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Abstract 

 

Biomass pre-treatment using torrefaction technology has been proven to upgrade 

energy density, thermal and physical properties of the biomass. The torrefied 

biomass fuel has higher energy content, which could be comparable to low-rank coal. 

However, similar to coal, self-heating is one of the major safety concerns during the 

storage and handling, which can lead to ignition. There are several events of 

accidental fires that occurred in the past, resulting from self-heating leading to 

ignition. This work focuses on the experimental study and numerical modelling of 

self-heating behaviour of microwave torrefied biomass and non-torrefied biomass 

stored in a large pile. Physical and chemical properties of the materials were 

determined using proximate and ultimate analysis. The calorific values of the non-

torrefied sample are 18.4MJ/kg and 22.0MJ/kg for torrefied biomass. Self-heating 

propensity is determined based on heat evolution and mass changes analysis using 

the thermogravimetric analysis to determine the thermal decomposition behaviour 

and thermal decomposition kinetics parameters of the torrefied and non-torrefied 

material. The activation energy for thermal decomposition in the air is in between 

64.5 to 84.4 kJ/mol for the non-torrefied sample and 53.1 to 70.7 kJ/mol for the 

torrefied sample. However, the activation energy for thermal decomposition in 

nitrogen is between 58.7 to 70.9 kJ/mol for non-torrefied sample and 59.2 to 71.8 

kJ/mol for the torrefied sample. The evaluation of the self-ignition risk was done 

based on the characteristic oxidation temperature and the activation energy. The 

activation energy for torrefied biomass fuel indicated that the material is reactive and 

have a higher tendency to self-heating. The risk ranking graph; is drawn based on the 

activation energy and characteristic temperature of the samples against other 

materials from literature. Both samples are classified as a medium risk, but with 

microwave torrefied sample in the rank of higher tendency to self-ignite comparing 

to the non-torrefied sample. A series of bulk test was performed to investigate the 

heating behaviour on a larger scale to examine the effect of the bulk size and oven 

temperature. The test showed that when the oven temperature is below and at 180ºC 

no ignition is detected for the non-torrefied sample. However, microwave torrefied 

sample started to self-heat at 4002 seconds (66.7 minutes). It can be concluded that 

the torrefied sample is more reactive compared to the non-torrefied sample. Series of 
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the bulk test is carried out in the uniformly heated oven at constant air temperature to 

study the thermal heating behaviour independently. The test showed the ignition 

induction time for microwave torrefied sample heated at 180ºC is 4002 seconds at 

Bulk 1, 5066 for Bulk 2 and 7611 for Bulk 3. The ignition induction time increased 

with the decreasing of the bulk volume. The ignition induction time is decreasing 

when the oven temperature is increased. A simulation model to predict the heating 

behaviour of the materials, in an open storage area, had been developed using 

COMSOL Multiphysics® software. The numerical model was used to examine the 

thermal behaviour of the pile based on coupled heat and mass transfer in porous 

media, which includes kinetic parameters, obtained using thermogravimetric 

analysis. The numerical model was validated against the results of the bulk tests with 

good agreement. Simulations were carried out to examine the effect of the height and 

ambient temperature on the thermal behaviour of the pile. The simulations 

demonstrated that the ignition induction time decreased when the ambient 

temperature increased. The ambient temperature of 60°C is established as critical 

ambient temperature for the storage of microwave torrefied sample, while 80°C is 

the critical ambient temperature for non-torrefied sample. Based on the simulation, 

the biomass needs to be piled up vertically instead of horizontally to avoid the 

multiple hot spots. The results from this study can be used as decisional support 

information towards achieving the safe storage of torrefied biomass. 
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 Chapter 1 Introduction 

1.1 Background 

 

Biomass is a source of renewable energy that has a huge potential to play a major 

role in the energy sector as alternative fuels to coal. Biomass is defined as “the 

biologically degradable fraction of products, waste and residues from the biological 

origin of agriculture that include vegetable and animal substances, forestry and 

related industries including fisheries and aquaculture, as well as the biodegradable 

fraction of industrial and municipal waste” (Renewable Energy Directive, 2009).  

However, despite many sources of biomass, lignocellulosic biomass has been 

considered as the most promising energy source due to its surplus availability, usage 

practicality, and relatively low cost. The lignocellulosic biomass refers to plant 

biomass that is composed of cellulose, hemicellulose, and lignin.  

 

 
 

Figure 1.1: The carbon neutral cycle (Vassilev et al., 2015). 
 

In addition to that, lignocellulosic biomass is the only carbon neutral energy source 

that does not contribute to the greenhouse effect. Therefore lignocellulosic biomass 

has become the most favourable source due to its carbon neutral advantage. The 

neutral carbon cycle of carbon dioxide is shown in Figure 1.1, where the 

neutralisation of carbon dioxide emission achieved when converting biomass to 
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energy since the growth of new biomass removes carbon dioxide from the 

atmosphere. Unless otherwise stated, biomass is referred as lignocellulosic biomass 

throughout this thesis. 

 

As mention earlier, the main components of lignocellulosic biomass are cellulose, 

hemicellulose, lignin and extracts. Thus, cellulose is a component with a crystalline 

structure that is insoluble in water as well as resistant towards depolymerisation 

(Badiei et al., 2014). Hemicellulose is a backbone of the plant cell wall that has sugar 

units such as xylose, mannose, galactose, arabinose as well as glucose (Eriksson, 

2011). Lignin provides mechanical strength to the plant cell wall by covalent linkage. 

Lastly, terpene, phenol and different types of fats are among extractives in the 

lignocellulosic biomass component. Different types of biomass will have a different 

component breakdown. The examples of biomass components adopted from study by 

Mašek et al. (2013a) are shown in Figure 1.2. 

 

 
Figure 1.2: Components in (a) willow chips (b) straw pellets (Mašek et al., 2013a) 

 

The biomass characteristics are influenced by its origins from which it has been 

collected. Biomass may have the same major component but in different proportion, 

which results in a broad range of fuel properties. According to Naik et al. (2010), the 

same type of biomass can have different composition based on the climatic condition 

as well as the seasonal variation. Badiei et al. (2014) added that the composition of 

biomass component is also affected by the types of the biomass such hardwood or 

softwood. The work by Vassilev et al. (2010) recognised various factors that affected 

the composition of biomass such as the growth conditions, a distance of the plant 

from the source of pollutions, harvesting time, types of biomass including plant 
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species or part of the plants. Its chemical composition cannot be defined precisely for 

a given tree species or even for a given tree properties. The utilisation of each 

biomass is also different from one to another. Table 1.1 shows the examples of 

biomass subgroup, species and varieties coniferous as well as their example of usage. 

It can be witnessed from the table that biomass is a versatile fuel, which is very 

different from one to another in term of utilisation.  

 

Table 1.1: Lignocellulosic biomass groups and examples of utilisation (Vassilev et  
al., 20101; AEBIOM, 20122) 

 
Fossil fuels such as coal and oil have been dominated the world energy supplies for 

decades. Based on International Energy Agency (IEA) data from the World Energy 

Balances (2016) presented in Figure 1.3, the global primary energy supply had 

increased by almost 2.5 times from 1971 to 2014. The oil supply decreased to 31% 

from 44% in 1971, while coal supply increased 3% in 2014. The supply of natural 

gas also increased from 16% in 1971 to 21% in 2014. The trend shows that world 

Groups1 Biomass sub-groups, species and 
varieties coniferous1 

Example of utilisation2 

Wood and 
woody 
biomass  

Coniferous or deciduous, 
angiospermous or gymnospermous 
and soft or hard such as stems, 
barks, branches (twigs), leaves 
(foliage), bushes (shrubs), chips, 
lumps, pellets, briquettes, sawdust, 
sawmill and others from various 
wood species 

- Wood chips & 
particles, firewood 
briquettes and pellets  
for energy source 

 

Herbaceous 
and 
agricultural 
biomass 

Annual or perennial, arable or non-
arable and field-based or 
processed-based biomass from 
various species such as grasses and 
flowers, straws, stalks, fibres, 
Shells and husks, pit and other 
residues from numerous sources 

- Oilseed crops: for 
biodiesel production. 

- Sugar & starch crops: 
for bioethanol. 

- Lignocellulosic & 
woody crops: for heat 
and power production; 
second generation 
biofuels 

Aquatic 
biomass  

 Marine or freshwater, macroalgae 
or microalgae and multicellular or 
unicellular species  

- Algae: production of 
biogas for energy 
production 
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primary energy supplies by some means still depend on fossil fuel with 81% of 

energy supply in 2014 is from fossil fuels.  

 

 

 
 
 
 
 
 
 
 
 
 

 
Figure 1.3: World total primary energy supply based on the types of fuel. (IEA, 

2016) 
 

Unfortunately, harmful emission such as SO2, NOx, CO2, N2O, particulate matter, 

mercury, cadmium and other acid gases are being released into the environment by 

the coal-fired power plant (Nalbandian, 2010). The burning of fossil fuels such as 

coal that cause the harmful emission started since the Industrial Revolution as early 

as the 1800s has been recognised as one of the main contributors to the increase of 

the greenhouse gases concentration in the atmosphere especially carbon dioxide (Life 

Science, 2016). 

 

Coal is a sedimentary rock that composed of lithified plant materials remains that 

consist of carbohydrates, lignin, proteins and other polymers including 

hemicelluloses, suberin as well as cutin (Speight, 1994). Coal can be grouped into 

types based on its rank, which is a measure according to the degree of organic 

metamorphism (changes). The rank of coal is from lowest to highest are peat, lignite, 

sub-bituminous, bituminous and anthracite. 

 

The chemical composition of coal is different from biomass, especially the amount 

of hydrogen, oxygen and carbon. In comparison to biomass, coal has much higher 

carbon content and fewer fractions of hydrogen and oxygen. Thus, coal is a fuel with 

a low atomic ratio of oxygen to carbon (O/C); which is more favourable in energy 

conversion. The low O/C fuel is favourable because of its higher gasification 
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efficiencies (Prins et al., 2006b) and decrease amount of smoke and water vapour 

(Kambo & Dutta, 2014). Furthermore, biomass has higher volatile matters compared 

to coal, which could lead to low ignition temperature causing more amounts of 

combustible gas production during thermal conversion process (Chiang et al., 2012).  

 

Based on Table 1.2, the energy density of coal is considerably higher than the one in 

wood as well as solid biofuel such wood pellet and torrefied pellet. As mentioned 

earlier, biomass fuels have more oxygen and hydrogen and less carbon than coal. 

Thus, the properties are agreeable with the fact that biomass fuels have much higher 

volatile matters and moisture content compared to coal as well as lower heating 

value. Based on Table 1.2, the biomass fuel that undergone the pre-treatment  such as 

torrefaction had improvement in properties, for example the heating value of the 

torrefied pellets is higher compared to the wood pellets. The improved properties are 

comparable to coal. Thus, the positive outcome from the biomass pre-treatment is 

creating the demand for solid biofuels in the energy industry to fulfil the carbon 

neutral energy demand. 

 

Nevertheless, apart from the climate change problem due to harmful emissions from 

the combustion of fossils fuels, the exhaustion of fossil fuels and price increases 

resulted in the necessity to shift to the renewable energy source such as biomass. In 

light of that, European Union (EU) had set a binding target for a renewable energy 

source to contribute 20% of the total energy needs by 2020 (Renewable Energy 

Directive, 2009). These developments have promoted the growth of renewable 

energy usage.  

 
Figure 1.4: Source of total energy consumption in Europe in 2014 (AEBIOM, 2016)  



 
 

Table 1.2: Properties of biomass fuels and coal (Nunes et al., 20141; Koppejan et al., 20122) 
 

 Wood2 Wood  

pellets2 

Wood chips1  Torrefied 

pellets2 

Bituminous  

Coal1 

Coal2 Charcoal2 

Moisture (%) 30-45 70-10 30-60 1-5 5-10 10-15 1-5 

Fixed carbon (% db) 20-25 20-25 20-25 28-35 340-780 50-55 50-55 

Volatile matter (% db) 70-75 70-75 70-75 55-65 - 15-30 10-12 

Lower heating value (MJ/kg) 9-12 15-18 6-13 20-24 >25 23-28 30-32 

Bulk density (kg/m3) 200-250 550-750 250-400 750-850 800-10000 800-850 ~200 

Energy density (GJ/m3) 2.0-3.0 7.5-10.4 2.5-3.2 15-18.7 20-25 18.4-23.8 6-6.4 

Biological degradation Yes Yes Yes No No No No 

Hygroscopic properties Hydrophilic Hydrophilic Hydrophilic Hydrophobic Hydrophobic Hydrophobic Hydrophobic 

Dust Average Limited Average Limited Limited Limited Limited 
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Based on Figure 1.4, 16% of the energy consumption originated from the renewable 

sources (biofuels and other renewable energy sources) in 2014. That current status is 

a good sign showing that the target set in the Renewable Energy Directive, (2009) is 

achievable. Therefore, a new target had been set by the European Union in the 2030 

Energy Policy, where the final energy consumption in the European Union at least 

27% by 2030 (Energy,2017).  

 

In Figure 1.4, biofuels refer to liquid fuels produced from biomass such as biodiesel 

and bioethanol. While other renewable sources include the wind, hydro, solar, 

geothermal and bioenergy. Therefore, the energy produced from biomass sources is 

called bioenergy. Bioenergy is widely used in heating and cooling, power generation 

as well as transport application. Due to the high availability as well as the 

consistency of supply around the world, the biomass is an excellent material 

compared to other sources. The growth of biomass trade especially the trade of 

pellets and biofuels is moving towards a more globally traded commodity. In Europe, 

wood pellet consumption reached 20.3 million tonnes that represent 6 % of total 

solid biomass usage  (AEBIOM, 2016).  

 

However, the direct use of lignocellulosic biomass is not possible for energy 

conversion due to several issues such as handling. Therefore, the lignocellulosic 

biomass needs to be transformed into fuel in solid, liquid or gas form using various 

pre-treatment technologies. Wood pellet is one of the solid biofuels that can be 

produced from the pre-treatment of lignocellulosic biomass. Wood pellet is used with 

coal-fired boilers since the handling properties of the wood pellets are comparable to 

coal.  

 

Many power plants such as Drax and Fiddlers Ferry power stations in the United 

Kingdom as well as Avedøre plant in Denmark that co-firing of coal and wood 

pellets as an initiative to potentially reduce the carbon dioxide emissions (Henderson, 

2015). In addition to that, the government of Netherlands also has the intention to 

mandate co-firing of biomass at all existing coal-fired power plants (Verhoest & 

Ryckmans, 2012). Besides co-firing, the use of biomass as the main fuels also been 

practised worldwide. 
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The increase in demand of the lignocellulosic biomass fuels in the energy sector can 

be witnessed in the growth of global wood pellet production between 2010 to 2014, 

which increased from 16 to 25 million tonnes as reported by Matthews, (2015). This 

growth could be triggered by the introduction of several European biomass standards 

such as EN 14961, which is for classification and specification of biomass in 

2011(Audigane et al., 2012). The lignocellulosic biomass has received increasing 

attention especially in the utilisation of the thermally treated products that enhanced 

its physical and thermal properties. The thermally treated products have properties 

that are better or equivalent to the coal. Gasification, combustion, pyrolysis and 

torrefaction are among widely used thermochemical applications that had been 

proven to upgrade lignocellulosic biomass quality. Besides that, pelletization also has 

improved the quality of the biomass fuels as well as eases the handling and 

transportation of the material.  

 

However, similar to coal, biomass fuels are also prone to self-heating due to 

chemical oxidation when reacting with oxygen in the air during its storage period. 

The self-ignition can happen during storage if the heat generated by the chemical 

oxidation starts to accumulate and does not dissipate to the surrounding of the stored 

biomass fuels. The fire triggered by self-heating of stored bulk biomass fuels causes 

serious safety issues as it is difficult to detect when it started to occur. Besides the 

chemical oxidation, heating due to the microbiological activities can also happen in 

biomass fuels due to its properties such as hydrophilic nature and high moisture 

content.  

 

The accidental fires caused by dust explosion and self-ignition can cause hazards to 

workers, storage structure as well as to the economic loss (Guo, 2013a). Serious 

injuries and sometimes fatalities are also witnessed in such fires. In addition to those, 

the undesired fires can cause emission of carbon dioxide and toxic gases such as 

carbon monoxide through incomplete combustion (Ferrero et al. 2009). Thus, 

prevention of the self-ignition is economical and safety-relevant issues that need to 

be studied and understood for accident prevention in the future. 
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There are many recorded accidental fires associated with the self-heating of biomass. 

For example, an estimated average of 14070 fires per year between 2005-2009 had 

been reported caused by self-ignition or chemical reaction in United State, with 20% 

of fires in storage properties were ignited by biomass material such as crops (Evarts, 

2011). Data of major accidents associated with biomass energy production had been 

presented by Casson Moreno & Cozzani (2015), where 30% of the fires recorded 

was started by self-ignition of sawdust in stockpiles.  

 

Table 1.3 provides examples of fire incidents associated with the self-heating of 

biomass during the last ten years in the United Kingdom. Regardless of many 

incidents of fires started due to the self-heating of biomass, there is still a lack of risk 

and safety awareness in this sector unlike in the coal industry. Thus, many 

researchers had suggested the need for further research in this area to fill in the gap. 

Moqbel et al. (2010) and Veznikova et al. (2014) have suggested studying the 

tendency to self-ignition, especially for wood-based fuels since their dangerous 

properties are insufficiently considered during handling and storage.  

 

Table  1.3: Fire incidents associated with the self-heating of biomass in the United 

Kingdom for the past ten years  

Date  Place Descriptions of events 

27th August 2016 Ancaster, 
Lincolnshire 

Fire started at a conveyor belt in 
recycling plant 

26th July 2013 
 

Lawrence Recycling, 
Kidderminster 

Self-ignition started from the heat 
generated in the recycling material  

21st July 2013 
 

Nature’s Choice, 
White Township 
 

Blaze fire started from self-ignition of 
large pile of mulch 

16th May 2013 
 

Good 2 Grow, 
Beenham 

Compost fire from self-ignition of wood 
mulch 

12th May 2013 
 

Todd Waste 
Management,  
Thirsk 

Self-ignition from decomposition of 
organic material 

18th September 2012 Arcwood Recycling 
Stanton-by-Dale Blaze fire started from recycled wood 

5th September 2012 
 Potts Farm, Farnham Self-ignition caused by stored hay 

27th February 2012 
 

Tilbury Power 
Station, Essex 

Fire caused by self-heating of wood 
pellets 

5th November 2011 
 Port of Tyne Fire started in a conveyor transfer tower 

storing biomass pellets 
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However, the main cause of the self-ignition of biomass fuel is so unique from one to 

another. It varies according to types of biomass and their physical, chemical and 

biological properties. Therefore, due to its wide possibilities of the cause, the fire is 

hard to predict and mitigate. However, the storage conditions of the biomass can be 

monitored and always have a high correlation with the heat generated by the system 

during the storage period.  The heat generated due to self-heating depends on many 

parameters which can be categorised as a controllable, uncontrollable and 

conditionally controllable parameter (Arisoy & Akgun, 2000). Therefore, the focus 

of this study should always be on the approaches to prevent biomass fuels self-

combustion during the storage period, where the storage conditions are considered as 

a controllable parameter. Thus, the critical storage conditions can be predicted to 

avoid the self-ignition. 

 

Many studies have been done to predict the behaviour of the biomass material that 

has a tendency to self-heat in concealed storage facilities as a silo (Larsson et al., 

2012; Malow & Krause, 2008; Guo 2013; Ramírez et al., 2010; Carrera-Rodríguez et 

al., 2011). However, there is limited research done on the tendency of self-heating of 

biomass fuels in open storage area. Over the past 20 years, many studies were done 

to investigate the self-heating behaviour, which measured the ignition kinetic 

parameters and the critical conditions that can lead to self-ignition (Chen et al., 

2013). Hence, this study focuses on predicting self-heating process due to chemical 

oxidation by considering its kinetic parameters and the critical storage condition of 

the bulk biomass fuels in indoor open storage piles. 

 

A recent positive development for replacement of coal by a sustainable source in the 

energy sector on a global scale had driven biomass fuel industry to produce biomass 

fuels that have similar properties to coal. Thus, many researchers had come out with 

methods to improve the energy density of biomass fuels, which will give added 

commercial value to the material produced. Among others, torrefaction is one of the 

proven methods to upgrade the quality of the biomass fuels. Besides that, the 

rationale behind the torrefaction process on wood pellets is to achieve a final product 

that is superior to the conventional wood pellets.  
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This study is focused on the self-heating behaviour of those two completely different 

materials, which are conventional wood pellets and thermally treated wood sample 

using microwave torrefaction technology. Ceballos et al. (2015) had pointed out 

several gaps in the study of torrefied biomass, which include the need to understand 

its self-heating propensity in stockpiles. Hence, this thesis is aimed to understand the 

self-heating behaviour of such biomass based on their physical and thermal 

properties that may influence the self-heating propensity in the stockpile. The study 

is carried out by simulating the self-heating behaviour of bulk biomass fuels based 

on experimentally determine kinetic properties. Several simulations were performed 

using COMSOL Multiphysics® software to obtain a deeper understanding of the 

effect of the controllable parameters on the self-heating behaviour of biomass fuels 

in piles during storage. 

1.2 Approach of the research 

The focus of this study is to examine the self-heating behaviour of the biomass fuels 

that undergo microwave torrefaction process. Microwave torrefied biomass has 

identifiable improvement in the energy density and the thermal kinetics parameters 

of the biomass; therefore it was used for this study. This study investigates the 

parameters affecting the self-heating behaviour of biomass storage. The findings 

from this study will particularly highlight the distinct changes of material properties 

before and after the microwave torrefaction process. It offers the opportunity to 

compare the reactivity of the biomass that undergoes the microwave torrefaction 

process and the non-torrefied biomass.  

 

Furthermore, many studies on conventional torrefied biomass had reported various 

reaction conditions such as torrefaction temperature; inert gas and reaction time can 

lead to various solid, liquid and gaseous products. In addition to that, the higher 

torrefaction temperature or longer residence time resulted in torrefaction removes 

moisture, volatiles and degrades parts of its carbohydrate fraction, resulting in a 

product with higher energy density, better grindability and less moisture absorption 

(Nunes et al., 2013; Shang, 2012; Stelt et al., 2011).  

 

 



 Chapter 1:Introduction 
  

 
 

12 

Therefore, in this study the variation of process conditions for producing the 

torrefied sample was neglected and only torrefied sample produced using microwave 

process was considered in the self-heating propensity study. The study is focused on 

the variability of storage conditions that reflected the variable reactivity of both 

samples. There is a growing needs to determine whether the microwave torrefaction 

will increase the reactivity of the biomass and does the torrefied biomass needs to be 

handled in the same way as material that prone to self-heating.  

 

This work also has no intention on examining which process condition that will 

contribute to a biomass fuel with higher reactivity by comparing the sample produces 

using conventional torrefaction method. Therefore, in this work, the comparison 

between the non-torrefied sample and microwave torrefied samples were adequate. 

The experimental work carried our to determine the chemical and physical 

properties, kinetic parameters as well as to examine the heating behaviour of both 

fuels. Information gathered from the experimental works is used in the simulation of 

the heating behaviour of the fuels in stockpiles. 

 

The properties of the samples play a substantial role in the reactivity towards 

chemical reaction in air. Therefore, the main parameters associated with the self-

heating phenomena were identified by the thermogravimetric analysis. The 

composition of moisture content, fixed carbon, volatile matters as well as ash is 

acquired from the proximate analysis using thermogravimetric analysis. While the 

composition of carbon, hydrogen, nitrogen and oxygen are obtained from the 

ultimate analysis.  

 

Furthermore, the characteristic temperature observed from the thermogravimetric 

analysis can be used to measure the tendency of the material to undergo a self-

heating process. Also, thermogravimetric analysis was done to obtain information of 

the reactivity of the samples as well as their kinetics in the air and the inert 

environment. Mass change measurements over temperature provide key information 

on the decomposition behaviour in the air and the inert environment.  

 

Additionally, to examine the heating behaviour of the sample in bulk size, further 

analyses on the self-heating behaviour of the samples in a larger scale is in an oven-
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controlled environment. The bulk oven test is significant to observe the temperature 

profile within the bulk sample in an oxidative environment at various oven 

temperature and bulk size. Besides that, the initial heating temperatures used for the 

non-torrefied sample were very similar to conventional torrefaction process which 

are between 180oC to 200oC, therefore, it can be considered that the torrefaction 

process was included in the oven test. 

 

Table 1.4 shows all the experimental work done to determine the physical and 

chemical properties, kinetic parameters as well as the assessment of the thermal 

behaviour of samples.  

 
Table 1.4: Experimental work done in the research 

 

Experimental tests Purpose of the experiments 

A.  Sample properties determination 

i. Calorific value Determination of the calorific value of the samples 

ii. Proximate analysis Determination of the moisture, fixed carbon volatile 
matter and ash  

iii. Ultimate analysis Determination of carbon, nitrogen, volatile matter and 
oxygen content 

B.  Reactivity evaluation and kinetic parameters determination 

i. Thermogravimetric 
analysis 

Reactivity evaluation based on characteristic 
temperature of the thermal decomposition 

Determination of the kinetic parameters 

C.  Large scale heating experiment  

i. Oven bulk test Determination of heating behaviour of the samples 
heated up at various bulk sizes and oven temperatures. 
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1.3 Aim, Objectives and novel contribution 

1.3.1 Aim and Objectives 

This study is aimed at investigating the heating behaviour of microwave torrefied 

samples and non-torrefied sample to predict the self-heating of the fuels in 

stockpiles. The objectives of this research are:  

(i) to determine the effect of physical and chemical properties of biomass 

fuels towards self-heating propensity using proximate and ultimate 

analysis;  

(ii) to examine the thermal decomposition behaviour of fuels samples 

properties  using thermogravimetric analysis; 

(iii) to analyse the kinetic parameters of thermal decomposition of biomass 

fuels at a low heating rate; 

(iv) to investigate the effect of bulk size and oven temperature on the heating 

behaviour of the biomass samples in oven bulk test; 

(v) to develop a numerical model that can predict the effect of piles height 

and ambient temperature on self-heating behaviour of biomass samples; 

and  

(vi) to validate the numerical model with the results from oven bulk test 

1.3.2 Novelty of the research 

The novel contribution of this research is the determination of the thermal behaviour 

of the microwave torrefied sample in comparison to the non-torrefied sample. 

Although a lot of researchers had been devoted to investigating the self-heating 

behaviour of biomass fuels, there is still very limited data on the self-heating 

behaviour of torrefied biomass fuels. In addition to that, to the best of the author’s 

knowledge, the study on self-heating behaviour of the sample prepared using 

microwave torrefaction has not been reported in any research, therefore requires 

further research. Previous studies on torrefied biomass fuels provided evidence that, 

the biomass fuel produced from microwave torrefaction increased the reactivity of 

the biomass. Therefore, additional precaution steps must be taken during storage and 

handling phase. The novel aspect of this research also established from the validation 

of the numerical model used in the simulations against the experimental data. In 
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brief, the findings from this research will help to examine the self-heating propensity 

of the biomass fuels produced using microwave torrefaction process. 

1.4 Layout of the thesis 

Chapter 2 presents the literature review on biomass usage as an alternative energy 

source and the fundamental theories of self-heating behaviour of the biomass fuels 

Chapter 3 describes experimental method for characterisation of the samples used in 

this work, which include proximate and ultimate analysis 

Chapter 4 covers the experimental work to evaluate the reactivity of the samples as 

well as their kinetic parameters. Also, the thermal decomposition behaviour of both 

microwaves torrefied and non-torrefied samples are presented. 

