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first from left to right, and afterwards,

in case he had missed some of it, from right to left.”

A A Milne, Winnie-the-Pooh



Abstract

T
he present thesis investigates the performance of current aerospace structural ma-

terials such as Glare, a fibre metal laminate, to the catastrophic consequence of

sabotage-induced blast loadings on commercial aircraft. The aim is to quantify the ef-

fects of these blast events and establish if remedial action can in some manner increase

the chances of aircraft survivability.

Within the EU funded VULCAN consortium, a coordinated effort has been devised

to determine the dynamic deformation and fracture behaviour of structural materials

subject to blast loadings using both experimental and numerical techniques. Test data

from small-scale experimental blast trials have been verified and validated by the author

using robust and efficient finite element models. Numerical studies have shown that

Glare has potential to be a strong candidate for blast attenuating structures, exhibiting

superior blast resistance compared to monolithic aluminium plates. Furthermore, a blast

vulnerability and survivability analysis was devised to illustrate various failure scenarios

in scaled fuselage structures.

To address the macroscopic crack propagation in large-scale shell structures to blast

loadings, well-controlled dynamic fracture experiments have been performed. This con-

figuration, which consists of closed-end pressurised barrels with a through-thickness

crack, is designed to capture the underlying dynamic phenomena under investigation

whilst keeping the computational effort manageable. Quantitative fracture metrics ob-

tained from high speed imaging systems have shown that Glare exhibits much lower

average crack velocities than Aluminium 2024-T3 and CFRP.

Experimental boundary and loading conditions served as well-defined input parameters

to large-scale finite element models using cohesive elements. It has been shown that rate-

independent cohesive models, initially verified using quasi-static fracture toughness tests,

are insufficient to capture the dynamic crack growth rates. Alterative rate-dependent

models have been discussed and implemented which take into account the influence

of loading rate on the cohesive traction and energy dissipation. An inverse problem

of cohesive zone modelling is performed to obtain mode-I cohesive zone laws. The

comparison shows that both the experiments and the numerical simulations result in very

similar crack initiation times and produce crack tip velocities of acceptable agreement.
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Chapter 1

Introduction

T
his chapter provides a brief introduction to the research problem investigated in

this thesis. An overview is given to the threat and possible failure scenario of

sabotage-induced blast loadings to primary aerospace structures. A brief discussion is

given to describe remedial measures to harden structures through innovative aircraft

design and material selection. A review of relevant research in the open literature has

identified limitations and areas of future work from which a statement of purpose is

provided.

1.1 Introduction

The continuous threat of sabotage to primary aircraft structures has been a subject of

considerable attention over the past few decades. Of particular concern is the aircraft

fuselage, a thin-walled structure designed to withstand severe dynamic environments

whilst maintaining a cabin pressure, at a level higher than the ambient pressure, at

cruising altitude. Such structures have a relatively high susceptibility to damage in the

form of fatigue cracks, environmental corrosion and impact/high strain rate damage.

The damage in the form of the latter can appear in the form of foreign object projectiles

(such as bird strikes, runaway debris and ballistic impact) or blast-type loading resulting

from acts of sabotage (improvised explosive devices, IEDs) or engine malfunction. In

the event of a high rate explosive event, extensive structural damage can occur over a

very short time (µs - ms) period with macroscopic loading rates estimated to be as high

as 50 × 106 Ns−1 [1] with corresponding local strain rates on the order of 106-107 s−1 [2].

These loading rates are significantly higher than quasi-static strain rates of 10−1-10−5

s−1, as shown in Fig. 1.1. In the event of an explosion, due to the presence of multi-site

damage (MSD), fatigue cracks can readily initiate from stress concentrations such as

1
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Figure 1.1: Strain rates associated with different types of loading

rivet holes, in the vicinity of the blast, and subsequently travel at velocities on the order

of a few hundred meters per second [3, 4].

Cabin-pressurisation also pre-stresses the fuselage, which under the combined effects of

inertia, may drive MSD cracks long after the initial dissipation of the explosion and sub-

sequently travel large distances from the blast site. A similar crack in an un-pressurised

fuselage would stop growing once the explosive pressure is spent. Therefore the com-

bined effects of transient explosive forces and cabin pressurisation may results in severe

degradation of structural integrity, posing serious risks to passengers and/or third par-

ties.

Until recently, a large bulk of literature has accumulated in addressing blast mitigation

for conventional metallic materials [1, 5–7]. Such remedial measures have involved crack

arrest or deflection methodologies such as tear straps to limit the extent of crack growth

[8]. Blast mitigation measures for fuselage structures have focussed on bay panels which

prevent cracks from growing over large distances and are designed to break-off and vent

the highly pressurised blast products [8]. Such designs allow the pressure in the cabin

to reduce gradually and reduce the available energy to drive cracks even further.

However, over the past decade there has been a drive within the aerospace industry

to replace conventional metallic materials in large scale components with composite

materials, in applications where weight saving and structural integrity are of critical

concern. In addition to conventional fibre reinforced polymer materials, such as carbon

fibre reinforced polymer resins (CFRP), the search for new and improved materials in

aerospace industry has stimulated the development of hybrid materials partly made out

of composites, such as Fibre-Metal Laminates (FMLs).

These materials are composed of alternately stacked aluminium and fibre-reinforced

composite layers, such that the best features of both constituents (i.e. high specific

strength and improved machinability) are combined. FMLs are offered as a lightweight

alternative over typical structural metals particularly in fatigue critical areas of aircraft

[9]. The excellent fatigue resistance of the FML is achieved by the fibre bridging mech-

anism in the wake of the crack. Glare is currently the only commercially used FML,

which comprises thin aluminium sheets and glass-fibre-reinforced epoxy (a thermoset),
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to be implemented in civil aircraft primary structures [9]. The Airbus A380 jumbo jet

makes extensive use of Glare in the manufacture of the upper fuselage panels and in the

leading edges of the aircraft wing.

As we enter a new aircraft design philosophy with an evolving catalogue of advanced

structural materials, it is imperative that the behaviour of such materials to high ve-

locity deformation is known and effect of structural performance is established. This

thesis attempts to addresses both of these challenges, by identifying measures that might

reduce and mitigate the risks and effects of explosive devices and improve the tolerance

of aircraft structures to explosive damage i.e. blast mitigation. This is achieved by fol-

lowing a systematic experimental-numerical approach which requires the development of

efficient, reliable and novel predictive simulations based on minimal-well controlled ex-

periments, to predict the response and performance of materials under dynamic loading

conditions.

1.2 Detailed description

Modern aircraft fuselage systems were, and still are, typically fabricated using thin

aluminum alloy sheets which are mechanically fastened to longitudinal stringers with

rivets. Under normal operating conditions, fatigue cracks can emanate from regions of

stress concentration and grow with repeated pressurization cycles associated with take-

off and landing cycles [8]. Aviation accidents, such as the Aloha Airlines Boeing 737

aircraft incident in 1988, demonstrated that small cracks emanating from neighbouring

rivet holes can interact with each other and critical lengths sufficient to trigger dynamic

crack growth can be reached, see Fig. 1.2. Although the underlying cause of the accident

was fatigue, the resulting fracture was dynamic in nature. In this incident, the fracture

was contained by the frame of the aircraft riveted to the fracturing skin, and the aircraft

was able to remain airworthy for the remaining of the flight until landing. In the event

of an explosion, the pre-existing fatigue cracks, if oriented favourably with respect to

the stress waves generated by the blast, may initiate even in areas of the structure far

from the blast site. Furthermore, the resulting dynamic cracks may travel with speeds

as high as 60-70 percent of the decompression wave speed, cD, in air (cD ∼ 300 m/s) [3].

Under such conditions, as in the case of a pressurized pipeline, the driving force on the

moving crack faces may be kept at sufficient levels (more than 50 percent of the cabin

pressure) to propagate the cracks for distances much longer than current specifications

allow, e.g. longer than 1-2 panels - two bay crack criterion [10].

Recent acts of unlawful interference with aircraft systems has stimulated interest in

identifying measures that might mitigate the effects of explosive devices and improve
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Figure 1.2: Accident with a Boeing 737 of Aloha Airlines in 1988 due to multiple site
damage showing the importance of fatigue for ageing aircraft and of proper inspection

and maintenance [11].

the damage tolerance of aircraft structures and systems to explosive damage. This

approach was taken not long after the 1989 Pan Am tragedy in Lockerbie, Scotland,

which resulted in significant loss of life. The UK Accident Investigation Branch (1990)

reconstructed the damage of the aircraft, which was shown to have propagated both

from the primary blast hole region and from other locations in the aircraft loaded by

travelling stress waves [4]. It was concluded that the disintegration of the aircraft did

not only result from the initial blast from the explosive charge, which caused small

structural damage, but a large build-up of pressure still contained in the fuselage which

triggered dynamic growth of cracks from the blast site [12].

However, air transport remains one of the safest forms of travel. According to the

2010 annual safety review published by the International Civil Aviation Organisation

(ICAO), the current estimate of passenger fatalities per 100 million miles flown is 0.01.

This data excludes acts of unlawful interference and only relates to commercial civil

aircraft. One source which sheds light on sabotage-related incidents is compiled by the

British Civil Aviation Authority (CAA). This report states that between 1970-1993,

with the exception of fire-related events, statistically it has been found that in cases

where the loss of the fuselage structure has threatened or precipitated a catastrophic

event, sabotage is as significant as structural failure from normal in-flight problems (such

as degradation of fuselage structure by fatigue or corrosion) [6].

The same report offered blast mitigation measures that included intrinsic measures to

improve the structure itself which included local reinforcement of skin and frames, im-

proved attachment of fuselage stringers and selective placement of systems equipment.

Additionally, extrinsic measures were suggested which included the use of hardened bag-

gage containers and protective liners for the fuselage skin or spacing materials for the

cargo hold which ensure an increased stand-off distance (SOD) between the device and
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the skin. For example, in the mid-1990s, a series of hardened luggage containers made

from materials such as glass/aramid fibre reinforced plastics and Glare were tested to

meet Federal Aviation Administration (FAA) standards [13]. Glare (Galaxy Scientific

ECOS3) was the only material to pass certification with no reported breaching of the

container. The Glare structure was able to withstand and absorb the explosive energy,

greater than that in the Lockerbie air disaster, and redistribute the impact load to the

adjacent surface area rather than to one specific weak spot [13].

There are indications that the progressive nature of the failure mechanisms within a

FML panel could be advantageous for containing blast loading compared to the sudden,

catastrophic failure of metal containers that zip open (petalling failure) and allow the

blast energy to escape [14]. More recently, there have been preliminary results on fully

clamped Glare panels which have shown improved damage tolerance to impact and blast

type loadings [15–17], relative to monolithic metal plates. However these observations

are based on very limited experimental data, which are very expensive to conduct,

highlighting the need for a more comprehensive research program with greater emphasis

on predictive simulations.

In attempt to address some of these issues, VULCAN, an EU funded consortium of

academia and industry, was setup within the European Framework 6 (Project No.

AST5-CT-2006-031011), which focused on blast and fire mitigation through hardening

strategies (material and design) aimed at near future composite/hybrid aero-structures.

This would entail performing a limited number of benchmark experimental trials which

would provide quantitative metrics and post-damage observations for numerical verifica-

tion and validation (V & V). The validated numerical models would therefore enable the

response of larger components (e.g. aircraft luggage containers) to be numerically mod-

elled without the need to undertake a large number of expensive and time-consuming

experiments and reduce the overall overhead costs. In order to fulfill these objectives,

which are relevant to this study, the following steps are considered:

• Development of algorithms, materials models and failure criteria for high strain

rate loading of composite and hybrid materials and calibration of these tools

against numerical tools against experimental data,

• Dynamic analysis of the fracture phenomena and appropriate characterization of

material properties

• Development of numerical tools for blast vulnerability analysis of composite and

hybrid aeronautic structures.

• Blast vulnerability map of composite and hybrid scaled fuselage substructure for

different charge locations and different locations.



1. Introduction 6

Verification and
Validation

Literature Review

Material characterisation Benchmark tests

Blast hardening strategies

• Efficient and reliable predictive
model.
• Parameter fitting.

• Tension/compression test.
• Development of constitutive laws
with strain rate effects.
• Failure modes and strengths.

• State of the art materials.
• Current blast mitigation tech-
niques.
• Material properties database.

• Small-scale blast trials.
• Quantitative metrics and post-
damage observations.
• Damage tolerance concepts.

• Full-scale structures.

Figure 1: FOSS in Chrome influences industry structure by increasing competitionFigure 1.3: A block diagram of the integrated approach for the validation of simula-
tions of structures subjected to blast loadings.

1.2.1 Computational challenges

Although, predictive simulations have proven to be a very useful tool to help understand

and characterise the behaviour of structural aircraft materials to explosive blast loadings,

its use remains challenging. Indeed, the actual predictive power of dynamic simulations

is hindered by huge computational requirements and CPU, along with modelling un-

certainties regarding the boundary and loading conditions. An extensive experimental

program is preferable for initial model V & V to avoid unnecessary parameter fitting

based on little or no physical meaning. This program should follow a hierarchial build-

ing block approach which covers small-scale test coupons for material characterisation

to large-scale benchmark tests which takes into account the realistic kinematic boundary

and loading conditions, as illustrated in Fig. 1.3.

Numerical work by Karagiozova et al. [18] and Soutis et al. [19] on locally blast-loaded

FMLs has raised interesting computational issues. Since the problems are geometrically

and materially nonlinear, the accuracy of the solutions was sensitive to several numerical

algorithms: shock wave propagation through dissimilar materials, material anisotropy

of the composite layers, air blast/structure coupling, progressive damage modelling and

cohesive elements (see Chapter 3). Description of the damage and failure processes

demanded high mesh resolution and often extremely small times steps. Since the local-

isation phenomenon of the blasts lead to large-scale plastic yielding in the aluminium

layers and large deformations, the accuracy of the solution depended on the ability

to capture the time and space resolved extreme gradients of stress, strain, and other

internal state variables.
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In dynamic fracture problems, these computational issues are further complicated. This

is mainly due to phenomenal computational difficulty in describing the nucleation, prop-

agation and branching of cracks with possibly complex topologies, and to effectively

resolve the huge span of scales involved, from the sample size (metres) to the small-scale

physical process at the crack tip (microns). A number of computational techniques have

been proposed, which manage to qualitatively reproduce experimental observations. In

particular FE implementation of cohesive zone models have been widely used to simulate

the fracture processes for various materials, including polymers [20], metallic materials

[21], and fibre reinforced plastic composites [22]. The references cited have been used to

simulate fracture under static and dynamic loading conditions.

Researchers have resorted to various kinds of validation methodologies for dynamic frac-

ture simulations [20, 21, 23]. In most studies, the numerical simulations are performed

based on inputs taken from published experimental data. These inputs are often insuf-

ficient to completely setup a simulation, which therefore leaves room for the fitting of

parameters. Then, the results of these simulations are validated against those of ex-

periments published in the literature. These attempts highlight the need for integrated

experiment-simulation approaches. This is discussed in much detail in Chapters 5 and 6.

The premise of the PhD project, also implemented by other researchers in related top-

ics, is that the development of a successful V & V program requires close collaboration

between the experimentalist and the numerical analyst.

Figure 1.4 provides an illustration of the computational complexity and requirements

in accurate advanced numerical simulation of structures under blast loading. The prob-

lems are generally geometrically and materially nonlinear. Accuracy of the solutions

is sensitive to several numerical algorithms such as fluid-structure interaction coupling,

contact algorithms and cohesive element. Description of the damage and failure pro-

cesses demand high mesh resolutions and often extremely small time steps which can

also suffer from mesh dependence during damage softening.

1.3 Problem statement

The author has identified two main issues which need addressing if successful prediction

of structural integrity of composite based aircraft structures to blast loading is to be

successful. They are:

• Quantifying the performance of GLARE panels to realistic blast loading

conditions.

To date, no attempt has been made to determine the blast resistance of thin Glare
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Figure 1.4: Computational complexity and requirements on the accurate modelling
of structural response to the blast phenomenon.

panels to highly dynamic transverse loading. Small-scale blast trials with known

kinematic boundary conditions will be performed to determine the relative perfor-

mance of FMLs against its monolithic counterparts and other composite systems.

The blast trials will also facilitate the setup of finite element models for model V

& V. Such models will provide a quantitative description of the ability of FMLs to

mitigate the effects of a small explosive charge, of similar magnitude and impact

typically encountered in an IED event. Comparison with other variant configu-

rations and monolithic aluminium of different geometry and loading conditions

would also be of interest.

• Dynamic fracture characteristics of typical aircraft structural materials

Motivated by the limitations of previous validation studies and the need for more
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systematic validation methods, a coordinated effort is attempted to validate exper-

imentally large-scale finite element simulations of dynamic behaviour and fracture

using finite element cohesive zone models. Within the financial and time con-

straints given in the project, the experiment should attempt to replicate, as much

as possible, realistic kinematic boundary and loading conditions.

It is only through understanding and characterisation of both points that aircraft design

may be improved to minimise catastrophic failure occurring as result of an on-board

explosion.

1.4 Aims and scope of this study

The aim of the current research is to characterise the behaviour of typical aerospace

structural materials to dynamic blast loading conditions. Of particular interest in this

thesis are the commercially attractive FMLs, such as Glare, and its metallic counterpart,

Aluminium 2024-T3 which have current applications in primary aerospace structures. To

address this research problem, a profound understanding of these materials at both static

and dynamic conditions is necessary for further improvement in the design philosophy

of blast mitigation.

In line with previously mentioned trend in aircraft blast mitigation design from small-

scale experimental tests/blast trials towards more advanced numerical methods, an

experimental-numerical approach is developed based on the finite element (FE) method.

These models are written in commercially available FE codes, such as ABAQUS [24] and

LS-DYNA [25], rather than in-house finite element analysis tools to allow the transfer-

ability of skills, experience and more importantly subroutines 1 to the wider industrial

and academic community. Demonstrating and adapting existing codes to meet cur-

rent technical challenges allows further transparency and better understanding of the

computational methodology.

In order to fulfill these objectives the following phases are considered:

• The first phase of the research program is devised to determine the performance

of FML structural materials to transverse dynamic (blast) loading. Via a number

of benchmark blast trials for practical applications, a numerical model is devised

and compared with the experimental test results. Strain rate dependency on the

mechanical behaviour of the constituents of Glare is taken into consideration in

1Subroutines are user-defined algorithms which can be implemented in existing finite element codes
where such formulations and models are currently redundant or not available.
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addition to the implementation of orthotropic damage model which accounts for

the fibre and matrix damage in the glass fibre layers, i.e. the unidirectional glass-

fibre epoxy layers in Glare. When necessary, numerical tools to simulate the

interlaminar delamination are investigated and quantified relative to the global

energy balance.

• Small-scale blast trials suffer from the idealised conditions in which the experi-

ments are conducted (kinematic boundary and loading conditions) which may not

be representative of real-life blast events, as a result of IEDs. Therefore more ad-

vanced numerical tools are explored to investigate the fluid-structure interaction

(FSI) of cylindrical explosive charges compared to less computational expensive

empirical blast algorithms. This will allow to incorporate the effects of internal

pressurisation and curvature to the problem which are more akin to aircraft fuse-

lage structures.

• Blast vulnerability map of composite and hybrid scaled fuselage substructure, with

stringers/frame/ crack stoppers. Simulations of scaled fuselage substructures with

crack stoppers will be performed to assess the damage tolerance to blast loadings.

The results of this study will help numerical analysts studying the blast problem

decide whether a certain amount of explosive could breach the structure and result

in severe degradation of structural integrity.

• Another objective of this research is to explore the dynamic fracture characteristics

of aerospace structural materials under blast loading conditions. The experimen-

tal program is designed specifically to facilitate the setup of complex large-scale

simulations using cohesive finite elements with relatively few unknown parame-

ters. The goal is to have a clear indication which material offers superior fracture

resistance and lower crack growth rates. Well-controlled minimal experiments are

performed which provide quantitative metrics (crack tip growth vs. time) from

high speed imaging systems which are then compared a posteriori with the simu-

lations. Qualitative differences in failure mechanisms and post-damage states are

also given.

• Finally, blast hardening strategies for aircraft design to arrest dynamic fracture

are suggested.

1.5 Outline

The research presented in the current thesis consists of numerical work performed by

the author based on experimental data obtained within the framework of the EU-funded
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program VULCAN (AST5-CT-2006-031011). Unless stated otherwise, all numerical

work was performed at the Department of Mechanical Engineering at the University

of Sheffield. Due to the sensitive nature of the project, all blast experiments were

performed in secure facilities at the Royal Military College (RMA) in Belgium and TNO

in the Netherlands.

In Chapter 2, the origins and evolution of FMLs are described in detail. Beside the

development of FMLs (in particular Arall and Glare), the constituents, variants and main

characteristics are given. Also, the impact and blast behaviour of FMLs are discussed,

which will be the main focus of the present thesis.

In Chapter 3 robust and efficient computational models were developed for V & V which

are capable of modelling the dynamic non-linear behaviour of Glare panels subjected to

blast loadings. Numerical model validation was performed considering case studies of

Glare panels subjected to a blast-type pressure pulse for which experimental data on

the mid-point back face deflection and post-damage observations were available. In

the first case study, excellent agreement of mid-point deflections and evidence of severe

yield line deformation were shown and discussed against the performed blast tests. A

further parametric study identified Glare as a potential blast attenuating structure,

exhibiting superior blast potential against monolithic aluminium plates. The results were

normalised and showed that for a given impulse, Glare exhibited a smaller normalised

deflection, outperforming monolithic Aluminium 2024-T3 plates. In the second case

study, the multi-material ALE formulation (MMALE) with fluid-structure interaction

(FSI) was utilised to model to response of more complex blast loads. Cohesive tie-break

contact algorithms are utilised to model interlaminar delamination between adjacent

plies.

In Chapter 4 the vulnerability and survivability of scaled fuselage tests subjected to

internal detonations is investigated and discussed. The purpose of this chapter was to

develop survivability strategies to mitigate the effects of internal explosions. Vulnera-

bility maps of the scaled demonstrator based on various failure scenarios, materials and

charge location are developed for the purpose of examining airframe hardening options.

All analysis results are compared and supported with experimental tests performed

within the VULCAN consortium.

Motivated by the limitations of previous studies and the need for more systematic val-

idation methods, a coordinated effort is reported in Chapters 5 and 6 to validate ex-

perimentally large-scale finite element simulations of dynamic fracture using cohesive

zone models. To determine the interplay between cylindrical aircraft structures and the

response of individual fatigue cracked panels (e.g. pre-existing MSD in aging aircraft),

well-controlled and minimal experiments for dynamic fracture of blast loaded barrel tests
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have been performed on three popular aerospace materials; Aluminium 2024-T3, Glare

and CFRP [26]. The dynamic event induced crack growth speeds in order of magnitude

of several hundred meters per second, metrics obtained via image processing of high

speed images. Glare exhibited the lowest crack growth speeds and displayed a combi-

nation dynamic ductile behaviour and fibre bridging. The results also highlighted the

poor blast attenuating qualities of CFRP, displaying crack speeds nearly ten times that

of Glare with evidence of crack bifurcation-branching.

Finally, in an effort to model the dynamic ductile crack growth of Aluminium 2024-T3

from the previous barrel tests, a numerical cohesive zone approach is followed; a layer

of interface elements which behave according to a traction-separation law are inserted

along the fracture path. Static cohesive properties were extracted from standard frac-

ture toughness tests and extrapolated to the aforementioned barrel tests. This method

proved inaccurate to predict the rate of fracture as a considerable difference was found

between the experiments and predictive results. This discrepancy was attributed to the

rate-independence of the cohesive formulation which failed to take into account the influ-

ence of triaxiality and the opening rate on the local cohesive traction within the fracture

process zone. To circumvent this problem, a Perzyna visco-plastic rate-dependent cohe-

sive formulation is discussed and implemented which gave better representative results

in terms of crack-growth rates. However the visco-plastic parameters were derived from

one set of experimental data. It is acknowledge by the author that further small-scale

fracture tests should be performed to (a) validate the derived parameters and (b) ex-

tract experimentally measured deformation fields to obtain accurate Mode I cohesive

zone laws.



Chapter 2

Fibre metal laminates

T
his chapter gives an overview of the development of fibre metal laminates from

its origins to current commercial applications. A brief description of the various

compositions, manufacturing process and properties is given. Special attention is given

to the development of Glare, a skin material for the A380 fuselage, and its favourable

characteristic in fatigue, impact and blast applications.

2.1 Introduction

Over the past few decades, the application of fibrous composite materials in engineering

structures has become increasingly popular, particularly in the aeronautic and space

sector. Their plethora of uses in both military and civil aircraft also extends to more

exotic applications such as unmanned aerial vehicles, space launchers, and satellites.

Their growing uses have arisen from a drive within the aerospace industry to produce

lighter aircraft, as the cost of fuel increases and environmental awareness becomes an

important consideration [27]. Composites are preferred above conventional materials,

such as steel and aluminium, because of their high specific properties (strength/stiff-

ness versus weight ratio) and the ability to shape and tailor structures to produce more

aerodynamically efficient structural configurations. However, reducing the weight whilst

maintaining the structural integrity, affordability and durability continues to be a major

issue in aircraft design. The manufacturing, assembly process and performance of com-

posites are all intimately connected and have generated much attention and investment

in developing new and improved ”structural” materials.

However, metallic materials and their derivatives continue to have a fundamental role

in applications where composites have yet to be exploited. This led to the development

13
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0◦ - direction
= rolling direction aluminum layers

90◦ direction

UD prepreg layer with
fibres in 0◦ - direction

UD prepreg layer with
fibres in 90◦ - direction

Al. layer

Figure 2.1: Typical lay-up of a fibre-metal laminate: Glare 3-2/1 laminate

of a hybrid system partly made of fibrous composites, known as fibre metal laminates

(FMLs). FMLs consist of alternating layers of thin metallic sheets and fibre-reinforced

plastics, see Fig. 2.1, such that the best of both qualities are exploited.

The history of the development of FMLs began in post-World War II Europe at the

English aircraft manufacturer De Havilland, which was the first company to bond metal

parts together. This metal bonding technology was later introduced to the Fokker facili-

ties in the Netherlands, by Schliekelmann, who had worked as a trainee in De Havilland.

The Fokker facilities had been left devastated in 1945 and no investment was avail-

able for large expensive milling machines, stimulating Fokker engineers to develop new

manufacturing technologies to produce integrally stiffened panels. The optimisation in

pre-treating the aluminium layers and improving the metal production process resulted

in a new structural concept where built-up laminate structures could be developed that

were tailored to its local strength, i.e. Fokker F-27. During this time, the use of com-

posites, particularly fiberglass reinforced polyester, for structural and semi-structural

parts was being explored and adopted. The combination of these two technologies was

the initial spark in the development of FMLs [9]. A more comprehensive review can be

found in Ref. [9]

2.2 Fibre Metal Laminates

Although metal bonding was developed as an alternative to machining with less invest-

ment costs and as an improvement of the compression properties, it was later discovered

that bonded laminates structures appeared to have superior fracture toughness and fa-

tigue properties relative to monolithic sheets. Following fatigue tests on F-27 centre
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wings, it was shown that the crack growth was extremely slow due to the crack bridging

effect; the fatigue crack of the outer layer was effectively bridged by the intact inner lay-

ers. This finding was particularly important since fatigue was becoming a major issue in

aviation, due to the de Havilland DH 106 Comet jet airliner accident in 1952, which took

place a few years after commercial introduction. Rivet holes near the window panels and

escape/equipment hatches experienced catastrophic metal fatigue, which in combination

with cabin pressurisation cycles, caused explosive decompression of the fuselage, tearing

the aircraft apart in mid-flight.

The fatigue resistance of laminated structures was further improved by incorporating

fibres in the adhesive. It was found that using unidirectional (UD) fibres in the adhesive

effectively reduced the crack growth rates [9]. The stress in the loaded metal layers would

be transferred to the fibres via the adhesive, thus unloading the metal layers and slowing

down the crack growth in these layers. This phenomena is known as the ’fibre bridging

mechanism’. This mechanism also encourages the adhesive, which is loaded in fatigue,

to delaminate from the metal layers, relaxing the stresses at the fibre. Further fatigue

tests on Arall (Aramid Reinforced ALuminium Laminates) conducted by Marissen [28]

confirmed this behaviour and showed that the crack growth could be reduced by a factor

of 10 to 100 compared to monolithic aluminium sheets. The ’crack bridging’ mechanism

responsible for the improved fatigue resistance is due to the intact fibres in the wake of

the crack which considerably transfers a portion of the load in the aluminium layers over

the crack, reducing the amount of load transferred around the crack tip. This result in

a reduction of the effective stress intensity factor experienced at the crack tip. This can

also be related to the crack opening which is constrained by the intact fibres, which also

corresponds to a lower effective stress intensity factor at the crack tip. The presence

of controlled delamination at the interface between the metal and fibre layers in the

wake of the crack is also visible and advantageous to fatigue crack configurations, as it

prevents fibre failure due to the relaxation of stresses.

The first generation of FMLs was Arall, an aramid/epoxy combined with aluminum

sheets, which was primarily developed for wing structures. An extensive research pro-

gram on full-scale Arall F-27 wing panels was conducted i.e. 270,000 flights. Tests

revealed that Arall was quite sensitive to strength reductions caused by holes drilled in

the material and that, although the material exhibited excellent fatigue properties, the

presence of thickness steps (doublers bonded on the structure to increase strength) would

cause premature fatigue cracking. Nevertheless, despite these shortcomings, only minor

surface cracks in the outer layers and in regions of thickness steps of the doublers was

observed, whereas the aluminium equivalent would have failed catastrophically. Arall

offered an increase weight saving of 33% compared to the original aluminium design.
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Further tests on Arall on fuselage structures showed, however, that Arall was an unsuit-

able candidate for fuselage applications. Significant failure of aramid fibres was found to

occur under realistic R = 0 fuselage skin loading due to the bad compression properties

of the aramid fibres, as a result of which a reduction in the fatigue crack growth in the

aluminium layers could no longer be warranted. This behaviour was partly attributed to

the poor adhesive bonding of the aramid fibres which, under compressive loading, would

result in fibre pull-out. The aramid fibres, due to the low compressive strength, are

sensitive to buckling under compression. Furthermore as residual compressive stresses

in the aramid layers are present at room temperature, after curing, due to the differ-

ence in coefficients of thermal expansions, cyclic compression of the aramid fibres will

occur even if the minimum stress on the laminate is zero. Therefore to eliminate buck-

ling under compression, the material needs to be post-stretched to reverse the stresses

in the aramid/epoxy layer. This complicated and expensive process made Arall a less

attractive candidate for fuselage skin applications.

During this period, fatigue related problems due to the ageing fleet of aircraft were

becoming more prominent, which became apparent with the spectacular failure of the

(presumed) damage tolerant Aloha Airline Boeing 737 in 1988. This ageing jet transport

had flown nearly 90,000 flights when many small fatigue cracks, known as multi-site

damage (MSD) in the same lap joint rivet row joined up into a single large crack,

resulting in the loss of 4-6 meters, almost a third, section of the upper fuselage. This

reinforced the view that damage tolerance is not simply structural design issue. Proper

material selection (fatigue, corrosion and impact resistance alloys and durable bonding

processes), qualified maintenance and better understanding of complex failure modes

and damage tolerance evacuations of the aircraft structure appeared to be essential for

safety.

By the late 1980s, the second generation of FMLs was introduced, specifically developed

for fuselage skin applications. One variant which did not show fibre failure at all under

fatigue loading conditions was Glare (GLAss fibre REinforced laminate),a second gener-

ation glass-fibre based FML which has a higher compressive strength and better damage

tolerance than the aramid fibres in Arall [29]. This material system is suitable for both

uniaxial and bi-axially loaded structures. Glare consists of thin aluminium 2024-T3

sheets bonded together with unidirectional or biaxially reinforced adhesive pre-preg of

high strength glass fibres (S2-glass/FM94). This material, which was developed at the

Delft University of Technology, is ideally suited for fuselage structure applications. Glare

excels in all types of fatigue critical loading conditions (exhibiting crack growth rates

10 to 100 times slower than monolithic aluminium [10, 30]) and has damage tolerance

built into the material as inspection of the structure for fatigue is not necessary for the

entire operational life of the aircraft. Glare not only has excellent fatigue properties,
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but also several other interesting material properties such as impact, residual and blunt

notch strength, flame resistance and corrosion properties, all of which were found to be

significantly better than those of monolithic aluminium.

The road towards the application of Glare in primary aircraft structures began as a

bonded path repair installed on a C5-A Galaxy aircraft in the USAF at Kelly AFB

[31]. The first commercial application was in a bulk cargo floor of the B777 of Boeing

and the bulkhead of the Bombardier Learjet 125. By the early nineties, Airbus had

initiated the next phase of its aircraft fleet to meet the growing and predicted growth

in air traffic with a new family of very high capacity aircraft; the A3XX. However,

this ambitious project presented new technical and economic challenges as reduction of

production and operating costs were imperative to its success. To maintain the current

number of accidents per year, the safety level of the aircraft has to increase significantly

to counterbalance the growth of air transport and, yet, achieve a reduction in operating

costs. Studies on fuselage structures of the A320 showed that with Glare a weight

saving of 25.9% could be reached over aluminium. In addition, investigations on the

Airbus A330 and A340 demonstrated a weight saving of 20% and 14-17%, respectively,

as reported in Ref. [9]. The technological readiness of Glare as a potential candidate for

fuselage skin application arrived with new production techniques, such as the splicing

concept meant a major breakthrough for Glare. This allowed for larger panels, lower

number of parts and thus reduced manufacturing costs. The philosophy was not to

produce Glare as a sheet material, which has to be shaped and machined into a product

as is done for aluminium, but as a component. Accordingly, the material is laid-up

and cured in a curved mould such that after processing a product comes out of the

autoclave with the right shape for a specific aircraft application. The final product

thus includes the appropriate local fibre orientations and reinforcements with respect

to the application it is meant for. With such a manufacturing procedure, the number

of production steps, and thus the costs, is reduced significantly. This finally led to the

application of Glare in a significant part of the Airbus A380 fuselage and in the leading

edges of the vertical and horizontal tail planes.

2.3 Characteristics of Glare

Several Glare grades are currently available which are tailored to meet certain char-

acteristics and structural requirements. These grades are based on various fibre-epoxy

(prepreg) layers composed of either aluminium 7475-T761 and FM906 epoxy, which are

the newest laminates designated as High Strength Glare, or aluminium 2024-T3 in com-

bination with FM94 epoxy. In between each aluminium layer, a combination of two,
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three or four unidirectional glass-fibre layers are arranged with different fibre orienta-

tions. The S2-glass fibres have a diameter of approximately 10 µm, embedded in FM94

epoxy adhesive resulting in a nominally 0.127 mm thick prepreg with an average fibre

volume fraction of 59%. As an example, the laminate build-up and stacking sequence

of Glare 3, is presented in Figure 2.1. The direction of the fibres in the prepreg lay-

ers is related to the rolling direction of the aluminium sheets; 0◦ stands for fibres in

the Longitudinal rolling direction (L) while 90◦ indicates fibres in the Longitudinal-

Transverse direction (T). Details of the laminate building, thicknesses, aluminium grade

and beneficial characteristics of all Glare grades, are listed in Table 2.1.

Since a large number of lay-ups are possible, a coding system is used to identify the

grade and metal/composite arrangement. The cross-ply laminate, shown in Fig. 2.1, is

referred to as Glare 3-3/2-0.3 and is defined as follows

GLARE 3-3/2-0.3

identifies the type of GLARE

indicates the amount of aluminium - (3) and
intermediate fibre prepreg layers (2)

indicates the thickness of the aluminium
layers in mm

Therefore Glare 3-3/2-0.3 has three aluminium layers of 0.3 mm thickness and two cross-

plied intermediate glass-fibre layers.

