
Fault Tolerant Task Mapping
in

Many-Core Systems

Colin Andrew Bonney

PhD

University of York

Electronic Engineering

May 2016

Abstract

The advent of many-core systems, a network on chip containing hundreds or thousands of

homogeneous processors cores, present new challenges in managing the cores effectively

in response to processing demands, hardware faults and the need for heat management.

Continually diminishing feature size of devices increase the probability of fabrication de-

fects and the variability of performance of individual transistors. In many-core systems this

can result in the failure of individual processing cores, routing nodes or communication

links, which require the use of fault tolerant mechanisms. Diminishing feature size also

increases the power density of devices, giving rise to the concept of dark silicon where

only a portion of the functionality available on a chip can be active at any one time.

Core fault tolerance and management of dark silicon can both be achieved by allocating a

percentage of cores to be idle at any one time. Idle cores can be used as dark silicon to

evenly distribute heat generated by processing cores and can also be used as spare cores

to implement fault tolerance. Both of these can be achieved by the dynamic allocation of

processes to tasks in response to changes to the status of hardware resources and the

demands placed on the system, which in turn requires real time task mapping.

This research proposes the use of a continuous fault/recovery cycle to implement graceful

degradation and amelioration to provide real-time fault tolerance. Objective measures

for core fault tolerance, link fault tolerance, network power and excess traffic have been

developed for use by a multi-objective evolutionary algorithm that uses knowledge of the

processing demands and hardware status to identify optimal task mappings.

The fault/recovery cycle is shown to be effective in maintaining a high level of performance

of a many-core array when presented with a series of hardware faults.

Contents

Abstract 3

Contents 4

List of Tables 11

List of Figures 13

List of Equations 18

Acknowledgements 23

Declaration 26

1 Introduction 27

1.1 The Many-Core Paradigm . 28

1.2 Problem Description . 31

1.3 Related Work . 31

1.4 Novel Contributions of this Thesis . 33

1.5 Research Outcomes . 35

1.6 Thesis Structure . 36

2 Many-Core Systems 37

2.1 Computer Architecture . 37

2.1.1 Evolution of Microprocessor Based Systems 37

2.1.2 Network On Chip (NoC) . 40

2.1.3 System on Chip (SoC) . 40

2.1.4 A Processor Centric Perspective . 41

2.1.5 Amdahl’s Law . 44

2.2 Hardware Considerations Related to Many-Core Systems 46

2.2.1 Clock Propagation . 46

2.2.2 Globally Asynchronous Local Synchronous (GALS) Architecture . . 47

2.2.3 Dark Silicon . 48

2.3 On-Chip Communication Networks . 48

2.3.1 Network Switching . 49

2.3.2 Network Latency . 50

2.3.3 Routing . 51

2.3.4 Network Topology . 53

2.4 Software Considerations in Many-Core Systems 57

2.4.1 Scale Independence . 57

2.4.2 Application Process Graph . 58

2.4.3 Task Mapping . 60

2.4.4 Task Migration . 62

2.4.5 Core Regions . 63

2.4.6 Monitoring . 63

2.5 Memory Subsystem . 65

2.5.1 Memory Hierarchy . 65

2.5.2 Cache . 66

2.5.3 Multi-Processor Memory Architecture 69

2.5.4 Memory Coherence in Many-Core Systems 70

2.6 Programming Models . 71

2.6.1 Evolution of Computation . 71

2.6.2 Imperative Languages . 72

2.6.3 Functional Programming . 72

2.6.4 Dataflow Programming . 73

2.6.5 Parallel Programming Models . 75

2.6.6 Code Parallelization . 75

2.7 Summary . 76

3 Fault Tolerance 77

3.1 Reliability . 78

3.2 Error Detection and Correction Codes . 78

3.3 Hardware Redundancy . 79

3.3.1 Double Modular Redundancy (DMR) 79

3.3.2 Triple Modular Redundancy (TMR) 80

3.3.3 Synchronised Redundant Systems 82

3.4 Fault Tolerance in Memory . 83

3.5 Fault Tolerance in Disks . 84

3.6 Fault Tolerance in Many-Core Systems . 84

3.6.1 Fault Recovery . 85

3.6.2 Response - Slow Versus Fast . 85

3.6.3 Graceful Amelioration and Degradation 85

3.7 Conclusion . 86

4 Core Fault Tolerance 89

4.1 Assumptions . 89

4.2 The Many-Core Array . 90

4.3 Application Process Graph . 91

4.4 Process Map . 94

4.5 Metrics and Objectives . 95

4.6 Core Fault Tolerance Metric and Objective 96

4.6.1 Core Fault Tolerance . 96

4.6.2 Distance to Nearest Idle Core Metric 96

4.6.3 Core Fault Tolerance Objective . 98

4.7 Nearest Spare Core Search . 98

4.7.1 Problem Statement . 99

4.7.2 Method 1 - Exhaustive Search with Early Termination 99

4.7.3 Method 2 - Concentric Diamond Search 99

4.8 Many-Core Evolutionary Algorithm . 101

4.8.1 Evolutionary Cycle . 102

4.8.1.1 The Cycle . 102

4.8.1.2 Initial Population . 103

4.8.1.3 Generation Zero Population 104

4.8.1.4 Primary Population . 104

4.8.1.5 Intermediate Population 104

4.8.1.6 Fitness Evaluated Population 105

4.8.1.7 Population Evolution Parameters 105

4.8.2 Phenome and Genome . 106

4.8.2.1 Phenome . 106

4.8.2.2 Genome - Phenomic Representation 107

4.8.3 Engineered Mappings . 108

4.8.3.1 Random Placement . 109

4.8.3.2 Engineered Mapping Concept 109

4.8.3.3 Process Distribution Pattern 109

4.8.3.4 Array Node Ordering . 110

4.8.3.5 Example Engineered Mappings 112

4.9 Experiments and Analysis . 113

4.9.1 Description and Assumptions . 115

4.9.2 Experiment Parameters . 116

4.9.2.1 Test Parameters . 117

4.9.3 Minimum Discovered Fitness . 117

4.9.4 Optimum Graph Size . 126

4.9.5 Evolution of a Mapping of a 26 Node Graph to a 6x6 Array 131

4.9.6 Termination Condition . 134

4.10 Conclusions . 147

5 Network Power 149

5.1 Communicating Core Pair (ComPair) . 150

5.2 Link Criticality . 152

5.3 Network Power Metric and Objective . 157

5.3.1 Distance Between Communicating Core Pairs 158

5.3.2 Simple Power Objective . 158

5.4 Many-Core Evolutionary Algorithm . 158

5.4.1 Pareto Front Sorting . 159

5.4.1.1 Definition of Pareto Front 159

5.4.1.2 Significance of Pareto Fronts 160

5.4.2 Evolutionary Cycle . 160

5.4.2.1 The Cycle . 161

5.4.2.2 Initial Population . 161

5.4.2.3 Generation Zero Population 162

5.4.2.4 Primary Population . 162

5.4.2.5 Intermediate Population 162

5.4.2.6 Fitness Evaluated Population 164

5.4.2.7 Sorted Population . 164

5.4.2.8 Pareto Front Zero (Pf0) 164

5.4.2.9 Population Evolution Parameters 165

5.4.3 Phenome and Genome . 165

5.4.3.1 Genome - String Representing Absolute Position 165

5.4.3.2 Genome - String Representing Relative Position 168

5.5 Exploring Evolutionary Algorithm Parameters 170

5.5.1 Core Fault Tolerance Objective . 170

5.5.1.1 Effect of Population Size with Core Fault Tolerance Objective171

5.5.1.2 Effect of Mutation Rate with Core Fault Tolerance Objective 174

5.5.1.3 Effect of Population Size with Core Fault Tolerance Objec-

tive Revisited . 176

5.5.2 Network Power Objective . 177

5.5.2.1 Effect of Population Size with Power Metric 179

5.5.2.2 Network Power and Mutation Rate 181

5.6 Core FT with Network Power Results . 182

5.6.1 Data Presentation . 182

5.6.2 Results Analysis . 183

5.7 Conclusion . 196

6 Link Fault Tolerance and Network Traffic 197

6.1 Application Process Graph (APG) . 197

6.2 Hardware Map . 201

6.2.1 Nodes and Links of a Hardware Map 201

6.2.2 Modelling Faults . 202

6.2.3 Hardware Map Definition . 203

6.2.4 Hardware Map Configurations . 205

6.3 The Environment . 208

6.4 Link Fault Tolerance Metric and Objective 209

6.4.1 Problem Description . 211

6.4.2 Vulnerability to Critical Link Failure Metric 211

6.4.3 Vulnerability to Significant Link Failure Metric 213

6.4.4 Vulnerability to Link Failure Metric 214

6.4.5 Link Fault Objective . 216

6.5 Network Power Metric and Objective . 216

6.5.1 Problem Description . 216

6.5.2 Distance Between Communicating Core Pairs 217

6.5.3 Traffic Volume Metric . 217

6.5.4 Power Objective . 217

6.6 Excess Traffic Metric and Objective . 218

6.6.1 Problem Description . 219

6.6.2 Excess Traffic Metric . 219

6.6.3 Excess Traffic Objectives . 225

6.7 Determining Paths Through a Lattice . 227

6.7.1 Definitions . 228

6.7.2 Pascal’s Triangle . 230

6.7.3 The Number of Minimal Length Paths in a Fault Free Lattice 231

6.7.4 Number of Paths Traversing Path-Coincident Edges 232

6.7.5 Number of Paths Through Multiple Faulty Edges 235

6.7.6 Number of Paths Through a Lattice with Multiple Faulty Edges . . . 236

6.7.7 Summary . 237

6.8 Multi-Objective Correlation . 237

6.8.1 Correlation . 237

6.8.2 Objectives . 238

6.8.3 Evolutionary Algorithm Parameters 238

6.8.4 Graph Selection . 238

6.8.5 Data Presentation . 240

6.8.6 Results for a Densely Connected Graph 241

6.9 Conclusion . 263

7 Graceful Degradation and Amelioration 265

7.1 The Monitor . 265

7.2 Fault/Recovery Cycle . 266

7.2.1 Normal Operation . 267

7.2.2 Graceful Degradation . 269

7.2.3 Graceful Amelioration . 270

7.3 Viable Mappings . 271

7.4 Single Objective Graceful Degradation and Amelioration 272

7.4.1 Evolutionary Algorithm Parameters 273

7.4.2 Graph Selection . 273

7.4.3 Data Presentation . 274

7.4.4 Results . 274

7.4.5 Summary . 276

7.5 Multi-Objective Graceful Degradation and Amelioration 278

7.5.1 Evolutionary Algorithm Parameters 278

7.5.2 Graph Selection . 278

7.5.3 Data Presentation . 278

7.5.4 Summary . 288

7.6 Conclusion . 288

8 Conclusions and Future Work 291

8.1 Future Work . 293

A Graph Generator 295

B Multi-Objective Plots for Sparsely and Moderately Connect Graphs 297

B.1 Results for a Sparsely Connected Graphs 297

B.2 Results for a Moderately Connected Graphs 315

C Evolution of Microprocessor Based Systems 333

C.1 Word Length . 334

C.2 Pipeline . 335

C.3 On Chip Cache . 337

C.4 Processing Cores . 337

D Many-Core Implementations 341

D.1 The Graceful Project . 341

D.2 Paralella . 346

D.2.1 Adapteva . 346

D.2.2 Epiphany . 346

D.2.3 Memory . 347

D.2.4 Routing . 348

D.2.5 Hardware Platforms . 349

D.2.6 16 Core - Parallella Board . 350

D.2.7 64 Core - 4 x Parallella Board . 350

D.3 SpiNNaker chip . 352

D.4 Intel R© Many Integrated Core (Intel R© MIC) Architecture 353

E The Many-Core Model 355

E.1 The Many-Core Array . 355

E.2 Application Process Graph (APG) . 357

E.3 Process Map . 360

E.4 Communicating Core Pair (ComPair) . 362

E.5 Link Criticality . 364

E.6 Hardware Map . 369

E.6.1 Nodes and Links of a Hardware Map 369

E.6.2 Modelling Faults . 370

E.6.3 Hardware Map Definition . 372

E.6.4 Hardware Map Configurations . 373

E.7 The Environment . 376

F Metrics and Objectives 379

F.1 Metrics and Objectives . 379

F.2 Core Fault Tolerance Metric and Objective 380

F.2.1 Core Fault Tolerance . 380

F.2.2 Distance to Nearest Idle Core Metric 380

F.2.3 Core Fault Tolerance Objective . 382

F.3 Link Fault Tolerance Metric and Objective 382

F.3.1 Problem Description . 382

F.3.2 Vulnerability to Critical Link Failure Metric 383

F.3.3 Vulnerability to Significant Link Failure Metric 383

F.3.4 Vulnerability to Link Failure Metric 386

F.3.5 Link Fault Objective . 388

F.4 Network Power Metric and Objective . 388

F.4.1 Problem Description . 388

F.4.2 Distance Between Communicating Core Pairs 388

F.4.3 Traffic Volume Metric . 389

F.4.4 Power Objective . 389

F.5 Excess Traffic Metric and Objective . 390

F.5.1 Problem Description . 391

F.5.2 Excess Traffic Metric . 391

F.5.3 Excess Traffic Objectives . 396

Glossary 399

Bibliography 409

List of Tables

4.1 Evolutionary Algorithm Populations . 103

4.2 Population Properties and Parameters . 105

4.3 Node Status Values . 107

4.4 Phenome & Genome Properties . 107

4.5 Array Node Ordering Parameters . 111

4.6 Fault Tolerant Single Objective Test Parameters 117

4.7 Summary of optimum graph size for zero fitness 126

4.8 Summary of evolution of mapping of a 26 node graph to a 6× 6 array 133

4.9 Termination Condition Array and Application Process Graph Size 134

4.10 Termination Condition Column Descriptions 135

4.11 Termination Conditions . 137

4.12 Analysis of Termination Condition: No Condition and kn : k = 6 138

4.13 Analysis of Termination Condition: ka2 : k = 4 and k(n/a2) : k = 200 . . . 139

4.14 Analysis of Termination Condition: 4 ≤ a ≤ 6; a.n and a.n : Dynamic . . . 140

4.15 Analysis of Termination Condition: a = 7; No Condition and kn : k = 6 . . . 141

4.16 Analysis of Termination Condition: a = 7; ka2 : k = 4 and k(n/a2) : k = 200 142

4.17 Analysis of Termination Condition: a = 7; a.n and a.n : Dynamic 143

4.18 Analysis of Termination Condition: a = 8; No Condition and d kn : k = 6 . . 144

4.19 Analysis of Termination Condition: a = 8; ka2 : k = 4 and k(n/a2) : k = 200 145

4.20 Analysis of Termination Condition: a = 8; a.n and a.n : Dynamic 146

5.1 ComPair Properties . 152

5.2 ComPair Path and Link Properties . 152

5.3 Evolutionary Algorithm Populations . 161

5.4 Population Properties and Parameters . 165

5.5 Explanation of Table Columns . 171

5.6 EA Parameter Exploration Test Parameters 172

5.7 Effect Population Size with Core Fault Tolerance Objective 173

5.8 EA Parameter Exploration Test Parameters 175

5.9 Effect of Mutation Rate with Core Fault Tolerance Objective 176

5.10 EA Parameter Exploration Test Parameters 177

5.11 Effect of Population Size with Core Objective 178

5.12 Explanation of Table Columns . 178

5.13 EA Parameter Exploration Test Parameters 179

5.14 Effect of Population Size with Power Objective 100K Individuals 180

5.15 Effect of Population Size with Power Objective 400K Individuals 181

5.16 EA Parameter Exploration Test Parameters 182

5.17 Network Power Objective - Mutation Rate 183

5.18 Power with Core Fault Test Parameters . 184

6.1 Hardware Map Node Types . 201

6.2 Core and Link Status Values . 202

6.3 Hardware Map Definition Parameters . 205

6.4 Border Types . 205

6.5 Comparison of Vulnerability Metrics . 215

6.6 Comparison of Non-Weighted and Weighted Excess Traffic 223

6.7 Comparison of Non-Weighted and Weighted Excess Traffic 223

6.8 Multi-Objective Fault Free Experiment Parameters 239

6.9 Test Application Process Graphs . 239

7.1 Multi-Objective Fault Free Experiment Parameters 273

7.2 Test Application Process Graphs . 274

E.1 ComPair Properties . 364

E.2 ComPair Path and Link Properties . 364

E.3 Hardware Map Node Types . 370

E.4 Core and Link Status Values . 370

E.5 Hardware Map Definition Parameters . 373

E.6 Border Types . 374

F.1 Comparison of Vulnerability Metrics . 387

F.2 Comparison of Non-Weighted and Weighted Excess Traffic 395

F.3 Comparison of Non-Weighted and Weighted Excess Traffic 395

List of Figures

1.1 Many-Core Array . 28

1.2 Example Application Process Graph with 8 nodes 30

2.1 Square Lattice . 54

2.2 Rhombic Lattice . 55

2.3 Hexagonal Mesh . 55

2.4 Polytopes . 56

2.5 Cube Lattice . 56

2.6 Q4 Hypercube Graph . 57

2.7 Example Application Process Graph (APG) 58

2.8 Example APG Execution Time Chart . 59

2.9 A 12x12 Lattice divided into regions . 64

3.1 An NASA artist concept of Voyager 1 and 2 which used dual-redundant

computer systems . 80

3.2 Triple Modular Redundancy arrangement using a von Neumann inspired voter 81

3.3 Triple-modular-redundant configuration. 81

4.1 A 6× 6 many-core array showing the coordinates of each node. 90

4.2 An application process graph for a 26 node APG in a 6x6 Many-Core Array 92

4.3 A Process Map for a 26 node APG in a 6x6 Many-Core Array 94

4.4 Examples of Distribution of Spare Cores 97

4.5 Diamond Search Pattern - Radius = 3 . 101

4.6 Evolutionary Algorithm Cycle . 103

4.7 Population Selection and Mutation, using 2 elite individuals, 4 parents mu-

tated twice each to create a population of size 10. 105

4.8 String Length of 16 Cores . 110

4.9 Scan transition for horizontal traversal . 111

4.10 Scan transition for diagonal traversal . 112

4.11 Mappings generated by initial placement algorithms 113

4.12 Examples of Engineered Mappings . 114

4.13 Fault Free Mappings - 4x4 Array . 118

4.14 Fault Free Mappings - 5x5 Array . 119

4.15 Fault Free Mappings - 6x6 Array . 120

4.16 Fault Free Mappings - 7x7 Array . 121

4.17 Fault Free Mappings - 8x8 Array . 122

4.18 Selected Fault Free Mappings - 6x6 Array 124

4.19 Initial Mapping of 39 Nodes on a 7x7 Array 125

4.20 Minimum Fitness for generalized n× n array 127

4.21 Minimum discovered fitnesses for array sizes 4× 4 to 8× 8 130

4.22 Evolution of a mapping of a 26 node graph to a 6x6 array 132

5.1 ComPair and subnet examples. Source nodes are coloured light orange,

target nodes coloured dark orange and the subnets are bounded by a dashed

blue line. 151

5.2 Networks illustrating Critical and Significant links 155

5.3 Evolutionary Algorithm Cycle . 162

5.4 Population Selection and Mutation, using 4 elite individuals, 6 parents mu-

tated twice each and 4 novel individuals, to create an intermediate popula-

tion of size 20. 163

5.5 Genome Absolute Position Mapping . 166

5.6 Genome Absolute Position Mutation . 168

5.7 Genome Relative Position Mapping . 169

5.8 Genome Relative Position Mutation . 169

5.9 Graph ’dag0026’ - A 26 Node Application Process Graph 171

5.10 Generations Colour Bar . 183

5.11 Core FT with Performance, 24 Node Graph 185

5.12 Core FT with Performance, 25 Node Graph 186

5.13 Core FT with Performance, 26 Node Graph 187

5.14 Core FT with Performance, 27 Node Graph 188

5.15 Core FT with Performance, 28 Node Graph 189

5.16 Core FT with Performance, 29 Node Graph 190

5.17 Core FT with Performance, 30 Node Graph 191

5.18 Core FT with Performance, 31 Node Graph 192

5.19 Core FT with Performance, 32 Node Graph 193

5.20 Core FT with Performance, 33 Node Graph 194

5.21 Core FT with Performance, 34 Node Graph 195

6.1 Sparsely connected graph with 2 source nodes, 28 processing nodes and 1

sink node. 198

6.2 Moderately connected graph with 3 source nodes ,28 processing nodes and

2 sink nodes. 199

6.3 Densely connected graph with 1 source node, 28 processing nodes and 3

sink nodes. 199

6.4 Hardware Maps representing a 6 × 6 many-core array with interfaces to

external resource on each of the four edges of the many-core array. 203

6.5 Hardware Maps for a Variety of Configurations. The nodes inside the blue

dotted lines represent the cores of the many-core array while the nodes

outside of the blue dotted box represent interfaces to resource external to

the many-core array and cores of adjacent regions. 207

6.6 From the information in the APG in Figure 6.2 and the hardware map (a) the

environment map (b) and process map (c) are produced. The environment

map and process maps are then combined to make the aggregate map (d)

used to calculate the metrics of the process map. 210

6.7 Networks illustrating Critical and Significant links 213

6.8 Paths Through a 2× 3 Array . 214

6.9 Traffic distribution across the links used by a ComPair. The numbers on the

links are percentages of the total ComPair traffic. 220

6.10 A 6× 6 Lattice showing the location coordinates of each node. 228

6.11 Pascal’s "Arithmetical Triangle," as presented in his 1665 Traite du Triangle

Arithmetique [186] (Treatise on the Arithmetical Triangle) (Image c©Cambridge

University Press). 230

6.12 Calculating the number of paths that traverse an edge. 233

6.13 Example of two edge faults. 233

6.14 Generations Colour Bar . 240

6.15 Core FT with Network Power . 242

6.16 Core FT with Link FT . 244

6.17 Core FT with Mean Traffic . 246

6.18 Core FT with Traffic AMD . 249

6.19 Link FT with Traffic AMD . 252

6.20 Link FT with Mean Traffic . 254

6.21 Link FT with Network Power . 255

6.22 Mean Traffic with Traffic AMD . 257

6.23 Network Power with Traffic AMD . 259

6.24 Network Power with Mean Traffic . 262

7.1 The Fault-Recovery Cycle . 267

7.2 Single Objective Fault Recovery for Core Fault Tolerance 275

7.3 Single Objective Fault Recovery for Link Fault Tolerance 277

7.4 Multi-objective, Core Fault Recovery, Core fault tolerance with Power, Densely

Connected Graph . 281

7.5 Multi-objective, Core Fault Recovery, Core fault tolerance with Power, Sparsely

Connected Graph . 283

7.6 Multi-objective, Core Fault Recovery, Link fault tolerance with Power, Sparsely

Connected Graph . 285

7.7 Multi-objective, Link Fault Recovery, Link fault tolerance with Power, Densely

Connected Graph . 287

7.8 Multi-objective, Link Fault Recovery, Link fault tolerance with Mean Traffic,

Densely Connected Graph . 290

B.1 MO Core & Power for Sparsely Connected Graph 298

B.2 MO Core & Link for Sparsely Connected Graph 299

B.3 MO Core & Mean Traffic for Sparsely Connected Graph 301

B.4 MO Core & Traffic AMD for Sparsely Connected Graph 303

B.5 MO Link & Traffic AMD for Sparsely Connected Graph 305

B.6 MO Link & Mean Traffic for Sparsely Connected Graph 307

B.7 MO Link & Power for Sparsely Connected Graph 308

B.8 MO Mean & Traffic AMD for Sparsely Connected Graph 310

B.9 MO Power & Traffic AMD for Sparsely Connected Graph 312

B.10 MO Power & Mean Traffic for Sparsely Connected Graph 314

B.11 MO Core & Power for Moderately Connected Graph 315

B.12 MO Core & Link for Moderately Connected Graph 316

B.13 MO Core & Mean Traffic for Moderately Connected Graph 318

B.14 MO Core & Traffic AMD for Moderately Connected Graph 320

B.15 MO Link & Traffic AMD for Moderately Connected Graph 322

B.16 MO Link & Mean Traffic for Moderately Connected Graph 324

B.17 MO Link & Power for Moderately Connected Graph 325

B.18 MO Mean & Traffic AMD for Moderately Connected Graph 327

B.19 MO Power & Traffic AMD for Moderately Connected Graph 329

B.20 MO Power & Mean Traffic for Moderately Connected Graph 331

C.1 Processor Transistor Count . 334

C.2 Processor Word Length . 335

C.3 Processor Pipeline Stages . 336

C.4 Processor Cache Size . 338

C.5 Processor Number of Cores . 339

D.1 Many-core scenario - Monitoring with radius = 1 343

D.2 Graceful amelioration for performance . 344

D.3 Graceful degradation for fault tolerance . 345

D.4 Graceful amelioration for performance . 345

D.5 Epiphany Mesh Architecture . 346

D.6 Epiphany Core Addressing . 347

D.7 Epiphany Packet Routing . 348

D.8 Epiphany Core Addressing . 349

D.9 Epiphany Core Hex Address . 349

D.10 Parallella Board . 350

D.11 Motherboard for connection 4 Parallella boards 351

D.12 SpiNNaker chip Architecture . 352

D.13 Intel R© Xeon PhiTM Architecture . 353

E.1 A 6× 6 many-core array showing the coordinates of each node. 355

E.2 Sparsely connected graph with 2 source nodes, 28 processing nodes and 1

sink node. 358

E.3 Moderately connected graph with 3 source nodes ,28 processing nodes and

2 sink nodes. 358

E.4 Densely connected graph with 1 source node, 28 processing nodes and 3

sink nodes. 359

E.5 A Process Map for a 26 node APG in a 6x6 Many-Core Array 361

E.6 ComPair and subnet examples. Source nodes are coloured light orange,

target nodes coloured dark orange and the subnets are bounded by a dashed

blue line. 363

E.7 Networks illustrating Critical and Significant links 367

E.8 Hardware Maps representing a 6 × 6 many-core array with interfaces to

external resource on each of the four edges of the many-core array. 371

E.9 Hardware Maps for a Variety of Configurations. The nodes inside the blue

dotted lines represent the cores of the many-core array while the nodes

outside of the blue dotted box represent interfaces to resource external to

the many-core array and cores of adjacent regions. 375

E.10 From the information in the APG in Figure 6.2 and the hardware map (a) the

environment map (b) and process map (c) are produced. The environment

map and process maps are then combined to make the aggregate map (d)

used to calculate the metrics of the process map. 378

F.1 Examples of Distribution of Spare Cores 381

F.2 Networks illustrating Critical and Significant links 385

F.3 Paths Through a 2× 3 Array . 386

F.4 Traffic distribution across the links used by a ComPair. The numbers on the

links are percentages of the total ComPair traffic. 392

List of Equations

2.1 Amdahl’s Equation . 44

2.2 Speed up . 45

2.3 Clock propagation . 46

2.4 Time of Flight (TOF) . 47

2.5 Store and forward latency . 50

2.6 Wormhole Latency . 50

2.7 Task mapping complexity . 60

4.1 Definition of a many-core array . 90

4.2 Definition of the Number of nodes in a many-core array 90

4.3 Definition of the Number of edges in an many-core array 91

4.4 Definition of the set of nodes in an many-core array 91

4.5 Definition of a node in an many-core array . 91

4.6 Definition of location in an many-core array . 91

4.7 Definition of the set of links in an many-core array 91

4.8 Definition of an link in an many-core array . 91

4.9 Definition of a APG . 93

4.10 Definition of the number of nodes in an APG 93

4.11 Definition of the number of edges in an APG 93

4.12 Definition of the set of nodes in an APG . 93

4.13 Definition of edges in an APG . 93

4.14 Definition of an edge in an APG . 93

4.15 Definition of a Process Map . 94

4.16 Definition of the Number of nodes in a process map 95

4.17 Definition of the set of nodes in an process map 95

4.18 Definition of a node in an process map . 95

4.19 Definition of location in an process map . 95

4.20 Metric - Distance to Nearest Idle Core . 97

4.21 Objective - Nearest Idle Core . 98

4.22 Permutation of k processes within n nodes. 101

4.23 Size of intermediate population . 104

5.1 Number of rows in a ComPair . 151

5.2 Number of columns in a ComPair . 151

5.3 Number of hardware map links . 151

5.4 Number of hardware map links . 151

5.5 The path length of a ComPair . 151

5.6 Definition of a critical link . 153

5.7 Definition of a significant link . 155

5.8 Definition of a significant link . 156

5.9 Metric - Distance between a ComPair . 158

5.10 Objective - Simple Power . 158

5.11 Size of intermediate population . 164

5.12 Definition of the Number of nodes and edges in an APG 166

5.13 Row of a phene from the gene . 166

5.14 Column of a phene from the gene . 166

6.1 Definition of an APG . 198

6.2 Definition of the total number of nodes in an APG 200

6.3 Definition of the number of edges in an APG 200

6.4 Definition of the set of source nodes in an APG 200

6.5 Definition of the set of sink nodes in an APG 200

6.6 Definition of the set process nodes in an APG 200

6.7 Definition of the set of all nodes in an APG . 200

6.8 Definition of the set of edges in an APG . 200

6.9 Application Process Graph Connectivity . 200

6.10 Definition of a many-core array . 203

6.11 Definition of the number of nodes in a many-core array 204

6.12 Definition of the number of edges in a many-core array 204

6.13 Definition of the set of nodes in a many-core array 204

6.14 Definition of a node in a many-core array . 204

6.15 Definition of location in a many-core array . 204

6.16 Definition of the set of links in n many-core array 204

6.17 Definition of an link in a many-core array . 204

6.18 Vulnerability to Critical Link Failure Metric . 211

6.19 Initial Compair Link Failure Metric . 214

6.20 Initial ComPair Link Failure Metric . 215

6.21 Link Failure Objective . 216

6.22 Metric - Distance between a ComPair . 217

6.23 Metric - Traffic between a ComPair . 217

6.24 Objective - Network Power . 218

6.25 Traffic through link lnp of ComPair . 221

6.26 Metric - Total Traffic through a Link . 221

6.27 Metric - Excess Traffic through a Link . 221

6.28 Metric - Critical Traffic of a Link l from Path q 224

6.29 Metric - Significant Traffic of a Link l from Path q 224

6.30 Metric - Normal Traffic of a Link l from Path q 224

6.31 Metric - Critical Traffic of a Link . 224

6.32 Metric - Significant Traffic of a Link . 224

6.33 Metric - Normal Traffic of a Link . 224

6.34 Metric - Weighted Excess Traffic of a Link . 224

6.35 Objective - Sum of Excess Traffic . 226

6.36 Objective - Mean Average of Excess Traffic of a Mapping 226

6.37 Objective - Maximum Value of Excess Traffic of a Mapping 226

6.38 Objective - Standard Deviation (SD) of Excess Traffic of a Mapping 226

6.39 Objective - Absolute Mean Deviation (AMD) of Excess Traffic of a Mapping . . . 227

6.40 Number of Fault Free Paths in a Lattice . 227

6.41 Binomial coefficient formula . 231

6.42 Pascal’s triangle coefficients . 231

6.42 Origin base case of number of minimal length paths. 231

6.43 Row base case of number of minimal length paths. 231

6.44 Column base case of number of minimal length paths. 231

6.45 Origin base case of number of minimal length paths. 231

6.46 Induction hypothesis of number of minimal length paths. 232

6.47 Induction proof of number of minimal length paths. 232

6.48 Corollary: Number of paths that traverse an edge. 232

6.49 Theorem: Number of paths that traverse a pair of path-coincident edges. 233

6.50 Number of paths that traverse edge e1. 234

6.51 Number of paths that traverse edge e2. 234

6.52 Proof: Number of paths the traverse a pair of path-coincident edges. 234

6.53 Theorem: Number of paths traversing a set of path-coincident edges. 234

6.54 Induction base case: number of paths that traverse an edge. 234

6.55 Induction hypothesis: . 234

6.56 Induction proof: Number of paths in a subnet that traverse an edge. 234

6.57 Number of paths traversing a set of path-coincident edges.. 235

6.58 Theorem: number of paths through multiple faulty edges. 235

6.59 Paths that traverse a faulty edge. 235

6.60 Number of paths theat traverse a pair of faulty edges. 235

6.61 Number of paths that traverse a set of 3 path-coincident edges. 235

6.62 Number of paths that traverse a set of path-coincident edges. 236

6.63 Theorem: number of path through a lattice with multiple faulty edges. 236

6.64 Number of path in a fault-free lattice. 236

6.65 Number of fault-free paths in a lattice. 236

E.1 Definition of a many-core array . 356

E.2 Definition of the Number of nodes in a many-core array 356

E.3 Definition of the Number of edges in an many-core array 356

E.4 Definition of the set of nodes in an many-core array 356

E.5 Definition of a node in an many-core array . 356

E.6 Definition of location in an many-core array . 356

E.7 Definition of the set of links in an many-core array 356

E.8 Definition of an link in an many-core array . 356

E.9 Definition of an APG . 357

E.10 Definition of the total number of nodes in an APG 358

E.11 Definition of the number of edges in an APG 359

E.12 Definition of the set of source nodes in an APG 359

E.13 Definition of the set of sink nodes in an APG 359

E.14 Definition of the set process nodes in an APG 359

E.15 Definition of the set of all nodes in an APG . 359

E.16 Definition of the set of edges in an APG . 359

E.17 Application Process Graph Connectivity . 360

E.18 Definition of a Process Map . 361

E.19 Definition of the Number of nodes in a process map 361

E.20 Definition of the set of nodes in an process map 361

E.21 Definition of a node in an process map . 361

E.22 Definition of location in an process map . 361

E.23 Number of rows in a ComPair . 363

E.24 Number of columns in a ComPair . 363

E.25 Number of hardware map links . 363

E.26 Number of hardware map links . 363

E.27 The path length of a ComPair . 364

E.28 Definition of a critical link . 365

E.29 Definition of a significant link . 367

E.30 Definition of a significant link . 368

E.31 Definition of a many-core array . 372

E.32 Definition of the number of nodes in a many-core array 372

E.33 Definition of the number of edges in a many-core array 372

E.34 Definition of the set of nodes in a many-core array 372

E.35 Definition of a node in a many-core array . 372

E.36 Definition of location in a many-core array . 372

E.37 Definition of the set of links in n many-core array 373

E.38 Definition of an link in a many-core array . 373

F.1 Metric - Distance to Nearest Idle Core . 380

F.2 Objective - Nearest Idle Core . 382

F.3 Vulnerability to Critical Link Failure Metric . 383

F.4 Initial Compair Link Failure Metric . 385

F.5 Initial ComPair Link Failure Metric . 387

F.6 Link Failure Objective . 388

F.7 Metric - Distance between a ComPair . 389

F.8 Metric - Traffic between a ComPair . 389

F.9 Objective - Network Power . 389

F.10 Traffic through link lnp of ComPair . 393

F.11 Metric - Total Traffic through a Link . 393

F.12 Metric - Excess Traffic through a Link . 393

F.13 Metric - Critical Traffic of a Link l from Path q 395

F.14 Metric - Significant Traffic of a Link l from Path q 395

F.15 Metric - Normal Traffic of a Link l from Path q 395

F.16 Metric - Critical Traffic of a Link . 396

F.17 Metric - Significant Traffic of a Link . 396

F.18 Metric - Normal Traffic of a Link . 396

F.19 Metric - Weighted Excess Traffic of a Link . 396

F.20 Objective - Sum of Excess Traffic . 397

F.21 Objective - Mean Average of Excess Traffic of a Mapping 397

F.22 Objective - Maximum Value of Excess Traffic of a Mapping 398

F.23 Objective - Standard Deviation (SD) of Excess Traffic of a Mapping 398

F.24 Objective - Absolute Mean Deviation (AMD) of Excess Traffic of a Mapping . . . 398

Acknowledgements

This thesis would not have been possible without the support of family, friends, supervisors

and the Department of Electronic Engineering at The University of York.

First mention goes to Camilla Danese and Steve Smith who handled my application to

study a PhD at the Department of Electronic Engineering of The University of York. Without

the help of such dedicated and professional individuals the process of securing a PhD place

would be a testing experience.

Camilla also works tirelessly on behalf of all the Electronis PhD students ensuring that

essential record keeping is adhered to, often a thankless job when dealing with students

who always think they have something better to do, be it research or recreational.

The University of York and the Department of Electronic Engineering that have provided

the environment conducive to research. Both the department and university are brimming

with individuals who are friendly and supportive. One could not wish for a better location,

environment and social group within which to live and work.

Dr Gianluca Tempesti and Professor Jon Timmis who received my application enthusias-

tically. Without their support and enthusiasm this PhD will not have been possible. They

both gave their time freely during my application and throughout my study, even when their

personal timetables were busy beyond reason. I have been doubly favoured by fortune to

have had two supervisors of the quality of Gianluca and Jon.

Particular thanks to Gianluca who has given me time in abundance to explore the concepts

that form the core of this work. His knowledge of microprocessor hardware, processor

arrays and FPGA’s is inspirational.

Dr Yang (Jerry) Liu, a Research Associate on the Sabre project when I arrived at York,

was always ready to enter into discussions on any subject whatsoever. His encyclopaedic

knowledge of subjects within my research domain and of wider social issues meant that he

was never lost for a word.

Dr Omer Qadir, unofficial social secretary, also with a huge knowledge base, who was

ready to help when his busy life allowed.

Carolina, my wife, friend and companion, whose unceasing love and support has made

this endeavour possible.

My mother and father who provided me with a loving home whose influence has enabled

me to flourish.

My children Eloise, Rowan, Leona and Alison, who I have done my best to guide while

watching them grow and blossom into adults. They have all nourished my quite pride of

them with their own personal achievements.

My grandchildren Lina and Kaiden who are a constant source of joy and amazement.

Colin Bonney, May 2018

I dedicate this work to my family

Carolina

Eloise, Rowan, Leona, Alison

Lina, Kaiden

Cicley, John

Who fill my life with joy

All have achieved much in their lives

Declaration

I declare that this thesis is a presentation of original work and I am the sole author. This

work has not previously been presented for an award at this, or any other, University. All

sources are acknowledged as References.

Parts of this work have previously appeared in the publications listed below:

• C. Bonney, P. Campos, N. Dahir, and G. Tempesti, “Fault Tolerant Task Mapping on

Many-core Arrays,” 2016 IEEE Symp. Ser. Comput. Intell. SSCI 2016, 2017.

• P. Campos, N. Dahir, C. A. Bonney, M. A. Trefzer, A. M. Tyrrell, and G. Tempesti,

“XL-STaGe: A Cross-Layer Scalable Tool for Graph Generation, Evaluation and

Implementation,” in IEEE Embedded Computer Systems: Architectures, Modeling,

and Simulation (SAMOS), 2016, 2016.

Chapter 1

Introduction

In 1972 Intel released the 4004, a 4-bit microprocessor designed for the Japanese calcu-

lator manufacturer Busicom [1] which is credited as being the first commercially available

microprocessor.

Early microprocessors had transistors numbered in the thousands, which restricted the

functionality on a single device to a relatively simple microprocessor design (by today’s

standards) with additional functionality provided by external devices. With shrinking tran-

sistor sizes, the number of transistors on devices rose rapidly in line with Moore’s Law

[2]. The additional transistors were utilised to increase the complexity of the processor by

increasing the word length, adding features such as floating point arithmetic and pipelin-

ing, adding memory cache and integrating functionality previously provided by external

devices. However, there is a limit to the functionality and throughput that is possible with

a single processor. In response to this, designs started to emerge in the 2000’s with dual

processors on a single chip followed in later years by quad-core and octa-core designs.

These designs have become known as multi-core processors. Each core in a multi-core

processor is complex with the design of the cores being closely related to the prevailing

complex single-core processor designs.

In 2000 Hemani et al. [3] proposed the Network on Chip (NoC) architecture as a solution to

a number of problems foreseen with the projected arrival, in the mid 2000’s, of sub 100nm

fabrication technology capable of producing one billion plus transistor devices [4]. Hemani’s

NoC design incorporates: processing cores, programmable logic, distributed memory and

programmable I/O, all knitted together by a communication network enabling any element

to communicate with any other element of the NoC. In 2007 Intel announced its intention

to develop a many-core processor [5] proposing to integrate 100 medium 10M transistor

processors, or even 1000 small 1M transistor processors, in a single device.

The difference between multi-core systems and many-core systems are not well defined

but primarily relate to the number, complexity and level of independence of the cores.

Multi-core systems quickly advanced from 2 to 32 or even 64 processors while many-core

system will have cores numbering hundreds or thousands. The complexity of many-core

system will typically be less than that of multi-core systems, sacrificing complexity of the

28 1.1 The Many-Core Paradigm

processors in favour of greater numbers of processors.

In summary, the Many-Core paradigm offers the potential of increasing processing through-

put compared to single and multi-core processors by spreading processing across the

many, simpler cores, but requires the development of novel scalable solutions in hardware

and software.

1.1 The Many-Core Paradigm

This section introduces the concept of the many-core system and related topics.

The basic architecture of a many-core array is generally represented as in Figure 1.1,

with a lattice of interconnected routing nodes (the squares marked RN) that provide a

communication fabric with each routing node having a directly connect processing core

(the squares marked ’C’).

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

Figure 1.1 – Many-Core Array

While there are other possible arrangements of routing nodes and processing cores, for

example the model proposed by Hemani et al.[3] uses a hexagonal arrangement of pro-

Introduction 29

cessing resources interleaved with a hexagonal communications matrix with each process-

ing resource connected to multiple routing nodes, the model adopted for this thesis will use

the square lattice arrangement of homogeneous processing cores, as shown in Figure 1.1.

Scale Independence

The many-core concept involves cores that number from hundreds to millions of cores

which will require solutions for operation and control of many-core system to be scale

independent.

Scale independence requires that there is no central control mechanism responsible for

configuring or managing all the processors. A central control mechanism has the disadvan-

tage of producing a single point whose failure would be catastrophic to the whole system

and a single processor that would be required to undertake ever increasing amounts of

work as the number of processors increased. The first of these problems is contrary to the

concept of fault tolerance, while the second will place a limit on the maximum number of

processing cores that can be utilised contrary to the concept of scale independence.

Scale independence therefore requires that monitoring and configuration are not cen-

tralised functions. The model that will be used in this thesis (see Subsection 2.4.5 Core

Regions) is that a collection of processing cores which are physically close will be treated

as a region, such that each region has independent monitoring and configuration and can

communicate with the monitoring and configuration functions of neighbouring regions.

Dark Silicon

For many years the semiconductor industry has managed to keep pace with Moore’s Law

by doubling the number and density of transistors in devices every two years. However,

reduction of feature size is no longer matched by a proportional reduction in transistor

threshold and supply voltages [6] which is therefore increasing the power density of devices

to the point where they can no longer be efficiently air-cooled. Post-Dennard Scaling

means that because the leakage voltage cannot be ignored with device feature size of

less than 65nm the voltage does not continue to scale down as the number of transistors

increase. Consequently the power density increases in proportion to the increase in the

number of transistors [7]. At a feature size of 22nm it is no longer possible to have the

whole of the device active all the time requiring in the region of 20% of the chip to remain

unused at any time [8]. To alleviate this, the concept of dark silicon where only a portion of

the functionality available on a chip is active at any one time, has been proposed in order to

keep the overall heat generation of the device to an acceptable limit. Many-core arrays can

easily implement dark silicon by managing the number of cores that are active at any one

time. The requirements of dark silicon coincides with the desire to provide fault-tolerance

which also requires leaving a proportion of cores unused at any one time, as investigated

in Chapter 4 Core Fault Tolerance.

Application Process Graph

An Application process graph (APG) is a graphical representation of an application broken

down into processes represented as nodes and data transfers between processes repre-

30 1.1 The Many-Core Paradigm

sented by edges. In this research the graphs used to model applications are restricted to

directed acyclic graphs (DAG) (see Subsection 2.4.2 Application Process Graph).

Processes are distinct parts of the application whose execution is dependent only on the

data transfers modelled by the graph edges. This is a useful representation for mapping an

application onto a collection of independent processors. An example application process

graph with 8 nodes is shown in Figure 1.2. The edges of the graph in Figure 1.2 are

annotated with numbers that represent the volume of traffic that is transmitted between the

processes connected by the edge.

P1

P26

P3
1

P4

6
P8

8

P7

4

P5

5
13

P6

13

5

6

4

1

8

Figure 1.2 – Example Application Process Graph with 8 nodes

Task Mapping

Given an application process graph and a many-core array, task mapping allocates appli-

cation processes as tasks to processing cores. The growth of computational time required

to search all the possible solutions as the problem size increases places this problem in

the NP-hard class of problems. Exhaustive searches are incapable of examining all the

possible solutions in a reasonable length of time, so this research will use evolutionary

algorithm techniques to search the problem space for solutions.

This research uses a multi-objective evolutionary algorithm develop with a set of objectives

which will be used to guide the evolution of process mappings to optimize one or more

objectives.

It is an axiom of this research that the mapping is not predetermined before operation of the

system but evolves in response to the performance demanded of the system, the status of

the system and the changing environmental conditions. To emphasise this point, there is no

predefined initial mapping of any application process graph to the many-core system; the

initial mapping will be determined by an initial placement algorithm (see Subsection 4.8.3

Engineered Mappings) based on the size of the application process graph and the size of

the many-core array, after which alternative mappings will be evolved. This research will

focus on determining in real time the suitable task mappings in response to the hardware

Introduction 31

status of the many-core system.

Fault Tolerance

The approach to fault tolerance taken in this thesis is to use the evolutionary objectives to

search for process mappings that are inherently fault tolerant. A fault tolerance mapping is

one which is either robust to faults so that the application can continue processing or can

be ’repaired’ with minimal disruption to the processing of the application. In either case

performance is likely to be compromised to some extent. This is described as graceful

degradation.

The repair of fault will be followed by graceful amelioration which is search for new map-

pings that improve on the performance of the repaired mapping.

The whole process of fault detection followed by graceful degradation followed by graceful

amelioration is described as a fault-recovery cycle which is discussed in detail in Sec-

tion 7.2 Fault/Recovery Cycle.

Task Migration

Repair of a mapping after a fault and re-mapping during amelioration both require tasks

to be migrated from one core to another. This research assumes that task migration

mechanisms that can recover the state of a failed core, and mechanisms to recover lost

packets in the case of a fault link, will be available.

1.2 Problem Description

This thesis sets out to:

"Demonstrate that a run-time fault-recovery cycle that implements graceful degradation and

graceful amelioration along with a multi-objective search algorithm, is an effective strategy

for maintaining task mappings that minimize the objective values and that the search for

alternative mappings prolong the operational life of a many-core system compared to a

static mapping that would quickly become non-viable after a small number of faults."

1.3 Related Work

There has been considerable research on design-time mapping [9–13] which in the vast

majority of cases was applied to applications implemented using a collection of intellectual

property (IP) modules for the design of NoCs consisting of heterogeneous processing

elements (PEs).

Hu and Marculescu [9] analyse a generic video/audio MultiMedia System (MMS) appli-

cation that includes video and mp3 encoders and decoders and partition it into 40 tasks

which are assigned and scheduled onto 25 IP modules. A branch and bound algorithm is

used to construct mappings of IP modules to tiles in an NoC architecture and minimize the

32 1.3 Related Work

total communication energy consumption calculated using an energy function that models

the energy consumed by sending a single bit between two tiles of the NoC. The branch

and bound algorithm is shown to be on average 72 times faster than a simulated annealing

optimizer. The algorithm is used at design time to find mappings that are implemented and

fixed pre-execution.

Lei and Kumar [10] use a two-step genetic algorithm to map an application represented by

a task graph onto tiles on an NoC. The work concentrates on the static mapping of IPs at

design time. The calculation of the optimization objective, the average edge delay, which is

used to measure communication delay shares some commonality with the network power

objective of Chapter 5 in this thesis, as both calculations make use of the distance between

a pair of communication cores.

Murali and De Micheli [11] present a mapping algorithm they call PMAP for placing clusters

onto processors, which produces mappings with lower communication cost than achieved

by previous algorithms. They use bandwidth constraints as the optimization objective,

which is also relevant to the Excess Traffic objective of Chapter 6. The PMAP algorithm

uses Dijkstra’s shortest path algorithm, applied to the quadrant graph (equivalent to a Com-

Pair, see Section 5.1), to obtain the minimum path. The algorithm is used at design-time to

find mappings that are implemented and fixed pre-execution.

Ascia et al. [12] investigate the mapping of 12 pre-designed, pre-verified modules in the

form of intellectual property (IP) for an MPEG-2 encoder/decoder system, comprising

DSPs, generic processors, embedded DRAMs and customized ASICs. A genetic algorithm

is used to search for mappings that optimize performance and power consumption for

a 5 × 5 array. The genetic algorithm is used at design-time to find mappings that are

implemented and fixed pre-execution.

Derin et al. [14] use integer linear programming (ILP) to search for mappings that minimize

the objectives of communication traffic and total execution time of an application in a mesh-

based NoC with deterministic routing. The motivation is to combine the steps of allocating

tasks to IPs to minimize execution time while at the same time minimizing communication

traffic by allocating IPs to tiles. Derin et al. also implement a fault recovery mechanism for a

single faulty core that would either reallocate tasks from a faulty core to IPs on other cores,

or completely remap all tasks to optimize the objectives. These two approaches to recovery

from a faulty core are analogous to the graceful degradation and graceful amelioration used

in this thesis.

Sayuti and Indrusiak [13] use an approach that configure both task mapping and priority as-

signment, using a genetic algorithm to search for solutions. The optimization is performed

at design time of a hard real-time embedded system based on a fixed priority pre-emptive

NoC. As an alternative to searching for mappings with a GA, a constructive task mapping

algorithm can construct task maps based on specific design properties [15].

Das and Kumar[16], Khalili and Zarandi [17], and Chatterjee et al. [18] all use a homoge-

neous NoC as the target platform and allocate multiple tasks to single tiles containing a

Introduction 33

PE.

Das and Kumar[16] create a collection of task maps at design time, creating a mapping for

each fault scenario which are saved so that they are available to at run-time. When a fault

occurs, the map that whose scenario corresponds to the actual fault is used retrieved and

used to re-map tasks.

The approach of Khalili and Zarandi [17] to fault tolerance is to allow the mapping of multiple

applications, one at a time, and allocate a single spare core to each application during the

mapping process. They use a function to calculate the criticality of a vertex in an application

core graph which is influenced by the amount of traffic flowing into and out of the vertex,

sorts the vertices by criticality, and then places the vertices to minimize the Weighted

Manhattan Distance, which is the product of the distance between two communicating

cores and the traffic volume between tasks located at the cores. A heuristic algorithm is

used to first place the vertices onto cores and then allocate spare cores for fault recovery.

The algorithm is used to map multiple applications onto cores of an NoC and allocates

spares cores to specific applications during the mapping process. The algorithm has the

effect of clustering the cores used for an application along with a single spare core while

leaving the remainder of cores unallocated and available for additional applications. The

application mapping is carried out at design time, before the application starts executing

and remains fixed thereafter, while the migration of tasks when a PE becomes faulty is a

run-time process.

Chatterjee et al. [18] developed an algorithm that provides a unified mapping and schedul-

ing method for real-time systems, focusing on meeting application deadlines and minimiz-

ing communication energy while mitigating the effect of failure-prone processing elements.

The platform is a NoC consisting of a lattice of homogeneous processing elements, each of

which can be allocated multiple tasks by the mapping algorithm. The model determines the

communication energy and communication time based on the Manhattan distance between

the source and destination nodes. Fault tolerance is achieved by replicating tasks that have

been allocated to PEs that are judged to be unreliable. The duplicate tasks either run in

parallel with the original or stand by to start execution if the original PE should fail.

1.4 Novel Contributions of this Thesis

This thesis uses a lattice of homogeneous processing cores to a model a many-core array.

In contrast to previous work, it is assumed that there will be sufficiently many cores that a

single task can be allocated to a single core, obviating the need for scheduling multiple

tasks to a processing core and an operating system to manage multitasking between

multiple tasks. Also, in contrast to previous work, the philosophy of the use of spares

cores is that 20%-25% of cores should be idle at any one time to fulfil the dual purpose

of providing spare cores for fault tolerance and maintaining a percentage of the device

inactive as dark silicon.

34 1.4 Novel Contributions of this Thesis

This required the development of a new model or the many-core system. The model used

in this thesis includes a hardware map that is a representation of the processing resources

and communication network of the many-core array. The hardware map records the fault

status of every processing core and communication link, and also includes information

regarding sources and sinks to resources external to the many-core array. The sources and

sinks to external resources are regarded as the environment within which any particular

process mapping exists. The environment affects the calculation of the metrics underlying

the optimization objectives. At the time of writing, the aspect of the model that explicitly

models links to external resources, was unique to this work and is regarded as a vital step

from a theoretical model to a practical implementation.

The approach to fault tolerance is also fundamentally different from previous work. Fault

tolerance requirements are represented as objectives which are an integral part of the

search for task mappings so that the resulting task mappings are inherently fault tolerant,

which is to say that the mapping is either robust when confronted with a link fault or, when

a core fault occurs, can effect a repair by migrating the task to a near-by idle core. Core

fault tolerance is achieved by distributing idle cores amongst the processing cores so that

every processing core is in close proximity to an idle core. Link fault tolerance is achieved

by minimizing the number of communicating core pairs that are dependent upon a single

hardware link. No assessment of the reliability of individual cores is attempted; every core

is assumed to be equally reliable until information to the contrary is collected from the

functioning many-core array.

In summary, the novel contributions of this thesis are:

• The development of a hardware map that models interfaces to external resources

and the fault status of cores and links in sufficient detail to enable the calculation of

the metrics and objectives, while remaining computationally tractable.

• The formalization of the following objectives and underlying metrics for use by a

multi-objective evolutionary algorithm to search for mappings:

– Core Fault Tolerance

– Link Fault Tolerance

– Network Power

– Excess Traffic

• The formalization of the concept of a pair of communicating cores, a ComPair, that

underpins the calculation of metrics and objectives of the process maps.

• The developed of the concept of link criticality, used alongside the ComPair to deter-

mine how vulnerable a mapping is to the failure of a link.

• The presentation a mathematical proof for an algorithm that calculates the number

of fault free paths in a network with an arbitrary number of faulty links.

Introduction 35

• The implementation of a fault/recovery cycle that implements graceful degradation to

effect a repair of a mapping to recover from core faults and, following a core or link

fault, performs graceful amelioration using the evolutionary algorithm to search for

alternative mappings that improve fault tolerance and/or performance of the repaired

mapping.

• The implementation of a multi-objective evolutionary algorithm to search the solution

space of any number of objectives to produce a Pareto Front of mappings used for

graceful amelioration.

1.5 Research Outcomes

An evolutionary algorithm using the objectives for core fault tolerance and link fault toler-

ance was successful in finding mappings that were resilient to fault events within a defined

computational budget. The results also demonstrate that the fault tolerance objectives can

work successfully with performance objectives to produce Pareto Fronts that include map-

pings that range from weak fault tolerance in combination with good performance to strong

fault tolerance with poorer performance (Subsection 6.8.6, Figure 6.15 and Figure 6.21).

Having developed a suitable evolutionary algorithm, a Monitor process was developed

to implement graceful degradation and amelioration through a fault/recovery life cycle,

consisting of the following steps:

• Normal operation

• Fault detection

• Graceful degradation

• Graceful Amelioration

• Return to normal operation

The fault-recovery cycle is designed to be used in real-time so that the many-core system

can withstand a series of fault each being mitigated by repair followed by remapping, until

the hardware resources are reduced to a level that can no longer sustain the processing

required by the application.

The experiment results presented in Chapter 7 show that the cycle is effective in returning

the post-fault system to a level of operation with a performance that is close to the pre-

fault performance and prolong the operational life of a many-core system compared to a

static mapping that would quickly become non-viable after a small number of faults. The

fault-recovery cycle continues to be effective until there are too few processing cores to

accommodate the application process graph processes, or too few remaining links in the

communications array to allow communication between all ComPairs.

36 1.6 Thesis Structure

The results of the experiments confirm that the use of graceful degradation and ameliora-

tion, along with a Monitor to manage the recovery cycle, can maintain system performance,

through a sequence of faults, at a level that would otherwise not be possible.

1.6 Thesis Structure

Chapter 2 Many-Core Systems reviews the development of microprocessors and network

on chips leading up to the proposal of the many-core paradigm.

Chapter 3 Fault Tolerance reviews existing approaches to fault tolerance.

Chapter 4 Core Fault Tolerance presents the initial many-core model and single objective

evolutionary algorithm to search for task maps that optimize the Core Fault Tolerance

objective.

Chapter 5 Network Power introduces a second objective of Network Power along with a

revised multi-objective evolutionary algorithm. The concepts of ComPair and Link Criticality

are introduced.

Chapter 6 Link Fault Tolerance and Network Traffic adds two further objectives of Link

Fault Tolerance and Excess Traffic. The many-core model is expanded further to to include

the Hardware Map used to model faulty cores and links, and the Environment to model

external data sources and sinks.

Chapter 7 Graceful Degradation and Amelioration implements a Fault/Recovery Cycle that

uses Graceful Degradation and Graceful Amelioration.

Chapter 8 Conclusions and Future Work discusses the results of this thesis and suggests

areas worthy of further research.

Chapter The Many-Core Model is a compilation of the complete many-core model devel-

oped in Chapters 4, 5 and 6.

Chapter Metrics and Objectives is a compilation of the four metrics developed in Chapters

4, 5 and 6.

Chapter 2

Many-Core Systems

2.1 Computer Architecture

This section reviews a range of computer architectures to provide a context for the under-

standing of the origin and motivations for the many-core model.

2.1.1 Evolution of Microprocessor Based Systems

Throughout the development of integrated circuits, feature size has been shrinking, allow-

ing the number transistors on a chip to increase. In 1965 Gordon Moore, while employed

at Fairchild Semiconductor, wrote a paper in which he identified the historical increase in

complexity of components as doubling every year and stating that there was no reason why

this trend should not continue [2]. In 1975 Moore revised his prediction for the doubling of

transistor counts to take place every two years [19]. Intel processor designs kept up with

Moore’s Law over the 45 years from 1970 to 2015, during which time the transistor count

increased from 2.5× 103 to 5× 109, an increase by a factor of 2× 106.

