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Abstract 

There has been considerable research into issues around the social acceptance and visual impact of 

wind farms. However, relatively little is known about the factors that contribute to the cumulative 

landscape and visual impacts (CLVI) of wind turbines. With the continued growth of onshore wind 

power in the UK, understanding the CLVI of wind power developments is increasingly important. The 

majority of research which has studied the landscape and visual impact of wind turbines has used 

static photomontages. Some researchers have suggested that computer simulations should be used 

for research, as well as interactive design and planning. However, little if any research has been 

done which objectively assesses the validity of using these simulations. This thesis set out to address 

these methodological and theoretical gaps in the literature. 

Chapters 3 and 4 present two studies that were carried out to assess physiological responses to 

videos of wind turbines in a real-world and computer-simulated landscape (created using Sketchup 

and Google Earth). The findings showed that participants’ visual patterns were similar for the 

photorealistic and computer-simulated landscape, however the skin conductance response (SCR) 

data showed that affective responses were quite different. Given the different in affective response, 

these studies called into question the validity of using computer simulations to represent wind 

turbines in the landscape. 

Chapter 5 presents a study which attempted to examine whether the differences found in studies 1 

and 2 were of any practical significance. As such, it sought to examine if there were any differences 

in preferences based on whether people were present with a photomontage or a computer 

simulation. The study also sought to better understand the factors that contribute to the CLVI of 

wind farm extensions. Results suggest that people’s preferences are not affected by whether they 

are presented with photomontages or computer simulations. The results also suggest that size, 

number, visual match, and turbine distribution are important factors in contributing to the visual 

impact of wind farm extensions. 

Collectively, the three studies illustrate novel methods for research into the CLVI of wind turbines. 

The studies also provide support for the use of computer simulations in research and interactive 

design and planning, as well as giving some insights into the factors that affect the CLVI of wind farm 

extensions. 
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1  Literature Review 

1.1 Climate Change 

Though initially climate change was solely the domain of the scientific community, during the late 

1980s and early 1990s it became a policy issue. The increased attention from world governments 

resulted in the formation of the Intergovernmental Panel on Climate Change (IPCC) in 1988 (with its 

initial assessment of global warming in 1990) and the united nations framework convention on 

climate change (UNFCCC) been signed by 154 nations at the Earth Summit in Rio de Janeiro in 1992 

(Bodansky, 2001). The UNFCCC came into force in 1994 and three years later the Kyoto Protocol was 

adopted (UNFCCC, 1998). The Kyoto protocol extended the UNFCCC and set binding emission 

reduction targets for 37 industrialised countries, as well as the European Union (EU). More recently, 

the Doha Amendment extended the agreement until 2020, though this has been ratified by far fewer 

countries (UNFCCC, 2012). The reports from the fourth and fifth IPCC assessments suggest that 

continued GHG emissions at current rates would result in even greater changes to the global climate 

system over the next century. These changes have the potential for global impacts on various 

aspects of human life (IPCC, 2007a, 2014b). Changing practices across sectors, such as energy supply, 

transport, buildings and industry are seen as key in reducing GHG globally (IPCC, 2007b, 2014a). 

With overwhelming evidence of climate change and the predicted negative effects on the planet, the 

UK and the EU have committed to long-term reductions in GHG emissions. In 2008, the UK passed 

the climate change act, which legally binds the country to reduce GHG by at least 26% by 2020 and 

80% by 2050, when compared with 1990 levels (UK Government, 2008). In its ‘Energy 2020’ 

communication, the EU also set ambitious reductions in GHG emissions, committing to a reduction 

on 1990 levels of 20% to 30% by 2020 and 80 to 95% by 2050 (European Commission, 2010). With 

energy-related emissions accounting for the majority of total GHG emissions in the EU and UK, 

decarbonising this sector is seen as particularly important (Jones, Orr, & Eiser, 2011). As such, the UK 

has set out legislation to increase renewable energy’s share of electricity generation. 
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1.2 UK Renewable Energy Strategy 

In 2002, the Renewables Obligation Order came into force with the aim of increasing the installation 

of renewable energy capacity in the UK (UK Government, 2002), and it is the main mechanism 

through which the government drives development of large-scale renewable energy in the UK. The 

aim of the order was to ensure that energy suppliers progressively increased the share of their 

energy that was produced from renewable sources. The order obligated energy suppliers in the UK 

to generate 10% of their energy from renewable sources by 2010, which increased to 20% by 2020. 

The following year, the government published a white paper entitled ‘Our energy future – creating a 

low carbon economy’, which set a target of reducing carbon dioxide emission by 60% by the year 

2050 (DTI, 2003). The paper highlighted the huge potential for wind energy development in the UK, 

suggesting that there was great scope for the development of these resources. The 2007 white 

paper on energy, ‘Meeting the Energy Challenge’, further outlined the importance of the renewable 

energy strategy, particularly in the context of growing energy demand (UK Government, 2007). It 

discussed the progress that had been made in renewable energy development (including wind 

energy) in the previous years and the forecast for growth over the following years. However, the 

paper also discussed some of the key challenges associated with renewable energy development in 

the UK, including the limited supply of suitable land, caps on the level of generation that qualified for 

the renewable obligation scheme, as well as the difficulty and delays in the planning process. These 

issues are particularly relevant in the case of onshore wind farm development.   

In 2009, The UK Low Carbon Transition Plan was published, comprehensively outlining the UK 

government’s strategy for climate and energy (UK Government, 2009). The report showed that 

although renewable energy generation had tripled since the introduction of the Renewable 

Obligation Order, the UK still generated 75% of its electricity from coal and gas in 2008. The plan 

estimated that renewables would account for around 30% of electricity generation by 2020, which 

would require the installation of approximately 20GW of new renewable generating capacity. In the 

plan, the government outlined a “…step-change in investment in the development of the offshore 
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wind industry in the UK.” (p. 124), in a push to further develop large-scale offshore wind projects. 

The plan also discussed the importance of the Planning Act 2008, which changed the planning 

system for infrastructure projects of national significance, in driving the development of low carbon 

energy development. This included onshore wind farms over 50MW and offshore wind farms over 

100MW. This was a response to the government’s concern over the length of time it took to get 

planning approval for projects that were deemed to be nationally significant. However, this change 

was short-lived with the decision-making powers returned to local planning authorities in 2016. This 

was to ensure that local people had the final say on any wind farm development applications (Smith, 

2016).   

The 2011 UK Renewable Energy Roadmap outlined the key renewable energy technologies that will 

be used to meet the 2020 targets. These are; solar PV, wave, tidal, onshore and offshore wind, 

hydro, and bioenergy. The report highlights in particular that the UK has the best wind and tidal 

resources in Europe. However, the issue of the planning system in the development of onshore wind 

projects was also discussed, with acceptance rates varying considerably within the UK. From 2007 to 

2013, the consents rate in Wales and Scotland were approximately 60%, 80% in Northern Ireland, 

while only 54% in England (Department of Energy & Climate Change, 2011).  

1.2.1 European Union’s Renewable Energy Strategy 

The UK’s renewable energy strategy has been shaped in large part as a response to directives from 

the European Union (EU). In 2001, the EU Renewables Directive came into force, with the purpose of 

increasing the contribution of renewable energy to the internal market. It set a national target that 

12% of energy production, and 22.1% of electricity production should come from renewable energy 

sources (European Parliament, 2001). In 2009, the original directive was replace with a new directive 

that set a target of 20% of the EU’s total energy to come from renewable sources (European 

Parliament, 2009). It was part of the EU’s ‘20/20/20’ package, which also targets by 2020 a 20% 

reduction in greenhouse gas emissions below 1990 levels, and a 20% reduction in energy use 
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through efficiency improvements (Langsdorf, 2011). Two years later, the EU’s strategy paper “Energy 

Roadmap 2050” committed to reducing greenhouse gas emissions to 80-95% below 1990 levels 

(European Commission, 2012). The paper also suggest that “By 2050 wind power provides more 

electricity than any other technology in the high renewables scenario” (p. 11), which highlights the 

importance of wind energy in achieving the sustainability goals. Further, a recent EU report has 

shown that, when considering factors such as air quality and climate change, onshore wind is the 

cheapest source of energy (Alberici et al., 2014), providing a compelling case for maximising its 

contribution to the energy mix. 

1.3 Wind Energy Options 

1.3.1 Vertical vs Horizontal Axis Wind Turbines 

Vertical axis wind turbines (VAWTs) tend to be used where the quality of the wind is more variable, 

as they can work effectively when the wind is unstable, making them particularly useful for urban 

environments (Aslam Bhutta et al., 2012). They can also work effectively no matter what direction 

the wind is coming from, and are inexpensive and quiet  (Brusca, Lanzafame, & Messina, 2014). 

Horizontal axis wind turbines (HAWTs) are the dominant type for large scale wind developments (Jin, 

Zhao, Gao, & Ju, 2014). The HAWTs are the most common wind turbine that are found in the 

landscape, and are usually quite large, with three turbine blades. The reason for the greater uptake 

of HAWTs for commercial development is that they can achieve higher efficiencies when there is a 

strong, high quality wind resource (Pope, Dincer, & Naterer, 2010). They also tend to be significantly 

larger and therefore have far greater landscape and visual impacts than VAWTs. 

1.3.2 Onshore vs Offshore Wind Turbines 

Most of the commercial scale windfarm developments to date have been built on land (Kaldellis & 

Kapsali, 2013). Offshore wind developments comprised only 2.4% of the installed global capacity by 

2014, with the highest installed offshore wind energy capacity in the UK (Kaldellis, Apostolou, 

Kapsali, & Kondili, 2016). In recent years, there has been a trend towards greater offshore wind 
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development in Europe, and in the UK. This is because of the enormous offshore wind energy 

resource as well as the falling cost of development (Rodrigues et al., 2015).  

However, onshore wind energy development is the currently the cheapest form of renewable energy 

in the UK, and is predicted to remain so up until 2030 (Bassi, Bowen, & Fankhauser, 2012). Also, as of 

the end of 2015, installed onshore wind capacity in the UK was approximately double that of 

offshore wind capacity (RenewableUK, 2015). Further, given the average capacity of offshore 

turbines is larger than onshore, there are several times more onshore wind turbines than offshore. 

This means that onshore wind developments are likely to have a greater visual impact on the 

landscape than offshore turbines (Rodrigues et al., 2015), especially as offshore wind development 

moves from nearshore to deep water (Kaldellis et al., 2016). As such, large scale onshore HAWTs are 

of most concern when it comes to the landscape and visual impacts of wind energy development. 

1.3.3 UK Onshore Wind Energy  

The UK’s commercial wind energy generation began with a 6 MW wind farm being constructed at 

Carland Cross, Cornwall, in 1992. This wind farm consisted of fifteen 400 KW turbines with a tip 

height of 49 metres (Eltham, Harrison, & Allen, 2008). Development of onshore wind farms in the UK 

was quite slow up until around 2000. However, by 2005 the onshore wind capacity had trebled in 

just five years, passing the 1GW threshold for the first time and was approximately 8GW at the 

beginning of 2015 (see fig. 1.1).  As wind power developed, turbine size and power capacity have 

increased dramatically, with turbine blades increasing by a factor of 8 within 20 years of the first 

commercial wind farm development, with the largest onshore turbines in operation in 2012 having a 

power capacity of 6.5MW (Leung & Yang, 2012). . As part of its renewable energy strategy, the UK 

government has targeted the installation of 28GW of wind power by 2020. The targeted capacity is 

split evenly between onshore and offshore developments, with 14 GW of each planned (Department 

of Energy & Climate Change, 2012) 
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 Wind energy is anticipated to make the greatest single contribution to the UK’s 2020 targets, 

providing approximately two thirds of the total renewable energy production (Department of Energy 

& Climate Change, 2011). In order to meet the targets outlined by the Department of Energy and 

Climate Change, there will need to be significant further development of onshore wind farms. McKay 

(2015) notes that “Despite the fact that the UK has the highest potential in the European Union to 

generate renewable energy from win, it lags behind its European partners” (p. 166). One of the 

obstacles to achieving this aim is the high rejection rate of wind power developments, which has 

increased dramatically in recent years, with more than half of applications being refused 2013-14 

(Sturge, While, & Howell, 2014) (see figure 1.2).  

There are many potential reasons as to why there may be local opposition to a wind farm 

development, e.g. visual impact, environmental concerns, place identity, or procedural justice 

(Gartman et al., 2014; Pasqualetti, 2011; Wüstenhagen, Wolsink, & Bürer, 2007). Given the high 

rejection rate of wind power development applications in the UK, understanding the factors that 

lead to the opposition of wind turbines, and therefore contribute towards acceptance or rejection of 

windfarm developments, is an increasingly important issue in the context of the UK’s climate and 

energy strategy. 



 

7 
    

 

Figure 1.1 Number and Capacity of Onshore Wind Turbines in the UK: 1992-2014 (Source: 

UKWED) 

 

Figure 1.2: Onshore Wind Applications in the UK - Granted and Refused: 1991-2014 (Source: 

DECC) 
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1.4 Social Acceptance of Wind Energy 

The issue of social acceptance, or lack thereof, is increasingly becoming a barrier to reaching wind 

energy development targets (Damborg & Krohn, 1998; Wüstenhagen et al., 2007). While, there is 

generally strong public support for wind power, there also tends to be strong local opposition to 

proposed developments (Eltham et al., 2008; Wolsink, 2000, 2007b). One of the explanations for this 

difference is the Not in My Back Yard (NIMBY) response. NIMBY is defined as an intense, often 

irrational opposition to local development or potential development (Kraft & Clary, 1991). 

Freudenburg and Paster  (1992) propose that three main perspectives on NIMBY; irrational/ignorant, 

selfish, and prudent The first perspective suggests that the opposition to a development comes from 

a knowledge deficit, or irrational fear due to a lack of understanding. The selfish perspective 

suggests that local opposition is due to self-interest and not caring for the good of society in general. 

Freudenberg and Pastor argue that the prudent perspective is a response based on legitimate 

concerns about a proposed development However, Burningham (2000) argues that this prudent 

concept of NIMBY is not the way in which it is usually understood and that NIMBY has become 

synonymous with ignorance and selfishness. 

Taking the view that NIMBY is commonly used to refer to an ignorant or irrational response, several 

researchers have argued that the concept is unfair and too simplistic to be a useful concept 

(Burningham, Barnett, & Thrush, 2006; Devine-Wright, 2005a, 2009, Wolsink, 2000, 2007b). Wolsink 

has studied opposition to wind power in-depth and argues that institutional factors are far more 

important when assessing public support for wind power. He contends that a more open and 

inclusive planning process is needed and that local resistance is often caused by the developers 

rather the turbines themselves. He further argues that the ideas of equity and fairness are central to 

the public response and that collaborative approaches to planning are far more preferable than top-

down decision making. 
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Devine-Wright has also carried out important research into the factors affecting opposition to 

renewable energy infrastructure (Devine-Wright, 2005b, 2009, 2011). He conceptualises local 

opposition to wind development in terms of place attachment and identity, and conceives of it as a 

protective action. Place attachment is seen to be more emotional or social than physical, with 

people being attached to the community. As such, people with a stronger place attachment would 

be more likely to try to take action to prevent unwanted local change. 

McClaren Loring (2007) carried out research into wind energy planning in England, Wales and 

Denmark that would appear to support the contentions of Wolsink and Devine-Wright. McClaren 

Loring looked at 18 case studies and found that projects with high levels of participatory planning 

were more accepted and successful. She also found that the stability of the network between 

opponents was inversely related to the success of the wind project. Krohn and Damborg’s (1999) 

review of survey’s into public attitudes to wind turbines further rejects the idea that wind power 

opposition is the result of NIMBYism. The key issues surrounding the acceptance of windfarm 

developments appear to be the impacts on the landscape and ideas of justice and fairness (Mason & 

Milbourne, 2014; Molnarova et al., 2012).  

The focus on the current research is on the cumulative landscape and visual impact of wind turbines. 

As such, place attachment, participatory planning or other issues around procedural justice will not 

be part of the core research interests. The research into landscape and visual impact of wind 

turbines suggests that it is a multi-faceted issue, including landscape characteristics, respondent 

characteristics, as well as the physical characteristics of the wind turbines. Jones et al. (2011) note 

that there is a lack of understanding of the relationship between people’s attitudes to wind turbines 

and the number of turbines or groups of turbines that they will accept within certain landscapes. If 

the UK is to meet the 2020 targets, it will need to more than double its current wind energy capacity, 

which will result in a significant increase in the number of turbines present in the landscape. As wind 

turbines become an increasingly common part of the UK landscape, understanding the response of 
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people to the cumulative effects of these wind turbines will become increasingly important. The next 

section will provide a review of research that has looked into the landscape and visual impacts of 

wind turbines. 

1.5 Visual Impact of Wind Turbines 

There has been a considerable number of studies carried out looking at public perception and 

responses to wind turbines (Bishop, 2011; Devine-Wright, 2005a; Molnarova et al., 2012). The 

research has looked at various different aspects of the impact of wind turbines in the landscape, but 

can be grouped into two broad themes: 1) the physical characteristics of wind turbines, e.g. size, 

number, distance from viewer; and 2) the characteristics of the participants, e.g. attitudes, 

experience, socio-demographic characteristics.  

1.5.1 Physical Characteristics 

Previous research has looked at physical characteristics such as distance from turbines (Bishop, 

2002; Jones & Eiser, 2010; Krohn & Damborg, 1999), number of turbines (Jones et al., 2011), and 

height of turbines (Dimitropoulos & Kontoleon, 2009).  

1.5.1.1 Distance 

Bishop (2002) found that for a turbine height of 50m, and blade length of 26m, it was very rare that 

a person would be able to see the turbine more than 20km away. In normal conditions, 

approximately 20% of people would recognise a turbine at distances of 10km or greater. Further, 

Bishop found that the visual impact of the turbine would be minimal over 5-7km away. Later 

research by Bishop and Miller found a decline in impact with distance when assessing visibility at 

4km, 8km, and 12km, for offshore and onshore wind turbines (Bishop & Miller, 2007). Both of these 

studies look at several different weather conditions, offering different levels of visibility, e.g. hazy, 

clear sky. They also both used animated GIFs, composed of multiple frames with turbine blades at 

different rotations, to mimic the movement of real turbines in the landscape. Research on the visual 
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effects of wind turbines in South Australia found similar results for visibility and distance, with 

impact dropping rapidly after 4km to below 10% by 5km (Lothian, 2008). 

Attitudes to wind turbines, as a function of the distance people live from developments, have also 

been studied. Early research in Altamont, California found that those who lived closer to Altamont, 

as well as those who were more familiar with the area, liked the turbine development less than 

those who lived farther away and those who were less familiar with the area (Thayer & Freeman, 

1987). Research carried out in Sydthy, Denmark found that there distance away from the closest 

turbine had no effect on people’s attitudes to wind power (Krohn & Damborg, 1999). The two areas 

discussed in the aforementioned papers could be considered special cases, as more than 98% of 

electricity in Sydthy and is generated by wind turbines, and Altamont is one of the first areas in the 

world to undergo major wind farm development. A more recent study examined attitudes to wind 

turbines in Scotland and Ireland (Warren, Lumsden, O’Dowd, & Birnie, 2005). Warren et al. looked at 

people’s attitudes to two windfarm developments in Ireland and tabulated the response with the 

distance from the residence of the respondents (at 0-5km, 5-10km, and 10-20km). They found a 

significant distance effect, with those living closest to the turbines having the most favourable 

attitudes, while those living farther has the least favourable. Johansson and Laike (2007) found that 

distance away from a proposed wind farm development did not affect a person’s intention to 

oppose the development. Lastly, Eltham et al. (2008) looked at the change in attitudes to wind 

turbines in Cornwall between 1991 and 2006. The area studied is approximately 1.5km from the site 

of the first commercial wind farm in the UK – the Carland Cross Wind farm – built in 1992. The 

researchers found a significant increase in those who support the wind farm, from approximately 

74% to 82%.  

The research into the effects of distance on the impact of wind turbines suggests that visual impact 

falls off rapidly from approximately 5km and that distance of residence away from windfarms is 

inversely related to the level of support. 
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1.5.1.2 Number 

Researchers have studied the effects of several physical characteristics of wind farms, including the 

number of turbines, using photographs of five real wind farms (Torres Sibille, Cloquell-Ballester, 

Cloquell-Ballester, & Darton, 2009). Three of these wind farms were in Spain, while two were in 

Wales, with the number of turbines varying from 16 to 50 across the sites. The research showed that 

the sites with the greater number of turbines were judged to have the greater impact, with the 

turbine number in order of impact being 50, 33, 25, 16, and 20. The last two are the opposite to 

what you would expect, though on closer inspection of the photographs used in the study, the 

pictures of the site with 20 turbines were taken on a day with a large amount of haze.  

Jones et al. (2011) carried out research in the Humberhead Levels in the UK to assess residents’ 

capacity estimates for onshore wind-power development. They found that the most common choice 

amongst respondents was 1-25 turbines, with about 21% choosing that option. There was a 

relatively steady decline in respondents choosing estimates that were higher, with only 5.8% 

believing that the area could accommodate 126-150 turbines. Research carried out on the impact of 

a wind farm on a Greek Island has also shown that more turbines result a higher impact (Tsoutsos, 

Tsouchlaraki, Tsiropoulos, & Serpetsidakis, 2009). Comparing two conditions, participants judged a 

wind farm with 22 turbines to have a greater visual impact than one with 11 turbines, which is what 

common sense would suggest. 

Ladenburg and Dahlgaard (2012) carried out research into the cumulative effects of daily wind 

turbine exposure on negative attitudes to wind turbines. Based on survey data from 1,100 

respondents, they found that the number of turbines has a significant negative effect. Further, they 

found that the effect increased up to 6 turbines and then plateaued.  As such, there was no further 

increase in negative effect from 6-10, 11-20, or 20 or more turbines in a day. These findings are 

echoed in research carried out into attitudes towards wind farms in Ireland (Sustainable Energy 



 

13 
    

Ireland, 2003). Survey data showed that people’s order of preference for wind farms was 1) a five-

turbine farm, 2) two groups of 10 turbines, and 3) one group of 25 turbines. 

The research into the number of turbines seems to support the idea that the greater the number of 

turbines, the larger the impact of the landscape. There is also some evidence to suggest that there is 

an optimal number of turbines within a group, perhaps between 5 and 10 turbines.  

1.5.1.3 Height 

The results from research into how the height of wind turbines affects social acceptance have been 

somewhat mixed. Meyerhoff, Ohl, and Hartje (2010) carried out research into public attitudes to 

wind turbines in two regions in Germany, Westsachsen and Nordhessen. Each of these regions was 

subdivided into three sections. Using interviews, the researchers asked participants to choose 

between several wind developments options. Each option varied according to four different 

characteristics, one of which was the size of the turbines in the development. In all but one of the six 

sections, there was no significant effect of the height of the turbine. One of the groups, however, 

supported a ceiling height of 150m on the turbines. Research on the Greek island by Tsoutsos et al. 

(2009) suggests that the height of wind turbines may have a significant impact of people’s attitudes. 

Participants were given a choice between an 11x850kW turbine wind farm and a 22x850kW turbine 

wind farm. They were also give a third option of a single 5MW turbine option. The choice of a single 

turbine with a hub height of 120m was considered to have a greater negative impact than 11 

turbines that are each 45m to hub. Other research carried out in Germany suggests that the effect of 

wind turbine height on the social acceptance of a development is insignificant (Erp, 1997). 

The effect of the height of wind turbines on people’s judgement of impact isn’t clear. There is some 

research to suggest that it does not have a significant effect, whereas other research suggests that, 

in certain conditions, it may affect people’s attitudes. 
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1.5.2 Sociodemographic Characteristics 

The majority of research into attitudes to wind turbines includes at least some analysis of 

sociodemographic data (e.g. Álvarez-Farizo & Hanley, 2002; Bishop & Miller, 2007; Devine-Wright, 

2005; Ek, 2005; Meyerhoff et al., 2010). Some of the research has not shown a significant effect of 

sociodemographic factors on attitudes to wind turbines. Meyerhoff et al. (2010) included several 

demographic variables in their model, such as age, gender, and income but found no significant 

covariates with wind turbine preference. Thayler and Freeman (1987) also included similar 

demographic variables in their analysis. Few significant differences were found among the variables, 

however, they did find that those with lower education tended to consider wind turbines more 

beautiful and liked them more than others. The researchers also noted gender differences, with 

women being more positive generally about wind energy, while men tended to view it more 

negatively and considered them tax shelters for investors. Some of these findings could be 

attributed to the fact that commercial wind energy was in its infancy at that time, and that some of 

the turbines genuinely were tax shelters. However, when looking at the literature, several trends do 

appear. Age has been consistently shown to a significant effect on acceptance of wind turbines (e.g. 