2.3.1 Mechanical properties of Glare constituents

The mechanical behaviour of Glare is based upon the mechanical properties of its con-

stituents, i.e., the aluminium and fibre-epoxy layers. The main properties of the con-

stituents are listed in Table 2.2. Experimental studies have shown that the effective

mechanical properties of Glare, in general, vary linearly with the Metal Volume Fraction

(MVF)[10], which is defined by the ratio between the total thickness of the n aluminium

layers,
∑n

i hi , and the laminate thickness htot, i.e.,

MV F =

∑n
i hi
htot

(2.1)

Figure 2.2 presents the main static and its corresponding specific material properties

of Glare 3 compared to the currently most widely used aluminium alloy 2024-T3. The

presented values are indexed, what means that they are presented as a percentage of

the 2024-T3 properties (100 represents the 2024-T3 value). All static Glare parameters
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Table 2.1: Details of commercially available Glare grades

Metal Metal Fibre Fibre Beneficial

Grade grade thickness thickness orientation characteristics

(mm) (mm)a (◦)b ,c

Glare 1 7475-T761 0.3-0.4 0.25 0/0 fatigue, strength

yield stress

2A 2024-T3 0.2-0.5 0.25 0/0 fatigue, strength

2B 2024-T3 0.2-0.5 0.25 90/90 fatigue, strength

3 2024-T3 0.2-0.5 0.25 0/90 fatigue, impact

4A 2024-T3 0.2-0.5 0.375 0/90/0 fatigue, strength

in 0◦ direction

4B 2024-T3 0.2-0.5 0.375 90/0/90 fatigue, strength

in 90◦ direction

5 2024-T3 0.2-0.5 0.5 0/90/90/0 Impact

6A 2024-T3 0.2-0.5 0.5 +45/− 45 shear, off-axis

properties

6B 2024-T3 0.2-0.5 0.5 −45/+ 45 shear, off-axis

properties

HS d 7475-T761 0.3-0.4 see see fatigue, strength

2-5 2-5 yield
a The thickness corresponds to the total thickness of a fibre-epoxy layer in between two aluminium

layers.
b The number of orientations in this column is equal to the number of unidirectional prepreg layers

in each composite layer.
c The (axial) rolling direction is defined as 0◦, the transverse rolling direction is defined as 90◦.
d High Strength (HS) Glare has similar standard fibre lay-ups as in Glare 2 to Glare 5, but contains

aluminium 7475-T761 and FM906 epoxy (instead of aluminium 2024-T3 and FM94 epoxy).

presented in Fig. 2.2 are lower than 2024-T3 except the ultimate strength and the gross

blunt notch strength. The yield strength and the Young’s modulus of the laminates

are lower since the Young’s modulus of the fibre prepreg is lower. The G modulus and

the bearing strength are lower since the fibre-prepreg is not effective under these loading

conditions. On the contrary, the blunt notch and ultimate strength are higher because of

the higher ultimate strength of the fibre prepreg compared to 2024-T3. The large differ-

ence between the yield stress and the ultimate strength of the Glare laminate illustrates

the extensive strain hardening that the materials exhibit. However, the specific weights

or density of the Glare laminates are also lower. Figure 2.2 also presents all properties

divided by the density, to allow a comparison towards the weight saving potentials.
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Table 2.2: The thermo-mechanical properties of the constituents of Glare, as repro-
duced from [10]

Property Unit UD prepreg Aluminium
[-] Vf = 60% 2024-T3

Young’s modulus, E1 [GPa] 54.0 72.0
Young’s modulus, E2 [GPa] 9.4 72.0
Ultimate strength, σult [MPa] 2640.0 455.0
Ultimate strain, εult [%] 4.7 19.0
Poisson’s ratio, ν12 [-] 0.33 0.33
Poisson’s ratio, ν21 [-] 0.0575 0.33
Shear modulus, G12 [GPa] 5.55 27.6
Density, ρ [kg/m3] 1980.0 2770.0
Thermal expansion coefficient, α1 [1/◦C] 6.1× 10−6 23.4× 10−6

Thermal expansion coefficient, α2 [1/◦C] 26.2× 10−6 23.4× 10−6
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Figure 2.2: Indexed specific static properties of Glare 3-3/2-0.3

As shown in Table 2.2, the glass-fibre epoxy layers have a considerably lower weight than

monolithic aluminium, 1.98 versus 2.77 g/cm3, respectively. As previously discussed, this

can offer approximately 10% material and 20-30% structural weight reduction in primary

structural applications. Although, in aircraft design the selection of a material is a

compromise between technical, economic and environmental issues, weight is becoming

an increasingly important factor in the material selection process. A lighter aircraft

means that less lift has to be generated, which reduces the drag and fuel consumption,

thus reducing the weight further, etc. This so-called ’snowball effect’ has a large impact

on the aircraft efficiency and operating costs.
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2.3.2 Corrosion and durability

Aircraft structures are subjected to a wide spectrum of corrosion which is partly related

to the vast number of different materials used in aircraft construction. However, it

has been shown that Glare possesses good corrosion resistance [29]. Although it might

appear that FMLs possess similar corrosion characteristics to monolithic aluminium,

there are several aspects which distinguish FMLs from conventional, monolithic (thick)

metal sheets. In Glare, the aluminium layers have a thickness of 0.2-0.5 mm, which

is thinner than conventional metallic structures (2-4 mm). Following heat treatment

during the rolling process, the aluminium sheets are quenched at a fast rate which

results in less alloy elements at the crystal boundaries of the aluminium and thus superior

corrosion resistance. Furthermore, all aluminium sheets used in the production of Glare

are anodized and coated with a corrosion-inhibiting primer prior to bonding to the glass-

fibre epoxy layers. To improve surface corrosion resistance, the outer aluminium layers

can be supplied with a thin clad layer. Corrosion damage is also limited to the outer

aluminium layer, since the fibre layers acts as corrosion barriers. Complementary to

this, through-thickness corrosion is inhibited by the role of the thin aluminium sheets

protecting the glass-fibre epoxy layers from degradation due to moisture and ultraviolet-

radiation, which both can be a serious threat to the laminate strength and stiffness.

2.3.3 Impact

One of the key concerns in the application of FMLs to thin-walled structures, is their

relatively high susceptibility to low and high velocity impact damage, such as runaway

debris, hail, maintenance damage (i.e. dropped tools), bird-strike etc. Visible inspec-

tion for damage in Glare is easier than in brittle carbon fibre composites, due to clearly

visible plastic deformation of the outer aluminium layers. Patch repair can be con-

ducted using aluminium patches as they are similar in terms of stiffness mismatch and

therefore does not require any special material to be in stock. Figure 2.3 compares the

respective minimum impact energies to cause first failure [32]. It has been shown that,

under low velocity impact (10 m/s), Glare exhibits comparable or superior (15%) better

minimum cracking energy relative to monolithic aluminium of the same areal density

and is superior (2–3.5 better) at high velocity impact (100 m/s ) [15, 32]. An increase

in the ballistic limit of 15% was also reported for Glare 5 [33]. The increase in energy

absorption of Glare has been attributed to the high strain rate phenomenon that occurs

in glass fibres, combined with their relatively high failure strain, since such an increase

would not be as significant in monolithic aluminium [32]. On the other hand, brittle

carbon fibre based composites are hampered by their low impact resistance and bad
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Figure 2.3: A comparison of the impact performance of Glare 3 and other aerospace
materials

reputation concerning maintainability (i.e. complicated and expensive inspection and

repair techniques are required).

2.3.4 Flame resistance

Glare has shown to have better fire resistance properties than monolithic aluminium

alloys. Airworthiness regulations dictate that in the event of a fire, an escape time of

90 seconds for passengers must hold. However, as discussed in Ref [31], typical aircraft

skins made from aluminium alloys will normally melt way in 20-30 seconds in the case

of an outside kerosene fire. It has been shown, by fire resistance tests up to 1200 ◦ [31],

that Glare can resist fire conditions for much longer time periods; preventing fire from

penetrating for more than fifteen minutes. Although the outer aluminium layers and the

adjacent matrix of the glass-fibre epoxy melts, the high melting temperature of the glass

fibres (1500 ◦C) is able to withstand the high temperature and remain intact and acts as

a fire barrier. Therefore, the interior aluminium layers do not melt providing coherence

to the structure (skin, stringers and frames) for a long period against an outside fire

and ensuring that the structural integrity of the fuselage is intact during this period. A

structure of monolithic equivalence would be more susceptible to melting, resulting in

collapse and injury to passengers.

Both the blast and flame resistance of Glare was demonstrated by tests on blast-resistant

cargo containers, performed by the FAA in 1995. The container was able to withstand

the harmful effects of a blast and no breaching was reported, as shown in Fig. 2.4.
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Figure 2.10: Glare blast-resistant cargo container. Courtesy Galaxy Avia-
tion Security.

haviour of the laminate must account for the anisotropy of the glass-fibre
epoxy layers and the aluminium plasticity, see also (Hagenbeek, van Hen-
gel, Bosker, and Vermeeren 2003).

The high material costs and the lower stiffness compared to aluminium
are drawbacks of Glare, which indicates that the material should be ap-
plied in fatigue sensitive tension loaded areas, for example in fuselage
structures, and manufactured in large-scale (semi-final) products as dis-
cussed previously. The possibility of laminate tailoring allows to improve
for example the shear properties at desired locations, however the analysis
tools also need to be more advanced. The use of different ingredients into
one laminate also raises new issues compared to monolithic aluminium,
such as the effect of moisture, local defects, or residual stresses after curing
due to differences in the thermal expansion coefficients. The temperature
related issues will be discussed in the next section.

2.4 The effect of temperature

In the search for optimal performance, aluminium and fibre-reinforced
epoxy are combined in Glare to obtain ’the best of both worlds’. However,

Figure 2.4: Glare blast-resistant cargo container [34]

2.3.5 Blast

On-board explosive devices can be particularly damaging to commercial aircraft due to

the combined effects of transient explosive forces and normal cabin pressurization [3]. 1

Until recently little work had been done to address damage in Glare structures in high-

explosive events, such as that caused by on-board explosion. It has been reported in

Ref. [13], that a series of hardened luggage containers made from a variety of materials,

including reinforced aluminium, fibre glass, aramid fibres and polymers were tested to

meet Federal Aviation Administration (FAA) standards, in response to the Pan Am

Flight 103 Lockerbie disaster. Glare was the only material to pass certification with

no reported breaching of the container. The Glare structure was able to withstand

and absorb the explosive energy, greater than that in the Lockerbie air disaster, and

redistribute the impact load to the adjacent surface area rather than to one specific weak

spot [13]. Although significant deformation was present, the overall container remained

intact. To the author’s knowledge, no additional studies, neither experimentally nor

numerically, have been performed to validate this study, since exact information about

the precise design and the experiment details were not disclosed. Despite promising

results, it has yet to come into use in most aircraft due to its increased cost compared

to the currently aluminium containers.

1Aircraft compression systems are designed to maintain sea-level atmospheric pressure inside the
fuselage up to a given altitude at which a maximum pressure differential is reached. For flights at higher
altitudes, a maximum pressure differential in the range of 51.7-62.0 kPa (7.59.0 psi) between the aircraft
cabin and the ambient atmosphere is maintained [5].
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Figure 2.5: Graph of normalised displacement versus dimensionless impulse for Glare
panels and steel plates [16]

To address the lack of experimental data in the blast response of Glare panels, Langdon

et al. [16] presented some preliminary results of an experimental investigation of the

blast response of Glare 3 panels. Results from preliminary blast tests on Glare panels

indicated that the panels behaved similarly to monolithic metal plates, with the panels

exhibiting large plastic deformation and yield line formation. The localised blast tests

showed a trend of increasing normalised displacement with increasing non-dimensional

impulse. Figure 2.5 shows a graph of displacement/thickness ratio against normalised

impulse for Glare panels and results taken from Jacob et al. [35] on fully clamped

circular steel plates. The panels appeared to offer higher blast resistance when compared

to monolithic (ductile) metal plates. This is in contrast to a review by Langdon et al.

[14], which found that the results from thermoplastic FMLs, showed no reduction in

damage compared to steel plate data. However the study failed to determine the tearing

threshold, which is an important parameter when assessing the ability of the structure

to contain a blast load. Further work needs to be done to establish a better overview

of Glare to blast loadings. Motivated by limitations and gaps in the current literature,

numerical efforts have been performed to take into account different stacking-sequences,

loading and boundary conditions and dynamic fracture characteristics, as discussed in

the proceeding chapters.
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2.4 Applications of FMLs

The feasibility of Glare as an aerospace material is determined by its potential to es-

tablish significant weight savings and reduce maintenance costs for a competitive price.

The properties of Glare listed in the previous section allow for the applications listed

below [10].

Fuselage skin: Glare has been optimised for fuselage skin application due to its excel-

lent fatigue and high damage tolerance properties.

Upper and lower wing skins: Advancements in manufacturing of double-curved

panels, amongst other positive attributes, have made Glare a cost-effective, attractive

structural material for upper and lower wing skins. Furthermore. the strain sensitivity

of the glass-fibres enhances the impact resistance in high strain rate events, such as bird

strikes, fragmentation from engine failure and blast. For this reason, the application of

Glare in the leading edge of an aircraft wing and cockpit roofs make use of the material’s

impact resistance and reparability.

Stringers and frames: The ability to tailor the stacking sequence of unidirectional

Glare laminates makes it suitably ideal for applications with uni- or bi-axial loading

direction, if an acceptable trade-off of weight saving and manufacturing costs is estab-

lished.

Floors in passenger and cargo areas: Some areas of the aircraft are exposed to low

velocity impact damage, such as the cargo area and flooring, as a result of human contact.

Although many Glare grades exist, it is Glare 5 which has been specifically developed

and optimised for impact applications. Glare possesses superior impact resistance to low

and high velocity impact compared to monolithic aluminium and conventional composite

materials.

Firewalls: In addition to excellent impact resistance and good formability, Glare has a

superior flame resistance which has been proven in a number of qualification tests.

Bulkheads: The increase in diameter and reduction in thickness of fuselage structures

in addition to cabin pressurisation imposes great loads to the fuselage skin material.

Glare is currently used in the manufacture of the top-half of the fuselage kin for the

Airbus A380, after reaching technological readiness, due to its excellent fatigue, damage

tolerance and strength.

Cargo barriers: Cargo barriers are stiffened structures which separates the cargo from

the pilot area. In the event of a crash, it is crucial that the cargo is prevented from

crushing the cock-pit. The cargo area has also received considerable interest in blast
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mitigation since the Lockerbie atrocity in 1989. The non-linear behaviour of Glare allows

the glass fibres in the yielded area to still carry some of the load retaining its structural

integrity. Its proven blast and impact resistance makes it an ideal candidate for cargo

containers.



Chapter 3

Blast resistance and damage

modelling of quadrangular FMLs

T
he present chapter deals with investigating the performance of Glare to blast load-

ings compared to monolithic aluminium. Small-scale blast trials have been per-

formed for numerical validation where back-face mid-span deflections and post-damage

patterns were available. Secondly, the purpose of this chapter is also to validate the

fluid-structure interaction (FSI) algorithms in Multi-Material ALE (MMALE) formu-

lations against small-scale test results in anticipation of deployment for modelling of

full-scale realistic scenarios. It has been shown that good agreement between the results

of experimental and numerical simulation is obtained.

3.1 Introduction

As conventional metallic materials and their derivatives are increasingly being replaced

in primary aerospace structures by fibre reinforced polymers, which offer lightweight

and high specific properties; they continue to have a fundamental role in applications

where composites have yet to be fully exploited [27]. As discussed in Chapter 2, Glare

has attracted interest from industry as it has major advantages over conventional alu-

minium particularly better damage tolerance behaviour. In metal fatigue and impact

applications, the elastic strain is larger than other metal material so it can consume

more impact energy and have higher penetration resistance despite showing more visi-

ble impact damage (i.e. dents easier). Although various types of Glare configurations

exists, depending on the structural requirement of the component, it is the cross-plied

Glare 3 and Glare 5 with bi-directional reinforcements [9] which are of interest in impact

applications, see Fig. 3.1 for details.

27
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Figure 3.1: Configuration of Glare laminates:(a) 3-2/1 and (b) 5-3/2.

If Glare is to be considered as a blast mitigation structure it must demonstrate that

it can absorb the destructive effects of IEDs and display favourable failure mechanisms

which does not pose significant threats to passenger and/or third parties. To address

these concerns, a series of small, precise blast trials have been completed and reported

to investigate the performance of Glare to blast loadings. These tests will form part of a

large building block to establish the structural response of hardened aircraft structures

to realistic blast loadings.

Small-scale experimental trials are important in establishing benchmark behaviour of

structural materials to blast-type loading. However, such experiments are expensive and

time-consuming and are not amenable to cover different lay-up configurations, loading

regimes and boundary conditions. Modelling the behaviour of these structural materials,

using commercial finite element software, would be of great assistance as only a small

number of experimental tests would need to be performed for model verification and

validation. This requires developing efficient and reliable predictive techniques which

take into account accurate material characterisation, appropriate failure criteria and

description of the blast loads. This would enable the response of larger components (e.g.

fuselage or aircraft luggage containers) to be modelled without the need to undertake

a large number of experimental tests. Numerical work performed by Karagiozova et al.

[18] on polypropylene based FMLs [36], has shown that it is possible to simulate and

capture the response and failure mechanisms to localised blast loading using commercial

finite element software.

The objective of this chapter is to present a robust and computationally efficient pre-

dictive model which can capture the dynamic non-linear behaviour of FMLs using the

explicit finite element codes ABAQUS [24] and LS-DYNA [25], based on blast trials con-

ducted within the VULCAN consortium and those reported in the open literature for
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which experimental data on the back face-displacement and post-damage information is

available for model validation.

3.2 Performance of Glare panels subjected to intense uni-

form pressure pulse loading

The Glare 3 panels investigated by Langdon et al. [16] are 1.42 mm thick and comprise

of three 0.3 mm thick aluminium 2024-T3 alloy sheets, with two cross-plied (0◦/90◦)

unidirectional S2-glass/FM94 between each pair of aluminium sheets. The square panels

of dimensions 300 mm × 300 mm were clamped between two steel frames and mounted

onto a ballistic pendulum during blast testing, leaving an exposed area of 200 mm by

200 mm. The mass of the disc-shape PE4 plastic explosive, M , was varied between 4g

to 14g to change the impulse, I, applied to the panels. Due to the low thickness of

the Glare 3 panel, severe damage and petalling was observed for low impulses due to

the localised nature of the blast load. To increase the spatial uniformity and decrease

the intensity of the blast wave, a square tube, shown in Fig. 3.2, was employed to site

the explosive 200 mm away from the panel. The explosive was detonated at the open

end of the tube and the blast wave was directed down the tube towards the specimen.

Two charge diameters, d, of 20 and 40 mm were used, both of which resulted in uniform

type response of the Glare 3 panels. The results of the experiment are shown in Table

3.1 which are expressed in terms of the final displacements of the mid-span of the back

panel, dB.
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Table 3.1: Uniformly distributed blast test results [16].

Test φ MPE4 I dB dB/h
[mm] [g] [Ns] [mm] [-]

001 40.0 14.0 31.9 31.2 22.0
002 40.0 11.0 28.0 26.7 18.8
003 40.0 9.0 25.5 24.1 17.0
004 40.0 7.0 21.3 21.3 15.0
005 40.0 5.0 17.3 17.0 12.0
006 20.0 5.0 13.1 10.9 7.7
007 20.0 3.0 11.0 9.4 6.6

3.2.1 Numerical methodology

FMLs are expected to fail under a multitude of failure mechanisms which are akin to

those found in both metallic and composite structures. Such failure may involve severe

plastic deformation, interlaminar delamination, and intralaminar damage such as fibre

breakage and matrix cracking, all of which should be captured by the proposed com-

putational model. The manifestation of these failure mechanisms will depend, amongst

many others, on the nature of the dynamic loading (spatial intensity of the blast wave)

and the applied edge boundary conditions which are imposed on the test panels as a

result of clamping. The latter may prevent vibratory interference with the blast shock

waves, resulting in more pronounced through-thickness perforation and shear damage.

These factors will indeed influence and preclude the use of certain element formulations,

constitutive models and require a different finite element modelling rationale.

The tested Glare panels have a nominal thickness of the order of a few millimeters,

whereas the panels had a quadrangular geometry of the order of a few hundred millime-

ters (h/L = 0.004). Additionally, the blast load duration of the pressure-pulse loading

is much higher than the transition time for through-thickness shock waves; hence the

response of the panel is dominated by two-dimensional, transverse shear waves.

The uniaxial strain wave speed in cross-plied 0◦/90◦ orthotropic and homogeneous metal-

lic plates can be expressed as [37]:

ccomp =

√
(1 − υ12)E33

[1 − υ12 − υ32(υ13 + υ23)]ρcomp
(3.1a)

cal =

√
E33

ρal
(3.1b)
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giving ccomp ≈ 3700 m/s and cal ≈ 3130 m/s. The wave transit time through each layer

can be defined as t = h/ccomp,al. Furthermore, since all of the damaged Glare pan-

els from the experiments underwent extensive panel deformation before tensile tearing,

it is reasonable to assume that the through-thickness stress-waves can be considered

negligible in thin FML panels. Due to this large aspect ratio with respect to the lami-

nate thickness and two-dimensional transverse shear wave assumption, each layer can be

assumed to be in state of plane stress, with all through-thickness normal and shear com-

ponents of the stress tensor (σ13, σ23, σ33) are assumed to be negligible in comparison

with their in-plane counterparts (σ11, σ22, σ12). As the mechanical properties of this

hybrid system vary between each subsequent laminate, each layer can be represented

by a unique set of integration points, as in the case of shell elements. Although this

approach neglects delamination between adjacent layers, this assumption is acceptable

if no significant delamination is observed from post-damaged cross-section samples [16].

The commercial finite element solver ABAQUS/Explicit 6.10 is used for the blast simu-

lation. Four-node reduced integration shell elements with hourglass control, S4R, were

selected to model each material constituent which were found to be comparable with

SC8R, an 8-node 3D continuum shell, albeit at significant reduced computational cost.

The cross-sectional behaviour of the shell was computed using the Simpson thickness

integration method with three integration points in each layer of the composite system.

The modelling approach for the Glare panel was as follows; a reference surface, which

is also coincident with the mid-surface of the composite panel, is defined. In the com-

posite lay-up model a material ID, orientation and thickness are assigned to each layer

represented by at least three unique section points, as shown in Fig. 3.4.

In the experiments the panels are secured using two steel clamping plates. The bottom

clamp is fixed whilst a downward force is applied to the rigid reference point of the top

clamp to secure the Glare panel. The clamps are meshed using 4-node 3-dimensional

discrete rigid brick elements (R3D4). General contact with separation is defined between

the clamp and the panel. A friction coefficient of 0.5 is defined to simulate tangential

contact behaviour [38]. The quarter symmetry, mesh density and boundary conditions

is shown in Fig. 3.3.

3.2.2 High strain material properties

Typical quasi-static stress strain curves from static tensile tests for Glare 3 and its

constituents are shown in Fig. 3.5. While quasi-static material data is widely available

in the open literature, accurate high strain rate material characterisation for Glare 3 is
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scarce which poses challenges to the numerical analyst when defining input parameters

for damage constitutive models.

3.2.3 S2-glass/FM94

In the open literature, high strain rate tensile tests on FML specimens (Glare 3–3/2–

0.4) showed very little evidence for rate dependency (up to 3300 s−1) for any of the in-

plane elastic properties [39]. However tensile strength material results on waisted FML

specimens exhibited positive strain rate sensitivity for both the 0◦ and 45◦ tests. In the

0◦ tests, an increase in ultimate load capacity (tensile strength) of 19% was observed

for quasi-static to 3300 s−1 rates. The effect of strain rate on ultimate strength in the

0◦ direction was consistent with the findings of Vlot [40] who tested a similar cross-

ply glass-based fibre metal laminate at a quasi-static rate and a rate of 20 m/s. To

account for the strain rate effects observed in the experiments, McCarthy et al. [39]

assigned a Dynamic Increase Factor (DIF) to the numerical strain rate model assuming

that the transverse modulus, shear modulus and longitudinal fibre rupture strains were

rate dependent and the longitudinal Young’s modulus of the glass composite layers were
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not. Similarly, Hoo Fatt et al. [33] assumed that the in-plane elastic properties were

1.5 times that of the static values, although the Poisson’s ratios remained equal to the

static equivalent.

Table 3.2: Material property data used to represent
S2-glass/FM94 laminates [41, 42].

Property Units Value Property Units Value

ρ kg/m3 1980 SLT
a MPa 75

E11 GPa 50.6 STT MPa 50

E22 GPa 9.9 Xc MPa 2000

E33 GPa 9.9 Yc MPa 150

υ12 - 0.063 Xt MPa 2500

υ13 - 0.063 Yt MPa 50

υ23 - 0.32

G12 GPa 3.7

G13 GPa 3.7

G23 GPa 1.65
a SLT denotes the in-plane shear failure stress

Considering the incomplete data available for the individual constituents of the Glare

(particularly the glass layers), and strain rate independent failure criteria available in

ABAQUS, quasi-static in-plane elastic and strength properties were assumed, taken from
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Refs. [41] and [42], respectively. However the maximum fibre rupture strain in tension

was increased by a factor of 2.02 to correspond to the failure strain of Glare 3 at the

maximum strain rate of 3300 s−1 (as performed by McCarthy et al. [39]), which is

within the strain rate regime associated with blast loading.

In general, phenomenological strength criteria such as maximum stress, Hashin damage

and Tsai-Wu criteria are used to detect the failure status of composite laminates. Due

to the complexity of failure mechanisms in the Glare laminates, it is difficult to define

an applicable failure criterion. In this study the readily available Hashin failure criteria

were chosen [43], that can successfully predict damage initiation but it is recognised that

a fracture based criteria should be used to model damage progression. Advantages and

disadvantages in defining applicable failure criteria to composite structure can be found

in [44–46]. Laminated shell theory was activated to properly model the transverse shear

deformation. The material properties used are shown in Table 3.2.

3.2.3.1 Damage initiation

Hashins failure criteria [47] were chosen to predict damage initiation. In Hashins theory,

the following four damage-initiation mechanisms are considered for a unidirectional lam-

inate: fibre tension, matrix tension, fibre compression, and matrix compression. These

are expressed in terms of principal stress σij , material strengths, and the following fail-

ure parameters,

Fibre tension (σ̂11 ≥ 0):

F tf =

(
σ̂11

XT

)2

+

(
τ̂12

SL

)2

(3.2)

Matrix tension (σ̂22 ≥ 0)

F tm =

(
σ̂22

YT

)2

+

(
τ̂12

SL

)2

(3.3)

Fibre compression (σ̂11 < 0):

F cf =

(
σ̂11

XC

)2

(3.4)

Matrix compression (σ̂22 < 0):
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F cm =

(
σ̂22

2ST

)2

+

(
τ̂12

SL

)2

+

[(
Y c

2ST

)2

− 1

]
σ̂22

Y C
(3.5)

where XT and Y T are the longitudinal and transverse tensile strength, XC and Y C

are the longitudinal and transverse compressive strengths, SL is the longitudinal shear

strength, and ST is the transverse shear strength. When F tf = 1, F tm = 1, F cf = 1, or

F cm = 1, the corresponding damage mode initiates. σ̂11, σ̂22, τ̂12 are components of the

effective stress tensor, σ̂ , which is used to evaluate the initiation criteria. The effective

stress tensor is computed from [48]:

σ̂ = Mσ (3.6)

where σ is the true stress and M the damage operator:
1

1−df 0 0

0 1
1−dm 0

0 0 1
1−ds

 (3.7)

df , dm and ds are internal (damage) variables that characterize fibre, matrix, and shear

damage, which are derived from damage variables dtf , d
c
f .d

t
m, and dcm, corresponding to

the four failure mechanisms

df =

dtf if σ̂11 ≥ 0,

dcf if σ̂11 < 0,
(3.8a)

dm =

dtm if σ̂22 ≥ 0,

dcm if σ̂22 < 0,
(3.8b)

ds = 1 − (1 − dtf )(1 − dcf )(1 − dtm)(1 − dcm). (3.8c)

Prior to any damage initiation, i.e. df , dm and ds are equal to zero, the damage operator,

M, is equal to the identity matrix, so σ̂ = σ. Damage initiation occurs when one of

the four aforementioned failure modes are satisfied, altering the corresponding damage

parameters df , dm or ds, and so the damage operator matrix will be modified giving rise

to a new effective stress tensor. The effective stress, σ̂ , is intended to represent the

stress acting over the damaged area that effectively resists the internal forces.
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3.2.3.2 Damage Evolution

In the post-damage initiation phase, damage evolves by the degradation of the plane

stress orthotropic material’s elasticity matrix. The response of the material in terms

of stress is computed by relating the exhibited strain to the damaged elasticity matrix

(Cd) [48]:

σ = Cdε (3.9)

where ε is the strain and Cd is the damaged elasticity matrix, which has the form

Cd =
1

D


(1 − df )E1 (1 − df )(1 − dm)ν21E1 0

(1 − df )(1 − dm)ν12E2 (1 − dm)E2 0

0 0 (1 − ds)GD

 (3.10)

where D = (1 − df )(1 − dm)ν12ν21, df , dm, ds reflect the current state of fibre, matrix

and shear damage, respectively. Stress-strain relationships for damage are prone to mesh

dependency during material softening, leading to erroneous results; such as decreasing

energy dissipation upon mesh refinement. A characteristic length, based on the element

geometry and formulation, is introduced to alleviate mesh dependency, so that the con-

stitutive law is expressed as a stress-displacement (σ− δ) relation [48]. In this case, the

damage variable will evolve in a bi-linear manner, as shown in Fig. 3.6(a) for each of

the four failure modes. The positive slope of the stress-displacement curve, line OA,

prior to damage initiation represents linear elastic orthotropic behaviour. At point A

(i.e. equivalent displacement, δ0
eq, and stress, σ0

eq, at the onset of damage), damage is

initiated and evolves via degradation of material properties, as indicated by the negative

slope AC. Each increment is computed and stored so that unloading and re-loading of

the partially damaged material can be accounted for, as shown by line OB. The energy

dissipated due to failure, Gc, defines the equivalent displacement at final damage, δfeq

and is represented by the area under the triangle OAC. Hence,

δfeq =
2Gc

σ0
eq

(3.11)

After damage initiation (i.e., δeq ≥ δ0
eq), the damage variable for a particular mode of

failure is given by the following expression

d =
δfeq(δeq − δ0

eq)

δeq(δ
f
eq − δ0

eq)
(3.12)

This relation is presented graphically in Fig 3.6(b).
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Figure 3.6: Damage evolution for fibre-reinforced composites

3.2.3.3 Limitations

The limitations of ABAQUS’s Hashin based damage and failure model for fibre-reinforced

composites lie in the fundamental inaccuracies of the Hashin criteria and simplifications

imposed by ABAQUS. Firstly, the Hashin criteria presented (Eq.s 3.2 - 3.5) neglect

the through-thickness stresses, and so, are essentially in a 2D form. For this reason,

the model is limited to plane stress elements such as shells and continuum shells. Fur-

thermore, the criterion does not predict the onset of delamination damage. Finally,

although the Hashin criteria are commonly used in industry, studies have demonstrated

their inaccurate failure prediction, especially in matrix and fibre compression modes.

3.2.4 Aluminium 2024-T3

To describe the elastic-plastic response of the Aluminium 2024-T3 layers, an isotropic

constitutive model based on the Johnson-Cook (JC) material model [49] was imple-

mented. The JC plasticity formulation defines the flow stress as a function of equivalent

plastic strain, strain rate and temperature, was employed. The dynamic flow stress is

expressed by the following relation [49]:

σ̄d =
[
σy +B(ε̄pl)n

] [
1 + C ln

(
(dε̄/dt)pl
(dε/dt)0

)]
(1 − T ∗m) (3.13)

where σ̄d is the dynamic flow stress, ε̄pl is the equivalent plastic strain, (dε̄/dt)pl is the

equivalent plastic strain rate, and (dε/dt)0 is a reference strain rate (typically normalized

to a strain rate of 1.0s−1). σy, B, n, m and C are material parameters and T ∗ is the
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Figure 3.7: 2D (a) and 3D yield surface (b) of dynamic flow stress of Al 2024-T3 as
a function of strain rate and equivalent plastic strain.

Table 3.3: Johnson-Cook material model parameters for Aluminium 2024-T3 [51]

Property ρ υ E σy B n C m T0 Tmelt
Units kg/m3 (-) GPa MPa MPa (-) (-) (-) ◦K ◦K

Value 2770 0.33 73.1 369 684 0.73 0.0083 1.7 294 775

non-dimensional temperature given by:

0 T < Ttransition

T ∗ ≡ (T − T0)/(Tmelt − T0) T0 ≤ T ≤ Tmelt

1 T > Tmelt

(3.14)

where T is the current temperature, Tmelt is the melting temperature and T0 is the

temperature defined as the one at or below which there is no temperature dependence

on the expression of the yield stress. The constant σy is the yield stress under quasi-

static conditions, B and n are strain hardening parameters, m controls the temperature

dependence and C the strain rate dependence.

Normally for high rate deformation problems, it is assumed that 90-100 % of the plastic

work is dissipated as heat in the material [50]. However, in this study, temperature effects

are ignored to reduce computational constraint, although significant thermal softening

may occur during the initiation of the high explosive event. Material characterisation

data for Aluminium 2024-T3 have been investigated and obtained at high strain rates

and large strains using the split Hopkinson pressure bar (SHPB) methods [51], as shown

in Table 3.3. The Johnson–Cook parameters have been determined for a strain rate

validity range of ε̇ = 105 − 10−5s−1. Figure 3.7 shows the influence of strain rate on the

dynamic flow stress of the material.
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Figure 3.8: Schematic of blast loading configuration and pressure distribution.

3.2.5 Modelling the blast load

In this study, a uniformly distributed pressure pulse, similar to that adopted by Kara-

giozova et al. [18] given in Eq. 3.15, is analysed which is applied as a pressure pulse on

the top surface of the Glare panel, see Fig. 3.8.

p(t) = p0 exp−t/t0 (3.15)

The pressure decays exponentially with a decay period of t0 = 0.05 or 0.1 ms for the 20

and 40 mm charge diameter, respectively. It is assumed that different charge diameters

will affect the rate of energy, as defined by the slope of the impulse-time curve, transferred

to the target structure which also controls the strain rate experienced by the target

material. The effect of changing the exponential decay time constant is shown on a

normalised pressure-time curve, given in Fig. 3.8(b). The term p0 is defined as the

maximum overpressure of the blast wave which is evaluated based on the momentum

conservation equation:

I = A

∫ ∞
0

p(t)dt (3.16)

3.2.6 Results

The transient displacement contour plots of a Glare 3 panel subjected to an impulsive

load of 25.5 Ns is shown in Fig.3.10. The results show that the panel deforms with plastic

hinges first developing at the boundary and then moving towards the centre of the plate.

A comparison of the results of the numerical analysis was obtained by investigating the

deformed mid-point deflection of each back face layer. The predicted and experimental

final displacements of the mid-span of the back panel of the clamped Glare 3 panels
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for the entire tested range of impulses between 11 Ns and 31.9 Ns are given in Fig.