The vast number of additional transistors have allowed designers to evolve the design of

the single chip microprocessor in a number of directions. This examination focuses on four

areas of design:

• Word size

• Pipeline stages

• Multi-core architectures

• Cache

Evolution of microprocessor design has tended to focus on one aspect of design at a time.

The word length evolved to a size of 32 bits before pipelining evolved. When the number

of pipeline stages reached was judged to be optimal, the emphasis moved to the number

of cores. Caches are, the exception, first making a debut as small L1 caches at the same

38 2.1 Computer Architecture

time as pipelines and then developed alongside pipelines and then multi-core processors

which were accompanied by larger caches.

This staged evolution of one design element at a time is consistent with designers focusing

on the design element that offered the best performance gain for the available transistors,

optimizing one design element before moving on to the next. The exception of the devel-

opment of caches can be explained by caches supporting and enhancing the performance

of pipelines and multi-core processors.

Word Length The 8 bit 8080 processor uses an instruction set whose length is 1, 2 or 3

bytes, while the 16 bit 8086 uses an instruction set with instruction lengths varying from 1

to 6 bytes depending on the addressing mode. In both cases the majority of instructions

require the fetching and decoding of multiple words, with the fetching and decoding of

each word occupying a clock cycle. The multiple length instructions therefore reduce the

effective speed of the processor when compared to instructions that occupy a single word

of the machine’s architecture and are fetched in a single cycle.

With the introduction of the i386 processor with a word length of 32 bits, the opcode,

addressing mode information and register addresses could be contained within one word

with additional words required only for addresses and immediate data, thus reducing the

average cycles per instruction when compared to a 16 bit processor.

The benefits of a 32 bit word length compared to a 16 bit word length are considerable,

especially when it is recognised that the longer word length also benefits the access of

data as well as instructions, thus making this an obvious priority in the design evolution.

Word lengths greater than 64 bits offer the option of encoding more than one operation in

a single word, increasing the number of operations fetched per cycle to more than one.

Pipelining Having evolved the word length to 32 bits, the emphasis switched to the devel-

opment of instruction pipelines. The motivation for pipelining is to increase the number of

instructions that are executed per second by increasing the clock frequency.

Pipelining arises from the realisation that each instruction passes through a number of

serialised stages and that it is not necessary for one instruction to have completed all

stages before the next instruction enters the first stage. For example the Intel i486 breaks

the instruction execution down into 5 stages [20]:

• FI: Fetch the instruction from cache

• D1: Main instruction decode

• D2: Secondary instruction decode, and memory address computation

• EX: First execution clock

• WB: Write results into the register file

Each stage takes place in a single clock cycle. Without pipelining an instruction that re-

quires all five stages to be executed requires a long clock cycle to complete. With pipelining

Many-Core Systems 39

the i486 can execute five instructions simultaneously reducing the average execution time

for some instructions to less than one clock cycle. Pipelining achieves this because each

stage is relatively simple and so uses fewer logic gates, reducing the amount of time

required for the logic to complete its task and therefore allowing the clock frequency to

be increased [21].

The benefit of the i486 five stage pipeline can be illustrated by comparing the number of

clock cycles required to complete execution of a selection of instructions to the equivalent

i386 instructions [20]:

Instruction Clock Cycles

Type i386 i486

LOAD 4 1

STORE 2 1

ALU 2 1

JUMP 9/3 3/1

taken/not

CALL 9 3

In the Pentium 4 design the number of pipeline stages increased to 20 which, Intel reported,

increased the relative frequency of the Pentium 4 when compared of the to the i486 by a

factor of 2.5 [21].

A balance needs to be achieved between lowering the number of logic gates in a pipeline

stage to the increase the frequency and increasing the number of pipeline stages which

increases the total number of clock cycles required to complete the execution of an instruc-

tion. The optimum, based on Intel processor designs, appears to be in the region of 20

stages.

A further evolution of pipeline technology is the superscalar architecture, which is a de-

sign that has multiple pipelines working in parallel to increase the number of instructions

executing simultaneously.

Processing Cores The continuing growth of the number of transistors available to designs

next found a use is multi-core designs. Multi-core designs provide two or more identical and

sophisticated processing cores on a single die. The sophistication and power of the cores

is similar to the that of single processor designs. The processing cores are independent

while sharing resources such as memory and communication buses.

• 2005 Intel released their first dual core processor, the Intel Pentium Processor Ex-

treme Edition 840

• 2007 Intel released a Core 2 Quad Processor

• 2014 Intel unveiled its first 8 core desktop processor, the Intel Core i7-5960X proces-

sor Extreme Edition

40 2.1 Computer Architecture

• 2016 Intel released the 64 core Intel Xeon Phi Processor 7210

• 2016 Intel released the 72 core Intel Xeon Phi Processor 7290

On Chip Cache Memory is a relatively transistor hungry resource, using 50M transistors

per megabyte of memory based on a design that uses 6 transistors per memory cell making

it inevitable that the addition of cache memory to a microprocessor chip was lower down the

list of processor features to take advantage of the increase in transistor numbers. Level 1

(L1) cache first appeared in the i486 at the same time as pipelining was introduced into the

the processor design. Although the 8KB cache of the i486 seems small, especially when

compared to the later multi-megabyte caches, it accounts for roughly 4% of the transistor

count of the i486.

In single core designs L1 cache was on-chip and generally stayed below 1MB while L2

cache was generally, but not exclusively, off-chip. With the advent of dual core processors,

most designs allocated a quantity of L1 cache for the exclusive use of each core and added

on-chip L2 cache which is shared between multiple processors. As a result there was a

step change in the size of on-chip caches from kilobytes to megabytes that coincided with

the introduction of multi-core designs.

2.1.2 Network On Chip (NoC)

In 2000 Hemani et al. [3] proposed the Network on Chip (NoC) architecture as a solution

to a number of problems foreseen with the projected arrival, in the mid 2000’s, of sub

100nm fabrication technology capable of producing one billion plus transistor devices [4].

As transistor density has increased additional functionality has been added to single chips,

resulting in system on chip (Soc), multi-core processors and NoC designs. However there

is a limit to the level of functionality that a single processor can have [5]. A billion transistors

cannot be effectively used by a single processor.

The development of multi-core processors and NoCs are an exercise in increasing the

number of processors on a chip from one to many. Increasing the number of processors

on a chip creates two problems that need to be solved to enable the processors to be used

effectively: how to make effective use of multiple processors to solve a problem (parallel

computing and process mapping) and how to efficiently route data between processors

(routing algorithms).

2.1.3 System on Chip (SoC)

During the 1960’s a number of companies were driving development efforts to produce

digital watches [22]. Early watches were composed of many power hungry components

and were unreliable due to the large number of electrical connections. In 1974 Intel

hired Peter Stoll [23] to develop the 5810, an IC that contained all the electronics required

for an electronic watch including analogue components, timing circuitry and LCD display

Many-Core Systems 41

driver logic. The 5810 is considered to be the first example of a system on chip (SoC).

The SoC model is used in embedded devices which use a collection of heterogeneous

systems. The SoC design approach is applied to systems with sub-systems that require the

speed advantage of specialized hardware compared to the flexibility of a general purpose

processor executing software code.

The development of SoCs have continued in parallel with the development of general

purpose processors finding application in mobile phone, digital signal processing and

wireless base stations.[24]

An SoC is a number of subsystems integrated on a single chip that would previously

have been fabricated separately and then brought together on a circuit board. NoCs help

improve physical connection and communication speeds between components that would

previous have been separate devices connected via wire tracks on a circuit board. SoCs

can suffer from bus overload and the inability to transmit the clock signal across the chip

within a single clock cycle.

Guerrier and Greiner [25] propose an on-chip switched network to replace general purpose

buses for inter-processor communications in for SoC designs.

2.1.4 A Processor Centric Perspective

It is useful to examine processing models based on the hardware configuration since it is

the hardware design that limits or promotes possible processing models.

Single Processor This is the classic microprocessor design in which a single processor

executes a sequence of instructions on a data set. Single processor designs work well

for general purpose computing where many different tasks are being performed and the

majority of functions do not involve performing the same processing on many data sets. If

the same computation is required to be performed on many datasets then the processor

will execute the same instructions many times over, once for each individual data set. The

performance of single processor designs has been improving with the introduction of longer

word lengths, FPUs, instruction lookahead, pipelining, memory caching and increasing

clock frequencies as discussed in Subsection 2.1.1.

In the early years of microprocessor development the increasing transistor count, made

available by shrinking feature size, was used to add design improvements to increase

the speed of single processors. However there is a point where the increasing numbers

of transistors cannot be used effectively to further improve the performance of single

processor designs. The introduction of the multi-core design enables designers to make

effective use of the available transistors.

Multi-Core Multi-core designs provide two or more identical and sophisticated processing

cores on a single die. The sophistication and power of the cores is similar to that of single

processor designs. The processing cores are independent while sharing resources such

42 2.1 Computer Architecture

as memory and communication buses. Where cores have independent memory caches

they must be kept consistent by implementing cache coherency.

The features added to single core processors have a direct effect on the speed of execution

of all programs without the need for intervention by the operating system or any special

coding by the application programmer. This is not the case for additional cores. Additional

cores give the potential for increasing overall execution speeds which can be utilised by the

operating system sharing work between cores or application programmers making specific

use of additional cores by adding parallelization constructs to their code.

Multi-core designs are limited to a relatively small number of cores, typically 2-8 cores.

Tightly Coupled Processor Arrays Tightly coupled processor arrays are designs that

incorporate many processor cores, typically more than 16, that are designed such that

each processor can run the same instructions at the same time on different data sets.

These processor arrays may also be referred to as coprocessors as they are under the

control of a single controlling processor. They are capable of very high processing rates

for problems that can be highly parallelized. Programs that take advantage of the large

number of cores, need to be written with parallel specific code using a platform such as

CUDA, OpenCL and OpenMp.

This class of processor arrays includes graphical processing units (GPU’s) such as those

produced by Nvidia and ATI Technologies and the Intel Xeon Phi coprocessors.

Many-Core Array A many-core array is an array of independent processing cores, on a

single die, each of which can execute different program code to any of the other cores

and processing data unconnected to the data processed by the other cores. A many-

core processor will typically have cores numbering hundreds or thousands and the cores’

complexity will be significantly reduced compared to cores in multi-core processors.

The Intel Xeon Phi coprocessors straddle the multi-core and many-core processor models.

As a co-processor with in the region of 60 cores the Xeon Phi is not a multi-core pro-

cessor. The design is closer to a processor array although it is possible to use the cores

independently and therefore can mimick as a many-core processor.

von Neumann Architecture The von Neumann architecture is the design underlying al-

most all computers. It is a design consisting of a processor and memory; address bus,

data bus and control bus; input and output devices. Despite its simplicity it is capable of

processing any computable function. A von Neumann machine, in its original configuration,

is a sequential processor that retrieves and processes a single instruction at a time. The

von Neumann architecture suffers from the twin bottlenecks of execution of one instruction

at a time and a single, limited capacity, data bus between the processing unit and the main

memory that is used for both programs and data [26, 27].

Dataflow Machines have been researched since the 1970s and are architectures with

parallel processing at the heart of their design [28, 29]. The fundamental philosophy of

dataflow machines is that many instructions that are specified and executed sequentially in

Many-Core Systems 43

a von Neumann machine are not dependent on each other so can be executed in parallel.

In a data flow machine instructions are not executed in sequence, but are executed when

their required input values become available, allowing many instructions to be executed

simultaneously by a number of functional units [28, 30].

Researchers have proposed various designs for dataflow machines [28, 31–34]. Initial at-

tempts at dataflow machines were fine-grained, working at the instruction level paralleliza-

tion. The the late 1980s and early 1990s the fine grained dataflow machines had largely

been considered to be failures, not because the dataflow concept was considered flawed,

but because the overhead of required to process individual operations in a fine-grained

architecture. A many-core array can be used as a course-grained dataflow machine.

Sequential processing machines and fine-grained dataflow machines can be regarded as

the extreme ends of a continuum both of which have inherent performance limitations.

The success of the dataflow model will be determined by finding a suitable granularity of

process such that the overhead of initiating the processes is insignificant to the gains of

parallel processing.

Flynn’s Taxonomy In 1972 Flynn defined four processing models based on the combi-

nation of types of instruction stream and types of data stream the the processor exploits

resulting in the following four categories as described in [35]:

• SISD (Single Instruction stream, Single Data stream)

• SIMD (Single Instruction stream, Multiple Data streams)

• MISD (Multiple Instruction streams, Single Data stream)

• MIMD (Multiple Instruction streams, Multiple Data streams)

Flynn’s taxonomy was developed to describe the execution of a single application so does

not adequately describe many of today’s systems. However, it is of historical interest and

still provides a useful starting point.

In general terms Flynn’s description of these models can be summarised as:

SISD (Single Instruction stream, Single Data stream) This model describes single core

general purpose computers such as the microprocessor before it evolved into a multi-core

design. There is a single processor which receives a single stream of instructions which

operates on a single data set. There is no parallelism.

SIMD (Single Instruction stream, Multiple Data streams) When describing this model

Flynn specifically mentions the SOLOMON Computer [36] which he describes as an array

processor. The SOLOMON computer is an early example of a design which incorporates

multiple processing units where the default configuration is for each processor to process

the same instruction simultaneously on different data sets. In concept the SOLOMON

Computer is similar to the GPUs (Graphics Processing Units) employed as co-processors

44 2.1 Computer Architecture

for image processing that become available in the late 1990s and early 2000s from Nvidia

and ATI Technologies.

MISD (Multiple Instruction streams, Single Data stream) This model is described by

Flynn as:

"[MISD] include specialized streaming organizations using multiple-instruction

streams on a single sequence of data and the derivatives thereof."

A possible interpretation from Flynn’s description is to regard MISD as an extension of

SISD where the results of an action upon a data element remains in the processor to be

acted upon my further processor instructions. Another interpretation is a machine that has

multiple processors, the first of which processes a data element the results of which are

processed by 2nd processor etc, thereby each data element is processed in some way by

a sequence of processors, which is one of the ways in which a many-core system could be

used.

MIMD (Multiple Instruction streams, Multiple Data streams) The notable property of

MIMD systems is that two or more independent processors share some resource, usually

memory, to increase processing throughput. In contrast to the SIMD model, the MIMD

model introduces significant challenges for the coordination of the independent processors

and the safe sharing of shared. The modern concept of multi-core and many-core system

fits within this model. Limitations of memory data access may lead to cores remaining idle

while waiting for data accesses to be completed. [37]

2.1.5 Amdahl’s Law

While at IBM in 1967 Amdahl was asked by IBM to make a presentation with the purpose

of comparing the computing power of a superscalar uni-processor computer to that of

a quasi-parallel ILLIAC IV computer with 16 processors. [38, 39]. Amdahl made the

observation that the speedup of a computed function is limited by the part of the function

whose execution remains sequential. The consequence of this was to become known as

Amdahl’s Law and was stated by Getov [40] as:

"the effort expended on achieving high parallel processing rates is wasted

unless it is accompanied by achievements in sequential processing rates of

very nearly the same magnitude."

Empirically, Amdahl, this reasoning was expressed as Amdahl’s Equation which gives the

processing rate of a parallel machine as a function of the processing rate of a sequential

machine and the number of processors available in the parallel machine:

R = Rs +
S + P

S +
P

M

(2.1)

Where:

Many-Core Systems 45

R = Processing rate of parallel machine

Rs = Processing rate of sequential machine

S = Proportion of workload that is processed sequentially

P = Proportion of workload that can be parallelized

M = Number of processors in the parallel machine

Rearranging as:

R

Rs
=

S + P

S +
P

M

Where R/Rs is the relative speed of the parallel machine compared to the sequential

machine and is often referred to as the speedup. If the sequential machine is given the

processing rate of 1, then the equation simplifies to:

R =
S + P

S +
P

M

Where R is a value which represents the number of times faster the parallel machine

processes the workload than the sequential machine.

Since Amdahl defines S and P as being the proportion of the total workload that, respec-

tively, remain sequential and and can be parallelized, we have:

S + P = 1

Giving the final equation of:

R =
1

S +
P

M

(2.2)

Amdahl gave an example of the proportion of a problem that remains sequential as 35% of

the original problem, which is equivalent of S = .35 and P = .65. Amdahl originally devel-

oped this equation to model the speedup obtained from the ILLIAC IV with 16 processors

and (generously) assumed all 16 processors could be utilised to maximum effect on the

proportion of the workload that can be parallelized. Using these values the speedup of the

16 processor machine is given by:

R =
1

.35 +
.65

16

R = 2.56

This gives a speedup figure of 2.56 for a parallel machine with 16 processors. Amdahl’s

46 2.2 Hardware Considerations Related to Many-Core Systems

argument was that this speedup is modest compared to the number of processors and

therefore resources should be expended not only in parallelization bit also on speeding up

sequential processing.

Since the original paper Amdahl’s Law has been the subject of many research papers

either by attempting to challenge the fundamental limit set by Amdahl [41], or extending it

into new areas [7, 42–46] to mention only a few.

Gustafson [41] argues that Amdahl’s estimate for the sequential element of the total work-

load of 35% is high and reports speedup of 1016-1021 using a 1024 processor machine.

Gustafson’s research uses the three problems of: beam stress analysis using conjugate

gradients, baffled surface wave simulation using explicit finite differences and unstable fluid

flow using flux-corrected transport. In these cases the number of computations that are

parallelized is high so P is large compared to S which, from the reported results, we can

infer is less than 0.1% of the total workload. According to Gustafson an important property

of these problems is that the sequential element does not increase with an increase in total

workload therefore the more parallelizable computations that need to be carried out the

greater the benefit and the higher the speedup.

2.2 Hardware Considerations Related to Many-Core Systems

This section reviews some of the issues with single core processors that led to the concep-

tion of the many-core systems and some of the technical and design issues that need to

be solved to implement many-core system.

2.2.1 Clock Propagation

Propagation of clock signals becomes problematic as die sizes and clock speeds increase.

The speed of propagation of an electromagnetic signal in a medium is given by the equa-

tion:

v =
c√
ε

(2.3)

Where:
v = signal velocity

c = speed of light (3 x 108 m/s)

ε = dielectric permittivity

Sylvester and Keutzer [47], [48] use a rearrangement of equation 2.3 to derive an equation

for the Time of Flight (TOF); the time taken for a signal to travel a specified distance. They

Many-Core Systems 47

give:

TOF = 33.33
√
ε ps/cm (2.4)

Using equation 2.4 together with projections given in [4] of a die size of 750 mm2 equivalent

to a die edge of 27.4 mm, a feature size of 50nm a dielectric permittivity ε = 1.5, and

restricting the longest path length, equal to 2 sides of the die, to 80% of the clock cycle,

Sylvester and Keutzer give a maximum clock speed of 3.58 GHz.

The consequence of increasing die sizes and clock rates is that it is not possible for

the whole chip to remain isochronous, leading to clock skew, as one clock cycle cannot

propagate through the whole device before the start of the next cycle.

2.2.2 Globally Asynchronous Local Synchronous (GALS) Architecture

The concept of GALS made a debut in 1984 in a thesis by Chapiro [49]. A GALS architec-

ture can be employed to overcome the problems of non-isochronous devices. In a GALS

architecture, the device is designed as a number of subunits, each with a size of up to 3

x 25 transistors. Each subunit has a clock providing local synchronisation for the subunit,

while communication between subunits is asynchronous.

Hemani et al. [50] (1999) claim that power consumption due to clocks, which are a major

source of power consumption, can be decreased by 70% using a GALS architecture. In

contrast the 2002 paper of Iyer and Marculescu [51], using simulations, claim that there is

little power saving from clocks in a GALS architecture, although they identify power savings

of 10% in a 5 domain GALS SoC while performance is reduced by 10-15%.

Muttersbach et al. [52] developed GALS architectures where a locally synchronous module

is surrounded by an asynchronous wrapper using a pausable clock. The pausable clock

was introduced by Yun and Donohue [53], while the asynchronous wrapper was proposed

by Bormann and Cheung [54]. Muttersbach et al. present their work as a practical imple-

mentation of GALS that can be implemented in silicon along with a library of wrapper

components to remove the burden of designing synchronous-asynchronous interfaces.

Muttersbach et al. demonstrate the validity of their design by using it in the implementation

of the Safer cryptoalgorithm in an ASIC.

Moore et al. [55] also present a mechanism for implementing communication between

locally synchronous domains which rely on asynchronous logic techniques. The approach

of Moore et al. is similar to that of Muttersbach et al. as they also use asynchronous

wrappers and clock pausing. In addition both papers use a handshaking protocol as part

of the communication process.

Dobkin et al. [56] examines two principle mechanisms used to achieve communication

between modules in different clock domains. They look at mechanisms involving syn-

chronisation of clocks using pausable delays and those using locally generated arbitrated

48 2.3 On-Chip Communication Networks

clocks. Their analysis shows that there is a risk of synchronisation failure if clock delays are

not taken into account. They propose a number of circuits designed to prevent metastability

during data synchronisation.

Royal and Cheung [57] investigates the implementation of GALS designs on FPGAs. The

work of Royal and Cheung carried out in 2003 was at that time incomplete. This is an

interesting area of research as the ability to model GALS designs on FPGA’s will be a

critical step when investigating the effectiveness of novel designs.

Many-core systems are likely to use the GALS allowing each core’s processing rate to be

determined by the core’s local clock while the node routing for synchronising communica-

tion with its neighbours.

2.2.3 Dark Silicon

For many years the semiconductor industry has managed to keep pace with Moore’s Law

by doubling the number and density of transistors in devices every two years. However,

reduction of feature size is no longer matched by a proportional reduction in transistor

threshold and supply voltages [6] which is therefore increasing the power density of devices

to the point where they can no longer be efficiently air-cooled. Post-Dennard Scaling

means that because the leakage voltage cannot be ignored with device feature size of

less than 65nm the voltage does not continue to scale down as the number of transistors

increase. Consequently the power density increases in proportion to the increase in the

number of transistors [7]. At a feature size of 22nm it is no longer possible to have the

whole of the device active all the time requiring in the region of 20% of the chip to remain

unused at any time [8]. To alleviate this, the concept of dark silicon where only a portion of

the functionality available on a chip is active at any one time, has been proposed in order to

keep the overall heat generation of the device to an acceptable limit. Many-core arrays can

easily implement dark silicon by managing the number of cores that are active at any one

time. The requirements of dark silicon coincides with the desire to provide fault-tolerance

which also requires leaving a proportion of cores unused at any one time, as investigated

in Chapter 4.

2.3 On-Chip Communication Networks

The communication system is the collection of hardware and software that provides the

functionality required to transmit data between cores, consisting of the physical communi-

cation channels, the routing nodes that manage the traffic, the network switching type and

the routing algorithm.

Many-Core Systems 49

2.3.1 Network Switching

This section will describe the network switching methods while section Subsection 2.3.3

will describe some routing algorithms that have been developed.

Switching describes the manner in which the network resources are acquired for the pur-

poses of transmitting a message. Switching does not address the problem of how to

choose a route. This section describes the primary models for switching relevant to NoC

networks.

Circuit Switching Circuit switching allocates the resources for the entire end-to-end route

for as long as it takes to complete transmission of the whole message. The quintessential

and most familiar example of a switched network is the traditional land-based telephone

network where the dialling of a number allocates the telephone line exclusively for the

caller for the duration of the call.

Packet Switching Packet switching divides the message into packets which are sent over

the network individually and then reassembled at the receiving location. Each packet

carries the required target address information allowing each packet to be sent separately

without reference to other packets. Each packet from a message may take a different route

from the source to the destination. Each node on the route receives and stores a whole

packet before determining the next leg of the route and sending it onwards requiring buffers

that can store at least one packet [58].

Store and Forward Store and forward is where a whole message is stored at each node

along the path to its destination. At each node the whole message is received and stored

until the resources are available to transmit the message to the next node. It differs from

packet switching in that the whole message is sent and stored as a unit [58]. Examples of

store and forward networks are telegraphs and letters sent by post [59]

Virtual Cut-Through Virtual cut-through is a modified version of packet switching. When

a packet is received at a node, the node does not wait for the whole packet to arrive before

examining the target address and determining the next step on the route Kermani and

Kleinrock [58]. If a route is available then the node will immediately retransmit the packet

to the next node without storing the packet. If no route is available the packet is stored

until a suitable route becomes available. Virtual cut-through can reduce latency compared

to packet switching. Kermani and Kleinrock found virtual cut-through outperformed packet

switching using the performance criteria of network delay, traffic gain and buffer storage

requirements. Virtual cut-through requires sufficient buffer space at each node to store

each packet in the event that the next channel is busy.

Wormhole Switching Wormhole switching, described by Dally and Seitz [60][61], often

incorrectly referred to as wormhole routing, is similar to circuit switching in that the whole

end-to-end route is allocated for the transmission of the whole message. In contrast to

circuit switching, wormhole switching allocates the route as the message is being sent.

Each message is divided into packets and each packet into flits (flow control bits). Only the

50 2.3 On-Chip Communication Networks

header flit carries the target address. Each node that accepts a header flit is exclusively al-

located for the transmission of the message until the whole message has been transmitted.

As soon as a node successfully transmits a flit, it is sent the next flit. Routing nodes require

buffers to store a small number of flits rather than whole packets, substantially reducing

the buffer size requirements and latency over store and forwards methods. The flits of a

message will become spread out along the communication channel, resembling a worm

working it way through the network, hence the term wormhole.

Although the term wormhole was not used in Dally and Seitz’s 1986 [60] paper, this is the

first printed description of wormhole routing which was developed jointly by Dally and Seitz

when Seitz was Dally’s PhD advisor. Dally also explains that "Wormhole routing is actually

a misnomer - it refers to the flow-control used, not the routing." (W. J. Dally, personal

communication, September 18th, 2014).

2.3.2 Network Latency

It is important to reduce the latency of messages passing through the network to a min-

imum. Latency will depend on a number of properties of the network and the message

including:

• size of message or packets

• time taken to allocate communication resources

• distance between source and destination nodes

• delay at routing nodes

Each of the switching models described above have their own latency profile.

Dally [62] compares the latency of store and forward and wormhole switching methods,

giving the latencies as:

TSF =

(
D +

L

W

)
(2.5)

TWH =

(
D × L

W

)
(2.6)

Where:
TSF = latency for store and forward switching

TWH = latency for wormhole switching

D = distance

L = message length

W = data width

Many-Core Systems 51

Felperin et al. [63] give a more detailed analysis of the latency in a wormhole switched

network.

2.3.3 Routing

Routing is the mechanism by which a route through a network, for the transmission of a

message or a message packet, is chosen. In principle any routing algorithm can be used

with any of the switching methods describe above. Receiving, buffering and transmission

of data is the responsibility of hardware. Routing decisions may be made by hardware, soft-

ware or combination of both. All routing algorithms will interact with the routing hardware.

The features provided by the routing hardware will determine how easy it is to implement

an algorithm. A number of the routing algorithms are accompanied with a design for routing

hardware.

A large number of routing algorithms have been developed for use in NoC some of which

are reviewed in this section.

Routing Deadlock Routing deadlock is described by Kleinrock [64] as the inability of a

communications network to transmit data between nodes. This can occur when two routing

nodes have data to transmit to each other and the data buffers of each routing node are full

with the data waiting to transmit. Neither node can transmit its data to the other until the

data buffer of the target node is no longer full. Thus, neither node can transmit or receive

data until some exception action is taken to free up one or other of the buffers. Routing

protocols need to be designed to avoid deadlock situations.

xy Routing In [60][65] Dally and Seitz describes xy routing of packets used in the Torus

Routing Chip. Although described as xy routing Dally and Seitz’s presents a multidi-

mensional model of arbitrary dimensions with each packet containing the n dimensional

address of the destination. xy routing become popular and can, perhaps, be considered

as the benchmark against which all other routing strategies are measured.

xy Deadlock Free Routing Dally and Seitz [61] describes a deadlock free xy routing

algorithm based on virtual channels. Dally and Seitz defines a ”routing function" and a

”channel dependence graph" and gives a proof that if a channel dependence graph has no

cycles then the associated routing function is deadlock free. Virtual channels are used to

construct a cycle free channel dependence graph. Each virtual channel is associated with

its own queue ensuring blocked messages do not hinder the progress of other messages

[61][66].

Multi-Cast Routing Lin and Ni [67] develop a multicast wormhole routing strategy to

provide deadlock free routing of messages to multiple nodes. The method demands that

networks have a Hamilton path which is a path through the network where every node

is visited once and only once. Lin and Ni state that almost all topologies being studied,

including 2D-mesh and hypercubes, have Hamilton paths. A given network may have more

52 2.3 On-Chip Communication Networks

than one Hamilton path. From the point of view of the performance of this routing method,

not all Hamilton paths are equal, some being more efficient than others.

Turn Model Glass and Ni [68][69][70] present the Turn Model, a deadlock free adaptive

routing algorithm for 2D & 3D mesh without using additional physical or virtual channels.

The crux of their work is the realisation that prohibiting one quarter of the possible turns

in these meshes is a necessary and sufficient condition for preventing deadlock. The

increased number of turns available compared to xy routing allows the development of

adaptive routing strategies without the need for adding physical or virtual channels. In the

case of a 2D mesh there is a clockwise cycle of turns and an anticlockwise cycle of turns.

To achieve deadlock free routing it is necessary to prohibit one turn from each cycle. For

a 2D mesh Glass and Ni define three scenarios where two turns are prohibited giving rise

to routing algorithms they call, west-first, north-last and inverse-first routing algorithms. All

other combinations of prohibiting one turn from each cycle are equivalent to one of the

above three scenarios.

Odd-Even Turn Model The adaptiveness of the turn model is uneven, producing only

one minimal path for at least half of the source-destination node pairs [71] resulting in

unfairness and an inability to deal with traffic congestion. To resolve these problems Chiu

developed the Odd-Even Turn Model. This model allows all the available turns, but instead

restricts the nodes where certain turns can be made. Given columns are labelled with

integers starting with zero all columns can be considered to be either even or odd. The

algorithms prohibits EN and ES turns in an even column and NW and SW turns in an odd

column.

Proximity Congestion Awareness (PCA) Nilsson et al. [72] investigate memoryless switches

to transmit messages through a network. To avoid congestion messages can be sent

in a non-ideal direction. Nilsson et al. propose a technique called Proximity Congestion

Awareness (PCA) to increase the maximum load that the network can cope with. PCA

is implemented by transmitting control information, which they describe as a stress value,

from each communication node to its neighbours to improve their own routing decisions.

Each node can examine the stress value from its neighbours to help decide the best node

for routing a data packet. Nilsson et al. report that PCA provides a 20% improvement over

making a random choice.

DyXY Routing Li et al. [73] develop a routing strategy called Dynamic XY Routing (DyXY)

which provides both deadlock and livelock free routing while outperforming xy and odd-

even routing. This solution includes the hardware design of a router to support the routing

algorithm. The important attribute of the routing method is for each router node to inform

each neighbour of its stress level. It this case the stress is a measure of the utilisation of

the input buffer.

MD Routing Ebrahimi et al. [74] observe that DyXY routing [73], in the presence of faulty

communication channels, can send a packet into communications cul-de-sacs from which

the packet needs to be returned before attempting a new route. Ebrahimi et al. extends the

Many-Core Systems 53

DyXY routing algorithm creating a fault tolerant algorithm which they call MD routing. The

innovation is for the each node to transmit, to its neighbour nodes, the status of itself and

each of its own neighbours. This is in contrast to DyXY routing which only transmits data

about a node’s own status. The additional information allows sending nodes to avoid dead

ends. This algorithm makes use of virtual channels. In their paper they state that when

all available routes have similar congestion status their algorithm favours sending packets

down the longest route. This is a useful principle that ensures that, at each step, there are

the maximum possible shortest paths to the destination and deserves rigorous study and

associated proof.

Hot Potato Hot Potato policy describes the idea of a node passing on a packet as soon as

it arrives, without any buffering [59]. The original model was proposed by Baran [59] and

further developed by Caragiannis et al. [75] and others.

Lifetime Aware Routing Reliability of NoC routers has a strong correlation with the routing

algorithms used by the NoC. A lifetime aware routing acts to route traffic around hotspots

to balance the load more evenly between routers and extend the lifetime of the routers and

the NoC[76, 77].

2.3.4 Network Topology

The network topology is the arrangement of cores within a network and the interconnec-

tions between the cores, both of which will influence the performance of the network. There

are numerous possible arrangements each with its own unique properties. The diagrams in

this section describe a number of possible topologies represented by nodes used to model

processing cores and edges modelling communication channels.

Mesh architectures do not rely on global buses to carry information. Information is trans-

mitted through the mesh from node to node, which replaces the bus overload problem with

the challenge of designing efficient routing algorithms.

Square Lattice Dally and Towles [78] propose a grid structure with an Internal routing

network which they estimate has a 6.6% area overhead. Kumar et al. [79] propose a

square lattice arrangement where each communication node is connected to four other

nodes. Each node is also connected to a single processor providing the processor with a

connection to the communications grid. This arrangement is often referred to as a mesh

network or mesh topology. Mesh networks are the topology of choice for most research

into NoC.

The square lattice is convenient to work with as it is a simple and familiar geometrical

arrangement that also translates well to digital circuit designs which also often use layouts

that follow a square grid arrangement.

When communication nodes are arranged in a two dimensional mesh and the probability of

any pair of resources communicating with each other is a constant, then more messages

54 2.3 On-Chip Communication Networks

Figure 2.1 – Square Lattice

will be routed through the central region of the mesh creating a hot spot of traffic [72].

Rhombic Lattice The rhombic lattice can be constructed using an equilateral triangle grid

which is composed of equally spaced nodes such that any group of three equally spaced

nodes form an equilateral triangle. The diamonds are formed by connecting nodes using

two sets of parallel lines oriented at an angle of 30◦ to each other as shown in Figure 2.2.

The resultant arrangement of nodes and connections is similar to a square mesh placed at

a 45 degree angle to the horizontal, but without the uniform spacing between nodes.

The difference between a diagonal lattice and a square lattice can be appreciated by

studying Figure 2.2 and 2.1 respectively. These two lattices have the same number of

nodes.

In the diamond lattice the distance from the central node to a corner node is the same as

the distance from the central node to each of the edge nodes and in this case is 3 steps.

In the square lattice the nodes closest the the middle of an edge are closest to the centre.

The distance of a node from the centre node increases as nodes are traversed from the

middle of an edge, which is 2 steps from the centre, to a corner node, which is 4 steps from

the centre.

The corners and edges of the diamond lattice are less connected than in the square lattice;

in the diamond mesh the corners are connected to only a single node and the edges to two

other nodes, while in the square mesh the corners are connected to two other nodes and

the edges are connected to three other nodes.

Hexagonal The hexagonal lattice is constructed using the same equilateral triangle grid

described in the Rhombic Lattice section. It is more highly connected than either the square

or rhombic lattices and shares similar properties to the rhombic lattice regarding to distance

between a central node and the edge and corner nodes.

Hemani et al. [3] propose an alternative configuration of processing units based on a hon-

eycomb configuration. Processors are arranged in hexagonal rings with a communication

node in the centre of each ring. In this arrangement each processor is directly connected

Many-Core Systems 55

Figure 2.2 – Rhombic Lattice

Figure 2.3 – Hexagonal Mesh

to its three nearest neighbouring processors and three central communication nodes. Con-

necting each processor to more than one communication node provides resilience against

failure of a single node and the connections between the processor and the node. This

resilience comes at a price of increased complexity of communications nodes and routing

algorithms.

Star The Star topology is discussed in [80] in which they discus Cayley graphs which are

defined using a set of generators. They give an example of a 24 node graph which is edge

symmetric - that each edge looks identical and is toroidal in nature.

Toroidal A torus can be constructed from a plane surface where the opposite edges are

rolled round so that they are connected. Consider a square sheet of paper which is rolled

so that the top edge meets the bottom edge and then take the two ends of the cylinder and

join them.

Converting a plane lattice to toroid in this manner ensures that all nodes are equally

connected which means that there are no edges in the sense that planes have edges.

Each node is therefore equally viable for connection to external data sources.

Any of the 2-dimensional lattice structures discussed above can be made into a torus.

Polytopes Polytopes are the generalized set of n-dimensional geometric objects with flat

sides. A polytope in n-dimensional space is termed an n-polytope. A 0-polytope is an

56 2.3 On-Chip Communication Networks

object with zero dimensions which is a point or vertex, a 1-polytope is a one dimensional

object which is a straight line or edge, a 2-polytope is a two dimensional polygon also called

a face and a 3-polytope is a three dimensional polyhedron also called a cell.

(a) 0-
Polytope
Point
or
Ver-
tex

(b) 1-
Polytope
Line
or
Edge

(c) 2-
Polytope
Polygon
or
Face

(d) 3-
Polytope
Polyhedron
or
Cell

Figure 2.4 – Polytopes

As an example the square lattice can be extended into 3-dimensions producing 3-polytope

or a cube lattice as show in Figure 2.4d.

Figure 2.5 – Cube Lattice

Since each hypercube is an object that exists in n dimensional space, hypercubes with di-

mensions greater than 3 need to be mapped to 3-dimensional space which can be achieved

by using the hypercube graph representation of the n-dimensional object, denoted by Qn.

Many-Core Systems 57

Figure 2.6 – Q4 Hypercube Graph

2.4 Software Considerations in Many-Core Systems

The successful implementation of many-core system is not just an issue of hardware

design, of equal importance is the ability to make effective use of the processors through

the design and implementation of programs.

2.4.1 Scale Independence

The many-core concept involves cores that number in the hundreds, thousands, hundreds

of thousands and millions. The number of cores on a single die will depend on the feature

size, the complexity of the processors and the amount of cache memory that is desired, but

is likely to be in the tens or hundreds. Systems requiring larger numbers of cores will utilise

many interconnected many-core chips. Since the scale of many-core systems may vary in

orders of magnitude ranging from 102 to 106 the design, operation and control needs to be

scale independent.

Scale independence requires that there is no central control mechanism responsible for

configuring or managing all the processors. A central control mechanism has the disadvan-

tage of producing a single point whose failure would be catastrophic to the whole system

and a single processor that would be required to undertake ever increasing amounts of

work as the number of processors increased. The first of these problems is contrary to the

concept of fault tolerance, while the second will place a limit on the maximum number of

processing cores that can be utilised contrary to the concept of scale independence.

Scale independence therefore requires that monitoring and configuration are not cen-

tralised functions. The model that will be used in this thesis, as discussed in Subsec-

tion 2.4.5, is that a collection of processing cores which are physically close will be treated

as a region, such that each region has independent monitoring and configuration and can

communicate with the monitoring and configuration functions of neighbouring regions. The

size of the regions will not be fixed but may be constrained within limits that are proven to

58 2.4 Software Considerations in Many-Core Systems

be effective during the research.

2.4.2 Application Process Graph

An Application process graph (APG) is a graphical representation of an application broken

down into processes with processes represented as nodes and data transfers between

processes represented by edges. A constraint is imposed on the construction of APGs that

they must be directed acyclic graphs (DAG), a simplification that ensures that there are no

closed loops between any arbitrary group of processes which in turn ensures there is no

possibility of deadlocks between processes. An application process graph is a standard

representation that models processes as nodes and data transfers between processes as

edges.

P1

P26

P3
1

P4

6
P8

8

P7

4

P5

5
13

P6

13

5

6

4

1

8

Figure 2.7 – Example Application Process Graph (APG)

A Directed Acyclic Graph(DAG) is, by definition, directed, meaning that an edge between

two nodes originates from one node and terminates at the second and allows flow from

the originator to the terminator and not visa versa. A DAG is, also by definition, acyclic,

meaning that there are no close paths through the graph. A consequence of a graph being

directed and acyclic is that the nodes can be arranged such that all edges are directed

from left to right. Each node can then be assigned an order which describes how many

nodes are to its left.

Consider an application that is required to process a large number of similar, but different

independent data sets, such that on a sequential processor the application will retrieve a

data set, process the data set and store the results of processing the data set, and then

move on the the next data set. Suppose the application is sufficiently complex that it is

possible to break it down into a number of functions, some of which can run concurrently

with other functions, then these functions can be represented as processes in the APG.

Now consider the example APG in Figure 2.7, that has processes P1 - P8 and processes

Many-Core Systems 59

an arbitrarily large number of data sets DS1 to DSn. When the application begins, process

P1 starts by retrieving and processing dataset DS1. Once process P1 has completed its

processing of DS1, including the communication to processes P2, P3 and P4, it is free

to start processing the next data set DS2, so at this point process P1 will be processing

data set DS2 and processes P2, P3 and P4 will be processing dataset DS1. Repeating

the same reasoning across the remainder of the graph, it can be seen that four data sets

can be in different stages of processing at the same time. The simultaneous processing of

multiple data sets is illustrated in the APG Execution Chart as shown in Figure 2.8.

4

3

2

1

T1 T2 T3 T5

Time Segment

P4

P8P1 P2

P3

P5

P6

P7

T4 T6 T7

D
a
t
a

S
e
t

P4

P8P1 P2

P3

P5

P6

P7

P4

P8P1 P2

P3

P5

P6

P7

P4

P8P1 P2

P3

P5

P6

P7

T8

Figure 2.8 – Example APG Execution Time Chart

Note that the application process graph gives no information as to whether process P7

can start processing a data set immediately when it receives data from process P4 or P5,

whichever it receives data from first, or whether is must wait for data from some or all of its

inputs before processing can begin; in either case P7 cannot complete its processing until

it has received data from both P4, P5 and P6. In Figure 2.8 process P7 is shown to start

processing only when it receives data from process P4, P5 and P6 have all completed

processing the data set.

Assuming that all the processes must be completed on every data set, the length of the

time segments will have to be no less than the time taken for the slowest process to

complete. Processes that take less time to complete will be delayed whilst waiting for the

slower processes to compete. As a consequence, the most efficient throughput will occur

when the execution time of each of the processes is identical which is an idealisation that,

although unlikely to be achieved, is worth pursuing. Or, alternatively, we can say that when

designing an APG, care must be taken to ensure that the execution time of the processes

is balanced such that the overall waiting time of the processes, as a whole, is reduced to a

60 2.4 Software Considerations in Many-Core Systems

minimum.

There are similarities between an APG and a staged pipeline used in processor design

although the APG is more complex in that there is a greater number of inter-process

dependencies and multiple processes can be processing the same data set in the same

time segment.

The description of the processing of data sets given above is an example of a coursed

grained dataflow machine as discussed earlier in this chapter.

2.4.3 Task Mapping

Task mapping is the process of mapping processes of an APG to processing cores in the

many-core system. This research is concerned with investigating methods to efficiently

achieve a task mapping of an APG to a many-core system such that the resultant mapping

makes efficient use of the resources available in the many-core system[81]. The phrase

efficient use is subjective and can change from time to time and therefore needs to be

able to be influenced by the initial configuration determined by the designers of a system,

the current processing demands placed upon the system and the current environmental

conditions.

Given an application process graph and a many-core array, task mapping allocates appli-

cation processes as tasks to processing cores. For a graph with n nodes being mapped to

a square array of dimension a with c = a2 cores, the number of solutions is proportional to

the number of permutations of n from c:

nPc =
c!

(c− a)!
(2.7)

The growth of computational time required to search all the possible solutions as the

problem size increases places this problem in the NP-hard class of problems. Exhaustive

searches are incapable of examining all the possible solutions in a reasonable length of

time, so this research will use evolutionary algorithm techniques to search the problem

space for solutions.

It is an axiom of this research that the configuration of the system is not predetermined

before operation of the system but evolves in response to the performance demanded of

the system and the changing environmental conditions. To emphasise this point, there is

no predefined initial mapping of any APG to the many-core system, the initial mapping will

be determined by the many-core system itself following boot up of the many-core system

after which alternative mappings will be evolved. Mapping will take place in real time in

response to the hardware status of the many-core system

There has been considerable research on design-time mapping [9–13] which in the vast

majority of cases was applied to applications implemented using a collection of intellectual

Many-Core Systems 61

property (IP) modules for the design of NoCs consisting of heterogeneous processing

elements (PEs).

Hu and Marculescu [9] analyse a generic video/audio MultiMedia System (MMS) appli-

cation that includes video and mp3 encoders and decoders and partition it into 40 tasks

which are assigned and scheduled onto 25 IP modules. A branch and bound algorithm is

used to construct mappings of IP modules to tiles in an NoC architecture and minimize the

total communication energy consumption calculated using an energy function that models

the energy consumed by sending a single bit between two tiles of the NoC. The branch

and bound algorithm is shown to be on average 72 times faster than a simulated annealing

optimizer. The algorithm is used at design time to find mappings that are implemented and

fixed pre-execution.

Lei and Kumar [10] use a two-step genetic algorithm to map an application represented by

a task graph onto tiles on an NoC. The work concentrates on the static mapping of IPs at

design time. The calculation of the optimization objective, the average edge delay, which is

used to measure communication delay shares some commonality with the network power

objective of Chapter 5 in this thesis, as both calculations make use of the distance between

a pair of communication core pairs.

Murali and De Micheli [11] present a mapping algorithm they call PMAP for placing clusters

onto processors, which produces mappings with lower communication cost than achieved

by previous algorithms. They use bandwidth constraints as the optimization objective,

which is also relevant to the Excess Traffic objective of Chapter 6. The PMAP algorithm

uses Dijkstra?s shortest path algorithm, applied to the quadrant graph (equivalent to a

ComPair, see Section 5.1), to obtain the minimum path. The algorithm is used at design-

time to find mappings that are implemented and fixed pre-execution.

Ascia et al. [12] investigate the mapping of 12 pre-designed, pre-verified modules in the

form of intellectual property (IP) for an MPEG-2 encoder/decoder system, comprising

DSPs, generic processors, embedded DRAMs and customized ASICs. A genetic algorithm

is used to search for mappings that optimize performance and power consumption for

a 5 × 5 array. The genetic algorithm is used at design-time to find mappings that are

implemented and fixed pre-execution.

Derin et al. [14] use integer linear programming (ILP) to search for mappings that minimize

the objectives of communication traffic and total execution time of an application in a mesh-

based NoC with deterministic routing. The motivation is to combine the steps of allocating

tasks to IPs to minimize execution time while at the same time minimizing communication

traffic by allocating IPs to tiles. Derin et al. also implement a fault recovery mechanism for a

single faulty core that would either reallocate tasks from a faulty core to IPs on other cores,

or completely remap all tasks to optimize the objectives. These two approaches to recovery

from a faulty core are analogous to the graceful degradation and graceful amelioration used

in this thesis.

Sayuti and Indrusiak [13] use an approach that configure both task mapping and priority as-

62 2.4 Software Considerations in Many-Core Systems

signment, using a genetic algorithm to search for solutions. The optimization is performed

at design time of a hard real-time embedded system based on a fixed priority pre-emptive

NoC. As an alternative to searching for mappings with a GA, a constructive task mapping

algorithm can construct task maps based on specific design properties [15].

Das and Kumar[16], Khalili and Zarandi [17], and Chatterjee et al. [18] all use a homoge-

neous NoC as the target platform and allocate multiple tasks to single tiles containing a

PE.

Das and Kumar[16] create a collection of task maps at design time, creating a mapping for

each fault scenario which are saved so that they are available to at run-time. When a fault

occurs, the map that whose scenario corresponds to the actual fault is used retrieved and

used to re-map tasks.

The approach of Khalili and Zarandi [17] to fault tolerance is to allow the mapping of multiple

applications, one at a time, and allocate a single spare core to each application during the

mapping process. They use a function to calculate the criticality of a vertex in an application

core graph which is influenced by the amount of traffic flowing into and out of the vertex,

sorts the vertices by criticality, and then places the vertices to minimize the Weighted

Manhattan Distance, which is the product of the distance between two communicating

cores and the traffic volume between tasks located at the cores. A heuristic algorithm is

used to first place the vertices onto cores and then allocate spare cores for fault recovery.

The algorithm is used to map multiple applications onto cores of an NoC and allocates

spares cores to specific applications during the mapping process. The algorithm has the

effect of clustering the cores used for an application along with a single spare core while

leaving the remainder of cores unallocated and available for additional applications. The

application mapping is carried out at design time, before the application starts executing

and remains fixed thereafter, while the migration of tasks when a PE becomes faulty is a

run-time process.

Chatterjee et al. [18] developed an algorithm that provides a unified mapping and schedul-

ing method for real-time systems, focusing on meeting application deadlines and minimiz-

ing communication energy while mitigating the effect of failure-prone processing elements.

The platform is a NoC consisting of a lattice of homogeneous processing elements, each of

which can be allocated multiple tasks by the mapping algorithm. The model determines the

communication energy and communication time based on the Manhattan distance between

the source and destination nodes. Fault tolerance is achieved by replicating tasks that have

been allocated to PEs that are judged to be unreliable. The duplicate tasks either run in

parallel with the original or stand by to start execution if the original PE should fail.

2.4.4 Task Migration

Task migration is the action of moving a process from one core to another and involves

loading a new core with the appropriate program to continue the processing and where

Many-Core Systems 63

possible transfer of the current state of processing to the new core.

The nature of task migration is different if it is triggered by a hardware fault which requires

immediate migration of the process from the faulty core or triggered by the desire to

ameliorate performance. If the migration is due to the failure of a core then loss of the

current state of processing is usually inevitable in which case the processing that has

been lost will need to be repeated or abandoned completely. The migration needs to

be immediate to minimize the disruption caused by the loss of processing. Whether the

processing is repeated or abandoned depends on whether the application is robust in

the sense that it can cope with some level of lost processing or whether it requires all

processing to be completed even if this delays the final result. Migration in response to a

hardware fault will often only involve the migration of single process.

Implementation of a new mapping to achieve amelioration may require multiple task migra-

tions to complete, in which case the migration of processes will take place in a controlled

manner and can be achieved without loss of processing or significant delay to the execution

of the process. Task migration is a non-trivial undertaking requiring the loading of the

required program to the new core, transfer of the existing execution status, and notification

to all interested parties of the new location of the process. Task migration is expensive

in terms of processing resources, communication bandwidth and time. The total cost of

multiple task migrations required to implement a new mappings needs to be balanced

against the long term benefit of the new mapping.

2.4.5 Core Regions

The concept of a monitoring core was introduced in Subsection 2.4.6. The philosophy

of this thesis is that the monitoring and management of the many-core system should

be distributed function for many-core arrays that have more and a few tens of cores. To

preserve scale independence it is proposed that the many-core array is logically divided

into a number of regions that are independently managed. A region will consist of a

collection of processing cores that are physically close to each other and are monitored

and configured independently of other regions. Neighbouring regions will interact with

each other enabling communication between processes in different regions and allowing

migration of processes from one region to another. The size of the regions will not be fixed

but may be constrained within limits that are proven to be effective during the research.

The regions that an array of cores is divided into can be disjoint as in Figure 2.9a or

overlapping as in Figure 2.9b.

2.4.6 Monitoring

A many-core system is ideally suited to be a dynamic system which adapts to changes to

the processing requirements placed upon the system, changes to the system itself and

changes in its operating environment. Graceful degradation and graceful amelioration

64 2.4 Software Considerations in Many-Core Systems

CCCC C CCCC C CC

CCCC C CCCC C CC

CCMC C CMCC C CC

CCCC C CCCC C CC

CCCC C CCCC C CC

CCCC C CCCC C CC

CCCC C CCCC C CC

CCCC C CCCC C CC

CCMC C CMCC C CC

CCCC C CCCC C CC

CCCC C CCCC C CC

CCCC C CCCC C CC

(a) Disjoint regions

CCCC C CCCC C CC

CCCC C CCCC C CC

CCMC C CMCC C CC

CCCC C CCCC C CC

CCCC C CCCC C CC

CCCC C CCCC C CC

CCCC C CCCC C CC

CCCC C CCCC C CC

CCMC C CMCC C CC

CCCC C CCCC C CC

CCCC C CCCC C CC

CCCC C CCCC C CC

(b) Overlapping regions

Figure 2.9 – A 12x12 Lattice divided into regions

are achieved through the management of the workload amongst the processing cores

and in response to changing conditions that are assessed through the monitoring of the

processing cores. Monitoring and management can be a centralised function that has a

holistic view of the many-core system however, as stated in Subsection 2.4.1, this produces

a single point of failure. In contrast, the approach taken by this thesis is that monitoring

and management should be a distributed function carried out by one or more cores within

the many-core array.

A Monitor process is responsible for collecting performance data and managing the re-

sources of the many-core array to comply with the performance parameters supplied to the

Monitor. Examples of the functions that the Monitor node is responsible for are:

• Collecting traffic data

• Collecting thermal data

• Controlling voltage and frequency of individual cores

• Detecting fault conditions

• Managing the fault-recovery cycle

• Maintaining the hardware map with core and link faults

• Maintaining the process map

• Maintaining the application process graph with actual process-process traffic vol-

umes

• Informing routers of the location of processes and faulty links

• Managing process migration

Many-Core Systems 65

• Managing evolutionary runs to search for process mappings

• Maintaining Pareto Front Pf0 between evolutionary runs

• Selecting suitable mappings from Pareto Front Pf0

• Communicating with adjacent regions (where they exist)

Monitoring of the status of the cores in the many-core system provides the raw data that

will be used to determine if there are conditions adversely affecting performance and

determine if performance can be improved by reallocating processes to cores in a different

configuration. The specific core or cores that undertake the monitoring and management

functions is not predetermined.

The system can be designed to allow monitoring for example:

• Processing core faults

• Routing node faults

• Communication channel faults

• Processor bottlenecks

• Communication bottlenecks

• Heat/power hot spots

• Failure to achieve required throughput

• Lack of fault tolerance

2.5 Memory Subsystem

The purpose of a processor is to execute programs to manipulate data. For a processor to

function efficiently it must be able access programs and data in a timely manner. This is

the role of memory and storage devices.

The size of memory and speed of access to the contents must be compatible with the

needs of the processor, consequently memory technology has developed alongside the

evolution of processors and computing systems.

This sections reviews the memory subsystems and their development with relevance to

many-core system architecture.

2.5.1 Memory Hierarchy

It has been a constant feature of electronic computers that processor speeds are many

times faster than prevailing bulk memory systems and the cost of available memory tech-

66 2.5 Memory Subsystem

nology increases with the speed of access the memory technology offers. Both of these

challenges are addressed by implementing multi-level memory systems. Multi-level mem-

ory systems have been a feature of system design from early in the development of

computer systems, as is evidenced by Burks et al. [83] who in 1946 proposed a three

level storage hierarchy based on criteria of speed, cost and size; the same considerations

that are important today [83].

In general the closer memory is to the processor the smaller, faster and more expensive it

is, although the technology used in each level has changed over time.

Burks et al. discusses a hierarchical memory system with the top level storage using a

cathode ray tube based storage device called a Selectron, the second level using on-line

magnetic tapes and the third level using off-line magnetic tapes. Burks et al. also describe

a Selectron Register built of flip-flops, presumably using thermionic vacuum valves (since

this was before the invention of the first transistor by William Shockley and John Bardeen

in December 1947), that is used to store the value retrieved from the Selecton for use by

the arithmetic unit. Incidentally the use of flip-flops for main memory was dismissed as

impractical, presumably because of the complexity, cost and physical size it would require.

In today’s systems the generally implemented hierarchy of memory is: processor registers,

on-chip cache memory using SRAM technology (which is often also multi-level), DRAM

solid state memory and a hard disk mass storage device. Processor registers and on-

chip cache use an SRAM design which is sufficiently fast that a memory access can be

completed within a single clock cycle. The SDRAM design uses six transistor per bit and

is therefore expensive in terms of space when compared compared to the DRAM used

for main storage. Main storage is provided by external memory modules managed by

the memory management unit (MMU). The access time to main memory is greater than

for cache memory because the memory is off-chip, the distance from the processor is

greater and DRAM technology is slower. The DRAM design uses a single transistor and

single capacitor per cell compared to the six transistors of the SRAM design. The result

is that DRAMS have a higher density i.e. more memory locations for a given die size and

ultimately a lower cost.

Cache memory has an access time in the order of a single clock cycle, size in the region

of MBs and is relatively expensive. Main memory has an access time in the region of a few

10s to 100s of clock cycles, has size in the region of giga bytes and is medium cost being

implemented using DRAM external to the processor. Hard disk storage has access times

in the millions of clock cycles, size in the region of tera bytes and is relatively inexpensive.

The size of each level in the hierarchy differ by roughly a factor of 103.

2.5.2 Cache

Cache memory is a mechanism designed to increase the effective bandwidth of data

between the processor and the mass memory and so reduce the amount of time the pro-

Many-Core Systems 67

cessor has to wait for data to be retrieved from memory. Addition of cache into processor

designs followed the realisation that data access is both temporal and spatial in nature.

To illustrate the nature of the temporal and spatial nature of data access we can use the

following small C++ program that uses a loop to sum the corresponding elements of two

arrays and place the results in a third array.

Listing 2.1 – Loop program code in C++

1 void ArraySum : : sum () {
2
3 f o r (i n t x = 0 ; x <= 10; ++x) {
4 arrayC [x] = arrayA [x] + arrayB [x] ;
5 }
6 }

Temporal Proximity Temporal proximity of data access means that memory locations that

have recently been used are more likely to be used again in the near future than memory

locations that have not been recently accessed.

Consider the program code of Listing 2.1 consisting a simple loop which will be executed

once for each element of the arrays. When execution is initiated the program is loaded into

main memory from where the processor will retrieve each instruction is in turn. A simple

processor that can execute only a single instruction at a time will retrieve, decode and

execute an instruction before progressing to the next instruction. The loop test condition

and the code internal to the loop will be executed many times over, once for each array

element. Each time through the loop each of the instructions are read from memory even

though they may have been read only a few clock cycles earlier. This is an example of

temporal proximity.

Spatial Proximity Spatial proximity is the property that data that is located in memory

close to data that has recently been used is more likely to be used in the near future than

more distant memory locations.

Again using the program of Listing 2.1 the elements of each array will typically be stored in

adjacent memory locations, and the arrays stored contiguously in memory. As the program

progresses through the arrays it will be accessing memory locations adjacent or close to

the last memory locations used. This is an example of spatial proximity.

The Cache Model

Single Level Cache: When a processor requests data from a memory location that is not

already in cache, the request will trigger the retrieval of not just the memory location being

requested but of a block of memory containing the desired location. When the requested

data is loaded into cache, it is then transferred to the processor which can continue its

processing whilst the MMU completes the transfer to the whole block of data. As the

68 2.5 Memory Subsystem

processor continues execution of the program it will read further data elements and by

virtue of temporal and spatial proximity it is likely to find that the required data is already in

cache.