Chapter 5 presents the bulk tests to evaluate the reactivity of the samples in a larger 

scale. The relationships between the oven temperature and bulk size towards 

induction time are discussed. 

 Chapter 6 examines the effects of geometry of the piles and the critical ambient 

temperature on the self-heating propensity using numerical simulation.  

Chapter 7 summarises all the experimental and simulation work in this thesis. 

Conclusions and recommendations for future work are presented. 
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 Chapter 2 Literature review 

This chapter presents a literature review of current research on fundamental behind 

the upgrading of lignocellulosic biomass using thermal treatment process for energy 

production and the self-heating behaviour of the biomass fuels in comparison to coal. 

This chapter also reviews the experimental work on self-heating evaluation.  

2.1 Energy recovery from biomass 

 

There are many alternative technologies available today that are able to recover the 

energy from biomass by converting biomass into solid fuel. However, the 

characteristic such as calorific value, moisture content as well as the amount of ash is 

unique for each biomass due to their differences in composition. Thus, it requires 

suitable conversion technology to convert the biomass into solid fuel efficiently. 

 

There are two major technical approaches to convert lignocellulosic biomass into 

energy, which include thermochemical conversion and biochemical conversion. 

Thermochemical processes that widely used for biomass conversion process are 

pyrolysis, gasification and combustion, to produce heat or energy carrier such as 

charcoal and bio-oil. On the other hand, the biochemical conversion involved 

processes such as anaerobic digestion, alcoholic fermentation and aerobic 

biodegradation includes the process of a microorganism to break down the biomass 

into biomass-based energy fuels (Saxena, Adhikari, & Goyal, 2009; Balat, 2006). 

Figure 2.1 shows the possible route for thermochemical conversion of lignocellulosic 

biomass, while Figure 2.2 shows the possible route for the biochemical conversion. 

 

According to Chiang et al. (2012), between these two types of technologies, 

thermochemical conversion has higher conversion efficiency with the better ability to 

break the organic compounds as well as shorter reaction time. Thus, thermochemical 

conversion is a favourable path for biomass concerning those advantages. The prior 

knowledge of the biomass such as chemical composition is necessary for choosing 
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the energy conversion process. The right biomass fuel is chosen based on its 

homogeneity, conversion technology and the plant design (Patel & Gami, 2012). 

 

 
Figure 2.1: Possible routes of conversion for biomass fuels using thermochemical 

processes (Iowa Energy Center, 2016)  
 

 

Figure 2.2: Possible routes of conversion for biomass fuels using biochemical 
processes (Badiei et al., 2014; Balat, 2006) 
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Pyrolysis is a thermochemical decomposition which occurs between 400°C and 

900°C in the absence of oxygen. The pyrolysis breakdown of wood produces 

chemical substances that can be used as substitutes for conventional fuels. The 

biomass fuels can be pyrolyzed to produce liquid fuel or gases such as methane and 

hydrogen. On the other hand, combustion is an exothermic chemical reaction that 

produces substantial heat when the fuel reacts with air or oxygen (Tapasvi, 2015; 

Beever, 1995). The main steps in combustion process are drying, devolatilization, 

gasification, char combustion and the gas-phase oxidation (García et al., 2012; Khan 

et al., 2009). According to Vargas et al. (2012), direct combustion is the most 

commonly used technology to convert biomass into heat 

 

Gasification is the conversion process of biomass to a gaseous fuel by heating in a 

medium such as air, oxygen or steam at high temperature (more than 700°C). The 

gasification process converts the intrinsic chemical energy of the carbon in the 

biomass into a combustible gas in two stages (McKendry, 2002). The gas produced 

from the process is more versatile to use compared to the raw biomass and can be 

utilised in the energy sector or used as a chemical feedstock to produce liquid fuels. 

 

The energy source for the thermochemical process is usually solid biofuels such as a 

wood pellet or biochar. Therefore, to meet the energy demand, those solid biofuels 

need to be stored at the power plant prior to usage. For that reason, the need for safe 

handling and storage of such fuels is crucial to maintain continuous energy supply. 

Co-firing is widely used option for energy conversion, as it can utilise the existing 

coal power station without major modification. Compared to coal, biomass is bulkier 

and degrades easily as well as having properties that are unfavourable to coal. 

Therefore, with co-firing, the drawback can be improved. 
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2.1.1 Issues of biomass fuels as energy source 

Several weaknesses of biomass need to be taken into consideration before using it as 

an energy source in the thermochemical process. Therefore, efficient use of the raw 

biomass can be achieved by transforming the biomass into fuels in solid, liquid and 

gaseous form via various pre-treatment processes.   

 

Several concerns that had been reported associated with biomass are high moisture 

content, non-uniform physical properties, low calorific value, low energy density, 

structural heterogeneity, hydrophilic nature and low bulk density (Eseyin, Steele, & 

Jr., 2015; Nhuchhen, Basu, & Acharya, 2014; Sadaka et al., 2014; Järvinen & Agar, 

2014; van der Stelt et al., 2011). In addition to that, the lignocellulosic biomass is 

reflected as thermally unstable by Prins et al. (2006a) even though having a low 

nitrogen, sulphur and ash content.  

 

Biomass also inclines to be less dense than coal resulting in lower energy density. 

Low energy density is an unappealing aspect as it implies high transportation cost 

per energy unit as well as more storage area that leads to higher logistic cost (Nunes 

et al., 2014). Therefore, normally biomass fuel needs to undergo densification or 

palletization to increase its energy density. The ash content in biomass is also much 

higher than coal. The higher ash content reflected as a significant challenge for 

biomass combustion, due to the ash related problem during combustion such as 

slagging and fouling (Liu & Han, 2015; Deutmeyer et al., 2012; Darvell et al., 2010; 

Ciolkosz, 2010).  

 

The latest review on the disadvantages of biomass compared to coal can be found in 

(Vassilev et al., 2015), where they pointed out that the despite the disadvantages of 

biomass in biofuel and biochemical application, the main environmental, economic 

and social benefits seem to counterbalance the shortcomings. Besides that, the 

drawbacks mentioned earlier can be resolved through the pre-treatment process of 

biomass (Chen & Kuo, 2011). 
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2.2 Pre-treatment methods for lignocellulosic biomass 

The positive growth of sustainable energy sources such as biomass had driven 

biomass fuels industry to produce biomass fuels that have similar properties to coal. 

For example, as shown in Table 1.2, the energy density of wood is between 2.0 to 3.0 

GJ/M3 while the energy density of coal is between 18.4 to 23.8 GJ/M3. These figures 

show that wood has a relatively lower energy density compared to coal. Therefore a 

pre-treatment is needed for wood to achieve a higher energy density that is 

comparable to coal. 

 

Thus, a pre-treatment process is needed to upgrade the quality of the lignocellulosic 

biomass before being used as fuel in the energy sector. Pre-treatment is necessary for 

lignocellulosic biomass utilisation to modify the size, shape, and density of the 

biomass to match fuel specification or the thermochemical process. The upgraded 

lignocellulosic biomass had been proven suitable to be used for the co-firing with 

coal in the existing coal-fired power plant, without requiring major modifications to 

the plant (Liu et al., 2016). Besides that, it is essential to upgrade the lignocellulosic 

biomass fuel prior utilisation to ease its handling and transportation as well. In 

summary, the aims of lignocellulosic biomass pre-treatment had been recognised by 

Tapasvi (2015) to homogenise the biomass feedstock, increase the biomass energy 

density and improve biomass storage stability. 

 

According to Demirbas (2004), the conversion of biomass via pre-treatment process 

is to transform a raw material, which is initially hard to handle, bulky and of low 

energy concentration, into a fuel with upgraded physicochemical characteristics that 

allows cost-effective storage and handling. Thus, pre-treatment for utilisation of the 

biomass for energy conversion is needed to address the shortcoming of the raw 

biomass. Harmsen et al. (2010) stated that the criteria lead to an improvement of 

lignocellulosic material after pre-treatment are (i) increasing the surface area and 

porosity, (ii) alteration of lignin structure, (iii) removal of lignin and/or 

hemicellulose, (iv) partial depolymerization of hemicellulose, and  (v) reducing the 

crystallinity of cellulose. Table 2.1 summarised the purposes of each pre-treatment 

along with the examples. 
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However, the thermochemical pre-treatment pathway is more favourable to prepare 

the biomass for energy conversion due to the higher conversion energy as well a the 

conversion is faster compared to biochemical pre-treatment (Huang et al., 2016). 

Thus, the further explanation of thermochemical pre-treatment is presented 

afterwards as this study is focusing on the torrefied biomass fuels which are a 

product of thermochemical pre-treatment. 

 

Table 2.1: Categories of pre-treatment of lignocellulosic biomass (Sindhu, Binod, & 
Pandey, 2016; Badiei et al., 2014; Harmsen et al., 2010) 

 
Categories Purposes Examples 

Physical  

pre-treatment 

To increase the available specific 

surface area, and reduce the 

degree of polymerization and 

cellulose crystallinity  

grinding, milling and   

pelletization 

Chemical pre-

treatment 

Chemical reactions introduced 

for disruption of the biomass 

structure 

liquid hot water, alkaline 

hydrolysis, acid 

hydrolysis, oxidative de-

lignification 

Thermochemical 

pre-treatment 

To alter  the  chemical 

composition and physical   

structure   of lignocellulose   

substrates   

pyrolysis, gasification 

and torrefaction 

Biochemical  

pre-treatment 

To degrade hemicellulose and 

lignin for ethanol production 

using metabolite of a 

microorganism 

degradation using white, 

brown and soft rot fungi 

to produce ethanol 

2.2.1 Thermal pre-treatment 

Various types of thermal pre-treatment available nowadays to treat lignocellulosic 

biomass. As mentioned earlier, to meet the demand of carbon neutral energy 

production, solid biofuel is preferable for co-firing with coal or entirely replace coal 

in power generation. Thus, to produce solid biofuels, the best option is to use thermal 

pre-treatment.  
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Thermal pre-treatment alters the chemical composition as well as the physical 

structure of the biomass. According to Bergman (2005), the combination of physical 

pre-treatment such as densification with the thermal pre-treatment like torrefaction is 

often proposed as an alternative to improve the physicochemical properties of 

biomass. Based on the various thermal pre-treatment, torrefaction is a promising 

technology to prepare the biomass for the further conversion process.   

2.2.2 Torrefaction technology 

Torrefaction has been acknowledged as one of the most assuring pre-treatments that 

can address some of the limitations discussed earlier by improving the quality of the 

biomass fuel. The process is intended to upgrade the lignocellulosic biomass into 

more homogenous fuel, which can be converted into energy. According to Prins 

(2005) and Gardbro (2014), the research on torrefaction process had started in France 

in 1930’s. However, there was no publication documented until 1984, and the first 

process patented in the late 19th century. Some researchers such as Deutmeyer et al. 

(2012), Melin (2011) and Lanigan (2010) had considered the torrefaction process to 

be similar to the technique used to roast coffee beans that had been practised since 

the late 13th century. 

 

Torrefaction is similar to the pyrolysis, where both of the processes were carried out 

under the inert environment at atmospheric pressure. However, the main difference is 

the reaction temperature applied during the process. During the torrefaction, a lower 

reaction temperature applied to the process, which is between 200-300°C. Wet 

torrefaction is as treatment of biomass in a hydrothermal media or hot compressed 

water, at temperatures within 180−260°C (Bach et al., 2013). Dry torrefaction is the 

thermal treatment of biomass in an inert environment at atmospheric pressure and 

temperature within the range of 200−300 °C. The torrefaction discussed in this thesis 

is dry torrefaction technique unless stated otherwise. 

 

The reaction temperature recommended by Prins et al. (2006b) is below 300ºC, as 

they had discovered that a fast thermal cracking of cellulose happened when 

temperature above 300-320ºC. The fast thermal cracking may cause tar formation. 
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Rousset et al. (2011) had divided the torrefaction process into two categories, which 

are light torrefaction (reaction temperature less than 240ºC) and severe torrefaction 

(reaction temperature above 270ºC). Thus, torrefaction sometimes referred as mild or 

partial pyrolysis.  

 

Besides the reaction temperature, another distinct difference between torrefaction 

and pyrolysis is the maximisation of the solid yield, where the biomass weight 

reduced while the energy content is sustained. Thus, the maximisation of the solid 

yield where the biomass is converted to a carbon-rich solid product is the major 

motivation of torrefaction. The high solid yield can be achieved by removing the 

water and carbon dioxide from the lignocellulosic biomass, through the 

decomposition of biomass at the low heating rate, which is less than 50ºC/min 

(Wang et al., 2012; Bergman & Kiel, 2005). As a result, the main objective of 

torrefaction is to remove oxygen from the raw lignocellulosic biomass. Therefore the 

product from torrefaction process is a solid biomass with a significant lower O/C 

ratio compared to its raw material (van der Stelt et al., 2011) and eventually 

increased its energy density. 

2.2.3 Conventional torrefaction 

The components in biomass play important roles in torrefaction process due to the 

different temperature effect on each component. The study of temperature ranges for 

peak thermal degradation of cellulose, hemicellulose and lignin, did by several 

researchers can be found in Nhuchhen et al. (2014). The temperature range presented 

had confirmed that hemicellulose degraded at a lower temperature range compared to 

cellulose, whereas lignin degrades at wider temperature range. Thus, the reactivity of 

the hemicellulose in biomass is the main attribute to the mechanism of torrefaction at 

the temperature range between 200ºC-300ºC. However, in that temperature range, 

cellulose and lignin are found to be less reactive. 

 

According to Prins (2005), the kinetics of torrefaction reactions in temperature 

between 200ºC to 300ºC can be expressed by a two-step mechanism. While the first 

step is represented by the hemicellulose decomposition follows by the cellulose 

decomposition. The loss of bound moisture as well as thermal degradation to form 
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volatile products lead to reduced mass yield of torrefaction process (Prins et al. 

2006a). Based on their research on torrefied willow, a large fraction of biomass solid 

is yield during the first step, which around 70-88% compared to only 41% for the 

second step. According to Ben & Ragauskas (2012), despite the biomass source, 

significant decomposition of hemicellulose happened at 240ºC, which explains the 

chosen reaction temperature for the torrefaction process that is below 300°C, where 

the objective of the process achieved. 

 

Subsequently, biomass material with a high hemicellulose content tends to have less 

solid product yield compare to the one with lower hemicellulose content (Nhuchhen 

et al. 2014). They also speculate that, within the torrefaction temperature range of 

200-300ºC, the cellulose degradation might have enhanced by the water vapour and 

acids released from the hemicellulose degradation. As a result, the solid product from 

the torrefaction process has more lignin content, which is more stable component 

than hemicellulose and cellulose. 

 

Torrefaction process leads to devolatilization of the cell wall constituents, which will 

cause enlargement of the lumina and create more available space for free water to 

occupy (Kymäläinen et al., 2015). Hence, torrefaction had been known for its 

advantages to improve the energy density and shelf life of the biomass. However, 

due to the incomplete devolatilization during torrefaction, torrefied biomass 

produced contained some volatile matters. In study done by Tumuluru et al. (2011) 

they had listed eight (8) parameters that influence the torrefaction process, namely 

(a) reaction temperature, (b) heating rate, (c) absence of oxygen, (d) residence time, 

(e) ambient pressure, (f) flexible feedstock, (g) feedstock moisture and (h) feedstock 

particles size. According to van der Stelt et al. (2011) torrefaction process can be 

divided into stages of the temperature-time as presented in Figure 2.3: 
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Figure 2.3: Temperature stages of torrefaction process (van der Stelt et al., 2011) 

 

The reaction occurred during the torrefaction process demonstrates a positive 

outcome to the chemical and physical properties of the raw biomass, which changes 

its properties closer to those of bituminous coal (Nunes et al., 2014). They had 

established that biomass torrefaction can produce a torrefied biomass with an energy 

density that is almost equal to coal but denser than in wood. The properties of the 

solid biomass products fall between the properties of coal and biomass (Fisher et al., 

2012). On the other hand, Rousset et al. (2011) proved that the characteristics of the 

torrefied bamboo tend to fall toward those of low-rank coals. The same findings can 

also be found in Tapasvi (2015), where the composition of the torrefied Norwegian 

birch and spruce were closer to coal with lower volatile matters and higher carbon 

content. Thus, the torrefied solid products can be used to substitute charcoal in some 

applications such as fuel for domestic cooking stoves, residential heating, and 

manufacture of improved solid fuel products such as fuel pellets or barbeque 

briquettes for commercial and domestic uses. 

 

There are many types of reactors available nowadays, and each reactor has its 

distinct properties and is unique to certain biomass physical and chemical 

Solids cooling 

The torrefied product is cooled down to room temperature 

Torrefaction 
Started at 200ºC and end when the 

temperature is cooled down back to 200ºC.  
Most of the mass loss occurs during this 

temperature range 

Post-drying & intermediate heating 

Temperature increased to 200ºC where 
physically bound water is released. 

Resistance against mass and heat transfer is 
within the biomass particles.  

Pre-drying 

The free water is evaporated  from the biomass at the constant temperature of 100ºC.  

Initial heating 
Biomass initially heated to dry the biomass, where temperature is increased and at the end 

moisture starts to evaporated 
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characteristics only (Medic, 2012). The overview of torrefaction reactors with 

different technology by several developers in Europe, North America, and Brazil can 

be found in Shang (2012), which consists of several categories such as conveyor 

reactor, moving bed reactor, rotary drum reactor, fluidised bed reactor and 

microwave reactor. All the categories mentioned earlier use electrical heating 

method except for microwave reactor that uses microwave radiation to heat up the 

sample. The method of torrefaction using electrical heating is referred as 

conventional torrefaction in this thesis. Subsequently, this study is focused on the 

torrefied biomass fuels using microwave reactor. 

2.2.4 Microwave torrefaction     

The general definition of microwaves is electromagnetic waves, which frequencies 

fall between 300 MHz and 300 GHz with corresponding wavelengths between 1m 

and 1mm, respectively. Figure 2.5 shows two mechanisms of microwave heating that 

contribute to the heating of the materials quickly and uniformly are; dipole rotation 

(dipolar polarisation) and ionic conduction (Anwar et al., 2015; Lanigan, 2010). The 

dipolar rotation happened when the polar molecules such as water in microwave field 

rotate to align themselves with the changing field. The friction and collision between 

a dipole molecule and the surrounding molecules dissipate heat. Whereas, the ionic 

conduction occurs when the free ions oscillate back and forth under the electric field 

caused by the microwaves energy. The ionic motion causes the rapid heating of the 

material.  

 

 
Figure 2.4: Mechanism of microwave heating (Anwar et al., 2015; Lanigan, 2010). 
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Thus, unlike conventional heating that transfers heat to the materials, microwaves 

produced heat by converting the electromagnetic energy to the thermal energy 

(Wang et al., 2012). However, due to those heating mechanisms, only materials with 

the dielectric properties can absorb microwaves. According to Huang et al. (2016); 

Gronnow et al. (2013); Wang et al. (2012); Lanigan (2010), the microwave 

chemistry suggests many advantages of the microwave torrefaction over the 

conventional torrefaction. Some of the benefits discussed are: the shorter reaction 

time compare to the conventional method and does not need direct contact between 

the heated material and energy source, selective heating and energy saving.  

 

One of the main advantages discussed by many researchers is the mode of energy 

transfer when heating using microwave radiation over the conventional heating. The 

microwave energy is delivered directly into the material through molecular 

interaction with the electromagnetic field. While for the conventional heating 

method, the heat is transferred into the material via convection, conduction and 

radiation from the surfaces of the material. Therefore, Lanigan (2010) explained that 

the heating using the microwave is an energy efficient process as the microwave 

irradiation provide volumetric heating throughout the material while the 

conventional heating heats the material that in contact with the reaction vessel before 

the whole volume. However, main parameters that affect the torrefaction reaction are 

microwave power and reaction time. 

2.2.5 Torrefied biomass fuels 

The solid product from the torrefaction sometimes referred as biochar or simply 

torrefied biomass. Nunes et al. (2014) identified the improvement of the physical 

properties biomass torrefaction such as the grindability, the particle shape, size, and 

distribution as well as improves the pelletability. The torrefied biomass has lower 

volatile matters and oxygen, a higher calorific value as well as higher ash and carbon 

content (Huang et al., 2012; Jones et al., 2012; Wang et al., 2012; Arias et al., 2008). 

The characteristics mentioned earlier were more similar to that of coal, which makes 

the torrefied biomass suitable for co-firing with coal in power plant.  
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Given the high volumetric energy density, the solid torrefied biomass has been 

recognised to be suitable for combustion or gasification application in commercial 

and residential (Tumuluru et al., 2011) or as co-firing material in power plant 

(Nhuchhen et al., 2014). Besides the chemical properties, torrefaction process also 

upgrades the physical properties of the biomass. For example, the study by Li et al. 

(2012) reported a decreased of water adsorption capacity after torrefaction of wood 

material. In addition to that, the study also mentioned that moisture content reduced 

to almost half of its raw material.  

 

Despite all the benefits presented earlier, due to the brittleness of the torrefied 

biomass, Michael Wild (2016) and Bergman (2005) claimed that more dust would be 

produced during handling compared to coal and extra care shall be taken to avoid 

dust accumulation as it said to be more reactive than coal dust. In addition, off-

gassing issues in torrefied biomass showed an alarming risk that required mitigation 

by proper design of storage facilities along with safe handling procedures (Tumuluru 

et al., 2015). 

 

The torrefaction process also changed the reactivity of the raw biomass. Researcher 

such as Liu et al. (2016) and Fisher et al. (2012) reported the decreases of biomass 

reactivity after torrefaction. However, the reactivity is affected by the torrefaction 

degree as well as the heating rate. The torrefied biomass is more reactive when the 

torrefaction process uses higher heating rate than the one produced in lower heating 

rate. The reactivity might have a good implication on the utilisation for combustion, 

but there is a possibility of the self-heating problem.  

2.3 Storage of biomass fuels 

The growing interest in the production of solid biofuels has led to the need for the 

storage in large amounts prior usage. The production of solid biofuels takes place all 

over the year. However, the higher demand for the solid biofuels mostly during the 

winter season due to the needs of energy for heating. Therefore, there is a necessity 

to store the solid biofuels for the long term. Nevertheless, there is also a need for 

short-term storage of biomass at the site. 

 



 Chapter 2:Literature review 
  

 
 

29 

To be able to operate continuously, a power plant needs to be able to handle large 

quantities of fuel.  Therefore, delivery just in time prior usage is impossible. 

Consequently, the plant needs to have a buffer storage of fuel at the site to cope with 

the fluctuation demand, as well as delays in the delivery chain (Eriksson, 2011). The 

solid biofuels storage needed to be first in first out basis to avoid the degradation of 

the fuels during storage. 

 

Current practice to store conventional wood pellets is usually in the silo to protect 

them from exposure to moisture, which can cause swell and disintegrate. Based on 

Biochar.net (2012), current practice for transportation and storage purposes of 

biochar is packed in a sealed 200 L drums or one cubic meter sacks. However, there 

is a possibility for the biochar to develop heat once exposed to air.  

 

While for torrefied biomass fuel, the outdoor pile storage is not recommended as the 

best practice in stockpiling (Järvinen & Agar, 2014). Therefore, the study had 

suggested that storage practice for torrefied biomass fuel been treated similarly to 

wood pellet. The suggestion had been proven as a suitable storage practice by 

Kymäläinen et al. (2015), through their study of five-month storage trial of several 

types of biomass fuel including torrefied biomass. The findings from the study 

suggested that even though torrefied biomass fuel is hydrophobic, the liquid water 

can still be absorbed into the bulk through capillary action. However, the study 

recommended that the usage of the silo to store the torrefied biomass fuel be 

unnecessary, unlike the untreated pellet. Thus, roof-covered storage areas or simple 

covers are suggested as a cheaper option for storage condition of torrefied fuel, and 

this suggestion matches the recommendation in Koppejan et al. (2012). There are 

limited amounts of experimental data on the self-heating of torrefied biomass stored 

in large piles or heaps, but it most likely will follow the same self-heating 

mechanism of coal piles.   

2.4 Self-heating leading to ignition 

Self-ignition is a thermal runaway resulting from the self-heating process. Self-

heating is the process where the materials achieve temperature higher than 

surrounding temperature due to the internal exothermic reactions. According to 
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Bowes (1971), the thermal explosion analysis by Semenov (1940) and Frank-

Kamenetskii (1955) are the basis of the theoretical study of the self-heating and self-

ignition in a stockpile. The phenomena of the self-ignition in a stockpile are 

described by two main parameters, which is the heat gained by the reaction and the 

heat lost to the surrounding. Self-ignition is a phenomenon where thermal runaway 

occurs due to self-heating of the material resulted in a transition from slow internal 

exothermic reaction to a rapid oxidation without external heat source such as spark 

or flame (van Blijderveen, Bramer, & Brem, 2013). Self-heating, on the other hand, 

is part of the self-ignition process that happened before the ignition occurs (Fan and 

Dong, 2011). 

The imbalance between the heat produced by the reaction and the heat release 

through the stockpile may lead to the self-heating. Self-heating happens when the 

temperature of the stockpile is higher than the ambient temperature due to the 

internal exothermic reactions. The self-ignition in stockpiles is a thermal runaway 

resulting from the self-heating process that cannot be balanced by heat loss in the 

system. Self-ignition also commonly being termed as spontaneous ignition, auto-

ignition and auto-combustion. 

 

The mathematical model of self-ignition from the theory is based on the partial 

differential equation of heat conduction, where the governing equation of heat 

transfer is as shown in Eq. 2.1. 

 

                                  𝜕𝑇
𝜕𝑡
= 𝑎 [𝜕

2𝑇
𝜕𝑥2
+ 𝜕2𝑇
𝜕𝑦2
+ 𝜕2𝑇
𝜕𝑧2
] + 𝑄(𝑇)

𝜌𝑐
        (Eq. 2.1) 

 

Q is the heat source, W/m3, that is represented by an Arrhenius model as presented in 

Eq. 2.2 

                          𝑄 =  𝑞𝜌𝐴𝑒
−𝐸
𝑅𝑇           (Eq. 2.2) 

 

Also, Figure 2.5, describes the behaviour of the system based on the heat balance due 

to the heat of reaction and heat loss. Based on the diagram, the thick curve line is the 

heat of reaction (Qreact) that increases in a non-linear form with the temperature. 

While heat loss to the surrounding is represented by, the three grey parallel lines, 

which are at the initial temperature, Ta. The three parallel straight lines marked a, b 
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and c are the convective heat transport from the fuel bed to air stream for three 

primary air stream temperatures Qconv. These lines cross the x-axis at air temperature 

(To). When Qconv is negative, the fuel bed is heated by the primary airflow. 

 

 
Figure 2.5: Heat produced by the reaction (Qreact) and the heat lost or gained due to 

convective heat transfer for three values of To (van Blijderveen et al., 2010) 
 

There are two essential parameters to assess the self-heating behaviour that lead to 

ignition; namely spontaneous ignition temperature and induction time. The 

spontaneous ignition temperature is defined as the highest surrounding temperature 

where no ignition occurs at a given volume, however the thermal runaway can 

happen if the surrounding temperature is higher than the self ignition temperature 

(SIT) where the heat released by the reactions inside the material is larger than the 

heat transmitted to the environment (Ferrero et al., 2008).  

 

In the other hand, induction time or ignition delay time is the time taken by the 

material to ignite, which according to Saddawi et al. (2013) is a function of 

surrounding temperature of the bed where the self-heating and ignition take place. 

The difference arises in the induction time of material had been justified by Thomas 

& Bowes (1961) as a result of time taken of the material to form the active product 

material or to destroy the reaction inhibitor of the material. 

