx
dt “ u, then

dF

dt
“ ∇Xu “ ∇uF. (2.4)

Substituting (2.4) to (2.3), and using the trace property of cyclic permutations (tr pABCq “

tr pBCAq “ tr pCABq for arbitrary square matrices A, B and C), we get

dJ

dt
“ J∇ ¨ u. (2.5)

Using (2.5), the continuity equation (2.2) then can also be expressed as:

dρ

dt
` ρ∇ ¨ u “ 0. (2.6)

For an incompressible material, the continuity condition (2.6) is equivalent to the following

due to ρ “ ρ0:

∇ ¨ u “ 0. (2.7)

Let superscripts f and s refer to the fluid and solid respectively, and Du “ ∇u`∇Tu, then

the constitutive equations may be expressed as follows. For an incompressible Newtonian fluid

in Ωft ,

σ “ σf “ τ f ´ pfI “ νfDuf ´ pfI, (2.8)

where νf is the dynamic viscosity of the fluid, pf is pressure in the fluid, and τ f “ νfDuf is

the deviatoric part of stress σf . For a general hyperelastic solid in Ωst ,

σ “ σs “ J´1PFT , (2.9)

where P “
BΨpFq
BF is the first Piola-Kirchhoff stress tensor, with Ψ pFq being the energy function

for the hyperelastic solid material.

The system is complemented with the following boundary and initial conditions.

Interface boundary conditions (see Figure 2.1):

uf “ us on Γt, (2.10)

σfns “ σsns on Γt. (2.11)

Dirichlet and Neumann boundary conditions may be imposed for the fluid:

uf “ ū on ΓD, (2.12)
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σfn “ h̄ on ΓN . (2.13)

Finally, initial conditions are set as:

uf
ˇ

ˇ

t“0
“ uf0 in Ωf0 , (2.14)

us|t“0 “ us0 in Ωs0. (2.15)

Remark 2.1. In this thesis, all vectors are interpreted as column vectors. The gradient of a

scalar φ is expressed as (two dimension case for example):

∇φ “ Bφ

Bxi
“

˜

Bφ
Bx1
Bφ
Bx2

¸

. (2.16)

The gradient of a vector u is expressed as (two dimension case for example):

∇u “ ∇

˜

u1

u2

¸

“
Bui
Bxj

“

«

Bu1

Bx1

Bu1

Bx2

Bu2

Bx1

Bu2

Bx2

ff

. (2.17)

2.2 Saint Venant-Kirchhoff solid model

The Energy function for the Venant-Kirchhoff solid model can be expressed as follows [12, 109]:

ΨpFq “ µstrpE2q `
λs

2
tr2pEq, (2.18)

where

E “
1

2

`

FTF´ I
˘

(2.19)

is the Lagrangian Green strain, µs and λs are the Lamé constants. It is straightforward to use

the tensor form to take derivatives, for example in a 2D case, let matrix E be denoted by the

tensor form Eij , then
”

BtrpEq
BE

ı

mn
“
Bp

ř2
i“1 Eiiq
BEmn

“
BpE11`E22q

BEmn
. Only the derivatives with respect

to the components of m “ n are nonzero. If m “ n “ 1, then BpE11`E22q

BE11
“ 1. If m “ n “ 2,

then BpE11`E22q

BE22
“ 1. Therefore BtrpEq

BE “ I. Similarly, we have

«

Btr
`

FTF
˘

BF

ff

mn

“
Btr pFkiFkjq

BFmn
“
B
řd
k

řd
i F

2
ki

BFmn

“
B
`

F 2
11 ` F

2
12 ` ¨ ¨ ¨ ` F

2
dd

˘

BFmn
“ 2Fmn,

(2.20)

hence
Btr pEq

BF
“ F. (2.21)
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Furthermore,

«

Btr
`

E2
˘

BF

ff

mn

“
1

4

«

Btr
`

FTFFTF´ 2FTF` I
˘

BF

ff

mn

“
1

4

Btr pFkiFklFslFsjq

BFmn
´

1

2

B
řd
k

řd
i F

2
ki

BFmn

“
1

4

B pFkiFklFslFsiq

BFmn
´ Fmn

“
1

4

B pFmnFmlFslFsnq

BFmn
`

1

4

B pFmiFmnFsnFsiq

BFmn

`
1

4

B pFkiFknFmnFmiq

BFmn
`

1

4

B pFknFklFmlFmnq

BFmn
´ Fmn

“
“

FFTF´ F
‰

mn
“ 2 rFEsmn .

(2.22)

According to (2.9), (2.21) and (2.22), we get

σs “ J´1PFT “ J´1 BΨ

BF
FT “ J´1F p2µsE` λstr pEq IqFT . (2.23)

Notice that

S “ 2µsE` λstr pEq I (2.24)

is the second Piola-Kirchhoff stress in the above equation. The relations between the first

Piola-Kirchhoff stress P, the second Piola-Kirchhoff stress S and the Cauchy stress σ are as

follows: P “ FS, σ “ J´1FSFT [14].

2.3 Incompressible neo-Hookean solid model

For a general compressible neo-Hookean solid model, the energy function is given by [70]

Ψ pFq “
µs

2
ptrFFT ´ dq ´ µ

slnpJq `
λs

2
ln2pJq. (2.25)

Using (2.3) (based on Jacobi’s formula), we have

„

BJ

BF



ij

“
BJ

BFij
“ Jtr

ˆ

F´1 BF

BFij

˙

“ J
“

F´T
‰

ij
, (2.26)

which is a special case of Jacobi’s formula [97]. Using (2.20), we then have

BΨ pFq

BF
“ µs

`

F´ F´T
˘

` λslnpJqF´T . (2.27)
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According to (2.9) and (2.27), we get

σs “ µsJ´1
`

FFT ´ I
˘

` J´1λslnpJqI. (2.28)

For the incompressible case, one may replace J´1λslnpJq by a pressure term ´ps and use

J “ 1 or ∇ ¨us “ 0 to determine ps [150]. Then the constitutive equation for an incompressible

neo-Hookean model can be expressed as

σs “ τ s ´ psI “ µsJ´1
`

FFT ´ I
˘

´ psI, (2.29)

where

τ s “ µsJ´1
`

FFT ´ I
˘

(2.30)

is the deviatoric part stress σs.

Remark 2.2. It may be possible to arrange the term ´J´1µs into ps as well [18]. In this case,

the solid is not stress free, and one creates a jump of the pressure across the fluid-solid interface

if the fluid is stress free. This does not matter if the discontinuity of pressure can be exactly

captured, such as an interface-fitted method with discontinuous element for pressure. However,

for the interface-unfitted methods (see Section 2.5 or 2.6) it is wiser to choose equation (2.29)

as the constitutive equation.

Based upon the above remark, the corresponding energy function for the constitutive equa-

tion (2.29) may be expressed as:

Ψ pFq “
µs

2
ptrFFT ´ dq ´ µ

slnpJq. (2.31)

Remark 2.3. In the continuous case J “ 1 exactly holds for an incompressible material,

therefore the term lnpJq is zero in (2.31). However for the numerical methods using two meshes,

J “ 1 cannot be guaranteed. The reason is: we only solve ∇ ¨ u “ 0 in the whole domain

Ω/background mesh, then the velocity in the solid domain Ωst/mesh (say us) is projected by

u, i.e., us “ P puq, where P denotes the projection. Then ∇ ¨ us “ 0 only if P is linear,

which however does not always hold. Therefore, we keep term lnpJq in the expression of the

energy function. Another reason is that the energy function (2.31) is also consistent with

the constitutive equation (2.29). Notice that the following energy function and constitutive

equation are consistent with each other:

Ψ pFq “
µs

2
ptrFFT ´ dq , (2.32)

and

σs “ µsJ´1FFT ´ psI. (2.33)
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2.4 Methods using one mesh and interface fitting

For the interface-fitted methods, the fluid and solid share an interface boundary, on which both

the velocity variable from the fluid side and the displacement (or velocity) variable from the

solid side are defined as shown in Figure 2.2. No matter whether the FSI problem is solved

sequentially (as in Section 2.4.1) or simultaneously (as in sections 2.4.2 and 2.4.3), the major

issue is that these two variables from both sides should be in accordance with each other.

Figure 2.2: Schematic diagram for an interface-fitted mesh, Ω “ Ωft Y Ωst ,

Γ “ ΓD Y ΓN . Solve for fluid velocity uf in Ωft and solid displacement ds in Ωst .

For a large deformation problem, as we consider in this thesis, one has to remesh and/or use

a moving mesh strategy in order to guarantee the mesh is interface fitted at every time step.

We shall use an ALE mesh to demonstrate the methodology in this section, in which case the

fluid momentum equation (2.1) (in Ωft ) may be expressed as:

ρf
duf

dt
` ρf

``

uf ´ um
˘

¨∇
˘

uf “ ∇ ¨ σf ` ρfg, (2.34)

where d
dt is the time-derivative with respect to a frame moving with the mesh velocity um.

Here we simply solve the following linear elastic equation in Ωft at every time step in order to

compute um.

∇ ¨ pµDum ´ λ p∇ ¨ umq Iq “ 0, (2.35)

with µ and λ being the Lamé constants chosen according to the solid parameters (although

other values could be chosen). The boundary conditions are set as follows.

um ¨ n “ 0 on Γ, (2.36)

and

um “ ∆ds{∆t on Γt, (2.37)

where ∆t is the time step, and ∆ds is the solid displacement at the current step.
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2.4.1 Partitioned/Segregated methods

In the literature of Partitioned/Segregated methods, the solid displacement (rather than solid

velocity) is usually solved as the dependent variable, in which case it is convenient to express

the solid momentum equation (2.1) in displacement form (in Ωst ):

ρs
B2ds

Bt2
“ ∇ ¨ σs ` ρsg. (2.38)

The partitioned methods solve the fluid equation (2.34), mesh equation (2.35) and the solid

equation (2.38) sequentially as described in Algorithm 1. There are two ways to consider the

boundary conditions on Γt: one can solve the fluid equation (2.34) using Dirichlet boundary

condition uf “ us, and compute a reaction force hf on Γt after solving (2.34). Then use the

Neumann boundary condition σsns “ hf to solve the solid equation (2.38). One can also do

this the other way around, i.e.: first solving the solid equation (2.38) using Dirichlet boundary

condition ds “ uf∆t`dn, and compute a reaction force hs on Γt after solving (2.38). Then use

the Neumann boundary condition σfns “ hs to solve the fluid equation (2.34). In Algorithm

1 we adopt the former to illustrate the approach. Using the finite element method, the weak

form of equation (2.34) could be expressed as follows for a given test function δu:

ż

Ωft

ρf
duf

dt
¨ δudx`

ż

Ωft

ρf
``

uf ´ um
˘

¨∇
˘

uf ¨ δudx

“

ż

ΓD

`

σfn
˘

¨ δudΓ`

ż

Γt

`

´σfns
˘

¨ δudΓ`

ż

ΓN

h̄ ¨ δudΓ

´

ż

Ωft

σf : ∇δudx`
ż

Ωft

ρfg ¨ δudx.

(2.39)

Solving the above equation with boundary conditions (2.12) and (2.13) to get uf , then the

reaction force hf on ΓD Y Γt could be computed as follows.

ż

ΓDYΓt

hf ¨ δudΓ “

ż

ΓD

`

σfn
˘

¨ δudΓ`

ż

Γt

`

´σfns
˘

¨ δudΓ

“

ż

Ωft

ρf
Buf

Bt
¨ δudx`

ż

Ωft

ρf
``

uf ´ um
˘

¨∇
˘

uf ¨ δudx

´

ż

ΓN

h̄ ¨ δudΓ`

ż

Ωft

σf : ∇δudx´
ż

Ωft

ρfg ¨ δudx.

(2.40)

Let us now skip introducing details of solving the fluid equations (step 3 in Algorithm 1),

and focus on solving the solid equation (2.38) (step 5 in Algorithm 1). The reason for doing this

is that the former can be found in standard literature (refer to the list after Table 2.1), and will

also be presented in the following chapters, while the methods for solving the latter problem

introduced below cannot be widely found. We refer to [14, 94, 114] and bring some components

together in the following context. Let us take the Saint Venant-Kirchhoff solid model as an
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Algorithm 1: Partitioned/Segregated methods

1 Given the solid displacement dsn, fluid velocity ufn at time tn, the following iteration is to

compute dsn`1 and ufn`1 at time tn`1.
2 Start with a reasonable guess of ∆ds on the interface Γt. Solve the mesh equation (2.35)

with boundary conditions (2.36) and (2.37) to get the mesh velocity um.
3 Solve the fluid equation (2.34) and (2.7) with boundary conditions (2.10)

(us|Γt “ um|Γt), (2.12) and (2.13).

4 Solve the interaction equation (2.40) to compute the reaction force hf on Γt.
5 Solve the solid equation (2.38) or weak form (2.41), or linearized weak form (2.69)) with

Neumann boundary condition σns “ hf on Γt and Dirichlet boundary condition
ds “ ū∆t` dsn on ΓD X Ωst .

6 Let ∆dst |Γt “ ds ´ dsn|Γt . If } ∆dst |Γt ´ ∆ds|Γt } ě tol, then let
∆ds|Γt “ p1´ ωq ∆ds|Γt ` ω ∆dst |Γt and goto step 2 for the next cycle of iteration. tol
is an error tolerance and ω is a factor of relaxation.

example, and consider a method of linearization in order to solve the solid equation (2.38).

Given a test function δd, the weak form of the solid equation (2.38) can be expressed as

ż

ΩsX

ρs0
B2ds

Bt2
¨ δddX`

ż

Ωst

σs : ∇δddx “
ż

Γt

pσsnsq ¨ δddΓ`

ż

ΩsX

ρs0g ¨ δddX. (2.41)

According to the constitutive equation (2.23), we have

ż

Ωst

σs : ∇δddx “
ż

Ωst

J´1FSFT : ∇δddx. (2.42)

Using the trace property A : B “ tr
`

ABT
˘

for arbitrary square matrices A and B, we then

have

ż

Ωst

J´1FSFT : ∇δddx

“

ż

Ωst

J´1tr
`

FSFT∇T δd
˘

dx

“

ż

Ωst

J´1tr
´

FS p∇δdFq
T
¯

dx

“

ż

Ωst

J´1FS : p∇δdqFdx

“

ż

ΩsX

FS : ∇XδddX.

(2.43)

Further using the cyclic permutation property tr pABCq “ tr pBCAq “ tr pCABq for arbitrary
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square matrices A, B and C, we have

ż

ΩsX

FS : ∇XδddX “

ż

ΩsX

S : FT p∇Xδdq dX. (2.44)

Because the second Piola-Kirchhoff stress S is a symmetric tensor, i.e.:

S : FT p∇Xδdq “ ST : FT p∇Xδdq “ tr
`

ST
`

∇T
Xδd

˘

F
˘

“ S :
`

∇T
Xδd

˘

F, (2.45)

we further have

ż

ΩsX

S : FT p∇Xδdq dX “
1

2

ż

ΩsX

S :
“

FT p∇Xδdq `
`

∇T
Xδd

˘

F
‰

dX “

ż

ΩsX

S : δEdX, (2.46)

where

δE “
1

2

“

FT p∇Xδdq `
`

∇T
Xδd

˘

F
‰

. (2.47)

Finally we get the following by combining equations (2.42) to (2.47).

ż

Ωst

σs : ∇δddx “
ż

ΩsX

S : δEdX. (2.48)

Notice that δE can also be interpreted as a virtual strain,
ş

ΩsX
S : δE is then the work done

by the second Piola-Kirchhoff stress S on virtual strain δE, and equation (2.41) can then be

interpreted as a work balance.

Let us also interpret δE as the variation of the Lagrangian Green strain E based on the

following Gâteaux variation.

Definition 2.1. The 1st order Gâteaux variation of a functional Fpdq in the direction ∆d is

defined by [14, 114]

δFpd; ∆dq “
d

dε
F pd` ε∆dq

ˇ

ˇ

ˇ

ˇ

ε“0

, (2.49)

and the 2nd order Gâteaux variation of a functional Fpdq in the direction ∆d1 and ∆d2 is

defined by [114, Page 157]

δ2Fpd; ∆d1,∆d2q “
B2

Bε1Bε2
F pd` ε1∆d1 ` ε2∆d2q

ˇ

ˇ

ˇ

ˇ

ε1“ε2“0

. (2.50)

If Fpdq is a vector or matrix the above derivative d
dε or B

2

Bε1Bε2
is taken based on components.

Let us digress to state the following properties of Gâteaux variation, which are straightfor-

ward to obtain from the above definition.

1. For two arbitrary functionals Fp¨q and Gp¨q:

δ pFGq “ pδFqG ` F pδGq . (2.51)
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2. For a linear functional Lp¨q and an arbitrary functional Fp¨q:

δ pL ˝ Fq “ L ˝ δF . (2.52)

3. For the linear functional Lpdq “ d, taking the 1st variation in direction ∆d and taking

the 2nd variation in any two directions:

δL “ δd “ ∆d, δ2L “ δ2d “ 0. (2.53)

4. For a constant functional Fpdq “ c:

δF “ 0. (2.54)

5. For a functional Fp¨q and two directions ∆d1 and ∆d2:

δ2Fpd; ∆d1,∆d2q “
d

dε
δF pd` ε∆d1; ∆d2q

ˇ

ˇ

ˇ

ˇ

ε“0

. (2.55)

Remark 2.4. In the following context, we omit the direction of a variation which refers to an

arbitrary direction δd, i.e.: δF pdq “ δFpd; δdq, or δ2F pdq “ δ2Fpd; δd, δdq. We may further

omit the independent variable d if it is not a specified point (such as d0, d̄ or d̃). This is

consistent with the differentiation of a scalar function f pxq: df “ f 1dx or d2f “ f2dx2. The

terminology arbitrary δd is also consistent with the finite element arbitrary test function.

Having introduced the definition and properties of the Gâteaux variation, let us now deduce

the variation of the Lagrangian Green strain E and linearize expression (2.48). According to

the definition of E (2.19), F “ I ` ∇Xd and the above properties (except the last one) of

Gâteaux variation, taking the variation of E gives

δE “
1

2

`

FT δF` δFTF
˘

“
1

2

`

FT p∇Xδdq `
`

∇T
Xδd

˘

F
˘

. (2.56)

Further, we have

δE “
1

2

“`

∇T
Xd` I

˘

p∇Xδdq `
`

∇T
Xδd

˘

p∇Xd` Iq
‰

“
1

2

`

∇Xδd`∇T
Xδd`∇T

Xd∇Xδd`∇T
Xδd∇Xd

˘

“
1

2

`

DXδd`∇T
Xd∇Xδd`∇T

Xδd∇Xd
˘

.

(2.57)
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Remark 2.5. The expression of E (2.19) may also be rewritten as:

E “
1

2

`

FTF´ I
˘

“
1

2

“`

∇T
Xd` I

˘

p∇Xd` Iq ´ I
‰

“
1

2

`

DXd`∇T
Xd∇Xd

˘

.

(2.58)

One can also get (2.57) from (2.58) due to (2.51).

We are now ready to linearize expression (2.48). Let Fpdq “ SpEq : δE, linearizing Fpdq at

a reference point d̃ gives

Fpdq “ Fpd̃q ` δFpd̃,wq, w “ d´ d̃. (2.59)

Using the definition of Gâteaux variation and (2.58) (or replacing d with d̃ and δd with w in

(2.57)), we have

δE
´

d̃; w
¯

“
1

2

´

DXw `∇T
Xd̃∇Xw `∇T

Xw∇Xd̃
¯

, (2.60)

and using (2.55) we further have

δ2E
´

d̃; w, δd
¯

“
d

dε
δE

´

d̃` εw; δd
¯

ˇ

ˇ

ˇ

ˇ

ε“0

“
1

2

`

∇T
Xw∇Xδd`∇T

Xδd∇Xw
˘

. (2.61)

Since Sp¨q is a linear operator, then according to (2.52):

δS
´

E
´

d̃; w
¯¯

“ S
´

δE
´

d̃; w
¯¯

. (2.62)

Substituting (2.60) into (2.62) we get

δS
´

d̃; w
¯

“ δS
´

E
´

d̃; w
¯¯

“
1

2
S
´

DXw `∇T
Xd̃∇Xw `∇T

Xw∇Xd̃
¯

. (2.63)

Using equations (2.61) and (2.63), we further have

δFpd̃,wq “ δS
´

d̃,w
¯

: δẼ`
1

2
S
´

DXd̃`∇T
Xd̃∇Xd̃

¯

: δ2E
´

d̃; w, δd
¯

“
1

2
S
´

DXw `∇T
Xd̃∇Xw `∇T

Xw∇Xd̃
¯

: δẼ

`
1

2
S
´

DXd̃`∇T
Xd̃∇Xd̃

¯

:
1

2

`

∇T
Xw∇Xδd`∇T

Xδd∇Xw
˘

.

(2.64)

Following [94], we neglect the last term in equation (2.64) which has a second order Gâteaux

variation of Green strain E. Therefore, substituting w “ d´ d̃ into equation (2.64), and using

the value of Fpdq at d̃:

Fpd̃q “ 1

2
S
´

DXd̃`∇T
Xd̃∇Xd̃

¯

: δẼ, (2.65)
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with

δẼ “
1

2

´

DXδd`∇T
Xd̃∇Xδd`∇T

Xδd∇Xd̃
¯

, (2.66)

Fpdq is then linearized as follows.

Fpdq “ S : δE « S
´

Ẽ
¯

: δẼ´
1

2
S
´

∇T
Xd̃∇Xd̃

¯

: δẼ, (2.67)

with

Ẽ “
1

2

´

DXd`∇T
Xd̃∇Xd`∇T

Xd∇Xd̃
¯

. (2.68)

We finally get the following linearized weak form of solid equation by substituting expression

(2.67) and (2.48) into weak form of solid equation (2.41):

ż

ΩsX

ρs0
B2ds

Bt2
¨ δddX`

ż

ΩsX

S
´

Ẽ
¯

: δẼdX

“

ż

ΩsX

1

2
S
´

∇T
Xd̃∇Xd̃

¯

: δẼdX`

ż

Γt

pσsnsq ¨ δddΓ`

ż

ΩsX

ρs0g ¨ δddX.

(2.69)

It can be seen from Algorithm 1 that the partitioned methods have to iterate at every

time step until the velocity on the interface Γt does not change. The convergence is problem

dependent, and cannot be guaranteed even if relaxation is adopted, especially in the case where

the solid and fluid have a large energy exchange, for example when the solid and fluid have a

similar inertia.

2.4.2 Monolithic/Fully-coupled methods

The monolithic methods are regarded to be more robust, which can remove the weakness of

the partitioned methods mentioned above, however it transfers the difficulty to solving the

discretized linear equation system.

The monolithic methods solve the fluid equations (2.34) and (2.7) in Ωft , the solid equation

(2.38) in Ωst and the mesh equation (2.35) in Ωft , together with the consistency equation on Γt:

Bds

Bt
“ uf . (2.70)

We use a Lagrange multiplier L to enforce this condition on Γt. Because the finite element

method is considered in this thesis, we write down the weak form of these equations with

corresponding boundary conditions which are the same as discussed in Section 2.4.1. The

unknowns include fluid velocity uf and pressure p, solid displacement ds, Lagrange multiplier

L and mesh velocity um, with the corresponding test functions being denoted by δu, δp, δd,

δL and δum. Then the weak form of the solid equation (2.38) is almost the same as (2.69), but
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replacing the stress σsns on Γt by a Lagrange multiplier L , which could be expressed as

ż

ΩsX

ρs0
B2ds

Bt2
¨ δddX`

ż

ΩsX

S
´

Ẽ
¯

: δẼdX´

ż

Γt

L ¨ δddΓ

“

ż

ΩsX

1

2
S
´

∇T
Xd̃∇Xd̃

¯

: δẼdX`

ż

ΩsX

ρs0g ¨ δddX.

(2.71)

The weak form of the fluid equations (2.34) and (2.7), using the constitutive equation (2.8)

and considering the Lagrange multiplier L on Γt (replacing the stress σfns “ σsns on Γt by a

Lagrange multiplier L based on the interface boundary condition (2.11)), may be expressed as:

ż

Ωft

ρf
Buf

Bt
¨ δudx`

ż

Ωft

ρf
``

uf ´ um
˘

¨∇
˘

uf ¨ δudx

`

ż

Ωft

νfDuf : ∇δudx´
ż

Ωft

p∇ ¨ δudx`
ż

Γt

L ¨ δudΓ

“

ż

ΓN

h̄ ¨ δudx`

ż

Ωft

ρfg ¨ δudx,

(2.72)

and

´

ż

Ωft

δp∇ ¨ ufdx “ 0. (2.73)

The weak form of the consistency equation (2.70) can be expressed as

ż

Γt

ˆ

Bds

Bt
´ uf

˙

¨ δLdΓ “ 0. (2.74)

Finally, the weak form of the mesh equation (2.35) may be expressed as follows.

µ

2

ż

Ωft

Dum : Dδumdx´ λ

ż

Ωft

p∇ ¨ umq p∇ ¨ δumq dx “ 0. (2.75)

We discretize the time derivatives as follows, which is consistent for displacement and ve-

locity:

Bufn`1

Bt
«

ufn`1 ´ ufn
∆t

, (2.76)

usn`1 “
Bdsn`1

Bt
«

dsn`1 ´ dsn
∆t

, (2.77)

and
B2dsn`1

Bt2
«

dsn`1 ´ 2dsn ` dsn´1

∆t2
. (2.78)

Consistency means that when expressing displacement as velocity, equations (2.77) and (2.78)
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are consistent with equation (2.76), i.e.:

Busn`1

Bt
“
B2dsn`1

Bt2
«

dsn`1 ´ 2dsn ` dsn´1

∆t2
“

dsn`1´dsn
∆t ´

dsn´dsn´1

∆t

∆t
“

usn`1 ´ usn
∆t

(2.79)

is consistent with (2.76).

Regarding the nonlinear convection term in (2.72): in order to focus on demonstrating

the monolithic method itself, we simply move it to the right-hand side of equation (2.72) and

linearize it with a fixed-point iteration. For other methods to treat convection, readers may

refer to [108, 163]. Using the arbitrariness of the test functions δu, δp, δd, δL and δum, adding

up equations (2.71) to (2.75) and substituting into the time approximations (2.76) and (2.78)

gives the equivalent expression of the weak forms as follows.

ż

Ωft

ρf
uf ´ ufn

∆t
¨ δudx`

1

2

ż

Ωft

νfDuf : Dδudx

´

ż

Ωft

p∇ ¨ δudx´
ż

Ωft

δp∇ ¨ ufdx

`

ż

ΩsX

ρs0
ds ´ 2dsn ` dsn´1

∆t2
¨
δd

∆t
dX`

ż

ΩsX

S
´

Ẽ
¯

:
δẼ

∆t
dX

´

ż

Γtpdsn`1q
L ¨

ˆ

δd

∆t
´ δu

˙

dΓ´

ż

Γtpdsn`1q

ˆ

ds ´ dsn
∆t

´ uf
˙

¨ δLdΓ

`
µ

2

ż

Ωft

Dum : Dδumdx´ λ

ż

Ωft

p∇ ¨ umq p∇ ¨ δumq dx

“

ż

ΓN

h̄ ¨ δudΓ`

ż

Ωft

ρfg ¨ δudx`

ż

ΩsX

ρs0g ¨
δd

∆t
dX

´

ż

Ωft

ρf
``

ũf ´ ũm
˘

¨∇
˘

ũf ¨ δudx

`
1

2

ż

ΩsX

S
´

∇T
Xd̃∇Xd̃

¯

:
δẼ

∆t
dX,

(2.80)

with initial conditions (2.14) and (2.15), boundary conditions (2.12) and (2.13) for the fluid

velocity uf , and boundary conditions (2.36) and (2.37) for the mesh velocity um. Notice that

we divide by ∆t on both side of the equation (2.71) before summing up in order to produce

the symmetric linear system below. Equation (2.80) gives the following linear algebraic system
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after spatial discretization.

»

—

—

—

—

—

—

—

—

—

—

—

–

F11 F12 B1 0 0 0 0

FT12 F22 B2 0 0 C1 0

BT
1 BT

2 0 0 0 0 0

0 0 0 S11 S12 0 0

0 0 0 ST12 S22 C2 Cm

0 CT
1 0 0 CT

2 0 0

0 0 0 0 CT
m 0 K

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

uin

uon

p

din

don

L

um

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

f1

f2

0

g1

g2

0

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (2.81)

In the above,

˜

uin

uon

¸

=u, with uon being the velocity components on boundary Γt, and uin

being the velocity components in Ω
f

t zΓt. Similarly

˜

din

don

¸

=d, where don are the displace-

ment components on boundary Γt, and din the displacement components in Ω
s

tzΓt. Matrices
«

F11 F12

FT12 F22

ff

and

«

S11 S12

ST12 S22

ff

are discretizations of the fluid velocity integrals and the solid

displacement integrals respectively (including mass matrices and stiffness matrices). Matrix
˜

B1

B2

¸

indicates the coupling between fluid velocity and pressure. Matrix C1 indicates the

coupling between interface Γt fluid velocity uon and the Lagrange multiplier L. Matrix C2

indicates the coupling between interface Γt solid displacement don and the Lagrange multiplier

L. Matrix K arises from the discretization of the mesh equation, and matrix Cm indicates the

coupling between the mesh velocity um and interface Γt solid displacement don due to boundary

condition (2.37).

As mentioned at the beginning of this section, the major advantage of the monolithic ap-

proach is that it is generally stable and robust because of the fully-coupled system. However

this also presents a disadvantage: because one needs a very powerful linear algebraic solver in

order to solve this large linear system (2.81).

2.4.3 Monolithic Eulerian method

The monolithic Eulerian method [34, 67, 110] reduces the size of the linear system (2.81) by

only solving for one velocity field in the whole fluid-structure domain Ωft YΩst , however it still

has much of the robustness because the system is still fully-coupled and solved simultaneously.

The Lagrange multiplier is also unnecessary for this method because there is only one velocity

variable defined on the fluid-solid interface as shown in Figure 2.3.

References [34, 67, 110] use a remeshing technique to keep the mesh fitted on the fluid-

structure interface. Here we use an ALE mesh to introduce the principle of this method. Let

u “

#

uf in Ωft

us in Ωst
, and use the same test function δu for both the fluid and solid equations
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Figure 2.3: Schematic diagram for an interface-fitted mesh, Ω “ Ωft Y Ωst ,
Γ “ ΓD Y ΓN . Solve for one velocity u in Ω.

to deduce the weak forms. Then the weak form of this monolithic Eulerian method, using the

momentum equation (2.1) and continuity equation (2.7), may be expressed as follows [67].

ż

Ωft

ρf
du

dt
¨ δudx`

ż

Ωst

ρs
du

dt
¨ δudx`

1

2

ż

Ωft

νfDu : Dδudx

´

ż

Ωft

pf∇ ¨ δudx´
ż

Ωft

δp∇ ¨ udx`
ż

Ωst

σs : ∇δudx

“

ż

ΓN

h̄ ¨ δudΓ`

ż

Ωft

ρfg ¨ δudx`

ż

Ωst

ρsg ¨ δudx.

(2.82)

If updating the solid with its own velocity, then there is no convection term in Ωst . Using the

backward Euler scheme to discretize (2.82) in time and letting ρ “

#

ρf in Ωft

ρs in Ωst
, we then have

ż

Ω

ρ
u´ un

∆t
¨ δudx`

1

2

ż

Ωfn`1

νfDu : Dδudx

`

ż

Ωfn`1

ρf ppu´ umq ¨∇qu ¨ δudx´
ż

Ωfn`1

pf∇ ¨ δudx

´

ż

Ωfn`1

δp∇ ¨ udx`
ż

Ωsn`1

σs : ∇δudx

“

ż

ΓN

h̄ ¨ δudΓ`

ż

Ω

ρg ¨ δudx,

(2.83)

with boundary conditions (2.12) and (2.13). The above equation is coupled with the mesh

equation (2.75), boundary conditions (2.36) and

um “ u on Γt. (2.84)

In order to implement the above method, one has to express σs by displacement and fur-

ther by velocity. It is straightforward to express displacement in terms of velocity after time
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discretization, such as using the backward Euler scheme

dn`1 “ dn `∆tun`1. (2.85)

Because σs is expressed in terms of F for either the Saint Venant-Kirchhoff solid model (Section

2.2) or the neo-Hookean solid model (Section 2.3), the remaining task is to express F in terms

of displacement, which can be accomplished by:

F “ I`∇dF ñ F´1 “ I´∇d. (2.86)

Here we use the incompressible neo-Hookean solid model to present details of expressing the

solid stress σs in terms of velocity in the current configuration. For the compressible case and

other solid models, please refer to [34, 67, 109, 110]. Let B “ FFT and neglect J (here it

means J “ 1 which is guaranteed by solving ∇ ¨u “ 0 in the solid domain Ωst ), the constitutive

equation (2.29) can be expressed as:

σs “ µs pB´ Iq ´ psI. (2.87)

According to the Cayley-Hamilton theorem:

B2 ´ trBB` detBI “ 0. (2.88)

Therefore,

B “ trBI´B´1, (2.89)

due to detB “ detFFT “ detFdetFT “ J2 “ 1. Substituting (2.89) into (2.87) and using

(2.86), for α “ µs ` ps ´ trB and α1 “ α` µs, we could express the Cauchy stress in terms of

displacement as follows.