Multi-Level Cache: Cache memory can, and often does, have multiple levels that mirror

the memory hierarchy in that cache closer to the processor is smaller, faster and more

expensive than cache further from the processor and can be on-chip, off-chip or a com-

bination of both. Cache closest to the processor is referred to as Level 1 or L1 cache,

followed by L2 and L3 caches. Processor registers are integrated into the design of the

processor so there is effectively zero distance between the registers and the ALU and are

smometimes referred to as level 0 cache. On-chip L1 cache, measured in kilo bytes, is

placed close to the processor to maintain single clock cycle access times while L2 cache,

measured in mega bytes, is placed on the periphery of the processor die and will have

multi-cycle access times.

Early microprocessor designs such at Intel’s processors up the the i386 did not have

any on-chip cache. Even when there is no on-chip cache it is possible to implement

off-chip cache using smaller and faster memory devices than those used for main memory,

although this would have to be designed into the MMU. As discussed in Section C.3,

on-chip cache first was introduced into the Intel processor design in the i486 processor.

Unified and Split Caches The von Neumann architecture has a single system bus used for

both addressing and data and a single main storage that contains data and programs while

the Harvard architecture has separate data and instruction buses and correspondingly

separate data and instruction memories. The Harvard architecture benefits from the use

of dedicated buses by being able to simultaneously transfer instructions and data between

processor and memory. The design is also more flexible since word lengths for data and

instructions do not have to be the same.

In practice, systems are designed with dedicated address, data and control buses where

the data bus is used for both instructions and data; which are stored in a single, mixed

purpose, main memory. Instructions and data are only separated in L1 cache and CPU

internal registers dedicated either to data or instructions while L2 cache is usually a unified

instruction and data cache.

Write Strategies When a data item is modified in a cache there are options for how to

manage the update to the main memory. These options are referred to as write strategies

which are write-through and write-back.

Write-through: A write-through policy immediately updates main memory when a value is

modified in the cache ensuring that the value in main memory and the cache are consistent.

Each data item in the same cache block that is modified triggers a new update to main

memory, creating a significant overhead which reduces the benefit of the cache, especially

when multiple modifications are made to the same piece of data.

Write-back: Write-back updates the cache and sets a modified status bit linked to the

Many-Core Systems 69

cache entry to indicate that there is now a difference between the cache value and the main

memory value. Main memory is not updated until the cache block is removed at which point

main memory will be updated with all outstanding data modifications in the cache block.

Write-back is faster than write-through because it avoids unnecessary updates to main

memory.

2.5.3 Multi-Processor Memory Architecture

Shared Memory In a shared memory system all processors use the same physical ad-

dress space which refers to a single unified memory through a single interconnect, some-

time referred to as a shared memory multiprocessor (SMP) system. The memory manage-

ment unit coordinates access requests by the processes to the memory. Communication

between processors is through shared variables or memory buffers, both of which are

located within the shared memory. Applications are responsible for ensuring that they use

mechanisms such as memory locks or semaphores to ensure proper synchronization of

memory updates.

Distributed Memory In a distributed memory system each processor has its own private

physical memory that cannot be directly accessed by other processors. This is typical of

clusters comprising many independent machines, each with its own disk drives. Access to

by a processor to another processor’s memory must be made through messages with

the first processor making a request for data and the second processor returning the

requested data. Communication between processors via messages requires intervention

of the operating system, packaging of the message for transmission, transmission of the

message and unpacking, which is inherently a slow process when compared to memory

accesses in a SMP system.

Distributed Shared Memory A hybrid arrangement is possible where the memory of a

physical address space is distributed among the processors. In this case the memory

access times will vary depending of how far the memory is from the processor that is

accessing it. This gives rise to non-uniform memory access (NUMA) is contrast to the

uniform memory access (UMA) of an SMP system [82].

Shared Memory with Message Passing Another possible memory arrangement for many-

core system would be to have a shared memory which is equally accessible by all cores

and additional private memory for each individual core sufficiently large to accommodate

the program and data for the process. This would avoid repeated accesses to shared mem-

ory. Processes that are part of the same application process graph would communicate

through message passing so that the shared memory would not be a factor or bottle neck

when a data set passes from one node to the next.

70 2.5 Memory Subsystem

2.5.4 Memory Coherence in Many-Core Systems

Each core in a multi-core or many-core system will usually have its own dedicated cache,

introducing the possibility of the same data being located in more than one cache at the

same time. Copies of a data element that is in multiple locations can become different

when one copy is modified by one of the cores, a problem described as memory coherency.

Often individual processors will have a dedicated L1 cache and then a group of processors

will share a L2 cache. If the number of processors is small then they may all share a single

L2 cache, for large numbers of processors it may be desirable to have multiple L2 caches

with the L2 caches sharing an L3 cache.

Coherency has been defined by Censier and Feautrier [84] as:

"A memory scheme is coherent if the value returned on a LOAD instruction is

always the value given by the latest STORE instruction with the same address."

Maintaining coherency in a multi-core or many-core system necessitates the development

of controls and mechanisms to ensure that a modified value is reflected accurately in main

memory and that when a process modifies a value it is given exclusive rights to do so until

the update is complete.

There are many possible schemes to maintain coherency in multi-core systems. One

scheme that has been widely used is based on the write-back mechanism described

earlier in this section, with additional flags and signals to indicate when a cache entry has

been updated and has not been written to main memory which is then described as ’dirty’.

Coherency is maintained by each cache monitoring all data requests from all caches. If

a cache identifies a request for an entry in its own cache that has been marked as dirty

then it will signal this to the MMU so that its value is used in preference to the value in the

next lower memory level [85, 86]. In a many-core array snooping requires all transactions

to traverse the entire network, increasing the traffic in proportion to n2 of the number of

nodes which grows rapidly with number of nodes making it unsuitable for large many-core

arrays.

An alternative to the above scheme is a directory based approach where the MMU main-

tains a list of which caches have copies of memory blocks. When a write request is sent

from a cache to the main memory the directory is used to inform all other caches using the

same block that their data is now invalid [87] [84]. The scheme reduces the traffic compared

to the snoopy schemes as only affected caches need to be informed when data is modified

in main memory. Although an improvement of the the snoopy scheme the directory based

approach has its own limits because the sizes of the directories will limit the number of L1

caches that can be watched.

A further development of the directory based approach is using distributed directories [88–

92] where directories are maintained in the network nodes instead of centrally with the

main memory. In Eisley et al. the directory is maintained as a linked tree between the

nodes that have of copy of the same data [91].

Many-Core Systems 71

2.6 Programming Models

Mainstream traditional programming is primarily based on imperative programming lan-

guages that were designed for writing programs for the single instruction execution stream

of computers with a von Neumann architecture. However imperative languages are not

well suited to writing programs that involve parallel processes. This chapter review a

range of programming paradigms that have been developed to overcome the limitations

of imperative languages.

2.6.1 Evolution of Computation

The development of mechanical computation goes back to the 15th century with Wilhelm

Schickard (1592-1635), Pascal (1923-1662), Gottfried Wilhelm Leibniz (1646-1716) who

all designed mechanical calculation machines. Leibniz, a mathematician and philosopher,

developed a system of calculus at the same time as Newton and it is Leibniz’s notation

that is now used. Leibniz work on mechanical computation and recognition that mathe-

matical algorithms are a list of steps that can be followed mechanically inspired him to

posed the philosophical question of whether there is an algorithm that could decide the

truth of statements in number theory. This together with Hilbert and Ackermann’s 1928

Decision Problem, the Entscheidungsproblemn in his native German [93], was the catalyst

for later generations of mathematicians to develop formal methods for computation. In

the process of attempting to answer these problems many researchers in the field of

mathematics developed calculus and conceptual computing machines. The 1930s and

1940s were a particularly productive for research into formal systems with the publication

of Gödel’s 1931 paper [94–96] where he sets out the theory of recursive functions, now

called primitive recursive functions following the work of Kleene; Turing’s 1936 paper on

Turing Machines [95, 97]; Post’s 1936 paper on finite combinatory processes [98] and

Church’s 1941 book "The calculi of Lambda-Conversion" [99]. Shepherdson and Sturgis

in 1963 developed the Unlimited Register Machine (URM) [100] which can be viewed as

a modern equivalent of Turing Machines that allows functions to be expressed in a very

simple programming language making it easier to work with than Turing Machines. These

alternative approaches to formal systems and computability have all been shown to be

equivalent and in particular equivalent to simple recursive functions, which is now referred

to as the "Church-Turing Thesis".

The importance of all these systems to computing is that computers, however sophisti-

cated, are also equivalent to Turing Machines. Shepherdson and Sturgis’s URM needs only

four operations to be able to specify any function. The same is true for real computers; any

additional instructions or complexity of design do not increase the computational capability

of the machine but rather make the machines easier to program and more efficient.

The theory of primitive recursive functions gives formal proof of the validity of concate-

nation, substitution and recursion of functions all of which underpin all programming lan-

72 2.6 Programming Models

guages while Church’s Lambda Calculus is fundamental to the theory and design of func-

tional and dataflow languages.

2.6.2 Imperative Languages

In 1978 Backus described languages that execute a single instruction at a time in the

sequence specified by the programmer as ’von Neumann languages" [26], although are

more accurately described as imperative languages.

The first stored program computers were single processor computers that executed a

single instruction at a time described as the stored-program computer or von Neumann

architecture [101]. As a consequence, the first programs were written to execute a single

instruction at a time in a specific order to achieve the desired effect. Both procedural

languages and object-oriented languages are sequential. The methods of a class in an

object-oriented language contain sequential code as does the code within functions and

procedures of procedural programming languages. There is nothing inherent in these

languages that promotes parallel processing. Where parallelism is required it is provided

by incorporating application program interface (API) directives to an external application

with provides multiprocessing support.

It has been argued that procedural programming constrains the programmer to thinking

an coding solutions in terms of the von Neumann architecture [26] and that a functional

programming approach would free programmers from this restraint.

2.6.3 Functional Programming

In his 1978 paper Backus highlighted the problems of imperative languages and proposed a

functional style programming model. Backus’s approach is very mathematically orientated

being based on Church’s Lambda calculus.

The properties of a functional language that distinguishes it from an imperative language

are that functions are:

• independent: they compute irrespective of other computation states

• stateless: each action is unrelated to any previous action

• deterministic: the same inputs will return the same outputs

Functional programming languages attempt to adhere as closely as possible to these

properties. However in real systems, the purpose of programs is to change the state of

the system. For example, a function that updates database records is changing the state

of the system.

A number of languages fit into the functional language category: Haskell is strongly based

on Lambda calculus and is one of the purest functional languages. Python is a widely

Many-Core Systems 73

used, popular language that has features which can be described as functional.

2.6.4 Dataflow Programming

Functional programming and dataflow programming are closely related in that they both

promote the same above properties. Functional languages more closely follow the math-

ematical ideal, whereas dataflow languages were designed for programming dataflow ma-

chines with an emphasis on parallel programming.

The roots of dataflow programming can be traced back to the 1960s and 1970s when

several groups of researchers developed dataflow architectures [28, 33, 102, 103] and

dataflow languages [104–108]. The motivation for dataflow machines was to overcome the

bottlenecks inherent in the von Neumann architecture by designing machines capable of

instruction level parallelization. The name dataflow arises from the change of emphasis

from instructions requesting the data they require during execution to instructions being

triggered when the required data is available for their execution. Any instruction can be

executed by any available processing element as soon at the required data becomes

available. This allows multiple instructions that have no data interdependencies to be

executed simultaneously.

The dataflow programming model uses a directed acyclic graph, sometimes referred to as

a dataflow graph [28, 29, 104, 107, 109–111] to represent program code as it would be

executed on a dataflow machine. The earliest description of a dataflow graph, by Karp and

Miller, is a directed graph of nodes and edges that Karp and Miller refer to as a Computation

Graph [104]; the edges are augmented by four integers representing information about the

input and output data queues of the nodes and the data consumed and created by the

nodes and are not acyclic. Dataflow graphs are not a programming language, they are a

visualization that can be derived from the program code, representing what the program

will do.

With each new machine design, a corresponding programming language was required.

While each machine may have required its own language to best exploit its architecture,

all languages shared common fundamental features explicitly expressed by Ackerman [27]

and summarised as:

1. Freedom from side effects

2. Locality of effect

3. Equivalence of instruction scheduling constraints with data dependencies

4. Single assignment of variables

5. An unusual notation for iterations due to features 1 and 4

6. A lack of history sensitivity in procedures

74 2.6 Programming Models

Conway in 1963 set out conditions for separating a program into processing modules [112]

that are the same conditions that are required of a DAG and a pipeline dataflow [113]:

1. the only communication between modules is in the form of discrete items of informa-

tion

2. the flow of each of these items is along fixed, one-way paths

3. the entire program can be laid out so that the input is at the extreme left, the output is

at the extreme right, and in between all information items flowing between modules

have a component of motion to the right.

Although Conway was not designing a dataflow language his aim was to decouple modules

such that the output of a module was dependent only on the input it received, which

is a essential property for nodes to process in a DAG and could be added as a fourth

requirement to Conway’s list.

The overhead that accompanies parallelization is considerable and in the case of instruc-

tion level parallelization can be significant when compared to the gains. This, coupled

with the rapid improvements in the designs of classic von Neumann machines, resulted in

the dataflow machine architectures of the 1960s and 1970s falling short of the anticipated

benefits to the extent that the research on dataflow machines was eventually abandoned.

Architectural gains of von Neumann machines is finite; clock speeds have levelled off,

pipelines are near optimal, and cache can be as large as required. Parallelization is still

required to realise higher processing throughput so the search for methods to achieve

parallel processing continued. The focus of research moved from instruction level paral-

lelization first to the parallelization of loops [114–117]. Individual iterations of loops can

be run in parallel if the iterations are independent. However this is not always the case

making it difficult to increase processing throughput using multiple processors. Research

next looked at the gains that may be achieved with threads [118–120].

Each stage of research has increased the granularity of the units of code being parallelized.

As already noted instruction level parallelization was found to be too fine grained. The

same is largely true of isolated loops, with processor clocks running at 3 GHz and pipelines

achieveing near single cycle instruction execution, many millions of loop iterations can be

executed in a very quickly.

Early dataflow machines with a fine-grained instruction level parallelism and the sequential

processing von Neumann machines can be viewed as the extreme ends of a continuum.

Both, in their pure form, have performance problems. There is now an expectation that

the best performance will be achieved somewhere between the two. Current research

into parallelization can be viewed, in this context, as a search for the appropriate level of

granularity to achieve useful levels of parallelism while keeping the related overhead small

compared to the gains [29]. As hardware continues to evolve and programming models

mature, the granularity the produces the best results may also change.

Many-Core Systems 75

The continued hardware evolution that now allows many-core system to become a reality

gives a new opportunity for the dataflow programming model to realise the ambition of its

original researchers.

2.6.5 Parallel Programming Models

Explicit parallel programming, where programmers have to add constructs into code to

enable it to run in parallel, has been available for some time with platforms such as OpenMP

and CUDA. An alternative approach is that of implicit parallelism which infers from the code

where parallelism can be implemented.

OpenMP OpenMP is a set of directives that can be used within a supported language

such as C++ that enables to programmer to explicitly designate code to run on multiple

processing cores and handle synchronisation issues. OpenMP as its name suggests, is an

open standard.

CUDA CUDA is a collection of compiler directives and language extensions to languages

such as C++ that allows programmers to make explicit use of the multiple processing units

within NVIDIA GPU cards. Originally intended for graphics programming CUDA is also

used to access the power of the GPU cards for highly parallelizable computations.

Implicit Parallelism Hwu et al. promote an implicit parallel programming model in which

the compiler is responsible for identifying parallelism in contrast to the OpenMP approach

in which programmers explicitly include directives to enable code sections to run in parallel

[121].

The use of existing traditional languages do not adhere closely enough to the properties

described by Ackerman and Conway to be amenable to implicit code parallelism. Implicit

parallel coding will require new languages which are more rigorous such as Haskell which

has been designed to closely implement Lambda Calculus.

2.6.6 Code Parallelization

There are at least three conceivable ways in which parallelization of processing can be

achieved:

Instruction Level Instruction level parallelism is currently implemented through super-

scalar and pipeline architectures. Early dataflow machines were designed as instruction

level parallel machines before the realization that this was too fine-grained to be practical.

Array Processing Using an array of processing cores that simultaneously process the

same instruction/program on different data sets. Commonly used in specialized coproces-

sors such as GPUs and useful primarily when many datasets need to be processed by the

same function simultaneously. The processing elements run the same code at the same

time, with possibly small variations.

76 2.7 Summary

Multi-Thread Processing This is the model implemented by systems such as OpenML,

where the same code is run on many processors as threads. The threads are more

independent that for array processing and much more flexible in the code that can be

run.

A Course-Grained Dataflow Using a many-core array and an APG to achieve pipeline

style processing of multiple data sets simultaneously. This is similar in concept the the

original instruction level dataflow model but with a much more coarse grained structure.

2.7 Summary

This chapter has reviewed the evolution of computer processing paradigms, technological

advances and challenges that resulted in Hemani et al. proposing the many-core model

in 2000. Feature sizes are now small enough that single devices can contain billions of

transistors, making available the technology to fabricate many-core systems with hundreds

or thousands.

A major challenge for system designers using devices with feature sizes below 22nm is the

variability of operation and reliability of individual transistors and the need for dark silicon

to ensure that the device does not overheat. The variability and reliability of individual

transistors will increase the occurrence of faults, some of which may be transient while

others will be permanent, causing loss of the processing unit affect by the fault.

The large number of processing cores envisaged in many-core systems present an op-

portunity to help alleviate the problem of reliability due to failure of processing cores or

communication links. Appropriate management of the use of individual cores can also be

effective in management of dark silicon.

This thesis demonstrates one possible approach to the management of the use of cores to

implement fault tolerance and management of dark silicon.

Chapter 3

Fault Tolerance

Fault tolerance has been, and continues to be, an important element of designing reliable

computer systems. Avizienis in 1978 [122] provides the following definition of fault toler-

ance:

"Fault-tolerance is the architectural attribute of a digital system that keeps the

logic machine doing its specified tasks when its host, the physical system,

suffers various kinds of failures of its components."

Since Avizienis gave the above definition the scope of fault tolerance has been widened to

include software as well as hardware faults. Avizienis and Kelly [123] make the distinction

between a fault that can exist within hardware or software without manifesting itself and an

error which is the result of a fault producing an incorrect output.

Continually diminishing feature size of devices increases the probability of fabrication de-

fects and variability of performance of individual transistors [124, 125]. Use of technology in

hostile environments continues to increase with a corresponding increase in the likelihood

of single event upsets (SEU) and damage to individual components leading to failure

of complete systems. Inaccessibility of systems can make maintenance impossible or

prohibitively costly. All of the above scenarios can benefit from the application of fault

tolerant strategies.

Microprocessors are now being fabricated with transistor counts in the range of 108 and

109 per device. In these devices the failure of a single transistor during operation may

render the whole device unusable, requiring its replacement. As manufacturers continue to

strive to obtain higher transistor densities and lower power consumption, the feature size

is continually being reduced. For example, feature sizes of 32nm appeared in commercial

devices in 2010 in which the size of a single transistor is in the region of 60 atoms of the

silicon lattice. Components of this size reduce the predictability of the behaviour of the

device and increase the likely hood of damage to transistors causing device failure. In

2005 it was recognised by Borkar [125] that reducing feature size would cause problems:

"As technology scales further we will face new challenges, such as variability,

single-event upsets (soft errors), and device (transistor performance) degra-

dation - these effects manifesting as inherent unreliability of the components,

78 3.1 Reliability

posing design and test challenges."

3.1 Reliability

The existence of soft errors or single event upsets (SEUs) in which a single bit of in-

formation is inverted due to external energetic particles entering the device have been

recognised since the 1970s [126]. The source, for example, can be alpha particles from

radioactive contaminants in the packaging, high energy cosmic rays and low energy cosmic

rays [127]. Decreasing feature size magnifies the effect of energetic particles, increasing

the frequency of SEUs and in some cases causing multi-bit upsets (MBUs).

Detection and correction of single and multi-bit errors can be achieved in hardware using a

variety of techniques such as error correcting codes [128] and radiation hardened designs

[127]. As feature sizes decrease the effect of process variations increase, leading to higher

variation of the properties of the individual transistors in devices. Process variations and

other manufacturing defects, also accentuated by reduced feature size, act to decrease

the yield of monolithic processor designs. Many-Core Arrays on a single die are tolerant to

the failure of individual cores causes by manufacturing defects. The same tolerance during

the lifetime of the device will allow the many-core array as a whole to continue to perform

useful work even when a significant proportion of individual cores fail.

3.2 Error Detection and Correction Codes

One of the earliest forms of fault tolerance was the devising of codes to represent informa-

tion with error detection properties. The simplest error detection code is parity, which can

detect one single bit error. More sophisticated codes have been developed to detect more

than one error or to correct errors.

Alt (1948) [129, 130] wrote two papers describing the design of "A Bell Telephone Labora-

tories’ Computing Machine" in which he describes 2 of 5 and 3 of 5 codes that are capable

of identifying the occurrence of single bit errors. The computer was designed to stop when

errors were identified to allow intervention to correct the problem.

Hamming’s 1950 paper [131] gives a mathematical treatment of error detecting and error

correcting codes. Hamming defines the distance between two codes, which we now know

as the Hamming Distance, and the relationship between various distances and the ability

to detect or correct a given number of single bit errors.

Fontainet and Gallagert [132] analyse communication data and made the observation that

errors are not evenly distributed but occur in bursts. Fontainet and Gallagert conclude that,

for the data under scrutiny, error correction was impractical whereas error detection was

practical with a negligible probability of undetected errors. They also state that the choice

Fault Tolerance 79

of error detection and correction codes should be determined by the profile of errors within

the data.

Bell Labs applied for a patent Pulse code communication which included the coding scheme

now referred to as Gray Codes [133] and now classified as a canonical binary single-

distance code.

Berger and Mandelbrot [134] propose two models for describing distributions of errors

while Mandelbrot [135] gives a self similar model of the distribution of errors, noting that

the distribution of errors appears the same regardless of the scale used to examine the

distribution. The property of self similar scale independence is the same property possesed

by fractals, one of the earliest and most well-known of which is the Mandelbrot Set. Another

conclusion of Mandelbrot is that errors are unavoidable so that effort should be directed at

detection and correction as well as reduction.

Peterson and Brown [136] present a mathematical treatment of cyclic codes, now re-

ferred to as Cyclic Redundancy Check (CRC) Codes using generator polynomials to define

codes.

3.3 Hardware Redundancy

Redundancy is a widely used approach to fault tolerance which takes many different forms

[137]. The primary objective is to ensure that in the event of the failure of a module,

there is a backup module that can replace the faulty unit. Some systems require the

replacement to be carried out manually, while more sophisticated approaches make the

transition automatically.

3.3.1 Double Modular Redundancy (DMR)

Double modular redundancy is an approach based on designing systems with a primary

module and a secondary module which can replace the primary module in the event of

a fault. It protects against single module failures in the primary module. Typically, the

secondary modules have no active part in normal operation, other than to ensure that they

are in a position to take over operation from the primary module. This model was used

from 1976 by Tandem Computer Systems in its range of commercial computers [138].

Duplicate modules are designed as an integral part of the system and remain in situ during

normal operation. Duplicate modules are passive backup modules as they remain in a

standby mode taking no active part in the normal operation of the machine. Each primary

module gives regular updates of its status to its corresponding backup module so that

the backup module can resume operation starting from the last status update should the

primary module fail. The design relies on monitoring software and hardware that can

detect failure of a module and switch processing to the backup module. When a fault

has been detected processing is automatically continued by the backup module to enable

80 3.3 Hardware Redundancy

the machine to maintain normal operation. Where the system is accessible an engineer is

alerted who can replace the failed unit without nay downtime of the system. The primary

aim is to reduce the mean time to repair from hours to milliseconds and increase the overall

availability of the system.

The Voyager spacecraft had three dual-redundant computer systems [139]. Voyager’s

computer architecture illustrates the need for testing and monitoring the health status of

primary systems and a mechanism to switch to backup systems. In Voyager’s case the

modules carried out self test which generated status signals, the CCS monitored the health

of the modules via the status signals and was also responsible for switching to backup

systems.

Figure 3.1 – An NASA artist concept of Voyager 1 and 2 which used
dual-redundant computer systems

3.3.2 Triple Modular Redundancy (TMR)

The philosophy behind TMR systems is fundamentally different to that of DMR systems.

TMR systems are usually based on using three replicas of a module, carrying out the same

processing. The outputs of the three modules are routed through a simple majority voter

module to determine the definitive output.

TMR has been implemented in real applications such as the Saturn V launch which uses

TMR with voting elements in the design of the central processor [140] and the fly-by-wire

primary flight computer for the Boeing 777 aircraft [141].

The majority voter is based on Von Neumann’s work [142] where he defines an automaton

which he calls a ’majority organ’ that gives a single output which is the same value as the

majority of three inputs as defined by the boolean equation 3.1.

m(a, c, b) ≡ ab + ac + bc ≡ (a + b)(a + c)(b + c) (3.1)

The basic TMR architecture protects against a single fault in any one of the three duplicated

modules as illustrated in figure 3.2.

Fault Tolerance 81

Module 1

Module 3

Module 2 Voter

Figure 3.2 – Triple Modular Redundancy arrangement using a von Neumann
inspired voter

Lyons and Vanderkulk [143] examine TMR for use in applications in challenging environ-

ments such as those encountered in space exploration and the military. Lyons and Van-

derkulk look exclusively at permanent component errors, giving a mathematical treatment

of TMR to show that TMR can increase the overall reliability of a system. They note that

TRM works with systems that already display a high level of reliability - the higher the

reliability of the non-redundant system, the more beneficial is the effect of implementing

TMR. The effect of TMR when used with unreliable components is reduced and can, in

some cases, reduce the overall reliability. In particular if the original component has a

reliability probability of less that 0.5, then TMR cannot improve the reliability of the system.

The basic implementation of TMR, shown in figure 3.2, moves the problem of a single point

of failure from the replicated module to the voter module. A more sophisticate arrangement

is given by Lyons and Vanderkulk [143], figure 3.3, which also triplicates the voter modules.

The diagram shows the outputs of stage one being routed through triplicated voters. The

outputs of the voters are used as the inputs to the next module which is also triplicated.

This arrangement can be repeated for each triplicated module. However, if the system is

not closed so that there is a final output, the voter for the last output will still become a single

point of failure as it cannot be triplicated. Lyons and Vanderkulk ’s improved arrangement

is the focus of their paper [143].

M
(i-1)A

M
(i-1)C

M
(i-1)B

V
A

V
B

V
C

M
iA

M
iC

M
iB

V
A

V
B

V
C

M
(i+1)A

M
(i+1)C

M
(i+1)B

Figure 3.3 – Triple-modular-redundant configuration.

The traditional implementation of TMR uses bit-by-bit voting schemes. When the redundant

modules have n outputs bits, there are n voters, with the ith voter calculating the majority

vote for the ith bits of the modules. Bit-by-bit voters can only correct single module errors.

If errors occur in more than one module such that any two modules produce an error on the

82 3.3 Hardware Redundancy

same bit then the bit-by-bit voter will not detect the error and produce an incorrect output.

Mathur and Avizienis [144] give a detailed mathematical treatment of N-tuply modular

redundant system i.e. systems with N copies of the module. Mathur and Avizienis also

discuss a hybrid(N,S) system where there is an N-tuply modular redundant system and S

spares which can be switched in when one of the N redundant modules fail.

Abraham and Siewiorek [145] partition a network into cells and calculate the reliability of

each cell in order to simplify the calculation of the reliability of the the whole network, which

they state as improving the accuracy of calculations over previous work.

To improve the response to multiple module errors, Mitra and McCluskey [146] developed

the TMR architecture further by proposing a word-voter. In the word-voter additional circuity

is added which examines the output words of each module. If two modules are in error and

produce different errors, the outputs of all three modules will be different to each other. In

this case the word-voter produces an error condition. While it is not possible to determine

what the correct value should be it is possible to say that an error has been detected

and report the condition. This word-voter does not help identify errors when two modules

are in error and produce identical errors. In this case the word-voter will still produce an

erroneous value and will not produce an error condition.

Commercial off-the-shelf (COTS) FPGAs are an attractive choice for development of sys-

tems because of the low cost and mature development compared to an ASIC, even in hos-

tile environments such as space-based systems[147]. SRAM based FPGAs are, however,

vulnerable to single event upsets (SEUs) which can be caused by radiation in space-based

processing [148]. Implementations using FPGAs in such an environment need to use

hardened designs and verification to protect against SEUs [149, 150]. Quinn et al. [147]

investigate the limitations of TMR when presented with multiple-bit upsets.

Wakerly (1976) [151] shows that careful use of TMR can improve the reliability of micro-

computer systems, although he notes that because of the complexity of microprocessors

the additional TMR circuitry could be more unreliable than the microprocessor itself. This

research was carried out when the Intel 8080 microprocessor was popular. The Intel 8080

was one of the early 8 bit microprocessors containing in the region of 6,000 transistors.

Modern microprocessor systems such as the Intel Itanium, released in 2001, contains 3.1

billion transistors and do not use TMR, instead relying on error detection and correction

mechanisms [152].

3.3.3 Synchronised Redundant Systems

An important point to note with voting systems is that the modules need to maintain syn-

chronisation with each other. Independent systems can quickly fall out of synchronisation

simply due to small variation of clock rates.

The designers of the Space Shuttle’s primary computer systems took a different approach

Fault Tolerance 83

when using multiple redundant systems to provide fault tolerance [139]. The original

design was to use five separate systems all carrying out the same processing with a voting

mechanism. This configuration would allow two failures and still provide a majority voting

with the three maintaining systems [139].

During development of the systems the configuration evolved into four computers running

the same programs and maintaining synchronisation with the fifth computer providing a

backup that could be switched in to replace one of the others. A major issue with this

configuration was maintaining synchronisation. Varying clock rates between the computers

resulted in a rapid loss of synchronisation which required more frequent synchronisation

than originally envisaged. When events such as input, output or completion of a software

module occurred the computers would attempt synchronisation.

3.4 Fault Tolerance in Memory

Various schemes have been used to increase the yield of semiconductor memory devices,

from error correcting codes, single cell replacement during production, to 1-D and 2-D built

in self repair (BISR) strategies.

Chen and Hsiao (1984) [128] give a review of the state-of-the-art error correcting code

mechanisms in use at that time. Error correcting codes (EXCs) can extend the life of a

memory device by detecting and correcting data errors. The device will only fail when the

quantity of errors exceeds the ability of the ECCs to compensate.

In the early 1990’s all memory devices were designed with redundancy so that faulty cells

could be replaced using lasers and fuse/antifuse techniques within the production process

[153]. Chen and Sunada [153] present a structure that allows the memory to self test

and self repair outside of the production environment and without the need for external

equipment for intervention. Aichelmann [154] makes a review of ECCs and other fault

tolerant design strategies.

Kim et al. [155] propose a design where additional columns are added along with built in

self test (BIST) and built in self repair circuitry. When faulty cells are detected spare rows

can be brought into use by employing multiplexers. This 1-D self repair model has been an

active area of research by others [155–158].

The 1-D model has been further developed into a 2-D model where yield of semiconductor

memory devices is increased by adding spare rows and columns which can be used to

replace faulty cells in the main fabric of the device. When a primary memory cell is faulty,

either the row or the column of which it is a member is made obsolete and a spare row or

column configured to take its place. As the number of faulty cells increases the problem

of determining if there is a mapping of the spare rows and columns that can cover all

fault cells simultaneously is an NP-Complete Problem [159]. Various algorithms have been

developed to to determine an appropriate mapping [159–166].

84 3.5 Fault Tolerance in Disks

3.5 Fault Tolerance in Disks

Patterson et al. [167–169] present the case for RAID (Redundant Arrays of Inexpensive

Disks) as an alternative to the prevailing model of SLED (Single Large Expensive Disks).

They note that while the capacity of large disks had steadily increased there had been only

moderate increase in performance. The RAID concept was based on making use of disks

designed for the personal computer market.

The major issue with RAID disks is the failure rate as measured by MTTF. Patterson et al.’s

calculations show that an array of 100 disks have an MTTF of 300 hours, less than three

weeks, which only gets worse as more disks are added. This makes fault tolerance an

essential part of the design of the RAID model.

Gibson et al. [170] investigate various redundancy codes for use with disk arrays. In their

paper they note that disk support hardware will be subject to failure and may support a

bank of disks. They note that if disk parity groups are arranged orthogonally to disk groups

connected to common support hardware, then this will protect against failure of the support

hardware.

Blaum et al. [171] propose a scheme they call EVENODD which can be implemented as

standard RAID 5 disk controllers which protects against the simultaneous failure of 2 disks.

3.6 Fault Tolerance in Many-Core Systems

As discussed in Section 3.3 designers have used a variety of strategies to protect single

and multi-core processors from faults including double modular redundancy, triple modular

redundancy, synchronised redundant systems and error detection and correction mecha-

nisms.

Homogeneous many-core systems offers the opportunity to develop and implement novel

fault tolerant strategies by utilising the inherent redundancy offered by the availability of

large number of identical processing elements on a single chip.

Lei et al. [172] propose a redundant core arrangement they call N + M which describes

a many-core array with a physical arrangement of N processing cores and M redundant

cores. The aim is to use firmware level reconfiguration of the available cores to present

a consistent and regular logical core topology of N cores to the operating system and

programming level. When all of the N processing cores are fault free none of the M cores

are utilised. In the event of one of the N cores failing, the cores would be reconfigured

to bring into use one of the spare M cores. This technique increases yields of many-core

chip, presenting N functional cores, when up to M processing cores are faulty.

Fault Tolerance 85

3.6.1 Fault Recovery

In the context of this thesis fault recovery will involve the smooth migration from an existing

process mapping to a new mapping to achieve a performance improvement while minimiz-

ing disruption to the processing of the application. For fault recovery to be successful the

recovery mechanism will need to:

• Monitor performance of nodes and processors.

• Identify when a fault occurs.

• Migrate tasks from a faulty core to a spare core.

• Search for new mappings.

• In real-time migrate a process from one core to another to implement the new task

mapping.

3.6.2 Response - Slow Versus Fast

One of the objectives of the search algorithm will be to find mappings that exhibit a level

of fault tolerance. Fault tolerance in the case the many-core systemis protection against

various hardware failures. This is achieved by ensuring that unused idle cores are placed

close to every active processing core.

When fault is detected with a processing core the monitoring node will initiate a task

migration to the closest idle core. There is no need to search for alternative configurations

at this time, the only requirement when a core fails is to migrate the task to the nearest

available Idle core as soon as possible. This is a quick fix, but because the idle cores

should be evenly distributed across the core array, the task mapping should not appear

radically different.

Once the task migration has been completed resolving the immediate issue of fault recov-

ery the system can move on the the next stage which is searching for a new long-term

solution. Since the topology of the system has changed it is possible that there may

be more efficient alternative mappings. The evolutionary algorithm will search for new

mappings using the current monitoring data and network topology. If a suitable alternative

mapping is found then the Monitor will initiate a series of task migrations to implement the

new mapping.

3.6.3 Graceful Amelioration and Degradation

Hardware faults in processors, communications channels, and communication routers are

likely to cause immediate disruption to one or more processes. In these situations the

desire is for the many-core system to minimize the disruption to the system as a whole and

86 3.7 Conclusion

take steps to reconfigure to compensate for the failure to enable the system to continue

functioning even if the overall performance is reduced. This is described as graceful

degradation.

Other fault conditions such as poor performance or high power usage indicate that parts

of the system, if not the whole system, is under stress. It is possible that these conditions

can be improved by suitable reconfiguration. For example a hot spot can be alleviated

by moving a task to a processor in a less used region of the array or sharing the work

among multiple processors. Migrating to a configuration that improves some aspect of

performance is described as graceful amelioration.

Many-core systems will have cores numbering hundreds or thousands. With so many cores

available, the objective is not to use all of the cores all of the time but rather to maximise

the performance of the system as a whole. Mappings of the application network to the

many-core array will not use all available cores ensuring that there will be spare cores

to recruit when a core fails. The spare cores provide the raw material for implementing

strategies to enable graceful degradation and graceful amelioration. This philosophy of the

managed underutilization of cores coincides with the need to maintain dark silicon.

3.7 Conclusion

This chapter has reviewed a range of approaches to fault tolerance used for a variety of

hardware.

This research will concentrate on the recovery phase making, the assumption that for each

scenario the fault has been detected, diagnosed and identified. Examples of possible

scenarios are the complete failure of a single core, failure of a communication link, failure of

a routing node, intermittent core faults and anticipated loss of a functioning core.. Examples

of performance related scenarios are communication bottlenecks, high power consumption

and sub-optimal performance.

This research will use a wider definition of faults than has been customary in previous

work. As well as actual hardware faults, conditions that can be interpreted as stress to the

system and can be alleviated by a change in configuration will also be considered to be

fault conditions.

Faults can be either hardware related faults such as:

• Processor hardware faults

• Communication channel faults

• Communication router faults

or performance related faults such as:

• Slow performance

Fault Tolerance 87

• Excessive use of power

• Generation of heat spots

• Processor bottlenecks

• Reduced fault tolerance

Errors in software are not included as faults in this research.

Many-core systems could be used to mimic approaches such as dual modular redundancy

or triple modular redundancy, however both these approaches require the backup modules

to be active, so increasing power consumption. The requirement for dark silicon is a result

of the need to reduce heat generation of the many-core system, so solutions that increase

power consumption are incompatible with this requirement.

The approach to fault tolerance of this thesis, which places spare cores strategically among

processing cores, also requires the spare cores to remain in a low-power standby mode

when not in use.

88 3.7 Conclusion

Chapter 4

Core Fault Tolerance

This chapter will explore the core fault tolerance objective using a single objective evolu-

tionary algorithm to search for fault tolerant task mappings. Although any suitable search

algorithm can be used to search the solution space, the evolutionary algorithm approach

has been chosen because it has proved to be effective for searching the multi-objective

solution spaces that dominate this research.

The concept of core fault tolerance in a many-core array is to leave a proportion of the

cores unused, referred to as spare or idle cores so that when a core that is processing a

task, becomes faulty, the task can be migrated to one of the spare cores. The presence of

spare cores also create dark silicon, introduced in Subsection 2.2.3.

4.1 Assumptions

Migration of a task to a spare core is a non-trivial task which is not within the scope of

this research, however it is assumed that the mechanism required to migrate a task will be

available. Since task migration will require the transmission of the status of the process and

associated local data to a spare core, the target spare core, and the cost of transmission

of information is proportional to the number of routing nodes that the information passes

through, it is assumed that the cost of migration is approximately equal to the number of

routing nodes between the failed core and the target spare core.

It is assumed that minimizing the distance between a failed core and a spare core will also

minimize the duration taken to migrate the task and restore processing thus minimizing

disruption to the processing.

Since the cost of migration is proportional to the distance between a failed core and the

target spare core, the cost of migration of the task from a processing core to a spare core

can be minimized by evenly distributing spare cores amongst the processing cores thus

minimizing the distance between each processing core and its nearest spare core.

This chapter will introduce a simple many-core model, evolutionary algorithm and support-

ing algorithms to place spare cores while minimizing the cost of migration.

90 4.2 The Many-Core Array

4.2 The Many-Core Array

The many-core architecture is a square lattice arrangement of R rows and C columns

of homogeneous computing nodes. Each node consists of a router that communicates

with its nearest orthogonal neighbours and a core attached to the router. Communication

between two nodes is via a link. Links are required to show the connections between

nodes, however the details of the communication links between nodes is not important

when considering the placement of spare cores. Communication links will be considered

in more detail in the next chapter.

0,0 0,1

1,0

0,2

1,1

0,3

1,2

0,4

1,3

0,5

1,4 1,5

2,0 2,1 2,2 2,3 2,4 2,5

3,0 3,1 3,2 3,3 3,4 3,5

4,0 4,1 4,2 4,3 4,4 4,5

5,0 5,1 5,2 5,3 5,4 5,5

Figure 4.1 – A 6× 6 many-core array showing the coordinates of each node.

The many-core array A is represented as a tuple of the set Va of nodes and the set Ea of

links:

A := (Va, Ea) (4.1)

Given that there are Ra rows and Ca columns, the number of nodes and links are defined

as Va and Ea:

|Va| = Va

= RaCa (4.2)

|Ea| = Ea

= Ra(Ca − 1) + (Ra − 1)Ca

= 2RaCa −Ra − Ca (4.3)

Core Fault Tolerance 91

The set of nodes is defined as:

Va = {v1, . . . , vm | m = Va} (4.4)

With a node defined as an ordered tuple consisting of the row and column coordinates of

the node within the many-core array, which are also referred to as its location:

vn = (r, c)

= loc (4.5)

Where:

loc = (r, c) (4.6)

and:
r Is the row coordinate of node vn | 0 ≤ r < Ra.

c Is the column coordinate of node vn | 0 ≤ c < Ca.

Row and column coordinates are defined above as beginning at 0 and location (0, 0) is

arbitrarily assigned to the top-left hand core of the many-core array and location (Ra −
1, Ca − 1) refers to the bottom-right hand core of the many-core array.

The set of links is defined as:

Ea = {e1, . . . , em | m = Ea} (4.7)

A link is defined as a set of ordered tuples consisting of a source node and a target node:

en = (s, t) (4.8)

Where:
en is a link from the set Ea | 1 ≤ n ≤ Ea.

s is the source node of link en from the set Va | 1 ≤ s ≤ Va.

t is the target node of link en from the set Va | 1 ≤ t ≤ Va.

Since the definition of the node includes its location, the source and target nodes of a link

also specify the locations of each end of the link. Figure 4.1 illustrates a 6 × 6 many-core

array showing the coordinates of the location of each node and the links between nodes.

4.3 Application Process Graph

The Graceful Project concept, that this work uses, requires that an application program is

divided into a number of processes that can run independently with data flowing between

the processes. The resulting program model is an Application Process Graph which is an

92 4.3 Application Process Graph

Directed Acyclic Graph, where the processes are represented by nodes and data flows

between processes are represented by edges.

An example of an application process graph with 26 processes application processes is

illustrated in Figure 4.2.

Since the application process graph is a directed graph, each edge has an arrow head

which specifies in which direction the data flows between the processes. Each node can

have data receiving inbound edges which are edges where the arrowhead of the edge is

attached to the node, and data sending outbound edges which are edges where the tail of

the edge is attached to the node. A node must have at least one edge which can be either

an inbound or an outbound edge; a node with no edges would be disconnected from the

application process graph so would not be part of the graph. For an application process

graph a source node is a node that has no inbound edges while a sink node is a node

that has no outbound edges. In this example there is a single source node and single sink

node.

P1

P2

3

P3

14

P416

P18
1

17

P10

16
P12

1

P5

17

P6

20

P7

4

P819

P19

8

P9

19

24

2

P144

P13

16
P15

11

P21

12

P11
8

24

P20

24

19

12

17

19

P17

16
P22

2

8

17 P16
12

24

24

12

P25

24

11

19

P23

20

19

P26

4

17

17

14

4

3

8

1

P24
16

6

20

24

1

1

16

Figure 4.2 – An application process graph for a 26 node APG in a
6x6 Many-Core Array

Nodes are arbitrarily arranged on the graph so that source nodes are on the extreme

left and sink nodes are on the extreme right, and data flows between nodes from left to

right. Nodes are grouped by ranks from left to right, each rank containing nodes which are

the same distance from a source node in terms of the largest number of nodes from the

source node to the nodes in the rank. Ranks are used to improve the aesthetic quality of

the visualisation of the graph but otherwise have no effect on the mapping process from

the application process graph to the many-core array. The graph in in Figure 4.2 has 12

Core Fault Tolerance 93

ranks.

The graph generator (see Appendix A) assigns each node in a graph a unique identifier,

beginning with "P" followed by a sequential identifier, starting at 1, to ensure that each node

has a unique identifier representing the specific process which will be used throughout the

model.

Each edge has a source node and target node and is annotated with an integer value that

represents the traffic volume as a percentage of the bandwidth of the hardware link. It is

allowed for the traffic volume to be greater than 100, in which case at least two hardware

links will be required to carry the traffic between the processes.

The graph G is represented as a tuple of the set Vg of nodes and the set Eg of edges:

G := (Vg, Eg) (4.9)

The number of nodes and edges are defined as Vg and Eg:

Vg = |Vg| (4.10)

Eg = |Eg| (4.11)

The set of nodes are defined as:

Vg = {v1, . . . , vn | 1 ≤ n ≤ Vg} (4.12)

Where each node vn has a single value, the process name that is the string ’Pn’ which

is the concatenation of the letter ’P’ and the value of n, that uniquely identifies the APG

process.

The set of edges are defined as:

Eg = {e1, . . . , en | 1 ≤ n ≤ Eg} (4.13)

A node is a set of ordered 3-tuples consisting of a source node, a target node and an edge

value representing the volume of traffic that will be generated by the source for transmission

to the target:

en = (s, t, d) (4.14)

Where:
en is an edge from the set Eg | 1 ≤ n ≤ Eg.

s is the source node of edge en from the set Vg | 1 ≤ s ≤ Vg.

t is the target node of edge en from the set Vg | 1 ≤ t ≤ Vg.

d is an integer representing the traffic volume on edge en as a percentage of the

bandwidth of links in the many-core array.

94 4.4 Process Map

The traffic volume d, will be used in the calculation of the power metric described in

Section 6.5 Network Power Metric and Objective.

4.4 Process Map

A process map or mapping is a data structure that, for each processing node of the

application process graph, gives the location of the core in the array that will run the

process. Cores that are running a process are given a task name that is the process

name from the application process graph. Many-core array cores that are not allocated a

process are spare cores and are considered to be idle so are given a task name of ’i’, while

failed cores are given a task name of ’f’. Figure 4.3 illustrates a 6× 6 many-core array.

i

P2

P12

P5

P4

P6

i

i

P11

P1

P13

P16

P9

P7

P10

P18

P19

i

i

i

P14

i

P21

P20

P3

P15

P17

i

P24

P25

P8

i

P22

P23

P26

i

Figure 4.3 – A Process Map for a 26 node APG in a 6x6 Many-Core Array

Figure shows a process map for the application process graph in Figure 4.2 mapped to the

many-core array of Figure 4.1

The process map has the same dimensions as the many-core array, given as R rows and

C columns defined in Section 4.2.

The process mapM is represented as a set of nodes Vm:

M := Vm (4.15)

The number of nodes is defined as Vm and is the same as Va:

Vm = |Vm|

= Va

= RmCm (4.16)

Core Fault Tolerance 95

Given that there are Rm rows and Cm columns, the set of nodes are defined as:

Vm = {v1, . . . , vn | 1 ≤ n ≤ Vm} (4.17)

A node is a set of ordered tuples consisting of a location which is the coordinates of the

corresponding node in the many-core array and a process name:

vm = (r, c, p)

= (loc, p) (4.18)

Where:

loc = (r, c) (4.19)

and:
vm Is a node of the set Vm.

r Is the row coordinate of the node vm | 0 ≤ r < Rm, where row 0 is the top row.

c Is the column coordinate of the node vm | 0 ≤ c < Cm, where column 0 is the

left most column.

p Is the process name of the APG process mapped to the many-core array node

at location (r, c) or, if no process is mapped to the many-core array node, the

value i representing a spare core | p ∈ Pg ∪ {i}.

The location coordinates are illustrated in Figure 4.1.

4.5 Metrics and Objectives

Metrics are measurements of fundamental properties of the system that is being studied.

Here we are interested in measuring properties of a mapping of an application process

graph onto a many-core array. Objectives are used by a search algorithm to make a

comparative measure of fitness between mappings and often use a metric in the calculation

of the value of the objective.

For example, the rectilinear distance between two nodes in a many-core array is the sum

of the number of horizontal and vertical edges between the two nodes; this is a metric. A

corresponding objective could be to minimize the sum of the rectilinear distance between

all pairs of communicating cores. In this case, the metric measures the actual distance for

a single pair of communicating cores, while the objectives uses the metric to calculate a

single value for all pairs of communicating cores in the mapping.

This thesis will present four objectives along with their supporting metrics. These are:

• Core fault tolerance

96 4.6 Core Fault Tolerance Metric and Objective

• Link fault tolerance

• Network power

• Excess traffic

This is only a selection of possible objectives for optimization of mappings for many-core

arrays selected to illustrate the work of this thesis.

The core fault tolerance objective is the subject of this chapter. The other objectives will be

presented in subsequent chapters.

4.6 Core Fault Tolerance Metric and Objective

Metrics are measurements of fundamental properties of the system that is being studied.

Here we are interested in measuring properties of a mapping of an application process

graph onto a many-core array. Objectives are used by a search algorithm to make a

comparative measure of fitness between mappings and often use a metric in the calculation

of the value of the objective.

For example, the rectilinear distance between two nodes in a many-core array is the sum

of the number of horizontal and vertical edges between the two nodes; this is a metric. A

corresponding objective could be to minimize the sum of the rectilinear distance between

all pairs of communicating cores. In this case, the metric measures the actual distance for

a single pair of communicating cores, while the objectives uses the metric to calculate a

single value for all pairs of communicating cores in the mapping.

4.6.1 Core Fault Tolerance

Problem Description

This section develops the metric for measuring the distance between cores and the objec-

tive, which makes use of the metric, that is used by the evolutionary algorithm.

Given a fault free many-core array with R rows and C columns and an application process

graph with Va processes where Va < RC, arrange the spare cores to minimize the cost of

task migration in the event of the failure of a processing core.

The cost of task migration will be defined explicitly in Section 4.5.

4.6.2 Distance to Nearest Idle Core Metric

The distance to nearest idle core metric will be a measure of the distance between an

individual processing core and its nearest idle core. As stated in Section 4.2, given an array

of R rows and C columns, each node’s location can be given by a tuple, (r, c) representing

the row r and column c of the node relative to the top left-hand corner of the array. The

Core Fault Tolerance 97

P3

i

P2

P12

P4

P9

P7

i

i

P6

P1

P8

P5

P10

i

P11

(a) Distribution on a 4x4 Array

i

P2

P12

P5

P4

P6

i

i

P11

P1

P13

P16

P9

P7

P10

P18

P19

i

i

i

P14

i

P21

P20

P3

P15

P17

i

P24

P25

P8

i

P22

P23

P26

i

(b) Distribution on a 6x6 Array

P1 P2

P12

P3

P11

P4

P10

P5

P9

P6

P8 P7

P13 P14 P15 P16 P17 P18

P24 P23 P22 P21 P20 P19

P25 P26 i i i i

i i i i i i

(c) Mapping on a 6x6 array with
weak core fault tolerance

Figure 4.4 – Examples of Distribution of Spare Cores

distance to nearest idle core metric, Mdnic(r,c), is the distance between a processing core

at location ploc = (pr, pc) and its nearest idle core at location iloc = (ir, ic) and is defined

as the rectilinear distance between the location of the processing core and the location of

the idle core, given by Equation 4.20.

Mdnic(r,c) = |(pr − ir)|+ |(pc − ic)| (4.20)

Where:

98 4.7 Nearest Spare Core Search

Mdnic(r,c) = The distance to nearest idle core metric for the

process located at (r, c).

pr = The row of the location of the process.

pc = The column of the location of the process.

ir = The row of the location of the nearest idle core.

ic = The column of the location of the nearest idle core

The minimum value of the nearest idle core metric is 1 which is the distance when a

processing core is adjacent to an idle core.

4.6.3 Core Fault Tolerance Objective

The fault tolerance objective is to minimize the sum of the distances between each pro-

cessing core and its nearest idle core. When an idle core is adjacent to a processing core,

i.e. one step away, the fault tolerance objective value is defined as zero. When t steps are

required to reach the nearest idle core the fault tolerance objective value will be t − 1 (In

other words, to obtain an adjacent idle core objective value of zero the metric value of each

process-idle core pair is reduced by one). This is an arbitrary choice made to ensure that

the lowest possible fault tolerance value for any array size is zero.

For example, Figure 4.4 (a) and (b) illustrate respectively, for 4×4 and 6×6 arrays, arrange-

ments of idle cores among processing cores where every processing core is adjacent to at

least one idle core, while Figure 4.4c illustrates a mapping which has weak fault tolerance

due to some processing cores having no adjacent idle core. The mapping 4.4a and 4.4b,

are assigned an objective value of zero, by the objective function, as no other distribution

of idle cores is considered to be any better for the purposes of core fault tolerance.

A fault tolerance cost of zero for the task map as a whole indicates that each processing

core is adjacent to at least one idle core. A processing core that has more than one

adjacent idle core is not regarded as having any additional benefit from the additional

adjacent idle cores. The core fault tolerance objective Jcore is given as:

Jcore =

R−1∑
r=0

C−1∑
c=0

Mdnic(r,c) − 1, if core(r, c) is a processing core

0, otherwise
(4.21)

4.7 Nearest Spare Core Search

The optimization process of the core fault tolerance objective for a mapping will require

searching for the nearest idle core to each processing core in each candidate mapping

examined by the search algorithm. For an array size of 6× 6 and 28 processes and 1000

generations with a population of 100 then the number of nearest core searches during an

evolutionary run will be 28 × 1000 × 100 = 2.8 million searches where each search could

make as many of 28 × (6 × 6 − 1) = 1008 comparisons.

Core Fault Tolerance 99

Searching for the nearest core with a specific property is therefore worthy of examination

to develop an efficient algorithm. This section will discuss possible search methods.

4.7.1 Problem Statement

Given a processing node in a square lattice, develop an algorithm for efficiently finding the

nearest spare core the the processing core.

4.7.2 Method 1 - Exhaustive Search with Early Termination

An exhaustive search takes a processing core, searches through all the remaining cores

for idle cores and calculates the distance to each idle core, retaining the location with the

minimum distance. The search ends when an idle core with a distance of one has been

found or all cores have been examined. Using this method it is not possible to know if the

nearest idle core has been found until all cores have been searched unless an idle core

with a distance of one has been found, which is the minimum possible distance.

If it is assumed that the exhaustive search algorithm would process cores from the be-

ginning to the end of the data structure used to represent the cores then, in general, the

algorithm gives no preference to cores it is examining based on the distance of cores from

the processing core. If there are c cores in the array of which p cores are processing cores,

then p ∗ (c − 1) core pairs will be examined unless there is an idle core adjacent to the

processing core. The number of comparisons will increase in proportion to increases of

both c and p.

4.7.3 Method 2 - Concentric Diamond Search

A more efficient search strategy to find the nearest idle core to an processing core is to

examine all cores at a distance of one step away from the processing core, followed by

all cores with a distance of two steps and so on until all cores have been examined. In a

two dimensional mesh all cores that are a distance of n steps from the processing core

form a diamond shape centred around the processing core. Starting from the processing

core, the search proceeds by examining each core in a succession of concentric diamonds

of increasing size until either an idle core is found or all cores have been examined. The

worst case scenario is where the processing core is at one corner of an array and the only

idle core is in the opposite corner.

When discussing the diamond search pattern it is convenient to refer to the number of

steps from the processing core to the cores of a diamond as the radius of the diamond.

The coordinates of the cores in a diamond of radius n relative to an processing core can

be calculated using only the radius n.

100 4.7 Nearest Spare Core Search

To determine the coordinates of all the cores in a diamond the mathematical concept of

a partition of an integer can be employed. A partition of an integer n is a set of integers

whose sum is n.

For example, if n = 3 then the partitions are {3}, {2,1} and {1,1,1}.

The number of integers in a partition are described as parts; so {3} is a partition of one

part, {2,1} is a partition of two parts and {1,1,1} is a partition of 3 parts. For this discussion

it is convenient to regard the partition of {3} as having two parts written as {3,0}.

If the order is important, then the partition is described as a composition. The compositions

for n = 3 are {3,0}, {2,1}, {1,1,1}, {1,2} and {0,3}. In this case we are working with a two

dimensional array so we are only interested in the two part compositions. Note, that this

method can easily be extended to d-dimensional lattices by using compositions with d

parts.

The two part compositions of 3 are {3,0}, {2,1}, {1,2} and {0,3} which can be interpreted as

coordinates of the side of the diamond that is in quadrant I of the Cartesian plane. The

Cartesian plane can be divided into four quadrants referred to by the Roman numerals

I, II, III and IV starting with quadrant I where x and y coordinates are positive and then

working anti-clockwise, where quadrant II has positive y and negative x, quadrant III has

negative y and negative x and finally quadrant IV which has negative y and positive x.

Given the two part compositions of 3 that are located in quadrant I of the Cartesian plane,

the coordinates of the points on the diamond in the other three quadrants of the Cartesian

plane can be obtained from the permutations of positive and negative values of the parts

of each composition. The negative and positive permutations for n = 3, treating zero as

a positive value, give quadrant I coordinates of (0,3), (1,2) and (2,1), (3,0), quadrant II

coordinates of (-1,2), (-2,1) and (-3,0) quadrant III coordinates of (-2,-1) and (-1,-2) and

quadrant IV coordinates of(0,-3), (1,-2) and (2,-1).

In general, for a diamond of radius n there are 4n points which are a distance of n steps

from the core at the centre of the diamond.

If each of the twelve coordinates are added, in turn, to the coordinates of the processing

core then the coordinates of all cores on the diamond of radius 3 are obtained as shown in

Figure 4.5.

The 2 part compositions of a given integer can easily be obtained by use of a simple

counting loop. The permutations of negative and positive values of each compositions are

also simple to derive. An algorithm can therefore easily calculate the relative coordinates

of all points on a diamond with radius n.

Since the above obtains coordinates of points in a 2-dimensional space it is easy to apply

to a 2-dimensional data structure representation. The relative coordinates can also be

applied to a 1-dimensional data structure representation of the 2-dimensional space with

appropriate mapping calculations.

Core Fault Tolerance 101

4 3 2 1 0 1 2 3 4
x-coordinate

4

3

2

1

0

1

2

3

4

y
-c

o
o
rd

in
a
te

Object Node (3,0)

(2,1)

(1,2)

(0,3)

(-1,2)

(-2,1)

(-3,0)

(-2,-1)

(-1,-2)

(0,-3)

(1,-2)

(2,-1)

Diamond Search Pattern - Radius = 3

Figure 4.5 – Diamond Search Pattern - Radius = 3

In the worst case scenario where the processing core is at one corner of an n × n array

and the only idle core is in the opposite corner then 2n2 + 2n candidate positions would be

calculated of which only n2 − 1 are valid core coordinates that have to be examined.