 

The relationship between SIT and ignition delay times can be examined by the 

method in BS EN 15188:2007 (BS 15188, 2007). As tested by Saddawi et al. (2013), 

the results obtained from the test are a function of the size of the sample, where the 
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SIT will be lower for larger sample size and a longer time is taken to ignite (longer 

induction time). 

2.4.1 Self-heating behaviour of coal 

However, coal stockpiles are susceptible to self-ignition particularly if the large 

amounts are stored for long periods. The subtle change in the physiochemical 

properties upon weathering is called oxidation. Based on Nalbandian (2010) the 

accumulation of heat due to the heat generated from the oxidation process can lead to 

self-ignition. The oxidation process is affected by three ways of how oxygen affects 

the process (Veznikova et al., 2014). The three ways are physical adsorption of 

oxygen the, reaction of oxygen on highly active coal centres, and the chemical 

reaction of oxygen on coal. Thus, the mechanism of self-ignition results from the 

physical and chemical reaction of coal. 

The process of self-ignition coal can be divided into four phases as listed below:  

a. Chemisorption of oxygen along with the increase of weight; from 

ambient temperature up to 70ºC 

b. Initial release of oxidation reactions products and inner water; 

temperature range between 70ºC to 150ºC 

c. Production of larger amounts of oxidation reactions products; 

temperature range between150ºC to 230ºC,  

d. Fast burning including production of soot; temperature above 230ºC  

 

Some factors that influence the process of self-ignition are chemical reactivity of the 

coal towards oxygen, atmospheric conditions, the moisture content of the coal, a 

method of storage, particles size, and physical properties of coal (Nalbandian, 2010; 

Schmal et al., 1985). The works by Beamish et al. (2000) show that the self-heating 

rate of freshly exposed coal to the atmosphere is higher than the aged coal. The rate 

of the rate is lower due to the loss of the reactive site for oxidation. Besides that, the 

propensity of self-heating is different between types of coal. Low-rank coals exhibit 

strong self-heating tendency compared to the matured coal (Ceballos et al., 2015; Fei 

et al., 2009; Hull et al., 1997; Krishnaswamy, Agarwal, & Gunn, 1996; Jones & 

Vais, 1991). Coal self-heating propensity is associated with coals containing high 
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volatiles (low-rank) compared to low volatile and high fixed carbon coals (high-

rank). The volatile matters in coal decreases as the ranking increases. 

2.4.2 Self-heating behaviour in biomass fuels stockpile  

The temperature rises of biomass fuel in a stockpile occurs primarily due to the self-

heating generated by chemical, biological or physical processes. Chemical self-

heating takes account of the reaction between the gas and solid material such as 

oxidation. While for the biological self-heating, the metabolism of microbes within 

the biomass generates heat. Lastly, the self-heating concerning physical process 

includes effect related to moisture transport (Leslie, 2014). When storing large 

amount of biomass fuels, there is a high risk of self-heating occurrence in the 

stockpile due to a combination of those self-heating processes. 

 

Biomass fuels have a potential to absorb oxygen during storage period to produce 

exothermic reactions in the same manners of risk is observed in coal storage period 

(Mateos et al., 2013). The oxidation at low temperature (below 200°C) can be 

observed for biomass fuels, where the oxidation rate depends on the surface area of 

the active site. Morrison & Hart (2012) had acknowledged the risk of self-heating 

processes in piles of biomass, which may be under the oxygen-limited environment 

and access to oxygen able to increase the heat generation and onset of a smouldering 

or thermal runaway.  

 

The exothermic reaction can take place under various conditions depending on the 

materials observed. According to (Ramírez, García & Tascón, 2010), the initial stage 

of temperature rise in biomass stockpile happens typically due to the biological 

activity of microorganisms such as bacteria and moulds. The temperature of the 

system commonly rise to 55°C, and in some cases, the temperature may up to 75°C. 

Jirjis (2005) found the relationship between the fungal activities and the heat 

development in fresh willow shoot storage, where the spore counts increased was 

closely related to the heat development. Respiration is one of the processes that 

happened in all organic materials that were stored in silos or storage facilities as 

being explained by Ramírez et al. (2010). Respiration process will break down 

carbohydrates, proteins and fats into carbon dioxide, water and energy. The self-
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heating process will happen when the energy is used by the cell to fuel the metabolic 

process which will release heat; if there is insufficient heat exchange between the 

reaction system and the external environment the temperature will eventually rise 

therefore will further increase the rate of reaction which then the product becomes 

even warmer.  

 

Afterwards, the heat generation due to chemical oxidation takes place, and the 

heating up can occur up to at least 150°C. The same temperature pattern as explained 

before can be witnessed in the study by Hogland & Marques (2003) on the storage of 

waste pile. The study explained that the physical process due to adsorption or 

condensation might lead to heat generation. However, it happened at a low 

temperature (below 20°C), which is not significant in this work. Also, Thomas & 

Bowes (1961) highlighted the complexity of the self-heating process which may 

include more than one exothermic reaction, however in the first stage of reactions, 

only low heat generated is witnessed, which will not result in the ignition.  

 
Figure 2.6: Stages concerning the fires caused by self-ignition in bulk material 

(Krause, 2009) 
 

According to Krause (2009), there are four main criteria must take place for the 

spontaneous combustion to occur. The main criteria are: (1) the material must exhibit 

self-heating properties, (ii) the reaction that contributes to self-heating in the system 

must rapidly accelerate to reach high temperature until it extends to a thermal 

runaway, (iii) the thermal runaway phase must start a sustained smouldering, (4) the 
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sustained smouldering must spread to the outside surface of the material and possibly 

erupt into flaming. Figure 2.3 shows the phases concerning the criteria lead to the 

occurrence of a self-ignition process.  

 

Meanwhile, Nelson et al. (2003) described the process of heat generation involving 

bulk organic materials into two stages of temperature only: (i) at low-temperature 

heat generated is due to the process of growth and respiration of microorganisms and 

(ii) at high-temperature heat generated is due to chemical oxidation of cellulosic 

materials. Their work also dismissed the heat generated due to a physical process. 

Therefore, this study is focused on the source of heat generation at high temperature; 

that only consider the chemical reaction of the biomass fuels without the effect of 

microorganism activities. Besides that, the samples used in this study are considered 

having a very low moisture content, which is an unfavourable environment for 

biological activity by microorganisms. 

2.4.3 Factors influence the self-heating propensity  

There are several factors, which have influence the tendency of self-heating of 

biomass fuels during the storage period. Two types of factors influence the self-

heating process in biomass fuels during the storage period are controllable and 

uncontrollable factors. Controllable factors take account of the management of the 

pile condition itself, for example, the pile height. In the other hand, the 

uncontrollable factors include the characteristic of the biomass fuel. However, this 

study only focuses on the controllable factors that can influence the propensity of the 

biomass fuels self-heating. 

 

Nalbandian (2010) had discussed some factors that influence the spontaneous 

combustion of coal, which included air-ventilation of the stockpile, silo or bunker, 

the atmospheric conditions of the storage area, the coal quality, coal moisture content 

and particle size. Hogland & Marques (2003) listed several factors that influence the 

temperature development in a waste storage pile such as particle size, the amount of 

organic material, moisture content, the size of the waste pile and the surface area of 

the waste fuel available to the reaction. Similarly, these factors also play roles 

influencing the self-ignition during storage of biomass fuels. Storage time, 
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surrounding conditions, species composition, form of the biomass, as well as 

geometry and structure of the storage pile influenced tendency of the biomass 

characteristics changes during storage period (Krigstin & Wetzel, 2016), which 

eventually affect the propensity of the self-heating to occur. 

 

The compaction of the bulk material can also increase the propensity of the material 

to self-heat, due to the increase in the thermal conductivity as reported by  Mateos et 

al. (2013) on the study of several types of lignocellulosic biomass with a particle size 

of 0.5 μm and 0.9 μm. While more uniform particle size of wood chips lead to higher 

compaction, which will reduce the heat dissipation to the surrounding especially in 

higher chip piles (Jirjis, 2005). 

 

Pauner & Bygbjerg (2007); Wilěn Carl & Rautalin (1993) concluded in their 

research that the ambient temperature of the storage area and the characteristic of the 

biomass fuel play an important role influencing the propensity of the self-heating. In 

addition to that, Guo (2013) considered the influence of the ventilation in the storage 

of wood pellets in a silo, which indeed a very significant factor to be taken into 

attention.  

 

Many studies agreed that the stockpile geometry is a critical factor to be taken into 

account when storing biomass fuels in a bulk quantity (Murasawa et al., 2012; 

Ferrero et al., 2009; Li, Koseki, & Momota, 2006; Jirjis, 2005). The mechanism of 

the heat dissipated for from the stockpiles is through the surface even though the heat 

is produced in the whole bulk volume. Therefore, if the heat loss to the surrounding 

through the surface is unable to balance the heat generation, it can initiate the self-

ignition.  

 

For instance, Li et al. (2006) had established the relationship between the heat 

generation and the volume of the bulk pile. The heat generation in a pile is 

proportional to the its volume, while the heat loss is proportional to the surface area. 

Hence, volume to surface area ratio (V/A) has a strong influence on the self-ignition 

occurrence as the rate reaction associated with it. According to Cruz Ceballos et al. 

(2015), the higher surface area can be translated to more active sites. Thus, to be able 
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to control the influence of the geometry toward self-heating propensity, the height of 

piles is a controllable factor that can be managed during the storage period. 

2.4.4 Biomass fuels ignition preventions  

Many researchers had study the safe storage of biomass fuels in stockpiles regards 

physical and chemical properties that likely to cause self-heating. Table 2.2, listed 

the several countermeasure suggestions of the research based on the material studied. 

Based on the several examples of countermeasures suggested, the storage 

environment plays an important role to avoid the self-ignition occurrences. The 

surrounding temperature of the storage is a key factor to be taken into account along 

with the pile condition such as its height. Besides that, the physical condition of the 

stockpile such as the need to compact or bale the material can avoid the self-ignition. 

Thus, those factors are the focus of this study, where the effect of pile height, 

temperature and material porosity is presented. 

2.5 Experimental study of self-heating behaviour 

There are many analysis methods available to evaluate the self-heating propensity of 

the biomass material. Among the experimental techniques adopted by researchers to 

analyse the self-heating in biomass fuels are based on the one used for coal. The 

study of the self-heating of coal in the mining industry is well understood compared 

to the biomass fuel industry (García-Torrent et al., 2012). Similar to coal, the 

understanding of the kinetics of the biomass fuel oxidation is beneficial for the 

understanding, design and modelling of the industrial processes (Sima-Ella, Yuan, & 

Mays, 2005). The self-heating analysis can be categorised based on the method used 

to obtain the self-heating parameters, which characterised the material’s reactivity. 

The main kinetic parameters that influence the reactivity of the biomass fuels are 

activation energy and pre-exponential factor. Sima-Ella et al. (2005) elaborated that 

the activation energy affects the temperature sensitivity of reaction rate, while the 

pre-exponentials factor associated with the material structure. 
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Table 2.2: Prevention suggestions from past studies on self-heating of biomass 
material in stockpiles 

Sources and biomasses 
studied 

Suggestions 

Graham (2015) 
- Freshly harvested willow 
- Thermally treated wood 

pellet 
- Untreated white wood pellet 
 

- Long term storage of thermally treated wood 
pellet in an open barn with cover 

- Short term option of outdoor storage for 
thermally treated wood pellet 

- Storage of untreated white wood pellet in a fully 
enclosed environment 

- Sloped edge pile 
 

Mateos et al. (2013) 
- Several types of milled 

lignocellulosic biomass 
(size: 0.5μm & 0.9μm) 

- Compaction of the stored material reduced the 
self-heating propensity; due to the reduction of 
air accessibility. 

Guo (2013) 
- Wood pellet 

- Smaller silo size for storage system 
- Increase the pellet age before storage 
- Ventilation system inside the silo 

 
Koseki (2012) 
- Wood chips 
- Chicken dung 
- Refuse paper and plastic 

fuel  
- Organic rubble 
- Soy sauce squeezing residue  
 

- The removal of heat using a tube that is 
penetrated into the pile 

- Active monitoring of the temperature and gas 
emission from the pile 

- Reduce fermentation by covering the low part 
of the pile’s slope with incombustible material. 

Murasawa et al. (2012) 
- Soy sauce squeezing residue  
- Fish meal residue 

- Limitation of the pile height 
- Adjustment of the surrounding temperature 

Fu et al., (2006) 
- Refuse derived fuel 
-  Meat bone meal  

- Monitoring of the relative humidity and 
temperature inside bulk piles 

- Avoid the long-term storage 
 

Hogland & Marques (2003) 
- Refused derived fuel  
- Unsorted industrial waste  

- Baling of the material to reduce the porosity 
- Ensure pile is lower than 5m 
- Construction of the wind barrier to protect the 

pile from strong wind 
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2.5.1 Thermogravimetric analysis of thermal decomposition 

Critical conditions for self-heating in stored biomass materials can be evaluated by 

using suitable laboratory-scale test method including thermogravimetric test, 

differential scanning calorimeter, differential thermal analysis, adiabatic calorimeter 

and isothermal oven tests using basket heating methods (Cruz Ceballos, Hawboldt, & 

Hellleur, 2015; García-Torrent et al., 2012).  The thermal analysis such as 

thermogravimetric and differential scanning calorimeter require smaller sample size 

as well as less time-consuming.  

 

Among the techniques used, the most common approaches are using thermo-

analytical analysis, which based on the net amount of heat released by the sample as 

well as the dependence of certain parameters to the temperature (Avila, 2012). This 

technique including thermogravimetric analysis (TGA), differential thermal analysis 

(DTA) and differential scanning calorimeter (DSC) are widely used in self-ignition 

researches.  

 

A thermogravimetric analysis is extensively used to determine the kinetic parameters 

for the sample as well as to evaluate its thermal stability. TGA was performed to 

measure the mass changes of the sample related to its temperature changes which 

provides the characteristic temperature of the sample. Many researchers such as 

(Jones et al., 2015; Della Zassa et al., 2013; Avila et al., 2011; Saddawi et al., 2010)  

used this method in the study of reactivity biomass materials. Nevertheless, this 

technique had been widely used in the study of coal as well.  

 

Therefore, the significant parameters examined based on thermogravimetric analysis 

in term of self-heating behaviour as reported by Ramírez et al. (2010) are are the 

temperature maximum weight loss (TMWL),  temperature of initial combustion 

(TIC) and characteristic oxidation temperature (Tcharac).  
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The definition of each parameters are as below: 

 

a) Temperature of maximum weight loss (TMWL)  

TMWL is used as an indication of the reactivity of the sample tested. The maximum 

weight loss is due to the yield of volatile matter produced during the thermal 

degradation process. This value implies as an index of the reactivity of the samples. 

The higher the temperature reaches, the lower the reactivity of the sample. 

 

b) Temperature of initial combustion (TIC) 

TIC shows the temperature at the beginning of the combustion profile, which 

indicates that the combustion starts. The lower the TIC value, the lower the reactivity 

of the sample. This value will give a clear view on which temperature the material 

begins to combust and shows that if the material reactivity is higher in the air, it will 

start to combust at a lower temperature. 

 

c) Characteristic oxidation temperature (Tcharac) 

Tcharac is a single oxidation temperature obtained when TG analysis was done in an 

oxygen environment. Tcharac can be assign when using oxygen because the 

oxidation reaction takes place quickly and the point where the sudden weight loss 

can be determined. The relationship between Tcharac and activation energy can be 

used to evaluate the classification of the samples concerning their ignition risk 

(Ramírez et al., 2010). 

 

Differential scanning calorimeter (DSC) measures the temperature difference 

between the sample and a reference, which recorded against the temperature of the 

oven. Therefore, the exchanges of heat in the sample can be determined. DSC 

provides very sensible measurements with a small amount of sample (mg). 

According to Li et al. (2014) thermo-analytical technique using DSC is widely used 

to measure heat effect during coal oxidation. 

 

The reactivity of the material in term of self-ignition study can be described as the 

propensity of the material towards rapid self-heating. Thus, the reactivity of the 

material can be examined based on how the material responses when being heated 

during TG analysis. Fisher et al. (2012) had emphasised that, even though there is no 
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accepted definition of char reactivity, the global char reactivity can be determined 

from mass loss histories, by defining it as the time derivative of the conversion. 

Therefore, this study adopted the same definition of char reactivity as earlier 

researchers. 

 

However, thermal analysis operates on the relatively small sample (mg samples), 

which raise the issues in the sample representative towards actual heating behaviour 

as well as it reproducibility (Della Zassa et al., 2013). Therefore, the need of larger 

scale investigation is essential. Thus, the isothermal oven test is one of the preferable 

option.  

2.5.2 Isothermal oven test 

The isothermal oven test is conducted to investigate the larger scale of heating 

behaviour on the combustible material. The effect of temperature well as the volume 

over the self-heating propensity can be quantified using this technique. Besides that, 

the kinetic parameters of the heating process can also be found. 

 

Three different curves can be obtained from this experiment. The curves are 

presented in Figure 2.7. The curve A is a subcritical curve where at chosen 

experimental temperature TA the sample becomes hotter towards the oven 

temperature. However, no exothermic reaction within the sample, thus no ignition is 

observed. While for curve labelled B, is the critical curve. At this temperature 

profile, the temperature of the sample slightly exceeds the oven temperature, TB. 

However, it just surpasses for a slight time then tends to reduce towards the oven 

temperature. Lastly, if curve C is observed during the experiment, ignition will be 

detected. The supercritical curve observed when the heat generation in the sample 

surpasses its heat losses. Eventually, non-stationary conditions reached, and the 

sample temperature escalates rapidly over that of the oven (TC), and ignition occurs. 
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Figure 2.7: Possibility of thermal behaviour of the sample in the isothermal oven 

(Ramírez, García-torrent, & Tascón, 2010) 
 

The isothermal oven test uses crossing point (CP) method to find the kinetic 

parameters. This method assumes that when two temperature points inside the 

container are identical, there will be no conductive heat transfer between two points, 

leads to the heat transfer based on a transient solution as Eq 2.3. 

 

𝜌𝐶𝑝
𝜕𝑇
𝜕𝑡
| 𝑝 =  𝜌 ∙ ∆𝑟ℎ ∙ 𝐴𝑒

− 𝐸𝑎
𝑅𝑇𝑝     (Eq. 2.3) 

 

Where the subscript 𝑝  represents the condition at the centre of the sample. The 

identical temperature between this two location points is defined as the crossing 

point, where activation energy (Ea) can be calculated after Tp, which is the ‘crossing 

point temperature’ and 𝜕𝑇
𝜕𝑡
| 𝑝 , is the temperature increase rate being examined 

experimentally. The activation energy can be calculated from the slope of 𝑙𝑛 (𝑑𝑇
𝑑𝑡
)| 𝑝 

against ( 1
𝑇𝑝
). 
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2.5.3 Numerical modelling of self-ignition 

Various level of complexity to predict the condition of which biomass can undergo 

self-heating, starting with one-dimensional (1-D) to the more complex like two-

dimensional (2-D) and three-dimensional (3-D). However, Fierro et al. (2001) had 

highlighted the disadvantage of time-consuming of the computational time with the 

possibility for the inaccuracy of prediction.  

 

Many mathematical modelling had been done to study the self-heating process 

leading to ignition. Researchers manage to find the relationships between critical 

parameters to predict the possibility of ignition occurrence as been done by Ferrero 

et al. (2008); Ferrero et al. (2009); Lohrer et al. (2005); Fan & Dong (2011) and 

Pauner & Bygbjerg (2007).    

 

The one-dimensional model equations are preferable, as it is less time consuming 

compared to two-dimensional (Arisoy & Akgun, 2000; Hull et al., 1997). However, 

the one-dimensional model will give less accurate results. Thus, many recent studies 

had run the simulations in two-dimensional as well as included complex coupled 

reaction such as biological and chemical oxidation in the numerical model in order to 

get more accurate and realistic results (Escudey et al., 2011; Luangwilai et al., 2010; 

Ferrero et al., 2008; Krause, Schmidt, & Lohrer, 2006; Akgun & Essenhigh, 2001). 

Also, Akgun & Essenhigh (2001) recognised the need of using the one-dimensional 

model as a first step approximation, but the model is incomplete and unrealistic. 

Therefore, a two-dimensional model is the simplest model that can give the accurate 

and realistic result. In the other hand, for the case of the prediction of critical 

conditions, the larger geometry managed to predict the critical conditions using the 

global developed model. 

 

In order to for the parameters to be used in the simulation, thermal properties of the 

material can be examined using the thermal analysis such as thermogravimetric (TG) 

and differential scanning calorimeter (DSC). The temperature from the test will be 

applied in the numerical equation to determine the self-heating kinetic. Besides that, 

the prediction using numerical simulation can also be validated by experimental 

methods. Atreya (1998) had mentioned that there are three requirements in 
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experimental investigation of the ignition phenomenon, which are (i) a heat source to 

simulate the fire heat flux, (ii) a technique of mounting and exposing the sample to 

the heat source, and (iii) in case of piloted study, the initial source to ignite the 

sample. Numerical simulations will help in closing the gap when there’s a restriction 

in size or geometry of materials that need to be tested and often be used to 

complement extensive experiments (Lohrer et al., 2005). 

2.6 Conclusions of the literature review 

x The growth of demand for biomass fuel increased due to the awareness of 

using the carbon neutral fuel source for energy production. Therefore many 

new technologies to produced biomass fuels had been developed. 

x The torrefaction technology managed to upgrade the quality of the biomass 

into a solid biofuel with high energy density and suitable for combustion or 

gasification for energy production. The torrefied biomass also a carbon 

neutral fuel, which is preferable compared to coal. 

x The properties of torrefied biomass are comparable to the one in low ranking 

coal, with lower volatile matters and oxygen and higher calorific value, ash 

and carbon content. 

x The torrefaction process changes the reactivity of the biomass based on the 

degree of torrefaction. Therefore, the torrefied biomass also likely to have 

issues of self-heating due to higher reactivity. 

x Microwave torrefaction has advantages over conventional torrefaction with 

overall efficient process as well as promising technology application.  

x Self-heating behaviour can be observed once the heat generated by the 

exothermic reaction is more than the heat losses to the surrounding. The self-

heating leading to the ignition is a problem during the biomass bulk storage. 

x The parameters affecting self-heating propensity of biomass fuel in bulk 

storage include ambient storage temperature, species composition, geometry 

of the storage (pile height), storage ventilation, physical and chemical 

properties of the biomass, surface area as well as the duration of the storage.  

x Thermogravimetric analysis is a useful method to find the thermal kinetic for 

the biomass decomposition as well as the proximate analysis. 
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x Larger scale experiment is suitable to give more in-depth observation and 

measurement of the sample reactivity based on the effect of temperature and 

volume of samples towards heating propensity. 

x Numerical modelling is a decisional-support tool that can help to simulate the 

heating behaviour on a large scale as well as to complement the findings from 

the experiment.  

x Two-dimensional geometry model proven to have better advantages over 

one-dimensional despites the time-consuming simulation.  



 Chapter 3:Characterisation of non-torrefied and microwave torrefied biomass 
  

 
 

46 

 Chapter 3 Characterisation of non-torrefied and 
microwave torrefied biomass 

This chapter presents the experimental procedure for microwave torrefaction process 

as well as an experimental method for calorific value determination and the 

proximate and ultimate analysis of the samples. The discussions on the comparison 

of physical and chemical properties for both samples are discussed 

3.1 Biomass sample 

The biomass sample used in this study is white non-thermally treated wood biomass 

(Figure 3.1). The non-torrefied biomass was ground into a smaller size with an 

average size of 1.5 mm. 

 
Figure 3.1: Non-torrefied biomass sample 

3.2 Torrefaction process 

Based on the recent development in torrefaction technology as discussed in 

Section  2.2, the microwave torrefaction is considered as a promising technology with 

attractive benefits for the final product. Among the advantages of using the 

microwave as a heating source is the energy saving as it can be operated in shorter 

time to achieve the target temperature compared to the conventional heating. Despite 

those benefits, many researchers had reported that the product from the torrefaction 

process is a torrefied biomass that has intrinsic and chemical properties close to the 

low-grade coal. Thus, torrefied biomass may possess the similar tendency to self-

heat comparable to coal. The possibility of the torrefied biomass to undergo self-heat 

had been discussed by Cruz Ceballos et al. (2015).  
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3.2.1 Equipment and experimental procedure for sample preparation 

This research investigates the thermal behaviour of thermally treated biomass fuel 

using microwave torrefaction process in comparison to the non-torrefied material. 

The raw material used in this study was white non-thermally treated wood biomass. 

The woody biomass was ground into a smaller size with an average size of 1.5 mm. 

The raw material used as a received basis to prepare the microwave torrefied sample, 

where no pre-drying is necessary before torrefaction process. Research by Wang et 

al. (2012) verified that pre-drying is unnecessary for microwave torrefaction because 

the water content of the biomass fuel has no adverse effect on the torrefaction 

process. 

 

Preparation of the torrefied sample was conducted at the Green Chemistry Centre of 

Excellence, Department of Chemistry, University of York. The sample was torrefied 

using Milestone ROTO Synth Rotative Solid Phase Microwave Reactor (Milestone 

Srl., Italy) as shown in Figure 3.2. The operating microwave power during the 

torrefaction process is 400 W. The high microwave power was chosen for this work 

to provide less torrefaction processing time. The process was done under vacuum 

condition at around 500 mbar at the highest heating temperature. 

 

 
Figure 3.2: Microwave torrefaction reactor ROTO SYNTH (Milestone Srl., Italy) 
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Figure 3.3:  Rotating glass flask filled with raw biomass sample inside the 
microwave chamber 

 
The raw sample was weighed and placed in a 2 Litre glass flask. The glass flask was 

fitted with rotation device in the microwave chamber (as shown in Figure 3.3). The 

flask will rotate during the process to give a homogeneous heating to the sample. The 

reaction time was 6 minutes from room temperature to the final temperature (107°C). 

The by-products from the torrefaction were closely monitored during the process. 

 

 
Figure 3.4: The liquid products were condensed in a water-cooled vacuum trap 

  

 

 

Clear liquid fraction  Bio-oil 
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At a temperature around 80 - 88oC, a clear liquid fraction was produced, and because 

of the increasing temperature, bio-oil was observed around 95-107oC. The liquid 

products were collected in water-cooled vacuum trap as shown in 

Figure 3.4. The process ended at this stage since this research focused on the 

microwave torrefied fuel generated at low temperature. The final weight of the 

torrefied biomass was recorded. The weight data was necessary to calculate the mass 

and energy yields as shown in Section 3.4.2. 

3.2.2 Microwave torrefied biomass fuels 

The change of colour for the microwave torrefied biomass sample is observed after 

the torrefaction process as shown in Figure 3.5. The colour of the microwave 

torrefied biomass fuel produced was darker compared to the non-torrefied sample. 

The change of the colour of torrefied biomass is because of the losses of the surface 

moisture, bound moisture, as well as light volatile gases during the torrefaction 

process (Nhuchhen, Basu, & Acharya, 2014). The torrefied sample produced for this 

study is brown with an inhomogeneous colour pattern.  

 

 
Figure 3.5: Microwave torrefied sample  

 

This inhomogeneous colour of the torrefied sample is expected; due to the short 

reaction time for torrefaction process selected for this study. The observation had 

been explained in Satpathy et al. (2014) and Dhungana (2011), where the short 

reaction time, the non-homogenous nature of the biomass, as well as the selective 

heating mechanism of the microwave contributed to the inhomogeneous colour of 
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the torrefied sample. Also, the lower heating rate can also contribute to more 

homogenous products. 