σs “µs pB´ Iq ´ psI

“´ µsB´1 ´ αI

“´ µs pI´∇dq
T
pI´∇dq ´ αI

“µs
`

∇Td`∇d´∇Td∇d
˘

´ α1I

“µs
`

Dd´∇Td∇d
˘

´ α1I.

(2.90)

Using (2.85), σs may be further expressed in terms of velocity after time discretization as

follows (omit the superscript n` 1 which indicates the current time step).

σs “ ∆tµs
`

Du´∆t∇Tu∇u
˘

´∆tµs
`

∇Tdn∇u`∇Tu∇dn
˘

` µsDdn ´ µs∇Tdn∇dn ´ α1I.

(2.91)
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Let p “

#

pf in Ωft

α1 in Ωst
, substituting the above expression (2.91) into (2.83) and neglecting

second order term of ∆t, solving the incompressibility condition (2.7) ∇ ¨ u “ 0 in the solid

domain Ωst , gives

ż

Ω

ρ
u´ un

∆t
¨ δudx`

1

2

ż

Ωfn`1

νfDu : Dδudx`

ż

Ωfn`1

ρf ppu´ umq ¨∇qu ¨ δudx

´

ż

Ω

p∇ ¨ δudx´
ż

Ω

δp∇ ¨ udx` ∆t

2

ż

Ωsn`1

µsDu : Dδudx

´∆t

ż

Ωsn`1

µs
`

∇Tdn∇u`∇Tu∇dn
˘

: ∇δudx “
ż

ΓN

h̄ ¨ δudΓ`

ż

Ω

ρg ¨ δudx

´
1

2

ż

Ωsn`1

µsDdn : Dδudx`

ż

Ωsn`1

µs∇Tdn∇dn : ∇δudx.

(2.92)

According to relation (2.48), the integral related to the solid stress can also be computed in

the reference domain ΩsX as follows.

ż

Ωst

σs : ∇δudx “
ż

ΩsX

S pEq : δ 9EdX,

where δ 9E “ 1
2

“

FT p∇Xδuq `
`

∇T
Xδu

˘

F
‰

. The reader may refer to [67, 110] for more details

about that.

2.5 Methods using two meshes

The two-mesh methods generally use one Eulerian mesh to describe the whole domain Ω “

Ωft YΩst and a moving Lagrangian mesh to describe the solid in domain Ωst as shown in Figure

2.1. The crucial advantage of the two-mesh methods is that they avoid the need to adjust

the mesh in order to fit the fluid-structure interface. However, the disadvantage is also due

to the unfitted interface, so that the material properties are smeared out across the interface.

Therefore the fluid-structure interface is the main issue for two-mesh methods: one has to take

care of this interface in order to maintain stability and accuracy.

For two-mesh methods, the fictitious or artificial fluid refers to the part of the fluid defined

in the whole domain/mesh Ω but covered by the solid domain/mesh Ωst . If we assume an

incompressible fluid and fictitious fluid, i.e., we solve for ∇ ¨u “ 0 in the whole domain Ω, then

it is difficult to discuss a compressible solid, because one has to define a projection P from Ω

to Ωst and map a divergence-free velocity u to us, i.e.:

us “ P puq , ∇ ¨ u “ 0, (2.93)

such that us satisfies a specified Poisson effect/Poisson’s ratio. We know that such a P p¨q has
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to be nonlinear, or ∇ ¨ us “ 0. Such a projection is not straightforward to define however.

For simplicity, we shall assume an incompressible solid (the incompressible neo-Hookean solid

model introduced in Section 2.3) when demonstrating the two-mesh methods in this section. In

order to consider a compressible solid, one should only solve for ∇ ¨ u “ 0 in the fluid domain

Ωft . Section 6.5 will consider this issue in more depth.

2.5.1 Immersed finite element methods

The immersed finite element methods (IFEM) developed from the Immersed Boundary method

first introduced by Peskin [107], and has had great success with applications in bioscience and

biomedical fields [12, 14]. The classical IFEM does not solve solid equations at all. Instead, the

solid equations are arranged on the right-hand side of the fluid equations as an FSI force f , and

these modified fluid equations are solved in the augmented/whole domain (fluid and fictitious

fluid). Based upon this idea, the momentum equation of the fluid becomes

ρf
du

dt
“ ∇ ¨ σ ` ρfg ` f puq , (2.94)

where f is a singular force that is evaluated from the solid. It can be seen from (2.94) that the

idea of the IFEM is very simple, it actually solves a fluid equation but modified to achieve a

FSI behaviour. It is only this singular force f that makes the fictitious fluid behave like a solid.

Obviously, the more similar the solid and fluid are (such as a very soft solid), the more suitable

the method and the easier the simulation can be accomplished. There are some, specifically

designed, IFEM methods that can be applied to a rigid body however they are special case

[89, 158].

The IFEM methods solve the fluid equations (2.94) and (2.7) in the whole domain/mesh

Ω “ Ωft Y Ωst , however the FSI force can only be computed on the solid mesh on Ωst , which

may be denoted by fs. Therefore, one has to define a function that can properly distribute

fs evaluated on the solid mesh to the f which is applied on the background fluid mesh. The

following functions are usually adopted to distribute fs to f , and also interpolate the solution

value of velocity u on the background mesh to the solid mesh us in order to accumulate the

solid displacement ds and further compute fs.

1. Discretized δ function [96, 137, 156, 157]:

δhpxq “
1

hd

d
ź

i

φpxiq, φprq “

#

1
4

”

1` cos
´

π|r|
2h

¯ı

, |r| ď 2h

0, |r| ą 2h
, (2.95)

with h being the mesh size (uniform mesh) and r being the distance between a solid node

and the surrounding fluid node.

2. The shape function used in the Reproducing Kernel Particle Method (RKPM) [136–

138, 156, 157] (a type of mesh-free method [95]).
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3. The finite element isoparametric interpolation functions [137].

Note that fs can be evaluated in Ωst by the following formula [136–138, 156, 157]:

fs “
`

ρf ´ ρs
˘ Bus

Bt
`∇ ¨ σs ´∇ ¨ σf `

`

ρs ´ ρf
˘

g. (2.96)

Using the finite element method, fs could be computed by the following weak formulation for

a given test function δd:

ż

Ωst

fs ¨ δddx “

ż

Ωst

`

ρf ´ ρs
˘ Bus

Bt
¨ δddx´

ż

Ωst

σs : ∇δddx

`

ż

Ωst

σf : ∇δddx`
ż

Ωst

`

ρs ´ ρf
˘

g ¨ δddx.

(2.97)

The boundary integrals are cancelled out due the boundary condition (2.11). Assuming the

solid is incompressible and has the same pressure as the fictitious fluid, and further assuming

that νf ! µs, i.e., the fluid deviatoric stress τ f can be neglected [157], then the above expression

could be simplified as follows:

ż

Ωst

fs ¨ δddx “

ż

Ωst

`

ρf ´ ρs
˘ Bus

Bt
¨ δddx´

ż

Ωst

τ s : ∇δddx`
ż

Ωst

`

ρs ´ ρf
˘

g ¨ δddx. (2.98)

Finally, the solution algorithm for the classic IFEM method is summarized in Algorithm 2

as follows.

Algorithm 2: Immersed Finite Element Method

1 Given the solid configuration xsn and the velocity un on the background mesh at time tn.
2 Compute the FSI force fsn on the solid mesh, using equation (2.98).
3 Distribute fsn to fn on the background mesh.
4 Solve the fluid equations (2.94) and (2.7) on the background mesh to get velocity un`1.
5 Interpolate the velocity un`1 to usn`1 on the solid mesh.
6 Update the solid mesh and go back to step 1.

2.5.2 Modified immersed finite element methods

As can be seen in the previous section, the IFEM method does not solve the solid equation (2.1)

or (2.38) at all, instead the solid equation is used to evaluate the FSI force as shown in formula

(2.98). The Modified Immersed Finite Element Method (mIFEM) solves the solid equation

(2.38) with the following boundary condition on the interface Γt “ ΓtD Y ΓtN , (Dirichlet

boundary ΓtD and Neumann boundary ΓtN ) [138]:

dsn`1 “ dsn `∆tP punq on ΓtD (2.99)
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and

σsn`1n
s “ P pσnqn

s on ΓtN (2.100)

where P p¨q is the projection/interpolation from the background mesh to the solid mesh, which

could be any one of the three interpolation strategies as discussed in the previous section.

We are able to get the solution algorithm for the mIFEM as follows by modifying the

algorithm of the IFEM method in Section 2.5.1.

Algorithm 3: Modified Immersed Finite Element Method

1 Given the solid configuration xsn and the velocity un on the background mesh at time tn;
Compute the stress σn using (2.8), and further compute P punq and P pσnq.

2 Solve the solid equation (2.38) with boundary conditions (2.99) and (2.100) to get solid
displacement dsn`1.

3 Compute the FSI force fsn`1 on the solid mesh, using equation (2.98).
4 Distribute fsn`1 to fn`1 on the background mesh.
5 Solve the fluid equations (2.94) and (2.7) on the background mesh to get velocity un`1.
6 Update the solid mesh using dsn`1 and go back to step 1.

The IFEM method depends heavily on the fluid equations and usually a small time step is

required in order to get a accurate solution. The approximations within the method do not lead

to fundamental errors when the solid behaves similarly to the fluid. However, when the solid

behaviour is more dominant, the velocity from solving the fluid equation may lead to unrealistic

solid deformation. The mIFEM method may present a more reasonable solid deformation by

solving the solid equation explicitly, however the boundary conditions for the solid equation

still arise from the value of the last time step which is the same as for the IFEM method.

2.5.3 Fictitious domain methods with distributed Lagrange multiplier

There are Fictitious Domain Methods with Distributed Lagrange Multiplier (FDM/DLM) for

deformable solids [5, 16–18, 70, 79, 150, 151], and FDM/DLM for rigid solid bodies [58–60, 66,

70, 106, 146]. These methods may be implicitly fully-coupled, such as [17, 18, 70, 79], or split

explicitly, such as [58, 60, 150]. Here we take the fully-coupled implicit scheme for a general

deformable solid as an example to introduce these FDM/DLM methods [18, 70, 79].

As with the previous introduction of the Monolithic Eulerian method using an interface-

fitted mesh in Section 2.4.3, the FDM/DLM we shall present is also fully-coupled. However,

compared with the previous weak formulations (2.82) and (2.75), there are three major differ-

ences:

1. It is unnecessary to solve a mesh equation (2.75), because two meshes are used here: a

static Eulerian mesh for the augmented domain Ω and an updated Lagrangian mesh for

the solid domain Ωst .
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2. Because the solid displacement and the background velocity are now defined on different

meshes (different finite element spaces), the velocity has to be interpolated to the solid

mesh in order to apply the Lagrange multiplier. We could use any one of the interpolation

(or distribution) functions introduced Section 2.5.1 for the IFEM methods. Let P p¨q

denote the interpolation from the background mesh Ω to the solid mesh Ωst , and PT p¨q

denote the distribution from the solid mesh Ωst to the background mesh Ω.

3. Because we solve for solid displacement as well, there is also a consistency equation (2.70),

however this is integrated in the entire domain Ωst rather than on an interface as in the

previous equation (2.74).

Let u “

#

uf in Ωft

us in Ωst
and p “

#

pf in Ωft

ps in Ωst
, then the weak form corresponding to (2.82),

but using the incompressible neo-Hookean model (2.29), can be expressed as

ż

Ωft

ρf
du

dt
¨ δudx`

ż

Ωst

ρs
du

dt
¨ δudx`

1

2

ż

Ωft

νfDu : Dδudx

´

ż

Ω

p∇ ¨ δudx´
ż

Ω

δp∇ ¨ udx`
ż

Ωst

τ s : δudx

“

ż

ΓN

h̄ ¨ δudΓ`

ż

Ωft

ρfg ¨ δudx`

ż

Ωst

ρsg ¨ δudx.

(2.101)

For simplicity, we assume that the solid has the same viscosity as the fluid, and readers may

refer to [18] for a more general case. Then, rewriting the above equation to be only integrated

in domain Ω and Ωst gives

ż

Ω

ρf
du

dt
¨ δudx`

ż

Ωst

ρδ
du

dt
¨ δudx`

1

2

ż

Ω

νfDu : Dδudx

´

ż

Ω

p∇ ¨ δudx´
ż

Ω

δp∇ ¨ udx`
ż

Ωst

τ s : ∇δudx

“

ż

ΓN

h̄ ¨ δudΓ`

ż

Ω

ρfg ¨ δudx`

ż

Ωst

ρδg ¨ δudx,

(2.102)

where ρδ “ ρs ´ ρf . Also consider the consistency equation (2.70), which may be enforced in

variational form by introducing a Lagrange multiplier as follows:

ż

Ωst

ˆ

Bds

Bt
´ P puq

˙

¨ δLpxqdx “ 0. (2.103)

Considering the Lagrange multiplier, we write down the following three equations based on
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equation (2.102) :

ż

Ω

ρf
du

dt
¨ δudx`

1

2

ż

Ω

νfDu : Dδudx´

ż

Ω

p∇ ¨ δudx

´

ż

Ω

PT pLpxqq ¨ δudx “

ż

ΓN

h̄ ¨ δudΓ`

ż

Ω

ρfg ¨ δudx,

(2.104)

´

ż

Ω

δp∇ ¨ udx “ 0, (2.105)

and

ż

Ωst

ρδ
Bus

Bt
¨ δudx` µs

ż

Ωst

J´1
`

FTF´ I
˘

: ∇δudx

`

ż

Ωst

Lpxq ¨ δudx “

ż

Ωst

ρδg ¨ δudx,

(2.106)

due to the expression of τ s of (2.30). Let δd “ δu px pX, tqq, equation (2.106) may be expressed,

by integral transformation, as:

ż

ΩsX

ρδ
B2ds

Bt2
¨ δddX` µs

ż

ΩsX

F : ∇XδddX´ µs
ż

Ωst

J´1∇ ¨ δudx

`

ż

ΩsX

L px pX, tqq ¨ δddX “

ż

ΩsX

ρδg ¨ δddX.

(2.107)

Remark 2.6. In the continuous case the projection/interpolation P can actually be interpreted

as an identity when restricted to domain Ωst , i.e.: @u P Ω, P puq “ u|Ωst
“ us. For the

distribution PT , @L P Ωst (L may be interpreted as a force vector defined in domain Ωst ),

PT pLq
ˇ

ˇ

Ωst
“ L and PT pLq

ˇ

ˇ

Ωft
“ 0. Notice that adding up the three equations (2.104), (2.105)

and (2.107) gives equation (2.102).

Using the same time discretization scheme, (2.76) to (2.78), as discussed in Section 2.4.2,

we then have the following weak form based on equations (2.103) to (2.107).

ż

Ω

ρf
u´ un

∆t
¨ δudx`

ż

Ω

ρf pu ¨∇qu ¨ δudx` 1

2

ż

Ω

νfDu : Dδudx

´

ż

Ω

p∇ ¨ δudx´
ż

Ω

δp∇ ¨ udx`
ż

ΩsX

ρδ
ds ´ 2dsn ` dsn´1

∆t2
¨
δd

∆t
dX

` µs
ż

ΩsX

F : ∇X
δd

∆t
dX`

ż

ΩsX

L px pX, tqq ¨
δd

∆t
dX´

ż

Ωst

PT pLpxqq ¨ δudx

´
µs

∆t

ż

Ωst

J´1∇ ¨ δudx`
ż

ΩsX

ds ´ dsn
∆t

¨ δL px pX, tqq dX´

ż

Ωst

P puq ¨ δLpxqdx

“

ż

ΓN

h̄ ¨ δudΓ`

ż

Ω

ρfg ¨ δudx`

ż

ΩsX

ρδg ¨
δd

∆t
dX.

(2.108)
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Notice that we also divide by ∆t on both sides of equation (2.107) in order to be discretized as

a symmetric linear system. We still need to treat the convection term in a special way so that

the final linear system can be symmetric, for example, we can arrange the convection term on

the right-hand side of the equation or use a suitable splitting scheme to treat the convection

separately. In this case, the above equation (2.108) may lead to a similar large linear system as

(2.81):
»

—

—

—

—

—

—

–

F11 F12 B1 0 0

FT12 F22 B2 0 PIC1

BT
1 BT

2 0 0 0

0 0 0 S C2

0 CT
1 PT

I 0 CT
2 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

¨

˚

˚

˚

˚

˚

˚

˝

uf

us

p

ds

L

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

f1

f2

0

gs

0

˛

‹

‹

‹

‹

‹

‹

‚

. (2.109)

In the above,

˜

uf

us

¸

=u, where uf includes the velocity components in domain Ωft , and us are

the remaining velocity components which may also have some components in domain Ωft because

the interface is not fitted. ds is the solid displacement in domain Ωst . Matrices

«

F11 F12

FT12 F22

ff

and

S are the discretization of fluid velocity integrals and solid displacement integrals respectively

(including mass matrices and stiffness matrices). Matrix

˜

B1

B2

¸

indicates the coupling between

fluid velocity and pressure. Matrix PIC1 indicates the coupling between the fictitious fluid

velocity us and the Lagrange multiplier L. Matrix C2 indicates the coupling between the solid

displacement ds and the Lagrange multiplier L. Notice that matrix PI is a discretization of

the interpolation function P p¨q.

2.6 Methods using one mesh without interface fitting

A single Eulerian mesh without interface fitting is widely adopted to solve multi-phase flow

problems [2, 19, 23, 31, 56, 119]. When using this pure Eulerian approach for the fluid-structure

interaction problem, as shown in Figure 2.4, [90] uses the level set method to capture the fluid-

structure interface, and a Lagrangian multiplier and penalty method to couple the fluid and

solid. [43, 54, 116, 117, 142] use an Initial Points Set to capture the fluid-structure interface.

After getting the position of the interface, [43, 116, 117, 142] use a characteristic function to

smooth stress and velocity across the interface. Alternatively [54, 55] modify the local finite

elements in order to capture jumps sharply, and [124, 134] use an XFEM-like method to enrich

the shape functions locally in order to capture the discontinuity.
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Figure 2.4: Schematic diagram for a mesh without interface fitting, Ω “ Ωft Y Ωst ,
Γ “ ΓD Y ΓN .

2.6.1 A fully Eulerian formulation

In this section, by way of an example, we introduce the method in [43] which uses the following

characteristic function to smooth the variables across the interface:

χf pxq “

#

1, x´ d P Ωf0zΓt

0, x´ d P Ωs0
, χspxq “ 1´ χf pxq, (2.110)

where d is defined in the whole domain Ω “ Ωft YΩst , which is a smooth extension of the solid

displacement ds in Ωst as shown in Figure 2.4. dds

dt “ us, but generally ddf

dt ‰ uf . Let

dd

dt
“
Bd

Bt
` pw ¨∇qd “ w, (2.111)

then the extension is defined by velocity w as follows (harmonic continuation of the solid

velocity) [43]:
ż

Ω

χs pus ´wq ¨ δwdx` αu

ż

Ω

χf∇w : ∇δwdx “ 0, (2.112)

where αu is a small positive constant, and δw is a given test function. It can be seen that

the above three equations are coupled with each other: χ is related to d in (2.110), which

depends on w according to (2.111), which again depends on χ due to (2.112). These may be

combined with the fluid and solid momentum equations, which are the same as (2.101) for the

neo-Hookean solid model or (2.82) for the St Venant-Kirchhoff solid model. By introducing

ρ “ χfρf ` χsρs and σ “ χfσf ` χsσs, we rewrite equation (2.101) and (2.82) as follows.

For the neo-Hookean solid model:

ż

Ω

ρ
du

dt
¨ δudx`

ż

Ω

σ : δudx´

ż

Ω

δp∇ ¨ udx “
ż

ΓN

h̄ ¨ δudΓ`

ż

Ω

ρg ¨ δudx, (2.113)
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and for the St Venant-Kirchhoff solid model:

ż

Ω

ρ
du

dt
¨ δudx`

ż

Ω

σ : δudx´

ż

Ω

χfδp∇ ¨ udx

´ αp

ż

Ω

χs∇p : ∇δudx “
ż

ΓN

h̄ ¨ δudΓ`

ż

Ω

ρg ¨ δudx,

(2.114)

where αp is a small positive constant. One could solve for a displacement d, a velocity u, an

additional velocity w and a pressure p in the whole domain Ω based on equations from (2.110)

to (2.114).

Remark 2.7. αu in (2.112) controls the extension of the solid velocity from the solid domain

Ωst to the fluid domain Ωft . In the compressible case, αp in (2.114) controls the extension of the

fluid pressure in the fluid domain Ωft to the solid domain Ωst . Usually choosing αu “ α0
uh

2 and

αp “ α0
ph, where h is the local mesh size with α0

u “ α0
p „ 0.01 [117].

This fully Eulerian formulation looks elegant, however it transfers the difficulty to a later

stage. First, it has to solve enlarged velocity u and displacement d fields and an additional

velocity field w. Second, it has to solve a strongly nonlinear system even thought both the fluid

and solid model may be linear, which can be observed from equation (2.110) to (2.112). Third,

there is one more convection equation (2.111) which may lead to an unsymmetric linear algebraic

system. Readers may refer to [43] for more discussion and consideration of the discretization

in time and space.

2.7 Summary

In this chapter, we first present the governing partial differential equations for the problem

of fluid-structure interactions (FSI), and a compressible and an incompressible hyperelastic

solid model. Based upon the governing equations and the two solid models, existing numerical

methods for FSI problems are introduced in the framework of the finite element method. We

focus on the finite element weak formulation, the linearization, and the solution algorithm,

instead of giving details of finite element discretization and methods for solving the final linear

algebraic system, since the latter are very standard finite element procedures and could be easily

found in the literature. Important and relevant details are presented in the following chapters.

We categorized the existing numerical methods into different types and found that there were

many potential types although they have not all been observed in the literature by us so far.

This includes the proposed approach which will be introduced in the following chapter.



Chapter 3

A one-field fictitious domain

method for fluid-structure

interactions

In this chapter, we first present the weak formulation for the proposed one-field fictitious domain

method (one-field FDM) in Section 3.1, based on an incompressible neo-Hookean solid model

introduced in Section 2.3. The time and space discretizations are presented in sections 3.2 and

3.3 respectively. Finally, the stability is analyzed by an energy estimate in Section 3.4.

In order to discuss stability of the proposed scheme in a general framework we modify the

neo-Hookean solid model by adding a viscous stress as presented in [18]. Based upon this

and expression (2.29), the constitutive equation of a viscous incompressible neo-Hookean solid

model may be expressed in the form of a Kelvin-Voigt material:

σs “ µsJ´1
`

FFT ´ I
˘

´ psI` νsDus, (3.1)

where νs is the solid viscosity.

3.1 The weak formulation of finite element method

In the following context, let L2pωq be the space of square integrable functions in domain ω,

endowed with norm }u}
2
0,ω “

ş

ω
|u|

2
(u P L2pωq). Let H1pωq “

 

u : u,∇u P L2pωq
(

with the

norm denoted by }u}
2
1,ω “ }u}

2
0,ω ` }∇u}

2
0,ω. We also denote by H1

0 pωq the subspace of H1pωq

whose functions have zero values on the boundary of ω, and denote by L2
0pωq the subspace of

L2pωq whose functions have zero mean value.

33
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Given v P H1
0 pΩq

d, we perform the following symbolic operations:

ż

Ωft

Eq.p2.1q ¨ vdx`

ż

Ωst

Eq.p2.1q ¨ vdx.

Integrating the stress terms by parts, the above operation gives:

ż

Ωft

ρf
du

dt
¨ vdx`

1

2

ż

Ωft

σf : Dvdx`

ż

Γt

nsσf ¨ vdx

`

ż

Ωst

ρs
du

dt
¨ vdx`

1

2

ż

Ωst

σs : Dvdx´

ż

Γt

nsσs ¨ vdx

“

ż

Ωft

ρfg ¨ vdx`

ż

Ωst

ρsg ¨ vdx`

ż

ΓN

h̄ ¨ vdΓ.

(3.2)

Let p “

#

pf in Ωft

ps in Ωst
. Using the fluid constitutive equation (2.8), solid constitutive equa-

tion (3.1) and boundary condition (2.11) we further have:

ż

Ω

ρf
du

dt
¨ vdx`

1

2

ż

Ω

νfDu : Dvdx´

ż

Ω

p∇ ¨ vdx

`

ż

Ωst

ρδ
du

dt
¨ vdx`

1

2

ż

Ωst

νδDu : Dvdx`

ż

Ωst

µsJ´1
`

FFT ´ I
˘

: ∇vdx

“

ż

Ω

ρfg ¨ vdx`

ż

Ωst

ρδg ¨ vdx`

ż

ΓN

h̄ ¨ vdΓ,

(3.3)

where ρδ “ ρs´ρf and νδ “ νs´νf . Note that the integrals on the interface Γt are cancelled

out using boundary condition (2.11). This is not surprising because they are internal forces for

the whole FSI system considered here. Let us do the following two integral transforms:

ż

Ωst

J´1FFT : ∇vdx “

ż

Ωst

J´1F : p∇vFq dx “

ż

ΩsX

F : p∇Xvq dx, (3.4)

and
ż

Ωst

ρδg ¨ vdx “

ż

Ωst

J´1ρδ0g ¨ vdx “

ż

ΩsX

ρδ0g ¨ vdx, (3.5)

where ρδ0 “ ρs0 ´ ρf0 . Because we consider both an incompressible fluid and solid, and we use

a constant density throughout the domain for all time t P r0, T s, there is actually no need to

distinguish ρs0 (or ρf0 ) and ρs (or ρf ). However for a numerical scheme which cannot guarantee

incompressibility (J “ 1) exactly, the integral of (3.5) in the reference domain may be accurate.

The above equations (3.3),(3.4) and (3.5), combined with the following symbolic operations

for q P L2pΩq,

´

ż

Ωft

Eq.p2.2qqdx´

ż

Ωst

Eq.p2.2qqdx,
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leads to the weak form of the FSI system as follows.

Problem 3.1. Given u0 and Ωs0, for t P p0, T s, find uptq P
 

uD `H
1
0 pΩq

d
(

, pptq P L2
0pΩq and

Ωst , such that @v P H1
0 pΩq

d, @q P L2pΩq, the following two equations hold:

ż

Ω

ρf
Bu

Bt
¨ vdx`

ż

Ω

ρf pu ¨∇qu ¨ vdx` 1

2

ż

Ω

νfDu : Dvdx´

ż

Ω

p∇ ¨ vdx

`

ż

ΩsX

ρδ
Bu

Bt
¨ vdX`

1

2

ż

Ωst

νδDu : Dvdx`

ż

ΩsX

µsF : ∇XvdX

“

ż

Ωst

µsJ´1∇ ¨ vdx`
ż

Ω

ρfg ¨ vdx`

ż

ΩsX

ρδg ¨ vdX`

ż

ΓN

h̄ ¨ vdΓ,

(3.6)

and

´

ż

Ω

q∇ ¨ udx “ 0. (3.7)

In the above,
 

uD `H
1
0 pΩq

d
(

is the subspace of H1pΩqd which satisfies the Dirichlet boundary

condition (2.12).

Remark 3.1. Because domain Ω is stationary the Eulerian description will be used. However

Ωst is transient, being updated by its own velocity, so the updated Lagrangian description is

used. Hence there is a convection term from the total derivative of time in Ω, but there is no

convection term in Ωst (or ΩsX).

Remark 3.2. In the literature of the IFEM method, the viscous term ´ 1
2

ş

Ωst
νfDu : Dv is

neglected [18, 157], which is equivalent to νs “ νf or νδ “ 0 in the formulation (3.6). This

makes no big difference if νf ! µs, but may be unreasonable when νf „ µs. Here we consider

the viscous term generally by introducing a viscosity νs in the solid (also see [18]). However we

shall argue that the problem may not be well posed when νδ ă 0,(see Remark 3.4 and numerical

tests in Section 4.5).

3.2 Discretization in time

We may use the backward Euler method to discretize Problem 3.1, and update coordinates of

the solid by xn`1 “ xn `∆tun`1. As a result, F is updated by Fn`1 “ Fn `∆t∇Xun`1, and

so,
ż

ΩsX

Fn`1 : ∇XvdX “

ż

ΩsX

Fn : ∇XvdX`∆t

ż

ΩsX

∇Xun`1 : ∇XvdX. (3.8)

Using equation (3.8), the discretized weak form corresponding to Problem 3.1 may be ex-

pressed as:

Problem 3.2. Given un, pn and Ωsn, find un`1 P
 

uD `H
1
0 pΩq

d
(

, pn`1 P L
2
0pΩq and Ωsn`1,
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such that @v P H1
0 pΩq

d
, @q P L2pΩq, the following four relations hold:

ż

Ω

ρf
un`1 ´ un

∆t
¨ vdx`

ż

Ω

ρf pun`1 ¨∇qun`1 ¨ vdx

`
1

2

ż

Ω

νfDun`1 : Dvdx´

ż

Ω

pn`1∇ ¨ vdx

`

ż

ΩsX

ρδ
un`1 ´ un

∆t
¨ vdX`

1

2

ż

Ωsn`1

νδDun`1 : Dvdx

`∆t

ż

ΩsX

µs∇Xun`1 : ∇XvdX “

ż

Ωsn`1

µsJ´1
n`1∇ ¨ vdx

´

ż

ΩsX

µsFn∇XvdX`

ż

Ω

ρfg ¨ vdx`

ż

ΩsX

ρδg ¨ vdX`

ż

ΓN

h̄ ¨ vdΓ,

(3.9)

´

ż

Ω

q∇ ¨ un`1dx “ 0, (3.10)

Ωsn`1 “ tx : x “ xn `∆tun`1,xn P Ωsnu , (3.11)

and

Fn`1 “ Fn `∆t∇Xun`1. (3.12)

Remark 3.3. In Problem 3.2 the solid deformation tensor F is updated. We can also update

the solid stress σs as described in Appendix A (only for an explicit scheme). As noted by the

author of [110], in which the solid displacement ds is updated: maybe updating an unsymmetric

tensor (four components in 2D and nine components in 3D) F is less accurate than updating a

symmetric tensor σs (three components in 2D and six components in 3D) or the displacement ds

(two components in 2D and three components in 3D). However this needs further investigation,

and we add more discussion about these in Appendix F.

Remark 3.4. We can see that (3.9) contains a bilinear form ∆t
ş

ΩsX
µs∇Xun`1 : ∇XvdX which

is coercive. However the coercivity could be destroyed by adding term 1
2

ş

Ωsn`1
νδDun`1 : Dvdx

if νδ ă 0 and ∆t Ñ 0, in which case Problem 3.2 may not be well-posed. We can argue

similarly for the inertia term related to ρδ. Although it is difficult to prove the well-posedness

of Problem 3.2 (there is an initial attempt in Section 6.1 which relies on stronger assumptions

than we would ideally wish), we shall numerically solve for these cases in Section 4.5.

3.3 Discretization in space

We shall use a fixed Eulerian mesh for Ω and an updated Lagrangian mesh for Ωsn`1 to discretize

Problem 3.2. First, we discretize Ω as Ωh with the corresponding finite element spaces as

V hpΩhq “ span tϕ1, ¨ ¨ ¨ , ϕNuu Ă H1
0 pΩq
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and

LhpΩhq “ span tφ1, ¨ ¨ ¨ , φNpu Ă L2 pΩq .

Notice that the number of prescribed Dirichlet data points is not included in Nu. Suppose

the discretized Dirichlet boundary ΓD has Nu
D nodes, and let

 

ϕNu`1, ¨ ¨ ¨ , ϕNu`NuD
(

be the

corresponding shape functions with these nodes, then the approximated solution uh can be

expressed in terms of these basis functions as

uhpxq “
Nu
ÿ

i“1

upxiqϕipxq `

Nu`NuD
ÿ

i“Nu`1

ūpxiqϕipxq, (3.13)

with the corresponding space denoted by
 

ūh ` V hpΩhqd
(

. The approximated solution ph can

be expressed in terms of the basis functions as

phpxq “
Np
ÿ

i“1

ppxiqφipxq. (3.14)

We further discretize Ωs0 as Ωsh0 with the corresponding finite element spaces as:

V shpΩsh0 q “ span tϕs1, ¨ ¨ ¨ , ϕ
s
Nsu Ă H1 pΩs0q ,

and move the vertices of each element of Ωshn by their own velocities to get Ωshn`1. Notice that af-

ter moving the vertices, the basis functions of space V shpΩshn`1q are different from V shpΩshn q. For

notational simplicity, tϕs1, ¨ ¨ ¨ , ϕ
s
Nsu will be used to denote the basis functions for all V shpΩshn q

(n “ 0, 1, 2, ¨ ¨ ¨ ). We then approximate uhpxq
ˇ

ˇ

xPΩshn`1

as:

ush pxq “
Ns
ÿ

i“1

uhpxsi qϕ
s
i pxq “

Ns
ÿ

i“1

Nu`NuD
ÿ

j“1

upxjqϕjpx
s
i qϕ

s
i pxq, (3.15)

where xsi is the nodal coordinate of the solid mesh. Notice that the above approximation defines

a projection/interpolation Pn`1 from V h
`

Ωh
˘d

to V sh
`

Ωshn`1

˘d
: Pn`1

`

uhpxq
˘

“ ush pxq. We

then discretize Problem 3.2 in space as follows.

