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ABSTRACT 

This thesis reports different types of oxide materials due to their important role 

in the field of spintronic applications. These materials include multiferroic oxides, 

transition metal (TM)-doped oxides and d0 magnetic materials.  

The multiferroic GdMnO3 (GMO) films were found to be highly dependent on 

strain. The structural, magnetic, optical and magneto-optical properties of epitaxial 

GMO thin films grown on LSAT, (LaAlO3)0.3 (Sr2AlTaO6)0.7, (100) and (111) 

substrates were investigated. At low temperature (5 K), the magnetic data show that the 

easy direction of the film is in-plane for LSAT (100) and the presented canted moment 

is significantly smaller than that found in bulk but larger than that found for GMO on 

SrTiO3 (STO) (100). Magnetic circular dichroism (MCD) spectra were found to exhibit 

two different features: charge transfer transition between Mn d states at ~ 2 eV; and 

band edge transition from the oxygen p band to the d states at ~ 3 eV.  

 Mg-doped ZnO (ZnMgO) thin films were studied optically and magnetically 

to investigate the effect of deposition time (thickness), oxygen pressure, substrate type 

and deposition method on the band gap, Eg, and magnetisation of ZnMgO films, and 

any possible correlation between the band gap and magnetism. The magnetic properties 

were found to be more thickness dependent; the optical properties were strongly 

affected by oxygen pressure. Different types of substrates, such as glass, quartz and 

sapphire, affected the optical and magnetic properties of the ZnMgO films. The films 

deposited on sapphire were found to give the highest Eg, and enhanced magnetisation 

saturation, Ms, compared to the films deposited on glass and quartz substrates. The 

optical and magnetic measurements showed a correlation between the band gap value 

and the magnetic properties. 
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The structural, magnetic, optical and magneto-optical properties of Fe-doped 

In2O3 thin films were studied using different techniques: X-ray Diffraction (XRD); 

Energy Dispersive Spectrometer (EDS); X-ray Absorption Near Edge Structure 

(XANES); and Extended X-ray Absorption Fine Structure (EXAFS); superconducting 

Quantum Interference Device (SQUID) magnetometer; absorption spectroscopy; and 

MCD spectroscopy. 

The preparation of Fe-doped In2O3 from FeO, Fe3O4 and Fe2O3 precursors 

revealed that the properties of such material are oxygen pressure dependent and, most 

importantly, that the magnetic properties are controllable through target preparation. 

The existence of defects, such as metallic Fe clusters and FeO secondary phase, was 

discussed and it was found that such defects have a large effect on the magnetic 

properties of Fe-doped In2O3 thin films. 

Mn-doped In2O3 films were prepared for comparison with the Fe- doped In2O3 

films and found to be less sensitive to growth conditions such as oxygen pressure. This 

has been confirmed by the XANES and EXAFS data, revealing no traces of any 

secondary phases or other impurities as found in the Fe- doped In2O3 films. 
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INTRODUCTION AND THESIS 

OVERVIEW 

1.1 INTRODUCTION 

 

This thesis explores how various properties of oxide materials, such as 

structural, magnetic, optical, and magneto-optical, can be affected and controlled via 

certain parameters when using pulsed laser deposition (PLD) and sputtering techniques. 

These parameters include: substrate type, oxygen partial pressure, deposition time (thin 

film thickness), and different precursors of transition metal oxides (TMO) used to make 

Fe-doped In2O3 targets, including FeO, Fe3O4, Fe2O3 and Mn2O3. For this purpose, a 

set of different materials, such as multiferroics and dilute magnetic semiconductors 

(DMS) were studied. The materials chosen for these classes of materials were: GdMnO3 

(GMO) as an example of multiferroics; TM (Fe and Mn)-doped In2O3, as examples of 

DMS materials; and Mg-doped ZnO (ZnMgO). However, ZnMgO belongs to a specific 

class of DMS materials known as d0 magnetic materials because it does not contain any 

transition metal ions. 

The effects of different conditions in determining the magnetic properties of 

the above mentioned materials are investigated in detail below. This was achieved using 

different growth techniques and measurements. The growth techniques used to prepare 

thin films of different materials include direct current (DC) and radio frequency (RF) 

magnetron sputtering, as well as pulsed laser deposition (PLD).  

X-ray Diffraction (XRD), Focused Ion Beam (FIB), Energy Dispersive 

Spectrometer (EDS), X-ray Absorption Near Edge Structure (XANES) and Extended 
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X-ray Absorption Fine Structure (EXAFS) measurements were used to investigate 

structural properties.  

A superconducting Quantum Interference Device (SQUID) magnetometer was 

utilised for studying different magnetic properties such as hysteresis loops, zero-field-

cooled and field-cooled (ZCF/FC) measurements.  

Optical measurements of transmission and reflection were used to obtain 

absorption data and thus determine the band gap values of different materials. In 

addition, magneto-optic studies were performed to investigate the MCD spectra of 

GMO and TM-doped In2O3 samples in order to gain more information about the band 

structure and electronic states.  

Multiferroics are, in general, defined as materials that can exhibit coupling 

between ferromagnetic, ferroelectric and ferroelastic properties. This means that 

multiferroic materials can show two or three of the ferroic properties in the same phase. 

For instance, electric polarisation and a magnetic long-range order can simultaneously 

exist and, therefore, each one can affect the other [1-6].  

The correlation between the magnetism and ferroelectricity of multiferroic 

materials makes them promising candidates for multifunctional applications. Hence, 

multiferroics have attracted a great deal of scientific interest due to their extraordinary 

physical properties [6, 7].  

Studying multiferroics is, by no means, an emerging field as they were studied 

to some extent in the 1960s and 1970s; then, interest declined because of the difficulty 

in producing single-phase materials with ferromagnetic and ferroelectric ordering. 

Nonetheless, interest has been re-stimulated in the multiferroics by virtue of well-

developed deposition techniques that produce high quality thin films, making possible 

the modification of the properties of such materials through strain engineering. This 
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improvement has also raised the possibility of multiferroics as candidates for spintronic 

applications, where both the electronic spin and the electronic charge are exploited for 

processing data and information storage. Spintronic devices have several attractive 

advantages over the conventional charge-based electronics, such as smaller size, high 

data-processing speed, and lower power consumption [4, 8]. 

Multiferroic materials are very sensitive to strain. This effect can be induced 

by distorting the lattice of a multiferroic thin film when grown epitaxially on a substrate. 

This occurs due to the lattice mismatch that exists between the thin film and the 

substrate. The magnetisation of multiferroic materials has been found to be strain-

related [9-13]. Thus, the magnetisation of GMO was studied as a function of strain 

produced by growing epitaxial GMO thin films on two different substrates of LSAT, 

(LaAlO3)0.3 (Sr2AlTaO6)0.7, these are (100) and (111) [1, 2, 14, 15].   

For d0 magnetic materials, ZnMgO was studied as an example. The interest in 

studying such materials has arisen as they show ferromagnetic behaviour with a Curie 

temperature (TC) at or above room temperature [8]. From a theoretical point of view, 

increasing the band gap proportionally affects the magnetisation of the ZnMgO [16]. 

Accordingly, MgO was included as a dopant in the ZnO matrix, because of its wide 

band gap of  ~ 7.8 eV, to investigate how such doping can influence the magnetic and 

optical properties of ZnMgO thin films [17-20]. 

The effects of film thickness and oxygen pressure on the magnetisation as well 

as the band gap of ZnMgO thin films grown on silicon, glass, quartz and sapphire 

substrates were studied. The highest magnetisation was obtained for the ZnMgO with 

thinnest film thickness of ~ 55 nm grown on sapphire at low oxygen pressure [19, 20].   

TM-doped In2O3 is an example of DMS materials which is a transparent 

material with a wide band gap of ~ 3.7 eV. In such a material, a small fraction of the 
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TM magnetic ions, typically less than 10%, are incorporated in the host material, 

substituting its cations. TM materials have partially filled d states which, in turn, 

enhance the magnetic properties of the host oxide material [21-24].  

The study of (TM)-doped In2O3 was undertaken for two different purposes. 

The first was to find out how it is possible to control the magnetic properties via the 

preparation of the target used for the growth of thin films. For this purpose, three 

different precursors of FeO, Fe3O4 and Fe2O3 were used for doping In2O3 with 5% of 

Fe [23-25]. The second purpose was to examine the sensitivity of doping In2O3 with 

different TM dopants. Thus, the In2O3 was doped with Mn because Fe-doped In2O3 

films showed a considerable fraction of Fe metallic clusters which obviously affects the 

magnetisation when deposited under a base pressure of 5×10-5 Torr.  

On the other hand, Mn was found to give less disordered structures where all 

Mn ions are substitutional to In ions in the In2O3 matrix; meaning that the Mn-doped 

In2O3 films exclude any formation of Mn defects. This is evidence that In2O3 is more 

sensitive to Fe-doping than when doped with Mn under the same growth conditions 

[25, 26].  

1.2 THESIS OVERVIEW 

This thesis consists of seven chapters: Chapter One provides a general 

introduction to the thesis and its structure. Brief definitions and information about the 

materials studied are also given. This chapter also mentions the deposition methods of 

sputtering and PLD that were used to grow GMO, ZnMgO, and TM-doped In2O3 thin 

films.  

In addition, the investigation of structural, magnetic, optical, and magneto-

optical properties of the materials studied using the experimental techniques of XRD, 
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FIB, EDS XANES, EXAFS, SQUID, optical spectroscopy, and magneto-optic 

spectroscopy are also mentioned. Manipulation of a number of growth conditions, such 

as substrate type, film thickness, oxygen pressure, TM precursor and their effects on 

the properties of the materials of interest are introduced. 

Thus, this chapter should give the reader an idea about the area of research, 

why these materials were chosen, and the possibility of any future applications.  

Chapter Two introduces the background to magnetism required to understand 

the work and the results obtained. Each part of these fundamentals is explained to give 

a fairly complete picture of the behaviour of magnetic materials. 

The first part will introduce the idea of electron movement around the nucleus 

(the orbital motion) and its spin. A number of properties will then be mentioned, such 

as the orbital and spin magnetic moment, orbital and spin angular momenta, quantum 

numbers and the g-factor. Then, the Pauli exclusion principle and Hund’s rules are 

presented and discussed.  

Different magnetic materials, including diamagnetic, paramagnetic, 

ferromagnetic, antiferromagnetic and ferrimagnetic, are defined and explained. The 

related magnetic properties and the role they play in classifying these materials are also 

introduced. These properties include magnetic susceptibility, the Curie temperature and 

the Néel temperature (TN). 

 Exchange interactions such as direct and indirect interactions including super-

exchange, double exchange and Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction 

are explained. Covering such topics will assist in understanding the different behaviours 

of magnetic oxides. 

Chapter Three describes the experimental methods and techniques used to 

carry out the practical procedures and make different measurements: the fabrication of 
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TM-doped In2O3 target using the solid state reaction method; the deposition of TM-

doped In2O3 thin films using the PLD technique; the measurement of thin film thickness 

using a Dektak surface profiler; SQUID magnetometer; XRD, FIB, EDS, XANES, and 

EXAFS; and optical and magneto-optical measurements.  

Chapter Four describes the motivation behind the work on multiferroic 

manganite GMO thin films deposited on LSAT (100) and (111) substrates. The effect 

of the strain introduced by these substrates on the structural, magnetic, optical and 

magneto-optical properties is shown and discussed. The obtained data are discussed 

and compared to previous work done on GMO bulk and GMO thin films deposited on 

SrTiO3 (STO) (100) substrates.    

Chapter Five introduces the aim of the work on ZnMgO thin films deposited 

by sputtering and PLD techniques. This chapter displays experimental results on the 

structural, optical and magnetic properties of ZnMgO and the influence of different 

parameters on these properties. The parameters that were varied in this section were 

film thickness, oxygen pressure and substrate type. All these growth conditions were 

varied using two deposition techniques: sputtering and PLD.  

The effects of each parameter on various properties are studied separately and 

the resultant data are compared to the previous work on ZnMgO thin films in order to 

determine which parameter was most effective on which property. For example, the 

band gap was found to be more affected by oxygen pressure, while the thickness was 

found to strongly enhance the magnetisation of ZnMgO thin films. 

Chapter Six contains two main sections: Fe-doped In2O3 and Mn-doped 

In2O3. The influence of different precursors as sources of Fe to introduce different 

oxygen contents to the Fe-doped In2O3 system is studied. For this purpose, the films 

were deposited at a base pressure of 5×10-5 Torr. 
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In addition, two different oxygen pressures of 5×10-4, and 5×10-3 Torr were 

introduced to the Fe-doped In2O3 during growth to compare the effect of this parameter 

with that of different oxygen contents contained in different targets. 

In2O3 was doped with Mn2O3 precursor to prepare Mn-doped In2O3 thin films. 

Similarly, the Mn-doped In2O3 films were deposited as a function of oxygen pressure 

at three different oxygen pressures.  

The structural, magnetic, optical and magneto-optical properties of Fe-doped 

In2O3 thin films are discussed first, then followed by the discussion of these properties 

of Mn-doped In2O3. 

Chapter Seven has two parts; the first part concludes and summarises all the 

experimental results obtained and discussed in the chapters Four, Five and Six. The 

aim of this is to identify links between the results obtained in these chapters.   

The second part of the chapter provides a plan for proposed future studies. 

These are mainly based on the work of TM-doped In2O3 thin films undertaken at the 

University of Sheffield and on the facilities provided in Saudi Arabia at Najran 

University, where the author works.  
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THEORETICAL BACKGROUND OF 

MAGNETISM 

2.1 INTRODUCTION 

This chapter covers magnetic principles and different possible exchange 

interactions, direct and indirect; the latter include super-exchange interactions, double 

exchange interaction and Ruderman-Kittel-Kasuya-Yosida interaction. These will 

assist in understanding and investigating the magnetic behaviour of the materials 

studied in this thesis. The following introduction to the principles of magnetism, 

magnetic materials, and exchange interactions has been derived from various text 

books: Magnetism and Magnetic Materials by J. M. D. Coey [1]; The Magnetic 

Properties of Solids by J.R Crangle [2]; Magnetic Materials Fundamentals and Device 

Applications by N. A. Spaldin [3]; Introduction to Magnetic Materials by B. D. Cullity 

[4]; and Introduction to Solid State Physics by C. Kittel [5].  

2.2 PRINCIPLES OF MAGNETISM 

In the classical model of the atom, an electron of charge – e and mass m rotates 

in a circular orbit of radius, r, at angular velocity, ω. This situation is equivalent to an 

electric current I =
2π

eω
. Accordingly, due to such a current loop, a magnetic moment 

μ is associated with the atom given by: 

                           μ = IA = vr  e
2
1 = 22

2

1
)(

2
rer

e





n̂                  (2.1). 
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The orbital angular momentum L of the electron is directed in an antiparallel 

direction to the magnetic moment as shown in Figure 2.1. Since the orbital angular 

momentum of an electron is given by:  

                                                      |L|= m|r × v| = mωr2                                       (2.2). 

then the relationship between the magnetic moment and the angular momentum is given 

by: 

                                                            Lμ
m

e

2


                                                                 (2.3). 

According to quantum mechanics, the orbital angular momentum is a 

quantised quantity in units of ħ (h/2π) where h is Planck’s constant. The orbital angular 

momentum of the electron in the ground state must equal ħ, thus the lowest non-zero 

value of the magnetic moment is: 

                                              μ
B
 = 

eħ

2m
 =  9.27×10-24 J T-1                                         (2.4). 

where μ
B is the Bohr magneton, and is the natural unit for expressing atomic magnetic 

moments.  

Figure 2.1: The electron of charge e moves in a circular orbit where the magnetic moment μ and the 

angular momentum L are opposed. 
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The orbital magnetic moment is also quantised and can be rewritten in terms 

of the Bohr magneton as follows: 

                                                        Lμ Bl
μg                                                   (2.5) 

where ħL is the angular momentum vector of the orbiting electron and g
l
is the orbital 

g-factor ( g
l
≡ 1).  

The direction of the orbital magnetic moment can be specified by applying an 

external magnetic field along the z direction. Accordingly, the z component of the 

magnetic moment along the direction of the applied magnetic field is given by:  

                                                         lBzl mμμ                                                      (2.6) 

where lm is the component of l along the z axis. The values of the magnetic orbital 

quantum number are given by lm = –l, –l+1, … , 0, … , l–1, l. 

In addition, the electron has an intrinsic angular momentum which is called 

spin; this is responsible for the spin magnetic moment sμ . By analogy to the orbital 

motion, the relationship between the spin magnetic moment and the spin angular 

momentum can be expressed as follows: 

                                                      Sμ Bss μg                                                     (2.7)     

and the z component of the magnetic moment is given by: 

                                                     sBszs mμgμ                                                     (2.8)                             

where sg is the spin g-factor of the electron. It is experimentally found to be 

approximately twice the value of the orbital g factor ( sg 2 ). The spin can have only 

two orientations, characterised by the spin magnetic quantum number, ms, that takes the 

values 
2

1
 and 

2

1
 , representing the spin-down and spin-up states, respectively. 
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Accordingly, the component of the spin magnetic moment for a single electron spin 

will be 
Bμ .  

As in the orbital case, the direction of the spin magnetic moment is antiparallel 

to the direction of the spin angular momentum. However, the analogy between the spin 

motion and the orbital motion must not be taken literally since the spin is a non-classical 

quantity. This is because the spin quantum number has a fixed value of 
2

1
.  

In a many-electron atom, except for the heavy elements, the spin magnetic 

moments form a resultant vector, S, and the orbital magnetic moments form a resultant 

vector, L, which are given by: 

                                                         
i

isS  and 
i

ilL                                    (2.9). 

There are two ways in which a total angular momentum, J, can be defined. 

The most common coupling scheme in which total spin and orbital angular momenta 

are combined into the total angular momentum is as follows: 

                                                                 J = L+S                                                (2.10).                        

This is known as spin-orbit (L – S) or Russell-Saunders coupling in which the spin 

magnetic moment interacts with the magnetic field produced by the orbital motion. 

This type of interaction exists in isolated atoms of transition metals and rare-

earths since they have incomplete 3d and 4f shells, respectively. This interaction is 

considered if the spin-orbit interactions between the spin and orbital angular momenta 

of individual electrons are small, compared to the interactions of the orbital or spin 

angular momenta of different electrons.  

The magnitude of the total angular momentum is determined by: 

                                                        |J |= 1)JJ ( ħ                                            (2.11)                                                                                                                                                  
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where J is the total angular momentum quantum number which takes the values  

|L – S|, |L – S + 1|, …, 0, …, |L + S – 1|, |L + S|. 

The total magnetic moment of the atom can be obtained from the following expression: 

                                                )1(  JJμg BJJμ                                           (2.12) 

where Jg is the Landé g-factor given by: 

                                    
)1(2

)1()1()1(
1






JJ

LLSSJJ
g J                             (2.13). 

This factor has the value 2 when L = 0, so J = S and an example of this is found in the 

case of Gd ion.  

The component of the total magnetic moment in the direction of the applied 

field magnetic field (z-axis) is given by: 

                                             JBJzJ Mμgμ                                                        (2.14)   

where JM is the total magnetic quantum number and takes the following values:  

–J, – J + 1, …, 0, ...,  J – 1,  J. 

In the case of the heavy atoms, the interaction between spin and orbital angular 

momenta of individual electrons is greater than that of the spin and orbital angular 

momenta of different electrons. Thus, the spin and orbital angular momenta of each 

electron couple to give the total angular momentum ( iii slj  ), this is the other 

coupling scheme that is called JJ coupling which is given by: 

                                                     
i

ijJ                                                             (2.15). 

However, this case is not-relevant to the materials discussed in this thesis. 
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2.3 THE PAULI EXCLUSION PRINCIPLE AND HUND’S RULES 

In an atom, the energy state of a single electron can be described by the four 

quantum numbers; n, l, m
l
 and m

s
. According to the Pauli exclusion principle, no two 

electrons can simultaneously occupy the same energy state. In other words, when two 

electrons occupy the same electronic state, they must be of opposite spin. This is 

important when considering the exchange interactions between atoms and the overlap 

of electron orbitals.  

It is also important to consider Hund’s rules since they govern all the values 

of L, S and J of the ground state for a multi-electron atom; these rules state that:  

1. Orbitals of the same energy are occupied first with unpaired electrons, making 

as many spins parallel as possible. As a result of the anti-symmetry of fermion 

wave functions, the average distance between the unpaired electrons will be 

large; hence, the electron-electron repulsion energy is minimised. This gives the 

lowest energy state (the most stable) resulting in S having the maximum value 

allowed by the Pauli exclusion principle.  

2. When the first rule has been satisfied, several values of L are possible. The 

maximum value of L consistent with the value of S gives the lowest energy state. 

This can be understood by considering the classical picture of orbiting electrons. 

When the electrons are orbiting in the same direction, the electron-electron 

repulsive energy is minimised, therefore the value of L is maximised. 

3. J = SL  if the shell is less than half-full, and J = L+S if the shell is more than 

half-full. For a half-filled shell L = 0 and J = S (i.e. the atom is said to be in an 

S-state), and the spin-orbit coupling is inoperative. 
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For example, in Fe2+ ions, representing a 3d orbital with six electrons, the available m
l
 

levels will therefore be 2, 1, 0, – 1 and 2 . Each of these five levels is occupied with 

one electron to make as many spins parallel as possible and the sixth electron occupies 

the level m
l
 = 2 with antiparallel spin. This gives the total spin angular momentum of

2214 S . Since  lmL , we have 2221012 L . This results in

4 SLJ . Using the spectroscopic notation J

S L12 
, the ground state is given by

4

5D for the Fe2+ ion. 

When atoms are brought together to form a solid, only a few materials in the 

periodic table are magnetic. In non-magnetic materials, the electron spins of the atoms 

cancel each other and the net magnetic moment of the whole system becomes zero. 

Other materials, such as 3d transition metals and 4f rare earths, are magnetic in their 

metal state as they have a partially-filled orbital and, therefore, a net magnetic moment. 

The net magnetic moment forming the magnetism of the materials mainly results from 

spin and orbital moments arising from the net magnetic moment of the unbalanced 

electron spins in the partially-filled orbital.  

In a solid, unlike isolated atoms, the orbital moment might not contribute to 

the total angular moment; this is known as orbital angular momentum quenching, 

accordingly J = S. This is generated from the effect applied on each atom by the ‘crystal 

field’ arising from other surrounding atoms in the solid. This field forces the orbits to 

be strongly bound or coupled to the crystal lattice. Consequently, when an external 

magnetic field is applied, the strong orbit-lattice coupling prevents the orbits, and 

therefore their orbital magnetic moments from turning in the magnetic field direction, 

whereas the spin can freely turn due to weak spin-orbit coupling.  
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In many transition metals, for instance, the surrounding anions quench the 

orbital angular momentum and only the spin magnetic moment needs to be taken into 

account; meaning that J = S. 

2.4 MAGNETIC MATERIALS      

The magnetic state of a material is described by its magnetisation, M, which 

is defined as the magnetic moment per unit volume of the material. Magnetisation is 

proportional to the magnetic field, H, where the proportionality constant represents the 

magnetic susceptibility, χ. This magnetic quantity is defined as the tendency of a 

material to become magnetised when placed in a magnetic field and is given by: 

                                                          
H

M
lim

0


H

χ                                                   (2.16).                                 

Magnetic susceptibility is a dimensionless quantity in the SI unit system. In the cgs unit 

system, however, magnetic susceptibility has a unit of emu per centimetre cubed per 

Oersted (emu cm-3 Oe-1).  

In general, magnetic materials can be classified by the sign and magnitude of 

their magnetic susceptibilities, where the values can be either negative, zero or positive. 

The magnetic susceptibility of many paramagnets, in addition to ferromagnets and 

antiferromagnets, is temperature dependent; whereas it is independent of temperature 

for all diamagnets. More details on the magnetic susceptibility will be given when 

discussing different types of magnetic materials (see sections 2.4.1 to 2.4.5). 

Equation (2.16) shows that the magnetisation depends linearly on the magnetic 

field and becomes zero when the field is removed. This is the case for many solids since 

they are paramagnetic. However, some materials show a non-zero magnetisation in a 

zero magnetic field; these are the ferromagnets. In other words, ferromagnetic materials 
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show a hysteresis loop when zero magnetic field is reached after applying a strong 

magnetic field. This property of ferromagnets disappears at a characteristic 

temperature, which is known as the Curie temperature above which the ferromagnetic 

material becomes paramagnetic.  

In addition, when a magnetic material is placed in a magnetic field, two types 

of magnetic inductions arise: one due to the magnetic field, and the other as a result of 

the magnetisation of the material. Thus, the produced magnetic induction, B, inside the 

material is given by:  

                                        )(0 MHB  μ                                                (2.17) 

where μ
0
 is the permeability of free space.  

Provided that M = χH, (i.e. not for the ferromagnets), using equation (2.16) in (2.17), the 

magnetic induction is then given by: 

                                                         HB χμ  10                                                 (2.18) 

or                                                               B = μ
0
 μ

r H                                                                  (2.19) 

where μ
r
 = 1 + χ is the relative permeability of the material.  

2.4.1 Diamagnetism  

Atoms in diamagnetic materials have no permanent magnetic moment; the 

outermost shell in such materials is completely filled with paired electrons. This idea 

can be better understood by considering two electrons with the same magnitude of 

magnetic moment and orbiting in opposite directions; this situation results in the two 

magnetic moments cancelling each other, then the magnetic moment of the atom is 

zero.  
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However, applying an external magnetic field to a diamagnetic material 

produces a magnetic moment that is weak and in the opposite direction to the direction 

of the externally applied magnetic field. Therefore, diamagnetic materials exhibit a 

small and negative susceptibility (χ < 0). This means that the magnetic field is weakly 

repelled by the diamagnetic materials which do not retain magnetic properties when the 

external field is removed.  

 

As noted above, diamagnetic behaviour is independent of temperature. This 

was found experimentally in the case of a blank sapphire substrate, where there is no 

difference in the negative values of the magnetic susceptibilities measured at 5 K or 

300 K, as illustrated in Figure 2.2. 

2.4.2 Paramagnetism             

Paramagnetic materials have a small positive susceptibility )0( χ . The 

paramagnetic behaviour is attributed to the existence of atoms or ions that have 

permanent magnetic moments; this behaviour is due to unpaired electrons in the 

Figure 2.2: The variation of the magnetisation of a blank sapphire substrate with the magnetic field 

measured at 5 and 300 K. 
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partially-filled orbitals. Such magnetic moments have random orientations when there 

is no external magnetic field applied to the material, resulting in zero magnetic moment.  

However, in the presence of an external magnetic field, all the unpaired 

electrons are influenced and tend to align themselves in the direction of the applied 

external magnetic field. In addition, increasing temperature affects the magnetic 

moments, causing them to randomise; resulting in decreasing the magnetisation of the 

paramagnetic material.  

It is found experimentally that the magnetisation is proportional to the applied 

magnetic field, whilst it is inversely proportional to the absolute temperature; this is 

known as the Curie law which is given by: 

                                                             
T

C

H

H
M lim

0

                                                           (2.20) 

where, C is the Curie constant. The above equation can be rewritten in terms of 

magnetic susceptibility as follows: 

                                                                 
T

C
χ                                                                     (2.21). 