 

The varieties in the changes of colour for the torrefied product were reported as to be 

depending on the applied torrefaction conditions (Graham, 2015; Nhuchhen, Basu, & 

Acharya, 2014). This statement is supported by Cruz Ceballos et al. (2015); Shang et 

al. (2012); Phanphanich & Mani (2011) where they established that the colour of the 

materials that undergo torrefaction process were found to be darker with the 

increasing of torrefaction heating temperature. Besides that, the study by Satpathy et 

al. (2014) also showed the colour changes from dark brown to black when the 

microwave power level and the reaction time increased. Tumuluru et al. (2011) had 

identified the colour changes of raw material after the torrefaction process as a useful 

method to describe the degree of torrefaction, where the biomass turns from brown to 

black at 150oC – 300oC considering the chemical composition changes during the 

process.  

 

It is worth mentioning that, a recent study by Sadaka et al. (2014), had published a 

detailed measurement of biomass colour changes, where they used biomass 

discoloration index to characterise the colour changes based on carbonisation 

temperature and reaction time during the carbonisation process. The index could 

potentially capture the extent of the biomass conversion through the degree of the 

colour changes at different carbonisation conditions. The use of the discoloration 

index can be extended on the biomass fuel produced using torrefaction process. 

Unfortunately, this index cannot be applied in this research because only one 

condition of torrefaction process was studied. 
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3.3 Methods to determine properties of biomass fuels 

3.3.1 Calorific value 

Calorific value or heating value is the amount of energy released during the 

combustion of material in a pure oxygen environment. The determination of calorific 

value was fulfilled based on ASTM D4809-13 using Isoperibol Oxygen Bomb 

Calorimeter (Parr Instrument Company, Parr 6200) that equipped with a 

microprocessor controller as shown in Figure 3.6 and Figure 3.7 shows the parts of 

bomb vessel. 

 

The sample for the determination of calorific value was ground using a ball mill to 

about 125 μm. Sample with a weight of 1gram was placed in a crucible. The crucible 

was put in the sample holder at attached to the bomb head. A 10 cm fuse wire was 

connected to the electrodes as an ignition source to start the combustion reaction of 

the sample in the vessel. Thus, the wire must touch the surface of the sample for 

ignition to occur. The bomb head was then carefully placed into the cylinder and 

sealed by hand tightening the screw-on cap. The bomb vessel was filled with pure 

oxygen at a pressure of 30 atm.  

 

 
Figure 3.6: 6200 Isoperibol Bomb calorimeter (Parr Instrument Company, USA) 
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Figure 3.7: Parts of bomb vessel 

  
A water bucket was filled with 2 litres of water and placed into the bomb 

calorimeter. The bomb vessel was lowered into the bucket that filled together with 

the stirring mechanism. The stirrer will ensure a homogeneous temperature 

distribution of water in the bucket. Then the sample was ignited in pure oxygen 

within a sealed bomb vessel.  The heat resulting from the ignition will cause a small 

increase in water temperature in the bucket that surrounding the bomb, which then 

recorded automatically by the sensor.  

3.3.2 Proximate analysis 

Proximate analysis is a method to characterise biomass by determination of moisture, 

fixed carbon, ash and volatile content in biomass sample. Proximate analysis 

determination was using thermogravimetric system following the standard method in 

ASTM Standard Test Method D5142. Based on the ASTM method, the moisture 

content, volatile matter, and fixed carbon can be determined successively in a single 

instrumental procedure. On the other hand, for fixed carbon, the value is a calculated 

from the difference between 100 and the total of the percentage of moisture, volatile 

matter and ash. 

 

Crucible 
Fuse 

Sample 
holder 

Cylinder 

Bomb 
head  

Screw 
on cap  
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The analytical requirements for proximate testing using thermogravimetric had been 

summarised as the capability to record the weight of a sample as it is heated based on 

a designated temperature range and held isothermally at those temperatures, then 

change the sample’s environmental atmosphere from inert to oxidising (Cassel, 

Menard, & Earnest, 2012). Thus, in this study, TGA 4000 (PerkinElmer Inc, USA) is 

used to carry out the analysis as it meets the capability mentioned earlier.  

 

Firstly, Nitrogen (99.5% purity) is used as the carrier gas to achieve the inert 

environment for the reaction. The nitrogen is purged at a rate of 20mL/min while the 

sample is heated from ambient temperature to 110oC. After reaching 110oC, the 

temperature was kept constant for 5 minutes; the weight loss seen here is due to the 

evaporation of moisture content in the sample. After 5 minutes, the sample was 

heated up to 900oC with a heating rate of 25oC/min in nitrogen. The condition was 

held for a minute where the complete release of volatile matter occurs at this stage. 

Then the supply gas was switched to Oxygen (99.5% purity) at 40mL/min, and the 

sample was heated up to 950 oC at 10oC/min, to ensure the burn of the remaining 

fixed carbon. After that, the residual left from the process is known as incombustible 

ash. 

3.3.3 Ultimate analysis 

This analysis is performed to determine the elemental compositions by weight 

percentage of Carbon, Hydrogen, Nitrogen, Sulphur and Oxygen. It was carried out 

using Elemental analyser FLASH 2000 CHNS/O (Thermo Fisher Scientific Inc., 

USA). The basic premise behind the procedure is the combustion of the sample in a 

pure oxygen atmosphere, and the resultant gases are automatically measured (García 

et al., 2012). 

 

Sample weighed 2-3mg was placed into the aluminium capsule and added with 

vanadium pentoxide (V2O5). Vanadium pentoxide acts as an oxidising agent to 

promote combustion process in the furnace. The analyser is equipped with an auto-

sampler that will drop each sample sequentially by electronically controlled 

movements into a 900oC furnace. A small volume of oxygen is added to burn the 

sample that converts the sample into elemental gases. The element concentrations 
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were determined using a separation column and thermal conductivity detector 

equipped in the analyser.  

3.3.4 True density and bulk density determination 

The true density had been determined using AccuPyc II 1340 Automatic Gas 

Pycnometer (Micrometrics, Norcross, USA). The true density was determined by 

calculating the volume occupied by its mass without the volume of all pores. The 

volume is calculated using the pressure difference and the known volume of 

displacement.  

 

The overall volume occupied by the mass of the sample, which included the pore and 

interstice volumes is the bulk density. The bulk density was determined by filling up 

the sample into a known cubic volume and measuring the amount of the samples 

without the tamping the samples. 

3.4 Results and discussion 

3.4.1 Calorific value 

Figure 3.8 shows the results from the experiment using bomb calorimeterthe increase 

in the calorific value of the microwave torrefied sample. The calorific value of the 

non-torrefied sample is 18.4MJ/kg and 22.0MJ/kg for torrefied biomass. The 

calorific value of the microwave torrefied biomass had increased to around 20% 

compared to its raw material. 

 

 
Figure  3.8: Calorific value of the samples 
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The calorific value determined for the torrefied sample in this study is in the range of 

values reported by several researchers such as  Ren et al. (2013) for torrefied 

Douglas fir pellet using microwave reactor; Kopczyński et al. (2015) for torrefied 

willow using fixed bed reactor; Wang et al. (2013) for torrefied sawdust in an 

oxidative torrefaction process and Jones et al. (2012) for torrefied willow using 

reactor tube for conventional torrefaction. Even though the material and method of 

torrefaction are different for the mentioned researchers, the values reported were in 

the range as stated by Kleinschmidt (2011) in his review, which is between 20-

24MJ/kg. 

 

The increased of calorific value had been described by Eseyin et al. (2015) and 

Wang et al. (2013) was due to the removal hemicellulose content in biomass, where 

hemicelluloses go through most reactive devolatilization and carbonisation under 

250ºC. The calorific value values increased linearly with the torrefaction temperature 

in the laboratory scale study of conventional torrefaction of reed canary grass, wheat 

straw and willow by Bridgeman et al. (2008). This pattern is expected as the 

moisture contents of the samples also decrease with the increased of the torrefaction 

temperature. The same relationship was observed in the recent study by Kopczyński 

et al. (2015) on torrefied willow at a different temperature where the calorific value 

of 19.33MJ/kg for torrefaction temperature of 200ºC was observed and increased to 

26.5MJ/kg when applied with torrefaction temperature of 300ºC.  

  

However, it is a different case for the application of microwave induced pyrolysis on 

rice straw at 400-500W microwave power reported by Huang et al. (2008). They 

indicated that there is no correlation between the calorific value and the microwave 

power/temperature. The reduction of calorific value under the torrefaction condition 

of 400-500W microwave power can be seen in their findings. They had concluded 

that the findings might suggest that when microwave power is higher than 400W, 

some of the fixed carbon content can also be pyrolyzed, which lead to the reduction 

in the calorific value values. Moreover, their research showed that the water content 

of biomass fuel used did not have a substantial effect on the calorific value. On the 

other hand, Wang et al. (2012) observed the increase of the calorific value of the 

biomass products due to water content at lower microwave power levels (below 

300W) 
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A study done by Lanigan (2010) had shown the efficiency of using microwave 

irradiation pyrolysis compared to conventional pyrolysis. Based on the research, the 

similar calorific value could be produced at temperatures 100oC lower than those 

produced using conventional pyrolysis. For conventional pyrolysis, the calorific 

value increases with temperature and residence time (Arias et al., 2008). Besides 

that, the results of the microwave torrefied biomass determined in this work is 

comparable to calorific values determined by low-temperature pyrolysis using pine 

wood and coconut fibre in (Liu & Han, 2015). The present result shows that the low-

temperature microwave torrefaction has potential to produce solid biofuel similar to 

the one using other types of thermal pre-treatment. 

3.4.2 Mass and energy yield 

The torrefaction process had been proved to reduce the mass and energy yield of the 

final product. There are several correlations between the microwave torrefaction 

conditions and the percentage of mass and energy yield of biomass torrefied 

material. For example; the percentage of mass yield reduced with the increased of the 

torrefaction temperature in research by Poudel & Oh (2014) as well as van der Stelt 

et al. (2011). In the other hand, Satpathy et al. (2014)  found the mass yield reduced 

when the reaction time increased. In addition to the torrefaction conditions, findings 

in Satpathy et al. (2014) presented that the moisture content also has a significant 

influence on the pattern of mass yield in torrefaction process, where most of the 

higher mass yield achieved at higher moisture content. 

 

Mass and energy yield shows in Figure  3.9 was calculated for the microwave 

torrefaction process using the Eq. 3.1 and Eq. 3.2 based on Bridgeman et al. (2008). 

 

             𝑀𝑎𝑠𝑠 𝑦𝑖𝑒𝑙𝑑 (𝑀) = 𝑀𝑎𝑠𝑠 𝑎𝑓𝑡𝑒𝑟 𝑡𝑜𝑟𝑟𝑒𝑓𝑎𝑐𝑡𝑖𝑜𝑛
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑟𝑎𝑤 𝑠𝑎𝑚𝑝𝑙𝑒

 𝑥 100      (Eq. 3.1) 

 

      
𝐸𝑛𝑒𝑟𝑔𝑦
𝑦𝑖𝑒𝑙𝑑 (𝐸) =

𝑀𝑎𝑠𝑠 
𝑦𝑖𝑒𝑙𝑑 (𝑀) ∗

𝐻𝐻𝑉 𝑎𝑓𝑡𝑒𝑟 𝑡𝑜𝑟𝑟𝑒𝑓𝑎𝑐𝑡𝑖𝑜𝑛
𝐻𝐻𝑉 𝑜𝑓 𝑟𝑎𝑤 𝑠𝑎𝑚𝑝𝑙𝑒

 𝑥 100      (Eq.3.2)         
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Mass balance calculation shows that 73% mass and 87% of energy retained in solid 

form, while 27% mass and 13% of energy converted to liquid and gases products. 

The mass and energy yield calculated in this research is in agreement with the 

microwave torrefaction research of rice straw and pennisetum by Huang et al. (2012) 

and Ren et al. (2012a). In addition to that, Ren et al. (2014) also reported the energy 

yield of microwave torrefied corn stove ranged between 87.03 to 97.87% subjected 

to the torrefaction holding time and temperature chosen. They also observed the 

higher energy yield of the torrefied biomass conducted in lower temperature reaction. 

Besides that, the mass yield of torrefied wood showed a significant reduction when 

higher torrefaction temperature applied (Ben & Ragauskas, 2012).  

 

Based on the findings by Huang et al. (2012) the optimum condition for needed 

microwave power level to produce 70% of the mass is just only 150W with 10 

minutes reaction time. Thus, their finding correlated with the mass yield determine in 

this study, with the processing time just 6 minutes using higher microwave power, 

which is 400W. Thus, the mass and energy yields from this study provide ample 

support to validate the findings that torrefaction process able to retain the energy in 

solid form. However, the percentages of the mass and energy yield are widely 

influenced by the parameters of torrefaction process such as temperature and reaction 

time.  

Solid 

0.73M / 0.87E 

Volatiles 

0.27M / 0.13E 

  

Maximum heating 

temperature 107qC  

for 6 minutes 

Raw sample 

1M/1E 

                 

Figure 3.9: Mass (M) and energy (E) balance from the torrefaction process 
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3.4.3 Proximate analysis 

3.4.3.1 Discussion on TG-DTG curves for proximate analysis 

 

Figure  3.10 shows the temperature profile during the proximate analysis based on the 

procedure explained in Section 4.2. It can be observed from the percentage of weight 

loss curve that the temperature profile of the microwave torrefied sample shifted to a 

higher temperature. Figure 3.10 (a) shows that TG profiles are divided into three 

noticeable phases, correspond to moisture loss (30ºC - 110ºC), active (110ºC - 

400ºC) and lastly the passive pyrolysis stage.  

 

The first phase is from room temperature to 110ºC to indicate water evaporation 

phase. During this phase, the sample underwent the extraction of moisture and 

adsorbed water of the sample. It is shown in Figure 3.10 (a) that in the first phase, the 

mass loss of non-torrefied sample is more than the microwave torrefied sample due 

to the torrefaction process that drives out the moisture. At around 250ºC, the 

percentage of weight loss for both samples is slightly similar, and after that, the 

active thermal decomposition took place after that.  

 

The different of weight losses for both samples is due to the drying process and the 

removal of low-molecular-weight volatiles during torrefaction (Wang et al., 2012).  

Based on Figure 3.10 (b), the maximum peak of for non-torrefied sample is 370oC, 

whereas it is 366oC for microwave torrefied sample. The rate of weight loss reaches 

a maximum as the rapid volatilization occurred, accompanied by the formation of the 

carbonaceous residue (Kopczyński et al. 2015).  

 

In the active pyrolysis phase, the main decomposition reactions occurred and most of 

the organic compound related to hemicellulose and cellulose decomposed. The 

higher mass loss in the decomposition of the non-torrefied sample is expected as it 

contains higher volatile matter (84.6%) compared to the torrefied sample (68.7%).  

In the last phase, the passive pyrolysis can be monitored as there is no significant 

mass loss and the residues are decomposed to the final temperature. At this higher 

temperature, the complete decomposition of lignin content occurred and followed by 

the oxidation of the char formed by pyrolysis process (Saldarriaga et al., 2012). 
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Based on the temperature profile in Figure 3.10 (a), after heating to 800oC 

approximately 30% of microwave torrefied sample remained while only 

approximately 15% of the non-torrefied sample was left. Therefore, based on the 

TGA results, the non-torrefied sample is more reactive to thermal process compared 

to the microwave torrefied sample. The increase of reactivity contributed to a more 

stable torrefied material after the torrefaction process. 

3.4.3.2  Discussion on the composition of the samples  

The results of the proximate analysis of both samples were shown in Table 3.1, and 

was compared to the range values reported by Vassilev et al. (2015). The properties 

of the torrefied biomass found to be in between wood and coal except for volatile 

matters, which is relatively higher than the value of coal. However, the upgraded 

properties compared to wood are a desirable characteristic needed for the usage of 

torrefied biomass as alternative fuel. 

 

The moisture content of the non-torrefied sample is 6.9% and decreases to 2.2% after 

the torrefaction process. The reduction is more than 50% compared to the non-

torrefied sample. The reduction is expected due to one of the advantages of 

torrefaction process that include reduced moisture content. Besides that, torrefaction 

is also proven to reduce the water adsorption capacity and acquired hydrophobicity 

nature of the resultant products (Satpathy et al. 2014; Huang & Hsu 2012; Li et al. 

2012; van der Stelt et al. 2011). In addition to that, Tumuluru et al. (2011) suggested 

that hydrophobicity nature was due to the loss of the low-volatility components and 

extractive during the torrefaction.  

(a) (b) 

Figure 3.10:  Temperature profile of TG of weight loss curve (a) and DTG curves (b) 
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Table 3.1: Proximate analysis of non-torrefied and microwave torrefied samples in 
comparison with coal  

Proximate Analysis (wt.%) Non-torrefied 
sample 

Microwave 
torrefied 
sample 

1Coal 

Moisture content 6.90 2.20 0.4 – 20.2 

Volatile matter 84.60 68.70 12.2 – 44.5 

Fixed carbon 3.90 18.60 17.9 – 70.4 

Ash* 4.70 10.5 5.0 – 48.9 

* Content is obtained by difference 
1Source: Vassilev et al. (2015) 

 

 

Volatile matters refer as the components released, including combustible gases (CxHy 

gases, CO or H2) and some incombustible part (CO2, SO2 or NOx) when the sample 

heated at high temperature. The volatile matters in the torrefied sample are slightly 

lower than the non-torrefied sample, due the changes occur through product’s 

devolatilization during the torrefaction process. During the microwave torrefaction 

process, the condensable volatile matters were condensed into a liquid such as bio-

oil. The values of the volatile matter in the both samples are higher than the one 

found in coal. According to Chiang et al. (2012), the material with higher volatile 

matter will has lower ignition temperature and high ignition stability to produce 

synthesis gas during the biomass gasification process. They also added that, the 

finding indicated that the coals exhibit less volatility during thermal conversion 

process. 

 

 The composition of volatile matters observed to reduce from 84.6% to 68.7%, which 

is a reduction of 18.79% for the microwave torrefied sample compared to the non-

torrefied sample. The reduction was due to the decomposition of the hemicelluloses 

to volatiles matter while partly decomposition occurred for cellulose and lignin. 

However, the degree of decomposition is subject to the parameters of torrefaction 

process such as reaction temperature (Huang et al., 2012). The study by Wang et al. 

(2012) indicated that with increased processing time and certain power level; the 

reaction could become more complete, which resulted in a further degree of 

decomposition of lignocelluloses that eventually lead to more removal of volatiles 
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from the biomass. The reduction of the volatile matters in the microwave torrefied 

biomass may suggest the lower reactivity of the material.  

 

Fixed carbon is the carbon that is left after volatile materials are driven off during the 

torrefaction process due to the conversion of hemicellulose into the more thermally 

stable compound. In this work, the fixed carbon content in the torrefied sample 

showed a significant increase compared to its non-torrefied sample. The fixed carbon 

in the microwave torrefied sample is almost five times higher than the non-torrefied 

sample. Based on the proximate analysis done, the fixed carbon in the non-torrefied 

sample is 3.9% whereas for the microwave torrefied sample is 18.6%. The fixed 

carbon found in microwave torrefied sample was within the range of the one found in 

coal. This showed that thermal properties of the material had been upgraded 

comparable to coal. 

 

Ash is an inorganic part of the sample, which left after the complete combustion 

occurs. Ash content in the torrefied sample is over two times higher than to the non-

torrefied sample. Where the ash content in torrefied biomass samples is 10.5% 

compared to only 4.7% in the non-torrefied sample. The increased value of the ash 

content can be seen in most of the torrefied biomass either using microwave induced 

method or conventional torrefaction process (Poudel & Oh, 2014; Satpathy et al., 

2014; Huang et al., 2012; Fisher et al., 2012). Furthermore, Wu et al. (2015) stated 

that ash content of microwave pyrolysis biomass at is higher than the one produced 

using conventional pyrolysis process. Thus, it can be suggested that the method of 

heating using microwave have some effect on the ash content. 

 

Based on the research of self-heating on coal; higher ash content will lead to slower 

self-heating rate (Beamish, Lin, & Beamish, 2012) as the ash can block the active 

site. Thus the ash content reduced the reactivity of the torrefied biomass as the 

accumulation of the ash on the surface reduces the direct contact for the oxidation 

process. However, high ash content will also lead to several problems such as a 

reduction in heating value, and the ash deposits can cause extensive equipment 

maintenance during the thermal treatment (García et al., 2012). Consequently, Khan 

et al. (2009) had concluded that the difficulty related to high ash content in biomass 

as the biggest technical challenge. 
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Thus, it is agreeable to findings by earlier researchers that acknowledged the 

torrefaction process as a highly proven method to reduce moisture content and 

volatile matter as well as increase the fixed carbon and ash content (Cruz Ceballos, 

Hawboldt, & Hellleur, 2015; Kopczyński, Plis, & Zuwała, 2015; Peng et al., 2013; 

Agar & Wihersaari, 2012; Bridgeman et al., 2008).  

3.4.4 Ultimate analysis 

Table  3.2 shows the comparison of the chemical composition of the samples as 

compared to the range values reported for coal in Vassilev et al. (2015). Sulphur 

content was below the detected limit of the equipment. Therefore, the sulphur 

content is discarded in the analysis. Based on a review by Vassilev et al. (2015) and 

Yin et al. (2008), the low Sulphur content is an excellent characteristic in biomass 

fuel as it leads to lower SO2 emissions and limited production of fine particulates, 

deposit formation and corrosion during the thermochemical process. Therefore, it is 

safe to consider that the microwave torrefied sample in this study demonstrates a 

desirable characteristic as alternative fuels to coal. 

 

During torrefaction process, the biomass loses oxygen and hydrogen due dehydration 

of water and organic reaction products, for example, acetic acid, furans, methanol 

and gases that contain a substantial amount of oxygen such as CO2 and CO 

(Bergman & Kiel, 2005). The percentage of H and O content in the microwave 

torrefied sample is less than the non-torrefied sample. While the nitrogen and carbon 

content are higher in the microwave torrefied sample compared to the non-torrefied 

sample. 

 

The trend presented in Table 3.2 are similar to the findings by Prins, (2005); Ren et 

al. (2012); Huang & Hsu (2012); Poudel & Oh (2014); Cruz Ceballos et al. (2015); 

Kopczyński et al. (2015) where similar pattern of increased carbon and decreased of 

oxygen content in torrefied biomass has been found; despite the method of 

torrefaction used. 
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Table 3.2: Ultimate analysis of non-torrefied and microwave torrefied samples in 
comparison to coal 

Ultimate Analysis (wt.%) 
Non-torrefied 

sample 

Microwave 

torrefied 

sample 

1Coal 

C 54.4 61.50 62.9 – 86.9 

H 7.70 6.80 4.4 – 29.9 

N 1.70 3.80 3.5 – 6.3 

O* 36.2 27.90 0.5 – 2.9 

O/C 0.67 0.45 - 

H/C 0.14 0.11 - 

* Content is obtained by difference  
1Source: Vassilev et al. (2015) 

 

The carbon content of the microwave torrefied sample showed an increase of roughly 

13% compared to the non-torrefied sample. The increase is due to the carbon 

preservation after torrefaction process completed. Besides that, nitrogen content rose 

from 1.7% in the non-torrefied sample to 3.8% in microwave torrefied sample. 

 

According to ultimate analysis of the torrefied biomass by (Prins, 2005; Kopczyński 

et al. 2015), they had found a relationship between the torrefaction temperature and 

the amount of oxygen and carbon left in the torrefied biomass. Where the higher the 

torrefaction temperature is applied, the lower the oxygen content left in the sample. 

While for the carbon content, it increased with the increase of torrefaction 

temperature. 

 

The findings in this research followed the pattern in Wang et al. (2013) where the 

hydrogen and oxygen content in torrefied sample decreased, and this may be due to 

the release of volatiles that rich in hydrogen and oxygen such as water and carbon 

dioxide. The release of water can be proved based on the earlier discussed findings in 

the proximate analysis that showed a reduction of 68% moisture content in the 

torrefied sample compared to its raw material. 

 

Moreover, the common trend in torrefied sample is a reduction of H/C and O/C ratio 

compared to its raw material can be observed in several studies on torrefied biomass 
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such as (Satpathy et al., 2014; W.H. Chen et al., 2013; Arias et al., 2008; Huang et 

al., 2008; Prins, 2005). The reduction of hydrogen and oxygen had been described 

due to the water, carbon dioxide and carbon monoxide production during the 

torrefaction process.  

 

The H/C ratio for the non-torrefied sample is 0.14, and it decreased to 0.11 in the 

torrefied material. The reduction of 21.43% H/C ratio is due to the removal of 

moisture content during torrefaction where decomposition of hemicellulose and 

dehydration of lignin and cellulose simultaneously occurred. The removal of the 

moisture content and the reduction of the H/C ratio leads to higher calorific value. 

Therefore based on a study by Poudel & Oh (2014) the O/C and H/C ratios are found 

to reduce with an increase of the torrefaction temperature where further removal of 

hydrogen and oxygen occur at a higher temperature. According to Tumuluru et al. 

(2011) the reduction of O/C and H/C also reduced the energy loss, produced less 

smoke and water vapour during combustion and gasification process. Therefore, 

those reductions are desirable characteristics in the utilisation of biomass fuels as a 

substitute for coal.  

 

The reduction of O/C ratio in microwave torrefied sample increases the resistance to 

thermal degradation. Therefore, one of the objectives of torrefaction processes is to 

produce biomass fuels that resistance to thermal degradation.  The O/C ratio in the 

torrefied sample is 0.45 compared to 0.67 for its non-torrefied sample. The lower 

O/C ratio contributes to the higher yield during gasification compared to its raw 

material (Prins et al., 2006a). The work by Satpathy et al. (2014) presented a 

relationship between  H/C and O/C ratios, where the ratio decreased with increase in 

power and reaction time of microwave torrefaction process.  

 

The ultimate analysis shows that the torrefaction process had improved the quality of 

the biomass fuels. According to Valix et al. (2016) the H/C  and O/C ratios of 

various types of coal are between 1.02 - 0.078 and 0.4 - 0.08 respectively. The value 

of the H/C and O/C ratios for the microwave torrefied lies in the ranges stated, which 

reflects that its properties had improved closer to coal.   
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In addition to that, similar to the finding by Valix et al., (2016) that indicated the 

reduction of the H/C content suggested the increase in aromaticity which leads to the 

better resistance to biological degradation. The same findings of increases in the 

degree of aromaticity for the sludge that had to undergo the pyrolysis process can be 

found in (Kan, Strezov, & Evans, 2016). A recent study of the off-gas emissions 

during storage of torrefied biomass had proved that the biological degradation was 

not the reason that contributed to the emission (Tumuluru et al., 2015). Thus, it can 

be concluded that the microwave torrefaction process had improved the resistance 

toward biological degradation.  

 

In term of a tendency to the self-heating, García Torrent et al. (2016) have observed 

that biomass with higher H/C has higher tendency to self-ignite and this finding seem 

to contradict to the behaviour witnessed in coal. However, they suggested that the 

inconsistency could be due to different mechanisms of self-heating development that 

lead to self-ignition in biomass in comparison to coal. Thus, according to that 

observation, the non-torrefied sample will have a higher tendency to self-heat 

compared to microwave torrefied sample. However, this initial assumption needs to 

be clarified using thermal analysis to get an accurate measurement of the tendency of 

the samples to self-heat. 

3.4.5 True density and bulk density 

Based on the experiments done, the true density of the non-torrefied sample is 1451 

kg/m3 and 1442 kg/m3 for microwave torrefied sample. It can be seen here that the 

true density of the microwaved torrefied sample is lower than the non-torrefied 

sample. The reduction is expected due to the lower volatile matters in the microwave 

torrefied sample, which resulted in more pore volumes. 