Problem 3.3. Given uhn, phn and Ωshn , find uhn`1 P
 

ūh ` V hpΩhqd
(

, phn`1 P L
hpΩhq and Ωshn`1,
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such that @v P V hpΩhqd, @q P LhpΩhq, the following four relations hold:

ż

Ωh
ρf

uhn`1 ´ uhn
∆t

¨ vdx`

ż

Ωh
ρf

`

uhn`1 ¨∇
˘

uhn`1 ¨ vdx

`
1

2

ż

Ωh
νfDuhn`1 : Dvdx´

ż

Ωh
phn`1∇ ¨ vdx

`

ż

ΩshX

ρδ
ushn`1 ´ ushn

∆t
¨ vsdX`

1

2

ż

Ωshn`1

νδDushn`1 : Dvsdx

`∆t

ż

ΩshX

µs∇Xushn`1 : ∇XvsdX “

ż

Ωshn`1

µsJ´1
n`1∇ ¨ vsdx

´

ż

ΩshX

µsFshn : ∇XvsdX`

ż

Ωh
ρfg ¨ vdx`

ż

ΩshX

ρδg ¨ vsdX`

ż

ΓhN

h̄ ¨ vdΓ,

(3.16)

´

ż

Ω

q∇ ¨ uhn`1dx “ 0, (3.17)

Ωshn`1 “
 

x : x “ xn `∆tushn`1,xn P Ωshn
(

, (3.18)

and

Fshn`1 “ Fshn `∆t∇Xushn`1, (3.19)

where ush “ Pn`1

`

uh
˘

and vs “ Pn`1 pvq.

Remark 3.5. According to equation (3.15), Pn`1 is the finite element isoparametric interpo-

lation. Readers may refer to Appendix C for more details of the computation of Pn`1.

3.4 Stability by energy estimate

In this section, we analyze the stability of the proposed scheme based on the following assump-

tion.

Assumption 3.1. We consider an enclosed flow (u ¨ n “ 0 on Γ), and assume that there is no

external boundary force (h̄ “ 0) and body force (g “ 0). We assume that both the fluid and

solid densities are constants, and the solid density is not less than the fluid density (ρδ ě 0).

We also assume a constant viscosity (νδ “ 0) throughout the domain Ω and a constant material

parameter µs for the solid.

3.4.1 Energy conservation in the continuous case

In this subsection we shall prove that the weak forms (3.6) and (3.7), associated with Problem

3.1, preserve energy based upon Assumption 3.1.
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Lemma 3.1. The energy function Ψ pFq (2.31) for the hyperelastic stress satisfies:

µs
ż t

0

ż

ΩsX

F : ∇XudX´ µs
ż t

0

ż

Ωst

J´1∇ ¨ udx “
ż

ΩsX

ΨpFqdX´

ż

ΩsX

Ψ pF0q dX, (3.20)

where F0 is the initial solid deformation.

Proof. According to formula (2.27) (the compressible case), the derivative of the energy function

Ψ pFq (2.31) can be expressed as:

BΨ pFq

BF
“ µs

`

F´ F´T
˘

, (3.21)

which is the incompressible case, i.e. without term λs

2 ln
2pJq in expression (2.25). We then

have:

d

dt

ż

ΩsX

ΨpFqdX “

ż

ΩsX

BΨ

BF
:
dF

dt
dX

“µs
ż

ΩsX

`

F´ F´T
˘

:
d

dt
pI`∇Xdq dX

“µs
ż

ΩsX

F : ∇XudX´ µs
ż

Ωst

J´1∇ ¨ udx,

(3.22)

where d is the displacement of the solid at time t. The following integral transform is used in

the above proof:

ż

ΩsX

F´T : ∇XudX “

ż

ΩsX

tr
`

∇XuF´1
˘

dX

“

ż

ΩsX

tr p∇uq dX “

ż

Ωst

J´1∇ ¨ udx.
(3.23)

We get (3.20) by integrating (3.22) from 0 up to time t.

Lemma 3.2. If pu, pq is the solution pair of Problem 3.1, then

ż

Ω

pu ¨∇qu ¨ udx “ 0. (3.24)

Proof. First,
ż

Ω

pu ¨∇qu ¨ udx “
ż

Ω

∇ pub uq ¨ udx´

ż

Ω

|u|
2 ∇ ¨ udx. (3.25)

The following tensor form of the above equation (3.25) is straightforward to understand, which
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can actually be used as a proof for (3.25):

ż

Ω

uj
Bui
Bxj

uidx “

ż

Ω

B puiujq

Bxj
uidx´

ż

Ω

uiui
Buj
Bxj

dx. (3.26)

Note that i and j are automatically summed if they are repeated in one term. Integrating by

parts, we have:

ż

Ω

∇ pub uq ¨ udx “

ż

Γ

|u|
2
u ¨ ndΓ´

ż

Ω

pu ¨∇qu ¨ udx, (3.27)

which may also be explained by the following tensor form:

ż

Ω

B puiujq

Bxj
uidx “

ż

Γ

puiujqnjuidΓ´

ż

Ω

uiuj
Bui
Bxj

dx. (3.28)

According to a Sobolev imbedding theorem [99, Theorem 6 in Chapter 5] and the inclusion

between Lp spaces (Lq Ă Lp if p ă q), we know H1pΩq Ă L4pΩq (for both 2D and 3D). Therefore

u P L4pΩq, i.e.,
ş

Ω
|u|4dx ă 8. That is to say |u|2 P L2pΩq. Then we have

ş

Ω
|u|

2 ∇ ¨ u “ 0

from (3.7). We also have
ş

Γ
|u|

2
u ¨ n “ 0 due to the Assumption (3.1) of an enclosed flow.

Substituting these two equations into (3.25) and (3.27), we get

ż

Ω

pu ¨∇qu ¨ udx “ ´
ż

Ω

pu ¨∇qu ¨ udx, (3.29)

which gives equation (3.24).

Proposition 3.1 (Energy Conservation). Let pu, pq be the solution pair of Problem 3.1, then

ρf

2

ż

Ω

|u|2dx`
νf

2

ż t

0

ż

Ω

Du : Dudx

`
ρδ

2

ż

ΩsX

|u|2dX`

ż

ΩsX

ΨpFqdX “ 0.

(3.30)

Proof. First let v “ u in (3.6) and use Assumption 3.1, we have:

ρf
ż

Ω

Bu

Bt
¨ udx` ρf

ż

Ω

pu ¨∇qu ¨ udx` νf

2

ż

Ω

Du : Dudx´

ż

Ω

p∇ ¨ udx

` ρδ
ż

ΩsX

Bu

Bt
¨ udX` µs

ż

ΩsX

F : ∇XudX´ µs
ż

Ωst

J´1∇ ¨ udx “ 0,

(3.31)

then let q “ p in (3.7), we have:
ż

Ω

p∇ ¨ udx “ 0. (3.32)

Notice that
d

dt
|u|2 “ 2

Bu

Bt
¨ u. (3.33)
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Finally substituting (3.32) into (3.31) and integrating from time 0 to t gives the energy conser-

vation (3.30) due to Lemma 3.1 and 3.2.

3.4.2 Stability analysis after discretization in time

We next demonstrate a similar energy stability result for Problem 3.2.

Lemma 3.3. The trace function 1
2 tr

`

FFT
˘

satisfies:

1

2
tr
`

Fn`1F
T
n`1

˘

´
1

2
tr
`

FnFTn
˘

“ ∆tFn`1 : ∇Xun`1 ´
∆t2

2
|∇Xun`1|

2
, (3.34)

where |A|
2
“
ř

ij a
2
ij for a square matrix A “ raijs.

Proof.

Fn`1F
T
n`1 ´ FnFTn

“Fn`1F
T
n`1 ´ pFn`1 ´∆t∇Xun`1q pFn`1 ´∆t∇Xun`1q

T

“∆tFn`1∇T
Xun`1 `∆t∇Xun`1F

T
n`1 ´∆t2∇Xun`1∇T

Xun`1.

(3.35)

Notice that

tr
`

Fn`1∇T
Xun`1

˘

“ tr
`

∇Xun`1F
T
n`1

˘

“ ∇Xun`1 : Fn`1, (3.36)

because of tr pAq “ tr
`

AT
˘

and tr
´

ABT
¯

“ A : B for arbitrary square matrices A and B.

Therefore, Lemma 3.3 holds by taking the trace on both sides of equation (3.35).

Lemma 3.4. The log-determinant function ln pdetFq satisfies:

lnpdetFn`1q ´ lnpdetFnq ě ∆t∇ ¨ un`1 ´
∆t2

2

ˇ

ˇF´1
n`1∇Xun`1

ˇ

ˇ

2
. (3.37)

Proof. We will use the fact that function lnpdetYq is concave over the set of positive defi-

nite matrices [22, Chapter 3]. Let B “ FFT , FpBq “ 1
2 ln pdetBq “ ln pdetFq and wpξq “

F pBn ` ξ pBn`1 ´Bnqq. Noticing that B is symmetric and BpdetBq
BB “ pdetBqB´T (see (2.26),

a special case of Jacobi’s formula [97]), then

w1pξq “
dF
dB

: pBn`1 ´Bnq “
1

2
pBn ` ξ pBn`1 ´Bnqq

´1
: pBn`1 ´Bnq . (3.38)
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According to the property of concave functions, we have wp1q ´ wp0q ě w1p1q, this is to say:

lnpdetFn`1q ´ lnpdetFnq “ F pBn`1q ´ F pBnq

ě
1

2
B´1
n`1 : pBn`1 ´Bnq “

1

2
tr
`

I´B´1
n`1Bn

˘

“
1

2
tr
`

I´B´1
n`1 pFn`1 ´∆t∇Xun`1q

`

FTn`1 ´∆t∇T
Xun`1

˘˘

“
∆t

2
tr
`

F´Tn`1∇T
Xun`1 ` F´Tn`1F

´1
n`1∇Xun`1F

T
n`1

˘

´
∆t2

2
tr
`

F´Tn`1F
´1
n`1∇Xun`1∇T

Xun`1

˘

“
∆t

2
tr
`

∇Tun`1

˘

`
∆t

2
tr
`

F´1
n`1∇Xun`1

˘

´
∆t2

2
tr
´

F´1
n`1∇Xun`1

`

F´1
n`1∇Xun`1

˘T
¯

“
∆t

2
tr
`

∇Tun`1

˘

`
∆t

2
tr p∇un`1q ´

∆t2

2

ˇ

ˇF´1
n`1∇Xun`1

ˇ

ˇ

2

“∆t∇ ¨ un`1 ´
∆t2

2

ˇ

ˇF´1
n`1∇Xun`1

ˇ

ˇ

2
.

In the above, we use the trace property of cyclic permutations: tr pA1A2A3q “ tr pA2A3A1q “

tr pA3A1A2q (a special case: tr pA1A2q “ tr pA2A1q).

From the above two lemmas, we have:

Proposition 3.2. The energy function Ψ pFq (2.31) for the hyperelastic stress satisfies:

ż

ΩsX

Ψ pFn`1q dX´

ż

ΩsX

Ψ pFnq dX

ď ∆tµs
ż

ΩsX

Fn`1 : ∇Xun`1dX´∆tµs
ż

Ωsn`1

J´1
n`1∇ ¨ un`1dx`Rn`1,

(3.39)

where

Rn`1 “
µs∆t2

2

ż

ΩsX

´

ˇ

ˇF´1
n`1∇Xun`1

ˇ

ˇ

2
´ |∇Xun`1|

2
¯

dX. (3.40)

Proof. According to the definition of energy function Ψ pFq (2.31):

Ψ pFn`1q dX´Ψ pFnq dX

“
µs

2
tr
`

Fn`1F
T
n`1

˘

´
µs

2
tr
`

FnFTn
˘

´ µs pln pdetFn`1q ´ ln pdetFnqq .
(3.41)

We get Proposition 3.2 due to Lemma 3.3 and Lemma 3.4.

Similarly to Lemma 3.2, we have:
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Lemma 3.5. If pun`1, pn`1q is the solution pair of Problem 3.2, then

ż

Ω

pun`1 ¨∇qun`1 ¨ un`1dx “ 0. (3.42)

Proof. The proof is the same as Lemma 3.2 by changing u to un`1 in the proof of Lemma

3.2.

Proposition 3.3 (Energy Nonincreasing). Let pun`1, pn`1q be the solution pair of Problem

3.2, then

ρf

2

ż

Ω

|un`1|
2
dx`

ρδ

2

ż

ΩsX

|un`1|
2
dX`

ż

ΩsX

Ψ pFn`1q dX

`
∆tνf

2

n`1
ÿ

k“1

ż

Ω

Duk : Dukdx

ď
ρf

2

ż

Ω

|un|
2
dx`

ρδ

2

ż

ΩsX

|un|
2
dX`

ż

ΩsX

Ψ pFnq dX

`
∆tνf

2

n
ÿ

k“1

ż

Ω

Duk : Dukdx`Rn`1,

(3.43)

where Rn`1 is defined in equation (3.40).

Proof. Under the Assumption 3.1 (νδ “ 0), let v “ un`1 in (3.9):

ρf
ż

Ω

un`1 ´ un
∆t

¨ un`1dx` ρ
f

ż

Ω

pun`1 ¨∇qun`1 ¨ un`1dx

`
νf

2

ż

Ω

Dun`1 : Dun`1dx´

ż

Ω

pn`1∇ ¨ un`1dx

` ρδ
ż

ΩsX

un`1 ´ un
∆t

¨ un`1dX`∆tµs
ż

ΩsX

∇Xun`1 : ∇Xun`1dX

“ µs
ż

Ωsn`1

J´1
n`1∇ ¨ un`1dx´ µ

s

ż

ΩsX

Fn∇Xun`1dX.

(3.44)

Let q “ pn`1 in (3.10):
ż

Ω

pn`1∇ ¨ un`1dx “ 0. (3.45)

Substituting (3.42) and (3.45) into equation (3.44) and multiplying by ∆t on both sides of the
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equation, we then, using equation (3.8), have:

ρf
ż

Ω

pun`1 ´ unq ¨ un`1dx`
∆tνf

2

ż

Ω

Dun`1 : Dun`1dx

` ρδ
ż

ΩsX

pun`1 ´ unq ¨ un`1dX

` µs∆t

ż

ΩsX

Fn`1 : ∇Xun`1dX´ µs∆t

ż

Ωsn`1

J´1
n`1∇ ¨ un`1dx “ 0.

(3.46)

Using the Cauchy-Schwarz inequality and the fact ab ď a2`b2

2 , we have:

ż

ω

un ¨ un`1dx ď }un}0,ω }un`1}0,ω ď
}un}

2
0,ω ` }un`1}

2
0,ω

2
, (3.47)

where ω “ Ω or Ωsn`1. Substituting the above relation into (3.46), we get (3.43) due to

Proposition 3.2.

Remark 3.6. Notice that the above estimate (3.47) cannot be applied to the proof without

the assumption that ρδ ě 0 in Assumption 3.1.

Remark 3.7. Relation (3.43) does not exactly show energy nonincreasing, because we do not

know whether Rn`1 is greater or less than 0. However, Rn`1 is O
`

∆t2
˘

if

ż

ΩsX

´

ˇ

ˇF´1
n`1∇Xun`1

ˇ

ˇ

2
´ |∇Xun`1|

2
¯

dX ă 8, (3.48)

which may need more assumption such as Assumption 6.3. We shall demonstrate Rn`1 “

O
`

∆t2
˘

in Section 4.4 by numerical tests. In order to test the energy property, let us use the

following notation for the different contributions to the total energy in (3.43).

(1) Kinetic energy of fluid plus fictitious fluid:

EkpΩq “
ρf

2

ż

Ω

|un|
2
dx. (3.49)

(2) Kinetic energy of solid minus fictitious fluid:

EkpΩ
s
Xq “

ρδ

2

ż

ΩsX

|un|
2
dX. (3.50)

(3) Viscous dissipation:

EdpΩq “
∆tνf

2

n
ÿ

k“1

ż

Ω

Duk : Dukdx. (3.51)
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(4) Potential energy of the solid:

EppΩ
s
Xq “

ż

ΩsX

Ψ pFnq dX. (3.52)

Denote the total energy as:

Etotalptnq “ EkpΩq ` EkpΩ
s
Xq ` EdpΩq ` EppΩ

s
Xq, (3.53)

and the energy ratio as:

Eratio “
Etotalptnq

Etotalpt0q
. (3.54)

We shall numerically demonstrate that Eratio is nonincreasing in Section 4.4.

3.4.3 Stability analysis after discretization in space

As with the previous stability estimate (Proposition 3.3) after time discretization, we have the

following estimate after space discretization.

Proposition 3.4. Let
`

uhn`1, p
h
n`1

˘

be the solution pair of Problem 3.3, then

ρf

2

ż

Ωh

ˇ

ˇuhn`1

ˇ

ˇ

2
dx`

ρδ

2

ż

ΩshX

ˇ

ˇushn`1

ˇ

ˇ

2
dX`

ż

ΩshX

Ψ
`

Fshn`1

˘

dX

`
∆tνf

2

n`1
ÿ

k“1

ż

Ωh
Duhk : Duhkdx

ď
ρf

2

ż

Ωh

ˇ

ˇuhn
ˇ

ˇ

2
dx`

ρδ

2

ż

ΩshX

ˇ

ˇuhn
ˇ

ˇ

2
dX`

ż

ΩshX

Ψ
`

Fshn
˘

dX

`
∆tνf

2

n
ÿ

k“1

ż

Ωh
Duhk : Duhkdx`R

h
n`1,

(3.55)

where

Rhn`1 “
µs∆t2

2

ż

ΩshX

ˆ

ˇ

ˇ

ˇ

`

Fshn`1

˘´1 ∇Xushn`1

ˇ

ˇ

ˇ

2

´
ˇ

ˇ∇Xushn`1

ˇ

ˇ

2
˙

dX. (3.56)

Proof. Let v “ uhn`1 in (3.16) and multiply by ∆t on both sides of the equation, and then let

q “ phn`1 in (3.17) and substitute into equation (3.16), we get:

ρf
ż

Ωh

`

uhn`1 ´ uhn
˘

¨ uhn`1dx`
∆tνf

2

ż

Ωh
Duhn`1 : Duhn`1dx

` ρδ
ż

ΩshX

`

ushn`1 ´ ushn
˘

¨ ushn`1dX

` µs∆t

ż

ΩshX

Fshn`1 : ∇Xushn`1dX´ µs∆t

ż

Ωshn`1

∇ ¨ ushn`1dx “ 0.

(3.57)
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Using the Cauchy-Schwarz inequality and the fact ab ď a2`b2

2 , we have:

ż

ω

un ¨ un`1dx ď }un}0,ω }un`1}0,ω ď
}un}

2
0,ω ` }un`1}

2
0,ω

2
,

where ω “ Ωh or Ωshn`1. Notice that Lemmas 3.3 to 3.5 still hold after space discretization, then

substituting the above relation into (3.57) gives (3.55).

3.5 Summary

Details of the one-field fictitious domain method, from the continuous formulation to discretiza-

tion in time and space, are presented in this chapter. The energy stability is proved based upon

Assumption 3.1. Let us discuss these specific assumptions in Assumption 3.1 again as follows.

1. If the flow is not enclosed, i.e. (u ¨ n ‰ 0), then it can be seen from the proof of Lemma

3.2 that equation (3.24) becomes:

ż

Ω

pu ¨∇qu ¨ udx “ 1

2

ż

Γ

|u|
2
u ¨ ndΓ. (3.58)

The above term will appear in the energy estimate relation (3.30) or (3.43).

2. The assumptions of h̄ “ 0 and g “ 0 are not essential, but are a convenience for the proof

(see a general estimate (3.59) below).

3. The assumption νδ “ 0 is because of the argument about coercivity in Remark 3.4.

4. The assumption ρδ ě 0 is necessary due to the use of the Cauchy-Schwarz inequality in

the proof of Proposition 3.3 (see Remark 3.6).

In short, the first two assumptions are not necessary, while the last two are important. For

a general case (u ¨ n ‰ 0, h̄ ‰ 0 and g ‰ 0), the energy estimate (3.43) becomes (the energy

estimates (3.30) and (3.55) follow similar principles although it is not necessary to state them

here again):

ρf

2

ż

Ω

|un`1|
2
dx`

ρδ

2

ż

ΩsX

|un`1|
2
dX`

ż

ΩsX

Ψ pFn`1q dX

`
∆tνf

2

n`1
ÿ

k“1

ż

Ω

Duk : Dukdx`∆t
n`1
ÿ

k“1

Eexternalk

ď
ρf

2

ż

Ω

|un|
2
dx`

ρδ

2

ż

ΩsX

|un|
2
dX`

ż

ΩsX

Ψ pFnq dX

`
∆tνf

2

n
ÿ

k“1

ż

Ω

Duk : Dukdx`∆t
n
ÿ

k“1

Eexternalk `Rn`1,

(3.59)
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where

Eexternalk “
1

2

ż

Γ

|uk|
2
uk ¨ ndΓ´

ż

Ω

ρfg ¨ ukdx´

ż

ΩsX

ρδg ¨ ukdx´

ż

ΓN

h̄ ¨ ukdΓ (3.60)

is the input/output energy.

Problem 3.3 requires iterations in order to construct the current domain Ωshn`1 and build

the interpolation function Pn`1. If the iterations can be proved to converge, then the solution

existence for Problem 3.3 is proved (an alternative approach is to prove Problem 3.3 is well posed

by comparing it with the standard Stokes equation. Refer to Section 6.1 for more discussion).

At the moment we have only proved the energy convergence as demonstrated above, the solution

existence may be proved based on this energy convergence in the future.
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Chapter 4

An implicit implementation

Some implementation details of the proposed scheme are presented in this chapter. The treat-

ment of convection is presented in Section 4.1, and a simple preconditioned iterative solver is

described in Section 4.2. The overall algorithm is summarized in Section 4.3 and numerical

tests are presented in Section 4.4 and 4.5.

All the simulation codes used in this thesis were constructed with the aid of the software

package pFEPG (parallel Finite Element Programme Generator) [94]. Please refer to website

“http://www.yuanjisuan.cn” for more information.

4.1 Treatment of convection

There are four non-linear elements in equation (3.16): the convection, the changing domain

Ωshn`1, the interpolation Pn`1 and the term J´1
n`1. All these non-linear elements are considered

in one fixed point iteration. For low Reynolds number flow, as considered in this chapter,

we arrange the convection term on the right-hand side of the equation and use the fixed point

iteration to solve the non-linear system at each time step. For other methods to treat convection,

readers may refer to [108, 163]. Notice that no artificial diffusion terms are added in this case,

and we can measure the system energy exactly using the energy functions defined in Remark

3.7.

4.2 Iterative linear algebra solver

Using the linearization described in Section 4.1, Problem 3.3 leads to the following linear equa-

tion system (for details of assembling this global matrix and the right-hand side vector, please

refer to Appendix B):
«

A B

BT 0

ff˜

u

p

¸

“

˜

b

0

¸

, (4.1)

49
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where

A “ M{∆t`K`DT pMs{∆t`KsqD, (4.2)

and

b “ f `DT fs `Mun{∆t`DTMsDun{∆t. (4.3)

In the above, matrix D is the isoparametric interpolation matrix derived from equation

(3.15) which can be expressed as

D “ diag

¨

˝PT , ¨ ¨ ¨ ,PT
loooooomoooooon

d

˛

‚, Pij “ ϕipx
s
jq. (4.4)

Please refer to Appendix C for details of computing D. All the other matrices and vectors

arise from standard FEM discretization of equation (3.16): M and Ms are mass matrices from

discretization of the terms

ż

Ωh
ρfuhn`1 ¨ vdx and

ż

ΩshX

ρδushn`1 ¨ v
sdX

respectively, and similarly the stiffness matrices K and Ks are from the terms

1

2

ż

Ωh
νfDuhn`1 : Dvdx and

1

2

ż

Ω̃shn`1

νδDuhn`1 : Dvdx`∆t

ż

ΩshX

µs∇Xushn`1 : ∇XvsdX

respectively. B is from discretization of

´

ż

Ω

q∇ ¨ uhn`1dx.

The force vectors f and fs come from discretization of right-hand sides

ż

Ωh
ρfg ¨ vdx`

ż

ΓhN

h̄ ¨ vdΓ´

ż

Ωh
ρf

`

ũhn`1 ¨∇
˘

ũhn`1 ¨ vdx

and
ż

ΩshX

ρδg ¨ vsdX`

ż

Ω̃shn`1

µsJ̃´1
n`1∇ ¨ vsdx´

ż

ΩshX

µsFshn : ∇XvsdX

respectively. In the above, ũhn`1, J̃´1
n`1 and Ω̃shn`1 are approximations to uhn`1, J´1

n`1 and Ωshn`1

from the previous fixed point iteration. To solve system (4.1) we use the preconditioned MinRes

algorithm [46]. The block matrix

«

M{∆t`K 0

0T Mp{∆t

ff

is adopted as a preconditioner (MP

is the pressure mass matrix), approximated by an incomplete Cholesky decomposition with no

fill-in. A stable convergence performance can be observed, although this is not the topic of this

thesis.
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Remark 4.1. When implementing the one-field FDM algorithm, it is unnecessary to perform

the matrix multiplication DTKsD in (4.2) globally, because the FEM interpolation is locally

based. All the matrix operations can be computed based on the local element matrices only

(refer to Appendix D for details). Alternatively, if an iterative solver is used, it is actually

unnecessary to compute DTKsD. What an iterative step needs is to compute
`

DTKsD
˘

u for

a given vector u, therefore one can compute Du first, then Ks pDuq, and last DT pKsDuq.

4.3 Solution algorithm

The solution algorithm for each implicit time step is summarized in Algorithm 4.

Algorithm 4: The implicit algorithm for the one-field FDM

1 Given the solid configuration Ωsn and velocity field un “

"

ufn in Ωf

usn in Ωsn
at time step n.

Let u0
n`1 “ un, us,0n`1 “ usn, Ωs,0n`1 “ Ωsn and tol be a tolerance.

2 Let k “ 0:

(i) Compute the interpolation matrix D and solve equation (4.1) get velocity field uk`1
n`1

and p.

(ii) Compute solid velocity us,k`1
n`1 “ Duk`1

n`1 and update the solid mesh by

Ωs,k`1
n`1 “

!

xn`1 : xn`1 “ xn ` us,k`1
n`1 ∆t

)

, for all xn P Ωsn.

(iii) Compute the variation of the velocity norm: error “
}uk`1
n`1´ukn`1}

}u0
n`1}

. If error ă tol, let

n “ n` 1 go to “step 1” for the next time step; else: let k “ k ` 1 go to “step (i)” for
next iteration.

4.4 Numerical tests for energy conservation

In this section, we focus on validation of the energy stability of the proposed numerical method

on the condition of Assumption 3.1. We shall use linear triangles (2D) or linear tetrahedra

(3D) to discretize the solid domain Ωs0. In domain Ω, the P2{pP1 ` P0q elements will be used,

i.e., the standard Taylor-Hood element P2{P1 is enriched by a constant P0 for approximation

of the pressure. This element has the property of local mass conservation and the constant

P0 may better capture the element-based jump of pressure [3, 16]. We shall demonstrate the

improvement of mass conservation and energy conservation by using the P2{pP1`P0q elements

compared to the more usual P2{P1 elements. We shall also validate that the total energy is

nonincreasing as stated in Proposition 3.3 (or Proposition 3.4) and Remark 3.7.

Remark 4.2. All variables are interpreted as dimensional in the numerical tests throughout

this thesis. If the unit of a variable is not given in a test, this means it could be any unit as



52 CHAPTER 4. AN IMPLICIT IMPLEMENTATION

long as all the variables use consistent units. For example, the following two groups of units

are considered consistent:

length time velocity acceleration mass force pressure/stress/µs density viscosity
m s m{s m{s2 kg N N{m2 kg{m3 N ¨ s{m2

cm s cm{s cm{s2 g dyne dyne{cm2 g{cm3 dyne ¨ s{cm2

Table 4.1: Two groups of consistent units (1dyne “ 10´5N , 1N “ 1kg ¨m{s2).

4.4.1 Test1-2D (activated disc): Oscillating disc driven by an initial

kinetic energy

In this test, we consider an enclosed flow (n ¨ u “ 0) in Ω “ r0, 1s ˆ r0, 1s with a periodic

boundary condition. A solid disc is initially located in the middle of the square Ω and has a

radius of 0.2. The initial velocity of the fluid and solid are prescribed by the following stream

function

Ψ “ Ψ0sinpaxqsinpbyq,

where Ψ0 “ 5.0 ˆ 10´2 and a “ b “ 2π. In this test, ρf “ 1, νf “ 0.01, ρs “ 1.5 and µs “ 1.

Taking the maximum initial velocity 2πΨ0 “ Û and the height of domain Ω, Ĥ “ 1, as the

characteristic velocity and length respectively, the Reynolds number is: Re “ ρf ÛĤ
νf

“ 10π.

In order to visualize the flow a snapshot (t “ 0.25) of the velocity and deformation fields is

presented in Figure 4.1, and the evolution of energy is presented in Figure 4.2 using a 50ˆ 50

mesh (biquadratic squares for the fluid velocity and 3052 linear triangles for the solid velocity).

(a) Velocity norm on the fluid mesh. (b) Distribution of velocity on the solid mesh
(corresponding to the shadowed part at the centre of

Figure 4.1 (a)).

Figure 4.1: Snapshot at t “ 0.25 for Test1-2D (activated disc) in Section 4.4.1 using a time step of ∆t “ 5.0ˆ 10´3.

We commence by comparing P2{P1 elements and P2{pP1 ` P0q elements. The evolution of

mass variation and energy ratio are demonstrated in Figure 4.3, from which it can be seen that
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Figure 4.2: Evolution of energy for Test1-2D (activated disc) in Section 4.4.1, ∆t “ 5.0ˆ 10´3. The peaks of the
red curve (curve of Ep pΩ

s
Xq ) indicate the time when the disc is maximally stretched. The first peak is horizontally

stretched and the second peak is vertically stretched. The troughs of the red curve touch line Ep pΩ
s
Xq “ 0, which are

the stress-free stages.

the enrichment of the pressure field by a constant P0 has an effect of stabilizing the mass and

energy evolution. In addition, this enrichment of the pressure field dramatically improves the

mass conservation, although the effect for energy conservation is not obvious. Furthermore,

using element P2{pP1`P0q, time convergence of the total energy can be observed in Figure 4.4

(a). From this a nonincreasing energy and a first order time convergence can also be observed.

It can be seen from Figure 4.4 (b) that the residual term defined in (3.40) is very small and

converges rapidly to zero when reducing ∆t („ Op∆t2q).

(a) Variation of mass against time. (b) Energy ratio (see (3.54)) against time.

Figure 4.3: Variation of mass and energy for Test1-2D (activated disc) in Section 4.4.1 using a time step of

∆t “ 5.0ˆ 10´3.
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(a) Energy ratio against time (defined in (3.54)). (b) Rn{Etotal pt0q against time (defined in (3.40)).

Figure 4.4: Evolution of the energy ratio and residual Rn for Test1-2D (activated disc) in Section 4.4.1.

4.4.2 Test2-2D (stretched disc): Oscillating disc driven by an initial

potential energy

In the previous example, the disc oscillates because a kinetic energy is prescribed for the FSI

system at the beginning. In this test, we shall stretch the disc and create a potential energy

in the solid, then release it causing the disc to oscillate due to this potential energy. The

computational domain is again the square Ω “ r0, 1s ˆ r0, 1s. One quarter of a solid disc of

radius 0.5 is located in the left-bottom corner of the square, and initially stretched as an ellipse

as shown in Figure 4.5. Notice the equation of an ellipse x2

a2 `
y2

b2 “ 1 and its area πab, hence

we ensure that this stretch does not change mass of the solid.

Figure 4.5: Computational domain and boundary conditions for Test2-2D (stretched disc) in Section 4.4.2.

We choose ρf “ 1, νf “ 0.01, ρs “ 2 and µs “ 2. Taking a maximum velocity Û “ 0.16

(approximately, observed from the numerical result) and the height of domain Ω, Ĥ “ 1, as the



4.4. NUMERICAL TESTS FOR ENERGY CONSERVATION 55

characteristic velocity and length respectively, the Reynolds number is: Re “ ρf ÛĤ
νf

“ 16. The

fluid adopts a mesh of 66ˆ66 biquadratic squares, and the solid has similar node density (8206

linear triangles) as the fluid. A snapshot of pressure on the fluid mesh and corresponding solid

deformation with its velocity norm are displayed in Figure 4.6, and the evolution of energy

is presented in Figure 4.7. It can be seen from from Figure 4.8 (a) that the total energy is

nonincreasing, and from Figure 4.8 (b) that the residual term defined in (3.40) is very small

and converges rapidly to zero when reducing ∆t.

(a) Distribution of pressures on the fluid mesh. (b) Velocity norm on the solid (corresponding to the
left-bottom shadowed part in figure (a)).

Figure 4.6: A snapshot at t “ 1 for Test2-2D (stretched disc) in Section 4.4.2 using a time step of ∆t “ 5.0ˆ 10´3.