The search ends when an idle core is identified or all cores have been examined.

4.8 Many-Core Evolutionary Algorithm

Previous sections (Section 4.2 describing the many-core model and Section 4.5 describing

the metrics) are applicable to any search method suitable for exploring the solution space

of process maps.

The solution space for mappings using a single objective of core fault tolerance consists of

all the possible arrangements of Vg processes in an array with Va nodes. The size of the

search space is the given by the number of permutations of Vg processes within an array

with Va nodes, given by Equation 4.8:

P (Va, Vg) ≡ Va!

(Va − Vg)!
(4.22)

An exhaustive search of the arrangements of processes in an array falls within the category

of NP-hard problems, so for even a moderately sized problem of 28 processes within a 6×6

array, the search cannot be completed using an exhaustive search.

At this point in the research core fault tolerance is the only objective, however, the remain-

der of the research will use multiple objectives required the exploration of multi-dimensional

solution spaces.

Evolutionary algorithms have proved to be an effective tool for searching solution spaces

102 4.8 Many-Core Evolutionary Algorithm

of a size that cannot be exhaustively searched in polynomial time. The process allocation

problem is NP-hard with the complexity increasing as a factorial of the size of the array

[173, 174]. An evolutionary algorithm is, therefore, a suitable tool for exploring mappings

of application process graph processes to a many-core array.

This chapter describes the evolutionary algorithm that has been designed to search the

solution space for many-core array mappings.

The evolutionary algorithm is composed of a collection of processes that run in a cycle

to manipulate the population of one generation to produce the population of the next

generation. Each of the processes will be explored individually as they are independent of

each other. With the exception of the process that generates the initial population, each

process takes as input a population which it manipulates to create a new population as its

output.

The individual elements of the evolutionary algorithm, listed below, will be discussed in the

remaining sections of this chapter.

• The Evolutionary Cycle

• Phenome and Genome

• Population Dynamics

4.8.1 Evolutionary Cycle

An evolutionary algorithm is a process by which a population is progressively changed

from one generation to the next to improve the fitness of individuals within the population.

The section explains how changes to the population, from one generation to the next, are

influenced through a collection of parameters.

4.8.1.1 The Cycle

The evolutionary cycle is implemented as a series of populations, summarised in Table 4.1.

The evolutionary algorithm is implemented as an evolutionary cycle, illustrated in Fig-

ure 4.6, which show the populations in the cycle and the processes that transform one

population into another. At the end of each evolutionary cycle, or generation, a new primary

population is produced which is also the starting point for the next evolutionary cycle. The

transformation processes and termination of the evolutionary cycle are controlled by the

evolutionary algorithm parameters.

Core Fault Tolerance 103

Table 4.1 – Evolutionary Algorithm Populations

Population Description
Initial The initial population which is provided to the evolutionary

cycle as a starting point for evolution.

Generation Zero The first primary population created by evaluating and sorting
the initial population and is the starting point for evolution.

Primary The sorted population that is the product of each evolutionary
cycle (and the starting point for the next cycle).

Intermediate The population created through cloning and genetic manipu-
lation of the primary population of the previous evolutionary
cycle.

Fitness Evaluated The intermediate population after the objectives have been
evaluated.

Primary
Population

Intermediate
Population

Selection
and

Mutation

Objective
Evaluation

Initial
Population

Fitness
Evaluated
Population

Objective
Evaluation

P
a

re
to

 F
ro

n
t

S
o

rt
in

g

Figure 4.6 – Evolutionary Algorithm Cycle

4.8.1.2 Initial Population

The initial population is composed of a combination of engineered mappings (discussed in

Subsection 4.8.3) and random mappings. The initial population is located in the top left of

Figure 4.6. Once the individuals of the initial population have been created their metrics are

evaluated, producing a fitness evaluated population and sorted to produce the generation

zero population, the first primary population. The size of the initial population is governed

by the population size parameter, Pz.

104 4.8 Many-Core Evolutionary Algorithm

4.8.1.3 Generation Zero Population

The generation zero population is the result of the evaluation and sorting of the initial

population and is the first primary population which is used as the starting point of the

evolutionary process. The name generation zero is given to this population to distinguish it

from all other primary populations that are created through the evolutionary process.

4.8.1.4 Primary Population

The primary population is the sorted population produced at the end of each evolution-

ary cycle and is also the population that is produced on completion of the evolutionary

algorithm. The primary population is the population that is used as the starting population

for each evolutionary cycle. In Figure 4.6 the primary population is represented as the

green box at the bottom of the diagram. Outside of this section the primary population will

normally be referred to simply as the population.

The size of the primary population, Pz is set to 10. On each iteration the primary population

is replaced by a new population of the same size.

4.8.1.5 Intermediate Population

The intermediate population is created by selection and mutation of individuals from the pri-

mary population. The creation of the individuals in the intermediate population, illustrated

in Figure 4.7, is controlled by the following parameters, choose to create a new population

with the same size of the primary population (Pz = 10).

Elite Individuals

The elite parameter, Pe set to 2, is used to specify the minimum number of fittest individuals

of the input population that are copied directly to the new intermediate population.

Descendants

The number of individuals specified by the Parents parameter, Pp set at 4, are selected

from the input population. The Descendants parameter, Pd set to 4, determines how

many times each parent is copied and mutated before being added to the intermediate

population.

The size of the intermediate population is determined by the evolution parameters using

Equation 4.23, which limits the intermediate population to be the same size as the primary

population.

Qz = Pe + (Pp × Pd) (4.23)

Core Fault Tolerance 105

1

10
9
8
7
6
5
4
3
2

i1

i10
i9
i8
i7
i6
i5
i4
i3
i2

1

10
9
8
7
6
5
4
3
2

i11

i14
i13
i12

i20
i19
i18
i17
i16
i15

Clones

Descendants

Parents

x 4

Elite

Primary
Population

Intermediate
Population

Figure 4.7 – Population Selection and Mutation, using 2 elite
individuals, 4 parents mutated twice each to create a population
of size 10.

4.8.1.6 Fitness Evaluated Population

Once the intermediate population has been created, the objectives for each individual need

to be evaluated in preparation for sorting the population. The fitness evaluated population

contains the same individuals as the intermediate population with the evaluated objectives

added to each individual.

4.8.1.7 Population Evolution Parameters

The size of the primary population and the intermediate population are determined by the

properties and evolution parameters given in Table 4.2.

Table 4.2 – Population Properties and Parameters

Parameter Description
P The primary population
Q The intermediate population
Pz Primary population size
Qz Intermediate population size
Pe Number of elite Individuals
Pp Number of parents
Pd Number of descendants

106 4.8 Many-Core Evolutionary Algorithm

4.8.2 Phenome and Genome

The phenome is a representation of where processes and idle cores are placed within the

environment of the many-core model. The genome is a representation used to carry out

manipulation to produce new individuals from existing individuals. The genomic represen-

tation can either be a direct representation of the phenome or an indirect representation

that requires a mapping, through the process of expression, to produce the phenome. Each

representation has associated benefits and disadvantages.

A particular genomic representation will have a its own correlation profile with respect to the

phenomic representation. Correlation describes how a mutation in the genome is exhibited

in the phenome. A good correlation is one where mutations in the genome will be exhibited

by corresponding changes to the phenome. A poor correlation is one where mutations

in the genome cause the phenome to exhibit changes that do not correspond well with

the changes in the genome, for example, where a single change to the genome results in

multiple and chaotic changes to the phenome. A good correlation makes the changes to

the phenome via the genome more controllable.

An advantage of using a coded representation is that random generation of genomes and

the genetic manipulation of genomes can be much simpler than manipulating the phenome

directly. In contrast the expression of a genome using a coded representation requires a

mapping to be carried out to express the phenome which needs to enforce any constraints

required by the phenome.

There are three properties of uniqueness that must be present in a phenome for it to

represent a valid mapping of an application process graph to a many-core array. The first

property is that each process is represented exactly once in the phenome; the second

property is that at most one phene is mapped to each node of the many-core array; and

the third property is that processes must only be mapped to non-faulty nodes. These

requirements must be enforced when creating phenomes either directly or through the

expression of a coded genomic representation.

4.8.2.1 Phenome

In the same way that a genome consists of a collection of genes, the phenome can be

modelled as a collection of phenes. A natural and programmatically simple method to

represent a phenome is to use a two dimensional array of phenes where the location of the

phene in the array is analogous to the location of the node in the many-core array so that

it is not necessary to specifically code the location of the node within the phene.

Each location in the array contains a tuple representing the status and name of the node.

The valid values for the status of the node is given in Table 4.3

Irrespective of the genomic representation the fitness is calculated using the phenome after

Core Fault Tolerance 107

Table 4.3 – Node Status Values

Status Description Name
i Idle node i
f Failed node f
p Processing node Process name

expression from the genome to the phenome has taken place.

Table 4.4 lists the properties of phenome and genomes.

Table 4.4 – Phenome & Genome Properties

Parameter Description
P The phenome composed of the set phenes {p1 . . . pP}
P The number of phenes |P | in the phenome
Prows The number of rows of nodes in the phenome
Pcols The number of columns of nodes in the phenome
p(r,c) The phene at location (r, c) in the phenome
r The row where phene p(r,c) is located
c The column where phene p(r,c) is located
G The genome composed of the set of genes {g1 . . . gn}
gn The nth gene of the genome
A The set of alleles of a genome

4.8.2.2 Genome - Phenomic Representation

In order to keep the evolutionary algorithm simple, the genome will be a direct representa-

tion of the phenome. The next chapter will compare a variety of genomic representations

to establish which representation gives the best overall performance.

A genome that uses a phenomic representation has a one-to-one correspondence between

the genes in the genome and the phenes in the phenome which, in this case, is a two

dimensional array of genes. The expression of the phenome from the genome is a trivial

one-to-one mapping from the genes to the phenes.

The genetic alphabet consists of Pz + 1 alleles, one for each processing node of the

application process graph and one to represent the idle condition. Each gene can be

any one of the alleles, but the genome as a whole must conform to the constraints for a

valid phenome defined in Subsection 4.8.2.

Permutation

For a genome using a direct phenomic representation, the constraints defined in Subsec-

tion 4.8.2 need to be enforced by the genetic operators used to manipulate the genome.

Permutation involves swapping two randomly selected genes one of which must be a

process and second must be either a process or an idle core, which excludes the possibility

that either gene is in the failed state. The constraint that at least one gene must be a

108 4.8 Many-Core Evolutionary Algorithm

process ensures that time is not wasted on exchanging two idle cores, which has no effect

on the genome. Assuming that the parent gene is valid, swapping a pair of genes in the

manner described will guarantee that the new genome will be valid.

Mutation

Mutation is problematic because the genome can only have one copy of each allele.

Mutation, by definition, will transform one allele into another resulting in a genome that

will be missing one allele while having two copies of another. A repair mechanism would

be required to remove duplicates and add missing alleles. The complication of adding a

repair mechanism makes mutation unsuitable for a phenomic representation.

Crossover

Crossover has similar problems to mutation, although via a different route. If two parents

are chosen and portions of each parent are mixed to produce a genome of the same length

then it cannot be guaranteed that all the alleles will be unique. A repair mechanism would

be required to remove duplicates and add missing alleles. This makes mutation unsuitable

for a phenomic representation.

Correlation

As there is a one-to-one mapping between the genome and phenome, every change to the

genome will be mirrored in the phenome producing a perfect correlation between them.

Random Generation of Genomes

Random generation of genomes must enforce the constraints defined in Subsection 4.8.2.

This is achieved by first creating a genome which is filled with idle genes while ensuring that

any failures in the hardware map are reflected in the genome. The processes are retrieved

from the application process graph one at a time and replace a randomly selected idle

core. Taking processes from the application process graph ensures that each process is

represented in the genome exactly once. Ensuring a randomly selected gene is in the idle

state ensures that only one process is mapped to each node in the underlying hardware

map.

4.8.3 Engineered Mappings

Before evolution begins an initial population is required. An obvious method of producing

individuals for generation zero is to randomly map processing nodes to nodes in the many-

core array. While this may be an acceptable method in many situations, the aim here

is to improve upon random generation, motivated by the desire to improve the quality of

mappings obtained for a given computational effort. This section will present a collection

of deterministic algorithms to generate engineered mappings for inclusion in generation

zero. In general, generation zero will be a mixture of engineered solutions and randomly

generated solutions.

There are two properties of mappings that the engineered mappings will attempt to exploit.

The first is that, to attain good core fault tolerance, the processing nodes need to be evenly

Core Fault Tolerance 109

distributed across the many-core array; the second is that the power metric, introduced in

the next chapter, is minimized when pairs of communicating cores are close to each other.

As noted in Section 4.3, application process graph nodes are numbered one rank at a time,

and since data flows from the low order ranks to high order ranks, preserving the order of

the nodes may help keep pairs of communicating cores close together therefore producing

mappings with lower than average power metrics.

The engineered solutions attempt to capitalise on these two observations by using algo-

rithms that control the distribution of processing nodes and the order in which array nodes

are selected for allocation of a process.

4.8.3.1 Random Placement

To create a random mapping, each processing core of the application process graph is

taken in turn and a random number generator is used to produce coordinates for an array

node. If the array node has an idle status then the processing node is mapped to the array

node. If the status of the array node is not idle then new coordinates are generated until

an array node one is found that is idle.

No specific knowledge of the application graph is required as each process can be placed

without reference to the other processes. The random placement of processes means that

pairs of communicating cores are as likely to be on opposite sides of the network as they

are likely to be next to each other. The average distance between v is expected to be

higher than the engineered solutions.

It is assumed throughout this section that there are at least as many idle cores in the

many-core array as there are application processes in the application process graph.

4.8.3.2 Engineered Mapping Concept

The concept for producing engineered mappings is to first determine a process distribution

pattern of processing nodes using a one-dimensional list, and then fill the nodes of the

array from the elements of the list using an array node ordering. The following sections will

first describe the the distribution pattern and the the array node ordering which when used

together produce a collection of engineered mappings.

4.8.3.3 Process Distribution Pattern

The process distribution pattern determines how the application process graph processing

nodes are distributed along a one dimensional list.

The algorithm starts with a one dimensional node distribution list that has one element rep-

resenting each node in the many-core array with each element initially representing an idle

core as shown in Figure 4.8a. Then it uses a distribution method to place each processing

110 4.8 Many-Core Evolutionary Algorithm

node from the application process graph into the node list to produce a distribution pattern

as shown in Figure 4.8b and Figure 4.8c.

1 1615141312111098765432

i iiiiiiiiiiiiiii

(a) All idle Cores

1 1615141312111098765432

P1 iiiiP12P11P10P9P8P7P6P5P4P3P2

(b) 12 Clustered processes

1 1615141312111098765432

P1 iP12P11P10iP9P8P7iP6P5P4iP3P2

(c) 12 Distributed Processes

Figure 4.8 – String Length of 16 Cores

Distribution

The distribution method can be either clustered or distributed :

Clustered means that each processing node is placed in the node list in consecutive

positions with no gaps until the list of application process graph processing nodes has

been exhausted. The result is shown in Figure 4.8b.

To distribute processing nodes evenly across the many-core array a calculation can be

made using the number of available idle cores in the many-core array and the number

of processing nodes from the application process graph to determine a cluster size of

consecutive list nodes that have processing nodes placed in them and the number of idle

cores between each cluster. The result is shown in Figure 4.8c.

4.8.3.4 Array Node Ordering

The placement algorithm will control the order in which nodes in the array are visited for

the purpose of mapping processing nodes from the node distribution list. Throughout this

section the default first node to be considered is taken to be the top left-hand cornet of the

array number 1 in Figure 4.9b and Figure 4.10.

There are four parameters, listed in Table 4.5, designed to determine the order in which

nodes in the many-core array are visited. The parameters are used in combination to

produce a variety of orderings of the array nodes.

Core Fault Tolerance 111

Table 4.5 – Array Node Ordering Parameters

Parameter Description
Traversal Defines if nodes are scanned horizontally or diagonally
Transition Method of moving from one scanned line to the next
Direction Direction in which the scan starts
Orientation Positioning of first node

Orientation

Orientation defines the direction of lines of array nodes for scanning. The orientation is

either horizontal, as illustrated in Figure 4.8, or diagonal, as illustrated in Figure 4.10.

Transition

The ordering of array nodes is based on scanning lines of nodes, one line at a time. The

transition parameter determines how the scan proceeds from one line to the next when the

scan reaches the end of a line. Transition and can be either raster or snake.

Raster

The term raster is used here to refer to the process of scanning lines of nodes, one line

at a time and scanning each line in the same direction, for example from left to right. The

array in Figure 4.9a illustrates a raster scan with horizontal traversal, while Figure 4.10a

illustrates a raster scan with a diagonal traversal.

If nodes are numbered in the order in which they are visited, then in each line neighbouring

nodes will have consecutive numbers. However, there will be a discontinuity at the end of

each line because the node with the next consecutive number is at the beginning of the

next line.

1

16151413

1211109

8765

432

(a) Raster Transition

1

13141516

1211109

5678

432

(b) Snake Transition

Figure 4.9 – Scan transition for horizontal traversal

Snake

A snake scan differs from a raster scan in that, when the end of the line being traversed

is reached, the next node to visit is the node immediately below the one just visited and

the next line is traversed in the opposite direction to the one that has just been completed.

112 4.8 Many-Core Evolutionary Algorithm

This method of scanning lines ensures that each node visited is a neighbour of the previous

visited node as illustrated for a horizontal traversal in Figure 4.9b, and a diagonal traversal

in Figure 4.10b.

1

1614117

151284

13952

1063

(a) Diagonal Raster
Transition

1

1614137

151286

11952

1043

(b) Diagonal Snake
Transition

Figure 4.10 – Scan transition for diagonal traversal

Direction

The direction of a scan from the starting point can either be clockwise or anti-clockwise.

Changing the direction from clockwise to to anti-clockwise will not change the relative

position of mapped processing nodes, assuming all other parameters are unchanged, but

will produce a mirror image of the clockwise mapping. For the application process graph

defined in Section 4.3 and process map defined in Section 4.4 a pair of mappings that

are different only by symmetry will have the same metrics. However, when sources and

sinks external to the many-core array are added to the application process graph (see

Section 6.1) symmetrical mappings will no longer have the same metrics.

Rotation

Rotation determines where the starting corner is by specifying a rotation in as either 0,

90, 180 or 270 degrees. When the starting position is the top-left corner, the rotation is

0. A rotation of 90 will move the starting position the top-right corner. As discussed above

symmetry has no effect on the metrics when using the application process graph defined

in Section 4.3 but will effect the metrics when sources and sinks external to the many-core

array are added to the application process graph in Section 6.1.

4.8.3.5 Example Engineered Mappings

Combining the distribution patterns of Subsubsection 4.8.3.3 with the array node orderings

of Subsubsection 4.8.3.4 produces a total of 64 different arrangements of processes within

the many-core array. Due to rotations and reflections some of these arrangements will be

topologically identical, as discussed above. The arrangements can, in principle, be applied

Core Fault Tolerance 113

to any size of array, however the resultant diversity of mappings will not be evident in small

array such as 2× 2 array.

Figure 4.11a shows the results of combining the distributed pattern of Figure 4.8c with an

array node ordering define by a diagonal orientation, snake transition, zero rotation and

clockwise direction of Figure 4.10b. The process of combining the node distribution list

with the array node ordering, is the simple process of matching the reference numbers of

the node distribution list with the reference numbers of the array node ordering and then

placing the process from the list element into the array element.

Figure 4.11b shows the results of combining the distributed pattern of Figure 4.8c with an

array node ordering define by a horizontal orientation, raster transition, zero rotation and

clockwise direction of Figure 4.9a.

P1

P3

P2

i

P4

P8

P7

P9

P5

i

i

P12

P6

P10

P11

i

(a) Diagonal Snake

P1

i

P2

P7

P6

i

P8

P12

P3

P5

P9

P11

i

P4

i

P10

(b) Horizontal Rasta

Figure 4.11 – Mappings generated by initial placement algorithms

The arrangement of processes in Figure 4.11 are examples of mappings without sources

and sinks so any rotations and reflections that produce topologically identical arrangements

will have identical objective values.

The mappings in Figure 4.12 show 4 examples of the possible 64 engineered mappings

for the application process graph illustrated in Figure 4.2 with 26 processing nodes. The

parameters used to generate each mapping are given in the caption of the figures.

4.9 Experiments and Analysis

The experiments presented in this section are designed to ensure that the model and

evolutionary algorithm defined in this chapter can produce mappings that exhibit good core

fault tolerance for a range of array sizes, each with a range of application process graph

114 4.9 Experiments and Analysis

P1 P2

P6

P3

P7

P4

i

i

P8

P5

P9 P10

P11 i P12 P13 P14 i

P15 P16 P17 P18 i P19

P20 P21 i P22 P23 P24

P25 i P26 P27 P28 i

(a) Horizontal, Raster, Clockwise,
0, Distributed

i i

P25

i

P26

i

P27

i

P28

i

i i

P24 P23 P22 P21 P20 P19

P13 P14 P15 P16 P17 P18

P12 P11 P10 P9 P8 P7

P1 P2 P3 P4 P5 P6

(b) Horizontal, Snake,
Anti-Clockwise, 270, Clustered

P13 P12

P21

P6

P14

P5

i

P2

P7

P1

i P3

i P20 i P11 i P4

P26 P22 P19 P15 P10 P8

P27 i P23 i P16 P9

i P28 P25 P24 P18 P17

(c) Diagonal, Snake, Clockwise,
90, Distributed

P17 P18

P9

P24

P16

P25

i

P28

P23

i

i P27

P8 P10 P15 P19 P22 P26

P4 i P11 i P20 i

P3 i P7 i P14 P21

P1 P2 P5 P6 P12 P13

(d) Diagonal, Snake,
Anti-Clockwise, 270, Clustered

Figure 4.12 – Examples of Engineered Mappings

sizes, as explained in Subsection 4.9.2. A piece of information, of particular interest, that is

obtained from these experiments is the minimum discovered fitness for each combination of

array size and application process graph size and the computational effort required to find

the minimum discovered fitness. It should be noted that, due to the size of the search space

and the nature of evolutionary algorithms, the minimum discovered fitness may not be the

actually minimum fitness. For each minimum discovered fitness, statistics are collected

from multiple evolutions to determine how quickly the evolutions found the minimum discov-

ered fitness, in terms of computational effort. The results of these experiments will be used

to determine suitable sizes of array and application process graph for experiments in the

Core Fault Tolerance 115

following chapters. Finally, there is an exploration of a variety of methods for determining

when the evolutionary runs should be terminated.

Specifically, the experiments will:

• Determine the minimum discovered fitness for each combination of array size and

application process graph size.

• Discover the optimal application process graph size (see Subsection 4.9.1) for a

range of many-core array sizes.

• Examine the computational effort required to find the minimum discovered fitness.

• Investigate the effectiveness of a variety of termination conditions for the evolutionary

algorithm.

4.9.1 Description and Assumptions

The effect of array size on the computational effort required for the evolutionary algorithm

to find a good, if not optimal, solution will be investigated; the results of which will be used

to determine practical array sizes for later experimental phases.

For any given size of array there is an maximum size of application process graph that can

be mapped to the processing cores while ensuring that each processing core is protected

by being adjacent to at least one idle core. The size of such an application process graph

can be considered optimal in the sense that smaller application process graphs will leave

more cores idle than are necessary for core fault tolerance and larger application process

graphs will leave some processing cores unprotected. For some optimal application pro-

cess graph sizes it will be possible to arrange processing and idle cores such that each

processing core is adjacent to exactly one idle core, while in other cases some processing

cores will be doubly protected by being adjacent to more than one idle core.

As the number of nodes in the application process graph decreases from the optimum num-

ber of nodes the problem of finding a mapping, where all processing cores are protected,

becomes increasingly trivial. An extreme example is when there are only two processes

which will both be protected when placed anywhere within an array with a minimum dimen-

sion of 2 × 2. When the number of processing nodes in the application process graph is

close to the number of cores in the array then there will be a corresponding small number

of idle cores. When the number of processes in the application process graph is greater

than the optimal for the array, some of the processing cores will be left unprotected while

the smaller number of idle cores reduces the number of unique combinations of locations

where they can be placed, although these combinations are repeated many times. Neither

of these scenarios pose interesting problems because finding an optimum placement for

the idle cores becomes increasingly trivial as difference between the number of processes

in the application process graph and the optimal application process graph size increases.

116 4.9 Experiments and Analysis

Consider the case, where the number of processing nodes in the application process graph

is 50% of the number of cores, then the processing cores and idle cores can be arranged

in a chequered pattern. In the case each processing core is adjacent to two, three or four

idle cores depending whether the processing core is located in a corner, on an edge or

internally. This illustrates that with 50% of the number of cores being idle, all processing

cores will be protected by at least 2 idle cores, giving an initial lower bound the the optimal

application process graph size. As graph size increases above the 50% of the number of

cores, the mapping problem will become increasingly difficult. This analysis has been used

to guide the initial selection of graph sizes for each array as being from 50% of the number

or cores to a size of 2 nodes less than the number of cores.

4.9.2 Experiment Parameters

Array Size

Experiments will be conducted with array sizes from 4 × 4 to 8 × 8. The lower bound

of this range has been chosen on the basis that an array of size 3 × 3 does not present

an interesting problem for this research. By inspection, a placement of idle cores on a

3× 3 array such that each processing core is adjacent to an idle core requires a minimum

of three idle cores for which there is only one possible arrangement while leaving only 6

cores available for processing. A 3 × 3 array is therefore limited both in terms of the size

fo application process graph that can be accommodated and the number and arrangement

of idle cores.

The upper bound has been chosen with respect to the processing time required to find

good solutions. The size of the problem, measured by the number of permutations of

placing a graph of Vg nodes in an array of size R× V C is proportional to RC/(RC − Vg),

which increases rapidly as the array size and graph size increase. Since the basis of this

research is to develop an algorithm for manageable-sized regions that interact with each

other, the upper size of the problem has been chosen as an 8 × 8 array which presents

a sufficiently challenging problem for this research while keeping the computation effort

within acceptable limits.

The actual array size of a real many-core array will be determined at design time. It is

not expected that arrays of size greater than 8 × 8 will be materially different, from a

scientific point of view, from the array sizes studied, although the computation effort will

be significantly greater.

Application Process Graph Size

As discussed in Subsection 4.9.1 the size of application process graphs has been chosen

to be in the range of (RC/2) nodes to (RC − 2) nodes. Experiments in this phase will be

used to explore whether these initial limits can be refined by increasing the lower bound

limit and reducing the upper bound limit, without loss of generality.

Core Fault Tolerance 117

4.9.2.1 Test Parameters

The following parameters were used for these tests:

Table 4.6 – Fault Tolerant Single Objective Test Parameters

Parameter Value

Array Size, R× C 4× 4 to 8× 8

Graph size, Vg
RC
2 to RC − 2

Number of evolutions 100
Static generations R+C

2 × Vg

Population size 10
Elite 2 fittest individuals cloned
Parents 4 fittest individuals used as parents
Descendants 2 from each parent via permutation

Mutation Rate Fixed single mutation

4.9.3 Minimum Discovered Fitness

The results of the experiments for array sizes 4× 4 to 8× 8 are presented as pairs of box

plots in figures 4.13 to 4.17, the first plot showing the minimum fitness found by each of

100 evolutions and the second plot showing the number of generations before termination

of the same evolutions. Both diagrams also include the minimum discovered fitness of all

100 generations.

For the 4 × 4 array the minimum fitness flat box plot shows that all evolutions found the

same minimum value of fitness indicating that the problem is sufficiently tractable for the

evolutionary algorithm to find an optimal solution. This is borne out by the Generations to

Termination box plot which shows that all evolutions terminated within 40 generations.

The minimum fitness box plots for array sizes of 5×5 to 8×8 show a clear pattern, that for

application process graphs that have solutions with zero fitness, the range of fitness values

found is small and in many cases the algorithm found a solution with fitness of zero in the

first generation. Examining the box plot Figure 4.15a for the 6 × 6 array, there appears to

be an anomaly for the graph with 22 nodes, for the number of generations taken to find the

minimum discovered fitness, compared to graphs with application process graphs with 21,

23 and 24 nodes. This is explained by observing that the initial mapping algorithms work

better for some combinations of graph size and array size than for others. In the case of

the 6×6 array the initial placement algorithms finds zero fitness mappings for graphs sizes

of 21, 23 and 24 but not for a graph size of 22 nodes. This is illustrated by the mappings

(a), (b) and (c) in Figure 4.18. This property of the initial mapping algorithms working better

for some combinations than other is further illustrated by the mapping of a 39 node graph

onto a 7 × 7 array, which places nodes in exactly the same pattern as seen in the infinite

118 4.9 Experiments and Analysis

10 11 12 13 14
Number of APG Nodes

0

2

4

6

8

10
Fi

tn
e
ss

Minimum Fitness - 4x4 Array
Fitness - Sum of Distance to Idle Core

Minimum fitness found

(a) Fitness - 4x4 Array

10 11 12 13 14
Number of APG Nodes

0

10

20

30

40

50

G
e
n
e
ra

ti
o
n
s

Generations to Termination - 4x4 Array
Fitness - Sum of Distance to Idle Core

0

2

4

6

8

10

Fi
tn

e
ss

Minimum fitness found

(b) Generations to Termination - 4x4 Array

Figure 4.13 – Fault Free Mappings - 4x4 Array

plane as shown in Figure 4.19.

Application process graphs that have three or four fewer nodes than there are cores in the

array have flat box plots for minimum fitness indicating that there are a small number of

possible fitness levels. Figure 4.18d shows a mapping with the best fitness for a 32 node

graph on a 6 × 6 array, in which the idle nodes are each positioned at the centre of a

3 × 3 area of the array. The number of generations it takes the evolutionary algorithm to

Core Fault Tolerance 119

15 16 17 18 19 20 21 22 23
Number of APG Nodes

0

5

10

15

20

25

30

Fi
tn

e
ss

Minimum Fitness - 5x5 Array
Fitness - Sum of Distance to Idle Core

Minimum fitness found

(a) Fitness - 5x5 Array

15 16 17 18 19 20 21 22 23
Number of APG Nodes

0

20

40

60

80

100

120

140

G
e
n
e
ra

ti
o
n
s

Generations to Termination - 5x5 Array
Fitness - Sum of Distance to Idle Core

0

5

10

15

20

25

30

Fi
tn

e
ss

Minimum fitness found

(b) Generations to Termination - 5x5 Array

Figure 4.14 – Fault Free Mappings - 5x5 Array

find the optimum solutions is also relatively low, which reflects the fact that the solutions

that can be found are found relatively quickly, which in turn indicates that there are a

large number of arrangements of idle cores that have the same minimum fitness. For a

given array size the minimum fitness increases smoothly, while the associated number of

generations required to find the minimum fitness is erratic. The erratic nature of the number

of generations required to find minimum fitness, as the graph size increases, for a particular

array size gives an indication of how difficult it is to find minimum fitness solutions, which

120 4.9 Experiments and Analysis

21 22 23 24 25 26 27 28 29 30 31 32 33 34
Number of APG Nodes

0

10

20

30

40

50
Fi

tn
e
ss

Minimum Fitness - 6x6 Array
Fitness - Sum of Distance to Idle Core

Minimum fitness found

(a) Fitness - 6x6 Array

21 22 23 24 25 26 27 28 29 30 31 32 33 34
Number of APG Nodes

0

50

100

150

200

250

300

G
e
n
e
ra

ti
o
n
s

Generations to Termination - 6x6 Array
Fitness - Sum of Distance to Idle Core

0

10

20

30

40

50

Fi
tn

e
ss

Minimum fitness found

(b) Generations to Termination - 6x6 Array

Figure 4.15 – Fault Free Mappings - 6x6 Array

is a reflection of how many minimum fitness solutions there are. Some combinations of

graph size and array size have many minimum fitness solutions, while other combinations

have few minimum fitness solutions.

Summary

The results of these experiments have allowed us to obtain the minimum discovered fitness

for each combination of array size and application process graph size. Although the

Core Fault Tolerance 121

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Number of APG Nodes

0

10

20

30

40

50

60

70

80

Fi
tn

e
ss

Minimum Fitness - 7x7 Array
Fitness - Sum of Distance to Idle Core

Minimum fitness found

(a) Fitness - 7x7 Array

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Number of APG Nodes

0

50

100

150

200

250

300

350

400

450

G
e
n
e
ra

ti
o
n
s

Generations to Termination - 7x7 Array
Fitness - Sum of Distance to Idle Core

0

10

20

30

40

50

60

70

80

Fi
tn

e
ss

Minimum fitness found

(b) Generations to Termination - 7x7 Array

Figure 4.16 – Fault Free Mappings - 7x7 Array

minimum discovered fitness may not be the actual minimum fitness, the box plots showing

the distribution of minimum fitness found by each of 100 evolutions show a small range of

values, which is strong supporting evidence that the minimum discovered fitness is also

the actual minimum.

The number of generations is takes the evolutionary algorithm to terminate is erratic leading

to the conclusion that the most significant factor is the properties of the specific combina-

122 4.9 Experiments and Analysis

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
Number of APG Nodes

0

20

40

60

80

100

120

140
Fi

tn
e
ss

Minimum Fitness - 8x8 Array
Fitness - Sum of Distance to Idle Core

Minimum fitness found

(a) Fitness - 8x8 Array

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
Number of APG Nodes

0

100

200

300

400

500

600

700

800

G
e
n
e
ra

ti
o
n
s

Generations to Termination - 8x8 Array
Fitness - Sum of Distance to Idle Core

0

20

40

60

80

100

120

140

Fi
tn

e
ss

Minimum fitness found

(b) Generations to Termination - 8x8 Array

Figure 4.17 – Fault Free Mappings - 8x8 Array

tion of array size and application process graph size, and the number minimum fitness

mappings solutions each combination has. The greater the number of minimum fitness

mappings, the quicker the evolutionary algorithm will find one.

Mappings for application process graph with a size smaller than the optimum size, are

relatively easy for the evolutionary algorithm to find, often taking a few 10s of generations.

For this reason these are not considered interesting application process graph sizes for

use in later experiments.

The search for zero fitness mappings for the optimal size of application process graph is

generally harder than application process graph sizes one smaller or one larger than the

optimal size (the exception is the 8×8 array). Finding zero fitness mappings for the optimal

Core Fault Tolerance 123

size of application process graph is therefore a challenging problem for later experiments.

124 4.9 Experiments and Analysis

P1

P5

P2

i

i

P12

P9

P16

P13

i

i

P20

i

P6

P10

i

P17

P21

P3

P7

i

P14

P18

i

P4

i

P11

P15

i

P22

i

P8

i

i

P19

i

(a) Initial mapping for 22 nodes

P1

i

P2

P3

P4

P7

P6

i

P8

i

P13

P14

i

i

i

P12

P15

P19

P5

P9

i

i

i

i

P10

P11

P16

P18

P20

P22

i

i

P17

P21

i

i

(b) Initial mapping for 22 nodes

P1

i

P2

P9

P8

i

P10

P17

P16

i

P18

P24

i

P7

i

P15

i

P23

P3

i

P11

i

P19

i

P4

P6

P12

P14

P20

P22

i

P5

i

P13

i

P21

(c) Initial mapping for 24 nodes

P9

P11

P2

P12

i

P22

P13

P23

P21

P24

i

P32

P3

P26

P14

P20

P6

P31

P4

P28

P15

P19

P25

P30

P5

i

P16

P18

i

P29

P8

P10

P1

P17

P27

P7

(d) Best Fitness Mapping for 32
Nodes

Figure 4.18 – Selected Fault Free Mappings - 6x6 Array

Core Fault Tolerance 125

P1

P7

P2

i

P8

P18

P13

P24

P19

P29

i

P35

P30

P36

P3

i

P14

P20

P25

P31

i

P4

P9

P15

i

P26

P32

P37

i

P10

P16

P21

P27

i

P38

P5

P11

i

P22

P28

P33

P39

P6

P12

P17

P23

i

P34

i

Figure 4.19 – Initial Mapping of 39 Nodes on a 7x7 Array

126 4.9 Experiments and Analysis

4.9.4 Optimum Graph Size

The results presented in figures 4.13 to 4.17 show the maximum size of application process

graph, for each array size, for which the fault tolerance objective value is zero. These are

referred to as the optimum application process graph size for the array size which are listed

in Table 4.7 along with the percentage of cores of the array that are idle. Figure 4.21 shows

example mappings with zero fitness for the optimal application process graphs.

Table 4.7 – Summary of optimum graph size for zero fitness

Array Graph Percent
Size Size Idle

4 12 25.0

5 18 28.0

6 26 27.8

7 36 26.5

8 48 25.0

∞ n/a 20.0

As a reference for the results obtained from the experiments, Figure 4.20 illustrates a

portion of an infinite plane with an ideal arrangement of idle cores where every processing

core is adjacent to exactly one idle core and each idle core protects exactly four processing

cores. The arrangement is a tiling of a cross shape with an idle core at its centre and a

processing core on each of the four compass points producing a pattern of idle cores which

are all separated by a chess knight’s move. Portions of this pattern are found in the all of

the mappings in Figure 4.21. To protect all processing cores In the infinite plane, only 20%

of cores are required to be idle.

The best arrangements discovered by the evolutionary algorithm is 25% of the cores being

idle, for array sizes where R and C are multiples of 4. It might naturally be expected that

as arrays increase in size the percent of idle cores will tend towards the value of 20% of

the infinite plane. This, however, is not the case for the array sizes studied, with the lowest

% of idle cores being found in the 4× 4 array and the 8× 8 array consisting of four copies

of the 4× 4 array.

The explanation can be found by examining the edges of the arrays. It is possible to select

a 4 × 4 portion of the infinite array where each idle core protects three processing cores

and each processing core is protected by exactly one idle core. For portions of the infinite

array of sizes 5, 6, 7 and 8, which have been studied, there are always processing cores on

the edge of the array that are unprotected. To protect these requires replacement of some

of the processing cores with idle cores together with a rearrangement. The proportion of

cores on the edges compared to the array as a whole is significant for small array sizes,

giving a high cost to the replacement of processing cores with idle cores when compared

Core Fault Tolerance 127

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i i i

i

i

i i

PP

P

PP

P P

P

P

P

P

P

P P

P

P

P

PP

P PP

PP

P

P

P

PP P

P

P

P

P

P

P

P

P

P

P

P

PP

P P P

P P

P

P P

P

PP

P

P

P

P

P P

P

P P

P

PP

P

P

P

P

PP P

P

P P

P

P

P P

P

P

P P

P

P

P

P P

P

P P P

P

P

P

P

P

P

P P

P

P P

P

P

P

P

P

P P

P

P P P

P

P

P

P

Figure 4.20 – Minimum Fitness for generalized n× n array

to the array size. This proportion reduces as the array size increases indicating that larger

arrays will have less than 25% of cores idle. A rough calculation indicates that the crossover

may occur with an array size of about 15.

For the 4 × 4 array there is only one arrangement of idle cores which achieve a fitness

value of zero. This arrangement is a subset of the idle core arrangement found in the

infinite plane of Figure 4.20. The arrangement of idle cores for the 4 × 4 array is found in

all of the mappings of the larger arrays and can be seen five times in the 8× 8 array.

Summary

For an infinite array the percentage of cores that need to remain idle to fully protect

the processing cores is 20%. For the array sizes used in these experiments the small

percentage of idle cores was 25%, which achieved for the 4 × 4 array and can therefore

be achieved for any rectangular array whose number of rows and columns of cores are

multiples of 4.

128 4.9 Experiments and Analysis

P3

i

P2

P12

P4

P9

P7

i

i

P6

P1

P8

P5

P10

i

P11

(a) Minimum discovered
fitness for a 4× 4 array

P1

i

P3

P5

P4

P6

P2

P17

i

i

i

P7

P10

P13

P11

P8

P9

i

P16

P12

i

P14

P15

P18

i

(b) Minimum discovered
fitness for a 5× 5 array

A smaller percentage of idle cores may be sufficient for larger array sizes, although this

has not be explored in this work.

Core Fault Tolerance 129

i

P2

P12

P5

P4

P6

i

i

P11

P1

P13

P16

P9

P7

P10

P18

P19

i

i

i

P14

i

P21

P20

P3

P15

P17

i

P24

P25

P8

i

P22

P23

P26

i

(c) Minimum discovered fitness for a 6× 6 array

P9

i

P11

P3

P10

P6

P27

P4

i

P20

i

i

P7

P17

i

P32

P13

P14

P5

P15

P16

P21

P12

i

P19

P18

i

i

P22

P23

i

P24

P25

P1

P26

i

P8

P30

P29

i

P34

P2

P31

P33

i

P28

P35

P36

i

(d) Minimum discovered fitness for a 7× 7 array

130 4.9 Experiments and Analysis

P16

i

P3

P18

P4

P6

P33

P9

i

i

P13

P17

P46

P15

P23

i

i

P7

P10

P14

P1

i

P29

P28

P8

P11

i

P24

P38

P30

P34

i

P12

P2

P20

P25

i

P40

P39

P42

i

i

P26

P31

P36

P35

i

P45

P37

P27

P21

i

P22

P43

P5

P47

P19

i

P32

P41

P44

i

P48

i

(e) Minimum discovered fitness for na 8× 8 array

Figure 4.21 – Minimum discovered fitnesses for array sizes 4× 4 to 8× 8

Core Fault Tolerance 131

4.9.5 Evolution of a Mapping of a 26 Node Graph to a 6x6 Array

To illustrate how the evolutionary algorithm works this section presents an example of an

evolution from an engineered mapping through to a mapping with a zero fitness value to

illustrate how the evolutionary algorithm works. The mapping of a 26 node application

process graph onto a 6 × 6 many-core array was chosen because it a problem that is

large enough to be interesting and the solution was found reasonably quickly. Figure 4.22

illustrates the mappings from the initial engineered mapping to the final mapping with a

fitness of zero.

The initial mapping was generated by the initial placement algorithm using a diagonal

snake pattern with distribution of idle nodes. This generates a mapping of fitness value

of 4 with nodes P1, P2, P9 and P14 all having individual fitness values of 1.

P1

P3

P2

i

P4

P8

P7

i

P9

P16

P15

i

P5

i

P10

P14

P17

P22

P6

P11

i

P18

i

P23

i

P13

P19

P21

P24

P26

P12

i

P20

i

P25

i

(a) Initial Mapping

The transformation from the initial mapping to the final mapping went through 6 transfor-

mations over 17 generations, while the other 11 generations produced cloned individuals

from the previous generations. The mappings show the 6 transformations with the nodes

that have been exchanged highlighted. Table 4.8 provides a commentary of the interesting

points of the evolutionary chain showing at each point the generation, fitness and rank of

the individual that was part of the evolutionary chain.

Summary

Tracing through the evolution from an engineered mapping to a zero fitness mapping

has illustrated how the evolutionary algorithm search functions and the reason that each

individual in the chain was selected for the next generation.

132 4.9 Experiments and Analysis

P1

P3

P2

i

P4

P8

P7

i

P9

i

P15

i

P5

i

P10

P14

P17

P22

P6

P11

i

P18

i

P23

i

P13

P19

P21

P24

P26

P12

P16

P20

i

P25

i

(b) Transformation 1

i

P3

P2

i

P4

P8

P7

P1

P9

i

P15

i

P5

i

P10

P14

P17

P22

P6

P11

i

P18

i

P23

i

P13

P19

P21

P24

P26

P12

P16

P20

i

P25

i

(c) Transformation 2

i

P3

P2

i

P4

P8

P7

P1

P9

P20

P15

i

P5

i

P10

P14

P17

P22

P6

P11

i

P18

i

P23

i

P13

P19

P21

P24

P26

P12

P16

i

i

P25

i

(d) Transformation 3

i

P3

P2

i

P4

i

P7

P1

P9

P20

P15

i

P5

i

P10

P14

P17

P22

P6

P11

i

P18

i

P23

i

P13

P19

P21

P24

P26

P12

P16

i

i

P25

P8

(e) Transformation 4

P18

P3

P2

i

P4

i

P7

P1

P9

P20

P15

i

P5

i

P10

P14

P17

P22

P6

P11

i

i

i

P23

i

P13

P19

P21

P24

P26

P12

P16

i

P8

P25

i

(f) Transformation 5

P18

P3

P2

i

P4

i

P7

P1

P9

P20

P15

i

P5

i

P10

P14

P17

P22

P6

P11

P18

i

i

P23

i

P13

P19

P21

P24

P26

P12

P16

i

P8

P25

i

(g) Transformation 6

Figure 4.22 – Evolution of a mapping of a 26 node graph to a 6x6 array

Core Fault Tolerance 133

Table 4.8 – Summary of evolution of mapping of a 26 node graph to a 6× 6 array

Gn Ft Rk Opr Description

0 4 2 Initial
placement

One of two mappings with the best fitness value of
4 and ranked 2nd so that it will be cloned and used
as a parent.

1 4 1 Cloned With a rank of 1 this individual will again be cloned
and used as a parent.

2 4 3 Cloned With a rank of 3 this individual is is not cloned but is
used as a parent.

3 5 4 Descendant A descendant of the previously cloned individual, it
has a lower fitness than its parent but is ranked 4th

so will be used as a parent.

4 4 4 Descendant A descendant of the previous individual it is ranked
4th so will be used as a parent.

5 4 4 Cloned

6 3 1 Descendant This is the first individual in this evolutionary chain
that has a better fitness than the generation zero
ancestor.

7-9 3 1-2 Cloned Cloned for three generations each with a ranking of
1 or 2.

10 3 1 Descendent Having the same fitness as its parent, this individual
is ranked 2nd replacing its parent, ranked 3rd, as
one of the two elite individuals of this generation.

11 2 1 Descendent A further improvement in fitness.

12-
16

2 1-2 Cloned Cloned for five generations each with a ranking of 1
or 2.

17 0 1 Descendent The final transformation of the genome resulted in
a jump in fitness from 2 to 0. Zero being the fitness
minimum value attainable the evolution stops here.

134 4.9 Experiments and Analysis

4.9.6 Termination Condition

When using a single objective, strategies can be used to define the termination conditions

of the evolutionary algorithm to ensure that the computational effort is kept as low as

possible while being sufficient to find good solutions for the given objective. Termination of

the evolutionary algorithm by one of three conditions listed below has been investigated:

• Maximum computation effort expended

• Zero fitness found

• Termination parameter t, the number of generations the fitness remains static

An informed determination of a strategy for the selection of a suitable termination point in

terms of the number of generations t is useful to balance the computational effort to find

solutions against the fitness of the solutions.

To understand the effect of termination parameter t, the evolutionary algorithm was run

using the parameter values described in Subsection 4.9.2, but without the static genera-

tions termination parameter, allowing the algorithm to run until either the fitness is zero or

the maximum number of generations is reached. The data collected was then analysed to

determine the influence that a variety of termination conditions had upon the computational

effort used by the evolutionary algorithm.

The results are given in Tables 4.12 to 4.20. Descriptions of the values in the table columns

are given here:

The first three columns of each table are:

Table 4.9 – Termination Condition Array and Application Process Graph Size

Name Description
a The size of the array in terms of the dimension of one side of the array.

n The number of nodes in the application process graph being mapped to
the array.

fm The minimum fitness the evolutionary algorithm discovered (not necessar-
ily the minimum possible fitness).

Each table contains data for three termination conditions. Each termination condition has

the following columns:

The computational effort is defined as the total number of individuals the evolutionary

algorithm evaluated before termination. Note that for these tables computational effort

has been divided by 10 to enhance the presentation and readability.

Each table contains data for two of the six termination conditions which are:

Core Fault Tolerance 135

Table 4.10 – Termination Condition Column Descriptions

Name Description
tc The termination condition i.e. the number of generations the fitness

remains static before the evolutionary algorithm terminates.

%fm The percentage of evolutions that found a solution with the minimum
fitness.

cefm The average computational effort of those evolutions that found a mapping
with the minimum fitness. This figure ignores any evolutions that did not
find a mapping with the minimum fitness. It does not say anything about
the evolutions that failed to find a mapping with the minimum fitness. A
lower figure is more desirable, however, if no evolutions found a mapping
with the minimum fitness this value is set to zero.

cet The average computational effort across all evolutions. If a computational
effort budget is imposed on the evolutionary algorithm, then this figure can
be directly compared to the budget to determine if the termination condition
will keep the evolutionary algorithm within budget. If all evolutions found a
mapping with the minimum fitness this value is set to zero.

cet/%fm The total computational effort for all evolutions divided by the number of
evolutions that found a mapping with the minimum fitness. This figure gives
an indication of the cost of finding solutions with minimum fitness, however
it does not take into account the fitness of the non-minimum solutions. It
does not say anything about the fitness of the evolutions that did not find a
mapping with the minimum fitness. If no evolutions found a mapping with
the minimum fitness this value is set to zero.

f̄ The average fitness of all evolutions.

Each table contains data for three termination conditions. Each termination condition has

the following columns:

The different formulae for calculating the termination condition are distinguished by the rate

at which they grow as the number of nodes in the graph and the number of cores in the

array grow. The constants for the formulae have been chosen so that the values are near

equal for a 26 node graph on a 6× 6 array. This particular combination of graph and array

size has been chosen because the 6 × 6 array is a suitable sized array of cores to apply

the fault tolerant mechanisms of the research and 26 is the largest graph which can be

mapped to a 6× 6 with a fitness of zero.

Analysis of Results

In general increasing the number of generations of the termination condition increases

the number of evolutions that find a mapping with the minimum fitness (%fm), the cost of

finding each minimum value mapping (cefm) and the average computational effort (cet).

This is expected as the evolutionary algorithm is generating and evaluating more individ-

136 4.9 Experiments and Analysis

uals which increases the computational effort and the likelihood of finding more minimum

fitness mappings. The total computation effort for all evolutions divided by the number of

evolutions that found a minimum fitness (cet/%fm) and the average fitness (f̄) tends to

decrease. These last two measures given the best indication that a higher termination

condition gives better value for the total computational effort.

A good illustration of the observed affect is the mapping of a 21 node graph onto a 5x5

array, Table 4.13, which shows a 25% increase in the number of minimum value mappings

found in return for a 20% increase in total computational effort.

More significant than the absolute value of the initial termination condition, is the effect

of the dynamically changing termination condition. Table 4.14 shows that, In most cases,

increasing the termination condition each time the fitness improves is a successful strategy

for find a greater number of minimum value solutions.

An example where the dynamic termination condition has not worked is where a 12 node

graph is being mapped to a 4x4 array, Table 4.14, where both the dynamic and non-

dynamic conditions find only 33% of the minimum fitness mappings compared to the

control, Table 4.12, that finds the minimum fitness in all 100 evolutions. This is a result of

the initial termination condition value of 48 being too low to be effective. The corresponding

termination condition of 150 in the k(n/a2) column, Table 4.13, finds 65% of the minimum

fitness mappings. If the starting condition for the dynamic variant was also 150 then we

would expect it to perform much better.

The dynamic increase is achieved by taking the number of generations since the last

improvement in fitness and multiplying by 10. The value of 10 was chosen by making the

observation that each improvement in in fitness took between 5 and 10 times the number

of generations than the previous improvement in fitness.

Core Fault Tolerance 137

Table 4.11 – Termination Conditions

Name Description
No Condition There is no termination condition dependent on the

number of generations the fitness remains static. Each
evolution continues until a fitness of zero is found
or the maximum number of generations has been
reached. This is the control group which shows how the
evolutionary algorithm performs when constrained only
by an arbitrary limit to the computational effort.

kn : k = 6 The number of generations that the fitness remains
static before the evolution is terminated is calculated as
the number of nodes multiplied by the constant 6.

ka2 : k = 4 The number of generations that the fitness remains
static before the evolution is terminated is calculated as
the number of cores, that is the square of the array size,
multiplied by the constant 4.

k(n/a2) : k = 200 The number of generations that the fitness remains
static before the evolution is terminated is calculated as
the number of nodes divided by the number of cores,
multiplied by the constant 200.

a.n The number of generations that the fitness remains
static before the evolution is terminated is calculated as
the number of nodes multiplied by the number of cores.

Dynamic : a.n The initial number of generations that the fitness
remains static before the evolution is terminated is
calculated as the number of nodes multiplied by the
number of cores. As an evolution progresses and
the fitness improves, it becomes more difficult to
find a mapping with an improved fitness. To reflect
this the dynamic approach adjusts the termination
condition each time the fitness improves by taking
the number of generations evaluated since the last
improvement, multiplying by 10 and then replacing the
current condition if the new value is greater than the
existing value.

138 4.9 Experiments and Analysis

Ta
bl

e
4.

12
–

A
na

ly
si

s
of

Te
rm

in
at

io
n

C
on

di
tio

n:
N

o
C

on
di

tio
n

an
d
k
n

:
k

=
6

N
o

C
on

di
tio

n
k
n

:
k

=
6

a
n

f m
tc

%
f m

ce
f
m

ce
t

ce
t/

%
f m

f̄
tc

%
f m

ce
f
m

ce
t

ce
t/

%
f m

f̄

4
11

0
M

ax
10

0
37

.2
4

37
.2

4
37

.2
4

0.
00

66
87

29
.5

4
34

.2
8

39
.4

0
0.

13
4

12
0

M
ax

10
0

13
6.

93
13

6.
93

13
6.

93
0.

00
72

43
32

.2
1

56
.5

8
13

1.
58

1.
14

4
13

4
M

ax
10

0
7.

20
7.

20
7.

20
4.

00
78

10
0

7.
20

7.
20

7.
20

4.
00

4
14

8
M

ax
10

0
5.

07
5.

07
5.

07
8.

00
84

10
0

5.
07

5.
07

5.
07

8.
00

5
16

0
M

ax
10

0
2.

20
2.

20
2.

20
0.

00
96

10
0

2.
20

2.
20

2.
20

0.
00

5
17

0
M

ax
10

0
40

.6
0

40
.6

0
40

.6
0

0.
00

10
2

95
35

.5
8

38
.9

0
40

.9
5

0.
05

5
18

0
M

ax
10

0
10

4.
20

10
4.

20
10

4.
20

0.
00

10
8

81
72

.8
8

85
.9

5
10

6.
11

0.
19

5
19

2
M

ax
10

0
90

.3
5

90
.3

5
90

.3
5

2.
00

11
4

79
55

.6
2

71
.0

8
89

.9
7

2.
21

5
20

4
M

ax
10

0
65

.4
0

65
.4

0
65

.4
0

4.
00

12
0

83
35

.3
6

52
.0

2
62

.6
7

4.
17

5
21

7
M

ax
10

0
26

3.
09

26
3.

09
26

3.
09

7.
00

12
6

69
86

.1
2

12
1.

31
17

5.
81

7.
32

5
22

13
M

ax
10

0
22

.1
1

22
.1

1
22

.1
1

13
.0

0
13

2
99

20
.5

3
21

.8
7

22
.0

9
13

.0
1

5
23

22
M

ax
10

0
18

.7
4

18
.7

4
18

.7
4

22
.0

0
13

8
10

0
18

.7
4

18
.7

4
18

.7
4

22
.0

0
6

22
0

M
ax

10
0

3.
81

3.
81

3.
81

0.
00

13
2

10
0

3.
81

3.
81

3.
81

0.
00

6
25

0
M

ax
10

0
83

.4
2

83
.4

2
83

.4
2

0.
00

15
0

90
63

.4
2

72
.2

6
80

.2
9

0.
10

6
26

0
M

ax
10

0
26

4.
60

26
4.

60
26

4.
60

0.
00

15
6

58
11

6.
36

15
8.

33
27

2.
98

0.
42

6
27

1
M

ax
10

0
66

7.
52

66
7.

52
66

7.
52

1.
00

16
2

22
23

8.
41

29
3.

96
13

36
.1

8
1.

78
6

28
3

M
ax

94
16

14
.2

1
15

25
.5

7
16

22
.9

5
3.

06
16

8
34

26
1.

71
75

8.
84

22
31

.8
8

3.
47

6
29

5
M

ax
85

16
13

.7
8

14
10

.9
5

16
59

.9
4

5.
15

17
4

36
34

6.
47

13
26

.8
7

36
85

.7
5

5.
09

6
30

9
M

ax
10

0
21

7.
03

21
7.

03
21

7.
03

9.
00

18
0

75
92

.2
4

12
9.

01
17

2.
01

9.
25

6
31

12
M

ax
10

0
62

5.
55

62
5.

55
62

5.
55

12
.0

0
18

6
51

12
3.

31
25

7.
45

50
4.

80
12

.5
0

6
32

16
M

ax
10

0
50

5.
37

50
5.

37
50

5.
37

16
.0

0
19

2
90

50
1.

27
49

4.
48

54
9.

42
16

.3
0

6
33

28
M

ax
10

0
10

6.
30

10
6.

30
10

6.
30

28
.0

0
19

8
93

81
.2

7
94

.0
9

10
1.

17
28

.0
7

6
34

44
M

ax
10

0
66

.6
0

66
.6

0
66

.6
0

44
.0

0
20

4
10

0
66

.6
0

66
.6

0
66

.6
0

44
.0

0

Core Fault Tolerance 139

Ta
bl

e
4.

13
–

A
na

ly
si

s
of

Te
rm

in
at

io
n

C
on

di
tio

n:
k
a
2

:
k

=
4

an
d
k
(n
/a

2
)

:
k

=
20

0

k
a
2

:
k

=
4

k
(n
/a

2
)

:
k

=
20

0

a
n

f m
tc

%
f m

ce
f
m

ce
t

ce
t/

%
f m

f̄
tc

%
f m

ce
f
m

ce
t

ce
t/

%
f m

f̄

4
11

0
64

84
28

.2
5

33
.9

7
40

.4
4

0.
16

13
7

10
0

37
.2

4
37

.2
4

37
.2

4
0.

00
4

12
0

64
40

29
.5

0
51

.9
5

12
9.

88
1.

20
15

0
65

60
.9

5
93

.1
3

14
3.

28
0.

70
4

13
4

64
10

0
7.

20
7.

20
7.

20
4.

00
16

2
10

0
7.

20
7.

20
7.

20
4.

00
4

14
8

64
10

0
5.

07
5.

07
5.

07
8.

00
17

5
10

0
5.

07
5.

07
5.

07
8.