3.9. Although the predictive model slightly overestimates the experimental mid-span

displacements, reasonable agreement is obtained for all load cases.
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Figure 3.9: Comparison of experimental and numerical back face mid-span displace-
ments (I= 11 Ns - 31.9 Ns at 200 mm stand-off distance)

The deformed quadrangular panel profile along its diagonal lines of symmetry was also

investigated. Typical plate profile plots along the centre lines of the flat panel are shown

in Fig. 3.11. Experimental observations on the post-damage panels at higher impulses

saw the appearance of debonding and pulling in (i.e. tearing at the bolt holes) along

the boundary edges. These observations are partly related to the interaction of the

nuts, bolts and clamping conditions which influence the impulse transfer to the panel.

The pulling-in effect is an undesirable feature which corresponds to inadequate clamping

conditions as it delays the onset of tensile perforation of the panel. Therefore the results

shown in Fig. 3.11 need to be interpreted in terms of the experimental set-up in which

they were obtained, as one might not expect such a steep rise in the deflection profile

emanating from the clamped boundary edges.

The ABAQUS/Explicit finite element program was run using Hashin’s failure criteria

for damage initiation. Figure 3.12 shows fibre and matrix tension damage at the bottom

0◦ glass fibre facesheet. Fibre tension damage was initiated near the center of the panel

which extended in size with increasing applied impulse. However, the damage is rather

limited to the centre of the panel which indicates that the glass-fibres in this layer still

have load-bearing capacity retaining the structural integrity and support of the panel.

Tensile matrix damage was also very extensive across the panel which extended across

the clamped boundary. The predictive model showed that no tearing or perforation of

the panel occurred up to an impulse of 35 Ns. It is important to comment at this point,
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Figure 3.10: Response of Glare 3 panel at impulse 25.5 Ns showing displacement (in
mm) in the z-direction.
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Figure 3.11: Residual deflection of impulsively loaded Glare 3 panels (I= 11 Ns -
31.9 Ns at 200 mm stand-off distance).

that matrix cracks in the cross-plied laminate will give rise to high interlaminar shear

stresses at the boundary which will induce extensive debonding at the interface.

This model also highlights the success in approximating the blast load as a uniformly

distributed pressure pulse, expressed as a function of some exponential time decay con-

stant, which corresponds to the mass/diameter of the explosive.
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Figure 3.12: Fibre and matrix tension damage at bottom 0◦ facesheet using Hashin’s
failure criteria for increasing applied impulse.

3.2.7 Comparison with Glare 5 and Aluminium 2024-T3

A further objective of this study was to compare the performance of Glare against

monolithic aluminium panels of equivalent areal density and Glare 5, a variant of Glare

which is used in impact applications, see Table 2.1 for details on stacking sequence.

The results of this parametric study are given in Fig. 3.13, which shows mid-point dis-

placement against applied impulse. For a given impulse, it appears that Glare exhibits

smaller mid-point displacements than monolithic aluminium panels. Considerable in-

elastic deformation occurred in the panels where yield line formation (the formation of

plastic hinges) is clearly seen in Fig. 3.14, which is typical of the response of a monolithic

metal panels subjected to uniformly distributed pressure loading.

The deformation of the damaged Glare panels suggests that the energy imparted on

the panel from the blast load can be dissipated in global deformation including panel

bending and membrane stretching; extensive delamination within the glass/epoxy plies

or debonding between the aluminium and glass/epoxy layers; and tensile fracture of the

glass/epoxy and aluminium. Assuming that energy contributed to delamination and

debonding is negligible, a simple energy balance of the numerical model is thus given

by:

Wtotal = Wint +Wke +���Wvd +���Wfd −Wwk = constant (3.17)
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Figure 3.13: Predicted back face mid-point displacement of Glare 3 and 5 panels and
monolithic aluminium plates.
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where

Wint = Wel +Wpl +Wdmg (3.18)

where the subscripts, int, ke, vd, fd and wd refer to the internal, kinematic, viscous,

frictional dissipation and external work, respectively. Artificial energies due to hourglass

modes of deformation in addition to viscous and frictional effects are negligible compared

to the internal energy of the system, i.e. < 1 %. It can be shown in Fig. 3.15 that 87

% of the internal energy is dissipated as non-recoverable plastic deformation in the thin

aluminium layers of the Glare system. The remaining energy is due to elastic recoverable

energy and fibre-reinforced damaged, 10 % and 3% respectively. This is in contrast to an

aluminium plate of equivalent areal density, where almost all of the energy is dissipated

as plastic deformation, leaving no recoverable elastic deformation. The contribution

of the glass fibres clearly enhances the blast mitigation of the Glare system, which is
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Figure 3.15: Partition of energies for Glare 3 subjected to impulse of 25.5 Ns

expected to improve at higher strain rates, due to their positive strain rate sensitivity.

However, direct comparison between all three materials is not possible, due to the inher-

ent differences in density, material properties and configuration. An approach commonly

adopted in the literature is to use non-dimensional parameters which allows for compar-

ison of blast-loaded panels of different materials (densities and characteristic stresses),

geometries (lengths, widths and thickness’s) and loading conditions to be treated sim-

ilarly. Nurick and Martin [52], initially derived an expression based upon Johnson’s

damage number [53], shown in Eq. 3.19 for quadrangular plates,

φq =
I

2h2(wlρσ)1/2
(3.19)

where w and l refer to the width and length of the panel, respectively. It has been

subsequently modified by Nurick and co-workers [35, 54] for localised blast loading as

shown in Eq. 3.20

φql =
I
(
1 + ln 4wl

πd2

)
2h2 (wlρσ)1/2

(3.20)
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Table 3.4: Glare and Aluminium material properties, estimated using the MVF
method

Units Glare 3-3/2-0.3 Glare 5-3/2-0.3 Al 2024-T3

ρ (kg/m3) 2495.0 2360.0 2780.0
σy (MPa) 305.8 276.0 369.0
E (GPa) 57.3 48.6 72.4

and stand off distance, shown in Eq. 3.21.

φql =
I
(
1 + ln 4wl

πd2

)
2h2

(
1 + ln2S

d

)
(WLρσ)1/2

(3.21)

S is the distance that the blast wave has to travel before it impinges onto the edge of

the panel and αq is known as the non-dimensional impulse.

The characteristic stress used in Eq. 3.19 to Eq. 3.21 is defined as the static yield stress

for monolithic metal plates, however it has also been defined as the global ultimate tensile

strength for locally loaded thermoplastic-based FML panels [14] due to the different

stress-strain behaviour of the component materials. The relative proportions of metal

and composite were used to compute ”‘smeared”’ average values for stress and density.

Following the approach taken in [16], smeared stress and density values for Glare 3 and

Glare 5 were calculated based on the MVF method and the properties of the component

materials given in Table 3.4.

The results from the parametric blast study were converted to dimensionless form and

displayed graphically as displacement-thickness ratio versus dimensionless impulse, as

shown in Fig. 3.16. It is evident that the Glare 5 panels exhibit a smaller normalised

displacements (approximately 11% lower) than the monolithic aluminium plates for a

given dimensionless impulse.

The case study highlights the favourable resistance of Glare compared to its metallic

counterpart. The set-up of the small-scale blast trials, from the kinematic boundary

conditions of the panel to the blast load response were well defined and controlled which

greatly facilitated the computational effort. Such blast trials are a useful precursor

study in the early stages of blast mitigation which allows the structural analyst to

determine the feasibility of implementing new structural materials; vulnerable to acts

of sabotage or high strain rate events. Naturally, the next phase of the chapter is to

consider blast loading conditions which are reminiscent of IEDs (which are non-uniform

in a temporal and spatial dimension) using more advanced computational techniques

which are discussed in the following section.
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Figure 3.16: Graph of normalised mid-point back face deflection versus dimensionless
impulse

3.3 Numerical analysis of blast-induced wave propagation

using FSI and ALE multi-material formulations

The pressure imparted on the target surface will depend on the shape of the explosive,

stand-off distance and angle of incidence. In such cases, simple pressure functions are

not appropriate and may produce conservative results. Slightly higher fidelity could be

gained using empirical blast load functions such as the ConWep algorithm [55] which

is also implemented in the commercial finite element (FE) code LS-DYNA based on

work done by Rahnders-Pehrson and Bannister [25, 56]. This makes it possible to simu-

late blast loads acting on structures representing spherical and hemispherical explosive

shapes of TNT with reasonable computational effort. The ConWep blast model has

produced satisfactory results, as shown by Neuberger et al. [57], where a good agree-

ment between numerical simulation predictions of mid-point deflections and test results

was obtained. However, other authors have produced negative results such as Forghani

et al. [58], who showed that the experimentally determined mid-point velocities were

underestimated by the predictive model.

In situations where the set-up of the problem makes it unsuitable to use empirical

load functions, an alternative approach may be to use the multi-material Arbitrary La-

grangian Eulerian (MMALE) approach to simulate the shock wave phenomenon of an

air-blast event. Air and the detonation products may be described with an Eulerian
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formulation in a gaseous domain, while the structure response is treated in a struc-

tural domain. A coupling algorithm for the fluid-structure interaction is then used to

connect the two domains. This has been performed, for example by Soutis et al. [59]

who investigated the response of closed cylindrical barrels subjected to an internal blast

load of different longitudinal lengths and pre-pressurisation conditions. The numeri-

cally obtained internal energies were then used to provide a qualitative discussion on

the expected extensive structural damage of pressurised cylindrical structures to blast

loading.

The objective of this section is to develop efficient and reliable predictive techniques

which can accurately model the dynamic behaviour of Glare. Case studies of Glare

panels subjected to a blast-type loading for which experimental data on the back face-

displacement and post-damage information is available for model validation. A compar-

ison between the MMALE approach and the less computationally expensive ConWep

algorithm is performed to determine the suitability and performance of each method.

3.3.1 Far-field blast tests

Within the EU-funded VULCAN programme (AST5-CT-2006-031011), three aerospace

structural materials were selected for blast assessment using small-scale blast trials, see

Table 3.5 [17]. In addition to providing an early indication of the most promising so-

lutions, the small-scale trials provided valuable experimental data for model validation.

The relative performance of the candidate materials was assessed in terms of the thresh-

old charge weight for a fixed stand-off distance, defined as the charge weight of explo-

sive required to cause maximum damage without through-thickness rupture. Small-scale

testing was undertaken using 800 mm × 800 mm fully clamped targets. The relative level

of resistance to blast loading was assessed on a thickness by thickness basis, against a

benchmark 1.7 mm Glare 3 laminate with an areal density of approximately 4.35 kg/m2.

In order to replicate the highly focussed loading associated with an on-board explosion

event and minimise the influence of boundary effects, a stand off distance of 200 mm

was employed, as illustrated in Fig. 3.17. The level of blast loading was controlled by

varying the mass of the spherical charge.

The results of the small-scale blast tests, shown in Table 3.5, reveal that for a given

explosive charge weight, Glare 3 panels outperformed Aluminium 2024-T3 and CFRP

panels. The Aluminium plates indicated a failure limit between 80g and 85g. For

Glare, the authors claim a failure limit greater than 150g C-4, although pulling-in of the

panel edges was reported, which was proceeded by some tearing of the bolt holes. This
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Table 3.5: Summary of small-scale-blast trial results for various targets [17].

Material Charge mass

50g 75g 85g 100g 150g

Aluminium 2024-T3 3 3 7 - -

CFRP 7 - - - -

Glare 3–3/2–0.4 3 3 3 3 3

3 no through-thickness rupture (pass), 7 fully ruptured target (fail)
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Figure 3.17: Small-scale test used to assess relative blast resistance of typical aircraft
materials ([17])

raises doubts about the load charge required to cause through-thickness rupture as these

features may have delayed the onset of tearing at the clamped boundary conditions.

3.3.2 Lagrangian formulation

This study was conducted within the framework of the VULCAN consortium where the

FE code of choice was LS-DYNA, a commercially available explicit code developed by

Livermore Software Technology Corp and is widely distributed and used in industry

and academia [25]. Therefore from this point forth, LS-DYNA is used for all numerical

studies 1.

One of the areas of interest in this study is to investigate the severity of interlaminar de-

lamination under blast loading conditions. Therefore, a multi-layer shell element model

with cohesive tie-break capabilities was developed to simulate the hybrid composite tar-

get. As the mechanical properties of Glare vary between each subsequent layer, a unique

1Please refer to Appendix A for further discussion and comparison of ABAQUS/Explicit and LS-
DYNA.
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Figure 3.18: Multi-layered modelling approach of contact tie-break algorithm

layer of fully integrated shell elements (Type 16) was defined to represent the 7 plies

with four integration points associated with each layer, as shown in Fig. 3.18.

3.3.3 Interlaminar delamination

Cohesive tie-break algorithms [60] available in LS-DYNA are employed to model inter-

laminar delamination between the metal/composite and composite/composite interface

[25], as shown in Fig. 3.18. Tie-break contacts are penalty-based algorithms which model

the connections of surfaces, allowing the transmission of both compressive and tensile

forces (a tie). Before failure, the tie-break contact works by resisting the separation of

the slave node from the master segment. After failure, the tensile coupling is removed

and the contact behaves in a traditional surface to surface contact with thickness offsets.

Additionally, all tie-break contacts have an optional failure criterion depending on the

nature of the connection. In this study, to simulate interlaminar debonding the *CON-

TACT AUTOMATIC SURFACE TO SURFACE TIEBREAK - DYCOSS Option 9 was

chosen [61]. This cohesive contact criteria are based on the cohesive fracture model de-

fined in *MAT 138 (COHESIVE MIXED MODE) [25]. This card includes a bilinear

traction-separation law with quadratic mixed mode delamination criterion and a dam-

age formulation [25]. In the interface cohesive model, the ultimate displacement in the

normal and tangential directions are the displacements at the time when the material

has failed completely. The bilinear traction-separation law gives a linear stiffness for

loading followed by the linear softening during the damage and provides a simple rela-

tionship between energy release rates, the peak tractions and the ultimate displacements

[25]:

GIC =
TN · δfI

2
(3.22a)

GIIC =
TT · δfII

2
(3.22b)
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where TN is the peak traction in normal direction, TT is the peak traction in tangential

direction, δI is the ultimate displacement in the normal direction, δII is the ultimate

displacement in the tangential direction, GIC is the mode I energy release and GIIC is

the mode II energy release rate.

If the peak tractions are not specified they can be computed from the ultimate displace-

ments. In the cohesive material model, the total mixed mode relative displacement δm

is defined as δm = (δ2
I + δ2

II)
1/2, where δI = δ3 is the separation in normal direction

(mode I) and δII = (δ2
I + δ2

2)1/2 is the separation in tangential direction (mode II). The

mixed mode damage initiation displacement δ0 (onset of softening) is given by

δ0 = δ0
I δ

0
II

[
1 + β2

(δ0
II)

2 + (βδ0
I )

2

]1/2

(3.23)

where δ0
I = T/KN and δ0

II = S/KT are the single mode damage initiation separation

lengths, KN is the stiffness normal to the interface plane, KT is the stiffness into the

interface plane and β is the ’mode mixity’. The ultimate mixed mode displacement δF

(total failure) for the Benzeggagh-Kenane law is

δF =
2

δ0
(

1
1+β2KN + β2

1+β2KT

) [GIC + (GIIC −GIC)

(
β2KT

KN + β2KT

)XMU
]

(3.24)

where XMU is the exponent of the mixed mode criteria. The effect of contact param-

eters on the dynamic behaviour of seven-layered Glare 3 panels was investigated and

discussed in the results section. A maximum nominal stress of 60 MPa was assumed

and an interlaminar fracture energy of 2.5 N/mm was chosen [62].

3.3.4 Blast pressure characterisation

The initial detonation and subsequent blast wave propagation which impinges and in-

teracts with boundaries is a complex process. It is well known that the detonation of the

explosive creates a shock wave in the surrounding fluid, which is known as a blast wave.

The fluid (air) applies a very short but intense pressure field whose shape depends on

the explosive geometry, its chemical composition, its distance from the structure and the

fluid properties such as density and wave speed. When the explosive is detonated, its

volume expands significantly and moves outwards with a velocity that is initially close

to the detonation velocity of the explosive (7-10 km/s). The radially expanding shock

wave interacts with the structure and the surrounding fluid. The blast wave produced

is characterised by an extremely high peak pressure and short duration, see Fig. 3.19.



3.3 Numerical analysis of blast-induced wave propagation using FSI and
ALE multi-material formulations 51

Time

Pressure

∆P+

∆P−

ta

T+ T−

ta + T+ ta + T+ + T−

ta

I+

I−

Pa : Ambient pressure (MPa)

∆P+ : Maximum positive overpressure (MPa)

∆P− : Maximum negative pressure (MPa)

T+ : Positive time duration (ms)

T− : Negative time duration (ms)

ta : Time of arrival (ms)

I+ : Positive impulse (Ns)

I− : Negative impulse (Ns)

Pa

Figure 3.19: Typical pressure-time history. At the arrival time, following the explo-
sion, the pressure suddenly increases to a peak pressure value. The pressure then decays
to an ambient level at time (ta +T+) and decays further to an under-pressure (creating

a partial vacuum) before returning to ambient conditions at time (ta + T+ + T−).

Two approaches were used to simulate the blast loads: a Lagrangian model with ConWep

load function and a multi-material ALE (MMALE) model. The latter was performed

for the 75g load case only due to the computational effort and time this formulation

imposes on the numerical analyst.

3.3.4.1 Empirical blast load

A comparison with the aforementioned MMALE model is made with the less computa-

tionally expensive ConWep algorithm [63]. This enables an opportunity to simulate and

compare blast loading on a Lagrangian structure without having to simulate the blast

load in an Eulerian domain. In LS-DYNA, based on user input parameters regarding the

location and mass of the explosive charge, ConWep automatically calculates the correct

distance and angles of incidence and assigns pressures accordingly to the surface of the

target.

Most semi-empirical models, such as ConWep, of free-field blast express the data with

reference to the blast output of TNT. Different explosives are generally compared by

means of their TNT equivalency both in terms of peak pressure and impulse. The TNT

equivalency of an explosive is the ratio of the mass of TNT to the mass of the explosive

such that both yield equal pressure or impulse. It is known that 1 kg TNT releases the

energy of 4.520 × 106 J. The TNT equivalent is available for standard explosives, some

of which are summarized in Table 3.6.The TNT equivalency of C-4 is not unique and
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Table 3.6: TNT equivalency for different explosives. C-4 explosive used in this study
is highlighted in grey

Explosive Mass specific TNT
energy (kJ/kg) equivalency

TNT 4520 1
Torpex 7540 1.667
C-4 6057 1.37
Semtex 1A 4980 1.102

typically varies from 1.15 to 1.6 depending on how it is measured. As a reference, an

equivalency of 1.37 for pressure and 1.19 for impulse is used [63].

The pressure load which acts on a set of pre-defined segments, i.e. a surface of solid

elements or shell elements acts on a segment account for angle of incidence of the pressure

wave, θ, is determined according to:

p = pi
(
1 + cosθ − 2cos2θ

)
+ Prcos

2θ (3.25)

where pi is the incident pressure and pr the reflected pressure [56]. The blast load

corresponds to a free air detonation of a spherical charge with a TNT weight equivalence

of 1.3 to account for the C–4 explosive charge. The blast pressure profile generated by

the ConWep algorithm at different locations of the plate, corresponding to a C–4 charge

of 50g is shown in Fig. 3.20. A comparison of the maximum overpressure predicted by

the ConWep algorithm for 50g, 75g, 100g and 150g C–4 charge is given in Fig. 3.21.

The delay in the pressure-time plots reflect the time taken for the blast wave to arrive

at the plate surface after the explosion is initiated.

3.3.4.2 MMALE model

In MMALE approach, both a Lagrangian (Glare 3 target) and an Eulerian (air + ex-

plosive) domain are simulated, together with a coupling algorithm for fluid-structure

interaction (FSI). The composite target is modelled in quarter symmetry, while the ex-

plosive and air (solid ELFORM=1) is represented in 1/8 symmetry. As shown in Fig.

3.22, symmetry conditions for the 3D gas domain illustrates where the three symmetry

planes are defined; at the bottom of the model and the two planes along the centre

axis of the explosive. The 75g spherical C–4 charge (radius 2.2 cm) is modelled with

1,764 hexahedral finite elements and is ignited at its centre. The spherical charge is sur-

rounded with the air mesh so there is one-to-one node match at the boundary between

the explosive and the air. Non-reflecting boundary conditions are also imposed on the

outer lateral and top boundaries to prevent artificial pressure wave reflections generated
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Figure 3.20: Radial distribution of peak pressure-time pulse generated by the ConWep
model (radial distances r from the center) corresponding for a charge of 50g C-4 at a

stand-off distance of 200 mm
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Figure 3.21: Blast pressure curves for 50g, 100g and 150g C–4 charge predicted by
ConWep model

at the model boundaries from re-entering the model and contaminating the results. The

boundary conditions for the plate are considered as being perfectly clamped.

The TNT explosive charge was modelled via *MAT 008 (HIGH EXPLOSIVE BURN)

and the Jones-Wilkins-Lee (JWL) semi-empirical equation of state (*EOS JWL) [25].

The pressure field is given by:

P = C1

(
1 − ω

R1V

)
e−R1V + C2

(
1 − ω

R2V

)
e−R2V +

ωE0

V
(3.26)
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Figure 3.22: Description of MMALE arrangement of Glare flat panel simulation

where C1, C2, R1, R2, ω are material constants: their values C-4 (explosives), according

to Alia and Souli [64] are presented in Table 3.7. V = v/v0 is the relative volume of the

gas products to the initial explosive state, and E0 is the energy per unit volume.

The medium in which the blast wave propagates (air) was modelled with *MAT 009

(NULL) and a linear polynomial EOS (*EOS LINEAR POLYNOMIAL) for linear in-

ternal energy. Pressure for a perfect gas assuming the gamma law EOS was used which

simplifies to:

P = (γ − 1)
ρ

ρ0
E0 (3.27)

where ρ is the current density, and ρ0 the initial density while E0 is the internal energy

per unit reference volume. Also γ is defined as the ratio between the specific heat at

constant pressure and volume, respectively. Specific heat capacities are functions of

temperature and pressure which can give rise to significant errors if the temperature

range of the process it pertains is ignored. It is assumed that γ = 1.4 is a constant

during the explosive event. This rather restrictive assumption can be problematic for

explosives which expel large pressures and higher temperatures. Under such conditions,

the air starts to ionize and dissociate, and the property of the gas changes so that the

ratio of specific heats is no longer a constant [65]. However, without the knowledge of

the dependence of specific heat capacity on the overpressure for a given load case, a

constant value is assumed. With initial density 1.2 kg/m3, the initial pressure is 1 bar

which results in an initial internal energy E0 of 250 kJ/m3. Additional parameters such

as density, a pressure cut-off and viscosity coefficient (within the *MAT NULL card)

are also required for complete definition of the air medium. The viscosity and pressure
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Table 3.7: Explosive parameters used in air-blast simulations, C–4 explosive proper-
ties taken from [64](mm, kg, ms)

ρ D PCJ C1 C2 R1 R2 ω E0

(kg/m3) (m/s) (GPa) (GPa) (GPa) (-) (-) (-) (GPa)

1601 8040 29.5 598.155 13.75 4.5 1.5 0.32 8.7

Table 3.8: Air parameters used in air-blast simulations

ρ0 γ Tref Cp E0

(kg/m3) (-) (K) (kJ/kg K) (kJ/m3)

1.22 1.4 288.2 1.012 250

cut-off are set to zero because it cannot be negative and the viscosity forces are assumed

equal to zero, see Table 3.8 for details.

FSI is simulated using a coupling algorithm within the *CONSTRAINED LAGRANGE

TO SOLID card in LS-DYNA. The FSI thus couples the blast pressure of the moving

fluid and the deformation of the composite structure. The penalty-based coupling al-

gorithm is used in this study, which conserve internal energy rather than momentum.

This formulation applies nodal forces explicitly by tracking the relative motion of a given

point [66]. The purpose of using these algorithms is so that the fluid material, i.e. shock

wave, flows around and along but not through the structure. During the course of the

simulation, if a fluid particle should penetrate though a Lagrangian mesh, a resisting

force is applied to both the fluid particle and the structure node to prevent penetration

from occurring. The penalty method applies a resisting force to the slave node, propor-

tional to the penetration, through the mesh segment [67]. Poor definition of parameters

within this card may result in large non-physical interface (sliding) energy which is not

only dependent on the penalty stiffness, but also the leakage control and the time step

(TSSFAC). Material transport in the MMALE elements is controlled by the first order

(donor cell) advection technique defined in the *CONTROL ALE card.

Table 3.9 provides details of the numerical components employed in this study.

3.3.5 Results and discussion

3.3.5.1 Calibration of contact parameters in tie-break cohesive algorithm

A sensitivity study was conducted to investigate the effect of the tie-break on the dy-

namic behaviour of laminated systems and hence develop a model whose response is

independent of the number of sub-laminates. To eliminate uncertainties involving the
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Table 3.9: Model details for the air blast simulations

Part Material Element Element No. of Model size

type length elements X-dir Y-dir Z-dir

(mm) (mm) (mm) (mm)

Target plate Glare Shell 10 864 300 300 0

Euler domainb Air MMALE 3 a 172,368 400 400 300

Euler domainb Explosive MMALE 1.8 c 1,764 22 22 22
a Minimum element size at the radius of explosive
b Omitted for ConWep blast loads
c Minimum element size

blast pressure phenomena, a uniformly distributed triangular pressure pulse is applied

for simplicity:

p(t) =

p0

(
1 − t

t0

)
, 0 ≤ t ≤ t0

0, t ≥ t0

(3.28)

where p0 is the peak pressure and t0 is the load duration. In this example the panel was

subjected to a triangular pulse of 17.3 MPa (t0 = 0.05ms), which is the equivalent to an

impulse of 156 Ns. When the blast wave drops to zero upon reaching the blast duration,

t0, momentum is transferred to the panel, which has become impulsively loaded with a

uniformly distributed velocity field. Conservation of momentum gives the initial velocity

of the panel as:

vi =
p0t0

2 (ρcomphcomp + ρalhal)
(3.29)

where ρcomp,al and hcomp,al are the density and thickness of the composite and aluminium

layers respectively. For an impulse of 17.3 Ns, the initial velocity of the panel is calculated

as 99 m/s. The maximum back face velocity is extracted from the numerical analysis,

as a method of verifying if momentum is being transferred from the front face to the

back. The plate is modelled using one and seven layers of shell elements tied together

with the tie-break interface, see Fig. 3.18.

It can be seen from Fig. 3.23 that the back-face velocity depends on the penalty scale

factor for the tie-break algorithm. When the default penalty stiffness factor of 0.1 is used,

the back-face velocity deviates from the expected value giving spurious oscillations which

does not converge. The reason for this is that the default value of the penalty stiffness

is not enough to ’tie’ the layers together, i.e. the layers do not move together. The

momentum of the blast load is transferred from one layer to another sequentially. Thus,

instead of the structure carrying the momentum together, the momentum is carried by

the first layer and then transferred to the second layer up to the last layer. Consequently,
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Figure 3.23: Comparison of velocity profile for FML panel under pressure-pulse load-
ing for one and multiple layers. SLSFAC is the scale factor for sliding interface penalties

the maximum velocity of each layer will depend on the amount of transferred momentum

and the mass of each layer. This effect is eliminated when a penalty stiffness factor of 1

is used.

3.3.6 Interaction results of Glare subjected to blast loading

This section presents the numerical results for the air blast events, where the blast loads

have been calculated using the empirical blast function, ConWep for the 75g and 100g

C–4 load charge. The simulation cases with results regarding the maximum mid-point

deflections, δmax for the air blast simulations are shown in Table 3.10.

A comparison between the numerical simulations with the experimental maximum mid-

point deflection is also shown in Fig. 3.24. The numerically determined quantities show

a difference of 1-5 % compared to the experimental quantity, which shows that the two

results are in good agreement.

Fig. 3.25 shows the time-history of the transverse velocity at the centre of each alu-

minium layer for an explosive charge of 100g C-4 and stand-off distance of 200 mm.

The structural response, in terms of transverse velocity, has been assessed for this load

case which can be described in three phases. The first phase begins during the first

2.5 ms when the blast shock wave strikes the Glare panel. In this phase, the dynamic
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Figure 3.24: Numerical predictions of mid-point deflection of Glare panels subjected
to 75g and 100g C–4 explosive charge relative to the experimental results [17]

response is governed by the balance of the momentum induced by the blast. As shown

in Equation 3.29, the velocity of the system strongly depends on the thickness of each

constituent layer and corresponding densities, and the intensity of the blast shock wave.

The second phase starts about 2.5 ms after the blast hits the plate. In this phase, due to

the deformation of the plate, strains and consequently stresses develop and the structure

starts to resist the blast loads. The velocity reduces (giving negative accelerations) and

deflects contrary to the deflection of the blast wave. This is mainly due to the elastic

contribution of the glass-fibres which are resisting the blast load. There is only enough

energy for a couple of vibratory oscillations of the panel.

The final phase begins about 6 ms after the blast initiation, at which point the blast

load has totally decayed to zero, and the panel is regaining some structural stability and

reaching its permanent deflection (i.e. zero velocity).

To investigate and quantify the energy absorbing mechanisms in the FML system, the

time histories of the total delaminated area and dissipated interlaminar energies for each

tie-break contact were written to a text file. The time histories of total delaminated

area for each tie-break contact followed by slave node data (damage, mode-mixity and

stresses) for a 100g C–4 charge is given in Fig. 3.26. Interface 1 is the first tie-break

interface located towards the bottom of the panel (blast loaded face) and interface 6 is
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Figure 3.26: Plot of delaminated area for each tie-break interface, where 1 is first
tie-break interface located at the front of the panel (blast loaded face) and 6 is the back

the last sub-laminate at the top of the panel (distal face). It is apparent that the back

and middle layers debonded the most, compared to the front layers which experience the

blast load more severely. An explanation for this however may arise from the fact that

the shock wave initially propagates as a compression wave through the multi-layered

material which is subsequently reflected as a tensile wave, resulting in the debonding

of the back-layers. Also, the debonded areas predicted by the simulations, shown in

Fig. 3.26, cannot be compared to the experiments as no cross-sectional analysis was

performed.
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Table 3.10: Results of air blast simulations using ConWep method

C–4 Stand-off dB %
charge distance Comparison difference
(g) (mm) (mm)

75 200
Experimental 46.1

1.1
ConWep 45.6

100 200
Experimental 55.3

3.98
ConWep 53.1

3.3.6.1 Energy balance

The deformations of the damaged Glare panels suggests that the energy imparted on

the panel from the blast load can be dissipated in global deformation including panel

bending and membrane stretching; extensive delamination within the glass/epoxy plies

or debonding between the aluminium and glass/epoxy layers; and tensile fracture of the

glass/epoxy and aluminium. A simple energy balance is thus given by:

Wtot = Wbm +Wdel +Wdeb +Wt +Wp (3.30)

where Wbm is the strain energy and plastic work in bending and membrane stretching;

Wdel is the delamination energy within glass/epoxy layers;Wdeb is the energy dissipated

in debonding aluminium and glass/epoxy layers; Wt is the tensile fracture energy of

the glass/epoxy, Wp is the fracture energy in petalling of aluminium layers (≈ 0). The

results from the analysis of the 100g C–4 load case, show that the energy dissipated in

interlaminar debonding was approximately 2 − 3% of the total absorbed energy.

3.3.7 Results: blast model comparison

In this section, a comparison between the two methods of describing the blast load

takes place. The result from the ConWep calculations was presented in the previous

section. Fig. 3.27 shows iso-surface contours of the fluid pressure at different time

intervals. The blast pressure propagates outwardly in a radial manner, as expected for

spherical explosives. At t = 100 µs, the point of impact of the blast wave with the

composite target is clearly shown which is larger than that expected in a completely

free-air blast event (the incident wave reinforced by the target surface). It is clearly

shown that no fluid leakage (penetration) has occurred through the target plate which

provides confidence in the implemented FSI penalty parameters within the MMALE

card. Results of mid-point deflection from the air blast simulation for a C–4 charge of
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Figure 3.27: Contours of blast pressure wave propagation using the MMALE ap-
proach at different time intervals (fringe levels in MPa)

75g is given in Fig. 3.28, both for the Eulerian and ConWep simulations. It is shown that

excellent agreement with the mid-point experimental value is obtained with the MMALE

approach, with evidence of better structural stability than the ConWep approach. This

may be attributed to the TNT equivalence for C–4 implemented in the ConWep blast

model and stand-off distance, hence slightly over-estimating the blast pressure imparted

on the composite target. Nevertheless, in terms of CPU time, the ConWep calculations

results in considerably shorter CPU times, nearly 10 times faster than the MMALE

approach.

3.4 Conclusions

A robust and efficient computational model has been developed in the commercial FE

code LS-DYNA to investigate the structural response of fully clamped Glare panels to C-

4 blast loads. Numerical model validation have been performed considering case studies

of Glare panels subjected to a blast-type pressure pulse for which experimental data

on the back face-displacement and post-damage observations were available. Excellent

agreement of mid-point deflections and evidence of severe yield line deformation were

shown and discussed against the performed blast tests. The performance of both the

ConWep and MMALE methods of simulating the blast loads were also performed and

assessed.

The suitability of using cohesive tie-break algorithms in blast-type problems involving

hybrid composite systems was also assessed. Due to the mismatch in stiffness of the

composite and aluminium layers, a penalty stiffness approach was used to ensure that



3. Blast resistance and damage modelling of FMLs 62

0 2 4 6 8 10 12 14
0

10

20

30

40

50

time (ms)

d
B

(m
m
)

MMALE
ConWep
Experimental

Figure 3.28: Comparison of mid-point deflection of Glare panels using the ConWep
and MMALE approach subjected to 75g C–4 explosive charge

the panel behaved as a single unit, to ensure that momentum from the blast wave to

the panel was accurately captured during the initial blast durations. A sensitivity study

showed that default values would give erroneous results as the momentum transferred

from the blast load would not be carried by the whole laminate; rather it is carried by

one or some of the layers at any given time.

Future work should include temperature effects in the Johnson-Cook material model

as thermal softening may be significant on the blast face of the panels. Of particular

interest, is the effect of cabin pressurization on the elastic and plastic deformation of

fuselage skin under blast loading. Cabin pressurization pre-stresses the fuselage and thus

may alter the structural response to an internal explosion, work that will be discussed

in the succeeding chapters. In such problems, it is the opinion of the author, that given

the current modelling capabilities and results, the MMALE would give higher fidelity in

capturing the complex blast wave phenomenon. However, in circumstances where the

explosive charge is close to the target panel and the effect of geometrical non-linearity

is minimal , the ConWep algorithm is acceptable in such cases.



Chapter 4

Performance of scaled fuselage

structures subjected to blast

loadings

T
he purpose of this chapter is to investigate the extent of the immediate damage of

scaled fuselage structures due to a bomb blast event situated near the target skin.

Assessment of immediate damage was conducted using LS-DYNA models of existing

fuselage demonstrator tests trials taking into account composite and metallic damage,

bolted joint analysis and stiffening elements. The initial predictive fuselage data was

in reasonable agreement with test data. Further analysis on Aluminium 2024-T3 tests

revealed that maximum allowable charge load is approximately 50g SEMTEX. Glare 3

structures did not report such breaching or tearing of the target skin at the charge load

although it was on the borderline of reaching the failure limit.