Figure 4.7: Evolution of energy for Test2-2D (stretched disc) in Section 4.4.2, ∆t “ 5.0ˆ 10´3. The peaks of the
red curve (curve of Ep pΩ

s
Xq ) indicate the time when the disc is maximally stretched. The first and third peaks are

corresponding to the time when the disc is horizontally stretched and the second and fourth peaks are corresponding
to the time when the disc is vertically stretched. The troughs of the red curve touch line Ep pΩ

s
Xq “ 0 (numerical error

could be observed from the first rough which does not touches line Ep pΩ
s
Xq “ 0), which are the stress-free stages.
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(a) Energy ratio against time (defined in (3.54)). (b) Rn{Etotal pt0q against time (defined in (3.40)).

Figure 4.8: Evolution of the energy ratio and residual Rn for Test2-2D (stretched disc) in Section 4.4.2.

4.4.3 Test3-3D (activated ball): Oscillating ball driven by an initial

kinetic energy

In this section, we consider a 3D oscillating ball, which is an extension of the example in

Section 4.4.1 (same Reynolds number). The ball is initially located at the center of Ω “

r0, 1s ˆ r0, 1s ˆ r0, 0.6s with a radius of 0.2. Using the property of symmetry this computation

is carried out on 1{8 of domain Ω: r0, 0.5s ˆ r0, 0.5s ˆ r0, 0.3s. The initial velocities of x and y

components are the same as that used in Section 4.4.1 and the z component is set to be 0 at

the beginning. We adopt the same parameter and mesh size defined in Section 4.4.1 (with the

same mesh size in the z direction). A snapshot of the 1{8 solid ball and the corresponding fluid

velocity norm are presented in Figure 4.9, and the nonincreasing energy property is presented

in Figure 4.10.

4.5 Limitation of the proposed method

In Section 6.1 we assume that ρδ ě 0, νδ “ 0 and have proved the well-posedness based on

some additional assumptions (Assumption 6.1 to 6.3). Furthermore, the nonincreasing energy

property is tested in the previous Section 4.4 under the condition of ρδ ě 0, νδ “ 0. In this

section, we aim to analyze and test the cases of ρδ ă 0 or νδ ă 0, and we shall draw a conclusion

that the proposed method may not be stable or well-posed in these cases. It can be seen from

the analysis in Section 6.1 that a crucial condition for the well-posedness is the coercivity of

the bilinear form (6.22):

ah
`

uh,vh
˘

“ af
`

uh,vh
˘

` as
`

ush,vsh
˘

,
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(a) Fluid mesh. (b) Solid mesh.

Figure 4.9: Velocity norm at t “ 0.2 for Test3-3D (activated ball) in Section 4.4.3.

Figure 4.10: Evolution of the energy ratio (defined in (3.54)) for Test3-3D (activated ball) in Section 4.4.3.

where

af puh,vhq “ α

ż

Ωh
uh ¨ vhdx`

νf

2

ż

Ωh
Duh : Dvhdx, (4.5)

and

aspush,vshq “ β

ż

ΩshX

ush ¨ vshdx

`
νδ

2

ż

Ωshn`1

Dush : Dvshdx` γ

ż

ΩshX

∇Xush : ∇XvshdX,

(4.6)
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where α “ ρf {∆t, β “ ρδ{∆t and γ “ µs∆t. Under the conditions β “ ρδ{∆t ě 0 and νδ “ 0,

the coercivity of ah
`

uh,vh
˘

can be directly proved by the coercivity of af
`

uh,vh
˘

. However,

the coercivity may be destroyed in the case of ρδ ă 0 or/and νδ ă 0 as discussed in Remark

3.4, and it is difficult to analyze the well-posedness in these cases. We shall numerically test to

consider the case of ρδ ă 0 or/and νδ ă 0 in this section. Before showing the simulations, let

us first write down the main results of the observations as follows:

Observation 4.1. In the case of ρδ ě 0 and νδ ă 0: when µs is small (soft solid), instability

is observed quickly when reducing the time step; for a large µs (hard solid) a smaller time is

possible before instability is seen. We could define the following indication parameter:

µc “ µs∆t` νδ. (4.7)

Then the above observation may be stated as: µc should be positive and sufficient large, or

instability will occur.

Observation 4.2. In the case of ρδ ă 0 and νδ “ 0, we have not observed instability even for

a very high fluid-solid density ratio ρf

ρs .

Observation 4.3. The cases of νδ ą 0 have also been tested, and instability has not been

observed.

The P2{pP1`P0q element (discussed and tested in Section 4.4) will be used in the following

numerical tests.

4.5.1 Test4-2D (rotating disc): A rotating disc

This test is taken from [67]. The computational domain is the area between two concentric

circles (R0 and R1) as shown in Figure 4.11. A constant angular velocity (ω “ U{R1 “ 0.6) is

prescribed at the outer boundary. This velocity first induces the fluid initially at rest to rotate,

and then gradually drags the solid to rotate as well. Oscillation of the solid can be observed

at the beginning, which is subsequently damped by numerical dissipation and viscosity as time

evolves. Using the property of symmetry, this problem can be reduced to a one dimensional

equation when considered in a polar coordinate system (r, θ) [67]:

ρf
Buθ
Bt

“
1

r
νf
B

Br

ˆ

r
Buθ
Br

˙

, R ď r ă R1 (4.8)

and

ρs
Buθ
Bt

“
1

r
µs
B

Br

ˆ

r
Bdθ
Br

˙

,
Bdθ
Bt

“ uθ, R0 ă r ď R, (4.9)

where ur and uθ are the velocity components in the radial and tangential directions respectively.

We shall use this example to test the stability and mesh convergence of the proposed method,

and compare our results (which use two meshes) with a fitted-one-mesh method used in [67].
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Figure 4.11: Sketch of Test4-2D (rotating disc) in Section 4.5.1.

Figure 4.12: Revolution of the velocity norm for Test4-2D (rotating disc) in Section 4.5.1 (results of the 1D

equation, using 200 linear elements and ∆t “ 1.0ˆ 10´3).

A distinctive feature of this test is that the geometry does not change, and we can always

integrate on the original mesh by just updating the solid displacement independently. We

implement the fitted-mesh method in [67] using an ALE mesh (see Section 2.4.3) and compare

it with our unfitted-mesh method. We first choose the same parameters as used in [67]: ρf “

1, ρs “ 2, νf “ 2, νs “ 0 and µs “ 4 (note the very large viscosity νf and the same magnitude

of solid parameter µs, which will cause problem for the proposed method when νs “ 0. Refer

to formula (4.7)). Using the value of velocity U and length R1 as references, the Reynolds

number is: Re “ ρfUR1

νf
“ 7.5. Solving the reduced one dimensional equation (4.8) and (4.9),

one can get the results of an evolving velocity in Figure 4.12. A coarse structured biquadratic

fluid mesh (720 nodes and 160 elements) and a coarse unstructured linear solid mesh (654 nodes

and 1090 elements) are displayed in Figure 4.14. Other, medium and fine meshes, are obtained

based upon one or two refinements of these coarse meshes. Using a time step 5.0ˆ 10´3, then
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Figure 4.13: Comparison between the one-field FDM, the fitted mesh method in [67] and the semi-analytic
solution at t “ 0.85. Test4-2D (rotating disc) in Section 4.5.1.

(a) Structured biquadratic fluid mesh. (b) Unstructured bilinear solid mesh.

Figure 4.14: Coarse meshes for Test4-2D (rotating disc) in Section 4.5.1.

µc “ µs∆t` νδ “ ´1.8 for the above parameters. Instability is observed for this case, however

we find that the finer the solid mesh is, the later the simulation fails. We can manage to get

a partially stable result using a fine solid mesh combined with a coarse (stable until t “ 1.1)

and a medium (stable until t “ 0.9) fluid mesh respectively. The result is compared with the

fitted mesh method and the solution of 1D equation at t “ 0.85 (Figure 4.13), which is the first

maximum rotation of the solid. The distribution of the pressure and velocity norm on the fluid

mesh are presented in Figure 4.15, and the velocity norm is also presented on the solid mesh

in Figure 4.16. We can seen from Figure 4.16 that a very fine solid mesh is used. However

we point out here that this is not a typical choice, and a similar size of fluid and solid mesh

is sufficient for both accuracy and stability, which will be explained in the following context.

Since the proposed method is based upon updating the solid deformation tensor F (F-scheme,

see Appendix F), the distribution of F is also demonstrated in Figure 4.18.
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(a) Pressure, p “ 0 at a reference point
(bottom of the inner circle).

(b) Velocity norm.

Figure 4.15: Pressure and velocity on the fluid mesh at t “ 0.85 for Test4-2D (rotating disc) in Section 4.5.1.

Figure 4.16: Velocity norm on the solid mesh at t “ 1 using Parameter 1 in Table 4.2, the rotation angle of the
disc is θ “ 16.17˝. Test4-2D (rotating disc) in Section 4.5.1.

Figure 4.17: Displacement on the solid mesh at t “ 2 for Parameter 8 in Table 4.2, the rotation angle of the disc is
θ “ 25.97˝. Test4-2D (rotating disc) in Section 4.5.1.
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(a) Fxx (b) Fyy

(c) Fxy (d) Fyx

Figure 4.18: Deformatoin tensor F at t “ 0.85 for Test4-2D (rotating disc) in Section 4.5.1.

(a) Medium mesh (it is difficult to distinguish the curves of the fitted
and unfitted meshes (before instability happens) because they are

almost the same and overlap with each other).

(b) Fine mesh.

Figure 4.19: Evolustion of velocity for Parameters 2 in Table 4.2. 200 linear elements are used for the one

dimensional equation with ∆t “ 1.0ˆ 10´4. Test4-2D (rotating disc) in Section 4.5.1.
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Parameter sets ρf ρs νf νs µs ∆t µc Stability
Parameter 1 1 2 2 0 4 5.0ˆ 10´3 ´1.98

Ś

Parameter 2 1 2 2 0 103
5.0ˆ 10´3

1.0ˆ 10´3

2.0ˆ 10´4

3
´1
´1.8

‘

‘

Ś

Parameter 3 1 2 2 1 103

2.0ˆ 10´4

4.0ˆ 10´5

8.0ˆ 10´6

1.0ˆ 10´6

´0.8
´0.96
´0.992
´0.999

‘

‘

‘

Ś

Parameter 4 1 2 2 2 4 5.0ˆ 10´3 –
‘

Parameter 5 1 0.5 2 2 4 5.0ˆ 10´3 –
‘

Parameter 6 1 0.1 2 2 4 5.0ˆ 10´3 –
‘

Parameter 7 1 0.01 2 2 4 5.0ˆ 10´3 –
‘

Parameter 8 1 0.001 2 2 4 5.0ˆ 10´3 –
‘

Table 4.2: Parameter sets for Test4-2D (rotating disc) in Section 4.5.1 with µc “ µs∆t` νδ.
“
Ś

” means instability is observed (“
‘

” means not) during t “ 0 to 1, and “–” means µc is
not an indication for stability in the case νδ ě 0.

Figure 4.20: Velocity norm at t “ 0.85 for Parameter 4 in Table 4.2. Test4-2D (rotating disc) in Section 4.5.1.

For this problem, we also tested other parameters as summarized in Table 4.2 with corre-

sponding stability results, from which it can be seen that when νδ ă 0 instability always occurs

eventually if we keep reducing the time step. For parameter set 2 and 3 (hard solid), the solid

velocity oscillates frequently and approaches a small constant as shown in Figure 4.19. We

cannot see a big difference between results of the fitted one mesh and the unfitted two meshes,

however we do not know the reason that there is gap between the solution in 1D and 2D. For

the case of νδ “ 0 and ρδ ă 0, we have not observed any instability up to t “ 2, even for a very

small solid density. As an example, a quarter of the solid mesh is displayed in Figure 4.17 for

the case of ρs “ 0.001. Although it is difficult to justify accuracy of the result after such a long

run (the solid mesh is extremely stretched), we can see the robustness of the algorithm in this
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(a) Velocity norm. (b) Pressure.

Figure 4.21: Velocity norm and pressure at t “ 0.85 for Parameter 4 in Table 4.2 using a coarse mesh. Test4-2D
(rotating disc) in Section 4.5.1.

(a) Medium mesh. (b) Fine mesh.

Figure 4.22: Pressure at t “ 0.85 for Parameter 4 in Table 4.2. Test4-2D (rotating disc) in Section 4.5.1.

case. Figure 4.20 plots the velocity norm for the fitted and unfitted mesh methods, from which

we cannot see a big difference. This good agreement maybe because the boundary between the

unfitted two meshes still matches in the normal direction. To investigate this further, we use

an unstructured fluid mesh, as shown in Figure 4.21, which is a coarse and poor quality mesh

(for this problem). This poor choice is deliberate in order to test robustness of the proposed

scheme. Based on this coarse mesh (3542 nodes), a medium mesh (18114 nodes) and fine mesh

(41764 nodes) are use to repeat the test. Convergence of velocity across the disc at θ “ π{2

is plotted in Figure 4.23, and from Figure 4.22 we may observe that the oscillation of pressure
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Figure 4.23: Mesh convergence for an unstructured fluid mesh. Test4-2D (rotating disc) in Section 4.5.1.

only happens near the interface between the fluid and solid when refining the mesh.

4.5.2 Test5-2D (elastic wall): Cavity flow with an elastic solid wall

This example is taken from [160]. The computational domain is a LˆL square with a rectangular

solid at the bottom of this square as shown in Figure 4.24, where L “ 2 and H “ 0.5 for this

test problem. The velocities are fixed to be zero on all boundaries except the top lid, which is

prescribed as follows:

ux “

$

’

&

’

%

sin2 pπx{0.6q x P r0, 0.3s

1 x P p0.3, 1.7q

sin2 pπ px´ 2q {0.6q x P r1.7, 2s

. (4.10)

Taking the maximum velocity Û “ 1 at the top of the cavity and the cavity height Ĥ “ 1

as the characteristic velocity and length respectively, the Reynolds number is: Re “ ρf ÛĤ
νf

“ 5.

We first use the same parameters as used in [160], i.e. ρf “ ρs “ 1, νf “ νs “ 0.2 and

µs “ 0.2, and compare the proposed one-field FDM which use two meshes and the Monolithic

Eulerian method using one fitted ALE mesh [67]. A plot of pressure on the fluid mesh and

velocity on the deformed solid mesh are presented in Figure 4.25, which uses a coarse mesh

(400 ˆ 400 elements). The velocity and mesh displacement using an ALE mesh are displayed

in Figure 4.26. Using the same time step ∆t “ 5.0 ˆ 10´3, a comparison between these two

different methods via the interface position and the solid area is demonstrated in Figure 4.27,

from which it can be seen that the two-mesh method and the fitted-ALE-mesh method give

almost the same accuracy.

We then extend to the case of νδ ă 0 to test the stability as shown in Table 4.3, which

indicates that small time steps ∆t will again cause instability. It may also be observed from

the result of Parameter 4 (∆t “ 4.0ˆ10´2) that too large time step can also lead to instability,

because the solid mesh may be distorted or flip over locally when updated by its own velocity.
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Figure 4.24: Computational domain for Test5-2D
(elastic wall) in Section 4.5.2.

Figure 4.25: Distribution of pressure on the fluid mesh
and velocity norm on the deformed solid mesh at t “ 2.

Test5-2D (elastic wall) in Section 4.5.2.

(a) Velocity norm. (b) Displacement of the mesh.

Figure 4.26: Velocity and mesh dispacement using an ALE mesh at t “ 2 for Test5-2D (elastic wall) in Section
4.5.2.

4.5.3 Test6-2D (rising bar): A rising bar

In this test, we consider a rising bar in a container of dense fluid with gravity. We first test the

limitation of the density ratio of two materials when νs “ νf , and then test the case νs “ 0

and investigate any limitation of time step. We note here that the mesh quality of a bar can be

maintained more easily than the mesh of a disc when updating their position, so we consider a

bar (very soft) rather than a disc.

The computational domain is the box as illustrated in Figure 4.28 with boundary conditions

shown. Re “ ρf ÛĤ
νf

“ 12 if using the maximum velocity Û “ 4 (approximately) which is

observed from numerical result and the channel height Ĥ “ 3 as the characteristic velocity and

length respectively. All the parameter sets and stability results are displayed in Table 4.4, which

supports what we discussed in Observations 4.1 to 4.3. We can see from parameter sets 1 to 8

that it is always stable when νδ “ νs´ νf ě 0, even for a very high fluid-solid density ratio ρf

ρs .
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(a) Interface between fluid and solid, using coarse mesh. (b) Mass convergence.

Figure 4.27: Comparison between the two-mesh method and the fitted-mesh method for Test5-2D (elastic wall) in

Section 4.5.2, using a time step of ∆t “ 5.0ˆ 10´3.

Parameter sets ρf ρs νf νs µs ∆t µc Stability
Parameter 1 1 1 0.2 0.2 0.2 5.0ˆ 10´3 –

‘

Parameter 2 1 1 0.2 0.1 0.2

5.0ˆ 10´3

1.0ˆ 10´2

2.0ˆ 10´2

4.0ˆ 10´2

´0.099
´0.098
´0.096
´0.092

Ś

Ś

Ś

Ś

Parameter 3 1 1 0.2 0 0.2

5.0ˆ 10´3

1.0ˆ 10´2

2.0ˆ 10´2

4.0ˆ 10´2

´0.199
´0.198
´0.196
´0.192

Ś

Ś

Ś

Ś

Parameter 4 1 1 0.2 0.1 1

5.0ˆ 10´3

1.0ˆ 10´2

2.0ˆ 10´2

4.0ˆ 10´2

´0.0995
´0.099
´0.098
´0.096

Ś

‘

‘

Ś

Table 4.3: Parameter sets for Test5-2D (elastic wall) in Section 4.5.2 with µc “ µs∆t` νδ.
“
Ś

” means instability is observed (“
‘

” means not) during t “ 0 to 2, and “–” means µc is
not an indicator for stability in the case νδ ě 0.

While from the last four parameter sets we can see that it is unstable when using small time

steps due to νδ ă 0. In order to visualize evolution of the solid bar, results using Parameter 1

are demonstrated in Figure 4.29 and Figure 4.30 on fluid mesh and solid mesh respectively. It

can be seen from Figure 4.30 that using a structured solid mesh or an unstructured solid mesh

makes no qualitative difference. We only focus on the test for stability, without evaluating the

accuracy here, because the solid meshes are distorted at two ends of the bar (see Figure 4.30).

4.5.4 Test7-2D (cavity with disc): Cavity flow with a solid disc

This example is taken from [161]. A sketch of the problem and boundary conditions are shown

in Figure 4.31. Re “ ρf ÛĤ
νf

“ 100 if taking the maximum velocity Û “ 1 at the top of the
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Parameter sets ρf ρs νf νs µs ∆t µc Stability
Parameter 1 1 0.5 1 2 100 2.0ˆ 10´3 –

‘

Parameter 2 1 0.1 1 2 100 2.0ˆ 10´3 –
‘

Parameter 3 1 0.05 1 2 100 2.0ˆ 10´3 –
‘

Parameter 4 1 0.01 1 2 100 2.0ˆ 10´3 –
‘

Parameter 5 1 0.5 1 1 100 2.0ˆ 10´3 –
‘

Parameter 6 1 0.1 1 1 100 2.0ˆ 10´3 –
‘

Parameter 7 1 0.05 1 1 100 2.0ˆ 10´3 –
‘

Parameter 8 1 0.01 1 1 100 2.0ˆ 10´3 –
‘

Parameter 9 1 0.5 1 0 100 1.0ˆ 10´3 ´0.9
Ś

Parameter 10 1 0.5 1 0 100 2.0ˆ 10´3 ´0.8
Ś

Parameter 11 1 0.5 1 0 100 5.0ˆ 10´3 ´0.5
‘

Parameter 12 1 0.5 1 0 100 1.0ˆ 10´2 0
‘

Table 4.4: Parameter sets for Test6-2D (rising bar) in Section 4.5.3. “
Ś

” means instability is
observed ( “

‘

” means not) before the bar moves out of the cup, and “–” means µc is not an
indicator for stability in the case νδ ě 0. µc “ µs∆t` νδ and gravity acceleration is 980.

Figure 4.28: Sketch of Test6-2D (rising bar) in Section
4.5.3.

Figure 4.29: Vertical velocity on the background mesh
at t “ 0.6 for Test6-2D (rising bar) in Section 4.5.3.

cavity and the height Ĥ “ 1 of the cavity as the characteristic velocity and length respectively.

We consider the parameter sets displayed in Table 4.5, and the results also support what we

discussed in Observations 4.1 and 4.2. In the tests of Parameter set 1 to 6, we choose νs “ νf

and change the solid density from soft (µs “ 0.1) to hard (µs “ 100) solid. All these simulations

are stable after a long run (up to t “ 20). We also test several cases of νs ą νf (not shown

in the table) and the simulations are always stable. In the tests of Parameter set 7 to 11, we

again observe instability, when reducing the time step, because of νs ă νf . It is not surprising

that instability also occurs for Parameter set 7, because the time step is too large to maintain a

good quality of mesh (the mesh of the disc is distorted when it arrives at the top of the cavity).

As an example to show the evolution of the solid disc, the velocity norm on the fluid mesh and
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(a) Using a structured solid mesh. (b) Using an unstructured solid mesh.

Figure 4.30: Evolution of the solid for Test6-2D (rising bar) in Section 4.5.3.

the solid mesh for Parameter 1 are presented in Figure 4.32 and Figure 4.33 respectively.

Figure 4.31: Sketch of the cavity with a solid disc for
Test7-2D (cavity with disc) in Section 4.5.4.

Figure 4.32: Velocity norm on the fluid mesh at t “ 20
for Test7-2D (cavity with disc) in Section 4.5.4.

4.5.5 Conclusion

In this section we present a brief summary of the stability tests. The following conclusions are

based on the underlying assumption that no solid element distorts or flips over when updating

the solid mesh, so that a finite element approximation on the solid mesh is accurate enough.

Let us recall that νδ “ νs ´ νf and ρδ “ ρs ´ ρf , and define a ratio of the fluid and solid mesh

size: rm “ (local solid nodes)/(local fluid nodes).
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Parameter sets ρf ρs νf νs µs ∆t µc Stability
Parameter 1 1 1 0.01 0.01 0.1 1.0ˆ 10´3 –

‘

Parameter 2 1 1 0.01 0.01 1 1.0ˆ 10´3 –
‘

Parameter 3 1 1 0.01 0.01 10 1.0ˆ 10´3 –
‘

Parameter 4 1 1 0.01 0.01 100 1.0ˆ 10´3 –
‘

Parameter 5 1 0.5 0.01 0.01 1 1.0ˆ 10´3 –
‘

Parameter 6 1 0.2 0.01 0.01 1 1.0ˆ 10´3 –
‘

Parameter 7 1 2 0.01 0 1 1.0ˆ 10´3 ´0.009
Ś

Parameter 8 1 2 0.01 0 1 5.0ˆ 10´3 ´0.005
‘

Parameter 9 1 1 0.01 0 1 5.0ˆ 10´3 ´0.005
‘

Parameter 10 1 0.5 0.01 0 1 5.0ˆ 10´3 ´0.005
Ś

Parameter 11 1 0.2 0.01 0 1 5.0ˆ 10´3 ´0.005
Ś

Table 4.5: Parameter sets for Test7-2D (cavity with disc) in Section 4.5.4 with
µc “ µs∆t` νδ. “

Ś

” means instability is observed ( “
‘

” means not) up to t “ 20, and “–”
means µc is not an indicator for stability in the case of νδ ě 0.

(a) t “ 1. (b) t “ 4.5.

(c) t “ 10. (d) t “ 20.

Figure 4.33: Velocity norm on the solid mesh (Parameter 1) for Test7-2D (cavity with disc) in Section 4.5.4.

1. If νδ “ 0 and ρδ ě 0, we proved, under some assumptions in Section 6.1, that the proposed

scheme is stable for any ∆t. In this case, a similar fluid and solid mesh size (rm « 1) is

sufficient to give an accurate result.
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2. If νδ ě 0 and ρδ ă 0, we have not observed instability problems for the above (or any

other) numerical tests, even for a very small density ratio (ρs{ρf “ 0.001). In this case,

rm « 1 is also sufficient to give an accurate result and the stability is not sensitive to rm.

3. If νδ ă 0, our scheme is always unstable if using a sufficiently small time step. In this case

µc “ µs∆t` νδ is an empirical indicator for instability: i.e. the scheme is still possible to

be stable if µc « 0 or µc ą 0. In this case, the stability is also sensitive to rm. Numerical

tests show that a larger rm has a positive effect on stabilization. Nevertheless, the fact

that it is not possible to take the limit ∆t Ñ 0 means that we cannot recommend our

scheme when νδ ă 0.

4.6 Summary

An implicit implementation of the one-field FDM is introduced in this chapter, followed by

numerical tests for different purposes: three numerical experiments are presented in order

to demonstrate the energy property proved in Section 4.4; four numerical experiments are

presented in order to show the limitation of the proposed method, and a conclusion about this

is clearly drawn in Section 4.5.5. In the next chapter, three explicit schemes for the one-field

FDM will be introduced based upon different splitting methods.

The numerical tests implemented in this chapter all use the P2{pP1 ` P0q element after a

comparison with the P2{P1 element in Test1-2D (Section 4.4.1), which shows that the mass

conservation is dramatically improved by using P2{pP1 ` P0q. Local mass conservation of the

P2{pP1`P0q element is proved by [16]. However, we would not say the P2{pP1`P0q element is

necessarily the best choice, even though it improves the mass conservation. First, it is expensive

since we add the piecewise constant P0 through the whole domain although the discontinuity of

pressure usually only happens across the fluid-solid interface. Second, the energy conservation

is not improved from Test1-2D (stability may be improved but the improvement of accuracy is

not obvious). Third, as will be considered in Chapter 5, in the case of a thin solid (Test8-2D: a

leaflet and Test9-2D: a flag) interacting with a fluid our iterative linear solver (see Section 4.2)

struggles to converge when using the P2{pP1 `P0q element. The reason may be that too many

redundant unknowns P0 are added through the domain, and the pressure is only discontinuous

across the thin solid. However, we do not lose accuracy when using P2{P1 element in this case,

because our results agree well with the ALE fitted mesh method at the first few steps (before

the ALE method fails) and also agrees well with results from the literature.
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Chapter 5

Explicit splitting schemes

In the previous chapter, the case of low Reynolds number flow is considered. An implicit scheme

is utilized to solve the whole FSI system by arranging the convection term on the right-hand

side of the equation and applying a fixed point iteration. In this chapter, the case of higher

Reynolds number will be considered as well, and explicit splitting schemes are adopted to treat

the convection separately.

We shall introduce three types of splitting schemes. The purpose of splitting is to decou-

ple the highly non-linear implicit one-field FDM formulation (see Chapter 3), such that every

step/subproblem can be efficiently solved without losing significant accuracy. A 2-step split-

ting scheme and a 3-step splitting scheme are introduced in Section 5.1 and 5.3 respectively.

Numerical experiments are presented in Sections 5.2 and 5.4, for testing these two different

schemes respectively, which indicate that both are energy non-increasing. A 4-step splitting

method (projection method) is also introduced in Section 5.5, however the same numerical tests

(in Section 5.6) show that this scheme is energy non-increasing for a mixed-element (P2{P1 or

P2{ pP1 ` P0q) but not for the equal-order element (P1).

There are 14 numerical tests implemented in this thesis, numbered from Test1 to Test14.

Five of these are used in this chapter (highlighted in blue and bold in Table 5.1): Test1-

2D (activated disc), Test2-2D (stretched disc), Test3-3D (stretched ball), Test7-2D (cavity with

disc) and Test8-2D (leaflet) are used through this chapter to compare the three types of splitting

schemes. Other tests may also be added to a specific scheme in order to compare with IFEM,

ALE method, laboratory experiment or other existing methods.

Some of our numerical tests use P2{P1 element while others use P2{pP1 ` P0q element. A

general explanation of this choice is presented in Section 4.6. Also notice that there is no need

to use P2{ pP1 ` P0q element for the 4-step splitting scheme, because it is redundant to add a

piecewise constant to the shape function in order to solve the Poisson equation. Some tests

use an adaptive mesh with hanging nodes, while others use a uniform mesh. The purpose of

using the adaptive mesh is to improve computational efficiency and to show the robustness of

73
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the proposed method. The scheme does not rely on the use of an adaptive mesh (however brief

implementation details may be found in appendix E). We summarize the choice of the element

(P2{pP1`P0q or P2{P1) and the mesh (adaptive or uniform) in Table 5.1, in which the method

(Least-squares or Taylor-Galerkin) for treating the convection step is also illustrated.

When implementing the proposed one-field FDM, one could update the deformation tensor F

(for both the implicit and explicit scheme) as illustrated in formula (3.8) or (3.12), alternatively

one may also update the deviatoric part of solid stress σ (only for the explicit scheme) as

discussed in Appendix A. It is interesting that for Test8-2D (leaflet) we implemented both

schemes, and found that the F-scheme could not converge (mesh distorted at some stage, see

Appendix A for more discussion of this). For Test4-2D (rotating disc) and Test7-2D (cavity

with disc) the two schemes present similar results (see Figure 5.11). It is worth comparing these

two scheme more thoroughly, which however has not been done in thesis and is left as future

work. We just display the choice of F-scheme and/or σ-scheme in Table 5.1.

Numerical tests Element type Mesh type Convection
F and/or
σ-scheme

Test1-2D (activated disc) P2{pP1 ` P0q uniform LS/TG F
Test2-2D (stretched disc) P2{pP1 ` P0q uniform LS/TG F
Test3-3D (stretched ball) P2{pP1 ` P0q uniform LS F
Test4-2D (rotating disc) P2{pP1 ` P0q uniform - F/σ
Test5-2D (elastic wall) P2{pP1 ` P0q uniform - F
Test6-2D (rising bar) P2{pP1 ` P0q uniform - σ
Test7-2D (cavity with disc) P2{pP1 ` P0q uniform LS F/σ

Test8-2D (leaflet) P2{P1
adaptive

and uniform
LS/TG σ

Test9-2D (thin flag) P2{P1 adaptive LS σ
Test10-2D (channel with solids) P2{P1 adaptive LS σ
Test11-2D (thick flag) P2{P1 uniform TG σ
Test12-3D (cylinder) P2{P1 uniform LS σ
Test13-2D (one particle) P2{P1 adaptive - σ
Test14-2D (two particle) P2{P1 adaptive - σ

Table 5.1: The choice of element and mesh in all the numerical tests. LS: Least-squares
method, TG: Taylor-Galerkin method. “-”: low Reynolds number flow, the convection is

either neglected or moved to the right-hand side of the equation as a force term.

Based on the discussion of the limitations of the proposed one-field FDM in Section 4.5.5,

we know that the proposed scheme may be unstable when νδ ă 0 (or νs ă νf ). In this chapter

we only consider the case of νδ “ 0, i.e. the solid viscosity is the same as the fluid viscosity

(νs “ νf ). Although the case of νδ ą 0 (or νs ą νf ) is also stable, however we consider this

to be of relatively little interest. Please also refer to Section 7.2 for more discussion about why

we only choose νδ “ 0.
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5.1 A 2-step splitting scheme

Using the splitting method of [163, Chapter 3] and [58], equation (3.9) can be expressed as the

following two fractional steps.

(1) Convection step:

ż

Ω

un`1{2 ´ un

∆t
¨ vdx`

ż

Ω

`

un`1{2 ¨∇
˘

un`1{2 ¨ vdx “ 0. (5.1)

(2) Diffusion step:

ρf
ż

Ω

un`1 ´ un`1{2

∆t
¨ vdx`

νf

2

ż

Ω

Dun`1 : Dvdx

´

ż

Ω

pn`1∇ ¨ vdx` ρδ
ż

ΩsX

un`1 ´ un
∆t

¨ vdx

` µs∆t

ż

ΩsX

∇Xun`1 : ∇XvdX “ µs
ż

Ωsn

J´1
n ∇ ¨ vdx

´ µs
ż

ΩsX

Fn : ∇XvdX` ρf
ż

Ω

g ¨ vdx` ρδ
ż

ΩsX

g ¨ vdx`

ż

ΓN

h̄ ¨ vdΓ,

(5.2)

and

´

ż

Ω

q∇ ¨ un`1dx “ 0, (5.3)

with Dirichlet boundary condition (2.12), i.e.:

un`1 “ ū on ΓD. (5.4)

For this explicit scheme the domain Ωsn is fixed, so the above diffusion step becomes a linear

equation at each time step. We focus on linearization of the convection step and the FEM

discretization of the diffusion step in the following subsections respectively.

Remark 5.1. Summing the equations (5.1) and (5.2) and comparing with the implicit scheme

(3.9), we can see that the 2-step scheme can actually be interpreted as evaluating the convection

term in (3.9) by an intermediate value un`1{2. How to get the value un`1{2 depends on how

the convection step is treated.