00
5

16
0

10
0

10
0

2.
20

2.
20

2.
20

0.
00

12
8

10
0

2.
20

2.
20

2.
20

0.
00

5
17

0
10

0
95

35
.5

8
38

.8
0

40
.8

4
0.

05
13

6
98

38
.1

4
40

.1
0

40
.9

2
0.

02
5

18
0

10
0

80
72

.1
5

84
.3

5
10

5.
44

0.
20

14
4

86
78

.2
9

91
.8

2
10

6.
77

0.
14

5
19

2
10

0
71

48
.6

2
67

.5
1

95
.0

8
2.

29
15

2
88

65
.3

5
77

.5
7

88
.1

5
2.

12
5

20
4

10
0

76
27

.2
2

47
.7

8
62

.8
7

4.
24

16
0

90
44

.6
7

57
.4

9
63

.8
8

4.
10

5
21

7
10

0
60

76
.6

8
11

1.
98

18
6.

63
7.

43
16

8
75

94
.1

5
13

3.
05

17
7.

40
7.

25
5

22
13

10
0

99
20

.5
3

21
.5

5
21

.7
7

13
.0

1
17

6
10

0
22

.1
1

22
.1

1
22

.1
1

13
.0

0
5

23
22

10
0

10
0

18
.7

4
18

.7
4

18
.7

4
22

.0
0

18
4

10
0

18
.7

4
18

.7
4

18
.7

4
22

.0
0

6
22

0
14

4
10

0
3.

81
3.

81
3.

81
0.

00
12

2
10

0
3.

81
3.

81
3.

81
0.

00
6

25
0

14
4

89
62

.4
9

71
.6

5
80

.5
1

0.
11

13
8

88
61

.5
8

70
.9

5
80

.6
3

0.
12

6
26

0
14

4
56

11
3.

13
15

3.
12

27
3.

43
0.

44
14

4
56

11
3.

13
15

3.
12

27
3.

43
0.

44
6

27
1

14
4

20
23

0.
90

27
9.

69
13

98
.4

5
1.

80
15

0
20

23
0.

90
28

4.
49

14
22

.4
5

1.
80

6
28

3
14

4
31

26
0.

35
64

5.
25

20
81

.4
5

3.
56

15
5

31
26

0.
35

75
0.

63
24

21
.3

9
3.

51

6
29

5
14

4
31

35
4.

84
13

10
.0

7
42

26
.0

3
5.

14
16

1
34

34
7.

97
13

19
.7

8
38

81
.7

1
5.

11
6

30
9

14
4

70
82

.7
0

11
8.

76
16

9.
66

9.
31

16
6

72
86

.8
6

12
5.

19
17

3.
88

9.
28

6
31

12
14

4
49

12
0.

39
23

6.
60

48
2.

86
12

.5
3

17
2

51
12

3.
31

25
0.

59
49

1.
35

12
.5

0
6

32
16

14
4

77
52

2.
06

48
6.

26
63

1.
51

16
.6

9
17

7
86

50
8.

51
49

2.
69

57
2.

90
16

.4
2

6
33

28
14

4
85

69
.8

7
88

.3
2

10
3.

91
28

.1
6

18
3

91
77

.8
8

92
.8

7
10

2.
05

28
.0

9

6
34

44
14

4
99

65
.2

9
66

.1
5

66
.8

2
44

.0
3

18
8

99
65

.2
9

66
.5

9
67

.2
6

44
.0

3

140 4.9 Experiments and Analysis

Ta
bl

e
4.

14
–

A
na

ly
si

s
of

Te
rm

in
at

io
n

C
on

di
tio

n:
4
≤

a
≤

6
;a

.n
an

d
a
.n

:
D
y
n
a
m
ic

a
.n

a
.n

:
D
y
n
a
m
ic

a
n

f m
tc

%
f m

ce
f
m

ce
t

ce
t/

%
f m

f̄
tc

%
f m

ce
f
m

ce
t

ce
t/

%
f m

f̄

4
11

0
44

67
21

.8
4

29
.1

5
43

.5
1

0.
33

44
67

21
.8

4
29

.1
5

43
.5

1
0.

33
4

12
0

48
33

22
.5

5
41

.5
7

12
5.

97
1.

34
48

33
22

.5
5

42
.2

5
12

8.
03

1.
34

4
13

4
52

10
0

7.
20

7.
20

7.
20

4.
00

52
10

0
7.

20
7.

20
7.

20
4.

00
4

14
8

56
10

0
5.

07
5.

07
5.

07
8.

00
56

10
0

5.
07

5.
07

5.
07

8.
00

5
16

0
80

10
0

2.
20

2.
20

2.
20

0.
00

80
10

0
2.

20
2.

20
2.

20
0.

00
5

17
0

85
94

34
.9

4
37

.9
4

40
.3

6
0.

06
85

94
34

.9
4

37
.9

4
40

.3
6

0.
06

5
18

0
90

77
70

.3
0

82
.2

1
10

6.
77

0.
23

90
93

90
.0

8
93

.4
7

10
0.

51
0.

07
5

19
2

95
69

46
.7

8
65

.9
8

95
.6

2
2.

31
95

74
53

.8
9

71
.2

9
96

.3
4

2.
26

5
20

4
10

0
76

27
.2

2
47

.7
8

62
.8

7
4.

24
10

0
80

34
.5

3
50

.9
5

63
.6

9
4.

20

5
21

7
10

5
62

78
.0

6
11

3.
92

18
3.

74
7.

41
10

5
74

10
7.

57
15

4.
80

20
9.

19
7.

28
5

22
13

11
0

99
20

.5
3

21
.6

5
21

.8
7

13
.0

1
11

0
10

0
22

.1
1

22
.1

1
22

.1
1

13
.0

0
5

23
22

11
5

10
0

18
.7

4
18

.7
4

18
.7

4
22

.0
0

11
5

10
0

18
.7

4
18

.7
4

18
.7

4
22

.0
0

6
22

0
13

2
10

0
3.

81
3.

81
3.

81
0.

00
13

2
10

0
3.

81
3.

81
3.

81
0.

00
6

25
0

15
0

90
63

.4
2

72
.2

6
80

.2
9

0.
10

15
0

90
63

.4
2

72
.2

6
80

.2
9

0.
10

6
26

0
15

6
58

11
6.

36
15

8.
33

27
2.

98
0.

42
15

6
75

17
0.

59
19

8.
51

26
4.

68
0.

25
6

27
1

16
2

22
23

8.
41

29
3.

96
13

36
.1

8
1.

78
16

2
50

42
5.

46
44

5.
57

89
1.

14
1.

50
6

28
3

16
8

34
26

1.
71

75
8.

84
22

31
.8

8
3.

47
16

8
46

33
1.

46
94

2.
06

20
47

.9
6

3.
35

6
29

5
17

4
36

34
6.

47
13

26
.8

7
36

85
.7

5
5.

09
17

4
49

46
0.

73
15

17
.9

5
30

97
.8

6
4.

96
6

30
9

18
0

75
92

.2
4

12
9.

01
17

2.
01

9.
25

18
0

86
14

9.
43

17
0.

29
19

8.
01

9.
14

6
31

12
18

6
51

12
3.

31
25

7.
45

50
4.

80
12

.5
0

18
6

78
40

1.
77

45
6.

68
58

5.
49

12
.2

3
6

32
16

19
2

90
50

1.
27

49
4.

48
54

9.
42

16
.3

0
19

2
96

50
4.

49
49

9.
37

52
0.

18
16

.1
2

6
33

28
19

8
93

81
.2

7
94

.0
9

10
1.

17
28

.0
7

19
8

96
94

.3
3

10
3.

12
10

7.
42

28
.0

4

6
34

44
20

4
10

0
66

.6
0

66
.6

0
66

.6
0

44
.0

0
20

4
10

0
66

.6
0

66
.6

0
66

.6
0

44
.0

0

Core Fault Tolerance 141

Ta
bl

e
4.

15
–

A
na

ly
si

s
of

Te
rm

in
at

io
n

C
on

di
tio

n:
a

=
7;

N
o

C
on

di
tio

n
an

d
k
n

:
k

=
6

N
o

C
on

di
tio

n
k
n

:
k

=
6

a
n

f m
tc

%
f m

ce
f
m

ce
t

ce
t/

%
f m

f̄
tc

%
f m

ce
f
m

ce
t

ce
t/

%
f m

f̄

7
29

0
M

ax
10

0
2.

58
2.

58
2.

58
0.

00
17

4
10

0
2.

58
2.

58
2.

58
0.

00
7

33
0

M
ax

10
0

70
.2

7
70

.2
7

70
.2

7
0.

00
19

8
98

66
.9

4
69

.5
6

70
.9

8
0.

02
7

34
0

M
ax

10
0

11
5.

80
11

5.
80

11
5.

80
0.

00
20

4
96

10
6.

00
11

1.
49

11
6.

14
0.

04
7

35
0

M
ax

10
0

15
2.

00
15

2.
00

15
2.

00
0.

00
21

0
86

10
5.

17
12

9.
23

15
0.

27
0.

14
7

36
0

M
ax

98
13

91
.7

2
13

73
.2

6
14

01
.2

9
0.

02
21

6
31

72
4.

26
60

2.
22

19
42

.6
5

0.
71

7
37

0
M

ax
18

41
49

.1
1

19
71

.8
2

10
95

4.
56

1.
41

22
2

49
94

87
.1

8
52

18
.2

5
10

64
9.

49
1.

04
7

38
3

M
ax

10
0

63
6.

50
63

6.
50

63
6.

50
3.

00
22

8
45

13
5.

44
19

3.
22

42
9.

38
3.

55
7

40
8

M
ax

17
46

60
.6

5
18

63
.7

0
10

96
2.

94
8.

90
24

0
3

25
6.

00
32

87
.8

5
10

95
95

.0
0

7.
00

7
41

12
M

ax
83

17
56

.0
7

15
58

.1
7

18
77

.3
1

12
.1

7
24

6
30

34
1.

67
12

10
.0

4
40

33
.4

7
11

.7
7

7
42

16
M

ax
93

21
35

.5
9

20
51

.2
6

22
05

.6
6

16
.0

7
25

2
17

84
4.

53
10

39
.9

7
61

17
.4

7
16

.4
1

7
43

21
M

ax
69

12
02

.5
8

93
2.

16
13

50
.9

6
21

.3
1

25
8

35
46

9.
49

23
83

.8
3

68
10

.9
4

17
.4

6
7

44
27

M
ax

35
19

66
.5

7
12

20
.9

5
34

88
.4

3
27

.6
5

26
4

9
13

53
.7

8
28

49
.6

3
31

66
2.

56
21

.9
8

7
45

36
M

ax
10

0
37

4.
86

37
4.

86
37

4.
86

36
.0

0
27

0
70

16
9.

27
24

4.
60

34
9.

43
36

.3
2

7
46

51
M

ax
10

0
15

2.
21

15
2.

21
15

2.
21

51
.0

0
27

6
95

13
5.

95
14

7.
31

15
5.

06
51

.1
0

7
47

79
M

ax
10

0
10

2.
55

10
2.

55
10

2.
55

79
.0

0
28

2
95

84
.2

7
96

.6
5

10
1.

74
79

.0
5

142 4.9 Experiments and Analysis

Ta
bl

e
4.

16
–

A
na

ly
si

s
of

Te
rm

in
at

io
n

C
on

di
tio

n:
a

=
7;

k
a
2

:
k

=
4

an
d
k
(n
/a

2
)

:
k

=
20

0

k
a
2

:
k

=
4

k
(n
/a

2
)

:
k

=
20

0

a
n

f m
tc

%
f m

ce
f
m

ce
t

ce
t/

%
f m

f̄
tc

%
f m

ce
f
m

ce
t

ce
t/

%
f m

f̄

7
29

0
19

6
10

0
2.

58
2.

58
2.

58
0.

00
11

8
10

0
2.

58
2.

58
2.

58
0.

00
7

33
0

19
6

98
66

.9
4

69
.5

2
70

.9
4

0.
02

13
4

93
62

.2
3

67
.2

5
72

.3
1

0.
07

7
34

0
19

6
96

10
6.

00
11

1.
17

11
5.

80
0.

04
13

8
88

97
.0

5
10

6.
57

12
1.

10
0.

12
7

35
0

19
6

84
10

1.
94

12
7.

22
15

1.
45

0.
16

14
2

75
83

.9
5

11
5.

96
15

4.
61

0.
25

7
36

0
19

6
30

73
1.

33
58

8.
39

19
61

.3
0

0.
72

14
6

24
82

5.
00

55
2.

13
23

00
.5

4
0.

78

7
37

0
19

6
46

94
53

.7
4

49
13

.0
7

10
68

0.
59

1.
14

15
1

44
94

99
.4

5
48

11
.5

4
10

93
5.

32
1.

17
7

38
3

19
6

39
11

9.
28

17
5.

08
44

8.
92

3.
61

15
5

32
99

.9
1

14
8.

62
46

4.
44

3.
68

7
40

8
19

6
2

24
1.

00
30

69
.6

4
15

34
82

.0
0

7.
20

16
3

2
24

1.
00

28
51

.4
9

14
25

74
.5

0
7.

41
7

41
12

19
6

25
31

9.
60

10
82

.8
0

43
31

.2
0

11
.9

5
16

7
20

22
7.

25
96

4.
22

48
21

.1
0

12
.1

5
7

42
16

19
6

11
10

21
.6

4
80

0.
08

72
73

.4
5

16
.8

4
17

1
9

11
32

.0
0

77
7.

80
86

42
.2

2
16

.8
7

7
43

21
19

6
30

47
4.

53
20

64
.8

4
68

82
.8

0
18

.2
1

17
5

25
40

9.
64

19
55

.8
5

78
23

.4
0

18
.5

0
7

44
27

19
6

8
14

10
.2

5
24

20
.7

9
30

25
9.

88
23

.1
7

17
9

8
14

10
.2

5
23

13
.1

1
28

91
3.

88
23

.4
6

7
45

36
19

6
60

13
1.

95
21

7.
98

36
3.

30
36

.4
4

18
3

55
12

3.
58

21
2.

42
38

6.
22

36
.5

3
7

46
51

19
6

89
12

3.
63

14
0.

61
15

7.
99

51
.2

2
18

7
88

12
2.

69
13

9.
54

15
8.

57
51

.2
7

7
47

79
19

6
92

76
.9

9
90

.9
0

98
.8

0
79

.0
8

19
1

92
76

.9
9

90
.5

0
98

.3
7

79
.0

8

Core Fault Tolerance 143

Ta
bl

e
4.

17
–

A
na

ly
si

s
of

Te
rm

in
at

io
n

C
on

di
tio

n:
a

=
7;

a
.n

an
d
a
.n

:
D
y
n
a
m
ic

a
.n

a
.n

:
D
y
n
a
m
ic

a
n

f m
tc

%
f m

ce
f
m

ce
t

ce
t/

%
f m

f̄
tc

%
f m

ce
f
m

ce
t

ce
t/

%
f m

f̄

7
29

0
20

3
10

0
2.

58
2.

58
2.

58
0.

00
20

3
10

0
2.

58
2.

58
2.

58
0.

00
7

33
0

23
1

99
68

.4
8

70
.1

1
70

.8
2

0.
01

23
1

99
68

.4
8

70
.1

1
70

.8
2

0.
01

7
34

0
23

8
97

10
7.

49
11

2.
60

11
6.

08
0.

03
23

8
10

0
11

5.
80

11
5.

80
11

5.
80

0.
00

7
35

0
24

5
89

11
0.

85
13

3.
56

15
0.

07
0.

11
24

5
93

12
6.

17
14

1.
23

15
1.

86
0.

07
7

36
0

25
2

35
68

9.
03

62
6.

45
17

89
.8

6
0.

67
25

2
67

87
4.

70
97

3.
69

14
53

.2
7

0.
35

7
37

0
25

9
50

94
97

.4
4

53
33

.2
6

10
66

6.
52

1.
01

25
9

61
87

60
.8

5
58

75
.3

4
96

31
.7

0
0.

86
7

38
3

26
6

49
14

4.
90

21
3.

10
43

4.
90

3.
51

26
6

51
15

8.
33

21
9.

08
42

9.
57

3.
49

7
40

8
28

0
3

25
6.

00
37

94
.9

2
12

64
97

.3
3

6.
49

28
0

5
20

99
.0

0
58

79
.7

8
11

75
95

.6
0

4.
52

7
41

12
28

7
30

34
1.

67
14

28
.6

8
47

62
.2

7
11

.4
8

28
7

43
55

7.
74

18
20

.6
8

42
34

.1
4

11
.0

6
7

42
16

29
4

19
80

9.
53

11
69

.8
9

61
57

.3
2

16
.1

9
29

4
50

12
30

.9
6

17
10

.8
4

34
21

.6
8

15
.6

9

7
43

21
30

1
36

46
7.

92
24

03
.0

3
66

75
.0

8
17

.4
5

30
1

50
61

7.
30

31
42

.5
9

62
85

.1
8

15
.8

7
7

44
27

30
8

15
13

22
.8

7
34

56
.6

4
23

04
4.

27
20

.1
4

30
8

23
13

34
.4

8
45

34
.6

1
19

71
5.

70
17

.1
6

7
45

36
31

5
74

18
2.

92
25

7.
32

34
7.

73
36

.2
7

31
5

89
28

2.
49

31
7.

25
35

6.
46

36
.1

1
7

46
51

32
2

97
13

9.
81

14
9.

32
15

3.
94

51
.0

5
32

2
99

14
9.

73
15

2.
15

15
3.

69
51

.0
1

7
47

79
32

9
98

91
.7

2
97

.9
9

99
.9

9
79

.0
2

32
9

99
97

.0
5

99
.9

4
10

0.
95

79
.0

1

144 4.9 Experiments and Analysis

Ta
bl

e
4.

18
–

A
na

ly
si

s
of

Te
rm

in
at

io
n

C
on

di
tio

n:
a

=
8;

N
o

C
on

di
tio

n
an

d
d
k
n

:
k

=
6

N
o

C
on

di
tio

n
k
n

:
k

=
6

a
n

f m
tc

%
f m

ce
f
m

ce
t

ce
t/

%
f m

f̄
tc

%
f m

ce
f
m

ce
t

ce
t/

%
f m

f̄

8
41

0
M

ax
10

0
11

.8
4

11
.8

4
11

.8
4

0.
00

24
6

10
0

11
.8

4
11

.8
4

11
.8

4
0.

00
8

42
0

M
ax

10
0

5.
70

5.
70

5.
70

0.
00

25
2

10
0

5.
70

5.
70

5.
70

0.
00

8
43

0
M

ax
10

0
54

.8
5

54
.8

5
54

.8
5

0.
00

25
8

10
0

54
.8

5
54

.8
5

54
.8

5
0.

00
8

44
0

M
ax

10
0

43
.4

1
43

.4
1

43
.4

1
0.

00
26

4
10

0
43

.4
1

43
.4

1
43

.4
1

0.
00

8
45

0
M

ax
10

0
28

5.
76

28
5.

76
28

5.
76

0.
00

27
0

61
17

6.
79

21
6.

30
35

4.
59

0.
39

8
46

0
M

ax
10

0
11

83
.6

2
11

83
.6

2
11

83
.6

2
0.

00
27

6
5

23
8.

00
27

4.
10

54
82

.0
0

0.
95

8
47

0
M

ax
88

18
23

.5
6

17
09

.0
4

19
42

.0
9

0.
12

28
2

42
15

93
.8

8
10

94
.9

1
26

06
.9

3
0.

67
8

48
0

M
ax

66
30

30
.7

6
28

83
.6

7
43

69
.2

0
0.

40
28

8
20

40
38

.1
0

18
06

.6
2

90
33

.1
0

1.
23

8
49

2
M

ax
58

22
93

.9
7

21
89

.7
6

37
75

.4
5

2.
48

29
4

22
13

26
.5

5
21

15
.4

5
96

15
.6

8
2.

86
8

50
4

M
ax

61
45

14
.9

5
38

89
.2

0
63

75
.7

4
4.

47
30

0
15

17
22

.5
3

23
37

.1
2

15
58

0.
80

5.
25

8
51

6
M

ax
10

0
34

.3
4

34
.3

4
34

.3
4

6.
00

30
6

99
19

.9
8

22
.8

4
23

.0
7

6.
01

8
52

8
M

ax
12

43
19

.6
7

24
52

.9
3

20
44

1.
08

9.
96

31
2

3
22

36
.3

3
32

45
.5

8
10

81
86

.0
0

8.
43

8
53

13
M

ax
18

49
56

.7
2

30
48

.4
9

16
93

6.
06

13
.8

5
31

8
0

0.
00

14
99

.6
9

0.
00

14
.3

8
8

54
17

M
ax

53
30

04
.1

5
22

45
.9

3
42

37
.6

0
17

.4
8

32
4

12
70

5.
58

24
65

.4
0

20
54

5.
00

15
.3

2
8

55
21

M
ax

40
37

85
.9

5
29

17
.3

6
72

93
.4

0
21

.6
3

33
0

4
33

13
.2

5
18

20
.4

8
45

51
2.

00
21

.0
3

8
56

26
M

ax
35

47
20

.8
0

24
03

.1
4

68
66

.1
1

26
.6

5
33

6
2

26
00

.0
0

31
45

.6
7

15
72

83
.5

0
21

.5
8

8
57

32
M

ax
45

35
66

.8
9

28
53

.0
7

63
40

.1
6

32
.5

5
34

2
12

19
44

.5
0

23
22

.3
2

19
35

2.
67

30
.7

6
8

58
40

M
ax

94
15

96
.1

0
15

70
.5

0
16

70
.7

4
40

.0
6

34
8

37
83

9.
35

10
96

.6
7

29
63

.9
7

39
.9

1
8

59
49

M
ax

12
28

50
.6

7
26

26
.5

3
21

88
7.

75
49

.9
1

35
4

1
11

28
.0

0
24

46
.6

1
24

46
61

.0
0

44
.0

4
8

60
60

M
ax

68
82

9.
16

74
5.

45
10

96
.2

5
60

.9
2

36
0

36
46

0.
53

24
61

.5
6

68
37

.6
7

49
.7

9
M

ax
8

61
86

10
0

60
0.

32
60

0.
32

60
0.

32
86

.0
0

36
6

60
28

5.
42

38
3.

05
63

8.
42

86
.4

0
8

62
12

6
M

ax
10

0
17

6.
85

17
6.

85
17

6.
85

12
6.

00
37

2
94

14
0.

55
16

1.
08

17
1.

36
12

6.
24

Core Fault Tolerance 145

Ta
bl

e
4.

19
–

A
na

ly
si

s
of

Te
rm

in
at

io
n

C
on

di
tio

n:
a

=
8;

k
a
2

:
k

=
4

an
d
k
(n
/a

2
)

:
k

=
20

0

k
a
2

:
k

=
4

k
(n
/a

2
)

:
k

=
20

0

a
n

f m
tc

%
f m

ce
f
m

ce
t

ce
t/

%
f m

f̄
tc

%
f m

ce
f
m

ce
t

ce
t/

%
f m

f̄

8
41

0
25

6
10

0
11

.8
4

11
.8

4
11

.8
4

0.
00

12
8

10
0

11
.8

4
11

.8
4

11
.8

4
0.

00
8

42
0

25
6

10
0

5.
70

5.
70

5.
70

0.
00

13
1

10
0

5.
70

5.
70

5.
70

0.
00

8
43

0
25

6
10

0
54

.8
5

54
.8

5
54

.8
5

0.
00

13
4

95
49

.1
2

53
.3

6
56

.1
7

0.
05

8
44

0
25

6
10

0
43

.4
1

43
.4

1
43

.4
1

0.
00

13
7

98
41

.0
6

43
.2

1
44

.0
9

0.
02

8
45

0
25

6
57

17
0.

19
21

0.
44

36
9.

19
0.

43
14

0
24

11
4.

25
13

9.
95

58
3.

13
0.

76

8
46

0
25

6
4

23
2.

00
25

5.
04

63
76

.0
0

0.
96

14
3

0
0.

00
14

3.
00

0.
00

1.
00

8
47

0
25

6
38

12
06

.8
4

89
1.

76
23

46
.7

4
0.

73
14

6
24

15
67

.2
5

81
5.

88
33

99
.5

0
0.

87
8

48
0

25
6

19
41

12
.5

3
17

80
.7

2
93

72
.2

1
1.

24
15

0
11

38
15

.2
7

14
06

.6
9

12
78

8.
09

1.
36

8
49

2
25

6
19

13
48

.3
2

20
96

.6
3

11
03

4.
89

2.
87

15
3

16
14

49
.6

3
13

47
.4

9
84

21
.8

1
3.

24
8

50
4

25
6

14
17

57
.9

3
21

09
.2

2
15

06
5.

86
5.

40
15

6
12

16
46

.8
3

20
31

.7
4

16
93

1.
17

5.
40

8
51

6
25

6
99

19
.9

8
22

.3
4

22
.5

7
6.

01
15

9
99

19
.9

8
21

.3
7

21
.5

9
6.

01
8

52
8

25
6

3
22

36
.3

3
31

10
.2

9
10

36
76

.3
3

8.
54

16
2

2
18

28
.0

0
23

59
.2

8
11

79
64

.0
0

9.
43

8
53

13
25

6
0

0.
00

14
82

.1
5

0.
00

14
.3

4
16

5
0

0.
00

10
12

.1
8

0.
00

14
.9

6
8

54
17

25
6

12
70

5.
58

22
23

.4
7

18
52

8.
92

15
.7

0
16

8
5

34
4.

40
16

73
.9

0
33

47
8.

00
16

.7
2

8
55

21
25

6
3

32
18

.6
7

15
68

.2
7

52
27

5.
67

21
.4

8
17

1
2

85
3.

50
13

95
.3

1
69

76
5.

50
21

.7
3

8
56

26
25

6
1

27
74

.0
0

28
97

.9
9

28
97

99
.0

0
22

.1
6

17
5

1
27

74
.0

0
24

60
.6

7
24

60
67

.0
0

23
.2

7
8

57
32

25
6

9
14

83
.3

3
20

60
.5

8
22

89
5.

33
31

.4
8

17
8

4
17

17
.0

0
17

06
.2

0
42

65
5.

00
32

.5
7

8
58

40
25

6
32

80
3.

59
10

39
.0

9
32

47
.1

6
39

.9
8

18
1

21
74

8.
48

78
9.

86
37

61
.2

4
41

.0
1

8
59

49
25

6
0

0.
00

19
19

.5
0

0.
00

46
.5

4
18

4
0

0.
00

12
05

.5
9

0.
00

50
.1

3
8

60
60

25
6

26
40

9.
27

23
16

.6
1

89
10

.0
4

50
.8

0
18

7
20

36
5.

15
20

85
.9

5
10

42
9.

75
52

.3
7

8
61

86
25

6
51

25
0.

49
33

3.
23

65
3.

39
86

.5
1

19
0

46
24

3.
61

29
9.

21
65

0.
46

86
.5

8
8

62
12

6
25

6
91

13
1.

77
15

2.
29

16
7.

35
12

6.
36

19
3

83
11

7.
23

14
4.

33
17

3.
89

12
6.

68

146 4.9 Experiments and Analysis

Ta
bl

e
4.

20
–

A
na

ly
si

s
of

Te
rm

in
at

io
n

C
on

di
tio

n:
a

=
8;

a
.n

an
d
a
.n

:
D
y
n
a
m
ic

a
.n

a
.n

:
D
y
n
a
m
ic

a
n

f m
tc

%
f m

ce
f
m

ce
t

ce
t/

%
f m

f̄
tc

%
f m

ce
f
m

ce
t

ce
t/

%
f m

f̄

8
41

0
32

8
10

0
11

.8
4

11
.8

4
11

.8
4

0.
00

32
8

10
0

11
.8

4
11

.8
4

11
.8

4
0.

00
8

42
0

33
6

10
0

5.
70

5.
70

5.
70

0.
00

33
6

10
0

5.
70

5.
70

5.
70

0.
00

8
43

0
34

4
10

0
54

.8
5

54
.8

5
54

.8
5

0.
00

34
4

10
0

54
.8

5
54

.8
5

54
.8

5
0.

00
8

44
0

35
2

10
0

43
.4

1
43

.4
1

43
.4

1
0.

00
35

2
10

0
43

.4
1

43
.4

1
43

.4
1

0.
00

8
45

0
36

0
76

20
6.

49
24

4.
67

32
1.

93
0.

24
36

0
76

20
6.

49
24

4.
67

32
1.

93
0.

24

8
46

0
36

8
8

27
5.

13
36

0.
57

45
07

.1
3

0.
92

36
8

8
27

5.
13

36
0.

57
45

07
.1

3
0.

92
8

47
0

37
6

49
18

40
.5

5
13

37
.9

8
27

30
.5

7
0.

57
37

6
75

21
34

.4
1

19
65

.8
0

26
21

.0
7

0.
28

8
48

0
38

4
23

36
62

.7
8

18
78

.0
8

81
65

.5
7

1.
20

38
4

69
43

63
.3

9
37

72
.0

2
54

66
.7

0
0.

54
8

49
2

39
2

25
14

95
.0

0
25

52
.7

9
10

21
1.

16
2.

63
39

2
44

17
38

.3
6

37
91

.6
3

86
17

.3
4

2.
01

8
50

4
40

0
16

17
48

.2
5

25
94

.6
8

16
21

6.
75

5.
10

40
0

48
39

83
.2

9
51

12
.1

4
10

65
0.

29
3.

67

8
51

6
40

8
99

19
.9

8
23

.8
6

24
.1

0
6.

01
40

8
99

19
.9

8
23

.8
6

24
.1

0
6.

01
8

52
8

41
6

4
39

09
.0

0
37

79
.8

9
94

49
7.

25
7.

84
41

6
11

38
76

.9
1

67
78

.7
3

61
62

4.
82

4.
49

8
53

13
42

4
2

33
46

.0
0

16
62

.0
7

83
10

3.
50

14
.2

3
42

4
8

47
01

.1
3

33
46

.3
0

41
82

8.
75

12
.0

7
8

54
17

43
2

16
11

00
.0

0
28

14
.6

4
17

59
1.

50
14

.7
2

43
2

33
21

51
.1

8
45

37
.0

4
13

74
8.

61
12

.0
7

8
55

21
44

0
7

24
83

.0
0

22
44

.9
5

32
07

0.
71

20
.1

0
44

0
25

30
24

.1
2

47
33

.5
9

18
93

4.
36

15
.0

6

8
56

26
44

8
2

26
00

.0
0

36
81

.1
1

18
40

55
.5

0
20

.1
8

44
8

17
47

30
.6

5
63

05
.1

2
37

08
8.

94
13

.8
1

8
57

32
45

6
16

21
37

.9
4

28
68

.5
1

17
92

8.
19

29
.0

3
45

6
38

30
44

.9
2

54
67

.7
8

14
38

8.
89

21
.0

0
8

58
40

46
4

42
88

5.
93

11
58

.1
7

27
57

.5
5

39
.8

7
46

4
79

13
15

.5
2

17
70

.4
5

22
41

.0
8

38
.2

0
8

59
49

47
2

4
16

66
.7

5
31

81
.0

3
79

52
5.

75
40

.4
0

47
2

11
24

74
.6

4
74

17
.0

4
67

42
7.

64
17

.7
0

8
60

60
48

0
44

48
2.

75
28

84
.1

0
65

54
.7

7
46

.8
8

48
0

56
66

7.
82

35
40

.5
0

63
22

.3
2

42
.5

6

8
61

86
48

8
67

32
2.

15
42

6.
75

63
6.

94
86

.3
3

48
8

82
44

5.
79

48
1.

34
58

7.
00

86
.1

8
8

62
12

6
49

6
97

15
1.

77
16

5.
45

17
0.

57
12

6.
12

49
6

99
16

5.
39

17
1.

72
17

3.
45

12
6.

04

Core Fault Tolerance 147

Summary

The analysis of the effects of schemes to determine a suitable termination condition for the

evolutionary algorithm have shown that the initial value needs to be sufficiently large to find

the first improvement in fitness, after which the best result is to dynamically increase the

termination condition when the fitness improves. The simplest calculation for the initial

termination condition which gives a sufficiently high value to successfully find the first

improvement in fitness is to multiply the array dimension by the number of nodes in the

graph. The dynamic increase is achieved by taking the number of generations between

the last improvement in fitness and multiplying by 10.

4.10 Conclusions

The experiments presented in this chapter were designed to ensure that the model and

evolutionary algorithm defined in this chapter can produce mappings that exhibit good core

fault tolerance and determine suitable sizes of array and application process graph for the

following experiments.

Initial placement algorithms have been shown to be effective in producing mappings with a

good distribution of idle cores across the many-core array and will continue to be used in

later experiments to create the zero generation population along with random mappings.

Experiments have demonstrated that the evolutionary algorithm using the optimization

objective of fault tolerance was effective in finding mappings with minimum fitness values.

The evolutionary algorithm has also been able to find mappings with zero fitness for the

optimal combinations of graph sizes and array sizes.

An evolution has been traced from the initial mapping to its final zero fitness mapping

demonstrating the ability of the evolutionary algorithm to produce graceful amelioration in

terms of improving the fault tolerance of the many-core array.

Experiments have been able to identify which combinations of graph sizes and array sizes

are trivial or interesting problems. In general, when there are four or less idle cores there

are few unique solutions that are repeated many times so the evolutionary algorithm is able

to find a near optimal solution with relatively low computational effort. Also as a general

rule, for a given array size, the mapping problem is trivial for graphs with four nodes fewer

than the size of the optimal, zero fitness graph.

Experiments in the following chapters will use an array size of 6 × 6 which finding good

fault tolerant mappings is a sufficiently challenging problem for the evolutionary algorithm

while being small enough to make run time practical for performing large numbers of tests.

An application process graph size of 26 has been found to be optimal for a 6× 6, being the

largest application process graph that has a fault tolerance fitness of zero.

148 4.10 Conclusions

Chapter 5

Network Power

Having explored the ability of the evolutionary algorithm to find solutions that minimize the

objective of core fault tolerance, a second objective of network power is introduced with the

aim of finding solutions that simultaneously minimize both the core fault tolerance and the

network power objectives.

The fault tolerance objective of the previous chapter has the effect of evenly distributing

idle cores amongst the processing cores, which has the effect of pushing processing cores

away from each other. The power objective of this chapter will have the effect of bring

processing cores closer together to reduce the length of paths between pairs of communi-

cating cores. The effects of the fault tolerance and power objectives are conflicting which

gives an interesting solution space for multi-objective searches, compared to objectives

which are closely aligned.

Adding a second objective requires the expansion of the evolutionary algorithm to accom-

modate multiple objectives, which in turn requires a change to the evolutionary cycle.

ComPair is added to the many-core model, a sorting method for multi-objective solution

spaces (see Subsection 5.4.1). Additional genomic representations are also added to the

evolutionary algorithm and an exploration of the parameters to control the behaviour of the

multi-objective evolutionary algorithm is carried out to establish the best combination of

genomic representation and evolutionary algorithm parameters to make the multi-objective

evolutionary algorithm as efficient as possible.

The calculation of the power objective requires the introduction of a new concept, the

ComPair, that is added to the many-core model.

When a search space has two or more objectives the solution space has a Pareto Front,

at set of solutions that are all considered to be equally good.

Problem Description

Given a fault free many-core array with R rows and C columns and an application process

graph with Va processes where Va < RC, arrange the processing cores and idle cores

to minimize the cost of task migration in the event of the failure of a processing core

while simultaneously minimising the overall amount of power consumed by network traffic.

Network power will be defined explicitly in Section 5.3.

150 5.1 Communicating Core Pair (ComPair)

5.1 Communicating Core Pair (ComPair)

A pair of processes from an application process graph connected by an edge will cause

data traffic to flow between the cores in the many-core array that the processes are mapped

to. The two cores in the many-core array where the processes are located are referred

to as a communicating core pair or ComPair. Since the application process graph is a

directed graph each ComPair will have a source node from where data traffic originates

and a target node, where the data is received for use by the target process. For this work,

the assumption is made that traffic will use a path of minimal length between the source

and the target of the ComPair subnet.

The ComPair is introduced in this chapter to support the calculation of the power metric

presented in Section 5.3. ComPairs will also be used extensively in the calculation of traffic

metrics presented in Chapter 6.

Definition: Given an edge of an application process graph and the source node and target

node of the edge, a ComPair consists of the two cores of the many-core array to which the

source node and target node have been mapped. The ComPair has a subnet that consists

of all the routing nodes and links between and including the node where the source core is

located and the node where the target core is located.

Between the source and target nodes of a ComPair there will one or more minimal length

paths, which are paths where each step in the path gets closer to the target node. In this

work metrics are based on minimal length paths.

Once an application process graph has been mapped to a many-core array there will be

as many ComPairs in the array as there are edges in the application process graph. Note

that a physical link of the many-core array may carry traffic from multiple ComPairs.

The properties of a ComPair are given in Table 5.1 and those of a ComPair subnet inTable 5.2.

As an example, two ComPairs that are created by mapping the application process graph

of Figure 4.2 to a 6× 6 many-core array, are illustrated in Figure 5.1.

Note that when discussing ComPairs, they will usually be referred to by the symbol Q,

taken to mean any unspecified ComPair. When it is necessary to associate a ComPair

with an edge in the application process graph the ComPair will be referred to by the symbol

Qe, where e represents the specific edge of the application process graph that generates

the ComPair in the many-core array.

The number of rows and columns in a ComPair subnet can be calculated from the source

and target locations using equations 5.1 and 5.2.

Rq = |tr − sr|+ 1 (5.1)

Network Power 151

i P12

P2

P9

P4

i

P7

P3

i

P8

P15 i

P5 i P10 P14 P17 P22

P6 P11 P18 i i P23

i P13 P19 P21 P24 P26

P1 P16 i P20 P25 i

(a) Subnet for the ComPair with
source node P4 and target node
P19

i P12

P2

P9

P4

i

P7

P3

i

P8

P15 i

P5 i P10 P14 P17 P22

P6 P11 P18 i i P23

i P13 P19 P21 P24 P26

P1 P16 i P20 P25 i

(b) Subnet for the ComPair with
source node P6 and target node
P15

Figure 5.1 – ComPair and subnet examples. Source nodes are coloured light
orange, target nodes coloured dark orange and the subnets are bounded by a
dashed blue line.

Cq = |tc − sc|+ 1 (5.2)

The number of links in a ComPair subnet is given by Equation 5.3.

Ql = Rq(Cq − 1) + (Rq − 1)Cq (5.3)

The number of shortest length paths from the source node to the target node of a ComPair

subnet that is fault free is given by Equation 5.4 as explained in Section 6.7. If there are

faulty links in the subnet then the number of links can be calculated using the recursive

algorithm described in Section 6.7.

Pq =
(Rq − 1)(Cq − 1)!

(Rq − 1)!(Cq − 1)!
(5.4)

The path length of a ComPair in terms of the number of links on a shortest length path

between the source and target nodes of is given by Equation 5.5.

Pq = (Rq − 1) + (Cq − 1) (5.5)

152 5.2 Link Criticality

Table 5.1 – ComPair Properties

Name Description
Qe The ComPair representing edge e of the application process graph
Qs The source node of ComPair Q
Qlocs The location of the source node of ComPair Q within the array
sr The row of the source location
sc The column of the source location

Qt The target node of ComPair Q
Qloct The location of the target node of ComPair Q within the array
tr The row of the target location
tc The column of the target location

Rq The number of rows of nodes in ComPair Q
Cq The number of columns of nodes in ComPair Q

Ql The path length of the ComPair in terms of the number of links on the
shortest path between the source and target nodes

Pq the number of shortest length paths between the source and target nodes
Qd The network load for the ComPair taken from dn for the edge en of the

application process graph that the ComPair represents

Table 5.2 – ComPair Path and Link Properties

Name Description
Pq The set of unique shortest length paths between the source and target

nodes of the ComPair Q
Pq The number of shortest length paths in the set |Pq|
pn The nth path of ComPair Q

L(q) The set of links in the subnet of ComPair Q
Lq The number of links in set |L(q)| in the subnet of ComPair Q
ln The nth link of ComPair Q

5.2 Link Criticality

The many-core array architecture described in Section 4.2 uses a lattice of routers for

transmission of traffic through the network. Traffic from the source to the target of a

ComPair will be transmitted as a number of packets which will pass through a series of

routers, each with a buffer where received packets are temporarily stored before being

forwarded to the next router.

Link criticality is a method of categorizing the effect that the failure of a physical link can

have on traffic in a ComPair. The classification of a link is specific to a ComPair, so can

have different criticalities for each ComPair subnet that it is part of. A link is classified as

one of the three following types defined by the effect its failure will have on the transmission

Network Power 153

of data in the ComPair subnet of which is is part:

• Critical Links

• Significant links

• Normal links

Each of these three types of links will be explained below with reference the the graphs in

Figure 5.2. When developing the metrics it will become apparent that the number of paths

that use each link will be important in the calculation of the metric. The edges of the graphs

in Figure 5.2 are labelled with the number of paths that use each link.

Critical Link

A critical link is a link where all paths from the source to the target pass through the link,

such that a fault will cause complete failure of communication. Figures 5.2a and 5.2b

illustrate subnets with critical links, shown in red, where the failure of a single link causes

complete communication failure. Traffic that passes through a critical link is described as

critical traffic.

If, for ComPair Q, there are Pq paths between the source and target nodes and there are

lnp paths through link ln, then link ln is defined as a critical link by Equation 5.6, i.e. when

the number of paths through the link is equal to the total number of paths between the

source node and target node of the ComPair.

ln is critical ⇔ lnp = Pq (5.6)

154 5.2 Link Criticality

0,0 0,11

(a) Critical Link of length 1

0,0 0,11 0,21

(b) Critical Link of length 2

0,0 0,11

1,0

1

1,1

1

1

(c) Network with 2 Significant
Links

0,0 0,12

1,0

1

0,21

1,1

1

1,2

1

1 2

(d) Network with 3 Significant
Links

0,0 0,12

1,0

1

0,21

1,1

1

0,31

1,3

1

1 1,22 2

(e) Network with a single Link fault and 5 Significant Links

0,0 0,11

1,0

1

0,21

1,1

2

0,31 0,41

1,4

1

1 1,22 1,32 2

(f) Network with a 2 Link faults and 7 Significant Links

Network Power 155

0,0 0,13

1,0

3

0,21

1,1

2

1,2

1

2

2,0

1

2

2,1

2

2,2

3

1 3

(g) Network with 4 Significant
Links

0,0 0,11

1,0

1

0,21

1,2

1

2,0

1

2,2

1

2,11 1

(h) Network with a 4 Link faults
and 6 Significant Links

0,0 0,11

1,0

1

0,2

1,1

1

1,21 2

(i) Network with 2 Link faults, 2 Significant
Links and 1 Critical Link

Figure 5.2 – Networks illustrating Critical and Significant links

Where:
Pq = The total number of paths of the ComPair subnet.

ln = The lth link of the Ql links in the ComPair subnet.

lnp = The number of paths through link ln of ComPair Q.

Ql = The number of links in the ComPair subnet.

Significant Link

A significant link is a link which is the only link from its source node and is a link where

only a (proper) subset of paths from the source to the target pass through the link i.e. not

all paths use pass through the link, as defined by Equation 5.7:

ln is significant ⇔ (lnp < Pq) ∧ (lsout = 1) (5.7)

156 5.2 Link Criticality

Where:
Pq = The total number of paths of the ComPair subnet.

ln = The lth link of the Ql links in the ComPair subnet.

lnp = The number of paths through link ln of ComPair Q.

Ql = The number of links in the ComPair subnet.

lsout = The number of outbound edges of source node ls

ls = The source node of link l

A faulty significant link will sever the paths that use the link while still leaving one or more

viable paths that do not use the faulty link. Traffic that passes through a significant link

is described as significant traffic. A fault in a significant link will potentially cause some

packets to be lost where packets are stored in the buffers of routers that have become

disconnected from the target node due to the appearance of the fault. Figures 5.2c and

5.2d illustrate subnets where there are significant links shown by orange arrows. Packets

will be lost when the routing node attempts to transmit packets through the link after the

link has failed.

A significant link exists when it is on the only path from its routing node to the target node

of the ComPair but the path it is on is not the only path between the ComPair. Failure of

a significant link will create a dead end path of arbitrary length causing the loss of packets

that travel down the "dead end". A router only has knowledge of the status of directly

connected links so each router will continue to route packets down the dead end until the

loss of packets is detected and propagated back up the path until the router at the head

of the dead end path is reached. The router at the head of the dead end will eventually

establish that packets are not being received through that path so will modify its behaviour

to only send packets down the alternative path, thereby maintaining communication. The

loss of a significant link will redistribute traffic to other links which may in turn create bottle-

necks and reduce the overall performance of the system. In some case, for example in

figures 5.2 (c), (d), (e), (f), (h) and (i), bit not (g), the loss of a significant link will have the

effect of changing the criticality of other links from significant to critical, making the network

vulnerable to further link failure.

Notice that a ComPair subnet will contain as least one critical link or two significant links.

This can be confirmed by considering the target node: if there is only one inbound link to

the target node then it must be a critical link, if there are two inbound links to the target

node then they must both be significant links since failure of either link will cause packet

loss.

Normal Link

A Normal Link is a link whose failure does not cause the loss of transmission of packets,

more specifically it is a link whose routing node has more than one outgoing link to the

target of the ComPair. A normal link is defined by Equation 5.8:

ln is significant ⇔ (lsout = 2) (5.8)

Network Power 157

Where:
ln = The lth link of the Ql links in the ComPair subnet.

lsout = The number of outbound edges of source node ls

ls = The source node of link l

Traffic that passes through a normal link is described as normal traffic. Figures 5.2c to 5.2i

illustrate subnets where normal links are shown by black arrows.

Failure of a normal link has no negative effect on the transmission of packets because the

routing node it is connected to has a choice of two links for the transmission of packets.

Given that the router has knowledge of the status of its directly connected links it is able to

transmit packets along the remaining healthy link when one link fails. Each of the two links

are on distinct, alternative paths from the source to the destination.

5.3 Network Power Metric and Objective

Communication traffic is a major contributor to power consumption in a many-core array.

The total traffic flow within the many-core array can be used as an approximation for power

consumed by communication traffic. This section defines a simple network power metric

and objective.

Problem Description

Given a mapping of an application process graph, with Eg edges, to a many core array

and the corresponding Eg ComPairs that this mapping creates, define a metric that gives

an approximation to the power consumed by the traffic generated by a ComPair and an

objective that gives a measure of the total power consumed by the network traffic for whole

many-core array.

The power consumed by traffic between a ComPair, for a given router/NoC architecture, is

a function of both the traffic volume and the distance in terms of routing nodes and links

that the traffic has to traverse between the source and target nodes. Reducing the total

network traffic of all ComPairs will reduce the power consumption of the many-core array.

The volume of traffic between each ComPair is determined by the application and cannot

be influenced by the many-core system whereas the distance the traffic has to travel is

dependent on the relative position of the source and target nodes of each ComPair, which

is under the control of the many-core system through task migration and remapping.

At this stage in the development of the metrics, a simple calculation based only on the

ComPair path length is preferred to a more accurate calculation involving the path length

and the traffic volume taken from the application process graph. A more accurate power

metric and objective will be developed in Chapter 6.

158 5.4 Many-Core Evolutionary Algorithm

5.3.1 Distance Between Communicating Core Pairs

As a first approximation for power consumption due to network traffic, the power metric for

a simple ComPair is defined as the path length of the ComPair as defined by Equation 5.5

in Section 5.1.

The distance between a ComPair is the rectilinear distance between the source and target

nodes and, assuming minimal length paths, represents the number of links the data will

travel through from the source node to the target node. Faults on paths between the

source and target have no effect on the length of the path that the data will travel along,

providing the faults do not sever all paths between the source and target. For a ComPair

q with source location Q(sr,sc) and target location of Q(tr,tc) the ComPair Path Length

metric (i.e the distance between the source node and the target node) Mcpplq is given by

Equation 5.9.

Mcpplq = |(sr − tr)|+ |(sc − tc)| (5.9)

5.3.2 Simple Power Objective

The power objective is to minimize the total power consumption across the whole network.

A power consumption of zero is assigned to the power objective when the source and

target of a ComPair are adjacent, equivalent to the ComPair path length minus 1. If the

source and target nodes of every ComPair are adjacent then the value for the mapping will

be zero. The power objective is given in Equation 5.10.

Jsp =

Eg∑
q=0

(Mcpplq − 1) (5.10)

5.4 Many-Core Evolutionary Algorithm

To enable multi-objective search of the solution space, the evolutionary cycle of Chapter 4

has to be extended and additional genomic representations introduced.

The individual elements of the evolutionary algorithm, listed below, will be discussed in the

remaining sections of this chapter.

• Pareto Front Sorting

• The Evolutionary Cycle

• Phenome and Genome

Network Power 159

5.4.1 Pareto Front Sorting

Pareto front sorting is a method of dividing the individuals of a population into sets using

the values of the objectives, such that the individuals in each set are considered to be

equivalent and the sets themselves form a hierarchy. The individuals in each set are said

to belong to the same Pareto front while the Pareto fronts can be arranged in a ordered list

which are numbered, with the best individuals in the first Pareto front also referred to as

the Pareto optimal front (Pf1).

5.4.1.1 Definition of Pareto Front

Sorting a population into a series of Pareto front relies on the concept of dominance

between individuals in the population. Deb (1999) [175] credits Steuer (1986) [176] with

the following definition of domination:

For a problem having more than one objective function (say, fj , j = 1, . . . ,M) and M > 1),

a solution x(1) is said to dominate the other solution x(2) if both the following conditions are

true:

1. The solution x(1) is no worse (say the operator ≺ donates worse and � denotes

better) than x(2) in all objectives, or fj(x
(1)) ⊀ fj(x

(2)) for all j = 1, 2, . . . ,M

objectives.

2. The solution x(1)is strictly better than x(2) in at least one objective, or fj(x
(1)) �

fj(x
(2)) for at least one j ∈ {1, 2, . . . ,M}.

The concept of dominance is then used to define Pareto fronts. A non-dominated Pareto

front is a set of individuals, all of which are not dominated by any other individual. If

the non-dominated set is removed from the population of individuals and designated Pf1,

then the new reduced population will have a non-dominated set of individuals, which can

be removed and labelled Pf2. This procedure can be repeated until all individuals of the

population have been allocated to a Pareto front.

The Pareto fronts so formed have a strict hierarchy where the individuals in Pf1 are better

solutions than those in Pf1 and so on. Individuals in Pf1 are considered better than those

in Pf2 because each individual in Pf2 is dominated by at least one individual in Pf1. Within

each Pareto front the individuals are considered to be equivalent, that is one individual

cannot be said to be better than another, based on the values of the objectives. The

individuals within a Pareto front are not all identical and there may be attributes of the

individuals, other than the objective values used in Pareto front sorting, that can be used

to differentiate the individuals.

A more formal definition of Multi-Objective problems, Pareto dominance, Pareto optimality,

Pareto optimal set and Pareto optimal front can be found in Wang et al. (2014) [177].

160 5.4 Many-Core Evolutionary Algorithm

5.4.1.2 Significance of Pareto Fronts

Pareto fronts are significant because they allow a set of individuals from a population to be

identified as better than the rest of the population. In the case of an evolutionary algorithm

obtaining the Pareto front of each generation is an important step in the evolutionary cycle

because the Pareto optimal front represents the best individuals from that generation. It is

important for the evolutionary algorithm to know which are the best solutions so that they

can be used to create the next generation via mutation.

Because the evolutionary algorithm requires the Pareto front to each generation to be

identified, Pareto front sorting is carried out once for each generation, making the efficiency

of Pareto front sorting an important topic. With a population of 100 and a 1000 generations

Pareto front sorting will be carried out at least 1000 times on a population of 100 individuals

during the evolutionary process.

Deb et al.’s paper of 2002 [178] presents the NSGAII sorting algorithm that requires in the

order of O(MN2) comparisons, where M is the number of objectives and N is the number

of individuals.

Jensen’s (2003) [179] algorithm improves upon Deb et al.’s NSGAII run-time with a run-time

of O(N(logN)M−1) in the worst case. However, Jensen makes an assumption that no

two individuals will have the same value for any of the objectives. However, when two

individuals share a value for one of the objectives the Pareto fronts calculated by Jensen’s

algorithm can be erroneousFortin and Parizeau [180, 181].

Fang et al., 2008 [181], developed a data structure that they refer to as a dominance tree to

avoid making unnecessary comparisons between individuals, with an estimated run-time

complexity of O(MN logN) with O(MN2) in the worst case.

Fortin and Parizeau (2013) [180] correct the problems and generalize Jensen’s algorithm

for the case where individuals share an objective value. The number of comparisons

required for Fortin and Parizeau’s algorithm are given as O(N(logN)) in the best case,

when every objective for every individual is identical, due to sorting the data as preparation

for the Pareto front sorting, O(N(logN)M−1) in the general case and O(MN2) in the

worst case.

Buzdalov et al. (2015) [182] proposed a number of modifications to Fortin and Parizeau’s

algorithm resulting in a proven number of comparisons of O(N(logN)M−1) in the worst

case.

5.4.2 Evolutionary Cycle

In this chapter the many-core evolutionary algorithm has been extended to a multi-objective

evolutionary algorithm, the implementation of which, allows for the selection of the objec-

tives to be controlled by parameters. Note that, if only a single objective is selected, as

Network Power 161

will be the case for early experiments, then the implementation will function as a single

objective evolutionary algorithm.

5.4.2.1 The Cycle

The evolutionary cycle is implemented as a series of populations, summarised in Table 5.3.

Table 5.3 – Evolutionary Algorithm Populations

Population Description
Initial The initial population which is provided to the evolutionary

cycle as a starting point for evolution.

Generation Zero The first primary population created by evaluating and sorting
the initial population and is the starting point for evolution.

Primary The population that is the product of each evolutionary cycle
(and the starting point for the next cycle).

Intermediate The population created through cloning and genetic manipu-
lation of the primary population of the previous evolutionary
cycle, possibly with the addition of a number of new randomly
created individuals.

Fitness Evaluated The intermediate population after the objectives have been
evaluated.

Sorted The fitness evaluated population sorted using a Pareto front
sorting algorithm.

Pareto Front Zero
(Pf0)

A population that, at the end of each cycle, is guaranteed to
contain the Pareto front obtained from all individuals from all
generations.

The extended multi-objective evolutionary algorithm is implemented as the evolutionary

cycle illustrated in Figure 5.3 the additional population .

5.4.2.2 Initial Population

The initial population is composed of a combination of engineered mappings (discussed

in Subsection 4.8.3) and random mappings. The initial population is located in the bottom

left of the Figure 5.3. Once the individuals of the initial population have been created,

their metrics are evaluated and the population is sorted to produce the generation zero

population, the first primary population. The size of the initial population is governed by the

population size parameter, Pz.

162 5.4 Many-Core Evolutionary Algorithm

5.4.2.3 Generation Zero Population

The generation zero population is the result of the evaluation and sorting of the initial

population and is the first primary population which is used as the starting point of the

evolutionary process. The name generation zero is given to this population to distinguish it

from all other primary populations that are created through the evolutionary process.

5.4.2.4 Primary Population

The primary population is the population produced at the end of each evolutionary cycle

and is also the population that is produced on completion of the evolutionary algorithm.

The primary population is the population that is used as the starting population for each

evolutionary cycle. In the Figure 5.3 the primary population is represented as the green

box in the bottom right of the diagram. Outside of this section the primary population will

normally be referred to simply as the population.

The size of the primary population is determined by the population parameter, Pz, which is

the minimum number of individuals copied from the sorted population, to create each new

primary population. If the population Pf0 (see Subsubsection 5.4.2.8) becomes larger than

Pz then the primary population is allowed to grow dynamically so it contains at least the

individuals of Pf0.

Primary
Population

Intermediate
Population

S
e

le
ct

io
n

an
d

M
u

ta
tio

n

Objective
Evaluation

Selection
of Fittest

Pareto
Front
Zero

Pf0 + Pf1
Sort and
Select

Initial
Population

Sorted
Population

Fitness
Evaluated
Population

Objective
Evaluation

P
a

re
to

 F
ro

n
t

S
o

rt
in

g

Figure 5.3 – Evolutionary Algorithm Cycle

5.4.2.5 Intermediate Population

The intermediate population is created by selection and mutation of individuals from the pri-

mary population. The creation of the individuals in the intermediate population, illustrated

in Figure 5.4, is controlled by the following parameters:

Network Power 163

Elite Individuals

The elite parameter, Pe , is used to specify the minimum number of fittest individuals of the

input population that are copied directly to the new intermediate population. If the number

of individuals in Pf0 is more than the value of the elite parameter, then all the individuals of

Pf0 are added to the intermediate population.

Descendants

The number of individuals specified by the Parents parameter, Pp, are selected from the

input population. The Descendants parameter, Pd, determines how many times each

parent is copied and mutated before being added to the intermediate population.

Novel

The novel parameter, Pn, determines how many new randomly generated individuals are

added to the intermediate population.

1

16
15
14
13
12
11

10
9
8
7
6
5
4
3
2

i1

i10
i9
i8
i7
i6
i5
i4
i3
i2

1

10
9
8
7
6
5
4
3
2

20
19
18
17

i11

i14
i13
i12

i27

i20
i19
i18
i17
i16
i15

i30
i29
i28

i21

i26
i25
i24
i23
i22

Clones

Descendants

Novel

Parents

x 2

Elite

Primary
Population

Intermediate
Population

Figure 5.4 – Population Selection and Mutation, using 4 elite
individuals, 6 parents mutated twice each and 4 novel individuals,
to create an intermediate population of size 20.

164 5.4 Many-Core Evolutionary Algorithm

The size of the intermediate population is determined by the evolution parameters using

Equation 5.11. Since the number of individuals regarded as elite is the greater of the elite

parameter or the number of individuals in Pf0 , the intermediate population is not limited

the intermediate population to be the same size as the primary population.

Qz =

Pe + (Pp × Pd) + Pn, if Pe ≥ |Pf0|

|Pf0|+ (Pp × Pd) + Pn, otherwise
(5.11)

5.4.2.6 Fitness Evaluated Population

Once the intermediate population has been created, the objectives for each individual need

to be evaluated in preparation for sorting the population. The fitness evaluated population

contains the same individuals as the intermediate population with the evaluated objectives

added to each individual.

Some of the objectives, for example excess traffic, require detailed analysis of the volume

of traffic that flows through each link in each ComPair making evaluation a lengthy process.