The Curie constant is found to be: 

                                                        
B

0

2

eff

2

B

3k

μpNμ
C                                                (2.22) 

 

where N is the total number of atoms per unit volume V, k
B
 is Boltzmann’s constant, 

and p
eff is the effective magnetic moment (a useful quantity to compare the magnetic 

properties of different materials), and is theoretically given by: 

                                                      )1(2  JJgpeff

2
                                                        (2.23). 
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Since not all paramagnetic materials obey the Curie law, it is modified to a more general 

form known as the Curie-Weiss law: 

                                                               
θ -T

C
χ                                                   (2.24) 

where θ is called the Curie-Weiss constant or paramagnetic Curie temperature. The 

modification arises because most magnetic materials have interacting magnetic 

moments.  

 

To obtain θ, the inverse susceptibility is plotted as a function of temperature. 

For a material obeying the Curie-Weiss law, the inverse susceptibility varies linearly 

with temperature and the intercept on the temperature x-axis gives θ.  

Values of θ can be either zero, positive, or negative, as shown in Figure 2.3. 

When θ = 0, then the material is paramagnetic and the equation (2.24) is the expression 

of Curie’s law. A positive value for θ indicates that a material undergoes a paramagnetic 

to ferromagnetic transition. A negative value for θ indicates that a material undergoes 

a transition from a paramagnetic to an antiferromagnetic state. Ferromagnetism and 

antiferromagnetism will be introduced in more detail in the following two sections. 

1

χ
 

T θ - θ 

Figure 2.3: The inverse susceptibility as a function of temperature. θ = 0 for a paramagnetic material, 

θ > 0 for a ferromagnetic material, and θ < 0 for an antiferromagnetic material. 



Chapter 2 – Theoretical Background of Magnetism  

 

23 

 

2.4.3 Ferromagnetism 

As with paramagnetic materials, ferromagnetic materials also have a positive 

susceptibility at high temperature. An important property of ferromagnets is that below 

the Curie temperature they show a spontaneous magnetisation (M ≠ 0) in the absence 

of an external magnetic field (H = 0).  

However, this is quite unlike the behaviour of paramagnetic materials 

discussed in the previous section, where the ferromagnetism is attributed to the 

existence of interactions between neighbouring magnetic moments. These interactions 

are strong enough to yield a cooperative alignment of magnetic moments, creating an 

internal ‘molecular field’. This results in the presence of magnetisation even in the 

absence of an external magnetic field.  

Above the Curie temperature, however, the thermal energy destroys the 

alignment of the magnetic moments of the ferromagnetic material and behaves as a 

paramagnet, see Figure 2.4. 

 

 

 

 

 

 

 

 

 

 Figure 2.4: Magnetisation versus temperature of a ferro/paramagnetic material. 
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The values of TC and θ for a ferromagnetic material are positive and usually 

close to each other. It should be noted that TC (the actual transition temperature) is 

usually slightly higher than θ, in practice, by as much as 20 K. Thus, the gradual 

transition from ferromagnetic to paramagnetic state is ascribed to the persistence of the 

internal field due to the short-range magnetic order above TC. 

The magnetisation of a ferromagnetic material below Tc is dependent on its 

history, thus it exhibits a well-known curve known as the hysteresis loop. Figure 2.5 

shows an example of the hysteresis loop of a 5% Fe-doped In2O3 sample. 

 

By application of a small external magnetic field to a sample of ferromagnetic 

material, its magnetisation starts to increase gradually and reversibly. When the 

magnetic field is increased, the magnetisation increases until it reaches a constant value. 

This is the saturation magnetisation, Ms, at which the sample is magnetised.  
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Figure 2.5: A hysteresis loop of of 5% Fe-doped In2O3 thin film. The saturation magnetisation, Ms, 

the remanent magnetisation, Mr and the coercive field, Hc are indicated. 
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If the magnetic field is decreased to zero, the magnetisation does not return to 

zero. Instead it reduces to a value known as the remnant magnetisation or remanence, 

Mr. To reduce the magnetisation of the already saturated sample to zero, the magnetic 

field must be reversed. The value of the magnetic field at which the sample is fully 

demagnetised is called the coercive field or coercively, Hc. The Ms, Mr and Hc quantities 

usually enable the material class of a sample to be identified.  

2.4.4 Antiferromagnetism 

For an antiferromagnetic material, half of the magnetic moments are aligned 

in one direction and the other half in the opposite direction. The ordered magnetic 

moments can be considered to lie on two sub-lattices. This means that there is no net 

magnetisation of the antiferromagnetic material.  

As with ferromagnetic material, there is a critical transition temperature which 

is known as the Néel temperature, TN. Above this temperature, the magnetic moments 

are disordered and the antiferromagnetic material becomes paramagnetic. Below TN, 

however, there is a net magnetisation due to different magnetisations of the two sub-

lattices. Hence, this can be used as a magnetic ordering parameter for antiferromagnetic 

materials.  

The magnetic susceptibility of an antiferromagnetic material is temperature 

dependent and it is small and positive at all temperatures. For temperatures above the 

TN, the magnetic susceptibility follows the Curie-Weiss law, which is given by: 

                                                            
Nθ T

C
χ


                                                                 (2.25). 

where θN is the Curie-Weiss constant, where θN is often considerably larger than TN. 
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2.4.5 Ferrimagnetism 

This occurs where two dissimilar sub-lattices tend to align antiparallel. If the 

magnetisations of the two sub-lattices are not equal there will be a net spontaneous 

magnetisation in the direction of the larger sub-lattice magnetic moment. 

It is worth mentioning that in a number of materials, neighbouring magnetic 

moments are not fully aligned parallel or antiparallel to each other, but at an angle. This 

arrangement is referred to as a canted antiferromagnetic state, which occurs as an 

intermediate state between the ferromagnetic and antiferromagnetic states. 

2.5 EXCHANGE INTERACTIONS  

Different exchange interactions occur in different magnetic systems. Thus, 

exchange interaction type is an important factor in determining which of the magnetic 

states described above exist in a system. These interactions are divided into two main 

categories: direct and indirect interactions.       

2.5.1 Direct Exchange Interactions  

A direct exchange interaction between the magnetic dipole moments of atoms 

(ions) is known as the dipole–dipole magnetic exchange interaction. Since the energy 

of this kind of interaction is extremely small, of the order of ~ 10-23 J, it is too weak to 

be responsible for magnetic ordering above ~ 1 K. This is because many ferromagnetic 

materials retain their magnetic ordering at Curie temperatures of the order of 1000 K. 

The exchange interaction energy required to break such ordering is of the order of         

10-20 J, i.e. it is five orders higher than the energy of dipole-dipole interactions.  
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Dipole-dipole interactions require extremely low temperatures which cannot 

be reached in our experiment. These interactions then are irrelevant to our studies and 

do not influence the magnetic data of the systems investigated in this thesis.  

There is another mechanism of direct exchange interaction that exists between 

magnetic moments localised on atoms. This interaction produces a strong but short 

range coupling which decreases rapidly with distance between interaction atoms. 

Thus, when two free atoms are close enough to each other, then their wave 

functions overlap. According to the Pauli exclusion principle, the overall wave 

functions must be antisymmetric. So that, if the spatial part of the wave function is 

symmetric, the spin part of the wave function must be an antisymmetric state (S = 0). 

If the spatial part of the wave function is antisymmetric, the spin part of the wave 

function must be a symmetric state (S = 1).  

Hence, electrons with parallel spins always occupy different spatial orbitals to 

avoid each other; meaning that the average distance between them is large and as a 

result the electron-electron repulsion energy is reduced. 

2.5.2 Indirect Exchange Interactions  

When the magnetic moments are separated by a relatively large distance, then 

they cannot be coupled through direct exchange interaction. In this situation, the 

exchange interaction can occur indirectly. A number of indirect exchange mechanisms 

can interpret the magnetic coupling of many magnetic oxides. These mechanisms are 

known as super-exchange, double exchange and RKKY. 

2.5.2.1   Super-exchange Interactions  

In this type of interactions, non-neighbouring magnetic cations are mediated 

via a non-magnetic anion. Such interactions occur, for example, in transition metal 
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oxides [10]. The super-exchange interaction contains a virtual transfer of two electrons 

simultaneously; resulting in the formation of an excited state.  

In the case of a half-filled d orbital, such as MnO, there are two possible 

configurations of the d-orbitals to be coupled by an oxygen p-orbital: these are 

antiparallel and parallel spins. However, the antiparallel spin configuration is favoured 

since it is lower in energy than the parallel spin configuration. This is because both 

electrons of the oxygen p-orbital can be coupled with the unoccupied d-orbitals.  

The super-exchange interaction is sensitively dependent on geometry; this is 

why the M-O-M bond angle is an important factor in determining the strength and type 

of super-exchange interaction. Thus, the super-exchange interaction can be a strong 

antiferromagnetic or weak ferromagnetic one, and these are respectively presented in 

Figures 2.6 (a) and 2.6 (b). 
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Figure 2.6: Schematic diagram of the indirect super-exchange interactions of MnO, (a) antiferromagnetic 

super-exchange and (b) ferromagnetic super-exchange. Adapted from reference [12]. 
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The above classification of the super-exchange interaction is summarised in 

the following Goodenough-Kanamori rules: 

1. Rule 1: When two cations have lobes of magnetic orbitals (i.e. singly 

occupied d-orbitals) pointing towards the same anion p-orbital, there is a 

reasonably large overlap. The super-exchange interaction is then strong and 

favours antiferromagnetic exchange to satisfy the Pauli exclusion principle. 

This interaction is known as 180° super-exchange where the M-O-M bond 

angle is 180°. 

2. Rule 2: When the magnetic orbitals of two cations couple to different p-

orbitals, then there is no overlap by symmetry. Thus, it is not possible for 

an electron from the d-orbital on one side to reach the d-orbital on the other 

side. The super-exchange interaction in this case is ferromagnetic and 

relatively weak; this is known as 90° super-exchange where the M-O-M 

bond angle is 90°. 

The 90° super-exchange interaction is commonly known to be several times weaker 

than the 180° super-exchange interaction. Thus, the super-exchange interaction is 

generally antiferromagnetic because the overlap is larger than zero.  

2.5.2.2 Double Exchange Interactions 

This exchange interaction was proposed by Zener to explain the 

ferromagnetism observed in perovskite manganites [22]. Unlike the ferromagnetic 

super-exchange interaction, the double exchange mechanism requires the existence of 

mixed-valence configuration and is expected to occur only in oxides containing two 

magnetic cations that have two different valence states, provided that the magnetic 

moments are parallel. 
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During the double exchange, in a system containing Mn3+ O2- Mn4+ ions for 

example, there is a simultaneous transfer of two electrons: one from the oxygen to the 

empty eg orbital of the Mn4+ ion and the other from the eg orbital of the Mn3+ to the 

oxygen ion. Thus, the configuration becomes Mn4+ O2- Mn3+ and has the same energy 

as the previous configuration since the spin orientation is preserved, resulting in a 

ferromagnetic alignment, as shown in Figure 2.7 [16, 17].  

Another example of the double exchange interaction is found in magnetite 

(Fe3O4) which contains Fe2+ and Fe3+ ions.  In this case, an electron transfers from the 

Fe2+ (3d6) ion to the oxygen ion which in the same time transfers an electron of the same 

orientation to the Fe3+ (3d5) ion. Therefore, the double exchange between Fe2+ and Fe3+ 

ions is ferromagnetic [21-23, 25].  
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Figure 2.7: Schematic diagram of the indirect ferromagnetic double exchange interaction between 

the Mn3+ and Mn4+ ions via the p orbital of the O2- ion. Adapted from reference [12]. 
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2.5.2.3 RKKY Exchange Interaction 

 This interaction occurs when there are both localised and band electrons. In 

rare-earths, for example, the observed magnetisation was found to be due to the 4f 

electrons. However, since these electrons are strongly localised then there is no direct 

interaction. Instead, the interaction between the localised magnetic moments of the 4f 

shell is obtained via the electrons in the 5d or 6s conduction band. This is known as the 

RKKY interaction and is used to interpret the resulting magnetism in metals.  

The mechanism of this interaction depends on polarising the delocalised 

(itinerant) conduction electrons by a localised magnetic moment; this polarisation in 

turn interacts magnetically with the neighbouring localised magnetic moment that is 

located at a distance r from the first magnetic moment [8, 13].  

 

 

 

 

 

 

 

 

 

RKKY is a long-range interaction compared to the direct exchange interaction. 

The main feature of this interaction is the oscillatory behaviour that varies its sign 

depending on the distance between the interacting magnetic moments. Thus, the 

resulting RKKY interaction can be either ferromagnetic or antiferromagnetic, as shown 

in Figure 2.8, where KF is the Fermi wave vector [26, 27]. 
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Figure 2.8: Schematic diagram of the RKKY indirect ferromagnetic/antiferromagnetic 

exchange interactions depending on the interatomic distance r. Adapted from reference [8]. 
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EXPERIMENTAL BACKGROUND AND 

PROCEDURES 

3.1 INTRODUCTION 

This chapter discusses the wide range of experimental methods that were used 

for thin films preparation and investigation. This includes the production of bulk 

targets, which were used to prepare thin films by PLD technique. Thickness 

measurements of thin films were obtained using a Dektak surface profiler.  

The experimental techniques that were utilised to investigate different 

properties of various magnetic oxide materials involve, (1) the study of the magnetic 

properties using a SQUID magnetometer, (2) structural properties using XRD, FIB, 

EDS, XANES and EXAFS measurements. It should be mentioned that all structural 

measurements, except some of the XRD measurements, were performed as a 

collaborative work with other groups, (3) optical properties using absorption 

spectroscopy through transmission and reflection measurements, and (4) magneto-

optical properties using MCD spectroscopy in Faraday (transmission) geometry. In the 

following, each of the above-mentioned techniques and measurements will be 

introduced and discussed in more detail.   
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3.2 THIN FILM PREPARATION 

Bulk targets of TM-doped In2O3 were prepared by mixing appropriate amounts 

of In2O3 and a TM dopant such as Fe and Mn.  The Fe was obtained from three different 

precursors: FeO, Fe3O4 and Fe2O3, whereas the Mn was only obtained from the 

precursor Mn2O3. By successive grinding of the mixture and then sintering it at different 

temperatures, stoichiometric targets of TM-doped In2O3 were obtained. A powerful 

pulsed laser, as will be described later in section (3.2.2), was used to ablate a small part 

of the surface of a bulk target onto a sapphire substrate. Growth conditions such as 

oxygen partial pressure and substrate temperature were closely monitored during the 

ablation procedure. 

3.2.1  Target Fabrication  

A variety of different bulk targets were produced using the technique of solid 

state reaction. In this method, the required mass of each component of the target was 

calculated and then weighed with an electrical balance. All components were then 

ground in a mortar and pestle. All powders used were purchased from Alfa Aesar and 

were of the high purity obtainable (99.99%).   

As an example, the details of the preparation of the target of 5% Fe2O3-doped 

In2O3 are as follows: first, we need the atomic weights ( OIn , AA  and FeA ) for In, O and 

Fe, respectively, in order to calculate the atomic weight for the whole compound. In all 

cases, we need to know how many metal ions there are per gram. In In2O3, for example, 

this is: 

            
amu 138.8

1

amu 24)(114.8

1

amu )3(2

2

OIn








AA

N In                         (3.1). 
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Similarly, for Fe2O3 it is: 

        
amu

1

amu 24)(55.85

1

amu )3(2

2

OFe  79.85AA
NFe 





                           (3.2). 

 

For 5% of Fe in In2O3 we need a number ratio of: 

                                                
5100

5




In

Fe

N

N
                                                        (3.3). 

The mass ratio then can be given by: 

                                         




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M
32

3e

OIn

OFe

                                                 (3.4). 

This gives the value 0.0303, meaning that each gram of In2O3 needs to be mixed with 

30.30 mgs of Fe2O3. So, for a target of ~ 10 gm we need 10 gm of In2O3 and 303.0 mgs 

of Fe2O3.  

The initial powder mix was ground by hand in a mortar and pestle for 20 min. 

After that, the powder was placed in a high-quality ceramic crucible and fired at a 

relatively low temperature of 300 °C for 12 hours in air in a furnace. This procedure 

was repeated for another two temperatures: 600 °C and 900 °C. 

After the final anneal, the mixture was placed in a Specac die, which was 

evacuated with a roughing-pump and, using a manual hydraulic press, compressed to 

25000 kPa. This produced a relatively dense, cylindrical pellet of diameter 25 mm and 

thickness between 2 to 5 mm, depending upon the amount of the initial powders used.  

The pellet was then given a final anneal at a maximum temperature of 1000 0C 

. All anneals were performed in air.  

All the other three targets FeO-, Fe3O4- and Mn2O3-doped In2O3 were 

produced using the same method. All the TM-doped In2O3 films were deposited on c-

cut (0001) sapphire substrates. 
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3.2.2  Pulsed Laser Deposition (PLD) 

              PLD technique is one of several methods used to grow high-quality 

stoichiometric thin films. Among these techniques are sputtering, molecular-beam 

epitaxy (MBE) and chemical vapour deposition (CVD) [1, 2].  

The use of PLD has a number of advantages, one of which is that the laser is 

located outside the deposition chamber so that it is possible to fabricate multilayer films 

by successive ablation of different targets without opening the chamber. The targets 

used in the PLD technique are rather small in comparison to a large size target required 

for the sputtering technique.  

Another advantage is the flexibility in controlling the growth parameters 

during the deposition, these include the gas partial pressure and temperature [3]. 

Moreover, the overall experimental process is a relatively simple and straightforward 

one. 

Nevertheless, there are some disadvantages of the PLD technique, such as the 

degradation of the target by the laser during ablation, which may reduce film quality. 

The uniformity of the film might also be affected due to one of the main drawbacks of 

PLD, which is called “splashing”. This phenomenon occurs due to the fast vaporisation 

that expels a liquid layer at or close to the surface, leading to the expulsion of the molten 

particles. This, therefore, induces the formation of defects such as boulders that appear 

on the film surface. These boulders can be detected by scanning electron microscopy 

(SEM) [4].  

The PLD system consists essentially of three parts: laser, vacuum system and 

deposition chamber, as shown in Figure 3.1. 
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The laser used in this work was an excimer XeCl laser, (Lambda Physik 

LEXTRA 200), operating at a wavelength of 308 nm. The laser could produce a pulse 

of energy of up to 400 mJ and a pulse length of 28 ns operating at a 10 Hz repetition 

rate. The laser beam is focused by a quartz lens, which is positioned close to the silica 

window of the deposition chamber, onto the surface of a rotating target, creating a spot 

size of about 3 mm2 [5].  

The deposition chamber is constructed from stainless steel. The substrate is 

oriented parallel to the target at a fixed distance of only a few centimetres, usually 3.5 

cm. The target is rotated by a motor at a speed of 60 rpm which prevents ablating the 

same spot constantly. This can reduce the formation of the molten particles mentioned 

previously. The chamber can be pumped down to a minimum base pressure of 10-5 Torr. 

This is performed by two pumps: a roughing pump and a turbo-molecular pump (TMP).  

However, the pressure inside the deposition chamber can be varied from base 

pressure up to a few hundreds of mTorr of oxygen. This can be controlled by injecting 

Silica window 

Quartz lens Gate valve  

Oxygen inlet valve 

Turbo-molecular pump 
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Target 
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Figure 3.1: Schematic diagram of the PLD system. 
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oxygen in a controlled manner via three valves: oxygen inlet valve, roughing pump 

valve and gate valve.  

For depositing a film, the target is placed in a rotating holder. Then a small 

HeNe laser is used as a pointer, striking the target at approximately the position where 

the ablating laser would be incident. A new sapphire substrate is cleaned with ethanol 

in an ultra-sonic bath. The substrate holder, which has two electric-heater elements 

sandwiched inside it, is carefully cleaned with methanol in order to remove all traces 

of the previous run. The substrate is then clamped onto the substrate holder using two 

small, metal clamps.  

It is worthwhile noting here that the areas underneath the clamps represent the 

blank substrate where there is no film deposited, as shown in Figure 3.2. These areas 

are used as a reference when measuring film thickness using a Dektak surface profiler; 

this will be discussed in more detail in the section on film thickness measurement.  

Figure 3.2: Schematic of the substrate holder and a photograph of the deposited film, showing the 

film-free areas in the substrate. 
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The deposition temperature is achieved by connecting the two substrate 

heaters to a power supply. The substrate temperature is then monitored during the 

deposition using a chromel-alumel thermocouple.  

All connections between the power supply, the substrate heaters and the 

thermocouple are checked before the deposition chamber is sealed in order to ensure 

that they are working correctly. A substrate temperature of 450 °C was chosen for 

growing all the TM-doped In2O3 films. This is because, at higher temperatures, the 

transition metal ions tend to form isolated clusters [6, 7].  

The chamber is pumped down to the base pressure of 5×10-5 Torr using the 

rotary and TMP pumps. The chamber pressure is continuously monitored by two 

pressure gauges: initially a Pirani gauge and then a Penning gauge. These gauges 

measure the pressure in different ranges, where the Pirani gauge measures the pressure 

down to about 10-3 Torr, and the Penning gauge is used for the measurement of pressure 

down to 10-5 Torr.  

For a growth at oxygen partial pressure, the deposition chamber is filled back 

with oxygen via the oxygen inlet valve. The TMP valve is shut and the roughing pump 

valve remains opened, where a careful balance between the gate valve and the oxygen 

inlet valve is taken into account in order to maintain an oxygen flow for the desired 

pressure. 

The XeCl laser beam is focused onto the rotating target. The target surface 

absorbs the beam, as a result, the target surface is ablated and evaporated. This forms a 

plasma plume that is perpendicular to the plane of the substrate, to which it transports 

atoms, molecules and ions. These condense onto the heated substrate, where a thin film 

sample is deposited.  
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At the end of the deposition period, the laser and the target-rotation motor are 

switched off and the substrate is cooled down to room temperature. Then, the pressure 

inside the chamber is raised to atmospheric pressure and finally the substrate holder is 

removed from the deposition chamber.   

It is worthwhile mentioning that the plume shape is affected by different 

deposition pressures, as shown approximately in Figure 3.3. Hence, increasing oxygen 

pressure during the deposition reduces the amount of ablated species from the target, 

compared to the base pressure. As a result, the deposition time of a film grown in an 

oxygen atmosphere increases as compared to that of a film of comparable thickness 

grown at base pressure [8-10].  

 

 

The substrate temperature, the chamber pressure and the plume quality are 

monitored and recorded throughout the deposition run, typically every 5 minutes, in 

order to be used as a reference for the next run.  
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Figure 3.3: Sketches of plume shape of deposition process at two different oxygen pressures; base 

pressure of  ~ 2×10-5 Torr and oxygen partial pressure of ~ 2×10-3 Torr. 
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3.3 FILM THICKNESS MEASUREMENT  

Thickness measurements of the TM-doped In2O3 films were made with a 

Veeco Dektak profilometer (Model 150). It is a microprocessor-based instrument that 

can provide different surface measurements using a diamond-tipped stylus profiler. 

This can accurately measure vertical features from 10 nm up to 65 knm [11]. The 

vertical movement of the stylus across the film surface is translated into changes in 

signal through an electrical circuit. This signal change is then converted to a height and 

is displayed as a 2D plot of the film surface [12].  

A film thickness is measured by moving the stylus profiler across the 

substrate-film edge, from one blank region of the substrate to another, which is 

produced by the two clamps that cover two corners of the sapphire substrate during the 

deposition process, as mentioned previously. This movement of the stylus represents 

the measurement that is used to deduce the value of film thickness, as in Figure 3.4. 

 

Figure 3.4: Film thickness data as measured by the Dektak surface profiler for a 5% Fe2O3-doped 

In2O3 sample. 
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The thickness of the film of 5%Fe2O3-doped In2O3 grown on a sapphire 

substrate as a function of deposition time is plotted in Figure 3.5, where the film 

thickness depends linearly on the time as expected.  

The growth rate in this case is estimated to be about 27 nm/min. Several 

measurements of thickness are recorded in order to calculate an average. The 

uncertainty in the Dektak measurements is estimated to be ± 10% [10, 13].  

3.4 MAGNETIC MEASUREMENTS  

The SQUID magnetometer is one of the most sensitive sensors of magnetic 

flux that is used to measure small changes in the magnetic property of a sample when 

it is exposed to different magnetic fields or temperatures. Hence, it is a useful device 

that is used to obtain different magnetic measurements, providing crucial information 

about the magnetic properties of a material.  

Figure 3.5: Thicknesses of 5% of Fe2O3 doped In2O3 thin films grown on sapphire substrates as a function 

of deposition time at a fixed oxygen pressure of 2×10-5 Torr and a substrate temperature of 450 °C. 
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The SQUID magnetometer consists of a SQUID connected to detection coils 

which are located inside a superconducting magnet. The SQUID comprises of a Nb 

superconducting loop which has a single Josephson junction. This SQUID loop is 

inductively coupled to a field-sensing coil via superconducting transformers. The other 

side of the SQUID loop is inductively coupled to a RF circuit to read out any changes 

in the SQUID loop [17]. The RF circuit is excited by a RF current that oscillates at ~ 

20 MHz. The SQUID is shielded from the superconducting magnet in order to detect 

only the current from the detection coils [11, 17].  

A Radio Frequency (RF) SQUID magnetometer, model MPMS-5 

manufactured by Quantum Design, was used to obtain all magnetic measurements of 

all the samples reported in this thesis [14, 15]. This instrument can operate over a 

temperature range from 2 K to 400 K and with magnetic fields up to 50000 Oe. 

3.4.1 Theoretical Background  

The SQUID does not directly measure the magnetic moment of a sample. 

Instead, it is based on the measurement of a voltage induced in the field-sensing coil by 

the magnetic response from a sample.  

Since the field-sensing coil forms a closed loop with the SQUID, any variation 

in the magnetic flux produces a variation in the persistent current in the superconducting 

loop, which is proportional to the variation of the magnetic flux. As a result, the 

corresponding changes in the SQUID output voltage represent the magnetic moment of 

the sample [17]. The variations in the magnetic flux are converted using a least-squares 

fitting program to a theoretical expression in order to obtain the magnetic moment of 

the sample [11]. 

The lines of the magnetic flux penetrating the superconducting loop are 

trapped in discrete levels and can only exist in multiples of a quantum magnetic flux 
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(fluxon) that is given by Φ0 = h/2e = 2.06 × 10-15 Wb; where 1 Wb/m2 = 1 T; h is 

Planck’s constant and e is the electronic charge. However, when the magnetic field 

generated by the sample is removed, the trapped magnetic flux results in an induced 

current that circulates around the loop in order to sustain the magnetic flux inside it.  As 

long as the superconducting loop is kept below its transition temperature, the current 

flows indefinitely, without any resistance [11, 17].  

The phase of the oscillating voltage across the resonant circuit varies 

sensitively as a periodic function of the magnetic flux threading through the loop. The 

SQUID, therefore, functions as a sensitive magnetic flux-to-voltage transducer. Hence, 

using suitable electronics to monitor the voltage amplitude, the SQUID can measure 

extremely small changes in the magnetic flux which are proportional to the magnetic 

moment of a sample [16, 17].  

3.4.2 Experimental Setup 

A sample is mounted on a long, uniform sample holder, in practice, this was a 

plastic drinking straw. The sample is held in position towards the centre of the straw 

using a thin cotton thread.  The drinking straw is then attached to the end of a rigid         

3 mm diameter stainless steel rod. This rod is then introduced into the SQUID via an 

air-lock located at the top the system. Before the sample-rod is completely inserted into 

the SQUID system, it is vented and purged with helium gas in order to prevent the 

sample chamber from being contaminated by atmospheric gases.  