5.1.1 Treatment of the convection step

There are a variety of numerical methods to treat the pure convection equation (5.1), such as

wave-like methods [58], characteristic based schemes [58, 67, 163], upwind schemes (including

the Streamline Upwind Petrov Galerkin (SUPG) method) [58, 163] or the Least-squares method

[94, 163]. In this section, two methods are considered to treat the convection equation: the

Least-squares method and the Taylor-Galerkin method [86] (a particular, simplest, case of the

wave-like method [58]). Readers may refer to [58] for more details of these methods.
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Least-squares method

It is possible to linearize (5.1) using the value of u from the last time step:

`

un`1{2 ¨∇
˘

un`1{2 «
`

un`1{2 ¨∇
˘

un ` pun ¨∇qun`1{2 ´ pun ¨∇qun. (5.5)

Substituting (5.5) into equation (5.1) gives,

ż

Ω

`

un`1{2 `∆t
`

un`1{2 ¨∇
˘

un `∆t pun ¨∇qun`1{2

˘

¨ vdx

“

ż

Ω

pun `∆t pun ¨∇qunq ¨ vdx.
(5.6)

For the Least-squares method [15], we may choose the test function in the following form:

v “ L pwq “ w `∆t ppw ¨∇qun ` pun ¨∇qwq , (5.7)

where w P H1
0 pΩq. In such a case, the weak form of (5.1) is:

ż

Ω

L
`

un`1{2

˘

¨ L pwq dx “

ż

Ω

pun `∆t pun ¨∇qunq ¨ Lpwqdx. (5.8)

A standard biquadratic finite element space is used to discretize equation (5.8) directly, although

other spaces could be used.

Taylor-Galerkin method

Equation (5.1) is a backward discretization of the following pure convection equation:

Bu

Bt
“ ´pu ¨∇qu. (5.9)

The Taylor-Galerkin scheme is a second order approximation of the above equation [86]. First

consider a 3-term Taylor series expansion of un`1{2 at un:

un`1{2 “ un `∆t
Bun
Bt

`
∆t2

2

B2un
Bt2

. (5.10)

The second order derivative could be computed from the first order derivative (5.9):

B2u

Bt2
“ ´

ˆ

Bu

Bt
¨∇

˙

u´ pu ¨∇q Bu
Bt
“ trpu ¨∇qus ¨∇uu` pu ¨∇q rpu ¨∇qus . (5.11)
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We then get the following approximation of un`1{2 by substituting equations (5.9) and (5.11)

into (5.10):

un`1{2 ´ un

∆t
“ ´pun ¨∇qun `

∆t

2
trpun ¨∇quns ¨∇uun `

∆t

2
pun ¨∇q rpun ¨∇quns . (5.12)

Notice there is a second order derivative in the last term of the above equation (5.12). In

practice, one does not need to calculate the second order derivative. Instead, integration by

parts may be used to reduce the order. It is convenient to use the tensor form to deduce the

following formula, for a test function v and a general vector w,

ż

Ω

pw ¨∇q rpw ¨∇qws ¨ vdx “
ż

Ω

wj
B

Bxj

ˆ

wk
Bwi
Bxk

˙

vidx. (5.13)

As previously i, j and k are automatically summed if they are repeated in one term. Therefore,

we have when
Bwj
Bxj

“ ∇ ¨w “ 0 (true for w “ un due to incompressibility):

ż

Ω

wj
B

Bxj

ˆ

wk
Bwi
Bxk

˙

vidx “

ż

Ω

B

Bxj

ˆ

wjwk
Bwi
Bxk

˙

vidx. (5.14)

Integrating by parts:

ż

Ω

B

Bxj

ˆ

wjwk
Bwi
Bxk

˙

vidx “

ż

Γ

njwjwk
Bwi
Bxk

vidx´

ż

Ω

wjwk
Bwi
Bxk

Bvi
Bxj

dx. (5.15)

Finally, let w “ un and use boundary condition (5.4) to get:

ż

Ω

pun ¨∇q rpun ¨∇quns ¨ vdx

“

ż

ΓD

pn ¨ ūq pū ¨∇q ū ¨ vdΓ´

ż

Ω

rpun ¨∇quns ¨ rpun ¨∇qvs dx.
(5.16)

Substituting (5.16) into equation (5.12), we may approximate (5.12) as:

ż

Ω

un`1{2 ´ un

∆t
¨ vdx`

ż

Ω

pun ¨∇qun ¨ vdx

“
∆t

2

ż

Ω

trpun ¨∇quns ¨∇uun ¨ v ´
∆t

2

ż

Ω

rpun ¨∇quns ¨ rpun ¨∇qvs dx

`
∆t

2

ż

ΓD

pn ¨ ūq pū ¨∇q ū ¨ vdΓ.

(5.17)
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or

ż

Ω

un`1{2 ¨ vdx “

ż

Ω

un ¨ vdx´∆t

ż

Ω

pun ¨∇qun ¨ vdx

`
∆t2

2

ż

Ω

trpun ¨∇quns ¨∇uun ¨ v ´
∆t2

2

ż

Ω

rpun ¨∇quns ¨ rpun ¨∇qvs dx

`
∆t2

2

ż

ΓD

pn ¨ ūq pū ¨∇q ū ¨ vdΓ.

(5.18)

Remark 5.2. It is important to use a distributed/consistent mass matrix (instead of a lumped

mass matrix) when implementing (5.18). The results of using these two types of mass matrix

are compared in Test1-2D (activated disc in Section 5.2.1) and Test2-2D (stretched disc in

Section 5.2.2). A study and comparison of the consistent and lumped mass matrix can also be

found in [61].

5.1.2 FEM discretization of the diffusion step

We only describe here the discretization for the diffusion step, since the convection step just

follows a very standard FEM discretization procedure [94, 163]. A mixed finite element method

to discretize equation (5.2) and (5.3) gives the following linear algebraic system (for details of

assembling this global matrix and the right-hand side vector, please refer to Appendix B):

«

A B

BT 0

ff˜

u

p

¸

“

˜

b

0

¸

, (5.19)

where

A “ M{∆t`K`DT pMs{∆t`KsqD, (5.20)

and

b “ f `DT fs `Mun`1{2{∆t`DTMsDun{∆t. (5.21)

In the above, all the matrices and vectors have the same meaning as those in Section 4.2

except vector f , which does not include the convection term because it is treated in a separate

step.

5.1.3 The 2-step splitting algorithm

We now describe the solution algorithm for the 2-step splitting method at each time step in

Algorithm 5.
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Algorithm 5: The explicit 2-step splitting algorithm for the one-field FDM

1 Given the solid configuration Ωsn and velocity field un “

"

ufn in Ωf

usn in Ωsn
at time step n.

2 Discretize the convection equation using (5.8) or (5.18) and solve it to get an
intermediate velocity un`1{2.

3 Compute the interpolation matrix and solve equation (5.19) using un`1{2 and usn as
initial values to get velocity field un`1.

4 Compute solid velocity usn`1 “ Dun`1 and update the solid mesh by

Ωsn`1 “
 

xn`1 : xn`1 “ xn ` usn`1∆t
(

, for all xn P Ωsn, then go to step 1 for the next
time step.

5.2 Numerical tests for the 2-step splitting scheme

In this section, we present some numerical examples that have been selected to allow us to

assess the accuracy and the versatility of the proposed 2-step splitting scheme. We demonstrate

convergence in time and space. Furthermore, we favourably compare results with those obtained

using FDM [5, 79, 150], IFEM [137, 156] and ALE method [133], as well as comparing against

results from laboratory experiment [70, 156].

In order to improve the computational efficiency, an adaptive spatial mesh with hanging

nodes is used in some of the following numerical experiments (mainly for thin solids). However,

we shall not discuss details of this adaptive mesh in this thesis, which is not the core of the

proposed method. Readers can refer to [7, 56, 62, 152] and Appendix E for details of the

treatment of hanging nodes.

5.2.1 Test1-2D (activated disc): Oscillating disc driven by an initial

kinetic energy

We use the same test as in Section 4.4.1 to compare the energy growth between the implicit

scheme and this 2-step explicit splitting scheme. The deformed solid, with velocity norm, at

t “ 0.7 are compared in Figure 5.1, from which it can be seen that the difference of velocity

norm between these two schemes decreases when reducing the size time step. The evolution of

the energy ratio (see (3.54)) is plotted in Figure 5.2, from which it can be seen that the Least

squares method converges similarly to the implicit scheme, and the error between them becomes

smaller with reducing time step. The same figure also shows that the Taylor-Galerkin method,

if using a lumped mass matrix, stops converging as ∆t is reduced, but however converges almost

the same as the Least squares method if using a distributed mass matrix. This indicates the

importance of using a distributed mass matrix when implementing the convection step (5.1) as

discussed in Remark 5.2.
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(a) Implicit scheme, ∆t “ 5.0ˆ 10´3. (b) 2-step explict scheme, ∆t “ 5.0ˆ 10´3.

(c) Implicit scheme, ∆t “ 6.25ˆ 10´4. (d) 2-step explict scheme, ∆t “ 6.25ˆ 10´4.

Figure 5.1: Configuration of solid at t “ 0.7 for Test1-2D (activated disc) in Section 5.2.1 (Least-squares method
for convection).

5.2.2 Test2-2D (stretched disc): Oscillating disc driven by an initial

potential energy

We next investigate the numerical test of Section 4.4.2 in order to compare the results between

the implicit scheme and this 2-step explicit splitting scheme. The configurations of solid with

velocity norm at time t “ 0.9 and t “ 2 are compared in Figures 5.3 and 5.4 respectively.

From these it can be seen that the difference of velocity norm between the two schemes again

decreases when reducing the size of time step. The evolution of total energy ratio (defined in

(3.54)) is plotted in Figure 5.5, from which it can be seen that both the implicit and the Least-

squares 2-step explicit splitting schemes converge at a similar rate (which is approximately first

order). However when using a lumped mass matrix the order of the Taylor-Galerkin 2-step

explicit splitting scheme converges slightly slower, and when using a distributed mass matrix

the order of the Taylor-Galerkin method converges almost the same as that using the Least

squares method. This again suggests that using a distributed mass matrix is better than using
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(a) Least-squares method for the convection step. (b) Taylor-Galerkin method (lumped mass matrix) for the
convection step.

(c) Taylor-Galerkin method (distributed mass matrix) for the convection step.

Figure 5.2: Evolution of the energy ratio (defined in (3.54)) for Test1-2D (activated disc) in Section 5.2.1.

a lumped mass matrix when implementing the convection step (5.1).

5.2.3 Test3-3D (activated ball): Oscillating ball driven by an initial

kinetic energy

In this test we revisit the oscillating ball discussed in Section 4.4.3 and compare the energy of

the 2-step splitting scheme with the implicit scheme. The comparison of energy evolution is

shown in Figure 5.6, from which it can be seen that the implicit scheme and this 2-step splitting

scheme give very similar energy behaviour. This, and the previous 2D results suggest that the

2-step splitting scheme could present very accurate results, at least in the case of low Reynolds

number.
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(a) Implicit scheme, ∆t “ 5.0ˆ 10´3. (b) Least-squares 2-step explict scheme, ∆t “ 5.0ˆ 10´3.

(c) Implicit scheme, ∆t “ 6.25ˆ 10´4. (d) Least-squares 2-step explict scheme, ∆t “ 6.25ˆ 10´4.

Figure 5.3: Configuration of solid at t “ 0.9 for Test2-2D (stretched disc) in Section 5.2.2 (the solid is maximum
stretched to the y direction).

5.2.4 Test7-2D (cavity with disc): Cavity flow with a solid disc (Pa-

rameter 1-3)

We use the numerical example which has already been studied in Section 4.5.4 (the first three

parameter sets are considered here) to compare with the IFEM method [137, 161]. In order to

compare in detail, we also implement the IFEM by using the isoparametric FEM interpolation

function, which is suggested to be capable of producing a sharp interface in [137]. Please refer

to [156, 157] for other interpolation functions such as the discretized delta function and RKPM

function.

We use the same mesh for the proposed one-field FDM method and IFEM method, and a

time step of ∆t “ 1.0 ˆ 10´3. Figure 5.7 shows the configuration of the deformed disc at two

different stages, from which we do not observe significant differences of the velocity norm even

for a long run as shown in Figure 5.7 (b).

We also test different densities, and the cases of µs “ 1.0 and µs “ 100 (see Figure 5.8 and
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(a) Implicit scheme, ∆t “ 5.0ˆ 10´3. (b) Least-squares 2-step explict scheme, ∆t “ 5.0ˆ 10´3.

(c) Implicit scheme, ∆t “ 6.25ˆ 10´4. (d) Least-squares 2-step explict scheme, ∆t “ 6.25ˆ 10´4.

Figure 5.4: Configuration of solid at t “ 2.0 for Test2-2D (stretched disc) in Section 5.2.2.

5.9 respectively). For the proposed method we can use µs “ 100 or larger in order to make the

solid behave like a rigid body without changing time step. This is not possible for the IFEM

for which the simulation breaks down for µs “ 100, even for very small the time step, due to

the huge FSI force on the right-hand side of the IFEM system.

Let us we compare the solid deformation between the implicit and the 2-step splitting

schemes in Figure 5.10 after a long run (t “ 20). It can be observed that the results of these

two schemes match very well. Finally we compare the F-scheme and σ-scheme via the solid

deformation as shown in Figure 5.11, from which it can been seen that both schemes present

similar results.

5.2.5 Test8-2D (leaflet): An oscillating leaflet

This numerical example is used by [5, 79, 150] to validate their methods. We first use the

same parameters as used in the above three publications in order to compare results and test

convergence in time and space. We then use a wide range of parameters to show the robustness

of the proposed one-field FDM. The computational domain is a L ˆ H channel with a h ˆ w

leaflet located across it as shown in Figure 5.12. A periodic flow condition is prescribed on the

inlet and outlet boundaries, given by ux “ 15.0y p2´ yq sin p2πtq. Gravity is not considered in
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(a) Least-squares method for convection step. (b) Taylor-Galerkin method (using lumped mass matrix)
for convection step.

(c) Taylor-Galerkin method (using distributed mass matrix) for convection step.

Figure 5.5: Evolution of the energy ratio (defined in (3.54)) for Test2-2D (stretched disc) in Section 5.2.2.

the first test case (i.e. g “ 0), and other fluid and solid properties are presented in Table 5.2.

Taking the average velocity Ū “
şH

0
uxdy “ 10 and the channel height H as the characteristic

velocity and length respectively, the Reynolds number is: Re “ ρf ŪH
νf

“ 100.

Fluid Leaflet
L “ 4.0 m w “ 0.0212 m
H “ 1.0 m h “ 0.8 m

ρf “ 100 kg{m3 ρs “ 100 kg{m3

νf “ 10 N ¨ s{m2 µs “ 107 N{m2

Table 5.2: Properties and domain size for Test8-2D (leaflet) in Section 5.2.5 with a leaflet
oriented across the flow direction.
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Figure 5.6: Evolution of energy ratio (defined in (3.54)) for Test3-3D (activated ball) in Section 5.2.3.

(a) t “ 4.5s.

(b) t “ 25.5s.

Figure 5.7: Velocity norm for a soft solid pµs “ 0.1q using the one-field FDM (left) and IFEM (right). Test7-2D
(cavity with disc) in Section 5.2.4

The leaflet is approximated with 1200 linear triangles with 794 nodes (medium mesh size),

and the corresponding fluid mesh is adapted in the vicinity of the leaflet so that it has a similar

size. A stable time step ∆t “ 5.0 ˆ 10´4 is used in the simulations illustrated in Figure 5.13,

which shows the configuration of the leaflet for different times.

Previously published numerical results are qualitatively similar to those in Figure 5.13 but

show some quantitative variations. For example, [5] solved a fully-coupled system but the

coupling is limited to a line, and the solid in their results (Figure 7 (l) in [5]) behaves as if it

is slightly harder. Alternatively, [150] used a fractional step scheme to solve the FSI equations
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(a) t “ 5.0s.

(b) t “ 25.0s.

Figure 5.8: Velocity norm for a soft solid pµs “ 1.0q using the one-field FDM (left) and IFEM (right). Test7-2D
(cavity with disc) in Section 5.2.4.

(a) t “ 5.0s (The disc arrives at the top of the cavity). (b) t “ 30.0s.

Figure 5.9: Velocity norm for a hard solid pµs “ 100q using the one-field FDM. Test7-2D (cavity with disc) in
Section 5.2.4.

combined with a penalty method to enforce the incompressibility condition. In their results

(Fig. 3(h) in [150]) the leaflet behaves as if it is slightly softer than [5] and harder than [79].

In [79] a beam formulation is used to describe the solid. The fluid mesh is locally refined using

hierarchical B-Splines, and the FSI equation is solved monolithically. The leaflet in their results

(Fig. 34 in [79]) behaves as softer than the other two considered here. Our results in Figure

5.13 are most similar to those of [79]. This may be seen more precisely by inspection of the



5.2. NUMERICAL TESTS FOR THE 2-STEP SPLITTING SCHEME 87

Figure 5.10: Comparison of the solid deformation at t “ 20s for Test7-2D (cavity with disc) in Section 5.2.4, using

the same mesh size and time step ∆t “ 1.0ˆ 10´3.

graphs of the oscillatory motion of the leaflet tip in Figure 5.14, corresponding to Fig. 32 in

[79]. Having validated our results for this example against the work of others, we shall use this

test case to further explore more details of our method.

We commence by testing the influence of the ratio of fluid and solid mesh sizes: rm “ (local

solid nodes)/(local fluid nodes). Fixing the fluid mesh size, three different solid mesh sizes are

chosen: coarse (640 linear triangles with 403 nodes rm « 0.5), medium (1200 linear triangles

with 794 nodes rm « 1) and fine (2560 linear triangles with 1445 nodes rm « 2), and a stable

time step ∆t “ 5.0 ˆ 10´4s is used throughout. From these tests we observe that there is a

slight difference in the solid configuration for different meshes, as illustrated at t “ 0.6 in Figure

5.15. Significantly however, the difference in displacement decreases as the solid mesh becomes

finer. Further, we found that rm « 1 ensures the accuracy of the proposed approach, which

can be confirmed from the comparison with the monolithic approach from Figure 5.14. This

is similar to comparison with IFEM in Section 5.2.4: Test7-2D (cavity with disc), with fitted

ALE method in Section 5.2.6: Test9-2D (thin flag) or with laboratory results in Section 5.2.7:

Test10-2D (channel with solids), all of which use a mesh ratio of rm « 1 and achieve the same

accuracy of their results.

We next consider convergence tests undertaken for refinement of both the fluid and solid

meshes with the fixed ratio of mesh sizes rm « 1. Four different levels of meshes are used, the

solid meshes are: coarse (584 linear triangles with 386 nodes), medium (1200 linear triangles

with 794 nodes), fine (2560 linear triangles with 1445 nodes), and very fine (3780 linear triangles

with 2085 nodes). The fluid meshes, at their maximum refinement level, have the corresponding

sizes to the solid mesh. As can be seen in Figure 5.16 and Table 5.3, the velocity is converging

as the mesh becomes finer.

In addition, we consider tests of convergence in time using a fixed ratio of fluid and solid
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(a) t “ 2.4. (b) t “ 4.7.

(c) t “ 7.0. (d) t “ 10.

Figure 5.11: Solid deformation for Parameter 1 in Test7-2D (cavity with disc) in Section 5.2.4.

Figure 5.12: Computational domain and boundary conditions for Test8-2D (leaflet) in Section 5.2.5.

mesh sizes rm « 1. Using the medium solid mesh size and the same fluid mesh size as above,

results are shown in Figure 5.17 and Table 5.4. From these it can be seen that the velocities

are converging as the time step decreases.

Finally, in order to assess the robustness of our approach, we vary each of the physical
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(a) t “ 0.1s.

(b) t “ 0.2s.

(c) t “ 0.6s.

(d) t “ 0.8s.

Figure 5.13: Configuration of the leaflet and magnitude of velocity on the adaptive fluid mesh for Test8-2D
(leaflet) in Section 5.2.5.

Between different mesh sizes
Difference of maximum

horizontal velocity at t “ 0.5s
coarse and medium 0.01497

medium and fine 0.00214
fine and very fine 0.00190

Table 5.3: Comparison of maximum velocity for different meshes. Test8-2D (leaflet) in Section
5.2.5.
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Figure 5.14: Evolution of horizontal and vertical displacement at top right corner of the leaflet (rm « 1) for
Test8-2D (leaflet) in Section 5.2.5.

(a)coarse (b)medium (c)fine

Figure 5.15: Configuration of leaflet for different mesh ratio rm, and contour plots of displacement magnitude at
t “ 0.6 for Test8-2D (leaflet) in Section 5.2.5.

(a) Coarse. (b) Medium.

(c) Fine. (d) Very fine.

Figure 5.16: Contour plots of the horizontal velocity at t “ 0.5s for Test8-2D (leaflet) in Section 5.2.5, using
different sizes of mesh.
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(a) ∆t “ 2.0ˆ 10´3s (breaks down at t “ 0.61s). (b) ∆t “ 1.0ˆ 10´3s.

(c) ∆t “ 5.0ˆ 10´4s. (d) ∆t “ 2.5ˆ 10´4s.

Figure 5.17: Contour plots of the horizontal velocity at t “ 0.5s for Test8-2D (leaflet) in Section 5.2.5, using
different time steps and a medium size of mesh.

Steps sizes compared
Difference of maximum

horizontal velocity at t “ 0.5s
∆t “ 2.0ˆ 10´3 and ∆t “ 1.0ˆ 10´3 0.00854
∆t “ 1.0ˆ 10´3 and ∆t “ 5.0ˆ 10´4 0.00517
∆t “ 5.0ˆ 10´4 and ∆t “ 2.5ˆ 10´4 0.00263

Table 5.4: Comparison of maximum velocity for different time step size. Test8-2D (leaflet) in
Section 5.2.5.

parameters using three different cases as shown in Figure 5.18. A medium mesh size with fixed

rm « 1 is used to undertake all of these tests. The dimensionless parameters shown in Figure

5.18 are defined as: ρr “ ρs

ρf
, µ̄s “ µs

ρfU2 , Re “
ρfUH
νf

and Fr “ gH
U2 , where the average velocity

U “ 10 in this example. The period of inlet flow is T “ 1.

It can be seen from the results of group (a) that the larger the value of shear modulus µ̄s

the harder the solid behaves, however a smaller time step is required. For the case of µ̄s “ 109,

the solid behaves almost like a rigid body, as we would expect. From the results of group (b) it

is clear that the Reynolds Number pReq has a large influence on the behaviour of the solid. The

density and gravity have relatively less influence on the behaviour of the solid in this problem

which can be seen from the results of group (c) and group (d) respectively.

5.2.6 Test9-2D (thin flag): An oscillating thin flag

The following test problem is taken from [133], which describes an implementation on an ALE

fitted mesh. It has since been used as a benchmark to validate different numerical schemes

[70, 79]. The computational domain is a rectangle with a block cut off and a flag attached

behind it as shown in Figure 5.19, in which the size of geometry and the boundary conditions
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(a) ρr “ 1, Re “ 100 and Fr “ 0. (b) ρr “ 1, µ̄s “ 103 and Fr “ 0.

(c) Re “ 100, µ̄s “ 103 and Fr “ 0. (d) Re “ 100 and µ̄s “ 103.

Figure 5.18: Parameters sets and results for Group (b)„(d) of Test8-2D (leaflet) in Section 5.2.5, using a time step

of ∆t “ 5.0ˆ 10´4s.

are displayed as well.

Figure 5.19: Computational domain and boundary condition for Test9-2D (thin flag) in Section 5.2.6.

For the fluid, the viscosity and density are νf “ 1.82ˆ10´4 and ρf “ 1.18ˆ10´3 respectively.

For the solid, we use shear modulus µs “ 9.2593 ˆ 105 and density ρs “ 0.1. Taking the inlet
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(a) Leaflet displacement and fluid pressure. (b) Mesh refinement near the structure.

Figure 5.20: Contour plots of leaflet displacement and fluid pressure at t “ 5.44s for Test9-2D (thin flag) in
Section 5.2.6.

Figure 5.21: Distribution of pressure across the leaflet on the three lines in Figure 5.20 (b) for Test9-2D (thin flag)
in Section 5.2.6.

velocity U “ 51.3 and the height of the block (H “ 1) as the characteristic velocity and

length respectively, the Reynolds number is: Re “ ρfUH
νf

“ 333. The leaflet is discretized

by 1063 three-node linear triangles with 666 nodes, and the corresponding fluid mesh locally

has a similar node density to the leaflet (rm « 1). Snapshots of the leaflet deformation and

fluid pressure at t “ 5.44s are illustrated in Figure 5.20. In Figure 5.21, the distributions of

pressure across the leaflet corresponding to the three lines (AB, CD and EF) in Figure 5.20 (b)

are plotted. From this we can observe that the sharp jumps of pressure across the leaflet are

captured.

The evolution of the vertical displacement of the leaflet tip with respect to time is plotted

in Figure 5.22. Both the magnitude (1.34) and the frequency (2.94) have a good agreement

with the result of [133], using a fitted ALE mesh and of [79], using a monolithic unfitted

mesh approach. These results are all within the range of values in [79, Table 4] (magnitude:

1.1 „ 1.4 and frequency: 2.78 „ 3.22). Note that since the initial condition before oscillation

for these simulations is an unstable equilibrium, the first perturbation from this regime is due

to numerical disturbances.
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Figure 5.22: Displacement of the leaflet tip as a function of time for Test9-2D (thin flag) in Section 5.2.6.

5.2.7 Test10-2D (channel with solids): Solids in a channel with grav-

ity

We first simulate a falling disc due to gravity in order to further validate the accuracy of the

one-field FDM. We then show a simulation of the evolution of different shapes of solids falling

and rising in a channel in order to show the flexibility and robustness of the proposed method.

The test of a falling disc in a channel is cited by [70, 156] in order to validate the IFEM and

a monolithic method respectively. The computational domain is a vertical channel with a disc

placed at the top of the channel as illustrated in Figure 5.23, and computational parameters

are shown in Table 5.5. The fluid velocity is fixed to be 0 on all boundaries except the top one

on which no boundary condition is imposed (σn “ 0).

Fluid Disc
W “ 2.0 cm d “ 0.0125 cm
H “ 4.0 cm h “ 0.5 cm

ρf “ 1.0 g{ cm3 ρs “ 1.2 g{ cm3

νf “ 1.0 dyne ¨ s{ cm2 µs “ 108 dyne{ cm2

g “ 980 cm{ s2 g “ 980 cm{ s2

Table 5.5: Fluid and material properties of a single falling disc for Test10-2D (channel with
solids) in Section 5.2.7.

There is an empirical solution of a rigid ball falling in a viscous fluid [70], for which the

terminal velocity, ut, under gravity is given by

ut “

`

ρs ´ ρf
˘

gr2

4νf

ˆ

ln

ˆ

L

r

˙

´ 0.9157` 1.7244
´ r

L

¯2

´ 1.7302
´ r

L

¯4
˙

, (5.22)

where ρs and ρf are the density of solid and fluid respectively, νf is viscosity of the fluid,
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Figure 5.23: Computational domain for Test10-2D
(channel with solids) in Section 5.2.7: a single falling disc.

Figure 5.24: Computational domain for different shapes
of solids with different properties. Test10-2D (channel

with solids) in Section 5.2.7.

g “ 980 cm{ s2 is acceleration due to gravity, L “W { 2 and r is the radius of the falling ball.

We choose µs “ 108 dyne{ cm2 to simulate a rigid body here. µs “ 1012 dyne{ cm2 is also

applied, which gives virtually identical results.

Three different meshes are used: the disc boundary is represented with 28 nodes (coarse),

48 nodes (medium), or 80 nodes (fine). The fluid mesh near the solid boundary has the same

mesh size, and a stable time step t “ 0.005s is used for all the three cases. The Least-squares

method is used to treat the convection step in all these tests. A local snapshot of the vertical

velocity with the adaptive mesh is shown in Figure 5.25. From the fluid velocity pattern around

the disc, we can observe that the disc behaves like a rigid body as expected. In addition, the

evolution of the velocity of the mid-point of the disc is shown in Figure 5.26, from which it can

be seen that the numerical solution converges from below to the empirical solution.

Reference [70] uses a monolithic method to simulate multiple rigid and deformable discs in

a gravity channel. We have implemented this example and obtain very similar results. Rather

than replicate these here however, we instead show a more complex example, as illustrated in

Figure 5.24. The computational domain, boundary conditions and the fluid properties are the

same as the above one-disc test. All the solids are numbered at their initial positions are as

shown in Figure 5.24 with Ap0,´1q, Bp0.2,´1.2q, Cp´0.5,´1.1q, Dp´0.5,´1.5q, Ep´0.2,´1.3q,

F p´0.7,´2.9q and µsp0,´3q. The center and radius pr1q of the 3rd solid (circle) are p0,´2q

and 0.2 respectively, and the center and radius pr2q of the 4th solid (octagon) are p0.3,´2.7q

and 0.2 respectively. The solid properties are illustrated in Table 5.6.
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Figure 5.25: Contour of vertical velocity at t “ 1s (fine mesh) for Test10-2D (channel with solids) in Section 5.2.7.

Figure 5.26: Evolution of velocity at the center of a falling disc for Test10-2D (channel with solids) in Section
5.2.7. (The blue solid line represents the empirical solution from formula (5.22).)

No. of solid Density
`

g{ cm3
˘

Shear modulus
`

dyne{ cm2
˘

1 1.3 104

2 1.2 103

3 1.0 10
4 0.8 106

5 0.7 102

Table 5.6: Properties for multi-solids falling in a channel as shown in Figure 5.24. Test10-2D
(channel with solids) in Section 5.2.7.

A high resolution of each solid boundary is used in this simulation, as shown in Figure 5.27

(a), which can guarantee the mesh quality during the whole process of evolution, and a stable

time step t “ 0.002s is used. Snapshots of the solids at different times are shown in Figure

5.27.

The 2-step splitting scheme decouples the convection and diffusion of the Navier-Stokes

equation, leaving the fluid-structure coupling only in a modified Stokes equation (modified by
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(a) t “ 0.0 (b) t “ 0.3

(c) t “ 0.5 (d) t “ 0.6 (e) t “ 0.7

(f) t “ 0.8 (g) t “ 0.9 (h) t “ 1.0

Figure 5.27: Contours of vertical velocity at different times for multi-solids falling in a channel. Test10-2D
(channel with solids) in Section 5.2.7.

adding the solid equation). The modified Stokes equation leads to a saddle-point linear system,

which is still a challenge to solve (with our iterative solver struggling to converge in some cases,

see Remark 5.6). In the following section, we further split the modified Stokes equation into a
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(i) t “ 1.1 (j) t “ 1.2 (k) t “ 1.3 (l) t “ 1.4

(m) t “ 1.6 (n) t “ 1.8 (o) t “ 2.0 (p) t “ 2.4

Figure 5.27 (continued).

“Degenerate” Stokes equation (which may be efficiently preconditioned and solved, see section

5.3.1) and a Poisson-like equation (which can also be efficiently solved using the Conjugate

Gradient method, see Section 5.3.2). In this case, the saddle-point system only exists in the

former and the fluid-solid interaction only exists in the latter, and each subproblem becomes

easier.
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5.3 A 3-step splitting scheme

As discussed above, we can produce a 3-step splitting scheme by decoupling the diffusion step

in Section 5.1. Equation (5.2) can be further split into two fractional steps, which therefore

gives a 3-step splitting method as follows. Readers may refer to [58] for more discussion of

splitting schemes.

(1) Convection step:

ż

Ω

un`1{3 ´ un

∆t
¨ vdx`

ż

Ω

`

un`1{3 ¨∇
˘

un`1{3 ¨ vdx “ 0. (5.23)

(2) “Degenerate” Stokes step:

ρf
ż

Ω

un`2{3 ´ un`1{3

∆t
¨ vdx´

1

2

ż

Ω

pn`2{3∇ ¨ vdx “ 0, (5.24)

and

´

ż

Ω

q∇ ¨ un`2{3dx “ 0, (5.25)

with Dirichlet boundary condition:

un`2{3 “ ū on ΓD. (5.26)

This step is called a “Degenerate” Stokes problem in [58, Section 34] since the integral of the

viscous term is missing.

(3) Diffusion step:

ρf
ż

Ω

un`1 ´ un`2{3

∆t
¨ vdx`

νf

2

ż

Ω

Dun`1 : Dvdx

` ρδ
ż

ΩsX

un`1 ´ un
∆t

¨ vdx` µs∆t

ż

ΩsX

∇Xun`1 : ∇XvdX

“ µs
ż

Ωsn

J´1
n ∇ ¨ vdx´ µs

ż

ΩsX

Fn : ∇XvdX` ρf
ż

Ω

g ¨ vdx

` ρδ
ż

Ωsn

g ¨ vdx`

ż

ΓN

h̄ ¨ vdΓ`
1

2

ż

Ω

pn`2{3∇ ¨ vdx,

(5.27)

with Dirichlet boundary condition:

un`1 “ ū on ΓD. (5.28)

Remark 5.3. As noted in Remark 5.1, this 3-step splitting scheme is not equivalent to the 2-

step scheme, and neither is equivalent to the previous implicit scheme (3.9) and (3.10). However,

if we add up equations (5.23), (5.24) and (5.27), and compare with equation (3.9), it can be

seen that the 3-step splitting scheme may be interpreted as evaluating the convection term
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using value un`1{3. At the same time, pressure pn`2{3 is determined by the velocity un`2{3

rather than un`1 based on (5.25). Therefore, the last velocity un`1 is not divergence free, but

however is controlled by a divergence free velocity un`2{3.