 

The bulk densities calculated are 443 kg/m3 and 500 kg/m3 for non-torrefied sample 

and microwave torrefied sample respectively. The increased of the bulk density 

proved that the energy density increased after torrefaction process (Satpathy et al., 

2014; Medic, 2012; Shang, 2012). The reduction of the bulk density due to the 

evaporating water and volatiles matters in the biomass by the torrefaction process.  
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3.5 Summary 

x The torrefaction process upgrades the quality of the biomass, where the calorific 

value of the microwave torrefied sample increases to 22 MJ/kg from the 18.4 

MJ/kg in the non-torrefied sample. The bulk densities are 443 kg/m3 and 500 

kg/m3 for non-torrefied sample and microwave torrefied sample respectively. 

x The upgraded biomass fuels produced from the torrefaction process is more 

reactive compared to the non-torrefied fuels. The TG curve of the microwave 

torrefied sample shifted to higher temperature region compared to non-torrefied 

sample, which indicated the higher reactivity of the sample non-torrefied sample. 

x The moisture content reduced from 6.9% in the non-torrefied sample to 2.2% of 

microwave torrefied sample. Volatile matters reduced from 84.6% in the non-

torrefied sample to 68.7% in microwave torrefied sample. 

x The fixed carbon content in the non-torrefied sample is 3.9% whereas, for the 

microwave torrefied sample the content increased to 18.6%. 

x The ash content in torrefied biomass samples is 10.5% compared to only 4.7% in 

the non-torrefied sample. 

x O/C and H/C ratio decreased after the torrefaction process, which is one of the 

desirable characteristics of using torrefied biomass fuel as an alternative to coal. 

The O/C ratio is 0.67 in the non-torrefied sample and 0.45 in microwave torrefied 

sample. Whereas, the H/C ratio is 0.14 in the non-torrefied sample and 0.11 in 

microwave torrefied sample. 

x The true density of the non-torrefied sample is 1451 kg/m3 and 1442 kg/m3 for 

microwave torrefied sample. Experimental determination of reactivity and kinetic 

parameters using thermogravimetric analysis 
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 Chapter 4 Experimental determination of 
reactivity and kinetic parameters 
using thermogravimetric analysis 

This chapter consists of the evaluation of the samples reactivity based on their 

thermal behaviour using thermogravimetric (TG) analysis and the kinetic parameters 

determination of the thermal decomposition of biomass in the air and inert condition 

using nitrogen as carrier gas. The objectives of this chapter are:  

(a) to evaluate the thermal decomposition behaviour of the torrefied and non-

torrefied biomass sample in air and nitrogen;  

(b) to determine the characteristic temperature of both samples to analyse their  

reactivity; and  

(c) to establish the kinetic parameters of the torrefied and non-torrefied biomass 

sample to evaluate their propensity of self-heating.  

4.1 Equipment and method used for thermal behaviour analysis 

TG analysis is used to obtain the critical parameters based on their heating 

behaviour. The thermogravimetric analysis of the sample was performed using a 

TGA 4000 (Perkin Elmer, USA). The weight loss of sample due to thermal 

degradation in the different carrier gas at the various heating rate was observed in 

this experiment. Only a small amount of sample needed for each test as this will 

ensure the uniformity of the sample. Samples weighing around 18-20mg were used 

for throughout the analysis.  

 

There are three methods conducted in this study to analyse the thermal behaviour of 

the samples. The methods employed are as below: 

 

a) Thermal behaviour in air and inert condition 
This approach was used to assess the reactivity of the material that prone 

to self-heat. The reactivity of the samples is evaluated by identifying the 

mass loss behaviour of the samples when heated at fixed heating rate 

using air and nitrogen as a carrier gas. Nitrogen is used as a comparison 
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of the thermal behaviour in an inert environment. The samples were 

subjected to several heating rates namely 1oC/min and 5oC/min from 

ambient temperature to 900oC in the air. The flow of carrier gas is fixed at 

50ml/min throughout the experiment. The heating rate of 1oC/min was 

chosen to represent the slow heating rate of self-heating behaviour, which 

allows a fully developed exothermic reaction in order to determine the 

temperature of initial combustion (TIC). While 5oC/min was chosen for 

the evaluation of the thermal characteristic of both sample in air and inert 

condition.  

 

b) Susceptibility evaluation in oxygen 

The TG analysis in the oxygen was done to fine a single point oxidation 

temperature. The carrier gas used in this analysis is oxygen, and the flow 

is fixed at 50ml/min. The heating rate is set to 40°C/min. The same 

condition applied to both samples.  

 

c) Kinetic parameter determination 

Samples were heated from ambient temperature to 900°C in air at a 

heating rate of 5, 10, 20 and 30°C/min. The flow of carrier gas is fixed at 

50ml/min throughout the experiment. The selected heating rates are 

chosen based on the study done by Benitez, (2014) where the heating rate 

higher than 50°C/min had been proved to produce TGA curves with high 

variability and rapid changes. 

 

Each experimental run was repeated at least three times, and the curves for each 

heating rates were compared to check the reproducibility. The reproducibility was 

verified by comparing the temperature, the conversion and weight derivative at peak 

DTG curve for each heating rate. In addition to that, a constant gas flow is chosen to 

achieve a low noise TG reading (Mansaray & Ghaly, 1999). 
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4.2 Evaluation of thermal reactivity 

4.2.1 Thermal decomposition characteristic 

The method employed for the analysis of intrinsic reactivity was explained in Section 

4.1. Air was used as carrier gas because this study focuses on the behaviour of the 

sample during storage in an air atmosphere. Nevertheless, the analysis was extended 

using nitrogen to compare the thermal decomposition behaviour of the sample in an 

inert environment. 

4.2.1.1 Thermal decomposition in air 

For the evaluation purposes, the temperature profiles of thermal decomposition in the 

air at 5oC/min is presented to evaluate the reactivity of the samples in air at a low 

heating rate. The low heating rate for the reactivity evaluation in the air had been 

chosen to allow a fully developed exothermic reaction as suggested by Della Zassa et 

al. (2013).  

 

Figure 4.1 shows the temperature profile of both sample during TG analysis in the air 

at 5°C/min. The graph indicates that the thermal decomposition of microwave 

torrefied sample shifted to a higher degree compared to the non-torrefied sample. 

This pattern represents the sample’s reactivity in an air stream at 5°C/min, where 

non-torrefied sample seems to decompose in the air at a lower temperature than the 

microwave torrefied sample. Based on the TG analysis, 10% weight loss was 

identified at the temperature of 252°C for the non-torrefied sample. However, for the 

microwave torrefied sample, the same weight loss was achieved at 267°C. Therefore, 

based on the TG analysis in air, the non-torrefied sample is more reactive in the air 

compared to the microwave torrefied sample.  

 

The same pattern was reported by several researchers when comparing the 

temperature profile of the torrefied sample to its raw materials such as for Cruz 

Ceballos et al. (2015); Kopczyński et al. (2015); Mašek et al. (2013); Ren et al. 

(2013). A study by Ren et al., (2013) indicates the relationship of the degree of the 

shift with the severity of torrefaction condition and the same relationship can be 

observed in Cruz Ceballos et al. (2015). In both studies, the decomposition of the 
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torrefied biomass seems to shift to a higher degree for the biomass that exposed to 

higher reaction temperature during the torrefaction process.  

 

From the rate of mass loss shown in DTG graph (Figure 4.2), three clear peaks can 

be observed for both samples. The first peak represents the moisture driven out from 

both samples. Based on the graph, more derivative weight loss occurred in the non-

torrefied sample at the first peak compared to the microwave torrefied sample 

because of the different value of moisture content. Based on the proximate analysis, 

the moisture content of the non-torrefied sample is 6.9%, while for microwave 

torrefied sample only 2.2%. Thus, increasing the temperature from ambient to about 

110°C resulted in the weight losses due to the moisture content in the samples. 

 
Figure 4.1: Temperature profile for thermal decomposition in air at 5°C/min 

 

 
Figure 4.2: Derivative weight loss in air at 5°C/min 
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The second and third peaks represent the thermal decomposition of biomass 

composition that decomposed at different temperatures. The hemicellulose is 

decomposed at a lower temperature between of 225 – 325°C, cellulose at 305 – 

375°C and lignin steadily decomposed over the temperature range of 250 – 500°C 

(Prins et al., 2006b). The main decomposition region for both samples is between the 

ranges at approximately 240°C to 380°C, which the second peak fall. Hemicellulose 

decomposed during this main decomposition stage. The third peak represents the 

cellulose decomposition that occurred at a higher temperature range. In addition to 

that, lignin decomposed gradually during the thermal analysis contributed to the 

noticeable derivative weight loss at both peaks.  

 

The maximum temperature for weight loss based on results presented in Figure 4.2 

shows a shift of maximum weight loss of 337°C for the non-torrefied sample to 

346°C for microwave torrefied sample. Thus, it indicates that a higher temperature 

needed by microwave torrefied sample to undergo the highest yield of volatile 

matters during the thermal decomposition in air. The higher temperature needed by 

microwave torrefied was considered to be contributed by the volatile matters driven 

out during the torrefaction process. 

4.2.1.2 Thermal decomposition in nitrogen 

Based on the analysis of both samples under an inert environment, the percentage 

weight loss is shown in Figure  4.3 and percentage of derivative weight loss is 

presented in Figure 4.4. The thermal decomposition in nitrogen follows the patterns 

of temperature profiles in biomass pyrolysis. The same pattern of temperature profile 

shifted to a higher degree for microwave torrefied sample can be seen in Figure  4.3. 

This finding is similar to the analysis done in the air as shown earlier in Figure 4.1. 

However, in a nitrogen atmosphere, we can see that both samples did not achieve full 

weight at the final temperature. The solid residue yields are about 15% for non-

torrefied sample and 25% for microwave torrefied sample.  
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Figure 4.3: Temperature profile for thermal decomposition in nitrogen at 5°C/min 

 

Three regions can be witnessed in Figure 4.4. Those regions correspondent to the 

moisture driven out process, active and passive pyrolysis. The first region follows the 

same pattern as thermal decomposition in air. The active pyrolysis phase occurs at 

the second region which lies in a range from 120°C to 425°C for heating rate 

5°C/min. In this region, only one clear peak is observed, which represents the highest 

derivative weight loss. Furthermore, there is no third peak can be seen in DTG curve 

of the thermal decomposition in nitrogen due to the reaction in air added the stage of 

charring (Liu et al., 2016).  

 

Similar to the thermal decomposition in the air, the temperature where the highest 

derivative weight loss occurs shifted to a higher temperature for the microwave 

torrefied sample. Based on Figure 4.4, the temperature is 370°C for non-torrefied 

sample and 372°C for microwave torrefied sample. The value of the temperature that 

higher weight loss occurred for both sample in nitrogen is slightly higher compared 

to the analysis done in air. The pattern found here proved that higher reaction 

temperature is needed to achieve the highest derivative weight loss in an inert 

environment.  



 Chapter 4:Experimental determination of reactivity and kinetic parameters using 
thermogravimetric analysis 

  

 
 

73 

 
Figure 4.4: Derivative weight loss in nitrogen at 5°C/min 

 

Based on the analysis of temperature profiles presented here, the non-torrefied 

sample can be proposed as a higher reactivity material compared to the microwave 

torrefied sample. Thus it can be said that torrefaction process helps to upgrade the 

thermal properties of the microwave torrefied sample, which leads to a higher 

thermal stability due to less volatile matters (Agar & Wihersaari, 2012). 

4.2.2 Temperature of initial combustion (TIC) 

The temperature of initial combustion is essential in reactivity analysis because it 

reflects the starting point of the volatile matters to decompose after moisture driven 

out from the material. The more reactive material will have lower TIC, due to the 

ease of the material to react in the air. Determination of the TIC was done based on 

the thermal degradation behaviour of the samples at 1ºC/min in air. The temperature 

profile used to find the TIC is shown in Figure  4.5. 

 

Following the method to determine the TIC as explained in Ramírez et al. (2010), 

TIC for the non-torrefied sample is 268°C, whereas 283°C for the microwave 

torrefied sample. These values agree with the analysis done in 5°C/min, which 

concluded that the non-torrefied sample is more reactive compared to the non-

torrefied sample. 

First 
region 

Second 
region 

Third 
region 
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Figure 4.5: Determination of temperature of initial combustion (TIC)  

 

The increase in the initial combustion (TIC) for the microwave torrefied sample is 

consistent with the observed reduction of the volatile matter as been shown in Table 

3.1. The increase of temperature had suggested that the decrease of the combustible 

volatile matters due to the torrefaction process. The same behaviour can be found in 

Liu et al. (2016) where the temperature of initial combustion of the torrefied biomass 

also shifted to a higher temperature in their research. They also mentioned that the 

finding might result in higher combustion efficiency and reduction of emissions in 

the combustion process of the torrefied biomass.  

4.2.3 Temperature at maximum weight loss (TMWL) 

To compare the propensity of self-heating for the non-torrefied sample and 

microwave torrefied sample. The TG analysis in the air is done at 1°C/min  based on 

method explained in Section 4.1(a). The heating rate of 1°C/min is chosen to portrait 

a prolonged heating in an air atmosphere. The slow heating rate allows a more rapid 

thermal energy supplied to the sample during the decomposition process (Slopiecka, 

Bartocci, & Fantozzi, 2012) in longer reaction time.  
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Figure 4.6: Determination of temperature of maximum weight loss in air at 1°C/min 

 

Figure 4.6 shows the DTG analysis at 1°C, where the maximum derivative weight 

loss is 310°C for non-torrefied sample and 312°C for microwave torrefied sample. 

Thus, the temperatures of maximum derivative weight loss demonstrate that 

microwave torrefied sample is less reactive compared to the non-torrefied sample. 

The temperature difference is too small, only exceed 2°C for microwave torrefied 

sample compared to the non-torrefied sample. This slight difference makes it hard to 

distinguish the reactivity between the two samples. The differences suggested that 

both materials reacted slightly similar in the air. The samples need to be tested under 

oxygen stream in order to get a clear justification on this matter which is discussed in 

Section 4.2.4. However, the TMWL determined for both samples from the TG 

analysis are in agreement with the finding by DTI (2013) for pine chips torrefaction 

that showed sign of self-ignition at temperatures above 200 ºC.  

4.2.4 Characteristic oxidation temperature (Tcharac) 

To get a single point oxidation temperature, the TG analysis using oxygen as a 

carrier gas is done. The temperature profile of the analysis is shown in Figure 4.8. 

The characteristic oxidation temperature is an important parameter since it can be 

used with the activation energy to give a comparative assessment of the self-heating 

propensity (Saddawi et al., 2013).  
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Based on the graph presented in Figure 4.7, a single oxidation temperature can be 

assigned to the sample. Tcharac for the non-torrefied sample and microwave torrefied 

sample are 331°C and 329°C respectively. The results of Tcharac for the samples 

imply that the microwave torrefied sample is more reactive compared to the non-

torrefied sample. The finding, similar to the study by Cruz Ceballos et al. (2015), 

where they found that torrefaction had caused depletion of volatiles component 

which increases the available surface of active sites for oxidation which will lead to 

self-heating. The occurrence can only be seen clearly when the TG analysis was done 

in oxygen stream.  

 

 
Figure 4.7: Determination of Tcharac under oxygen stream at 40°C/min. 

 

However, the reactivity susceptibility of the material in the air based on Tchar 

contradict with the earlier conclusion based on TIC and TMWL that reveals non-

torrefied sample is more reactive than the microwave torrefied sample. Therefore, 

further investigation using kinetic parameters analysis is needed to confirm the 

reactivity of the samples in air.  
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4.3 Results of kinetic parameters using thermogravimetric analysis 

4.3.1 Background on determination of kinetic parameters 

It is important to understand the reaction kinetic of the oxidation process that takes 

place at a low temperature in order to assess the risk of self-heating events that lead 

self-heating. Based on the study of intrinsic reactivity of coal chars in Sima-Ella et 

al. (2005), the activation energy affected the temperature sensitivity of the material, 

while the pre-exponential factor is related to the material structure (Sima-Ella, Yuan, 

& Mays, 2005). Consequently, due to the similarity of the properties of the 

microwave torrefied sample and coal, it is suggested that its behaviour will follow 

the same intrinsic reactivity. Therefore, in this study, it is sufficient to characterise 

the reactivity by its activation energy value only for both samples. However, due to 

the limited volume of samples, the kinetic study using adiabatic oven test as 

described in BS 15188 (2007) cannot be applied.  

 

Thermogravimetric (TG) analysis is widely used to obtain kinetic parameters for the 

low-temperature oxidation.  The mass changes of the material obtained from TG 

analysis at several heating rates is seen as a useful tool for determination of kinetic 

parameters of solid-state reactions (Carrier et al., 2016; Prins, 2005).  There are 

many different methods developed to quantify the mass changes reactions and 

commonly categorised as model-fitting and model-free methods. For the model-

fitting method, different models are fits to the experimental data and the model 

giving the best statistical fit is selected. The evaluations of the model were done from 

which the activation energy (Ea) and frequency factor (A).  

 

The model fitting methods were broadly used because kinetic parameters can be 

calculated directly from the thermogravimetric analysis results. However, these 

methods have several disadvantages. One of the major advantages, has been 

discussed in Heydari et al. (2015) is their inability to select the appropriate reaction 

model uniquely, and the comparison of results from these models can be challenging 

as the wide range of kinetic parameters in non-isothermal data.  
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Hence, in this research, a model-free method is adopted to calculate the kinetic 

parameter of the sample decomposition. This model is much simple to apply and can 

allow the determination of the kinetic parameters for different constant extents of the 

conversion without considering any particular form of reaction model (Heydari, 

Rahman, & Gupta, 2015). The determination is possible because this method 

involves reaction rate that depends on the extents of conversion to product, where 

several kinetic curves involve in the calculation of the activation energy at the 

different heating rates on the same value of the conversion. The method of using 

multiple heating rates is proven more efficient compared to single heating rate. 

 

Thus for non-isothermal experiments, each run need to be done under the same 

experimental conditions, such as same sample weight, purge gas rate and sample 

size, then the only variable is the heating rate. The temperature sensitivity of the 

reaction rate depends on the extent of conversion to products. A parameter called 

conversion degree (α) is defined for the subsequent analysis of each phase of the 

decomposition process. 

 

Changes of air to the inert environment resulted in the increase in values of 

activation energy, as the decomposition in the air is significantly faster compared to 

the decomposition process in an inert atmosphere. Thus, in this section the discussion 

of the comparison of the behaviour of the sample for the thermal decomposition in 

inert and air atmosphere. For the numerical modelling of the self-heating behaviour, 

the kinetic parameters for the thermal decomposition in air atmosphere are used.  

4.3.2 Kinetic analysis method 

The simplest way for modelling the complex thermal decomposition process is using 

empirical model, which uses global kinetics. The Arrhenius expression is used to 

correlate the rate of mass loss and temperature during the thermal decomposition. 

The thermal decomposition of biomass followed the reaction as below: 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠
             𝑘           
→        𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑒𝑠 + 𝐶ℎ𝑎𝑟 

 

The general rate of decomposition or reactivity,𝑘 can be characterised in term of 

temperature dependent reaction, 𝑘(𝑇). This temperature dependent reaction obeys 
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the Arrhenius Eq. that is represented by activation energy Ea (J/mol) and a pre-

exponential factor, A (s-1) which expressed by: 

                                      𝑘(𝑇) = 𝐴 𝑒𝑥𝑝 (− 𝐸𝑎
𝑅𝑇
)         (Eq. 4.1) 

 

where T is the absolute temperature and gas constant, R = 8.314JK-1mol-1 

The study by Benitez (2014) described the first order reaction model as the reaction 

model that fit better for biomass decomposition. Therefore, this study assumed the 

decomposition of biomass follows the first-order reaction model. Thus, the reactivity 

of the decomposition over time, 𝑑𝛼
𝑑𝑡

 can be described in Eq. 4.2: 

                      𝑑𝛼
𝑑𝑡
= 𝑘(1 − 𝛼)         (Eq. 4.2) 

Where the degree of conversion, 𝛼 or the fractional weight conversion is represented 

by the decomposed amount of the sample as shown in Eq. 4.3. 𝑤𝑖  is the sample 

weight, 𝑤𝑜 is the original sample weight and 𝑤∞ is the residual or final mass after 

decomposition. The conversion degree, α varies from 0 to 1, indicating 1 as end of 

conversion phase with no mass loss at 1 

            𝛼 = ( 𝑤𝑜−𝑤𝑖
𝑤𝑜−𝑤∞

)          (Eq. 4.3) 

Under non-isothermal analysis, where the heating rate is maintained constant for 

each test, the temperature changes at a constant positive rate, 𝛽 = 𝑑𝑇
𝑑𝑡

. The rate of 

decomposition reaction of biomass is described as a function of temperature instead 

of time by combining Eq. 4.1 and Eq. 4.2 leads to Eq. 4.4 as below: 

          𝑑𝛼
 𝑑𝑇
= 𝐴(1−𝛼)

𝛽
𝑒𝑥𝑝 (− 𝐸𝑎

𝑅𝑇
)                                 (Eq. 4.4) 

The Eq. 4.4 is solved using integration subject to initial condition 𝛼 = 0, 𝑇 = 𝑇𝑜 to 

get: 

      ln(1 − 𝛼) = − 𝐴
𝛽 ∫ 𝑒𝑥𝑝 (− 𝐸𝑎

𝑅𝑇
)𝑇

𝑇𝑜
                           (Eq. 4.5) 

since there is no decomposition where (α=0) up to To (ignition temperature), the limit 

of the integral are conventionally changed to ∫ exp (− 𝐸
𝑅𝑇
)𝑇

0 , which leads to 

introduction of function p(x)  as in Eq. 4.6, where 𝑥 = 𝐸𝑎
𝑅𝑇

 

                                 𝑝(𝑥) = ∫ exp(−𝑥)
𝑥2

∞
𝑥 𝑑𝑥                                    (Eq. 4.6) 
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Thus, Eq. 4.6 reduces to: 

                               ln(1 − 𝛼) = −𝐴𝐸𝑎
𝛽𝑅
𝑝(𝑥)      (Eq. 4.7) 

 

Based on the equation above, Doyle’s and Coats-Redfern’s approximations are 

adopted, due to their simplicity and easier manipulation of linear forms (Sima-Ella, 

Yuan, & Mays, 2005). For temperature integral approximation, Doyle suggested a 

linear approximation to the temperature integral, which is derived by observing a 

linear relationship between ln 𝑝(𝑥)and x as: 𝑝(𝑥) ≈ exp (−5.33 − 𝑥). Consequently, 

the linear for of Eq. 4.7 can be manipulated into Eq. 4.8 as below: 

 

  ln[−ln(1 − 𝛼)] = 𝑙𝑛 (−𝐴𝐸𝑎
𝛽𝑅
) − 5.33 − 1.052 (𝐸𝑎

𝑅𝑇
)            (Eq.  4.8) 

Hence the linear Eq. can be solved for a specific heating rate, E and A can be 

determined from value of the slope and the intercept of plot ln[−ln(1 − 𝛼)] versus 

1/T. Meanwhile, in the integral approximation by Coat-Redfern, rearranging the Eq. 

4.4 and integrating the temperature the Eq. 4.9 can be obtained: 

 

        𝑙𝑛 [−ln (1−𝛼)
𝑇2

] = ln (𝐴𝐸𝑎
𝛽𝑅
) − 𝐸𝑎

𝑅𝑇
         (Eq. 4.9) 

   
Thus the kinetic data in this study will be interpreted using the temperature integral 

approximation based on the plot of ln [− ln(1−𝛼)
𝑇2

] versus 1
𝑇
, which will give the values 

of A and Ea from the intercept and slope respectively. 

4.3.3  Kinetic parameters of the samples  

The activation energy (Ea) and pre-exponential factor (A) for microwave torrefied 

sample and the non-torrefied sample of thermal decomposition for both in air and 

nitrogen at different heating rates are calculated based on the Doyle’s and Coats-

Redfern’s approximations explained in Section 4.3.2. Relationships between the Ea 

and A of the biomass fuel samples can be obtained using linear regression analysis. 

Therefore, to show how close the data are to the fitted regression line, the coefficient 

of determination (R2) of the calculated linear models were also included in the 

presented results. The R2 calculated were between 0.9658 and 0.9989, which 

indicates that the linear models explain all the variability of the response data around 
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its mean. The equations of linear regression for kinetic parameters determination of 

each sample in air for is shown in Table 4.1, while Table 4.2 shows the kinetic 

parameters determination of each sample in nitrogen. 

 

Table 4.1: The equations of linear regression for kinetic parameters determination of 
thermal decomposition in air 

Non-torrefied sample 
Heating 

rate 
Doyle Coat-Redfern 

Linear regression R2 Linear regression R2 
10°C/min y = -11132x + 17.389 0.9881  y = -10409x + 3.3686 0.9852 

20°C/min y = -9100.4x + 13.735 0.9968  y = -7763.2x - 1.0323 0.9959 

30°C/min y = -9617.4x + 14.634 0.9975  y = -8372.4x - 0.2348 0.9970 
Microwave torrefied sample 

Heating 
rate 

Doyle Coats-Redfern 
Linear regression R2 Linear regression R2 

10°C/min y = -7929.2x + 12.116 0.9935  y = -6719.2x - 2.6961 0.9915 

20°C/min y = -8939.2x + 13.224 0.9945  y = -7984.1x - 0.6896 0.9968 

30°C/min y = -7603.3x + 11.005 0.9745  y = -6386.1x - 3.8202 0.9658 

 

Table 4.2: The equations of linear regression for kinetic parameters determination of 
thermal decomposition in nitrogen 

Non-torrefied sample 
Heating 

rate 
Doyle  Coat-Redfern 

Linear regression R2  Linear regression R2 
10°C/min y = -8300.8x + 12.573 0.9990  y = -7061.7x - 2.2874 0.9989 

20°C/min y = -8764.7x + 13.087 0.9984  y = -7503x - 1.8095 0.9980 

30°C/min y = -8973x + 13.446  0.9986  y = -7714.4x - 1.4445 0.9984 
Microwave torrefied sample 

Heating 
rate 

Doyle  Coats-Redfern 
Linear regression R2  Linear regression R2 

10°C/min 𝑦 = −8373.3𝑥 + 12.349 0.9942  𝑦 = −7123.4 − 2.528 0.9925 

20°C/min 𝑦 = −8469.3𝑥 + 12.323 0.9947  𝑦 = −7209.7𝑥 − 2.569 0.9931 

30°C/min 𝑦 = −9082.3𝑥 + 12.249 0.9970  𝑦 = −7804.3𝑥 − 1.677 0.9969 

 

The activation energy (Ea) and pre-exponential factor (A) for microwave torrefied 

sample and the non-torrefied sample are presented in Table 4.3 and Table 4.4 

respectively. Based on the results presented in Table 4.3, it can be concluded that the 
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kinetic parameters results determined were almost the same for both methods of 
calculation and in good agreement. For the non-torrefied sample, the activation 
energy calculated was between 64.5 to 84.4 kJ/mol, and torrefied biomass was 
between 53.1 to 70.7 kJ/mol. However, the results of the activation energies 
calculated for non-torrefied sample were found to be higher that the data reported by 
several researchers such as Koseki (2012) for white wood; Fisher et al. (2012) and 
Saddawi et al. (2010) both for raw willow.   
 