Álvarez-Farizo & Hanley, 2002; Bishop & Miller, 2007; Devine-Wright, 2005a), with younger people 

tending to be more accepting of wind turbines. Income has also been shown to be a significant 

factor (Ek, 2005), with the probability of someone supporting a wind farm development decreasing 

with increasing income. 

Two key components of the characteristics of participants that have been looked at are attitudes 

and experience. The more knowledgeable a person is about wind energy and renewables, the more 

likely they are to be in favour of them (Krohn & Damborg, 1999). Research carried out by Swofford 

and Slattery (2010) also supports this conclusion, as well as suggesting that people who support 

wind power have positive views on wind energy, while those who are against wind power, have 

negative views on the turbines. This is further supported by the difference in general support for 

wind energy but local resistance to development (Jones & Eiser, 2009). Experience of wind turbines 
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has been shown to affect people’s attitudes to developments, with levels of approval dropping 

during the construction phase and rebounding after habituating to their presence (Damborg & 

Krohn, 1998). Eltham et al. (2008) showed that support for a wind farm in Cornwall increased over 

the course of 15 years. It is possible that the turbines become part of the place identity. 

1.6  Cumulative Effects 

Any human development may have direct or indirect impacts upon the environment, and these 

impacts may interact in space and time (Piper, 2004). Piper states that cumulative effects can occur 

where ‘…developments either cluster to affect a “local” environment, or where a plan or programme 

of developments has the potential to give rise to accumulating effects’ (p. 41). The consideration of 

cumulative effects of developments within Environmental Impacts Assessments (EIAs) has been a 

legal requirement in the UK since 1998 (Cooper & Sheate, 2002; Piper, 2004). In essence, when 

assessing the impact of a proposed development, consideration needs to be given to existing human 

development within the landscape, potential future developments, the current development under 

proposal, as well as any interactive or additive effects from the combination of all of them (McCold 

& Saulsbury, 1996; Rumrill & Canter, 1997). Several researchers have looked at possible 

environmental and social indicators that may be used to model cumulative effects on the 

environment (Canter & Atkinson, 2011; Parkins & Mitchell, 2011). Cooper and Sheate (2002) carried 

out a review of 50 UK environmental impact statements (EIS) and found that only 8 had definitions 

of cumulative effects, noting that the definitions within those 8 were quite different. They suggested 

that the reason they found no accepted definition was due to no definition being provided in either 

the UK regulations or the EC directive. This is backed up by more recent research in Canadian 

context, which suggests that there is a good deal of confusion over the exact nature of cumulative 

effects (Gunn & Noble, 2011).  

The issue of the cumulative effects of wind turbines has been given greater importance in recent 

years, with Scottish Natural Heritage releasing a guidance document entitled ‘Assessing the 
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Cumulative Impact of Onshore Wind Energy Developments’ (Scottish Natural Heritage, 2012). The 

SNH guidance document suggests that the cumulative landscape and visual impact (CLVI) of a wind 

farm is a product of five key factors: 1) the distance between individual windfarms (or turbines); 2) 

the distance over which they are visible; 3) the overall character of the landscape and its sensitivity 

to windfarms; 4) the siting and design of the windfarms themselves; and 5) the way in which the 

landscape is experienced. The document further distinguishes between: i) combined visibility: where 

multiple wind farms are visible from a single view point, within a single arc of vision, or in succession 

by turning on the spot; and ii) sequential effects: where a single observer may view several wind 

farms while travelling along a common route, e.g. major roads, railways, popular walkways. 

Although helpful, these guidelines are quite broad and lack specifics, e.g. what distance between 

wind farms is deemed acceptable, or in what way does the siting and design affect the CLVI of 

windfarms? Within the document, SNH note that ‘Few detailed perception studies have been 

undertaken to date…’ which supports the idea that there is insufficient knowledge about the CLVI of 

onshore wind turbines, particularly within the UK. 

1.7 Repowering/Extending 

Two important issues that contribute to the cumulative impacts associated with long-term wind 

power development are repowering and extending wind farms. As turbines near the end of their life 

cycle, the issues of repowering or extending comes to the fore. Developers may wish to replace 

older turbines with larger and more efficient turbines, or to add new turbines on existing wind farm 

sites rather than develop new wind farms in less productive areas (Frantál, 2014). Repowering is the 

replacement of existing wind turbines with more efficient, and usually larger turbines, whereas wind 

farm extension is adding turbines to a wind farm without removing any of the existing turbines. 

Several countries in Europe already have legislation in place to deal with repowering, including 

Denmark, Germany and Spain (Colmenar-Santos, Campíñez-Romero, Pérez-Molina, & Mur-Pérez, 

2015; Del Río, Calvo Silvosa, & Iglesias Gómez, 2011). The legislation in each country focussed on 

two core issues. The first, that the turbines being replaced needed to below a certain energy 
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capacity e.g. 100 kW and/or need to have been installed before a certain year. The second focus of 

the legislation was to encourage larger, higher capacity turbines as replacements. As such, the 

general trend of repowering is that smaller, older turbines are removed and replaced with larger 

turbines that produce more energy but also have a larger visual impact. Extending wind farms has 

been given less focus in the literature, though it has been discussed as an issue in terms of 

cumulative landscape and visual impact assessment (Entec, 2008).  

Understanding how people perceive this change in the UK will become more important as older 

turbines begin to be replaced. Carland Cross, the first commercial wind farm in the UK, was 

repowered in 2013. The repowering followed the trend outlined in the previous paragraph with 

fifteen 400 kW turbines with a height of 49m being replaced by ten 2 MW turbines with a height of 

100m, which resulted in over three times the generating capacity (Scottish Power Renewables, 

2013). This repowering project was not without opposition, with local residents forming a ‘wind farm 

action group’ (Carland Cross Wind Farm Action Group, 2008), and the project initially being rejected 

by the local council (The Low Carbon Economy, 2009).  

There are around 4,800 onshore wind turbines in the UK with a generating capacity of approximately 

8GW of energy (Renewable UK, 2015). Of those, 632 turbines were built in the 1990s and 641 were 

built from 2000-2005. The majority of these turbines are likely to be considered for repowering or 

extension in the next few years (see fig 1.3. for a breakdown by region). This highlights the 

increasing importance of understanding the potential visual impacts of these repowering and 

extension projects, particularly in light of the community response to the Carland Cross repowering 

project in Cornwall.  
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1.8 Gaps in Research 

While there has been a great deal of research into the social acceptance of wind turbines, which has 

focussed broadly on characteristics of the turbines and the respondents, there are some deficiencies 

within the literature which need to be addressed (Devine-Wright, 2005a). Devine-Wright notes that 

there is an over reliance on surveys in previous research, and a lack of use of probabilistic 

multivariate statistical tools. He suggests that the use of quasi-experimental designs using 

photomontages could be a good way to systematically unravel the complex relationships between 

type, size, shape, and landscape context. Molnarova et al. (2012) acknowledge that there is a lack of 

multi-dimensional analysis of wind turbine preferences based on visual evaluation, but suggest that 

their work, along with that of Tsoutsos et al. (2009), has addressed this issue.  

While the work by Molnarova and colleagues is perhaps the most exhaustive to date, like other 

research in this area, it did not address all of the potential issues. Most of the previous research had 

limited options for the number of turbines and landscape types. Molnarova et al (2012) only offered 

two options for number; one or four turbines, and three landscape options. Torres et al. (2009) used 

real wind farms so the number of turbine was somewhat haphazard (16, 20, 33, 35, and 50), though 

they did attempt to create an objective measure of aesthetic impact. Tsoutos et al. (2009) had the 

options of 5, 11, or 22 turbines or 1 significantly larger turbine, though all in the same landscape. 

Jones et al. (2011) used groupings with large ranges e.g. 1-25, 26-50 etc. but without accompanying 

visualisations. A more systematic approach to the physical characteristics of size, number, and 

landscape type may yield more information. 

Further, the majority of research has used static photomontages to visualise wind turbines. This is an 

important issue for two reasons: 1) motion is an important aspect of the representation of dynamic 

landscapes (Hetherington, Daniel, & Brown, 1993), particularly for wind turbines; and 2) there may 

be problems of validity in using 2D photographs to represent a real-world landscape (Daniel & 

Meitner, 2001; Palmer & Hoffman, 2001). Bishop (2002) states that the movement of wind turbine 
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blades can result in an apparent increase in size of 10 to 20%, which would call into question the 

validity of static photomontages. While some researchers have addressed this issue by using 

animated gifs (Bishop & Miller, 2007; Bishop, 2002), one of these studies addressed offshore wind 

turbines and the other only assessed the impact of a single turbine. Some researchers have 

suggested that, with recent advances in computing, 3D computer simulations may be used as a 

research and participatory planning tool (Danahy, 2001; Ghadirian & Bishop, 2008; Lange, 2011; 

Orland, Budthimedhee, & Uusitalo, 2001; Sevenant & Antrop, 2011; Wissen Hayek, 2011). For a full 

methodological review, see chapter 2. 

1.9 Summary 

The weight of scientific evidence supports the assertion that climate change is real and that 

anthropogenic causes are responsible (IPCC, 2007c). As a result of the threat that this climate 

changes poses to the human population (IPCC, 2007a), mitigation measures need to be taken to 

reduce greenhouse gas (GHG) emissions (IPCC, 2007b). One of the key ways that the UK government 

is trying to reduce GHG emission is by decarbonising the UK’s electricity, which is the largest single 

contributor to UK emissions  

As part of the drive to decarbonise the energy sector, the government has committed to installed 

14GW of onshore wind energy by 2020 (Department of Energy & Climate Change, 2012). This will 

result in considerably more construction of onshore wind power as well as repowering of older wind 

developments. The cumulative effects of these wind turbines is poorly understood (Jones et al., 

2011). As the level of wind turbine development increases across the UK, and more of the older 

developments are repowered, understanding the factors that affect the cumulative landscape and 

visual impact of wind turbines becomes increasingly important. 

Previous research into the public acceptance of wind turbines has focussed on the physical 

characteristics of the turbines, as well as the characteristics of the participants in the research. The 

research has shown that several physical characteristics of wind turbines may affect people’s 
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acceptance levels, including; height, number and distance from resident (Devine-Wright, 2005a). 

Larger turbines have been shown to have a greater visual impact, while impacts from turbines have 

been shown to reduce dramatically at a distance of around 5-7km Smaller groups of 5-10 turbines 

have also been shown to be preferential to larger groups (Bishop, 2011). Participant characteristics, 

such as age, education, experience and knowledge have been shown to affect acceptance of wind 

turbines. Older and better-educated people tend have more negative attitudes to wind power 

developments, while experience seems to have no or a positive effect on attitudes. A greater 

understanding of wind power also seems to result in higher levels of acceptance (Molnarova et al., 

2012). 

There has been an over reliance on survey data and most visualisations used in previous research 

have been static photomontages. A more systematic analysis of the factors affecting the CLVI of 

wind turbines is needed, as well as an assessment of visualisation methods.  
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2 Methodological Review 

2.1 Visual Representation of Landscape 

The representation of visual changes to a landscape that may be caused by a proposed development 

is an important part of landscape and environmental planning (Bishop & Lange, 2005; Oh, 1994). 

One of the most important early examples of visualisations of landscapes are Hemphry Repton’s 

‘Red Books’ (Gill & Lange, 2016). Repton’s ‘Red Books’ are a collection of books which include maps, 

plans and watercolour paintings to showcase “before” and “after” visualisations of proposed 

changes to his clients’ estates (Koliji, 2011). Using overlays, these before and after visualisations 

were designed to seamlessly showcase the projected improvements for his clients. Repton is 

considered to be one of England’s most influential landscape gardeners, and his ideas helped to 

shape subsequent approaches to landscape visualisation, in particular the focus on communicating 

potential change from future proposals to sites. Kullmann (2014) notes these books as the beginning 

of a disciplinary ideal for “…a complete and truthful mechanism with which to visually communicate 

landscape design propositions.” (p. 20). Kullman also suggests that increasingly sophisticated 

visualisation software now allows for the generation of highly accurate and believable landscape 

visualisation. However, MacFarlane et al. (2005) acknowledge that, while there have been great 

advances in realism, the level of detail is never equal to that of reality. Further, they highlight the 

importance of the landscape visualisation practitioner in a range of decisions that affect the 

visualisation, e.g. seasonal selection, colouring facets, viewpoint selection. As such, the final 

visualisation is a combination of technological capabilities and the practitioner’s own values or 

perspectives. 

An early review of landscape simulations assessed the various methods being used, including; 

photography, drawings, composite techniques, models, videos, and computer generated graphics 

(Zube, Simcox, & Law, 1987). Zube et al. concluded that very little was known about the validity or 

reliability of the various methods for simulating landscapes, though they did suggest that the most 
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realistic simulations were ‘those that have the greatest similitude with the landscape they represent’ 

(p. 76). 

In 1989, Sheppard proposed five general principles for landscape visualisations with the aim of 

creating response equivalence and acceptability to the audience (see table 2.1) (Sheppard, 1989, 

2001).  

Table 2.1: General Principles for Landscape Visualisation (S. R. J. Sheppard, 1989, 2001) 

Principles Definition 

Accuracy Visualizations should simulate the actual or expected appearance of the 
landscape (at least for those landscape factors being judged). 

Representativeness Visualizations should represent the typical or important 
views/conditions of the landscape 

Visual Clarity The details, components, and overall content of the visualization should 
be clearly communicated 

Interest The visualisation should engage and hold the interest of the audience 
Legitimacy The visualization should be defensible and its level of accuracy 

demonstrable 

 

2.1.1 Photographs/Photomontages 

The use of photographs in landscape assessment and landscape preference studies has a long 

history (Shuttleworth, 1980; Stamps, 1990; Stewart, Middleton, Downton, & Ely, 1984). Stamps 

carried out a meta-analysis of research that had used photographs to assess environmental 

preference and found 1300 studies. Of those, Stamps found that only 11 papers that attempted to 

test the validity of the photographic representations. Palmer and Hoffman (2001) have suggested 

that previous reliability assessments of the validity of photographic landscape representations have 

been flawed. This is because they have only focussed on the assessment of scenic preferences, and 

often averaged over a group of views instead of being based on individual views. More recent 

research has tried to address these issue and to objectively assess the reliability and validity of 

photographic landscape representations (Meitner, 2004; Roth, 2006; Sevenant & Antrop, 2011) 

Using the Colorado River in the Grand Canyon National Park, Meitner (2004) carried out research 

photographic presentation options that could be used to assess people’s perceptions of the scenic 
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beauty of landscapes, while travelling along a linear feature such as a road or river. Meitner created 

multiple 3600 panoramas at different sites along the river. He presented the participants with either 

individual photos, multiple orthogonal views, panoramic views, or interactive panoramic views. 

Findings from the research suggest that the presentation medium is important and that the 

individual photos were the least valid. The other methods were found to be quite similar and 

Meitner suggests that, due to ease of creation, orthogonal view photos might be a preferable 

method. Danahy (2001) also supports the idea of panoramic views being more realistic and a more 

valid way to represent landscape vistas. 

Roth (2006) compared visual landscape ratings of an area in Germany in three ways, 1) on-site, 2) 

paper-based survey, and 3) internet-based survey. Participants were asked to rate landscape vistas 

on a scale of 1-10 using various descriptive terms e.g. artificial, beautiful, wild, and depressing. Roth 

found that several of the descriptive terms could be reliably measured using photos in an online 

survey, including; visual naturalness and beauty, However, several other variables could not be 

accurately measured, such as typical and characteristic. Sevenant and Antrop (2011) carried out a 

study comparing the validity of photographs as a means of landscape representation and for use in 

landscape preference or perception research. They compared on-site observations with photographs 

of twelve landscape vistas, using two different angles of view, standard frame and panoramic. In 

general, they found high correlations between the three mediums of presentation. However, for 

variables such as ‘beautiful’, ‘well-maintained’ and ‘of historical importance’ they found that normal 

photographs were considered more valid than panoramic photos. They also found that vastness was 

something that couldn’t be captured in either photograph type and necessitated a site visit. Dupont, 

Antrop, and Van Eetvelde (2013) used eyetracking to examine the effect of photographic properties 

on landscape characteristics and found that people visually process landscapes differently depending 

on the type of photo used (e.g. panoramic, wide angle, standard, zoomed). Contrary to Sevenant and 

Antrop (2011), Dupont and colleagues argue that panoramic are the most appropriate type of 

photograph to use for landscape visualisation. 
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Several studies have tried to compare the use of photomontages and other computer simulation 

methods in communicating with communities about potential development scenarios. When looking 

at landscape planning in an agricultural community in Koenigslutter, Germany, Warren-Kretzschmar 

and Tiedtke (2005) used sketches, photomontages, as well as 3D computer simulations to identify 

what aspects of visualisations citizens considered important. The participants in the study were 

given the chance to assess the visualisations in person, as well as online through a questionnaire and 

discussion forum. The researchers noted that participants were somewhat disappointed in the 

realism of the visualisations, and would often subsequently challenge the validity of further 

visualisations. In general, the researchers suggest that participants showed a preference for static 3D 

images over virtual reality representations. In another paper, based on the same research project, 

von Haaren & Warren-Kretzschmar (2006) suggest that the combination of different visualisation 

methods was important to meet the perceptual needs of diverse groups. The photo-realistic 

visualisations were helpful for the citizens in understanding the visual effects of the planning 

measures, although the virtual reality visualisations were considered sufficient for assessing the 

planning proposals. 

In a case study looking at future climate change scenarios in the Humberhead Levels, UK, Dockerty 

et al. (2006) compared photomontages and real-time landscape modelling. The researchers created 

photomontages of potential future landscapes to include things like biofuel crops, alternative 

energies or leisure developments. These were replicated in the real-time landscape models, which 

were created using Visual Nature Studio and GIS data. During a one-day conference, local people 

were presented with the different visualisations and asked about their preferences. From the survey, 

the researchers found that 78% of the respondents found the photomontages helpful, as compared 

to 65% for the real-time models. Further, they found that approximately half of the respondents 

preferred the photomontages, with the other half preferring the real-time model. As part of the 

RUFUS (Rural Future Networks) project, researchers compared the use of photomontages and other 

computer generated visualisations for community engagement in Melgaco, Portugal (Lovett, 
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Carvalho Ribeiro, Van Berkel, Verburg, & Firmino, 2010). The researchers developed scenarios that 

included greater levels of woodlands in the valley, as well as rewilding of some farmland. They 

created photomontages of key viewpoints, as well as overview 3D models using ArcScene. The 

results suggest that the photomontages were more useful in helping the community to imagine the 

changes, while the ArcScene model was more useful for understanding the drivers of the changes. 

One study compared the use of photomontages and 2D maps to consult on forest management 

scenarios with an indigenous, First Nation community in British Columbia, Canada (Lewis & 

Sheppard, 2006). They found that both visualisation methods were useful for at least some 

discussion and commentary. They noted however that there was complete acceptance of the 

photomontages, even though it was the first time many of the participants had been exposed to 

these kinds of realistic landscape visualisations. Moreover, the researcher note that the reactions 

and comments suggest that the participants believed the photomontages to be real photographs. 

Previous research into the use of photographs to represent landscapes has shown mixed results. 

How representative or accurate the photographs are, compared to the real landscape or to other 

visualisation methods, seems to depend on the variables of interest and also on the perceptual 

preferences of the participants. Further, the angle of view of the photographs used seems to affect 

people’s responses in sometimes contradictory ways. 

2.1.2 3D Computer Visualisations 

The use of 3D computer simulations to represent landscape dates back to the early 1970s, when the 

US Forest Service was a key driver in developing new techniques to landscape assessment, with the 

first publications using digital landscape representation coming in the late 1970s (Lange, 2011). 

Lange notes that the relative ease of creating digital photomontages revolutionised the landscape 

preference research. Overtime, increasingly realistic methods of landscape representation have 

been developed, due to increased computational power and ever more sophisticated software 

development. (Lovett, Appleton, Warren-Kretzschmar, & Von Haaren, 2015; Thompson & Horne, 
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2006). It is important to note that computer visualisations can vary in complexity, as well as 

abstractedness, and are dependent on the skill of the creator and the viewer. Moreover, 

visualisations can be created for a variety of reasons, such as explaining or investigating issues, and 

are heavily reliant on the sophistication of the technology that is available at the time (Johnson, 

Thompson, & Coventry, 2010). Indeed, it is important to accept that 3D computer visualisations have 

strengths and limitations in effectively communicating landscape scenarios (Pettit, Raymond, Bryan, 

& Lewis, 2011) 

In an example of the use of 3D computer visualisations to study landscape preferences, 

Chamberlain, Liu, and Canfield (2016) used 3D visualisations to assess the impact of green 

infrastructure on perceptions of safety and attractiveness on a streetscape in a small U.S. college 

town. Using a combination of CAD, Sketchup, and Lumion, the researchers created visualisations 

with various forms of green infrastructure, e.g. bike lanes, and trees. Using the visualisations in 

conjunction with a questionnaire, they found that the green infrastructure increased the perception 

of safety and attractiveness for the streetscape. While this example highlights the usefulness of 3D 

computer visualisations, several researchers have compared computer simulations with other 

visualisation methods, as well as the real world, to assess the realism of these simulations. 

Bishop and Leahy (1989) compared people’s ratings of photographs and computer simulations of 

landscapes. They found a high correlation between the rating of the simulated and photorealistic 

landscapes, however they did instruct participants that ‘…they should expect the images to have 

more of the quality of a painting than a photograph…’ (p. 94). Further, they cautioned that simulated 

landscapes should be used for assessing specific changes rather than used in general landscape 

analysis. Perkins (1992) also raised the issue of the use of simulation as real-world substitutes. He 

proposed three questions; 1) What variables predict the quality of an image and how do these 

variables relate to each other?, 2) How is the image quality related to perceived realism?, 3) What 

image quality is sufficient to act as a valid and reliable surrogate for real world conditions or ‘how 
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good is good enough’? (Perkins, 1992). Oh (1994) tried to address some of these questions by 

assessing the four most commonly used simulation at that time. These were; 1) wire frame, 2) 

surface model, 3) combination of surface model with photographic images, and 4) image processing. 

The findings from this study suggest that people felt the processed images were the most realistic 

while the wireframes simulations the least. They also felt that, while the background images helped 

with the combination model, both surface models had insufficient detail and felt artificial. 

Ian Bishop and Bernd Rohrmann ran a series of lab and field studies looking at subjective responses 

to a real park in Melbourne, Australia, and a computer simulation of that park (Bishop & Rohrmann, 

2003; Rohrmann, Palmer, & Bishop, 2000; Rohrmann & Bishop, 2002). The aim of these studies was 

to test the validity of a computer simulation of a park. The researchers created a simulated walk 

through the park, recorded a real walk through the park, and also had some participants visit the 

real park. They also assessed several different simulation conditions, such as time of day and 

weather, with and without sound. Participants’ perception of the simulations and the real park were 

assessed using a questionnaire that was designed to measure cognitive and affective aspects of their 

reactions. The findings from these studies were somewhat mixed. While most participants believed 

that the simulations were valid representations of the park, the simulations do not elicit the same 

response as the real park in every way. Bishop and Rohrmann found that participants appreciation of 

the park wasn’t as positive in the simulation condition, nor did participants retain as much detailed 

information. They also found that the inclusion of sound was an important aspect in creating 

realism. Further, they suggest caution in the interpretation of the findings, as participants’ liking of 

the park environment may have confounded with their ratings of the simulation quality. 

Similar differences in perceptions of computer visualisations and on-site visits have been found in a 

research study that looked at an urban design project in a square in Vienna, Austria (Wergles & 

Muhar, 2009). The researchers compared perceptions of a group of participants who viewed 

visualisations based on a 3D model of Schwarzenbergplatz, created using 3D Studio Max, and a 
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group who spent about 30 minutes on site viewing the square. From the findings, it was clear that 

the participants in both groups had qualitatively different perceptions of the square. For instance, all 

of the participants who had the on-site visit noted dynamic aspects of the landscape, such as the 

play of the light (which was a key intention of the architect). Moreover, those who visited the square 

were affected by the traffic and noise, and rated the project more negatively as a results. The 

visualisations has no such effect on the other group. 

Research using 3D computer simulations has shown that they can be a useful method for landscape 

representation. The simulations are becoming ever more realistic due to advances in technology and 

will continue to do so into the future. However, it is worth noting that the evidence suggests that 

people perceive the computer simulations differently from photomontages, or from real landscapes. 