Remark 5.4. One may swap the order of solving step (2) and step (3) so that the last velocity

could be divergence free (let us call it divergence free 3-step splitting in this case), and gain bet-

ter mass conservation. However, this divergence free 3-step splitting is empirically observed to

increase the total energy, which can be seen from Test1-2D (activated disc) in Section 5.4.1 and

Test2-2D (stretched disc) in Section 5.4.2. The accuracy (or equivalently the solid deformation)

of a specific problem depends on both the mass and energy conservation. Therefore, solving step

(2) or step (3) first depends on which part (the mass conservation or the energy conservation)

is important in an application. For example, from numerical results we can clearly see that the

mass conservation is more important (based on the solid deformation) for the Test7-2D (cavity

with disc) in Section 5.4.4.

5.3.1 “Degenerate” Stokes step

A nice property of this degenerated Stokes problem is that the solid equation is decoupled in

this step, which gives the following discretized linear system:

«

M B

BT 0

ff˜

u

p

¸

“

˜

b

0

¸

, (5.29)

where M is a diagonal (lumped) mass matrix, in which case one may compute the Schur

complement S “ BTM´1B exactly. This only needs to be computed once at the first time step

if using an unchanging uniform mesh. An alternative is to use

«

M

Mp

ff

as a preconditioner,

whose inverse can also be computed directly if M and Mp are both lumped mass matrices (our

numerical tests show that using distributed pressure mass matrix does not improve the speed

of convergence). One can also use

«

M

∆p

ff

as a preconditioner, where ∆p is the stiffness

matrix from the pressure Poisson equation as will be discussed in Section 5.5. It is observed

from numerical tests that the latter performs much better than the former. As mentioned above,

from (5.29) we can derive a Schur complement in the form of S “ BTM´1B. The operators that

are discretized in this form imply that S will be spectrally equivalent to a discrete Laplacian.

Hence we expect that the latter preconditioner will be effective for this system, similarly to

analysis for Stokes equation [46].
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5.3.2 Diffusion step

Compared with equation (5.19), the diffusion step of this 3-step splitting scheme is reduced as

follows after FEM discretization.

Au “ b, (5.30)

where

A “ M{∆t`K`DT pMs{∆t`KsqD, (5.31)

and

b “ f `DT fs `Mun`2{3{∆t`DTMsDun{∆t. (5.32)

A preconditioned Conjugate Gradient method can efficiently solve equation (5.30). We use

the incomplete Cholesky decomposition of matrix M{∆t`K as a preconditioner in order to

solve equation (5.30). Very good convergence performance can be observed from our numerical

tests (although the precise performance of the linear algebraic solver is not the topic of this

thesis).

5.4 Numerical tests for the 3-step splitting scheme

In this section we test the 3-step splitting scheme using some of the numerical examples con-

sidered previously. We shall also add two new examples to show the flexibility of this 3-step

splitting scheme: it decouples the fluid-structure interaction into a diffusion step, which can be

solved cheaply by a Conjugate Gradient method; although we still have to solve a saddle-point

equation for the “Degenerate” Stokes step. That is a pure fluid problem however, which can

be solved as discussed in Section 5.3.1.

5.4.1 Test1-2D (activated disc): Oscillating disc driven by an initial

kinetic energy

The total energy ratio as a function of time is plotted in Figure 5.28, from which we can

observe that both the error of the total energy and the difference between the implicit scheme

and the 3-step explicit splitting scheme decrease when reducing the time step. Compared with

the results of the 2-step splitting scheme in Figure 5.2 (a), we know that the 3-step splitting

scheme converges more slowly. However, it is important to note that both schemes converge.

As noted in Remark 5.4, if using the divergence free 3-step splitting (swap the step (2) and

step (3) introduced in Section 5.3), one can gain better mass conservation as shown in Figure

5.29 (a): the divergence free 3-step splitting can conserve mass as accurately as the 2-step

splitting scheme. However the total energy increases at some times (see Figure 5.29) (b), which

may cause stability problems. In this test, both the mass and energy are conserved better using

the divergence free splitting (although it is not a non-increasing energy). It is not surprising

therefore to see, from Figure 5.30, that the solid deformation is more accurate in this case.
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Figure 5.28: The energy ratio against time for Test1-2D (activated disc) in Section 5.4.1: comparison between
implicit and explicit scheme.

(a) Variation of mass against time. (b) Energy ratio against time.

Figure 5.29: Convergence of mass and energy for Test1-2D (activated disc) in Section 5.4.1 using ∆t “ 5.0ˆ 10´3:
comparing with the divergence free 3-step splitting.

5.4.2 Test2-2D (stretched disc): Oscillating disc driven by an initial

potential energy

We plot energy ratio as a function of time here in Figure 5.31, from which it can be seen that

error of the total energy converges when reducing the time step, and the difference between the

two schemes decreases when the time step decreases. As previously, it is not surprising that the

3-step splitting scheme converges slower than the 2-step splitting scheme by comparing Figure

5.31 and Figure 5.5 (a), but the important point is that both schemes converge.

As noted in Remark 5.4, if using the divergence free 3-step splitting (swap step (2) and step

(3) as introduced in Section 5.3), we could gain better mass conservation as shown in Figure
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Figure 5.30: The solid deformation at t “ 0.74 (the disc is maximally stretched in the vertical direction) for
Test1-2D (activated disc) in Section 5.4.1. The curve of the divergence free splitting (solid red) overlaps with the

curve of the implicit scheme (solid blue).

Figure 5.31: The energy ratio against time for Test2-2D (stretched disc) in Section 5.4.2: comparison between
implicit and explicit scheme.

5.32 (a). However, the energy is not non-increasing as shown in Figure 5.32 (b). In order to

see which effect is significant for this problem, in Figure 5.33 we plot the solid deformation at

t “ 1 when the disc is maximumly stretched in the vertical direction. It can be observed that

the divergence free splitting does not improve the accuracy of the solid deformation, instead it

reduces the accuracy although improving the mass conservation.
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(a) Variation of mass against time. (b) Energy ratio against time.

Figure 5.32: Convergence of mass and energy for Test2-2D (stretched disc) in Section 5.4.2 using ∆t “ 5.0ˆ 10´3:
comparing with the divergence free 3-step splitting.

Figure 5.33: The solid deformation at t “ 1 (the disc is maximally stretched in the vertical direction) for Test2-2D
(stretched disc) in Section 5.4.2. The curve of the 3-step splitting (dashed green) overlaps with the curve of the

implicit scheme (solid blue).

5.4.3 Test3-3D (activated ball): Oscillating ball driven by an initial

kinetic energy

We revisit the oscillating ball discussed in Section 4.4.3 and compare the energy of this 3-step

splitting scheme with the implicit scheme. The comparison of energy evolution is shown in

Figure 5.34, from which it can be observed that both schemes converge in time although the

3-step splitting is less accurate. It is also less accurate than the 2-step splitting scheme through

comparing to Figure 5.6. This could be accepted because we solve a computationally cheaper

problem as shown from the analysis in Section 5.3.1 and 5.3.2.
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Figure 5.34: Evolution of the energy ratio for Test3-3D (activated ball) in Section 5.4.3: comparison between
implicit and explicit scheme.

5.4.4 Test7-2D (cavity with disc): Cavity flow with a solid disc (Pa-

rameter 1)

The cavity flow with a solid disc is tested again in this section using the 3-step splitting scheme.

We plot the contour of the deformed solid in Figure 5.35, from which it may be seen that the

3-step splitting scheme is worse than the 2-step splitting scheme in terms of preserving mass

(the reason may be that ∇ ¨ un`1 “ 0 is not enforced, see Remark 5.3). However this can

be improved by reducing the time step, which is observed from variation of the mass ratio in

Figure 5.36 (a) and solid deformation in Figure 5.36 (b) using a smaller time step.

Figure 5.35: Comparison of the solid deformation at t “ 20 for Test7-2D (cavity with disc) in Section 5.4.4, using

a time step of ∆t “ 1.0ˆ 10´3.

For this test, if we swap the step (2) and step (3) in Section 5.3 (the divergence free splitting),

the accuracy is clearly improved, as seen by comparing the solid deformation shown in Figure
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(a) Variation of mass. (b) Deformation of solid at t “ 20, ∆t “ 1.25ˆ 104.

Figure 5.36: Convergence of mass for Test7-2D (cavity with disc) in Section 5.4.4, using the 3-step splitting
scheme.

5.37.

Figure 5.37: The solid deformation at t “ 20 for Test7-2D (cavity with disc) in Section 5.4.4 with

∆t “ 1.0ˆ 10´3. The curve of the divergence free 3-step splitting (solid red) overlaps with the curve of the 2-step
splitting scheme (dashed blue).

5.4.5 Test8-2D (leaflet): An oscillating leaflet (Parameter 1)

In this test we revisit the oscillation of a flexible leaflet oriented across the flow direction, and

use the 3-step step splitting scheme based upon a uniform mesh and the result is compared

with an ALE fitted mesh method (see Section 2.4.3 for the ALE method). In order to show the

meshes, the pressure on the fluid mesh and velocity on the deformed solid mesh are presented in

Figure 5.38. The same mesh size is adopted for the ALE method as shown in Figure 5.39, from
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which it can be seen that the ALE mesh cannot be trusted after around t “ 0.12 if we check

the mesh closely at the tip and bottom of the leaflet. However we can carry on the simulation

using the proposed two-mesh method, and the accuracy can be compared with the ALE method

before t “ 0.12 which is very good (see Figure 5.40 to 5.42).

(a) P2{P1 elements for velocity and pressure, the size of one element is the same as the width of the solid leaflet
(0.0212).

(b) Bilinear solid mesh.

Figure 5.38: Distribution of pressure on the fluid mesh and velocity norm on the solid mesh at t “ 1.0 for
Test8-2D (leaflet) in Section 5.4.5.

(a) velocity norm at t “ 0.1.

(b) Pressure at t “ 0.12,

Figure 5.39: Distribution of pressure and velocity norm using an ALE mesh (same mesh as in Figure 5.38 (a)) for
Test8-2D (leaflet) in Section 5.4.5.
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(a) Deformation of leaflet using a fitted ALE mesh.

(b) Defomation of the solid leaflet using the proposed two-mesh method.

Figure 5.40: Comparison of the leaflet deformation at t “ 0.1 for Test8-2D (leaflet) in Section 5.4.5.

(a) Deformation of the leaflet using a fitted ALE mesh.

(b) Defomation of the solid leaflet using the proposed two-mesh method.

Figure 5.41: Comparison of the leaflet deformation at t “ 0.12 for Test8-2D (leaflet) in Section 5.4.5.

Remark 5.5. For this test using the P2{pP1`P0q element, the “Degenerate” Stokes step does

not converge using the iterative linear solver introduced in Section 5.3.1, which however does

converge using the P2{P1 element. This may because too many unknowns P0 have been added

in the domain, because we know the pressure only jumps across the leaflet.

Remark 5.6. The 2-step scheme (when using the preconditioned MinRes linear solver for the

diffusion step, which is the same as the solver discussed in Section 4.2) does not converge for

either P2{pP1 ` P0q or P2{P1 element. We also found that the preconditioned MinRes linear
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(a) Horizontal displacement against time. (b) Vertical displacement against time.

Figure 5.42: Comparison of displacement at the leaflet tip (top-left corner) for Test8-2D (leaflet) in Section 5.4.5.

The implicit ALE method uses a stable/converged time step of ∆t “ 1.0ˆ 10´4.

solver could not converge for this pure fluid problem. The above two facts suggest that the

reason that the 2-step splitting scheme fails to converge is because the original preconditioned

MinRes algorithm is problem dependent (which should be investigated in the future), rather

than because the solid information is not used in the preconditioner.

5.4.6 Test11-2D (thick flag): An oscillating thick flag

In this section, we use a uniform mesh and test a thick flag attached to a cylinder, which has

been studied in [30, 67, 115, 117]. We shall compare these results with the 3-step splitting

scheme. The computational domain is a rectangle (L ˆ H) with a cut hole of radius r and

center pc, cq as shown in Figure 5.43. A leaflet of size l ˆ h is attached to the boundary of the

hole (the mesh of the leaflet is fitted to the boundary of the hole, see the solid mesh in Figure

5.44). In this test, L “ 2.5, H “ 0.41, l “ 0.35, h “ 0.02, c “ 0.2 and r “ 0.05. The fluid and

solid parameters are as follows: ρf “ ρs “ 103, νf “ νs “ 1 and µs “ 2.0ˆ 106. The inlet flow

is prescribed as:

ūx “
12y

H2
pH ´ yq , ūy “ 0. (5.33)

This example is actually very similar to Test8-2D (leaflet). However we test it here because

first, it is also used as a benchmark in the FSI literature [30, 67, 115, 117], but the solid is wider

and softer than for Test8-2D (leaflet). Second, the channel is narrower in Test11-2D (thick flag);

the type of boundary conditions on the top and bottom of the channel are different in these

two cases: wall boundary condition in Test11-2D (thick flag) and sliding boundary condition in

Test8-2D (leaflet); Third, the amplitude of the oscillation is smaller than that of the thin flag

in Test8-2D (leaflet), so that an ALE mesh could be easily adopted. Therefore, we choose this
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Figure 5.43: Computational domain and boundary conditions for Test11-2D (thick flag) in Section 5.4.6.

test to show the flexibility of our numerical scheme in this section.

Taking Ū “
şH

0
ūxdy “ 2H and the channel height H as the characteristic velocity and

length respectively, the Reynolds number is: Re “ ρf ŪH
νf

“ 336.2. We use a uniform mesh of

size 0.1ˆ 0.1 for the fluid and a similar mesh density for the solid. A snapshot of the velocity

field is displayed in Figure 5.44 and the vertical displacement at the tip of leaflet is plotted in

Figure 5.45 using a stable time step ∆t “ 2.5ˆ 10´3. Both the frequency (5.3) and magnitude

(0.03) have a good agreement with the published results [30, 67].

Figure 5.44: A snap shot of the velocity norms in the fluid domain and on the solid mesh at t=6. Test11-2D (thick
flag) in Section 5.4.6.

Figure 5.45: Vertical displacement at the tip of the leaflet versus time for Test11-2D (thick flag) in Section 5.4.6.
The frequency and amplitude are around 5.3 and 0.03 respectively.
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5.4.7 Test12-3D (cylinder): An oscillating cylinder

In this test, we consider a cylindrical pillar oscillating in a cuboid channel as shown in Figure

5.46. The size of the cuboid is: length L “ 3, height H “ 1 and width W “ 1. The cylinder

is located at the center of the cuboid, with base’s radius of r “ 0.05 and height h “ 0.8.

Notice that this test problem is a 3D extension of the Test8-2D (leaflet) (Re “ 100). The

corresponding 2D geometry is shown in Figure 5.47, which is not exactly the same as that used

in the Test8-2D (leaflet): the leaflet in Figure 5.47 is wider and the channel is shorter (thus

reducing the problem size in the 3D case). We use a symmetry boundary condition on the top,

front and back surfaces of the cuboid, all the velocity components are fixed to be zero at the

bottom of the cuboid, and the inlet and outlet flow are defined by:

ux “ 15y p2´ yq sin p2πtq , uy “ uz “ 0. (5.34)

This is then a natural extension of the corresponding 2D problem with the same Reynolds

number, and therefore we shall compare the 3D oscillating cylinder with the corresponding 2D

oscillating leaflet.

Figure 5.46: Sketch of the oscillating cylinder in a cuboid. Test12-3D (cylinder) in Section 5.4.7.

Figure 5.47: Computational domain of the corresponding 2D problem (w “ 2r, corresponding to Figure 5.46) for
Test12-3D (cylinder) in Section 5.4.7.
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We use a uniform mesh of size of 0.05 in all directions and stable time step ∆t “ 1.0ˆ 10´4

for both the 2D and 3D tests. In order to visualize the results of this simulation, snapshots of

the velocity norm on the background mesh and the solid deformations are presented in Figure

5.48 and 5.49 respectively. The displacement at point p1.55, 0.8, 0.5q, at the top of the cylinder,

is plotted in Figure 5.50 as a function of time in order to compare with the results of the

corresponding 2D problem. It is not surprising that a very similar oscillating patterns of the

3D cylinder and the corresponding 2D leaflet could be observed from these figures.

Figure 5.48: Velocity norm at t “ 2.0 for Test12-3D (cylinder) in Section 5.4.7.

Figure 5.49: Solid deformation at three different stages for Test12-3D (cylinder) in Section 5.4.7.

5.5 A 4-step splitting scheme

The “Degenerate” Stokes step in Section 5.3 may further be split into a pressure Poisson step

and an update step (Chorin’s projection method) [58]. Noting that the test function v satisfies

the homogeneous boundary condition, the strong form corresponding to equation (5.24) and

(5.25) is:
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(a) Horizontal displacement against time. (b) Vertical displacement against time.

Figure 5.50: Displacement at point p1.55, 0.8, 0.5q in the 3D case and point p1.55, 0.8q in the 2D case. Test12-3D
(cylinder) in Section 5.4.7.

ρf
un`2{3 ´ un`1{3

∆t
`

1

2
∇pn`2{3 “ 0 (5.35)

and

∇ ¨ un`2{3 “ 0. (5.36)

Taking the divergence on both sides of equation (5.35) and using equation (5.36), we have the

following pressure Poisson equation:

∇2pn`2{3 “ 2ρf
∇ ¨ un`1{3

∆t
. (5.37)

Using the Dirichlet boundary condition (5.26) and equation (5.35), we have the boundary

condition for the above pressure Poisson equation:

Bpn`2{3

Bn
“ 2ρf

ū´ n ¨ un`1{3

∆t
“ 0 on ΓD. (5.38)

Using (5.35), the velocity is finally updated by

un`2{3 “ un`1{3 ´
∆t

2ρf
∇pn`2{3. (5.39)

Hence step (2) (the “Degenerate” Stokes step) in Section 5.3 can further be expressed as

the following two substeps.

(2.1) Pressure Poisson step:

∇2pn`2{3 “
2ρf

∆t
∇ ¨ un`1{3, (5.40)
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with boundary condition
Bpn`2{3

Bn
“ 0 on ΓD Y ΓN . (5.41)

The corresponding weak form is

ż

Ω

∇q ¨∇pn`2{3 “ ´
2ρf

∆t

ż

Ω

q∇ ¨ un`1{3. (5.42)

(2.2) Update step:

un`2{3 “ un`1{3 ´
∆t

2ρf
∇pn`2{3. (5.43)

Rather than updating the velocity point by point, we shall solve the following finite element

problem, which gives better energy conservation.

ρf
ż

Ω

un`2{3 ´ un`1{3

∆t
¨ v ´

1

2

ż

Ω

pn`2{3∇ ¨ v “ 0. (5.44)

Remark 5.7. Generally we do not have the Neumann condition
BPn`2{3

Bn “ 0, and this false

boundary condition introduces an error in the form of a numerical boundary layer of thickness

Op
?
νf∆tq. However, for an enclosed flow (n ¨ u “ 0 on ΓD “ Γ) this issue is avoided. The

major advantage of Chorin’s projection method is that it decouples the velocity and pressure,

therefore removing the need for the inf -sup condition to be satisfied. Furthermore, this scheme

is also unconditionally stable and “extremely” robust [58, Section 37]. Readers may refer to

[58, Section 37] for more comments about this scheme.

Remark 5.8. It is also possible to solve the “Degenerate” Stokes problem (here, the Pressure

Poisson step (2.1) and the Update step (2.2)) in the last step. In this case, one can achieve

better mass conservation so that the accuracy may be improved, such as Test7-2D (cavity

with disc) in Section 5.6.4. However, the total energy may increase, hence the scheme may be

unstable.

5.6 Numerical tests for the 4-step splitting scheme

In this section we shall use Test1-2D (activated disc), Test2-2D (stretched disc) and Test3-

3D (activated ball) again to check the energy convergence for the 4-step splitting scheme. It

is interesting that the energy converges for the mixed element (P2{P1) but diverges for the

equal-order element (P1), although the latter is widely used for the pure fluid problems [58].

Based upon the these three tests and two more tests Test7-2D (cavity with disc) and Test8-2D

(leaflet), we comment on the importance of the energy conservation and its influence on the

solid deformation.
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5.6.1 Test1-2D (activated disc): Oscillating disc driven by an initial

kinetic energy

The time convergence of the error in the total energy is presented in Figure 5.51 and compared

with the implicit scheme. From this it can be seen that the two different types of finite element

discretization give quite different results: the error of the total energy converges (although

slowly) with the time step for the P2{P1 element (in Figure 5.51 (a)), however the error of the

total energy diverges for the P1 elements, as shown in Figure 5.51 (b). We plot the corresponding

solid deformation in Figure 5.52 and 5.53 to show the importance of the energy conservation

for this test, because it has a significant influence on the solid deformation. It may be observed

from Figure 5.53 that the difference of the solid deformation between the implicit and the 4-step

splitting scheme increases when reducing the time step, which indicates that the 4-step splitting

scheme does not converge in time when using this equal-order (P1) element.

(a) Mixed element (P2{P1).

(b) Equal-order element (P1), mesh is twice finer than that in (a) (same number of nodes).

Figure 5.51: The energy ratio against time for Test1-2D (activated disc) in Section 5.6.1.
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(a) ∆t “ 5.0ˆ 10´3. (b) ∆t “ 6.25ˆ 10´4.

Figure 5.52: The solid deformation at t “ 0.74 when the solid is maximally stretched along y direction, for
Test1-2D (activated disc) in Section 5.6.1 using the mixed element (P2{P1).

(a) ∆t “ 5.0ˆ 10´3. (b) ∆t “ 6.25ˆ 10´4.

Figure 5.53: The solid deformation at t “ 0.74 when the solid is maximally stretched along y direction for
Test1-2D (activated disc) in Section 5.6.1. The equal-order element (P1) is used, and the mesh is twice finer (same

number of nodes) than the mixed element (P2{P1).

The area of the solid disc is plotted in Figure 5.54 as a function of time, from which it is

apparent that mass converges in time for both the P2{P1 element and the P1 element. This

further indicates that divergence of the energy in Figure 5.51 (b) and divergence of the solid

deformation in Figure 5.53 (b) is not because of mass increase or decrease. By looking at the

different kinds of energy contribution (defined in Remark 3.7) in Figure 5.55, we could see that

the kinetic energy EkpΩq and viscous dissipation EdpΩq evaluated on the background mesh
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decrease much quicker, when reducing the time step, than the other two energy components

Ek pΩ
s
Xq and Ep pΩ

s
Xq evaluated on the solid mesh. This could be the reason that the total

energy does not converge in time, which may further be due to the use of the equal-order

element (P1) for the background mesh. However it still requires further study to explain why

the P1 element damps the kinetic energy EkpΩq so quickly (especially for small time steps) and

does not preserve energy. As a comparison, the mixed element (P2{P1) behaves quite differently,

as shown in Figure 5.56.

(a) Mixed element (P2{P1). (b) Equal-order element (P1), mesh is twice finer than
that in (a) (same number of nodes).

Figure 5.54: Variation of mass as a function of time for Test1-2D (activated disc) in Section 5.6.1.

(a) ∆t “ 5.0ˆ 10´3. (b) ∆t “ 6.25ˆ 10´4.

Figure 5.55: Evolution of all energy contributions, using equal-order element (P1), for Test1-2D (activated disc) in
Section 5.6.1.
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(a) ∆t “ 5.0ˆ 10´3. (b) ∆t “ 6.25ˆ 10´4.

Figure 5.56: Evolution of all energy contributions, using mixed element (P1), for Test1-2D (activated disc) in
Section 5.6.1.

5.6.2 Test2-2D (stretched disc): Oscillating disc driven by an initial

potential energy

The time convergence of the error in the total energy is presented in Figure 5.57 and compared

with the implicit scheme. From this it can be seen that the total energy converges with reducing

time step for the P2{P1 element (in Figure 5.57 (a)), however the error in the total energy

diverges for the P1 element, as shown in Figure 5.57 (b). As can be seen from the comparison

in Figure 5.58, using the equal-order P1 elements, the divergence of energy is related to the

divergence of the solid deformation, although the reason behind this still needs further study.

All the other figures, such as the mass convergence and energy evolution, provide very similar

conclusions to those discussed in the above Section 5.6.1. Consequently these are not plotted

here.

5.6.3 Test3-3D (activated ball): Oscillating ball driven by an initial

kinetic energy

In this section, we use the 4-step splitting scheme to compute the oscillating ball discussed in

Section 4.4.3 again, and compare the energy of the 4-step splitting scheme with the implicit

scheme. Both the mixed finite element and the equal-order finite element are tested, and again

we observe quite different behaviour of these two elements: it can be seen from Figure 5.59 that

the former converges while the latter diverges in time.



5.6. NUMERICAL TESTS FOR THE 4-STEP SPLITTING SCHEME 119

(a) Mixed element (P2{P1).

(b) Equal-order element (P1), mesh is twice finer than that in (a) (same number of nodes).

Figure 5.57: The energy ratio against time for Test2-2D (stretched disc) in Section 5.6.2.

5.6.4 Test7-2D (cavity with disc): Cavity flow with a solid disc (Pa-

rameter 1)

We revisit the cavity flow with a solid disc using this 4-step splitting scheme and compare the

result with the previous results as demonstrated in Figure 5.60. The mixed element (P2{pP1 `

P0q) is used, and we also test the case of swapping steps (2) (including step (2.1) and (2.2))

and (3) as discussed in Remark 5.8. It can be seen from Figure 5.60 that the 4-step and 3-step

splitting schemes yield almost the same accuracy in terms of the solid deformation.

5.6.5 Test8-2D (leaflet): An oscillating leaflet (Parameter 1)

The displacement of the leaflet tip, using the equal-order element (P1 element), is presented in

Figure 5.61 corresponding to the Figure 5.42 computed by the 3-step splitting scheme. Although
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(a) ∆t “ 5.0ˆ 10´3. (b) ∆t “ 6.25ˆ 10´4.

Figure 5.58: The solid deformation at t “ 1.0 for Test2-2D (stretched disc) in Section 5.6.2. The equal-order
element (P1) is used, and the mesh is twice finer (same number of nodes) than the mixed element (P2{P1).

Figure 5.61 and Figure 5.42 look similar, we can observe that the result of the 4-step splitting

scheme does not converge in time. However it could be seen from Figure 5.62 that the results

converge when using the mixed element (P2{P1 element). These results confirm that the energy

conservation of the whole FSI system is important, which is directly related to the deformation

of the solid.

5.7 Discussion of different splitting schemes

Looking at the fully-coupled FSI equations (3.6) and (3.7), there are three major difficulties:

(1) the non-linear convection, (2) the saddle-point problem arising from the incompressibility

condition and (3) the fluid-solid interaction in a moving domain. The splitting schemes decouple

these three difficulties step by step, so that each subproblem could be more easily solved,

accepting the fact of losing accuracy from the 2-step splitting to the 4 step splitting.

The 2-step splitting is accurate, even for the case of large Reynolds number flow. The

drawbacks are primarily associated with the diffusion step. (1) It is hard for the preconditioner

to use the solid mesh information (for all the tests we have done, the preconditioner is based

on the fluid matrix only and works well: so in practice this is not a practical drawback). (2)

The preconditioned (incomplete LU factorization as discussed in Section 4.2) MinRes algorithm

does not work well for every problem. For example, the preconditioned MinRes algorithm [46]

cannot converge for Test8-2D (leaflet) and Test11-2D (thick flag) (even for a pure fluid problem

without a solid).

The subproblem of the “Degenerate” Stokes equation in the 3-step splitting scheme can be

effectively preconditioned (see Section 5.3.1), and one does not need to know the boundary
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(a) Mixed element (P2{P1).

(b) Equal-order element (P1).

Figure 5.59: Evolution of the energy ratio for Test3-3D (activated ball) in Section 5.6.3.

condition for pressure. The fluid and solid are coupled in the diffusion step, which may also be

effectively solved by the preconditioned CG algorithm. This 3-step splitting can solve all the

test problems in this thesis and presents accurate results at a reasonable computational cost,

which is then recommended.

The major advantage of the 4-step splitting (projection method) is that the inf -sup con-

dition is removed and the equal-order element can be used, although the pressure boundary

condition is a problem. However our tests show that this equal-order element does not converge

in energy. Although it is beyond the scope of the current work, it would be interesting to

investigate the reasons behind this in the future.
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Figure 5.60: The solid deformation at t “ 20 for Test7-2D (cavity with disc) in Section 5.6.4 using ∆t “ 1.0ˆ 10´3.

(a) Horizontal displacement against time. (b) Vertical displacement against time.

Figure 5.61: Comparison of displacement at the leaflet tip (top-left corner) for Test8-2D (leaflet) in Section 5.6.5.
The ALE method is implicit and uses P2{P1 element. The 4-step splitting scheme uses the equal-order element (P1),

however whose mesh is twice finer than the ALE mesh (same number of nodes).

5.8 Energy analysis for the explicit splitting schemes

In this section, we estimate the energy of the FSI system for the explicit splitting schemes.

We shall see that additional “artificial energy terms” are introduced in these splitting schemes,

which consequently introduces errors due to the splitting. However, we shall see that these

“artificial energy terms” are proportional to ∆t in the following, thus not compromising the

convergence of the methods.
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(a) Horizontal displacement against time. (b) Vertical displacement against time.

Figure 5.62: Comparison of displacement at the leaflet tip (top-left corner) for Test8-2D (leaflet) in Section 5.6.5.
Both the ALE method and the 4-step splitting scheme use the mixed element (P2{P1).

5.8.1 2-step splitting scheme

As with the previous analysis for the implicit scheme, if we let v “ un`1 in equations (5.1),

(5.2) and (5.3), adding up these three equations gives:

ρf
ż

Ω

pun`1 ´ unq ¨ un`1dx`
∆tνf

2

ż

Ω

Dun`1 : Dun`1dx

` ρf∆t

ż

Ω

`

un`1{2 ¨∇
˘

un`1{2 ¨ un`1dx

` ρδ
ż

ΩsX

pun`1 ´ unq ¨ un`1dx

`∆tµs
ż

ΩsX

Fn`1 : ∇Xun`1dX´∆tµs
ż

ΩsX

∇ ¨ un`1dX

` ∆tµs
ż

ΩsX

p∇ ¨ un`1 ´∇n ¨ un`1q dX “ 0.

(5.45)

Similarly to the proof for the energy estimate of the implicit scheme in Section 3.4.2, we further

have the following energy estimate for the 2-step splitting scheme:

Etotalptn`1q ď Etotalptnq `R
im
n`1 `R

conv
2´step `R

div
2´step, (5.46)

where Rimn`1 “ Rn`1 as defined in (3.40), and Etotal is defined in Remark 3.7. Rconv2´step and

Rdiv2´step are from the boxed terms in (5.45), i.e.:

Rconv2´step “ ´∆tρf
ż

Ω

`

un`1{2 ¨∇
˘

un`1{2 ¨ un`1dx (5.47)



124 CHAPTER 5. EXPLICIT SPLITTING SCHEMES

and

Rdiv2´step “ ∆tµs
ż

ΩsX

p∇n ¨ un`1 ´∇ ¨ un`1q dX. (5.48)

We can deduce from this that the growth in the total energy is bounded by its initial value

plus terms of order ∆t.

5.8.2 3-step splitting scheme

For the 3-step splitting, we choose v “ un`1 in equation (5.23), (5.24) and (5.27), and choose

q “ pn`2{3 in (5.25). Adding up these four equations gives:

ρf
ż

Ω

pun`1 ´ unq ¨ un`1dx`
∆tνf

2

ż

Ω

Dun`1 : Dun`1dx

` ρf∆t

ż

Ω

`

un`1{3 ¨∇
˘

un`1{3 ¨ un`1dx

` ∆t

ż

Ω

pn`2{3

`

∇ ¨ un`2{3 ´∇ ¨ un`1

˘

dx

` ρδ
ż

ΩsX

pun`1 ´ unq ¨ un`1dx

`∆tµs
ż

ΩsX

Fn`1 : ∇Xun`1dX´∆tµs
ż

ΩsX

∇ ¨ un`1dX

` ∆tµs
ż

ΩsX

p∇ ¨ un`1 ´∇n ¨ un`1q dX “ 0,

(5.49)

and the energy estimate relation may be expressed as:

Etotalptn`1q ď Etotalptnq `R
im
n`1 `R

conv
3´step `R

div´p
3´step `R

div
3´step, (5.50)

where

Rconv3´step “ ´∆tρf
ż

Ω

`

un`1{3 ¨∇
˘

un`1{3 ¨ un`1dx (5.51)

Rdiv´p3´step “ ∆t

ż

Ω

pn`2{3

`

∇ ¨ un`1 ´∇ ¨ un`2{3

˘

dx, (5.52)

and Rdiv3´step “ Rdiv2´step.
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5.8.3 4-step splitting scheme

Finally, let v “ un`1 in equation (5.23), (5.27) and (5.44), and choose q “ pn`2{3 in (5.42).