Table 4.3: Kinetic parameters of thermal decomposition in air for samples evaluated 

based on Doyle’s and Coats-Redfern’s approximations 
Non-torrefied sample 

Heating  
rate 

Doyle  Coat-Redfern 
Ea (kJmol-1) A (s-1) R2  Ea (kJmol-1) A (s-1) R2 

10°C/min 84.4 4.40E+04 0.9881  78.5 7.22E+03 0.9852 
20°C/min 71.9 7.34E+03 0.9968  64.5 9.22E+02 0.9959 
30°C/min 76.0 2.56E+04 0.9975  69.6 3.31E+03 0.9970 

Microwave torrefied sample 
Heating  

rate 
Doyle  Coats-Redfern 

Ea(kJmol-1) A (s-1) R2  Ea (kJmol-1) A (s-1) R2 
10°C/min 62.7 8.34E+02 0.9935  55.8 7.56E+01 0.9915 
20°C/min 70.7 4.48E+03 0.9945  66.4 1.34E+03 0.9968 
30°C/min 60.1 8.59E+02 0.9745  53.1 7.00E+01 0.9658 

 
 

Table 4.4: Kinetic parameters of thermal decomposition in nitrogen for samples 
evaluated based on Doyle’s and Coats-Redfern’s approximations 

Non-torrefied sample 
Heating  

rate 
Doyle Coat-Redfern 

Ea (kJmol-1) A (s-1) R2 Ea (kJmol-1) A (s-1) R2 
10°C/min 65.6 1.26E+03 0.999 58.7 1.19E+02 0.9989 
20°C/min 69.3 3.99E+03 0.9984 62.4 4.10E+02 0.998 
30°C/min 70.9 8.36E+03 0.9986 64.1 9.10E+02 0.9984 

Microwave torrefied sample 
Heating  

rate 
Doyle Coats-Redfern 

Ea(kJmol-1) A (s-1) R2 Ea (kJmol-1) A (s-1) R2 
10°C/min 66.2 9.97E+02 0.9942 59.2 9.48E+01 0.9925 
20°C/min 66.9 1.92E+03 0.9947 59.9 1.84E+02 0.9931 
30°C/min 71.8 6.78E+03 0.997 64.9 7.33E+02 0.9961 
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However, based on the results determined, the lower activation energy for torrefied 
material showed that the material is easier to decompose and have a higher tendency 
to self-heat. This result agreed with findings by Ren et al. (2013), which showed a 
decreasing trend of activation energy for the torrefied sample compared to the raw 

material. The range of kinetic parameters for thermal decomposition in nitrogen 

shows a higher value for both samples. For the non-torrefied sample, the activation 

energy calculated was between 58.7 to 70.9 kJ/mol, and torrefied biomass was 

between 59.2 to 71.8 kJ/mol. Therefore, it is suggested that thermal decomposition of 

the samples is less reactive in nitrogen. 

4.4 Thermal decomposition characteristic in air 

Analysis of the thermal decomposition behaviour in the air for both samples at three 

heating rates, 10ºC/min, 20ºC/min and 30ºC/min are performed based on method 

explained in earlier in Section 4.1. Figure 4.8 shows the weight loss of non-torrefied 

sample with the temperature at various heating rates. As expected, we can see three 

regions of decomposition from the curves, where the first region from ambient 

temperature to 130ºC that represented the moisture loss in the sample. The second 

region takes place from 130ºC to 360ºC that characterised by volatilization process 

of the cellulosic and hemicellulose components. Lastly, the third region from varies 

between 360ºC to 900ºC is characterised by the char combustion, which produced 

the volatiles and solid residues.  

 
Figure 4.8: Temperature profile of decomposition in air of non-torrefied sample at 

different heating rate 
 



 Chapter 4:Experimental determination of reactivity and kinetic parameters using 
thermogravimetric analysis 

  

 
 

84 

The clear stages are due to the different compositions of biomass that degraded at a 

different temperature. The non-torrefied sample is originated from the biomass fuel 

that did not undergo thermal pre-treatment. Therefore all the compositions of the 

biomass are still within the sample. The composition of volatile matters also higher 

in the non-torrefied sample. The higher volatile matters cause the non-torrefied 

sample to burn at a lower temperature than microwave torrefied sample. 

Based on Figure 4.9, the noticeable second peak for a non-torrefied sample during 

the decomposition process can be seen. The first peak is associated with the main 

devolatilisation stage and the second peak represents the char oxidation. The non-

torrefied material showed a significant second peak, which suggested that there is 

volatiles component in the material such as hemicellulose, cellulose and lignin that 

decomposed at a different temperature. 

 
Figure  4.9: Temperature profile of derivative weight loss in air of non-torrefied 

sample at different heating rate 
 

Figure 4.10 show that the thermal decomposition in of microwave torrefied sample 

does not have a clear first peak of moisture loss. There is no clear peak detected due 

to the small amount of moisture content from the sample. The torrefaction process 

managed to reduce the water content greatly and retained the energy in solid mass. 

The same pattern of temperature profile can be found for each heating rate, where a 
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clear devolatilization stage can be witnessed at the second phase of the heating 

profile, which is between 280 ºC – 450 ºC. 

 
Figure 4.10: Temperature profile of decomposition in air for microwave torrefied 

sample at different heating rate 
 

There is no clear indication for the second peak in the case of the microwave 

torrefied sample as shown in Figure 4.11. This pattern is found in the temperature 

profile of the microwaved torrefied sample due to the moisture loss during the 

torrefaction process. Besides that, it can be seen that the maximum weight loss 

temperature of the sample shifted to higher temperature when the heating rate 

increase from 10 ºC/min to 30 ºC/min.  

 
Figure 4.11: Temperature profile of derivative weight loss in air for microwave 

torrefied sample at different heating rate 
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Based on Figure 4.8 and Figure 4.10, it can be observed that with the increase of 

heating rate, the curves move slightly to a higher temperature zone, for both samples. 

The delay of the temperature due to several factors such as shorter reaction time and 

lower degree of reaction changes due to higher heating rate (Guo et al., 2012), thus 

the temperature required for the sample to reach the same conversion will be higher 

(Heydari et al., 2015). Besides that, the low thermal conductivity of the samples can 

also contribute to this phenomenon where the longer time needed for the heat to 

transfer across the sample and there is no enough time available for the heat to 

transfer within the sample matrix (Kan, Strezov, & Evans, 2016). 

 

Figure 4.10, also shows that microwave torrefied sample generated a larger amount 

of unburned residual material at the end of the experiment compared to the non-

torrefied sample in Figure 4.8. This is in accordance with the higher ash content in 

microwave torrefied sample. However, non-torrefied sample decomposed in at 

30°C/min generated more residual material compared to the one at 10°C and 20°C, 

which could be due to the shorter reaction time with the low degree reaction changes 

as mentioned earlier. 

4.5 Thermal decomposition characteristic in nitrogen 

Thermal results obtained from decomposition in nitrogen for the non-torrefied 

sample are presented in Figure 4.12 and Figure 4.13. Based on the decomposition in 

nitrogen for both samples, the residual matter at the end of the reaction is higher than 

the one done in air. The higher amount of residual matter is expected due to the 

incomplete decomposition in nitrogen over air. The Figure 4.12 shows the 

temperature profile of the non-torrefied sample heated at various heating rate. It can 

be witnessed that, different heating rates did not have strong influence on the amount 

of residual left at the end of the heating process of the samples in nitrogen. For non-

torrefied sample, the residual left at the end of process is 16% of total weight of 

sample. 
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Figure 4.12: Temperature profile of decomposition in nitrogen of non-torrefied 

sample at different heating rate 
 

It was examined that the decomposition proceeds through three stages of the sample 

mass loss. The first stage is assigned to the moisture loss through the water 

evaporation, while the second stage, the mass loss is due thermal decomposition of 

wood compounds, that consist of hemicellulose and cellulose. The last stage is the 

decomposition of lignin that decomposed in the wider temperature range up to 

900°C.  

 

The same pattern of heating rate effect can be witnessed during decomposition in 

nitrogen for non-torrefied sample in Figure 4.13. It can be witnessed that, the 

reaction time reduces and the temperature profiles of the reaction move to the higher 

temperature zone. The same behaviour was found by other researchers such as Cruz 

Ceballos et al. (2015); Benitez (2014); Guo et al. (2012); Gašparovič et al. (2010). 

However, compared to the thermal decomposition in air, there is no third peak can be 

observed for both samples when decomposed in nitrogen. 
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Figure 4.13: Temperature profile of derivative weight loss in nitrogen non-torrefied 

sample at different heating rate 
 

The same behaviour can also be found in the decomposition of microwave torrefied 

sample in nitrogen as shown in Figure 4.14. The unburned residual for microwave 

torrefied sample is higher compared to the non-torrefied sample, due to the changes 

of properties of the microwave torrefied sample that having lower volatiles and 

higher ash content. Therefore, more residual is observed due to pyrolytic 

decomposition of the sample. The amount of the residual left at the end of the 

heating process was observed at 25% of the total weight of sample. 

Figure 4.14: Temperature profile of decomposition in nitrogen of microwave 

torrefied sample at different heating rate  
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The same pattern of heating behaviour as non-torrefied sample can be seen during 

the analysis of the microwave torrefied sample in nitrogen at various heating rate as 

shown in Figure 4.15.  There is a clear second peaks for the samples heated at 

various heating rates. However the peaks tend to shift to a higher temperature, with 

the decrease of heating rates. 

 

 
Figure 4.15: Temperature profile of derivative weight loss in nitrogen for microwave 

torrefied sample at different heating rate 

4.5.1 Characteristic parameters of both samples at various heating rate and 

carrier gas 

Table 4.5 presents the comparison of characteristic parameters and maximum rate of 

mass loss of the decomposition in air and nitrogen. It is not much difference between 

the temperatures of initial combustion (TIC) for thermal decomposition of the non-

torrefied sample in air and nitrogen. However, the trend of characteristic 

temperatures increase can be seen for microwave torrefied sample comparing to the 

nitrogen. The increase in the temperature when decomposed in nitrogen is due to the 

reduction in decomposition rate.  The maximum weight losses of both samples 

heated in air are much lower than the one heated in nitrogen due to its pyrolytic 

condition. 
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Table 4.5: Characteristic parameters and maximum rate of mass loss (DTGmax) for 
the decomposition in air and nitrogen 

  In air In nitrogen 

Sample 
Heating 

rate 

TIC 

(°C) 

TMWL 

(°C) 

𝐷𝑇𝐺𝑚𝑎𝑥  

(%/min) 

TIC 

(°C) 

TMWL

(°C) 

𝐷𝑇𝐺𝑚𝑎𝑥 

(%/min) 

Non-

torrefied 

sample 

10ºC/min 305 350 15.19 305 378 11.35 

20ºC/min 310 360 19.17 310 387 17.32 

30ºC/min 315 374 23.75 320 386 25.49 

Microwave 

torrefied 

sample 

10ºC/min 305 346 8.03 325 376 8.30 

20ºC/min 325 369 16.43 330 384 15.78 

30ºC/min 330 374 23.79 335 385 22.97 

4.6 Evaluation of self-ignition risk based on characteristic oxidation 

temperature and activation energy 

Ramírez et al., (2010) have described the degree of susceptibility of material that 

prone to self-ignition can be evaluated based on the relationship of the characteristic 

oxidation temperature (Tchar) and the activation energy (Ea). The risk assessment as 

the function of characteristic oxidation temperature and activation energy for coals 

have been explained in Krause (2009). Where the risk has been classified into four 

groups, which are: (i) very high risk, (ii) high risk, (iii) medium risk and lastly (iv) 

low risk.  

 

For the comparison purposes, the value of the parameters determined this study have 

been plotted among the data from García Torrent et al. (2016) and Ramírez et al. 

(2010) with the proposed classification groups from Krause (2009). Based on Figure 

4.16, risk ranking graph plotted the present study data is written in red, and the data 

from other researchers is written in black. Based on the plotted data, the non-

torrefied sample and microwave torrefied sample are classified as material with 

medium risk. They fall in the same group as other lignocellulosic biomass such as 

straw, coconut, olive residue and pine cone.  

 

From the plotted graph, it is clear that the location of the microwave torrefied sample 

fall in the lower region of the plotted data, which indicates that it has a higher 

tendency to self-ignite compared to the non-torrefied sample due to its lower 
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activation energy. Besides that, it can be witnessed that the samples tested in this 

study had a higher risk compared to bituminous coal and sub-bitumonous coal. In 

addition to that, biomasses such as wood chip and animal waste are easier to self-

ignite compared to the samples used in this study. 

 

 
Figure 4.16: Risk ranking graph based on the activation energy and characteristic 
oxidation temperature plotted among data from García Torrent et al., (2016) and 

Ramírez et al., (2010) 
 

4.7 Summary 

x The thermogravimetric curves move towards higher temperature region when 

torrefied biomass sample is decomposed as it suggested that the material is 

more stable towards thermal decomposition 

x The result of TIC and TMWL for both samples showed that that the non-

torrefied sample is more reactive than the torrefied sample. However, Tcharac  
for the non-torrefied sample is higher than the torrefied sample.  

x Thermal decomposition in nitrogen for both samples shows higher residual 

matter at the end of the reaction is compared to the one done in air. This is 

expected due to the incomplete decomposition in nitrogen over air.  

x The activation energy for thermal decomposition in air is in between 64.5 to 

84.4 kJ/mol for the non-torrefied sample, and 53.1 to 70.7 kJ/mol torrefied 
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sample.While in nitrogen is in between 58.7 to 70.9 kJ/mol for non-torrefied 

sample and 59.2 to 71.8 kJ/mol for torrefied sample. 

x The lower activation energy for torrefied material showed that the material is 

easier to decompose, as a result, have a higher tendency to self-heat.  

x The kinetic parameters findings agreed to the results found in the Tcharac 

analysis, which confirmed that the microwave torrefied sample is more 

reactive than non-torrefied sample in air. 

x Based on the risk ranking graph; both non-torrefied sample and microwave 

torrefied sample are classified as a material with medium risk. The location 

of plotted point for microwave torrefied sample fall in lower part of the 

graph, which indicates that it has a higher tendency to self-ignite compared to 

the non-torrefied sample due to its lower activation energy 
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 Chapter 5 Experimental study of the thermal 
runaway in bulk tests 

Chapter 5 provides details of experiments undertaken the heating behaviour of the 

samples heated up to various bulk sizes and oven temperatures. The experimental 

programme considers examining the effect of the bulk size and the oven temperature 

on time taken for a thermal runaway to occur. This chapter presents the temperature 

profile from each experiment. This chapter also shows the relationship between the 

ignition delay time and oven temperature as well as the bulk size thermal runaway to 

happen in a high-temperature environment.  

5.1 Experimental works 

5.1.1 Objectives of the experiment 

The experimental works done in this chapter is to fulfil the objectives as below: 

(i) to determine the relationship between various bulk sizes on the ignition delay 

time for the ignition to occur;  

(ii) to determine the relationship between the various oven temperatures and the 

time taken for a thermal runaway to occur; and 

(iii) to compare the thermal stability of both materials in larger scale heating 

environment 

5.1.2 Samples and equipment  

The samples used in this experiment are non-torrefied sample and microwave 

torrefied sample. The properties of both samples are very different from one another. 

Therefore, it will give a good comparison of heating behaviour. The experiments 

were conducted using the various size of cubic shaped wire mesh bulks as shown in 

Figure 5.1 with each cube’s length labelled and named as Bulk 1, Bulk 2 and Bulk 3. 

The schematic diagrams of the experimental setup with the position of the 

thermocouples are presented in Figure 5.2, Figure 5.3 and Figure 5.4. 
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Figure 5.1: Three sizes of wire mesh baskets wide side lengths labelled 

 

 
Figure 5.2: Schematic diagram of experimental setup of heating tests for Bulk 1 

 
 

100mm 80mm 60mm 

Bulk 3 Bulk 2 Bulk 1 
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Figure 5.3: Schematic diagram of experimental setup of heating tests for Bulk 2 

 

 

 

 
Figure  5.4: Schematic diagram of experimental setup of heating tests for Bulk 3 

60mm 
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5.1.3 Thermal data logging system   

The temperature measurements were made using five type-K thermocouples with 

Inconel sheath (±2.5°C tolerances according to BS 4937) The data from the 

thermocouple we collected using Microlink 751 data logging system (Microlink 

Engineering Solution, Manchester, England). The data logger was connected to a 

laptop and recorded temperature every second. The data logger system continuously 

recorded the temperatures, while the data acquisition software (Windmill software) 

stored the input data. The data were transferred to Microsoft Excel for further 

analysis. The thermocouple readings for each bulk test were presented in the 

Appendix A to display the raw temperature measurements captured by each 

thermocouple during the test.  

5.2 Experimental procedure 

This experimental works focused on self-heating phenomena of two types of bulk 

samples that lead to thermal runaway. The samples used in these experiments are 

non-torrefied sample and the microwave torrefied sample as discussed in Chapter 3. 

The experiments were carried out to investigate the heating behaviour of the sample 

using three different bulk sizes subjected to several constant oven temperatures. 

 

The experiments were performed using a laboratory oven (Carbolite, LHT 6/30). The 

oven has a capacity of 30 L with an internal dimension of 300 x 300 x 305 mm 

(length x width x depth). The oven is thermostatically controlled and equipped with 

an air circulation fan that helps to reduce the temperature difference inside the oven 

chamber. 

 

The open-top wire mesh basket acted as a reactor. The wire mesh basket was made 

from stainless steel of 0.25μm diameter mesh. The wire mesh basket was placed 

inside the oven and thermocouples were properly positioned according to the 

coordinate shown in Table 5.1. The experiments were repeated for three different 

sample volumes, Bulk 1 (216cm3), Bulk 2 (512 cm3) and Bulk 3 (1000 cm3), with 

dimensions stated in Table 5.1. 
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Figure 5.5: Location of the thermocouple in the experiments. 

 

Figure 5.5 shows the positions for the thermocouples inside the bulk, which are T1 in 

the middle, T2 halfway from the centre to the wall (radial), T3 at the wall of the bulk 

and T4 at the opposite wall of the bulk. Lastly, T5 is for oven temperature 

measurement. The tips of thermocouples were kept at the same axial level from the 

bottom. The locations of the tips for each sample volume are based on their vertical 

and radial coordinates as shown in Table 5.1. The temperatures were being recorded 

by a data acquisition system. 

 

Table 5.1: Locations of the thermocouples based on vertical and radial coordinates 

 Length, 
L  

(mm) 

Height, 
H 

 (mm) 

Width, 
W  

(mm) 
T1 T2 T3 T4 T5 

Bulk 

1 
60 60 60 (0,0) (30,15) (30,30) (30,-30) Oven 

Bulk 

2 
80 80 80 (0,0) (40,20) (40,40) (40,-40) Oven 

Bulk 

3 
100 100 100 (0,0) (50,25) (50,50) (50,-50) Oven 
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After the thermocouples had been properly positioned and the wire mesh basket was 

suspended at the centre of the oven, the samples were fully filled into the wire mesh 

basket. Figure  5.6 shows the example of wire mesh basket that is fully filled with 

microwave torrefied sample. The oven temperature was maintained at a selected 

constant temperature. 

 
Figure 5.6: Wire mesh basket filled with microwave torrefied sample 

 

The samples were subjected to the selected temperature until the reading of the 

thermocouple at the centre (T1) exceeded the oven temperature (T5). The exceeded 

temperature is an indication that self-heating had occurred in bulk followed by the 

ignition. If the ignition occurred, the oven is turned off, and the samples were let to 

burn fully. The oven was then cooled down to room temperature before the next 

batch is set up using the same method. The full list of a bulk heating experiment 

done is presented in Table 5.2.  

 

Table 5.2: List of oven temperatures used during bulk heating experiments 

Sample Bulk Oven temperature 

Non-torrefied sample 

Bulk 1 180ºC 
Bulk 1 200ºC 
Bulk 2 200ºC 
Bulk 3 200ºC 

Torrefied sample 

Bulk 1 180ºC 
Bulk 2 180ºC 
Bulk 3 180ºC 
Bulk 1 170ºC 
Bulk 1 190ºC 
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5.3 Self-heating and thermal runaway in bulk tests 

The bulk experiment test involved boundary heating of an initially cold exothermic 

material exposed to a hot environment with a constant temperature. This experiment 

is adapted from basket heating method described by Chen (1999), which intended to 

determine the kinetic analysis of self-heating process. However, this experimental 

work is anticipated to examine the self-heating propensity of the samples without the 

consideration of its kinetics. The heating behaviours of the sample were investigated 

using various cubic shape wire mesh bulk, as shown in Figure 5.1. The bulk was 

filled with the samples, and the constant oven temperature was maintained 

throughout the experiment. 

 

The experimental works are designed to investigate the thermal stability of the 

samples based on the bulk size and the oven temperature, by comparing the induction 

time of the sample to ignite. The induction time in this experimental works is defined 

as the time taken for the centre temperature (T1) to exceed the oven temperature 

(T5). Based on the discussion in Section 2.5.2, the temperature profile of the samples 

followed the supercritical curves when self-ignition occurred in the system. The 

supercritical state represents that the sample reaches the critical temperature, which 

the self-heating follows by the thermal runaway occur. Meanwhile, if there is no self-

heating detected, the temperature profile follows the subcritical curve. The 

subcritical curve indicates that the heat generation is equal to the heat dissipation. 

Thus equilibrium state with no rapid increases of temperature is achieved. 

5.3.1 Discussion of the self-heating propensity of the samples 

Based on the kinetic study of the biomass fuels presented in Section 4.3, the non-

torrefied sample has higher apparent activation energy compare to the microwave 

torrefied sample. By doing this set of experiment, the heating behaviour of the fuel in 

larger scale can be examined. Thus, in order to confirm the results, the bulk test is 

performed at an oven temperature of 180°C using wire mesh Bulk 1 (side length 

60mm) for both samples.  
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Figure 5.7 shows the temperature profiles of T1 (thermocouple at the centre) for both 

samples. The rapid temperature rise can be seen in the temperature profile of 

microwave torrefied sample. This rapid temperature rise exhibits that the microwave 

torrefied sample experienced self-heating stage that leads to the thermal runaway. 

The temperature profile follows the supercritical behaviour, where the heat 

production exceeded the heat loss of the system that result in unsteady state. In 

contrast to the microwave torrefied sample, the curve for non-torrefied sample shows 

the subcritical behaviour where the sample become hotter approaching oven 

temperature but no ignition observed. 

 

The observation from the heating tests confirmed the findings of the kinetic 

parameter of the samples, where at the same heating condition, self-heating that lead 

to thermal runaway can only be detected for microwave torrefied sample. Whereas, 

there is no self-heating phenomenon detected for the non-torrefied sample. This 

observation confirms that the microwave torrefied sample is more reactive compared 

to the non-torrefied sample.  

 
Figure 5.7: The comparison of the temperature profiles of the samples at 180°C 

heated using Bulk 1 
 

We will move on to discuss further temperature profiles obtained for each sample. 

There are significant different between the temperature profile during heating 

process of the non-torrefied sample and the microwave torrefied sample. 
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5.3.1.1 Non-torrefied sample 

The temperatures profile reached it plateau after 6700 seconds (after black dotted 

line). It can be witnessed that after 6700 seconds the thermocouple’s reading at the 

centre of the sample, T1 follows the same temperature pattern as oven temperature, 

T5. There are no self-heating detected after more than 4 hours (15000 seconds), 

which indicated that the system achieved steady state and subcritical behaviour is 

observed. The temperature of the whole sample remains constant throughout the 

experiment when it reached the oven temperature. The measured temperature 

profiles of the event are shown in Figure 5.8.  

 

.  

Figure  5.8: Temperature profile of non-torrefied sample heated at 180ºC in Bulk 1 

 

In other words, the surrounding temperature balances the temperature generated by 

the exothermic heat generation of the non-torrefied sample in bulk. Therefore no 

thermal runaway occurred. Figure 5.9 gives clearer view of the temperature profile of 

T1 and T5 (oven). The temperature of T exceeded oven temperature, but with only 

small temperature differences of 3°C, with the highest recorded temperature at T1 

was 183°C. Thus, there was minimal heat generated by the system, and the 

temperature rise was able to be balanced by the surrounding temperature. Therefore, 

no self-heating detected, due to the size of bulk used, which is 60 mm side length. 

The short side length, allowed the heat to disperse to the surrounding easily and 

balanced the heat transfer in the system. 
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Figure  5.9: Temperature profile of T1 and oven temperature (T5) 

5.3.1.2 Microwave torrefied sample 

The same heating condition applied to the microwave torrefied sample (oven 

temperature 180°C heated in Bulk 1. The comparison of the temperature profiles for 

T1, T3 and T5 thermocouples are shown in Figure 5.10, while the temperature 

reading for all the thermocouples shown in Appendix A-1. Following the 

experimental technique, the comparisons of those thermocouples reading are 

significant in the observation of the self-heating behaviour.  

 

 
Figure  5.10:  Temperature profile of microwave torrefied sample at 180ºC in Bulk 1 
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Based on Figure 5.10, the temperature of the centre (T1) becomes higher than the 

temperature at the edge of bulk (T3) and oven temperature (T5) indicates that the 

self-heating phenomena followed by thermal runaway occurred in the system.  The 

microwave torrefied sample started to self-heat at 4002 seconds (66.7 minutes), 

where the T1 reading indicating rapid increases in temperature and thermal runaway 

is detected at this stage. The rapid growth is the indicator that the heat generated by 

the exothermic reaction of the material is more than the heat dissipated to the 

surrounding. At this point, it can be established that a self-heating process had started 

and followed by the self-ignition of the sample.  

 

Consequently, by comparing the behaviour of both samples, it can be established that 

microwave torrefied sample is more reactive towards heat compared to non-torrefied 

sample. This finding also in agreement to the kinetic analysis results discussed in 

Section 4.3, which the apparent activation energy of the microwave torrefied sample 

is lower than the non-torrefied sample. Therefore, the heating behaviour reflected 

that the thermal stability of microwave torrefied sample is less than the non-torrefied 

sample. 

5.3.2 Discussion of effect of bulk size on self-heating behaviour  

a) Non-torrefied sample 

The effect of different bulk sizes is tested for non-torrefied samples, where the 

samples were heated in the cubic shape bulk with different volume Bulk 1 (216cm3), 

Bulk 2 (512cm3) and Bulk 3 (1000cm3) and the oven temperature was set at 200°C 

for each experiment. Based on the experiments, it can be seen that the temperature 

profile of T1 for the samples shifted to the longer induction time as the volume is 

larger as illustrated in Figure 5.11. The temperature reading of T1 for non-torrefied 

sample heated in a largest cubic volume of 1000 cm3, showed that the longest time 

taken before it reached its critical stage. While T1 for the non-torrefied sample 

heated at the same oven temperature in smallest cube taken shortest to reached its 

critical stage. 
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Figure 5.11: Comparison of temperature reading at the centre (T1) of non-torrefied 

sample heated at 200°C at different volumes 
 

The shift of temperature profile is due to the longer time taken of the heat from the 

surrounding to dissipate to the centre of the bulk, as the size is larger. The heating 

process of the whole bulk is taking longer for greater volume. The pattern follows 

the pattern of previous researchers that shows the critical storage time correlate 

linearly with the storage volumes in their work (García-Torrent et al., 2012; Ramírez, 

García-torrent, & Tascón, 2010; Yan et al., 2005).  

 

The experiment managed to establish the relationship between the bulk size and the 

induction time. The data obtained in Figure 5.11 can be found from the temperature 

profile of each test. The induction time for each bulk size is 5767 seconds for Bulk 1 

(as shown in Figure 5.12), 8159 seconds for Bulk 2 (as illustrated in Figure 5.13), 

and 11487 seconds for Bulk 3 (as illustrated in Figure 5.14). The complete 

thermocouple readings of the tests can be seen in Appendix A-2 for Bulk 1, 

Appendix A-3 for Bulk 2 and lastly Appendix A- 4 for Bulk 3. 