4.1 Blast performance of scaled fuselage demonstrators

The concept of hardening aircraft structures has gained momentum since the advent of

lightweight but high strength composites. However, before hardening strategies can be

implemented it is imperative that a comprehensive understanding of what happens when

an explosive is detonated on an airplane is established. As discussed in Chapter 3, full-

scale testing of realistic blast scenarios related to IEDs is often prohibitively expensive

and time consuming. Practical alternatives, which can dramatically reduce the time and

financial constraints to deliver results, include small-scale experiments and numerical

simulation. The performance and numerical validation of small quadrangular Glare

panels have been performed. However, aero-structures are very complex in structural

63
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and material design which operate under severe dynamic environments. Thus, under

assumed flying conditions it is important to understand the failure scenario and sequence

of damage of an in-flight explosion for a given size and location of explosive. This will

help develop survivability strategies to mitigate the effects of internal explosions with

the aid of blast vulnerability maps which examine hardening options based on various

failure scenarios.

In the event of an explosion, there are two issues which should be considered: One is the

extent of damage immediately after the explosion and its survivability. The second, and

equally important, issue is the aircraft’s ability to complete the flight and land safely.

These two aspects require distinct approaches and strategies which have been attempted

in the past [7]. The purpose of this chapter is to investigate the former issue. Finite

element models have been developed to simulate and understand the effects of bomb

blast on simplified scaled aircraft structures using LS-DYNA for nonlinear transient

dynamic analysis.

4.2 Description of structures

A typical aircraft fuselage shell is normally a semi-monocoque type structure composed of

skin, longitudinal stringers (longerons), circumferential frames and bulkheads. A typical

method of constructing an all-aluminum fuselage is to firstly arrange a series of frames

in the shape of the fuselage cross section which are held in position on a rigid fixture.

These frames prevent the structure from buckling and maintaining its cross section.

These frames are then joined with lightweight longitudinal elements called stringers.

These are in turn covered with a skin of thin aluminium sheets (typically several large

sections are constructed which are then joined with fasteners to form the complete

fuselage), attached by riveting or adhesive bonding. The fixture is then disassembled

and removed from the completed fuselage shell, which is then fitted out with wiring,

controls, and interior equipment such as seats and luggage bins.

Both monocoque and semi-monocoque are referred to as ”stressed skin” structures as

all or a portion of the external load (i.e. from wings and empennage, and from discrete

masses such as the engine) is taken by the surface covering. In addition, the entire load

from internal pressurization is carried (as skin tension) by the external skin. The frames

and stringers acts as crack stoppers in the presence of multi-site damage, arresting and

slowing down cracks as they reach the stiffening barriers. Reference openings such as

doors, windows and escape hatches are also included in the construction of the fuselage.

Furthermore, a typical fuselage structure consists of two floors. One is the passenger

floor dividing the fuselage into an upper chamber for passengers and a lower chamber
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for cargo. The passenger floor beams support seats tracks upon which the passenger

seats are mounted. The cargo floor is a relatively rigid member. The cargo bay consists

of the passenger floor on the top, a cargo floor at the bottom, right and left side wall,

bulkheads at both end, and a cargo door at the right. Traditionally, aluminium has been

the material of choice in airframe structure due to its excellent fatigue characteristics

and favourable higher ductility.

Within the framework of the VULCAN programme, a series of scaled fuselage demon-

strator tests were designed to encompass realistic structural design features which reflect

commercial aircraft fuselage structures [68]. During the early stages of the programme,

structural details such as flooring, luggage compartments and windows were included in

the technical designs with funds assigned to meet manufacturing and labour costs. How-

ever, due to the economic climate (2009/2010) some of the technical designs were scaled

back to keep operational and manufacturing costs to a minimum whilst maintaining the

overall essential features, mainly the stiffening elements. Unfortunately, cutbacks in this

technical work-package did exempt the proposed FML based structural designs.

Nevertheless, the final demonstrator design, albeit compromised, is shown in Fig. 4.1.

It is a fully metallic structure of internal diameter 1230 mm and 1300 mm long. The

skin consists of four equal quadrants of 2.2 mm thick Aluminium 7178-T63 sheets. The

plates were rolled and assembled with the addition of internal and external doublers,

mechanically fastened using EN6114 countersunk bolts and protruding head bolts of

type EN6115. The corresponding nut fastener was chosen as ASNA2528. To reduce

the stresses induced by the blast explosion at both ends of the structure, the skin is

reinforced with additional aluminium sheets of 4 mm thickness. Each skin quadrant is

stiffened and mechanically fastened by four ’Z’ stringers of material Aluminium 7075-

T73511. The rest of the framework consist of three ’L’ shaped frames, each of which

is manufactured as two parts, fastened together with stiffening doublers. The distance

between the frames is kept to 480 mm. To offer stability to the frames and skin, cleats

are fabricated and fastened to both components. Figure 4.2 and Table 4.1 provides an

overview of the dimensions and part-list of each structural component. The manufacture

of the demonstarors were performed at the Hellenic Aerospace Industry (HAI) facilities

in Greece. Subsequent explosive testing and experimental stress analysis were performed

at the testing facilities at TNO, The Netherlands.

The metallic demonstrator tests were pressurised to 2 bars and an explosive was deto-

nated inside. A spherical explosive is placed offset from the centre of the barrel, 200 mm

from the demonstrator wall, to ensure that failure is induced on one side of the wall.

The explosive of choice was Semtex, an explosive which share some similarities with

the previous plastic explosive C-4, such malleability. It is able to operate over a greater
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Figure 4.1: CAD schematic of final metallic demonstrator
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Figure 4.2: CAD schematic of final metallic demonstrator
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Table 4.1: Description of structural components of metallic demonstrator

Skin
Aluminium 7178-T62
2.2 mm thick
Consists of 4 equal quadrants

Cleats
Aluminium 7178-T62
2.2 mm thick

Frames
Aluminium 2024-T3
2.2 mm thick

Stringers

18.2

2.3

18.2

29

Aluminium 7075-T735
2.3 mm thick

Internal and external
doubler

1.7

40

25

Internal

External

Aluminium 2024-T3
Internal :2.3 mm thick
External : 4 mm thick

Reinforced sheet
Aluminium 2024-T3
4 mm thick

Frame doublers
Aluminium 7178-T62
2.2 mm thick

Nuts and bolts
Bolts: EN6114, EN6115
Nuts: ASNA 2528

temperature gradient and is waterproof. Furthermore, whereas C-4 is off-white is colour,

Semtex is red or brick-orange and has a high TNT equivalency of 1.66 (C-4=1.34). This

means that for a given mass of explosive, the intensity of the blast overpressure shock

wave is different and therefore not directly comparable.

The previous small-scale tests suffered from lack of real-time data acquisition as only

the post-damage state was measured. Therefore, at the testing facilities at TNO (The

Netherlands), 3D measurements of surface displacements (in-plane and out-of plane

displacements) during the explosive event were obtained by means of the popular optical

method, Digital Image Correlation (DIC). A gray speckle pattern is applied to the

target skin surface which is monitored and tracked by two camera situated at either
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side. The method tracks the gray value pattern in small neighbourhoods called subsets

(pixel intensity array subsets) during deformation. This technique is predicated on

the maximisation of a correlation coefficient that is determined by applying a grey

speckle pattern and examining the pixel intensity array subsets (small neighbourhoods of

patterns) on two or more corresponding images (undamaged and damaged state). From

this data the deformation mapping function that relates the images can be extracted

and interpreted in terms of displacements and strains. During the explosive event, it is

anticipated that DIC will provide some insight into the magnitudes of displacement and

time-dependent response. Finally, akin to the previous barrel tests, sensitive pressure

gauges are placed at the top and bottom centre of the structure.

Due to unforeseeable circumstances, the skin structure was manufactured using Alu-

minium 7178-T63 rather than Aluminium 2024-T4 at the HAI facilities in Greece. The

latter material is a high strength structural aluminium alloy which was used in the

first commercially successful jetliner, Boeing 707. It was concluded that this particu-

lar Aluminium grade was prone to stress corrosion cracking, particularly in thick mill

products, which inhibited its use in future fuselage applications. However, these design

modifications do not deter from the original objectives of this thesis as the tests are a

benchmark to which qualitative and quantitative data on failure modes and structural

dynamic behaviour can be derived and compared a posteriori with the simulations.

Further simulations can therefore be performed on Aluminium 2024-T3 and GLARE 3

systems without the need to undertake further experimental tests.

4.3 Description of finite element models

This section covers the development of finite element models used for the analysis.

The LS-DYNA model, based on the aforementioned demonstrator design, is a global

lagrangian model for the construction of the vulnerability map to study the overall

behaviour of the structure after the explosion.

4.3.1 LS-DYNA global lagrangian model

The metallic demonstrator was modelled using approximately 360,000 quadrilateral fully

integrated shell elements (Type 16) with an average element size of approximately 5

mm x 5 mm. The demonstrator is fixed at both ends via thick steel end caps which are

assumed to remain rigid through the simulation.

Aluminium 7178-T62 and 7075-T735 do not exhibit strong strain-rate sensitivity, and,

as a result, strain rate hardening has a minimal influence on the material flow stress.
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Table 4.2: Johnson-Cook material model parameters for Aluminium 7178-T62 &
7075-T73 [69, 70]

Property ρ υ E σy B n C m T0 Tmelt
Units kg/m3 (-) GPa MPa MPa (-) (-) (-) ◦K ◦K

Al 7178-T62 2830 0.33 71.7 538 200 0.2 0 - - -
Al 7075-T73 2780 0.33 71.0 434 303.58 0.390 0 - - -

For this reason, the power-law (first term) expression of the Johnson-Cook law is solely

used which is expected to perform comparably to the full strain-rate formulation. The

Aluminium 7178-T62 skin part of the structure fail when the effective plastic strain, ε̄pf ,

reaches 10% [69]. Input constants are summarized in Table 4.2.

The main structure consists of four parts: the skin and frame model, connecting cleats

and the longeron components. The four models are combined together, but the nodes

are not equivalenced. Shear clips (cleats) are made of Al 7075-T6 and their function is

to connect the skin and the frames by means of rivets. The external and internal doubler

and stringer are also connected to the skin by means of rivets. The mechanically fastened

joints were modelled based on a tie-break contact algorithm with a force based failure

criteria in shear and tension satisfying the following criterion:

(
fN

NFLF

)2

+

(
fS

SFLF

)2

≥ 1 (4.1)

where fN and fS are the developed normal and shear forces respectively and NFLF and

SFLF are the corresponding failure forces. The NFLF failure force was set to a value of

2.16 kN and the SFLF failure force to 2.58 kN with these values retrieved from [5].

The joints described above are primarily permanent fasteners such as rivets. The main

disadvantage of these joints is that the tensile and fatigue strengths of rivets are lower

than bolts and screws. Therefore high tensile loads may pull out the clinch, or severe

vibrations may loosen the fastening. When a blast pressure is applied on the walls of

the skin, essentially a large tensile force is applied to the rivets, possibly causing the

rivets to fail in succession (unzipping effect).

The concept of the vulnerability map is based on the premise that the vulnerability of the

structure varies depending on the location and size of the explosive charge. Associated

with a fixed point in the structure, a charge size that triggers failure when exploded is the

basis for the vulnerability map. This model is intended for analysing global effects on the

aircraft such as overall stress/strain distribution, deformation pattern and generating a

vulnerability map. This overall behaviour of the structure for post explosion flight can

be well simulated suing the global model.
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Diameter = 1230 mm
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Pressure gauge - top

Pressure gauge - bottom

Pr = 0
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Figure 4.3: Location of explosive charge and pressure gauges in demonstrator blast
test

4.3.2 Blast load modellisation

For the metallic demonstrator tests, the explosive charge was offset from the centre of

the structure to ensure failure on one side of the skin quadrant. A radially expanding

shock wave propagates throughout the structure impinging on the skin quadrant nearest

the charge before the other quadrants. The pressure distribution is therefore considered

to be non-uniform, both spatially and temporally, and implies that the skin nearest the

charge will experience the most severe pressure. Data from the pressure gauges for the

20g load case, situated at the top and bottom of the structure, as shown in Fig. 4.3, show

a relatively small instantaneous pressure peak and prolonged duration which remains

at the initial internal pressure. This shows that the top and bottom of the structure

is largely unaffected by the explosive charge, as most of the blast energy is spent in

deforming the critical skin quadrant. Although the MMALE approach would provide

an accurate description of the pressure profile at every point the structure, albeit at huge

computational and labour cost, it is assumed that pressure load curves derived from the

empirical load function, ConWep, is sufficient given the explosive stand-off distance and

charge mass.

Therefore in this study, the purely lagrangian structure is subjected to an intense pres-

sure whereby the skin quadrant closest to the explosive charge is subjected to two load

cases derived from empirical blast functions, as shown in Fig. 4.5.
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tion for 20g and 50g Semtex load cases
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Figure 4.6: Contours of out-of-plane displacement of metallic demonstrator subjected
to an internal explosive charge of 20g Semtex

4.4 Global model analysis results

4.4.1 Finite element model validation

The only tests data available are those blast tests that were conducted using one explo-

sive charge location and size. Therefore, the validation of the LS-DYNA finite element

model was performed, first of all, by comparing the results of the demonstrator tests

performed by TNO [68], which is discussed below.

It was anticipated that the demonstrator would not withstands an explosive charge

of 20g due to the very small stand-off distance and high TNT equivalency of Semtex.

However, the predictive results show that the structure withstood the explosive event

with no indications of breaching or significant damage to the skin, stiffening elements

and reinforcements. Figure 4.6 shows the evolution of out-of-plane displacement of

the structure at different time intervals obtained from the predictive simulation. The

maximum displacement occurs at the centre of the skin (where the explosive charge is

located) and evolves with time along the structure. The displacement contours evolve

in a non-uniform manner due to the presence of the stringers and frames which add

resistance in these regions. Displacement data from the middle of the skin was obtained

and showed that the skin wall vibrated elastically during this explosive event, as shown

in Fig 4.7.

These results are further supported by experimental data obtained from the DIC appara-

tus. Out-of-plane displacements on the demonstrator surface were obtained at different

cross-sections and time intervals, given in Fig. 4.8. For the 20 gr charge, the demonstra-

tor wall vibrates elastically in both the positive and negative direction which eventually

regains stability with time (i.e. displacement fades to zero).



4.4 Global model analysis results 73

0 2 4 6 8 10
−10

−5

0

5

10

Time (ms)

D
is
p
la
ce
m
en
t
(m

m
)

Explosion point - x,y displacement
Explosion point - z displacement

A B

1

- 4.186e+00

- 4.236e+00

- 4.860e-01

+1.364e+00

+3.214e+00

+5.084e+00

+6.914e+00

- 4.242e+00

- 2.382e+00

- 5.232e-01

+1.336e+00

+3.195e+00

+5.055e+00

+6.914e+00
A B

Explosive mid-point

Figure 4.7: Mid-point out-of-plane displacement (z), and contour plots obtained from
predictive simulations. Aluminium demonstrator, 20 gr explosive.

A second simulation was performed with a 50 gr explosive charge at the same stand-

off distance. The intensity of the shock wave (Pmax=45 MPa) was severe enough to

cause breaching of the critical skin quadrant. The sequence of failure begins with the

appearance of high stresses developing along the boundary edges of the stringers which

increases with magnitude. When the equivalent plastic strain for failure is reached,

cracks initiate and grow along these boundaries, as shown in Fig 4.9. The stringers

at this point are still structurally sound and continue to resist the outward pressure

exerted on the skin quadrant and corresponding stiffening elements. The failure criteria

assigned to the mechanically fastened rivets have been satisfied resulting in failure of this

contact interaction which allows the skin quadrant and stringer to deform more severely.

Catastrophic failure is reached when the propagating cracks reach the upper and lower

region of the bulkhead which directs the cracks to continue along the circumference of the

structure. This concludes with very high bending stresses developing at the boundary

of the stringers resulting in complete failure. The only structural component to remain

intact in this region is the frame, albeit severely deformed. These observations are

further supported by DIC measurements in Fig 4.11.

The 20 gr and 50 gr blast tests were carried out on the same structure. It is shown

that the 50 gr load case induces damage in the form of severe plasticity with significant

breaching of skin. Furthermore, from visual observations, and the displacement mea-

surements, it can be concluded that the aluminium demonstrator remained fairly intact

after the 20 gr blast (no plasticity, no damage). From visual and acoustic inspection,
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Figure 4.8: Out-of-plane displacement z at different cross sections and times. Alu-
minium demonstrator, 20 gr explosive. Displacements obtained with DIC [68]

the CFRP demonstrator did not manifest any damage on the skin after the 20 gr charge,

although the middle frame was fractured. The DIC technique in combination with high

speed cameras has proven to be extremely useful to obtained displacements (strains are

also possible). This together with the pressure measurements provides valuable material

to validate computer models.

4.4.2 Vulnerability analysis results

This modelling program was extended to Aluminium 2024-T3 and Glare 3 scaled fuselage

structures. As expected, Aluminium 2024-T3 displayed identical damage observations



4.5 Conclusion 75

RT, Magnitude

+0.000e+00
+4.833e+00
+9.665e+00
+1.450e+01
+1.933e+01
+2.416e+01
+2.900e+01

RT, Magnitude

+0.000e+00
+6.843e+00
+1.369e+01
+2.053e+01
+2.737e+01
+3.422e+01
+4.106e+01

RT, Magnitude

+0.000e+00
+1.090e+01
+2.180e+01
+3.270e+01
+4.360e+01
+5.450e+01
+6.540e+01

RT, Magnitude

+0.000e+00
+4.584e+01
+9.169e+01
+1.375e+02
+1.834e+02
+2.292e+02
+2.751e+02

RT, Magnitude

+0.000e+00
+3.460e+01
+6.920e+01
+1.038e+02
+1.384e+02
+1.730e+02
+2.076e+02

RT, Magnitude

+0.000e+00
+1.301e+01
+2.602e+01
+3.904e+01
+5.205e+01
+6.506e+01
+7.807e+01

t = 0.3 ms t = 0.4 ms t = 0.6 ms

t = 1.0 ms t = 2.0 ms t = 2.5 ms

Figure 4.9: Out-of-plane displacement z at different cross sections and times. Alu-
minium demonstrator, 50 gr explosive.

and tearing thresholds as the previous simulations due to similar mechanical properties

for both the 20 and 50g charge load. In the case of Glare 3, one should be cautious

how results are interpreted. In the shell multi-layered approach adopted in this Glare

model, if the composite failure criteria are satisfied, for example maximum strain for

fibre tension, the layer in the element is completely removed. This element is deleted

from the analysis even if adjacent composite or aluminium plies are still within their

failure limit. Therefore additional computational effort was required to determine the

damage state of all seven layers in the hybrid system to establish if complete failure had

been satisfied. Complete failure was defined when the front and back aluminium layers

had reached the equivalent plastic failure strain of 18%.

The results therefore show that Glare 3 showed no significant breaching/tearing of the

structure at the maximum charge load of 50g. Very high composite damage was observed

at the stinger/frame interface and within close vicinity of the blast. The results of these

simulations are given in Table 4.3.

4.5 Conclusion

The purpose of this chapter is to investigate the extent of the immediate damage of

scaled fuselage structures due to a bomb blast event situated near the target skin.

Assessment of immediate damage was conducted using LS-DYNA models of existing

fuselage demonstrator tests trials taking into account composite and metallic damage,
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Figure 4.10: Contours of out-of-plane displacement of metallic demonstrator sub-
jected to an internal explosive charge of 50g Semtex [68]

bolted joint analysis and stiffening elements. The initial predictive fuselage data were

in reasonable agreement with test data. Further analysis on Aluminium 2024-T3 tests

revealed that maximum allowable charge load is approximately 50g SEMTEX. Glare 3

structures did not report such breaching or tearing of the target skin at the charge load

although it was on the borderline of reaching the failure limit.

The data from the scaled fuselage designs need further assessment to cover more charge

designation points and different amounts of charge sizes. Furthermore, these tests also

reveal the deficiency of small-scale blast trials in fuselage blast mitigation analysis. It

is clear that the interaction of stiffening elements, bolted joints and frames have an im-

mense impact on the structural behaviour of fuselage structures, which are not reflected

in small-scale blast trials. These trials approximated the panel of fuselage skins as fully
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(a) Experiment [68] (b) Predictive

Figure 4.11: Final damage state of metallic demonstrator tests subjected to an inter-
nal explosive charge of 50g Semtex

Table 4.3: Vulnerability analysis of dynamic deformation for scaled fuselage structures
subject to internal blast load

Material Charge Charge Observed
designation mass damage

Aluminium 2024-T3 200 mm 20g Minor internal structural damage.
from target Dent, irreversible plastic damage
skin to stiffening elements.

50g Fractured stringers.
Severe damage to stiffening elements.
Extensive cracking.

Glare 3-3/2-0.4 200 mm 20g Minor structural damage
from target to stiffening elements.
skin Minor composite damage in

vicinity of blast load and along
skin/stringer boundary.

50g Increased internal damage
Ripped stringers
No significant breaching of target skin.

clamped. These kinematic boundary conditions clearly are not transferable to full-scale

designs since the sequence of failure and damage scenario is different. Future airframe

damage assessment should to incorporate curvature, stiffening elements and bolted joints

in the experimental trials.

Finally, the objective of this chapter is to establish failure scenarios for the purpose of ex-

amining airframe hardening options. It is clear that existing crack arresting features such

as crack straps have been successful in mitigating the effects of blast. However, Glare,

compared to monolithic aluminium, has demonstrated to offer superior blast resistance.
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The question remains whether the design of metallic structures can be transferred to

Glare and other hybrid composite systems. This need to be investigated further as slight

modifications may need to be considered to obtain a more favourable damage scenario

(i.e. arrangement of stringers and frames, interaction of metallic bolts with composite

structures etc.).



Chapter 5

Dynamic fracture of aerospace

structural materials

T
his chapter describes efforts to address the large-scale damage propagation and

crack growth of fuselage-like structures to blast loadings in the presence of multi-

site damage. Motivated by the limitations of previous dynamic fracture tests which

were ill-designed for the setup of simulation models, a coordinated effort is reported

here that not only focusses on the underlying fracture phenomena but also makes the

computational effort manageable. To determine the interplay between cylindrical air-

craft structures (global dynamic loading due to internal explosive) and the response of

individual fatigue cracked panel (e.g. pre-existing multi-site damage in aging aircraft),

well-controlled and minimal experiments for dynamic fracture of blast loaded barrel tests

with a pre-existing notch have been performed by TNO [26], for typical aircraft mate-

rials; Aluminium 2024-T3, Glare and CFRP. High speed imaging systems and pressure

gauges were implemented to obtain useful, quantitative physical fracture metrics, such

as crack tip velocity. The results have shown that crack growth speeds were in the order

of magnitude of several hundred meters per second , with Glare exhibiting much lower

average crack velocities than its metallic counterpart. CFRP indicated brittle behaviour

with very high crack speeds and crack bifurcation-branching.

5.1 Introduction

The catastrophic consequences of sabotage-induced blast loadings on commercial air-

craft have been a topic of interest for the past three decades. Events such as the Locker-

bie tragedy in 1989 promoted a review of blast protection measures on aircraft which

79
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Table 5.1: Blast loading regimes for aircraft explosions

Loading Characterisation Time scale Analysis
regime (ms) methodology

1 Explosive detonation 0-0.2 Eulerian
2 Blast wave propagation through 0.2-1 Eulerian

surroundings
3 On-set of structural deformation 0.5-5 MMALE

and damage
4 Large scale damage propagation 5-100 Coupled structural

by crack growth initiation and and fluid mechanics
fluid-structure interaction codes.

included the feasibility of manufacturing Glare based aircraft luggage containers. Fur-

thermore, while airport security screening measures now ensure that large quantities of

explosive will not pass through security, small amounts of explosives such as IEDs can

still be difficult to detect and have devastating effects. It is desirable to quantify these

effects and to establish if remedial action can in some manner increase the chances of

aircraft survivability. For example, consideration has been given to venting the explosive

through designated panels to vent off the blast products and ensure safe decompression,

a procedure misleadingly called ”aircraft hardening”. Results from Chapter 4 show that

during an explosive event in a scaled fuselage structure, there are a number of possible

processes which can take place at different moments in time, long after the detonation

of the explosive. These four regimes have been summarised as in Table 5.1.

Of course each regime presents its own unique set of technical challenges and problems

which from a numerical simulation viewpoint can manifest and accumulate in each sub-

sequent step, if not properly addressed. Chapters 3 and 4 assessed the computational

capability and suitability of using hydrocodes such as LS-DYNA to address the first

three regimes which simulate, amongst other factors, the initial detonation and subse-

quent blast wave propagation in the structure using an Eulerian formulation. As the

blast wave impinges on the structure, a fluid-structure interaction algorithm is defined

to transfer the blast energy to the structure based on a MMALE formulation. However,

blast reflections and other interactions that were considered to be secondary events were

not included. More importantly the regime (Regime 4) of large scale damage propa-

gation by dynamic crack growth has hitherto largely remained absent from structural

analysis. The presence of multi-site damage and the large build-up of high pressure still

contained in the fuselage after the initial explosion can trigger the growth of small cracks

which will link up and form large cracks resulting in fast fracture (Regime 4). Assuming

that the link-up process takes place, the configuration on an elementary level may be

considered as a long crack in a pressurised cylinder. A number of interesting challenges
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arise from this configuration, such as:

• The curved geometry and pressure differential causes the pre-existing longitudinal

crack to bulge out or protrude from the original contour. Under static loading

conditions this change in geometry, or bulging effect, significantly increases the

stress intensity factor at the crack tips which can trigger different types of failure

mechanisms.

• The contribution of non-linear elastic-plastic behaviour in the fracture process zone

and surrounding medium.

• The combined contribution of inertia (which enhances the stress state) and dy-

namic effects (fast motion which reduces the resistance to crack growth).

• Blast wave reflections from the non-linear boundary and build-up of high pressure.

• Under pressurised conditions (or at atmospheric conditions), crack growth will

result in high pressure leakage which will further drive the crack to grow.

Both theoretical and experimental studies on dynamic crack propagation in polymers

[20] and ductile materials [21] under dynamic loading conditions have received consider-

able attention in recent years. An understanding of the opening mode I crack initiation

and the subsequent crack growth phenomenon in Aluminium 2024-T3 have also been

extensively studied [3]. Although dynamic fracture is to some extent well understood,

predictive simulations remain a challenge. Indeed, the actual predictive power of dy-

namic fracture simulations is hindered by huge computational requirements, along with

modelling uncertainties such as kinematic boundary and loading conditions and fracture

parameters.

Researchers have resorted to various kinds of validation methodologies for dynamic frac-

ture simulations. In some studies, the numerical simulations are performed based on

inputs taken from published experimental data. These numerical inputs are often in-

sufficient to completely setup a simulation, which therefore leaves room for modelling

assumptions or the fitting of parameters. Then, the results of these simulations are

validated against those experiments published in the literature. These attempts high-

light the need for integrated experiment-simulation approaches. In addition to loading

conditions, there are uncertainties is the cohesive properties of the material. The cur-

rent opinion in the field of cohesive zone modelling of fracture is that the cohesive zone

law can be described by two independent parameters out of the following three param-

eters; cohesive energy, Γ, cohesive strength, T0, and the separation length, δ [20]. In
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most cases, the first two parameters are obtained from the global standard experimental

measurements for a given material, which is discussed later in this chapter.

An ill-designed large-scale experiment can result in uncertainties regarding kinematic

boundary and loading conditions which can result in many unknown parameters and

provide quantitative data which cannot be captured by the predictive model. This

chapter and the one that succeeds it illustrate this approach in detail. The outline is as

follows: the first section of this chapter highlights a case-study in which the planning and

design of dynamic fracture experiments was made without taking into account numerical

concerns, appropriate extraction of fracture metrics etc. The unsatisfactory outcomes

of this experiment became the catalyst for a more integrated, two-way approach which

is explained, investigated and evaluated throughout this chapter.

5.1.1 Case study: Sudden centered crack on pre-stressed plates

Designing and executing large-scale dynamic fracture experiments is non-trivial and

requires expensive apparatus and measuring instruments. The term ’large-scale’ is an

important one and refers to the size of the sample which ideally should embody the

scale and essential features of fuselage structures. Furthermore, the sample size should

be large enough to prevent or at least delay the interference of reflected blast waves

with the crack tip, but not too large to overwhelm testing machinery and make the

computational effort unmanageable.

As a first step, a configuration was derived which consisted of a large pre-stressed plate

mounted on a loading frame with anti-buckling plates positioned below and above the

plane of crack growth, similar to a M(T) fracture toughness test [26]. The crucial dif-

ference is that the initial crack of length, a0, was initiated by means of a line explosive

charge placed against the plate and a fixed anvil on the other side, see Fig. 5.1. This

configuration was informally referred to as Sudden Centred Crack on Pre-stressed Plates

(SCPP). Once detonated, the intensity of the explosive charge will instantaneously con-

flict with the fixed anvil causing a through-thickness crack corresponding to the length

of both the explosive and anvil. The combined effects of the pre-loaded plate and the

dynamic effects of the explosive will cause the crack to grow towards the longitudinal

boundaries. The time scale of such an event is of the order of ms which cannot be cap-

ture using standard photographic equipment. Therefore a high speed imaging system

capable of providing temporal resolutions of up 70,000 frames per second (fps) was used.

Tests were performed at TNO, Netherlands on Aluminium 2024-T3 (h = 1 mm), Glare

3-3/2-0.4 (h = 1.7 mm), CFRP (woven, h = 2 mm).
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Figure 5.1: Experimental setup of sudden centred crack on pre-stressed plates [26]

Fig. 5.2(left) shows the results of the experiment taken from high speed images of

the dynamic fracture event (0–300µs) of 1 mm thick SCPP Aluminium 2024-T3 plates.

The images were sent to Sheffield and were quantified digitally using Matlab Imaging

Processing Toolbox where a reference length, i.e. initial fracture length, was defined

and measured in terms of ’points’. All subsequent measurements were taken relative

to this reference which included the following metrics: horizontal and vertical distances

relative to the global coordinate system (x and y axes), absolute distances and angular

deviation. The derived quantitative metrics of crack length vs. time are given in Fig.

5.2(right). It is clear from this figure that both sides of the crack tip fails to propagate

in the same manner, as the left crack tip reaches the boundary of the plate before the

right crack tip. It is also worth noting that the areas of white in the high speed images

are due to bulging of the plate, causing out-of-plane displacements. Furthermore, the

two crack tips do not advance at the same rate failing to reach an asymptotic value i.e.

doesn’t reach a constant velocity, but rather accelerate and decelerate. This may be

due to the stress waves reflecting from the plate boundaries and interacting with the

crack tip. The crack does not progress in Mode-I, but rather deviates from the plane

of crack in a curved like manner. It is clear from Fig. 5.2(left) that the right crack tip,

before deviating from its straight path, is arrested until the left side crack tip reaches

the boundary of the plate. The remaining un-fractured ligament of the plate is suddenly

pulled apart after some delay.
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Figure 5.2: Description of (left) high speed images for dynamic crack propagation of
200 MPa pre-stressed SCPP aluminium plates and (right) corresponding crack length

as a function of time
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Figure 5.3: Crack propagation of (a) Aluminium 2024-T3 (b) Glare 3-3/2-0.4 (c)
CFRP [26]

Figure 5.3 shows crack growth profiles obtained from high speed images of Aluminium,

Glare and CFRP, with corresponding maximum instantaneous crack velocities. Com-

pared to Aluminium, Glare exhibited a blunter crack tip, which is attributed to the

fibre bridging mechanism, and lower crack growth rates. Fig. 5.3(c) shows the brittle

dynamic behaviour of CFRP, displaying crack branching, bifurcation and significantly

higher maximum crack speeds. Fibre splitting and matrix cracking alters locally the

direction of the propagating crack. However overall the crack path appears almost per-

pendicular to the direction of the applied load.
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5.1.2 How fast can cracks propagate?

Theoretical bounds to the rate of fracture exist based on the theory of elastodynamics

of brittle solids. The speed of the surface stress waves in an elastic fracturing medium

is generally known as the Rayleigh wave speed, cR, expressed as [71]:

cR = cS
0.862 + 1.14υ

1 + υ
(5.1)

where cS is known as the shear wave speed:

cS =

√
G

ρ
(5.2)

where G is the shear modulus which can be obtained from the Young’s modulus, E, and

the Poisson’s ratio, υ, by

G =
E

2(1 + υ)
(5.3)

Generally speaking, experimentally observed terminal fracture speeds is only around half

of the theoretically predicted value which is crudely attributed to the observation that

rapidly moving cracks develop roughened fracture surfaces. Alternatively, an estimation

of the crack speed which propagates in an unstable manner was derived using the Griffith

energy concept; this states that the surplus of energy during the fracture process can be

converted to the kinetic energy of the material elements in the crack path as they move

apart from each other. This is expressed as [72]:

c =

√
π

κ

√
E

ρ

(
1 − a0

ai

)
(5.4)

where κ is a constant, a0 is the initial crack length and ai is the crack length at every

time instant. A more detailed analysis of the crack tip stress field has given an estimation

of 0.38 for the first term on the right hand side of the above equation. The second term

on the right is the speed of propagation of longitudinal waves, cL, in the material, thus:

c = 0.38 cL

(
1 − a0

ai

)
(5.5)

It can be observed that the limit: limai→∞

(
1 − a0

ai

)
= 1. Therefore for ai � a0,

Equation 5.5 becomes:

c = 0.38 cL (5.6)

Based on the above expression, it is clear that there is a limit to the crack speed in every

material. Nevertheless, the speed of unstable crack growth is comparable with the speed

of propagation of sound waves in the material. This has catastrophic implications in the
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event of unstable crack growth of an initial crack of a few millimeters as entire fuselage

structures can be destroyed in a matter of moments.

Additionally, a geometry dependent limit to the fracture propagation speed in pipes was

derived by Kanninen [4]:

c =
cL

4
√

3(1 − υ2)

√
2h

d
(5.7)

Where h denotes the pipe wall thickness and d is the pipe diameter. A similar expression

by the same author was given in [73], in the form of:

c = 0.75 cL

√
2h

d
(5.8)

Table 5.2 shows the theoretical crack speeds of growing cracks for the three aerospace

structural materials. Of course, they should be considered as upper bound velocities

as the underlying assumption is that the medium obeys linear elastic, isotopic, brittle

behaviour. The two formulae by Kanninen do not differ substantially from each other

in outcome and only Eq. 5.7 is included. As the formulae are geometry dependent, an

example geometry based on the VULCAN barrel tests, introduced later in this chapter

is assumed.

Table 5.2: Theoretic crack velocities in metallic, hybrid and composite mediums

Material Rayleigh, (m/s) Griffith, (m/s) Kanninen, (m/s)
Eq. 5.1 Eq. 5.6 Eq. 5.8

Aluminium 2024-T3 2929 1939 171.2
GLARE 3-3/2-0.4 2753 1821 209.6
CFRP 3025 2001 249.8

Table 5.2 shows a considerable difference between the upper bound fracture rates of

Rayleigh and Griffith and the predictions of the Kanninen formula. Equation 5.7 is

somewhat empirical in nature since it is based on a simple model calibrated with ex-

perimental data. Although the range of validity is not indicated, this empirical formula

was derived for oil pipeline applications and pressure vessels, nuclear reactor design etc.