5.4.2.7 Sorted Population

Pareto front sorting is a method of dividing the individuals of a population into sets using

the values of the objectives, such that the individuals in each set are considered to be

equivalent and the sets themselves form a hierarchy. The individuals in each set are said

to belong to the same Pareto front while the Pareto fronts can be arranged in an ordered,

numbered list with the best individuals in the first Pareto front denoted by Pf1.

The Pareto front sorting algorithm takes as input the fitness evaluated population and

produces as output the sorted population.

The sorted population is used as input into the process that selects the fittest individuals

to produce the primary population. The process of selecting and copying individuals to

the primary population must ensure that when the Pareto front is complete the individual

remain sorted. This ensures that the selection and mutation process that creates the

intermediate population does not need to sort the population of individuals.

5.4.2.8 Pareto Front Zero (Pf0)

In the evolutionary cycle it is possible that points on Pf1 of one generation may be omitted

from the population of the next generation even though they would qualify for inclusion of

Pareto optimal front of the new generation. This happens when the number of points on

the Pareto optimal front is greater than the number of elite individuals, Pe, then some of

the points on the the Pareto optimal front will be lost when the elite individuals are copied

to the intermediate population. It is also possible that after a large number of generations

the number of points on the Pareto optimal front exceeds the primary population size.

Network Power 165

As it is undesirable to lose any individuals from the Pareto optimal front without them first

being dominated by a new individual a separate population contains all the points from

the Pareto optimal front regardless of how many points are on the front. This additional

population has been given the name Pareto Front Zero (Pf0) to distinguish it from Pf1 of

each individual generation.

Pf0 is maintained as an additional population to the primary population. Once the inter-

mediate population has been sorted and the individuals on the Pareto optimal front are

copied into Pf0. Pf0 is then subjected to a Pareto sort to determine which individuals are

still in Pf1. Only the individuals on the Pareto optimal front of Pf0 are retained. All other

individuals are removed from Pf0.

5.4.2.9 Population Evolution Parameters

The size of the primary population and the intermediate population are determined by the

properties and evolution parameters given in Table 5.4.

Table 5.4 – Population Properties and Parameters

Parameter Description
P The primary population
Q The intermediate population
Pz Primary population size
Qz Intermediate population size
Pe Number of elite Individuals
Pp Number of parents
Pd Number of descendants
Pn Number of novel Individuals
Pv Number of non-viable individuals created before abandonment of a

process that creates new individuals

5.4.3 Phenome and Genome

In addition to the genome using a direct phenomic representation described in Subsubsec-

tion 4.8.2.2, this section describes an additional two genome representations are added

here which are then compared to original representation.

5.4.3.1 Genome - String Representing Absolute Position

Genomic Representation

This representation is based on the typical genomic representation that uses a string of

bits to represent the genes. For programming simplicity, integers are used in preference to

a string of bits to represent a gene, so that the genome is represented by an ordered list

of integers. The length of the list, the number of genes in the genome, is the number

166 5.4 Many-Core Evolutionary Algorithm

of processes in the application process graph, Vp, so that each gene in the genome

represents a specific process from the application process graph. The processing nodes

of the application process graph are numbered sequentially, so each gene in the list

will represent the corresponding process in the list of processing nodes, ensuring that

each process is represented exactly once in the genome. The alleles of the genetic

alphabet represent the position of the gene in the phenome so consist of the set of numbers

{1, 2 . . . ,P}, where P is given by Equation 5.12.

P = |P | = Prows · Pcols (5.12)

Phenomic Representation

The value of each gene is an allele from the genetic alphabet which, as defined above, are

integers that represent each position in the array. The alleles, through expression of the

genome, translate to a two dimensional Cartesian coordinate within the phenome. Given a

phenome P composed of the set of phenes {p1 . . . pP}, the Cartesian coordinates of the

phene in the phenome can be calculated from the gene value using the formulae given in

equations 5.13 and 5.14.

c = gn (mod Prows) (5.13)

r =
gn − c

Pcols
(5.14)

An example of mapping 12 process to a 4× 4 array is illustrated in Figure 5.5.

P1 P3P2i

iP6P5P4

P9P8P7i

P12iP11P10

Gene Allele Node

1 1 0,0
2 3 0,2
3 4 0,3
4 5 1,0
5 6 1,1
6 7 1,2
7 10 2,1
8 11 2,2
9 12 2,3
10 13 3,0
11 14 3,1
12 16 3,3

Figure 5.5 – Genome Absolute Position Mapping

Other than for the special case where the number of processes in the application process

graph is the same as the number of nodes in the many-core array, the length of the gene

will always be less than the number alleles in the genetic alphabet. An allele can appear

in a single gene, in multiple genes or in none of the genes. The value of the each gene is

interpreted as the preferred target phene of the phenome. If the target phene is unavailable

Network Power 167

because it either has a failed status or already has a process mapped to it then a search

is made for the nearest idle core which ensures that expression of the genome results in a

valid phenome.

Permutation

Permutation, in this representation, does not affect the alleles represented in the genome,

it can only reorder those alleles that are in the original genome. The location of idle cores

and processing cores remain unchanged, while the processes are rearranged among the

processing cores. This will limit the genetic diversity reducing the ability of this genetic

operator to produce only a fraction of possible mappings.

If all alleles are unique then, selecting and swapping two genes will cause corresponding

two phenes in the phenome to be swapped, giving good correlation.

When an allele appears more than once in the genome the first allele will map to the

preferred target phene. Each time the same allele appears in the genome the target phene

will not be available, having already been used. The allele will therefore be mapped to the

nearest available phene which will cause a larger change in the phenome.

If all genes have the same allele, then swapping a pair of genes will have no effect giving

poor correlation.

If only one allele is represented in the genome then all but one phene will be relocated

away from the preferred target which is likely to produce very poor correlation between the

genome and the phenome.

Permutation has poor correlation and poor genetic diversity, making this an unsuitable

genetic operator.

Mutation

Mutation is implemented by randomly selecting a gene and then randomly selecting a new

allele for the selected gene. If the new allele was not present in the original genome,

then the expression of the mutated genome will produce a phenome where a process has

been swapped with an idle core, giving good correlation. If the new allele already exists

in the genome then the expression of the mutated genome is likely to produce a phenome

exhibiting multiple changes, giving poor correlation.

Figure 5.6 shows how a single mutation, where the gene for process 8 has been changed

from 11 to 14, results in process 8 being located at (3, 1) which in turn causes process 11

to be relocated to position (3, 2), resulting in three phenes being altered.

Crossover

Crossover can be implemented by selecting two parents and randomly selecting sections

of each genome to combine. The difficulty with this genetic operator is that there will be little

evidence of either parent in the resulting phenome. The first block of alleles will produce a

recognisable correspondence with the phenome for the parent, however each subsequent

block of genes will become increasingly "scrambled" in the phenome as duplicate alleles

168 5.4 Many-Core Evolutionary Algorithm

P1 P3P2i

iP6P5P4

P9iP7i

P12P11P8P10

Gene Allele Node

1 1 0,0
2 3 0,2
3 4 0,3
4 5 1,0
5 6 1,1
6 7 1,2
7 10 2,1
8 14 2,2
9 12 2,3
10 13 3,0
11 14 3,1
12 16 3,3

Figure 5.6 – Genome Absolute Position Mutation

are discovered and relocated giving particularly poor correlation. For this reason crossover

is not considered to be a reasonable genetic operator to use.

Correlation

As noted above the correlation between the genome and phenome is not fixed, but is

dependent on the diversity of alleles in the genome, the position of the gene that is changed

and the genetic operator used to produce new individuals. Consideration of the above

genetic operators leads to the conclusion that mutation will maintain the best diversity of

alleles and the best correlation between the genome and phenome.

Even when mutation is used, many mutations will have poor correlation between the genome

and phenome.

5.4.3.2 Genome - String Representing Relative Position

Genomic Representation

The string representation with relative positioning has the same length of the genome and

uses the same alphabet of alleles that are used by the absolute positioning genome. The

difference between the two representations is in the interpretation of the values of alleles.

In the relative positioning representation, the alleles represent the number of available

positions from the previously placed process to the placement of the current process.

Phenomic Expression

For the first gene in the genome, the phenome is scanned, starting from position (0, 0) of

the phenome, for phenes containing the idle phene which can be replaced by a process

phene. Counting the first idle phene as 1, idle phenes are counted until the count reaches

the number corresponding to the value of the allele in the gene. The phenome is scanned

using a left to right raster scan and when the last phene has been scanned the scan wraps

around to continue at (0, 0). The phene, thus found, has the idle phene replaced by the

Network Power 169

P1 P3P2i

iP6P5P4

P9P8P7i

P12iP11P10

Gene Allele Node

1 1 0,0
2 2 0,2
3 1 0,3
4 1 1,0
5 1 1,1
6 1 1,2
7 3 2,1
8 1 2,2
9 1 2,3
10 1 3,0
11 1 3,1
12 2 3,3

Figure 5.7 – Genome Relative Position Mapping

process phene represented by the position of the gene in the genome.

After the first gene is expressed, the next gene is similarly expressed but with the start

position in the phenome being the phene immediately after the phene that has just been

replaced with a process.

A change of allele of a gene will change the place where the process is placed within

the phenome. It will also affect the placement of all remaining processes which results in

all genetic operators producing poor correlation. Figure 5.7 illustrates a relative position

genome that produces the same phenome as the absolute position genome in Figure 5.5.

P1 P3P2P11

iP6P5P4

iiP7P12

P10P9P8i

Gene Allele Node

1 1 0,0
2 2 0,2
3 1 0,3
4 1 1,0
5 1 1,1
6 1 1,2
7 3 2,1
8 4 2,2
9 1 2,3
10 1 3,0
11 1 3,1
12 2 3,3

Figure 5.8 – Genome Relative Position Mutation

Genetic Operators

As explained above, all genetic operators produce poor correlation due to the fact than any

change to a gene in the genome will affect the expression of all remaining genes in the

genome. Consequently there is little to choose between the genetic operators. To allow a

comparison with the absolute position genome the mutation operator will be used and will

170 5.5 Exploring Evolutionary Algorithm Parameters

function identically to the mutation operator of the absolute position genome.

Figure 5.8 shows the effect of a mutation for process 8 from 1 step to 4 steps. The

relocation of process 8 causes all remain processes (9-12) to be relocated resulting in

six phenes being changed. This example illustrates how a single mutation in the genome

can have a significant effect on the phenome giving poor correlation.

5.5 Exploring Evolutionary Algorithm Parameters

This set of experiments are designed to explore the parameters that control the evolution-

ary algorithm to establish a suitable set of parameters for later experiments.

It is important to select a combination of genomic representation and associated parame-

ters that maximise the efficiency of finding high quality solutions. The selection of genomic

representation and the values of parameters used by the evolutionary algorithm can signifi-

cantly affect the EA’s ability of finding good solutions within an acceptable time frame. Initial

experiments are designed to guide selection of the genomic representation and establish

appropriate parameters for the evolutionary algorithm.

The number of combinations of evolutionary parameters is so large that it is impossible to

exhaustively test all the combinations of parameters that are of interest. The order in which

the parameters are explored is, to some extent, arbitrary. The approach taken is to explore

combinations of a small number of related parameters while keeping the other parameters

fixed, use the results to select a set of values that appear to work well together, then fix

these parameters and move on to another set of related parameters to explore.

The evolutionary algorithm will be used in single objective mode for both core fault tolerance

and network power to explore combinations of population size, number of generations and

genome representation to determine parameters that are appropriate for both objectives.

5.5.1 Core Fault Tolerance Objective

For each combination of graph size and array size there is a minimum discovered fitness

for the core fault tolerance objective that the evolutionary runs can find sufficiently often to

make this a good indicator of the performance of the evolutionary algorithm parameters.

This allows the results of these experiments to be expressed in terms of the number of

evolutions that found the minimum discovered fitness. The number of evolutions that find

the minimum discovered fitness is represented by fm.

The result tables for the core fault tolerance experiments will use the column headings

which are explained in Table 5.5.

The application process graph used in this set of experiments is illustrated in Figure 5.9.

Network Power 171

Table 5.5 – Explanation of Table Columns

Column Description
Evols: The number of evolutions.
Gens: The number of generations.
Pop: The population size.
EA: The genomic representation rd=Random; ph=phenome, sa=string;

absolute position; sr=string, relative position.
mr: The mutation rate m=fixed rate; g=Gaussian distribution; with the following

number r representing the maximum mutation rate.
a: The size of the array in terms of the dimension of one side of the array.
n: The number of nodes in the application process graph being mapped to

the array.
fm: The number of evolutions that found the minimum possible fitness.
%fm: The percentage of evolutions that found a solution with the minimum

fitness.
cefm : The average computation effort of those evolutions that found a mapping

with the minimum fitness. This calculation ignores any evolutions that did
not find a mapping with the minimum fitness. It does not say anything
about the evolutions that failed to find a mapping with the minimum fitness.
A lower figure is more desirable.

amd: The absolute mean deviation of the computational effort.
sd: The standard mean deviation of the computational effort.

P1

P2

3

P9

16

P3
14

P417

P10

1

P6
20

P74

16

P5

17

1

P16

4

P19

8

P819

19

11

24

P12

24

24

P13

17

P17
19

P18

12

P118

16

2

P20

2

16

P14
19

24

P21

8

19

24

P1517

19

12

24

P22
20

P2417
12

17

P23

14

11

4

6

P25

3

20

8

8 2
1

1

16 P26
23

1

5

3

16

Figure 5.9 – Graph ’dag0026’ - A 26 Node Application Process Graph

5.5.1.1 Effect of Population Size with Core Fault Tolerance Objective

The first exploration is to determine the effect of variations in the number generations and

population size, while keeping the total number of evolutions constant. A mutation rate of

m1 (a single mutation) is used in theses experiments.

Seven combinations of generations and population size are used, while keeping the num-

172 5.5 Exploring Evolutionary Algorithm Parameters

Table 5.6 – EA Parameter Exploration Test Parameters

Parameter Value

Environment 6x6

Array Size 6x6
Graph size 26
Graph dag0026
Evolutions 100
Individuals 100,000
Elite The greater of 10% of the population or all individuals in pf1
Parents 20%
Descendants 4
Novel 10%
Mutation m1

ber of evaluated individuals fixed at 100,000. Fixing the total number of evaluated individu-

als imposes a computational budget on the evolutionary process, which will be necessary

in an embedded system - the target platform for this work. A fixed computational budget

also ensures that the experiments are comparing like for like so that direct comparison of

the results is valid. The number of evolutions is set to 100 for the collection of statistical

data. The combinations of generations and population are tested against each of the three

genomic representations using a fixed single mutation to produce new individuals from a

parent.

A random generation of 100,000 individuals is included as a benchmark to ensure that the

evolutionary algorithm performs better than random generation.

The evolutionary algorithm parameters used are given in Table 5.6 and the results are

given in table Table 5.7.

The random generation of 100,000 individuals failed to find the minimum value for core fault

tolerance, while all of the evolutionary algorithm experiments did find the minimum value.

One evolutionary algorithm experiment (relative positioning phenome with population size

10) found the minimum value in 40% of evolutions, which appears to be an anomaly

compared to all the other experiments that found the minimum value in at least 86% of

evolutions. This confirms that the evolutionary algorithm is significantly better than random

generation and that there is sufficient randomness in the evolutionary algorithm search of

the solution space to find good solutions.

The statistical measures of absolute mean deviation (AMD) and standard deviation (SD)

generally follow the average computational effort so, to compare experiments, only the

percentage of experiments that found the minimum value and the average computation

effort that it took to find the value need to be considered. The difference between AMD and

SD is only in the magnitude of the values; they are identical for the purposes of comparing

Network Power 173

Table 5.7 – Effect Population Size with Core Fault Tolerance Objective

Evols Gens Pop EA mr a n fm %fm cefm amd sd

100 1000 100 rd m1 6 26 0 0 0 0 0
100 10000 10 ph m1 6 26 93 93 3357 4251 9876
100 5000 20 ph m1 6 26 100 100 6425 5813 9504
100 2000 50 ph m1 6 26 99 99 8776 8182 12336
100 1000 100 ph m1 6 26 96 96 11411 10133 15370
100 800 125 ph m1 6 26 95 95 15746 16100 21613
100 500 200 ph m1 6 26 86 86 15207 15256 19696
100 400 250 ph m1 6 26 88 88 20474 19266 23977
100 10000 10 sa m1 6 26 90 90 6640 7099 11282
100 5000 20 sa m1 6 26 86 86 2679 2482 3811
100 2000 50 sa m1 6 26 95 95 2395 1614 2432
100 1000 100 sa m1 6 26 99 99 5628 5326 11033
100 800 125 sa m1 6 26 99 99 5284 4303 9687
100 500 200 sa m1 6 26 98 98 6259 4507 9261
100 400 250 sa m1 6 26 99 99 4619 1648 2758
100 10000 10 sr m1 6 26 40 40 23866 21564 26501
100 5000 20 sr m1 6 26 95 95 19841 18341 23530
100 2000 50 sr m1 6 26 100 100 11714 9312 14218
100 1000 100 sr m1 6 26 97 97 10676 8104 12511
100 800 125 sr m1 6 26 100 100 10465 7225 12249
100 500 200 sr m1 6 26 99 99 10103 5822 9561
100 400 250 sr m1 6 26 100 100 10520 6073 8935

Objective: Core Fault Tolerance.
Number of evaluated individuals fixed at 100,000.

Population sizes 10 - 250.

experiments which confirms that AMD can be used in preference to SD without loss of

information and since the computation of AMD is significantly simpler than for SD, AMD is

the preferred statistical method for this work.

The results are grouped by genomic representation each of which have a different results

profile.

Analysis

The value of %fm obtained by the ph genomic representation peaks for a population

size of 20 with a value of 100% although the difference for populations between 20 and

125 is not significant, indicating that any of the population sizes in this range are good

choices. This pattern can be explained by larger populations allowing for more genetic

variation in each generation, while the decrease in the number of generations brings

the evolutionary process to a premature halt. These two processes, acting in opposite

directions result in poor performance for small and large populations while producing a

higher performance region for population sizes between the two extremes. The average

174 5.5 Exploring Evolutionary Algorithm Parameters

computational effort generally increases as the population size increases, except for the

small dip for the population of 200, suggesting that, as the population size increase, the

number of generations it takes to find the minimum solution increases.

The value of %fm obtained by the sa genomic representation is almost 100% for popula-

tions between 100 and 250. Changes to the sa genome will often cause multiple changes

to the phenome, which will cause greater variation of descendants. The results suggest

that the larger phenomic variation has a more significant effect with populations larger than

50 resulting in more evolutions finding the best fitness. The average computational effort

is also lower than for the ph genomic representation, which indicates that the minimum

solutions are being found faster due to the larger changes to the phenome.

The value of %fm obtained by the sr genomic representation has consistently high values

of %fm for all population sizes except the population size of 10 and are similar to the

values for sr. Since the phenomic variation resulting from changes to the sr genome is

also greater than the ph genome, these experiments confirm that the greater phenomic

variation is responsible for the improved results.

The two string based genomic representations seem to work equally well with the middle

and large population sizes. The phenomic representation works best will the middle pop-

ulations, suggesting that the middle populations will perform more consistently in a wider

range of situations.

Summary

For the mutation rate of m1 which give a single point mutation per generation, the sa and

sr genomes give high performance across the whole range of population size while the ph

representation performs best in the middle population sizes. The lower correlation of the

sa and sr genomes with the phenome results in larger changes to the phenome for the m1

mutation rate compared to the highly correlated ph genome.

5.5.1.2 Effect of Mutation Rate with Core Fault Tolerance Objective

The mutation rate controls the number of changes made to the genome to create a new

individual. If the changes are too small then the solutions may become confined to a

localised area, while changes that are too large will be little better than randomly generated

individuals.

This group of experiments will compare a single point mutation with Gaussian distributions

with a range of upper limits.

For these experiments a population size of 100 has been chosen based on the results of the

experiments in the previous section. The number of evolutions has been increased to 200

to provide a larger number of data points for the collection of statistics. The evolutionary

algorithm parameters used for these experiments are in Table 5.8 and the results are in

Table 5.9

Network Power 175

Table 5.8 – EA Parameter Exploration Test Parameters

Parameter Value

Environment 6x6

Array Size 6x6
Graph size 26
Graph dag0026
Evolutions 200
Generations 1000
Population 100
Elite The greater of 10% of the population or all individuals in pf1
Parents 20%
Descendants 4
Novel 10%

Analysis

The value of %fm obtained by the ph genomic representation is 100% for mutation rates of

g10 and above and only sightly below this level for m1 and g5. The average computational

effort decreases with the increase in mutation rate. Taking these two measures together,

implies that a higher mutation rate is beneficial for performance in terms of the ability to

find an optimal solution and the number of generations required to find it.

The results for the sa and sr genomic representations both display better results for the

lower mutation rates than the higher mutation rates. In both cases the results for the

mutation rate of m1 are better that the results for all the other mutation rates.

Since the phenomic variation due to genomic changes is lower for ph than for sa which

is lower than that for sr, the ph genome requires a higher mutation rate than the other

representations to achieve the same phenomic variations. When the number of mutations

becomes too large, the resultant changes to the phenome become random in nature and

performance drops. This effect can be seen in the results of these experiments for the sa

than for sr genomes.

As the performance of sa and sr reduces, the average computational effort increases which

suggests that the larger changes to the phenomes is making solutions with good core fault

tolerance harder to find.

The higher mutation rate for ph improved for performance, while for sa and sr performance

was adversely affected. The choice of mutation rate is, therefore, dependent upon which

genomic representation is used; lower values are better with string representations and

higher values work better with the phenomic representation.

Summary

These results show that the ph genome outperforms the sa and sr genomes in terms of

how many evolutions found an optimal mapping and how quickly the mapping was found.

176 5.5 Exploring Evolutionary Algorithm Parameters

Table 5.9 – Effect of Mutation Rate with Core Fault Tolerance Objective

Evols Gens Pop EA mr a n fm %fm cefm amd sd

200 1000 100 ph m1 6 26 193 96.5 13242 13485 20463
200 1000 100 ph g5 6 26 197 98.5 10574 9755 14020
200 1000 100 ph g10 6 26 200 100.0 8930 9187 14590
200 1000 100 ph g12 6 26 200 100.0 7857 7594 13158
200 1000 100 ph g15 6 26 200 100.0 6303 5931 9366
200 1000 100 ph g20 6 26 200 100.0 4661 3472 5296
200 1000 100 sa m1 6 26 197 98.5 5286 4459 8576
200 1000 100 sa g5 6 26 191 95.5 6927 6174 11703
200 1000 100 sa g10 6 26 193 96.5 11957 9576 14264
200 1000 100 sa g12 6 26 184 92.0 12145 10004 15310
200 1000 100 sa g15 6 26 188 94.0 14319 10818 15162
200 1000 100 sa g20 6 26 184 92.0 16516 13031 18449
200 1000 100 sr m1 6 26 199 99.5 10471 7190 11548
200 1000 100 sr g5 6 26 199 99.5 14762 9604 15105
200 1000 100 sr g10 6 26 196 98.0 22859 13307 18313
200 1000 100 sr g12 6 26 190 95.0 26508 16638 21046
200 1000 100 sr g15 6 26 193 96.5 31611 18887 23595
200 1000 100 sr g20 6 26 167 83.5 37620 19450 23438

Objective: Core Fault Tolerance.
Number of evaluated individuals fixed at 100,000.

Generations: 1000, Population: 100.

This is due to the correlation of the genome and phenome making the same number of

changes to the phenome as a made to the genome.

The ph genome looks like a good choice for latter experiments with a mutation rate of at

least g10.

5.5.1.3 Effect of Population Size with Core Fault Tolerance Objective Revisited

We now return to the comparison of population size, but this time using a mutation rate of

g15. The sr genome is omitted because, while the experiments results were reasonable,

they are judged to be more erratic than the other two representations and the average com-

putation effort required is, overall, greater than for the other two genomic representations.

For these experiments a mutation rate of g15 has been chosen based on the results of the

experiments in the previous section. The evolutionary algorithm parameters used for these

experiments are in Table 5.10 and the results are in Table 5.11

The number of evolutions has been increased to 200 to increase the accuracy of the results

of the experiments.

Analysis

Network Power 177

Table 5.10 – EA Parameter Exploration Test Parameters

Parameter Value

Environment 6x6

Array Size 6x6
Graph size 26
Graph dag0026
Evolutions 200
Individuals 100,000
Elite The greater of 10% of the population or all individuals in pf1
Parents 20%
Descendants 4
Novel 10%
Mutation m1

The value of %fm obtained by the ph genomic representation is 100% for all populations

except for the population of 10 which is the smallest population. Compared to the results

using the m1 mutation rate the results obtain with the g15 mutation rate are significantly

better except for the population of 10. As observed in the Subsubsection 5.5.1.1 experi-

ments, the average computational effort increases with population size.

The results of these experiments shows a marked difference between the ph and sa

with the phenomic genome outperforming the string genome in both %fm and average

computational effort.

Summary

The conclusion from this set of experiments is that the combination of phenomic genome,

population of 100 and mutation rate of g15, gives a high level of performance and is a good

compromise compared to other high performing combinations.

5.5.2 Network Power Objective

In contrast to the core fault tolerance objective value, whose minimum value can be easily

established, the network power objective value is much more varied with a lower bound that

cannot be established with a high level of certainty. The number evolutions that find the

same minimum value of the network power objective is so low that statistics based on the

number of evolutions finding the minimum value are not useful. Instead these experiments

will use statistics based on the actual minimum fitness found and the computational effort

required to find the value.

Because there is not an established minimum value to find, each evolution will evaluate

all individuals in all generations specified by the evolutionary algorithm parameters. The

evolutionary algorithm has been designed to keep track of the generation in which the

178 5.5 Exploring Evolutionary Algorithm Parameters

Table 5.11 – Effect of Population Size with Core Objective

Evols Gens Pop EA mr a n fm %fm cefm amd sd

200 10000 10 ph g15 6 26 175 87.5 8128 8654 13665
200 5000 20 ph g15 6 26 200 100.0 3062 2598 4258
200 2000 50 ph g15 6 26 200 100.0 4845 4216 7214
200 1000 100 ph g15 6 26 200 100.0 5568 4825 7477
200 800 125 ph g15 6 26 200 100.0 7555 6944 12435
200 500 200 ph g15 6 26 200 100.0 8633 8104 12460
200 400 250 ph g15 6 26 200 100.0 7368 5827 9276
200 10000 10 sa g15 6 26 154 77.0 18632 16571 21526
200 5000 20 sa g15 6 26 141 70.5 13470 12962 18868
200 2000 50 sa g15 6 26 171 85.5 10812 8891 14442
200 1000 100 sa g15 6 26 181 90.5 11970 9370 13498
200 800 125 sa g15 6 26 186 93.0 13515 10643 16075
200 500 200 sa g15 6 26 193 96.5 17196 11211 16314
200 400 250 sa g15 6 26 190 95.0 15559 9760 14757

Objective: Core Fault Tolerance.
Number of evaluated individuals fixed at 100,000.

Population sizes 10 - 250.

minimum value of the whole evolution was found, which is then used as the computational

effort for finding the value.

The result tables for the network power experiments will use the column headings which

are explained in Table 5.12.

Table 5.12 – Explanation of Table Columns

Column Description
Evols: The number of evolutions.
Gens: The number of generations.
Pop: The population size.
EA: The genomic representation rd=Random; ph=phenome, sa=string;

absolute position; sr=string, relative position.
mr: The mutation rate m=fixed rate; g=Gaussian distribution; with the following

number representing the maximum mutation rate.
a: The size of the array in terms of the dimension of one side of the array.
n: The number of nodes in the application process graph being mapped to

the array.
f : The average of the minimum fitness found by each evolution.
ce: The computation effort required to find the minimum fitness.
cefm : The average computation effort of each evolution.
amd: The absolute mean deviation of the computational effort.
sd: The standard mean deviation of the computational effort.

Network Power 179

5.5.2.1 Effect of Population Size with Power Metric

Guided by the results of experiments in Subsection 5.5.1, the mutation rate is fixed at g15,

and the genomic representations are restricted to ph and sa while the population size is

varied from 10 to 250. The evolutionary algorithm parameters used for these experiments

are in Table 5.13 and the results are in Table 5.14.

Table 5.13 – EA Parameter Exploration Test Parameters

Parameter Value

Environment 6x6

Array Size 6x6
Graph size 26
Graph dag0026
Evolutions 100
Individuals 100,000
Elite The greater of 10% of the population or all individuals in pf1
Parents 20%
Descendants 4
Novel 10%
Mutation g15

Analysis

For the ph genome there is no clear correlation between the population size and the aver-

age minimum fitness found. The worst results were obtained from the smallest population

size of 10 and the best results from the population of size 20 with the population size of 100

having the median value. The average computational effort increases and the statistical

deviation reduces as the population size increases.

The population sizes of 200 and 250 have the 2nd and 3rd highest average minimum

fitness and highest computational effort. The poor average minimum fitness and high

computational effort implies that the lowest fitness was found by the evolution towards the

end of the evolution and so a greater number of generations may improve performance.

For the population size of 10, which has the worst average minimum fitness and the lowest

computational effort. This suggest that the best fitness solution was found early in the run

and the small population size prevented the evolutionary algorithm finding better mappings.

For the sa genome the average minimum fitness found tended to decrease, the computa-

tional effort increased, and the statistical deviation decreased with increasing population

size.

For population size 10 - 125 the ph genome outperformed the sa genome, while for popu-

lation sizes 200 and 200 the sa genome outperformed the ph genome.

These results have not provided a clear picture, so an additional set of experiments with a

180 5.5 Exploring Evolutionary Algorithm Parameters

Table 5.14 – Effect of Population Size with Power Objective 100K Individuals

Evols Gens Pop EA mr a n f ce amd sd

100 1000 100 rd m1 6 26 96.72 31099 31155 34206
100 10000 10 ph g15 6 26 48.43 37689 21311 25464
100 5000 20 ph g15 6 26 43.84 59495 20039 23527
100 2000 50 ph g15 6 26 43.90 66658 17292 20508
100 1000 100 ph g15 6 26 44.50 76144 13758 16632
100 800 125 ph g15 6 26 43.92 77588 13771 16297
100 500 200 ph g15 6 26 45.12 83240 10026 13020
100 400 250 ph g15 6 26 45.06 85838 9098 11676
100 10000 10 sa g15 6 26 50.99 48314 24730 28496
100 5000 20 sa g15 6 26 47.05 52762 19135 23462
100 2000 50 sa g15 6 26 45.88 60038 22754 26418
100 1000 100 sa g15 6 26 44.93 65280 20120 23457
100 800 125 sa g15 6 26 44.34 67118 19373 22798
100 500 200 sa g15 6 26 44.80 69352 13872 17756
100 400 250 sa g15 6 26 44.58 76145 14568 17096

Objective: Network.
Number of evaluated individuals fixed at 100,000.

Population sizes 10 - 250.

four fold increase in the computational budget to 400,000 evaluated individuals were run.

The results obtained from these experiments are in presented in Table 5.15.

The extended experiments show an overall improvement in performance with the average

minimum fitness reduced compared to the experiments with a smaller number of individu-

als. The improvement is small compared to the additional computation effort, which is four

times larger.

For both the ph genome and sa genome, the best average minimum fitness were obtained

with the largest population of 250 which also had the highest computational effort.

In terms of average minimum fitness, there is little difference in the results of ph genome

and sa genome, however the combination of good average minimum fitness and low

computational effort is best for the ph genome with population sizes 20,50 and 100.

Summary

Overall, the results suggest that finding an optimal solution for the network power objective

is much more difficult than for core fault tolerance. This reflects the comments at the

beginning of this section that the power objective values are much more varied and a

minimum value more difficult to identify.

There is not one "best" combination of genome and population size for finding a low

average minimum fitness and low computational effort, although the results indicate the the

choice of population size of 100 with a 1000 generations for an evolution remain reasonable

Network Power 181

Table 5.15 – Effect of Population Size with Power Objective 400K Individuals

Evols Gens Pop EA mr a n f ce amd sd

100 40000 10 ph g15 6 26 47.55 131698 91788 107801
100 20000 20 ph g15 6 26 41.72 144930 86280 105357
100 8000 50 ph g15 6 26 42.22 148142 82009 101741
100 4000 100 ph g15 6 26 41.24 197944 78968 90116
100 3200 125 ph g15 6 26 41.33 207313 83235 95525
100 2000 200 ph g15 6 26 41.84 234520 83188 96835
100 1600 250 ph g15 6 26 41.02 255648 72538 83791
100 40000 10 sa g15 6 26 47.33 178985 92941 110180
100 20000 20 sa g15 6 26 44.23 202843 103548 120952
100 8000 50 sa g15 6 26 42.75 219694 88250 104183
100 4000 100 sa g15 6 26 41.79 204852 87388 101112
100 3200 125 sa g15 6 26 41.93 211638 87319 101888
100 2000 200 sa g15 6 26 41.39 210178 85526 98039
100 1600 250 sa g15 6 26 40.97 241428 89078 101662

Objective: Network Power.
Number of evaluated individuals fixed at 400,000.

Population sizes 10 - 250.

choices.

5.5.2.2 Network Power and Mutation Rate

To explore the effect of mutation rate with the network power objective the population size

is fixed at 100 and the number of generations fixed at 2000, resulting in the evaluation of

200,000 individuals. The evolutionary algorithm parameters used for these experiments

are in Table 5.16 and the results are in Table 5.17.

Analysis

For both the ph genome and sa genome, the average minimum fitness and computational

effort increase with the mutation rate. The difference between the best performance for the

mutation rate m1, and the worst performance with mutation rate g20 is less than 10%. The

average minimum fitness is very similar for both genomes, while the computational effort

is generally lower for the ph genome.

Taking these results alongside those of Table 5.15, where better solutions are found with

larger population sizes, leads to the conclusion that, to find the best solution for the network

power objective, the best strategy is to use a large population, with single point mutations

and a large number of generations. This, however, is not generally an efficient strategy as

it involves the evaluation of a large number of similar individuals, and so is inappropriate

for more general multi-objective problems.

Summary

182 5.6 Core FT with Network Power Results

Table 5.16 – EA Parameter Exploration Test Parameters

Parameter Value

Environment 6x6

Array Size 6x6
Graph size 26
Graph dag0026
Evolutions 100
Generations 2000
Population 100
Elite The greater of 10% of the population or all individuals in pf1
Parents 20%
Descendants 4
Novel 10%

Finding minimum fitness solutions for the network power objective has proved to be signif-

icantly more difficult than find good fault tolerance mappings. The results imply that, by a

relatively small margin, the best strategy is to a mutation rate of m1, with a large population

size and since the benefit is margin for the power objective and is not compatible with the

results for the fault tolerance objective, the preferred choice of population size remains at

100 and the mutation rate remains at g15.

5.6 Core FT with Network Power Results

These experiments explore the effect of varying the graph size, for a given array size, for a

multi-objective problem.

The array size chosen is a 6 × 6 with application process graph sizes ranging from 24 to

34 processing nodes. The full set of evolutionary parameters can be found in Table 5.18.

The objectives chosen for these experiments are core fault tolerance and network power.

5.6.1 Data Presentation

In each experiment 100,000 individuals are evaluated and plotted using graded colours

representing the generation when the individual first appeared. The colour bar relating the

generation of creation to a colour is shown in Figure 5.10. The points of the last generation

are plotted first, and the first generation plotted last so that points in the early generations

are not masked by the points of later generations.

Plots of Individuals

The purpose of these experiments is to compare how the application process graph size

affects the fitness values of individuals. To facilitate a like for like comparison between plots

Network Power 183

Table 5.17 – Network Power Objective - Mutation Rate

Evols Gens Pop EA mr a n f ce amd sd

100 2000 100 ph m1 6 26 41.07 69363 41532 49607
100 2000 100 ph g5 6 26 41.38 81354 40581 48896
100 2000 100 ph g10 6 26 41.99 115823 43168 48898
100 2000 100 ph g12 6 26 42.00 122319 38853 45760
100 2000 100 ph g15 6 26 42.37 118742 34812 41633
100 2000 100 ph g20 6 26 43.07 141894 32964 38786
100 2000 100 sa m1 6 26 40.99 86817 44553 51588
100 2000 100 sa g5 6 26 41.78 99179 44531 53342
100 2000 100 sa g10 6 26 42.72 111966 45836 51826
100 2000 100 sa g12 6 26 42.80 112224 48522 54660
100 2000 100 sa g15 6 26 43.20 116688 45066 51731
100 2000 100 sa g20 6 26 44.65 122021 40422 48344

Number of evaluated individuals fixed at 200,000.
Generations: 2000, Population size: 100.

0 200 400 600 800 1000
Generation

Generation Colour Code

Figure 5.10 – Generations Colour Bar

the scale of the axes is identical for all plots. The scale and range have been chosen so

that all individuals for all graph sizes can be shown.

Two plots are shown for each graph size: figure (a) showing the whole dataset, with figure

(b) magnifying the bottom left hand corner of figure (a) to emphasise the points on the

Pareto front.

5.6.2 Results Analysis

Core Fault Tolerance Objective

We know from the single objective experiments in Chapter 4 that, for core fault tolerance

the minimum objective value is 0 for graph sizes up to 26, and then the minimum fitness

increases as the graph size continues to increase. Chapter 4 also gave an indication that

the range of fitness values increased as the graph size increased

Both of these patterns are also evident with multi-objective plots, where we see the points

moving away from ’Core FT = 0’ axis and expanding at the same time. This confirms

that the ability to find mappings with optimum core fault tolerance fitness has not been

184 5.6 Core FT with Network Power Results

Table 5.18 – Power with Core Fault Test Parameters

Parameter Value

Hardware Map Size 6 x 6

Many-Core Array Size 6 x 6

Many-Core Array Offset 0, 0
Number of Generations 1000
Population Size 100
Elite 10 fittest individuals cloned
Parents 20 fittest individuals used as parents
Descendants 4 from each parent via permutation
Novel 10 randomly generated individuals
Mutation Pattern g15

compromised by the move from single to multi-objective giving confidence that the multi-

objective evolutionary algorithm is performing well.

An additional feature that was not evident in the single objective experiments is that the

number of unique fitness values for core fault tolerance for the large graph of 34 nodes in

Figure 5.21a suddenly reduces compared to the graph with 33 nodes. The explanation is

that for a graph size of 34 there are only two idle cores. The number of unique placements

of two cores in a 6× 6 array is considerably smaller than for three idle cores.

Network Power Objective

The minimum values of the network power objective are lowest for the smallest graph sizes.

This is expected as the smaller graph sizes allows more options for placing ComPairs close

together, which reduces the network power objective values, while being able to maintain

good core fault tolerance properties.

The minimum values of the network power objective increase from graph size 24 to 25

and 26, followed by lower minimum values for graph sizes 27 and 28 before increasing

again. From Figure 4.14b in Chapter 4 we know that the solutions for some combinations

of array size and graph size are found quicker than for other combinations. In Figure 4.14b,

solutions the graph with 27 nodes were found particularly quickly, which is an indication

that this combination results in a large number of mappings with the optimal arrangement.

Although similar single object experiments were not carried out for the network power

objective, we can speculate that the same may be true for objectives other than core fault

tolerance and that this is the effect we are observing for the power objective for graphs of

size 27 and 28.

Network Power 185

(a) All individuals

(b) Pareto front Individuals

Figure 5.11 – Core FT with Performance, 24 Node Graph

186 5.6 Core FT with Network Power Results

(a) All individuals

(b) Pareto front Individuals

Figure 5.12 – Core FT with Performance, 25 Node Graph

Network Power 187

(a) All individuals

(b) Pareto front Individuals

Figure 5.13 – Core FT with Performance, 26 Node Graph

188 5.6 Core FT with Network Power Results

(a) All individuals

(b) Pareto front Individuals

Figure 5.14 – Core FT with Performance, 27 Node Graph

Network Power 189

(a) All individuals

(b) Pareto front Individuals

Figure 5.15 – Core FT with Performance, 28 Node Graph

190 5.6 Core FT with Network Power Results

(a) All individuals

(b) Pareto front Individuals

Figure 5.16 – Core FT with Performance, 29 Node Graph

Network Power 191

(a) All individuals

(b) Pareto front Individuals

Figure 5.17 – Core FT with Performance, 30 Node Graph

192 5.6 Core FT with Network Power Results

(a) All individuals

(b) Pareto front Individuals

Figure 5.18 – Core FT with Performance, 31 Node Graph

Network Power 193

(a) All individuals

(b) Pareto front Individuals

Figure 5.19 – Core FT with Performance, 32 Node Graph

194 5.6 Core FT with Network Power Results

(a) All individuals

(b) Pareto front Individuals

Figure 5.20 – Core FT with Performance, 33 Node Graph

Network Power 195

(a) All individuals

(b) Pareto front Individuals

Figure 5.21 – Core FT with Performance, 34 Node Graph

196 5.7 Conclusion

5.7 Conclusion

These results build on the results of the single objective experiments exploring the effect

of the size of an application process graph for a fixed many-core array size.

The result of the single objective and multi-objective experiments support each other,

giving confidence that the evolutionary algorithm is functioning well. Both sets of results

also show that the objective values do not follow a smooth path of change as the graph

sizes increase. For certain combinations of array size and graph size, it is easier to find

optimal solutions indicating that there are more optimal solutions in the solution set. This

effect was first observed in the single objective experiments for core fault tolerance, while

the multi-objective experiments indicate this is also true for the network power objective,

and by implication for other objectives. To confirm this, further work with single objective

experiments are required.

The ability of the evolutionary algorithm to find good quality mappings has been shown to

be superior to randomly generated mappings.

The evolutionary algorithm parameters have been explored in an attempt to find a set

of parameters that perform well in a range of situations. Different sets of parameters

performed better in different situations, so any single set of parameters is a compromise.

The set of parameters chosen for future experiments are:

• Population size: 100

• Generations: 1000

• Total individuals 100,000

• Mutation rate Gaussian with maximum of 15 mutations

• Genome type: Phenomic

Chapter 6

Link Fault Tolerance and Network
Traffic

This chapter extends the fault tolerance properties of mappings by adding fault tolerance

of links to the core fault tolerance defined in Chapter 4, for which a new textitLink Fault

Tolerance objective is added. The hardware links also feature in a new Network Traffic

objective, design to spread traffic evenly across the network.

A series of multi-objective experiments are run, using with pairs of objectives, to explore

the efficacy of the new objectives and also to establish the orthogonality between each pair

of objectives. The results of the experiments are used to select suitable objectives for the

final chapter.

The Link Fault Tolerance objective is designed to direct the search algorithm to find map-

pings that are tolerant to a faulty link and the Network Traffic objective, for which a variety

of metrics are proposed, is designed to direct the search algorithm to find mappings where

the traffic is evenly distributed across the many-core array. The simple power objective of

Chapter 5 is replaced with a more sophisticated and accurate Network Power objective.

To support the calculation of the new and revised metrics and to more accurately model a

many-core system, the model is also revised and extended. The application process graph

of Chapter 4 is revised and a hardware map and an environment map are added to model

multiple sources of data received by the application and multiple sinks for data produced by

the application, where the sources and sinks equate to interfaces between the many-core

array and external data sources, data sinks, sensors, actuators and neighbouring many-

core regions. The hardware map also maintains a real-time inventory of faulty cores and

faulty links.

6.1 Application Process Graph (APG)

This section extends the application process graph model given in Section 4.3 by adding

source and sink nodes which model interfaces to resources external to the circuitry of

198 6.1 Application Process Graph (APG)

the many-core system. Examples of external resources are memory systems, sensors,

controllers or neighbouring many-core array regions. As before, each process or interface

to an external resource, is represented as a node with data transfers between nodes

represented as edges. The nodes of the revised application process graph can be one

of the following types:

• a source node, an interface to an external source of data received by an APG

process, is a node that has no inbound edges

• a process node, has both inbound and outbound edges

• a sink node, an interface that is the recipient of data from an APG process, is a node

that has no outbound edges

S1

P116

P8
16

S2

P2

1

P723

P3
16

P4

20

P66

P13

21

2

P5

6

3

P17

14

P14
24

P1618

14

1

P10

4

P9
4

P11

22

P22

10

13

P128

5

20

16

16

21

12

P1512
P19

18

P18

3

9

15

17

P21
8

P20
20

P25
7

14

19

18

P23

14

P2414

P27

17

21

P28

9

13 K1

15

20

23 8

14

P26
22

13

22

11

16

10

13

Figure 6.1 – Sparsely connected graph with 2 source nodes, 28
processing nodes and 1 sink node.

As in Section 4.3 the graph G is represented as a tuple of the set of nodes, Vg, and the set

of edges, Eg:

G := (Vg, Eg) (6.1)

The set of nodes Vg is now the union of three distinct sets of nodes within the application

process graph: the set of source nodes Sg, the set of sink nodes Kg, the set of process

nodes Pg:

Each node in the APG is identified by a label: process nodes by Pn | 1 ≤ n ≤ Pg where

Pg is the number of process nodes in the graph, sources nodes by Sn | 1 ≤ n ≤ Sg where

Sg is the number of source nodes in the graph and sink nodes by Kn | 1 ≤ n ≤ Kg where

Kg is the number of sink nodes in the graph.

Link Fault Tolerance and Network Traffic 199

S1

P3

43

P421

P9
10

S2

P1
11

P11

23

S3
33

P5

23

P10

24

P2

15

22

19

1

P6

6

P718

P14

20

11

19

P1224

28

P16
8

P818

4

15

5

P15
13

P19

4

3

12

P20

3

17

P22

7

P131

1

P17

17

11

20

11

19

P1816

8

19

22

14

21

10

P21

7

16

14

27

15

P25

15

P26

5

13

16 K2
23

P23

4

6

K1

20

P24
17

13

P2710

P28

17

10

24

20

6

11

7

17

13

Figure 6.2 – Moderately connected graph with 3 source nodes ,28
processing nodes and 2 sink nodes.

S1

P1
5

P2

18

P5

20

P1022

P316

P12

21

P47

19

P7

23 P9
3

P6

22

P17

11

7

P13

14

P14

3117

8

17

P16

6

13

P8

13

P11

18

8

11

6 P22

2

18

9

6

P23

6

24

19
P19

17

8

P18

13

9

P15

16

3

20

3

P20

23

11
P28

1

24

16

12

P21

13

7

P25
5

11

23

P26

12

19

24

7

P2419

P27

9

3

23

K2

15

16

K3

8

14

2

11

14

4

K1

20

18

18

12

11

21

20

15

18

16

19

13

18

24

16

Figure 6.3 – Densely connected graph with 1 source node, 28
processing nodes and 3 sink nodes.

The total number of nodes is denoted by Vg, where:

V = |Vg| = S + K + P (6.2)

200 6.1 Application Process Graph (APG)

The number of edges is:

E = |Eg| (6.3)

The node sets are defined as:

Sg = {s1, . . . , sn | 1 ≤ n ≤ S} (6.4)

Kg = {k1, . . . , kn | 1 ≤ n ≤ K} (6.5)

Pg = {p1, . . . , pn | 1 ≤ n ≤ P} (6.6)

Vg = Sg ∪ Kg ∪ Pg (6.7)

Eg = {e1, . . . , en | 1 ≤ n ≤ Eg} (6.8)

An APG can be characterised by the three numbers representing the number of process

nodes, source nodes and sinks nodes; for example the graph in fig 6.3 can be characterised

by the three numbers s = 1, p = 28, k = 3 or, more compactly, by V (1 : 28 : 3).

More densely connected graphs will, by definition, have more edges, which implies a

greater total volume of traffic, which will affect metrics based on traffic volumes. To quantify

the effect of graph density on the metrics, we categorized graphs as sparsely connected,

moderately connected and densely connected depending on the density of edges in the

graph. A sparsely connected graph is defined as a graph where there are less than two

edges per node, a moderately connected graph is a graph where the number of edges is

more than or equal to 2 edges per node and less than 2.5 edges per node, and a densely

connected graph is a graph where the number of edges is more than or equal to 2.5 edges

per node. These are arbitrary values which were found to be useful in this work.

The connection density of graphs is defined by Equation 6.9

Cg


sparse, if E < 2 · V

moderate, if (E ≥ 2 · V) ∧ (E < 2.5 · V)

dense, otherwise

(6.9)

Where:

Cg = The connectivity of graph G.

Link Fault Tolerance and Network Traffic 201

The graph density also has an impact on the number of mappings that are link fault tolerant.

Each edge creates a ComPair so with more edges creates more ComPairs, and the greater

number of ComPairs makes it more difficult to arrange the processes in cores of the many-

core array such that, the source node and target node of each ComPair are not on the

same row and column i.e.there are no critical links.

6.2 Hardware Map

A hardware map or network topology map models, for a single region, the cores and links

of the many-core array and the interfaces that connect the many-core array to external

resources or neighbouring regions and the status of each element of the map.

The purpose of the hardware map is to model the essential elements of the many-core

array and interfaces to external resources in sufficient detail to enable valid mappings to

be generated and the metrics of the mappings to be calculated.

6.2.1 Nodes and Links of a Hardware Map

The definition of the hardware map is similar to the many-core array defined in Section 4.2

with the addition of information defining the type of each node and the status of each core

and link.

The hardware map must maintain information to:

• Specify the type of each node

• Specify the status of each node and link

• Uniquely identify each node and link

Nodes

Nodes represent the cores of a many-core array or interfaces to resources external to the

many-core array or cores of neighbouring regions. Interfaces to external systems can be

classified as capable of acting as both sources or sinks, sources only or sinks only. The

node types are summarised in Table 6.1.

Table 6.1 – Hardware Map Node Types

Type Description
c Core: A node that can be used by an APG process node.
s Source: A node that can be used only by an APG source nodes.
k Sink: A node that can be used only by an APG sink nodes.
b Both: A node that can be used by an APG source or sink node.
r Region: A node that is either shared with or belongs to a neighbouring region.

202 6.2 Hardware Map

Links

All links are unidirectional and are identical whether they are part of the internal circuitry

of the many-core array or a link between the many-core array and external interfaces or

regions.

Node Identity

Each node is given a location (c, r) starting with coordinate (0, 0) at the top left most corner

as illustrated in Figure 4.1.

Link Identity

Each link is directional so is identified by the location of the source node followed by the

location of the target node (loc(s), loc(t)).

6.2.2 Modelling Faults

Node and Link Status

Each node and link in the hardware map has a status which indicates if the element is in

good working condition or faulty as summarised in Table 6.2

Table 6.2 – Core and Link Status Values

Status Description
g Good: The element is fully functioning.
f Faulty: The element is faulty and cannot be used.

Using the status of nodes and links the hardware map can model:

• Processing Core Faults

• Link Faults

• Routing Node Faults

A fault free hardware map and three types of hardware faults are illustrated in the hardware

maps of Figure 6.4 with the faulty nodes and links being marked f and highlighted in red.

Processing Core Faults

Figure 6.4b illustrates a hardware map with a single faulty processing core, while the

routing node and all links are functioning normally. Traffic passing though the routing node

is unaffected.

Link Faults

Figure 6.4c illustrates a hardware map with two faulty links that are unable to carry any

traffic.

Routing Node Faults

Figure 6.4d illustrates a hardware map with a single faulty routing node, which is modelled

by marking the node, and all 8 adjacent links, as failed. If the routing node fails then

Link Fault Tolerance and Network Traffic 203

c c

c

c

c

c

c

c

c

c

c c

c c c c c c

c c c c c c

c c c c c c

c c c c c c

(a) Fault free

c c

c

c

c

c

f

c

c

c

c c

c c c c c c

c c c c c c

c c c c c c

c c c c c c

(b) A single core fault

c c

c

c

c

c

c

c

c

c

c c

c

f

c c

f

c c c

c c c c c c

c c c c c c

c c c c c c

(c) Two link faults

c c

c

c

c

c

f

f

c

c

c

c c

c

f

c

f

f

f

c

f
f

c c c

c c

f

c c c c

c c c c c c

c c c c c c

(d) A single routing node fault

Figure 6.4 – Hardware Maps representing a 6 × 6 many-core array
with interfaces to external resource on each of the four edges of the
many-core array.

the processing node becomes unavailable because it cannot receive or transmit any data;

this allows the routing node to be modelled as a combination of a processing node failure

together with the failure of all links attached to the routing node which is a considerable

simplification compared to modelling the processing node and routing node separately.

6.2.3 Hardware Map Definition

The hardware map H is represented as a tuple of the set Vh of nodes and the set Eh of

links:

H := (Vh, Eh) (6.10)

Given that there are Rh rows and Ch columns, the number of nodes and links are defined

204 6.2 Hardware Map

as Vh and Eh:

|Vh| = Vh

= RhCh (6.11)

|Eh| = Eh

= Rh(Ch − 1) + (Rh − 1)Ch

= 2RhCh −Rh − Ch (6.12)

The set of nodes is defined as:

Vh = {v1, . . . , vm | qm = Vh} (6.13)

with a node defined as an ordered tuple consisting of the row and column coordinates of

the node within the many-core array, which is also its location:

vn = (loc, t, s) (6.14)

Where:

loc = (r, c) (6.15)

and:
r is the row coordinate of node vn.

c is the column coordinate of node vn.

t is the type of the node vnt | t ∈ {c, b, s, k, r} as defined in Table 6.1.

s is the status of the node vn | s ∈ {g, f} as defined in Table 6.2.

Row and column coordinates are arbitrarily defined as beginning at 0 and location (0, 0)

referring to the top-left hand core of the many-core array with location (Rh − 1, Ch − 1)

referring to the bottom-right hand core of the many-core array.

The set of links is defined as:

Eh = {e1, . . . , em | m = Eh} (6.16)

A link is defined as a set of ordered tuples consisting of a source node location, a target

node location and a status:

en = (locs, loct, s) (6.17)

Where:

Link Fault Tolerance and Network Traffic 205

en is a link from the set Eh.

locs is the location of the source node of link en.

loct is the location of the target node of link en.

s is the status of the link en | s ∈ {g, f} as defined in Table 6.2.

6.2.4 Hardware Map Configurations

The hardware map is designed to be flexible so that it can model a range of configurations,

a selection of which are illustrated in Figure 6.5. Configurations are defined through the

use of the set of parameters listed in Table 6.3.

Table 6.3 – Hardware Map Definition Parameters

Parameter Description
Rh The number of rows of nodes in the hardware map
Ch The number of columns of nodes in the hardware map

Ra The number of rows of nodes in the many-core array
Ca The number of columns of nodes in the many-core array

Ro The position of the first of the row of the many-core array relative to
the first row of the hardware map

Co The position of the first of the column of the many-core array relative
to the first row of the hardware map

Bn The border type of the north edge, see Table 6.4
Bw The border type of the west edge, see Table 6.4
Be The border type of the east edge, see Table 6.4
Bs The border type of the south edge, see Table 6.4
Hdf A dataflow machine is modelled when this boolean switch is set to

true

L(h) The set of links in the hardware map

Table 6.4 – Border Types

Type Description
s Source: A node that can be used only by an APG source nodes.
k Sink: A node that can be used only by an APG sink nodes.
b Both: A node that can be used by an APG source or sink node.
r Region: A node that is either shared with or belongs to a neighbouring region.
n None: There is no border.

Border types are used to define how the nodes on the rows and columns, that are on the

edges of the hardware map are configured. The parameters allow for borders to have of

206 6.2 Hardware Map

multiple rows or columns, which allow for a variety of multi-region arrangements. The types

of borders are listed in Table 6.4.

A hardware map has four borders which are described using the four compass points of

north, east, south and west. The four borders can be represented as a list of border

types and width pairs, starting with the north border and working clockwise. For example,

a hardware map that has a single row/column on each side that can be used for both

sources and sinks can be described as B((b, 1), (b, 1), (b, 1), (b, 1)). If there is no border

on one of the edges then the border is described using the border type and width pair of

(n, 0).

A selection of possible hardware map configurations are presented in Figure 6.5, each

showing a 6× 6 array of processing cores with different combinations of border types. The

four example configurations are described below.

To fully specify a configuration, the following information is required:

• The number of rows and columns of the hardware map.

• The number of rows and columns of the many-core array.

• The offset row and column of the many-core array with respect to the top-left corner

of the hardware map.

• The type and width of the border of each edge of the hardware map.

Link Fault Tolerance and Network Traffic 207

c c

c

c

c

c

c

c

c

c

c c

c c c c c c

c c c c c c

c c c c c c

c c c c c c

(a) A detached 6x6 Hardware
Map with no source or sinks:
B((n, 0), (n, 0), (n, 0), (n, 0)).

 b

b

b

c

b

c

b

c

b

c

b

c

c b

b c c c c c c b

b c c c c c c b

b c c c c c c b

b c c c c c c b

b c c c c c c b

 b b b b b b

(b) A connected 8x8 Hardware
Map were all borders can
be either sources or sinks:
B((b, 1), (b, 1), (b, 1), (b, 1)).

 b

b

b

c

b

c

b

c

b

c

b

c

b

c r

b c c c c c c r

b c c c c c c r

b c c c c c c r

b c c c c c c r

b c c c c c c r

b r r r r r r r

(c) A multi-region 8x8 Hardware
Map for a with north and
west borders that can be
either sources or sinks and
east and south borders that
are neighbouring regions:
B((b, 1), (r, 1), (r, 1), (b, 1)).

s c

s

c

c

c

c

c

c

c

c

c

c

k

c k

s c c c c c c k

s c c c c c c k

s c c c c c c k

s c c c c c c k

(d) A 6x8 Hardware Map for a
Dataflow Machine with no bor-
ders on the north and south
edges, sources on the west bor-
der and sinks on the east border:
B((n, 0), (k, 1), (n, 0), (s, 1)).

Figure 6.5 – Hardware Maps for a Variety of Configurations. The
nodes inside the blue dotted lines represent the cores of the many-
core array while the nodes outside of the blue dotted box represent
interfaces to resource external to the many-core array and cores of
adjacent regions.

208 6.3 The Environment

Configuration for Detached Many-Core Array

The many-core arrays being modelled in Figure 6.5a is defined as a detached many-core

array with a 6 × 6 array of nodes with no external data sources or sinks, or neighbouring

regions. Although this is an unrealistic configuration for practical systems, it was useful

for the initial experiments in chapters 4 and 5. Since the configuration is modelling only

cores and links of the many-core array, the hardware map and the many-core array have

the same dimensions and the application process graph must consist only of processing

cores. This hardware map has a border definition of B((n, 0), (n, 0), (n, 0), (n, 0)) and is

the model used is most literature on the subject of fault tolerance in many-core arrays.