The top of the sample-rod is connected to a stepping-motor which is used to 

drive the sample through the pick-up coils in a series of discrete steps. Before any 

measurement can be made, the centre of the sample must be positioned at the centre of 

the pick-up coils to obtain accurate results. A full scan over a length of 4 cm is 

performed to determine the position of the sample, after which the sample can be 
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centred manually or automatically. For an accurate centring, the procedure is repeated 

over a shorter scan length, typically 2 cm.  Once this is completed, the measurement 

sequence can then be started. 

During a measurement, the sample is moved through the field-sensing coils, 

which are configured as a second-order gradiometer; this, in principle, ensures that the 

field-sensing coils are not sensitive to the external magnetic field that is constant, or to 

their first-order derivatives, but are only affected by the second-order field variations. 

Accordingly, the sample generates a field that in turn induces a supercurrent in the field-

sensing coils and therefore a magnetic flux through the SQUID loop. Recording these 

measurements as a function of different magnetic fields allows us to gain data about the 

sample magnetisation as a function of externally applied magnetic field. 

There are two types of measurement that will be considered in this thesis. The 

first type of measurement is undertaken as a function of an external applied magnetic 

field, which is swept over a range from + to – H, whereas the temperature is fixed at a 

chosen value. This is called a magnetic hysteresis (M-H) loop measurement.  

In the second type of measurement, the magnetic field is held constant, 

whereas the temperature is swept whilst recording the magnetisation data of a sample. 

This is called a zero-field-cooled/field-cooled measurement, ZFC/FC. These 

measurements shall be explained in more detail next.  

There are generally two contributions to the total raw signal from the sample: 

one contribution from the film, and the other from the substrate. The contribution from 

the film is a ferromagnetic with, possibly, a paramagnetic contribution. In addition, 

there may even be a very small diamagnetic contribution, depending upon the materials 

in the target. The contribution from the substrate is essentially diamagnetic, but there 
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may be a small paramagnetic contribution arising from paramagnetic impurities in the 

substrate.  

3.4.2.1 Magnetic Hysteresis Loop Measurement 

In this type of measurement, the magnetisation of a sample is studied as a 

function of the magnetic field, the temperature is fixed, typically at 5 K or 300 K whilst 

the external magnetic field is increased from zero up to 10000 Oe, and decreased 

through zero to – 10000 Oe, and then back again through zero to + 10000 Oe. The 

magnetic field can be either applied parallel or perpendicular to the plane of the sample; 

this depends upon how the sample is mounted in the drinking straw. From the obtained 

data the magnetisation can be plotted as a function of the magnetic field where a 

magnetic hysteresis loop is produced.  

Such a measurement is widely used to determine the general important 

characteristics of a ferromagnetic material and yield information such as saturation 

magnetisation, coercivity, and remanence. 

 

 

 

 

 

Figure 3.6: (a) Raw data of hysteresis loop measurement of a 5% Fe2O3-doped In2O3 sample measured 

at 300 K (black squares) and the hysteresis loop measurement of a balnk sapphire substrate (red circles). 

(b) The hysteresis loop of the 5% Fe2O3-doped In2O3 after the subtraction of the diamagnetic and 

paramagnetic contributions. 
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The black curve in Figure 3.6 (a) shows the raw, uncorrected SQUID data for 

a hysteresis loop measured at 300 K for a 5% Fe2O3-doped In2O3 film grown on a 

sapphire substrate, while the red curve is the hysteresis loop measurement of a blank 

sapphire substrate. There are different magnetic contributions that could arise from both 

the film and the substrate on which it was deposited.  

It can be clearly seen from the black curve in the Figure 3.6 (a) that there are 

two distinct contributions to the raw data: a linear contribution that dominates at high 

fields, and a saturating ferromagnetic contribution evident at low fields. Since 

diamagnetism is temperature independent, negative, and varies linearly with applied 

magnetic field, therefore, the high-field linear variation, illustrated by the dotted green 

lines is identified as a diamagnetic contribution; this is mainly due to the substrate. 

Nevertheless, there might be a temperature dependent paramagnetic contribution 

arising from some unreacted components in the film.     

To separate the ferromagnetic contribution from other contributions, the 

diamagnetic contribution from the substrate is subtracted (added) from the raw data. 

This subtraction produces a hysteresis loop that saturates at a certain magnetic field, 

usually at about 3000 Oe. Beyond this field, a linear magnetisation can be noticed where 

a straight line can be fitted. The slope of this line is calculated and then subtracted from 

each point to only obtain the ferromagnetic contribution, as in Figure 3.6 (b). 

The existence of different contributions in the same film indicates the 

complicated magnetic nature of the film. Such contributions can be attributed to the 

contaminants, which can also play a role in this matter since they might result from the 

growth and/or handling of the sample [18].  
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3.4.2.2 Zero-Field-Cooled/Field-Cooled Measurements  

In this type of measurement, the temperature dependence of the magnetisation 

is studied in two regimes: ZFC and FC. In the ZFC mode, the sample temperature is 

lowered from room temperature, 300 K, in zero magnetic field where all magnetic 

particles are randomly oriented. At a finite low temperature, usually 5 K, the magnetic 

moment of the particles are frozen (immobilised) in different directions.  

In the ZFC measurement, the sample is cooled down to 5 K in zero magnetic 

field. When the temperature stabilises, a small magnetic field, typically 100 Oe, is 

applied and the magnetisation of the sample is then measured while increasing the 

temperature from 5 K to 300 K.  

In the FC measurement, however, the magnetisation is measured as the sample 

is cooled from 300 K to 5 K in the same applied magnetic field. In this situation, as the 

temperature is lowered, the aligned magnetic moments are frozen and remain aligned 

in the direction of the applied field. Usually, the ZFC and FC measurements are 

performed in a single run. Both data of the ZFC and FC magnetisations are plotted as 

functions of temperature in the same graph. The aim of ZFC/FC measurements is to 

show the dependence of the magnetisation on temperature as well as the magnetic field 

history.  

Using the ZFC/FC magnetisations, the magnetic susceptibility can be 

calculated. If the inverse of the magnetic susceptibility is plotted as a function of 

temperature, this allows one to obtain information about the Curie’s constant using the 

Curie-Weiss law which was previously introduced in equation (2.24).  
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ZFC/FC measurements are shown in Figures 3.7 (a) and 3.7 (b) for the GMO 

film grown on LSAT (100) substrate and for the 5% Fe-doped In2O3 film grown on a 

sapphire substrate. The diamagnetic contributions arising from the LSAT (100) and 

sapphire substrates have been subtracted. The data in Figures 3.7 (c) and 3.7 (d) show 

the ZFC/FC magnetisations of blank LSAT (100) and sapphire substrates, respectively. 

 

 

If there is a blocking, ZFC/FC measurements can also provide information 

about the size of magnetic nanoparticles in magnetic materials. Such materials are 

generally characterised by a certain temperature, which is known as the blocking 

temperature, TB. Above this temperature, the nanoparticles of a ferromagnetic material 

Figure 3.7: (a) and (b) the ZFC/FC measurements of a GMO film and 5% Fe-doped In2O3 film grown on 

LSAT (100) and sapphire substrates, respectively. (c) and (d) the ZFC/FC measurements of blank LSAT 

(100)  and sapphire substrates, respectively. 
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are characterised by superparamagnetic behaviour. Below the blocking temperature, 

however, the magnetic moments of the particles are frozen in the field direction [19].  

In the absence of an external magnetic field, each particle tends to align its 

magnetic moment along a certain direction (a so-called easy direction of 

magnetisation), which is defined by the magnetic anisotropy of the material. If there is 

only one preferred direction, then the magnetic nanoparticle is said to have uniaxial 

anisotropy.  

At thermal equilibrium, there will be two energetically minimum directions 

along the easy axis of magnetisation. Between these two directions, there is an energy 

barrier of size KV, where K is the magnetic anisotropy constant, and V is the particle 

volume [20]. Thermal energy, k
B
T, affects the magnetic nanoparticles by randomly 

flipping their directions of magnetisations. The particle size can be obtained from the 

well-known Bean-Livingston equation [20]: 

                                                             25k
B
T

B
 = KV                                                                (3.5) 

  The time to perform such a process is called the relaxation time, τ. In a typical 

magnetisation measurement of a particle. The duration of this measurement is, for 

simplicity, assumed to be 100 sec [17, 20]. 

3.5 STRUCTURAL MEASUREMENTS  

In this section, different types of measurements will be discussed, since they 

provide different information about the structure of a material. These measurements 

include; XRD, FIB, EDS, XANES, and EXAFS. 

XRD is used to determine any change in the lattice spacing/constant, which is 

affected by different parameters, such as substrate type, film thickness and gas pressure. 
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XRD can also be used to check for the presence of impurity phases. However, not all 

the impurity phases can be identified by the XRD measurement due to its detection 

limits.  

As mentioned previously, some of the XRD measurements were carried out in 

Russia and China. At the University of Sheffield, the instrument used was a Bruker D2 

X-ray diffractometer that used a CuKαradiation, λ = 1.5406 Å. The X-rays consist of 

Kand Kradiations where the intensity of the K radiation can be reduced by using 

blocking-filters which depend on the anode material. In the case of CuK, the high-

energy rays are absorbed by a filter, leaving only the Kray; this is more intense than 

the Kray and, because the wavelength of the Kray is useful for inter-planar spacing, 

it is usually preferred to be used in the XRD measurement for crystalline material [21].  

Since the wavelength of the X-rays is comparable or smaller than the 

interatomic distance of solids, they can be strongly diffracted by the atoms of the solids. 

Therefore, the crystal structure of solid materials can be determined. So that, by 

directing a monochromatic beam of X-rays onto a crystalline lattice, a constructive 

interference can be produced when it satisfies the conditions expressed by Bragg’s law: 

                                               nλ = 2d sin θ                                                (3.6) 

where n is an integer, λ is the wavelength of the radiation, d is the lattice spacing and θ 

is the incident angle of the X-rays [21, 22]. 

In a cubic material, the lattice constant, α, and the spacing between the 

diffracting planes are related by the expression: 

                                                        d = 
α

√h
2
+k

2
+l

2
                                                 (3.7) 

where (h,k,l) are the Miller indices of the diffracting planes.  
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The XRD θ–2θ scans are used to obtain the lattice spacing of a material [23]. 

When the diffraction peaks of the material are identified, and by knowing the lattice 

constant of the material, then the separation between planes can be calculated [22, 23]. 

The lattice spacing data can also provide information about the strain 

introduced to the material. More details in this regard can be found in chapter 4 when 

discussing the strain introduced to the GMO by different orientations of LSAT 

substrates. 

FIB is a versatile microscopy technique which can be used to destructively 

remove material through a process known as sputtering [24, 25]. The operational 

principle of FIB is to generate a beam of heavy ions from a liquid-metal ion source 

(LMIS), typically gallium (Ga), this source is connected to a tungsten pin.  By heating 

the ion source, Ga atoms flow to the tip of the pin. Applying a strong electric field to 

the pin tip results in the extraction and ionisation of the Ga atoms. The Ga+ ions are, 

therefore, accelerated up to 30 keV, then the ions are focused by electrostatic lenses 

into the surface of the sample [25-27].  

The collision between the Ga+ ions and the atoms in the sample results in the 

sputtering of a certain number of atoms. This collision generates ion-induced secondary 

electrons which can be used to produce a high-resolution image of the sample surface. 

In addition, since the FIB allows material removal by the primary ions beam, it is 

utilised as an excellent tool to form cross-sectional images of the sample; these can be 

then used to measure the sample thickness [24, 25, 27].   

EDS is a powerful X-ray micro-analytical technique which provides 

information on the chemical composition of a sample [24, 25]. In principle, it can detect 

all elements with atomic number (Z > 3). The EDS system is conjugated with a SEM, 

which can be used to produce element distribution images [28].  
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When the sample is bombarded by a high-energy beam of electrons, then the 

electrons from the atoms close to the surface of the sample are ejected. As a result, 

electron vacancies are created which are filled by electrons from a higher energy state, 

generating X-rays in order to balance the energy difference between the two energy 

states [24, 28].  

Since different elements have different atomic structures, then the energy of 

the emitted X-ray is characteristic of the energy difference between the energy states of 

each element. So that, the X-rays measurements can be converted into a final X-ray 

spectrum which allows one to identify the chemical elements present in the sample and 

also to determine their concentrations [24, 25, 28]. 

XANES and EXAFS belong to X-ray absorption fine structure spectroscopy 

(XAFS) that is an essential tool to obtain information about the electronic structure of 

a material. XAFS is a result of scattering of the photon emitted from an absorbing atom 

as a result of the photoelectric effect. This spectroscopy is used to determine the local 

geometric structure around the central atom. Thus, it can be utilised to detect any 

secondary phases that could be formed during the growth process [29-32].  

When X-rays are incident on a sample, some of them are scattered and the 

others are absorbed. Accordingly, the absorption shows strong peaks when the photon 

energy is exactly able to excite electrons from the inner shell of the absorbing atom to 

unoccupied states, thus producing a photo-electron. These are called absorption edges, 

each of which results when a core electron absorbs energy equal to, or greater than, its 

binding energy. For instance, the excitation of an electron from the 1s state corresponds 

to the K-edge absorption [31].  

Since different elements have characteristic energy levels, then they can be 

studied separately.  Nevertheless, once the photo-electron escapes the absorbing atom, 
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its wave is backscattered by the neighbouring atoms, generating constructive and 

destructive interference regions, which are seen as maxima and minima in the XAFS 

spectrum, corresponding to the outgoing and backscattered waves, respectively [3, 29]. 

When the X-ray passes through a sample of thickness, x, the intensity, I, of the 

transmitted X-ray beam is reduced according to the expression: 

                                            I(x) = I0 e
-µx                                                        (3.8) 

where μ is the linear absorption coefficient which depends on both the material and the 

photon energy, and I0 is the intensity of the X-ray beam incident on the sample [29-32].  

There are three main regions of an XAFS absorption spectrum from which the 

information of the electronic structure can be obtained: pre-edge, XANES, and EXAFS, 

these regions are shown in Figure 3.8 [3].  

 

XANES spectrum is mainly used to give information about the oxidation state 

and neighbouring coordinates of the absorbing atom [30,31].  

Figure 3.8: XAFS spectrum, where the pre-edge, XANES and EXAFS regions are identified. 
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EXAFS is used to gain information about the distances and the neighbouring species 

of the absorbing atom [30, 31].  

From spectra of both the XANES and EXAFS, the data are generated by taking 

unknown data and fitting them to linear combinations of known (standard) data. It 

should be mentioned that the XANES and EXAFS measurements are more sensitive to 

the presence of secondary phases than XRD measurements [29, 31].   

3.6 OPTICAL AND MAGNETO-OPTIC MEASUREMENTS 

This section discusses two techniques: absorption spectroscopy and MCD 

spectroscopy. The purpose of using these techniques is to provide a better 

understanding of the electronic structure through the absorption spectra.  

 

3.6.1       ABSORPTION SPECTROSCOPY  

This technique is used for the investigation of optical properties of our samples 

in the energy range of 1.7 to 4.5 eV. This includes the measurements of transmission 

and reflection spectra. The data of these measurements are then used to obtain the 

absorption data which are then used to determine the band gap of the materials studied. 

Determination of the band gap from absorption data will be discussed in more details 

in the following sections. 

 

3.6.1.1    Background Theory  

 The incidence of light on a solid material results in the occurrence of a number 

of optical phenomena: transmission, reflection, absorption and scattering. The 

transmission and reflection, for instance, can be described by their coefficients T and 

R, respectively. The transmission is defined as the ratio of transmitted light to the total 
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incident light. Similarly, the reflection is defined as the ratio of the reflected light to the 

total incident light. As energy is conserved in the process, and assuming there is no 

scattering or absorption, the combination of R and T results in the following expression 

[34]:   

                                                               T + R = 1                                                          (3.9). 

However, when the light passes through a sample of thickness, t, the film 

strongly absorbs some of the incident light. This assumes that the multiple reflections 

from the film and the substrate are negligible. Hence, the transmission and reflection 

are related by the expression: 

                                               T = (1-R)2 e-αt                                                                      (3.10) 

where α is the absorption coefficient.  

Once the transmission and reflection data are obtained, and the film thickness is known, 

then the absorption coefficient can be calculated using the above-mentioned 

relationship [34]. 

In a vertical transition, i.e. a direct band gap, the absorption coefficient is 

proportional to the density of states that can participate in the absorption process, this 

is given by: 

                                        (αhν)2   hν - Eg                                                                      (3.11) 

where ν is the frequency of the photon and Eg is the band gap energy. This equation is 

derived from the equation: αhν = A (hν - Eg)
1/n , where n depends on the nature of 

transition. In our experiment, n is equal to 2 because we are interested in measuring the 

direct transitions.  

In order to determine the energy band gap, (αhν)2 is plotted as a function of 

photon energy (hν), where the band gap is obtained from the point at which the 
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extrapolated line of the absorption data goes to zero and intersects with the horizontal 

axis of the photon energy; this is known as Tauc plot [3, 23, 34].  

 

3.6.1.2   Experimental Setup 

A conventional absorption spectroscopy setup is based on the equation (3.10), 

where an excitation by electromagnetic radiation is used to measure the transmitted and 

reflected light intensities. Thus, the absorption can be derived directly from the 

transmission and reflection data.  

In this system, the configuration can be changed between the transmission and 

reflection geometries merely by changing the positions of the sample holder and the 

photomultiplier tube (PMT) detector, as in Figure 3.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Schematic diagram of the absorption spectroscopy system. Adapted from M. S. Alqahtani 

PhD thesis [35]. 
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A Xenon lamp is used as the light source; covering the spectral range from ~ 

830 to 275 nm (~ 1.5 to 4.5 eV). The light beam passes through a SpectraPro-275 

spectrometer to produce high-resolution spectra using a 1200 line/mm grating that 

covers the wavelength range between 190 and 1100 nm [23, 35].  

After the beam leaves the spectrometer, a bandpass filter is used to remove the 

unwanted wavelengths. The beam then is directed onto a beam-splitter; generating a 

sample beam and a reference beam. These are then passed through optical choppers. 

The reference beam is chopped at a frequency of 370 Hz, whereas the sample beam is 

chopped at a frequency of 310 Hz. These two frequencies were chosen as they were not 

multiples of the mains frequency, so as to minimise any interference between the two 

signals. The aim of using the optical choppers is to minimise the noise effect and 

improve the signal-to-noise ratio.  

The reference beam is recorded by a PMT detector, whereas the sample beam 

passes through the sample and is recorded by another PMT detector. The difference 

between the two light intensities is then calculated and converted into an electrical 

signal. This is then sent to a signal conditioning unit in order to be amplified and split 

into AC and DC components. The AC signals are amplified and recorded using two 

signal recovery lock-in amplifier; one of them is used to measure the intensity I0 which 

represent the intensity reference of the incident light, whereas the other lock-in 

amplifier is used to either record the intensity, It, or the intensity, Ir, that represent the 

transmitted and reflected light, respectively. In addition, there is a set of mirrors and 

lenses that allows as much light as possible to be focused on the sample [35].  

An example of the absorption spectrum as a function of photon energy for a 

5% Fe2O3-doped In2O3 film grown on a sapphire substrate is illustrated in Figure 3.10, 

where the band gap energy, Eg, is estimated to be around 3.75 ± 0.01 eV. 
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The error in band gap values are calculated using the standard deviation of the 

mean of at least four readings; these are based on the number of points that are included 

in the extrapolated line. For example, if we have four readings taken from four 

extrapolated lines: Eg1, Eg2, Eg3, and Eg4 equal to 3.76, 3.76, 3.75 and 3.74, 

respectively, then the error in the band gap is ~ 0.01 eV. 

 

3.6.2      MAGNETIC CIRCULAR DICHROISM SPECTROSCOPY (MCD) 

MCD is one of the most sensitive techniques for the study of the effect that 

arises from the interaction between light and a magnetic material. This is obtained by 

measuring the properties of a circularly polarised light beam transmitted through the 

material [11, 36].  

 

3.6.2.1   Background Theory 

The propagation of a beam of light through a transparent medium is expressed 

by the refractive index, n. Hence, the refractive index of a medium is defined as the 

Figure 3.10: Absorption spectrum of 5% Fe2O3-doped In2O3 film grown on a sapphire substrate. 
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ratio of the velocity of light in vacuo, c, to the velocity of light in the medium, v, as 

follows: 

                                                               
v

c
  n                                                       (3.12). 

However, when light passes through an absorbing material, then the refractive index 

becomes a complex, n~ , which is given by: 

                                                             nn~ iκ                                                                   (3.13) 

where n is the real part and κ is the imaginary part, the latter being known as the 

extinction coefficient. 

There is a relationship between κ and the absorption coefficient. This 

relationship can be derived from the electric field, E, of a wave propagating through a 

medium in the z direction of the light, as follows:   

                                     E(z, t) = E
0 e i(kz –ωt)                                                              (3.14) 

where k  is the wavenumber of the light and ω is the angular frequency, these are then 

related to the refractive index through the equation: 

                                                      
c

nω
k

~
 = ( n iκ)

c

ω
                                        (3.15). 

By substituting this equation into the equation (3.14), it can be deduced that the wave 

decays exponentially in the medium. Then, the optical absorption coefficient previously 

defined in the equation (3.10) is given by: 

                                                        α = 
c

κ2
= 

λ

πκ4
                                              (3.16) 

where λ is the wavelength of the light in vacuo [34].  

Linearly polarised light consists of equal parts of left circularly polarised light 

(LCP) and right circularly polarised light (RCP), as shown in Figure 3.11 (a). Taking 

into account that these two states pass through a magnetic medium, the equation (3.13) 

is then rewritten as:  
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  κinn~                                                        (3.17) 

where the negative term is the LCP component, and the positive term is the RCP 

component [11, 37, 38]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The magneto-optic (MO) effect can be seen when the LCP and RCP parts are 

recombined after leaving the magnetic medium. This is because the LCP and RCP are 

absorbed differently, since their refractive indices are not equal (
  nn ~~ ). This results 

in relative changes in the phase and amplitude between the LCP and the RCP light, this 

is illustrated in Figure 3.11 (b). The rotation of angle θ and the change in the light 

intensity cause the light to be elliptically polarised [11]. In transmission, the phase lag 

and attenuation are different from left and right circularly polarised beams, so that they 

RCP LCP 

θF 

Ex 

Ey 

+ 

ε 

(b) 

Ex 

Ey 

+ 

(a) 

Figure 3.11: (a) Linearly polarised light made up of equal parts of LCP and RCP. (b) If these are unequal 

after being incident upon a sample in a magnetic field, the transmitted or reflected light will be elliptically 

polarised and rotated. Adapted from A. J. Behan PhD thesis [11]. 
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combine to give elliptically polarised light. The ellipticity and rotation of CP light 

results in the MO effects of the Faraday effect and MCD, respectively [39].  

FR effect is the difference in refractive indices between the LCP and RCP 

components, this is given by: 

                                                 θF = 
ωl

2c
(Δn) =

ωl

 2c
 (n+ - n-)                                       (3.18) 

The difference between the extinction coefficients κ− and κ+ gives rise to the 

LCP and RCP light to be differently absorbed at a frequency ω, where MCD is given: 

                                              MCD =
ωl

 2c
(Δκ) =

ωl

 2c
 (κ+ - κ-)                                    (3.19) 

Since the MCD is dependent on transitions at ω, it is non-zero if the medium 

is absorbing [11]. This makes it a very useful method to determine the structural 

magnetic state of the absorbing material. For this reason, the focus here will be on the 

MCD measurements [11, 35, 36].  

Both Faraday rotation and MCD depend linearly on thickness, they are given 

in radians and they are dimensionless. However, the apparatus measures the total 

Faraday rotation and MCD where it is useful to define the Faraday oration per unit 

thickness and MCD per unit thickness. Hence, in the observed data the thickness in the 

equations (3.18) and (3.19) are moved down to get Faraday rotation and MCD in 

degrees per centimetre.  

 

3.6.2.2   Experimental Setup 

The setup for measuring the MO effects is based upon the Sato method using 

Faraday geometry [41], as shown in Figure 3.12. The system is configured to 

simultaneously obtain measurements of the MCD and Faraday rotation of magnetic 

materials. In addition, using this method allows one to perform the MO measurements 

at different wavelengths across a wide region of the spectrum. 
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The sample is mounted on a sample holder which has an aperture diameter of 

about 3 mm to allow light to pass through it. In the case of RT measurements, the 

sample is placed directly between the poles of an electromagnet. This allows a magnetic 

field of up to 18000 Oe to be applied perpendicular to the sample plane. When the 

measurement is performed at low temperature, the sample is positioned in a cryostat. 

In this configuration, however, the electromagnetic poles need to be moved slightly 

further apart in order to accommodate the cryostat. This, in turn, results in decreasing 

the value of the magnetic field to ~ 10000 Oe.   

The setup uses a 150 watt Xenon lamp that covers the spectral range from 1.5 

to 4.5 eV. The light is aligned to pass through a SpectraPro-275 spectrometer in order 

to generate monochromatic light. Before the light beam passes through the sample, it 

must be plane polarised; this is achieved using a UV prism polariser.  
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Figure 3.12: Schematic diagram of magneto-optics setup in Faraday geometry. Adapted from A. J. Behan 

PhD thesis [11]. 
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At the sample, the light is focused to the same size of the aperture in the sample 

holder by using a series of mirrors in order to transmit as much light as possible through 

the sample. The positions of the mirrors need to be frequently optimised in order to 

ensure that the maximum amount of light passes through the sample. This is an 

important step as any errors in the alignment will cause some of the light beam to be 

scattered by the poles, which directly affects the sensitivity of the measurement.  

The polarised lighted is then transmitted through the sample onto a photo-

elastic modulator (PEM). This generates a modulation signal that is proportional to the 

rotation and ellipticity; this allows them to be measured simultaneously.  

The PEM working principle is based on the photo-elastic effect, where a 

sample exhibits birefringence when exposed to a stress. The device consists of a 

birefringent crystal of fused silica mounted on a piezoelectric transducer (vibrator) that 

oscillates at a certain resonant frequency.  

Hence, any stress applied to the piezoelectric transducer causes the fused silica 

to become birefringent, inducing a periodic retardation shift to one of the two elliptical 

polarised components of the transmitted beam. This periodic retardation is parallel to 

the vibration direction and is given by δ = δ0 sin (2πft), where δ0 and f represent the 

amplitude of the retardation and the modulation frequency, respectively. The vibration 

direction of the birefringent crystal is set at 45° with respect to the first polariser.  

After the light leaves the PEM, it passes through an analyser before it is focused 

onto a PMT detector. If the sample has a circular polarisation and MCD due to its 

magnetism, the transmitted light has components of 2f and f due to the oscillations in 

the light intensity. In this way, ellipticity and Faraday rotation can be measured by 

detecting the f and 2f components, respectively. If, however, the sample shows no MO 

effect, the light intensity at the detector will remain constant. 
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The PMT will then convert the light intensity into an electrical signal. After that, 

the signal is transferred to an amplifier unit, where it is amplified and split into AC and 

DC components. The DC component is measured using a Keithley voltmeter, and this 

signal is kept constant in order to be used as a reference intensity, I0. The AC 

measurements are taken using two lock-in amplifiers to obtain the intensities If and I2f 

that represent the MCD and Faraday rotation, respectively. 