In applications such as this, the ratio 2h
d is typically in the range 1

30 − 1
60 , considerably

lower than the value of 1
500 for the barrel tests. It is clear from Eqs. 5.7 and 5.8 that it

cannot hold for arbitrarily high 2h
d ratios; this would imply that un-curved plates could

never fracture. Whether a large thin-walled cylindrical structure falls within the range

of validity is doubtful as it does not resemble the typical geometry the formula is used

for.
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5.2 Integrated experimental-numerical design approach

Despite the obvious shortcomings of this case study, the tests did provide a conservative

measure of the dynamic fracture characteristics of the aforementioned materials. One of

the main concerns was that the tests lacked practical applicability to aircraft cylindrical

structures. Passenger aircraft have insulation and panelling making an explosive placed

directly against the skin by a passenger an unlikely scenario, as the stand-off distance

of the explosive will have a significant influence. An additional consideration was the

effect of cabin pressurization on the elastic and plastic deformation of the fuselage skin

under blast loading. Cabin pressurization pre-stresses the fuselage and thus may alter

the structural response to an internal explosion. Although it would be ideal to utilize

full-scale explosive testing on aircraft for this evaluation, the cost and size of such an

endeavour were not amenable in this study. Furthermore, the experiments must also

facilitate the setup of finite element models based on controlled kinematic boundary

and loading conditions with few unknown parameters. The asymmetry of the previous

SCPP test setup, uncertainties regarding loading conditions (particular the damaged

induced by the explosive charge) and out-of-plane movements of the plate makes this

arrangement very difficult and unsuitable for V & V simulations.

Motivated by the limitations of this study and the need for more realistic structural

configurations which favour the V & V process, a more intimate collaboration between

the experimentalist and numerical analysts was needed.

The inspiring guidelines in this effort were as follows:

• An integrated design of the experiments and the simulations with the premise

of avoiding unnecessary challenges to the computational model while probing the

essential dynamic fracture features;

• Direct one-to-one comparison based on a set of relevant predefined experimental

metrics;

• Avoid case-specific parameter fitting which have no physical/useful interpretation;

• Reduction of uncertainty levels through well-defined kinematic boundary and load-

ing conditions and, if possible, independent experimental parameter determination

(e.g. cohesive law).

A schematic of the requirements and rationale behind the integrated approach is given in

Fig. 5.4. Key aspects in carrying out this program include on the experimental side high-

resolution full-field diagnostics, and well controlled and well instrumented reproducible
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Figure 5.4: Schematic of the integrated approach for the validation of large-scale
simulations of dynamic fracture

loading. The quantitative performance metrics, such as crack-tip velocity, provided by

the experiments are compared a posteriori with the predictive simulations.

Within the VULCAN consortium, a well-controlled, minimal and representative ex-

perimental scheme for dynamic fracture was designed specifically for the validation of

large-scale simulations using cohesive finite elements. The rationale is taken from the

concept that multi-site cracks in a pressurised fuselage are subjected to internal pressure

loads and can link up to form longer cracks, i.e. a long crack in a pressurised cylinder.

A new test design based on a closed pressurised barrel set-up was identified as the best

design candidate which closely resembles the structure of a commercial aircraft fuselage,

such as curvature and pressurisation, while still allowing cost-effective parametric stud-

ies. A series of explosive pressurised barrel tests were performed by the Dutch defence

company TNO, under the EU funded VULCAN project [26]. The responsibility of the

author, although not directly involved in the development of this experimental program,

was to develop complex finite element models which would validate and give further

insight into the blast-induced response of Glare/Aluminium structures in the presence

of cracks.
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Table 5.3: Geometrical and loading parameters for numerical modelling

Material Diameter, d Length, l Thickness, h Pressure Amount of TNT
(mm) (mm) (mm) (kPa) (g)

Aluminium 2024-T3 1
1225 1000 200 54

Glare 3-3/2-0.4 1.7

5.3 Pressurised barrel tests

The barrel consists of two plates, front and back, which are mechanically fixed with

bolts. The perimeter of the front plate relative to the back is approximately 1:3 and

is varied throughout the test program to encompass different structural materials. The

back plate material remains constant as Aluminium 2024-T3 material of 1 mm thickness.

The overall dimensions are approximately 1.2 m diameter and 1 m height and the top

and bottom of the barrel are firmly fixed using massive steel plates, relative to one

another in the vertical direction, as shown in Fig. 5.5(a). In order to provide accurate

loading conditions to the simulations, a loading set-up is designed where a pre-notched

barrel is pressurised and crack propagation is triggered by the detonation of a TNT

charge placed inside in the middle of the barrel, see Fig. 5.5(b) for details. This barrel

setup does not have the shortcoming of the previous one (no damage on the barrel skin,

symmetric blast and standoff distance larger than zero).

To simulate aircraft operating conditions, a pressure valve is connected to the top of the

barrel and an initial internal pressure of 200 kPa is applied. To monitor the pressure

profile during the blast explosion, a series of pressure gauges are situated at the top and

bottom of the barrel, as shown in Fig. 5.6.

A through-thickness pre-notch of 56 mm length is saw-cut on the front plate and taped

off using an industry foil adhesive tape to avoid de-pressurisation, as shown in Fig.

5.5(b) for details. The pre-notch length has been obtained by means of FE simulations

[21], so that a crack does not propagate under the static pressure alone. Table 5.3 shows

the geometrical and loading parameters for the Aluminium and Glare barrel tests. The

crack path was recorded using high speed cameras which can capture up to 40,000 frames

per second, depending on the level of resolution required. In order to achieve the best

possible exposure, the front plate of the barrel was illuminated in white and the pre-

notch was clearly marked in black with a series of grid lines extending in intervals of 10

mm, as shown in Fig. 5.7.
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Figure 5.5: Experimental set-up of pressurised barrel tests [26]
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Figure 5.8: High speed camera images of dynamic crack propagation of Test Al03

5.4 Experimental results

5.4.1 Aluminium 2024-T3

The choice of quantitative metrics is at the heart of any V & V effort, which must

reflect the aims and objectives of the experiment and have real, physical significance to

the underlying phenomena and be amenable to accurate experimental instrumentation.

Moreover, they should be easily executable from simulation results. In the problem of

dynamic crack propagation considered here, the following set of validation metrics are

employed: crack initiation time, crack tip position and crack tip velocity. This choice

satisfies the above requirements and gives the ability of one-to-one direct comparison of

the simulation results with the experimental data.

The real-time records of the high speed images associated with the propagation of a

crack along the vertical crack plane is shown in Fig. 5.8. Although the front notch face

is somewhat unclear due to the high contrast flash of the internal explosion, both top

and bottom notch crack tip locations can be inferred from the images and show a clear,

symmetrical continuous crack extension.

These high speed images provide a set of quantitative measures which were identified

and measured from the crack tip position and frame number. Typical crack tip metrics

on both the top and bottom notch faces for this test (Test AL03) are shown in Fig. 5.9.
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Figure 5.9: Quantitative performance crack metrics obtained from high speed images
for Aluminium 2024-T3

As shown in this figure the crack takes t=150 µs to initiate upon loading and propagates

with an average velocity of 300 m/s.

Both crack speeds follow the same pattern, an indicator of the uniform loading and

constraints giving to the favourable symmetrical behaviour. There is an initial peak

velocity of approximately 600 m/s which then decreases to a mean value between 200

and 300 m/s. These results are reasonably close to the values published in [26] and the

speed of fracture is still much lower than the Rayleigh wave speed of aluminium (2929

m/s).

The fracture profile shows that fracture was initiated at the initial notch and continued

in both vertical directions, thus fracturing in Mode I until reaching the end of the

barrel. This was proceeded by Mode III fracture which occurred along the circumference

of the barrel creating an opening up of the barrel in two apertures, see Fig 5.10(a).

The profile of the crack path indicates a clean fracture reminiscent of fracture in thin

walled structures, showing significant plastic deformation and bulging due to the outward

expulsion of the explosion, see Fig 5.10(b).



5. Dynamic fracture of aerospace structural materials 94

M
o
d
e
I
fr
a
c
tu

re

Mode III fracture

Bulging of vertical
steel supports

(a) (b)

Figure 5.10: (a) Pressurised barrel after the explosion, (b) Profile of crack path

The pressure curves are presented below in Fig. 5.11. Pressure gauges Top and Bottom

2 show very similar pressure profiles showing an initial instantaneous rise in pressure

followed by a decay in pressure below that of atmospheric pressure. This initial over-

pressure is preceded by further reflections of the shock wave on the boundary of the

barrel, resulting in periodic peaks of pressure with time. The pressure profile gradually

decays to atmospheric pressure, over a few milliseconds, indicating total expulsion of the

blast pressure. Pressure gauge Bottom 1 shows a similar behaviour with an exception of

a significantly larger second peak overpressure which is more than double of the initial

peak overpressure. The pressure gauge located near the boundary of the circumference

of the barrel shows that more severe magnitudes of pressure occur in this region. This

behaviour reveals the complex shock wave phenomena of the explosion within the barrel

which includes a number of periodic shock wave reflections occurring over a few millisec-

onds. These finding reiterate the knowledge that cabin pressurisation, which pre-stresses

the fuselage, under the combined effects of inertia, will drive MSD cracks long after the

initial dissipation of the explosion and subsequently travel large distances from the blast

site. A similar crack in an un-pressurised fuselage would stop growing once the explosive

pressure is spent.

5.4.2 Glare 3-3/2-0.4

High speed images taken from the first barrel test are shown in Fig. 5.12. A distinct

feature of the crack profile is the bluntness of the crack tip during the initial phase of

crack extension, t = 1.35 − 2.8 ms. During this period there is evidence of crack arrest,

shown in frames 2 and 3. This is in contrast to Aluminium which exhibited a consistent
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Figure 5.12: High speed camera snapshots for mode-I crack propagation for Glare
panels [26]

sharp crack tip throughout the test. The fracture metrics obtained from the sequence

of high speed images are shown in Fig. 5.13, and show an average crack velocity of 200

m/s, which is lower than the average crack velocity found in Aluminium 2024-T4 (300

m/s).

No evidence of crack arrest was found in the second barrel test which may raise questions

about the repeatability of the test, however the results in terms of average crack velocity
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Figure 5.13: Quantitative performance crack metrics obtained from high speed images
for GLARE 3-3/2-0.4

are deemed consistent with the first test. Figure 5.14 shows a comparison of crack

velocities vs. crack advance of both Glare barrel tests.

5.5 Explanation of failure mechanisms in FMLs

Damaged samples from these tests were sent to Sheffield for further inspection which

revealed a multitude a failure mechanisms which are both metallic and composite in

nature. This includes interlaminar delamination at the metallic/composite interface,

extensive fibre splitting and failure and ductile tearing of the aluminium layers, as shown

in Fig. 5.15.

The lower average crack velocity exhibited by Glare compared to monolithic aluminium

may be attributed to these complex failure mechanisms. Of particular interest is the

transition from blunt to sharp notch profiles which seems to be indicative of cracked

Glare structures subject to dynamic loading. Vermeeren [74] and De Vries [10] provided

a detailed description of the quasi/static failure sequence in Glare. The presence of a

through-thickness crack, or saw-cut, causes the stress intensity to increase at the crack
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Figure 5.15: Deformation characteristics taken from GLARE barrel tests [26]

tip. Due to the pre-pressurisation phase, a hoop stress is applied to the barrel which

results in a local plastic zone in front of the crack tip in the metal layer which also induces

crack tip to blunt. This has also been observed in centre-crack flat panels, further details

can be found in Ref. [10]. Since both metal and glass fibre layers are equally strained

in the far field, a complex shear stress state takes place at the metal/fibre interface due

to the occurrence of plasticity. Superposition of the shear stresses due to plasticity and

crack blunting can result in local shear stresses that exceed the critical shear stress of

the resin. When the shear stress reaches a critical value, interlaminar delamination can

occur at the metal/fibre interface. With increase applied load, fibre failure can occur

when the ultimate fibre failure strain (which is approximately 4.5 %) is reached. Fibre

failure causes a re-distribution of stresses to the still intact part of the structure. It is

expected, that the elastic energy of the glass fibres is released into the matrix and causes

delamination at the resin-rich metal/fibre interface. However, it is anticipated in the

barrel tests that, due to the very high dynamic loads, the surrounding metal layers will

be severely yielded. Therefore the strain field in front of the crack tip will influence the

load carrying capability of the structure. In this scenario, the vicinity of the crack tip
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which experiences very high plasticity may lose its capability to carry the load and part

of the load is transferred to both the elastic fibre layers and the remaining elastic part of

the metal layers. This complex mechanisms ensures higher performance of FMLs with

respect to an equivalent monolithic metal panel when high static loads are applied. This

may help explain the blunt to sharp notch transition observed in these experiments. This

feature is supported by work done by De Vries [10], who observed flat centre-cracked

Glare panels under quasi-static loading. During crack extension, the crack-tip opening

angle (CTOA) was investigated and was found to be strongly dependent on crack tip

blunting. It was demonstrated that the critical CTOA, which represent the amount of

blunting, reduces for large crack extension, and hence the shear stresses resulting from

blunting also reduces.

This raises rather interesting questions which seem to indicate that failure mechanisms

observed under quasi-static loading could be extended to those of a dynamic nature. It

is prudent of course to consider that under high strain rate loading condition, there are

other issues which should be taken into account, mainly:

• Strain rate sensitivity of the glass fibres and the epoxy resin, resulting in change

in fracture surface due to high rate of material separation.

• Reflected shock waves from the boundaries of the specimen interfering with the

crack growth.

• Dependence of fracture toughness on loading rate etc.

Post-damage inspection of the fracture surfaces of the Aluminium samples revealed the

dominant fracture to be ductile transgranular fracture by microvoid coalescence. This

is typically characterised by a dimpled appearance on the fracture surface where the

voids and ligaments have coalesced, as shown by a scanning electron microscope image

in Fig. 5.16. The dimple shape is strongly influenced by the type of loading and, in

the case of local uniaxial tensile loading, the formation of equiaxed dimples can be

seen in this figure. The microvoids that form these dimples nucleate at various internal

discontinuities such as intermetallic particles, precipitates, second phase particles and

grain boundaries (Figs. 5.17(a) and 5.17(b)) [75]. These voids grow as the local stress

continues to increase (Fig. 5.17(c)), until the local stress is too large for the remaining

ligaments between the voids and the material fractures completely in void coalescence

(Fig. 5.17(d)).

This is in contrast to brittle materials which tend to fracture intergranulary [75]. In this

process the fracture follows the grain boundaries, or in cleavage, where the separation

occurs along specific crystallographic planes, and through the grains.
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Figure 5.16: SEM image of ductile fracture surface [26]
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Figure 5.17: Ductile fracture process
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Figure 5.18: High speed camera snapshots during crack propagation of CFRP. Test
1 (a) and 2 (b).

5.6 Comparison with woven carbon-fibre reinforced plas-

tics

Finally, two pressurised explosive barrel tests were performed on woven carbon-fibre

reinforced plastic (CFRP), a multi-layered brittle elastic material system with higher

stiffness compared to Aluminium and Glare. In Figs. 5.18(a) and 5.18(b), taken from

both tests, the high speed camera images clearly show the evolution of failure with crack

bifurcation and multiple crack branching. The V shape of the cracks near the top and

bottom of the barrel, in Fig. 5.18(a), are probably due to a boundary effect. In both

tests, there is strong evidence of rear surface interlaminar delamination and fracture,

although the fibres at the front remain intact resulting in fibre bridging. In Fig. 5.18(b),

extensive fibre splitting occurs across the circumference of the barrel, increasing in size

during the explosion. The poor failure threshold of CFRP to blast loading conducted

previously by RMA-VULCAN [17] also suggests that the these systems do not absorb

significant energy in fracture mechanisms such as delamination and fibre fracture. The

average crack speed is approximately 2500 m/s, not far from its theoretical limit, the

Rayleigh wave speed (3000 m/s).
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Figure 5.19: Post-mortem view of CFRP fragments showing crack bifurcation [26]

5.7 Conclusion

A coordinated effort is reported in this chapter to establish an experimental design which

not only addresses the underlying dynamic fracture phenomena and key features of air-

craft fuselage elements but also makes the computational effort manageable. Previous

experimental efforts on pre-stressed flat plates were ill-designed with many uncertainties

regarding kinematic and boundary conditions. The results of the test were inconsis-

tent showing asymmetric crack growth from both crack notches and significant damage

in the vicinity of the crack due to the manner in which the explosive was detonated.

Uncertainties regarding the setup of the experiment hindered the use of numerical mod-

els. However, the results did appear to show that Glare exhibits superior resistance to

fast fracture growth compared to monolithic aluminium and traditional woven CFRP

systems.

To address the shortcomings of the previous experiment, an integrated experimental-

numerical approach was devised within the VUCLAN consortium to incorporate fea-

tures such as cabin pressure, curvature and multi-site damage. Pre-notched cylindrical

structures were manufactured and tested under an explosive charge of 54g TNT placed

in the centre of the structure. High speed imaging systems and pressure gauges were

implemented to capture and record this high speed event. From this data, quantitative

metrics were employed which expressed the crack-tip position as a function of time. Due

to the hybrid multi-layered nature of Glare and the bridging of glass-fibres in the wake

of the crack, Glare showed to have much lower average crack velocities than Aluminium
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2024-T3 and CFRP. The brittle nature of the CFRP tests was highlighted by the very

high crack speeds reaching almost 2/3 of its theoretical Rayleigh value. This resistance

to crack growth was further displayed by the clear surplus of energy needed to creature

new fracture surfaces resulting in multiple crack paths, known as crack branching. The

crack bifurcation and brittle-like shattering of the CFRP panels make it an unsuitable

candidate for blast attenuating structures particular as such blast-induced debris can

cause secondary injuries to third parties.

The blast pressure profile taken from the pressure gauges showed multiple reflected

shock waves from the boundary and substantial pressure leakage during the fast fracture

phase. The internal pressure and hence the pressure differential relative to atmospheric

conditions drives the crack long after the initial explosion (which is of a fraction of a mil-

lisecond). Furthermore, the blast pressure profile and boundary conditions proved to be

consistent and reproducible. The next phase is to use these well-controlled experiments

for the validation of large-scale FE models using cohesive finite elements.



Chapter 6

Modelling of dynamic ductile

fracture propagation using

cohesive zone elements

D
ynamic fracture experiments are simulated in this chapter using cohesive elements

inserted along the crack path. Validated MMALE models are developed to extract

a full blast pressure profile of the blast event which are subsequently transferred to

the lagrangian fracture model. Current capabilities in LS-DYNA precludes the use of

shell cohesive elements, therefore a shell-solid transition interface was defined. It will

be shown that the existing rate independent cohesive zones over predict the rate of

crack propagation dramatically. Alternative rate dependent models are discussed and

implemented.

6.1 Introduction

In this section, the dynamic fracture experiments described in Chapter 5 are simulated

using the explicit finite element solver, LS-DYNA. As previously discussed, the role of

the experiments in the integrated experimental-numerical approach is twofold. On the

one hand, the experiments provide well-controlled, minimal experiments which facilitate

the setup of the numerical model with very few unknown parameters. On the other

hand, quantitatively derived experimental metrics (crack tip velocity) are derived from

the experiments which are compared a posteriori with the developed numerical model.

This is achieved through the implementation of cohesive zone elements (CZE) which are

inserted in the plane of crack growth and behave according to a traction-separation law.

103
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The formulation of rate independent CZE’s which exist in the material library of LS-

DYNA with respect to quasi-static and dynamic loading rates are discussed, simulated

and analysed. The parameters for the cohesive model have to be identified first, which

will be performed by reproducing the experimental F(COD) curve and the COD(da)

curve of standard fracture M(T) tests which are reported in the literature.

The outline of this chapter is as follows: firstly, the origins of the cohesive zone model

and its role in the field of fracture mechanics and structural integrity assessment are

given. Secondly, the concept of traction-separation law (TSL) to describe the behaviour

of cohesive elements and the various formulations which have been postulated in the

open literature are introduced. The term ’thin walled structure’ is acknowledged and

defined to establish the appropriate modelling rationale and guidelines. The extraction

of static cohesive properties is then investigated and transferred to the explosive barrel

tests. Finally, the degrees of success in which these elements can capture the dynamic

crack growth rates are discussed with recommendations for future work.

6.2 Introduction to cohesive elements

6.2.1 Motivation for applying cohesive zone models

Structural components are vulnerable to damage which can arise during the manufactur-

ing process and/or throughout its operation lifetime. Damage in the form of crack-like

flaws is commonly assessed using the concepts of classical fracture mechanics, a concept

which arguably has reached technological maturity since its infancy in the A.A. Griffith

era. Today, the characterisation of structural materials and structural integrity assess-

ment methods can be found in national and international standards and codes. However,

the field of classical fracture mechanics becomes somewhat limited when assessing the

structural integrity of thin-walled structures, such as the fuselage, and when a higher

exploitation of mass is engineering structures is needed [76].

It is important at this point to clarify the term ’thin-walled structure’, a term which has

resonance in several engineering contexts. Three different types of definitions exist which

are given in Table 6.1. Considering the above definitions in relation to the performed

VULCAN barrel tests, it is assumed that the skin is thin-walled and will be, from herein,

treated as such in numerical analyses.

Traditionally, the field of classical fracture mechanics approaches fracture problems in a

two-dimensional manner, notwithstanding the fact that three-dimensional FE models of

structural components or tests pieces exist and can be performed with varying degrees
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of success. In industry, structural engineers prefer to deal with single, manageable,

fracture parameters which can be interpreted using charts or tables. Such parameters

may be a single-valued property such as fracture toughness, or a relationship between

the crack extension resistance and the amount of crack extension, all of which have been

determined under pre-defined circumstances describing the near crack-tip stresses and

strain fields under limiting conditions. These conditions are commonly considered to

be in a state of plane strain, a condition where the principal strain in the direction of

the longest dimension (which is very large compared to the others) is constrained and

can be assumed as zero. On the other hand, in thin-walled structures a state of plane

stress arises which must be acknowledged and accounted for in structural assessment

exercises. However, in reality the conditions a structure are under is difficult to establish

and can substantially deviate from the lab-based tests conditions. This poses problems

for the determination of the fracture parameters to be used for the assessment of the

components.

This transferability problem in classical fracture mechanics led to the advent of numerical

damage models which gave a new perspective on structural assessment procedures. In

these models, the damage within the fracture process zone is computed and embedded

in the global finite element model of the component which is under a prescribed loading

condition. If the three-dimensionality of the analyses is taken in to account and the

damage model parameters are given as functions of the triaxiality of the stress state, then

the transferability problem is somewhat solved [77]. In this thesis, the phenomenological

damage model of cohesive zone elements are used for the experimental validation of the

previously mentioned barrel tests of dynamic fracture.

6.3 The cohesive zone model

The cohesive zone (CZ) model is a phenomenological damage model which describes

the fracture process zone and fracture by means of a separate interface layer of cohesive

elements, which obey a traction-separation law (TSL), embedded between the continuum

elements of the global FE model. The TSL relates the displacement jump vector between

the two surfaces of the element, δ, to the traction vector, T = f(δ), acting on the

surface. The CZ elements exert a traction between the surfaces of the fracture until a

certain maximum displacement between the flanks, or maximum opening, δ0, is reached.

Therefore the traction-separation law describes the loss of load bearing capacity of the

material as a function of a separation, irrespective of the physical details of damage

occurring in the actual material. This formulation can be applied to both ductile and

brittle damage failure processes [22, 78–80]. A drawback of the cohesive model is that
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Table 6.1: Definitions of ’thin-walled structure’ which exist in the field of engineering

Definition Description

Geometrical A structure is called thin-walled, if the thickness is significantly
smaller than all other relevant dimensions (normally 10 times
smaller). This is sometimes expressed in terms of its slenderness
ratio, β. All Aluminium and Glare panels and structures described
in this thesis satisfy this definition.

Mechanical A structure can be regarded as thin-walled, if the stresses in
the thickness direction are negligible compared to all other in-
plane stress components (plane-stress assumption). This definition
raises many interesting questions. In the case of the pressurised
barrel tests this condition is satisfied. However, in stiffened fuse-
lage structures, cracks may occur at the boundary of the skin-
stringer. In this region, complex three dimensional stress states
may develop due to the local constraint precluding the application
of conventional shell elements in the numerical analyses.

Structural The term ’thin walled’ is commonly used by design engineers to
describe structures which can only carry the applied load by stiff-
ening elements either by use of extra material (reinforcements or
frames) or by design principles in order to avoid buckling prob-
lems. See scaled fuselage demonstrators tests in Chapter 4.

the crack path has to be defined a prior which is sometimes not known to the numerical

analyst. Figure 6.1 shows a schematic of the physical damage process using cohesive

elements.

The cohesive zone model was inspired by the work of Dugdale [81] and Barenblatt

[82], both of whom considered the idea of a cohesive traction preventing a crack from

extending. Both authors considered a fracture to have a stress free actual length, and a

fracture process zone ahead of the physical crack tip. A cohesive traction was postulated

to exist of some constant quantity, σ0, (Dugdale, Fig. 6.2(a)) or a traction as a function

of the distance from the crack tip (Barenblatt, Fig. 6.2(b)). These concepts were

implemented to develop cohesive models which define the tractions as functions of the

separation length within the cohesive zone. Material degradation and separation are

concentrated in a discrete plane, represented by cohesive elements which are embedded

in the continuum elements representing the tests piece or structural component. This

allowed the elastic stress singularity in the crack tip to disappear [83]. Figure 6.1(a)

shows how the physical process can be represented by the cohesive model. The first

application of CZM to the fracture behaviour of a material was performed by Hillerborg

et al. [84] to describe the damage behaviour of concrete.
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of cohesive elements
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Figure 6.2: Cohesive zone model: formulation according to Dugdale [81] and Baren-
blatt [82]

6.3.1 Traction-separation law

6.3.1.1 Modes of failure

In the field of fracture mechanics, three modes of failure are distinguished, each of which

can act in isolation or a combination of the three. The discriminating feature of these

failure modes is that they fail to identify the presence of shear lips which can occur

in plane strain fracture problems (i.e. theoretical smooth surface). Mode I operates

normal to the failure plane and acts in the direction of the normal tractions. Mode

II and III are associated with in- and out-of-plane shear respectively. Various criteria

exit to account for the mixed-mode interaction of failure and assign different cohesive

properties (weighting) for mode I and II/III.

The constitutive behaviour of the cohesive model is formulated as a traction-separation

law (TSL), which relates the traction, T , to the separation, δ, the latter representing

the displacement jump within the cohesive element. A cohesive element fails when the

separation attains a material specific value, δ0. The maximum stress reached in a TSL,

the cohesive strength, T0 is a further material parameter. For a given shape of the

TSL, the two parameters, δ0 and T0, are sufficient for modelling the complete separation

process. In practice, it has been proven useful to use the cohesive energy, Γ0, instead

of the critical separation. The cohesive energy is the work needed to create a unit area

of fracture surface (in fact twice the unit fracture surface because of the two cohesive

surfaces) and is given by:

Γ =

∫ δ0

0
T (δ) dδ (6.1)

A host of TSL have been suggested where the exact shape may vary according to the

fracture behaviour of the material. A typical TSL for ductile fracture as depicted in

Fig. 6.3(d), has three phases, a semi-linear elastic start where tractions increase with
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Figure 6.3: Typical traction-separation laws: (a) Needleman (1987), (b) Needleman
(1990),(c) Scheider, (d) Tvergaard and Hutchinson

increasing opening. This is followed by a constant level of cohesive traction level caused

by plastic yielding of the intervoidal ligaments. The last part describes a decreasing

traction as the ligaments begin to fail. The increasing and decreasing slopes of the TSL

are also present to avoid the numerical problems associated with a step function TSL

approach. The exact shape of the normalised TSL is often reported to have no or little

effect [85, 86], while others do report an influence [87], but mostly in the area of fracture

branching. In this study the recommended Scheider model [83](Fig. 6.3(c) is used. Some

of the most widely used TSL are discussed below and shown in Fig. 6.3.

Needleman

Needleman [88] (1987) proposed an intrinsic cohesive law formulated as cohesive energy

density φ of the following form:
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(6.3)

This TSL is depicted in Fig. 6.3(a).

Needleman [86] also proposed a second exponential model in 1990 to simulate a ductile

fracture process. This TSL does not have a zero traction at the moment of failure as

can be observed in Fig. 6.3(b). Equation 6.4 defines it, where z = 16
9 e.

T = zTe
δ

δ0
e
−z δ

δ0 (6.4)

Tvergaard

Tvergaard et al. [78] proposed a tri-linear TSL with a stable traction level for most of

the opening profile. It is shown in Fig. 6.3(d). It is defined by Eq. 6.5.

T = T0


(
δ
δ1

)
δ < δ1

1 δ1 < δ < δ2(
δ−δ2
δ0

)
δ2 < δ < δ0

(6.5)

Scheider

An adaptation to the Tvergaard model was published by Scheider & Brooks [89], making

the TSL continuously differentiable in order to avoid numerical problems. Equation 6.6

defines the TSL and is illustrated in Fig. 6.3(c). The model is the one used in the

non-rate sensitive cohesive simulation performed for this research.
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T = T0
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(6.6)

The parameters δ1 and δ2 are set to δ1 = 0.01 δ0 and δ2 = 0.75 δ0.

The TSL is unequivocally determined by any two out of the following three parameters

1. Cohesive stress, T0.

2. Cohesive energy, Γ0.

3. Critical separation, δ0.

According to Equation 6.6, the area under the curve in Figure 6.3(c) is given by

Γ = T0

(
1

2
− 1

3

δ1

δ0
+

1

2

δ2

δ0

)
δ0 (6.7)

Consequently, two cohesive parameters are sufficient to describe the TSL, of which T0

and Γ0 have been chosen for this procedure. In LS-DYNA the traction-separation law

is given by a tabular input of data points of the curve. According to Ref [83](GKSS),

the following procedure is recommended:

1. The initial slope, Kini, of the TSL should be as steep as possible. As a rule of

thumb, T0/Kini < 0.05 δ0 should hold.

2. A constant stress part should terminate at δ ≤ 0.75 δ0, then the cohesive stress

should decrease to zero at δ0.

3. If possible the corners of this multi-linear representation should be rounded by

additional points.

6.3.2 Alternatives to using cohesive zones

Simulating the fracture process in commercial finite element codes can be achieved

through means other than cohesive zone elements. This section offers an overview of the

available fracture analysis techniques.

Element erosion
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The element erosion technique is similar to that used in Chapter 4 whereby elements are

completely removed after a certain criterion is met according to a maximum principal

strain or stress value. The main advantage of this technique is that it does not need

special meshing or modelling techniques for embedding cohesive elements or special

elements for capturing crack-tip singularities. The failure criteria are easily implemented

within the constitutive model card of the bulk finite element model. However, element

deletion can result in mesh convergence issues particularly in non-linear elastic-plastic

problems. It has been reported that such problems can be overcome, as is done in

[90], where a Rice-Tracey failure criterion is used with a correction for element size.

Furthermore, the loss of mass and inertia ahead of the propagating crack tip can influence

the rate of fracture which may yield conservative results.

Nodal release

Nodal release is a technique commonly used in ABAQUS Standard (not too common in

LS-DYNA) to simulate crack propagation by duplicating nodes along element boundaries

of fracture surfaces which obey a certain crack propagation criterion. Once a criterion

is met, such as critical crack opening displacement (COD), the nodes are released and

separated from both side of the duplicated boundary and advance to the next crack-tip

position. A drawback of this techniques is the need to pre-define the crack path and

hence does not allow arbitrary crack paths.

Mesh independent crack propagation - XFEM

In recent years XFEM has emerged as a powerful numerical procedure for the analysis

of crack problems. In traditional formulations, the existences of crack are simulated by

requiring the crack follow a pre-defined path (or element edges). In contrast, the XFEM

does not require such a path since the crack geometry need not be aligned with the

boundaries of elements. This provided huge flexibility and versatility in modelling. This

is achieved by enriching the nodes of the elements intersected by the crack with additional

degrees of freedom (DOFs) and functions that reproduce the asymptotic LEFM fields.

This allows the modelling of crack discontinuity within the crack tip elements allowing

for cracks to follow arbitrary paths under a variety of loading conditions. This has yet

to be implemented into LS-DYNA, although it is available in ABAQUS Standard with

some limitations which rendered it unsuitable to tackle this dynamic problem.

Other techniques are available which are not discussed here such as continuum softening

(i.e. Gurson-void model and smeared crack approached) in addition to the Virtual Crack

Closure Technique (VCCT).
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Table 6.2: Reported cohesive properties of thin sheet aluminium 2024 T3

Source Thickness ΓN T
(mm) (kJ/m2) (N/mm2)

[92] 1/2.3 19 2.7 · σy = 2.7 · 345 = 931.5
[93] 2.3 17 2.0 · σy = 2.0 · 285 = 570.0

6.4 Derivation of static cohesive parameters of Al 2024-T3

6.4.1 Identification procedure using numerical optimisation

A two parameter optimisation method is adopted in the present procedure. The exper-

iments for the parameter identification were performed on standard fracture specimens

which conform to ASTM standards. The size, thickness and stress state of the specimen

for parameter identification has been chosen so that it is similar to that of a thin fuselage

(thin-walled) structure in order to ensure the same failure mechanism.

The fracture properties of the material were determined by experimental data on a

M(T) centre-cracked panel with anti-buckling plates, performed by the TU-Delft [91],

with a width of 2W = 400mm, a thickness t = 1.00mm and an initial crack length of

2 a0 = 103mm (Test B24LT-10), as illustrated in Fig. 6.4(a). From this test, in addition

to the cross-head displacement, three different values are measured: the force, F , the

crack mouth opening displacement, COD, and the crack extension, ∆a, averaged over

the thickness according to ASTM standard and determined by multi specimen technique.

Based on these values a F (COD) curve, Fig. 6.8(b), and the average applied stress versus

cross-head displacement, Fig. 6.4. Fracture resistance curves were provided K(∆ a), but

since the use of K for a thin-walled specimen under large scale yielding conditions is

questionable, it is not used for the determination of the cohesive parameters and a

F (∆ a) curve is used for numerical identification instead.

In the beginning, the fracture extends as a function of stress, but as the stress increases,

the fracture releases more potential energy per unit of fracture increase until this becomes

equal to the amount of energy needed to fracture the same unit length of fracture. At

this point, no additional external energy is needed to propagate the fracture and the

fracture accelerates independently of the externally applied load.

The object of this section is to derive the cohesive energy ΓN and traction T for a mode

I opening. No data or estimates were found for the other modes. These are set equal to

the mode I parameters therefore in the simulations. As is pointed out in [83], the two

parameters are not independent from one and another, but need to be derived together.

Two sources give estimates of these values. they are given in Table 6.2.
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Figure 6.4: Experimental crack data from B24LT-12 tests [91]

The trial and error procedure adopted to identify the cohesive parameters was deter-

mined by running a number of simulations using varied cohesive properties until a rea-

sonably good approximation of the experiment was attained. This procedure can be

quite time consuming and may require up to 10-20 simulations until the objective target

function for the minimisation of the error is fulfilled. Figure 6.8(b) shows the applied

force versus the crack opening displacement and the point of instability.

The elastic-plastic properties have been described by three distinct values, given for two

different material directions which are given in Fig. 6.5. The data was obtained from Ref

[91] of six tensile tests according to ASTM E8. The tests were performed on a 3 tonnes

Zwick tensile machine at the Structures and Materials Laboratory of the Delft University

of Technology. The same batch of materials used in the tensile tests was also used in the

M(T) fracture toughness tests. Although though it is known that the cohesive model is

very sensitive to changes in elasticplastic properties and the values given in Table 6.3

are by far not sufficient for a precise description of the stress state around the crack

tip, no alternative was possible from generating a material flow curve from these values.

From the table, one can see that the orientation dependence regarding yield strength
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Table 6.3: Experimental stress-strain data given by M705 technical report for the
Al2024 material [91]

σy σult ε @ σult E ν12 = ν21

(MPa) (MPa) (%) (GPa) (-)

L-direction 380 475 16.47 76 0.33
LT-direction 330 470 16.43 70 0.33

and hardening is rather pronounced. However, in LS-DYNA, only Hills anisotropic yield

function is available, which does not account for an orientation dependent hardening.