Configuration for Connected Many-Core Array

The hardware map configuration in Figure 6.5b is modelling a 6× 6 connected many-core

array which has sources and sinks to external resources but does not have any neighbour-

ing many-core arrays or regions. The many-core array is located in the inner 6 × 6 nodes

of the hardware map with source and sink communication ports to external resources

modelled by the outside edges of the 8 × 8 hardware map. This hardware map has a

border definition of B((b, 1), (b, 1), (b, 1), (b, 1)).

The connected configuration will be used in the majority of the experiments of this chapter.

Configuration for Multi-Region Many-Core Array

The hardware map configuration shown in Figure 6.5c models a many-core array that is

part of a multi-region arrangement many-core arrays. The north and west edges have a

border type of b indicating the the nodes can be either sources or sinks while the east and

south edges have a border type of r to indicate that the nodes are either under shared

control with a neighbouring region or under the exclusive control of a neighbouring region.

This hardware map has a border definition of B((b, 1), (r, 1), (r, 1), (b, 1)).

Configuration for Dataflow Many-Core Array

The hardware map in Figure 6.5d is an arrangement that forces all source nodes to be

located on the left edge of the array and all sink nodes to be located on the right edge of

the array. This arrangement will ensure that all data arrives via the west edge of the array

and leaves via the east edge, producing a flow of data from west to east, hence the name

dataflow machine. This hardware map has a border definition of B((n, 0), (k, 1), (n, 0), (s, 1)).

6.3 The Environment

The application process graph is a model of the application processes and its sources and

sinks. The hardware map is a model of the many-core array and the connections between

the many-core array and external resources. A process map is the mapping of process

nodes from the application process graph to cores in the many-core array.

Since the process map only includes process nodes from the application process graph,

an additional mapping is required to map the application process graph source and sinks

Link Fault Tolerance and Network Traffic 209

nodes and nodes belonging to adjacent regions; this is the role of the environment.

This section describes the environment, and the relationship between the application pro-

cess graph, the hardware map, the environment and the process map.

The Environment Mapping

The environment maps the resources that are external to the many-core array to the

borders defined in the hardware map. Application process graph source nodes can be

mapped to nodes in borders of type b or s while sink nodes can be mapped to nodes of

borders of type b or k and nodes of neighbouring regions are mapped to nodes of borders

of type r.

The environment mapping is established at the beginning of an evolution and remains fixed

for the duration of the evolution. The calculation of the metrics of process maps that are

generated during the evolution are affected by the position of resources in the environment

map and are therefore calculated with respect to the environment mapping.

From the hardware map in Figure 6.6a, that is a connected many-core array with a border

of B((b, 1), (b, 1), (b, 1), (b, 1)) and the application process graph of Figure 6.2, the envi-

ronment map of Figure 6.6b and process map of Figure 6.6c are created, the environment

map containing the source and sink nodes from the APG and the process map contain for

the processing nodes of the APG. The illustrations of the hardware map, the environment

map and the process map all include a dotted blue line, the many-core array boundary.

Inside the boundary are the nodes relating to the many-core array, while the nodes outside

of the boundary relate to the environment.

The environment map consists only of the nodes outside of the many-core array boundary

while the process map consists only of the nodes inside the boundary.

The environment and process maps only tell us which cores in the hardware map each

node of the APG is mapped to but do not have any information regarding the status of links

between the nodes. In the illustrations of environment and process maps, the lines linking

the nodes are included to illustrate that the nodes are connected by links. The status of

links is maintained in the hardware map.

The Aggregate Map

The calculation of metrics for a process map can only be made within the context of the

environment. The metrics are therefore calculated using an aggregate map which is a

combination of the environment map and process map and illustrated in Figure 6.6d.

6.4 Link Fault Tolerance Metric and Objective

Failure of a link can result in disruption to communication in the array by causing packets

to take longer routes, lose packets or sever communications completely. The exact effect

a failed link has on communications of the array depends of how critical the link is for

210 6.4 Link Fault Tolerance Metric and Objective

 b

b

b

c

b

c

b

c

b

c

b

c

c b

b c c c c c c b

b c c c c c c b

b c c c c c c b

b c c c c c c b

b c c c c c c b

 b b b b b b

(a) An 8x8 Hardware Map where
all borders can be either sources
or sinks.

 b

b

b

b

b

S1

b

 b

b b

S3 b

b b

b K2

S2 b

 b b K1 b b b

(b) An environment map of the
source and sink nodes.

P1

P2

P3

P4

i

P5

 P6 P7 i P8 P9 P10

 P11 i P12 P13 P14 i

 P15 P16 P17 P18 i Pq9

 P20 P21 i P22 P23 P24

 P25 P26 i P27 P28 i

(c) A process map of the process-
ing nodes.

 b

b

b

P1

b

P2

b

P3

S1

P4

b

i

P5 b

b P6 P7 i P8 P09 P10 b

S3 P11 i P12 P13 P14 i b

b P15 P16 P17 P18 i P19 b

b P20 P21 i P22 P23 P24 K2

S2 P25 i P26 P27 P28 i b

 b b K1 b b b

(d) An aggregate map which is
the combination of environment
map (b) and process map (c).

Figure 6.6 – From the information in the APG in Figure 6.2 and the
hardware map (a) the environment map (b) and process map (c)
are produced. The environment map and process maps are then
combined to make the aggregate map (d) used to calculate the
metrics of the process map.

each ComPair that uses the link. In this section link failures will be explored and a metric

developed that is designed to measure the detrimental effect the failure of a link would have

on the network.

The metrics developed in this section relate to a single ComPair, a ComPair. The objective

combines the metrics for all ComPairs into a single value representative of the vulnerability

of the whole mapping to link failure.

Link Fault Tolerance and Network Traffic 211

6.4.1 Problem Description

Develop a metric that measures the effect that failure of a link will have on network traffic

and an objective that can be used to minimize the negative effects of possible link failures.

The definition of the metrics in this section refers to discussion of link criticality and the ac-

companying ComPair subnets in Section 5.2 Link Criticality. For convenience the ComPair

subnets are reproduced here as Figure 6.7.

6.4.2 Vulnerability to Critical Link Failure Metric

A failed critical link causes communication failure because it is used by all paths between

the source and target nodes of the ComPair . Comparing figures 6.7a and 6.7b, it can be

observed that the graph of Figure 6.7a has a single path consisting of a single critical link

and the graph of Figure 6.7b has a single path consisting of two critical links. In this respect

the graph of Figure 6.7b can be described as being twice as vulnerable to critical link failure

when compared to Figure 6.7a. It is also possible for a critical link to have multiple paths

using it as shown in Figure 6.7i. Failure of such a link will sever all the paths that pass

through it so the metric must reflect the number of paths affected by the link.

The number of paths of a ComPair subnet that include a link ln is given by lnp and by

Equation 5.6 a link is critical when lnp = Qp. The metric Mvclfc is a measure of the

Vulnerability to Critical Link Failure of a ComPair, is defined as the sum of the number of

paths that pass through each of the critical links in the ComPair subnet. Metric Mvclfc is

given by Equation 6.18 which include the equivalence that makes use of the fact that all

critical links, by definition, must be included in all paths of the ComPair.

Mvclfc =

Ql∑
l=1

lnp , if link lnp = Qp i.e. is a critical link

0, otherwise
≡ Qp · lc (6.18)

Where:
Mvclfc = The vulnerability to critical failure metric for the ComPair Q.

Ql = The number of links in the ComPair subnet.

lnp = The number of paths that use link ln.

Qp = The total number of paths of the ComPair subnet.

lc = The number of critical links in a ComPair

Equation 6.18 will give a value of 1 for the ComPair illustrated in Figure 6.7a and give a

metric value of 2 for the ComPair illustrated Figure 6.7b which is consistent with the notion

that 6.7b is twice as vulnerable as 6.7a.

212 6.4 Link Fault Tolerance Metric and Objective

0,0 0,11

(a) Critical Link of length 1

0,0 0,11 0,21

(b) Critical Link of length 2

0,0 0,11

1,0

1

1,1

1

1

(c) Network with 2 Significant
Links

0,0 0,12

1,0

1

0,21

1,1

1

1,2

1

1 2

(d) Network with 3 Significant
Links

0,0 0,12

1,0

1

0,21

1,1

1

0,31

1,3

1

1 1,22 2

(e) Network with a single Link fault and 5 Significant Links

0,0 0,11

1,0

1

0,21

1,1

2

0,31 0,41

1,4

1

1 1,22 1,32 2

(f) Network with a 2 Link faults and 7 Significant Links

Link Fault Tolerance and Network Traffic 213

0,0 0,13

1,0

3

0,21

1,1

2

1,2

1

2

2,0

1

2

2,1

2

2,2

3

1 3

(g) Network with 4 Significant
Links

0,0 0,11

1,0

1

0,21

1,2

1

2,0

1

2,2

1

2,11 1

(h) Network with a 4 Link faults
and 6 Significant Links

0,0 0,11

1,0

1

0,2

1,1

1

1,21 2

(i) Network with 2 Link faults, 2 Significant
Links and 1 Critical Link

Figure 6.7 – Networks illustrating Critical and Significant links

6.4.3 Vulnerability to Significant Link Failure Metric

Failure of a significant link is less disruptive than a critical link because, although some

packets may be lost, there are alternative paths for the packets from the source to the

target. A metric is required to give a value to represent the impact of the failure of a

significant link.

Failure of a significant link can affect multiple paths of a ComPair as illustrated in Figure 6.8

where significant link g is a component of paths 2 and 3, while significant links e and f are

both on only one path. The impact of link g failing is more severe than if link e or f fails.

To account for this, it is important to know the number of paths each significant link affects.

The links of the graphs in Figure 6.7 are labelled with the number of paths that use the link.

If the number of paths that use each significant link are added together for a ComPair then

214 6.4 Link Fault Tolerance Metric and Objective

0,0 0,1a

1,0

c

0,2b

1,1

d

1,2

e

f g

(a) 2× 3 Array

0,0 0,1a

1,0

0,2b

1,1 1,2

e

(b) Path 1

0,0 0,1a

1,0

0,2

1,1

d

1,2g

(c) Path 2

0,0 0,1

1,0

c

0,2

1,1 1,2f g

(d) Path 3

Figure 6.8 – Paths Through a 2× 3 Array

this gives a metric for the vulnerability to significant link failure for the ComPair.

Mvslfc =

Ql∑
l=1

lnp , if link ln is a significant link

0, otherwise
(6.19)

Where:
Mvslfc = The vulnerability to significant link failure for ComPair Q.

Ql = The number of links in the ComPair subnet.

lnp = The number of paths that use link ln.

Qp = The total number of paths of the ComPair subnet.

6.4.4 Vulnerability to Link Failure Metric

The remaining task is to integrate the two metrics of Vulnerability to Critical Link Failure

and Vulnerability of Significant Link Failure into a single metric that gives a single measure

of the Vulnerability to Link Failure. Normal links are not included in the metric because

they do not cause loss data. The definition of both of the above metrics is identical in that

they both measure the number of paths that are affected by the failure of the link. As an

Link Fault Tolerance and Network Traffic 215

initial attempt at creating a single metric, the individual metrics are summed together to

produce a single value representing the total number of paths that are affect by a critical or

significant link. Figure 6.8 list values of the sum of the two metrics in the column
∑

under

"Vulnerability Metric", for the subnets in Figure 6.7.

Table 6.5 – Comparison of Vulnerability Metrics

Graph Graph Dimension Paths Vulnerability Metric

Ref Height Width Total Affected
∑

100×
∑
Cp

100×
∑
C2

p

6.7a 1 2 1 1 1 100 100
6.7b 1 3 1 1 2 200 200
6.7c 2 2 2 2 2 100 50
6.7d 2 3 3 4 4 133 44
6.7e 2 4 3 7 7 233 77
6.7f 2 5 3 10 10 333 111
6.7g 3 3 6 8 8 133 22
6.7h 3 3 2 6 6 300 150
6.7i 1 2 2 2 4 200 100

Relating the metric values to the graphs, it is evident that this simple sum does not give a

consistent value for the purposes of comparing the vulnerability of different graphs. Graph

Figure 6.7a has the best fitness of 1, while graphs Figure 6.7b and Figure 6.7c have the

same fitness of 2. However graph 6.7c is clearly less vulnerable than either 6.7a or 6.7b.

The reason is that graph 6.7c is a larger graph and has more paths, so there are more

paths that can be affected and the metric is greater. This implies that the metric should

take into account the number of paths in the graph between the source and target nodes.

Two additional metrics have been calculated, which are the sum divided by the number

of paths in the ComPair and the sum divided by the square of the number of paths in the

ComPair, in an attempt to correct the deficiencies of the simple sum metric. Dividing by

the number of paths improves the metric but still gives anomalous values, for example the

graph of Figure 6.7b and 6.7c have the same metric value even though the graph 6.7c

has two paths so is clearly less vulnerable than Figure 6.7b. Dividing by the square of

the number of paths gives comparative values that work well, for example the metric value

for graph 6.7h is three times greater than the metric value for 6.7c because, although they

both have two paths, 6.7h has three times more significant links than 6.7c, so is three times

more vulnerable. The additional metrics are shown in columns
∑
pl

and
∑
p2l

with the values

having been multiplied by 100 to give useful integer values.

The final metric calculation for Vulnerability to Link Failure is given by Equation 6.20.

Mvlfc =
100

Cp
2

Cl∑
l=0

lnp , if link l is a critical or significant link

0, otherwise
(6.20)

Where:

216 6.5 Network Power Metric and Objective

Mvlfc = The vulnerability to significant link failure for ComPair C.

Cl = The number of links in the ComPair subnet.

lnp = The number of paths that use link ln.

Cp = The total number of paths of the ComPair subnet.

6.4.5 Link Fault Objective

This section describes an objective that combines the metrics for all ComPairs into a single

value representative of the vulnerability of the whole mapping to link failure.

The link fault objective is to minimize the sum of the metric values for all ComPairs in the

application process graph. The link fault metric gives a value for a single ComPair so the

value for the objective is the sum of the fault metric values for all ComPairs in the application

process graph:

Jlink =

Cl∑
l=1

Mvlfc (6.21)

Where:
Mvlfc = The vulnerability to link failure for ComPair C.

Cl = The number of links in the ComPair subnet.

lnp = The number of paths that use link ln.

Cp = The total number of paths of the ComPair subnet.

6.5 Network Power Metric and Objective

Communication traffic is a major contributor to power consumption in a many-core array

[183, 184]. The total traffic flows in the many-core array can be used as an approximation

for power consumed by communication traffic. This section will explore the measurement

of the traffic in a many-core array and develop an objective designed to direct a search

algorithm to find solutions that minimize the traffic.

6.5.1 Problem Description

The power consumed by traffic between a ComPair, for a given router/NoC architecture,

is a function of both the traffic volume and the distance in terms of routing nodes and

links that the traffic has to traverse between the source and target nodes. Reducing the

total network traffic of all ComPairs will reduce the power consumption of the many-core

array. The volume of traffic between a ComPair is predetermined by the application and

cannot be influenced by the many-core system whereas the distance the traffic has to travel

is dependent on the relative position of the source process node and the target process

node, which is under the control of the many-core system.

Link Fault Tolerance and Network Traffic 217

6.5.2 Distance Between Communicating Core Pairs

To relate traffic to power it is necessary to know both the amount of traffic and the distance

it has to travel, as the product of these gives us the total amount of traffic that is processed

by the routing nodes and transmitted down the links between the source and target nodes.

The distance between a ComPair is the rectilinear distance between the source and target

nodes and, assuming minimal length paths, represents the number of links the data will

travel through from the source node to the target node. Faults on paths between the

source and target have no effect on the length of the path that the data will travel along,

providing the faults do not sever all paths between the source and target. For a ComPair Qn

corresponding the edge en of the application process graph with source location Qn(sr, sc)

and target location of Qn(tr, tc) the Distance Between a ComPair metric Mdccpqn (i.e the

distance between the source node and the target node), is given by Equation 6.22.

Mdccpqn = |(sr − tr)|+ |(sc − tc)| (6.22)

If the assumption is made that traffic volume between all ComPairs is the same then the

distance between cores can itself be used as an approximation for the traffic and therefore

the power consumption. This is not a particularly good assumption as the traffic between

different ComPairs can be very different, so a more precise calculation is desired.

6.5.3 Traffic Volume Metric

An improvement to the distance between ComPairs as a metric is to use a measure that

takes into account both the distance and the traffic volume for each ComPair, which will

typically be different for each pair.

For a ComPair Qn corresponding the edge en of the application process graph the traffic

volume Qnd
is the attribute traffic volume, d, from edge en of the application process graph.

A metric that measures the Traffic Volume Between a ComPair, Mtccpqn , is given by the

Equation 6.23.

Mtccpqn = Mdccpqn ×Qnd
(6.23)

6.5.4 Power Objective

The corresponding power objective is to minimize the total power consumption across the

whole network.

For the objective, a power consumption of zero is assigned when the source and target

of a ComPair are adjacent, so that if the source and target nodes of every ComPair are

adjacent then the value for the mapping will be zero. However, when a ComPair’s source

and target nodes are adjacent, the traffic volume metric Mtccpqn will have a value of Qnd
.

218 6.6 Excess Traffic Metric and Objective

Therefore when the traffic metric is used in the objective it must be adjusted down by the

value of Qnd
. The power objective is given in Equation 6.24.

Jpower =

Eg∑
e=1

Mtccpqn −Qnd
(6.24)

6.6 Excess Traffic Metric and Objective

This section examines traffic flow through the many-core array that can lead to excess

traffic. Each link in a many-core array may carry traffic from multiple ComPairs, the total

of which could exceed the bandwidth of the link. The excess traffic is the traffic above the

bandwidth of a link that the link is required to carry. This can be described as a link-centric

with, since the excess traffic is related to each individual link, although the details of the

traffic from all the ComPairs that have paths that use the link.

A link that is required to carry excess traffic is referred to as an overloaded link. Excess

traffic for a link will eventually fill the buffers of the routing node, creating a bottleneck so

potentially causing disruption throughout the network as traffic above the link’s capacity

is rerouted down alternative paths which may then overload other links causing more

rerouting which can result in a cascade of overloaded links. If there are alternative paths

to a path that uses an overloaded link, then the effect of the bottleneck may be mitigated

by using an adaptive routing algorithm.

A routing node can monitor the status of the links it is using to transmit data. If a bottleneck

develops on a link, the routing node is able to detect this and then employ an adaptive

routing algorithm to redirect traffic down alternative paths, if they exist, using another link.

In doing so, the alternative paths must still be minimal-length paths. If no alternative paths

exists for the traffic, because the traffic is critical traffic, adaptive routine cannot alleviate

the bottleneck. The excess traffic metric is only an approximation of the expected traffic

volumes based on the traffic volume data containing the the application process graph.

Only a cycle accurate simulation, with knowledge of how each process generates traffic

and an understanding of the intended routing algorithm, will be able to accurately predict

traffic volumes. As discussed in Chapter 7 Graceful Degradation and Amelioration, one of

the roles of the Monitor will be to update the traffic volume attributes of the edges in the

application process graph with actual observed traffic volume data to increase the accuracy

of calculations of metrics and objectives.

Critical traffic cannot be rerouted; significant traffic can be rerouted by the first routing node,

back up the path, that has a choice of paths for transmission of the data; normal traffic can

be rerouted by the routing node link. The severity of the effect of a bottleneck will therefore

depend on whether the link is carrying critical, significant or normal traffic.

Each ComPair in a mapping will have at least one, and often many, paths between the

source and the target through which traffic will travel. Each path will consist of at least

Link Fault Tolerance and Network Traffic 219

one link, and typically a chain of links. Each link in the array will typically be part of many

paths between many ComPairs and the role of the link in each path may be either critical,

significant or normal. As a result the traffic profile of each link is complex, consisting of the

aggregation of a variety of types of traffic from many paths between many ComPairs.

In this section, a metric will be developed to represent the excess traffic of a link and

evolutionary algorithm objectives designed to minimize the potential disruption of excess

traffic.

6.6.1 Problem Description

The impact an overloaded link has on the network as a whole will depend of the volume

of each traffic type that uses the link. Critical traffic has no other option than to use the

link, so a link that is overloaded with critical traffic will cause an unavoidable bottleneck.

Significant traffic, does have other available routes, but these can only be used when the

congestion of traffic has propagated back up the path until it reaches a node than can direct

traffic down an alternative path. Excess normal traffic can be rerouted immediately by a

congested link’s routing node, so will have lower impact than critical or significant traffic.

This suggest the concept of weighted excess traffic metric which is a measure of excess

traffic obtained by giving a weight to each type of excess traffic so that critical traffic makes

a greater contribution to excess traffic metric than significant traffic, which in turn makes a

greater contribution to the metric than normal traffic. This penalizes mappings with excess

critical and excess significant traffic. For a fault free array, critical links can be avoided

completely while significant links can be reduced in number but not eliminated completely

since the links attached directly to the target node cannot be normal (see Section 5.1

Communicating Core Pair (ComPair)).

A metric that measures the excess traffic of a link can only suggest which links could

be overloaded in normal operation. Calculating the expected traffic through each link,

using either the non-weighted or weighted calculations, is only an approximation used to

reduce computational time, based on the average predicted network load taken from the

application process graph, which might prove to be very different to the actual traffic result-

ing from adaptive routing. In a working many-core array the on-line Monitor, discussed in

Chapter 7 Graceful Degradation and Amelioration, will be be able to detect real bottlenecks

and actual data flows between ComPairs, which can then be used in these metrics to

increase accuracy.

6.6.2 Excess Traffic Metric

In this section the metric will be developed starting with a simple calculation using raw

traffic followed by a more sophisticated approach involving link level traffic weighting.

Traffic Distribution

Traffic flowing between the source and target of a ComPair will be distributed amongst the

220 6.6 Excess Traffic Metric and Objective

available paths by the routing algorithm used by the routing nodes between the source and

the target nodes. Two algorithms for distribution of the traffic through the ComPair subnet

have been considered. The first is that the traffic is split equally between the available

paths at each routing node, illustrated in Figure 6.9a; the second it that the traffic is split

equally between the paths from the source to the target, illustrated in Figure 6.9b. Both

strategies would require an adaptive routing algorithm that has the ability to understand

the strategy and keep track of the traffic that has been sent down each link so that it sends

each new packet down the link that will maintain the desired balance.

0,0 0,150

1,0

50

0,225

1,1

25

1,2

25

50 75

(a) Distribute traffic evenly be-
tween links at each node.

0,0 0,166.6

1,0

33.3

0,233.3

1,1

33.3

1,2

33.3

33.3 66.6

(b) Distribute traffic evenly be-
tween ComPair paths at each
node.

Figure 6.9 – Traffic distribution across the links used by a ComPair. The numbers on
the links are percentages of the total ComPair traffic.

When the traffic is divided equally between links at each node (Figure 6.9a) the minimum

and maximum traffic volumes on individual links is between are 25% and 75%, giving a

range of 50% When the traffic is divided equally among the ComPair paths at each node

(Figure 6.9b) the minimum and maximum traffic volumes on individual links is between

33.3% and 66.6% giving a range of 33.3%. As it is preferable for the traffic to be as evenly

distributed as possible the smaller range of 33.3% is more attractive than 50%. Conse-

quently in the sections that follow the traffic will be evenly distributed between ComPair

paths.

Non-Weighted Excess Traffic

The starting point is to calculate the actual traffic that is expected to flow through a link.

The method is to consider each ComPair, and for each pair calculate the traffic that will

travel through each link between the source and target nodes of the ComPair. Between

the source and target nodes there may be many paths. In many cases paths will overlap

i.e. they will use links that are used by other paths.

As an example, take a ComPair with source and target nodes that are one row and two

columns apart as in Figure 6.8a. There are a total of three paths in the ComPair, illustrated

in Figures 6.8b, 6.8c and 6.8d. Links b, c, e and f are used by only one path while links a, d

and g are used by multiple paths. The volume of traffic between each ComPair is taken

Link Fault Tolerance and Network Traffic 221

from the application process graph which provides a traffic volume for each edge in the

graph. Traffic for a ComPair is distributed evenly between each of the paths between the

source and target, as discussed in Subsection 6.6.2. Traffic that travels along a path must

travel through each link of the path. Each path is analysed in turn with traffic from each

path being added to each link in the path. Each ComPair must be analysed and traffic

added to each link in each path of each ComPair to produce a total traffic for each link.

Having calculated the total traffic for each link the excess traffic is calculated which is the

traffic above the bandwidth for the link. Each overloaded link will have a value for excess

traffic that is greater than zero while links that are not overloaded will have an excess traffic

value of zero.

The traffic volume through a link ln of a ComPair is the network load, Qd, of the ComPair

multiplied by the proportion of paths for the ComPair that include the link and is given by

Equation 6.25.

lnt =
lnp

Qp
·Qd (6.25)

Where:
lnt = the traffic through link ln of ComPair Q

lnp = the number of paths through link ln of ComPair Q

Qp = the total number of paths in ComPair Q

Qd = the network load of ComPair Q

Given that there is a mapping from each link in a ComPair path to a link in the hardware

map represented by the function f : L(qe) → L(h) each link lm of the hardware map has an

associated set of traffic volumes from the ComPair paths that use the hardware link lm. If

each of the paths from all ComPairs of the mapping is assigned an integer identifier from 1

to Qtp, where Qtp is the total number of paths from all ComPairs of the mapping, then the

traffic volume t(lm,q) is the traffic contributed from path q to hardware link lm. The traffic

volumes for each ComPair link calculated using Equation 6.25 can be mapped to a traffic

volume t(lm,q) which allows the definition of traffic volume metrics in terms of t(lm,q).

The metric of total traffic for link lm is the sum of all traffic volumes from the ComPair paths

that use the link and is given by Equation 6.26.

Mtt(lm) =

Qtp∑
q=1

t(lm,q) (6.26)

The excess traffic for link lm is given by Equation 6.27

Mxt(lm) =

0, if Mtt(lm) ≤ lmb

Mtt(lm) − lmb
, otherwise

(6.27)

Where:

222 6.6 Excess Traffic Metric and Objective

Mtt(lm) = The total traffic through link lm.

Mxt(lm) = The excess traffic through link lm.

lm = The mth link of the hardware map.

lmb
= The bandwidth of link lm.

Q = The number of paths of all ComPairs for the mapping.

t(lm,q) = The traffic through link lm contributed by path q.

Weighted Excess Traffic

A more sophisticated approach is to apply weighting to traffic through a link, based on the

criticality of the link within each ComPair, producing an artificially high traffic value when

the link is critical or significant. The rationale for this approach is that if a link is a critical link,

then there are no alternative paths for the data, so the effect of the link being overloaded

will be more severe than if the link is not a critical link. Similarly, if a link is a significant

link, then there is only a single path between the significant link and the target node of a

ComPair even though there is at least one other alternative path from the source node to

the target node of the ComPair. The effect of a significant link being overloaded will be

less severe than for a critical link but more severe than for a normal link. This section will

propose a method of modifying the value of the traffic metric by applying weighting to traffic

passing though different types of link.

For each link in a path the link may be critical, significant or normal. A link may be a

critical link in one path, while being a significant link in another path and a normal link in

yet another path.

The approach taken is to calculate the total critical, significant and normal traffic through a

link from all the paths that use the link, then apply weighting in the following manner:

1) If the critical traffic is above the link’s bandwidth then the weighted traffic is calculated by

taking the excess critical traffic and applying the critical traffic weight, adding the significant

traffic weighted by the significant traffic weight and adding the normal traffic.

2) If the critical traffic is below the link’s bandwidth then the sum of critical traffic and

significant traffic is compared to the link’s bandwidth, and if greater than the bandwidth

then the weighted traffic is the excess of the sum of critical traffic and significant traffic

weighted using the significant traffic weight added to the normal traffic.

3) If sum of critical traffic and significant traffic is below the the link’s bandwidth, then

the sum of the critical traffic, significant traffic and normal traffic is compared to the link’s

bandwidth, and if greater than the bandwidth then the weighted traffic is the excess of the

sum of critical traffic the significant and the normal traffic.

4) If the sum of the critical traffic, significant traffic and normal traffic is below the link’s

bandwidth then the weighted traffic is zero.

The weighting applied to critical traffic is greater than the weighting applied to significant

traffic, while the normal traffic is not weighted. The initial values for weights are set at 5 for

Link Fault Tolerance and Network Traffic 223

critical traffic and 2 for significant traffic. These values are arbitrary and will be explored by

experiments.

Table 6.6 shows the non-weighted excess traffic (NWET) and the weighted excess traffic

(WET) for a selection of bandwidths and fixed traffic on a link, illustrating that the weighted

traffic calculation produces larger traffic and excess traffic values than the non-weighted

calculation for the same traffic profile. For bandwidths above 500 the actual traffic is

less than the bandwidth, but the presence of critical and significant traffic exaggerates

the calculated traffic which would cause the search algorithm to discriminate against such

a mapping in favour of one with less critical and significant traffic.

Table 6.6 – Comparison of Non-Weighted and Weighted Excess Traffic

Traffic Excess Link Weighted Bandwidth
Criticality Weight Traffic Traffic 500 1000 1500 2000

Weighted Excess Traffic
Critical 5 200 1000 500 0 0 0
Significant 2 200 400 400 400 0 0
Normal 1 600 600 600 600 500 0
WET Total 2000 1500 1000 500 0
NWET Total 1000 500 0 0 0

Table 6.7 shows a variety of traffic profiles for a fixed bandwidth illustrating how the weighted

traffic calculation affects the excess traffic when compared to the non-weighted traffic.

The four different traffic profiles are indistinguishable when weighting is not used. When

weighting is used there is a clear difference in the calculated traffic values between the

profiles, which will direct the search algorithm to select solutions with lower critical and

significant traffic.

Table 6.7 – Comparison of Non-Weighted and Weighted Excess Traffic

Traffic Excess Bandwidth : 5000
Criticality Weight Tr WET Tr WET Tr WET Tr WET
Critical 5 1500 2500 1000 0 500 0 500 0
Significant 2 1000 2000 1500 3000 1000 0 500 0
Normal 1 500 500 500 500 1500 1000 2000 500
Weighted Total 10000 5000 8500 3500 6000 1000 5500 500
Non-Weighted Total 3000 3000 3000 3000

The excess traffic metric is calculated for each link in the network using the following set

of equations. First the critical, significant and normal traffic components through each link

from each path are defined given that T(l,q) is the traffic through link l contributed by path

q.

Mct(l,q) =

T(l,q), if link l is critical for the path q

0, otherwise
(6.28)

224 6.6 Excess Traffic Metric and Objective

Mst(l,q) =

T(l,q), if link l is significant for the path q

0, otherwise
(6.29)

Mnt(l,q) =

T(l,q), if link l is normal for the path q

0, otherwise
(6.30)

Now the components for each traffic type for each link are summed to give a total of each

traffic type for each link.

Mctl =

Q∑
q=1

Mct(l,q) (6.31)

Mstl =

Q∑
q=1

Mst(l,q) (6.32)

Mntl =

Q∑
q=1

Mnt(l,q) (6.33)

Now the excess traffic for each link can be defined in terms of each of the individual traffic

types and the traffic type weights.

Mxwtl =



(Mctl −Bwl)×Wc +

Tsl ×Ws + Mntl, if Mctl > Bwl

(Mctl + Tsl −Bwl)×Ws +

Mntl, if (Mctl + Tsl) > Bwl

Mctl + Tsl + Mntl −Bwl, if (Mctl + Mstl + Mntl) > Bwl

0, otherwise

(6.34)

Where:

Link Fault Tolerance and Network Traffic 225

Mxwtl = The excess weighted traffic through link l.

Mctl = The critical traffic through link l.

Mct(l,q) = The critical traffic through link l from path q.

Mstl = The significant traffic through link l.

Mst(l,q) = The significant traffic through link ln from path q.

Mntl = The normal traffic through link l.

Mnt(l,q) = The normal traffic through link l from path q.

Wc = The critical traffic weight.

Ws = The significant traffic weight.

T(l,q) = The traffic through link l contributed by path q.

6.6.3 Excess Traffic Objectives

The previous section described methods for calculating the traffic metric for a link. The

next step is to determine how the link excess traffic metric can be used to produce objective

measures for an evolutionary algorithm. The link traffic metric can be analysed in a number

of ways, each of which has different merits.

Link Traffic Landscape

To evaluate the alternatives it is necessary to have an understanding of the link traffic

landscape that is desirable. If we view the links as points on a 2-dimensional plane surface

where the traffic metric can be viewed as the height of each point above plane. When all

links have a zero excess traffic, which is the ideal landscape, the surface will be perfectly

flat.

A small number of links with significantly higher values than the other links would be

represented by a surface with a small number of high peaks. Links with high values

would represent bottlenecks which could seriously degrade the whole network, so are

undesirable. Another possibility is that the excess traffic is evenly distributed across the

network, which would be represented by a raised but relatively level surface.

The landscape has two properties of interest: the first is the total of the excess traffic, which

is the total height of each point above the plane; the second is how smooth or rugged the

landscape is, i.e. how varied is the height of the points. These properties are independent

of each other so require two different objectives for the evolutionary algorithm to minimize:

Total Excess Traffic and Excess Traffic Variance.

Sum of Excess Traffic

The excess traffic of all links in the network are summed giving a measure of the total

excess traffic for the mapping. The sum of excess traffic does not distinguish between two

mappings that have a similar sum but significantly different landscapes, one with a small

number of very high values alongside many small values, the other where there is a larger

number of similar values without a single very large value. The sum of excess traffic of all

links is a candidate for the total excess traffic metric. The sum of excess traffic of all links

226 6.6 Excess Traffic Metric and Objective

in the network, Jxtsum is given by Equation 6.35.

Jxtsum =
L∑
l=1

Mxwtl (6.35)

Mean Average of Excess Traffic

The excess traffic values of all links in the network are summed and then divided by the

number of links in the network. This measure gives the same information as the simple

sum since the number of links in a network is constant. The mean average of excess traffic

of all links in the network is another candidate for the total excess traffic metric. The mean

average of excess traffic of all links in the network, Jxtmean is given as:

Jxtmean = Mxwt =
1

L

L∑
l=1

Mxwtl (6.36)

This measure of traffic suffers from the same inability as the simple sum measure to distin-

guish between mappings with similar traffic values but significantly different landscapes.

Maximum Value of Excess Traffic

This objective considers only the highest value of excess traffic of a single link from all the

links in the network. Minimising the objective reduces the maximum single value of excess

traffic in the network but does not consider the overall level of excess traffic, which is the

opposite of using a simple sum measure of excess traffic. This is a candidate for a simple

excess traffic variance objective, since a lower maximum single value will also reduce the

variance. The maximum value of excess traffic of all links in the network, Jxtmax is given

by Equation 6.37.

Jxtmax = max{Mxwtl : l = 1, . . . , L} (6.37)

Standard Deviation (SD) of Excess Traffic

The standard deviation gives a measure of how much variation from the mean there is in a

population. A value of zero means that all values are equal, so in the case of excess traffic

a zero value translates to all links having equal levels of excess traffic, however the SD

does not give any information about the absolute level of excess traffic across the whole

network. The standard deviation of excess traffic of all links in the network is a candidate

for the excess traffic variance objective. The standard deviation of excess traffic of all links

in the network, Jxtsd is given as:

Jxtsd =

√√√√ 1

L

L∑
l=1

(Mxwtl −Mxwt)2 (6.38)

On its own, using standard deviation will not help to reduce the overall level of excess traffic

as a zero SD can be obtained for any level of excess traffic.

Absolute Mean Deviation (AMD) of Excess Traffic

Absolute Mean Deviation is an alternative to standard deviation that is simpler to calculate

because it uses the absolute difference in place of the square of the difference. For a

Link Fault Tolerance and Network Traffic 227

calculation that will be repeated many millions of times the difference in computation time

between finding the absolute difference and computing the square of a difference and then

later obtaining a square root, is significant. The absolute mean deviation of excess traffic of

all links in the network is a candidate for the excess traffic variance objective. The absolute

mean deviation of excess traffic of all links in the network, Jxtamd is given as:

Jxtamd =
1

L

L∑
l=1

|Mxwtl −Mxwt| (6.39)

It can be argued that the AMD is as good as and in some cases a better measure than

SD [185]. The same comments made for the suitability of SD can also be made for AMD,

however due to the simpler computation AMD would be preferred over SD.

6.7 Determining Paths Through a Lattice

During the development of the metrics and objectives, a formal description of a ComPair

was provided. ComPairs are an important and heavily used construct in the calculation of

the metrics involving the communication of traffic through the many-core array. An essential

piece of information, in at least one of the metric calculations, is the number of paths that

exist between the source and target nodes of a ComPair or, more generally, between any

two nodes in a square lattice. There is a well known formula for calculating the number of

paths between two nodes in a fault-free lattice, however the author has been unable to find

any references regarding a calculation in a lattice with faults, i.e. with broken links between

nodes. Without the availability of a calculation, an algorithm would have to trace and count

each viable path, which is a problem with O(n!) complexity. As an activity that is required

for every ComPair, for every mapping for every generation, this is a serious computational

problem for any but the smallest of array sizes.

In response to this problem, an algorithm has been developed that can calculate the

number of paths between two nodes in a faulty network, using only the position of the

nodes and a list of faults in the network.

This section provides the mathematics required to calculate the number of fault-free paths

between two nodes in a square lattice.

Using set notation we will show that the number of fault-free paths through a lattice with

faulty edges can be represented by:

Pff (S, T) = R(S, T)

− R(Enf), ∀ Enf ∈ Rn(Ef) | ∃ k ∈ Z : n = 2k + 1

+ R(Enf), ∀ Enf ∈ Rn(Ef) | ∃ k ∈ Z : n = 2k (6.40)

228 6.7 Determining Paths Through a Lattice

6.7.1 Definitions

This section gives definitions used in the following sections.

Definition 1. Lattice : A lattice consists of nodes arranged in equally spaced rows and

columns. In general a lattice can be considered to have an infinite number of rows and

columns. For practical purposes lattices can be made finite by specifying a size of R rows

and C columns.

Definition 2. Location : A location is a 2-tuple specifying the row and column coordinates,

for an infinite lattice loc = (r, c) | r, c ∈ Z, r ≥ 0, c ≥ 0 and for a finite lattice loc =

(r, c) | r, c ∈ Z, 0 ≤ r ≤ (R− 1), 0 ≤ c ≤ (C − 1). Figure 6.10 illustrates the locations in

a 5× 5 lattice.

0,0 0,1

1,0

0,2

1,1

0,3

1,2

0,4

1,3

0,5

1,4 1,5

2,0 2,1 2,2 2,3 2,4 2,5

3,0 3,1 3,2 3,3 3,4 3,5

4,0 4,1 4,2 4,3 4,4 4,5

5,0 5,1 5,2 5,3 5,4 5,5

Figure 6.10 – A 6× 6 Lattice showing the location coordinates of each node.

Definition 3. Origin : The Origin is location (0, 0), denoted by O.

Definition 4. Subnet : A subnet is any portion of a lattice defined by a source location

sloc = (sr, sc) and a target location tloc = (sr, sc) where sr is not necessarily < tr and

sc is not necessarily < tc.

Definition 5. Node : A node is uniquely identified by it’s location loc(r, c); being the row

and column coordinates of the node within the lattice. Each node can be connected, via

edges, to each of its north, south, east and west neighbours (where they exist) as in figure

6.10.

Definition 6. Edge : An edge connects two nodes and is identified by the locations of the

nodes that it connects. An edge has a source node, the node closest the origin of a lattice

or source node of the subnet, and a target node, the node furthest from the origin of a

lattice or closest to the target node of the subnet. An edge e is, therefore, identified by an

Link Fault Tolerance and Network Traffic 229

ordered 2-tuple of node locations, (sloc, tloc) = ((sr, sc), (tr, tc)).

Definition 7. Minimum Length Path : A minimum length path from the Source to the Target

of a lattice or subnet is a path where each traversal of an edge, a step, increases the

distance from the source and decreases the distance to the Target; there are no steps

going "backwards" towards the source. All minimum length paths between the Source and

Target are the same length consisting of (R−1) horizontal steps and (C−1) vertical steps

for a subnet of size R× C.

Definition 8. Ordered Set of Edges : An ordered set of edges {e1, . . . , en} | n > 1 is a set

of edges ordered such that:

(skr ≤ sk+1r) ∧ (skc ≤ sk+1c) ∧ (tkr ≤ tk+1r) ∧ (tkc ≤ tk+1c), ∀k | 1 ≤ k ≤ (n− 1)

Definition 9. Path-Coincident Edges : Given a lattice with a set of edges El, take an

ordered set of n edges from El, such that 1 ≤ n ≤ El, then if:

(tkr ≤ sk+1r) ∧ (tkc ≤ sk+1c), ∀k | 1 ≤ k ≤ (n− 1)

at least one minimal length path traverses all of the selected edges. Such a set of edges

is described as a set of path-coincident edges, denoted by Enp , of order n where n is

the number of edges in the set. In addition, each individual edge is considered to be a

path-coincident set of order 1.

Using P(El) to represent the power set of El the set Enp (El) is the set of all sets in P(El) of

order n that are path-coincident.

Definition 10. Edge-Coincident Paths : The set of paths that traverse every edge in the

set of edges Enp ∈ Enp (El), are described as the set of edge-coincident paths for the set

of edges Enp and are denoted by R(Enp) which is a member of the set of edge-coincident

sets of paths denoted by Rn(El), where n is the number of edges in the set Enp , that is

R(Enp) ∈ Rn(El) and Rn(El) = {R(Enp) | Enp ∈ Enp (El)}.

The set of edge-coincident paths R(Enp) is the intersection of the sets of paths that pass

through each edge in Enp individually, that is R(Enp) = R({e1}) ∩ . . . ∩R({en}).

Definition 11. Number of Minimum Length Paths in a Subnet : The number of minimum

length paths in a subnet is denoted by R(s, t) where s is the source location and t is the

target location.

Definition 12. Number of Edge-Coincident Paths : The number edge-coincident paths

that traverse a set of edges Enp is denoted by R(Enp). If, for clarity, the subnet needs to

be identified, then the source and target locations identifying the subnet follow the set of

edges e.g. R(Enp , (S, T))

Definition 13. Faulty Edge : A faulty edge is an edge that cannot be used by a path, in

effect removing the edge from the lattice.

230 6.7 Determining Paths Through a Lattice

Definition 14. Faulty Node : A faulty node is a node that cannot be visited by a path, in

effect removing, from the lattice, the node and all edges leading to and from the node.

Definition 15. Fault-Free : A fault-free lattice is a lattice where all nodes and edges are

present and can be used by paths.

6.7.2 Pascal’s Triangle

This section begins with a study Pascal’s triangle in preparation for showing its relationship

to the number of paths in a lattice.

Pascal studied what he referred to as the "Triangle Arithmetique", show in figure Figure 6.11

as Pascal originally presented it in his 1665 treatise [186]. Pascal describes a method of

generating the numbers in each cell by placing a number, the "generator", in the top-right

hand cell and then describes how the value of every other cell is generated by summing the

values of the cells immediately above and to the right of a given cell [187]. The generator

can be any value; Pascal used the value of 1 which is also the value relevant for this work.

Figure 6.11 – Pascal’s "Arithmetical Triangle," as presented in his 1665 Traite
du Triangle Arithmetique [186] (Treatise on the Arithmetical Triangle) (Image
c©Cambridge University Press).

Pascal notes a number of properties of the numbers in the triangle, one of which is that the

numbers correspond to the binomial coefficients.

The coefficient of the (k + 1)th term of an expanded binomial to the nth power, where k

Link Fault Tolerance and Network Traffic 231

takes the values from 0 to n, is given by the binomial coefficient formula:(
n

k

)
≡ n!

k!(n− k)!
(6.41)

This can be related to the value in Pascal’s triangle by denoting the rows of Pascal’s triangle

by r and columns by c, with both r and c both starting at 0, the value in each cell can be

calculated by using the binomial coefficient formula by substituting n for r + c and k for r

(or equivalently k for c) giving Equation 6.42(
r + c

r

)
≡ (r + c)!

r!c!
(6.42)

As we shall see, Pascal’s triangle and the binomial coefficients are relevant when deter-

mining the number of paths through a lattice.

6.7.3 The Number of Minimal Length Paths in a Fault Free Lattice

Theorem 1. The number of minimal length paths between opposite corners of an r × c

lattice, is given by
(
r+c
r

)
.

Proof. Using the principle of mathematical induction:

Given the number of paths from the Origin of a lattice to the node at location loc(r, c) is

denoted by R(O, (r, c)) then the number of paths can be calculated as:

Base cases: If the source and target nodes are on the same row or column, there will be

exactly one path between the source and the target. Since the any node is on the same

row and column as itself, we take the number of paths from a node to itself as 1. We

therefore have the following base cases:

R(O, (0, c)) = 1 (6.43)

R(O, (r, 0)) = 1 (6.44)

R(O,O) = 1 (6.45)

Induction hypothesis: assume the theorem is true for r = m and c = n i.e. location

loc(m,n), so

R(m,n) =
(m + n)!

m!n!
(6.46)

232 6.7 Determining Paths Through a Lattice

Induction step:

R(O, (m + 1, n + 1)) = R(O, (m,n + 1)) + R(O, (m + 1, n))

=
(m + n + 1)!

(m(n + 1))!
+

(m + 1 + n)!

((m + 1)n)!

=
(m + n + 1)!((m + 1)!n! + m!(n + 1)!)

(m + 1)!n!m!(n + 1)!

=
(m + n + 1)!

(m + 1)!(n + 1)!

(
(m + 1)!n! + m!(n + 1)!

!n!m!

)

=
(m + n + 1)!

(m + 1)!(n + 1)!

(
(m + 1)!

m!
+

(n + 1)!

!n!

)

=
(m + n + 1)!

(m + 1)!(n + 1)!
(m + n + 2)

=
(m + n + 2)!

(m + 1)!(n + 1)!
(6.47)

Hence we have shown that R(O,O), R(0, c) and R(O, (r, 0)) hold and ∀m ≥ 1, ∀n ≥
1, R(O, (m,n) ⇒ R(O, (m + 1, n + 1)). Therefore R(O, (r, c)) is true ∀r ≥ 1, ∀c ≥ 1 by

mathematical induction.

Corollary 1.1. Given a subnet with a Source node (S) and Target node (T), the number

of minimal length paths between the Source and Target that traverse an edge e = (es, et),

denoted by R({e}), is the product of the number of minimal length paths, R(S, es), between

the Source and the edge’s source node and the number of minimal length paths, R(et, T),

between the edge’s target node and the Target.

R({e}) = R(S, es) ·R(et, T) (6.48)

Figure 6.12a illustrates a subnet of size 8×8 with an edge between (1, 1) and (1, 2) through

which traverses 2 × 362 = 2708 paths, giving the number of fault-free paths through the

subnet from the source to the target of 3432− 724 = 2708.

Similarly, Figure 6.12b illustrates a subnet of size 8 × 8 with an edge between (4, 3) and

(5, 3) through which traverses 35 × 15 = 525 paths, giving the number of fault-free paths

through the subnet from the source to the target of 3432− 525 = 2907.

6.7.4 Number of Paths Traversing Path-Coincident Edges

The equation for calculating the paths through a single edge given in Equation 6.48 can be

generalized for multiple path-coincident edges.

Link Fault Tolerance and Network Traffic 233

2

2 362e1

362

 sn1

 sn2

(a) The number of paths that
traverse edge e1 = 2× 362 = 724.

35

35

15

e2

15

sn3

sn4

(b) The number of paths that
traverse edge e2 = 35× 15 = 525.

Figure 6.12 – Calculating the number of paths that traverse an edge.

Figure 6.13 illustrates a network with a pair of edges, e1 and e2, that are path-coincident.

2

2 4e1

4

15

e2

15

 sn1

 sn5

sn4

Figure 6.13 – Example of two edge faults.

Theorem 2. The number of minimal length paths that pass through an ordered pair of

path-coincident edges, E2p = {e1, e2}, is given by:

R(E2p) = R(S, e1s).R(e1t , e2s).R(e2t , T) (6.49)

Proof. From Equation 6.48, the number of paths of the subnet that traverse edge e1 is

given by:

R({e1}) = R(S, e1s).R(e1t , T) (6.50)

234 6.7 Determining Paths Through a Lattice

The set of edges {e1, e2} are ordered and path-coincident, so edge e2 is in the subnet

defined by the locations (e1t , T) and R(e1t , T) is the number of minimal length paths in

subnet (e1t , T). Using Equation 6.48, the number of paths of the subnet (e1t , T) that

traverse edge e2 is given by:

R({e2}, (e1t , T)) = R(e1t , e2s).R(e2t , T) (6.51)

From equations 6.50 and 6.51, the number of paths that traverse both e1 and e2 is:

R({e1, e2}) = R(S, e1s).R(e1t , e2s).R(e2t , T) (6.52)

More generally for any ordered set of edges, Ef , taken from the set of edges, El, of a

subnet of size R × C there can be multiple sets of path-coincident edges Rn | 1 ≤ n ≤
min(Ef , (R−1)·(C−1)) where Ef = |Ef | and n represents the order of the path-coincident

set.

Theorem 3. The number of minimal length paths that pass through a set of path-coincident

edges, Enf = {e1, . . . , en}, is given by:

R(Enf) = R(S, e1s).R(e1t , e2s).R(e(n−1)t , ens).R(ent , T) (6.53)

Proof. Using the principle of mathematical induction:

Base case: From Equation 6.48, the number of paths that traverse edge e1 is given by:

R({e1}) = R(S, e1s).R((e1t , T)) (6.54)

Induction hypothesis: assume the theorem is true for n = k so:

R({e1, . . . , ek}, (S, T)) = R(S, e1s)).R(e(k−1)t , eks).R(ekt , T) (6.55)

Induction step: The set of edges {e1, . . . , en} are ordered and path-coincident, so edges

{e(k+1), . . . , en} are in the subnet defined by the locations (ekt , T). From Equation 6.48,

the number of paths of the subnet (ekt , T) that traverse edge e(k+1) is given by:

R({e(k+1)}, (ekt , T)) = R(ekt , e(k+1)s).R(e(k+1)t , T) (6.56)

From equations 6.55 and 6.56 we have:

R({e1, . . . , e(k+1)}, (S, T)) = R(S, e1s)).R(ekt , e(k+1)s).R(e(k+1)t , T) (6.57)

Link Fault Tolerance and Network Traffic 235

Hence we have shown that R({e1}) holds and ∀k ≥ 1, R({ek})⇒ R({e(k+1)}). Therefore

R({e1, . . . , en}) is true ∀n > 1 by mathematical induction.

6.7.5 Number of Paths Through Multiple Faulty Edges

Theorem 4. Given a lattice with El, edges and a set of m faulty edges Ef = {e1, . . . , em} | Ef ⊆
El, then the number of paths that traverse at least one faulty edge is given by:

Pfx(S, T) = + R(Enp), ∀ Enf ∈ Rn(Ef) | ∃ k ∈ Z : n = 2k + 1

− R(Enf), ∀ Enp ∈ Rn(Ef) | ∃ k ∈ Z : n = 2k (6.58)

Proof. If none of the faulty edges are path-coincident then all of the sets of paths that pass

through each faulty edge, represented by R1(Ef), are disjoint. Then the number of paths

that traverse a fault edge, denoted by Pfx(S, T) is:

Pfx(S, T) = R1(Ef) (6.59)

If the set of faulty edges includes pairs of edges that are path-coincident, then the number

of paths that traverse both edges in a pair of path-coincident edges are also included in

the sets of paths that traverse each edge individually. Each set of paths in R2(Ef) are

included twice in R1(Ef), once for each edge that is path-coincident. Therefore to correctly

calculate the number of paths that traverse a set of fault edges when there is at least one

pair of path-coincident edges (and no triplets of path-coincident edges), R2(Ef) must be

subtracted from the total:

Pfx(S, T) = R1(Ef)−R2(Ef) (6.60)

If the set of faulty edges includes triplets of edges that are path-coincident, then the number

of paths that traverse all three edges in a path-coincident set of edges are also included in

the sets of paths that traverse each pair of the three edges. Each set of paths in R3(Ef) are

included three times in R2(Ef), once for each pair of edges in the path-coincident triplet.

Therefore to correctly calculate the number of paths that traverse a set of fault edges when

there is at least one triplet of path-coincident edges (and no sets of four edges that are

path-coincident), R3(Ef) must be added to the total:

Pfx(S, T) = R1(Ef)−R2(Ef) + R3(Ef) (6.61)

In set theory this requirement for subtracting and adding alternate sets of higher order in-

tersections of sets to correctly calculate the number of elements in the union of intersecting

236 6.7 Determining Paths Through a Lattice

sets is referred to as the principle of inclusion and exclusion [188].

Therefore, for a set of faulty edges with arbitrary sized sets of path-coincident edges the

calculation for the number of paths that traverse at least one faulty edge is:

Pfx(S, T) = + R(Enp), ∀ Enf ∈ Rn(Ef) | ∃ k ∈ Z : n = 2k + 1

− R(Enf), ∀ Enp ∈ Rn(Ef) | ∃ k ∈ Z : n = 2k (6.62)

6.7.6 Number of Paths Through a Lattice with Multiple Faulty Edges

Theorem 5. : Given a lattice with El edges and a set of m faulty edges {e1, . . . , em} =

Ef ⊆ El, then the number of fault-free paths from the source to the target of the lattice is

given by:

Pff (S, T) = P (S, T)

− R(Enf), ∀ Enp ∈ Rn(Ef) | ∃ k ∈ Z : n = 2k + 1

+ R(Enf), ∀ Enp ∈ Rn(Ef) | ∃ k ∈ Z : n = 2k (6.63)

Proof. Given a lattice with El, edges and a set of m faulty edges Ef = {e1, . . . , em} | Ef ⊆
El, then the number of fault-free paths in the lattice is the number of paths that traverse at

least one faulty edge subtracted from the number of paths in the equivalent fault-free lattice.

The number of paths in a fault-free lattice is:

P (S, T) = R1(Ef)−R2(Ef) + R3(Ef) (6.64)

The number of paths that traverse at least one faulty path is given by Equation 6.58.

The number of fault-free paths in a lattice is therefore:

Pff (S, T) = P (S, T)

− R(Enf), ∀ Enp ∈ Rn(Ef) | ∃ k ∈ Z : n = 2k + 1

+ R(Enf), ∀ Enp ∈ Rn(Ef) | ∃ k ∈ Z : n = 2k (6.65)

Link Fault Tolerance and Network Traffic 237

6.7.7 Summary

This section presented a calculation for the number fo paths through a faulty network using

only the location of the nodes and a list of the faulty edges in the network.

This calculation has been implemented in an algorithm has been designed to work with

directional edges and with the source and target nodes of a ComPair in any possible

orientation. Although the algorithm has been designed for a two dimensional lattice, the

principles are valid for a regular lattice of any dimension. In addition it is possible to

employ the algorithm to calculate paths through non-regular lattices by first converting the

non-regular lattice to a regular lattice with faults and then using the algorithm to calculate

the number of paths in the faulty lattice.

6.8 Multi-Objective Correlation

The experiments in this section have been designed to explore the level of correlation that

there exists between the evolutionary objectives described in this and previous chapters.

6.8.1 Correlation

If two objectives are highly correlated, then, when they are plotted on a graph, the plotted

points will be aligned along an axis such as the x = y axis and will present only a few

closely positioned points as a Pareto front. A pair of highly correlated objectives can be

replaced by just one of the objectives - the second objective does not add any useful

information.

If two objectives are poorly correlated, then their plotted points will form a cloud and

the Pareto front will consist of many points on a curve with a shape of, for example,

y = ax−1 or y = ax−2. Such a Pareto front provides a range of points that trade-off

one objective against the other from which one can be selected on the basis of additional

criteria. For example if the objectives of core fault tolerance and power consumption are

poorly correlated then a Pareto front will have a range of points: at one end of the Pareto

front there will be a point that has good core fault tolerance and poor power consumption,

while at the other end of the Pareto front there will be a point with poor core fault tolerance

and good power consumption. In between these two points there will be numerous points

that have different degrees of trade-off between the two objectives. Such a Pareto front

allows a particular point to be chosen to promote a particular property.

The selection criteria do not have to remain fixed so different points of the Pareto front

can be selected at different times in response to changing demands and environmental

conditions.

In multi-dimensional space, axes are described as orthogonal, which is the multi-dimension

equivalent of perpendicular axes in two and three dimensional space. Each each pair of

238 6.8 Multi-Objective Correlation

axes {x, y}, {x, z} and {y, z} in three dimensional space are orthogonal to each other and

are said to form an orthogonal set. We can use the same terminology to describe a pair of

objectives as orthogonal if they are not highly correlated.

For multi-dimensional problems we want to select a set of objectives that are all pair-wise

orthogonal and as a whole form an orthogonal set, so that each objective is adding a useful

influence to the selection of solutions from the solution space. Exploring the correlation of

pairs of objectives in a 2-dimensional multi-objective problem is an efficient way to ensure

that an effective selection of objectives can be made for higher dimensional multi-objective

problems.

6.8.2 Objectives

The objectives explored in this set of experiments are:

• Core fault tolerance

• Link fault tolerance

• Network Power

• Excess traffic (mean traffic)

• Excess traffic (traffic AMD)

Experiments are performed for each pair combination of the objectives.

For excess traffic, both the mean value and the deviation measure of AMD are included to

determine, experimentally, what degree of correlation there is between the mean and AMD

measures.

6.8.3 Evolutionary Algorithm Parameters

The experiments are run using the evolutionary algorithm parameters selected in Sec-

tion 5.5 and listed in Table 6.8. The hardware is fault free throughout these experiments.

6.8.4 Graph Selection

The experiments are repeated for each of the three densities of graphs listed in Table 6.9

The graph names are based on the number of processing nodes, source nodes and sink

nodes, so the first graph with 28 processing (p) nodes,1 source (s) node and 2 sinks (k)

nodes is referred to as p28s1k2.