MCD and Faraday rotation can be obtained through the measurements of the 

above three intensities. Based on Sato theory, these intensities are given by: 

                              2sin10 0001  JTII                                     (3.20) 

                                         0102 TJIfI                                                (3.21) 

                             2sin22 0203  TJIfI                                       (3.22) 

                                           22

2

1
  ttT                                                   (3.23) 

                                            22

  ttT                                                    (3.24) 

where I0 is the constant intensity,   is the analyser angle, Δθ represents the difference 

of rotation for the LCP and RCP components, t± are the Fresnel coefficients that 

describe the LCP and RCP components of the transmitted light. The J0, J1 and J2 are 

respectively the zeroth-, first-, and second-order Bessel functions.  

The Bessel functions are used to determine the retardation value that is set by 

the PEM, which was found to be 0.383, where the J0 is zero the J1 and J2 are near their 

maxima. This indicates that, when the retardation is set to the value of 0.383, the MO 

sensitivity is at its maximum while being insensitive to fluctuations in light intensity 

[42]. 
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The MCD, ε, and Faraday rotation, θF, can then be related to the previous 

intensities according to the Sato method as follows: 

                                                       TTε 
4

1
                                                    (3.25) 

                                                                                                          (3.26). 

The values of ΔT/T and Δθ can be measured experimentally since the ratios of (I2/I1) 

and (I3/I1) are related to the MCD and Faraday rotation, respectively. By setting  = 0, 

and when J0 = 0 and since Δθ << 1, the MCD and Faraday rotation are then given by: 

              
 

   
 

T

T
AJ

J

TTJ
A

I

fI 

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
 01

00
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2

2sin1)0(

)(





                   (3.27) 

              
   
   
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3 BJ
J

J
B

I

fI
θF             (3.28) 

where A and B, in the above expressions, are calibration factors [41]. 

The components of the MCD system are connected to a PC and run by 

LabVIEW® software. An example of room temperature MCD measurement of a 5% 

Fe2O3-doped In2O3 film deposited on a sapphire substrate is illustrated in Figure 3.13. 

θθF 
2

1



Figure 3.13: MCD measurements of 5% Fe2O3 doped In2O3 film deposited deposited on a sapphire substrate. 
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GdMnO3 grown on LSAT (100) and (111) 

4.1 INTRODUCTION  

Multiferroic rare-earth materials have received a large amount of interest due 

to their potential in spintronic applications since they simultaneously exhibit 

ferroelectric and magnetic ordering. Investigations into multiferroic materials started in 

the 1960s [1-6]. However, since 2001, research in this field has received much interest 

because these materials have been found to have complicated magnetic states and 

multiferroic properties at low temperatures [3, 4, 8].  

An earlier study of GMO thin film on STO substrates was limited by two 

factors: first, the strong absorption from STO above 3.2 eV prevents optical studies 

above this energy; and second, STO has a structural phase transition at around 110 K 

which provides birefringence, making magneto-optic measurements difficult [1]. These 

disadvantages, however, can be overcome using a LSAT substrate which has an energy 

gap of 4.9 eV; hence, absorption is much less than for STO and there is no structural 

transition [10]. LSAT has a slightly smaller lattice constant of 3.868 Å than STO which 

has a lattice constant of 3.905 Å. This makes LSAT a suitable substrate for growing a 

wide range of perovskite oxides with a reduced lattice mismatch and a relatively low 

strain  [11, 12].  

In this work, epitaxial films of GMO on LSAT (100) and (111) substrates have 

been investigated and compared with GMO on STO (100) substrate [1]. The different 

strains and orientation of the films on such substrates give rise to novel effects on the 

magnetic and optical properties of GMO thin films. The data, which will be presented 
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later in this chapter, have already been accepted for publication in the Journal of Thin 

Solid Films. 

4.2 LITERATURE REVIEW OF MANGANITES 

  Rare-earth manganites can be divided into two groups: a hexagonal phase 

(P63cm), including (R = Ho, Er, Tm, Yb, Y and Lu) which have a smaller ionic radii 

(r
R
); and an orthorhombic phase (Pbmn) with (R = La, Pr, Nd, Sm, Eu, Gd, Tb and Dy) 

which have larger ionic radii [4, 13, 14]. The boundary between these two groups exists 

between DyMnO3 and HoMnO3. For those compounds located close to the boundary 

of the orthorhombic phase, such as DyMnO3 and TbMnO3, there are structural phase 

transitions which have attracted many researchers [13-15]. Depending on the growth 

technique used, some hexagonal phase compounds can be formed into metastable 

orthorhombic phase and vice versa [16, 17]. 

Until recently, it has been rather difficult to control the ferroelectric and 

ferromagnetic properties of manganites directly. However, these properties can be 

coupled indirectly in multiferroic materials through strain [18]. The strain effect can be 

achieved in multiferroic materials when grown as thin films rather than bulk. Thus, 

manganite thin film fabrication plays a crucial role in achieving multiferroics with 

novel magnetic properties that can be used to develop multifunctional devices [5, 18]. 

Manganites exist among a class of materials well known as distorted 

perovskites. These materials have a general chemical formula of ABX3, in the form of 

the cubic structure shown in Figure 4.1, where A and B are cations and X is an anion. 

In a GMO compound, A, B, and X represent Gd3+, Mn3+ and O2-, respectively  [19-22]. 

In the crystal of manganite, the cations and anions generally tend to arrange themselves 

in a certain way to minimise the electrostatic repulsion effect. Such an arrangement of 
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ions is highly dependent on the atomic orbitals which, in turn, significantly affect 

manganite magnetic properties [23].  

 

 

 

GMO is an interesting multiferroic candidate; it has an orthorhombic distorted 

perovskite lattice structure with lattice parameters a = 5.310 Å, b = 5.840 Å, c = 7.430 

Å. GMO contains a Gd3+ ion which has a large spin moment, S = 7/2 and g = 2, and 

hence a large value of g[S(S+1)]1/2 as well as a Mn3+ ion, S = 2, in which the highest d 

state is singly occupied [7].  

Because the ground state of the Mn3+ ion has five degenerate partially occupied 

orbitals, the crystal tends to distort to lift the orbital degeneracy; this is a Jahn-Teller 

distortion [4, 24]. Since GMO has a structure that is affected by distortion, it is 

worthwhile discussing the local environment of octahedral crystals in terms of crystal 

field and Jahn-Teller distortion. 

In GMO, the electrostatic forces occur between the d orbitals of the Mn3+ (3d4) 

ions and the p orbitals of the O2- ions. The crystal field is then responsible for breaking 

Oxygen atoms 
 

 

 

Mn atoms 

 

Gd atom 

Figure 4.1: ABX3 cubic perovskite structure,  showing the presence of the BX6 octahedral site. 
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the degeneracy between orbitals. Thus, five different forms of d orbitals are divided 

into two levels: the eg level has dz2 and dx2−y2 orbitals, where dz2 points along the z- axis; 

and the t2g level has dxy, dxz and dyz orbitals which point between the x-, y- and z- axes. 

 In octahedral coordination, this splitting of d orbitals results in the eg levels 

being higher in energy than the t2g levels, as shown in Figure 4.2 [7].  

 

As a result, there is an energy difference, ∆, between the two sets of the d 

orbitals, as shown in Figure 4.3. This depends on several factors, including the 

geometry of the octahedron, the repulsion force between like ions, and the effect of 

Jahn-Teller [25].  

According to Hund’s first rule, all four spins of the Mn3+ ion must be parallel 

to one another; this results in the lower energy t2g levels being occupied by three 

electrons and the higher energy eg level is occupied by the remaining electron. 

Figure 4.2: Jahn-Teller distortion of a Mn3+ ion in the MnO6 octahedral environment [7]. 
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The distortion of MnO6 octahedra can occur via expanding the z-axis and 

compressing the x- and y-axes. Hence, the eg and t2g levels are split in energy and, as a 

consequence, the electron in the eg level occupies the lower energy level [7, 24, 25]. 

 

The ionic radius of the Gd3+ ion is in the region between La and Dy, which 

causes its physical properties to be sensitive to strain. In other words, decreasing the 

ionic radius gives rise to enhance the competition between different types of the 

magnetic interactions [26, 27]. 

Bulk crystalline GMO undergoes a phase transition to an incommensurate 

antiferromagnetic phase (ICAFM) at ~ 42 K and to a canted antiferromagnetic phase 

(CAFM) at ~ 23 K. A ferroelectric phase is induced at ~ 6.5 K by applying a magnetic 

field along the b axis; the phase boundaries depend on both the magnitude and direction 

of the magnetic field [26-28].  

Figure 4.3: d orbital splitting in an octahedral manganite [7]. 
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Multiferroicity in GMO thin films has been reported to be due to strain 

considering the relationship between the magnetic ordering and ferroelectricity. Since 

the ferroelectricity in the rare-earth manganites originates from the lattice modulation, 

then the multiferroic properties can be controlled by modifying the microstructure as a 

result of strain effect [5, 14]. The magnetic phase diagram of the orthorhombic 

manganites as a function of Mn-O-Mn bonding angle and ionic radius, as respectively 

shown in Figures 4.4 (a) and 4.4 (b), were studied by Kimura et al [27, 29]. 

 

In manganites, there is a proportional relationship between the Néel 

temperature and the ionic radius of the rare-earth element where the perovskite structure 

undergoes some deformation. For example, distortion of MnO6 octahedron is increased 

with reduction of the ionic radius, affecting the magnetic interaction. The ionic radii of 

the lattice sites in a perovskite structure are used to find the tolerance factor. This is an 

Figure 4.4: The orbital and spin ordering temperatures of RMnO3 as a function of (a) in-plane Mn-O-Mn 

bond angle [31] and (b) rare earth ionic radius [27, 29]. 
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important factor by which the degree of the deviations from the ideal cubic perovskite 

structure can be determined [30].  

The magnetoelectric transition in GMO can be understood with the help of two 

crucial aspects: 

1. Magnetic frustration which arises from competing super-exchange 

interactions between successive neighbours. This leads to destabilising ordinary 

ferromagnetic (FM) and antiferromagnetic (AFM) ordering, giving rise to 

complex magnetic orders. This phenomenon is responsible for delaying 

magnetic transitions down to low temperatures [8, 31]. In GMO, the magnetic 

frustration exists when the Gd cation is situated between four neighbours of 

Mn3+ ions with their spins up, and another four neighbours of Mn3+ ions with 

their spins down. In this case, the Gd spin is said to be frustrated since it has no 

order due to competing exchange interactions.   

2. The spin-lattice coupling that occurs when the oxygen atoms move away 

from the Mn-Mn bond, resulting in changing the magnetic exchange interaction 

between the Mn ions [29, 32]. Thus, one of the effects of strain on thin films is 

changing the microstructure, caused by lattice misfit between the film and 

substrate [15, 33].  

The magnetic phase diagram (H-T) as a function of temperature and magnetic 

field were obtained for a GMO bulk crystal [19, 28]. It has been reported that the H-T 

phases are field orientation dependent along the a, b and c axes.  

At TN  = 43 K, there is a transition primarily from paramagnetic (PM) to 

ICAFM phase involving the Mn electrons. Also, the transition from ICAFM phase to a 

canted A-type antiferromagnetic (cAFM) phase occurs between 16 and 23 K polarising 

the Gd 4f spins.  A transition to the ferroelectric phase (FE) takes place at TC = 12 K by 

applying a magnetic field along the b axis, these transitions are shown in Figure 4.5.  
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All the previous transitions rely on the intensity and direction of the external 

applied magnetic field. Thus, it should be mentioned that these transitions occurred 

with the application of an external magnetic field larger than 20000 Oe [9, 26, 29].  

 

In zero-field, however, there is a transition to a canted phase at about 18 K, 

and generally below 20 K a strong hysteresis can be clearly noticed, indicating that 

several phases can co-exist. On further cooling, the Gd spins order in a long-range at 

around 6.5 K which is due to the interaction of the 4f spins. Canted Gd spins have a 

ferromagnetic component that is antiparallel to the ferromagnetic component of the 

canted Mn spins [28]. 

Measurements of the ZFC/FC magnetisations of GMO nanoparticles were 

found to show three magnetic transitions, these are shown in Figure 4.6 [6]. There is a 

paramagnetic-antiferromagnetic transition that occurs at ~ 44 K; indicating the TN of 

the Mn magnetic moments in GMO.  

Figure 4.5: Phase diagram of bulk GMO for a magnetic field applied along the b axis.  Closed and 

open symbols are obtained by increasing and decreasing temperature or magnetic field, 

respectively. Shaded areas represent regions of strong hysteresis [9].  
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Decreasing the temperature to ~ 20 K increases magnetisation; this is due to 

the weak ferromagnetic contribution that arises from the canting Mn magnetic moments 

and the polarisation of the Gd 4f magnetic moments. At 7 K, as a result of the interaction 

between the Gd magnetic moments, a long-range ferromagnetic order takes place. This 

is larger than the antiferromagnetic order caused by the canted Mn magnetic moments. 

Similarly, it has been reported that the above transitions begin at temperatures 

of 42 and 39 K for GMO thin films grown on STO and LaAlO3 (LAO) substrates, 

respectively [34]. This indicates that the strain induced by the substrate on which the 

GMO is grown plays a significant role in reducing TN [35].  

It has been found that the optical and magnetic data of the GMO thin films 

differ from those of bulk GMO [24, 36, 37]. The differences have been attributed to the 

existence of a stress gradient normal to the film surface. Thus, the existing strain may 

induce a significant change in the Mn–O–Mn bond angle, which has a crucial effect on 

the balance between the competing ferromagnetic and antiferromagnetic interactions 

[1, 8]. It is believed that the strain-induced changes in the Mn–O–Mn bond angle give 

rise to the FM interactions to dominate more compared to the AFM interactions [36].  

Figure 4.6: ZFC/FC magnetisation of GMO nanoparticles measured in 100 Oe between 2 and 60 K [6]. 



Chapter 4 – GdMnO3 grown on LSAT (100) and (111) 

81 

 

Figure 4.7 shows the absorption coefficient spectra of a number of RE 

manganite thin films at room temperature. In general, these spectra exhibit an 

absorption peak near 2 eV and a higher absorption peak above 3 eV.  

 

 

The low energy transition around 2 eV is ascribed to the intersite d-d charge 

transfer transition (intersite transition across the Mott gap).  This gap arises because of 

Coulomb energy, occurring when an electron moves from the eg orbital of an atom into 

the eg orbital of another atom. Thus, the hopping energy will be at the expense of 

repulsion energy, and when the repulsive energy is bigger than the hopping energy, then 

a Mott gap is created [36]. It can be noted, however, that the 2 eV peak is supressed in 

the RMnO3 (R = La → Tb) films. This may be due to decreasing the ionic radii that 

give rise to increasing the Jahn-Teller distortion of the MnO6 octahedron [8, 36]. On 

the other hand, the high energy absorption peak around 3 eV is attributed to the charge 

transfer transition between O 2p and Mn 3d states [8, 27].  

Figure 4.7: Absorption spectra of different RMnO3 thin films measured at room temperature, showing 

suppressed transition peaks at 2 eV for Gd and Tb elements [8]. 
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4.3 SAMPLE PREPARATION  

              The GMO films were grown using RF magnetron sputtering from 

stoichiometric polycrystalline GMO targets by our collaborators V. Chichkov and N. 

Andreev from the National University of Science and Technology “MISiS”, Russia. 

Thin films of GMO were grown on LSAT (100) and (111) substrates. The films were 

grown in a mixture of Ar and O2 at a pressure of 1-2 mTorr and the substrate temperature 

was fixed at 650 ̊C. The thickness of each GMO film was 100 nm. The structures of the 

films were analysed using XRD and found to be grown epitaxially on LSAT (100) and 

(111) substrates.  

4.4 EXPERIMENTAL RESULTS  

The magnetic properties of the films were studied using a SQUID 

magnetometer at room temperature, 300 K, and low temperature, 5 K, to measure the 

hysteresis loops and the ZFC/FC magnetisation curves. These two types of 

measurements were made by applying the magnetic field in parallel and perpendicular 

directions to the plane of the GMO films.  

The absorption data were deduced from the transmission and reflection 

measurements made at room temperature. The films were studied using magneto-optic 

spectroscopy in Faraday geometry at room temperature and at 10 K using a Xenon lamp 

over the energy range between 1.5 eV and 3.8 eV [1].  

4.4.1 Properties of LSAT (100) and (111) Substrates 

              LSAT substrate has been used widely because it grows as an untwinned cubic 

perovskite with lattice parameter a
0
= 3.868 Å, which is an excellent lattice match to the 

manganites. Our substrates were obtained from Materials Technology International 
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corporation (MTI), both (100) and (111) substrates had thicknesses of 0.5 mm ± 0.05 

mm and were oriented to within ± 0.50; they were polished on both sides and had surface 

roughness Ra < 8 Å.  This study investigated the optical and magnetic properties of 

LSAT so that these effects were subtracted from our measurements of GMO films. 

LSAT is a substitutionally disordered oxide containing divalent Sr, trivalent 

La and Al, and pentavalent Ta [24]. The measured transmission of both LSAT 

substrates at 2 eV is  ~ 80 % which is comparable with the value expected from a smooth 

substrate, 
2

2

1

n
T

n



 = 0.79 using the refractive index of LSAT, which is 2.02 [20, 40]. 

In contrast, the transmission at 4.5 eV is ~ 40 % which is considerably less than that for 

transparent substrate T = 0.74, where the refractive index rises to 2.24. Thus, the loss 

of transmission at energies above 3.75 eV is clearly due to weak absorption, as shown 

in Figure 4.8 (a) [10].  

 

These transitions are very weak since the transmission was measured on a 

substrate that was 0.5 mm thick.  There is no difference between the results for the two  

LSAT substrates. The absorption of the GMO films on LSAT (100) and (111) substrates 

can be seen from Figure 4.8 (b). 
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Figure 4.8: Transmission spectra (a) for bare LSAT (100) and (111) and (b) for GMO films on the LSAT 

(100) and (111) substrates. 
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Many disordered oxides have small magnetic moments [41], so we needed to 

measure the magnetic properties of the substrates carefully so that the results could be 

subtracted from the measurements taken with the films.  
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Figure 4.9: (a) and (b) are the ZFC/FC measurements of blank LSAT (100) and   (111) substrates, 

respectively, with the applied magnetic field of 100 Oe, lying in plane.  (c) and (d) are  the hysteresis loops 

taken at 300 K for LSAT (100) and LSAT (111), respectively. (e) and (f) are equivalent hysteresis loops 

taken at a temperature of 5 K. 



Chapter 4 – GdMnO3 grown on LSAT (100) and (111) 

85 

 

The expected diamagnetic term dominated in the ZFC/FC magnetisations at 

high temperatures, M ~ -1.7×10-6 emu and was comparable for both substrates in both 

orientations. There was a paramagnetic contribution, as shown in Figures 4.9 (a) and 

4.9 (b), that dominates at low temperature and depends upon the orientation of the 

substrate and the direction of the applied magnetic field, being larger for the field 

perpendicular to the plane of the sample. 

M – H loops for LSAT (100) and LSAT (111) substrates, were measured at 300 

and 5 K with a magnetic field applied in the parallel and perpendicular directions, 

showing very small coercive fields for LSAT (111). The measurements taken with the 

field in plane are shown in Figures 4.9 (c - f).  These fields set the limit of what values 

can be measured for the films.  All these magnetic effects are very small and only 

significant in our study because the substrates were much thicker than the films [28, 41]. 

4.4.2 Structure of GMO on LSAT (100) and (111) Substrates 

            The structural properties were investigated using XRD. Detailed measurements 

were made for the film on LSAT (100) using CuKα radiation.  For the GMO film on 

LSAT (100) substrate, we found two dominant orientations: (a) (110)GMO || (100)LSAT; 

[001]GMO || [010]LSAT; and (b) (110)GMO || (100)LSAT, [001]GMO || [001]LSAT. Two other 

less frequent orientations were: (c) (001)GMO || (100)LSAT, [010]GMO || [010]LSAT; and (d) 

(001)GMO || (100)LSAT, [100]GMO || [010]LSAT. The separation of the (110) planes in 

structures (a) and (b) needs a small contraction of 1.5% to fit 100 3.868LSATd  Å according 

to

1/2
2 2

110

1 1
3.93GMOd

a b



    
           

Å, where a and b are the GMO lattice constants of 

5.310 Å and 5.840 Å, respectively.  An expansion of 4% and a smaller contraction of 

2% occur in plane as the GMO [001] and [110] axes respectively fit to LSAT [020] or 

[002] as given in Table 4.1. For cases (c) and (d), the misfit between the planes of GMO 
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(001) and LSAT (100) forces an expansion of 4% along [001] ( 001 7.430GMOd  Å and 2

100 7.736LSATd  Å), where the value 7.340 Å is the lattice constant of the GMO c axis. 

There are also contractions in the two in-plane lattice vectors GMO [010] and [100] of 

6% and 3%, respectively. Thus, the majority of the film has the plane aligned with the 

least strains, the results are summarised in Table 4.1. 

 

Table 4.1: The separations between planes and the strains induced along the in-plane 

axes by the epitaxial growth modes for GMO on LSAT (100) and LSAT (111). 

 

 

Description 

 

Spacing 

Misfit 

between 

planes 

 

In plane 

misfit 

 

In plane 

misfit 

GMO plane 

on LSAT 

(100) 

    

 

(110) 

1/2
2 2

1 1

a b



    
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     
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4% 
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(001) 
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4% 
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˗3% 
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(111) 
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1 1
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
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The crystal structures of LSAT (111) and GMO on LSAT (111) were studied 

using the XRD Bruker D2 Phaser using CuKαat the University of Sheffield. On the 

LSAT (111) substrate, the highest peak corresponds to the GMO (202) and GMO (022) 

reflections lying on the reflection from the (111) substrate as shown in Figure 4.10. The 

inset of the Figure 4.10 shows the magnified area around 40°. 

 

 

 

 

 

 

 

 

 

 

The separations of the (202) and (022) planes are given by; 

1/2
2 2

1 1 1

2 a c



    
    

     

=2.16 Å and 

1/2
2 2

1 1 1

2 c b



    
    

     

= 2.30 Å respectively, which 

need to be compared with the separation of the LSAT (111) planes of 
3

oa
= 2.23 Å; 

leading to a 3% expansion and a 3% contraction respectively, as can be seen in Table 

4.1. The two LSAT lattice vectors lying in plane are LSAT [11̅0] and LSAT [112̅] with 

lengths 02a = 5.47 Å and 06a = 9.47 Å, respectively.   
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Figure 4.10: Symmetrical spectra of LSAT and GMO on LSAT (111). The inset shows the details of  

the peak at ~ 40°.                                                                                                                                                                                                                                                                                                                
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The GMO lattice vectors are [010] and [101̅] with lengths 5.84 Å and 9.13 Å 

respectively, relevant for the GMO (101) plane; and [100] and [011̅] with lengths 5.31 

Å and 9.13 Å respectively, relevant for GMO (011).  The best fits for the GMO (101) 

plane are GMO [010] on LSAT [11̅0] and GMO [101̅]on LSAT [112̅]; and those for 

the GMO (011) plane are GMO [100] on LSAT [11̅0] and GMO [011̅] on LSAT [112̅].  

The strains, defined as: 100LSAT GMO

GMO

d d

d


 , are given in Table 4.1. 

4.4.3 Magnetic Properties       

 The magnetism of the GMO films was studied and the results compared with 

those obtained for bulk GMO and GMO/STO thin films to investigate the effects of the 

epitaxy induced strain. In bulk, there is a strong temperature dependent paramagnetic 

response along both the b and c axes and hysteretic magnetisation occurs along the b 

axis [31].  

We measured ZFC/FC magnetisations in a magnetic field of 100 Oe with the 

magnetic field in parallel and perpendicular to the plane of the GMO films on LSAT 

(100) and (111) substrates as shown in Figures 4.11 (a) and 4.11 (b). 

The ZFC/FC plots lie almost on top of each other for all temperatures, but for 

both films, a larger hysteresis appears for temperatures less than ~ 25 K. The 

magnetisation in plane is noticeably larger than that perpendicular to the plane for both 

films. The plots for the GMO film on LSAT (100) show a clear transition at ~ 25 K, 

however, the transition is more rounded for the GMO film on LSAT (111). 
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Hysteresis loops were also measured at low temperature, 5 K. The hysteresis 

loops showed two contributions: a part that varied linearly with the applied magnetic 

field at fields greater than 2500 Oe; and a part that showed hysteresis with the applied 

magnetic fields that are less than 2500 Oe. The data are shown in Figures 4.11. (c) and 

4.11 (d). The magnetic contributions from the LSAT substrates have been subtracted 

from all the measurements shown here. 

 

The different ordering of the films is seen clearly from the hysteresis loops, 

found after subtraction of the linear components from the substrates. In the loops for 

the GMO film on LSAT (100), the magnetisation and hysteresis are greater for the 
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Figure 4.11: The ZFC/FC plots taken in H = 100 Oe for the GMO films on (a) LSAT (100) and  (b) (111) 

substrates; (c) and (d) are the magnetic hysteresis loops taken at 5 K of the GMO films on LSAT (100) 

and  (111) substrates, respectively. In all cases, the magnetic field was applied in parallel and perpendicular 

directions and the magnetic contributions from all substrates have been subtracted. 
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magnetic field applied in plane. In bulk, the easy direction and the largest moment occur 

along the c-axis [19], and this direction lies in plane for the dominant orientation. The 

observed magnetisation of 0.26 (µ
B
/f.u.) for this film is much lower than that observed 

for a single crystal, 3.75 (µ
B
/f.u.), at 5 K [19, 27].   The coercive fields are 950 Oe and 

400 Oe for the GMO film on LSAT (100) measured in parallel and perpendicular 

magnetic fields, respectively, which compare with the bulk value of 1200 Oe [19, 42].  

Hence, the strain due to epitaxy on LSAT (100) leads to a considerable reduction in the 

magnetisation. This implies that the strains that develop in bulk material as a result of 

the canting have been suppressed by the epitaxy with the substrate [26]. 

There is almost no hysteretic behaviour for the Gd spins of the GMO film on 

LSAT (111) substrate. This is consistent with the antiferromagnetic θ, which will be 

shown later, observed for this film. Hence, the very considerable distortions described 

in section 4.4.2 have caused a qualitative change in the ordering of the Gd spins. 

The inverse susceptibilities found from the ZFC plots, as illustrated in Figures 

4.12 (a) and 4.12 (b), show two distinct regions in which the Curie law dependence is 

observed. These regions depend on the substrate and the orientation of the applied field 

of 100 Oe. In comparison to the GMO films that were grown on STO substrate, similar 

behaviour was reported; this is shown in Figure 4.12 (c).   

In the GMO films on LSAT substrates, a paramagnetic contribution above 30 

K arises from Mn as well as Gd ions; this contribution is given by Curie’s law 

high
high

high

C

T






 as seen in bulk for a single crystal and a polycrystalline powder where 

the measured value of
2 2 2( 1) ( 1)eff Gd Gd Gd Mn Mn Mnp g S S g S S     was close to the free ion 

value of 87 [1, 19, 42].  