2.1.3 Dynamic Simulations 

In their review of visualisation methods, Zube et al. (1987) highlighted two key groups of 

simulations; static and dynamic. They noted that the vast majority of research in the field used static 

photographs, both aerial and site-based. However, they also discussed the use of dynamic 

simulations such as the creation of videos from images taken while moving a camera through a 

landscape model, and videos of real world environments, seeing them as a potentially useful new 

tool for research. 

Heft and Nasar (2000) argue that the environment, as experienced, has dynamic qualities and, 

inspired by Gibson’s ecological approach to perception, compared dynamic and static displays of 

environmental scenes. They created a video by driving along a rural road in a van. From this, they 

presented participants with six second segments from the video, or displayed a static image from 

the segment for six seconds. Participants then completed surveys on epistemic variables e.g. 

whether they wanted to explore further, and evaluation variables, e.g. how much they liked the 

scene. Heft and Nasar’s finding suggest that people respond differently to dynamic and static 

displays. They found that participants rated dynamic displays higher on epistemic values of wanting 



 

30 
    

to learn more and explore further. However, participants rated preference as higher for the static 

display. They conclude that it is incorrect to assume that people respond similarly to static and 

dynamic landscape representations, and by extension, it is incorrect to assume that people’s 

reactions to static images will be the same as they reactions to the real landscape. 

Danahy (2001) also highlights the issue of dynamism in landscape visualisation, but from another 

perspective. He discusses the dynamic qualities of vision, using foveal and peripheral aspects to look 

around a scene. Danahy argues that the ability to ‘look around’ or ‘move about’ are important 

aspects of perceiving a landscape, also using the framework of Gibson’s ecological approach to visual 

perception (Gibson, 1986). To best represent the natural way people view landscapes, he suggests 

that researchers use panoramic landscape representations that allow the viewer to move their head 

around to get the sense of scale. Hetherington, Daniel, & Brown (1993) also found that both motion 

and sound are important in influencing assessment of landscape representations. 

In 2008, Ghadirian and Bishop published a method for creating off-line augmented reality (AR) 

landscape visualisations. This involved using GIS-based modelling and integrating it into video frames 

to create a dynamic, augmented landscape visualisation. They used an example of computer 

generated weeds superimposed over panoramic video frames to show how the method allowed for 

spatially accurate, realistically rendered scenarios. More recently, researchers have presented an 

interactive AR smartphone application that can provide real-time visualisations of potential flood 

levels in an urban riverside landscape (Haynes & Lange, 2016). Through the presentation of occlusion 

geometry, the app allows a user to visualise different flood scenarios use a smartphone on-site. 

Another recent publication has discussed the development of a virtual simulation platform that 

allows for a sense of space and greater immersion that most 3D simulations (Ye & Minghan, 2016). 

The authors describe a real-time three-dimensional platform, with the visualisation project on the 

ground beneath the user, as well as on the wall in front of them. The platform also involves a 

controller that allows the user to navigate through the environment along selected routes. 
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Immersive virtual reality (VR), in the form of a VR headset, has also recently been studied as an 

immersive environment for assessing landscape change (Hayek, Waltisberg, Philipp, & Gret-

Regamey, 2016). Using ESRI’s CityEngine and the Unity gaming engine, the researchers created two 

virtual realities: a watercourse corridor in an urban area, and a wind park in a hilly landscape. The 

researchers found the VR headset was more immersive than VR using large projections screens or on 

a desktop computer. Most participants had a positive experience and stated that they felt present in 

the virtual realities. However, nearly all of the participants perceived latency while using the 

headset, and noticed some image flickering which they found annoying. All of these more recent 

developments in visualisation incorporate dynamic elements, which helps to increase the level of 

realism and presence. 

Bishop and Lange (2005) list six features that are considered important factors for virtual 

environments; immersion, interaction, intensity (realism), intelligence, illustration, intuition (p. 32). 

They consider the first three to be the most important in created a virtual environment though warn 

that there is still a trade-off between detail and interactivity. Given the recent advances in 

visualisation technology, particularly with regard to immersive VR using headsets which allow free 

head movement, in the near future it may be possible to create virtual environments that can 

achieve much higher levels of realism and presence than traditional visualisation methods. 

2.2 Wind Farm Visualisations  

Photographs and photomontages are a common requirement as part of a visual impact assessment 

for wind farm developments (Danese, Casas, & Murgante, 2008; Scottish Natural Heritage, 2006, 

2012; Sullivan & Meyer, 2014; The Highland Council, 2010). With recent advances in computing 

power and visualisation software, using computer generated 3D simulations may become more 

common in visual impact assessment and research. These advances in computing have resulted in 

the possibility of creating more realistic visualisations in less time than ever before. Several papers 

have suggested that computer visualisations could be used to model landscapes for interactive 
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design and planning, as well as research (Lange, 1994, 2002, 2011; Lange & Hehl-Lange, 2005; Orland 

et al., 2001). Creating 3D visualisations of proposed wind farms could provide greater levels of 

realism than the use 2D photomontages, while maintaining the ability to control and manipulate the 

variables of interest. However, this is something that need to be tested. 

GIS-based visualisation methodologies have been presented by several researchers as a way of 

enabling an integrated approach to visual impact assessment and community engagement around 

wind farm developments.(Chias & Abad, 2013; Hurtado, Fernández, Parrondo, & Blanco, 2004; 

Manyoky, Wissen Hayek, Heutschi, Pieren, & Grêt-Regamey, 2014; Wang, Mwirigi, & Isami, 2013). 

Chias et al. (2013) used a case study of a wind farm in Sierra de Pela, Spain to develop a 

methodology that involves geographic analysis, photographic modelling, and 3D computer 

modelling. Their focus was on developing a method that involved qualitative and quantitative 

aspects of the landscape and also to incorporate the cumulative impacts of wind farms into their 

methodology. Wang et al. (2014) compared the Spanish Method of visual impact assessment, which 

is created using a GIS-based method for calculating a visual impact coefficient (Hurtado et al., 2004), 

with a questionnaire on the visual impact that was given to a community near Choshi City, in Japan. 

They found that residents’ visual impact ratings on the questionnaire were higher than those that 

were produced using the GIS-based methodology. Manyoky et al. (2014) used GIS data, the Crysis 

game engine, and noise simulation to create a multisensory visual-acoustic simulation methodology. 

The addition of audio should allow for improved assessment of the impacts of a wind farm 

development. 

The use of 3D simulations for participatory planning of wind turbine developments could provide 

developers and communities with an interactive model to help with information exchange and 

decision-making. Google Earth and Sketchup are two computer programmes that, when combined, 

could provide an ideal platform for the creation and viewing of these simulations (Wolk, 2008). 

Google earth is free to download for anyone with a computer and internet access and would allow 
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anyone interested to view a proposed site as well as load models of wind turbines or other 

landscape features. Sketchup is also free and, though more complicated than Google Earth, it would 

be possible for developers or planners to create models of the proposed wind turbines. Further, 

Sketchup have existing models of wind turbines that could be loaded directly into Google Earth to 

allow local community members to see other wind developments around the world.  

Adding dynamic elements to models is possible in Google Earth using keyhole markup language 

(KML) (Peterson, Dobson, Fandry, & Shrader, 2012; Wilson, 2008; Zhu, Wang, & Pan, 2014). Peterson 

et al. (2012) outlined the use of the ‘timespan’ function to animate geological cross sections to 

illustrate the subsurface geology of an area. This KML timespan function could be used to animate a 

turbine model by rotating the turbine blades. The combination of programmes, along with the 

animation of the turbines, could be a useful tool for research. Together, they would allow for a high 

level of control in manipulating variables of interest and to create many different wind farm 

landscape scenarios, as well as addressing the weakness of static wind farm representations. This 

could be ideal for the assessment of the cumulative landscape and visual impact (CLVI) of wind 

turbines. 

While the benefits of using these programmes to create the 3D simulation is clear, there is still the 

issue of validity to address. As discussed previously, some research suggests that there may be limits 

to the level of realism achievable using virtual landscapes (Lange, 2001), even with extremely time-

consuming and detailed simulations (Bishop & Rohrmann, 2003). However, most of this research has 

not been carried out on landscapes with wind turbines.  

A study in Wales assessed the use of online tools for use in public participation in wind development 

planning (Berry, Higgs, Fry, & Langford, 2011; Berry, Higgs, Langford, & Fry, 2010). The researchers 

used Sketchup, Lightwave 3D and Visual Nature Studio to model the turbines and buildings in the 

landscape. They compared participants’ ratings of these simulations with other visualisations, 

including; zone of theoretical visibility map, wireframe model, and photomontage. The participants 
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believed that the photomontage was the most effective in visualising the impact on the landscape 

character, with an animation of the 3D simulation considered the second best. However, there was 

no assessment and comparison to the real impact as the wind farm was only at the proposal stage of 

the development process.  

In order to assess the realism of a 3D simulation of a wind farm, an objective measure is needed. 

Further, it would be important to compare that measure with the real world. Psychophysiological 

measures could be used to assess the presence and immersion of the simulation (Meehan, Insko, 

Whitton, & Brooks, 2002). A video of a real landscape could be used as a baseline to compare with 

the simulation. Previous research has suggested that videos of the real world have high levels of 

presence (Bracken, Pettey, Guha, & Rubenking, 2010; Lombard, Reich, Grabe, Bracken, & Ditton, 

2000; Rooney, Benson, & Hennessy, 2012). A comparison of participants’ physiological responses to 

a video of a real wind turbine landscape and a 3D simulation of the same landscape could provide an 

objective method to assess the realism of the simulation created.  

2.3 Social Neuroscience 

Social neuroscience (also called social cognitive neuroscience, or social psychophysiology) is the field 

of study where researchers seek to identify the biological underpinnings of social processes and 

behaviour (Cacioppo, Berntson, & Decety, 2010). Underlying the field, is the assumption that 

neuroscientific or psychophysiological methods can contribute to the understanding of social 

psychological problems. Common psychophysiological measurements used in social neuroscience 

include skin conductance response (SCR), functional magnetic resonance imaging (fMRI), 

electroencephalography (EEG), and electrocardiograms (Cacioppo, Berntson, Larsen, Poehlmann, & 

Ito, 2000). It is an interdisciplinary field that studies the interactions between the nervous system 

and social psychology. Although the field of social neuroscience has existed for some time, it started 

to become more popular about 20 years ago (Cacioppo & Decety, 2011; Harmon-Jones & Devine, 

2003). 
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2.3.1 Psychophysiological Measures of Emotion 

The autonomic nervous system (ANS) is part of the peripheral nervous system (PNS), and is 

composed of the sympathetic nervous system (SNS), which controls activation, and the 

parasympathetic nervous system (PN). The SNS and PN work together to control the body’s 

unconscious actions. The SNS is associated with activation or priming the body for action, whereas 

the PN controls relaxation (Mauss & Robinson, 2009). Electrodermal and cardiovascular responses 

are most commonly used as measures of ANS activation. These tend to be measured using heart rate 

(HR) and electrodermal activity (EDA). Some researchers argue that there is an autonomic specificity 

of basic emotions, i.e. different emotions are characterised by different autonomic response 

patterns (Stephens, Christie, & Friedman, 2010). However, others argue that the evidence for 

autonomic specificity is limited and that it is better to think of ANS response in a more general 

sense, as physiological arousal (Cacioppo et al., 2000). In this thesis, EDA is treated as a more general 

measure of emotions. In line with Cacioppo et al., the valence of the emotional response, i.e. the 

degree to which the emotional response is positive of negative, is not assumed to be captured by 

recording EDA. 

EDA, usually measured using skin conductance response (SCR), is used to measure ANS response, 

and has been one of the most widely used measures in psychophysiological history (Dawson, Schell, 

& Filion, 2007). It works by sending a small current across two electrodes places on the surface of 

the skin. Small changes in skin resistance, due to a response to external stimuli, are measured. Any 

change in conductance response as a result of presentation of a stimulus tends to occur between 

one and four seconds after the presentation of the stimulus. It has been used extensively to study 

people’s emotional responses to visual stimuli (Bianchin & Angrilli, 2012; Burriss, Powell, & White, 

2007; Jun, Ou, Oicherman, & Wei, 2010). In this thesis, as SCR is a measure of EDA, it is treated as a 

general measure of arousal, or affective response. No assumptions are made as to the type or 

valance of the emotional response, in line with the interpretation of Cacioppo et al. (2000). 
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HR is also considered a good measure of ANS activity (Cacioppo et al., 2000). HR has also been used 

is a large body of research studies to assess emotional arousal in response to visual stimuli 

(Fernández et al., 2012; Gu, Wong, & Tan, 2012; Reinerman-Jones, Taylor, Cosenzo, & Lackey, 2011). 

Cacioppo et al. (2000) found that there was greater heart rate acceleration as a result of fear, anger 

and sadness than disgust. They also found larger heart rate responses for anger and fear than 

happiness, as well as a greater response for fear than sadness. Again, it is important to caution over 

interpretation of this measure of ANS and instead consider it another general measure of 

physiological arousal. 

As both HR and EDA are considered general measures of arousal, it is possible that any recorded 

change in ANS activity is due to a reaction to an element in the landscape, other than a wind turbine. 

To ensure that any physiological changes are attributed to the correct stimuli, it is necessary to use a 

measure of visual attention. The use of eye tracking equipment to measure has a long history in 

visual attention research (Holmqvist et al., 2011) and would be ideal in this situation. Eye tracking 

has also been used in conjunction with measures of emotional arousal such as SCR and HR in several 

previous studies (Felmingham, Rennie, Manor, & Bryant, 2011; Helminen, Kaasinen, & Hietanen, 

2011; Wieser, Pauli, Alpers, & Mühlberger, 2009).  

2.3.2 Eye-tracking 

Eye tracking has been used to study a wide variety of research questions, from neuroscience to 

visual search tasks (Duchowski, 2002). Understanding how and where people focus their visual 

attention can give great insight into cognitive processes (Rayner, 1998, 2009). Marketing research 

has been carried out using eye tracking to study the visual search patterns of shoppers in 

supermarkets (Chandon, Hutchinson, Bradlow, & Young, 2009), as well as visual search patterns of 

those looking at print and television advertisements (Wedel & Pieters, 2008). Eye tracking has also 

been used to study the differences between experienced and novice drivers, in terms of where they 

focus their attention (Gegenfurtner, Lehtinen, & Säljö, 2011). The use of eye tracking in landscape 
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representation research is more limited, though it has been used by some researchers to study 

landscape perception and exploration studies (De Lucio, Mohamadian, Ruiz, Banayas, & Bernaldez, 

1996; Dupont et al., 2013). 

Eye movements are made up of a series of saccades and fixations. A fixation is when the eye stops 

moving for a duration of 200-300ms. Saccades are fast movements of around 30-80ms as the eye 

moves from one fixation to another (Holmqvist et al., 2011). Through analysis of the number of 

fixations, as well as the duration of fixations on areas/objects of interest, it is possible to get a 

picture of where people focus their visual attention (Nuthmann & Henderson, 2010). Combining this 

information with time data, it would be possible to assess whether changes in ANS, as measured by 

EDA and HR, occurred directly after a participant fixated on a wind turbine in the visualisation. This 

information could be used to draw conclusions about whether a computer simulation is as realistic 

as a video recording. 

2.4 Methodological Approach to Current Research 

The three studies that are discussed in this thesis were designed to complement each other and to 

address some of the methodological concerns that have been discussed in this chapter (see figure 

2.1 for a visual representation). Studies 1 and 2 work as pair. They were both laboratory experiments 

using videos of moving wind turbines landscapes, with objective psychophysiological measures to 

assess participant responses (see sections 3.2 and 4.2 for full methodological details). The only 

difference between the two studies is that Study 1 used videos of a real landscape in the UK, while 

Study 2 used videos of an animated computer simulation of the same landscape. Study 3 used an 

online survey to explore visual preferences for wind turbine extension layout options, using 

animated 2D photorealistic and simulated wind-turbine landscapes (see section 5.2 for full details). 
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Figure 2.1 Methodological Overview of Studies 

The first two studies were designed to address three issues: 1) the subjective response measures, 

e.g. surveys, or interviews, that have been used in previous research (e.g. Jones & Eiser, 2009; 

Ladenburg & Krause, 2011; Molnarova et al., 2012), 2) the static images that have been used in 

previous research (e.g. Dupont et al., 2013; Meitner, 2004; Roth, 2006), and 3)  whether people 

respond similarly to computer simulations of wind-turbine landscapes (see Bishop & Rohrmann, 

2003; Lange, 2001; Rohrmann et al., 2000 for discussions on the topic of realism of simulations). 

 Though studies 1 and 2 addressed the issued listed above, there were several drawbacks to their 

design. While they contained relatively large samples for experiments using psychophysiological 

measures such as SCR and eyetracking measures (e.g. Bianchin & Angrilli, 2012; Foulsham, Walker, & 

Kingstone, 2011; Maehr, Watts, Hanratty, & Talmi, 2015; Reinerman-Jones et al., 2011; Risko, 

Anderson, Lanthier, & Kingstone, 2012), the sample sizes were small compared to research using 

subjective measures (e.g. Jones et al., 2011; Kaldellis, Kapsali, Kaldelli, & Katsanou, 2013; Tampakis & 

Τsantopoulos, 2013). The use of objective measures of response also didn’t allow for explanation of 

any differences in the responses to the videos of photorealistic and simulated wind-turbine 

landscapes.  
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Study 3 was designed to address some of the shortcomings of the first two studies. It used an online 

survey to assess visual preferences for wind turbine extension options, which allowed for a larger 

sample of participants. This method also allowed for the collection of subjective data to explain the 

factors that affected participants’ visual preferences. Lastly, it allowed for a comparison of ratings of 

the photorealistic and computer-simulated images. 

 

2.5 Summary  

Visual representations of landscape have a long history in research and as part of environmental 

impact assessments. Various different methods have been used, including; wireframe models, 

photomontages, scaled 3D models, as well as 3D computer simulations. Most of the research 

comparing these methods to each other or to real site visits show photomontages and 3D computer 

simulations to be the most representative of the real landscapes (Berry et al., 2011; Meitner, 2004; 

Oh, 1994). However, the findings have been somewhat mixed with positive and negative aspects to 

both methods. Further, with respect to wind farms, the movement of the turbine blades is 

particularly important and something that is frequently overlooked by researchers (Bishop & Miller, 

2007; Bishop, 2002)There is also an over reliance on survey data and a pervasive use of static 2D 

photomontages, which may objectivity and realism respectively. Some of these issues could be 

addressed by using 3D computer simulations to systematically assess the complex interactions of 

physical characteristics (Devine-Wright, 2005a; Lange, 2011). 

While the flexibility of 3D simulations would be ideal for assessing the visual impacts of wind farms, 

it is important to have an objective measure of the realism and validity of such simulations. To test 

for real-world validity, physiological responses to the simulation could be compared with responses 

to a video of a real wind turbine landscape. EDA could be used to check to see whether participants 

react similarly in both conditions, while eye tracking can be used to analyse their visual attention. If 

the analysis shows that participants have similar physiological reactions in both cases, using 3D 
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computer simulations as a tool to assess CLVI would be justified. If not, then dynamic 

photomontages may be a better tool for this assessment. 
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3 Physiological Responses to Wind Turbines in a UK Landscape 

3.1 Introduction 

Chapter 1 outlined the importance of visual impact in guiding planning applications for wind turbine 

developments. While there are several important factors that contribute to opposition towards wind 

farms, including; wildlife impacts, noise levels, community-developer trust, the landscape and visual 

impacts are consistently cited as one of if not the most important factor for opposition to proposed 

developments (Molnarova et al., 2012; Pasqualetti, 2011; Saidur, Rahim, Islam, & Solangi, 2011; 

Tsoutsos et al., 2009). With regards to the planning process, any wind farm proposal must include a 

landscape and visual impact assessment (LVIA) as part of its environmental impact assessment (EIA), 

usually including photomontages of the proposed development from representative viewpoints, as 

well as a map showing the zone of theoretical visibility (ZTV) of the wind turbines (Entec, 2008; 

Scottish Natural Heritage, 2006). This highlights the importance placed on the landscape and visual 

impact of proposed wind farm developments in the planning process. 

The potential landscape and visual impacts are the predominant reasons for community opposition, 

and thus why developers’ applications for wind farms are denied (Molnarova et al., 2012; 

RenewableUK, 2014; Wolsink, 2007b). Given the importance of these impacts for community 

opposition and, in turn, planning application refusal, further research into the factors that affect and 

contribute to the landscape and visual disamenity is warranted. As such, a greater understanding of 

the landscape and visual impacts of wind farms could help to inform future wind-farm developments 

so as to minimise the disamenity created, thus increasing the chances of approval.  

Chapter 2 discussed the various methods that have been used in previous research into the visual 

impact of wind turbines on the landscape. The methods used in previous research have included 

interviews (e.g. Jerpåsen & Larsen, 2011; Pedersen, Hallberg, & Waye, 2007), surveys (e.g. Jones & 

Eiser, 2009; Ladenburg, Termansen, & Hasler, 2013), as well as different methods of visual 

representation. Most of the studies using visual representations have used static photomontages 
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(e.g. Molnarova et al., 2012; Tsoutsos et al., 2009), or static computer simulations (e.g. Berry, Higgs, 

Fry, & Langford, 2011; Kokologos, Tsitoura, Kouloumpis, & Tsoutsos, 2014). Several studies have 

tried to assess the validity of using these methods to represent landscapes in general (e.g. Bishop & 

Rohrmann, 2003; Dupont, Antrop, & Van Eetvelde, 2013; Sevenant & Antrop, 2011), while others 

have focused in particular on representations of wind turbines in the landscape (e.g. Berry et al., 

2011). Bishop and Rohrmann (2003) found that while certain aspects of a 3D computer simulation 

park were valid, in several ways responses to the simulation did not correspond with that of the real 

park. Dupont, Antrop, and Van Eetvelde (2013) suggest that panoramic photos of landscapes are 

more valid than other types of photos, while Sevenant and Antrop (2011) conclude that standard 

photos appear to be more realistic than other photos. 

Berry et al. (2011) used a survey to assess the several methods of representing a wind farm (ZTV, 

wireframe, photomontage, and GIS-based 3D landscape visualisation). Participants in the study 

consistently ranked the photomontage the highest on a range of metrics, e.g. clarity, effectiveness, 

and accuracy. This was followed by the computer simulation (either animated or still) on all of the 

metrics. 

Maehr et al. (2015) used skin conductance response (SCR) and questionnaires to assess participants’ 

emotional responses to photomontages of wind turbines and three other manmade objects (pylons, 

power plant, and church). Participants rated wind turbines as pleasant as churches, though less 

calming. They also rated the pylons and power plant as significantly less pleasant than the wind 

turbines. While this study used SCR to try to objectively measure participants’ emotional responses 

to wind turbines and other manmade structures, the use of static photomontages may affect the 

ecological validity of any findings. Also, as the authors acknowledged, they used a small sample of 

approximately 20 students in their study, which resulted in large margins of error. 

Dupont et al. (2013) used eye-tracking to examine the effect of photographic properties on 

landscape characteristics and found that people visually process landscapes differently depending on 
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the type of photo used (e.g. panoramic, wide angle, standard, zoomed). However this finding is 

contradicted by earlier research carried out by Sevenant and Antrop (2011), which supports the use 

of standard photos in studies into landscape preference and perception. The current study used 

standard videos which pan across a wind turbine landscape, which may allow for a good compromise 

between the two. Further, the movement of the videos, in particular the movement of the wind 

turbine blades should be more naturalistic than static images, and therefore allow for greater 

ecological validity.  The ecological psychology approach to visual perception highlights the 

importance of movement for perceiving and understand our environment (Gibson, 1986). Bishop 

(2002) also states that moving wind turbines are perceived as being between 10% and 20% larger 

than if they are stationary.  

This study uses psychophysiological measures (eye tracking, and skin conductance response) in 

conjunction with videos of a real wind-turbine landscape with moving turbines. The use of films to 

elicit an emotional response and measuring that response using psychophysiological measures is a 

common approach in psychological research into emotion (Fernández et al., 2012; Gross & 

Levenson, 1995; Stephens et al., 2010). This study aims to use a similar approach to address some of 

the weaknesses of previous research into the landscape and visual impact of wind turbines. This will 

be done in two ways; 1) naïve participants are presented with videos instead of static photos, which 

should result in a more naturalistic response, and 2) the use of eye-tracking and skin conductance 

response should give a more objective measure of the visual impact of the wind turbines, and 

people’s emotional response to that impact, than static images. 
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3.2 Methods 

3.2.1 Participants 

Participant consisted of 75 psychology students from the University of Sheffield. The mean age of 

participants was 19.77 (SD = 3.27), with 80% of participants being female. Participants were given 

course credits for taking part in the study. The sample size in this study was determined largely by 

resources available. These include the cost of materials and running the experiment, as well as the 

availability of facilities and equipment used. However, the number of participants in this study 

compares favourably with published research that has used eye-tracking, physiological measure, or 

both. When carrying out a review of the literature, the number of participants in these studies 

ranged from 11 to 60 participants, with most being between 20 and 30 (Codispoti & De Cesarei, 

2007; Felmingham et al., 2011; Foulsham et al., 2011; Gu et al., 2012; Kimble, Fleming, Bandy, Kim, & 

Zambetti, 2010; Maehr et al., 2015; Nummenmaa, Hyönä, & Calvo, 2006; Pan et al., 2004; Risko et 

al., 2012; Van Orden, Jung, & Makeig, 2000; Wieser et al., 2009). 