Adding up these four equation gives:

ρf
ż

Ω

pun`1 ´ unq ¨ un`1dx`
∆tνf

2

ż

Ω

Dun`1 : Dun`1dx

` ρf∆t

ż

Ω

`

un`1{3 ¨∇
˘

un`1{3 ¨ un`1dx

` ∆t

ż

Ω

pn`2{3

`

∇ ¨ un`1{3 ´∇ ¨ un`1

˘

dx

´
∆t

2ρf

ż

Ω

∇pn`2{3 ¨∇pn`2{3dx

` ρδ
ż

ΩsX

pun`1 ´ unq ¨ un`1dx

`∆tµs
ż

ΩsX

Fn`1 : ∇Xun`1dX´∆tµs
ż

ΩsX

∇ ¨ un`1dX

` ∆tµs
ż

ΩsX

p∇ ¨ un`1 ´∇n ¨ un`1q dX “ 0,

(5.53)

and the energy estimate is as follows:

Etotalptn`1q ď Etotalptnq `R
im
n`1 `R

conv
4´step `R

div´p
4´step `R

press
4´step `R

div
4´step, (5.54)

where Rconv4´step “ Econv3´step, R
div
4´step “ Rdiv3´step,

Rdiv´p4´step “ ∆t

ż

Ω

pn`2{3

`

∇ ¨ un`1 ´∇ ¨ un`1{3

˘

dx, (5.55)

and

Rpress4´step “
∆t

2ρf

ż

Ω

∇pn`2{3 ¨∇pn`2{3dx. (5.56)

5.9 Summary

In this chapter, we decouple the implicit fully-coupled one-field FDM into several simple explicit

steps using the operator splitting schemes. First, a 2-step splitting scheme is obtained by

decoupling the convection and diffusion steps, such that the non-linear convection equation

could be treated separately, leaving the diffusion equation to be a symmetric Stokes/saddle-point

system. Second, a 3-step splitting is established by further decoupling the above diffusion step,

which introduces a “Degenerate” Stokes equation. Finally, the “Degenerate” Stokes equation

may be further split into a “Pressure Poisson” step and a velocity-update step. In this case,
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the original problem is simplified step by step.

These explicit splitting schemes have been validated systematically by a selection of numer-

ical tests. For the 4-step splitting scheme (projection method) the equal-order element is cheap

and widely used in pure fluid problems [58]. However, we found that the equal-order element

could not preserve energy for our FSI system, while the mixed element could preserve energy.

We actually do not know the reason behind this, which needs further study.

A brief energy estimate for these splitting schemes are presented, which shows a similar

property as the implicit scheme: the energy is essentially non-increasing with some additional

energy terms that are proportional to ∆t. As discussed in Section 3.5, the solution existence

of the implicit scheme (Problem 3.3) may be proved based upon the energy estimate result in

Section 3.4. Similarly the solution existence of the explicit splitting schemes may be proved

based upon the energy estimate demonstrated in Section 5.8. However this will be investigated

in greater detail in the future.



Chapter 6

Further investigations

In this chapter, we present some topics that follow directly from this work, and some topics that

may be worth investigating in the future. In Section 6.1, we prove that the implicit Problem

3.2 and Problem 3.3 are well-posed based upon Assumptions 6.1 to 6.3. In Section 6.2 we

introduce some initial results using a non-Newtonian fluid with the one-field FDM. In Section

6.3, contact problems and a contact model are presented. The formulation of the one-field

FDM is introduced for a truss structure in Section 6.4. Finally the formulation in the case of

a compressible solid is considered in Section 6.5.

6.1 Discussion of the well-posedness of one step of Prob-

lem 3.2 and Problem 3.3

In this section, we focus on the stationary problem corresponding to one step of the Problem

3.2 and consider its well-posedness and discretization in space (one step of the Problem 3.3)

based on the following three assumptions.

Assumption 6.1. We assume a constant density and viscosity for both the fluid and solid,

and further assume that the solid density is not less than the fluid density (ρδ ě 0) and the

solid viscosity is the same as the fluid viscosity (νδ “ 0).

Assumption 6.2. We neglect the convection term for convenience and assume that the bound-

ary force is zero (h̄ “ 0). We also neglect term
ş

Ωsn`1
µsJ´1

n`1∇ ¨ vdx in equation (3.9), which

means µsJ´1
n`1 has been absorbed into the solid pressure ps. As noted in Remark 2.2, this is

not a good idea when implementing on meshes without interface fitting. However we can only

prove the well-posedness based on such an assumption, although we implement the proposed

scheme with this non-linear term
ş

Ωsn`1
µsJ´1

n`1∇ ¨ vdx in equation (3.9).

Assumption 6.3. We assume the map xp¨, tq : ΩsX Ñ Ωst is one-to-one, Lipschitz continuous,

and invertible with Lipschitz inverse. By definition of Lipschitz continuous: @t P r0, T s and

127
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X1,X2 P ΩsX, D k0 ą 0 such that }xpX1, tq´xpX2, tq} ď k0}X1´X2}. By definition of invertible

with Lipschitz inverse [18]: @t P r0, T s and X1,X2 P ΩsX, D k1 ą 0 such that }xpX1, tq ´

xpX2, tq} ě k1}X1 ´X2}.

From the definition of Lipschitz continuous, we have: @X,h P ΩsX,

}xpX` εhq ´ xpXq} ď k0ε}h}, (6.1)

or

}
xpX` εhq ´ xpXq

ε
} ď k0}h}. (6.2)

Let h “ ei (the ith component is 1 and all the other components are 0) and ε Ñ 0, we know

that every row of the deformation matrix F is bounded, i.e.:

}Fi} “ lim
εÑ0

}
xpX` εeiq ´ xpXq

ε
} ď k0 pi “ 1, ¨ ¨ ¨ , dq . (6.3)

Based on the Frobenius norm we use in this thesis, we have

}F}2 “
d
ÿ

i“1

}Fi}
2 ď k2

0d. (6.4)

Similarly, from the definition of Lipschitz inverse we know that every column of F´1 is

bounded, i.e.:

}
“

F´1
‰

i
} ď

1

k1
pi “ 1, ¨ ¨ ¨ , dq , (6.5)

and further

}F´1}2 “

d
ÿ

i“1

}
“

F´1
‰

i
}2 ď

d

k2
1

. (6.6)

We summarize a corollary of Assumption 6.3 as follows.

Corollary 6.1. Both F and F´1 are bounded in L2 pΩsXq and L2 pΩst q respectively under

Assumption 6.3.

Before analyzing the well-posedness, let us rewrite Problems 3.2 by introducing some bilinear

and linear forms as follows. Define the following bilinear forms:

af pu,vq “ α

ż

Ω

u ¨ vdx`
νf

2

ż

Ω

Du : Dvdx, (6.7)

aspu,vq “ β

ż

ΩsX

u ¨ vdX` γ

ż

ΩsX

∇Xu : ∇XvdX, (6.8)

and

bpv, qq “ ´

ż

Ω

q∇ ¨ vdx, (6.9)
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where α “ ρf {∆t, β “ ρδ{∆t and γ “ µs∆t.

Remark 6.1. There would be a term νδ

2

ş

Ωsn`1
Du : Dvdx in the definition of aspu,vq in (6.8)

if we do not assume νδ “ 0, then aspu,vq cannot be regarded as bilinear because the domain

Ωsn`1 changes.

We also define the following linear forms:

`f pvq “ ρf
ż

Ω

ḡ ¨ vdx, (6.10)

and

`spvq “ ρδ
ż

ΩsX

ḡ ¨ vdX´ µs
ż

ΩsX

Fn : ∇XvdX, (6.11)

where ḡ “ 1
∆tun ` g in the above. Let

a pu,vq “ af pu,vq ` as pu,vq , (6.12)

and

`pvq “ `f pvq ` `spvq, (6.13)

then the weak form corresponding to one step of Problem 3.2 with u “ un`1 and p “ pn`1,

using the above notation and Assumptions 6.1 to 6.3, can be stated as:

Problem 6.1. Find u P V, p P P, such that

#

apu,vq ` bpv, pq “ `pvq @v P V
bpu, qq “ 0 @q P P

,

where V “ H1
0 pΩq

d
and P “ L2

0pΩq.

For the rest of this section, let us use the following norms for vector functions and matrix

functions respectively: }u}
2
0,ω “

řd
i“1 }ui}

2
0,ω and }A}

2
0,ω “

řd
i“1

řd
j“1 }Aij}

2
0,ω, and denote

}u}V “ }u}1,Ω.

6.1.1 Well-posedness of Problem 6.1 (one step of Problem 3.2)

Following the standard Stokes problem, the well-posedness of Problem 6.1 relies on the following

three facts: (1) apu,vq and bpv, qq are well-defined bounded bilinear forms; (2) `pvq is a well-

defined bounded linear form, and; (3) apu,vq is coercive. These are proved below.

Lemma 6.1. apu,vq is bounded, i.e., there exists a positive real number Ca, such that @u,v P V,

|apu,vq| ď Ca }u}V }v}V . (6.14)
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Proof. First

|apu,vq| ď α }u}0,Ω }v}0,Ω `
νf

2
}Du}0,Ω }Dv}0,Ω

` β }u}0,ΩsX
}v}0,ΩsX

` γ }∇Xu}0,ΩsX
}∇Xv}0,ΩsX

.

(6.15)

Noticing that

}∇Xu}0,ΩsX
ď }u}1,ΩsX

ď }u}1,Ω , (6.16)

and

}Du}0,Ω ď 2 }∇u}0,Ω ď 2 }u}1,Ω ,

we can observe that (6.14) holds from (6.15), with Ca “ α` β ` 2νf ` γ.

Lemma 6.2. bpv, qq is bounded, i.e., there exists a positive real number Cb, such that @v P V
and @q P P

|bpv, qq| ď Cb }v}V }q}P . (6.17)

Proof. According to (6.9):

|bpv, qq| ď }∇v}0,Ω }q}0,Ω ď }v}V }q}P . (6.18)

Lemma 6.3. `pvq is bounded, i.e., there exists a positive real number C`, such that @v P V,

|`pvq| ď C` }v}V . (6.19)

Proof.

|`pvq| ď ρf }ḡ}0,Ω }v}0,Ω ` ρ
δ }ḡ}0,ΩsX

}v}0,ΩsX
` µs }Fn}0,ΩsX

}∇Xv}0,ΩsX

ď ρs }ḡ}0,Ω }v}0,Ω ` κ }Fn}0,ΩsX
}∇Xv}0,ΩsX

.

We further get (6.19) using relation (6.16), with C` “ ρs }ḡ}0,Ω ` µ
s }Fn}0,ΩsX

.

Lemma 6.4. apu,vq is coercive, i.e., there exists a positive real number ca, such that @u P V,

a pu,uq ě ca }u}
2
V . (6.20)

Proof. According to the definition of apu,vq and assumption β “ ρδ{∆t ě 0:

apu,uq “ af pu,uq ` aspu,uq ě af pu,uq.

Therefore, coercivity of the standard bilinear form af pu,vq from Stokes equation (see [44] or

[24] for proof) guarantees the coercivity of apu,vq.
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The above four lemmas imply the following inf-sup condition and further the well-posedness

result [24, Lemma 12.2.12]:

Proposition 6.1 (Inf-Sup Condition). There exist cb ą 0 such that

inf
qPP

sup
vPV

bpv, qq

}v}V}q}P
ě cb. (6.21)

Proof. The proof can be found in [24, Section 12.2].

Theorem 1. Problem 6.1 has a unique solution pu, pq P Vˆ P.

Proof. The proof is the same as [24, Lemma 12.2.12].

6.1.2 Well-posedness after discretization in space (one step of Prob-

lem 3.3)

The spatially discretized problem corresponding to Problem 6.1 is as follows, which is equivalent

to Problem 3.3 simplified based on Assumptions 6.1 to 6.3.

Problem 6.2. Find uh P Vh, ph P Ph, such that

#

ahpuh,vhq ` bpvh, phq “ `hpvhq @vh P Vh

bpuh, qhq “ 0 @qh P Ph
,

where Vh “ V hpΩhqd, Ph “ LhpΩhq, ah can be expressed as:

ah
`

uh,vh
˘

“ af
`

uh,vh
˘

` as
`

ush,vsh
˘

, (6.22)

and `h can be expressed as:

`hpvhq “ `f pvhq ` `spvshq. (6.23)

where ush “ Pn`1

`

uh
˘

and vsh “ Pn`1

`

vh
˘

.

From the error estimate for interpolation [24, Chapter 4, Corollary 4.4.24], the approxima-

tion (3.15) can be bounded by:

›

›Pn`1

`

uhpxq
˘

´ uhpxq
›

›

1,Ωsn`1

ď Ch
›

›∇uhpxq
›

›

0,Ωsn`1

, (6.24)

where Ch is a positive constant depending on the mesh Ωsh. In order to prove Problem 6.2 is

well-posed, we still need to prove the continuity of ahpuh,vhq and `hpvhq, and the coercivity

of ahpuh,vhq. The main idea is to bound ush and ∇Xush in V, which can be achieved by the

above interpolation error estimate.
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Lemma 6.5. There exists a positive real number c1 such that

›

›ushpxq
›

›

0,ΩsX
ď c1

›

›uhpxq
›

›

1,Ω
. (6.25)

Proof. From (6.24), we get

›

›ushpxq
›

›

1,Ωsn`1

“
›

›Pn`1

`

uhpxq
˘
›

›

1,Ωsn`1

ď
›

›uhpxq
›

›

1,Ωsn`1

`
›

›Pn`1

`

uhpxq
˘

´ uhpxq
›

›

1,Ωsn`1

ď
›

›uhpxq
›

›

1,Ωsn`1

` Ch
›

›∇uhpxq
›

›

0,Ωsn`1

ď p1` Chq
›

›uhpxq
›

›

1,Ω
.

(6.26)

Using the Cauchy-Schwarz inequality, we have

ż

ΩsX

ush : ushdX “

ż

Ωsn`1

J´1ush : ushdx

ď
›

›J´1ush
›

›

0,Ωsn`1

›

›ush
›

›

0,Ωsn`1

ď
›

›J´1
›

›

0,Ωsn`1

›

›ush
›

›

2

0,Ωsn`1

,

(6.27)

and further
›

›ushpxq
›

›

0,ΩsX
ď
›

›J´1
›

›

1{2

0,Ωsn`1

›

›ushpxq
›

›

0,Ωsn`1

. (6.28)

›

›J´1
›

›

1{2

0,Ωsn`1

ď CI (CI is a positive constant) because F´1 is bounded in L2
`

Ωsn`1

˘

due to

Corollary 6.1. Finally we have (6.25) with c1 “ CIp1` Chq.

Lemma 6.6. There exists a positive real number c2 such that

›

›∇Xush
›

›

0,ΩsX
ď c2

›

›uh
›

›

1,Ω
. (6.29)

Proof. According to Cauchy-Schwarz inequality,

ż

ΩsX

∇Xush : ∇XushdX “

ż

Ωsn`1

J´1
`

∇ushF
˘

:
`

∇ushF
˘

dx

ď
›

›J´1∇ushF
›

›

0,Ωsn`1

›

›∇ushF
›

›

0,Ωsn`1

ď
›

›J´1
›

›

0,Ωsn`1

›

›∇ushF
›

›

2

0,Ωsn`1

.

(6.30)

Therefore:

›

›∇Xush
›

›

0,ΩsX
ď
›

›J´1
›

›

1{2

0,Ωsn`1

}F}0,Ωsn`1

›

›∇ush
›

›

0,Ωsn`1

ď
›

›J´1
›

›

1{2

0,Ωsn`1

}J}
1{2
0,ΩsX

}F}0,ΩsX

›

›∇ush
›

›

0,Ωsn`1

ď CICJCF
›

›∇ush
›

›

0,Ωsn`1

ď CIJF
›

›ush
›

›

1,Ωsn`1

.

(6.31)

In the above, CIJF “ CICJCF , }J}
1{2
0,ΩsX

ď CJ (CJ is a positive constant) and }F}0,ΩsX
ď CF
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thanks to Corollary 6.1. Using (6.26), we finally have (6.29) with c2 “ CIJF p1` Chq. The

following inequality for a matrix norm is also used in the above proof.

}AB}0,Ωsn`1
ď }A}0,Ωsn`1

}B}0,Ωsn`1
, (6.32)

based upon definition (Frobenius norm): }¨}
2
0,ω “

řd
i“1

řd
j“1 }¨ij}

2
0,ω. Let A “ raijs “ rais and

B “ rbijs “ rbjs, where ai is the ith row vector of A and bj is the jth column vector of B, we

briefly validate (6.32) as follows. Omit the subscript for convenience,

}AB}
2
“

d
ÿ

i“1

d
ÿ

j“1

d
ÿ

k“1

paikbkjq
2
“

d
ÿ

i“1

d
ÿ

j“1

pai ¨ bjq
2
ď

d
ÿ

i“1

d
ÿ

j“1

|ai|
2
|bj |

2

“

d
ÿ

i“1

|ai|
2

d
ÿ

j“1

|bj |
2
“

˜

d
ÿ

i“1

d
ÿ

j“1

a2
ij

¸˜

d
ÿ

i“1

d
ÿ

j“1

b2i

¸

“ }A}
2
}B}

2
.

(6.33)

From the definition of aspu,vq (6.8) and `spvq (6.11), using the above two lemmas, we have

the following two corollaries.

Corollary 6.2. aspush,vshq is bounded in Vh, i.e., there exists a positive real number Chs ,

such that @uh,vh P Vh,
ˇ

ˇaspush,vshq
ˇ

ˇ ď Chs
›

›uh
›

›

V

›

›vh
›

›

V . (6.34)

Corollary 6.3. `spvshq is bounded in Vh, i.e., there exists a positive real number Ch` , such

that @vh P Vh,
ˇ

ˇ`spvshq
ˇ

ˇ ď Ch`
›

›vh
›

›

V . (6.35)

Lemma 6.7. ahpuh,vhq is coercive, i.e., there exists a positive real number cha, such that

@uh P Vh,

ah
`

uh,uh
˘

ě cha
›

›uh
›

›

2

V . (6.36)

Proof. This proof follows the same procedure as the proof for Lemma 6.4 by changing apu,uq

to ahpuh,uhq.

Lemma 6.8. ahpuh,vhq is bounded, i.e., there exists a positive real number Cha , such that

@uh,vh P Vh,
ˇ

ˇahpuh,vhq
ˇ

ˇ ď Cha
›

›uh
›

›

V

›

›vh
›

›

V . (6.37)

Proof. By the Cauchy-Schwarz inequality, af puh,vhq is a bounded bilinear form. Using the

definition (6.22), ahpuh,vhq is bounded due to (6.34).

Lemma 6.9. `hpvhq is bounded, i.e., there exists a positive real number Ch` , such that @vh P Vh,

ˇ

ˇ`hpvhq
ˇ

ˇ ď Ch`
›

›vh
›

›

V . (6.38)
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Proof. By the Cauchy-Schwarz inequality, `f pvhq is a bounded linear form. According to the

definition (6.23), `hpvhq is bounded due to (6.35).

We choose the P2{P1 or P2{pP1 ` P0q element which satisfies the following discrete inf-sup

condition [16][24, Section 12.6]:

Proposition 6.2 (Discrete Inf-Sup Condition). There exist chb ą 0 such that

inf
qhPPh

sup
vhPVh

bpvh, qhq

}vh}V}qh}P
ě chb . (6.39)

Using the above three lemmas (6.7 - 6.9) and the discrete inf-sup condition, we further have

the following optimal error estimate result [24, Corollary 12.5.18].

Theorem 2. Let pu, pq and puh, phq be the solution pairs of Problem 6.1 and Problem 6.2

respectively, then there is a constant c depending on Cha , cha and chb such that

›

›u´ uh
›

›

V `
›

›p´ ph
›

›

P ď c

ˆ

inf
vPVh

}u´ v}V ` inf
qPPh

}p´ q}P

˙

. (6.40)

6.2 Application to a non-Newtonian fluid

In all of the examples studied up to this point we have considered only incompressible Newtonian

fluids. Such a restriction is not necessary however, as we demonstrate in this section. We shall

consider the Giesekus model for a viscoelastic fluid [35, 75], in which an additional viscoelastic

stress s is added to the Newtonian fluid model (2.8), i.e.:

σ “ νfDu´ pI` s, (6.41)

where s is given by:

λ
Bs

Bt
` λu ¨∇s “ λ

“`

∇Tu
˘

s` s p∇uq
‰

` νp
`

∇u`∇Tu
˘

´

ˆ

s`
αpλ

νp
s2

˙

, (6.42)

with λ being the relaxation time, νp being the polymer viscosity and αp being the mobility

parameter. Notice that the Giesekus model is reduced to the Oldroyd-B model when αp “ 0

[75].

We shall use a splitting scheme to solve equation (6.42) for stress s [65], which is similar to

the 2-step splitting scheme introduced in Section 5.1. After computing the fluid velocity un`1

at time tn`1, then sn`1 is computed from un`1 and sn using the following two-step scheme.

– Step 1:
sn`1{2 ´ sn

∆t
` un`1 ¨∇sn`1{2 “ 0, (6.43)
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– Step 2:

λ
sn`1 ´ sn`1{2

∆t
“ λ

“`

∇Tun`1

˘

sn`1 ` sn`1 p∇un`1q
‰

` νp
`

∇un`1 `∇Tun`1

˘

´

ˆ

sn`1 `
αpλ

νp
s2
n`1

˙

.
(6.44)

In the second step we linearize s2
n`1 as 2sn`1{2sn`1 ´ s2

n`1{2, and use the Least-squares

method to solve both steps (see Section 5.1.1 for an introduction of the Least-squares method).

6.2.1 Test13-2D (one particle): A single freely suspended particle in

Oldroyd-B shear-flow

To illustrate this generalization we consider two examples. The first of these introduces a

freely suspended particle in a square computational domain as shown in Figure 6.1 (which also

illustrates the driving boundary conditions). The rigid particle is simulated using a large µs “

104 in the neo-Hookean solid model, and the fluid is described by Stokes equation with νf “

νp “ 0.5, αp “ 0 (Oldroyd-B) and different values of λ presented in Table 6.1. A background

mesh and the corresponding particle mesh are shown in Figure 6.2. Two different particle sizes

are tested in this example. The angular velocity as a function of time and Weissenberg number

are plotted in Figure 6.3 and 6.4 respectively, which has good agreement with the results in

[147].

Figure 6.1: Computational domain for Test13-2D (one particle) in Section 6.2.1.

6.2.2 Test14-2D (two particles): Particle-particle interaction

In this second test we consider two particles interacting with each other [147, 148]. The com-

putational domain, boundary conditions and initial location of the particles are depicted in
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λ Steady state velocity for r “ 0.1 Steady state velocity for r “ 0.05
0.1 0.490 0.497
0.2 0.487 0.493
0.3 0.481 0.487
0.4 0.474 0.480
0.5 0.467 0.471
0.6 0.458 0.462
0.7 0.449 0.452
0.8 0.439 0.442

Table 6.1: Fluid properties and results of two different radii of the particle for Test13-2D (one
particle) in Section 6.2.1. The Weissenberg number Wi “ λăuą

H “ λ¨1
1 “ λ.

(a) Background mesh (9465 nodes, minimum mesh size:
0.004).

(b) Solid mesh (355nodes, minimum mesh size: 0.004).

Figure 6.2: Meshes used for the simulation of Test13-2D (one particle) in Section 6.2.1.

Figure 6.5. Three different values for the initial distance of separation s are tested in order to

demonstrate three different behaviours of the particles. The specific parameters are displayed

in Table 6.2.

Fluid Particle
H “ 1.0 r “ 0.05
L “ 4.0 µs “ 104

s “ 0.07, 0.075 or 0.08 λ “ 0.8
νf “ 0.5 νp “ 0.5

Table 6.2: Fluid and particle properties and domain size for Test14-2D (two particles) in
Section 6.2.2.

Two particles are initially located at the left and right side in the domain as shown in Figure

6.5. Snapshots of adaptive meshes with distribution of pressure are shown in Figure 6.6, and
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Figure 6.3: Angular velocity as a function of time for
different Weissenberg numbers (r “ 0.05). Test13-2D (one

particle) in Section 6.2.1.

Figure 6.4: Angular velocity of a steady state as a
function of Weissenberg number for two different particle

sizes. Test13-2D (one particle) in Section 6.2.1.

Figure 6.5: Computational domain for Test14-2D (two particles) in Section 6.2.2.

the meshes used by the two particles may be observed in Figure 6.7. With the three different

values of initial separation of the two particles, three different behaviours are indeed observed.

Trajectories of the two particles at their middle points are plotted in Figure 6.8. We successfully

capture the “tumbling” behaviour which only occurs for non-Newtonian fluids.

6.3 Problems with contact

In this section we discuss how contact between solids may be treated within the framework of

the one-field FDM. Before discussing a general contact model in Section 6.3.2, we first discuss

the current situation in which there is no explicit contact algorithm.

6.3.1 Simulation without an explicit contact algorithm

It is possible to simulate many FSI problems without the explicit use of a contact algorithm

[54]. Indeed, previous examples already considered in this thesis involve solid-solid interactions
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(a) Snapshots at t “ 5.

(b) Snapshots at t “ 48.

Figure 6.6: Distribution of pressure on the adaptive background mesh in the case of s “ 0.075 for Test14-2D (two
particles) in Section 6.2.2.

Figure 6.7: Distribution of pressure on the solid mesh in the case of s “ 0.075 for Test14-2D (two particles) in
Section 6.2.2.

even though no contact model has been incorporated. These include the second of the non-

Newtonian problems in Section 6.2, as well as Test7-2D (cavity flow with a solid disc) and

Test10-2D (multiple solids in a channel with gravity). Hence we take a close look at the

performance of our algorithm in another example involving multiple solids. In this case we use

a variant of the lid-driven cavity problem.

The background domain is the same as that in Section 4.5.4 (Figure 4.31) with the same

boundary conditions, however there are six discs located in the cavity as shown in Figure 6.9.

The fluid has a density of ρf “ 1 and viscosity of νf “ 0.01. All the solids have the same

density as the fluid, but have different µs as follows. Green discs (located at p0.3, 0.5q, p0.7, 0.6q
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(a) “Pass” behaviour with s “ 0.08.

(b) “Tumbling” behaviour with s “ 0.075.

(c) “Return” behaviour s “ 0.07.

Figure 6.8: Trajectories of the two particles for the Test14-2D (two particles) in Section 6.2.2, using a radius 0.05
and a Weissenberg number of 0.8. Three different behaviours corresponding to three different initial separations.

and p0.8, 0.2q) have µs “ 1; the blue disc (located at p0.5, 0.45q) has µs “ 5; and the pink discs

(located at p0.4, 0.3q and p0.7, 0.35q) have µs “ 10. We use a time step of ∆t “ 1.0 ˆ 10´3.

The background mesh is same as that in Figure 4.32, and the solid meshes may be seen from

Figure 6.10. We observe from Figure 6.10 (a) and (b) that a large pressure is built up when
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two solid discs approach one another. This pressure has the effect of stopping the two discs

colliding with each other, however the cost of this approach is that very small time steps are

generally necessary.

Figure 6.9: Multiple discs in a cavity flow ([0,1]ˆ[0,1]).

6.3.2 A general contact model

A potentially more robust approach to managing solid-solid interactions within our solver would

be to incorporate an explicit contact model. When a solid contacts with a rigid surface (such

as ΓD) or contacts with another solid, the boundary Γt in Figure 2.1 may be decomposed into

two parts: Γt “ Γtc Y Γt0, where Γtc denotes the contacted boundary and Γt0 denotes the

free/non-contacted boundary. Then the corresponding weak form (3.2) becomes:

ż

Ωft

ρf
du

dt
¨ vdx`

1

2

ż

Ωft

σf : Dvdx`

ż

Γt0

σfns ¨ vdx

`

ż

Ωst

ρs
du

dt
¨ vdx`

1

2

ż

Ωst

σs : Dvdx´

ż

Γt0

σsns ¨ vdx´

ż

Γtc

σsns ¨ vdx

“

ż

Ωft

ρfg ¨ vdx`

ż

Ωst

ρsg ¨ vdx`

ż

ΓN

h̄ ¨ vdΓ.

(6.45)

Remark 6.2. If Γt contacts with ΓD, it makes no difference to the boundary condition on ΓD.

If Γt contacts with ΓN , then σsns “ h̄, and
ş

ΓN
h̄ ¨ vdΓ changes to

ş

ΓN´Γtc
h̄ ¨ vdΓ, which is

also equivalent to deleting the term
ş

Γtc
σsns ¨ vdx in the above equation (6.45).

Generally
ş

Γtc
σsns ¨vdx cannot be known in advance, hence we replace σsns by a Lagrange
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(a) t “ 4

(b) t “ 5.6

Figure 6.10: Distribution of pressure and velocity norm on the deformed solid for multiple discs in a cavity flow.

multiplier λ as an unknown, which may be determined by the contact condition. A specific

contact condition depends on what kind of contact model is used. We shall not go into details

of contact models here (see [132, 143, 154]). Instead, we simply assume a distance function

c puq exists between the solid and the rigid surface (or two solids), and contact happens when

c puq ď 0. Consequently the contact problem may be expressed as follows (corresponding to

Problem 3.1 with no contact) [22, 67].

Problem 6.3. Given u0 and Ωs0, for t P p0, T s, find uptq P
 

uD `H
1
0 pΩq

d
(

, pptq P L2
0pΩq,

λ P H1{2 pΓtcq
d
, Ωst and Γtc, such that @δu P H1

0 pΩq
d, @δp P L2pΩq, @δλ P

´

H1{2 pΓtcq
d
¯1

, the
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(c) t “ 10. (d) t “ 15

(e) t “ 26.6 (f) t “ 43

Figure 6.10 (continued).

following three equations hold:

ż

Ω

ρf
Bu

Bt
¨ δudx`

ż

Ω

ρf pu ¨∇qu ¨ δudx` 1

2

ż

Ω

νfDu : Dδudx´

ż

Ω

p∇ ¨ δudx

`

ż

ΩsX

ρδ
Bu

Bt
¨ δudX`

1

2

ż

Ωst

νδDu : Dδudx`

ż

ΩsX

µsF : ∇XδudX´

ż

Γtc

λ ¨ δudx

“

ż

Ωst

µsJ´1∇ ¨ δudx`
ż

Ω

ρfg ¨ δudx`

ż

ΩsX

ρδg ¨ δudX`

ż

ΓN

h̄ ¨ δudΓ,

(6.46)

with λ ě 0.

´

ż

Ω

δp∇ ¨ udx “ 0, (6.47)
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and

´

ż

Γtc

δλ ¨ c puq “ 0. (6.48)

In the above,
 

uD `H
1
0 pΩq

d
(

is the subspace of H1pΩqd which satisfies the Dirichlet boundary

condition (2.12).

We could use a splitting scheme to solve the above Problem 6.3. For example, as with the

previous 3-step splitting scheme we obtain the following.

(1) Convection step:

ż

Ω

un`1{3 ´ un

∆t
¨ δudx`

ż

Ω

`

un`1{3 ¨∇
˘

un`1{3 ¨ δudx “ 0. (6.49)

(2.1) “Degenerate” Stokes step:

ρf
ż

Ω

un`2{3 ´ un`1{3

∆t
¨ δudx´

1

2

ż

Ω

pn`2{3∇ ¨ δudx “ 0, (6.50)

and

´

ż

Ω

δp∇ ¨ un`2{3dx “ 0. (6.51)

(2.2) Lagrange multiplier step:

ρδ
ż

ΩsX

u˚n`2{3 ´ un`2{3

∆t
¨ δudx´

ż

Γtc

λn`1 ¨ δudx “ 0, λn`1 ě 0, (6.52)

and

´

ż

Γtc

δλ ¨ c
´

u˚n`2{3

¯

“ 0. (6.53)

(3) Diffusion step:

ρf
ż

Ω

un`1 ´ un`2{3

∆t
¨ δudx`

νf

2

ż

Ω

Dun`1 : Dδudx

` ρδ
ż

ΩsX

un`1 ´ u˚n`2{3

∆t
¨ δudx` µs∆t

ż

ΩsX

∇Xun`1 : ∇XδudX

“ µs
ż

Ωsn

J´1
n ∇ ¨ δudx´ µs

ż

ΩsX

Fn : ∇XδudX` ρf
ż

Ω

g ¨ δudx

` ρδ
ż

Ωsn

g ¨ δudx`

ż

ΓN

h̄ ¨ δudΓ`
1

2

ż

Ω

pn`2{3∇ ¨ δudx.

(6.54)

Although the above step (2.2) leads to a saddle point equation with constraint, the problem

size is relatively small. We leave the implementation of the above scheme (in particular step

(2.2)) for future work.

Remark 6.3. Notice that u˚n`2{3 is only defined in the solid domain, which is different from
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usn`2{3 “ P
`

un`2{3

˘

. The former has the information of the Lagrange multiplier/contact force,

while the latter does not.

6.4 The case of a truss structure

Truss structures are composed of rod elements, which can only carry axial tension and compres-

sion. An example is shown in Figure 6.11, in which there are 11 rods and 7 connections/nodes.

A rod element may be described locally by a 1D equation. Let ξ be the coordinate along the

rod, then the equilibrium equation of the rod may be described as:

Figure 6.11: An example of truss structure.

ρs
Buξ
Bt

“ A
Bσξ
Bξ

` ρsgpξq, (6.55)

where A is the area of the cross section, ρs is the density, uξ and σξ are the velocity and stress

along the rod respectively, and gpξq is a distributed force per unit mass along the rod. The

weak form of (6.55), with a test function v, may be expressed as:

ρs
ż li

0

Buξ
Bt

vdξ `A

ż li

0

σξ
Bv

Bξ
dξ “ ρs

ż li

0

gpξqvdξ `A pσξvq
li
0 , (6.56)

where li is the length of the ith rod in the truss structure. Considering all the rods of the truss

structure and using a linear elastic model

σξ “ E
Bdξ
Bξ

(6.57)

(dξ being the displacement), the weak form of the truss problem may be expressed as:

ρs
Ne
ÿ

i“1

ż li

0

Buξ
Bt

vdξ `AE
Ne
ÿ

i“1

ż li

0

Bdξ
Bξ

Bv

Bξ
dξ “ ρs

Ne
ÿ

i“1

ż li

0

gpξqvdξ `
Nc
ÿ

i“1

Pivi. (6.58)

In the above, E is the elastic modulus, Pi is the concentrated force on the connections, Ne and

Nc are the number of rod elements and connections in the truss structure respectively. Finally,

the one-field formulation for a fluid-truss interaction system may be expressed as the following
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problem.