 

 



Chapter 4 – GdMnO3 grown on LSAT (100) and (111) 

91 

 

 

There is a second region that is also well described by Curie’s law for                    

8 < T < 30 K where the Mn spins are canted but the Gd spins are still disordered,

low

low

C

T






, so that 

2 2 ( 1)eff Gd Gd Gdp g S S    63.  This region is shown in an expanded 

scale in the insets of Figures 4.12 (a), 4.12 (b) and 4.12 (c). 

The measured values of 
2

effp and for the GMO films on LSAT (100) and 

(111) substrates in the high and low temperature regimes are given in Table 4.2 where 

it is seen that the observed values of 
2

effp  for the GMO film on LSAT (100) are close to 

those expected for free spins; however, those for the GMO film on LSAT (111) are 

systematically low.   
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Figure 4.12: (a) The inverse susceptibility obtained 

from the ZFC measurements of GMO on LSAT 

(100) and (b) GMO on LSAT (111), where the 

magnetic field was applied in parallel and 

perpendicular to the sample; the effects of substrates 

have been subtracted. The insets in (a) and (b) show 

the low temperature regions. (c) The inverse 

susceptibility of the GMO on STO (100) .  
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Table 4.2: The measured effective moments and Weiss constants of GMO on LSAT 

(100), LSAT (111) and STO (100) in the high and low temperature regimes. 

 

 

The values of   found in the high temperature range are close to ~ 50 K, 

larger than the 35 K observed in bulk [41].  The ferromagnetic value of low for the 

GMO film on LSAT (100) corresponds to the ordering of the Gd spins observed in bulk 

at ~ 7 K and appears to be occurring at a slightly higher temperature ~ 11 K. However, 

different behaviour is seen for the GMO film on LSAT (111) where low is positive, 

implying that the change in the interactions due to the strain causes the Gd spins to 

order antiferromagnetically. 

4.4.4 Optical Properties 

Using a LSAT substrate allows measurements over a larger spectral range up 

to 4.5 eV, compared with 3.2 eV for STO. The absorption spectrum of GMO starts to 

appear with a small peak the energy of ~ 1.75 eV and rises approximately linearly to ~ 

2.5 eV, and then linearly again with an increased slope up to 3.5 eV. The absorption at 

higher energy is due to the charge transfer transition from O 2p to Mn 3d [1, 43].  

 

Sample 
GMO/LSAT(100) GMO/LSAT(111) GMO/STO(100) 

H 

parallel 
H 

perpendicular 
H  

parallel 
H 

perpendicular 
H  

parallel 

2

)(higheffp  

(Gd+Mn) 

 

84±5 
 

76±5 
 

71±7 
 

65±10 
 

76±10 

2

)(loweffp  

(Gd) 

 

68±7 
 

68±7 
 

52±10 
 

46±10 
 

45±10 

 

θ
high

 
 

42 ± 5 
 

78 ± 5 
 

47 ± 5 
 

51 ± 5 
 

43±5 

 

θ
low

 
 

-12 ± 2 
 

-11 ± 2 
 

6 ± 2 
         

          8± 2 
 

8 ± 2 
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The transmission spectra of blank LSAT (100) and (111), in addition to GMO 

on LSAT (100) and GMO on LSAT (111), were obtained to determine the effect of the 

absorption of LSAT substrates on the GMO films, as shown in Figure 4.13. 

  

The origin of the absorption peak observed for RMnO3 (R = La – Tb) thin 

films near 2 eV in the previously presented Figure 4.7 has been debated for a long time. 

However, it was found that this peak should be attributed to an inter-site transition 

between the Mn eg orbitals across the Mott gap [8].  

The optical absorption agrees with measurements on bulk GMO because the 

absorption rises approximately linearly with energy up to E ~ 2.5 eV and then more 

rapidly at higher energy. The absorption at energy above 3 eV is attributed to the charge 

transfer transition from O 2p to Mn 3d states [45, 46]. 

4.4.5 Magneto-Optical Properties 

 MCD measurements were taken in Faraday geometry using a Xe lamp and 

a photoelastic modulator [47, 48]. Results for GMO on LSAT (100) and LSAT (111) , 
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Figure 4.13:  Absorption measurements of GMO on LSAT (100) and GMO on LSAT (111) in 

the range 1.75 < E < 3.5 eV; the inset shows the absorption in the range 3.5 < E < 4.5 eV. 
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measure at 10 and 300 K, are shown in Figure 4.14 (a), where the MCD of the substrate 

has been subtracted. 

           

We found that the MCD for the two films were very similar in spite of the 

differences in their magnetic properties. The spectra have two features: the charge 

transfer transition between Mn d states at ~ 2 eV; and the band edge transition from the 

oxygen p band to the Mn d states at ~ 3 eV [1, 4, 6, 43].  

It can be clearly seen that the MCD is much larger at 10 K where the Mn spins 

are ordered.  In Figure 4.14 (b), we compare the spectrum taken at 10 K with that taken 

at 300 K, scaled so the curves have a similar magnitude to compare the spectral shapes.  

This indicates that the main effect is just a change in magnitude due to the magnetic 

ordering, but that there is a small increase in the MCD magnitude measured at 10 K 

between 2 and 3 eV, implying that this might be due to a slight increase in the Jahn-

Teller splitting at low temperatures.   
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Figure 4.14: (a) MCD spectra of GMO on LSAT (100) and GMO on LSAT (111) at 10 K and 300 K; (b) 

MCD spectra of GMO on LSAT (100) and GMO on LSAT (111) at 10 K and 300 K where the MCD data 

at 300 K have been expanded just to be comparable to the 5 K data. The effects of substrates have been 

subtracted. 
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4.5 SUMMARY AND CONCLUSIONS 

          The strain of the GMO films due to LSAT (100) and (111) substrates causes 

substantial differences in the magnetic properties of multiferroic GMO thin films. The 

magnetic moment obtained in the range of 0.2 µ
B
 is due to the canted moments of Mn 

as the magnetic moment of Mn3+ ion is 4 µ
B
. The canting of the Mn moments is 

enhanced and a strong easy plane anisotropy is induced by the strain caused by the 

LSAT (100) that is larger than that induced by STO (100) due to the extra compressive 

strain in plane along the b axis.  

Using LSAT (100) and (111) allows us to make measurements over a larger 

spectral range above 3.25 eV compared to STO (100), because the STO is absorbing 

more strongly than the LSAT substrates for E > 3.2 eV.  

The in-plane compression of the GMO film grown on LSAT (100) strongly 

enhances the inter-site transition between Mn ions and produces a large enhancement 

of the MCD around 2 eV relative to the GMO films grown on STO (100).  In contrast, 

the MCD is suppressed for the GMO film grown on LSAT (111). Absorptions at lower 

energy originate from the Mn (3d) electron transition, while the absorption at higher 

energy is associated with the charge-transfer transitions between O (2p) and Mn (3d) 

states. Large changes may be induced in GMO by growing thin epitaxial films on 

suitably chosen substrates. In particular, a marked enhancement of the saturation 

magnetisation and the coercive field may be obtained by growing on LSAT (100). 
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Mg-Doped ZnO 

5.1 INTRODUCTION 

 ZnO as a semiconductor has received a great deal of research attention due to its 

wide direct band gap of approximately 3.37 eV, a large exciton binding energy of 60 meV 

at room temperature and high optical transmission in the visible range. In addition, this 

material has reliable structural, optical and magnetic properties that allow it to be widely 

used in electronic devices [1-5].  

MgO has a wide band gap of ~ 7.8 eV; thus, the bandgap of ZnO can be widened 

by doping with MgO.  Unlike the TM, magnesium (Mg) has no local moment, thus the 

ZnMgO belongs to a class of materials called d0 magnetic materials. The magnetism of d0 

materials generally arises from defects such as oxygen vacancies, Mg vacancies and Zn 

vacancies [7-11].  

The aim of this work is to understand how the magnetism of the ZnMgO system 

can be controlled and whether there is any correlation between the magnetism and band 

gap increase. For this purpose, a comprehensive investigation of the optical and magnetic 

properties of ZnMgO thin films was made using different substrates, varied deposition 

times (film thickness), different oxygen partial pressures and different growth techniques; 

all these will be discussed in detail below. 
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5.2 LITERATURE REVIEW OF ZnO AND Mg-Doped ZnO 

The ionic radius of the Mg2+ is 0.57 Å; this is very close to that of Zn2+ which is 

0.6 Å. Therefore, substitution of Zn2+ by Mg2+ does not result in a significant change in 

the lattice constants [12, 13].  

Zn
1–x

Mg
x
O is a solid solution that consists of ZnO and MgO, which have different 

crystal structures. ZnO has a wurtzite hexagonal structure with a and c lattice constants of 

3.25 Å and 5.20 Å, respectively, whereas MgO has a cubic structure with a lattice constant 

of 4.24 Å [14]. Zn
1–x

Mg
x
O, however, has the hexagonal (wurtzite) structure for x < 0.33 

and the cubic structure for x > 0.5 and a mixed phase for 0.33 < x < 0.5, as shown in Figure 

5.1 [9-14]. 

 

The incorporation of Mg into ZnO has been widely found to shift the 

absorption band edge of the ZnMgO towards higher energy side.  This can be seen from 

Figure 5.2 which illustrates the expansion of the band gap of ZnO thin film from                

~ 3.3 eV to ~ 3.4 eV for ZnMgO thin film [15-19].  

Figure 5.1: Schematic diagram showing the crystal structures of pure ZnO, MgO and Zn
1–x

Mg
x
O [9]. 
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Shifting the band gap of ZnMgO thin films may result from several complex 

factors such as the variation of Mg content, changing the lattice constant, the 

concentration of defects, tensile or compressive strain, and the Moss-Burstein effect [9, 

15, 16]. According to the Moss-Burstein effect, since all states close to the conduction 

band are occupied, the oxygen vacancies give rise to an increase in the carrier 

concentration and hence the band gap increases [9]. 

The oxygen pressure has been found to strongly affect the amount of ablated 

species that arrive at the substrate using the PLD technique. Thus, increasing the oxygen 

pressure during the growth of thin films leads to a decreasing amount of Mg occupying 

the ZnO lattice; giving rise to the reduction of the band gap of ZnMgO. The Mg content 

is reduced because the Mg atoms are lighter than the Zn atoms; thus a higher scattering 

with ambient oxygen results in a lower concentration of Mg atoms in the plume, and 

therefore in the films grown at higher oxygen pressure [20, 21].  

In addition, increasing the gas pressure during the growth using the PLD 

technique leads to a decrease in the deposition rate; this is because the mean free path 

of the target species decreases due to collision with gas atoms [22]. This behaviour has 

Figure 5.2: The difference between the band gaps of pure ZnO and Mg-doped ZnO [20]. 
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also been found in the case of ZnMgO thin films grown by RF/DC sputtering deposited 

under different gas pressures. For example, increasing the growth pressure from  

7.5×10-3 to 6.5×10-2 Torr was found to lead to a reduction in the deposition rate from 

4.5 to 2.06 nm/min, respectively [23].  

5.2.1 DEPENDENCE ON FILM THICKNESS 

Different thicknesses of ZnMgO thin films can influence the structural, optical 

and magnetic properties of the ZnMgO. It is well known that the thickness of thin films 

is generally controlled by the duration of deposition, so the longer the deposition time, 

the thicker the thin film will be. Thickness of ZnMgO thin films can also be varied via 

gas pressure, where thicker films can be produced at low oxygen pressure, and vice 

versa [22, 23].                                                                                                

The crystallinity has been found to improve with increase in the thickness of 

ZnMgO thin film as a result of the strain reduction; thicker films exhibit improved 

crystallinity and have less defects and grain boundaries compared with thinner films 

[24-26].                                                                                                                                       

XRD measurements have revealed that the increment in thickness is 

responsible for shifting the diffraction peaks to higher angles, as a result of reduced 

strain [24, 27]. Thus, increasing the film thickness of ZnMgO thin films has been found 

to increase the band gap energy due to decreasing strain [24]. The band gap of ZnMgO 

thin films has been reported to increase to ~ 4 eV as a function of thickness; suggesting 

that the band gap of ZnMgO is controllable by varying film thickness [27, 28].  

The variation of the thickness of ZnMgO thin films can also influence the 

magnetic properties. It has been found that Ms increases first with increasing the 

thickness of the thin film and then decreases. This involves a change in the 
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concentration of Mg vacancies where vacancies increase at first in thinner films and 

then decrease when the films become thicker. Hence, the initial room temperature 

ferromagnetism (RTFM) can be ascribed to the existence of cation vacancies 

surrounding ZnO. Similar behaviour has been confirmed theoretically by Bahoosh et 

al. for Mg doped ZnO thin films in which thinner films display higher magnetisation 

compared to thicker ones [29, 30]. 

5.2.2 DEPENDENCE ON GAS PRESSURE  

The existence of gas in the deposition chamber disturbs the kinetic energy of 

the ablated materials as they collide with species from the background gas. This effect 

gives rise to different density and morphology in the deposited films compared to those 

grown at base pressure. The deposition of ZnMgO under different oxygen partial 

pressures (PO2
) has been found to cause variations in the structural, optical and magnetic 

properties [31-33].  

Chen et al. investigated the ZnMgO thin films grown by sputtering on glass 

substrates at different gas pressures. The gas contained a mixture of Ar and O2 with 

O2:Ar ratios of 10:10, 15:10 and 20:10; as a result, the band gap decreased respectively 

from 3.39, 3.38 to 3.37 eV when the PO2 
ratio was increased [34]. Shifting the band gap 

towards the red region of the spectrum (narrowing the band gap) with the increase of 

oxygen partial pressure may be attributed to a decrease in carrier concentration 

(Burstein-Moss effect) [35-37].  

RTFM has been observed in ZnMgO thin films, where there is a relationship 

between the RTFM and oxygen partial pressure [38, 39]; the observed magnetism has 

been reported to arise from the presence of intrinsic defects such as Zn and Mg 

vacancies [34]. This has been reported theoretically and experimentally in the literature. 

The increase in oxygen partial pressure has been found to increase Zn and Mg 
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vacancies, consequently enhancing the magnetisation. However, further increase of the 

oxygen partial pressure may lead to the formation of oxygen-related defects, such as 

interstitial oxygen and oxygen antisites that result in reducing the number of Mg 

vacancies, thereby lowering the magnetisation of the system [40-42].  

5.2.3 DEPENDENCE ON SUBSTRATE TYPE 

Using different substrates to grow thin films has been widely reported to 

investigate the effect of substrate type on several properties. The discussion below will 

mainly focus on quartz, glass and sapphire substrates and their effects on crystallinity, 

band gap and magnetic properties of ZnO and ZnMgO thin films.  

Growth of ZnMgO thin films on glass, quartz and sapphire substrates has been 

reported to understand the affect the grain size. This, in turn, causes more interstitial 

Mg atoms at boundaries as a result of the small grain size of the films grown on glass 

and quartz substrates compared to those grown on a sapphire substrate. Depending on 

crystallinity and the mismatch between the film and substrate, defects and strain can be 

introduced, thereby influencing the magnetic properties of ZnMgO thin films. Based 

on the lattice mismatch, ZnMgO films grown on sapphire have shown a lower mismatch 

compared to films grown on glass and quartz substrates [46, 47]. A number of 

researchers have preferred c-cut sapphire substrates for preparing both undoped and 

doped ZnO thin films. This is because of the relatively low mismatch of ~ 2% between 

the film and the sapphire substrates compared to large lattice mismatches for other 

substrates [45-49].  

The band gap values of ZnMgO films on glass and quartz substrates have been 

found to be ~ 3.56 eV; that is larger than that of pure ZnO. ZnMgO thin film grown on 

a sapphire substrate, however, has been found to have a band gap of ~ 3.61 eV [43-45].  
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The magnetic behaviour of ZnO thin films has been reported to show a 

correlation with the substrate. The films deposited on sapphire substrates have been 

found to display a higher ferromagnetic behaviour in comparison with those grown on 

glass and quartz, and this might be attributed to the comparatively better quality of the 

films grown on sapphire substrates [50].  

5.3 SAMPLE PREPARATION  

ZnMgO thin films were deposited on silicon, glass, quartz and sapphire 

substrates under different deposition times and oxygen pressures using sputtering and 

PLD techniques. The main objective of this chapter is to investigate the optical and 

magnetic properties of ZnMgO thin films, understanding the origin of ferromagnetism 

and any possible correlation between the band gap and magnetism.  

The present work is a collaboration project carried out between the research 

group led by Prof K. V. Rao at KTH, Royal Institute of Technology, Stockholm, 

Sweden, and our magnetic oxides group led by Prof. Gillian Gehring. The main work 

of the KTH included: making the targets, growing thin films and performing the 

structural studies; whereas the optical and magnetic measurements were made at the 

University of Sheffield. So far, this project has produced some interesting results: the 

data for ZnMgO films on Si and glass substrates deposited by sputtering have already 

been published in Materials Research Society Symposium Proceedings [51, 52].  

Four sets of ZnMgO films were prepared: the first and second sets were 

deposited by DC/RF magnetron sputtering on Si and glass substrates. The first group 

was grown as a function of deposition time while the second group was deposited as a 

function of oxygen partial pressure. The ZnMgO films were deposited by co-sputtering 
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pure Mg (99.99%) and Zn (99.99%) targets with 10 W direct current (DC) power on 

the Mg target, while radio frequency (RF) power on the Zn target was 50 W. 

Before deposition, for the first group, the growth chamber was evacuated to a 

base pressure of ~ 7.5×10
−6

 Torr, and then backfilled with a mixture of argon and 

oxygen gases (Ar+O2). In the second group, the deposition chamber was backfilled with 

a mixture of nitrogen and oxygen (N2+O2).  

In both groups, the total pressure was kept at 1.13×10
-3 Torr. For the ZnMgO 

films deposited as a function of deposition time (first group), the oxygen partial 

pressure was maintained at 1.13×10
-4 Torr while the films were grown at different 

deposition times. For the ZnMgO films deposited as a function of oxygen pressure 

(second group), the deposition time was fixed at 60 mins while the oxygen pressure 

was varied.  

It should be mentioned that the sputtering efficiency of nitrogen is lower than 

that of argon; this directly affects the thickness of the ZnMgO films [53]. Thus, the 

films deposited in (Ar+O2) environment were thicker than those deposited in an 

environment of (N2+O2), as seen in Table (5.1). 

The third and fourth groups of ZnMgO films were deposited using PLD 

technique on Si, glass, quartz and sapphire substrates as a function of deposition time 

and oxygen pressure, respectively. The Zn
1-x

Mg
x
O (x = 5%) target was prepared using 

a ceramic method from stoichiometric ZnO (99.99 %) and MgO (99.99 %) powders. 

The target had a diameter of ~ 13.8 mm and was 5.2 mm thick. The target was sintered 

at 600 
o
C and 700 

o
C for 1 hour, and finally sintered at 900 

o
C for 4 hours.  

In the PLD method, the Nd:YAG laser was operated at a wavelength of 355 

nm with a pulse duration of 30 ns at a repetition rate of 10 Hz and with an energy density 

of 100 mJ/pulse. The laser beam was focused on to the target with a lens of 45 cm focal 
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length and at an incidence angle of 45°. The distance between the target and substrate 

was kept constant at 5 cm throughout the deposition process. During the growth 

process, the target holder was kept rotating at a suitable speed in order to avoid target 

drilling.  

Based on the above-mentioned two deposition methods, Table (5.1) shows the 

growth conditions for the first and second groups of ZnMgO films deposited using 

sputtering technique; Table (5.2) shows the growth conditions for the third and fourth 

groups of ZnMgO films deposited by PLD technique.  

It is noteworthy that an important aspect of this project is the comparison of 

the structural, optical and magnetic properties of ZnMgO thin films deposited by 

sputtering and PLD techniques. As noted above, although the growth conditions 

differed from one group to another, a couple of films were deposited under similar 

conditions. These films are highlighted and presented in bold in the following tables: 
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Table 5.1: Summary of the growth conditions for the ZnMgO films grown using 

sputtering technique. The two films highlighted and marked in bold were deposited 

under the same nominal conditions. 

 

 

 

 

Group I - as a function of deposition time 

 

 

Substrates 

 

Time 

(mins) 

 

Oxygen partial pressure 

(Torr) 

Total pressure (Ar+O2) = 

1.13×10-3 (Torr) 

 

Thickness 

(nm) 

 

Mg concentration 

from EDS 

measurements (%) 

Si and glass 30 1.13×10-4 40 6 

Si and glass 60 1.13×10-4 80 6 

Si and glass 90 1.13×10-4 120 6.1 

Si and glass 120 1.13×10-4 160 6 

Si and glass 150 1.13×10-4 200 6 

Si and glass 180 1.13×10-4 240 6.8 

 

Group II - as a function of oxygen partial pressure 

 

 

Substrates 

 

Time 

(mins) 

 

Oxygen partial pressure 

(Torr) 

Total pressure (N2+O2) = 

1.13×10-3 Torr 

 

Thickness 

(nm) 

 

Mg concentration 

from EDS 

measurements (%) 

Si and glass  60 5% = 0.56×10-4 61.4 18 

Si and glass 60 10% = 1.13×10-4 51.6 16 

Si and glass 60 15% = 1.68×10-4 41.6 17 

Si and glass 60 20% = 2.24×10-4 31.7 10 
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Table 5.2: Summary of the growth conditions for the ZnMgO films deposited using 

PLD technique. The two films highlighted and marked in bold were deposited under 

the same nominal conditions. 

 

 

 

Group III - as a function of deposition time 

 

Substrate 

Time 

(mins) 

Oxygen pressure  

(Torr) 

Thickness 

(nm) 

  

Mg concentration from 

EDS measurements 

(%) 

Si, glass, 

quartz and 

sapphire 

 

10 

 

15×10-3 

 

55 

 

… 

Si, glass, 

quartz and 

sapphire 

 

20 

 

15×10-3 

 

111 

 

… 

 

Si, glass, 

quartz and 

sapphire 

 

30 

 

15×10-3 

 

166 

 

10.6 

Si, glass, 

quartz and 

sapphire 

 

40 

 

15×10-3 

 

221 

 

11 

 

Group IV -  as a function of oxygen pressure 

 

Substrate 

Time 

(mins) 

Oxygen pressure 

 (Torr) 

Thickness 

(nm) 

 

Mg concentration from 

EDS measurements 

(%) 

Si, glass, 

quartz and 

sapphire 

 

30 

 

6.75×10-3 

 

228 

 

10.2 

Si, glass, 

quartz and 

sapphire 

 

30 

 

15×10-3 

 

176 

 

10.6 

Si, glass, 

quartz and 

sapphire  

 

30 

 

37.5×10-3 

 

131 

 

9.9 

Si, glass, 

quartz and 

sapphire 

 

30 

 

75×10-3 

 

126 

 

9.5 

Si, glass, 

quartz and 

sapphire 

 

30 

 

112.5×10-3 

 

105 

 

8.9 
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5.4 EXPERIMENTAL RESULTS  

Only the ZnMgO films deposited on Si substrates were used to obtain film 

thickness using FIB coupled with SEM. The error in thickness measurements were 

estimated to be ~ 5% due to the limitations in the SEM resolution. The Si substrate was 

preferred because, for a precise optimal analysis, the substrate should be conducting or 

at least semi-conducting, otherwise charges will be encountered. The compositions of 

ZnMgO films were determined by EDS. 

Room temperature optical and magnetic measurements were taken on the 

ZnMgO films deposited on glass, quartz and sapphire substrates for all the previous 

four groups. The band gap of the ZnMgO films deposited on Si substrate was not 

obtainable because the silicon band gap is ~ 1.1 eV, whereas the measurements were 

taken in the region of 1.75 – 4.5 eV where the band gap of ZnO is ~ 3.37 eV. This 

means that in this spectral region the ZnMgO films deposited on Si substrates are totally 

opaque and therefore cannot be studied. 

The characteristics of the ZnMgO films grown using the sputtering technique 

will be investigated first, followed by the films grown using PLD technique. 

 

 SPUTTERED ZnMgO FILMS 

The structural, optical and magnetic properties of the sputtered ZnMgO films 

grown under different conditions (groups I and II) are presented and discussed below. 

Although FIB and EDS analyses were performed for all ten samples in both groups, 

showing all the structural data for all films is difficult. Thus, only the FIB and EDS data 

for one sample of those deposited on Si substrate will be shown here as an example. 
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5.4.1.1 Structural Properties 

A typical cross section of a ZnMgO film grown on Si substrate was measured 

by FIB technique, as shown in Figure 5.3. This film was deposited for 90 mins under 

an oxygen partial pressure of 1.13×10-4 Torr. The measurement shows a homogeneous 

growth of the film; film thickness was found to be in the range of ~ 120 nm. 

 

 

The EDS spectrum of the ZnMgO film grown on a Si substrate for 90 mins 

under an oxygen partial pressure of 1.13×10-4 Torr is shown in Figure 5.4.  

 

 

Figure 5.3: Cross-section measurement of ZnMgO film deposited by sputtering on a Si substrate for 90 

mins at an oxygen partial pressure of 1.13×10-4 Torr where the film thickness can be measured [52].  

Si substrate  

Figure 5.4: EDS spectrum of the ZnMgO film deposited on a Si substrate for 90 mins at an oxygen 

partial pressure of 1.13×10-4 Torr [52]. 
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EDS measurements of all the sputtered ZnMgO films showed only the 

existence of the Mg, Zn and O elements, meaning that there were no metallic 

contaminants in the samples within the detection limits of the EDS. The percentages of 

the detected Mg, Zn and O elements are seen in the inset of the Figure 5.4. Thus, the 

ratio of Mg to Zn is 0.065; implying that 6.1% is substitutional of Mg to Zn in the       

Zn
1-x

Mg
x
O matrix. The high oxygen concentration, however, may be from the oxygen 

in the Si substrate as it has a layer of SiO2 on its top surface.  

The concentration of Mg in the films deposited as a function of time was found 

to be in the range from 6 to 6.8 %; for the films deposited as a function of oxygen partial 

pressure it was found to vary from 18 to 10 % with increasing the oxygen partial 

pressure from 5 to 20%. Decreasing the Mg concentration in the ZnMgO films with the 

increase in the oxygen partial pressure may be attributed to the scattering effect. This 

is because under low oxygen pressure the ejected species from the target experience 

fewer collisions with the atoms of the sputtering gas. Thus, the deposition rate is higher 

for the films deposited under low oxygen pressure, and vice versa [21, 23].  

5.4.1.2 Optical Properties 

The optical transmission and reflection measurements were carried out on all 

sputtered ZnMgO films, except the ones grown on Si substrates. From these 

measurements, the absorption was then deduced using Tauc plot to determine the band 

gap for each film. Typical absorption data from the ZnMgO film deposited on a glass 

substrate are shown in Figure 5.5.  This plot is shown to indicate how the Eg values of 

the ZnMgO films, shown in this section, were found. The data are cut at 4 eV because 

above this energy the glass substrate is absorbing sufficiently. 
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As a result of Mg doping, all the sputtered ZnMgO films showed an increase 

in Eg values compared to that of pure ZnO. However, the magnitude of this increase 

was influenced by the variation of film thickness, and oxygen pressure [51, 52].  

 

Figures 5.6 (a) and 5.6 (b) show the band gap of the ZnMgO films deposited 

on glass substrate as a function of thickness and oxygen partial pressure, respectively.  
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Figure 5.6: The band gap of sputtered ZnMgO films on glass substrate as a function of (a) thickness and (b) 

oxygen partial pressure. The two samples circled in blue are similar but with small different values of Eg; the 

sample in (a) was sputtered with (Ar+O2), whereas the sample in (b) was sputtered with (N2+O2). 
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Figure 5.5: A typical optical absorption spectrum of the ZnMgO film deposited on a sapphire substrate 

deposited by sputtering technique. 
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Increasing the deposition time results directly in an increase of film thickness. 