3.2.2 Design 

This study used a between subjects design, with participants being grouped according to their wind-

turbine preference, as measured by a pre-screening questionnaire, comprised of 10 items commonly 

found in the UK landscape, including a question on wind turbines. The two main dependent variables 

assessed in this study are wind turbine fixation time (secs)/size (pixels), as well as the mean number 

of skin conductance responses (SCRs) while watching videos of wind turbines. 

Data cleaning: Three participants were removed from the eyetracking analysis, as their eyetracking 

data was unusable due to inaccuracies (n = 72). Eleven participants were removed from the SCR 

analysis due to non-responses (n= 64). 

3.2.3 Apparatus  

1) Video presentation & Eye Tracking 
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SR research experiment builder was used to create and present the experiment. The videos were 

presented to participants on a 19” CRT monitor that was a distance of 50cm from the head mount 

used to keep participants’ heads stable. An SR research Eyelink 1000 was used to track participants’ 

visual focus while watching the videos of the landscape. The eyetracking was monocular 

(predominantly the left eye) with a sample rate of 1,000 HZ. Pupil threshold values were maintained 

between 70 and 120, and corneal reflection thresholds were between 200 and 240. Participants 

went through a 9-point calibration and validation process before beginning the experiment. During 

the validation process, error values were maintained at < 0.5° average and < 1.0° maximum. These 

settings were recommended by the SR Research in their user manual and at a workshop on using 

eye tracking with dynamic stimuli (SR Research, 2008, 2015). 

2) Electrodermal Activity 

Biopac’s Acqknowledge 4.1.1 software and a Biopac MP36R were used for the acquisition of the 

electrodermal activity data. Biopac EL507 pre-gelled snap on electrodes were placed on the 

participants’ index and middle fingers on the first phalanx, and the electrodes were connected to the 

MP36R system using an SS57L electrodermal activity lead. To sync the data with the videos, the 

experiment computer was connected to the MP36R with a serial port cable and a transistor-

transistor logic (TTL) pulse was used to mark the start and end of each video. 
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Figure 3.1: Experimental Setup 

 

3.2.4 Materials 

Participants completed four different questionnaires as part of this experiment. These are; 1) A pre-

screening questionnaire on items in a landscape 2) The Revised New Ecological Paradigm (NEP), 3) 

The Positive and Negative Affect Schedule, 4) Survey on attitudes to wind turbines 

1) Pre-screening questionnaire 

This consisted of ten items that are commonly found in the UK landscape, five of which were 

manmade (stone wall, electricity pylon, fence, telephone pole, and wind turbine) and five of 

which were natural (tree, hedgerow, heathland, grazing sheep, grass field). The responses to 

the ‘wind turbine’ item was used for grouping the participants. All of these items were 

contained within the video that was presented to participants. Participants rated the extent 

to which they liked the items on a 5-point Likert-type scale from ‘Dislike’ to ‘Like’ (see 

Appendix A for full text of the survey). 
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2) The Revised New Ecological Paradigm (NEP) 

This is a 15-point scale that assesses people’s ecological world view. Originally published in 

1978, the present studied used the revised version from 2000 (NEP, Dunlap, Liere, Mertig, & 

Jones, 2000). The 15 items asks participants the extent to which they agree with statements 

about the relationship between humans and the environment, and is generally used as a 

unidimensional measure of environmental attitudes (Hawcroft & Milfont, 2010). The eight 

odd-numbers items are worded so that agreement indicates a proecological world view, 

while the even-numbers are the opposite. Participants rated the extent to which they agree 

with the items on a 5-point Likert-type scale, from ‘strongly disagree’ to ‘strongly agree’. The 

revised NEP scale was validated using a representative sample of 676 Washington State 

Residents. A principal-components analysis showed that all 15 items loading heavily (.40 to 

.73) on the first unrotated factor, with a Cronbach’s alpha of .83. Responses to items on this 

scale were coded from 1-5, with ‘5’ representing the highest level of agreement (with the 

even-numbered items reverse coded). These scores were then summed for each participant, 

giving a range of 15 to 75. The full survey is listed in Appendix A. 

 

3) The Positive and Negative Affect Schedule (PANAS) 

This is a 20-item measure of positive and negative affected developed in 1998 (PANAS, 

Watson, Clark, & Tellegen, 1988). The PANAS consist of two 10-point scales that are used to 

measure positive affect (PA) and negative affect (NA). The 10 descriptors for the PA scale 

are: attentive, interested, alert, excited, enthusiastic, inspired, proud, determined, strong, 

active, and the 10 descriptors for the NA scale are: distressed, upset, hostile, irritable, scared, 

afraid, ashamed, guilty, nervous, jittery. The scale was validated using undergraduate 

psychology students at Southern Methodist University, with a Cronbach’s alpha ranging from 

.86 to .90 for PA, and .84 to .87 for NA. Items on the PANAS are measured using a 5-point 

Like-type scale from ‘Very slightly or not at all’ to ‘Extremely’. These responses were scored 
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1-5 and summed for PA and NA, with a score range for each of 10-50. The PANAS is a widely 

used measure of affect and has been validated with a UK adult population (Crawford & 

Henry, 2004). The full survey is listed in Appendix A. 

 

4) Survey on Attitudes to Wind Turbines 

This is a 15-item questionnaire that assessed participants’ attitudes to wind turbines. The 

items included were based on what previous research found to be predictors of wind turbine 

acceptance (see chapter 1). The survey was composed of questions on three sections; wind 

turbine characteristics, experience and beliefs, and landscape quality/type, with five 

question in each section. The full survey is listed in Appendix A. 

During the experiment, participants were shown two videos that pan across an area near 

Stockbridge, UK (see figure 3.2. below). Each video was 1280x720 pixels, 30 frames per second and 

approximately three minutes in duration, with one video panning left-to-right and the other right-to-

left. The presentation of the videos was counterbalanced to avoid any order effect. 

 

Figure 3.2:  Still from Video Presented During Study 1 
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3.2.5 Study Area 

The study area is located at the edge of the Peak District National Park, near Stocksbridge, UK 

(Latitude: 53.505513, Longitude: -1.735582). The chosen study area contains three wind farms: 1) 

Hazlehead, 2) Blackstone Edge, and 3) Royd Moor. Hazlehead has 3 x 2MW turbines with rotor 

diameters of 82m and a tip height of 100m, while Blackstone Edge has 3 x 2.5MW turbines with 

rotor diameters of 80m and a tip height of 101m. Royd Moor, the oldest of the three wind farms, has 

13 x 0.45MW turbines with rotor diameters of 37m, and a tip height of 54m. The combination of 

three different wind power projects of different ages, wind turbine designs and rotor sizes, 

combined with the close proximity to the Peak District National Park, make this location ideal for the 

assessment of people’s responses to the CLVIs of wind power projects. See Figures 3.4, 3.5, 3.6 and 

3.3 for views the three wind farms from the video recording site and a map of the study area. Figure 

3.7 shows a scale model of the sizes of the wind turbines used in this study.  

 

Figure 3.3: The Locations of the Video Recording Site and Wind Farms 
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Figure 3.4: View of Hazlehead Wind Farm from the Recording Site 

 

Figure 3.5: View of Blackstone Edge Wind Farm from the Recording Site 
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Figure 3.6:  View of Royd Moor Wind Farm from the Recording Site 

 

 

 

Figure 3.7: Scale of Wind Turbines used in Study 
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3.2.6 Procedure 

Participants completed an online pre-screening questionnaire that asked them to rate the extent to 

which they like/dislike 10 items commonly found in a UK landscape, using a five-point Likert-type 

scale. Half of these items were man-made, e.g. stone wall, electricity pylon and half were natural e.g. 

tree, hedgerow (for a list of the items, see Appendix A.) Participants were then invited to take part in 

an experiment in a controlled laboratory situation at the University of Sheffield. Participants were 

not informed that the experiment was assessing responses to wind turbines in the landscape, but 

rather that it was more generally assessing their responses to the landscape. 

In the first part of the experiment, participants completed the new ecological paradigm (NEP) 

questionnaire, as well as the positive and negative affect schedule (PANAS) to assess their emotional 

state and control for any influence on their electrodermal activity (EDA) (see Appendix A). 

Participants then watched the landscape videos with their heads in the eyetracking head mount and 

their left arm placed on the desk with the electrodes connected to their fingers (see figure 3.1). After 

the setup and calibration process, participants were instructed to stay as still as possible and to 

simply watch the videos. At this point the experimenter left the room and the participants started 

the first video with a mouse click. Participants had the opportunity for a short pause after the first 

video (but were instructed to keep their head in the same position. Once ready, participants started 

the second video with another mouse click. 

After watching both videos, participants were asked to compete the PANAS again. Once completed, 

participants were informed of the true focus of the experiment and then asked to answer the final 

questionnaire. Participants were given the opportunity to ask any questions they wished before and 

after completing the final questionnaire and informed that they could withdraw at any point.  

As the final questionnaire asked participants about their attitudes to wind turbines, it was felt that it 

was best to inform them of the true nature of the study beforehand. In a review paper on the use of 

deception in psychological experiments, Hertwig and Ortmann (2008) analyse the potential impact 



 

53 
    

of deception on experiments. Based on the findings from previous studies on deception, they argue 

that it is possible for deception to breed suspicion among participants, which in turn impairs the 

experimental control and has the potential to negatively impact the research outcomes. In the 

present study, it was believed that asking them to complete a questionnaire about their wind 

turbine preferences without revealing the nature of the experiment may have bred suspicion, and 

ultimately impacted the research findings. 

3.3 Results 

3.3.1 EDA Data Processing 

Several steps were taken in processing the EDA data in order to assess participants’ skin 

conductance response (SCR), in accordance with guidelines produced by the Behavioural Brain 

Sciences Centre, University of Birmingham (Braithwaite, Watson, Robert, & Mickey, 2013). These are 

outlined on the next page. 

1) Resample Waveform 

 The EDA data was recorded at a sample rate of 2000 samples/second. This was resampled to 25 

samples/second 

2) Digital Filter 

A low pass filter was used at 1 Hz to eliminate high frequency noise components of the signal 

3) Locating SCR 

The settings used for SCR were the following; 

- Construct phasic EDA using Smoothing Baseline removal 

- Baseline estimation window width: 5 seconds 

- SCR Threshold 0.02 umho 

- Reject SCRs under 0% of max 
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Using the TTL signal, the number of SCRs was calculated for the duration of the videos when the 

turbines were present (approximately 1 minute). The number of SCRs were also calculated for the 

same duration directly before the presence of the turbines for the video that panned from right to 

left and directly after for the video that panned left to right, to ensure that there was no order 

effect. Mean values were calculated for the SCR of participants to both videos for the turbine 

present and turbine absent conditions. 

3.3.2 Eye-tracking Data Processing 

SR Research data viewer was used to process the raw eye-tracking data. In order to track the wind 

turbines as the videos panned across the landscape, dynamic areas of interest were created. 

Dynamic areas of interest enable a researcher to modify the area of interest in a video on a frame by 

frame basis to ensure that the object of interest as it moves across the screen (see figure 3.8 on the 

next page). 

3.3.3 Likert scale data vs Like-like data 

There is much debate as to how to treat Likert and Likert-like data. Likert scales are composed of 

multiple items, often containing up to 20 items which are combined to create a score for a trait or 

behaviour (Wigley, 2013). The NEP and PANAS are examples of Likert scales used in this research, as 

they are composed of multiple items. Some researchers argue that Likert scales should be treated as 

ordinal level variables (Hawcroft & Milfont, 2010), however others argue that they can be treated as 

interval data (Carifio & Perla, 2007). In this study, and the subsequent two studies in the thesis, 

multi-item Likert scales, such as the NEP and PANAS, are treated as interval data and analysed as 

such. 

However, the responses to the item in the pre-screening questionnaire, on the extent to which 

participants like wind turbines in the UK landscape, have not been treated as interval level. As it is a 

single 5-point item, it should be treated the same way as a Likert scale that is composed of multiple 

items (Carifio & Perla, 2007). Instead, this item is used as a grouping variable, and analyses have 
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been conducted to see if there are any differences between the groups on perceptual of 

physiological measures. 
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Figure 3.8: Screen Shots of DAOIs 

The total fixation duration was calculated for each of the wind farms; Hazlehead, Blackstone Edge, 

and Royd Moor. The fixation times were then divided by the size of the areas of interest (number of 

pixels) to account for differences in the overall size between the wind farms. 
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3.3.4 Descriptive Statistics 

 

Table 3.1: Descriptive Statistics by Turbine Preference Group 

Turbine Preference Group Really Dislike Dislike Neutral Like Really Like All 

Number 6 24 15 21 9 75 

Age (Mean) 18.333 20.250 19.467 19.857 19.778 19.537 

SD 0.516 4.336 2.850 2.496 3.492 2.738 

SCR Turbs (Mean) 4.917 2.921 3.179 3.353 4.750 3.824 

SD 2.871 1.895 3.434 2.566 2.138 2.610 

SCR No Turbs (Mean) 5.833 3.816 3.321 3.176 4.250 4.079 

SD 3.401 2.244 3.291 2.325 2.619 2.702 

Hazlehead Fix. Dur. 
(Mean) 

0.134 0.055 0.081 0.065 0.095 0.086 

SD 0.077 0.023 0.047 0.033 0.052 0.046 

Black. Edge Fix. Dur. 
(Mean) 

0.131 0.066 0.067 0.056 0.088 0.082 

SD 0.112 0.023 0.031 0.024 0.049 0.048 

Royd M. Fix. Dur. (Mean) 0.224 0.164 0.179 0.171 0.230 0.194 

SD 0.104 0.037 0.062 0.030 0.046 0.056 
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3.3.5 New Ecological Paradigm (Revised) 

The revised new ecological paradigm (NEP) is a 15-item scale that is used to measure environmental 

attitudes (Dunlap et al., 2000; Dunlap, 2008). Participants were asked to rate their level of 

agreement with the fifteen statements on a 5-point Likert scale from strongly disagree to strongly 

agree. Agreement with the eight odd number items and disagreement with the seven even number 

items indicates a pro-ecological world view. The mean NEP score for this study was 52.76 (SD = 

6.04).  

 

Figure 3.9: Mean NEP Score by Turbine Preference Group 

 

 
As the data didn’t meet the requirements for parametric analysis, due to non-normality of the 

dependent variable, the data were analysed using a non-parametric test. A Kruskal-Wallis H test 

showed no significant difference between the five groups on their scores on the new ecological 

paradigm scale (χ 2(4) = 6.322, p = .176). Post-hoc tests using the Bonferroni correction revealed that 

there were no significant differences between any pair of the five groups (p > .05). The results 

suggest that, although there appears to be a quadratic trend with higher NEP scores for those who 
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neither strongly like or dislike wind turbines, the differences between any two of the five groups is 

not particularly large. The largest mean score was 55.07 for group 3, and the smallest mean score 

was 49.33 for group 5. This range shows that all of the participants were moderately pro 

environmental (Hawcroft & Milfont, 2010). 

3.3.6 Positive and Negative Affect Schedule 

The positive and negative affect schedule is a 20-item scale that is comprised of two mood scale, to 

measure positive and negative affect (David Watson, Clark, & Tellegen, 1988). Participants were 

asked to rate their level of agreement with the twenty statements on a 5-point Likert scale from 

strongly disagree to strongly agree. They were asked to complete the PANAS scale before and after 

watching the video.  The mean positive affect was 30.01 (SD = 7.23) before watching the video and 

27 (SD = 8.56) after. The mean negative affect was 14.32 (SD = 4.65) before watching the video and 

14.24 (SD = 5.141) after. These scores are consistent with Watson et al. (1988), who suggest that the 

normal population should have a mean positive score of 29.7 (SD =7.9) and a mean negative score of 

14.8 (SD = 5.4).  
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Figure 3.10: Mean PANAS Scores by Turbine Preference Group 

 

As the PANAS scores were not normally distributed, non-parametric analyses were used. Wilcoxon 

Signed-Ranks tests indicated that positive affect was significantly higher before the experiment than 

afterwards (Z = -4.335, p < .001), and that there was no significant difference in negative affect 

before and after the experiment (Z = -.694, p = .488). While there was a significant difference in the 

positive affect of the participants, there appears to be no pattern across the five groups. Therefore, 

it is possible that this effect was due to fatigue or boredom caused by participation in the test. 

 

3.3.7 Skin Conductance Response  

The SCR scores were not normally distributed and therefore a non-parametric analysis was used. A 

Wilcoxon signed rank test found that there was no statistically significant difference in the skin 

conductance response (SCR) between when the turbines was present during the video and when 

they were not (Z = -1.156, p = .248). Trend analyses showed quadratic trends with large effects size 
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close to statistical significance across the groups for SCR when the turbines are present (F(1, 63) = 

4.013, p = .05, ω2 = .46), and when the turbines are absent (F(1, 63) = 3.708, p = .059, ω2 = .39).  

 

 

Figure 3.11: Mean SCR Scores by Turbine Preference Group 

 

While there was no significant difference between the SCR while the turbines was present in the 

video and while they were absent, there are clear quadratic trends for both of these across the five 

groups. Further, the mean SCR is higher while the turbines are present for the group who really likes 

them in the landscape, while the mean SCR is higher while the turbines are absent for the group who 

really dislikes them in the landscape. Given that the participants are not from the area shown in the 

video, nor are they faced with potential development near their house, the general trend is in line 

with what might be expected based on the groups’ preference (Devine-Wright, 2009). 
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3.3.8 Eyetracking 

A two-way ANOVA revealed a significant main effect for fixation time/size (F (2, 66) = 77.387, p < 

.001, η 2 = .701). Post-hoc tests using the Bonferroni correction revealed that the fixation duration 

was significantly longer for the Royd Moor wind farm when compared with Blackstone Edge (p < 

.001) and Hazlehead (p < .001). Further, there was no significant difference between Blackstone 

Edge and Hazlehead (p = 1). No interaction effect was found between wind farm and turbine 

preference grouping (F (8 ,134) = .59, p = .785, η2 = .034). As two of the assumption for a two-way 

ANOVA were violated – normality of the dependent variable, and homogeneity of variance, non-

parametric tests were also run, which confirmed the results. A Friedman test showed a significant 

difference between the fixation times of each wind farm (χ2 (2) = 82.861, p < .001). Post hoc 

Wilcoxon signed ranks tests with the Bonferroni correction showed that fixation duration was 

significantly longer for Royd Moor than Blackstone Edge (z = -7.183, p < .001) or Hazlehead ( z = -

7.194, p < .001). Further, there was no significant difference in fixation duration between Blackstone 

Edge and Hazlehead (z = -.196, p = .844) 
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Figure 3.12: Mean Fixation Time/Size of Wind Farm by Turbine Preference Group 

 

The results suggest that participants’ visual attention varied according to the type of wind farm that 

was present in the video. The two wind farms with the large turbines, Hazlehead and Blackstone 

Edge, drew significantly less attention that the wind farm with a large number of smaller turbines 

(Royd Moor). Even when accounting for the overall size of the wind farm, it appears that a larger 

number of smaller wind turbines constitutes a greater visual impact than fewer but larger wind 

turbines.  

3.3.9 Survey on Attitudes to Wind Turbines 

At the end of the experiment, participants were informed that the true purpose of the study was to 

look at people’s responses to wind turbines in the landscape. After been given the opportunity to 

ask any questions or to withdraw from the study, participants completed a 15-item survey on wind 
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farms. There were five items on three different themes; turbine characteristics, experience and 

attitudes, and landscape quality/type (see Appendix A for a complete list of items). 

3.3.9.1  Regression on survey items 

A stepwise multiple linear regression was calculated to predict participants’ rating of wind turbines 

in the landscape based on their answer to the 15-item survey. The ‘Wind turbines negatively affect 

the beauty of the rural landscape’ item was removed due to multicollinearity, as it had Pearson’s 

correlation scores over 0.7 with several other variables. A significant regression equation was found 

(F(1, 71) = 23.265, p < .001), with an R2 of .396. It was found that ‘Wind turbines are too big’ (β = -

.424, p <.001) and ‘I think more onshore wind turbines should be built in the UK’ (β = .28, p < .05) 

were significant predictors of participant rating of wind turbines. 

Table 3.2: Multiple Linear Regression on Survey Items as Predictors of Wind Turbine 

Preference 

Survey Items b (SE) Β (T) P 

Turbines are too big -.413(.111) -.424 (-3.732) <.001 
More onshore turbines should be built in the UK .335(.136) .28 (2.463) .016 
    
Model Summary: R2 (Adjusted R2)   .396 (.379) 

 

3.4 Discussion  

Environmental Beliefs 

The results from the NEP scale suggest that all of the participants in the study had pro-

environmental beliefs, with little variation across groups. The consistent pro-environmental scores 

across groups may be explained by the fact that this study was carried out using a university student 

sample. Using data from the British Household Panel Survey, Cotton and Alcock (2012) found that 

university attendance was positively correlated with a commitment to environmental sustainability. 

Hawcroft and Milfont (2010) carried out a meta-analysis of 69 studies that used the NEP and found 

that people from higher socio-economic status (SES) groups scored significantly higher than those 

from lower groups. The student sample is likely to be skewed in favour of higher SES and this may 
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also help to explain the results. Another possible explanation for the lack of variance in NEP scores 

across groups is the issue of scale validity. Brennan, Binney, Aleti, and Parker (2014) argue that, 

while the NEP scale may be reliable, it may not be valid. They conclude that the items on the scale 

do not accurately reflect individual attitudes towards environment sustainability.  

Affective Response 

The results from the PANAS were in line with what is expected from the population (Crawford & 

Henry, 2004; David Watson et al., 1988). While there was a reduction in positive affect (PA) after the 

experiment, there is no particular pattern across groups. The reduction is likely a result of participant 

fatigue, as participants had to keep their head still for the duration of the videos.  No significant 

differences were found between negative affect (NA) before and after the experiment. The findings 

suggest that there was no significant variation in emotion within the sample and that this can be 

excluded as a possible confounding variable when interpreting the SCR results. 

The SCR results show a clear u-shaped pattern, with higher scores at either end. While the findings 

were not statistically significant, this quadratic trend accounts for a large proportion of the variance 

both while the turbines are present in the video, and also when they are absent.  Further, those who 

dislike turbines have higher SCR scores when there are no turbines than when the turbines are 

present. Conversely, those who like turbines have higher SCR score when turbines are present, 

compared to when there are no turbines, though these differences are not statistically significant. 

These finding show that those at the extremes (like or dislike) have the greatest affective response 

to the videos, with response falling towards the more neutral groups. It is possible that the lack of 

significance is due to the small sample size, so some caution is necessary when interpreting the 

results. That said, the general trend in the findings may be explained in the context of the ‘Green on 

Green’ concept or the biophilia hypothesis. 
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Biophilia 

‘Green on Green’ describes a situation in which people on opposing sides of an argument could be 

said to be supporting ‘green’ or pro-environmental beliefs.  Warren, Lumsden, O’Dowd, and Birnie 

(2005) argue that wind power development is an unusual example of development in the landscape. 

Most conflicts between development and conversation tend to be focus on socio-economic benefits 

on the one hand, and environmental costs on the other, with strongly pro-environmental people 

positioned on the landscape conservation side of the debate. In the case of wind energy, 

environmentalists could argue in favour of their development as they are a clean, renewable source 

of energy. Equally, environmentalist could oppose the development of a wind farm on the basis of 

its impact of the landscape. This interpretation is further strengthened by the findings from the 

multiple regression, where ‘wind turbines are too big’ was found to be a significant negative 

predictor of wind turbine rating, while ‘I think more onshore wind turbines should be built in the UK’ 

was found to be a significant positive predictor’.  