 Chapter 5:Experimental study of the thermal runaway in bulk tests 
  

 
 

105 

 
Figure 5.12: Induction time of non-torrefied sample heated at 200ºC in Bulk 1 

 

 

  
 

 
Figure 5.14: Induction time of non-torrefied sample heated at 200°C in Bulk 3 

 

 

Figure 5.13: Induction time of non-torrefied sample heated at 200°C in Bulk 2 
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A linear graph had been plotted using the information of induction time and volume 

of the bulk used for heating test. The linear graph to show the relationship between 

the volume and the induction time of the non-torrefied sample heated at 200°C is 

shown in Figure 5.15. It can be concluded that, the larger the volume; the longer time 

taken for the samples to reached it critical stage. Much longer time to achieve 

supercritical condition indicating that it takes longer time for the heat to transfer to 

the centre of the bulk to trigger the ignition.  

 

 
Figure 5.15: Induction time vs V/A of non-torrefied sample at 200°C 

 

The linear relationship of the side length and the induction time is shown in Figure 

5.16. It follows the same pattern linear relationship as the relationship between 

induction time and V/A, as the side length represent the size of the bulk. 

 

  

 

 

 

 

 

 

 

 

Figure  5.16: Relationship between side length and induction time of non-torrefied 

sample heated at 200°C 
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b) Microwave torrefied sample 

To examine the effect of bulk size on the microwave torrefied sample, the sample 

had been heated at 180°C in various bulk volumes. For this tests, lower oven 

temperature had been chosen due to the fact that microwave torrefied sample is more 

reactive compared to the non-torrefied sample. Figure 5.17 shows the induction time 

for microwave torrefied sample heated up in Bulk 1. The temperature profile of T1 

started to heat up and slowly reaching towards the oven temperature at 180°C. Then 

at 4002 seconds, the centre of the sample started to self-heat and followed by a rapid 

temperature increased afterwards. The rapid temperature increased showed that the 

sample had undergone a thermal runaway. 

 

 
Figure 5.17: Temperature profile of microwave torrefied sample heated at 180°C 

Bulk 1 
 

Figure 5.18 shows the induction time for microwave torrefied sample heated up in 

Bulk 2. The temperature profile of T1 started to heat up and slowly reaching towards 

the oven temperature at 180°C. However, the time taken for the sample in Bulk 2 to 

self-heat was longer that Bulk 1. The induction time for the Bulk 2 was 5066 

seconds. The self-heat also followed by a rapid temperature increased afterwards. 

The rapid temperature increased showed that the sample had undergone a thermal 

runaway. 
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Figure 5.18: Temperature profile of microwave torrefied heated at 180°C in Bulk 2 

 

Lastly, Figure 5.19 shows the induction time for microwave torrefied sample heated 

up in Bulk 3. For this test, the induction time was the longest compared to the setup 

explained earlier for Bulk 1 and Bulk 2. The induction time for the Bulk 3 was 

recorded at 7611 seconds. A thermal runaway also detected for this test. 

 

 
Figure  5.19: Temperature profile of microwave torrefied sample heated at 180°C in 

Bulk 3 
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The thermocouples readings for each mentioned tests earlier can be found in The 

complete thermocouple readings of the tests can be seen in Appendix A-5 for Bulk 1, 

Appendix A-6 for Bulk 2 and lastly Appendix A- 7 for Bulk 3. 

Based on the above temperature profile, it can be seen that the temperature profile of 

T1 for the samples shifted to the longer induction time. For easier comparison, 

Figure 5.20 compared the temperature readings of T1 for each bulk size. The 

temperature reading of T1 for microwave sample heated in a largest cubic volume of 

1000 cm3, showed that the longest time taken before it reached its critical stage. 

While T1 for the microwave torrefied sample heated at the same oven temperature in 

smallest cube taken shortest to reached its critical stage. The same pattern can also be 

observed in non-torrefied sample tests. 

 

 
Figure 5.20: Comparison of temperature profiles at the centre of the bulk (T1) of 

microwave torrefied sample heated at 180°C at different volumes 
 

 

Therefore, based on the time induction for each bulk size, a linear graph was plotted. 

The same relationship between the size of the bulk and induction time can be 

observed. Figure 5.21 shows the relationship between the side length of the bulk and 

the induction time. The side lengths in the graph represent the size of the bulk. 

Therefore a liner relationship between the size of bulk and the induction time was 

found to follow the same pattern as the non-torrefied sample. The finding also in 
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agreement with the studies done by Graham (2015); Saddawi et al. (2013); Pauner & 

Bygbjerg (2005) where the larger the bulk size the longer the induction time. 

 

 
Figure 5.21:  Relationship between side length and induction time for microwave 

torrefied sample heated at 180°C 
 

5.3.3 Discussion of effect of oven temperature on self-heating behaviour  

Various oven temperature had been chosen to examine the effect of ambient 

temperature towards the tendency of self-heating of the samples. The ambient 

temperature played an important role towards the induction time of the sample before 

self-heating was detected during the experiments. Thus, to examine the behaviour of 

the microwave torrefied sample in various oven temperatures, smallest size of the 

bulk was chosen. The smaller size of bulk will resulted in a higher ambient 

temperature need for the sample to self-heat (Veznikova et al., 2014; Wolters et al., 

2003). 

 

The samples were heated at oven temperature of 170ºC, 180ºC and 190ºC with the 

same size of the cubic bulk of 216 cm3. Figure 5.22 shows the temperature profile of 

the microwave torrefied sample heated at 170ºC. Self-heating was detected at 4440 

seconds where the reading of thermocouple T1 started to exceeded the oven 

temperature.  
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Figure 5.22: Temperature profile of microwave torrefied sample at 170°C in Bulk 1 

 

However, it can be observed in Figure 5.22 that the reaction did not reached a critical 

state, where the temperature reading of T1 plateaued at 200ºC. While Figure 5.23 

shows the temperature profile of the microwave torrefied sample heated at 190ºC. 

Conversely, for this oven temperature, self-heating was detected at earlier compared 

to oven temperature of 170ºC, which is at 3513 seconds. The same pattern was 

observed during the self-heating test of refuse paper and plastic fuel by Koseki 

(2012), which showed that the shorter time taken for the sample to achieve the 

supercritical stage which indicated self-heating occurred followed by thermal 

runaway.   

 
Figure 5.23: Temperature profile for microwave torrefied sample at 190ºC in Bulk 1 
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The comparison of the thermocouple readings of T1 is shown in Figure 5.24. The 

temperature profiles of the T1 shifted to the lower region of the graph as the higher 

oven temperature applied. It can be observed that the curve of sample heated at 

190°C showed a substantial supercritical pattern. Whereas, for sample heated at 

170°C, the curve is smoother and follows the pattern of critical heating behaviour. 

Based on the graph, it can be witnessed that a supercritical stage was achieved when 

the sample heated at 190°C and a steady state was achieved when sample heated at 

lower oven temperature of 170°C. The same pattern was found in the study of self-

heating of coal dust accumulations by Wu & Bulck (2014), where the steady state 

can be witnessed for the lower oven temperature and shifted to critical state at the 

higher oven temperature.  

 
Figure 5.24: Comparison of readings at the centre of the bulk (T1) of microwave 

torrefied sample heated in Bulk 1 at various oven temperatures 

Using the information collected from the heating test, a linear graph had been plotted 

to show the relationship between the oven temperature and the induction time. Figure 

5.25 shows an inverse relationship between the oven temperature and the induction 

time is established. A shorter induction time is observed for the sample heated at a 

higher oven temperature. The shorter reaction is predictable due to the chemical 

reaction that based on Arrhenius equation where the kinetic constant increases as the 

temperature increases. Therefore, when the sample heated at higher temperature, 

shorter induction time needed for the sample to self-heat.  
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Figure 5.25: Relationship between the temperature and induction time 

 

5.4 Conclusion 

x The oven temperature used for non-torrefied sample is greater than 180oC as 

the lower temperature does not give a sufficient heating that lead to self-heat. 

While at 180o, the microwave torrefied sample showed self-heating 

phenomena that led to thermal runaway. 

x The microwave torrefied sample is more reactive compared to the non-

torrefied sample. Thus, agreeable to the findings of apparent kinetic 

parameters. 

x The induction time increased with the increased of the bulk volume. While 

the induction time decreased when the oven temperature increased. 

x The inversed relationship between oven temperature and induction time was 

found from the test. 

x The same pattern of the relationship between the induction time and the bulk 

volume as well as the ignition time and the oven temperature is observed 

when non-torrefied sample is used.  
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 Chapter 6 Development of numerical models to 
simulate the self-heating process in 
bulk storage area 

This chapter details the work undertaken in the development of self-heating model 

based on mass and energy transfer equations for bulk storage using the properties 

and the kinetic parameters determined from the experiments. The comparisons of the 

thermal behaviour of both samples are based on the temperature profiles predicted 

during the self-heating process. The model was used to predict the critical ambient 

temperature and induction time of the self-heating process leading to ignition. The 

effect of height of bulk and the ambient temperature of the storage as well as 

properties of the material were investigated. Lastly, the model was verified by 

comparing the temperature profiles of the bulk scale experiments to the simulations 

results. 

6.1 Self-heating of biomass fuels in open storage area 

Self-heating within the biomass material causes the temperature rise during its 

storage phase. The self-heating process leading to ignition is a problem in the 

biomass fuels handling and storage. Self-ignition process of bulk biomass is started 

when the heat produced inside the pile through exothermic process unable to be 

dissipated to the surroundings. This situation is highly concerned when it comes to 

the storage of large amount of biomass that can lead to uncontrolled positive heat 

feedback that can lead thermal runaway. 

 
Figure  6.1: Heat loop that leading to thermal runaway 
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Exothermic 
reaction 

Increased 
in reaction 

rate Heat dissipated 

slows the reaction 



 Chapter 6:Development of numerical models to simulate the self-heating process in bulk storage 
area 

  

 
 

115 

Additional heat source may be precursor to the self-heating, such as physical 

processes and biological activities. However, these models only consider the 

exothermic reaction of chemical process. The biomass fuel is assumed to have a very 

low moisture content that inhibit the growth of microorganisms, therefore the 

exothermic reaction due to biological activities is ignored. In addition, heat from the 

water adsorption/condensation is not included in the model as the reaction happens at 

low temperature. 

 

This work considers the heating process in rectangular shape pile, where the height is 

the critical parameters for simulations. The pile is assumed to be stored indoor 

without any aeration thus forced convection is negligible. The model of self-heating 

in biomass pile is solved using COMSOL Multiphysics® software Ver. 4.4. For the 

purpose of validation, the simulation of the bulk test is done to compare with the 

simulations results of this section. The parameters to be studied are the height and 

ambient temperature. This is because both are the easier parameter to be controlled 

by the workers during handling and storage phase. Thus, it is practical to study these 

parameters to give a clearer indications of what can the workers can do to ensure safe 

handling of the biomass fuels. 

6.2 The model set-up 

To simplify the model, a two-dimensional model of heat and mass transfer is used 

for the simulation. The bulk pile is deposited on a concrete base plate that was 

considered as the insulated wall where the heat conduction between the bulk pile and 

storage floor was ignored. Figure 6.2 shows the two-dimensional bulk geometry 

model used for the simulation.  

 

The boundary conditions are set as the constant temperature at the beginning of the 

process that represents the critical ambient temperature (To) of the storage condition. 

The top surface of the bulk geometry is subjected to a convection boundary condition 

between the hotter ambient conditions that and the lower temperature of the bulk 

pile. The natural convection is the dominant mechanism of oxygen access into the 

bulk pile. The top and side surfaces were considered as open boundaries. The heat 
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source (Qsource) term is defined using the Arrhenius type rate equations. The kinetic 

parameters are measured during the experimental work presented in Section 4.3.  

 

 
Figure 6.2: Geometry of simplified model of the pile in an open storage.  

6.3 Governing equations and computational module 

A two-dimensional model is developed to simulate the self-heating process of both 

samples examined earlier in the open storage environment. The mathematical model 

based on the physic modules in COMSOL Multiphysics® to simulate the process of 

heating up and the potential of self ignition processes in the open storage stockpile. 

The stockpile is considered as a reactive porous medium where the prediction of 

possible self-ignition risk was performed by modelling the equations for heat and 

mass transfer, which includes the heat source from the exothermic chemical reaction. 

 

In COMSOL Multiphysics® the numerical model of the self-heating process in the 

bulk piles is using a multi-physics coupled heat and mass transfer in porous media. 

In self-heating of biomass, the dominant source of heat is the chemical oxidation, 

thus based on Blomqvist & Persson (2003) it can be governed fundamentally by the 

rates of diffusion and convection of air from the surrounding area 

 

Qsource  

qconduction 
H 
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6.3.1 Mathematical model 

Considering the complexity nature of the self-heating process, several assumptions 

had been adopted to the model in order to simplify the simulation. Thus, the 

following assumptions were chosen for this work: 

i. The model proposed sufficiently porous and isotropic as well as a 

homogenous pile; 

ii. The deformation, shrinkage or collapsing of the pile are not considered; 

iii. The ambient temperature is considered constant throughout the simulation; 

iv. Heat transfer through the body is by conduction in porous media with air 

filling the pores; 

v. Heat transfers at the surface to the surroundings are by convection and 

radiation; 

vi. The storage floor is a perfectly concrete slab, which perhaps leads to 

maximum heat build-up within the stored material;  

vii. Natural convection is considered for the simulation as the stockpile storage 

area is assumed not to be equipped with any fan or aeration equipment; 

viii. The stockpile is reactive so that the solid percentage volume and gas 

percentage volume remain unchanged during the self-heating; and 

ix. The effect of moisture in the pile is neglected as the moisture content of the 

material studied is considered low and the temperature increase due to 

moisture is significantly low. 

 

The governing equation of self-heating is based on the theory of energy conservation 

in heat transfer in the porous pile as shown in Eq. 6.1 on 0 ≤ y ≤ h:  

[(𝜀𝜌𝑔𝐶𝑔) + (1 −  𝜀)𝜌𝑠𝐶𝑠]
𝜕𝑇
𝜕𝑡
+ 𝜌𝑔𝐶𝑔 (

𝜕𝑇
𝜕𝑦
) = 𝜆𝑒𝑓𝑓 (

𝜕2𝑇
𝜕𝑦2
) + (1 −  𝜀)𝐴𝑂2 exp (−

𝐸𝑎
𝑅𝑇
)

                             (Eq.6.1) 

  

The effective thermal conductivity in the porous media; 

        𝜆𝑒𝑓𝑓 = 𝜀𝜆𝑔 + (1 −  𝜀)𝜆𝑠            (Eq. 6.2) 

 

In the case of porous media, the oxygen diffusivity is considered as; 𝐷𝑜,𝑒𝑓𝑓 = 𝜀𝐷𝑜,𝑔 
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Thus the transport of oxygen concentration on 0 ≤ y ≤ h 

 

𝜀 𝜕𝑂2
𝜕𝑡
= 𝐷𝑜,𝑒𝑓𝑓 (

𝜕2𝑂2
𝜕𝑦2
) − (1 −  𝜀)𝑂2 Aexp (−

𝐸𝑎
𝑅𝑇
)     (Eq. 6.3)           

 

An Arrhenius equation is used to represent the dependence of the kinetic rate 

constant k on the temperature, T: 

𝑘 = 𝐴 exp (− 𝐸
𝑅𝑇
)          (Eq. 6.4)           

A is pre-exponential factor (min-1), E is apparent activation energy (J mol-1), T is 

temperature (K) and R is universal gas constant 8.3145 (J mol-1 K-1). The reaction 

rate is given by:  

𝑟𝑎𝑡𝑒 = 𝑘𝑂2 
where rate constant, k is temperature dependent according to the Arrhenius equation 

and O2 is the concentration of oxygen. 

 

The storage simulated is based on large piles in an indoor storage. Thus, the effect of 

wind is not considered. Thus, the heat transfer equation used in the convection heat 

flux on the surface is driven by natural convection. The input parameters determined 

from the experimental works used in the simulations are shown in Table 6.1. Specific 

heat and thermal conductivity of both material is taken from literature Koufopanos et 

al., (1991). 

Table 6.1: Model inputs for simulation 

 Non-torrefied sample Microwave torrefied 
sample 

Specific heat, Cp 
J/(kg.K) 1112.0+[4.85(T-273)] 1112.0+[4.85(T-273)] 

Thermal conductivity, λp 
W/(m*K) 0.13+[0.0003(T-273)] 0.08-0.0001(T-273) 

Bulk density, kg/m3 443 500 

True density,ρp (kg/m3) 1451 1442 

Porosity, ε 0.695 0.653 

Activation energy, 
Ea (kJ/mol) 

77.37 68.3 

Pre-exponential factor, s-1 3.85E3 3.24E4 
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6.3.2 Mesh 

The free triangular shape of mesh with the maximum element size is 0.135 m and the 

minimum element size is 0.006 m. Element size for mesh chosen for the simulation 

is the once calibrated for fluid dynamic.  

 

 
Figure 6.3: Free triangular shape mesh was chosen for the simulation 

6.4 Model validation 

6.4.1 Introduction 

To validate the numerical model discussed in Section 6.3.1 against the experimental 

data, simulations of the heating behaviour were run based on actual conditions 

during the study of the thermal runaway in bulk tests. The simulated results were 

compared to the real data collected during the experiments. Hence, the simulations 

were based on the effect of the oven temperature towards the bulk sample.  

 

Therefore two separate domains were used to simulate the experiments, namely open 

domain and porous domain. The porous domain is for the modelling of the wire 

mesh basket while the open domain modelled the heating up by the oven using air as 

a conductive medium. The validation model was built in 2-Dimensional 

axisymmetric. This type of model was chosen to reduce the computation time and 

modelling time. The validation of the model was done by comparing the temperature 

profile at the centre of the bulk, which labeled as point T1 in the bulk test.  The point 

T1 is shown in Figure 6.4. The comparison of the centre temperature is chosen 

because the self-heating process of the sample can only be detected when 
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Wire mesh basket  

Oven 

Figure 6.4: Geometry of the simulation model 

temperature at the centre exceeded the oven temperature. Therefore, for validation 

purposes, only one point will be validated, which is T1. In addition to that, the 

temperature evaluations that were considered for validation purposes were 

considered only in the key region, where the results of the time taken for the samples 

to undergo self-heating that was in good agreement with the simulation and 

experimental data. Due to the simplification of the model such as eliminating the 

forced convection from the fan in the oven, the heat up pattern would have some 

discrepancy compared to the temperature profile from the experiments. 

 

COMSOL Multiphysics® includes the physics-based modules that provide 

predefined physic interfaces, which can be combined to solve several multi-physics 

applications. Therefore in this validation, the modules chosen were based on the 

porous media physic interface, which represented the bulk samples. Therefore the 

modules used in the simulations are: 

(i) Heat transfer in the porous media; 

(ii) Species transport in the porous media; and 

(iii) Free and porous media flow. 

6.4.2 Geometry of the model 

The mesh chosen for the modelling is the free triangular mesh as well, with the finer 

mesh at the boundary of the wire basket. The size of the mesh for the whole domain 

is between 0.0101 m and 0.00045 m. While the size of the mesh at the boundary of 

the wire mesh were finer, which is between 0.00675 m and 0.0003 m. 

 

 

 

 

 

 

 

 

T1 
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Figure 6.5: Temperature profile of microwave torrefied sample heat up in 
Bulk 1 at 190°C oven temperature at 5000 seconds. 

6.4.3 Result of the validation 

a) Validation of bulks test of microwave torrefied sample 

The validation simulation was done for the bulk test using Bulk 1 at 190°C for 

microwave torrefied sample. The temperature profile in the 2-D axisymmetric 

geometric is shown in Figure 6.5. The higher temperature is detected at the wire 

mesh filled with the sample (Bulk 1) after being heated up to 5000 seconds (83.3 

minutes). The comparison of the temperature profile is shown in Figure 6.6. The 

temperature development tends to slow down at the beginning up to 1750 seconds, 

then exceeded the temperature pattern of the experimental result.  

 

 
 

 

As mentioned earlier, only the key region of the simulation is significant in the 

model validation. The early stage of the heating process of the simulation did not 

follow the same pattern as the bulk test. Nevertheless, even though the patterns of the 

temperature profiles were inconsistent before 1500 seconds, both temperature 

profiles gave slightly the same induction time, where it can be witnessed that both 

temperature profiles exceeded oven temperature at almost the same duration. 

Therefore in Figure 6.6, only the temperature profile after 1500 seconds was 

discussed.  

 

 



 Chapter 6:Development of numerical models to simulate the self-heating process in bulk storage 
area 

  

 
 

122 

The inconsistent temperature profiles at the beginning of the heating up process for 

the simulated and the experimented data were predicted due to the simplification of 

the model simulated. The air convection due to the fan inside the oven was not 

included in the simulation model. According to Yan et al. (2005), the complexity of 

the spontaneous ignition problem is due to the strong coupling between the air flow,  

heat and mass transfer, physical and chemical reaction. Therefore, by deducting one 

of the significant factors such as airflow due to a fan in the oven, it can prevent the 

possibility of determining a reliable validation method. Besides that, the loss of 

moisture during heating process was also ignored in the simulation. These factors 

were significant reason that would contribute to the inconsistent temperature profile 

measured for simulation and experimental data. This phenomenon occurred because 

to the system was trying to balance the heat build up and the heat dissipated with the 

effect of air circulation in the oven. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Then the validation was done for the second sample to see whether the pattern is the 

same or not. The sample chosen is microwave torrefied sample in Bulk 1 heated at 

180ºC oven temperature. Based on the temperature profiles in Figure 6,7 The 

temperature patterns of the simulation result follow the one done earlier, with the 

temperature slightly lower at the beginning and then increased afterwards. However, 

Figure 6.6: The comparison of temperature profiles at the centre for microwave 
torrefied sample heated at 190°C. 
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the induction time of the simulation and experimental results showed a good 

agreement, where they exceeded the oven temperature at the same duration. 

 

Based on Figure 6.6, the temperature at the centre of the simulations results exceeded 

oven temperature at 3290 seconds. This indicated the self-heating leading to thermal 

runaway occurred in the sample where the heat increased rapidly after exceeded the 

oven temperature. However, the time taken was slightly lower than the one 

determined in bulk test, which is 3513 seconds. However, it can be safe to say that 

the profile of heating followed the pattern of heating up due to the chemical 

exothermic reaction in bulk. 

 

In addition to that, the temperature evaluation of the simulation results seems to heat 

up linearly at the beginning before slowing down a bit afterwards. This phenomenon 

occurred because to the system was trying to balance the heat build up and the heat 

dissipated with the effect of air circulation in the oven. Thus, in conclusion, the 

simulation results agreed well with the experiments for the microwave torrefied. 

  

 
Figure 6.7: The comparison for experimental and simulation for microwave torrefied 

biomass heated at 180°C in Bulk 1. 
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b) Validation of bulks test of non-torrefied sample 

In order to validate the kinetic parameters of the non-torrefied sample, the model 

validation was done at an oven temperature of 180ºC in Bulk 1. Based on Figure 6.8, 

the same steady state achieved after the centre temperature reached the oven 

temperature. The steady state achieved once the sample reached oven temperature, 

which indicated that there is no self-heating occurred for the non-torrefied sample 

heating at the specified condition. ,  

 

 
Figure 6.8: The comparison between temperature patterns at the centre for 

experimental and simulation for non-torrefied biomass heated at 180°C 
 

Based on Figure 6.8, the temperature profile of the simulation results seem to follow 

the one done in the experiment, but the temperature seems to shift to later time 

compared to simulation. The temperature pattern is not consistent with the 

experimental result. However it shows then the same finding, which no self-heat is 

detected for the non-torrefied sample heated up in Bulk 1 at 180ºC. Overall, the 

simulation results agreed well with the experiments. In particular, the time of 

induction in the test runs closely matches the model predictions, despite their 

inconsistent pattern. 
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6.5 Variable analysis 

The spatial distribution of temperature is an important parameter to determine the 

location of the ignition point. Thus, the results of the variable analysis in this section 

are examined based on the temperature contours distribution. The variables study are 

the pile height, pile width and the ambient temperature. The hottest point is the 

maximum temperature detected within the pile. Thus, the evolution of the hottest 

point with the ignition induction time for each simulation is used to predict the 

possibility if the self-heating that lead to ignition within the pile. Based on the spatial 

distribution, the location of the ignition can be detected. The influences of the 

variables on the hottest point (maximum temperature) are evaluated. 

6.5.1 Effect of pile height 

The effect of the pile height is examined for both samples, where the temperature 

profile presented on the left is for microwave torrefied sample and on the right is for 

the non-torrefied sample. It was presented side by sides to give an easy comparison 

of the temperature evolution. To evaluate the effect of the height of pile for both 

sample, the simulation was done at an ambient temperature of 60°C, at different pile 

heights of 2, 4, 6, and 8 m for 4500 hours (187.5 days).  

 

The heights are chosen based on the recommendation of stack height in the literature 

such as (Krigstin & Wetzel, 2016; Hogland & Marques, 2003; Blomqvist & Persson, 

2003). Besides that, Murasawa et al. (2012) had proved that it was not practical to 

pile up the biomass material such as more than 10 meters. Based on their study, the 

critical ignition temperature of the material can be as low as 50 °C. Therefore, after 

taking those literature into consideration, those pile heights was chosen for 

simulation purposes to examine the effect of the pile height on the tendency of the 

samples to self-heat. 
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Figure 6.9: Temperature contours of pile height of 2 m stored at the ambient 

temperature of 60°C for 4500hours. 

a) Simulation of pile height of 2 m at an ambient temperature of 60°C for 
4500 hours. 

 

a) Microwave torrefied sample                          (b) Non-torrefied sample 

 
 

Figure 6.9 shows the hottest spots for both samples are at the bottom centre (1.5,0). 

The highest temperature detected in a non-torrefied sample is lower that the one in 

microwave torrefied sample. Thus indicated that the microwave torrefied sample is 

more reactive compared to the non-torrefied sample, where the heat due to the 

chemical reaction able to dissipated to the surrounding and balances the heat build up 

in the non-torrefied sample.   

 

The simulation conditions for both samples indicated that no ignition detected after 

4500 hours (187.5 days). However, at 4500 hours, the highest temperature detected 

for microwave torrefied sample was 66.8ºC, which greater than the non-torrefied 

sample which is only 61.8ºC. Therefore, 8% increased the highest temperature 

compared to the ambient temperature of 60ºC. Thus, at pile height of 2 m and 

ambient temperature of 60ºC, the storage condition is considered as safe, which no 

self-heating detected. 
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Figure 6.10: Temperature contours of pile height of 4 m stored at the ambient 
temperature of 60°C for 4500hours. 

b) Simulation of pile height of 4 m at an ambient temperature of 60°C for 

4500 hours. 

   

 

 

 

 

 

 

 

 

 

      a) Microwave torrefied sample                          (b) Non-torrefied sample 

  

 

Based on Figure 6.10, the hottest spot detected for microwave torrefied sample was 

at coordinate (1.5,2.9).  While for non-torrefied sample the hottest spot detected was 

still at the bottom centre (1.5,0). The highest temperature in the non-torrefied sample 

is lower that the on in microwave torrefied sample. This indicated that the 

microwave torrefied sample is more reactive compared to the non-torrefied sample. 