Since no appropriate model is available and the aim of the study is to predict the

residual strength with the lowest effort possible, isotropic von Mises plasticity is used in

all simulations.

6.4.2 Numerical model

As outlined previously, the cohesive model is utilised for the numerical crack extension

analyses. Arbitrary material decohesion processes are idealised in this model by reducing

the fracture process zone to an interface with zero width. Cohesive elements are available

for 2D (plane strain and plane stress), axisymmetric, shell and 3D finite element models.

In this study, 3D cohesive elements (MAT 138) have been implemented using existing

formulations within the material library of the finite element code LS-DYNA 1.

1The current version of LS-DYNA precludes the use of 2D cohesive elements although user defined
elements have been implemented successfully in the open literature [94]
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Figure 6.6: Shape of the traction-separation law as described by Eq. 6.6 (right) and
cohesive elements for three-dimensional models (left)

In the present investigation the shape of the traction-separation law is described by Eqn.

6.6 [89] as recommended by Ref. [83].

The shape of Eq. 6.6 is shown in Fig. 6.6(a), which is given in tabular form in LS-

DYNA. It is assumed that the traction-separation law has a high stiffness in the begin-

ning, δ1 = 0.01 δ0, and contains a significant part with a constant stress, δ2 = 0.75 δ0.

The 3D cohesive elements implemented in LS-DYNA can handle interface elements with

a finite volume in the undeformed state, see the right sketch of Fig. 6.6. However it is

recommended that, for mesh generation guidelines, the height of the cohesive element is

significantly lower than the thickness, critical opening displacement and general geomet-

rical properties. To avoid computational problems, zero thickness cohesive element were

defined by generating finite volume interface elements as per usual, and then shifting

the nodes such that the top and bottom nodes coincide.

6.4.3 Parameter identification

The 3D FE model of the M(T) specimen represents one eighth of the panel with

three symmetry planes and consists of 29016 linear 3D elements within the uncracked

domain(LS-DYNA 8 node elements with nodal rotations), see Fig. 6.7. Six layers of

solid elements over the half thickness are generated in the ligament, with a constant

length width of 150 µm in the cracked domain and their length being 170 µm in order

to keep the aspect ratio of the elements close to 1.0. The cohesive surface consists of

6 × 200 = 1200 cohesive elements (MAT 138), thus allowing for a maximum crack ex-

tension of 30 mm. The whole model has 113,472 degrees of freedom. 3D elements were

used to describe the interfacial separation and the continuum behaviour of the material.
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Figure 6.7: 3D finite element mesh for the M(T) specimen (1/8 of the structure).

Using 3D elements can vastly increase the model size and thus computation time com-

pared to shell elements. A small reduction of the problem may be achieved by coupling

a 3D mesh for the crack tip region to a shell mesh for the global structure [94], but since

approximately 90% of all elements are placed along the ligament, the savings are not

worth the additional meshing effort.

In order to simulate the quasi-static test with displacement control loading using an

explicit codes such as LS-DYNA, uniform low velocities are applied at the nodes on

the top boundary. Previous calculations demonstrated that applied nodal velocities of

about 500 750 mm/sec are slow enough to prevent inertia effects in the calculation and

satisfactorily fast to improve CPU efficiency. The loading is applied by a prescribed

displacement at the top of the specimen. As a result, the total force, F , COD and the

crack extension, ∆ a, are determined. The latter is calculated based on the total area of

the failed cohesive elements divided by the original thickness.

The comparisons between simulation and experiment for a range of cohesive parameters

with respect to the crack tip position (∆a) as a function of the applied displacement

(∆u) and the applied force F (COD) vs. COD(δ a) curves are shown in Fig. 6.8. Even
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Figure 6.8: Parameter identification for the 3D FE model of the M(T) specimen.
Comparison of simulation and experiment for the respective optimised parameter sets.

[91]

though there is excellent agreement to the point of instability, there is a noticeable

disagreement beyond this point.

To support the findings of this model, further efforts were made to investigate the

fracture characteristics and behaviour of this thin-walled specimen. Figure 6.9 shows the

initiation and evolution of crack growth in term of the Von Mises yield criterion, where

the crack propagates from the centre of the initial crack (i.e. only 1/2 predictive model
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Figure 6.9: Tensile stresses at different time intervals during the propagation of the
crack using hexahedral elements.

is shown). Further verification of the developed predictive model is made by observing

the crack surfaces during crack propagation. It has been widely reported that during

ductile crack propagation of thin metals, a characteristic phenomenon called tunneling

is observed. Crack tunneling is when the crack front appears straight at the early stages

of crack growth and progresses more rapidly in the centre of the thin-walled specimen

leading to the formation of the rounded crack front profile. This is clearly shown in Fig.

6.10, which illustrates the progression of crack tunneling obtained directly from the finite

element model. As a result of this process, additional out-of-plane components of shear

stress become significant as the highly plastic deformation takes place near the crack

region. However, the study of this phenomena (as well as slant fracture) is outside the

scope of this analysis and was mentioned merely to further support the verification of

this model. Thus, we will restrict the current study to determine the optimum fracture

parameters for Aluminium 2024-T3 of 1 mm thickness.

In conclusion, the optimal parameter set for the 3D simulation is Γ0 = 19 kJ/m2 and

T0 = 931.5 MPa, the critical separation resulting in δ0 = 0.024 mm.

6.5 Simulation of dynamic fracture

6.5.1 Finite element model

The barrel tests exhibit two planes of symmetry which can be exploited to reduce the

number of elements and hence computational time and power. However, it transpired

that the plane of symmetry which cuts through the circumference of the barrel in two

was difficult to exploit and proved problematic as the analysis would go unstable and

result in infinite nodal velocities belonging to the cohesive elements. As a result only the
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Figure 6.10: Details of the crack tunneling for the case modeled with 3D solid ele-
ments. The red region indicates where Γdisp/ΓI = 1.0.

symmetry through the longitudinal direction of the barrel was exploited. Figure 6.11

gives modelling details of the explosive barrel tests which include symmetry boundary

conditions, insertion of cohesive zone elements and overall mesh design. The complexity

of the mesh design is clearly illustrated in order to have an acceptable mesh size within

the fracture process zone (typically 0.625 mm). Experimental observations gave a clear

sequence of fracture which began at the initial notch of the barrel which propagated

along the longitudinal length of the barrel. Upon reaching the top and bottom part

of the barrel, fracture continued along the circumference of the barrel resulting in a

double door effect, as shown in Fig. 5.10. Therefore, two different fracture paths were

implemented to account for this observation which significantly increased the complexity

and mesh design of the problem.

Furthermore, in contrast to the previous flat fracture model in which the continuum

and cohesive elements were 3D dimensional, the scale and complexity of the problem

precludes the use of these elements in the continuum domain and were defined by fully

integrated shell elements. As only solid cohesive zone elements are currently supported

within LS-DYNA, a transition between the shell elements of continuum domain and the

solid cohesive elements was defined.
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Figure 6.11: Finite element details of explosive barrel tests
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Figure 6.12: Tie formulation between shell edge and 3D cohesive elements (adopted
by [21]

6.5.1.1 Connecting shells to cohesive zone

A robust solution to this problem was proposed which took advantage of the *CON-

STRAINED card in LS-DYNA to define a shell-brick interface by constraining nodal

degrees of freedom in such a way that the shell/brick translates and rotates in a cer-

tain way. The CONSTRAINED SHELL TO SOLID card is a nodal constrain algorithm

which ties the node of a shell element to an orthogonal line of nodes belonging to a solid

element. A schematic of this, reproduced from Ref. [21], is given in Fig 6.12 which shows

a method of a single brick element tied to a pair of shells. Nodes 1, 2, 3 and 4 are nodes

on the cohesive element that defines a line on that solid part which are constrained to

remain linear throughout the simulation. Shell nodes 5 and 6 are tied to the solid part

and maintain the same relative spacing between the first and last brick node (1,2 & 3,4).

Nodes 5 and 6 are free to rotate as imposing additional constraints are not possible since

this procedure is limited to one constraint per node in LS-DYNA.

Moreover, to avoid error messages in the solution phase relating to the fact that the

cohesive elements are not explicitly connected to other elements, i.e.

*** Warning: The top/bottom of cohesive element 1

is not attached to an adjacent element.

, zero stiffness and inertia shells are additionally placed on the upper and lower surface

of the cohesive elements, see Fig. 6.12(b). They do not have any effect in the results

and are not included in the stiffness matrix.
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An additional set of boundary conditions are defined at both ends of the geometry which

refer to the steel lid of the barrel. It is assumed that the steel lids behave in a rigid, fixed

manner and are not affected by the explosive event. Therefore the nodes corresponding

to the top and bottom of the steel lid are constrained in all translational and rotational

degrees of freedom.

6.5.2 Pressure load curves

Upon detonation, the explosive charge transmits a fast moving pressure wave to the

barrel walls under an internal pressure of 200 kPa. Thus, there are two factors which

need to be addressed here; one is the description of the pressure profile at each point of

the cylindrical barrel, and secondly establishes the intimate relationship between internal

pressurisation and the explosive shock wave.

The latter has been investigated in Ref. [95] in which the MMALE formulation within

the explicit finite element solver, RADIOSS, was used to successfully model the com-

plex blast wave phenomena in cylindrical structures as a function of longitudinal length

and internal pressure. In this study, a pressurised cylindrical structure similar to that

described in Chapter 5 is modified such that the parameters within the interior Eulerian

mesh (air) accounts for both atmospheric and pressurised (200 kPa) loading conditions.

It is clear from Fig. E.4, which is taken from the central perimeter of that barrel, that

both loading cases are characterised by an instantaneous rise in pressure, albeit of differ-

ent magnitudes of maximum overpressure and times of arrival. The additional internal

energy per unit volume drives the shock wave to travel faster and imparts a higher pres-

sure on the barrel walls. Furthermore, a second peak in pressure is observed (reflected

pressure) which again is significantly advanced than in the non-pressurised case. This

result is significant as it implies that under the combined effects of inertia and cabin

pressurisation, additional energy can be spent to drive multi-site damage long after the

initial dissipation of the explosion. The reader is encouraged to refer to Appendix E for

a more extensive discussion and analysis.

The results of this study give credence to the idea that the MMALE formulation can

provide a comprehensive description of the pressure distribution within the pressurised

cylindrical structure. Following this study, the explosive barrel tests were simulated

using LS-DYNA to obtain pressure-time curves at different locations of the structure.

Although the original barrel tests contained a pre-notch to initiate dynamic crack prop-

agation, this feature added unnecessary complications and was outside the scope of this

task. Due to the inherent symmetry of the barrel problem, only one-eighth of the barrel

was modelled using the appropriate boundary conditions along the symmetry planes
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Figure 6.13: Plot of blast pressure profile for different internal pressures taken from
the central perimeter of a closed barrel subjected to an internal explosive of 54g TNT

charge

as shown in Figs. 6.14(a) and 6.14(b). Similarly to the model used to simulate the

flat panels, it is imperative that the model could capture a reasonably accurate shock

peak pressure due to the sharp discontinuity in the pressure wave. Therefore a fine

mesh resolution is required, where the spherical explosive mesh and its corresponding

air components are fine enough to match accurately the shock pressure that originates

from the explosive. As shown in Fig. 6.14(b), the ignition point is placed in the centre

of the cylindrical barrel. For TNT, the radius is 20 mm and its weight is 54g. Seven ele-

ments are needed to span the radius of the sphere to adequately build up the detonation

pressure during the explosive burn.

The initial detonation and subsequent propagation of the 54g TNT charge is shown in

Fig. 6.15, where contours of fluid iso-surfaces clearly illustrate the radial distribution

and impact on the boundary of the pressurised barrel tests. The pressure distribution at

the top of the barrel is compared with that obtained from the experimental tests using

pressure gauges.

Clearly, as shown in Fig.6.16, there is excellent agreement concerning the first initial

peak pressure suggesting that the assumptions and simplifications introduced in the

analysis can accurately represent the blast event. A slight discontinuity in the post-

peak decaying region is observed that may be attributed to the close proximity of the

point of interest with the boundary of the barrel where the numerical coupling algorithm

is applying nodal forces to resist penetration. This can also be due to the discontinuity

of the mesh within the barrel where the air elements within the explosive charge region
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Figure 6.14: Numerical description of pressurised barrel tests

are mainly of quadrangular orientation and diverge radially to account for the cylindrical

perimeter of the barrel. As the ALE formulation in high explosive events is sensitive to

mesh density and shape, this discontinuity may influence the shock wave velocity of the

explosive. However, the relative errors in arrival time and initial peak magnitude are

negligible and this represents an excellent approximation for the problem. Comparison

of the pressure profile beyond the initial pressure profile is misleading and clearly shows

lack of agreement. This is due to the fact that in the actual experiment a pre-notch

was present and propagated during the high explosive event, venting pressure during the

process which in turn will help drive the propagating crack long after the initial blast
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internal charge of 54g TNT. The experimental curve presents an initial pressure peak

of 1.2 MPa at about t = 0.75 ms

event.

Finally, five pressure-time curves were extracted from various points of the barrel. Figure

6.17 shows the geometry of the barrel tests and the five points where the pressure was

calculated, which are given in Fig. 6.17(b). The pressure curves differ in time of arrival

and scale factor in the peak maximum overpressure, as the shock wave radially expands

with increasing distance. The close proximity of points 1 and 2 results in coincident

load curves, in contrast to the others which are displaced by a few milliseconds (takes

longer to arrive at the top of the barrel). The load curves were subsequently exported
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Figure 6.17: Location (a) of the predicted pressure load curves (b) and their corre-
sponding division in rings.

in the numerical model and were applied to each shell set which represents each of the

four ’ring’ domains.

6.6 Capturing the crack velocity

LS-DYNA is not the obvious FE code of choice in dealing with fracture problems as

its origins lie in highly nonlinear dynamic problems such as crash analysis. Therefore

the code does not have specific modelling and post-processing capabilities for fracture

mechanics analyses, unlike ABAQUS/Explicit. However, LS-DYNA allows the user to

manipulate the post-processing of results via third-party software such as MATLAB or

FORTRAN.

During the analysis, the status of each time step is written to a message file which

includes error messages and time of element deletion. When the cohesive elements

satisfy the failure criteria, the element fails in its path and LS-DYNA in the analysis

terminal reports elements failure in its message log. An example error message would

be:

solid element 2077 failed at time 1.60019E+00

As shown, only the element ID and time of failure is reported. Therefore, it is possible

to obtain the time of fracture which passed certain points along the fracture path at

known distances from the initial fracture front. Of course there are several ways to

accomplish this, but the method of highest fidelity is to consider each element deletion

increment separately. The file is interpreted by a MATLAB code which scans the failure
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message and reads the coordinates of the failed element number/ID from the mesh file.

The relevant distance to the crack tip position is then assigned to this element with its

corresponding time of failure. The crack-tip position vs. time can therefore be obtained.

Furthermore, to derive a crude value of the crack-tip velocity profile, simple numerical

differentiation of this data can be performed:

cn =
an+1 − an

tfail,n+1 − tfail,n
(6.8)

However, this method can result in numerical instability and smoothing problems, since

the dependent variable in this case is ’time’. During very fast fracture events, it is

possible that a number of elements will fail at the same discrete time step, therefore

Eq. 6.8 will report infinite values of crack-tip velocity as the time increment between

consecutive failure reports approaches zero. A way of circumventing this problem is to

lump and add all the fracture increases into a single event per time step, preventing

local displacement jumps and obtaining crack-tip positions curve which are continually

differentiable.

If the number of time increments chosen by the user is insufficiently high, an unstable,

almost discrete velocity profile will be produced. Therefore the decision was taken to

artificially increase the time increment at the cost of computation time to obtain an

acceptable level of smoothness. It should be stated that either method does not alter

the shape or magnitude of the velocity profile, merely improves its smoothness and visual

interpretation.

6.7 Comparison between experiments and simulations

Figure 6.18 shows a comparison of the simulated longitudinal crack growth rate with

those obtained experimentally. Figure 6.18(b) shows the calculated crack position versus

time and Fig. 6.18 plots the terminal crack velocity (ccrack/cR) against crack position.

It is clear that significant differences exist between the simulated and experimental

fracture metrics. The rate-independent cohesive zone model in LS-DYNA using the

cohesive fracture parameters overestimates the crack velocity by an order of magnitude.

The predicted maximum crack velocity is approximately 1500 m/s (nearly 50% of the

Rayleigh wave speed) which is far greater than the experimental value (≈=300 m/s).

Figure 6.19 presents the von-Mises stress plots at different simulation times where it

is observable that the crack grown in the longitudinal direction first followed by the

opening of the crack along the circumference of the barrel. Only one half of the barrel

is shown. Furthermore, the region in the vicinity of the crack tip clearly shows the
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appearance of plasticity due to the ductile behaviour of the material during the crack

propagation.

It is well known that high speed deformation in solids introduces stress waves into the

structure and hence inertia effects become rather significant and in many cases can affect

the energy absorption of the structure. As discussed in Chapter 3, the strain rate effects

can increase the flow stress and strain hardening of a metal. Furthermore, dynamic

deformation and fracture during a blast event can include high local temperate increases

due to adiabatic heating which reduces the flow strength and counteracts the strain-

rate hardening effect. These so-called phenomena can significantly affect the fracture

toughness and hence crack-tip velocity, factors which are not taken into account in the

present analysis. An excellent discussion on dynamic fracture by Freund [71] states

that ’as the crack advances more rapidly, the material is deformed more rapidly and

a larger cohesive stress is required in order to achieve the requisite crack tip opening

displacement.’ A larger cohesive stress leads to a higher cohesive energy (area under

TSL curve), which suggests that a strengthening of the material at the crack-front may

develop, resulting in greater dissipation of energy.

To investigate this issue further, a study was performed by varying the cohesive stress,

T , and energy, Γ. Considering that the cohesive element has an initially high stiffness,

the area under the non-dimensional TSL is close to being equal to unity. Therefore,

an increase in the maximum traction, TO, proportionally increases the cohesive energy,

Γ, for a given maximum opening, δ0. A number of simulations have been performed

to match the predicted crack-tip position data with the experimental observed fracture

propagation rates. The initial values of the cohesive properties are set equal to the static

cohesive properties obtained in the previous section. The results of these simulations

are given in Fig. 6.20. It is clear from this figure that as the cohesive properties increase

by the same factor, the time at which unstable crack growth initiates also increases.

The stresses needed for crack propagation are higher compared to the case with static

cohesive properties, which in turn reduces the crack growth rate. Higher values of

cohesive stress led to fracture arrest in the initial fracture phase. A good match was

achieved with a cohesive stress and energy factor of 1.3.

However, this explanation trivialises the complexity of the dynamic phenomena which is

developing in the fracture process zone. The triaxiality of the stress state in the fracture

process zone influence the cohesive zone behaviour, a factor which is not considered

in the present analysis. An increase of triaxiality leads to a higher cohesive energy,

therefore in dynamic analysis, the presumption of ductile fracture will be inaccurate if

the change of triaxiality is ignored. Due to limitations of LS-DYNA it is not possible to

obtain information regarding the triaxiality from within the cohesive zone elements nor
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6.7 Comparison between experiments and simulations 131

S, Mises (MPa)

+7.370e+01
+1.065e+02
+2.057e+02
+3.048e+02
+4.039e+02
+5.031e+02
+6.022e+02

t = 0.2 ms t = 1.3 ms t = 1.4 ms

t = 1.5 ms t = 1.7 ms t = 1.8 ms

t = 1.9 ms t = 2.2 ms t = 3.5 ms

Figure 6.19: Von Mises stresses for different simulation time of testAl03

1 1.5 2 2.5 3 3.5 4
0

50

100

150

200

250

300

350

400

Time (ms)

C
ra

ck
le

n
gt

h
(m

m
)

1.0 · T , 1.0 · Γ
1.3 · T , 1.3 · Γ
1.5 · T , 1.5 · Γ
1.6 · T , 1.6 · Γ
1.7 · T , 1.7 · Γ
TestAl03

1

Figure 6.20: Changes in static cohesive fracture parameters to match experimental
results



6. Modelling of dynamic ductile fracture propagation using cohesive
zone elements 132

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

δ (mm)

T
(M

P
a)

δ̇ = 10−3

δ̇ = 10−2

δ̇ = 10−1

δ̇ = 100

δ̇ = 101

δ̇ = 102

1

Figure 6.21: Effect of the opening rate on the Perzyna visco-plastic cohesive formu-
lation

bulk material.

It is therefore clear that the use of strain-rate independent cohesive models is inadequate

for dynamic fracture analysis. Efforts have been made to simulate dynamic ductile crack

growth using strain-rate dependent cohesive elements, such as Anvari et al. [96] and

Zhang et al. [97].

A brief description here is given to show how strain-rate dependent cohesive elements

are used to simulate crack growth under dynamic loading condition. This cohesive

formulation is an extension of the Perzyna continuous visco-plastic continuum model

[21, 98]. This formulation is sensitive to the opening rate of the cohesive elements

which, at higher loading rates, increases the cohesive stress and thus the area under the

TSL curve (increase in cohesive energy). This is shown graphically in Fig 6.21.

The original Perzyna model was a strain-rate sensitive model for continuum elements

which have been rewritten and modified so that ’stresses’ and ’strains’ were expressed

in terms of ’tractions’ and ’openings’. This formulation is defined by the following set

of partial differential equations:

ψ(Teq) =

〈
Teq
T0N

− 1

〉Npz
(6.9a)
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m̄ =
∂Teq
∂T

(6.9b)

δ̇vp =
1

η
(Teq) m̄ (6.9c)

q̇ = δ̇vp m̄ · hpz (6.9d)

Ṫ = K(δ̇ − δ̇vp) (6.9e)

The term Teq is a single traction parameter which describe the three-dimensional state

T . It is based on a modification of the quadratic, anisotropic Hill yield stress criteria,

and has been modified to take into account the work hardening q̇. Thus, Teq is defined

as:

Teq = T0N

√√√√(TIqI )2

T 2
0N

+

(
TII
qII

)2

T 2
0S

+

(
TIII
qIII

)2

T 2
0S

(6.10)

this is the variable of the over-traction function, ψ, given in Eq. 6.9a, a function which

describes the relative traction level above the yield traction, defined as the maximum

traction in Mode I, i.e. TON
2. The term δ̇vp represents how much the opening of the

cohesive surfaces increase due to plasticity. Again, when this term is below the yield

limit, this value is equivalent to zero, which indicates that the response is within the

elastic region. Beyond its traction limit, this term increases gradually which implies a

decrease in the material stiffness until the visco-plastic opening rate, δ̇vp, is equal to the

actual opening rate, δ̇, and thus the material is fully plastic. Equation 6.9d represents

the evolution of work hardening, an expression which influences the yield traction of the

material and plays a significant role in cyclic loading applications. This term has been

omitted in this study, as it is not expected to have an effect on the fracture behaviour

of the pressurised barrel tests.

An inverse modelling procedure was conducted to determine the Perzyna parameters,

K, η and Npz as described in Ref [21], which has a complete study of effects of each one

of these parameters. The derived parameters for the pressurised barrel tests are shown

in Table. 6.4.

2The brackets in this equation are McCauley brackets which mean that the function is equal to zero
if Teq is below T0N .
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Table 6.4: Perzyna parameters for Aluminium 2024-T3 barrel tests

TON TOS Γ0N Γ0S K1,2 Npz η
(N/mm2) (N/mm2) (N/mm) (N/mm) (N/mm3) (Nms/mm2) (-)

931.5 931.5 19 19 2·106 3.125 0.32

The Perzyna model has been implemented in the LS-DYNA code as a user-defined

material model and calibrated against the pressurised barrel tests.

A comparison of the experimental fracture metrics (testAl02) with that of the rate de-

pendent cohesive simulations is shown in Fig 6.22. A very good agreement is found

based on the derived fracture parameters which have clearly reduced the rate of crack

propagation compared to the rate-independent cohesive model. However, this model is

still in its infancy and it would be premature at this stage to extract many conclusions,

as the derived parameters are based on very limited experimental data. More inde-

pendent fracture tests are required to support and perhaps recalibrate the parameters.

Furthermore, the physical meaning of the Perzyna parameters are somewhat dubious

and is unclear how such parameters, η & Npz, could be derived from experimental data

or experimental stress techniques. This impacts the fidelity of the Perzyna and requires

more extensive investigation. Simulations on singular element tests reveal that η influ-

ences the maximum dynamic traction as function of the opening rate, see Fig. 6.233.

At higher values of η, the plastic yield part disappears and the TSL curve reduces to

a tri-linear expression. Furthermore, the Perzyna exponent parameter Npz appears to

have a similar effect, although the effect is rather less pronounced.

6.8 Conclusion

An integrated experimental design is devised to provide appropriate input parameters

for conducting and validating large-scale dynamic fracture simulations. The loading and

kinematic boundary conditions were reproducible with minimum unknown parameters.

The experimental setup provided high quality qualitative fracture metrics, which are

representative of the dynamic phenomena under investigation, from high speed imag-

ing systems which could be compared with the numerical model. However, the highly

complex blast wave phenomena in the cylindrical structure required third party data

from MMALE/FSI models for a complete setup of the dynamic fracture model. These

pressure curves were loaded to a separate lagrangian fracture model which contained

cohesive elements. These elements were inserted in the FE discretization of the global

3In this study the maximum opening δ0 and T0 was set to 1 and K1,2=10
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Figure 6.22: Comparison of the experimental crack tip position (from TestAL03)
with that of simulations obtained using the rate-dependent cohesive formulation.



6. Modelling of dynamic ductile fracture propagation using cohesive
zone elements 136

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

δ(mm)

T
(M

P
a)

Npz = 1 Npz = 2 Npz = 3
Npz = 4 Npz = 5

1

(a) The influence of the fluidity parameter η

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

δ(mm)

T
(M

P
a)

η = 10−1 η = 100 η = 101

η = 102 η = 103

1

(b) The influence of the fluidity parameter Npz

Figure 6.23: Influence of Perzyna parameters on the TSL response extracted from a
single element test

body to simulate fast growing cracks. The formulations of the cohesive elements gov-

ern the manner in which the crack flanks separate according to a traction separation

law. The cohesive parameters were initially derived from small-scale quasi-static fracture

toughness experiments. The modelling procedure was not straightforward, as the mesh

design of the problem and the transition between shell and solid elements proved rather

challenging. Numerical results showed that using rate-independent cohesive models in

LS-DYNA were insufficient to capture the rate of crack propagation as it did not take

into account the influence of loading rate on the cohesive traction within the fracture

process zone. A modified visco-plastic rate-dependent Perzyna model was implemented

which required the derivation of certain parameters. These visco-plastic parameters

were derived from a single pre-notched barrel test subject to an internal explosion of

54g TNT, through an inverse modelling procedure to obtain the optimum solution with

the experimental data. The results in the Perzyna rate dependent model showed good

agreement and consistency with respect to the crack initiation time and average crack

tip velocity. However, it is premature to deduce that these parameters are independent

of geometry and scale as they were derived from only one set of experimental data. This

is a topic of future work.

This chapter has highlighted the numerous challenges which hinder the validation of dy-

namic fracture experiments. However, the computational effort has been considerably

reduced thanks to the integrated philosophy adopted early on in the project to produced

well-controlled, minimal experiments. It is clear that separate small-scale dynamic frac-

ture experiments are needed to extract accurate cohesive laws under dynamic loading

conditions. The challenge remains how this data translate to individual rate depen-

dance cohesive models, of which there are a few. It is clear that the current modelling
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capabilities in LS-DYNA have not reached technological maturity to make dynamic frac-

ture problems cost effective, both in terms of computational time and labour. Future

work may involve more advanced crack propagation techniques such as XFEM which

eliminates the shell-solid transition and allows the crack to follow an arbitrary path.

Furthermore, current XFEM formulations consider rate-dependence although they are

still in its infancy. Modelling the dynamic fracture of Glare still remains an elusive

goal as there are a multitude of failure mechanisms operating at once which should be

captured by the proposed model. Further work should attempt to model Glare as a

homogeneous structure using ’smeared’ mechanical properties and assume the fracture

path obeys a traction separation law which takes into account the glass-fibre bridging

mechanisms. Therefore, the shape of the TSL may have more of an influence than in

the case of isotropic ductile crack growth.





Chapter 7

Summary and Conclusions

7.1 Summary and Conclusions

T
he growing threat of sabotage to thin-walled structures, such as the fuselage, is

a topic which has gained considerable momentum in recent years. During this

period, there has also been a drive within the aerospace industry to produce lighter and

more fuel efficient aircraft by replacing conventional metallic materials in large scale

components with novel composite materials, in applications where weight saving and

structural integrity are of critical concern. The present thesis describes the behaviour

of Glare and its metallic counterpart, Aluminium 2024-T3, under dynamic blast loading

conditions. These structural materials have current applications in primary aerospace

structures although their full potential has yet to be exploited, particularly in blast

mitigation.

In line with previously mentioned trend in aircraft blast mitigation design from small-

scale experimental tests/blast trials towards more advanced numerical methods, an

experimental-numerical approach is presented based on the finite element (FE) method.

Commercially available FE codes, such as ABAQUS [24] and LS-DYNA [25] were used,

rather than in-house finite element analysis tools to allow the transferability of skills,

experience and more importantly subroutines to the wider industrial and academic com-

munity. Demonstrating and adapting existing codes to meet current technical challenges

allow further transparency and better understanding of the computational methodology,

The research presented in the current thesis consists of numerical work based on third-

part experimental tests performed within the framework of the EU-funded program

VULCAN (AST5-CT-2006-031011). Due to the sensitive nature of the project, all blast

experiments were performed in secure facilities at the Royal Military College (RMA) in

139
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Belgium and TNO in the Netherlands.

In Chapter 2, an introduction to FMLs was given and described in detail. Beside the

development of FMLs (in particular Arall and Glare), the constituents, variants and

the main characteristics were given. These constitutive parameters would formulate a

large bulk of input data to describe the mechanical response of Glare in the numerical

analyses. Also, the impact and blast behaviour of FMLs were discussed which showed

early indications of the potential of Glare as a blast attenuating structure.

In Chapter 3, robust and efficient computational models were developed for the purpose

of V & V which successfully modelled the dynamic non-linear behaviour of Glare panels

subjected to blast loadings. Numerical model validation was performed considering case

studies of Glare panels subjected to a blast-type pressure pulse for which experimental

data on the mid-point back face deflection and post-damage observations were available.

In the first case study, excellent agreement of mid-point deflections and evidence of se-

vere yield line deformation were shown and discussed against the performed blast tests.

A further parametric study identified Glare as a potential blast attenuating structure,

exhibiting superior blast potential against monolithic aluminium plates. The results

were normalised and showed that for a given impulse, Glare exhibited a smaller nor-

malised deflection, outperforming monolithic Aluminium 2024-T3 plates. In the second

case study, the multi-material ALE formulation (MMALE) with fluid-structure interac-

tion (FSI) was utilised to model the response of more complex blast loads. Cohesive

tie-break contact algorithms are implemented to model interlaminar delamination be-

tween adjacent plies. The energy dissipated to create new interlaminar fracture surfaces

was determined to be 2-8 % of the total internal energy. The remaining energy was dis-

sipated in irreversible damage mechanisms within the aluminium and composite plies,

although plastic deformation in the aluminium layers was the dominant energy-absorbing

mechanism.

In Chapter 4, the next phase of the thesis moved towards the vulnerability and surviv-

ability of scaled fuselage demonstrators subjected to internal detonations. The purpose

of this chapter was to develop survivability strategies to mitigate the effects of inter-

nal explosions. Vulnerability maps of the scaled demonstrator based on various failure

scenarios, materials and charge location were developed for the purpose of examining

airframe hardening options. All analysis results were compared and supported, to an

extent, with experimental test data within the VULCAN consortium.

Motivated by the limitations of previous studies and the need for more systematic val-

idation methods, a coordinated effort is reported in Chapters 5 and 6 to validate ex-

perimentally large-scale finite element simulations of dynamic fracture using cohesive
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zone models. To determine the interplay between cylindrical aircraft structures and the

response of individual fatigue cracked panels (e.g. pre-existing MSD in aging aircraft),

well-controlled and minimal experiments for dynamic fracture of blast loaded barrel tests

have been performed on three popular aerospace materials; Aluminium 2024-T3, Glare

and CFRP [26]. The dynamic event induced crack growth speeds in order of magnitude

of several hundred meters per second, metrics obtained via image processing of high

speed images. Glare exhibited the lowest crack growth speeds and displayed a combi-

nation dynamic ductile behaviour and fibre bridging. The results also highlighted the

poor blast attenuating qualities of CFRP, displaying crack speeds nearly ten times that

of Glare with evidence of crack bifurcation-branching.

Finally, in an effort to model the dynamic ductile crack growth of Aluminium 2024-T3

from the previous barrel tests, a numerical cohesive zone approach is followed; a layer

of interface elements which behave according to a traction-separation law is inserted

along the fracture path. Static cohesive properties were extracted from standard frac-

ture toughness tests and extrapolated to the aforementioned barrel tests. This method

proved inaccurate to predict the rate of fracture as a considerable difference was found

between the experiments and predictive results. This discrepancy was attributed to the

rate-independence of the cohesive formulation which failed to take into account the influ-

ence of triaxiality and the opening rate on the local cohesive traction within the fracture

process zone. To circumvent this problem, a Perzyna visco-plastic rate-dependent cohe-

sive formulation is discussed and implemented which gave better representative results

in terms of crack-growth rates. However the visco-plastic parameters were derived from

one set of experimental data.

7.2 Recommendations for future work

In order to define some interesting areas of further research, it is useful to present first

a perspective of this research in relation to the main aims and objectives.

Blast mitigation of structural materials to withstand acts of sabotage require a funda-

mental understanding of its use in real-life applications, whether military, civil or in

urban areas. This thesis focusses on thin-walled structures which are predominantly

used in aircraft applications where stiffness and weight are driving performance factors.

It has been shown that if a cylindrical thin-walled structure, such as the fuselage, is

explosively detonated then the combination of internal pressurisation and the explo-

sively driven blast impulse can cause severe structural damage and generate cracks that

propagate along the length of the aircraft at supersonic speeds. According to the au-

thor’s opinion based on the numerical work performed in Chapter 4, a small amount of
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explosive (IED) can lead to catastrophic failure (both in wide-body and narrow bodied

aircraft) posing great threats to passengers and ground civilians. It is very difficult to

quantify the amount of explosive charge (impulse) which is needed to breach the fuselage

as there are a multitude of scenarios which could take place on-board an aircraft. As

shown in the pressurised barrel tests, the blast pressure reduces rapidly with distance

(1/2 metre) and so the implications for aircraft security is that the explosive charge has

to be in close proximity to the skin of the fuselage or be of large size/quantity to cause

breaching of the structure. It is assumed in this research that current baggage screening

capabilities in airports can detect large amounts of explosive and therefore only small

amounts, such as IEDs, should be considered. However, the smaller the explosive the

more difficult it is to detect. Further work needs to be done to quantify these issues,

such as how much explosive could bring down an aircraft, for a multitude of vulnerable

locations such as the passenger and luggage cabin sections. Ideally, this should be done

for large-scale aircraft (wide and narrow bodied) which encompass all of the elements

which were neglected in this thesis, such as flooring, window openings etc.

The present work has focussed on Glare, a fuselage skin material for the Airbus A380,

which has shown to outperform monolithic aluminium in blast events. Nevertheless, it

would useful to the wider community if the tearing threshold of this material in relation

to other conventional structural materials was determined.