Problem 6.4. Given u0 and Ωs0, find uptq P
 

uD `H
1
0 pΩq

d
(

, pptq P L2
0pΩq and Ωst , such that

@v P H1
0 pΩq

d, @q P L2pΩq, the following two equations hold:

ż

Ω

ρf
Bu

Bt
¨ vdx`

ż

Ω

ρf pu ¨∇qu ¨ vdx` 1

2

ż

Ω

νfDu : Dvdx´

ż

Ω

p∇ ¨ vdx

ρδ
Ne
ÿ

i“1

ż li

0

Buξ
Bt

vdξ `AE
Ne
ÿ

i“1

ż li

0

Bdξ
Bξ

Bv

Bξ
dξ

“

ż

Ω

ρfg ¨ vdx`

ż

ΓN

h̄ ¨ vdΓ` ρδ
Ne
ÿ

i“1

ż li

0

gpξqvdξ `
Nc
ÿ

i“1

Pivi,

(6.59)

and

´

ż

Ω

q∇ ¨ udx “ 0. (6.60)

In the above, uD is a suitable extension of the prescribed Dirichlet data ū on the boundary ΓD,

and
 

uD `H
1
0 pΩq

d
(

is the subspace of H1pΩqd which satisfies the Dirichlet boundary condition

(2.12).

Remark 6.4. After time discretization, the displacement dξ could be expressed in terms of

velocity as with previous Section 3.2, although it is not necessary to go into details here again.

Remark 6.5. In order to implement the formulation (6.59) by the finite element method, we

have to do a coordinate transformation. Taking the computation of term AE
řNe
i“1

şli
0
Bdξ
Bξ

Bv
Bξ dξ

as an example: after expressing dξ in terms of uξ, we actually need to compute the integral
şli
0
Buξ
Bξ

Bv
Bξ dξ, which gives the following term.

«

şli
0
Bφ1

pξq
Bξ

Bφ1
pξq
Bξ dξ

şli
0
Bφ2

pξq
Bξ

Bφ1
pξq
Bξ dξ

şli
0
Bφ1

pξq
Bξ

Bφ2
pξq
Bξ dξ

şli
0
Bφ2

pξq
Bξ

Bφ2
pξq
Bξ dξ

ff˜

u1
ξ

u2
ξ

¸

,

where ukξ and φkpξq are the velocity variable and its shape function defined on the kth (k “ 1, 2)

node of element r0, lis respectively. The above stiffness matrix is computed on a local coordinate

ξ, which has to be transformed to the global coordinate system x, so that it can be assembled to

the final global matrix. See [94, 162] for more discussion about this coordinate transformation.

Remark 6.6. This approach may be extended to other structures such as a beam, which can

also carry shear and bending forces. These forces are not only related to the node displacements

of an element, but also related to the geometry of the element, such as the angle of rotation.

Since we do not solve for the angles of rotation as variables, the shear and bending forces may

be built into the right-hand side of equation (6.59) as a function of the angle of rotation. This

may be a topic for future studies.
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6.5 Extension to the case of a compressible solid

First, we argue that for the two-mesh methods it is not reasonable to use a compressible solid

model if one solves ∇ ¨ u “ 0 in the whole domain Ω as shown in Figure 2.1, although there

are papers which have done this [70, 156, 157]. The reason is as follows: no matter whether an

interpolation [156, 157] or a Lagrange multiplier [70] is used, the ultimate purpose is to constrain

the velocity on the solid mesh (say us) to be the same as the velocity on the background mesh

u, i.e. u “ us in the fictitious domain (the domain on the background covered by the solid

domain Ωst ). This is always a contradiction because ∇ ¨ u “ 0 while ∇ ¨ us ‰ 0 (compressible

solid). Let us then consider whether it is possible to only solve ∇ ¨ u “ 0 in Ω´ Ωst .

We consider a compressible neo-Hookean solid model, as described by the constitutive equa-

tion (2.28). There two major differences compared with the incompressible case: (1) the incom-

pressibility condition (2.7) only holds in the fluid domain Ωft “ Ω´Ωst ; (2) there is no pressure

defined in Ωst , instead the last term in equation (2.28) (J´1λslnpJq) will replace the pressure

term. Based upon these two points and the weak formulation of the incompressible case (Prob-

lem 3.1), the weak formulation of the one-field FDM, using a compressible neo-Hookean solid,

may be expressed as the following problem.

Problem 6.5. Given u0 and Ωs0, find uptq P
 

uD `H
1
0 pΩq

d
(

, pptq P L2
0pΩq and Ωst , such that

@v P H1
0 pΩq

d, @q P L2pΩq, the following two equations hold:

ż

Ω

ρf
Bu

Bt
¨ vdx`

ż

Ω

ρf pu ¨∇qu ¨ vdx` 1

2

ż

Ω

νfDu : Dvdx´

ż

Ω

p∇ ¨ vdx

`

ż

ΩsX

ρδ
Bu

Bt
¨ vdX`

1

2

ż

Ωst

νδDu : Dv `

ż

ΩsX

µsF : ∇XvdX

“

ż

Ωst

µsJ´1∇ ¨ vdx ´
ż

Ωst

`

p` J´1λslnpJq
˘

∇ ¨ vdx

`

ż

Ω

ρfg ¨ vdx`

ż

ΩsX

ρδg ¨ vdX`

ż

ΓN

h̄ ¨ vdΓ,

(6.61)

and

´

ż

Ω

q∇ ¨ udx “ ´

ż

Ωst

q∇ ¨ udx . (6.62)

In the above, uD is a suitable extension of the prescribed Dirichlet data ū on the boundary ΓD,

and
 

uD `H
1
0 pΩq

d
(

is the subspace of H1pΩqd which satisfies the Dirichlet boundary condition

(2.12).

Remark 6.7. There are two additional terms (boxed) in the above problem compared with

Problem 3.1, both of which are zero in the incompressible case. The pressure in the solid

domain Ωst (p|Ωst
) may be interpreted as an extension of the fluid pressure from domain Ωft . By

comparing expression (2.28) and (2.29) we know pressure p|Ωst
and the term J´1λslnpJq could
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be canceled out with each other for the incompressible neo-Hookean solid, but however cannot

in the compressible case.

The above formulation (6.61) and (6.62) looks plausible at first inspection, however the final

linear system after discretization will be singular because the values of the matrix correspond-

ing to the pressure variables in domain Ωst will be zero. We therefore leave this for further

investigation.
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Chapter 7

Conclusions

Reviewing problems involving fluid-structure interactions (FSI), the crucial aspect is how to

deal with the interface between the fluid and solid. There is little doubt that an interface-fitted

mesh is always the best (at least in terms of accuracy), however creating an interface-fitted mesh

is not cheap at all, especially in three dimensions. In addition, an interface-fitted mesh cannot

guarantee a stable simulation automatically: design of the numerical scheme is highly signifi-

cant. Therefore we used two meshes without interface fitting. Recently monolithic schemes have

been regarded as the most robust approach in the area of fluid-structure interaction. Therefore,

we adopted the monolithic idea and solve the fluid and solid equation in one system.

Let us recall our initial motivation (Section 1.3): we aim to design a general FEM scheme

for FSI problems that can

– cheaply and accurately simulate large solid deformation,

– simulate FSI problems with a wide range of physical parameters.

The utilization of the two meshes is very convenient and efficient for large deformation, and

the accuracy can be increased by local mesh refinement with hanging nodes (cheaper than full

remeshing) near the interface, although the algorithm does not rely on this. The refinement

can be carried out based on a general posteriori error estimate.

The proposed scheme is similar to the classical IFEM scheme, but we move all of the solid

information to the left-hand side. What we achieve is that a range of FSI problems, from very

soft solids to very hard solids, can be simulated in this scheme (whereas the classical IFEM

methods are usually only effective for very soft solids). We have not adopted a name like

“improved IFEM” or “modified IFEM”. One reason is that these terms have already been used

in the literature for other methods. A further reason is that the formulation of the proposed

scheme is very similar to the one used in the Fictitious Domain Methods (FDM).

In this thesis, the one-field FDM is introduced following a thorough review of the existing

numerical approaches. Specific implementations of the proposed approach, including implicit

149
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and explicit schemes, are presented with a systematic validation using multiple numerical ex-

amples. To close this thesis, we would like to summarize the achievements presented in previous

chapters, and then point out some open problems that are worth investigating in the future.

7.1 Achievements of this thesis

In this section we briefly summarize the achievements that have been made in this thesis.

1. We thoroughly reviewed the finite element methods for FSI problems: introduced the

details of formulations for these methods, discussed their advantages and disadvantages,

and presented a complete categorization of the existing approaches.

2. We introduced a novel method for general FSI problems: presented the finite element

weak formulation and discretization in time and space, analyzed the stability by energy

estimate, and gave an initial proof of the well-posedness based upon some assumptions.

This proposed method: extends the immersed finite element method (IFEM); can natu-

rally handle the case of different densities (between fluid and solid) and permits a larger

time step than the classical explicit IFEM (equivalent to an implicit IFEM but without

requiring sub-iteration for convergence); simplifies the three (or four)-field fictitious do-

main method using distributed Lagrange multiplier (FDM/DLM); and only solve for one

velocity field in the whole domain. In summary, the proposed one-field FDM combines the

advantages of IFEM and FDM/DLM: efficiency of IFEM and robustness of FDM/DLM.

3. We implemented the proposed one-field FDM by a fully implicit scheme first, and then

followed by three different types of explicit splitting schemes. We systematically tested

these schemes, compared the three types of splitting schemes and discussed their pros

and cons, by a selection of numerical examples including several benchmarks in the FSI

literature.

7.2 Further work based on the proposed method

In this section we present some open problems that are worth studying in the future.

1. We do not know why the equal-order element for the 4-step splitting scheme does not

preserve energy (or converge as ∆t Ñ 0), while the mixed element does (see Section

5.6 and 5.9). In the future, we may start to investigate this problem by looking at the

equal-order element for the implicit scheme with stabilization, then try to understand the

equal-order element for the 4-step splitting scheme.

2. When implementing the one-field FDM based on the d-scheme and integrating in the

current domain, the iterative solver struggles to converge. However, when implementing
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the one-field FDM based on the F -scheme and integrating in the reference domain the

same iterative solver works very well. We are not clear the reason behind this at the

moment, but the matrix structure behind these two schemes is worth further study.

3. In Section 4.5, we found that the proposed scheme could be unstable when the solid

viscosity is smaller than the fluid viscosity (νδ ă 0). For an IFEM method in [157], the

author ignored the fluid stress within the solid domain, which is equivalent to νδ “ 0. For

a FDM method in [18], the author only considered a constant viscosity through the whole

domain Ω when analyzing the problem, although a general formulation was presented

at the beginning. The same author in [17] directly assumes σ “ σs ` σf (equivalent

to νs “ νf or νδ “ 0) in Ωst at the beginning of the paper. For a FDM method in

[150], it was also found that the fluid stress integral in the solid domain was unimportant.

An interesting question therefore is whether all two-mesh methods have a stability issue

when νδ ă 0 and ∆tÑ 0. We have not found the answer in the literature, and this is an

interesting question about the general two-mesh FSI methodology for future study.

4. We mentioned, in Section 4.6 and Remark 5.5, that for the tests of a thin solid interacting

with a fluid (Test8-2D: a leaflet and Test9-2D: a flag), the iterative linear solver (see

Section 4.2) fails to converge when using the P2{pP1 ` P0q element. It may be because

too many unknowns P0 have been added to the domain (we know the pressure is only

discontinuous across the thin solid). However it is worth investigating the matrix structure

to find the exact reason behind this.
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Appendices
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Appendix A

Implementation of the one-field

FDM by updating solid stress

As discussed at the beginning of Chapter 5, the F-scheme (updating the deformation tensor F

as illustrated in formula (3.8) or (3.12)) does not converge (the mesh becomes distorted at some

stage) for Test8-2D (leaflet). Alternatively we could also update the deviatoric part of the solid

stress σ (σ-scheme) as discussed in this appendix, which converges for the above test. We have

not thoroughly compared the F-scheme and σ-scheme in this thesis (this could form a future

work), however from this test it can be seen that there is a numerical difference between these

two schemes although mathematically they are the same. In order to obtain the σ-scheme, we

first use (3.8) and replace term

ż

ΩsX

µsFn : ∇XvdX`∆t

ż

ΩsX

µs∇Xun`1 : ∇XvdX (A.1)

in equation (3.9) by

ż

ΩsX

µsFn`1 : ∇XvdX “

ż

Ωsn`1

µsJ´1
n`1Fn`1F

T
n`1 : ∇vdx “

ż

Ωsn`1

J´1
n`1τ

s
n`1 : ∇vdx. (A.2)

For an explicit scheme the above integral may be carried out in the known domain Ωsn, and the

derivative may be taken with respect to the previous coordinate xn. That is to say integral

(A.2) will be replaced by
ż

Ωsn

J´1
n τ sn`1 : ∇nvdx, (A.3)

where ∇np¨q “
Bp¨q

Bxn
, and τ sn`1 may also be computed based on xn as follows:

τ sn`1 “ µs
`

∇Xxn`1∇T
Xxn`1 ´ I

˘

. (A.4)
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Using a chain rule, the last equation can also be expressed as:

τ sn`1 “ µs
`

∇nxn`1∇Xxn∇T
Xxn∇T

nxn`1

˘

´ µsI

` µs
`

∇nxn`1∇T
nxn`1

˘

´ µs
`

∇nxn`1∇T
nxn`1

˘

(A.5)

or

τ sn`1 “ µs
`

∇nxn`1∇T
nxn`1 ´ I

˘

` µs∇nxn`1

`

∇Xxn∇T
Xxn ´ I

˘

∇T
nxn`1,

(A.6)

and then τ sn`1 can be expressed based upon the previous coordinate xn as follows:

τ sn`1 “ µs
`

∇nxn`1∇T
nxn`1 ´ I

˘

` µs∇nxn`1τ
s
n∇T

nxn`1. (A.7)

Using xn`1´xn “ ∆tun`1 which is the displacement at the current step, the last equation can

finally be expressed as:

τ sn`1 “ µs∆t
`

∇nun`1 `∇T
nun`1 `∆t∇nun`1∇T

nun`1

˘

` τ sn

`∆t2∇nun`1τ
s
n∇T

nun`1 `∆t∇nun`1τ
s
n `∆tτ sn∇T

nun`1.
(A.8)

There are two nonlinear terms in the last equation, which may be linearized as follows:

∇nun`1∇T
nun`1 “ ∇nun`1∇T

nun `∇nun∇T
nun`1 ´∇nun∇T

nun (A.9)

and

∇nun`1τ
s
n∇T

nun`1 “ ∇nun`1τ
s
n∇T

nun `∇nunτ
s
n∇T

nun`1 ´∇nunτ
s
n∇T

nun. (A.10)

There should be no theoretical differences between updating the solid deformation F and

updating the solid deviatoric stress τ s. However the former is an unsymmetric tensor and

the latter is a symmetric tensor, and updating an unsymmetric tensor may be less accurate

than updating a symmetric tensor [110]. This may be the reason why updating F leads to a

distorted solid mesh for Test8-2D (leaflet). A scheme updating the solid displacement is also

introduced in [67, 110], and we discuss this scheme in the context of the proposed one-field

FDM in Appendix F.



Appendix B

Assembling the global matrix

and right-hand side vector

Using two space dimensions as an example in this appendix, we present the details of assembling

the global mass matrix, stiffness matrix and the right-hand side vector in Section 4.2.

The matrix

M “ ρf

«

M11

M22

ff

(B.1)

is the velocity mass matrix of the fluid, where

rM11skm “ rM22skm “

ż

Ωh
ϕkϕmdx, pk,m “ 1, 2, ¨ ¨ ¨Nu `Nu

Dq . (B.2)

The matrix

Ms “ ρδ

«

Ms
11

Ms
22

ff

(B.3)

is the velocity mass matrix of the solid, where

rMs
11skm “ rM

s
22skm “

ż

ΩshX

ϕskϕ
s
mdX, pk,m “ 1, 2, ¨ ¨ ¨Nsq . (B.4)

K is the stiffness matrix of the fluid:

K “ νf

«

K11 K12

K21 K22

ff

, (B.5)

where

rK11skm “ 2

ż

Ωh

ˆ

Bϕk
Bx1

Bϕm
Bx1

˙

dx`

ż

Ωh

ˆ

Bϕk
Bx2

Bϕm
Bx2

˙

dx, (B.6)
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rK22skm “ 2

ż

Ωh

ˆ

Bϕk
Bx2

Bϕm
Bx2

˙

dx`

ż

Ωh

ˆ

Bϕk
Bx1

Bϕm
Bx1

˙

dx, (B.7)

rK12skm “

ż

Ωh

Bϕk
Bx1

Bϕm
Bx2

dx, (B.8)

rK21skm “ rK12smk “

ż

Ωh

Bϕk
Bx2

Bϕm
Bx1

dx, (B.9)

and k,m “ 1, 2, ¨ ¨ ¨Nu.

Ks is the stiffness matrix of the solid:

Ks “

«

Ks
11 0

0 Ks
22

ff

, (B.10)

where

rKs
11skm “ 2νδ

ż

Ωsh

ˆ

Bϕsk
Bx1

Bϕsm
Bx1

˙

dx` νδ
ż

Ωsh

ˆ

Bϕsk
Bx2

Bϕsm
Bx2

˙

dx

` µs∆t

ż

ΩshX

ˆ

Bϕsk
Bx1

Bϕsm
Bx1

`
Bϕsk
Bx2

Bϕsm
Bx2

˙

dX.

It can be seen from the pattern of the above matrices that one can get Ks
22 by changing the

subscript 1 to 2, and changing 2 to 1 in the formula of Ks
11, and k,m “ 1, 2, ¨ ¨ ¨Ns.

The matrix B has the following expression.

B “ ´

«

B1

B2

ff

, (B.11)

where

rB1smk “

ż

Ωh
φk
Bϕm
Bx1

dx, rB2smk “

ż

Ωh
φk
Bϕm
Bx2

dx (B.12)

pk “ 1, 2, ¨ ¨ ¨Np and m “ 1, 2, ¨ ¨ ¨Nuq. The vector

f “

˜

f1

f2

¸

(B.13)

is the fluid force vector, where

pf1qm “ ρf
ż

Ωh
ḡ1ϕmdx`

ż

ΓNh
h̄1ϕmdΓ (B.14)

and

pf2qm “ ρf
ż

Ωh
ḡ2ϕmdx`

ż

ΓNh
h̄2ϕmdΓ (B.15)
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pm “ 1, 2, ¨ ¨ ¨Nuq, with

ḡ “ g `
uhn
∆t
´
`

uhn`1 ¨∇
˘

uhn`1 “

˜

ḡ1

ḡ2

¸

(B.16)

in the above expression. The vector

fs “

˜

fs1

fs2

¸

(B.17)

is the solid force vector, where

pfs1 qm “ ρδ
ż

ΩshX

g̃1ϕ
s
mdX` µs

ż

Ωshn`1

J´1
n`1

Bϕsm
Bx1

´ µs
ż

ΩshX

“

Fshn
‰

11

Bϕsm
Bx1

´ µs
ż

ΩshX

“

Fshn
‰

12

Bϕsm
Bx2

(B.18)

and

pfs2 qm “ ρδ
ż

ΩshX

g̃2ϕ
s
mdX` µs

ż

Ωshn`1

J´1
n`1

Bϕsm
Bx2

´ µs
ż

ΩshX

“

Fshn
‰

21

Bϕsm
Bx1

´ µs
ż

ΩshX

“

Fshn
‰

22

Bϕsm
Bx2

(B.19)

pm “ 1, 2, ¨ ¨ ¨Nsq, with

g̃ “ g `
ushn
∆t

“

˜

g̃1

g̃2

¸

(B.20)

in the above expression.
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Appendix C

A method of computing the

interpolation matrix

In this appendix, we take the 2D linear quadrilateral element as an example to introduce

the method of calculating the FEM interpolation matrix D in (4.4) Section 4.2. The shape

function of a linear quadrilateral element, as shown in Figure C.1 in the reference coordinate

system pξ, ηq, may be expressed as follows.

Figure C.1: Quadrilateral element in the reference coordinate system.

φ1 pξ, ηq “
1

2
p1´ ξq p1´ ηq , (C.1)

φ2 pξ, ηq “
1

2
p1` ξq p1´ ηq , (C.2)

φ3 pξ, ηq “
1

2
p1` ξq p1` ηq , (C.3)
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and

φ4 pξ, ηq “
1

2
p1´ ξq p1` ηq . (C.4)

For a given point P px0, y0q in the original coordinate system px, yq, one should first decide in

which element the point is located. One method of checking whether P px0, y0q is located in an

element P1px1, y1q, P2px2, y2q, P3px3, y3q and P4px4, y4q is successively checking the direction

of the following four vectors:

~a “ P2P1 ˆ P2P, ~b “ P3P2 ˆ P3P, ~c “ P4P3 ˆ P4P and ~d “ P1P4 ˆ P1P. (C.5)

If they point in the same direction, in other words, the following four scalars have the same

sign.

s1 “ px1 ´ x2q py ´ y2q ´ px´ x2q py1 ´ y2q , (C.6)

s2 “ px2 ´ x3q py ´ y3q ´ px´ x3q py2 ´ y3q , (C.7)

s3 “ px3 ´ x4q py ´ y4q ´ px´ x4q py3 ´ y4q , (C.8)

s4 “ px4 ´ x1q py ´ y1q ´ px´ x1q py4 ´ y1q , (C.9)

then point P is in the element P1P2P3P4. According to the isoparametric transformation we

have:
#

x0 “
ř4
i“1 xiφi pξ, ηq

y0 “
ř4
i“1 yiφi pξ, ηq

. (C.10)

Newton’s method may be used to solve the above equations. Once ξ and η are computed,

then the interpolation coefficients of point P are φ1, φ2, φ3 and φ4, which may be used to form

the interpolation matrix D in (4.4).



Appendix D

An efficient approach for matrix

multiplication

One needs to calculate K `DTKsD in equation (4.2) in Section 4.2. An efficient way to do

this is based on the element matrix, i.e., compute DT
e Ks

eDe and directly assemble to matrix

K, with Ks
e being the local element matrix of Ks and De being the local interpolation matrix.

For the sake of simplicity, suppose that the background mesh is formed of bilinear quadrilateral

elements, and the solid mesh contains linear triangular elements (other types of elements follow

the same principle), and let us also assume that there is only one variable defined at each

node (for the case of more than one variable, the principle can still be applied). It should

be mentioned that the three nodes of the triangular element may lie in different quadrilateral

elements, such as is illustrated in Figure D.1.

Figure D.1: An element of the solid mesh on the background meshes.
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In the case as shown in Figure D.1,

¨

˚

˝

us1

us2

us3

˛

‹

‚

“ De

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

u1

u2

u3

u4

u5

u6

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (D.1)

where

De “

»

—

–

φ1

φ2

φ3

fi

ffi

fl

,

$

’

&

’

%

φ1 “ pφ11, φ12, φ13, φ14, 0, 0q

φ2 “ p0, φ22, φ23, 0, φ25, φ26q

φ3 “ p0, φ32, φ33, 0, φ35, φ36q

. (D.2)

In the above, φij pi “ 1, 2, 3; j “ 1, 2 ¨ ¨ ¨ , 6q is the interpolation coefficient (see Appendix C)

of the ith solid node with respect to the jth background node. Let the non-zero coefficients be

denoted by:
$

’

&

’

%

φ̄1 “ pφ11, φ12, φ13, φ14q

φ̄2 “ pφ22, φ23, φ25, φ26q

φ̄3 “ pφ32, φ33, φ35, φ36q

, (D.3)

then

DT
e Ks

eDe “
`

φT1 ,φ
T
2 ,φ

T
3

˘

»

—

–

k11 k12 k13

k21 k22 k23

k31 k32 k33

fi

ffi

fl

¨

˚

˝

φ1

φ2

φ3

˛

‹

‚

, (D.4)

or

DT
e Ks

eDe “ k11φ
T
1 φ1 ` k12φ

T
1 φ2 ` k13φ

T
1 φ3

` k21φ
T
2 φ1 ` k22φ

T
2 φ2 ` k23φ

T
2 φ3

` k31φ
T
3 φ1 ` k32φ

T
3 φ2 ` k33φ

T
3 φ3.

(D.5)

Assembling the matrix DT
e Ks

eDe into matrix K is equivalent to assembling the nonzero

elements of kijφ
T
i φj pi, j “ 1, 2, 3q to K, which is also equivalent to assembling elements of

kijφ̄
T
i φ̄j pi, j “ 1, 2, 3q into K.



Appendix E

A method to implement hanging

nodes

An adaptive mesh with hanging nodes reduces the number of degrees of freedom compared to

uniform refinement, hence decreases the cost of computation. However, the nature of hanging

nodes has the potential to cause discontinuity which breaks the framework of the finite element

method without special treatment to enforce continuity.

In order to treat the hanging nodes, one can construct a conforming shape function [56, 62]

or generally constrain and cancel the degree of freedom at the hanging nodes [7, 56]. The former

is very appealing, but it is difficult to extend to high-order shape functions [152]. In this thesis

we will adopt the latter method and only use 2-level hanging nodes, which means that at most

2 hanging nodes are allowed in one element (this can be guaranteed by imposing safety layers

to ensure that neighbouring element nodes differ by no more than one level of refinement). The

implementation of arbitrary-level hanging nodes can be found in [104, 123, 152].

Figure A.1: Elements with hanging nodes.
Figure A.2: Element II in Figure A.1
in the reference coordinate system.
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For a quadrilateral element, when the velocity is interpolated by biquadratic shape functions

and the pressure is interpolated by bilinear shape functions, the implementation of hanging

nodes must be different for each, as shown in Figure A.1. For example, when velocity is

interpolated, point D is a hanging node for element II, and point E is a hanging node for

element III. When pressure is interpolated, point C is a hanging node for both the element II

and III. Take element II for example, if we use the constraint method to cancel the hanging

node degree of freedom, then

uDi “
3

8
uAi ´

1

8
uBi `

3

4
uCi i “ p1, 2q (E.1)

and

pC “
1

2
pA `

1

2
pB , (E.2)

where ui and p are velocity components and pressure respectively defined at the corresponding

nodes. The interpolation coefficients can be calculated by putting edge AB in a one dimensional

finite element reference coordinate system.

Notice that when computing the element matrix II, point B is outside of the element, but

the element matrix II still contributes to node B because of the hanging node D. So we can

treat the two points B and D as a master-slave couple, which means letting them share the

same equation number in the final global linear equation system. However one should modify

the element matrix II according to (E.1) and (E.2) in the following way before assembling it to

the global matrix.

Suppose the element II is enumerated in the reference coordinate system as shown in Figure

A.2. Then, formulae (E.1) and (E.2) imply the following equations:

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

u1
i

u2
i

u3
i

u4
i

u5
i

u6
i

u7
i

u8
i

u9
i

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ Dv

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

u1
i

u2
i

u3
i

u4
i

u5
i

uBi
u7
i

u8
i

u9
i

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, Dv “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1

1

1

1

1
3
4

3
8 ´ 1

8

1

1

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (E.3)

¨

˚

˚

˚

˚

˝

p1

p2

p3

p4

˛

‹

‹

‹

‹

‚

“ Dp

¨

˚

˚

˚

˚

˝

p1

pB

p3

p4

˛

‹

‹

‹

‹

‚

, Dp “

»

—

—

—

—

–

1
1
2

1
2

1

1

fi

ffi

ffi

ffi

ffi

fl

. (E.4)

One should use matrices Dv and Dp to modify the element matrix II. Suppose Ke is the

stiffness matrix of element II without consideration of hanging nodes, and the unknowns are
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arranged in the following column vector.

`

u1
1, u

2
1, ¨ ¨ ¨u

9
1, v

1
1 , v

2
1 ¨ ¨ ¨ v

9
1 , p

1, p2 ¨ ¨ ¨ p4
˘T
. (E.5)

It is clear that Ke “ rkijs is a nˆn (n=22) matrix, and it could be modified by the following

pseudocode, which distributes the contribution of hanging nodes to the corresponding nodes

according to formula (E.1).

Algorithm 6: Modification of the element matrix related to velocity

1

for j=1 to n for j=1 to n for j=1 to n
ki1j “ ki1j ` ki0j ¨ 3{8 kji1 “ kji1 ` kji0 ¨ 3{8 ki0j “ ´ki0j{8
ki2j “ ki2j ` ki0j ¨ 3{4 kji2 “ kji2 ` kji0 ¨ 3{4 kji0 “ ´kji0{8
end end end

Let i0 “ 6, i1 “ 3, and i2 “ 2 (based on (E.5)), then sequentially executing the above three

pieces of code would modify the matrix Ke corresponding to the first component of velocity.

Similarly, letting i0 “ 15, i1 “ 12, and i2 “ 11 (based on (E.5)), executing the above code

would modify the matrix Ke corresponding to the second component of velocity. In order to

modify the matrix corresponding to pressure, one can execute the following code which is based

on formula (E.2).

Algorithm 7: Modification of the element matrix related to pressure

1

for j=1 to n for j=1 to n for j=1 to n
ki1j “ ki1j ` ki2j{2 kji1 “ kji1 ` kji2{2 ki2j “ ´ki2j{2; kji2 “ ´kji2{2
end end end

Selecting i1 “ 21 and i2 “ 20 yields the required modification. Executing all the above

pieces of code is equivalent to performing the following matrix multiplication.

»

—

–

Dv

Dv

Dp

fi

ffi

fl

T

Ke

»

—

–

Dv

Dv

Dp

fi

ffi

fl

. (E.6)

The modification of the mass matrix is similar but easier if a lumped mass is adopted,

though it is unnecessary to present details here. Once the element matrix is modified, it can

then be assembled directly to the global matrix to implement the constraint of the hanging

node (because the hanging node shares the same equation number with its related node in the

neighbouring element).
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Appendix F

F-scheme and d-scheme

The terms F-scheme and d-scheme are introduced by Professor Olivier Pironneau. We have

not found the paper in which he adopted these terms, however the meanings are clear from

[67, 110]. This is actually related to the implementation of his method, and we ought to be able

to use the schemes similarly here in our method. From equation (3.6) we can see that there is

a term (
ş

ΩsX
µsF : ∇XvdX) integrated in the reference domain ΩsX, and F could be updated at

the end of every time step (see equation (3.8)). This is called the F-scheme. Alternatively, we

can also transform this term to be integrated in the current domain Ωst :

ż

ΩsX

µsF : ∇XvdX “

ż

Ωst

µsJ´1FFT : ∇vdx “

ż

Ωst

τ s : ∇vdx, (F.1)

and express

τs “ µsJ´1B “ µsJ´1FFT, (F.2)

with respect to the displacement d, which is then called the d-scheme.

Let us only consider a 2D case, readers may refer to [34] for the 3D case. According to the

Cayley-Hamilton theorem, B satisfies its characteristic equation, i.e.,

B2 ´ trBB` J2I “ 0, (F.3)

from which we immediately have:

B “ trBI´ J2B´1. (F.4)

From the definition of F, we get

F “ ∇Xx “ ∇XpX` dq “ I` F∇d, (F.5)
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which further gives:

F´1 “ I´∇d. (F.6)

Substituting (F.4) and (F.6) into (F.2), we finally express τ s by displacement as follows:

τ s “ ´µsJ pI´∇dq
T
pI´∇dq ` µsJ´1trBI, (F.7)

which can be written as

τ s “ µsJ
`

Dd´∇Td∇d
˘

` p̄I, (F.8)

where p̄ “ µsJ´1trB ´ µ
sJ is introduced as an additional unknown.

Remark F.1. The difference between the F-scheme and d-scheme can merit a further study.

We have implemented the d-scheme for Test1-2D (activated disc) and Test4-2D (rotating disc)

using the 2-step splitting scheme, and found that the iterative linear solver (see Section 4.2)

could not converge. However the same iterative solver works very well for the F-scheme. The

direct solver gives the same results for both the F-scheme and d-scheme. Therefore the matrix

structure behind these two schemes is worth further study.
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[74] B. Hübner, E. Walhorn, and D. Dinkler. A monolithic approach to fluid–structure in-

teraction using space–time finite elements. Computer Methods in Applied Mechanics and

Engineering, 193(23):2087–2104, 2004.

[75] M. A. Hulsen, R. Fattal, and R. Kupferman. Flow of viscoelastic fluids past a cylinder

at high Weissenberg number: stabilized simulations using matrix logarithms. Journal of

Non-Newtonian Fluid Mechanics, 127(1):27–39, 2005.

[76] S. Idelsohn, E. Onate, and F. Del Pin. A Lagrangian meshless finite element method

applied to fluid–structure interaction problems. Computers & Structures, 81(8-11):655–

671, 2003.

[77] S. R. Idelsohn, J. Marti, A. Limache, and E. Oñate. Unified Lagrangian formulation for
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