Thus, the change in the band gap is shown and studied as a function of film thickness, 

as in Figure 5.8 (a). Increasing the oxygen content, however, leads to a reduction in 

thickness if deposition time is held constant, as shown in Table (5.1).  

Two samples were grown under nominally identical conditions; the Eg values 

of these samples are circled in blue in Figures 5.8 (a) and 5.8 (b). However, the small 

difference between the two values of Eg may be due to the ambient atmosphere effect, 

where the sample in the Figure 5.8 (a) was sputtered with (Ar+O2), while the sample in 

the Figure 5.8 (b) was sputtered with (N2+O2).  

It can be noted that as the thickness increases, the Eg decreases: first from 3.53 

to 3.51 eV; and then increases to 3.55 eV. The initial reduction in the value of Eg with 

increasing thickness might be due to the high strain produced in relatively thin films. 

However, increasing Eg with increasing thickness may be ascribed to the compressive 

strain shifting the energy band gap to higher values [52].  

The variation of Eg with oxygen partial pressure might be due to the Mg 

concentration that was found to be higher at low oxygen partial pressure, and vice versa 

[21, 23]. Thus, increasing the oxygen pressure leads to a reduction in the Mg 

concentration and, therefore, decreases the Eg value. In addition, the reduction in the 

value of Eg at high oxygen partial pressure could be due to the expansion of the lattice 

constant that increases with increasing oxygen pressure [16]. 

The Eg has been found to depend weakly on film thickness but strongly on 

oxygen pressure. This can be seen from the large variation of Eg with oxygen pressure, 

compared to that with film thickness. 
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5.4.1.3 Magnetic Properties  

Magnetic loops of all the sputtered ZnMgO films grown on glass substrates 

were measured at 300 K. A typical hysteresis loop of one of these samples is shown in 

Figure 5.7. The magnetisation saturation and coercivity can be determined from this 

plot. Thus, the value of (Hc ≈ 0 Oe) indicates that the ZnMgO belongs to d0 materials.  

 

Variation of Ms, with thickness and oxygen pressure were observed. Figure 5.8 

(a) shows the thickness-dependent data where there is an initial increase of the Ms with 

increasing film thickness, and then a decrease with increasing the thickness further. 

The Ms increases initially with increasing thickness until reaching its 

maximum value of ~ 13 emu/cm3 at the thickness of 120 nm. This behaviour may be 

attributed to the cation defects, such as magnesium vacancies and zinc vacancies, 

oxygen vacancies and strain effects since they are high in low thickness films [51, 52].  

 Beyond the film thickness of 120 nm, the concentration of cation defects 

and strain starts to decrease, resulting in decreasing the Ms to nearly zero for thick films; 

corresponding to that of the bulk material [54]. 

Figure 5.7: A typical hysteresis loop measured at 300 K of a ZnMgO film on a glass substrate 

grown by sputtering. The diamagnetic contribution from the glass substrate has been subtracted. 
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Figure 5.8 (b) shows that increasing the oxygen pressure causes an increase in 

the Ms; this is possibly due to Mg and Zn vacancies but not due to the oxygen vacancies. 

However, at high oxygen pressure, all vacancies disappear; this leads to a decrease in 

the Ms [30, 42, 55]. 

Figures 5.8 (a) and 5.8 (b) show the Ms values for the two samples that were 

grown under the same nominal conditions. However, the small difference between the 

two values of Ms may be due to the sensitivity of the magnetisation to the ambient 

atmosphere, where the sample in Figure 5.8 (a) was sputtered with (Ar+O2) while the 

sample in Figure 5.8 (b) was sputtered with (N2+O2) [30, 53].  

The Ms was found to be influenced more by film thickness compared to oxygen 

pressure. The change of Ms due to film thickness is larger than that due to oxygen 

pressure; implying that stain plays a significant role in the magnetisation of thin films. 

 

 ZnMgO FILMS GROWN BY PLD 
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Figure 5.8: The magnetisation saturation of ZnMgO films deposited using sputtering on glass substrate 

as a function of (a) thickness and (b) oxygen partial pressure. The two samples circled in blue are 

nominally the same but with a small difference in Ms; the sample in (a) was sputtered with (Ar+O2), 

whereas the sample in (b) was sputtered with (N2+O2). 
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The ZnMgO films grown by PLD are divided into two groups (III and IV), as 

in Table (5.2). The third group contains four films deposited as a function of thickness, 

while the fourth group has five films deposited as a function of oxygen pressure.  

The FIB and EDS analyses of a ZnMgO film grown on a Si substrate are used 

to demonstrate the structural data. The optical and magnetic properties of the ZnMgO 

films grown on glass, quartz and sapphire substrates are presented and discussed. 

5.4.2.1 Structural Properties 

From the surface analysis, ZnMgO films prepared by PLD were found to be 

deposited uniformly. Figure 5.9 presents a FIB cross section of the ZnMgO film grown 

on a Si substrate for 40 mins under an oxygen pressure of 15×10-3 Torr. The data show 

that the average thickness of the film is 221 nm.  

 

 

 

 

 

 

 

 

 

 

EDS measurements were also carried out on all the ZnMgO films grown by 

PLD. The analysis of the EDS data showed only the presence of Mg, Zn and O 

elements; this was a similar observation to that for the sputtered ZnMgO films. 

Figure 5.9: Cross-section measurement of ZnMgO film deposited by PLD on a Si substrate for 40 mins 

at an oxygen partial pressure of 15×10-3 Torr where the film thickness can be measured.  
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The EDS spectrum of the ZnMgO film grown on a Si substrate for 40 mins 

under an oxygen partial pressure of 15×10-3 Torr is shown in Figure 5.10. 

 

The ratio of Mg to Zn is 0.123; meaning that the substitution of Zn by Mg in 

PLD ZnMgO film was ~ 11%. This indicates that the Mg concentrations in the PLD 

films were larger than that in the ZnMgO target by a factor of greater than 2; similar 

results were previously found by Ohtomo et al [19].  

The difference between the Mg concentration in the ZnMgO film from that of 

the target might be attributed to the vapour pressure of Zn which is much larger than 

that of Mg where the high energy laser is the responsible for evaporating the target 

material. In other words, Zn atoms can be easily desorbed from the substrate, leading 

to the condensation of Mg atoms on the substrate and therefore increasing the 

concentration of Mg in the ZnMgO film [19, 56]. Hence, the high Mg content in the 

PLD films may be the main reason behind the changes in the optical and magnetic data 

between the ZnMgO films deposited by PLD and those grown by sputtering. 
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Figure 5.10: EDS spectrum of the ZnMgO film deposited by PLD on a Si substrate for 40 mins at an 

oxygen pressure of 15×10-3 Torr [54]. 
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5.4.2.2 Optical Properties 

The optical absorption spectra were obtained for the ZnMgO films grown by 

PLD technique on glass, quartz and sapphire substrates. The Eg values were determined 

for both sets of films grown as a function of thickness and oxygen pressure, as shown 

in Figures 5.11 (a) and 5.11 (b), respectively. 

 

The Eg values of the ZnMgO films were found to be more dependent on 

oxygen pressure than thickness. This can be clearly seen from the change in the 

magnitude of Eg due to the variation of oxygen pressure which was larger than the 

change in magnitude due to thickness.  

As with the ZnMgO films grown using sputtering, increasing film thickness 

resulted in an increase of the Eg value as a result of the strain reduction in high thickness 

films [52, 54]. Increasing the oxygen pressure, on the other hand, resulted in a decrease 

in the Eg,; this might be due to the expansion of the lattice constant as a result of less 

Mg incorporation [16]. Nevertheless, the ZnMgO films deposited by PLD exhibited 
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Figure 5.11: Optical band gap of ZnMgO films deposited by PLD on glass, quartz and sapphire 

substrates as a function of (a) thickness and (b) oxygen partial pressure.  
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larger Eg values compared to those of the sputtered films. This is attributed to the 

increased amount of Mg in the PLD films compared to the ones prepared by sputtering.  

 

Since increasing the oxygen pressure led to a reduction in thickness, as seen 

in Figure 5.12, it can be deduced that the thick ZnMgO films (grown at low oxygen 

pressure) have larger Eg and vice versa. This is similar to changing the Eg as a function 

of thickness (Figure 5.11) except that the oxygen pressure has more influence on the 

values of Eg than film thickness. 

 

It can be seen that the Eg values also depended on the substrate type. The 

ZnMgO films grown on sapphire substrates under all conditions showed larger Eg 

values compared to the films grown on glass and quartz substrates. This could be due 

to the large mismatch between the film and glass and quartz substrates, resulting in a 

considerable strain and decreasing the band gap [48]. The films deposited under similar 

conditions show comparable Eg values; these are circled in blue. 
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Figure 5.12: Optical band gap of ZnMgO films deposited using PLD on glass, quartz and sapphire 

substrates as a function of oxygen pressure (plotted as a function of thickness). 
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5.4.2.3 Magnetic Properties 

Magnetic loops for all the ZnMgO films were measured at room temperature. 

A typical hysteresis loop for ZnMgO grown using PLD on a sapphire substrate is shown 

in Figure 5.13, showing Hc ≈ 0 Oe. The diamagnetic signal of the sapphire substrate 

has been subtracted. 

 

The variation of the Ms, with different film thicknesses and oxygen pressures 

was observed. The Ms data of the samples grown by PLD technique on glass, quartz 

and sapphire substrates as a function of thickness and oxygen pressure were obtained. 

Figure 5.14 (a) shows that increasing thickness resulted in decreasing the Ms; this might 

be due to the strain effect which is higher for thinner films, in addition to the oxygen 

vacancies which decrease with increasing thickness [51, 52].  
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Figure 5.13: A typical hysteresis loop of a ZnMgO film on a sapphire substrate grown using PLD. 

The diamagnetic contribution of the sapphire substrate has been subtracted. 
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It can also be noted that the difference between the Ms values of different 

substrates was relatively large at low thicknesses and smaller at thicker ones; this is 

because the surface effect is higher for thinner films compared to the films with large 

thicknesses [54].   

Figure 5.14 (b) shows the magnetic data of the ZnMgO films grown on 

different substrates as a function of oxygen pressure by PLD method. These films 

exhibit comparable behaviour to the films grown by sputtering as previously illustrated 

in Figure 5.8 (b).  The Ms data for the films grown on sapphire substrates were higher 

compared to the films grown on quartz and glass substrates. This might indicate that 

the defects densities in the ZnMgO films deposited on sapphire substrates are higher 

than the concentration of defects in the ZnMgO films deposited on glass and quartz 

substrates [57].   

The Ms of the ZnMgO films grown on quartz substrate was larger than that of 

films grown on glass substrate. This might be due to the reduction in the grain size of 

the films deposited on quartz substrates compared to the films deposited on glass, 

40 60 80 100 120 140 160 180 200 220 240
0

10

20

30

40
(a)  ZnMgO/glass 

 ZnMgO/quartz 

 ZnMgO/sapphire 
M

s 
(e

m
u

/c
m

3
)

Thickness (nm)

0.0 3.0x10
-2

6.0x10
-2

9.0x10
-2

1.2x10
-1

0

10

20

30

40
(b) ZnMgO/glass 

ZnMgO/quartz 

ZnMgO/sapphire 

M
s 

(e
m

u
/c

m
3
)

Oxygen pressure (Torr) 

Figure 5.14: Variation of Ms with (a) thickness and (b) oxygen pressure for ZnMgO films grown on 

glass, quartz and sapphire substrates by PLD. 
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leading to more strained films which in turn produce higher magnetisation [30, 58]. The 

films deposited under similar conditions; showing comparable Ms values; this is seen in 

Figures 5.14 (a) and 5.14 (b) where the films are circled in blue. 

Increasing Ms with increasing O2 is believed to be due to the effect of thickness 

rather than oxygen since increasing oxygen pressure reduces thickness [22, 54] and, as 

a result, the Ms increases, as shown in Figure 5.15.  

 

The oxygen pressure reduces the magnetisation by the amount shown in Figure 

5.15 (the vertical green lines). Hence, this is not a large change compared to the change 

due to the variation in film thickness. 

Changing the band gap may affect the magnetisation; this finding is illustrated 

in Figure 5.16. Hence, there is a correlation between increasing (decreasing) the Eg and 

decreasing (increasing) the Ms. This might be due to strain effect in the case of films 

deposited at different thicknesses, and to lattice constant for films grown at different 

oxygen pressures.  

Figure 5.15:  Variation of Ms of the PLD ZnMgO films on sapphire substrate as a function of thickness. 

The black line is the change of thickness with deposition time and the red line is the change of thickness 

with oxygen pressure. The lines are guides for the eye. The green vertical lines represent the difference 

between the oxygen pressure and thickness effects.  
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By comparing the optical and magnetic data of the ZnMgO films grown using 

sputtering and PLD, it can be concluded that the PLD ZnMgO films exhibit higher 

values of Eg and Ms compared to the sputtered ZnMgO films. This can be clearly seen 

from the larger values of the Eg and Ms for the ZnMgO films grown on glass substrates 

in Figures 5.17 (a) and 5.17 (b).  
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Figure 5.17:  Variation of (a) the Eg and (b) Ms of the ZnMgO films deposited on glass substrates by 

sputtering (black) and PLD (red) techniques as a function of film thickness. 

Figure 5.16:  Variation of the band gap with the magnetisation saturation for ZnMgO films 

deposited on sapphire substrates by PLD at different thicknesses (black) and oxygen pressures 

(red), respectively. The lines are guides for the eye. 
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The different values of Eg for the ZnMgO films grown by sputtering and PLD 

are due to the increased Mg content in the films grown by PLD.  

In terms of the magnetic data shown in Figure 5.17 (b), the sputtered and PLD 

ZnMgO films with thicknesses higher than 120 nm show almost the same behaviour of 

the Ms when film thickness increases. On the other hand, the Ms of the sputtered and 

PLD ZnMgO films of thicknesses lower than 120 nm behaved differently with 

thickness. Changing the Ms of the sputtered films with thickness in this way could be 

attributed to the cation defects of Mg and Zn vacancies; this behaviour has been found 

many times by Rao’s group [4, 30, 38, 52, 53]. In the case of the PLD films, there is a 

clear thickness dependence where the magnetisation is high in film with low thickness 

(high strain) and vice versa. This behaviour has also been widely reported by many 

research groups [24, 25, 54, 59, 60]. These findings indicate that the early stages of thin 

film growth are highly sensitive to the growth method. 

In general, the difference between the Ms values for the ZnMgO films grown 

by sputtering and PLD may depend on the types of defect produced in both techniques; 

oxygen vacancies are likely to be produced more in the ZnMgO films grown by PLD 

technique [16, 54]. 

5.5 SUMMARY AND CONCLUSIONS 

ZnMgO thin films were prepared on Si, glass, quartz and sapphire substrates 

using sputtering and PLD techniques. Different growth conditions were varied, 

including deposition times (film thickness), oxygen pressure and substrate type. This is 

in order to find out whether controlling the band gap affects the magnetism or not. 
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Changing the oxygen pressure was found to show a stronger influence on the 

Eg of the ZnMgO films compared to the film thickness parameter. This might result 

from the effect of the oxygen on the lattice constant where increasing the oxygen 

pressure results in expanding the lattice constant and, therefore, decreases the band gap. 

The Eg was found to be affected by the substrate type. The ZnMgO films 

deposited on sapphire substrates have higher band gap energies than the ZnMgO films 

deposited on glass and quartz substrates. This could be attributed to the amount of strain 

produced by different substrates where the glass and quartz substrates have larger strain 

than sapphire substrate; causing a decrease of the band gap value of ZnMgO films. 

ZnMgO films grown by PLD exhibit larger Eg values in comparison with those 

grown by sputtering. This is attributed to the increased Mg content in the ZnMgO films 

deposited using PLD technique compared to the ZnMgO films grown using sputtering 

technique, enhancing the optical properties.  

Regarding the magnetic data, the Ms of the ZnMgO films was found to depend 

more strongly on film thickness than oxygen content; this is possibly due to the 

relationship of strain and defects with thickness. There is a thickness dependence in 

terms of Ms but it is not due to surface magnetism; this is because the Ms values of all 

the ZnMgO films cannot be fitted by the expression: M/d = M(bulk)+M(surface) /d. 

The ZnMgO films deposited on sapphire substrates were found to show the 

highest Ms compared to the films grown on other substrates. This indicates the 

importance of defects induced by different substrates that enhance the magnetisation. 

Consequently, it may be concluded that the ZnMgO films grown on sapphire substrates 

have more oxygen vacancies, in comparison with the ZnMgO films grown on quartz 

and glass substrates.  



Chapter 5 – Mg-doped ZnO 

 

128 

 

 

ZnMgO films grown using PLD also show larger Ms values in comparison 

with the films grown using sputtering. This might be attributed to the type of defects 

produced by each deposition method. The ZnMgO films deposited by the PLD 

technique are believed to have more oxygen vacancies, mainly enhancing the 

magnetisation.  

The optical and magnetic data were found to show a correlation between Eg 

and Ms. Thus, large magnetisation values in ZnMgO thin films could be obtained by 

decreasing the band gap and vice versa. This might be ascribed to the significant role 

that the strain can play in controlling both properties.  

No studies in the literature could be found on making nominally the same 

ZnMgO thin films using sputtering and PLD techniques. This study may provide 

important results in terms of the structural, optical and magnetic properties of ZnMgO  

thin films grown by sputtering and PLD techniques although further exploration may 

be needed. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5 – Mg-doped ZnO 

 

129 

 

 

5.6  REFERENCES 

1. J. M. D. Coey, M. Venkatesan and C. B. Fitzgerald, Nature Materials 4, 173-

179 (2005). 

2. T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, Science 287 (5455), 

1019-1022 (2000). 

3. J. K. Furdyna, Journal of Applied Physics 64 (4), R29-R64 (1988). 

4. M. Kapilashrami, J. Xu, V. Ström, K. V. Rao and L. Belova, Applied Physics 

Letters 95 (3), 033104 (2009). 

5. S. D. Sarma, American Scientist 89 (6), 516-523 (2001). 

6. G. Xing, D. Wang, J. Yi, L. Yang, M. Gao, M. He, J. Yang, J. Ding, T. C. Sum 

and T. Wu, Applied Physics Letters 96 (11), 112511 (2010). 

7. J. B. Yi, C. C. Lim, G. Z. Xing, H. M. Fan, L. H. Van, S. L. Huang, K. S. Yang, 

X. L. Huang, X. B. Qin, B. Y. Wang, T. Wu, L. Wang, H. T. Zhang, X. Y. Gao, 

T. Liu, A. T. S. Wee, Y. P. Feng and J. Ding, Physical Review Letters 104 (13), 

137201 (2010). 

8. P. Zhan, W. Wang, C. Liu, Y. Hu, Z. Li, Z. Zhang, P. Zhang, B. Wang and X. 

Cao, Journal of Applied Physics 111 (3), 033501 (2012). 

9. V. Etacheri, R. Roshan and V. Kumar, ACS Applied Materials & Interfaces 4 

(5), 2717-2725 (2012). 

10. J. M. D. Coey, Solid State Sciences 7 (6), 660-667 (2005). 

11. S. B. Singh, Y.-F. Wang, Y.-C. Shao, H.-Y. Lai, S.-H. Hsieh, M. V. Limaye, 

C.-H. Chuang, H.-C. Hsueh, H. Wang, J.-W. Chiou, H.-M. Tsai, C.-W. Pao, C.-

H. Chen, H.-J. Lin, J.-F. Lee, C.-T. Wu, J.-J. Wu, W.-F. Pong, T. Ohigashi, N. 

Kosugi, J. Wang, J. Zhou, T. Regier and T.-K. Sham, Nanoscale 6 (15), 9166-

9176 (2014). 



Chapter 5 – Mg-doped ZnO 

 

130 

 

 

12. M. S. Alam, U. Manzoor, M. Mujahid and A. S. Bhatti, Journal of Sensors 2016 

(8296936), 1-5 (2016). 

13. J. Singh, M. S. L. Hudson, S. K. Pandey, R. S. Tiwari and O. N. Srivastava, 

International Journal of Hydrogen Energy 37 (4), 3748-3754 (2012). 

14. Y. Aykut, G. N. Parsons, B. Pourdeyhimi and S. A. Khan, Langmuir 29 (12), 

4159-4166 (2013). 

15. J. D. Hwang, J. S. Lin and S. B. Hwang, Journal of Physics D: Applied Physics 

48 (40), 405103 (2015). 

16. C. Y. Liu, H. Y. Xu, L. Wang, X. H. Li and Y. C. Liu, Journal of Applied 

Physics 106 (7), 073518 (2009). 

17. W. Liu, B. Yao, Y. Li, B. Li, C. Zheng, B. Zhang, C. Shan, Z. Zhang, J. Zhang 

and D. Shen, Applied Surface Science 255 (13–14), 6745-6749 (2009). 

18. A. A. Lotin, O. A. Novodvorsky, E. V. Khaydukov, V. N. Glebov, V. V. 

Rocheva, O. D. Khramova, V. Y. Panchenko, C. Wenzel, N. Trumpaicka and 

K. D. Chtcherbachev, Semiconductors 44 (2), 246-250 (2010). 

19. A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, 

Y. Yoshida, T. Yasuda and Y. Segawa, Applied Physics Letters 72 (19), 2466-

2468 (1998). 

20. S. S. Kim and B.-T. Lee, Thin Solid Films 446 (2), 307-312 (2004). 

21. P. Misra, P. Bhattacharya, K. Mallik, S. Rajagopalan, L. M. Kukreja and K. C. 

Rustagi, Solid State Communications 117 (11), 673-677 (2001). 

22. C. Brigouleix, P. Topart, E. Bruneton, F. Sabary, G. Nouhaut and G. Campet, 

Electrochimica Acta 46 (13), 1931-1936 (2001). 

23. D. Wang, T. Narusawa, T. Kawaharamura, M. Furuta and C. Li, Journal of 

Vacuum Science & Technology B 29 (5), 051205 (2011). 



Chapter 5 – Mg-doped ZnO 

 

131 

 

 

24. T. Prasada Rao and M. C. Santhoshkumar, Applied Surface Science 255 (8), 

4579-4584 (2009). 

25. E. S. Shim, H. S. Kang, J. S. Kang, J. H. Kim and S. Y. Lee, Applied Surface 

Science 186 (1–4), 474-476 (2002). 

26. S. W. Shin, I. Y. Kim, G. V. Kishor, Y. Y. Yoo, Y. B. Kim, J. Y. Heo, G.-S. 

Heo, P. S. Patil, J. H. Kim and J. Y. Lee, Journal of Alloys and Compounds 585, 

608-613 (2014). 

27. J. Y. Cho, S. W. Shin, Y. B. Kwon, H.-K. Lee, K. U. Sim, H. S. Kim, J.-H. 

Moon and J. H. Kim, Thin Solid Films 519 (13), 4282-4285 (2011). 

28. W. Yang, R. D. Vispute, S. Choopun, R. P. Sharma, T. Venkatesan and H. Shen, 

Applied Physics Letters 78 (18), 2787-2789 (2001). 

29. S. G. Bahoosh, A. T. Apostolov, I. N. Apostolova, S. Trimper and J. M. 

Wesselinowa, Journal of Magnetism and Magnetic Materials 373, 40-47 (2015). 

30. S. K. Mahadeva, J. Fan, A. Biswas, K. S. Sreelatha, L. Belova and K. V. Rao, 

Nanomaterials 3 (3), 486-497 (2013). 

31. L. Cao, L. Zhu, J. Jiang, R. Zhao, Z. Ye and B. Zhao, Solar Energy Materials 

and Solar Cells 95 (3), 894-898 (2011). 

32. Y. Liu, Y. Li and H. Zeng, J. Nanomater. 2013 (196521), 1-9 (2013). 

33. K. Mukes, X. Jun, K. V. Rao, B. Lyuba, C. Elin and F. Mats, Journal of Physics: 

Condensed Matter 22 (34), 345004 (2010). 

34. H. Chen, J. Ding and S. Ma, Physica E: Low-dimensional Systems and 

Nanostructures 42 (5), 1487-1491 (2010). 

35. S. Gautam, A. Thakur, A. Vij, S. Jung, I. J. Lee, H. J. Shin, H. K. Lee, J. Park, 

J. H. Song and K. H. Chae, AIP Conference Proceedings 1536 (1), 541-542 

(2013). 



Chapter 5 – Mg-doped ZnO 

 

132 

 

 

36. S. Han, Y. K. Shao, Y. M. Lu, P. J. Cao, W. J. Liu, Y. X. Zeng, F. Jia and D. L. 

Zhu, Materials Research Bulletin 64, 76-81 (2015). 

37. P. S. Shewale, N. K. Lee, S. H. Lee and Y. S. Yu, Journal of Alloys and 

Compounds 640 (Supplement C), 525-533 (2015). 

38. C. M. Araujo, M. Kapilashrami, X. Jun, O. D. Jayakumar, S. Nagar, Y. Wu, C. 

Århammar, B. Johansson, L. Belova, R. Ahuja, G. A. Gehring and K. V. Rao, 

Applied Physics Letters 96 (23), 232505 (2010). 

39. Q. J. Wang, J. B. Wang, X. L. Zhong, Q. H. Tan, Z. Hu and Y. C. Zhou, Applied 

Physics Letters 100 (13), 132407 (2012). 

40. A. Biswas, W. Shirong, S. Nagar, L. Belova and K. V. Rao, MRS Online 

Proceedings Library Archive 1292, mrsf10-1292-k1212-1245 (1296 pages) 

(2011). 

41. J. Li, Y. Jiang, G. Bai, T. Ma, D. Yang, Y. Du and M. Yan, Applied Physics A 

115 (3), 997-1001 (2014). 

42. Q. Wang, Q. Sun, G. Chen, Y. Kawazoe and P. Jena, Physical Review B 77 (20) 

(2008). 

43. D. J. Rogers, F. H. Teherani, P. Bove, A. Lusson and M. Razeghi, presented at 

the SPIE OPTO, 2013 (unpublished). 

44. Y. Yoshino, K. Inoue, M. Takeuchi, T. Makino, Y. Katayama and T. Hata, 

Vacuum 59 (2–3), 403-410 (2000). 

45. Y. J. Zeng, Z. X. Jian, Z. Z. Ye, G. H. Gao, Y. F. Lu, B. H. Zhao, L. P. Zhu and 

S. H. Hu, Superlattices and Microstructures 43 (4), 278-284 (2008). 

46. P. Gopal and N. A. Spaldin, Physical Review B 74 (9) (2006). 

47. C. Song, F. Zeng, K. W. Geng, X. J. Liu, F. Pan, B. He and W. S. Yan, Physical 

Review B 76 (4) (2007). 



Chapter 5 – Mg-doped ZnO 

 

133 

 

 

48. J. Elanchezhiyan, K. P. Bhuvana, N. Gopalakrishnan and T. Balasubramanian, 

Journal of Alloys and Compounds 463 (1–2), 84-88 (2008). 

49. G. Srinivasan and J. Kumar, Crystal Research and Technology 41 (9), 893-896 

(2006). 