Popularised by Edward Wilson in 1984, the biophilia hypothesis posits that human beings have an 

innate bond with and preference for life and life-like processes (Kellert & Wilson, 1993). Biophilia is 

proposed to have evolved in humans due to biophilic responses resulting in a greater likelihood to 

survive and reproduce. As a result, humans have developed a genetic predisposition to positively 

response to nature. While there has been some criticism of the hypothesis, e.g. that it is quite broad 

and not well-defined, findings from several research fields show that people do respond affectively 

to life-like things such as animals, plants and landscapes. Further, these elements of nature can 

provide enjoyment and health benefits (Joye & de Block, 2011). Within the framework of the 

biophilic hypothesis, the higher responses from the like and dislike group could be interpreted as a 

greater biophilic response. This would explain why the participants respond to both the absence and 

presence of the turbines. They are responding to the landscape as a whole, with either an increased 

or decreased response when the turbines are present, depending on their group (i.e. whether or not 
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they like wind turbines in the landscape). While the difference within the groups between the 

turbine and no turbine condition are not significant, the trend is the right direction if the results are 

interpreted in the context of the biophilia hypothesis. Further, given that the participants weren’t 

connected to the area in the video, and therefore had no place attachment, as well as being a young 

pro-environmental sample, a large effect should not be expected. 

Visual Impact 

The eye-tracking data shows a clear difference in response to the different wind farms. Controlling 

for the area/size of the wind farms, it is clear that the participants spent significantly longer looking 

at the Royd Moor wind farm, than Blackstone Edge or Hazlehead. The latter two are quite similar in 

their layout, both having three turbines of approximately 100m in height, whereas Royd Moor 

consists of 13 turbines of 54m in height placed closer together (see figures 3.4 – 3.6 for the layouts 

and figure 3.7 for a comparison of scale). 

Although there is a slight trend towards higher fixation times for the really like and really dislike 

group, no significant intergroup differences were found. It is clear that Royd Moor commanded 

more visual attention than the other two wind farms, however participants’ rating of wind turbines 

did not appear to influence fixation time. As such, the intergroup differences in SCR can be 

attributed solely to an increased affective response to the stimuli, rather than increased exposure to 

the stimuli. Simply put, the increased SCR in the really like and really dislike groups was not caused 

by looking at the wind turbines for longer than the other groups, but is likely due to differences in 

their cognitive-emotional response to viewing the turbines. The findings are somewhat different to 

previous research that looked at the effect of the number of turbines on the visual impact 

(Ladenburg & Dahlgaard, 2012; Torres Sibille et al., 2009; Tsoutsos et al., 2009), however these 

studies focussed solely on number or size, rather than the interaction between the number and size 

of turbines. The results from the current study could be important in the context of the use of zones 

of theoretical visibility (ZTV) in environmental impact assessments of wind turbine developments. 
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A ZTV map illustrates the locations where a wind turbine development may be visible (Scottish 

Natural Heritage, 2006, 2012) and is considered good practice to include as part of a landscape and 

visual impact assessment (Scottish Natural Heritage, 2009). ZTVs are created using GIS software and 

map the potential visibility of wind turbines based on their height and the surrounding terrain. As 

such, larger wind turbines create a larger zone of theoretical visibility. Given the result of this study, 

a larger ZTV doesn’t necessarily mean a larger visual impact on the landscape. If ZTVs were created 

for the three wind farms used in this study, Royd Moor would have the smallest ZTV dues to the 

small turbines. However, the eye tracking data shows that Royd Moor attracted considerably more 

visual attention from participants than the larger wind farms, Hazlehead and Blackstone Edge. These 

findings would suggest that the size of turbines is not the most important factor to consider when 

assessing the landscape and visual impacts of wind farm developments. 

Strengths and Limitations 

This study used novel psychophysiological methods to address the issue of landscape and visual 

impacts of wind turbines, particular cumulative impacts. The use of videos of a real landscape with 

real, moving turbines as the stimuli and the use skin conductance response and eye tracking provide 

objective measures of responses that are lacking in most of the research that has tried to assess the 

landscape and visual impact of wind turbines.  

While the results of this study highlight the insights that can be gained from applying 

psychophysiological methods to understanding ,the landscape and visual impact of wind turbines, 

there are some potential weaknesses that need to be discussed. One of the most common issues 

with experimental psychological research is that the samples used may not be representative of the 

population of interested, frequently being comprised of predominately well-educated, mostly 

female, university students (Henrich, Heine, & Norenzayan, 2010). Age has been consistently shown 

to a significant effect on acceptance of wind turbines (Álvarez-Farizo & Hanley, 2002; Bishop & 

Miller, 2007; Devine-Wright, 2005a), with younger people tending to be more accepting of wind 
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turbines Another important sample issue is that the participants weren’t facing a real development 

near their home. Previous research has shown the influence that place attachment and equity and 

fairness have on people’s attitude towards wind farm developments (Devine-Wright, 2005a, 2009, 

Wolsink, 2000, 2007b).  It is possible that the results would have been different if the sample was 

drawn from a group of people in a community with an existing or proposed wind-farm development. 

While accepting these weaknesses, the methods used address some of the weaknesses in previous 

research in this area. 

Conclusion 

Using novel methods, the study has shown that people’s ratings of wind turbines in the landscape 

and the layout of wind turbines appear to have an effect on people’s psychophysiological responses 

to those wind farms. People who really like and really dislike wind turbines seem to show greater 

affective responses to videos of the wind turbines than do those with a more neutral attitude to 

wind turbines, though these findings are not quite statistically significant. Further, irrespective of 

how they rated wind turbines, participants spent significantly longer looking at Royd Moor wind 

farm that Hazlehead or Blackstone Edge. 

The skin conductance response findings can be interpreted in terms of ‘green on green’ or the 

biophilia hypothesis, which is also supported by the responses in the attitudes survey. Those who 

either really dislike or really like wind turbines are both pro-environmental, but for different reasons. 

The findings from the eye-tracking data have important implications for landscape and visual impact 

assessments that are created as part of an environmental impact assessment for proposed wind 

farm developments. Fewer but larger turbines may have less of a visual impact than smaller, but 

more numerous turbines.  

The psychophysiological methods used in this research would lend themselves well to assessing 

people’s reactions to other methods of visualising wind turbines. Several papers have suggested that 

computer visualisations could be used to model landscapes for interactive design and planning, as 
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well as research (Lange & Hehl-Lange, 2005; Orland et al., 2001; Olaf Schroth, Lange, & Schmid, 

2005). While computer simulations provide an ideal way to create and control any variables that 

may contribute to the visual impact of a development, there may be an issue with their ecological 

validity. Previous research has asked participant to rate their preference for various GIS-based 

visualisation tools (Berry et al., 2011). However, the use of psychophysiological methods may help to 

provide greater insights into how people respond to computer simulations of wind turbine 

landscapes. Chapter 4 discusses the second study of this thesis, which replicates the current 

experiment but replaces the video of a real landscape with a video of a computer simulation of the 

same landscape. 
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4 Physiological Responses to a Simulation of Wind Turbines in a 

UK Landscape 

4.1 Introduction 

In chapter 3, the study looked at participants’ responses to a video of a real landscape with wind 

turbines. This study replicates the first but instead of viewing a photorealistic landscape, the 

participants watched videos of a simulated landscape with wind turbines. A comparison between the 

responses to the photorealistic and simulated landscape may help to provide insights into the 

perceived realism of computer generated simulations of landscapes. 

As discussed in the methodological review in chapter 2, there is a long history of using computer 

generated simulations to represent the landscape, especially potential or proposed changes to a 

landscape (Sheppard, Shaw, Flanders, & Burch, 2007; Zube et al., 1987). With the continual 

improvement in computing capabilities as technology advances, and the subsequent improvement 

in the realism of computer generated simulations, researchers have argued that these simulations 

could be used for landscape modelling, planning and community engagement exercises (Lange, 

2011; Orland et al., 2001; Schroth, Hayek, Lange, Sheppard, & Schmid, 2011). Computer simulations 

provide several advantages when compared with photomontages; they allow for precise control 

over what is modelled, and can create 3-dimensional landscapes which allow for multiple viewing 

angles, and they allow for interaction (Bishop & Stock, 2010).  

However, perceived realism of computer simulations is an issue that has been noted by several 

researchers (Bishop & Rohrmann, 2003; Perkins, 1992). The issue of perceived realism, or ecological 

validity, is particularly important. If research or community engagement is carried out with 

simulations then it is important that people respond similarly to the simulations as they would to the 

completed wind farm development. Otherwise the ecological validity, and thus the entire purpose 

for the research/engagement, is called into question. There have been several studies which have 
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asked participants to rate different visualisation methods, such as photomontages, wire frames, 

computer generated visualisations (Berry et al., 2011; Meitner, 2004; Roth, 2006; Sevenant & 

Antrop, 2011). However, this study seeks to assess people’s responses to a computer simulation of 

wind turbines and to attempt to objectively quantify these responses using eyetracking and skin 

conductance response. 

Computer simulations can range from static 2D images to interactive 3D virtual environments. There 

are a range of different software programmes which can be used to create the simulations, and the 

realism, cost, complexity and learning time associated with these programmes can vary considerably 

(Schroth, 2009). This study will use two programmes to create the virtual environment of the wind 

turbines in Stocksbridge (the location where the videos were recorded for the first study); these are 

Google Earth and Sketchup. There are two reasons for choosing these programmes: 1) they are both 

free and so are available to a wide range of people regardless of financial constraints, 2) they are less 

complex and less labour intensive than more advanced software such as Visual Nature Studio, so do 

not require the same high level of expertise. Google Earth covers the world and can be used to 

create accurate 3D environments of any area (Peterson et al., 2012). Sketchup can be used to create 

3D models of wind turbines, which can easily be exported into Google Earth, and is considerably 

more user-friendly that other industry standard software (Wolk, 2008). Moreover, the programme 

can be used to create 3D models of any object found in the landscape, e.g. houses, walls, trees, 

sheep. There is also a large online library of pre-existing models, which can be added to by users of 

the programme, as well as downloaded for use or modification. 

Another key issue which will be addressed in this study is the dynamism of simulations. Several 

researchers have highlighted the importance of movement in visualisation of the landscape. The 

movement more closely represents people’s natural experience, and thus people respond differently 

to dynamic simulations (Danahy, 2001; Heft & Nasar, 2000). This study adds movement by using 

videos that pan across the landscape (as they did in the first study), and by animating the wind 
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turbines in Google Earth. Animating the wind turbines was achieved using KML (keyhole markup 

language), which can be used to define longitude and latitude, altitude, tilt, heading, as well as a 

timespan (Honjo, Umeki, Wang, Yang, & Hsieh, 2011; Zhu et al., 2014). Two of the key criteria in 

choosing the visualisation software were cost and ease of use. Dynamic computer visualisations of 

wind farms would need to be reasonably straightforward and cost effective for widespread adoption 

in community engagement. Table 4.1 on the next page includes an overview of the strengths and 

weaknesses of the different software options that were considered before choosing the combination 

of Sketchup and Google Earth. 

The aim of this study is to try to objectively assess people’s responses to a simulated wind turbine 

landscape through the use of psychophysiological measures. The findings can then be compared to 

the findings from the previous study to assess whether participants respond in similar ways to videos 

of a real landscape as to that of a computer simulated landscape. This will provide insight into the 

levels of realism that can be achieved with Google Earth and 3D models created in Sketchup. It will 

also help to analyse the suitability of these programmes for creating visualisations of wind farms for 

use in planning, community engagement, or research. 

As such, there are two hypotheses being tested: 

H1: The skin conductance response (SCR) of participants will follow the u-shaped pattern found in 

study 1, with larger scores for those in the ‘strongly pro-turbine’ and ‘strongly anti-turbine’ 

groups. 

H2: The eye-tracking data will show that, when controlling for size, the smaller turbines of Royd 

Moor wind farm garner more visual attention than the large turbines of Blackstone Edge and 

Hazlehead wind farms. 
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Table 4.1: Overview of strengths and weaknesses of different visualisation software options 

Landscape visualisation Software Learning Curve Level of Realism Real-time Cost 

3D Modeller     

Autodesk 3ds Max +++ +++ No £1,500 per year 

Blender +++ ++/+++ No Free/Open Source 

Cinema 4D +++ ++ Yes £2,800 

Sketchup +/++ +/++ Yes Freeware 

Digital Globe     

Bing Maps 3D + +/++ Yes Freeware 

Biosphere 3D ++ ++ Yes Free/Open Source 

Google Earth Pro + +/++ Yes Freeware 

GIS & 3D Plugins     

ArcGIS +++ +/++ Yes £120+ per year 

Erdas Imagine +++ +/++ Yes £2,000+ 

GRASS GIS +++ + No Free/Open Source 

QGIS +++ + No Free/Open Source 

PhotoRealistic Landscape Renderer     

3D Nature (VNS & Scene Express) +++ ++/+++ No £2,500+ 

Terragen +++ ++/+++ No £500+ 

Vue +++ ++/+++ No £1,000 

Key: + = Low, ++ = Medium, +++ = High 
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4.2 Methods 

4.2.1 Participants 

Participants consisted of 75 students from the University of Sheffield. The mean age was 23.12 (SD = 

3.99), with 66.67% of participants being female. Participants were given either course credit or £5 as 

compensation for taking part in the study. As with study 1, the sample size was determined for the 

most part by cost and availability of the resources need to run the experiment (see section 3.2.1 for 

further details). 

4.2.2 Design 

As with the first study, this study used a between subjects design, with participants being grouped 

according to their wind turbine preference, as measured by a pre-screening questionnaire, 

comprised of 10 items commonly found in the UK landscape. Again, the two main dependent 

variables are wind turbine fixation time (secs)/size (pixels), and the mean number of skin 

conductance responses (SCRs) while watching videos of a simulated wind turbine landscape. 

4.2.3 Apparatus 

The apparatus used in this study were the same as the those outlined in chapter 3, including; 

- 19” CRT monitor 

- Eyelink 1000 

- Biopac MP36R & EL507 electrodes 

For full details, see section 3.2.3. 

4.2.4 Material 

The materials used in this study were the same as those used in the previous study, including; 

- Pre-screening questionnaire 

- The revised new ecological paradigm (NEP) 

- The positive and negative affect schedule (PANAS) 
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- Survey on attitudes to wind turbines 

 For a detailed description of the above, please see section 3.2.4  

The only change in material from the previous study is that this study used a video of a computer 

simulation of the wind turbine landscape, instead of a video of the real landscape. As with the 

previous study, the video presented was 1280x720 pixels, 30 frames per second and approximately 

three minutes in duration. As with the previous study, one of the videos panned left-to-right across 

the landscape and the other right-to-left, with the order of presentation being counterbalanced to 

avoid any order effect. Figure 4.1 shows a still from the video used in this study. The study area used 

is the same area as used in study 1 (see section 3.2.5 for full details). 

 

Figure 4.1: Still from Video Presented During Study 2 

 

A 3D representation of the landscape from Study 1 was constructed using Sketchup and Google 

Earth. The landscape was populated with models of the existing wind turbines and other key 

physical features (e.g., houses, trees, walls). Keyhole mark-up language (KML) was used to animate 

the turbines and a screencast (a digital recording of the computer screen output) was made while 
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panning though the landscape to replicate the video from Study 1. KML is a geospatial language that 

can be used to manipulate objects in google earth (Wilson, 2008).The turbines were animated for 

Hazlehead and Royd Moor wind farms, but not for Black Stone Edge. This is because the three 

turbines in the Blackstone Edge farm were not moving on the day the video was recorded for study 

1. Full details of the KML coding used to animate the wind turbines can be found in Appendix E. The 

turbine angles were randomised to ensure that they were not all rotating in sync. This is important 

as it makes them appear more natural. The code was modified for each turbine to create this effect. 

Examples of the models that were used to create the 3D simulation in Google Earth can be found in 

figure 4.2 below. Figures 4.3, 4.4, and 4.5 show the simulations of Hazlehead, Blackstone Edge, and 

Royd Moor respectively. 

 

Figure 4.2: Examples of Sketchup Models used to create 3D simulation 
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Figure 4.3: View of Hazlehead Wind Farm in Google Earth 

 

 

Figure 4.4: View of Blackstone Edge Wind Farm in Google Earth 



 

79 
 

 

Figure 4.5: View of Royd Moor Wind Farm in Google Earth 

 

4.2.5 Procedure 

The procedure for this study was identical to study 1, except for the video. As outlined in the 

previous section, the video was created using a computer simulation of the landscape. For full 

details of the procedure, see section 3.2.5 in chapter 3. 

4.3 Results 

The EDA and eye-tracking data were processed in the say way as in study 1, as outlined in chapter 3 

of this thesis (see sections 3.3.1 & 3.3.2).  

Data Cleaning: Four participants were removed from the eye-tracking analysis due to inaccurate 

tracking (n = 71). Three participants were removed from the SCR analysis due to non-responses (n = 

72). 
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4.3.1 Descriptive Statistics 

 

Table 4.2: Descriptive Statistics by Turbine Preference Group 

 

Turbine Preference Group Really Dislike Dislike Neutral Like Really Like All 

Number 3 9 26 22 12 72 

Age (Mean) 20.333 24.333 23.462 22.500 23.583 22.842 

SD 4.041 3.391 4.101 3.635 4.833 4.000 

SCR Turbs (Mean) 2.833 3.111 4.231 4.405 3.542 3.624 

SD 4.298 1.943 2.028 1.883 2.584 2.547 

SCR No Turbs (Mean) 3.333 3.333 4.596 4.357 3.458 3.816 

SD 3.944 2.422 1.785 1.808 2.792 2.550 

Hazlehead Fix. Dur. (Mean) 0.198 0.184 0.132 0.127 0.167 0.162 

SD 0.144 0.116 0.055 0.052 0.084 0.090 

Black. Edge Fix. Dur. (Mean) 0.140 0.131 0.115 0.101 0.164 0.130 

SD 0.196 0.083 0.038 0.044 0.052 0.083 

Royd M. Fix. Dur. (Mean) 0.322 0.263 0.249 0.204 0.332 0.274 

SD 0.389 0.107 0.060 0.063 0.102 0.144 
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4.3.2 New Ecological Paradigm (Revised) 

The mean NEP score for this study was 53.34 (SD = 6.49). As the data didn’t meet the requirements 

for parametric analysis, due to non-normality of the dependent variable, the data were analysed 

using a non-parametric test. A Kruskal-Wallis H test showed no significant difference between the 

five groups on their scores on the new ecological paradigm scale (χ 2(4) = 4.909, p = .297). A trend 

analysis showed that data were well fit by a quadratic model with the quadratic component 

accounting for a large and significant portion of the variance F(1, 67) = 4.253, p < .05, ω2 = .62). Post 

hoc tests using the Bonferroni correction revealed that there were no significant differences 

between any pair of the five groups (p > .05). As with study 1, the real difference between groups is 

not particularly large, with all groups having high scores. The largest mean score was 58 for group 1, 

and the smallest mean score was 52.85 for group 3 (see figure 4.6 below). 

 

 

Figure 4.6: Mean NEP Score by Turbine Preference Group 
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4.3.3 Positive and Negative Affect Schedule 

The mean positive affect was 33.61 (SD = 6.29) before watching the video and 32 (SD = 7.815) after. 

The mean negative affect was 14.73 (SD = 5.33) before was the video and 13.71 (SD = 5.42) after. As 

with study 1, these scores are consistent with Watson et al. (1998), who suggest that the positive 

and negative affect score of a normal population should be 29.7 (SD = 7.9) and 14.8 (SD = 5.4) 

respectively. 

 

Figure 4.7: Mean PANAS Scores by Turbine Preference Group 

 
As the PANAS scores were not normally distributed, non-parametric analyses were used. Wilcoxon 

Signed Ranks tests indicated that positive affect was significantly higher before the experiment than 

afterwards (Z = -2.378, p < .05) and that negative affect was also significantly higher before than 

after (Z = -2.375, p < .05). As with study 1, there appears to be no pattern across the five groups. 

Again, it is likely that the decrease in positive affect may be due to fatigue or boredom. The 

reduction in negative affect may be due to participants being less apprehensive after completing the 

experiment. 
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4.3.4 Skin Conductance Response 

The SCR scores were not normally distributed and therefore a non-parametric analysis was used. A 

Wilcoxon signed rank test found that there was no statistically significant difference in the skin 

conductance response (SCR) between when the turbines were present and absent during the video 

(Z = -.648, p = .517). Trend analyses showed no significant linear or quadratic trends across groups 

for SCR when turbines were present or absent (p > .05). Figure 4.8 shows that the trend across 

groups for SCR is almost n-shaped. This is almost the inverse of the pattern that was found in study 1 

(see figure 4.9 for a comparison). 

 

Figure 4.8: Mean SCR Scores by Turbine Preference Group 
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Figure 4.9: Comparison of SCR Scores from Study 1 & 2 

 

4.3.5 Eye-tracking 

A mixed ANOVA revealed a significant main effect for fixation time/size (F(2, 66) = 39.874, p < .001, 

η2 = .377). Post=hoc tests using the Bonferroni correction revealed that the fixation duration was 

significantly different between all three groups (p < .0167). The order of longest fixation duration to 

shortest is Royd Moor, Hazlehead, and Blackstone Edge. No significant interaction effect was found 

between wind farm and turbine preference grouping (F(8, 132) = .828, p = .579, η2 = .048). As two of 

the assumption for a mixed ANOVA were violated – normality of the dependent variable, and 

homogeneity of variance, non-parametric tests were also run, which confirmed the results. A 

Friedman test showed a significant difference between the fixation times of each wind farm (χ2 (2) = 

55.79, p < .001). Post hoc Wilcoxon sign ranks tests with the Bonferroni correction showed a 

significant difference in fixation duration for between Royd Moor and Blackstone Edge (z = -6.645, p 
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< .001) and Hazlehead (z= -5.962, p < .001). However, no significant difference was found between 

Blackstone Edge and Hazlehead (z = -2.158, p = .031). 

 

Figure 4.10: Mean Fixation Time/Size of Wind Farm by Turbine Preference Group 

 

The results suggest that, as with study 1, participants’ visual attention varied according to the wind 

farm that was present in the video. Blackstone Edge and Hazlehead drew significantly less visual 

attention from participants than Royd Moor. This suggests that fewer but larger turbines have less of 

a visual impact on the landscape than smaller but more numerous turbines. Unlike in study 1, there 

was a significant difference between Blackstone Edge and Hazlehead using parametric tests, with 

participants focussing on Blackstone Edge for significantly less time, suggesting that non-moving 

turbines draw less visual attention than moving turbines. However, when using non-parametric 

analysis, the difference became non-significant. It is likely then that the difference is due to a type 1 

error. Figure 4. 10 shows a comparison of the eye-tracking data from study 1 and 2. While there 

tends to be higher fixation times for the wind farms in the simulation, the pattern between the 

different wind farms is similar for real and simulated landscapes. 
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Figure 4.11: Comparison of Eye-tracking Data from Study 1and 2 

 

4.4 Discussion 

This study sought to replicate the experiment carried out in study 1, but to use videos of a computer 

simulated landscape. The aim was to objectively measure, using SCR and eye-tracking, participants’ 

responses to the simulated landscape. The reason for this was to assess whether people responded 

similarly or different to the videos of the simulated landscapes than real landscapes. 

Findings 

As with study 1, the participants scored highly on the NEP, with little variation across turbine 

preference groups, though those in the ‘strongly pro-turbines’ and ‘strongly anti-turbines’ groups 

scored slightly higher. This could support the idea that university students tend to have pro-

environmental views (Cotton & Alcock, 2012), or at least those from higher socioeconomic status 

(SES) groups (Hawcroft & Milfont, 2010). Or, as mentioned in the previous chapter, this may simply 

be reflective of the scale’s lack of validity (Brennan et al., 2014). Given that there was no significant 
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difference across groups in either study, it is possible that the scores on the NEP do not represent 

the participants’ true environmental attitudes. The scores on the PANAS mimicked those of the first 

study, with broadly similar positive affect (PA) and negative affect (NA) scores before and after 

taking part in the experiment. In this study, however, there was no significant difference in PA pre 

and post experiment. It is possible that participants found the computer simulation more interesting 

than the real landscape and so were not bored by the videos they viewed. There were also no 

significant intergroup difference in PA or NA.  As with the first study, this suggests that there was no 

significant variation in emotion across groups, nor any change before and after taking part in this 

study. These findings suggest that the participants’ SCRs were not affected by their emotional state 

during the experiment, and are reflective solely of their affective response to the videos they were 

shown. 

Affective Response 

Contrary to the previous study, the SCR scores in this study show a broadly n-shaped distribution 

across the turbine preference groups. Those with more neutral views towards wind turbines in the 

landscape scored higher than those who had stronger feelings, positive or negative, though this 

trend was not found to be statistically significant.  As in the first study, participants SCRs were similar 

when the turbines were present and absent, which suggests that they are responding to the 

landscape in general, rather than just the wind turbines. In this study, the ‘strongly anti-turbine’ 

group had a higher SCR when the turbines were absent, while the converse was true of the ‘strongly 

pro-turbine’ group. This is similar to the findings from study 1. The overall quadratic ‘n-shaped’ 

pattern is in the opposite direction to the findings from study 1. However, it is important to note 

that this was not statistically significant, and the differences were smaller than in the previous study. 