The heat started to shift to the surface. However, the heat dissipated to the 

surrounding and balances the temperature build up in the non-torrefied sample.  No 

ignition detected after 4500 hours (187.5 days). However the highest temperature 

identified is 64.6°C. The highest temperature detected is lower than the one detected 

in at 2 m pile height storage (as shown in Figure 6.9). The phenomena indicated that 

the heat generated managed to dissipated to the surrounding and did not accumulate 

at the bottom of the pile. 
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Figure 6.11: Temperature contours of pile height of 6 m stored at the ambient 

temperature of 60°C for 4500hours. 

c) Simulation of pile height of 6 m at the ambient temperature of 60°C for 

4500 hours. 

 
 

 

 

 

 

 

 

 

 

 

 

 

a) Microwave torrefied sample                          (b) Non-torrefied sample 

 

 

 

 

Figure 6.11(a) shows the temperature contour of the hottest spot detected for 

microwave torrefied sample was at coordinate (1.5, 4.9) after 4500 seconds. For a 

non-torrefied sample, the hottest spot detected is still at the bottom centre (1.5, 0). 

The highest temperature in the non-torrefied sample is lower that the on in 

microwave torrefied sample. However, no ignition detected after 4500 hours (187.5 

days). The region with highest temperature distribution is shifted to the top of the 

pile. As the heat losses are tend to be on the surface of the pile.  
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Figure 6.12: Temperature contour of pile height of 8 m stored at the 

ambient temperature of 60°C for 4500hours. 

d) Simulation of pile height of 8 m at the ambient temperature of 60°C for 4500 

hours. 

 
 

 

         

 

 

 

 

 

 

 

    a) Microwave torrefied sample                          (b) Non-torrefied sample 

 

 

 

 

Based on Figure 6.12, the hottest spot for microwave torrefied sample is at 

coordinate (1.5,6.9). While the hottest spot of the non-torrefied sample at 4500 hours 

is  detected at (1.5,3.17). It can be seen that the hot spot started to build up towards 

the top of the surface at this height for the non-torrefied sample. However, no 

ignition detected for both samples. 

 

e) Conclusion of the effect of simulation at various pile heights 

According to the simulations at different heights, we can see that the highest 

temperature region is detected towards the top surface of the pile. The pattern is 

observed for all the height simulated. The heat seems to dissipate towards the surface 

of the pile due to the natural convection set up for the pile. In all cases for the non-

torrefied sample, the heat of oxidation is suppressed to the bottom of the pile. The 

opposite phenomenon is witnessed for the microwave torrefied sample, where the hot 

spot tends to shift to the surface. 
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6.5.2 Effect of pile width 

The effect of pile width on the self-heating behaviour also being examined using the 

simulation. Heat due to the exothermic reaction in the system is generated 

throughout the body, however, only dissipated through the surface. Therefore, 

considering the width of the stockpile, self-heating leading to ignition can happen 

even though the stockpile is elevation is not high, especially at the higher ambient 

temperature. This phenomenon is being simulated to consider the effect of pile width 

on heat distribution within the pile.  

 

The simulation was performed using microwave torrefied sample stored at an 

ambient temperature of 80°C with pile size of 5 m (W) x 1 m (H). The simulation 

was set to run for storage duration of 180 days. However, ignition had been detected 

at 106.25 days (2550 hours). The temperature contours for the heat distribution at 

different duration is presented in Figure 6.13. 

 

Based on the Figure 6.13 (a) and Figure 6.13 (b), the temperature distribution of the 

one at 15 days and 30 days are not much different, with the highest temperature 

recorded along the surface is 80°C. However, the temperature started to increased 

rapidly at days 90. The increased of hottest temperature was from 81.7°C for 60 days 

to 97.3°C for 90°C. At days 60, the temperature development seem to concentrated 

to the centre with the coldest pile temperature is 67.7°C compared to 29.4°C at 30 

days. This indicated that the temperature increase due to exothermic reaction 

accumulated at the center.  

 

At days 90, the two hottest spot is seen to develop, which indicated that the heat  

generated at the bottom of the pile trying to dissipate to the surrounding. However, 

because the distance to the surface is far, the heat distributed to two spots and 

accumulated instead of dissipated to the surface. Two self-heating spots that lead to 

ignition can be found in Figure 6.13 (e), where the pile ignited at 106.25 days (2550 

hours). 
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Figure 6.13: Temperature contours of torrefied sample with pile size 
1(H) x 5 (W) meter and ambient temperature 80°C 

 

 

a) At 15 days            b)  At 30 days 

 

c)  At 60 days            d) At 90 days 

          

e)  At 106 days 

 

 

 

 

 

 

 

 

 

 

 

At 720 hours 

At 1440 hours 
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The temperature profile of the hottest spot  (1.5,0) is plotted in Figure 6.14. The 

exponential rise of the temperature profile can be seen after 2550 hours. The 

simulation indicated that the temperature profile at the hottest spot shows a 

supercritical curve. Where the heat production in a pile surpassed the ambient 

temperature. The thermal runaway is considered to happen here. Even though the 

pile height is just 1 m, it can be seen here that the heat build up from the exothermic 

reaction was high as the reaction rate increase with temperature.  

 

 
Figure 6.14: Temperature profile at the hottest spot of the microwave torrefied 

sample after being stored for 2550 hours at ambient temperature of 80°C 

6.5.3 Effect of ambient temperature 

Different ambient temperature can be simulated to examine the effect of ambient 

temperature on the self-heating tendency of the samples. Therefore a critical ambient 

temperature can be determined for the samples. The critical ambient temperature is 

defined as the ambient temperature at which the internal heat generation exactly 

balances with the heat loss in the system (Morrison & Hart, 2012). Consequently, 

below are the discussions to examine the effect of ambient temperature on self-

heating behaviour 
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Figure 6.15: Temperature contours of microwave torrefied sample heated at various 
ambient temperatures  

 

a) Relationship of ambient temperature and tendency of the sample to self-heating 

To establish the relationship between the ambient temperature and tendency of the 

sample to self-heating, simulations were done to observe the heating behaviour of the 

microwave torrefied sample. The pile size was set to constant of 1 m (W) x 1 m (H) 

at various ambient temperatures for 180 days. The square shape pile is chosen to 

eliminate the height effect of the temperature distribution when the pile heated up. 

Figure 6.15 shows the temperature contour of microwave torrefied sample simulated 

at various ambient temperatures. 

 

a) Ambient temperature of 40°C   b) Ambient temperature of 50° 

 

 

 

 

 

 

 

c) Ambient temperature of 60°C   d) Ambient temperature of 70°C 

 

 

 

 

 

 

 

e) Ambient temperature of 80°C    f) Ambient temperature of 85°C 
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Figure 6.15 (a) and Figure 6.15 (b) shows the temperature contours of the pile when 

the ambient temperature is 40°C and 50°C respectively. Based on the Figure 6.15 

(d), the temperature increase is quite small over the pile after 180 days, with just 

3.6°C increased after 180 days. Thus the temperature effect of 70°C is still not very 

significant to started up the heating process due to the chemical reaction. However, if 

the pile heated up for a longer time, the self-heating will be started to show. 

 

After 180 days., the temperature increased in a pile stored at an ambient temperature 

of 80°C is 9.3°C. The temperature difference is obvious when the pile stored at an 

ambient temperature of 80°C. Thus, 80°C is the temperature that can trigger the self-

heating leading to thermal runaway. At 85°C, the increased of temperature started to 

concentrate to the bottom (Figure 6.15 (f)). 

 

The highest temperature achieved when stored at different ambient temperatures 

were plotted in Figure 6.16. The relationship between ambient temperature and 

highest temperature reached by the pile can be explained, where at 80°C of ambient 

temperature, the highest temperature of the pile increased only about 11% from the 

ambient temperature. However, at 85°C of ambient temperature simulated, the 

highest pile temperature increased up to 110°C, which is an increase of 29%. Thus, 

the higher the ambient temperature, the higher the tendency othe pile temperature to 

increases, which unfortunately will lead to self-ignition. 

 
Figure 6.16: Relationship between highest pile temperature and the ambient 

temperature of microwave torrefied sample 
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Figure 6.17: Temperature contours at ambient temperature of 50°C 

Based on the previous study done in the industrial food waste, the material will 

gradually generate heat through fermentation as well as oxidation process although 

stored at near room temperature (Murasawa et al., 2012). Therefore in some cases, it 

can cause self-ignition when the heat generated exceeds the heat that can be 

dissipated. Furthermore, critical temperature for each material is unique for given 

surface to volume ratio, which follows the Arrhenius equation as discussed in 

important findings in self-heating theory by Bowes (1971)  

 

b) Comparison of the self-heating tendency of both samples 

The effect of temperature was then tested on both samples, and the temperature 

profiles were presented side by sides to give an easy comparison of the temperature 

evolution. The pile size is 3 x 8 m, and temperature of 50, 60, 80 and 85 °C were 

chosen for comparison purposes, and simulation was run for 365 days. The height of 

8 meter was chosen in the simulations due to the criticality of the height when 

simulated in Section 6.5.1. However, not all samples can be simulated up to 365days 

as the self-heating lead to ignition occurs before 365 days. 

 

(i) Ambient temperature of 50°C 

For the first simulation, the ambient temperature of 50°C is chosen. Based on the 

Figure 6.16, the temperature contours for both samples look slightly the same with 

maximum temperature increased after 365 days is only 0.1°C.  

 

 

 

 

 

 

 

 

 

 

 

a) Microwave torrefied sample                          (b) Non-torrefied sample 
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Figure 6.18: Temperature profile of hottest point at ambient temperature of 50°C 

Therefore, no self-heating was detected at the end of the simulation, which implies 

that when the sample stored below the critical ambient temperature, the internal heat 

generation balances with heat loss in the system (Morrison & Hart, 2012). According 

to the simulations, both samples will theoretically pose no risk of self-heating to 

ignition if stored at 50°C for a year. However, in order to see the temperature 

evolution in bulk,  the temperature evolution of the hottest point for each sample was 

plotted in Figure 6.18. A different temperature profile patterns can be seen for the 

samples, where the non-torrefied samples (Figure 6.18 (b)) shows the steady state 

curve after 100 days. However, for microwave torrefied sample, a smooth 

temperature increases can be seen after 150 days. This pattern suggested that there is 

a possibility for the microwave torrefied sample to undergo self-heating if stored 

more than 365 days. This simulation stops at 365 days, due to the realism of the 

storage duration of biomass fuels in energy industry which will not be more than a 

year. Though there is higher risk of microwave torrefied sample to self-heat than the 

non-torrefied sample to self-heat, there is still relatively low risk of self-heating 

occurance for both samples stored in 50°C. 

 

a) Microwave torrefied sample                          (b) Non-torrefied sample 

  

(ii) Ambient temperature of 60°C 

The simulations were extended for the higher ambient temperature of 60°C for 365 

days. The results of the temperature contours from the simulations of both samples 

were shown in Figure 6.19. Based on the temperature contours for both samples, it 

can be witnessed that the evolution of the hottest point is shifted to the top centre of 

the pile in the microwaved torrefied sample (see Figure 6.19 (a)). The hottest point is 

detected at (1.5, 4.5) compared the hottest point of the non-torrefied samples that 
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occurred at the bottom of the pile. In addition to that, the highest temperature 

measured in microwave torrefied sample was 145°C compared to only 62.6°C for the 

non-torrefied sample. The temperature rise in the bulk for microwave torrefied 

sample indicated that self-heating occurred if stored for 365 days. 

 

 

 

 

 

 

 

 

 

 

      a) Microwave torrefied sample                          (b) Non-torrefied sample 

Figure 6.19: Temperature contour at ambient temperature of 60°C 
 

The analysis was extended with the plotted temperature of the hottest spot for both 

samples. As shown in Figure 6.20, there is an obvious distinctive pattern between 

Figure 6.20 (a) and Figure 6.20 (b); which in Figure 6.20 (b) the steady state is 

reached by the non-torrefied sample after roughly 90 days, which is much shorter 

than the one showed for the non-torrefied sample stored at 50ºC. The shorter 

duration showed that the system achieved steady state faster in higher ambient 

temperature.  

a) Microwave torrefied sample                          (b) Non-torrefied sample  

Figure 6.20: Temperature profile of hottest point at ambient temperature of 60°C 
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However, for microwave torrefied sample, a supercritical behaviour is However, no 

ignition is detected for the non-torrefied samples stored at 60°C; it is unlikely that 

this condition simulated would have reached spontaneous ignition witnessed in 

Figure 6.20 (a). The rapid increased of temperature can be seen and the thermal 

runaway pattern was detected at  320 days. The same supercritical behaviour that 

indicated the self-ignition due to self-heating process can also be seen in the several 

studies of self-heating behaviour (Chen, Sidhu, & Nelson, 2013; Ramírez, García-

torrent, & Tascón, 2010; Jones & Vais, 1991). The comparison of the hottest point in 

Figure 6.20, shows that the non-torrefied sample is much less reactive in both 

temperatures, however at the ambient temperature of 60ºC the reaction rate 

increased. The exothermic reaction in of the system seems to increase with the 

increase of the ambient temperature (Garcia Torrent et al., 2015). Therefore the 

steady state is reached earlier when simulated in an ambient temperature of 60ºC 

compared to the one simulated in an ambient temperature of 50ºC. 

 

(iii) Ambient temperature of 80°C 

To examine the effect of higher ambient temperature, 80°C was chosen for 

simulations. Based on Figure 6.21, a different pattern of the temperature contours of 

the pile at an ambient temperature of 80ºC is witnessed. The hottest region of the 

microwave torrefied sample followed the same pattern as observed at an ambient 

temperature of 80°C, where the location of the hottest region shifted to the surface of 

the pile.  

 

 

 

 

 

 

 

 

 

 

a) Microwave torrefied sample                          (b) Non-torrefied sample 

Figure 6.21: Temperature contour of hottest point at ambient temperature of 80°C 
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The hottest point was increased to 156°C from the ambient temperature simulated 

and the hottest point is detected at (1.5, 7.0). Also, the non-torrefied sample, the 

hottest point is shifted to the upper part of the pile, which is at (1.5, 2.5). 

 

The analysis was extended with the plotted temperature profiles in Figure 6.22, 

which shows the temperature evolution of the hottest spot for both samples. There 

were thermal runaway phenomena detected for both samples, which the supercritical 

curves can be witnessed for both samples, even though the point of exponential 

increased is much longer to reach for the non-torrefied sample. The comparison of 

the temperature profiles showed that microwave torrefied sample achieved a 

supercritical stage of rapid temperature rise, which started at 130 days.  

a) Microwave torrefied sample                          (b) Non-torrefied sample 

Figure 6.22: Temperature profile of hottest point at ambient temperature of 80°C 
 

Therefore, for the storage are with an ambient temperature of 80ºC, it is safer to store 

the non-torrefied sample up until 170 days, compared to the microwave torrefied 

sample, which reached the rapid heating stage at 130 days only. The results achieved 

from the simulations were in good agreement to the reactivity determined for both 

samples. Therefore the patterns follow the finding that the microwave torrefied 

samples are more reactive compared to the non-torrefied sample during storage. 

 

(iv) Ambient temperature of 85°C 

Lastly, the simulation was extended to the ambient temperature of 85ºC. Figure 6.23  

shows the temperature contours of the pile, where obvious hottest spot can seem for 

both samples, regardless of the locations. The highest temperature recorded before 

the thermal runaway occurred was 153 ºC for both samples.   

. 
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Figure 6.24: Temperature profile for hottest point at ambient temperature of 85°C 

 

 

 

 

 

 

 

 

 

 

       a) Microwave torrefied sample                       (b) Non-torrefied sample 

Figure 6.23: Temperature contour for hottest point at ambient temperature of 85°C 
 

As shown in Figure 6.24, both samples took shorter time to ignite compared to the 

one simulated in 80ºC. At 85ºC, the microwave torrefied sample started to ignite at 

111 days as illustrated in Figure 6.24 (a), while the sample began to ignited at 120 

days for the non-torrefied sample (Figure 6.24 (b)). It can be safely concluded that a 

safe storage practice can be achieved when stored below 80ºC because a rapid 

temperatures increase for both samples were detected in both samples. The 

exponential increased of the temperature was double its ambient temperature. 

 

 

 

 

 

 

 

a) Microwave torrefied sample                          (b) Non-torrefied sample  

 

Therefore, based on the results discussed earlier, the safe storage condition for such 

pile can be simulated. In order to establish the relationship between the ambient 

temperature and time taken for the pile to achieve its thermal runaway is shown in 

Figure 6.25. 
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Figure 6.25: Relationship between the ambient temperature and induction time 
for microwave torrefied sample 

 

 

 

 

Based on the relationship between the ambient temperature and induction time for 

microwave torrefied sample, if the ambient temperature reached 80°C, the 

microwave torrefied sample cannot be kept more than 133 days. However, based on 

this thermal stability map, for long term storage, the microwave torrefied sample is 

safer to be stored at normal room temperature, or somehow below 50°C. Therefore 

microwave torrefied material is safe to store in the short-term period, for example, 

less than three months to avoid the self-heating that lead to self-ignition of the 

samples to occur.  

6.6 Discussions on effect of the variables 

Morrison & Hart (2012) had stated that the possibilities for a biomass bulk material 

to self-heat is an important chemical reactivity hazard that must be effectively 

managed to limit the possibilities of thermal runaway to occur due to self-heat. The 

result of the effect of height towards self-heating tendency showed the same 

conclusion as made by researchers such as Zhu et al. (2013) on coarse coal stockpile, 

Jirjis (2005) on willow shoots, Guo (2013b) on wood pellets. All the researchers had 

concluded that effect of height could be an ideally controllable variable to avoid the 

spontaneous heating problem from occurring.  

Safe region 

Possible to ignite 
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Based on the finding from Section 6.5.1, we can see that the shorter pile height will 

make it easier for heat accumulated in the system to dissipate to the surrounding 

through the surface area. All the increase of the temperature determined from the 

simulation is less than 7 % increase. Furthermore, even though no ignition detected 

when the samples simulated for each of the simulation, it is still a bad practice to let 

a biomass pile heat, as it will degrade the quality of the biomass itself.  

 

Storage below critical ambient temperature leads to a steady state condition, which 

the heat dissipated to the surrounding balances the internal heat generation. Morrison 

& Hart (2012) described that the biomass will theoretically pose no risk of self-

heating that leads to self-ignition. Section 6.5.2 showed that, when the ambient 

temperature increases, the temperature of the pile gradually increased towards a rapid 

temperature increased. Consequently, a critical ambient temperature should be 

determined to achieve a safe storage and handling condition. Many researchers such 

as Luo et al. (2016); Larsson et al. (2012); Bygbjerg & Pauner (2006) managed to 

find the unique relationship between critical ambient temperature and the type of the 

biomass tested as well as the size of the pile. The higher critical ambient temperature 

is determined for the non-torrefied sample due to its reactivity. Based on the 

reactivity study done, it is concluded that the microwave torrefied sample is more 

reactive, thus the critical ambient temperature for handling and storage purposes is 

lower compared the non-torrefied sample. 

 

The biomass fuels need to be store in a smaller pile, to avoid the self-heating that 

lead to ignition. In addition to that, existing practice in the biomass handling and 

storage also prevent the pile of the stockpile in great width. Therefore, for 

practicality and safety issues, the pile should be piled up horizontally and avoid a 

long horizontal pile. This conclusion is in agreement with the findings by Saddawi et 

al. (2013). 
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6.7 Summary 

x The validation of simulation model agreed well with the experiments. In 

particular, the time of induction in the test runs closely matches the model 

predictions, despite their inconsistency in temperature pattern. The highest 

temperature region tends to fall at the surface at the pile 

x At 80°C of ambient temperature, the maximum temperature of the pile 

increased about 11% from the ambient temperature and at 85°C of ambient 

temperature simulated, the highest pile temperature increased up to 110°C, 

which is an increase of 29%.  

x The exponential graph is plotted based on the relationship between the 

ambient temperature and the highest temperature within the piles. The 

exponential increase is detected after the ambient temperature of 80°C.  

x The simulation can provide some suggestions on how to control the 

parameters to retard or suppress the self-heating taking place in the biomass 

fuel piles and as the guides in performing a larger scale of simulations.  

x Based on the simulation, it can be concluded that the microwave torrefied 

sample is more reactive than the non-torrefied sample 

x 80°C is considered as critical ambient temperature for the storage condition 

of the pile, where the exponential pattern is observed to start at 80ºC for 1x1 

m pile of microwave torrefied sample in the relationship between highest pile 

temperature and the ambient temperature. 

x The height and ambient temperature are the critical parameters in the storage 

of bulk biomass and the higher ambient temperature, the faster the pile 

ignited.  
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 Chapter 7 Conclusions and Recommendations 
for Future Research 

7.1 Conclusions 

In this work, the self-heating behaviour of the non-torrefied and microwave torrefied 

biomass has been studied experimentally and numerically. The conclusions from the 

study are: 

 

x The study has shown that the microwave torrefaction technology can improve 

the combustion properties of the biomass fuel. The properties of torrefied 

biomass are comparable to the one in low ranking coal. The calorific value of 

torrefied biomass increased to 22MJ/kg from 18.4MJ/kg in the non-torrefied 

sample. The O/C and H/C ratio decreased after the torrefaction process, 

where the O/C ratio is 0.67 in the non-torrefied sample and 0.45 in 

microwave torrefied sample. The H/C ratio is 0.14 in the non-torrefied 

sample and 0.11 in microwave torrefied sample. 

 

x The proximate analysis showed that the volatile matter in biomass was 

reduced from 85.6% to 68.7% after the torrefaction. While the fixed carbon 

content is increased from 3.9% to 18.6% after torrefaction. The ash content in 

torrefied biomass samples rose to 10.5% from only 4.7% in the non-torrefied 

sample.  

 

x The thermal degradation was carried out using thermogravimetric analysis for 

both torrefied and non-torrefied sample in air and nitrogen with the heating 

rate of 5ºC/min to obtain the temperature of maximum weight loss and the 

temperature of the initial combustion.  

 

x Thermogravimetric analysis in the air has shown that the temperature 

maximum weight loss (TMWL) for the non-torrefied sample is 310°C, while 

for the torrefied sample is 312°C. The temperature of the initial combustion 

(TIC) 268ºC for non-torrefied sample 283ºC for microwave torrefied sample.  
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x Thermogravimetric analysis in oxygen has shown that the characteristic 

temperature (Tcharac) for non-torrefied sample is higher than the torrefied 

sample. Tcharac  non-torrefied sample, which is 331°C and 329°C respectively.  

 

x The activation energy derived from thermal decomposition in air of the non-

torrefied sample is between 64.5 to 84.4 kJ/mol, while for torrefied sample 

the range is lower which is between 53.1 to 70.7 kJ/mol. The activation 

energy for thermal decomposition in air shows that microwave torrefied 

sample is more reactive comparing to non-torrefied sample. 

 

x The lower activation energy for torrefied biomass fuel indicated that the 

material is reactive and have a higher tendency to self-heating. The risk 

ranking graph; is drawn based on the activation energy and characteristic 

temperature of the samples against other materials from literature. Both 

samples are classified as a medium risk, but with microwave torrefied sample 

in the rank of higher tendency to self-ignite comparing to the non-torrefied 

sample. 

 

x The test showed that when the oven temperature is below and at 180ºC no 

ignition is detected for the non-torrefied sample. However, microwave 

torrefied sample started to self-heat at 4002 seconds (66.7 minutes). It can be 

concluded that the torrefied sample is more reactive compared to the non-

torrefied sample. 

 

x Series of the bulk test is carried out in the uniformly heated oven at constant 

air temperature to study the thermal heating behaviour independently. The 

test showed the ignition induction time for microwave torrefied sample 

heated at 180ºC is 4002 seconds at Bulk 1, 5066 for Bulk 2 and 7611 for Bulk 

3. The ignition induction time increased with the decreasing of the bulk 

volume. The ignition induction time is decreasing when the oven temperature 

is increased. 
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x The numerical simulation of heat and mass transfer was modelled using 

COMSOL Multiphysics® modules, consists of heat transfer in the porous 

media, species transport in the porous media as well as free and porous media 

flow using the kinetic parameters from the experimental data to determine the 

heat generated from the exothermic reaction. 

 

x The simulations carried out for the bulk tests for both samples. The 

temperature profiles obtained in the simulation were compared with the 

experimental data, and it was shown the temperature profiles in good 

agreement between measured and simulated. Therefore, the numerical model 

is validated against the experiments and could be used for the study of other 

conditions in confidence.  

 

x Based on the simulation, the safe practice to store the biomass is by piling up 

horizontally is safer than horizontally. The resulting form the simulations 

show two hot spots can be detected when the pile was pile with a wider 

width. 

 

x 80°C is considered as critical ambient temperature for the pile , where the 

exponential pattern is observed to start at 80ºC in the relationship between 

highest pile temperature and the ambient temperature of the microwave 

torrefied sample in 1x2 m pile. 

 

x Examples of simulation in large storage area presented here showed that the 

model could predict the development of the hot spot in the piles, therefore 

can be used to help identify the possible self-heating phenomena that lead to 

ignition.  
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7.2 Recommendations for future research 

Although the self-heating propensity of biomass material had been extensively 

studied, more research is needed for the biomass fuels such as torrefied material 

especially the fuels produced using microwave torrefaction method. This works 

managed to show that the higher reactivity of fuels produced using microwave 

torrefaction method. The methods of experimental study and numerical model 

developed can be used for other types of biomass material, as well as simulations 

with different storage conditions. Therefore, it would be interesting to understand the 

effect of torrefaction process parameters such as reaction time and reaction 

temperature towards self-heating parameters. In addition to that, the effect of the 

various torrefaction methods on self-heating propensity is an interesting topic to 

focus on too. The methods of torrefaction that produced a material with the less 

reactive fuels could be determined. Furthermore, it would be interesting to study the 

effect of physical properties of the torrefied biomass fuels such as porosity, density 

and moisture content towards its self-heating propensity. Therefore a safe handling 

of the fuels with upgraded physical properties from the torrefaction process can be 

achieved.  

 

Finally, the simulation works on the storage of biomass fuels can also be extended 

towards the effect of the physical properties of the fuels. For example, the 

relationship between the physical properties and the critical storage condition can be 

established. Besides that, various storage conditions can also be studied, which could 

include the possibilities of outdoor storage with the study of critical wind velocity. 

Furthermore, the geometry of the piles could be simulated in another shape such as 

the pile with side slope. The works can also be extended to the simulation of the 

storage condition with different oxygen concentration as well as the possibilities of 

inert storage condition. 
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 Appendix A: Thermocouples readings for bulk tests 
 

   

 

               
Appendix A - 1: Thermocouples readings of microwave torrefied sample heated in 

180°C for Bulk 1 
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Appendix A - 2: Thermocouples readings of non-torrefied at 200ºC in Bulk 1 
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Appendix A – 3: Thermocouples readings of non-torrefied sample at 200ºC in Bulk 2 
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Appendix A – 4: Thermocouples readings of non-torrefied sample at 200ºC in Bulk 3 
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Appendix A – 5: Thermocouples readings of microwave torrefied sample heated 

at180°C in Bulk 1 
  

 

a) 
 
 

b) 
 
 

c) 
 
 

a) 
 
 

b) 
 
 

d) 
 
 

e) 
 
 



 Appendix A 
  

 
 

167 

 
Appendix A - 6: Thermocouples readings of microwave torrefied heated at 180°C in 

Bulk 2 
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Appendix A - 7: Thermocouples readings of microwave torrefied sample at 180ºC in 

Bulk 3 
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Appendix A - 8: Thermocouples readings of microwave torrefied sample at 170ºC in 

Bulk 1 
 

   

 

a) 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
c) 
 
 
 
 
 
 
 
 
 
d) 
 
 
 
 
 
 
 
e) 



 Appendix A 
  

 
 

170 

 
Appendix A – 9:Temperature profile for microwave torrefied sample at 190ºC in 

Bulk 1 
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