50. R. Janisch, P. Gopal and N. A. Spaldin, Journal of Physics-Condensed Matter 

17 (27), R657-R689 (2005). 

51. S. K. Mahadeva, Z.-Y. Quan, J. C. Fan, H. B. Albargi, G. A. Gehring, A. 

Riazanova, L. Belova and K. V. Rao, MRS Online Proceedings Library Archive 

1494, 115-120 (2013). 

52. S. K. Mahadeva, Z.-Y. Quan, J.-C. Fan, H. B. Albargi, G. A. Gehring, A. V. 

Riazanova, L. M. Belova and K. V. Rao, MRS Online Proceedings Library 

Archive 1577, 1-6 (2013). 

53. S. K. Mahadeva, J.-C. Fan, A. Biswas, G. M. Rao, K. S. Sreelatha, L. Belova 

and K. V. Rao, Materials Express 3 (4), 328-334 (2013). 

54. H. Nguyen Hoa, S. Joe and B. Virginie, Journal of Physics: Condensed Matter 

19 (3), 036219 (2007). 

55. M. Ying, H. J. Blythe, W. Dizayee, S. M. Heald, F. M. Gerriu, A. M. Fox and 

G. A. Gehring, Applied Physics Letters 109 (7), 072403 (2016). 

56. Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. 

Avrutin, S.-J. Cho and H. Morkoç, Journal of Applied Physics 98 (4), 041301 

(2005). 

57. R. Ghosh, D. Basak and S. Fujihara, Journal of Applied Physics 96 (5), 2689-

2692 (2004). 

58. G. A. Kumar, M. V. R. Reddy and R. Katta Narasimha, IOP Conference Series: 

Materials Science and Engineering 73 (1), 012133 (2015). 



Chapter 5 – Mg-doped ZnO 

 

134 

 

 

59. N. H. Hong, N. Poirot and J. Sakai, Physical Review B 77 (3), 033205 (2008). 

60. X. J. Liu, C. Song, F. Zeng, F. Pan, B. He and W. S. Yan, Journal of Applied 

Physics 103 (9), 093911 (2008). 

 

 



Chapter 6 – TM-doped In2O3 

135 

 

  

Transition Metals-Doped In2O3 

6.1 INTRODUCTION 

Since Dietl et al. theoretically predicted room temperature ferromagnetism in Mn 

doped ZnO, dilute magnetic semiconductors (DMS) have attracted a great deal of interest 

for their potential applications in spintronic devices [1-3]. Dilute magnetic semiconductors 

are ferromagnetic semiconductors formed by incorporating a small percentage of magnetic 

atoms into the semiconductor host lattice [2-5]. 

The Curie temperature of DMS materials has been reported to be at or above room 

temperature. Thin films of ZnO, SnO2, TiO2 and In2O3 were successfully reported to be 

magnetic when doped with different transition metals [2, 3]. However, the origin of RTFM 

in TM-doped In2O3 thin films is still under debate and believed to either originate from TM 

magnetic substituted ions, secondary magnetic phases, ferromagnetic nano-clusters or 

oxygen vacancies [3-5].  

This chapter investigates the structural, magnetic, optical and magneto-optical 

properties of TM (Fe and Mn)-doped In2O3 thin films grown by PLD technique. The Fe-

doped In2O3 films were grown from three targets containing either FeO, Fe3O4 or Fe2O3 

precursor. The amount of oxygen in these precursors is different; it is lowest in FeO and 

highest in Fe2O3. Thus, the aim of this study was to determine the importance of the oxygen 

amount in each precursor and its effect on the magnetic properties in particular. For this 
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purpose, the Fe-doped In2O3 films were deposited at base pressure and two higher oxygen 

pressures.  

It was found that Fe-doped In2O3 films are sensitive to TM precursor. This was 

clearly shown by the Fe-doped In2O3 films grown under base pressure where metallic Fe 

existed.  On the other hand, the Fe-doped In2O3 films grown at higher oxygen pressures 

from different iron precursors show no trace of metallic Fe; indicating that almost all Fe 

ions are substitutional in the In2O3 site.  

In2O3 films were found to be sensitive to the type of TM. This was confirmed 

through the absence of metallic Mn in the Mn-doped In2O3 films that were deposited at the 

same base pressure used in the case of Fe-doped In2O3 films. The Mn-doped In2O3 films 

were grown from Mn2O3-doped In2O3 target as a function of oxygen pressure; at base 

pressure and two higher oxygen pressures.  

In this study, RTFM was observed in all TM-doped In2O3 samples. The Fe-doped 

In2O3 film prepared from a FeO precursor at base pressure was found to show the largest 

magnetisation; this is attributed to the increased amount of metallic Fe which was found to 

be ~ 13%. Although the magnetisation was found to be dependent on the TM precursor, 

the change of oxygen pressure in the PLD chamber seemed to be more important. This is 

because the variation of magnetisation with changing the oxygen pressure was bigger than 

that due to TM precursor. The saturation magnetisation values, however, showed that due 

to grain boundaries (GBs) the Mn-doped In2O3 samples were more magnetic than Fe-doped 

In2O3 films. This reveals the importance of GBs in enhancing the magnetism of TM-doped 

In2O3 thin films. 
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6.2 LITERATURE REVIEW of In2O3 and (Fe, Mn)-Doped In2O3 

In2O3 in its non-stoichiometric form is an n-type semiconductor material 

transparent in the visible range with a wide band gap of 3.75 eV in the ultra-violet (UV) 

region of the spectrum [3, 6]. This material, however, behaves as an insulator in its 

stoichiometric form, while in its oxygen deficient form, it appears to have n-type doping 

levels induced by oxygen vacancies [8].  

Doping the In2O3 with TM can enhance the magnetic properties. For example, 

RTFM has been observed in different TM-doped In2O3 which can be ascribed to the 

solubility of the TM in the In2O3 matrix. Jayakumar et al found that the saturation 

magnetisation increased proportionally with increasing Fe concentration, x, from 0.05 to 

0.2 in (In1-xFex)2O3 and then decreased beyond 0.2; indicating that the maximum solubility 

limit of Fe ions in In2O3 lattice is 20% [3, 9-13].              

  

6.2.1 Electronic Structure of In2O3 and TM-doped In2O3 

In2O3, can exist in three structures: two body-centered cubic (bcc-) structures I 

213, Ia3 and a rhombohedral (rh-) structure R3c [14]. In this work, only the polymorph bcc-

In2O3 (Ia3) known as the cubic bixbyite structure is considered because this is the structure 

that was seen in our films.  

Pure In2O3 has a unit cell with a lattice constant, α, of 10.118Å. The grain size in 

polycrystalline In2O3 films is typically between 100 and 400 Å and is affected by the 

substrate temperature, oxygen pressure and doping concentration [15].  
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Each cubic unit cell in In2O3 contains 80 atoms in 16 formula units [16, 17]. The 

[001] direction of the unit cell of In2O3 can be visualized as the accumulation of three 

different layers: an oxygen atom layer (O-layer); indium atoms from d site only (D-layer); 

and indium atoms from both b and d sites (M-layer), as in Figure 6. 1 (a) [6].  

The relative positioning of the vacant sites results in two types of cation sites (In+3) 

and one anion site (O-2); the indium ions occupy 8b and 24d, while oxygen ions are located 

on the 48e in Wyckoff notation, as shown in Figure 6. 1 (b) [6, 17-20]. 

 

 

6.2.2    Properties of TM-doped In2O3 

Many studies have been performed on powder, bulk and thin films of TM-doped 

In2O3. However, the obtained results are contradictory and have led to ambiguity in the 

interpretation of the origin of ferromagnetism in this material. Fe-doped In2O3 powder, for 

example, has been reported to be paramagnetic when sintered in air and ferromagnetic 

Figure 6.1: (a) The In2O3 unit cell of the bixbyite structure; the large red balls are the oxygen atoms, and the 

small blue and light blue balls represent In atoms at d and (b and d) sites, respectively [6]. (b) The 

configurations of oxygen vacancies around the two types of In sites  8b and 24d in the Wyckoff positions [20]. 
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when sintered in a vacuum. In Fe-doped In2O3 thin films grown by PLD techniques, defects 

may originate from several sources, such as oxygen vacancies, Fe dopants and interstitial 

In3+ [21-25].  

As reported by Takahiro et al. and Kohiki et al. RTFM has been observed in Fe-

doped In2O3 thin films as a result of the formation of Fe2O3 or Fe3O4 nanoclusters [13, 17, 

26-28]. The presence of the Fe3O4 nanoparticles has been reported to enhance the RTFM; 

showing a considerable coercive value of ~ 400 Oe [29].  

In2O3 and TM-doped In2O3 thin films can be prepared using PLD technique either 

under base pressure or oxygen pressure; and it is well-known that decreasing PO2 
during 

growth results in an increase of oxygen vacancies and vice versa [3, 23]. Oxygen vacancies 

are donor defects that generate free carriers (electrons) which can increase the exchange 

interactions between the magnetic impurities.  

However, increasing the oxygen pressure has been found to cause oxidising of 

Fe2+ ions to Fe3+ ions [11]. Hence, at base pressure and low oxygen pressure, the change 

in oxygen vacancy concentration is more effective than other changes, whereas Fe3+ ions 

are dominant at higher oxygen pressures [3, 11, 24].   

In terms of Mn-doped In2O3 thin films, it has been reported by a number of 

researchers that RTFM can be obtained for films prepared using PLD technique [30, 31]. 

The oxygen vacancies and grain boundaries were found to be responsible for the observed 

RTFM in Mn-doped In2O3 thin films [15, 30, 32, 33] 

As with the magnetic properties, the optical and magneto-optical properties of 

TM-doped In2O3 have been widely reported to be sensitive to growth conditions such as 

TM concentration, substrate temperature and oxygen pressure [3, 5, 15, 23]. For example, 
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MCD signal for a Fe-doped In2O3 film prepared at base pressure was found to be 

considerable; whereas the MCD signal for the sample grown at high oxygen pressures was 

very small [3].  

The large MCD spectrum mentioned above, was ascribed to the existence of a 

fraction of magnetic ions. Thus, an exchange splitting resulted in a difference in the band 

structure between spin-up and spin-down electrons. This in turn led to an imbalance in the 

density of states at the Fermi level, causing the MCD spectra.  

In contrast, the small MCD signal indicated that the states near the Fermi level 

were localised and the density of states were independent of energy. As a result, spin 

splitting of these localised states did not affect the balance of the density of states at the 

Fermi level [3, 15]. 

Hence, from previous studies it can be concluded that the method of thin film 

fabrication and film growth conditions play an important function in determining the 

magnetic and optical properties of TM-doped In2O3 thin films [18, 34, 35].  

6.3 SAMPLE PREPARATION 

Three different PLD targets all with the same nominal composition of 5% Fe-

doped In2O3 were prepared by the solid-state reaction technique in which high-purity In2O3 

was mixed with either FeO, Fe3O4, or Fe2O3 powders. The powders were purchased from 

Alfa Aesar had purities of 99.999% for In2O3, 99.995% for FeO, 99.998% for Fe3O4, and 

99.999% for Fe2O3. Thus, three targets were made; FeO-doped In2O3, Fe3O4-doped In2O3, 

and Fe2O3-doped In2O3. Nine Fe-doped In2O3 films were grown as a function of oxygen 

pressure, thus three films from each target, more details on this is given in Table 6.1. 
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Similarly, 5% Mn-doped In2O3 target were prepared from high-purity In2O3 

(99.999%, Alfa Aesar) and Mn2O3 (99.999%, Alfa Aesar) powders. Three Mn-doped In2O3 

films were deposited as a function of oxygen pressure.  

All the twelve TM-doped In2O3 were deposited at three different oxygen 

pressures: a base pressure of 2×10−5 Torr; and two higher oxygen pressures of 2×10−4 and 

2×10−3 Torr. All films were deposited at the same substrate temperature of 450 °C for a 

deposition time of 16 mins on double-sided polished, single-crystal c-cut Al2O3 sapphire 

substrates from PI-KEM Ltd. More details of the targets and films preparations can be 

found in section 3.2 of Chapter 3. Table 6.1 gives a summary of the four TM precursors 

used in the TM-doped In2O3 targets in addition to the three different pressures in the PLD 

chamber, and the films thickness. 
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Table 6.1: Summary of the TM precursors used in the TM-doped In2O3 targets, and the 

content and growth conditions of the samples that were studied in this chapter. 

 

  

 

Precursor 

 

Samples 

Content Pressure  

(Torr) 

Thickness  

(nm) 

 

FeO 

  

F
e-

d
o
p
ed

 I
n

2
O

3
 

5 × 10-5 414 

5 × 10-4 273 

5 × 10-3 185 

 

Fe3O4 

5 × 10-5 435 

5 × 10-4 291 

5 × 10-3 193 

 

Fe2O3 

5 × 10-5 451 

5 × 10-4 311 

5 × 10-3 220 

 

 

 

Mn2O3 

  

M
n

-d
o
p
ed

 I
n

2
O

3
 

 

5 × 10-5 

 

443 

 

5 × 10-4 

 

315 

 

5 × 10-3 

 

203 
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6.4 EXPERIMENTAL RESULTS  

The structural, magnetic, optical and magneto-optical properties of all the TM-

doped In2O3 samples are shown and discussed in more detail below; Fe-doped In2O3 films 

are discussed first, followed by Mn-doped In2O3 films. 

6.4.1 Fe-Doped In2O3  

The structural characteristics of all Fe-doped In2O3 films were obtained using: 

XRD, XANES, and EXAFS. Some of the XRD measurements were carried out at the 

University of Sheffield and the others by Dr. Feng-Xian Jiang at Shanxi Normal University, 

Linfen, China.  

The XANES and EXAFS measurements were taken by Dr. S.M. Heald at the 

Advanced Photon Source in the Argonne National Laboratory, USA. All the magnetic, 

optical and magneto-optical measurements were carried out at the University of Sheffield. 

6.4.1.1 Structural Properties 

The XRD for the Fe-doped In2O3 films grown at base and high oxygen pressures 

were measured using CuKα radiation (λ=1.5406 Å). The data show that the diffraction 

peaks indicate the well-known cubic bixbyite structure of pure In2O3.  

The XRD patterns of all Fe-doped In2O3 thin films grown at base pressure are 

shown in Figure 6.2. The diffraction peaks at (222) and (400) indicate that Fe-doped In2O3 

exhibit the same cubic structure of pure In2O3. The (322) diffraction peak is from the 

sapphire substrate.  
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There is a small peak, which is shown in red, ~ 36
o
 that indicates the presence of 

a secondary phase of FeO. No line of metallic Fe was detected within the detection limit 

of XRD [25, 31, 36]. 

The inset of the Figure 6.2 shows that increasing the oxygen content from the 

precursors results in shifting the (222) peaks towards smaller angles; implying an increase 

in the value of the d(222). The reason for such behaviour might be the reduction of the 

number of oxygen vacancies [3, 25]. 

For further investigation, K-edge XANES and EXAFS spectra were measured to 

show whether there is any existence of metallic Fe in addition to the FeO secondary phase 

that was detected by XRD, particularly in the Fe-doped In2O3 films grown at base pressure. 

Also these measurements were taken for the Fe-doped In2O3 films grown at higher oxygen 

pressure.  

Figure 6.2: XRD data of the Fe-doped In2O3 thin films grown from different precursors at a base pressure 

of 2×10-5 Torr. The inset demonstrates the shifting of the (222) peak towards smaller angles with increasing 

O2 content. Data taken by Dr. Feng-Xian Jiang. 
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In the XANES spectra, as shown in Figures 6.3 (a) and 6.3 (b), the standard 

valence states of metallic Fe, Wüstite (FeO), Magnetite (Fe3O4) and Hematite (Fe2O3) are 

plotted alongside Fe-doped In2O3 films to be used as references.  

 

Figure 6.3 (a) displays the XANES data of all the Fe-doped In2O3 samples grown 

from the FeO, Fe3O4, and Fe2O3 precursors at base pressure of 2×10−5 Torr.  All films have 

some features that correspond to metallic Fe that was estimated to be ~ 13%. Such results 

might be due to a large structural disorder caused by an increased number of oxygen 

vacancies originated at base pressure [37]. However, Figure 6.3 (b) shows that the XANES 

data of the Fe-doped In2O3 films deposited at a higher oxygen pressure of 2×10−3 Torr are 

located between the spectra of FeO and Fe2O3, indicating the substitution of the Fe ions for 

In3+ in the In2O3 lattice. Thus, the valence states contain a mixture of Fe2+ and Fe3+ ions [3, 

15, 38]. 

Figure 6.3: K-edge XANES spectra of reference compounds of metallic Fe, FeO, Fe3O4 and Fe2O3 and the 

Fe-doped In2O3 films grown from different precursors at: (a) a base pressure of 2×10-5 Torr; and (b) higher 

partial oxygen pressure of 2×10-3 Torr. Data taken by Dr. Steve Heald. 
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The EXAFS spectra of the Fe-doped In2O3 films prepared at base pressure were 

compared with the spectra of hematite and Fe2O3-doped In2O3 (substitutional) sample 

(prepared by our former colleague Dr. Qi Feng) which is believed to be pure substitutional, 

as illustrated in red line in Figure 6.4 (a). The data illustrate a reduction in the intensity for 

32  R Å, suggesting the presence of some Fe oxide secondary phase in addition to the 

metallic Fe clusters [39].  

 

These results further support the XRD data that showed the existence of the FeO 

secondary phase. The present clusters might emerge from the relaxation of the oxygen 

environment surrounding the Fe ions which are mainly caused by the formation of oxygen 

vacancies [3, 39]. On the other hand, the EXAFS data of the films of Fe-doped In2O3 

prepared at high oxygen pressure show no traces of metallic Fe and any secondary phases 

of Fe oxides, as in Figure 6.4 (b). This result is in agreement with the sample of 

(In0.95Fe0.05)2O3 (substitutional) prepared by Dr. Feng. The EXAFS data confirm the 

Figure 6.4: (a) EXAFS Fourier transform of Fe2O3 and substitutional Fe2O3-doped In2O3 deposited at base 

pressure as reference compounds and the Fe-doped In2O3 films grown from different precursors at; (a) base 

pressure of 2×10-5 Torr and (b) O2 pressure of 2×10-3 Torr. Data taken by Dr. Steve Heald. 
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previous XANES data where the Fe exists in a mixture of the valence states of Fe2+ and 

Fe3+ ions [15, 38].  

6.4.1.2  Magnetic Properties 

The magnetic hysteresis loops at 5 and 300 K were taken for all Fe-doped In2O3 

films that were deposited from different precursors at base pressure and two higher oxygen 

pressures. All films displayed room temperature ferromagnetism. A magnetic field of 

10000 Oe was applied parallel to the plane of the film. The diamagnetic contribution from 

the sapphire substrate has been subtracted, as has the paramagnetic contribution that arises 

from the film. These two contributions were subtracted using the same method shown 

previously in section (3.4.2.1).  

Figures 6.5 (a) and 6.5 (b) respectively show the 5 and 300 K raw magnetic 

hysteresis loops of the Fe-doped In2O3 films grown from FeO, Fe3O4, and Fe2O3 precursors 

and deposited at a base pressure of 2×10-5 Torr. The 5 and 300 K raw magnetic hysteresis 

loops of the Fe-doped In2O3 films deposited at higher oxygen partial pressure of 2×10-3 

Torr are respectively shown in Figures 6.5 (c) and 6.5 (d). 
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Since the magnetic susceptibility of sapphire substrate is temperature independent 

and the paramagnetic susceptibility of the film at 300 K is negligible, then the paramagnetic 

contribution of the film at 5 K can be estimated using the Curie-Weiss law as follows: 

 

                                χ(5K) - χ(300K) = 
C

5
 - 

C

300
 ≈ 

C

5
                                           (6.1) 
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Figure 6.5: (a) and (b) are respectively the raw data of magnetic hysteresis loops measurements at 5 K and 300 K 

for the Fe-doped In2O3 films from different precursors at a base pressure of 2×10-5 Torr. (c) and (d) are respectively 

the raw data of hysteresis loops taken at 5 and 300 K for the Fe-doped In2O3 films from different precursors at the 

higher oxygen pressure of 2×10-3 Torr. 
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where C is the Curie constant which can be calculated from the raw data of the Fe-doped 

In2O3 films measured at T = 5 K. When the Curie constant is calculated, then the expected 

magnetic susceptibility from the TM ions can be calculated using the expression: 

                                    χ = 
   Nxpeff

2  μB
2  μ

0

3kB T
                                                     (6.2) 

where N is the number of In ions per unit volume, x is the concentration of Fe dopant, p
eff 

is the effective number of Bohr magneton, μ
B
 is the Bohr magneton, μ

0
 is the magnetic 

permeability of free space, and k
B
 is Boltzmann’s constant.  

From the previous equations, the experimental p values of TM ions can be 

obtained and compared with the calculated values. The measured p values of the TM ions 

for the Fe-doped In2O3 films grown from FeO, Fe3O4, and Fe2O3 precursors, i.e. Fe2+ and 

Fe3+ ions, have been found to be 4.5± 0.3. Hence, these values indicate that the Fe ions in 

the Fe-doped In2O3 films are mostly Fe2+ since its calculated p = 4.9. This agrees quite well 

with the magneton number calculated using p = 2[S(S+1)]1/2; this means that the orbital 

moment is fully quenched.  

However, the smaller observed values of the effective magnetic moments obtained 

from the magnetic susceptibility clearly indicate that only a fraction of the Fe ions 

contribute to the observed ferromagnetism [47]. One or more of the following factors can 

effectively lower the value of the effective magnetic moment of an ion: the 

antiferromagnetic interaction that may occur between nearest neighbours; any cluster 

containing Fe; and the nature of the nanostructured material [42, 48, 49]. 

Figures 6.6 (a) and 6.6 (b) show the 5 and 300 K magnetic hysteresis loops of the 

Fe-doped In2O3 films deposited at base pressure of 2×10-5 Torr. Figures 6.6 (c) and 6.6 (d) 
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show the 5 and 300 K magnetic hysteresis loops of the Fe-doped In2O3 films deposited at 

a higher oxygen partial pressure of 2×10-3 Torr. The diamagnetic term has been subtracted. 

 

It was found that Ms and Hc are strongly temperature dependent. This observation 

indicates that, in addition to the ferromagnetic contribution, there might be a paramagnetic 

contribution [3, 31].  

Figure 6.6: (a) and (b) are respectively the magnetic hysteresis loops measurements at 5 K and 300 K for the 

Fe-doped In2O3 films from different precursors at a base pressure of 2×10-5 Torr. (c) and (d) are respectively 

hysteresis loops taken at 5 and 300 K for the Fe-doped In2O3 films from different precursors at the higher 

oxygen pressure of 2×10-3 Torr. The diamagnetic term has been subtracted. 
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As seen in Figures 6.6 (a) and 6.6 (b), decreasing oxygen content from the target 

leads to a clear increase in the Ms value which can be ascribed to increasing oxygen 

vacancies that represent a crucial factor in enhancing the magnetism. In addition, the 

formation of Fe metallic cluster at base pressure might contribute to the observed increase 

in the Ms values [3, 39, 40].  

In comparison, when the PO2 
was increased from base pressure to 2×10−3 Torr, the 

Ms values were found to decrease, this can be clearly seen from Figure 6.6 (c) compared to 

Figure 6.6 (a) for the measurements taken at 5 K, and Figure 6.6 (d) compared to Figure 

6.6 (b) for the measurements taken at 300 K.  

However, unlike the films grown at base pressure, the observed ferromagnetism 

of the films doped at the higher oxygen pressure cannot be due to the Fe clusters [3, 15, 

25]. Instead, the origin of ferromagnetic behaviour might be attributed to the Fe ions at 

grain boundaries, and this strongly agrees with what has been previously reported in V-

doped In2O3 thin film [39]. This is because increasing the oxygen content gives rise to an 

increase of the lattice constant, leading to incorporating more TM into the In2O3 host 

lattice. As a result, the average size of grains decreases and, therefore, increasing the 

number of grain boundaries [3, 39].  

There is an agreement between the effect of increasing the oxygen pressure during 

the deposition, and increasing oxygen amount from the precursors through target 

preparation. However, increasing the oxygen pressure in the PLD chamber during growth 

process results in a considerable variation of magnetisation compared to the increase of the 

oxygen amount from target. This could be due to the large change in the oxygen vacancies 

that are rapidly decreased at high oxygen pressure and vice versa [3]. 
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The coercive field values at RT range from 92 ± 10 to 135 ± 15 Oe, which may 

indicate the semiconducting behaviour as was observed by Jiang et al. and Feng et al. [3, 

39]. The maximum value of Hc was found to be 670 ± 20 Oe for the FeO-doped In2O3 film 

prepared at the base pressure and measured at 5 K. This result indicates that the sample had 

an anisotropic behaviour of magnetisation along the easy in-plane direction. Such magnetic 

anisotropy possibly arises from the magnetostriction effect induced by the strain due to the 

fraction of the incorporated Fe ions into In sites [12]. 

Table 6.2 summarises the RT data of Ms and Hc extracted from the previous 

figures of 6.5 (a - d) for the Fe-doped In2O3 samples deposited at base pressure and oxygen 

partial pressure of 2×10-3 Torr.  

 

Table 6.2: The variations of Ms and Hc measured at RT with changing the oxygen content 

through different precursors and during the deposition process of the (In0.95Fe0.05)O3 films. 

 

 

Temperature-dependent ZFC and FC magnetisations (M vs T) data were obtained 

for all Fe-doped In2O3 samples grown from FeO, Fe3O4, and Fe2O3 precursors and 

deposited at 2×10-5 Torr. A magnetic field of 100 Oe was applied parallel to the plane of 
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the samples. The diamagnetic contribution from the sapphire substrate has been subtracted 

from all ZFC and FC curves.  

At higher temperatures, all Fe-doped In2O3 films showed a reversible magnetism 

as there is no sign of hysteresis. Decreasing the temperature, however, resulted in the FC 

curve of the Fe3O4-doped In2O3 and Fe2O3-doped In2O3 films to diverge from the ZFC 

curve at ~ 125 K, as shown in Figure 6.7 (a). On the other hand, FeO-doped In2O3 exhibited 

a large separation between FC and ZFC just around 220 K, as shown in Figure 6.7 (b). This 

result confirms the large coercive field of this sample shown by the hysteresis loop 

measured at 5 K, presented above in Figure 6.6 (a).  

 

The ZFC/FC magnetisations of the Fe-doped In2O3 films grown from Fe3O4 and 

Fe2O3 precursors indicate that all the sizes of magnetic clusters were too small to show 

blocking at RT. However, the blocking shown by the Fe-doped In2O3 grown from the FeO 

precursor was larger, indicating the existence of large Fe nanoparticles [12, 44]. This is in 

Figure 6.7: FC and ZFC magnetisation curves of the Fe-doped In2O3 from Fe3O4 and Fe2O3 precursors in (a) 

and from FeO precursor in (b) where all samples were grown at base pressure of 2×10-5 Torr.  
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agreement with the XANES and EXAFS data that showed a fraction of metallic Fe in all 

the Fe-doped In2O3 films deposited at base pressure. 

             Increasing the magnetisation steeply below 50 K by decreasing the temperature is 

a characteristic of DMS materials. Such behaviour might result from the Fe ions that are 

not contributing to the long-range ferromagnetic order [41, 43, 45]. Decreasing the 

temperature further reveals a paramagnetic contribution in addition to the observed weak 

ferromagnetic behaviour shown from the previous RT hysteresis loops.  