While it initially seemed quite surprising that the results using the video of the computer simulation 

were almost the inverse of the real landscape, it may make sense in the context of the biophilia 

hypothesis, particularly if the ‘uncanny valley’ is taken into account. 
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If we accept the biophilia hypothesis, that humans have an innate bond with life and life-like 

processes (Ulrich, 1993), then we would expect participants to respond positively to scenes of a rural 

landscape such as that shown in the video. In the discussion section in the previous chapter, the 

biophilia hypothesis was used to explain why the ‘strongly pro-turbine’ and ‘strongly anti-turbine’ 

groups had higher SCRs, to the groups who were more neutral about wind turbines in the landscape. 

It was argued that participants’ in those groups may have had a stronger affinity with the 

environment. Although on ‘opposing sides’, those strongly in favour of or against wind turbines 

could be said to be supporting pro-environmental beliefs. While it might appear strange that the 

pattern was reversed in this study, the ‘uncanny valley’ may provide insight into why this might have 

happened.   

Uncanny Valley 

Mori (1970) proposed that people’s sense of familiarity or affinity with robots would increase as the 

robots become more humanlike until it reached a valley, called the ‘uncanny valley’. This uncanny 

valley occurs when the robots approach full human likeness but haven’t reached 100% likeness (see 

figure 4.10). This imperfect resemblance results in an uneasy feeling in the viewer due to the 

mismatch in the expectation of human qualities and the actual experience. It has been found to 

occur with computer games, 3D robots, and computer-animated characters in films (Ho & 

MacDorman, 2010; Mitchell et al., 2011; Tinwell, Grimshaw, Nabi, & Williams, 2011). Mori (1970) 

also posited that movement would result in a magnified uncanny valley effect. He suggested that 

movement would increase the feelings of familiarity with the robot, compounding the effect of the 

likeness of the model, and would by extension result in an even more marked drop into an uncanny 

valley (see figure 4.12 below). 
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Figure 4.12: Diagram of Uncanny Valley (Source: Mori et al. 2012) 

 

If this idea is extended to the video of the computer simulated landscape that was used in this study, 

it might explain the near reversal in SCR scores. As was previously mentioned, it is possible that both 

support and opposition toward wind farms could stem from environmental concerns (Warren et al., 

2005). As such, it is possible that the participants in the ‘strongly pro-turbine’ group and ‘strongly 

anti-turbine’ have a strong emotional attachment environment. This could result in an emotional 

attachment to landscape that might not be shared by those in the more neutral groups. It is possible 

that this has resulted in an uncanny valley effect when viewing the videos of the computer-

simulated wind-turbine landscape. It may have even been exacerbated by the movement of the 

video and the turbine blades, given Mori’s assertion that movement increased the effect. This effect 

could explain the reduced SCR from people at either end of the spectrum, as well as the increased 

response from the neutral groups who had a greater reaction to the computer simulation. 

Visual Impact 

The eye-tracking data produced similar results to the first study, with a longer total fixation duration 

for Royd Moor than for Hazlehead or Blackstone Edge, when normalised for area. This further 
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supports the notion that smaller, more numerous wind turbines attract more visual attention than 

fewer, larger turbines. There may be various reasons for this increased visual attention. There were 

more turbines in the Royd Moor wind farm; it is possible that more wind farms together creates a 

disproportionate visual distraction the landscape. Previous research has shown that people prefer 

smaller groups of turbines (Kokologos et al., 2014; Molnarova et al., 2012; Tsoutsos et al., 2009). 

Alternatively, the smaller, faster moving turbine blades may draw more attention simply because of 

the speed of movement. Given than blade movement has been shown to increase the visual impact 

of wind turbines, faster moving blades may increase this impact further (Bishop & Stock, 2010). 

Participants spent significantly less time looking at the Blackstone Edge turbines than they did for 

the Hazlehead turbines, which suggests that non-moving wind turbines might attract less attention 

than moving wind turbines. This finding should be interpreted with caution. While the difference is 

statistically significant, the effect is quite small and was not found in the first study with the videos 

of the real landscape. It is possible that the effect is only found when viewing simulated wind 

turbines. That being said, the blade movement of wind turbines is consistently listed as something 

which people find visually intrusive (Landscape Design Associates, 2000; Pedersen et al., 2007; Piper, 

2004).  

Implications 

There are several important implications of the findings from this experiment. First, the eye-tracking 

data were similar to the first study, further supporting the notion that smaller turbines attract more 

visual attention than larger turbines, when normalised by area. This could be an important 

consideration for wind farm developers, and planners. Every planning application for a proposed 

wind farm development in the UK needs to be accompanied by an environmental impact assessment 

(EIA) to assess the potential impacts that could results from the wind farm (Cooper & Sheate, 2002; 

Scottish Natural Heritage, 2009). A landscape and visual impact assessment (LVIA) is a core 

component of the EIA, particularly in the case of wind farms where landscape and visual impacts are 
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of paramount concern (Scottish Natural Heritage, 2006; The Highland Council, 2010). As discussed in 

the previous chapter, it is consider good practice to include a zone of theoretical visibility (ZTV) map 

in an LVIA to assess the extent of the visual impact of a proposed wind farm, which is calculated 

based on the height of the turbines. Given that Royd Moor would have the smallest ZTV of the three 

wind farms, yet drew the most amount of visual attention, the findings from this study might be 

worth consideration from planners and developers. 

The findings from the analysis of SCRs may have implications for the use of computer-generated 

simulations of wind turbines in research, in community engagement, or public consultations. While 

the patterns of visual attention were broadly similar for the videos of the simulated and real wind 

turbines, the objective affective responses (as measured by SCR) were very different. These 

differences in SCR may call into question the ecological validity of computer-generated simulations. 

If the simulations are not ecologically valid, then it is possible that conclusion drawn from them in 

research, or community engagement, may not be accurate. While it is clear that computer 

generated simulations have improved greatly and will do so into the future (Danese et al., 2008; 

Lange, 2011; Williams, Ford, Bishop, Loiterton, & Hickey, 2007), using Google Earth and Sketchup 

may lack the realism needed to replicate the real world. This may mean that using computer 

simulations is not advisable until such as time as the level of realism reaches close to 100%. It is 

possible that other visualisation software, such as Visual Nature Studio, may provide more realistic 

simulations but they tend to be costly in terms of finances and time (Schroth, 2009).  

Limitations 

As is true of the first study, the use of psychophysiological methods, with the more naturalistic 

panning videos, makes interpretation of the results somewhat difficult. While this study is more 

ecologically valid than previous studies which have used static photomontages or static simulations 

(e.g. Molnarova et al., 2012), it is also lacks the tighter experimental control that comes with static 

images. The results from the SCR analysis highlight this issue. Given that participants responded to 
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the landscape without wind turbines, it can be difficult to tease apart the attribution of SCR. It is 

assumed that the differences in SCR when the turbines were present or absent was due to the 

turbines themselves. However, the participants were never asked to give their subjective response 

to the videos – it is possible, though perhaps unlikely, that they may have given another reason. 

While the study was designed to try to objectively measure their responses, the lack of subjective 

responses from the participants does mean that there is greater ambiguity and inference from the 

results. Similarly, while it is objectively true that participants spent a longer duration of time looking 

at the smaller turbines of the Royd Moor wind far, we can only infer the reason for this. The smaller 

turbines could be more visually distracting for a number of different reasons, e.g. faster moving 

blades, or a greater number together. Equally, they could have been more pleasant to the 

participants, or there may have been different reasons across the turbine preference groups for the 

increased visual attention. It may have been beneficial to include some form of subjective analysis, 

such as a short interview or survey after completing the experiment. Future research may include 

the objective psychophysiological measures in tandem with more subjective measures, such as 

surveys or interviews. 

The simulation methods used may also have adversely affected the results. As discussed, Google 

Earth and Sketchup are not the most advanced computer programmes for 3D simulations. They 

were chosen because they were freely available and do not have extremely steep learning curves, 

and so are available to a wide range of people, from researchers through to planners and 

developers. However, the simulations that were created using these programmes may have lacked 

the realism that better software would have allowed. It is possible that the hypothesised uncanny 

valley effect would not have occurred if more realistic simulations were created. The study also 

didn’t assess whether the lack of ecological validity would affect participants’ choices for things such 

as wind farm layouts, preferences for the number of turbines. While it is important to know that 

people don’t respond affectively in the same way to the computer simulation, the core question that 

remains is ‘is this important?’ If participants make the same decisions about a proposed wind farm 
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development, e.g. their preferred turbine layout, or the maximum number of turbines, then the 

difference in affective response may not be important in practical terms. The next study will seek to 

address this issue with an online survey. 

There are several limitations associated with the sample used. The sample was relatively small, 

consisting of only 75 participants, though this is relatively large compared to most studies involving 

psychophysiological measures such as eye-tracking and SCR (e.g. Bianchin & Angrilli, 2012; Calvo & 

Lang, 2004; Dupont, Antrop, & Van Eetvelde, 2013; Helminen, Kaasinen, & Hietanen, 2011). The 

sample of participants was not representative of the population, given that it was a sample of 

university students. This is a common problem with psychological research, with samples tending to 

be better educated, and richer than the general population (Henrich et al., 2010). There were also an 

unequal number of participants in each of the five groups, with very few in the ‘strongly pro-wind’ 

and ‘strongly anti-wind’ groups. 

Directions for future research 

Future research into computer-generated simulations of landscape should, and likely will, focus on 

virtual reality (VR) and augmented reality (AR). VR has undergone somewhat of a renaissance in 

recent years, with the largest technology companies (e.g. Google, Facebook, Apple, Samsung, LG) 

putting their considerable weight behind its development (Webster & Clark, 2015). These various VR 

would allow for greater levels of immersion than can be achieved by looking at a monitor on a desk. 

The ability to move your head around to look at a full 360° simulation and to interact in real-time 

could provide for levels of immersion approaching that of reality. With these companies having 

already released VR headsets, from the most basic Google Cardboard, through the Oculus Rift, the 

opportunities for VR in landscape research is increasing. These VR headsets could even be combined 

with eye-tracking technology to map out what participants are looking at in the 360° virtual world 

(Stengel, Grogorick, Eisemann, Eisemann, & Magnor, 2015). Similarly, AR could provide greater levels 

of realism and immersion. Currently, there are companies such as VentusAR (Linknode Ltd, 2016) 
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who create AR wind farms, which can be viewed on a tablet when out in the field. This allows 

developers, local communities, or researchers to created accurate 3D models of wind farms, which 

are then superimposed in real-time over the real landscape, as viewed through the camera lens of a 

computer tablet. It is possible that these can/could be combined so as to use AR on a head-mounted 

phone, such as Google Cardboard, or Samsung Gear (Hasan & Yu, 2015). The phone’s camera could 

be used to show the real-world around the user while the AR elements could be superimposed onto 

the screen in real time, allowing for the realism of the real-world with the immersion of a VR 

headset. 

Conclusion 

This study has used psychophysiological measures to objectively assess people’s responses to a 

computer-generated wind-turbine landscape. The novel use of a combination of panning videos, 

animated turbines, eye-tracking, and SCR has provided a more objective assessment of people’s 

responses to a computer simulation of wind turbines. The eye-tracking data from the current study 

show that people’s visual attention patterns are similar while watching a video of a computer-

simulated landscape with wind turbines, as they are when they watch a video of the same real 

landscape. This supports the findings from the previous study, and suggests that wind farms with 

more numerous but smaller turbines attract greater visual attention than wind farms with fewer but 

larger turbines. While the reason for this difference is unclear, the findings should be of interest to 

wind farm developers, planners, or policy-makers. 

While the results from the eye-tracking data show consistency between the computer simulation 

and the real landscape, participants’ affective responses appear to be considerably different when 

watching the video of the computer simulation. The uncanny valley hypothesis may help to explain 

these differences. It is possible that people’s responses to any computer simulations will lack 

ecological validity until the simulations approach close to 100% realism. Given the limitations of 

Google Earth and Sketchup, it would be interesting to test whether people would respond similarly 
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to more realistic simulations, such as those created with Visual Nature Studio. It is possible that 

more realistic simulations, combined with the immersion and interaction of a VR headset, could 

overcome this uncanny valley and lead to more ecologically valid responses. This is something that 

future research could address. 

Thus far this thesis has focused on two lab-based experiments in an attempt to objectively assess 

people’s responses to wind farms, and to compare the ecological validity of computer simulations 

with the real world. These studies have two major limitations: they have small samples sizes with 75 

participants in each study, and they don’t give any insight into why participants responded the way 

they did. The next study will try to address these two limitations. The next chapter will focus on an 

online study in which participants viewed animated photomontages or animated 2D simulations, 

and were asked to assess different hypothetical extension options for Hazlehead wind farm.



 

96 
 

 

5 Assessing Visual Preferences for Wind Farm Extensions using 

Animated Photomontages and Computer Simulations 

5.1 Introduction 

The previous two studies have shown two things: that people’s emotional responses to videos of 

simulated and real landscapes of wind turbines are different; and that people’s viewing patterns are 

similar for both the real and simulated videos, with smaller more numerous turbines attracting more 

visual attention than larger less numerous turbines.  Given the results of the first two studies, a core 

question that remains is whether people answer similarly in terms of preferences when presented 

with a photomontage or a computer simulation. While it is interesting to note that people’s affective 

responses vary between the videos of real and simulated landscapes, if they make the same 

decisions with regards to turbine preferences, is the different in response important in any practical 

sense? Also, while the results from the study one and two showed that people’s visual attention 

patterns were similar, and that Royd Moor farm attracted the most visual attention, it is not clear 

why this is the case. What characteristics of wind turbines cause the differences in the visual 

attention patterns? 

With this in mind, the present study had three key aims: to assess factors that influence the 

landscape and visual impact of wind farms; to compare people’s responses based on whether they 

are presented with the animated photomontages or the animated computer simulations; and to 

compare people’s rating of the two different presentation mediums in terms of realism and 

accuracy. In order to do this, an online study was created in which participants were asked to 

imagine that they were a member of community being consulted by a wind farm developer about 

extending an existing wind farm (in this case, Hazlehead wind farm was used). Given the current 

level of onshore wind farm development in the UK, combined with the increased rejection rate for 
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wind farm development applications, proposals for extensions to existing wind farms are likely to 

become more common. As such, this study examined a timely issue with regards to people’s 

attitudes to wind farm development. 

As discussed in chapter 2, most of the previous research into the factors affecting the landscape and 

visual impact of wind turbines have used static photomontages or static computer simulations (e.g. 

Berry, Higgs, Fry, & Langford, 2011; Dupont, Antrop, & Van Eetvelde, 2013; Molnarova et al., 2012). 

This study used animated wind turbine blades to better represent the visual impact of real, moving 

wind turbines (Bishop, 2002; Danahy, 2001; Heft & Nasar, 2000). While there has been considerable 

research into the validity and/or realism of different visualisation methods for landscape 

representation (Bishop & Rohrmann, 2003; Dupont et al., 2013; Sevenant & Antrop, 2011), there has 

been little research on the visualisation methods used to represent wind farms, and what effect the 

visualisation medium might have on people’s preferences and decision making. 

Berry et al. (2011) provide perhaps the most rigorous examination to date of visualisation methods 

for wind farm developments, using an online survey. They used a case study of a proposed 

development of 13 wind turbines in Wales to assess different methods of visualisation, e.g. ZTV, 

Wireframe, Photomontage, as well as animated and static Computer Simulations. They found that 

the photomontages were consistently rated the highest in terms of accuracy and realism, followed 

by the computer simulations. However, there are several limitations of the study that need to be 

addressed. The photomontages that were used in the study were static rather than animated, which 

may have affected the results. The study only looked at a single development option (i.e. 13 wind 

turbines. Also, participants were not asked about what characteristics of the wind turbines affected 

the visual impact of the proposed development. Lastly, they did not look at the effect of participants’ 

existing attitudes on the visual impact of wind turbines. As was shown in the previous two studies, 

the extent to which people find wind turbines visually appealing, or not, greatly influences their 
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affective response to wind turbines in the landscape. It is possible therefore that it could affect their 

ratings of wind turbine visualisations. 

This study addressed some of the limitations Berry et al.’s study. The present study used an online 

survey with animated photomontages and computer simulation to represent several different wind 

farm extension scenarios, rather than a single development. Participants were asked about 

characteristics of wind turbines and their effect on ratings of the wind farm extension options. 

Participants’ visual preferences for wind turbines were included in the survey to see what effect they 

had on ratings of the visualisations. The inclusion of these variables in the current study allowed for 

a better analysis for the factors that affect the visual impact of wind farms, as well as the effect of 

visual preference on ratings of wind farm visualisations and wind farm development scenarios.  

The first aim of the present study is to assess the factors that influence visual impact of wind farm 

extensions. Extensions of existing wind farms are likely to become more common as developers look 

to expand on their wind energy output. There has been little research into the cumulative effects of 

the extensions on the landscape and visual impacts of the wind farms, though this has been 

mentioned in previous guidance literature on the visual impact of proposed development (Entec, 

2008; Scottish Natural Heritage, 2012). However, questions remain around the impact the size, 

number, degree to which new turbines match old, will affect the visual impact, and thus people’s 

preferences for different turbine layout options. The present study sought to address some of these 

questions. 

The second aim was to compare how people respond depending on whether they are presented 

with the photomontages or the simulations. While the psychophysiological data in the previous two 

studies showed that people’s emotional responses vary between the computer-simulated and 

photorealistic wind turbine landscape, it is unclear what effect this difference might have on 

preferences/decisions. Whether these psychophysiological differences affect people’s decisions 

about wind farm proposals is an important issue to be assessed, as it could impact upon the 
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methods used in community engagement around wind farm developments. Whether people’s 

preferences for variables such as size, number, and turbine layout are similar or different depending 

on the visualisation medium are the key questions that will be asked. These are important issues 

that could have real-world implications for planners and developers with regards to ecological 

validity and consistency of responses across different visualisation media. 

The third aim of this study was to assess people’s ratings of the different presentation media. 

Participants were asked to assess the visualisations in two different ways. They were asked about 

the realism of the visualisations, i.e. the degree to which the visualisations realistically represented 

wind turbines in a UK landscape. Secondly, they were asked about the accuracy of the information 

presented to them, i.e. to what extent the visualisations provided accurate and sufficient 

information for them to make decisions. 

The three research questions are listed below, 

Q1: How do characteristics of wind turbines (size, number, degree of matching with existing 

turbines, turbine distribution) affect the visual impact of wind farm extensions? 

Q2: Do people show the same visual preferences for wind farm extension layouts when presented 

with photomontages and computer simulations? 

Q3: How do people subjectively rate the quality of the animated photomontages and computer 

simulations? 

 

5.2 Methods 

5.2.1 Participants 

This study included 642 participants. The mean age was 27.77 years old (SD = 9.87), with 53% of 

participants being female. The size of the sample was not defined in advance of distributing the 

survey. The goal was simply to collect data from as many participants as possible. Power analyses 
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calculated using G Power with a significance criterion of .05 suggested sample sizes varying from 

approximately 150 to 750 depending on whether the effect size was small to medium. As such, the 

sample size is towards the larger end of required sample size. 

5.2.2 Apparatus  

The survey was created using Qualtrics software (Qualtrics, Provo, UT). This is an online tool for the 

creation of surveys and collection of data. Participants were instructed to use a laptop or desktop 

computer with a large screen to complete the survey. Mobile devices were not permitted to be used 

to ensure that the landscape visualisations were adequately sized. Also, the survey was designed to 

be completed using a mouse/track pad so would have been difficult to complete on a mobile device 

such as a smartphone or tablet. If a participant’s browser identified their device as a mobile device, 

they would have been unable to take part in the survey. 

5.2.3 Material & Procedure 

The online survey consisted of 5 sections. The sections and a brief overview of the content of each 

section are listed below. For a full list of the survey items, see appendix c. 

1) Demographics and General Attitudes 

This section consisted of fifteen items relating to demographics: gender, age, nationality, education-

level, homeowner status, whether and for how long they have lived near wind turbines. It also 

included 9 statements on participants’ general attitudes to wind turbines, including 3 questions on 

their level of support for wind power development (support for onshore wind farm development in 

the UK, support for onshore wind farm development in their local area, support for offshore wind 

farm development in the UK), as well as 6 statements about the impact of turbines on the landscape 

(visually appealing, produce low levels of noise, are ugly, have a negative visual impact on a 

landscape, produce and unacceptable level of noise, enhance the visual beauty of a landscape). 

Participants were asked to rate the extent to which they agree with the 9 statements on a 5-point 
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Likert-like scale from ‘Strongly Disagree’ to ‘Strongly Agree’. The full details of the questionnaire are 

listed in Appendix H. 

 

2) Wind Farm Consultation Scenario 

Participants were instructed to imagine that they lived close to an area with an existing wind farm 

and that a wind farm developer was looking to extend the development to double the capacity. They 

took the role of a community member who was being consulted on various turbine layout options 

for the extension. As such, the participant was being asked to rate the different layout options in 

terms of visual preference (i.e. which looked best). The location used in this study was the same as 

study 1 and 2, but only focussed on the Hazlehead wind farm. Participants were shown a picture of 

the Hazlehead wind farm in its current state (see figure 5.1 below). (See also Appendix H for full 

details of the survey) 

 

 

Figure 5.1: View of Hazlehead Wind farm (3 x 101m turbines) 
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3) Visual Comparison of Extension Options 

In this section, participants were presented with the different layout options either as animated 

computer simulations (created using Google Earth and Sketchup) or animated photomontages 

(created using VentusAR software). The VentusAR software uses digital elevation models, and 

wireframes, which were overlaid on the photos to ensure that the wind turbines were accurately 

represented. Using Adobe Photoshop, animated GIFs were created of each of the layout options by 

combining screenshots of the wind turbines rotating through 120°. This is sufficient to give the 

illusion of continual rotation because of the three evenly spaced blades on the wind turbines. For 

consistency with the simulations, the clouds were removed from the photomontages, and the wind 

turbines faced south-westerly (the prevailing direction of wind) in both the simulations and 

photomontages (see figures 5.2 and 5.3 below). The turbine blade angles were also staggered so 

that they were not rotating in sync with each other. This made for a more realistic representation of 

real-world wind turbines. 

Participants were presented with five different turbine extension options (1 x 195m, 2 x 165m, 3 x 

101m, 4 x 100m, and 6 x 97m). These extension options were presented in a random order, each on 

a single page with the original layout (figure 5.1) presented directly above the extension option for 

comparison. Each of the animated visualisations was 1060 x 596 pixels in size. Figures 5.2 and 5.3 

below show non-moving samples of the photorealistic and computer generated visualisations.  
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Figure 5.2: Visualisation of Photorealistic Landscape (1 x 195m) 

 

 

Figure 5.3: Visualisation Using Computer Simulation (1x 195m) 
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For each visualisation, participants were asked to rate their visual preference for the original layout 

and the extension option. Participants were also asked to what extent different characteristics (e.g. 

size of turbines, number of turbines) influenced their decisions (see Appendix H). Once they had 

completed the five different layout options, participants were asked to rate how realistic and 

trustworthy they thought the animations were.  

 

4) Order of Preference for Layout Options 

Participants were then presented with all five of the layout options, along with the original three-

turbine layout and asked to rank them by visual preference. Participants had to drag and drop the 

animated visualisations in order of favourite at the top to least favourite at the bottom (see figure 

5.4 on the next page). The starting order of the visualisations was randomised. 
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Figure 5.4: Screenshot of Drag & Drop Ranking 

 

5) Biophilic Tendencies 

The final section of this study assessed participants’ biophilic tendencies. This scale included 

eighteen items and was modified from a scale by  Delavari-Edalat and Abdi (2010). The full list of 

items is in Appendix H.  
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5.3 Results 

5.3.1 Data Processing 

A total of 152 participants were removed from the analysis due to a failure to complete the study. 

There is a large body of literature that is critical of listwise deletion of participants from a study 

sample, suggesting various methods of imputation as better alternatives (e.g. Andridge & Little, 

2010; Dong & Peng, 2013; King, Honaker, Joseph, & Scheve, 1998; Myers, 2011; Roth, 1994). 

However, the extent and type of missing data in this study was different to anything discussed in the 

literature. The imputation methods outlined in the literature are designed for data which are missing 

at random across participants. In this instance, participants with incomplete data stopped 

completing the survey at a particular point and any subsequent questions were left unanswered. The 

mean completion percentage for those who did not fully complete the survey was 33.14% (SD = 

26.01%), with 70.4% of those participants only having completed half or less of the survey. 