Moving away from Glare, there are also many other promising material variations (such

as Titanium-CFRP laminates) which should be explored. Although it is recognized that

such materials will seldom reach technological maturity for fuselage applications, efforts

could focus on blast mitigated luggage containers. Such containers can help reduce the

blast pressures at vulnerable locations on the airframe. This is by no means a trivial

feat, since economics (manufacturing, materials) and weight are crucial driving factors.

Furthermore, if successful, such designs must be retro-fitted to existing aircraft to reduce

costs and meet the demand of passenger security in this ever changing climate.

It is acknowledged by the author that further small-scale fracture tests for Glare should

be performed to (a) validate the derived cohesive parameters and, if possible, (b) extract

experimentally measured deformation fields to obtain accurate Mode I cohesive zone

laws. The traction-separation law should encompass the fibre bridging mechanism and

the process of stress transfer between the aluminium layers and glass-fibre in the wave of

the crack. Furthermore, a revision of the numerical methodology should be performed

to generate models (mesh design generation, boundary and loading input parameters,

cohesive zone element formulation) which are more manageable for the numerical ana-

lyst, particularly in industry. One such area of further research is the development and

implementation of shell cohesive zone elements which can be integrated seamlessly to
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the global shell structure. This would preclude the use of shell-solid connections and

significantly reduce the computational effort. To help alleviate some of the shortcomings

of the finite element method in relation to crack growth (where the direction of the path

must be known to the user), the XFEM (partition of unity) method should be consid-

ered to model the propagation of discontinuities in large-scale shell structures. These

enriched elements can reproduce the challenging features of fracture without the user

knowing or tracking the crack path. Moreover, treating problems with discontinuities

with the XFEM method suppresses the need to define time-consuming mesh refinement

in the vicinity of the crack tip and avoid re-meshing the discontinuity surfaces. These

factors can alleviate the computational cost and errors associated with conventional

finite element methods.





Appendix A

LS-DYNA/ABAQUS

A.1 ABAQUS

ABAQUS [24] is a multipurpose finite element analysis code. The ABAQUS product con-

sists of three core products: ABAQUS/Standard, ABAQUS/Explicit and ABAQUS/-

CAE. ABAQUS/Standard is more efficient for solving smooth nonlinear problems (i.e.

general and linear perturbation procedures) using a stiffness-based solution technique

that is unconditionally stable. ABAQUS/Standard must iterate to determine the so-

lution to a nonlinear problem. However ABAQUS/Explicit is more suited for dynamic

problems such as wave propagation analysis. ABAQUS/Explicit determines the solution

without iterating by explicitly advancing the kinematic state from the previous incre-

ment. For dynamic problems ABAQUS/Explicit is computationally more efficient than

ABAQUS/Standard. ABAQUS/CAE is the complete ABAQUS Environment that al-

lows the definition and generation of geometry, material models and applying boundary

conditions etc. ABAQUS is very attractive for blast modelling as it gives the user more

freedom to define blast functions/loads via the implementation of subroutines (FOR-

TRAN programming).

A.2 LS-DYNA

LS-DYNA [25] is a general purpose multi physics finite element solver commercialized by

the Livermore Software Technology Corporation or LSTC. It has its roots in the public

domain finite element solver, DYNA3D, which was developed by John O. Hallquist,

who worked for the Lawrence Livermore National Laboratory and was released in 1976.

The source was declassified in 1978 by the US military and released into the public

145



A. LS-DYNA/ABAQUS 146

domain. Work on the public domain code was performed solely by Hallquist up to 1984.

In 1989, Hallquist ceased work on DYNA3D development and founded LSTC. LSTC

commercialized the code and continued development on it under the name LS-DYNA.

Later versions of LS-DYNA include a, somewhat limited, implicit solver as an option,

but the main part of the code is aimed at explicit time integration. The advantage of

explicit code over implicit code lies in its ability to describe highly non-linear, transient

and dynamic phenomena. The ability to effectively solve non linear problems is neces-

sary when either the material behaves non-linear, for example concrete at high strain

rates, or when geometric non-linearities arise such as buckling of sheets. A third type

of non-linearity comes from changing boundary conditions, for example as a result of

contact. Transient Dynamic problems are characterized by the large influence of inertia.

Examples of these are found where loads are large, sudden and short in nature such as

explosions car crashes and metal extrusion.

LS-DYNA simulations are completely described by an input text file called a keyword

file. This may link to other files. It is convenient for larger simulations to have the

mesh made by a preprocessor and have it saved in a separate file with the nodal and

elemental definitions. The statements following the stars (*) are known as keywords and

the information on the lines following them are cards.



Appendix B

ABAQUS input files

Representative input files from the ABAQUS FE analysis conducted throughout this

work are presented in this Appendix. Files created using the ABAQUS/CAE preproces-

sor are large because all the elements and nodes of the model are listed. This information

has therefore been omitted.

*Heading

** Job name: glare3_s4r_hshn_17_3Ns Model name: glare3_s4r_hshn_17_3Ns

** Generated by: Abaqus/CAE 6.10-1

*Preprint , echo=NO, model=NO , history=NO , contact=NO

**

** PARTS

**

*Part , name=clamp

*Node

1, 100., 100., 10.

2, 100., 150., 10.

3, 100., 150., 0.

4, 100., 100., 0.

5, 0., 150., 0. ...

*Element , type=R3D4

1, 1, 17, 525, 36

2, 17, 18, 526, 525

3, 18, 19, 527, 526

4, 19, 20, 528, 527

5, 20, 21, 529, 528...

*End Part

**

*Part , name=glare3_panel

*Node

1, 150., 100., 0.

2, 100., 100., 0.

3, 100., 0., 0.

4, 150., 0., 0.

5, 0., 100., 0. ...

*Element , type=S4R

1, 1, 10, 358, 125
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2, 10, 11, 359, 358

3, 11, 12, 360, 359

4, 12, 13, 361, 360

5, 13, 14, 362, 361 ...

** Region: (glare3_panel -1: Generated From Layup)

*Elset , elset=glare3_panel -1, generate

1, 3600, 1

** Section: glare3_panel -1

*Shell Section , elset=glare3_panel -1, composite , layup=glare3_panel

0.3, 3, al2024 -t3, 0., Ply -1

0.13, 3, s2-glass/fm94 , 90., Ply -2

0.13, 3, s2-glass/fm94 , 0., Ply -3

0.3, 3, al2024 -t3, 0., Ply -4

0.13, 3, s2-glass/fm94 , 0., Ply -5

0.13, 3, s2-glass/fm94 , 90., Ply -6

0.3, 3, al2024 -t3, 0., Ply -7

*End Part

**

**

** ASSEMBLY

**

*Assembly , name=Assembly

**

*Instance , name=glare3_panel -1, part=glare3_panel

*End Instance

**

*Instance , name=clamp -1, part=clamp

0., 0., 1.

*End Instance

**

*Instance , name=clamp -2, part=clamp

0., 0., -11.

*End Instance

**

*Node

1, 150., 150., 15.

*Node

2, 150., 150., -15.

*Nset , nset=xsymm , instance=glare3_panel -1

5, 6, 8, 175, 176, 177, 178, 179, 180,

181, 182, 183, 184, 185, 186, 187...

*Elset , elset=xsymm , instance=glare3_panel -1

550, 600, 650, 700, 750, 800, 850, 900,

950, 1000, 1050, 1100, 1150, 1200, 1250, 1300...

*Nset , nset=ysymm , instance=glare3_panel -1

3, 4, 6, 68, 69, 70, 71, 72, 73,

74, 75, 76, 224, 225, 226, 227...

*Elset , elset=ysymm , instance=glare3_panel -1

491, 492, 493, 494, 495, 496, 497, 498, 499,

500, 2951, 2952, 2953, 2954, 2955, 2956...

*Nset , nset=fix_bndry , instance=glare3_panel -1

1, 4, 7, 8, 9, 77, 78, 79, 80,

81, 82, 83, 84, 85, 86, 87...

*Elset , elset=fix_bndry , instance=glare3_panel -1

1, 11, 21, 31, 41, 51, 61, 71,
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81, 91, 101, 111, 121, 131, 141, 151...

*Nset , nset=mid_node , instance=glare3_panel -1

6,

*Nset , nset=top_ref

1,

*Nset , nset=bot_ref

2,

*Nset , nset=top_clamp , instance=clamp -1, generate

1, 2700, 1

*Elset , elset=top_clamp , instance=clamp -1, generate

1, 2720, 1

*Nset , nset=bot_clamp , instance=clamp -2, generate

1, 2700, 1

*Nset , nset=bot_clamp

2,

*Elset , elset=bot_clamp , instance=clamp -2, generate

1, 2720, 1

*Nset , nset=comp_panel , instance=glare3_panel -1, generate

1, 3721, 1

*Elset , elset=comp_panel , instance=glare3_panel -1, generate

1, 3600, 1

*Elset , elset=_blast_surface_SPOS , internal , instance=glare3_panel -1, generate

501, 3000, 1

*Surface , type=ELEMENT , name=blast_surface

_blast_surface_SPOS , SPOS

** Constraint: bot_clamp

*Rigid Body , ref node=bot_ref , elset=bot_clamp

** Constraint: top_clamp

*Rigid Body , ref node=top_ref , elset=top_clamp

*Element , type=MASS , elset=bot_ref_mass_bot_

1, 2

*Mass , elset=bot_ref_mass_bot_

0.97875 ,

*Element , type=MASS , elset=top_ref_mass_top_

2, 1

*Mass , elset=top_ref_mass_top_

0.97875 ,

*End Assembly

*Amplitude , name=blast_amp

input{blst_prssr.inp}

**

** MATERIALS

**

*Material , name=al2024 -t3

*Density

2.78e-09,

*Elastic

73084. , 0.33

*Plastic , hardening=JOHNSON COOK

369., 684., 0.73, 0., 0., 0.

*Rate Dependent , type=JOHNSON COOK

0.0083 ,1.

*Material , name=s2-glass/fm94

*Damage Initiation , criterion=HASHIN

2250. ,2250. , 32., 65., 50., 75.
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*Damage Evolution , type=ENERGY

12.5, 12.5, 1., 1.

*Density

1.98e-09,

*Elastic , type=LAMINA

50600. ,9900. , 0.33 ,3750. ,3750. ,1650.

*Fail Strain

0.045, -0.045, 0.0048 , -0.0073, 0.045

**

** INTERACTION PROPERTIES

**

*Surface Interaction , name=IntProp -1

*Friction

0.,

*Surface Behavior , pressure -overclosure=HARD

**

** BOUNDARY CONDITIONS

**

** Name: bc_fix Type: Symmetry/Antisymmetry/Encastre

*Boundary

fix_bndry , ENCASTRE

** Name: bc_xsymm Type: Symmetry/Antisymmetry/Encastre

*Boundary

xsymm , XSYMM

** Name: bc_ysymm Type: Symmetry/Antisymmetry/Encastre

*Boundary

ysymm , YSYMM

** Name: bot_ref Type: Symmetry/Antisymmetry/Encastre

*Boundary

bot_ref , ENCASTRE

** Name: top_ref Type: Symmetry/Antisymmetry/Encastre

*Boundary

top_ref , ENCASTRE

** ----------------------------------------------------------------

**

** STEP: blast_step

**

*Step , name=blast_step

*Dynamic , Explicit

, 0.001

*Bulk Viscosity

0.06, 1.2

** Mass Scaling: Semi -Automatic

** comp_panel

*Fixed Mass Scaling , elset=comp_panel , dt=2e-07, type=below min

**

** LOADS

**

** Name: blast_amp Type: Pressure

*Dsload , amplitude=blast_amp

blast_surface , P, 1.

**

** INTERACTIONS

**

** Interaction: Int -1
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*Contact , op=NEW

*Contact Inclusions , ALL EXTERIOR

*Contact Property Assignment

, , IntProp -1

**

** OUTPUT REQUESTS

**

*Restart , write , number interval=1, time marks=NO

**

** FIELD OUTPUT: F-Output -2

**

*Output , field

*Element Output , elset=glare3_panel -1. glare3_panel -1, directions=YES

2, 5, 8, 11, 14, 17, 20

DAMAGEFC , DAMAGEFT , DAMAGEMC , DAMAGEMT , DAMAGESHR , DMICRT , STATUS

**

** FIELD OUTPUT: F-Output -1

**

*Output , field

*Node Output , nset=comp_panel , variable=PRESELECT

*Element Output , elset=comp_panel , directions=YES , variable=PRESELECT

*Integrated Output , elset=comp_panel , variable=PRESELECT

*Energy Output , elset=comp_panel , variable=PRESELECT

*Incrementation Output , variable=PRESELECT

**

** HISTORY OUTPUT: H-Output -2

**

*Output , history

*Node Output , nset=mid_node

U3, V3

**

** HISTORY OUTPUT: H-Output -1

**

*Output , history , variable=PRESELECT

*End Step
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LS-DYNA - MMALE input files

Representative LS-DYNA input files are presented in this section and refer to the Con-

Wep and MMALE models investigated in Chapter 3. Files created using the Hyprmesh

and LS-Prepost preprocessor are large because all the elements and nodes of the model

are listed. This information has therefore been omitted.

ConWep model

$# LS-DYNA Keyword file created by LS -PREPOST 3.0( Beta) - 04 Mar2010 (08:36)

$# Created on Mar -22 -2010 (16:12:06)

*KEYWORD

*TITLE

$# title

GLARE3_75G_TIED

*CONTROL_ACCURACY

$$ OSU INN PIDOSU

$# osu inn pidosu

0 1 0

*CONTROL_BULK_VISCOSITY

$$ Q1 Q2 IBQ

$# q1 q2 type btype

1.500000 0.060000 1 0

*CONTROL_CONTACT

$$ SLSFAC RWPNAL ISLCHK SHLTHK PENOPT THKCHG ORIEN ENMASS

$# slsfac rwpnal islchk shlthk penopt thkchg orien enmass

1.000000 0.000 2 1 0 0 1 0

$# usrstr usrfrc nsbcs interm xpene ssthk ecdt tiedprj

0 0 0 0 4.000000 0 0 0

$# sfric dfric edc vfc th th_sf pen_sf

0.000 0.000 0.000 0.000 0.000 0.000 0.000

$# ignore frceng skiprwg outseg spotstp spotdel spothin

1 0 0 0 0 0 0.000

$# isym nserod rwgaps rwgdth rwksf icov swradf ithoff

0 0 0 0.000 1.000000 0 0.000 0

$# shledg

0
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*CONTROL_ENERGY

$$ HGEN RWEN SLNTEN RYLEN

$# hgen rwen slnten rylen

1 2 1 1

*CONTROL_HOURGLASS

$$ IHQ QH

$# ihq qh

1 0.100000

*CONTROL_SHELL

$$ WRPANG ESORT IRNXX ISTUPD THEORY BWC MITER PROJ

$# wrpang esort irnxx istupd theory bwc miter proj

20.000000 1 -1 0 2 2 1 0

$# rotascl intgrd lamsht cstyp6 tshell nfail1 nfail4 psnfail

1.000000 0 0 1 0 0 0 0

$# psstupd irquad

0 0

*CONTROL_TERMINATION

$$ ENDTIM ENDCYC DTMIN ENDENG ENDMAS

$# endtim endcyc dtmin endeng endmas

0.020000 0 0.000 0.000 0.000

*DATABASE_ATDOUT

$# dt binary lcur ioopt

0.001000 0 0 1

*DATABASE_GLSTAT

$# dt binary lcur ioopt

0.001000 0 0 1

*DATABASE_NODOUT

$# dt binary lcur ioopt dthf binhf

1.0000E-4 1 0 1 0.000 0

*DATABASE_BINARY_D3PLOT

$$ DT/CYCL LCDT BEAM NPLTC

$# dt lcdt beam npltc psetid

0.001000 0 0 0 0

$# ioopt

0

*DATABASE_BINARY_D3THDT

$$ DT/CYCL LCID

$# dt lcdt beam npltc psetid

0.001000 0 0 0 0

*DATABASE_HISTORY_NODE

$HMNAME OUTPUTBLOCKS 1TimeHistory1

$# id1 id2 id3 id4 id5 id6 id7 id8

53650 68450 78343 88236 98129 108022 117915 0

*DATABASE_HISTORY_NODE_SET

$# id1 id2 id3 id4 id5 id6 id7 id8

9 10 0 0 0 0 0 0

*DATABASE_HISTORY_SHELL_SET

$HMNAME OUTPUTBLOCKS 2press_shells

$# id1 id2 id3 id4 id5 id6 id7 id8

5 0 0 0 0 0 0 0

*BOUNDARY_SPC_SET_ID

$# id heading

1bc_fix_bndry

$# nsid cid dofx dofy dofz dofrx dofry dofrz

8 0 1 1 1 1 1 1
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*SET_NODE_LIST_TITLE

fix_nodes

$# sid da1 da2 da3 da4

8 0.000 0.000 0.000 0.000

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

48 88 147 376 429 434 435 441

*BOUNDARY_SPC_SET_ID

$# id heading

2bolt_nodes

$# nsid cid dofx dofy dofz dofrx dofry dofrz

7 0 1 1 1 1 1 1

*SET_NODE_LIST_TITLE

bolt_nodes

$# sid da1 da2 da3 da4

7 0.000 0.000 0.000 0.000

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

59590 59591 59593 59595 59596 59597 59604 59609

*LOAD_BLAST

$# wgt xbo ybo zbo tbo iunit isurf

1.0300E-4 0.000 0.000 200.00000 0.000 5 2

$# cfm cfl cft cfp

2204.6001 0.003281 1000.0000 145.03770

*LOAD_SHELL_SET

$HMNAME LOADCOLS 4LoadShellSet_3

$HWCOLOR LOADCOLS 4 3

$# esid lcid sf at

3 -2 1.000000 0.000

*CONTACT_AUTOMATIC_ONE_WAY_SURFACE_TO_SURFACE_TIEBREAK_ID

$HMNAME GROUPS 1AutoOneWayTie_1

$HWCOLOR GROUPS 1 3

$# cid title

11-2

$# ssid msid sstyp mstyp sboxid mboxid spr mpr

2 5 3 3 0 0 1 1

$# fs fd dc vc vdc penchk bt dt

0.000 0.000 0.000 0.000 0.000 1 0.0001.0000E+20

$# sfs sfm sst mst sfst sfmt fsf vsf

1.000000 1.000000 0.400000 0.130000 1.000000 1.000000 1.000000 1.000000

$# option nfls sfls param eraten erates ct2cn cn

11 50.000000 25.000000 1.000000 2.500000 2.500000 1.000000 0.000

$# soft sofscl lcidab maxpar sbopt depth bsort frcfrq

1 0.100000 0 1.025000 2.000000 2 0 1

*CONTACT_AUTOMATIC_ONE_WAY_SURFACE_TO_SURFACE_TIEBREAK_ID

$HMNAME GROUPS 2AutoOneWayTie_2

$HWCOLOR GROUPS 2 4

$# cid title

22-3

$# ssid msid sstyp mstyp sboxid mboxid spr mpr

5 6 3 3 0 0 1 1

$# fs fd dc vc vdc penchk bt dt

0.000 0.000 0.000 0.000 0.000 1 0.0001.0000E+20

$# sfs sfm sst mst sfst sfmt fsf vsf

1.000000 1.000000 0.130000 0.130000 1.000000 1.000000 1.000000 1.000000

$# option nfls sfls param eraten erates ct2cn cn

11 50.000000 25.000000 1.000000 2.500000 2.500000 1.000000 0.000



C. LS-DYNA - MMALE input files 156

$# soft sofscl lcidab maxpar sbopt depth bsort frcfrq

1 0.100000 0 1.025000 2.000000 2 0 1

*CONTACT_AUTOMATIC_ONE_WAY_SURFACE_TO_SURFACE_TIEBREAK_ID

$HMNAME GROUPS 3AutoOneWayTie_3

$HWCOLOR GROUPS 3 5

$# cid title

33-4

$# ssid msid sstyp mstyp sboxid mboxid spr mpr

6 3 3 3 0 0 1 1

$# fs fd dc vc vdc penchk bt dt

0.000 0.000 0.000 0.000 0.000 1 0.0001.0000E+20

$# sfs sfm sst mst sfst sfmt fsf vsf

1.000000 1.000000 0.130000 0.400000 1.000000 1.000000 1.000000 1.000000

$# option nfls sfls param eraten erates ct2cn cn

11 50.000000 25.000000 1.000000 2.500000 2.500000 1.000000 0.000

$# soft sofscl lcidab maxpar sbopt depth bsort frcfrq

1 0.100000 0 1.025000 2.000000 2 0 1

*CONTACT_AUTOMATIC_ONE_WAY_SURFACE_TO_SURFACE_TIEBREAK_ID

$HMNAME GROUPS 4AutoOneWayTie_4

$HWCOLOR GROUPS 4 6

$# cid title

44-5

$# ssid msid sstyp mstyp sboxid mboxid spr mpr

3 8 3 3 0 0 1 1

$# fs fd dc vc vdc penchk bt dt

0.000 0.000 0.000 0.000 0.000 1 0.0001.0000E+20

$# sfs sfm sst mst sfst sfmt fsf vsf

1.000000 1.000000 0.400000 0.130000 1.000000 1.000000 1.000000 1.000000

$# option nfls sfls param eraten erates ct2cn cn

11 50.000000 25.000000 1.000000 2.500000 2.500000 1.000000 0.000

$# soft sofscl lcidab maxpar sbopt depth bsort frcfrq

1 0.100000 0 1.025000 2.000000 2 0 1

*CONTACT_AUTOMATIC_ONE_WAY_SURFACE_TO_SURFACE_TIEBREAK_ID

$HMNAME GROUPS 5AutoOneWayTie_5

$HWCOLOR GROUPS 5 7

$# cid title

55-6

$# ssid msid sstyp mstyp sboxid mboxid spr mpr

8 7 3 3 0 0 1 1

$# fs fd dc vc vdc penchk bt dt

0.000 0.000 0.000 0.000 0.000 1 0.0001.0000E+20

$# sfs sfm sst mst sfst sfmt fsf vsf

1.000000 1.000000 0.130000 0.130000 1.000000 1.000000 1.000000 1.000000

$# option nfls sfls param eraten erates ct2cn cn

11 50.000000 25.000000 1.000000 2.500000 2.500000 1.000000 0.000

$# soft sofscl lcidab maxpar sbopt depth bsort frcfrq

1 0.100000 0 1.025000 2.000000 2 0 1

*CONTACT_AUTOMATIC_ONE_WAY_SURFACE_TO_SURFACE_TIEBREAK_ID

$HMNAME GROUPS 6AutoOneWayTie_6

$HWCOLOR GROUPS 6 8

$# cid title

66-7

$# ssid msid sstyp mstyp sboxid mboxid spr mpr

7 4 3 3 0 0 1 1

$# fs fd dc vc vdc penchk bt dt
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0.000 0.000 0.000 0.000 0.000 1 0.0001.0000E+20

$# sfs sfm sst mst sfst sfmt fsf vsf

1.000000 1.000000 0.130000 0.400000 1.000000 1.000000 1.000000 1.000000

$# option nfls sfls param eraten erates ct2cn cn

11 50.000000 25.000000 1.000000 2.500000 2.500000 1.000000 0.000

$# soft sofscl lcidab maxpar sbopt depth bsort frcfrq

1 0.100000 0 1.025000 2.000000 2 0 1

*PART

$HMNAME COMPS 2AL-FRONT

$HWCOLOR COMPS 2 3

$# title

AL-FRONT

$# pid secid mid eosid hgid grav adpopt tmid

2 1 2 0 0 0 0 0

*SECTION_SHELL_TITLE

ALUMINIUM_SECTION_SHELL

$# secid elform shrf nip propt qr/irid icomp setyp

1 0 0.000 0 0 0 0 0

$# t1 t2 t3 t4 nloc marea idof edgset

0.400000 0.400000 0.400000 0.400000 0.000 0.000 0.000 0

*MAT_SIMPLIFIED_JOHNSON_COOK_TITLE

ALUMINIUM 2024-T3

$# mid ro e pr vp

2 2.7800E-9 72400.000 0.300000 0.000

$# a b n c psfail sigmax sigsat epso

369.00000 684.00000 0.740000 0.0083001.0000E+171.0000E+281.0000E+28 0.001000

*PART

$HMNAME COMPS 3AL-MID

$HWCOLOR COMPS 3 4

$# title

AL-MID

$# pid secid mid eosid hgid grav adpopt tmid

3 1 2 0 0 0 0 0

*PART

$HMNAME COMPS 4AL-BACK

$HWCOLOR COMPS 4 5

$# title

AL-BACK

$# pid secid mid eosid hgid grav adpopt tmid

4 1 2 0 0 0 0 0

*PART

$HMNAME COMPS 5COMP_0_FRONT

$HWCOLOR COMPS 5 6

$# title

COMP_0_FRONT

$# pid secid mid eosid hgid grav adpopt tmid

5 2 1 0 0 0 0 0

*SECTION_SHELL_TITLE

S2/GLASS EPOXY

$# secid elform shrf nip propt qr/irid icomp setyp

2 2 0.000 0 1 0 0 0

$# t1 t2 t3 t4 nloc marea idof edgset

0.130000 0.130000 0.130000 0.130000 0.000 0.000 0.000 0

*MAT_COMPOSITE_FAILURE_SHELL_MODEL_TITLE

S2/GLASS -EPOXY
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$# mid ro ea eb ec prba prca prcb

1 1.9800E-9 55000.000 9500.0000 9500.0000 0.061300 0.061300 0.330000

$# gab gbc gca kf aopt maflag

5500.0000 5500.0000 3000.0000 0.000 2.000000 1.000000

$# xp yp zp a1 a2 a3

0.000 0.000 0.000 0.000 1.000000 0.000

$# v1 v2 v3 d1 d2 d3 beta

0.000 0.000 0.000 1.000000 0.000 0.000 0.000

$# tsize alp soft fbrt sr sf

0.000 0.000 0.000 0.000 0.447000 0.000

$# xc xt yc yt sc

2000.0000 2500.0000 150.00000 50.000000 75.000000

*PART

$HMNAME COMPS 6COMP_90_FRONT

$HWCOLOR COMPS 6 7

$# title

COMP_90_FRONT

$# pid secid mid eosid hgid grav adpopt tmid

6 2 1 0 0 0 0 0

*PART

$HMNAME COMPS 7COMP_0_BACK

$HWCOLOR COMPS 7 8

$# title

COMP_0_BACK

$# pid secid mid eosid hgid grav adpopt tmid

7 2 1 0 0 0 0 0

*PART

$HMNAME COMPS 8COMP_90_BACK

$HWCOLOR COMPS 8 9

$# title

COMP_90_BACK

$# pid secid mid eosid hgid grav adpopt tmid

8 2 1 0 0 0 0 0

*MAT_POWER_LAW_PLASTICITY_TITLE

P-L(Aluminium 2024-T3)

$# mid ro e pr k n src srp

3 2.7800E-9 72400.000 0.300000 690.00000 0.160000 0.000 0.000

$# sigy vp

340.00000 0.000

*DEFINE_CURVE_TITLE

LC1

$# lcid sidr sfa sfo offa offo dattyp

1 0 1.000000 1.000000 0.000 0.000 0

$# a1 o1

0.000 0.000

1.0000000 1.0000000

*DEFINE_CURVE_TITLE

LC2

$# lcid sidr sfa sfo offa offo dattyp

2 0 1.000000 1.000000 0.000 0.000 0

$# a1 o1

0.000 0.000

1.0000000 1.0000000

*SET_NODE_LIST_TITLE

GROUP1
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9 0.000 0.000 0.000 0.000

117849 117989 118539 118731 118519 118466 118529 0

*SET_NODE_LIST_TITLE

GROUP2

10 0.000 0.000 0.000 0.000

117851 117755 115695 115725 115565 115591 115898 115887

*SET_SHELL_LIST_TITLE

blast_surface

3 0.000 0.000 0.000 0.000

1 2 3 4 5 6 7 8

*SET_SHELL_LIST

$HMSET

$HMNAME SETS 5pres_shells

5 0.000 0.000 0.000 0.000

48694 48834 49054 49659 0 0 0 0

*ELEMENT_SHELL

$# eid pid n1 n2 n3 n4 n5 n6 n7 n8

1 2 193 197 199 192 0 0 0 0

*NODE

$# nid x y z tc rc

48 100.0000000 300.0000000 0.000 0 0

*END

*COMPONENT

$# clid color1 color2 color3 color4

1 0.251000 0.627000 0.835000 0.000 0 0 0

$HMNAME COMPS 7COMP_0_BACK

$HWCOLOR COMPS 7 8

$# name

Assembly 1

*COMPONENT_PART

$HMNAME COMPS 7COMP_0_BACK

$HWCOLOR COMPS 7 8

$# pid clid

2 1

$HMNAME COMPS 7COMP_0_BACK

$HWCOLOR COMPS 7 8

$# pid clid

3 1

$HMNAME COMPS 7COMP_0_BACK

$HWCOLOR COMPS 7 8

$# pid clid

4 1

$HMNAME COMPS 7COMP_0_BACK

$HWCOLOR COMPS 7 8

$# pid clid

5 1

$HMNAME COMPS 7COMP_0_BACK

$HWCOLOR COMPS 7 8

$# pid clid

6 1

$HMNAME COMPS 7COMP_0_BACK

$HWCOLOR COMPS 7 8

$# pid clid

7 1

$# pid clid
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8 1

*COMPONENT_END

MMALE Model

$# LS-DYNA Keyword file created by LS -PREPOST 3.1 (Beta) - 19 Aug2010 (08:33)

$# Created on Sep -22 -2010 (22:30:46)

*KEYWORD MEMORY =300000000

*TITLE

$# title

LS-DYNA keyword deck by LS -PrePost

*CONTROL_ACCURACY

$# osu inn pidosu

0 1 0

*CONTROL_ALE

$# dct nadv meth afac bfac cfac dfac efac

1 0 1 0.000 0.000 0.000 0.000 0.000

$# start end aafac vfact prit ebc pref nsidebc

0.0001.0000E+20 1.000000 1.0000E-6 0 0 0.000 0

*CONTROL_BULK_VISCOSITY

$# q1 q2 type btype

1.500000 0.060000 1 0

*CONTROL_ENERGY

$# hgen rwen slnten rylen

1 2 1 1

*CONTROL_TERMINATION

$# endtim endcyc dtmin endeng endmas

5.000000 0 0.000 0.000 0.000

*CONTROL_TIMESTEP

$# dtinit tssfac isdo tslimt dt2ms lctm erode ms1st

0.000 0.900000 0 0.000 0.000 0 0 0

$# dt2msf dt2mslc imscl

0.000 0 0

*DATABASE_ELOUT

$# dt binary lcur ioopt

0.001000 0 0 1

*DATABASE_GLSTAT

$# dt binary lcur ioopt

0.010000 0 0 1

*DATABASE_NODOUT

$# dt binary lcur ioopt dthf binhf

0.001000 0 0 1 0.000 0

*DATABASE_BINARY_D3PLOT

$# dt lcdt beam npltc psetid

0.250000 0 0 0 0

$# ioopt

0

*DATABASE_BINARY_D3THDT

$# dt lcdt beam npltc psetid

0.500000 0 0 0 0

*DATABASE_EXTENT_BINARY

$# neiph neips maxint strflg sigflg epsflg rltflg engflg

0 0 3 0 1 1 1 1

$# cmpflg ieverp beamip dcomp shge stssz n3thdt ialemat

0 0 0 1 2 1 2 1
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$# nintsld pkp_sen sclp unused msscl therm intout nodout

0 0 1.000000 0 0 0STRESS STRESS

*DATABASE_HISTORY_NODE_SET

$# id1 id2 id3 id4 id5 id6 id7 id8

5 0 0 0 0 0 0 0

*BOUNDARY_NON_REFLECTING

$# ssid ad as

1 0.000 0.000

2 0.000 0.000

3 0.000 0.000

*BOUNDARY_SPC_SET_ID

$# id heading

0BC_XSYMM

$# nsid cid dofx dofy dofz dofrx dofry dofrz

1 0 1 0 0 0 0 0

*SET_NODE_LIST_TITLE

xsymm

$# sid da1 da2 da3 da4 solver

1 0.000 0.000 0.000 0.000 MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

350 356 362 368 374 380 386 392

*BOUNDARY_SPC_SET_ID

$# id heading

0BC_YSYMM

$# nsid cid dofx dofy dofz dofrx dofry dofrz

2 0 0 1 0 0 0 0

*SET_NODE_LIST_TITLE

ysymm

$# sid da1 da2 da3 da4 solver

2 0.000 0.000 0.000 0.000 MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

203 350 356 362 368 374 380 386

*BOUNDARY_SPC_SET_ID

$# id heading

0BC_ZSYMM

$# nsid cid dofx dofy dofz dofrx dofry dofrz

3 0 0 0 1 0 0 0

*SET_NODE_LIST_TITLE

zsymm

$# sid da1 da2 da3 da4 solver

3 0.000 0.000 0.000 0.000 MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

288 2458 2465 2472 2479 2486 2493 2500

*BOUNDARY_SPC_SET_ID

$# id heading

0BC_FIX

$# nsid cid dofx dofy dofz dofrx dofry dofrz

4 0 1 1 1 1 1 1

*SET_NODE_LIST_TITLE

FIX_NODES

$# sid da1 da2 da3 da4 solver

4 0.000 0.000 0.000 0.000 MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8
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196353 196384 196415 196446 196477 196508 196539 196570

*PART

$HMNAME COMPS 2air

$HWCOLOR COMPS 2 3

$# title

Air

$# pid secid mid eosid hgid grav adpopt tmid

1 1 2 2 2 0 0 0

*SECTION_SOLID_ALE_TITLE

SOLID_ALE

$# secid elform aet

1 11 1

$# afac bfac cfac dfac start end aafac

0.000 0.000 0.000 0.000 0.000 0.000 0.000

*MAT_NULL_TITLE

MAT_AIR

$# mid ro pc mu terod cerod ym pr

2 1.2000E-6 -0.010000 0.000 0.000 0.000 0.000 0.000

*EOS_LINEAR_POLYNOMIAL_TITLE

EOL_AIR

$# eosid c0 c1 c2 c3 c4 c5 c6

2 -1.000E-6 0.000 0.000 0.000 0.400000 0.400000 0.000

$# e0 v0

0.250000 1.000000

*HOURGLASS_TITLE

HRGLSS_AIR

$# hgid ihq qm ibq q1 q2 qb/vdc qw

2 1 1.0000E-6 0 1.500000 0.060000 0.100000 0.100000

*PART

$HMNAME COMPS 2air

$HWCOLOR COMPS 2 3

$# title

Explosive

$# pid secid mid eosid hgid grav adpopt tmid

2 2 1 1 1 0 0 0

*SECTION_SOLID_ALE_TITLE

SOLID_ALE

$# secid elform aet

2 11 1

$# afac bfac cfac dfac start end aafac

0.000 0.000 0.000 0.000 0.000 0.000 0.000

*MAT_HIGH_EXPLOSIVE_BURN_TITLE

MAT_HE

$# mid ro d pcj beta k g sigy

1 0.001590 6930.0000 21000.000 0.000 0.000 0.000 0.000

*EOS_JWL_TITLE

EOL_HE

$# eosid a b r1 r2 omeg e0 vo

1 3.7120E+5 3231.0000 4.150000 0.950000 0.320000 7000.0000 1.000000

*HOURGLASS_TITLE

HRGLSS_HE

$# hgid ihq qm ibq q1 q2 qb/vdc qw

1 1 1.0000E-6 0 1.500000 0.060000 0.100000 0.100000

*PART_COMPOSITE

$# title
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GLARE 3 32 0.4

$# pid elform shrf nloc marea hgid adpopt ithelfrm

5 16 0.000 0.000 0.000 0 0 0

$# mid1 thick1 b1 ithid1 mid2 thick2 b2 ithid2

3 0.400000 0.000 0 55 0.130000 0.000 0

55 0.130000 90.000000 0 3 0.400000 0.000 0

55 0.130000 90.000000 0 55 0.130000 0.000 0

3 0.400000 0.000 0 0 0.000 0.000 0

*MAT_SIMPLIFIED_JOHNSON_COOK_TITLE

JC_AL2024 -T3

$# mid ro e pr vp

3 0.002780 72400.000 0.300000 0.000

$# a b n c psfail sigmax sigsat epso

369.00000 684.00000 0.740000 0.0083001.0000E+171.0000E+281.0000E+28 0.001000

*MAT_ENHANCED_COMPOSITE_DAMAGE_TITLE

S2GLASS/EPOXY

$# mid ro ea eb (ec) prba (prca) (prcb)