From Figure 6.7 (b), the Fe nanoparticle size can be estimated from the measured 

blocking temperatures in the ZFC/FC curves using the Bean–Livingston formula, 

KV=25k
B
T

B
, where K is the anisotropy constant, V is the average volume of the particles, 

and k
B
 is Boltzmann’s constant [44]. For metallic Fe particles, K is ~ 4.8×104 J/m. Thus, it 

was found that the average size of the Fe nanoparticles to be ~ 14.5 nm. 

6.4.1.3 Optical Properties 

The optical properties of the Fe-doped In2O3 films were investigated by carrying 

out transmission and reflection measurements at room temperature. From these 

measurements, absorption data were obtained to gain an insight into the electronic structure 

and, therefore, estimate the band gap of the Fe-doped In2O3 films. 

Since the optical properties of this material are extremely sensitive to different 

target and thin film preparation parameters, the following results will show the effect of 



Chapter 6 – TM-doped In2O3 

155 

 

oxygen amount, in particular. Figure 6.8 illustrates the absorption data around the band 

edge for all the Fe-doped In2O3 films grown at base and different oxygen pressures.  

 

It can be seen that the band gap decreases with the increasing amount of oxygen 

from the target for the films grown at base pressure with colours (black, blue and orange).  

However, the band gap increased with the increase of the oxygen pressure during 

growth for the films of Fe2O3-doped In2O3 with colours (black, red and green), for the films 

of Fe3O4-doped In2O3 with colours (blue, cyan and pink), and for the films of FeO-doped 

In2O3 with colours (orange, dark yellow and navy). The band gap values are summarised 

in Table 6.3. 

Figure 6.8: Absorption data of Fe-doped In2O3 samples grown from FeO, Fe3O4 and Fe2O3 precursors 

deposited at base pressure of 2×10-5 Torr and the two higher oxygen pressures of 2×10-4 Torr and 

2×10-3Torr. 
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Table 6.3: Summary of the band gap values of Fe-doped In2O3 thin films deposited at base 

and higher oxygen pressures. 

 

 

Two main factors might be responsible for these different observations of 

decreasing (increasing) the band gap with increasing (increasing) the oxygen content either 

from the precursors or during the growth: the first is due to the Burstein-Moss effect; and 

the other is because of the change in the size of the unit cell [25, 50].  

According to the Burstein-Moss effect, increasing charge carriers plays an 

important role in shifting the band gap to higher energy. Thus, the samples deposited at 

base pressure showed an increase in the value of the band gap with decreasing oxygen 

content from the precursors. This can be ascribed to increasing the charge carriers as a 

result of an increase in oxygen vacancies [3, 51].  

In contrast, increasing the value of the band gap with increasing oxygen pressure 

during the deposition process may be attributed to oxidising the large Fe2+ ions to smaller 

Fe3+ ions; such a reduction in the ionic radius gives rise to a contraction in the lattice 

resulting in an increase in the band gap [3, 25, 33, 40, 50].  

 

Sample 

Eg (eV) 

Base Pressure 

(2×10-5 Torr) 

Oxygen Pressure 

(2×10-4 Torr) 

Oxygen Pressure 

(2×10-3 Torr) 

FeO-doped In2O3 3.65 ± 0.01 3.66 ± 0.01 3.69 ± 0.02 

Fe3O4-doped In2O3 3.63 ± 0.02 3.67 ± 0.02 3.70 ± 0.01 

Fe2O3-doped In2O3 3.60 ± 0.02 3.68 ± 0.02 3.72 ± 0.01 
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6.4.1.4 Magneto-Optical Properties  

The MCD spectra for all Fe-doped In2O3 samples were measured in the energy 

range between 1.7 and 4 eV at RT in Faraday geometry by applying a magnetic field of 

18000 Oe, as displayed in Figures 6.9 (a) and 6.9 (b). The diamagnetic signal from the 

sapphire substrate has been subtracted.  

MCD spectra magnitude decreased as the oxygen content increased. These results 

are consistent with the values of the magnetisation saturation obtained from the magnetic 

hysteresis loops measured by the SQUID.  

 

For the samples deposited at base pressure, there is a considerable negative MCD 

in the energy range from 2 to just below 3.5 eV; above that a positive spectral shape can 

be seen, as in Figure 6.9 (a). This result indicates that the negative features were due to the 

presence of metallic Fe nanoparticles. Such a finding shows that metals contribute very 

strongly to the MCD. This is consistent with what has been reported by Jiang et al. [40].  

Figure 6.9: MCD spectral shapes of the Fe-doped In2O3 samples deposited from different precursors at: 

(a) base pressure and (b) two higher oxygen pressures, respectively. 
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In Figure 6.9 (b), most of the samples grown at higher oxygen pressure showed 

weak positive MCD spectral shapes in the region below 3.5 eV, perhaps due to weak spin-

orbit coupling arising from the electrons at the grain boundaries [39]. The negative features 

below 3.5 eV are characteristic of the films grown at base pressure; arising from spin split 

conduction band [3, 52].  

Above 3.5 eV, there are clear peaks which are characteristic of the band structure 

of the In2O3 as a host material. This could be due to defect states near the energy gap of 

In2O3 (~ 3.75 eV), as a result of the spin polarised 3d electrons at around this energy.  

Adding more oxygen to the films might then prevent the formation of any metallic 

clusters, consequently allowing Fe ions to be more easily substituted for the In ions in the 

In2O3 matrix. As a result, there is an exchange interaction between the d orbital magnetic 

moments of the dopant, and the charge carriers of the s and p orbitals of the host material 

[3, 25, 28, 53]. 

6.4.2 Mn-Doped In2O3  

Three Mn-doped In2O3 thin films were grown from Mn2O3 precursor and 

deposited as a function of oxygen pressure. The aim of this study was to investigate the 

doping of In2O3 with a TM other than Fe to avoid the formation of metallic clusters for 

films grown at base pressure. Hence, the three Mn-doped In2O3 films were deposited under 

the same conditions as the Fe-doped In2O3.  

The results of the Mn doped In2O3 thin films were compared with Fe-doped In2O3 

films; the Mn-doped In2O3 films were not found to have any traces of secondary phases. 

This finding was confirmed using different measurements as presented below. 
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6.4.2.1  Structural Properties 

As depicted in Figure 6.10, the obtained XRD data reveal that all the films showed 

high crystallinity, as well as the bixbyite cubic structure found for pure In2O3. The results 

also show that the dominant peaks were (222) and (400), suggesting that the films were 

well oriented along the c-axis and ruling out the possibility of forming any secondary 

phases or impurities at the limit of the XRD.  

 

 

 

The value of 2θ was found to shift towards smaller angles as the oxygen pressure 

increased, indicating increasing incorporation of Mn ions into the In2O3 lattice [15, 31, 55]. 

This is because incorporating TM into the In2O3 lattice, in general, results in a reduction in 

the ionic radii. 

Figure 6.10: XRD data from  Mn-doped In2O3 films grown at different oxygen pressures. 
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The K-edge XANES spectra measurements for all films were taken to further 

investigate the potential formation of metallic Mn and any oxide secondary phases. Figure 

6.11 (a) shows the XANES spectra of different manganese oxides, as references, and the 

Mn doped In2O3 films.  

 

The XANES spectra indicate that there was no metallic Mn but there might have 

been a small percentage of Mn oxides in the case of the film deposited at base pressure. 

Clearly, the absorption edge for all films was located between Rhodochrosite (MnCO3) and 

Mn2O3, suggesting that the sample deposited at base pressure probably had many Mn2+ 

ions, whereas the films deposited at higher oxygen pressures seemed to have a mixture of 

Mn2+ and Mn3+ ions.  

Figure 6.11 (b) shows the Fourier transforms of the EXAFS spectra to investigate 

more the structural environment around the Mn atoms. It can be noticed that the sample 

Figure 6.11: (a) K-edge XANES spectra of (In0.95Mn0.05)2O3 grown at different oxygen pressures with some 

manganese oxide references, and (b) Fourier transform EXAFS data from the same samples with the reference 

of Rhodochrosite. Data taken by Dr. Steve Heald. 
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deposited at base pressure shifted to larger R as expected for the 2+ valence; this confirms 

the previous K-edge XANES result.  

The intensities of all samples were observed to be larger in some areas compared 

to the pure substitutional model, indicating a possible minority of oxide impurity phases. 

Thus, the data were found to be better fitted with the Rhodochrosite model [15, 56, 57]. 

6.4.2.2  Magnetic Properties 

The M-H hysteresis loops for all samples were measured at 5 and 300 K in a 

magnetic field of 10000 Oe applied parallel to the plane of the Mn-doped In2O3 films, as 

shown in Figures 6.12 (a) and 6.12 (b). The substrate diamagnetic effect has been 

subtracted.  

 

Pronounced hysteresis loops are noticeable for all samples at both temperatures, 

indicating ferromagnetic behaviour at room temperature. The dependence of the saturation 
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Figure 6.12: (a) and (b) M-H hysteresis loops of Mn-doped In2O3 thin films grown at different oxygen 

pressures measured at low and room temperatures, respectively. The diamagnetic contribution from the 

substrate has been subtracted. 
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magnetisation on the temperature suggests the existence of a paramagnetic contribution 

added to the ferromagnetic component.  

Ms was found to decrease with increasing oxygen pressure owing to the reduction 

of oxygen vacancies. Nonetheless, increasing the oxygen pressure causes the oxidation of 

the Mn2+ ions to Mn3+ ions, which are less magnetic, and this might explain the decrease 

in the saturation magnetisation [25, 58]. The values of Ms and Hc for all Mn-doped In2O3 

samples are summarised in Table 6.4.  

 

Table 6.4: A summary of the Ms and Hc data from Mn-doped In2O3 thin films at different 

oxygen pressures.  

 

 

The coercive field values were found to decrease with increasing oxygen pressure, 

excluding an extrinsic origin such as Mn clusters or MnO impurity, in forming the 

ferromagnetism. The values of Ms(5)/Ms(300) and Hc(5)/Hc(300) reveal that the 

magnetisation was strongly influenced by changing the oxygen content; this is in 

agreement with what has been reported for semiconducting oxide films [15, 25].  

PO2 

(Torr) 

 

Ms (emu cm-3) 

 

Hc  (Oe) 

 
Ms(5)

Ms(𝟑𝟎𝟎)
 

Hc(5)

Hc(300)
 

5 K 300 K 5 K 300 K 

2×10−5 16.4 ± 0.2 12.5 ± 0.3 150 ± 18 110 ± 14 1.31 ± 0.05 1.69 ± 0.04 

2×10−4 14.3 ± 0.2 10.2 ± 0.1 130 ± 16 97 ± 12 1.40 ± 0.07 1.36 ± 0.06 

2×10−3 11.3 ± 0.1 7.3 ± 0.3 100 ± 14 89 ± 12 1.54 ± 0.03 1.24 ± 0.08 
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6.4.2.3  Optical and Magneto-Optical Properties 

The optical absorption and MCD data at RT for all samples are presented in 

Figures 6.13 (a) and 6.13 (b), respectively. The absorption of the film grown at base 

pressure was large at low energies compared to other films grown at higher oxygen 

pressures, indicating a poorer quality for the base pressure-grown film and showing a 

smaller band gap of 3.68 ± 0.02 eV than the widely reported value of 3.75 eV. 

 

Increasing the oxygen pressure for the other films, however, results in the band 

gap shifting to higher energy. This could be ascribed to the crystallinity and surface quality 

that improve with increasing oxygen pressure [15, 54]. 

The MCD measurements were taken for all samples in a magnetic field of 18000 

Oe and the diamagnetic effect of the sapphire substrate has been subtracted. Figure 6.13 

(b) shows clear MCD signals from all films that emerge from about 2.5 eV and continue to 

be more pronounced at the band edge of about 3.75 eV.  

Figure 6.13: (a) and (b) Absorption and MCD spectra of (In0.95Mn0.05)2O3 samples grown at different 

oxygen pressures, respectively. 
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The MCD spectral shapes near 2.5 eV might be attributed to the transitions to the 

donor states either caused by oxygen vacancies or oxidising Mn2+ to Mn3+ ions for films 

deposited at base and higher oxygen pressures, respectively [21, 28].  

The MCD features around 3.75 eV are ascribed to the carriers at the band edge of 

In2O3. The MCD values differ according to oxygen content in each sample as they decrease 

with increasing the oxygen pressure. Hence, the MCD spectrum of the film deposited at 

base pressure displays the highest MCD value, mainly attributed to the oxygen vacancies 

[21, 53]. 

6.5 SUMMARY AND CONCLUSIONS  

Oxygen content was found to influence different properties of (Fe, Mn)-doped 

In2O3 thin films. For Fe-doped In2O3, the oxygen content can either be varied from the 

precursor or during the deposition process and give more or less the same results. This 

contradicts the results that have been recently found for ZnCoO where different precursors, 

grown under different oxygen pressures, gave different magnetic properties [52]. Such a 

finding reveals the importance of target preparation in controlling and studying various 

properties of TM-doped In2O3 films as a function of oxygen content. The structural, 

magnetic, optical and magneto-optical properties were systematically investigated and 

found to be oxygen pressure dependent.  

The results of the XRD measurements of 5% Fe-doped In2O3 thin films prepared 

at base pressure from FeO, Fe3O4 and Fe2O3 precursors revealed the existence of a FeO 

secondary phase. This was also confirmed by EXAFS data which, in addition, showed the 
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presence of FeO as well as metallic Fe for the Fe-doped In2O3 samples grown at base 

pressure. This observation might be ascribed to the loss of oxygen, as the reduction of 

oxygen pressure during the growth has been found to result in the formation of Fe metallic 

clusters [40] as well as the creation of more oxygen vacancies [3, 15].  

The magnetic data show that all samples had RT ferromagnetism. Films grown at 

lower oxygen pressure were more magnetic, perhaps as a result of the effect of oxygen 

vacancies in addition to Fe metallic clusters. Such a result is in agreement with the results 

found from the XRD and EXAFS measurements. Further support was provided by ZFC/FC 

measurements revealing stronger ferromagnetism for films prepared at base pressure 

compared to films made at higher oxygen pressure, more specifically, the FeO-doped In2O3 

film showing the effect of large nanoparticles. 

The optical data are consistent with other data as the band edge was found to 

increase by reducing the oxygen from the target when films were grown at base pressure. 

This was found to be due to the increase in charge carriers resulting from the increase in 

the oxygen vacancies. However, when films were deposited under oxygen flow, the band 

gap was observed to increase with increasing oxygen pressure and vice versa as a result of 

lattice contraction due to oxidising Fe2+ to Fe3+ ions.  

In the case of the films at base pressure, the observed MCD signals are mainly 

ascribed to the presence of the metallic Fe. On the other hand, the MCD signals of the films 

doped at higher pressure are believed to be due to the weak interaction between spin-orbit 

states of the electrons at the grain boundaries. 

In terms of the Mn-doped In2O3, all samples were found to display 

ferromagnetism at RT where the magnetisation is strongly affected by varying the oxygen 
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content. The substitution of the Mn ions for In ions in the In2O3 lattice is most likely 

obtained by Mn3+ ions according to the EXAFS data.  

The magneto-optical results support the magnetic data where the MCD signals 

decrease when the oxygen pressure increases. In addition, positive features of the MCD 

spectra, shown in the energy range of 2.5 to 3.7 eV, provide evidence to confirm the 

formation of donor states that lie within the Fermi level and close to the conduction band. 

Such states were found to originate via the oxygen vacancies and Mn3+ ions for the films 

grown at lower and higher O2 pressure, respectively.  

It can be concluded that the TM-doped In2O3 thin films are extremely sensitive to 

growth conditions. For instance, the oxygen pressure/content plays an important role in 

determining the concentration of oxygen vacancies. In addition, studying the TM-doped 

In2O3 as a function of oxygen pressure has revealed that the formation of metallic TM 

depends on the type of transition metal. Hence, iron was found to produce metallic Fe when 

prepared at base pressure, whereas manganese was not. 
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Conclusion and Future Work 

This chapter provides conclusions and summarises the important outcomes 

obtained from studying various properties of different magnetic materials. These will be 

presented in the first part of this chapter. The second part shows a brief plan for extending 

the work that has been done so far on TM-doped In2O3. 

7.1  Conclusions from the Work Undertaken 

The work described in this thesis relates to three different oxide materials: 

multiferroic GMO; d0 ZnMgO; and TM-doped In2O3. The investigations into the magnetic 

properties of these materials have revealed that such properties are affected by different 

parameters. The strain of the thin films, for example, has been found to be the common and 

effective factor influencing GMO and ZnMgO magnetism. The TM-doped In2O3 thin films, 

however, have also been found to be oxygen pressure dependent.  

GMO thin films grown on LSAT (100) and (111) substrates showed different 

magnetic properties. This is attributed to different strains introduced by different substrate 

orientations. The strain induced by the substrate has been found to be larger when GMO 

films are grown on LSAT (100) substrate, compared to LSAT (111) and STO (100) 

substrates [1]. As a result, the Mn-Mn exchange interactions are affected, causing an 

enhancement of the canting of the Mn magnetic moments. The magnetic anisotropy was 

found to be enhanced more along the easy plane of the b axis due to the compressive strain 
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caused by the LSAT (100) substrate. In addition, such substrate gives rise to an increased 

transition temperature to 30 K compared to 23 K for bulk GMO [2-4].  

For GMO grown on LSAT (111) substrate, there is a suppression of the canted 

phase which can be induced by a magnetic field of 2500 Oe. The Curie constant has also 

been found to be smaller for the films grown on LSAT (111) substrate, compared to GMO 

on LSAT (100) substrate and nanoparticles GMO [2, 5].  

LSAT (100) and (111) substrates were found to be better than STO (100) substrate. 

This is because these types of substrates make it possible to measure the optical properties 

in the energy range greater than 3.25 eV, in contrast to STO (100) substrate.  

The MCD measurements reveal that, due to the compressive strain of the in-plane 

direction for GMO grown on LSAT (100) substrate, a considerable feature of the MCD 

spectrum is shown ~ 2 eV; this is attributed to the Mn-Mn inter-site transitions. On the other 

hand, the MCD of the GMO grown on LSAT (111) substrate is suppressed; this result is 

consistent with the magnetic data obtained using the SQUID magnetometer. The MCD 

results also illustrate another feature ~ 3 eV; this is attributed to the transition of charge-

transfer between O (2p) and Mn (3d) states.  

In GMO thin films, the strain can be induced via external pressure [2, 4, 5]. Thus, 

different degrees of distortions can be introduced to the GMO thin films when grown 

epitaxially on different substrates. For this purpose, LSAT (100) substrate was found to be 

better than LSAT (111) and STO (100) substrates. This can be clearly seen through the 

enhancement that LSAT (100) substrate made to the magnetic properties of the GMO thin 

films. 
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The optical and magnetic properties of ZnMgO thin films have been shown to be 

sensitive to different growth conditions, such as deposition time (film thickness), oxygen 

pressure, substrate type and deposition method [6, 7, 11, 13].  

It was found that the band gap was mostly affected by changing the oxygen 

pressure. This might be attributed to the incorporation of Mg content as well as changing 

lattice constant. Increasing the oxygen pressure has been found to reduce the Mg content 

and increase the lattice constant. A as a result, the band gap has been found to be larger at 

low oxygen pressure and vice versa [6].   

However, no measurable effect on the value of the band gap was observed due to 

the variation of film thickness, although the band gap was found to increase weakly with 

increasing film thickness. This could be attributed to the high strain that exists in thin films. 

In other words, the strain generated in thin films is higher compared to that in thick films, 

leading to an expansion of the lattice constant and, therefore, a decreased band gap [8-10].  

The band gap values for ZnMgO films grown on glass, quartz and sapphire 

substrates were found to show the same trend. However, the band gap values for the ZnMgO 

films grown on sapphire substrates were larger compared to the films grown on glass and 

quartz substrates. This may be due to the compressive strain produced by sapphire substrate 

which in turns leads to an increase in the value of the band gap of ZnMgO films [12].  

The deposition technique was also found to influence the band gap values of 

ZnMgO films; this is likely attributed to the Mg content. According to the EDS analyses, 

the ZnMgO films grown by PLD had a greater Mg content than the films deposited by 

sputtering. This interprets the observed higher band gap values of the PLD films compared 

to the sputtered films.  
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The magnetic properties of ZnMgO films were found to depend strongly on 

thickness. For instance, RT ferromagnetic behaviour was displayed for films of small 

thicknesses where the strain and defects play a significant role. This indicates that defects 

are mostly located on the film surface and/or at the interface between the film and the 

substrate [7]. Increasing film thickness, however, results in a transition from 

ferromagnetism to paramagnetism, eventually reaching diamagnetism. Similar 

observations were reported by Prof. Rao’s group in different oxide thin films [11-14].  

In comparison, magnetisation has been found to be weakly dependent on oxygen 

pressure. This is because increasing oxygen pressure results in a rapid reduction of the 

number of defects that give rise to magnetisation. However, oxygen pressure is inversely 

proportional to film thickness, i.e. increasing oxygen pressure results in a reduction in film 

thickness and vice versa. Consequently, increasing oxygen pressure (decreasing thickness) 

was found to decrease (increase) magnetisation. This represents an interesting finding 

which agrees with the view discussed above that magnetisation changes as a function of 

film thickness [7, 14]. 

The growth of ZnMgO films on different substrates of glass, quartz and sapphire, 

was found to affect the magnetisation. The ZnMgO films grown on sapphire substrates 

exhibited the highest magnetisation and band gap compared to the films grown on glass and 

quartz substrates. This may be caused by the strain and defects induced by different 

substrates [13].  

In addition, ZnMgO films deposited by PLD technique showed higher 

magnetisation in comparison to the ZnMgO films grown by sputtering techniques. This 

could be ascribed to the types of defects produced by the two methods. Thus, it is believed 
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that more oxygen vacancies exist in the PLD films in comparison to the sputtered films. 

This is because oxygen vacancies are the most important type of defect enhancing 

magnetisation [7].  

TM-doped In2O3 were widely studied using different techniques and the results 

showed that changing oxygen pressure can affect different properties.  

Fe-doped In2O3 films were deposited from three different targets prepared from 

three different precursors: FeO, Fe3O4 and Fe2O3. Increasing the amounts of oxygen from 

the targets was found to result in a reduction in magnetisation. Similarly, Fe-doped In2O3 

films deposited under different oxygen pressures showed a decrease in magnetisation with 

increasing oxygen pressure, and vice versa. This contrasts with what has been previously 

found in ZnCoO films in which different precursors tended to give different magnetic 

properties. This may depend on the type of defects; the ZnCoO films grown from Co 

precursor were found to have Zn vacancies which are believed to be responsible for RT 

magnetisation [15]. 

The Fe-doped In2O3 films deposited under base pressure showed some traces of 

defect phases such as FeO and metallic Fe clusters; these were detected using XRD and 

EXAFS measurements. These defects were found to be a crucial issue compared to the films 

in which all the TM ions were substituted for In ions. Such defects are believed to be due 

to the loss of oxygen during growth [16]. As a result, more Fe metallic clusters are formed, 

in addition to the formation of more oxygen vacancies. These two factors are probably 

responsible for the observed ferromagnetism of the Fe-doped In2O3 thin films. 
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The Fe-doped In2O3 films deposited under oxygen pressure were found to be 

substitutional and, therefore, different properties were observed. In these films, the grain 

boundaries (GBs) have been found to play an important role in determining different 

properties [17]. 

The optical data showed that, for Fe-doped In2O3 films deposited at base pressure 

the band gap increased when reducing the amount of oxygen from the target. This is 

ascribed to the Burstein-Moss effect. However, for the films grown under oxygen pressure, 

the band gap increased proportionally with increasing the oxygen pressure; this is a result 

of oxidising the Fe2+ ions to Fe3+ ions, resulting in a contraction of the lattice. 

The magnetic and MCD data are in agreement for both sets of films. The observed 

magnetisation of Fe-doped In2O3 films deposited at base pressure is ascribed to the presence 

of Fe metallic clusters and secondary phase of FeO; these were confirmed by XRD and 

EXAFS measurements. The magnetisation of Fe-doped In2O3 films grown at high oxygen 

pressures is due to the weak interaction between spin-orbit states of the electrons at the 

grain boundaries. 

Mn-doped In2O3 samples were grown under different oxygen pressures to see 

whether the formation of metallic clusters, such as those in the case of Fe-doped In2O3 films, 

can be avoided. Mn-doped In2O3 thin films were successfully grown and different 

measurements revealed no forms of metallic clusters. All the magnetic, optical and MCD 

data show that Mn-doped In2O3 films are highly oxygen dependent [18, 19]. 

In conclusion, TM-doped In2O3 thin films are extremely sensitive to growth 

conditions. The manifestation of ferromagnetism is dependent on the existence of clusters 

as well as the oxygen pressure.  
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7.2 Future Work 

Based on the work on TM-doped In2O3 thin films carried out at the University of 

Sheffield, it has been observed that the structural, optical, magnetic and magneto-optical 

properties of 5% TM-doped In2O3 thin films deposited by PLD technique are very sensitive 

to growth conditions, such as the type of TM and oxygen pressure. The literature reports 

that the properties of TM-doped In2O3 thin films are influenced by several other growth 

conditions: substrate temperature, annealing temperature, powder grinding, grain size, the 

energy of the laser beam and the gas used for the laser in PLD as well as the deposition 

method [15-21].  

It would be interesting to investigate the effect of a number of the previous growth 

parameters on TM-doped In2O3 thin films. The deposition of TM- In2O3 thin films at 

different substrate temperature has been found to improve both the optical and magnetic 

properties. Thus, it would be worthwhile to use the TM (Fe and Mn)- In2O3 targets to 

prepare thin films at different substrate temperatures of 300, 350, 400, 450, 500, 550 and 

600 °C. In addition, study of the annealing temperature’s effect on TM (Fe and Mn)- In2O3 

thin films is required to determine the importance of this parameter on the oxygen vacancies 

and its role in enhancing the ferromagnetism of TM- In2O3 films [21].  

Growth of different TM (V, Cr, Co and Ni)-doped In2O3 films is also needed to 

further investigate the magnetic sensitivity to different transition metals in TM-doped In2O3 

[17, 18].  

Both PLD and sputtering techniques for thin film growth are also suggested to 

explore the similarities and differences among the properties of TM-doped In2O3 thin films 

grown with different deposition methods [22].  
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The magnetism of TM-doped In2O3 thin films has been suggested to originate from 

grains and grain boundaries. Thus, the structural properties of TM-doped In2O3 thin films 

should be investigated to provide an insight into their influence on the optical and magnetic 

properties. In this regard, several techniques could be used including, XRD, SEM, and AFM 

to determine grain size, roughness and surface morphology [22, 23]. The grain size of TM-

doped In2O3 has been found to increase with substrate temperature [18, 22].  

Optical and magnetic measurements are also needed; these can be made using a 

Jasco V-570 spectrophotometer and SQUID magnetometer, respectively.  

The above suggested projects aim to achieve a better understanding of the origin 

of ferromagnetism in diluted magnetic semiconductors (DMS). It should also be 

remembered that great care needs to be taken when preparing TM-doped In2O3 targets and 

thin films to obtain reproducible and high quality films. 
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“This is not the end. It is not even the beginning of the end. But it is, perhaps, 

the end of the beginning.” 

 

– Winston Churchill – 