Further, Pearson’s chi-square analyses were run on the demographic and attitude questions to 

compare those who fully completed the survey with the participants who did not.  Significant results 

were found for all but one of the questions, suggesting that there is no difference between those 

who completed the survey and those who did not (see table 5.1). In this case, listwise deletion 

should result in a loss of power only, but should not skew the results of the study (Wåhlberg & 

Poom, 2015). 
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Table 5.1: Comparison of participants with complete and incomplete survey responses 

Question Chi-Square df Sig. (2-sided) 

Gender 92.03 4 .000 
Age 139.933 47 .000 
Country Born In 166.459 56 .000 
Education Level 94.783 7 .000 
Homeowner 94.582 2 .000 
Lived Turbines 95.006 5 .000 
Years Near Turbines 10.197 5 .070* 
Support Onshore UK 218.454 5 .000 
Support Onshore Local 217.526 5 .000 
Support Offshore UK 218.49 5 .000 
Visually Appealing 222.639 5 .000 
Ugly 224.203 5 .000 
Neg. Visual Impact 219.961 5 .000 
Unacceptable Noise 220.526 5 .000 
Enhance Landscape 220.007 5 .000 
Low Level of Noise 219.537 5 .000 
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5.3.2 Descriptive Statistics 

 

 

Table 5.2: Descriptive Statistics for the Study Sample 

Simulation 
Turbine Preference Group Really Dislike Dislike Neutral Like Really Like All 

Number 12 58 88 128 29 315 

Age (Mean) 25.250 29.069 27.602 28.156 27.759 27.567 

SD 8.125 11.512 8.955 11.363 9.811 9.953 

No. Homeowners 1 16 15 24 6 62 

Time Lived (Mean) 0.667 1.035 1.000 0.648 1.310 0.932 

SD 1.614 1.762 1.531 1.384 1.628 1.584 

Photomontage 
Number 14 62 90 127 29 322 

Age (mean) 30.786 27.790 27.363 27.380 26.621 27.988 

SD 12.583 10.177 9.490 8.557 7.794 9.720 

No. Homeowners 1 14 19 24 7 65 

Time Lived (Mean) 0.786 0.587 1.083 0.608 0.310 0.675 

SD 1.580 1.498 1.393 1.350 0.967 1.358 

N Simulation = 315,  N Photomontage = 327 
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5.3.3 Original-vs-New Layout 

As the dependent variable was a single Likert-like item, non-parametric analyses were run. A 

Friedman test found a significant difference between the responses to the different layout type (χ 

2(4) = 328.5, p < .001). Further, a series of Mann-Whitney U tests showed that there was no 

significant difference between the visualisation type for each of the layout options: 1x195m (z = -

.317, p = .751), 2x165m (z = -.02, p = .984), 3 x 101m (z = -.626, p = .532), 4x100m (z = -.299, p = 

.765), (z= -.813, p = .416). 

Figure 5.5 illustrates the effect of the layout on participants’ preference for the original or new 

option. The original option was preferred to the extension option with either one or two large wind 

turbines, as well as the six small turbines.  However, the extension options with either 3 or 4 

medium sized wind turbines were preferred to the original layout.  This pattern is the same 

regardless of the visualisation type presented to the participants. 

 

Figure 5.5: Preference for Original-vs-New Layout 
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5.3.4 Original and New Layouts 

As with previous analyses, the dependent variable was a single Likert-like item. As such, non-

parametric analyses were also run. A series of Wilcoxon signed ranks tests showed significant 

differences between ratings of the original and new layout options for four of the five layouts: 

1x195m (z = -14.453, p < .001), 2x165m (z = -11.754, p < .001), 4x100m (z = -5.087, p < .001), and 6 x 

97m (z = -9.070, p < .001). There was no significant difference in ratings of the original and new 

layouts for the 3x101m option (z = -1.96, p = .05). A series of Man-Whitney U tests showed that 

there were no significant difference in ratings by visualisation type for any of original or new layout 

options 

Table 5.3 Mann Whitney U Tests on Differences in Ratings by Visualisation Type 

Layout Option 1x195m 2x165m 3x101m 4x100m 6x97m 

                        Original 

Mann-Whitney U 49492.0 50306.5 51440.0 49981.5 50684.5 

Z -0.895 -0.534 -0.028 -0.679 -0.364 

Asymp. Sig. (2-tailed) 0.371 0.593 0.978 0.497 0.716 

                      New 

Mann-Whitney U 51056.0 50051.5 50062.0 51050.0 50274.0 

Z -0.194 -0.630 -0.631 -0.197 -0.534 

Asymp. Sig. (2-tailed) 0.846 0.529 0.528 0.844 0.593 

N Simulation = 315, N Photomontage = 327 

 

Figure 5.6 illustrates the main effects for layout option and wind farm option, as well as the lack of 

an effect of visualisation type. The original wind farm option was clearly preferred across all the 

different layout options, except for the 3x101m extension option. 
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5.3.5 Importance of Turbine Characteristics 

A series of Friedman tests were carried out to assess whether there were any differences in the 

importance of the turbine characteristics (size, number, visual match, and distribution) across the 

different layout options. The results showed that there were significant differences across the layout 

options for all four of the turbine characteristics (see table 5.4). A Series of Kruskal-Wallis tests were 

also carried out to assess whether there were any differences between the responses from those in 

the simulation and the photomontage condition. No significant differences were found for any of the 

turbine characteristics, or for any of the layout options (see table 5.5). Figure 5.7 illustrates the 

findings from these analyses. 

Table 5.4 Friedman Tests on Differences in the Importance of Turbine Characteristics across 

Layout Options 

 Size Number Visual Match Distribution 

Chi-Square 254.58 130.82 23.22 65.99 

Asymp. Sig. 0.00 0.00 0.00 0.00 

N = 642 

 

Figure 5.6: Visual Preference Ratings for Original and New Layouts 
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Table 5.5 Kruskal-Wallis Tests on Differences in the Importance of Turbine Characteristics 

between Visualisation Type 

Layout Option 1x195m 2x165m 3x101m 4x100m 6x97m 

                 Size 

Chi-Square 0.716 0.630 0.407 0.780 0.406 

ASymp. Sig. (2-tailed) 0.397 0.427 0.523 0.377 0.524 

                   Number 

Chi-Square 3.791 0.004 0.372 0.685 0.010 

Asymp. Sig. (2-tailed) 0.052 0.947 0.542 0.408 0.922 

                Visual Match 

Chi-Square 0.023 0.781 7.801 0.478 1.491 

Asymp. Sig. (2-tailed) 0.880 0.377 0.180 0.489 0.222 

               Distribution 

Chi-Square 0.341 0.013 0.023 0.178 0.046 

Asymp. Sig. (2-tailed) 0.559 0.911 0.880 0.673 0.830 

N Simulation = 315, N Photomontage = 327 

 

Figure 5.7 shows that all four of the turbine characteristics are consistently rated as important with 

minimum scores over 4.5. The size of the wind turbines is considered most important for the largest 

turbine extension option, decreasing in line with the small turbine layout options. The reverse is 

seen with the importance of the number of wind turbines, with this characteristic increasing in 

importance for layout options with more turbines. The importance of turbines visually matching 

existing turbines appears to be fairly consistent across the layout options. The distribution also 

seems consistently important, though slightly less so for the layout options with one or two large 

turbines. Lastly, the ratings are similar for the simulation and photomontage groups across layout 

options and characteristics, with the exception of the number of turbine in the 1x195m layout. In 

this instance the simulation group deemed the number of wind turbines to be slightly more 

important in their rating of the extension option. 
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Figure 5.7: Importance of Turbine Characteristics for Layout Ratings 

 

5.3.6 Turbine Attitude Group 

A series of Kruskal-Wallis tests were run to analyse the differences across turbine preference groups 

in responses to the survey items related to the extension options in the wind farm scenario (see 

table 5.6 for full details). The results show clear differences between the attitude groups in their 

ratings of the original and new wind farm layouts across all of the extension options. Those in the 

pro-turbine groups tended to show a preference for the new layout (with the extension) in all the 

options, except for the 1x195m option, where the preference was only among the ‘strongly pro-

turbine’ group. The pro-turbine groups showed this preference most strongly for the 3x101m and 

4x100m extension options. Similarly, the anti-turbine groups rated the 3x101m, 4x100m, and 6x97m 

options more positively than the larger turbine options. 

There was no significant difference in the importance of size in participant ratings of the extension 

options, except in the 1x195m option, where the strongly pro-turbine group rated it as less 
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important that the rest. There was no significant difference across the attitude groups in the 

importance of number in participant ratings, though ratings were high for all groups in the extension 

options with larger numbers of turbines. There were significant differences in the across the groups 

in the ratings of the importance of the visual match in three of the extension options. The neutral 

and pro/anti-turbine groups appeared to rate visual match as more important the strongly pro/anti 

turbines groups. Lastly, there was no significant difference across groups for the distribution of the 

turbines in any of the extension options. It should be noted that all four of these characteristics were 

considered important to some extent by all of the groups in their ratings of all of the extension 

options. 
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Table 5.6: Responses to Wind Farm Scenario by Turbine Preferences Groups 

 

 

Attitude 
Group 

Strongly Anti-
Turbine 
(N = 26) 

Anti-Turbine  
(N =121) 

Neutral 
(N =179) 

Pro-Turbine 
(N = 258) 

Strongly Pro-
Turbine 
(N = 58) 

Kruskal Wallis 
Test 

  

Mean SD Mean SD Mean SD Mean SD Mean SD  Sig. 

1
x1

9
5

m
 

Orig/New -0.39 0.53 -0.39 0.50 -0.16 0.50 -0.12 0.50 0.19 0.59 54.27 .000 

Orig 3.50 1.66 4.62 1.13 4.87 0.98 5.05 0.95 5.45 0.99 46.99 .000 

New 2.54 1.36 3.13 1.35 3.74 1.35 4.10 1.47 5.05 1.53 88.13 .000 

Size 5.27 1.61 5.67 1.08 5.25 1.27 5.34 1.23 4.93 1.68 11.99 .017 

Number 4.96 1.71 4.80 1.37 4.81 1.26 4.62 1.36 4.98 1.61 6.00 .199 

Vis. Match 4.46 1.75 5.01 1.48 4.89 1.32 5.12 1.39 4.40 1.79 14.81 .005 

Distribution 4.73 1.78 5.12 1.21 5.08 1.24 5.09 1.34 4.98 1.84 1.19 .879 

2
x1

6
5

m
 

Orig/New -0.58 0.48 -0.36 0.49 -0.11 0.47 0.04 0.51 0.33 0.58 97.85 .000 

Orig 3.50 1.50 4.63 1.07 4.85 0.87 5.09 0.94 5.40 0.94 52.36 .000 

New 2.31 1.32 3.33 1.34 3.99 1.33 4.45 1.40 5.41 1.56 116.49 .000 

Size 5.19 1.23 5.43 0.93 5.17 1.21 5.08 1.27 5.05 1.72 5.35 .253 

Number 5.42 1.17 4.96 1.09 4.90 1.17 4.73 1.22 4.95 1.70 9.06 .060 

Vis.Match 4.27 1.59 4.98 1.35 4.93 1.21 4.98 1.42 4.53 1.81 8.56 .073 

Distribution 5.04 1.66 5.19 0.93 5.21 1.09 5.15 1.29 4.93 1.76 0.51 .973 

3
x1

0
1

m
 

Orig/New -0.40 0.63 0.00 0.49 0.16 0.43 0.30 0.45 0.49 0.45 77.69 .000 

Orig 3.38 1.44 4.60 1.04 4.75 0.95 5.02 0.95 5.38 0.95 57.52 .000 

New 2.73 1.46 4.23 1.32 4.83 1.12 5.29 1.07 5.86 1.15 125.02 .000 

Size 4.65 1.38 5.04 1.08 4.83 1.26 4.82 1.33 4.36 1.76 6.84 .144 

Number 5.35 1.35 5.15 0.99 5.12 1.11 4.96 1.22 4.79 1.97 3.37 .498 

Vis. Match 4.00 1.55 4.91 1.31 5.01 1.18 5.09 1.40 4.24 1.91 24.08 .000 

Distribution 4.92 1.76 5.45 1.01 5.35 1.08 5.39 1.23 4.91 1.98 3.67 .452 

4
x1

0
0m

 

Orig/New -0.44 0.57 -0.12 0.49 0.08 0.46 0.21 0.48 0.38 0.52 69.02 .000 

Orig 3.54 1.45 4.64 1.04 4.82 0.86 5.12 0.94 5.48 0.88 63.57 .000 

New 2.38 1.53 4.00 1.37 4.55 1.18 4.98 1.22 5.66 1.28 111.16 .000 

Size 4.65 1.57 4.82 1.13 4.84 1.20 4.69 1.32 4.50 1.72 1.22 .874 

Number 6.04 0.82 5.31 1.06 5.11 1.09 5.03 1.20 5.05 1.77 22.40 .000 

Vis. Match 3.73 1.59 4.72 1.30 4.82 1.32 5.04 1.35 4.31 1.85 27.06 .000 

Distribution 4.88 1.56 5.39 1.02 5.41 1.07 5.38 1.20 5.17 1.81 4.17 .383 

6
x9

7m
 

Orig/New -0.35 0.75 -0.21 0.61 -0.09 0.58 0.09 0.59 0.28 0.67 42.24 .000 

Orig 3.58 1.36 4.62 1.08 4.88 0.93 5.09 0.95 5.55 0.99 61.36 .000 

New 2.38 1.70 3.74 1.45 4.18 1.37 4.68 1.37 5.34 1.40 91.55 .000 

Size 5.15 1.16 5.02 1.13 4.71 1.34 4.76 1.31 4.50 1.71 6.16 .188 

Number 6.04 1.00 5.53 1.01 5.23 1.25 5.03 1.33 5.00 1.88 22.64 .000 

Vis. Match 4.38 1.58 4.77 1.30 4.85 1.25 4.95 1.35 4.41 1.82 8.73 .068 

Distribution 5.27 1.48 5.42 0.95 5.37 1.16 5.36 1.22 5.03 1.74 0.94 .919 
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5.3.7 Order of Preference for Extension Options 

A non-parametric Friedman rank test showed significant differences in the ranks for the layout 

option for the simulations (2 = 227.05, p < .001), as well as for the photomontages (2 = 195.02, p < 

.001). Table 5.3 below shows the mean rank scores for the different layout options for the 

simulation and photomontage groups. Participants in the simulation and photomontage groups 

agreed for the most part on the order of the layouts, with both groups picking the 3x101m option as 

their favourite and the 1x195m option as their least favourite. Both groups also agreed that the 

2x165m and 6x97m options were their second and third least favourite respectively. However, the 

groups differed on their choices for 2nd and 3rd favourite option. The simulation group chose no 

extension for their 2nd favourite option and 4x100m extension as their third favourite, with the 

photomontage group choosing the reverse.  

 

Table 5.7: Ranks of Layout Options for the Visualisation Groups 

 Friedman Test Mean Rank (Rank) 

Extension Option Simulation Photomontage 

1x195m 4.37 (6) 4.54 (6) 
2x165m 4.02 (5) 3.96 (5) 
No Extension 3.14 (2) 3.22 (3) 
3x101m 2.46 (1) 2.78 (1) 
4x100m 3.20 (3) 2.98 (2) 
6x97 3.81 (4) 3.52 (4) 

 

5.3.8 Realism of Visualisations  

After completing the layout ranking task, participants were asked to rate the visualisations used in 

the survey in four ways: the extent to which 1) They presented a realistic depiction of wind turbine 

in the landscape, 2) They accurately reflected the proposed extensions, 3) They provided sufficient 

information to form an opinion about the proposed extensions, and 4) They realistically portray the 

general landscape. A series of t-tests were carried out to see if there were any significant differences 

between the simulation and photomontage groups on these four questions (see table 5.4 below for 
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the results). On both measures of realism, the photomontages were judged to be significantly better 

than the simulations, though there was no significant differences in terms of accuracy of sufficiency 

of information. Further, no significant differences were found in any of the rating metrics across 

turbine preference group (see table 5.5 below). 

 

Table 5.8: Participant Ratings of Realism of Visualisations 

 Simulation Photomontage  

 Mean SD Mean SD t-test 

Realistic Turbines 3.82 .837 4.02 .730 -3.151* 
Accurate 3.82 .766 3.85 .801 -.501 
Sufficient Info. 3.67 1.00 3.71 .967 -.591 
Realistic Landscape 3.60 .940 3.97 .715 -5.615** 

*p< .05, **p < .01, N =642      
 

 

Table 5.9: Participants Ratings of Realism of Visualisations by Visual Preference 

  

Preference 
Group 

Strongly 
Disagree  
(N = 26) 

Disagree  
(N =121) 

Neither Agree 
nor Disagree 

(N =179) 
Agree  

(N = 258) 

Strongly 
Agree  

(N = 58) 
Kruskal 

Wallis Test 

 Mean SD Mean SD Mean SD Mean SD Mean SD  Sig. 

Realistic 
Turbines 

3.58 1.10 3.88 0.83 3.91 0.78 3.97 0.70 3.97 0.95 4.17 .383 

Accurate 3.62 1.02 3.87 0.81 3.77 0.81 3.88 0.70 3.88 0.88 3.93 .416 

Sufficient 
Info. 

3.35 1.29 3.60 1.04 3.70 0.93 3.77 0.91 3.64 1.15 3.69 .449 

Realistic 
Landscape 

3.35 1.26 3.82 0.85 3.76 0.85 3.85 0.78 3.76 0.94 3.94 .414 
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5.4 Discussion  

This study sought to provide greater insight into the factors that affect the landscape and visual 

impact of wind farm extensions, and to examine whether the visualisation medium affected 

participants’ preferences. The aims were to examine to what extent the size, number, visual match, 

and distribution of the turbines affected participants’ ratings of the different extension options, 

whether responses differed between the simulation and photomontage groups, and whether 

responses differed by participants’ visual preference for wind turbines in the landscape. 

Layout Preferences and Wind Turbine Characteristics 

The findings from this study show that participants rated the original wind farm more highly than the 

proposed extension in three of the five layout options, the two options with large turbines (1x195m 

& 2x165m) and the option with six smaller turbines (6x97m). The two options which were 

considered preferable to the original were the extensions of 3x101m and 4x100m turbines, with the 

3x101m the most preferred of the two. These preferences were further supported in the ranking 

task where the best ranked option was the 3x101m in both the simulation and the photomontage 

groups, while the second and third ranked option were the ‘no extension’ option and the 4x100m. 

Previous research into the physical characteristics that affect the visual impact of wind turbines has 

shown that the number of turbines is an important factor (Jones et al., 2011; Sustainable Energy 

Ireland, 2003; Torres Sibille et al., 2009). The research consistently shows that fewer turbines are 

considered preferable in terms of the minimising the visual impact, though there is some evidence 

that the visual impact plateaus after six turbines (Ladenburg & Dahlgaard, 2012). The findings from 

the current study support the idea that the number of turbines is an important consideration, 

though the options were fewer turbine rated lowest. This is likely due to the interaction of another 

turbine characteristic, namely the size. 

The effect of size or height of wind turbines on visual impact has been examined in several studies 

with mixed results. Some researchers have suggested that the size of wind turbines does not affect 
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people’s preferences for wind farm layouts or the social acceptance of a wind farm (Erp, 1997; 

Meyerhoff et al., 2010). However, other researchers have found that the size of wind turbines is  

important in terms of the negative visual impact of a wind farm (Kokologos et al., 2014; Tsoutsos et 

al., 2009). Tsoutos et al. (2009) found that participants rated a single turbine with a hub height of 

120m as having a greater negative visual impact on the landscape than 11 turbines with hub heights 

of 45m. The findings from the current study support a similar pattern, as participants considered the 

1x195m and 2x165m options as having a greater negative impacts than the 6x97m option. It is clear 

that the size and number of the turbines interact with regards to visual impact. In the case of the 

Hazlehead wind farm scenario, this interaction is particularly important as the extension options are 

being add to an existing wind farm with three 101m wind turbines. In this instance, the existing 

turbines, as well as the size and number of the new turbines interact. This interaction is likely seen in 

the responses ‘visual match’ characteristic. The results show that this is rated fairly consistently 

across the extension options and is likely representative of the interplay of the existing turbines with 

the size and number of the new turbines. Similarly, the importance of the distribution of the wind 

turbines is also across the wind farm extension options. 

Visualisation Method 

The participants rated the photomontages as more realistic than the computer simulations. This was 

true on both measures of realism, i.e. how realistic the wind turbines were, and how realistic the 

general landscape was. These findings are consistent with previous research, which has generally 

found that participants consider photomontages preferable to other methods, e.g. wire frame, or 

computer simulation (Berry et al., 2011; Bishop & Rohrmann, 2003; Oh, 1994; Rohrmann et al., 

2000; Rohrmann & Bishop, 2002). Although photomontages were rated significantly better in terms 

of realism, there were not considered any different to the simulations in terms of the accuracy and 

sufficiency of information to make a decision. This would suggest that, in practical terms, the 
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simulations are as good as the photomontages for any decision-making exercise, as is supported by 

the findings from the wind farm scenario. 

There appears to very little impact of the visualisation method on the participant ratings of the 

layouts, or on the importance of the turbine characteristics in determining visual impact. There were 

no significant differences between the simulation and photomontage groups in the ratings of the 

original wind farm and the new layout options, nor in the ratings of the importance of size, number, 

visual match, and turbine distribution. This would seem to suggest that the visualisation medium 

does not affect the preferences of people with regards to wind farm developments. However, there 

was a difference in the order of preference task, with the simulation group rating the ‘no extension’ 

option higher than the photomontage group. This would support the contention of many 

researchers that computer visualisations could and should be used to model landscapes for 

interactive design and planning (Appleton & Lovett, 2003; Lange, 1994, 2011; Orland et al., 2001; 

Schroth et al., 2011).  

Wind Turbine Visual Preference 

Given the differences in skin conductance response between the different turbine preference groups 

in studies one and two, it seemed important to assess whether these different groups would 

respond differently to the questions in this study. While participants consistently rated the 

photomontages as more realistic, there appears to be no difference between the turbine preference 

groups for any of the four measures of realism and accuracy. There was however a significant effect 

of wind turbine preference group on most of the questions about the extension options. The 

participants who were more positive about the visual aesthetics of wind turbines consistently rated 

the original and the new layouts as more attractive than those who think wind turbines are ugly. 

Their visual preference grouping also affected participants’ ratings of the importance of size, 

number, and visual matching on the visual impact of wind turbines. These findings are consistent 

with previous research which has found that people’s attitudes to wind turbines has a significant 
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effect on their ratings of the visual impacts of wind farms (Johansson & Laike, 2007; Molnarova et 

al., 2012). 

Implications 

While participants rated the photomontages as more realistic than the computer simulations, they 

rated both types of visualisations similarly in terms of accuracy and sufficiency of information. The 

results from the questions in the wind farm scenario were also reflected this, with preferences being 

almost identical. These findings are of practical significance for community engagement and would 

be of interest to planners or developers who were consulting a community about a proposed wind 

farm development. If people make the same decisions based on photomontages and computer 

simulations, then using computer simulations for engagement or decision making about 

developments could be useful (Bishop & Lange, 2005; Danese, Casas, & Murgante, 2008; Lange, 

1994; Sheppard & Cizek, 2009).  

The results also provide insight into the visual impacts of wind farm extensions, and the factors that 

are important in contributing to this visual impact. While wind farm extensions have been 

mentioned in the literature (e.g. Entec, 2008; RenewableUK, 2014; Scottish Natural Heritage, 2006), 

there is little academic research into the factors that affect the landscape and visual impacts of these 

extensions. While this study only used a single wind farm scenario with several layout options, it has 

provided insight into the importance of factors, such as size, number, visual match, and turbine 

distribution, in contributing to the landscape and visual impacts of wind farm extensions. This could 

help to provide insight and guidance to developers about what type of wind farm extension would 

cause the smallest visual impact on the landscape, and could be incorporated into guidance 

documents in visual impacts assessment of wind farms (e.g. Scottish Natural Heritage, 2006, 2012). 

The findings also show that the wind turbine preference grouping is important. As previous research 

has shown, people’s general attitudes to wind farms has a significant impact on their ratings of wind 

turbine developments (Johansson & Laike, 2007; Ladenburg & Krause, 2011; Molnarova et al., 2012). 
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It could also be of practical importance in a consultation process to see whether people objecting to 

a wind farm proposal come predominantly from ‘anti-turbine’ groups, or if ‘pro-turbine’ groups are 

also objecting. This may help to distinguish between those who would be against any wind farm 

development layout, and those who are objecting to something specific about the wind farm 

development. 