55 0.001960 50600.000 13460.000 13460.000 0.062600 0.062600 0.320000

$# gab gbc gca (kf) aopt

5440.0000 5440.0000 2430.0000 0.000 0.000

$# xp yp zp a1 a2 a3 mangle

0.000 0.000 0.000 0.000 1.000000 0.000 0.000

$# v1 v2 v3 d1 d2 d3 dfailm dfails

0.000 0.000 0.000 1.000000 0.000 0.000 0.000 0.000

$# tfail alph soft fbrt ycfac dfailt dfailc efs

0.000 0.000 0.000 0.000 2.000000 0.090900 0.000 0.090900

$# xc xt yc yt sc crit beta

2000.0000 2500.0000 150.00000 59.000000 75.000000 54.000000 1.000000

*INITIAL_DETONATION

$# pid x y z lt

1 0.000 0.000 0.000 0.000

0 0.000 0.000 0.000 0.000

*SET_NODE_LIST_TITLE

centre_node

$# sid da1 da2 da3 da4 solver

5 0.000 0.000 0.000 0.000 MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

196323 0 0 0 0 0 0 0

*SET_PART_LIST_TITLE

Air

$# sid da1 da2 da3 da4 solver

1 0.000 0.000 0.000 0.000 MECH

$# pid1 pid2 pid3 pid4 pid5 pid6 pid7 pid8

1 0 0 0 0 0 0 0

*SET_PART_LIST_TITLE

Explosive

$# sid da1 da2 da3 da4 solver

2 0.000 0.000 0.000 0.000 MECH

$# pid1 pid2 pid3 pid4 pid5 pid6 pid7 pid8

2 0 0 0 0 0 0 0

*SET_PART_LIST_TITLE

Plate

$# sid da1 da2 da3 da4 solver

3 0.000 0.000 0.000 0.000 MECH

$# pid1 pid2 pid3 pid4 pid5 pid6 pid7 pid8
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5 0 0 0 0 0 0 0

*SET_SEGMENT_TITLE

ZSEG

$# sid da1 da2 da3 da4 solver

1 0.000 0.000 0.000 0.000 MECH

$# n1 n2 n3 n4 a1 a2 a3 a4

128259 125894 125851 128216 0.000 0.000 0.000 0.000

*SET_SEGMENT_TITLE

XSEG

$# sid da1 da2 da3 da4 solver

2 0.000 0.000 0.000 0.000 MECH

$# n1 n2 n3 n4 a1 a2 a3 a4

61907 61914 61915 190825 0.000 0.000 0.000 0.000

*SET_SEGMENT_TITLE

YSEG

$# sid da1 da2 da3 da4 solver

3 0.000 0.000 0.000 0.000 MECH

$# n1 n2 n3 n4 a1 a2 a3 a4

71560 71561 73926 73925 0.000 0.000 0.000 0.000

*ALE_MULTI -MATERIAL_GROUP

$# sid idtype gpname

1 0Air

*ALE_MULTI -MATERIAL_GROUP

$# sid idtype gpname

2 0Explosive

*CONSTRAINED_LAGRANGE_IN_SOLID

$# slave master sstyp mstyp nquad ctype direc mcoup

3 1 0 0 0 2 1 0

$# start end pfac fric frcmin norm normtyp damp

0.0001.0000E+10 0.100000 0.000 0.500000 0 0 0.000

$# cq hmin hmax ileak pleak lcidpor nvent blockage

0.000 0.000 0.000 2 0.200000 0 0 0

$# iboxid ipenchk intforc ialesof lagmul pfacmm thkf

0 0 0 0 0.000 0 0.000

*ELEMENT_SOLID

$# eid pid n1 n2 n3 n4 n5 n6 n7 n8

757 1 192943 1283 1326 192983 192944 1284 1327 192984

*ELEMENT_SHELL

$# eid pid n1 n2 n3 n4 n5 n6 n7 n8

176005 5 196323 196354 196355 196324 0 0 0 0

*NODE

$# nid x y z tc rc

*END

*COMPONENT

$# clid color1 color2 color3 color4

1 0.769000 0.004000 0.110000 0.000 0 0 0

$# name

Part 1

*COMPONENT_PART

$# pid clid

1 1

$# pid clid

2 1

$# pid clid

5 1
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*COMPONENT_END





Appendix D

LS-DYNA - Scaled fuselage input

files

Representative LS-DYNA input files are presented in this section and refer to the scaled

fuselage models investigated in Chapter 4. Files created using the Hyprmesh and LS-

Prepost preprocessor are large because all the elements and nodes of the model are

listed. This information has therefore been omitted.

Metallic demonstrator model subjected to an internal explosion of 20 gr Semtex

$# LS-DYNA Keyword file created by LS -PrePost 3.2 (Beta) - 30 May2011 (14:54)

$# Created on Aug -26 -2011 (16:19:24)

*KEYWORD MEMORY =30000000

*TITLE

$# title

LS-DYNA keyword deck by LS -PrePost

*CONTROL_ACCURACY

0 1 0

*CONTROL_BULK_VISCOSITY

$$ Q1 Q2 IBQ

1.500000 0.060000 1 0

*CONTROL_CONTACT

$$ SLSFAC RWPNAL ISLCHK SHLTHK PENOPT THKCHG ORIEN ENMASS

0.100000 0.000 1 0 0 0 1 0

$$ USRSTR USRFRC NSBCS INTERM XPENE SSTHK ECDT TIEDPRJ

0 0 0 0 4.000000 0 0 0

$$ SFRIC DFRIC EDC INTVFC TH TH_SF PEN_SF

0.000 0.000 0.000 0.000 0.000 0.000 0.000

$$ IGNORE FRCENG

0 0 0 0 0 0 0.000

$$ ISYM NSEROD RWGAPS RWGDTH RWKSF ICOV

0 0 0 0.000 1.000000 0 0.000 0

0

*CONTROL_DYNAMIC_RELAXATION

$$ NRCYCK DRTOL DRFCTR DRTERM TSSFDR IRELAL EDTTL IDRFLG

250 0.001000 0.995000 0.000 0.000 0 0.040000 0
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*CONTROL_SHELL

20.000000 0 -1 0 2 2 1 0

1.000000 0 0 1 0 0 0 0

0 0 0

*CONTROL_TERMINATION

$$ ENDTIM ENDCYC DTMIN ENDENG ENDMAS

1.000000 0 0.000 0.000 0.000

*CONTROL_TIMESTEP

$$ DTINIT TSSFAC ISDO TSLIMT DT2MS LCTM ERODE MSIST

0.000 0.900000 0 0.000 0.000 0 0 0

0.000 0 0

*DATABASE_MATSUM

0.050000 0 0 1

*DATABASE_BINARY_D3PLOT

0.100000 0 0 0 0

0

*BOUNDARY_SPC_SET_ID

1bc_fix

7 0 1 1 1 1 1 1

*SET_NODE_LIST_TITLE

fix_nodes

7 0.000 0.000 0.000 0.000

151751 151752 151753 151754 151755 151756 151757 151758

*BOUNDARY_SPC_SET_ID

1bc_fix_frms_skn

9 0 1 1 1 1 1 1

*SET_NODE_LIST_TITLE

frms_spprt

9 0.000 0.000 0.000 0.000 MECH

404114 404115 404116 404117 404118 404119 404120 404121

*BOUNDARY_SPC_SET_ID

1bc_fix_skn_tp_bttm

10 0 1 1 1 1 1 1

*SET_NODE_LIST_TITLE

skn_tp_nds

10 0.000 0.000 0.000 0.000 MECH

202065 209080 210647 211016 211049 211070 211075 211076

*LOAD_BLAST

33.299999 -302.00000 -302.00000 0.000 0.000 5 2

0.002205 0.003280 1.000000 145.03770

*LOAD_SHELL_SET_ID

1

1 1 1.000000 0.000

*CONTACT_TIEBREAK_NODES_ONLY_ID

1clts_frms

1 11 4 0 0 0 0 0

0.000 0.000 0.000 0.000 0.000 0 0.0001.0000E+20

1.000000 1.000000 0.000 0.000 1.000000 1.000000 1.000000 1.000000

2160.0000 2580.0000 1.000000 1.000000

*SET_NODE_LIST_TITLE

clts_tp

1 0.000 0.000 0.000 0.000 MECH

25383 25387 25455 25464 25478 25490 25582 25594

*SET_SEGMENT_TITLE

frms
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11 0.000 0.000 0.000 0.000 MECH

149625 149706 149724 149645 0.000 0.000 0.000 0.000

*CONTACT_TIEBREAK_NODES_ONLY_ID

3strngrs_skn

3 12 4 0 0 0 0 0

0.000 0.000 0.000 0.000 0.000 0 0.0001.0000E+20

1.000000 1.000000 0.000 0.000 1.000000 1.000000 1.000000 1.000000

2160.0000 2580.0000 1.000000 1.000000

*SET_NODE_LIST_TITLE

strngrs

3 0.000 0.000 0.000 0.000

70901 70916 70934 70949 70965 70974 70989 71004

*CONTACT_TIEBREAK_NODES_ONLY_ID

4dblrs_ntrnl

4 12 4 0 0 0 0 0

0.000 0.000 0.000 0.000 0.000 0 0.0001.0000E+20

1.000000 1.000000 0.000 0.000 1.000000 1.000000 1.000000 1.000000

2160.0000 2580.0000 1.000000 1.000000

*SET_NODE_LIST_TITLE

dblrs_ntrnl

4 0.000 0.000 0.000 0.000

50841 50856 50874 50889 50905 50914 50929 50944

*CONTACT_TIEBREAK_NODES_ONLY_ID

5dblrs_xtrnl

5 12 4 0 0 0 0 0

0.000 0.000 0.000 0.000 0.000 0 0.0001.0000E+20

1.000000 1.000000 0.000 0.000 1.000000 1.000000 1.000000 1.000000

2160.0000 2580.0000 1.000000 1.000000

*SET_NODE_LIST_TITLE

dblrs_xtrnl

5 0.000 0.000 0.000 0.000

62306 62326 62350 62370 62398 62418 62442 62462

*CONTACT_AUTOMATIC_SINGLE_SURFACE

0 0 0 0 0 0 0 0

0.000 0.000 0.000 0.000 0.000 0 0.0001.0000E+20

1.000000 1.000000 0.000 0.000 1.000000 1.000000 1.000000 1.000000

*PART

$HMNAME COMPS 1blkhd

$HWCOLOR COMPS 1 3

blkhd

1 1 2 0 0 0 0 0

*SECTION_SHELL_TITLE

blkhd

1 16 1.000000 2 1 0 0 0

2.200000 2.200000 2.200000 2.200000 0.000 0.000 0.000 0

*MAT_POWER_LAW_PLASTICITY_TITLE

Aluminium 7178-T62

2 0.002780 71700.000 0.330000 200.00000 0.200000 0.000 0.000

538.00000 0.000

*PART

$HMNAME COMPS 2blkhd_nnr

$HWCOLOR COMPS 2 4

blkhd_nnr

2 2 2 0 0 0 0 0

*SECTION_SHELL_TITLE
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blkhd_nnr

2 16 1.000000 2 1 0 0 0

28.000000 28.000000 28.000000 28.000000 0.000 0.000 0.000 0

*PART

$HMNAME COMPS 3blkhd_tr

$HWCOLOR COMPS 3 5

blkhd_tr

3 3 2 0 0 0 0 0

*SECTION_SHELL_TITLE

blkhd_tr

3 16 1.000000 2 1 0 0 0

33.000000 33.000000 33.000000 33.000000 0.000 0.000 0.000 0

*PART

$HMNAME COMPS 11 cleats

$HWCOLOR COMPS 11 6

cleats

11 11 2 0 0 0 0 0

*SECTION_SHELL_TITLE

clts

11 16 1.000000 3 1 0 0 0

2.200000 2.200000 2.200000 2.200000 0.000 0.000 0.000 0

*PART

$HMNAME COMPS 12 dblrs_frms_tp

$HWCOLOR COMPS 12 7

dblrs_frms_tp

12 12 4 0 0 0 0 0

*SECTION_SHELL_TITLE

dblrs_frms_tp

12 16 1.000000 2 1 0 0 0

2.200000 2.200000 2.200000 2.200000 0.000 0.000 0.000 0

*MAT_RIGID_TITLE

RIGID_SUPPORTS

4 0.002780 71700.000 0.330000 0.000 0.000 0.000

1.000000 7 7

0.000 0.000 0.000 0.000 0.000 0.000

*PART

$HMNAME COMPS 13 dblrs_frms_bttm

$HWCOLOR COMPS 13 8

dblrs_frms_bttm

13 13 4 0 0 0 0 0

*SECTION_SHELL_TITLE

dblrs_frms_bttm

13 16 1.000000 2 1 0 0 0

2.200000 2.200000 2.200000 2.200000 0.000 0.000 0.000 0

*PART

$HMNAME COMPS 21frms

$HWCOLOR COMPS 21 7

frms

21 21 5 0 0 0 0 0

*SECTION_SHELL_TITLE

frms

21 16 1.000000 2 1 0 0 0

2.200000 2.200000 2.200000 2.200000 0.000 0.000 0.000 0

*MAT_SIMPLIFIED_JOHNSON_COOK_TITLE

AL2024_JC
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5 0.002780 72400.000 0.330000 0.000

369.00000 684.00000 0.730000 0.083000 0.140000 484.000001.0000E+28 1.000000

*PART

$HMNAME COMPS 31 dblrs_ntrnl

$HWCOLOR COMPS 31 13

dblrs_ntrnl

31 31 5 0 0 0 0 0

*SECTION_SHELL_TITLE

dblrs_ntrnl

31 16 1.000000 2 1 0 0 0

1.700000 1.700000 1.700000 1.700000 0.000 0.000 0.000 0

*PART

$HMNAME COMPS 32 dblrs_xtrnl

$HWCOLOR COMPS 32 17

dblrs_xtrnl

32 32 5 0 0 0 0 0

*SECTION_SHELL_TITLE

dblrs_xtrnl

32 16 1.000000 2 1 0 0 0

4.000000 4.000000 4.000000 4.000000 0.000 0.000 0.000 0

*PART

$HMNAME COMPS 41 skn_1a

$HWCOLOR COMPS 41 20

skn_1a

41 41 7 0 0 0 0 0

*SECTION_SHELL_TITLE

skin_1a

41 16 1.000000 3 1 0 0 0

2.200000 2.200000 2.200000 2.200000 0.000 0.000 0.000 0

*MAT_SIMPLIFIED_JOHNSON_COOK_TITLE

AL7178_JC

7 0.002780 71700.000 0.330000 0.000

538.00000 200.00000 0.200000 0.000 0.100000 607.000001.0000E+28 1.000000

*PART

$HMNAME COMPS 42 skn_1b

$HWCOLOR COMPS 42 21

skn_1b

42 42 7 0 0 0 0 0

*SECTION_SHELL_TITLE

skin_1b

42 16 1.000000 3 1 0 0 0

2.200000 2.200000 2.200000 2.200000 0.000 0.000 0.000 0

*PART

$HMNAME COMPS 43 skn_1c

$HWCOLOR COMPS 43 24

skn_1c

43 43 7 0 0 0 0 0

*SECTION_SHELL_TITLE

skin_1c

43 16 1.000000 3 1 0 0 0

2.200000 2.200000 2.200000 2.200000 0.000 0.000 0.000 0

*PART

$HMNAME COMPS 44 skn_1d

$HWCOLOR COMPS 44 25

skn_1d
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44 44 7 0 0 0 0 0

*SECTION_SHELL_TITLE

skin_1d

44 16 1.000000 3 1 0 0 0

2.200000 2.200000 2.200000 2.200000 0.000 0.000 0.000 0

*PART

$HMNAME COMPS 51 strngrs

$HWCOLOR COMPS 51 28

strngrs

51 51 6 0 0 0 0 0

*SECTION_SHELL_TITLE

strngrs

51 16 1.000000 2 1 0 0 0

2.300000 2.300000 2.300000 2.300000 0.000 0.000 0.000 0

*MAT_SIMPLIFIED_JOHNSON_COOK_TITLE

AL7075_JC

6 0.002780 71000.000 0.330000 0.000

434.00000 303.57999 0.390000 0.968000 0.170000 484.000001.0000E+28 1.000000

*PART

$HMNAME COMPS 61 frms_tp_bttm

$HWCOLOR COMPS 61 29

frms_tp_bttm

61 61 3 0 0 0 0 0

*SECTION_SHELL_TITLE

frms_tp_bttm

61 16 1.000000 2 1 0 0 0

4.000000 4.000000 4.000000 4.000000 0.000 0.000 0.000 0

*MAT_POWER_LAW_PLASTICITY_TITLE

Aluminium 2024-T3

3 0.002780 71700.000 0.330000 200.00000 0.200000 0.000 0.000

345.00000 0.000

*MAT_POWER_LAW_PLASTICITY_TITLE

Aluminium 7075- T3511

1 0.002780 71700.000 0.330000 200.00000 0.200000 0.000 0.000

400.00000 0.000

*DEFINE_CURVE_TITLE

rfrnc

1 0 1.000000 1.000000 0.000 0.000 0

0.000 0.000

1.0000000 1.0000000

*DEFINE_CURVE_TITLE

rfrnc

2 0 1.000000 1.000000 0.000 0.000 0

0.000 0.000

1.0000000 1.0000000

*SET_NODE_LIST_TITLE

clts_frms

6 0.000 0.000 0.000 0.000

419983 420002 420018 420037 420280 420299 420315 420334

*SET_NODE_LIST_TITLE

dblrs_xtrnl_skn

8 0.000 0.000 0.000 0.000 MECH

332535 365910 366018 332460 332473 332897 332803 340170

*SET_SHELL_LIST_TITLE

blst_srfc
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1 0.000 0.000 0.000 0.000

544214 544215 544216 544217 544218 544219 544220 544221

734802 734803 734804 734805 0 0 0 0

*ELEMENT_SHELL

108661 21 120126 120137 120119 120119 0 0 0 0

*NODE

25207 -395.7245178 -463.9636536 -478.9009094 0 0

*END





Appendix E

RADIOSS - MMALE simulations

E.1 Interaction of pressurised cylindrical structures sub-

jected to TNT blast loading

This Appendix gives an overview of a study on the dynamic behaviour of Glare pres-

surised barrels subjected to internal blast loadings using the fluid structure interaction

approach (ALE) within the explicit finite element software RADIOSS. The barrel setup

was based on well-controlled and minimal dynamic fracture tests, which aim to em-

ulate conditions on-board a commercial aircraft. The effects of length and static pre-

pressurisation were investigated to determine the interaction between barrel deformation

and reflected shock waves. In this paper, it is shown that the length of the barrel may

significantly induce severe vibration modes as a result of shock reflection waves from the

top surface of the barrel. Finally the effect of pre-pressurisation was proven to alter the

structural response to an internal explosion by providing additional internal energy to

propagate the blast wave. As a result, it has been concluded that pre-pressurization of

an aircraft fuselage will increase the structural damage due to the detonation of an on-

board explosive device and must be included in all future studies to model the dynamic

crack growth and structural integrity of typical aircraft structures.

E.2 Influence of Barrel Length

To determine the effect of barrel length on the shock wave behaviour of a 54g TNT

charge, a numerical study was performed on closed atmospheric GLARE barrels with

the following respective lengths: 1.4 and 2 m, which will be referred to as Barrel A

and B, respectively. The shock wave front for Barrel A reaches the top of the barrel at
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approximately t=0.24ms. At this time the shock wave velocity profile for both barrels

is approximately the same, as shown in Fig. E.1(a). The pressure which impinges on

the top surface will depend on the rate of which the blast wave dissipates as a function

of time and space. Therefore Barrel A experiences a larger blast pressure, as you would

expect, indicating that damage would be more pronounced in this barrel configuration

particularly as this would have a higher bending stiffness, as shown in Fig. E.1(a). The

higher bending stiffness will cause Barrel A to offer more of a resistance to the blast

wave, dissipating more energy through irreversible damage processes such as plastic

deformation in the aluminium layers and damage energy within the GFRP layers.
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Figure E.1: Distribution of blast (a) velocity (m/s) and (b) pressure shock wave at
the same time for 1.4 and 2 m GLARE barrels for a 54g TNT charge (Pressure is in

MPa)

Monitoring the pressure profile experienced at the lower perimeter of the GLARE barrel

shows that there are two instantaneous rises in pressure, or peaks, see Fig. E.2. The

first peak represents the contact with the initial reflected shock wave, which is clearly

independent of barrel length. The second peak is a result of the shock wave reflecting

from the top boundary of the barrel, giving a second ’blast’ effect. This second peak
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Figure E.2: Pressure profile extracted from lower perimeter for 1.4 and 2m GLARE
barrels for a 54g TNT charge

is more severe for Barrel A than B, since the blast shock wave has expanded further

and longer in the latter case, dissipating more energy. This second pressure peak is

crucial in assessing the damage tolerance of the barrel, as further damage can occur

and accumulate longer after initial detonation of explosion, as a result of shock wave

reflection from adjacent boundaries.

Monitoring the global internal energy of the system provides an insight into the physical

instability of the fluid-structure interaction. There is evidence to show that as the shock

waves propagates along the length of the barrel; the structure is experiencing out-of-

plane bending in an oscillatory manner, as illustrated in Fig. E.3.

Although the internal energy for both models are initially identical, they begin to deviate

at approximately t = 1.25 ms. During this time there are two significant peaks where

the amplitude of the second peak depends on the barrel length. The first apparent peak

occurs during the initial detonation and propagation of the explosive, whose amplitude

is independent of the barrel length. After the initial decay of the explosive, a second rise

in internal energy is shown, with Barrel A experiencing a larger amplitude than Barrel

B. It appears that less energy is dissipated in flexural deformation which is evident in

Table E.1 where the longer barrel B deflects 30% more than A. This is expected as

Barrel A has a larger bending stiffness than Barrel B, indicating that blast effects would

be more pronounced in the former model.

The internal energy profile beyond this phase indicates a recovery of some stability, which

is abruptly interrupted by the second reflected blast wave for Barrel A, as discussed
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Figure E.3: Internal energy profile for 1.4 and 2 m GLARE barrels for a 54g TNT
charge

Table E.1: Influence of GLARE barrel lengths on the maximum displacement, Von
Mises and strain for a 54g TNT charge

δmax σmax,vm
(mm) (MPa)

Barrel A 2.99 366
Barrel B 4.13 502

Difference (%) 27 27

previously. This induces a further increase in internal energy, which in the presence of

damage will propagate it further, resulting in a weaker structure.

E.3 Effect of pressurisation

The parameters within the interior Eulerian mesh (air) were changed to apply a pre-

stress of 0.2 MPa to take into account the effect of pressurisation. This method proved

more computationally efficient and accurate than applying an external stress to simulate

the circumferential (hoop) stresses. Figure E.4 illustrates the influence of pressurization

on the blast shock wave phenomena, which clearly shows an acceleration of the second

reflected pressure compared to the non-pressurised case. The global energy of the system,

as shown in Fig. E.5, shows that the pressurised barrel absorbs more energy than the

non-pressurised case. This is an important factor to consider when studying the dynamic

crack growth of the pressurised barrel tests, as the combined effects of inertia and cabin

pressurisation will help drive the crack long after the initial dissipation of the explosion.
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Figure E.4: Effect of pressurisation on the blast pressure profile for 1.4 m GLARE
barrel for a 54g TNT charge
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Figure E.5: Effect of pressurisation on the internal energy of 1.4 m GLARE barrel
for a 54g TNT charge





Appendix F

LS-DYNA - Dynamic fracture

files

Representative LS-DYNA input files are presented in this section and refer to the dy-

namic fracture models investigated in Chapter 6. Due to the size of the files, only the

rate-dependent models are given here for Mode I crack growth. Input files are available

upon request and may be found on the accompanied DVD.

$# LS-DYNA Keyword file created by LS -PREPOST 3.1 (Beta) - 19 Aug2010 (08:33)

$# Created on Feb -21 -2011 (20:42:52)

*KEYWORD

*TITLE

$# title

LS-DYNA keyword deck by LS -PrePost

*CONTROL_ACCURACY

$$ OSU INN PIDOSU

$# osu inn pidosu

0 1 0

*CONTROL_BULK_VISCOSITY

$$ Q1 Q2 IBQ

$# q1 q2 type btype

1.500000 0.060000 1 0

*CONTROL_SHELL

$$ WRPANG ESORT IRNXX ISTUPD THEORY BWC MITER PROJ

$# wrpang esort irnxx istupd theory bwc miter proj

20.000000 0 -1 0 2 2 1 0

$# rotascl intgrd lamsht cstyp6 tshell nfail1 nfail4 psnfail

1.000000 0 0 1 0 0 0 0

$# psstupd irquad cntco

0 0 0

*CONTROL_TERMINATION

$$ ENDTIM ENDCYC DTMIN ENDENG ENDMAS

$# endtim endcyc dtmin endeng endmas

5.000000 0 0.000 0.000 0.000

*CONTROL_TIMESTEP

$$ DTINIT TSSFAC ISDO TSLIMT DT2MS LCTM ERODE MSIST

181
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$# dtinit tssfac isdo tslimt dt2ms lctm erode ms1st

0.000 0.900000 0 0.000 0.000 0 0 0

$# dt2msf dt2mslc imscl

0.000 0 0

*DATABASE_GLSTAT

$# dt binary lcur ioopt

0.010000 0 0 1

*DATABASE_MATSUM

$# dt binary lcur ioopt

0.010000 0 0 1

*DATABASE_BINARY_D3PLOT

$# dt lcdt beam npltc psetid

0.100000 0 0 0 0

$# ioopt

0

*DATABASE_EXTENT_BINARY

$# neiph neips maxint strflg sigflg epsflg rltflg engflg

0 0 3 0 1 1 1 1

$# cmpflg ieverp beamip dcomp shge stssz n3thdt ialemat

0 0 0 1 2 1 2 1

$# nintsld pkp_sen sclp unused msscl therm intout nodout

0 0 1.000000 0 0 0STRESS STRESS

*DATABASE_HISTORY_NODE_SET

$# id1 id2 id3 id4 id5 id6 id7 id8

1037 0 0 0 0 0 0 0

*BOUNDARY_SPC_SET_ID

$HMSET

$HMNAME SETS 51 Set_51

$# id heading

1BC_ZSYMM

$# nsid cid dofx dofy dofz dofrx dofry dofrz

1035 0 0 0 1 1 1 0

*SET_NODE_LIST_TITLE

ZSYMM

$# sid da1 da2 da3 da4 solver

1035 0.000 0.000 0.000 0.000 MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

1 2 3 4 5 6 7 8

167058 167060 167061 167062 167063 167064 167065 167066

*BOUNDARY_SPC_SET_ID

$HMSET

$HMNAME SETS 51 Set_51

$# id heading

1BC_FIX_NODES

$# nsid cid dofx dofy dofz dofrx dofry dofrz

1036 0 1 1 1 1 1 1

*SET_NODE_LIST_TITLE

FIX_NODES

$# sid da1 da2 da3 da4 solver

1036 0.000 0.000 0.000 0.000 MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

4097 4098 4099 4100 4101 4102 4103 4104

*LOAD_SHELL_SET_ID

$# id heading

1PRESSURE_SHELL
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$# esid lcid sf at

1037 55 1.000000 0.000

*LOAD_SHELL_SET_ID

$# id heading

2PRESSURE_SHELL

$# esid lcid sf at

1037 65 1.000000 1.000000

*PART

$HMNAME COMPS 11 bulk_mesh

$HWCOLOR COMPS 11 3

$# title

bulk_mesh

$# pid secid mid eosid hgid grav adpopt tmid

11 11 11 0 0 0 0 0

*SECTION_SHELL_TITLE

bulk shells

$# secid elform shrf nip propt qr/irid icomp setyp

11 16 0.000 0 1 0 0 0

$# t1 t2 t3 t4 nloc marea idof edgset

1.000000 1.000000 1.000000 1.000000 0.000 0.000 0.000 0

*MAT_SIMPLIFIED_JOHNSON_COOK_TITLE

MAT_JOHNSON_COOK

$# mid ro e pr vp

11 0.002780 72400.000 0.330000 0.000

$# a b n c psfail sigmax sigsat epso

369.00000 684.00000 0.730000 0.0083001.0000E+171.0000E+281.0000E+28 0.001000

*PART

$HMNAME COMPS 21 connecting_shells_low

$HWCOLOR COMPS 21 5

$# title

connecting_shells_low

$# pid secid mid eosid hgid grav adpopt tmid

21 11 11 0 0 0 0 0

*PART

$HMNAME COMPS 22 connecting_shells_high

$HWCOLOR COMPS 22 5

$# title

connecting_shells_high

$# pid secid mid eosid hgid grav adpopt tmid

22 11 11 0 0 0 0 0

*PART

$HMNAME COMPS 23 cohesive zones ag

$HWCOLOR COMPS 23 6

$# title

cohesive zones ag

$# pid secid mid eosid hgid grav adpopt tmid

23 23 23 0 0 0 0 0

*SECTION_SOLID_TITLE

cohesive zones layer ag

$# secid elform aet

23 19 0

*MAT_COHESIVE_GENERAL_TITLE

MAT_COHESIVE_GENERAL

$# mid ro roflg intfall tes tslc gic giic

23 0.002780 0 1.000000 0.000 45 19.000000 19.000000
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$# xmu t s stfsf

1.000000 931.50000 931.50000 0.000

*PART

$HMNAME COMPS 24mat_0 sandwitch_low

$HWCOLOR COMPS 24 7

$# title

mat_0 sandwich_low

$# pid secid mid eosid hgid grav adpopt tmid

24 21 21 0 0 0 0 0

*SECTION_SHELL_TITLE

mat_0 sandwich layer shells

$# secid elform shrf nip propt qr/irid icomp setyp

21 16 0.000 0 1 0 0 0

$# t1 t2 t3 t4 nloc marea idof edgset

0.100000 0.100000 0.100000 0.100000 0.000 0.000 0.000 0

*MAT_NULL_TITLE

MAT_NULL

$# mid ro pc mu terod cerod ym pr

212.7800E-35 0.000 0.000 0.000 0.000 0.000 0.000

*PART

$HMNAME COMPS 25mat_0 sandwitch_high

$HWCOLOR COMPS 25 7

$# title

mat_0 sandwich_high

$# pid secid mid eosid hgid grav adpopt tmid

25 21 21 0 0 0 0 0

*PART

$HMNAME COMPS 11 bulk_mesh

$HWCOLOR COMPS 11 3

$# title

initial_notch_low

$# pid secid mid eosid hgid grav adpopt tmid

26 21 21 0 0 0 0 0

*PART

$HMNAME COMPS 11 bulk_mesh

$HWCOLOR COMPS 11 3

$# title

initial_notch_high

$# pid secid mid eosid hgid grav adpopt tmid

27 21 21 0 0 0 0 0

*DEFINE_CURVE_TITLE

traction_separation_curve

$# lcid sidr sfa sfo offa offo dattyp

45 0 1.000000 1.000000 0.000 0.000 0

$# a1 o1

0.000 0.000

0.0031100 0.5251600

0.0062200 0.8569900

0.0093300 0.9954800

0.0100000 1.0000000

0.7500000 1.0000000

0.7772900 0.9668500

0.8083800 0.8618600

0.8394800 0.7074100

0.8705700 0.5265900
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0.9016600 0.3424700

0.9327500 0.1781500

0.9638400 0.0567100

0.9949300 0.0012200

1.0000000 0.000

*DEFINE_CURVE_TITLE

pressurised_load_case

$# lcid sidr sfa sfo offa offo dattyp

55 0 1.000000 1.000000 0.000 0.000 0

$# a1 o1

0.000 0.000

0.5000000 0.2000000

1.0000000 0.2000000

*DEFINE_CURVE_TITLE ...% One of five pressure curves

pressurised_blast

$# lcid sidr sfa sfo offa offo dattyp

65 0 1.000000 1.000000 0.000 0.000 0

$# a1 o1

0.0399000 0.2000000

0.0800000 0.1990000

*DEFINE_CURVE_TITLE

critical_damping

$# lcid sidr sfa sfo offa offo dattyp

75 0 1.000000 1.000000 0.000 0.000 0

$# a1 o1

0.000 1.0000000

1.0000000 1.0000000

1.0010000 0.000

100.0000000 0.000

*SET_NODE_LIST

$HMSET

$HMNAME SETS 11 Set_11

$# sid da1 da2 da3 da4 solver

11 0.000 0.000 0.000 0.000 MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

1 2 0 0 0 0 0 0

*SET_NODE_LIST

$HMSET

$HMNAME SETS 12 Set_12

$# sid da1 da2 da3 da4 solver

12 0.000 0.000 0.000 0.000 MECH

$# nid1 nid2 nid3 nid4 nid5 nid6 nid7 nid8

3 4 0 0 0 0 0 0

*SET_SHELL_LIST_TITLE

PRESSURE_SHELL

$HMSET

$HMNAME SETS 1037 pressure_shells

$# sid da1 da2 da3 da4

1037 0.000 0.000 0.000 0.000

$# eid1 eid2 eid3 eid4 eid5 eid6 eid7 eid8

159205 159206 159209 159235 159236 159237 159238 159239

*CONSTRAINED_SHELL_TO_SOLID

$HMNAME COMPS 26 ConstrndShelToSolid

$HWCOLOR COMPS 26 4

$# nid nsid
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5 11

*CONSTRAINED_SHELL_TO_SOLID

$HMNAME COMPS 26 ConstrndShelToSolid

$HWCOLOR COMPS 26 4

$# nid nsid

6 12

*DAMPING_GLOBAL

$# lcid valdmp stx sty stz srx sry srz

75 1.000000 10.000000 10.000000 10.000000 10.000000 0.000 0.000

*ELEMENT_SOLID

$# eid pid n1 n2 n3 n4 n5 n6 n7 n8

2077 23 225 233 234 226 227 235 236 228

*ELEMENT_SHELL

$# eid pid n1 n2 n3 n4 n5 n6 n7 n8

1 21 5 7 15 13 0 0 0 0

*NODE

$# nid x y z tc rc

1 612.0000000 -0.0500000 0.000 0 0

2 613.0000000 -0.0500000 0.000 0 0

*END

*COMPONENT

$# clid color1 color2 color3 color4

1 0.769000 0.004000 0.110000 0.000 0 0 0

$HMSET

$HMNAME SETS 19 Set_19

$# name

Part 1

*COMPONENT_PART

$HMSET

$HMNAME SETS 19 Set_19

$# pid clid

11 1

$HMSET

$HMNAME SETS 19 Set_19

$# pid clid

21 1

$HMSET

*COMPONENT_END
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