Limitations & directions for future research 

There were several methodological limitations of this research that could be addressed in future 

studies. It may have been helpful to include static versions of the photomontages and computer 

simulations to assess what effect the dynamism has on people’s preferences, as well as ratings of 

the visualisations. Berry et al. (2011) showed that there may be differences between dynamic and 

static computer simulations, and it would have been useful to assess this in the current study.  

As the study was an online survey, there is likely to be inconsistency in the type and size of computer 

screens used. While this might not be much of an issue for a text-based survey, it is likely to be 

important in the current study where participants are viewing images and making decisions based 

on their perceptions of those images. In an effort to minimise the impact of screen inconsistency, 

images were displayed at a consistent size (1060 x 596 pixels), and participants were unable to 

complete the survey on a mobile device, such as a phone or tablet. While the online survey was used 

as it allowed for a larger sample, future research could try to control for this potential inconsistency. 

Another methodological weakness is that the amount of time participants spent viewing was not 

monitored. As such, it is not possible to know the extent to which the participants engaged with the 

visualisations during the experiment. 

While the first two studies provided objective measures of people’s responses to wind turbines in 

the landscape but was unable to provide insight into why people responded as they did, the current 

study provided the opposite. Given cost and time constraints, it wasn’t possible to carry out a study 

that combined both, it would be interesting to compare the objective physiological responses with 
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people’s preferences for different layouts. This would allow a research to examine the relationship 

between the affective responses and the choices people make with regards to wind farm 

developments. 

As with the previous two studies, this research is skewed towards western, educated, industrialised, 

and rich (WEIRD) participants. However, the gender ratio was better balanced than the first two 

studies and the participants were older on average, and weren’t exclusively university students. It 

would be interesting to see if the findings would be the same from a sample that is more 

representative of the general population. Another sample-related issue is the fact that the 

participants were not from the area and had no place attachment. Place attachment has been 

shown to be an important factor in people’s opposition to wind farm developments (Devine-Wright, 

2005a, 2009). It is possible that participants with place attachment might respond differently to the 

survey, e.g. people with place attachment may have a more negative response to any wind farm 

development in their local area. It is hypothesised that those with place attachment have their 

place-related identity processes threatened by new developments. These new developments could 

potentially disrupt emotional attachments and so opposition by people with place attachment can 

be conceived as an act of place protection. Given the lack of place attachment in the study sample, 

the results may not be reflective of responses to a real-world wind farm development. Further, 

research has shown a ‘social gap’ between people’s general attitudes to wind farms and their 

attitudes to wind farms in their local community (Bell, Gray, & Haggett, 2005; Bell, Gray, Haggett, & 

Swaffield, 2013). This also highlights the importance of studying this issue with a real-world 

community and the real threat of a local wind farm development. 

As was discussed in the previous chapter, virtual reality (VR) and augmented reality (AR) could also 

be used in future research in this area. Ideally, it would be possible to combine VR headsets with 

eye-tracking (e.g. Stengel, Grogorick, Eisemann, Eisemann, & Magnor, 2015), as well as using skin 

conductance response (SCR) and surveys. This would provide a methodological platform that could 
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be used to carry out research into many different aspects of wind farms and their landscape and 

visual impacts. Further, given the investment and development happing in VR technology (Webster 

& Clark, 2015), the cost and availability of the technology will no longer be obstacles to its use by 

developer, communities, or researchers. 

Conclusion 

This study used a wind farm extension scenario to assess three key issues: the extent to which the 

characteristics of wind turbines affect the visual impact of wind farm extensions; whether the 

visualisation medium (simulation or photomontage) affects layout preferences; and how people rate 

the visualisation media in terms of realism, and accuracy. While participants rated photomontages 

as more realistic, they showed no difference in ratings of accuracy or information sufficiency, nor did 

the presentation medium significantly affect their preferences for the layouts. In both cases, 

participants preferred the extension option that matched with the existing wind turbine in terms of 

size and numbers. These findings could be of interested to planners and developers, as well as being 

useful for documents which provide guidelines on landscape and visual impact assessment. Lastly, 

the findings suggests that, in a practical sense, computer simulations are no different to 

photomontages, and are as valid to use in a research or community engagement setting.  
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6 General Discussion 

6.1 Justification for Research and Aims of Thesis 

With growing concerns about climate change and the threat of its effects to the human population, 

there has been an increased focus from world governments on decarbonising the energy system to 

reduce global CO2 emissions. Given the relative maturity of wind as a renewable energy source and 

its low cost relative to other sources, wind energy has expanded greatly in the recent years. 

Electricity generation is the UK’s largest single contributor to greenhouse gas (GHG) emissions, and 

the UK government has committed to building 14GW of onshore wind energy by 2020 in order to 

help reduce carbon emissions from this sector (Department of Energy & Climate Change, 2012). 

Since 2000, there has been more than a tenfold increase in the installed capacity of wind energy in 

the UK, and there would need to be a further doubling of capacity to meet the 2020 targets 

(Renewable UK, 2015). The increased levels of wind energy development has led to issues around 

social acceptability and the landscape and visual impacts of wind turbines. In the UK, the percentage 

of wind farm development applications which have been refused has increased steadily since 2010 

(RenewableUK, 2014). 

There has been a great deal of research into the factors that affect the social acceptance of wind 

energy developments. One approach researchers have taken in trying to understand the opposition 

to wind farms has focussed on community-level factors. Within this approach, some researchers 

have focused on place attachment and identity and believe that opposition to wind farm 

developments can be conceived of as a protective action to prevent change (Devine-Wright, 2009, 

2011). Others have suggested that planning and procedural processes are key to understanding local 

opposition, with open and collaborative approaches to planning preferable to existing top-down 

decision making (Ellis et al., 2009; Wolsink, 2007b). Another approach researcher have taken it to try 

to assess the characteristics of wind turbines and the attitudes of respondents that contribute to 

landscape and visual impact of wind turbines. This literature has investigated whether 
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sociodemographic variables, such as age, gender, and income have an effect on people’s attitudes to 

wind farms, with mixed results (Álvarez-Farizo & Hanley, 2002; Ek, 2005; Meyerhoff et al., 2010). 

This research has also shown that physical characteristics such as the height, number and distance 

affect the impacts of wind turbines (Bishop, 2002; Jones et al., 2011; Lothian, 2008; Meyerhoff et al., 

2010; Molnarova et al., 2012; Torres Sibille et al., 2009; Tsoutsos et al., 2009).  

While there is a considerable body of research that has looked at factors that affect the landscape 

and visual impact of wind turbines, few have looked at the cumulative effects (Jones et al., 2014). 

While the cumulative landscape and visual impact (CLVI) of wind turbines is noted in guidelines 

around landscape and visual impact assessment of wind turbines (Entec, 2008; Landscape Design 

Associates, 2000; Sullivan & Meyer, 2014), it has received very little attention from academic 

researchers. With the continued growth of onshore wind developments, the factors that contribute 

to these cumulative impacts need to be better understood. This thesis sought to better understand 

some of the factors that contribute to CLVI and to take some small steps towards filling this gap in 

the research.  

The second focus of this thesis was on methods used to visualise wind turbines, and the methods 

used to assess people’s responses to wind turbines. Several different visualisation methods have 

been used to represent wind turbines in practice and in academic research, such as wireframe, 

photomontage, and computer simulation (Oh, 1994; Rohrmann et al., 2000). There has been some 

research comparing these different methods, though these studies have used subjective measures 

such as surveys or interviews (e.g. Berry, Higgs, Fry, & Langford, 2011; Rohrmann & Bishop, 2002; 

Sevenant & Antrop, 2011). In order to try to objectively assess people’s responses to photorealistic 

and computer-simulated landscapes, psychophysiological measures, i.e. eye-tracking and skin 

conductance response (SCR), were used. These measures allowed for a novel approach to assessing 

different landscape visualisation methods and provided new insights into people’s responses to the 

different visualisation methods. 
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6.2 Findings and Implications 

Psychophysiological responses to photorealistic and computer-simulated landscapes 

Studies 1 and 2 showed that participants’ visual attention patterns were similar for videos of a real 

landscape with wind turbines and videos of a computer simulation of the same landscape. In both 

studies, the pattern of fixation duration on three different wind farms was similar. This suggested 

that the relative visual impact of the different wind turbines was consistent across the photorealistic 

and computer-simulated landscape. The eye-tracking data provided support for those who suggest 

that computer simulations could be a useful tool for research, as well as interactive design and 

planning (Danese et al., 2008; Honjo et al., 2011; Lange, 1994, 2011; Schroth et al., 2011).  

The findings from SCR data however showed that participants’ affective responses differed between 

the photorealistic and computer simulated landscape. When looking at the turbine preference 

grouping, there was a u-shaped pattern that approached significance, suggesting that those who 

were in the ‘strongly pro’ or ‘strongly anti’ turbine groups reacted more than those in the neutral 

group. The SCR data from study 2 showed that there was a non-significant n-shaped pattern across 

those groups when they were presented with the video of the computer simulation. In this case, 

those who were in the ‘strongly anti’ or ‘strongly pro’ groups had a reduced affective response when 

compared with the neutral group, though the difference was not significant. As discussed previously 

in section 2.3.1, no inferences have been made as to the valence of these affective responses. While 

it is possible to state that those who were in the ‘strongly pro’ or ‘strongly anti’ groups had greater 

affective responses, it is not possible to deduce whether those response were positive or negative. 

The findings from study 1 were explained in terms of the biophilia hypothesis or the ‘Green on 

Green’ concept. ‘Green on Green’ is used to describe and situation in which people on both sides of 

an argument can be described as pro-environmental. Attitudes to wind energy can be explained by 

this concept (Warren et al., 2005). Those who oppose wind farms tend to do so because of the 

effects on the landscape, while those who support wind farms tend to so because they view wind 
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energy as clean and renewable. The biophilia hypothesis could also explain the findings. The 

hypothesis suggests that people tend to have an affection and preference for life and life-like 

processes (Joye & de Block, 2011; Kellert & Wilson, 1993). This would explain why participants 

responded to the videos when the turbines were present and also when they were absent. 

Participants could be seen to be responding to the landscape as a whole, with increased or 

decreased response with the presence of the wind turbines depending on their preference grouping. 

Those in the ‘strongly pro’ and ‘strongly anti’ groups could be considered to have greater biophilic 

tendencies. 

The SCR findings from study 2 were explained in terms of the biophilia hypothesis and the uncanny 

valley. If we assume that those in the ‘strongly pro’ and ‘strongly anti’ groups were more biophilic, 

then we might expect them to have a stronger affective response to the landscape than the neutral 

group. However, the results were the reverse of what might have been expected. The uncanny valley 

provides a potential explanation for this seemingly strange result. Within the field of robotics, the 

‘uncanny valley’ is a term used to describe when a humanlike robot approaches but hasn’t reached 

100% likeness (Mori, MacDorman, & Kageki, 2012). Mori suggested that people’s affinity for 

humanlike robots would increase as the human likeness increased, but that there would be a dip 

when the likeness was close to but not quite perfect. He also suggested that movement would 

magnify this effect. The uncanny valley has been found in computer games, animated characters in 

films, as well as 3D robots (Ho & MacDorman, 2010; Mitchell et al., 2011; Tinwell et al., 2011). If 

those in the ‘strongly pro’ and ‘strongly anti’ groups were more biophilic and had a greater 

emotional attachment to the landscape, the moving computer simulation in study 2 could have 

resulted in this uncanny valley effect and led to the SCR data showing an almost reversed pattern to 

study 1. 
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Subjective Responses to photorealistic and computer-simulated landscapes 

The results from study 1 and study 2 created some interesting questions. The eye-tracking data 

suggested that participants were reacting in a similar fashion to the photorealistic and computer 

simulated landscapes, but the SCR data suggested that there was a difference in responses. How 

would people subjectively rate photorealistic and computer simulated wind-turbine landscapes? And 

would people’s visual preferences be affected by whether the visualisation was a photomontage or a 

computer simulation? Study 3 set out to answer these questions.  

The results from study 3 showed that participants considered the animated photomontages to have 

a significantly higher level of realism than the animated computer simulation. These findings were 

similar to previous research which suggested that photomontages were considered to be the most 

realistic of the traditional visualisation methods (Berry et al., 2011; Oh, 1994). However, on ratings 

of accuracy and sufficiency of information to make a decision, the participants believed that there 

was no significant difference between the two visualisation methods. This would suggest that while 

computer simulations are not considered as realistic as photomontages, they do provide a similar 

level of information and should result in similar responses to photomontages. This turned out to be 

the case as the visualisation method appears to have had little to no effect on participant responses. 

The visualisation method had no significant impact on participants’ ratings of the original or new 

layouts, nor did it affect participants’ ratings of the importance of the different turbine 

characteristics (size, number, visual match, distribution). These findings further support the for  

using computer simulations for design and planning (Appleton & Lovett, 2003; Orland et al., 2001; 

Schroth et al., 2011). 

There was a slight difference in the layout preference order between the photomontage and the 

computer simulation group, with regards to the ‘no extension’ option. If the ‘no extension’ option 

were removed from the list, then the order of preference would have been the same for the 

photomontage and the simulation groups. How important this difference would be in a real-life 
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setting is hard to assess. If a community were being asked to judge several different wind farm 

layout options, then it would likely be unimportant. It is also possible that this finding is an anomaly 

and would not be repeated if the study were run again. This is something that requires further 

research. 

Factors affecting CLVI of wind turbines 

The eye-tracking data from studies 1 and 2 showed that participants spent significantly longer 

looking at Royd Moor wind farm than Hazlehead or Blackstone Edge. This would suggest that more 

numerous smaller turbines attract more visual attention that fewer larger turbines. Previous 

research has suggested that both size and number of turbines affect the visual impact of wind 

turbines and the eye-tracking data would appear to support this (Bishop, 2002; Jones et al., 2011; 

Molnarova et al., 2012). In study two, a small but significant difference in visual attention was found 

between Blackstone Edge and Hazlehead, with fixation duration being significantly lower for 

Blackstone Edge. Blackstone Edge had non-moving turbines, which suggests that perhaps static 

turbines draw less attention than moving turbines. Bishop (2002) has noted how movement makes 

wind turbines appear larger and the movement of turbine blades is often cited as a key issue with 

regards to the visual impact of wind turbines (Pedersen et al., 2007; Piper, 2004). This finding should 

be interpreted with caution as it was not found in study 1 and may be an effect of the computer 

simulation.  

The findings from study 3 gave greater insight into the factors that affect the CLVI of wind turbines. 

The results showed that all four of the turbine characteristics (size, number, visual match, and 

distribution) were considered important factors in participants’ ratings of the visual impacts of the 

proposed extensions. The relative importance of size and number varied depending on the extension 

option. Perhaps unsurprisingly, size was considered a more important factor in the rating of the 

extension options with the larger turbines, and number was considered more important for the 
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extension options with more turbines. Visual match and turbine distribution were consistently rated 

as important across the layout options, with no real differences.  

Participants rated the single large turbine extension the lowest, followed by the extension option 

with two large turbines. The highest rated options were the three medium turbines, followed by the 

four medium turbines options. The extension with six small turbines was rated better than the large 

turbine options but lower than the medium turbine options. These findings fit with the eye-tracking 

data from studies 1 and 2. The six smaller turbines are considered to have more of a visual impact 

than the three medium size turbines. There were no large turbines in study 1 and 2 so it is unclear 

whether large turbines would attract the greatest level of visual attention. Given that visual match 

and turbine distribution were consistently rated as important, it may be that these were the most 

important factors in the decision-making process. The highest rated option visually fit the best with 

the existing wind farm, and the visual fit is progressively worse the lower the extension rating.  

The analysis of the visual preference grouping showed those who were more pro turbines 

consistently rated the existing turbines and the extensions higher than those in the anti-turbine 

groups. The grouping also affected participants’ ratings of the important of three of the turbine 

characteristics, namely size, number and visual match. This is in line with previous research which 

has shown that existing attitudes towards wind turbines affect people’s responses to wind farms 

(Johansson & Laike, 2007; Molnarova et al., 2012). 

Summary of Findings 

Overall the research suggests that there are clear differences between videos/photomontages and 

computer simulations. Studies 1 and 2 showed that the affective responses were different, while 

study 3 showed that the participants rated the photomontages as more realistic. However, the 

presentation medium didn’t affect people’s preferences. Studies 1 and 2 showed that participants’ 

visual attention pattern was similar for the photorealistic landscape and the computer simulation. 

Study 3 supported these findings with participants answering similarly for the photomontages and 
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the computer simulations. The first two studies also showed that participants looked longer at Royd 

Moor than Hazlehead or Blackstone Edge. Further, the results from study 3 showed that participants 

preferred the 3x101 option to the 6x97, which could support study 1 and 2, if we assume that the 

greater length of time looking at Royd Moor was due to the greater negative visual impacts of the 

smaller turbines. Study 3 also showed that very large turbines were considered to have the most 

negative visual impact. These findings would suggest that very large turbines or very numerous 

turbines are not desirable. In the case of wind farm extensions, it is possible that visual match with 

the existing wind farm is the most important factor in terms of the cumulative landscape and visual 

impact. 

6.3 Limitations of the research 

Objective and Subjective Data 

Studies 1 and 2 provided an objective psychophysiological assessment of people’s responses to 

videos of photorealistic and computer simulated landscapes. While this approach was novel and 

provided interesting data, it did not provide much insight into the factors that affected people’s 

responses. So while it was possible to say that people spent longer looking at Royd Moor wind farm, 

there was no data on why this was the case. It is possible to infer from the results of study 3 that the 

smaller more numerous turbines had a greater visual impact than the three medium sized turbines 

of Hazlehead and Blackstone Edge, but it would have been better to ask participants these questions 

in study 1 and 2. Similarly, the reason for the differences in SCR across turbine preference groups, 

and between photorealistic and computer simulated landscapes was also inferred. It would have 

been useful to have included a survey on people’s subjective assessment of the videos. 

Study 3 tried to remedy some of these limitations by asking people directly about the visualisations. 

The survey attempted to gain insight into the factors that affect the CLVI of different extension 

options and to assess the different visualisation methods. However, unlike the first two studies, 

there was no objective measure of participant responses. This was not possible as study 3 involved 
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an online survey, partly to ensure a larger sample size than the first two studies. While study 3 

collected data from a much larger sample, it did not have any form of objective measure of 

response. Although it would be more costly and time-consuming, a future study could combine the 

objective and subjective measures. This would provide an interesting comparison between people’s 

objective responses and their subjective assessment. 

Sample Issues 

Perhaps the most important limitation of the three studies is with regards to the sample. The studies 

contained predominantly young, western, educated participants, most of whom were Sheffield 

University students or staff. Although the WEIRD issue is common in psychology research (Henrich et 

al., 2010), there is a more important issue with the samples used. The samples were not composed 

of people facing the prospect of a real wind farm development in their community. Devine-Wright’s 

research has highlighted the role of place attachment and its importance in opposition to wind farm 

developments (Devine-Wright, 2005a, 2009). Wolsink and others have looked at issues of procedural 

and distributive justice in wind farm opposition, and have argued for the importance of participatory 

planning (Ellis et al., 2009; Wolsink, 2000, 2007a, 2007b). Researchers have also highlighted the 

‘social gap’ in support for wind energy, with people showing a high level of support for wind energy 

in general, but a low level of support for wind energy in their community (Batel & Devine-Wright, 

2014; Bell et al., 2005, 2013).  

The participants in the three studies were not asked about their local community, so the issue of 

place attachment didn’t affect their responses. As it was not a real wind farm development scenario, 

there were no issues of procedural or distributive justice as there was no real planning process. 

Finally, the social gap shows that there is a big difference in support for wind development nationally 

when compared with locally. Given that the participants were not local to the Stocksbridge area, it is 

possible that their responses are more reflective of their attitudes to wind farm development in 

general. If this is the case, then it is impossible to know if the findings form the three studies would 
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be replicated with a community facing the real prospect of a wind farm development. Further, as 

study 3 was a purely hypothetical scenario, the results may not even be reflective of the participants’ 

general attitudes to real wind farm development. 

6.4 Future Research 

Addressing Limitations 

As mentioned previously, future research could combine elements from the three studies to 

compare objective and subjective responses. This would combine the strengths of the three studies 

and would eliminate one of the main limitations. Another limitation that could be addressed in 

future is carrying out similar research with a community that is facing a wind farm proposal, perhaps 

in conjunction with a wind farm developer. While it may be difficult to get a developer to agree to 

such a research proposal, the information gather from such a study would be of interest to a number 

of different audiences, including: planners, developers, and academics. 

Another limitation that could be address in future research is the limited number of layout options 

that were assessed. The wind farm scenario in study three only looked at five different layout option 

to one existing wind farm. A greater variety of extension scenarios could be created to give greater 

insight into the factors that affect the CLVI of wind turbines. Moreover, completely different 

scenarios could be created, such as the repowering of an existing wind farm (Colmenar-Santos et al., 

2015; Del Río et al., 2011). Various scenarios could be created to assess the impact of different 

factors in different situations. 

Interactive Online Studies 

For online studies, it would be interesting to use images that change dynamically, i.e. hovering over 

the image, clicking a button, or dragging a slider would change the turbine layout. These were 

explored as possible ideas for study 3 but proved too difficult to achieve within the timeframe of the 

thesis. These methods could provide for interesting research designs, e.g. an image could be 
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presented with no turbines and the participants would drag the slider, which would keep adding 

turbines, until they reached a maximum acceptable number. Conversely, an image could be 

presented with 50 wind turbines, and the participant could drag a slider to reduce the number until 

they reach an acceptable number. With more elaborate development, an interactive scenario could 

be created where participants were asked to create a wind farm of a certain power (e.g. 15MW). 

They could be presented with an interactive landscape, where they could decide the number and 

size of turbines and where to place them, as long the final wind farm reached the required power 

output. This type of scenario could provide insights into the trade-offs between these characteristics 

in terms of visual impact. 

Virtual and Augmented Reality 

As discussed in chapter 4, virtual reality (VR) and augmented reality (AR) offer interesting 

possibilities for future research. Given the active development of VR by large technology companies, 

such as Apple, Facebook, Google, Microsoft, and Samsung, it offers the possibility of an affordable 

and immersive technology for research and engagement(Webster & Clark, 2015). VR could be used 

to created 360° immersive simulations for research or for wind farm proposal. It would be possible 

for a developer or researcher to create a 3D environment with a wind farm development that could 

be viewed by anyone with a basic VR headset. In reality this would mean anyone with a smartphone 

and a cheap VR kit, which can be bought for as little as £20. VR could also be combined with eye-

tracking to assess where people are looking in the simulation. AR provides better levels of realism, as 

it uses the existing landscape and superimposes accurate 3D. VentusAR is software that can be used 

on tablets to view proposed wind farms on site. AR can be combined with a VR headset to give the 

realism of traditional AR with the immersion of VR. This can be done using a head mounted kit for a 

smartphone, using the phone’s camera to show the real world with the AR models superimposed on 

the screen (Hasan & Yu, 2015). 
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6.5 Conclusion 

This thesis set out to improve understanding around the factors that affect the CLVI of wind 

turbines, and to compare photorealistic and computer-generated visualisation methods. 

Furthermore, it sought to employ novel methods, such as psychophysiological measures (SCR & eye-

tracking), as well as more realistic representations of wind turbines, such as videos and animated 

visualisations. While there are some limitations of the research, in particular the samples used, the 

studies created some interesting data with findings that should be of interest to planners, 

developers, and academics. 

SCR and eye-tracking can provide useful insights into people’s responses to wind turbines in the 

landscape, as well to differences between photorealistic and computer simulated landscapes. These 

methods could be used to study other aspects of landscape visualisation other than wind farms. 

People’s visual patterns are similar but their affective responses are different when viewing videos 

of photorealistic and computer simulated landscapes. While photomontages were rated as more 

realistic than computer simulations, this appeared to have no effect on participants’ preferences. 

People’s preferences for layout options similar irrespective of visualisation type, though turbine 

visual preference groups do differs somewhat. With regards to wind farm extensions, similar sized 

turbines are considered preferable to large turbines or small turbines that do not match with 

existing turbines, with large turbines considered the worst option. 

The new knowledge about psychophysiological methods, visualisation types, and factors affecting 

turbine layout preferences should be of interest to researchers, planners, developers, or people 

involved in creating guidelines for visualisation or landscape and visual impact assessment. Future 

research should focus on populations who are affected by real wind farm proposals, as well as 

investigating the use of emerging tech such as VR and AR for research and consultation purposes. 
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