The graphs all have 28 processing nodes which will be mapped onto a 6 × 6 array within

a 8 × 8 hardware map with a border of B((b, 1), (b, 1), (b, 1), (b, 1)). Graphs with 28

processing nodes were chosen because, based on the experiment results in Chapter 4

Link Fault Tolerance and Network Traffic 239

Table 6.8 – Multi-Objective Fault Free Experiment Parameters

Parameter Value

Hardware Map Size 8× 8

Hardware Map border B((b, 1), (b, 1), (b, 1), (b, 1))

Many-Core Array Size 6× 6

Number of generations 1000
Population size 100
Elite 10 fittest individuals cloned
Parents 20 fittest individuals used as parents
Descendants 4 from each parent via permutation
Novel 10 randomly generated individuals
Mutation Pattern g15

Table 6.9 – Test Application Process Graphs

Parameter Value
Graph p28s2k1 28 Process Node

2 Source Nodes
1 Sink Nodes
Sparsely Connected
Figure 6.1

Graph p28s3k2 28 Process Node
3 Source Nodes
2 Sink Nodes
Moderately Connected
Figure 6.2

Graph p28s1k3 28 Process Node
1 Source Nodes
3 Sink Nodes
Densely Connected
Figure 6.3

Core Fault Tolerance presented in Figure 4.15, it was known that the minimum core fault

tolerance value was non-zero and that mappings are reasonably difficult to find.

For each pair of experiments the sources and sink processing nodes are randomly allo-

cated to the source and sink nodes of the environment. No attempt has been made to

force all the experiments to place the sources and sinks at the same locations. The actual

position of the source and sink processes will have an effect on the values of the objectives,

but is not expected to have an effect on the correlation of a pair of objectives.

240 6.8 Multi-Objective Correlation

The results of experiments for the densely connected graph p28s1k3 are presented in this

chapter. The results for the sparsely and moderately connected graphs are presented

in Multi-Objective Plots for Sparsely and Moderately Connect Graphs as the results are

recognizably similar to those of the densely connected graph and do not merit repeating

the detailed analysis.

6.8.5 Data Presentation

In each experiment 100,000 individuals are evaluated and plotted using graded colours

representing the generation when the individual first appeared. The colour bar relating the

generation of creation to a colour is shown in Figure 6.14. The points of the last generation

are plotted first, and the first generation plotted last so that points in the early generations

are not masked by the points of later generations.

0 200 400 600 800 1000
Generation

Generation Colour Code

Figure 6.14 – Generations Colour Bar

Plots of Individuals

When interpreting the plots, the absolute value of the objectives is not important. Of more

interest is the how the objectives relate to each other. Therefore, the range of values, and

scale of axes have been chosen for each individual plot to achieve the best presentation of

the data to illustrate the relationship between the two objectives.

Some objectives have a very large range which can have the effect of compressing the

interesting data into a very small area close to an axis. All results start with a plot of

all individuals, to give a perspective of the whole data set. Where the interesting data is

compressed into a small portion of the dataset close to one of the axes, additional plots

have been added which focus on the interesting data points.

Pareto Front Plots

The Pareto front plots show the Pareto front for generations 1, 10, 100 and 1000 which

prove to be appropriate generations to illustrate the improvement of the Pareto front over

the 1000 generations of the experiments.

The scale of the axes has been chosen to illustrate the improvement of the Pareto front

from generation 1 to generation 1000, and are not the scales used to plot the individuals.

In some cases, for example in Figure 6.15b, this results in the Pareto front appearing

flattened, which may give the false impression that the values for one of the objectives are

not very different, and therefore are not materially different. It is important to realise that

Link Fault Tolerance and Network Traffic 241

it is not the presentation of the Pareto front, but the number of points on the Pareto front

that is significant, as a larger number of points gives more flexibility in choosing a suitable

solution based on other criteria.

6.8.6 Results for a Densely Connected Graph

This section presents the results of the experiments using the densely connected graph

p28s1k3.

Core Fault Tolerance with Network Power - Figure 6.15

Figure 6.15 shows the results for the multi-objective combination of Core Fault Tolerance

and Network Power.

Figure 6.15a exhibits two features that can be seen in all the experiments where one of

the objectives is core fault tolerance, which is the discrete nature of the core fault tolerance

values with a minimum value of 3. This is explained by noting that the values for core fault

tolerance have a relatively low range and that a graph with 28 processing nodes being

mapped on to a 6 × 6 array has a minimum possible core fault tolerance value of 3. Both

of these features were observed and discussed in Chapter 4.

Since the evolutionary algorithm is finding the minimum value for core fault tolerance, it

can be deduced that there is a sufficiently large number of optimum solutions for core fault

tolerance that they are reasonably easy to find.

The Pareto front for generation 1000 has nine well-spaced points. The colour of the plotted

points show that the evolutionary algorithm continued to improve on the network power

objective after solutions with optimal core fault tolerance were found. This indicates that

optimal solutions for core fault tolerance are ’easier’ to find than those for network power,

which is consistent with the single objective experiments that explored the evolutionary

algorithm parameters in Section 5.5, and is due to there being many possible mappings

which have an optimal arrangement of processing cores for core fault tolerance.

Core Fault Tolerance with Link Fault Tolerance - Figure 6.16

The core fault tolerance with link fault tolerance plot has a similar profile to the core-power.

A scale of ×100 has been used to enable the plot to show all individuals. The use of the

scale has the effect of flattening the Pareto front, which is revealed by a plot that focuses

on the lower half of the the link scale as in Figure 6.16b.

The plot of individuals suggests that the two objectives are not correlated because it is

not possible to predict the value of one objective from the value of the other objective

however, the small number of points on the Pareto front reveals that there are solutions that

have good values for both objectives simultaneously. The Pareto front has a sharp corner,

indicating that there are some solutions that simultaneously have good core fault tolerance

and good link fault tolerance. The sharp corner also means that a small improvement

in one objective is balanced with a relatively large deterioration in the other objective. It

242 6.8 Multi-Objective Correlation

(a) Individuals

2 4 6 8 10 12 14 16 18
Core FT

10

15

20

25

30

35

P
o
w

e
r

(x
1

0
0

)

Pareto Front for Core FT and Power
E=8x8, P=6x6, Dag=p28s1k3, 100,000 Individuals

Generation 1
Generation 10
Generation 100
Generation 1000

(b) Pareto Front Evolution

Figure 6.15 – Core FT with Network Power

is important to remember, when reading these plots, that the scale for the plot has been

chosen to illustrate the improvement of the Pareto front over 1000 generations and not to

illustrate the detail of the final Pareto front.

Link Fault Tolerance and Network Traffic 243

To understand these results requires an examination of the effect of the metric calculations

on the placement of process core and idle cores. The core fault tolerance calculation acts

to evenly distribute cores across the array, while the relative position between processing

cores has no effect on the metric. Therefore, there can be many alternative arrangements

(a) Link FT 0 - 12,000

(b) Link FT 1,500 - 5,000

244 6.8 Multi-Objective Correlation

2 4 6 8 10 12 14
Core FT

10

20

30

40

50

60

70

Li
n
k

FT
 (

x
1

0
0

)
Pareto Front for Core FT and Link FT

E=8x8, P=6x6, Dag=p28s1k3, 100,000 Individuals

Generation 1
Generation 10
Generation 100
Generation 1000

(c) Pareto Front Evolution

Figure 6.16 – Core FT with Link FT

of processing cores, all of which have the same core fault tolerance fitness. The link fault

tolerance objective gives an evolutionary pressure to avoid critical links, which results in

the placement of the source and target nodes of ComPairs in different rows and columns.

Evenly distributed idle cores are not detrimental to the link fault tolerance and may actually

be helpful.

Although the sharp corner shows that there are some solutions that simultaneously have

good core fault tolerance and good link fault tolerance, the spread of solutions does not

imply that core fault tolerance and link fault tolerance are high correlated objectives.

This analysis suggests the possibility of alternative mechanisms for finding optimal so-

lutions for this pair of objectives by, for example, using a single objective evolutionary

algorithm on core fault tolerance to find an optimum arrangements of idle cores, and

then fixing the idle cores and using a single objective evolutionary algorithm on link fault

tolerance to find an optimal arrangement of the processing cores around the idle cores.

This strategy may reduce the processing time required for the particular objective pairing.

Core Fault Tolerance with Mean Traffic - Figure 6.17

Core Fault Tolerance with mean traffic is similar to the core-link plot in respect of the shape

and number of points in the final Pareto front, while the plots of the individuals show the

there is not a strong correlation between the two objectives.

The scale of the plot of all individuals in Figure 6.17a is so large that the detail of the

Link Fault Tolerance and Network Traffic 245

(a) Mean range 0 - 400,000

(b) Mean range 0 - 20,000

Pareto front is compressed into a very small region above the core FT axis. Two more

plots are provided with smaller scales to reveal the detail of the dataset close to the core

FT axis. Figure 6.17b shows that there is a "break" in the data between traffic objective

value between 3.500 and 5,000, while Figure 6.17c shows a Pareto front corner similar,

246 6.8 Multi-Objective Correlation

(c) Mean range 1,000 - 3,500

2 4 6 8 10 12 14 16
Core FT

10

12

14

16

18

20

22

24

M
e
a
n
 T

ra
ff

ic
 (

x
1

0
0

)

Pareto Front for Core FT and Mean Traffic
E=8x8, P=6x6, Dag=p28s1k3, 100,000 Individuals

Generation 1
Generation 10
Generation 100
Generation 1000

(d) Pareto Front Evolution

Figure 6.17 – Core FT with Mean Traffic

but sharper, than that for the combination of core Fault Tolerance with link Fault Tolerance.

Looking at the details of the metric calculation for excess traffic, the effect the metric will

have on the placement of the nodes of a ComPair are that it will attempt to make the

distance between the nodes as small of possible to reduce overall traffic, but will also

Link Fault Tolerance and Network Traffic 247

attempt to avoid overloading individual links by avoiding arrangements where the nodes

are on the same row and column. The second of these is similar to the effect of link fault

tolerance discussed for core fault tolerance with link fault tolerance.

The conclusion is that, like link fault tolerance, evenly distributed idle cores have no detri-

mental affect on the mean traffic objective value and suggests the single objective approach

may also work for this objective pairing.

The area above this plot which is devoid of an data points is an interesting feature which

requires explanation. The excess traffic calculation uses a weighted approach that pe-

nalises critical links more than significant links which are penalised more than normal links.

The weight approach is designed to discriminate against mappings with critical links. The

weighting of critical links is the cause of the sudden increase in the traffic objective value.

The mapping below the break will be free of critical links while the solutions above the

gap will have at least one critical link. This is shows that the weighting of links based on

criticality does discriminate against critical links and vindicates their use.

Core Fault Tolerance with Traffic AMD - Figure 6.18

The plots for core Fault Tolerance with traffic AMD are very similar those of the core-mean

plots in Figure 6.17. This indicates that the mean traffic and traffic AMD objectives are

similar due to them being based on the same underlying metric of excess traffic. The

relationship between mean traffic and traffic AMD is explored later in this section.

The analysis of the core FT with mean traffic is also relevant to this experiment.

Link Fault Tolerance with Traffic AMD - Figure 6.19

The dataset for link Fault Tolerance with traffic AMD has some interesting detail which only

becomes evident with a series of fours plots with progressively focusing on smaller subsets

of the whole dataset.

The traffic AMD objective shows a number of distinct "strata" of data points. Deviation

measures such as AMD and SD tell us about the variation between the values of the data

set. The stratification of the traffic AMD values tells us that the amount of variation of traffic

through links is increasing, i.e the difference between those will the lowest amount of traffic

and those with the greatest amount of traffic. The effect of the weighting of critical links will,

when the number of critical links in a mapping increments, suddenly increase the metric

value for some links while leaving others unchanged, so increasing the variation. This

analysis suggests that each stratum will be related to a specific number of critical links.

Why the core-traffic AMD dataset only exhibits two levels of data instead of multiple levels,

is not obvious and would merit additional investigation.

The Pareto front has many more points arranged in a more identifiable curve and does not

exhibit the sharp corner of solutions of the previous experiment groups, which could be

described as a good quality. The shape and number of points on the Pareto front offer a

large selection of degrees of trade off between the two objectives.

248 6.8 Multi-Objective Correlation

(a) AMD range 0 - 400,000

(b) AMD range 0 - 50,000

The quality of the Pareto front indicates that the underlying metric calculations of the

objectives are competing against each other in a manner that has not been present in

previous objective pairings. A particular example of this is that to achieve the smallest

traffic volume ComPairs node pairs need to be adjacent to each other, however this it not

Link Fault Tolerance and Network Traffic 249

(c) AMD range 1,000 - 4,500

5 10 15 20
Core FT

15

20

25

30

T
ra

ff
ic

 A
M

D
 (

x
1

0
0

)

Pareto Front for Core FT and Traffic AMD
E=8x8, P=6x6, Dag=p28s1k3, 100,000 Individuals

Generation 1
Generation 10
Generation 100
Generation 1000

(d) Pareto Front Evolution

Figure 6.18 – Core FT with Traffic AMD

good for link FT because it would result in a large number of critical links.

The pairing of link Fault Tolerance with traffic AMD is a good example of a pairing that

250 6.8 Multi-Objective Correlation

(a) AMD range 0 - 400,000

(b) AMD range 0 - 50,000

works well as a multi-dimensional problem.

Link Fault Tolerance and Mean Traffic - Figure 6.20

The plots for link Fault Tolerance and mean traffic have a varied Pareto front, similar to

the link-AMD Pareto front. The data plots exhibit two strata instead of the multiple strata

Link Fault Tolerance and Network Traffic 251

(c) AMD range 1,000 - 12,000

(d) AMD range 1,500 - 3,000

of the link FT and traffic AMD plots. This highlights the qualitative difference the mean

of traffic and the traffic AMD: if there are two mappings that differ by a single critical link,

as discussed eariler, the AMD measure will jump significantly, however the mean will rise

by a smaller amount because the mean calculation averages the rise of value on one link

252 6.8 Multi-Objective Correlation

15 20 25 30 35 40 45
Link FT (x100)

15

20

25

30

35

T
ra

ff
ic

 A
M

D
 (

x
1

0
0

)
Pareto Front for Link FT and Traffic AMD

E=8x8, P=6x6, Dag=p28s1k3, 100,000 Individuals

Generation 1
Generation 10
Generation 100
Generation 1000

(e) Pareto Front Evolution

Figure 6.19 – Link FT with Traffic AMD

across all links in the network.

Link FT and Network Power - Figure 6.21

The link FT and network power pairing produces a good quality Pareto front with many

points forming a smooth curve, providing many options for trade off between the two

objectives. The shape of the plot of individuals and the Pareto front suggest that the two

objectives are not correlated and may be orthogonal.

As previously discussed, the link FT objective is lowest when all ComPair node pairs are

on different rows and columns. The network power objective is at a minimum when all

ComPair node pairs are adjacent. The results of the experiment of this pairing shows that

these two objectives work against each other and so form a good pairing in a multi-objective

scenario.

Mean Traffic and AMD Traffic - Figure 6.22

The Mean Traffic and AMD Traffic data plot is very different from all the previous plots.

The narrow, long cigar shape aligned along the x = y diagonal is a clear illustration that

the mean traffic and AMD traffic are highly correlated which means that only one of the

objectives is required.

The mean is a measure of the average traffic that flows through all the links. The AMD

measures the deviation of the excess traffic, of the links, from the mean traffic. The

expectation was that it should be possible to have all combinations of low/medium/high

Link Fault Tolerance and Network Traffic 253

(a) Mean range 0 - 350,000

(b) Mean range 0 - 50,000

average mean traffic with low/medium/high deviation. It was also expected, that it should

be possible to find solutions where, for example, the mean average was high, but the

deviation from the mean was low which would indicate that the excess traffic was evenly

spread across the network. That this is not the case requires explanation. A possible

254 6.8 Multi-Objective Correlation

(c) Mean range 1,400 - 3,000

20 25 30 35 40 45 50
Link FT (x100)

14

16

18

20

22

24

26

M
e
a
n
 T

ra
ff

ic
 (

x
1

0
0

)

Pareto Front for Link FT and Mean Traffic
E=8x8, P=6x6, Dag=p28s1k3, 100,000 Individuals

Generation 1
Generation 10
Generation 100
Generation 1000

(d) Pareto Front Evolution

Figure 6.20 – Link FT with Mean Traffic

explanation is that the underlying data for both metrics is the excess traffic and the excess

traffic is dominated by a small number of critical links because of the weighting applied to

critical traffic. This would cause the deviation of the values of excess traffic to increase in

Link Fault Tolerance and Network Traffic 255

(a) Individuals

20 30 40 50 60 70 80 90
Link FT (x100)

15

20

25

30

35

40

45

50

P
o
w

e
r

(x
1

0
0

)

Pareto Front for Link FT and Power
E=8x8, P=6x6, Dag=p28s1k3, 100,000 Individuals

Generation 1
Generation 10
Generation 100
Generation 1000

(b) Pareto Front Evolution

Figure 6.21 – Link FT with Network Power

proportion to the increase in the value of the mean the excess traffic.

Network Power and Traffic AMD - Figure 6.23

256 6.8 Multi-Objective Correlation

(a) Individuals

(b) Individuals

Network power and traffic AMD share similar properties to link-mean pairing shown in

Figure 6.20, although the stratification is not as evident as for the link-mean pairing.

The Pareto front contains many points offering a good selection of trade-offs between the

two objective.

Link Fault Tolerance and Network Traffic 257

(c) Individuals

12 13 14 15 16 17 18 19 20
Traffic Mean (x100)

10

15

20

25

30

T
ra

ff
ic

 A
M

D
 (

x
1

0
0

)

Pareto Front for Traffic Mean and Traffic AMD
E=8x8, P=6x6, Dag=p28s1k3, 100,000 Individuals

Generation 1
Generation 10
Generation 100
Generation 1000

(d) Pareto Front Evolution

Figure 6.22 – Mean Traffic with Traffic AMD

Network Power and Mean Traffic - Figure 6.24

Network Power and Traffic Mean and Network Power and Mean Traffic both share similar

properties to link-AMD. The Pareto front contains many points offering a good selection of

258 6.8 Multi-Objective Correlation

(a) AMD range 0 - 400,000

(b) AMD range 0 - 50,000

trade off between the two objectives, although the dataset in Figure 6.24 shows signs of

alignment of data points along a x = ky axis. Although not as pronounced as the cigar

shape for the traffic mean and traffic AMD pairing, this does suggest that there is some

correlation between the power and mean traffic objectives.

Link Fault Tolerance and Network Traffic 259

(c) AMD range 1,500 - 4,500

10 15 20 25 30 35 40
Power (x100)

15

20

25

30

35

T
ra

ff
ic

 A
M

D
 (

x
1

0
0

)

Pareto Front for Power and Traffic AMD
E=8x8, P=6x6, Dag=p28s1k3, 100,000 Individuals

Generation 1
Generation 10
Generation 100
Generation 1000

(d) Pareto Front Evolution

Figure 6.23 – Network Power with Traffic AMD

Examining the metrics, the power metric will be lowest when the nodes of a ComPair

are close or adjacent, while the excess traffic metric will be lowest when the nodes of

ComPairs are close together and on different rows and columns. The conditions for low

260 6.8 Multi-Objective Correlation

metric values for this pair of objectives are similar, but not identical, which accounts for

there being moderate correlation between them.

It is interesting to note the the correlation of traffic AMD, based on the dataset plot of

Figure 6.22c, appears to be weaker than for the mean traffic dataset in Figure 6.24c,

indicating the the correlation between mean traffic and traffic AMD may be strong but not

absolute.

Link Fault Tolerance and Network Traffic 261

(a) Mean range 0 - 350,000

(b) Mean range 0 - 50,000

262 6.8 Multi-Objective Correlation

(c) Mean range 1,200 - 3,000

15 20 25 30 35
Power (x100)

12

14

16

18

20

22

24

26

28

30

T
ra

ff
ic

 M
e
a
n
 (

x
1

0
0

)

Pareto Front for Power and Traffic Mean
E=8x8, P=6x6, Dag=p28s1k3, 100,000 Individuals

Generation 1
Generation 10
Generation 100
Generation 1000

(d) Pareto Front Evolution

Figure 6.24 – Network Power with Mean Traffic

Link Fault Tolerance and Network Traffic 263

6.9 Conclusion

The results show that, for the majority of the objective pairs, the multi-objective evolutionary

approach can find a good range of solutions with degrees of trade-off between the objec-

tives, the most orthogonal pair of objectives being link fault tolerance and mean traffic.

The most correlated pair is the mean traffic and traffic AMD pairing. With existing critical

weight parameters influencing the mean traffic and traffic AMD objectives, making them

strongly correlated, only one of these objectives is required. Of these two objectives, the

mean traffic objective is the natural choice, given that it is a cheaper calculation than the

AMD objective.

Both the link fault tolerance and network power objectives work reasonably well with the

traffic objectives even though there appear to be some correlation between the metrics.

The behaviour of the core fault tolerance objective with each of the others suggest that

there may be a better approach than to include it as an objective in a multi-objective

problem. The suggested approach is to first find optimal arrangements of the idle cores

using core fault tolerance as a single objective. The core fault tolerance objective is

very cheap to calculate and there are many possible arrangements of idle cores with

the minimum possible objective value that can be discovered quickly with an evolutionary

algorithm. A discovered idle core arrangement can then be selected and fixed for a

multi-objective evolution of link fault tolerance, network power and mean traffic.

The results suggest that a multi-objective problem using core fault tolerance, link fault

tolerance, network power and mean traffic will be effective in finding solutions that have

a range of trade-offs of the competing demands of the objectives. An alternative to using

four objectives is to fix idle core positions using a single objective evolution with core fault

tolerance, and then perform a three objective evolution with the remaining three objectives.

For the multi-objective experiments in the next Chapter 7 Graceful Degradation and Ame-

lioration will use the pairings of core fault tolerance with network power, link fault tolerance

with network power and link fault tolerance with mean traffic.

During the development of the metrics and objectives, a formal description of a ComPair

was provided. ComPairs are an important and heavily used construct in the calculation of

the metrics involving the communication of traffic through the many-core array. An essential

piece of information in at least one of the metric calculations is the number of paths that

exist between the source and target nodes of a ComPair or, more generally, between any

two nodes in a square lattice. There is a well known formula for calculating the number of

paths between two nodes in a fault free lattice, however the author has been unable to find

any references regarding a calculation in a lattice with faults, i.e. with broken links between

nodes. Without the availability of a calculation, an algorithm would have to trace and count

each viable path, which is a problem with O(n!) complexity. As an activity that is required

for every ComPair, for every mapping for every generation, this is a serious computational

264 6.9 Conclusion

problem for any but the smallest of array sizes.

In response to this problem, an algorithm has been developed that can calculate the

number of paths between two nodes in a faulty network, using only the position of the

nodes and a list of faults in the network. The algorithm has been designed to work with

directional edges and with the source and target nodes of a ComPair in any orientation.

Although the algorithm has been designed for a two dimensional lattice, the principles are

valid for a regular lattice of any dimension. In addition, it is possible to employ the algorithm

to calculate paths through non-regular lattices by first converting the non-regular lattice to

a regular lattice with faults and then using the algorithm to calculate the number of paths

in the faulty lattice.

Chapter 7

Graceful Degradation and Amelioration

In this chapter the Monitor process and fault-recovery cycle are presented. The Monitor

is an executive program that is responsible for collecting information from the many-core

system and managing all aspects of the routers and cores of the many-core region which it

oversees. The information that the Monitor collects is used to determine whether fault con-

ditions have occurred. The fault-recovery cycle is managed by the Monitor and implements

the concepts of graceful degradation and graceful amelioration to maintain fault tolerance

and performance when the system suffers from faults.

When a fault occurs that requires the immediate migration of a process the migration is

described as a repair to the mapping. The repositioning of the process within the array

is likely to adversely affect the performance, an example of graceful degradation. The

level of disruption that the application experiences during the migration is assumed to

be dependent upon the distance between the cores between which the process is being

migrated, the disruption increasing as the distance increases.

The results of two sets of experiments, the first set using single objectives followed by a

set using two objectives, are presented that demonstrate that the fault-recovery cycle is

effective in maintaining performance and fault tolerance when the system is affected by

a series of faults. In the first set of experiments, within this chapter, the fault-recovery

cycle uses each of core fault tolerance and link fault tolerance as single objectives. The

second set of experiments applies the fault-recovery cycle to the combinations of: core

fault tolerance and power, link fault tolerance and power, and link fault tolerance and mean

traffic. Both sets of experiments, compare the fitness of the original mappings with re-

evolved mappings through a series of fault-recovery cycles, that demonstrate the benefit

of evolving new mappings after each fault.

7.1 The Monitor

The Monitor process is responsible for collecting performance data and managing the

resources of the many-core array to comply with the performance parameters supplied

to the Monitor. Examples of the functions that the Monitor node is responsible for are:

266 7.2 Fault/Recovery Cycle

• Collecting traffic data

• Collecting thermal data

• Controlling voltage and frequency of individual cores

• Detecting fault conditions

• Managing the fault-recovery cycle

• Maintaining the hardware map with core and link faults

• Maintaining the process map

• Maintaining the application process graph with actual process-process traffic vol-

umes

• Informing routers of the location of processes and faulty links

• Managing process migration

• Managing evolutionary runs to search for process mappings

• Maintaining Pareto Front Pf0 between evolutionary runs

• Selecting suitable mappings from Pareto Front Pf0

• Communicating with adjacent regions (where they exist)

Note that if there are multiple regions, then there will be one Monitor process for each

region. A Monitor processes will occupy one of the homogeneous processing cores in the

region of the many-core array for which it is responsible, the specific core being determined

during the initialization phase of the system; no special hardware is required for the Monitor

process. What happens if the core fails, where the Monitor is located, is not within scope

of this thesis.

Tasks of the Monitor, listed above, will be discussed as part of the fault recovery cycle

where they apply.

7.2 Fault/Recovery Cycle

Previous chapters have demonstrated how the evolutionary algorithm using core fault

tolerance and link fault tolerance objectives can produce mappings that are robust to

faults. The core fault tolerance objective directs the search to find mappings that place idle

cores close to processing cores to minimize the disruption to processing while repair and

recovery takes place. The link fault tolerance objective directs the search to find mappings

that will minimize disruption of communication between ComPairs when a link fails.

The mappings that have been found by the search directed by the fault tolerance objectives

minimizes the disruption caused by the fault while the fault-recovery cycle returns the

system back to normal operation.

Graceful Degradation and Amelioration 267

Identify
Affected

Component

Search
for

Mappings

Graceful
Degradation

Mapping
Selection

Remapping
Strategy

Graceful
Amelioration

Identify
Idle Cores

Update
Process

Map

Fault
Detection

Normal
Operation

Return to Normal Operation

Slow/SpeculativeFast/ReactiveMonitoring

Update
Hardware

Map

Remapping
Strategy

Disconnected
Groups
Check

Figure 7.1 – The Fault-Recovery Cycle

The fault-recovery cycle is illustrated in Figure 7.1 which shows the state of the system

being one of:

• Normal Operation

• Graceful Degradation

• Graceful Amelioration

When discussing the fault recovery cycle, it is assumed that mechanisms for task migration

and state recovery and recovery of lost packets are available.

The remainder of this section will describe the elements of the fault-recovery cycle in detail.

7.2.1 Normal Operation

Normal operation is the desired steady state of the many-core system, during which cores

perform the processing required of them. During normal operation the Monitor collects

performance data that enables it to detect fault conditions.

Fault Detection

One of the functions of the Monitor is to use the performance data to identify when a fault

condition occurs and then take appropriate action to return the system to normal operation.

268 7.2 Fault/Recovery Cycle

The detection of faults is not a trivial problem, and is not one that this thesis attempts to

solve. Analysis of traffic flow data can form the basis for identifying faulty cores, faulty links

and traffic bottlenecks. Similarly analysis of thermal data can be used to identify hot-spots.

Any of the these fault conditions can trigger the fault-recovery cycle. When the Monitor

detects a fault event the state of the system moves to graceful degradation.

Examples of fault conditions are discussed below:

Core Faults are defined as the failure of a processing core. The function of the routing

node and links to adjacent nodes are unaffected. If a core is processing a task when

failure occurs, then the task needs to be migrated to a spare core.

Link faults are defined as the failure of a link between two adjacent routing nodes. The

function of router nodes and their associated cores, at either end of the link are unaffected

other than their inability to the use the affected link.

Routing node faults are defined as a failure of the routing node with the associated loss of

the attached core and links, equivalent to the simultaneous failure of the processing core

and the links to all adjacent nodes (which is how it is modelled in the hardware map). If the

core is processing a task when the routing node fails, then the task needs to be migrated

to a spare core.

Excess traffic destined for a link can have an adverse affect across the whole of the many-

core array as the excess traffic is routed through alternative links, which may in turn create

excess traffic on those links and etc. It may be possible to reduce traffic by slowing the

clock rate of the processes that are generating high traffic volumes. However, it may be

necessary to search for new mappings that reduce the overall traffic volume by rearranging

processes to reduce the total distance between ComPairs. The Monitor will substitute the

traffic volumes figure of the application process graph (which are only estimates), with the

observed actual traffic volumes to increase the accuracy of the calculation of the excess

traffic objectives.

Hot-spots are areas of the chip that are heating up to a level that may be harmful to

the device if no action is taken. Hot spots can be alleviated in a number of ways, for

example by reducing the clock rate and voltage of the processing cores in the hot-spot.

If such adjustments are not effective then the Monitor can change the status of cores in

the hot-spot to faulty in the hardware map. A search for new mappings will then produce

only mappings that do not use the hot-spot cores. The Monitor will continue to monitor

temperatures of the hot-spot cores and reinstate them as idle cores when the temperature

has returned to an acceptable level making them eligible for inclusion in future mappings.

The fault conditions that have been used in the experiments of this section are core faults,

link faults.

Update Hardware Map

It is essential that the hardware map reflects the actual status of the many-core hardware

so the hardware map is updated as soon as the fault is detected.

Graceful Degradation and Amelioration 269

Move to Fault-recovery cycle Graceful Degradation State

The Monitor moves the fault-recovery cycle to graceful degradation.

7.2.2 Graceful Degradation

The concept of graceful degradation is to allow an application to continue running on

faulty hardware, although with degraded performance. Detection of a fault may require

an immediate response to repair the fault.

Identify Affected Component

If a core fault has been detected then the Monitor will determine if the core was an idle core

or a processing core. If the core was an idle core then no repair is required. If the core

was a processing core then the Monitor will mange the repair by selecting a suitable idle

core and migrating the process to it, allowing the system as a whole to continue to function

even though performance may be degraded.

Identify Idle Cores

If core failure requires the migration of a process then the Monitor will execute a search to

find the nearest idle core the to the failed core. This process is described in Section 4.7

Nearest Spare Core Search.

The failure of a normal link will not cause packet loss but may cause bottlenecks to appear

in the remaining links, so does not require any immediate action to repair the fault.

Failure of a significant link will cause loss of some packets until the first up-stream routing

node with a choice of paths to the target node establishes that a link has failed. Failure of

normal or significant links do not need an immediate repair from the Monitor, although the

Monitor may play a role in informing upstream routers of the failed link.

If a critical link fails, then either a non minimal path routing algorithm [74, 189] will be

required to re-route traffic over non-minimal paths or a new mapping will have to be found

that has at least one minimal length path for each ComPair. The source and target nodes,

of a ComPair that has a critical link, share either a common row or common column with the

critical link, the failure of which can be repaired by migrating the target node off the common

row or column. If a failed link is critical to multiple ComPairs, then to guarantee repair, the

target node of each ComPair must be migrated off the common row or column. Although

possibly requiring multiple migrations, the migrations are sufficiently easy to identify and

limited in number that they could be regarded as an immediate repair. If it is not possible

to migrate each of the target nodes of the affected ComPairs then an graceful degradation

is not possible and the state of the fault-recovery cycle will move to graceful amelioration.

This emphasises that a mapping with no critical links is highly desirable as no immediate

action is required in the event of a link failure and the state of the fault-recovery cycle can

immediately move to graceful amelioration.

Update Process Map

270 7.2 Fault/Recovery Cycle

If repair requires the migration of one or more processes to spare cores and then the

process map will be updated to reflect the new mapping.

Remapping Strategy

Having identifies the processes that need to be migrated and the spares cores that are the

target of the migration, the Monitor will supervise the migration of the processes.

Move to Fault-recovery cycle Graceful Amelioration State

The values of the optimization objectives for the revised process map and hardware map

are likely to be degraded compared to the original mapping, so must be recalculated to

ensure comparison of the objectives with alternative mappings are accurate. The recalcu-

lation of the objectives can wait until after the migration of tasks is complete.

After the graceful degradation phase is complete the Monitor will move to the graceful

amelioration mode.

7.2.3 Graceful Amelioration

Having recovered from the immediate fault, the next step is to recover fault tolerance and

performance through graceful amelioration. The fault-recovery cycle therefore moves from

degradation to amelioration.

Disconnected Groups Check

Multiple link faults in a many-core array will eventually lead to groups of cores being

disconnected. When this occurs the metric calculations for ComPairs with their source

and targets in disjoint groups of cores will fail. To prevent this only one group of cores can

be used for the mapping of processes.

The fault-recovery cycle needs to include a process that will analyses the hardware map to

determine if the cores have become disjoint groups. If the analysis determines that there

are disjoint groups, all but the largest group will have all cores and link set to faulty. This

ensures that the metric calculations will function correctly.

Note that the presence of disjoint groups of cores may have left the many-core system in a

state where are no viable mappings (see Section 7.3 Viable Mappings).

Search for New Mappings

The Monitor will invoke the evolutionary algorithm to search for new optimal mappings using

the updated hardware map, process map and application process graph. The evolutionary

algorithm will use, as its initial population, the repaired mapping and all the individuals in

Pareto Front Pf0 from the last evolution. There is an assumption here that the addition of a

single fault is likely to require only small changes to the mappings of the Pareto Front Pf0

from the last evolution, to produce mappings that dominate the repair mapping.

Mapping Selection

The Monitor selects of a suitable mapping from Pareto Front Pf0.

Graceful Degradation and Amelioration 271

The criteria for selecting an appropriate mapping will be determined by the relative impor-

tance of the objectives used in the search algorithm, which may change over time. How the

relative importance of the objectives is determined is not within the scope of this research.

Remapping Strategy

Having selected a new mapping the Monitor will supervise the migration of processes

to implement the new mapping, so achieving graceful amelioration. Multiple migrations

may be required to implement the new mapping. If the system is still functioning then the

migrations can be scheduled over a period of time, however, if the fault caused the system

to become inoperable, then all migrations have to be completed before the system can

resume processing.

Move to Fault-recovery cycle normal Operation State

Having completed graceful amelioration the Monitor will move the state of the fault-recovery

cycle to normal operation.

7.3 Viable Mappings

When considering the fault-recovery cycle, the evolutionary algorithm will start with a

many-core array with pre-existing faults, which can cause the evolutionary algorithm to

create individuals that are not viable. A viable mapping is one for which there are sufficient

functioning cores to host all of the processes from the application process graph and where

all ComPairs have at least one communication route.

If the number of core faults results in there being fewer functioning cores than there are

processes, then it will not be possible to find any viable mappings resulting in system

failure.

Where there are sufficient cores for the processes, then faulty links could also result in

some mappings being not viable. The evolutionary algorithm has the responsibility to

ensure that it identifies and discards any non-viable mappings. It is possible to ensure

that a mapping is viable by calculating the number of paths between the nodes of each

ComPair. If there is at least one ComPair with no paths, then the mapping is not viable.

After individuals have been created through cloning, mutation, random generation or engi-

neered, they are checked to ensure they are viable before being added to the intermediate

population. If an individual is not viable, then another individual can be created to add to

the intermediate population. Checking the viability of individuals at this point prevents a full

objective evaluation being carried out on non-viable individuals.

If there is a series of link failures then there will come a point where there are either no

viable mappings, or so few that they become unreasonably difficult to find. To ensure

that the processes that create individuals for the intermediate population do not enter

into an infinite loop while attempting to find a viable mapping, a parameter Pv, is used to

determine the maximum number of consecutive non-viable individuals that can be created

272 7.4 Single Objective Graceful Degradation and Amelioration

by a process before the attempt is abandoned. This ensures that the evolutionary algorithm

will terminate when it fails to find any viable mappings.

7.4 Single Objective Graceful Degradation and Amelioration

In these experiments the cumulative effect of faults and the recovery process, for a single

objective problem, are illustrated by graphs that plot the following four sets of fitness values:

• Evolved Fitness

• Faulty Fitness

• Re-evolved Fitness

• Original Repaired Fitness

Evolved Fitness

The evolved fitness plot is the minimum fitness found for the mappings discovered by the

evolutionary algorithm. There are typically many possible mappings with the minimum

fitness, one of which will be selected to map processes to cores in the many-core array.

For each fault the evolved fitness is the fitness of the mapping before the fault occurred.

Faulty Fitness

When a fault occurs the fitness of the evolved mappings are re-evaluated to give the ’faulty

fitness’. This is the best case scenario for the mapping currently in use by the many-core

system. The faulty fitness of the evolved mappings can vary significantly as some will be

more severely affected than others. This fitness gives a measure of the minimum disruption

that the many-core system will experience from the fault.

Re-evolved Fitness

After a fault event the Monitor node will run the evolutionary process to search for mappings

that are an improvement on the existing mapping. The re-evolved fitness is the minimum

fitness of the newly evolved mappings. The re-evolved mappings for fault n will become

the evolved mappings for fault n + 1.

Original Repaired Fitness

The original mappings are retained throughout all of the fault-recovery cycles. When each

new core fault occurs, the original mappings are repaired by migrating the process from

the failed core to an idle core. If this is not done then the original mapping will quickly

become non-viable. If the fault is a link fault then no repair is attempted. The objective is

then re-evaluated so that the fitness of the repaired original mappings can be compared

with the re-evolved mappings.

Fault Cycles

For core fault experiments, the graphs show seven iterations of the fault repair cycle. The

eighth fault removes the last idle core which renders the core fault tolerance measure moot

Graceful Degradation and Amelioration 273

as there is no idle core that the metric calculation can use. For this reason only the first

seven faults are included.

For link faults the decision was made to use a maximum of seventeen fault-recovery cycles

which is 15% of the number of links in a 6 × 6 array. This limit may seem somewhat

arbitrary but proved to be sufficient to demonstrate the value of the fault-recovery cycle,

while being able to complete the tests within an acceptable time period. Experiments

with link failures have the potential of not being able to find viable mappings. To ensure

the tests terminated, a limit of twenty attempts to find a viable mapping at each step of

the evolutionary algorithm was imposed. Some experiments ended without finding viable

mappings before the maximum number of link faults had been applied.

7.4.1 Evolutionary Algorithm Parameters

The experiments are run using the evolutionary algorithm parameters selected in Sec-

tion 5.5 and listed in Table 7.1.

Table 7.1 – Multi-Objective Fault Free Experiment Parameters

Parameter Value

Hardware Map Size 8× 8

Hardware Map border B((b, 1), (b, 1), (b, 1), (b, 1))

Many-Core Array Size 6× 6

Number of generations 1000
Population size 100
Elite 10 fittest individuals cloned
Parents 20 fittest individuals used as parents
Descendants 4 from each parent via permutation
Novel 10 randomly generated individuals
Mutation Pattern g15
Non-viable mapping limit 20

7.4.2 Graph Selection

The experiments are repeated for each of the three density of graphs listed in Table 7.2

The graph names are based on the number of processing nodes, source nodes and sink

nodes, so the first graph with 28 processing (p) nodes, 2 source (s) nodes and 1 sinks (k)

nodes is referred to as p28s2k1.

The graphs all have 28 processing nodes which will be mapped onto a 6 × 6 array within

a 8 × 8 hardware map with a border of B((b, 1), (b, 1), (b, 1), (b, 1)). For each pair of

experiments the source and sink nodes are randomly allocated to the source and sink

nodes of the environment. No attempt has been made to force all the experiments to place

274 7.4 Single Objective Graceful Degradation and Amelioration

Table 7.2 – Test Application Process Graphs

Parameter Value
Graph p28s2k1 28 Process Node

2 Source Nodes
1 Sink Nodes
Sparsely Connected
Figure 6.1

Graph p28s1k3 28 Process Node
1 Source Nodes
3 Sink Nodes
Densely Connected
Figure 6.3

the sources and sinks at the same locations. The actual position of the source and sink

processes will have an effect on the values of the objectives, but is not expected to have

an effect on the correlation of a pair of objectives.

7.4.3 Data Presentation

When interpreting the plots, the absolute value of the objectives is not important, of more

interest is the how the objectives relate to each other, therefore the range of values, and

scale of axes have been chosen for each individual plot to achieve the best presentation of

the data to illustrate the relationship between the two objectives.

7.4.4 Results

Core Faults - Core Fault Tolerance - Figure 7.2

The graph in Figure 7.2a show the results when a series of core faults are applied to

the mapping of a densely connected application process graph optimized for core fault

tolerance, while the graph in Figure 7.2b show the results when a series of core faults are

applied to the mapping of a sparsely connected application process graph also optimized

for core fault tolerance.

The evolved fitness (green line) is the pre-fault fitness immediately before each fault is

applied. When a fault is applied there is a clear deterioration of the fitness, represented

by the faulty fitness (red line). The re-evolved fitness (blue line) shows that re-evolution

improves upon the repaired mappings. The cyan line represents the original mapping that

is repaired after the application of each fault and can be seen to quickly become worse

than either the repaired or re-evolved mappings, as the number of faults accumulate.

The sparsely connected graph maintains lower fitness values than those of the densely

Graceful Degradation and Amelioration 275

1 2 3 4 5 6 7
Fault

20

40

60

80

C
o
re

 F
T

Single Objective Core FT with 1-7 Faults
E=8x8, P=6x6, Dag=p28s1k3, 100,000 Individuals

Evolved
Faulty
Repaired
Original Repaired

(a) Single Objective Core Fault Tolerance for a Densely Connect Graph

1 2 3 4 5 6 7
Fault

10

20

30

40

50

60

70

80

90

C
o
re

 F
T

Single Objective Core FT with 1-7 Faults
E=8x8, P=6x6, Dag=p28s2k1, 100,000 Individuals

Evolved
Faulty
Repaired
Original Repaired

(b) Single Objective Core Fault Tolerance for a Sparsely Connect
Graph

Figure 7.2 – Single Objective Fault Recovery for Core Fault Tolerance

connect graph, through all fault-recovery cycles. The cyan line, which represents the

276 7.4 Single Objective Graceful Degradation and Amelioration

original mapping that is repaired after the application, appears to show greater resilience to

the series of faults than the densely connected mapping. However, since the density of the

graph has no effect on the core fault tolerance objective the observed differences between

the two graphs must be normal statistical variations the core fault tolerance is unaffected

by the number of ComPairs in the network.

These results demonstrate that the repair process of migrating a process from a failed core

to an idle core can keep an original mapping viable, but to maintain the core fault tolerance

objective as low as possible requires re-evolution.

Link Faults - Link Fault Tolerance - Figure 7.3

The graph in Figure 7.3a shows the results when a series of link faults are applied to a

mapping of a densely connected application process graph optimized for link fault toler-

ance, while the graph in Figure 7.3b shows the results when a series link faults are applied

to a mapping of a sparsely connected application process graph also optimized for clink

fault tolerance.

These graphs show that the effect of a link failure on the objective value of link fault

tolerance can vary considerably. In many cases the effect is moderate, in others the effect

is significant. The significant effect on fitness is due to a significant link becoming a critical

link, which will have the dual effect of the reducing the number of links between a ComPair

to one and then penalising the link because it is the only remaining link. Evolving new

mappings works well, bringing the fitness back down towards the original evolved value and

in some cases finding mappings with a superior fitness to the original evolved mappings.

The fitness of the original mapping that is left unchanged through the series of fault injec-

tions, quickly deteriorates, demonstrating the value of the fault-recovery cycle. In Fig-

ure 7.3a, the original mapping became non-viable after the tenth fault. Following the

seventeenth fault the evolutionary algorithm did not find ay viable mappings so the recovery

phase of the cycle failed.

These graphs suggest an improvement to the fault recovery cycle: if the change to the

fitness value is small, then the improvement in the objective value that can be achieved

through evolution is minimal, suggesting that this step could be omitted. This approach

would be useful for avoiding unnecessary and unproductive evolutionary cycles.

7.4.5 Summary

This set of experiments demonstrated that the fault-recovery cycle implementing graceful

degradation and amelioration can maintain the performance of a many-core system by us-

ing an evolutionary algorithm to search for new mappings after a fault occurs. A refinement

of the process could take into account the level of degradation of the objective values to

decide if using the evolutionary algorithm is an effective use of processing time compared

to the benefits in performance or fault tolerance that would result.

Graceful Degradation and Amelioration 277

2 4 6 8 10 12 14 16
Fault

2000

3000

4000

5000

6000

7000

8000

Li
n
k

FT

Single Objective Link FT with 1-17 Faults
E=8x8, P=6x6, Dag=p28s1k3, 100,000 Individuals

Evolved
Faulty
Repaired
Original Repaired

(a) Single Objective Link Fault Tolerance for a Densely Connect Graph

2 4 6 8 10 12 14 16
Fault

1000

1500

2000

2500

Li
n
k

FT

Single Objective Link FT with 1-16 Faults
E=8x8, P=6x6, Dag=p28s2k1, 100,000 Individuals

Evolved
Faulty
Repaired
Original Repaired

(b) Single Objective Link Fault Tolerance for a Sparsely Connect Graph

Figure 7.3 – Single Objective Fault Recovery for Link Fault Tolerance

278 7.5 Multi-Objective Graceful Degradation and Amelioration

7.5 Multi-Objective Graceful Degradation and Amelioration

In these experiments the effect of faults and the recovery process for a multi-objective

problem are illustrated by a sets of four graphs each plotting a series of Pareto fronts for

each occurrence of a fault. The graphs display the following Pareto fronts:

• Evolved

• Faulty

• Re-evolved

• Original repaired

The Pareto fronts are the multi-objective equivalents of the single objective plots for the

experiments in Section 7.4.

Evolved

The Pareto front of the evolved solution at the start of the cycle before any a fault occurs.

Faulty

After a fault occurs and any repairs that are possible have been made, the points on the

Pareto front are re-evaluated. If an individual becomes non-viable, it is removed from the

list.

Re-evolved

The evolutionary algorithm is used to search for a new Pareto front in an attempt to improve

performance over the repaired individuals. This Pareto front will become the evolved Pareto

front for the start of the next cycle.

Original mapping

The original mappings, repaired if possible, are retained throughout all of the fault/repair

cycles. This Pareto front represents the original mappings re-evaluated with the current

hardware map. If an individual becomes non-viable, it is removed from the Pareto front.

7.5.1 Evolutionary Algorithm Parameters

The same parameters that are specified in Section 7.4 are used for these experiments.

7.5.2 Graph Selection

The same graphs that are specified in Section 7.4 are used for these experiments.

7.5.3 Data Presentation

Pareto Front Plots

When interpreting the plots, the absolute value of the objectives is not important, of more

Graceful Degradation and Amelioration 279

interest is the how the objectives relate to each other, therefore the range of values, and

scale of axes have been chosen for each individual plot to achieve the best presentation of

the data to illustrate the relationship between the two objectives.

Core Faults applied to Core fault tolerance with Power - Figure 7.4

Figure 7.4 shows the results for a series of core faults impacting a many-core system using

mappings optimized for the multiple objectives of core fault tolerance and network power.

These results show the Pareto front for 7 iterations of the fault-recovery cycle, colour coded

for each fault. Comparing Figure 7.4b with Figure 7.4a shows the effect of the faults on the

fitness of the individuals in the Pareto front, showing a clear degradation in fitness. In this

case the degradation resulting from each of the first five faults is moderate, however as the

pool of idle cores becomes depleted the effect of each new fault becomes more severe.

The benefit of re-evolving is illustrated in Figure 7.4a, which demonstrates an improvement

of the individuals on the Pareto front compared to the faulty Pareto front mappings of

Figure 7.5b and the repaired mappings of Figure 7.5c.

The original re-evaluated Pareto front in Figure 7.4d illustrates how the fitness of the

original mappings rapidly deteriorate if the mappings are repaired and remain in use when

the next fault occurs.

These results are consistent with the results of Section 7.4, giving confidence that the

evolutionary algorithm works effective in single and multi-objective modes.

The effect of faults appears more erratic in these experiments when compared to the single

objective results. This is due to the single objective experiments only using an individual

with the best fitness. The Pareto front of mappings optimized for multiple objects result

in mappings with a range of fitnesses of the twp objectives ranging from poor to good.

Each mapping, representing a different balance of the two objectives, can respond very

differently to the same fault.

A second set of results in Figure 7.5, with only the connection density of the graph changing

from dense to sparse, show a similar picture to the densely connected graph.

Core Faults applied to Link fault tolerance with Power - Figure 7.6

Figure 7.6 shows the results for a series of core faults impacting a many-core system using

mappings optimized for the multiple objectives of link fault tolerance and network power.

The plots of the objective values for the mappings after a fault has occurred, Figure 7.6b,

exhibit a series of near vertical lines connecting the individuals. This indicates that the

network power fitness is affected while the link fault tolerance fitness remains unchanged.

The loss of a core, which can require the migration of a process to repair, can affect the

value of the network power objective by significantly increasing the path length for some

ComPairs, however the link fault tolerance objective value is unaffected by a core failure.

The vertical lines show that there are many instances where there are two individuals that

are very closely placed on the Pareto front where the change in fitness in reaction to the

280 7.5 Multi-Objective Graceful Degradation and Amelioration

20 40 60 80 100 120
Core FT

13

14

15

16

17

18

19

20

21

P
o
w

e
r

(x
1

0
0

)
Evolved Pareto Fronts for Core Failures

E=8x8, P=6x6, Dag=p28s1k3, 100,000 Individuals

Fault 1
Fault 2
Fault 3
Fault 4
Fault 5
Fault 6
Fault 7

(a) Evolved

20 40 60 80 100 120
Core FT

13

14

15

16

17

18

19

20

21

P
o
w

e
r

(x
1

0
0

)

Faulty Pareto Fronts for Core Failures
E=8x8, P=6x6, Dag=p28s1k3, 100,000 Individuals

Fault 1
Fault 2
Fault 3
Fault 4
Fault 5
Fault 6
Fault 7

(b) Fault Added

same fault is very different. The mappings only need to differ in the use of the failed core,

with one using it as an idle core and the other as a processing core, for the fault and repair

mechanism to have a profound effect on one individuals while having little affect on the

other individual.

Graceful Degradation and Amelioration 281

20 40 60 80 100 120
Core FT

13

14

15

16

17

18

19

20

21

P
o
w

e
r

(x
1

0
0

)

Repaired Pareto Fronts for Core Failures
E=8x8, P=6x6, Dag=p28s1k3, 100,000 Individuals

Fault 1
Fault 2
Fault 3
Fault 4
Fault 5
Fault 6
Fault 7

(c) Repaired

20 40 60 80 100 120
Core FT

13

14

15

16

17

18

19

20

21

P
o
w

e
r

(x
1

0
0

)

Not Repaired Pareto Fronts for Core Failures
E=8x8, P=6x6, Dag=p28s1k3, 100,000 Individuals

Fault 1
Fault 2
Fault 3
Fault 4
Fault 5
Fault 6
Fault 7

(d) Original Repaired

Figure 7.4 – Multi-objective, Core Fault Recovery, Core fault tolerance with
Power, Densely Connected Graph

This is an example of where the crowding distance between individuals on the Pareto front

is a poor guide to how similar or different the individuals are. Although the fitness values

282 7.5 Multi-Objective Graceful Degradation and Amelioration

20 40 60 80 100 120
Core FT

8

9

10

11

12

13

14

15

16

P
o
w

e
r

(x
1

0
0

)
Evolved Pareto Fronts for Core Failures

E=8x8, P=6x6, Dag=p28s2k1, 100,000 Individuals

Fault 1
Fault 2
Fault 3
Fault 4
Fault 5
Fault 6
Fault 7

(a) Evolved

20 40 60 80 100 120
Core FT

8

9

10

11

12

13

14

15

16

P
o
w

e
r

(x
1

0
0

)

Faulty Pareto Fronts for Core Failures
E=8x8, P=6x6, Dag=p28s2k1, 100,000 Individuals

Fault 1
Fault 2
Fault 3
Fault 4
Fault 5
Fault 6
Fault 7

(b) Fault Added

are very similar, the mappings are sufficiently different that the qualitative difference of the

individuals is large, which results in a very different response to the same fault condition.

By deciding not to use crowding distance for the selection of individuals from the Pareto

front, the evolutionary algorithm retained individuals with similar fitnesses but very different

Graceful Degradation and Amelioration 283

20 40 60 80 100 120
Core FT

8

9

10

11

12

13

14

15

16

P
o
w

e
r

(x
1

0
0

)

Repaired Pareto Fronts for Core Failures
E=8x8, P=6x6, Dag=p28s2k1, 100,000 Individuals

Fault 1
Fault 2
Fault 3
Fault 4
Fault 5
Fault 6
Fault 7

(c) Repaired

20 40 60 80 100 120
Core FT

8

9

10

11

12

13

14

15

16

P
o
w

e
r

(x
1

0
0

)

Not Repaired Pareto Fronts for Core Failures
E=8x8, P=6x6, Dag=p28s2k1, 100,000 Individuals

Fault 1
Fault 2
Fault 3
Fault 4
Fault 5
Fault 6
Fault 7

(d) Original Repaired

Figure 7.5 – Multi-objective, Core Fault Recovery, Core fault tolerance with
Power, Sparsely Connected Graph

underlying properties which increases the genetic diversity of the individuals in the Pareto

front.

284 7.5 Multi-Objective Graceful Degradation and Amelioration

1000 1500 2000 2500 3000 3500
Link FT

15

20

25

30

35

P
o
w

e
r

(x
1

0
0

)
Evolved Pareto Fronts for Core Failures

E=8x8, P=6x6, Dag=p28s2k1, 100,000 Individuals

Fault 1
Fault 2
Fault 3
Fault 4
Fault 5
Fault 6

(a) Evolved

1000 1500 2000 2500 3000 3500
Link FT

15

20

25

30

35

P
o
w

e
r

(x
1

0
0

)

Faulty Pareto Fronts for Core Failures
E=8x8, P=6x6, Dag=p28s2k1, 100,000 Individuals

Fault 1
Fault 2
Fault 3
Fault 4
Fault 5
Fault 6

(b) Fault Added

The original points of the Pareto front show a particularity erratic picture of the effect of

cumulative faults on the neighbouring points. It is evident that the evolution of new solutions

is very beneficial to maintaining good quality mappings.

Link Faults applied to mappings for Link fault tolerance with Power - Figure 7.7

Graceful Degradation and Amelioration 285

1000 1500 2000 2500 3000 3500
Link FT

15

20

25

30

35

P
o
w

e
r

(x
1

0
0

)

Repaired Pareto Fronts for Core Failures
E=8x8, P=6x6, Dag=p28s2k1, 100,000 Individuals

Fault 1
Fault 2
Fault 3
Fault 4
Fault 5
Fault 6

(c) Repaired

1000 1500 2000 2500 3000 3500
Link FT

15

20

25

30

35

P
o
w

e
r

(x
1

0
0

)

Not Repaired Pareto Fronts for Core Failures
E=8x8, P=6x6, Dag=p28s2k1, 100,000 Individuals

Fault 1
Fault 2
Fault 3
Fault 4
Fault 5
Fault 6

(d) Original Repaired

Figure 7.6 – Multi-objective, Core Fault Recovery, Link fault tolerance with
Power, Sparsely Connected Graph

Figure 7.7 shows the results for a series of link faults impacting a many-core system using

mappings optimized for the multiple objectives of link fault tolerance and network power.

286 7.5 Multi-Objective Graceful Degradation and Amelioration

2000 3000 4000 5000 6000 7000 8000
Link FT

15

20

25

30

35

40

45

50

P
o
w

e
r

(x
1

0
0

)
Evolved Pareto Fronts for LinkFailures

E=8x8, P=6x6, Dag=p28s1k3, 100,000 Individuals

Fault 1
Fault 2
Fault 3
Fault 4
Fault 5
Fault 6
Fault 7
Fault 8

(a) Evolved

2000 3000 4000 5000 6000 7000 8000
Link FT

15

20

25

30

35

40

45

50

P
o
w

e
r

(x
1

0
0

)

Faulty Pareto Fronts for LinkFailures
E=8x8, P=6x6, Dag=p28s1k3, 100,000 Individuals

Fault 1
Fault 2
Fault 3
Fault 4
Fault 5
Fault 6
Fault 7
Fault 8

(b) Fault Added

This experiment ended after only nine link faults at which point the evolutionary algorithm

was unable to find any viable mappings. These results look similar to the previous set of

results, where the fault has very different effects on the network power value of neighbour-

ing points on the Pareto front. A faulty link can have a severe effect of the length of paths

Graceful Degradation and Amelioration 287

2000 3000 4000 5000 6000 7000 8000
Link FT

15

20

25

30

35

40

45

50

P
o
w

e
r

(x
1

0
0

)

Repaired Pareto Fronts for LinkFailures
E=8x8, P=6x6, Dag=p28s1k3, 100,000 Individuals

Fault 1
Fault 2
Fault 3
Fault 4
Fault 5
Fault 6
Fault 7
Fault 8

(c) Repaired

2000 3000 4000 5000 6000 7000 8000
Link FT

15

20

25

30

35

40

45

50

P
o
w

e
r

(x
1

0
0

)

Not Repaired Pareto Fronts for LinkFailures
E=8x8, P=6x6, Dag=p28s1k3, 100,000 Individuals

Fault 1
Fault 2
Fault 3
Fault 4
Fault 5
Fault 6
Fault 7
Fault 8

(d) Original Repaired

Figure 7.7 – Multi-objective, Link Fault Recovery, Link fault tolerance with Power,
Densely Connected Graph

between a ComPair; if the link is a critical link for the ComPair then the fault will result in

there being no minimal length paths for the ComPair making the mapping non-viable, if the

288 7.6 Conclusion

link is a significant link for the ComPair then the fault can result in another significant link

becoming a critical link for the ComPair increasing the value of the objective value.

The fitness values of the link fault tolerance have also been affected by the link faults.

Some of the link fault tolerance values appear to have an increase in response to the link

faults, although the effect is much less pronounced than for the power metric.

Link Faults applied to Link fault tolerance with Mean Traffic - Figure 7.8

Figure 7.8 shows the results for a series of link faults impacting a many-core system using

mappings optimized for the multiple objectives of link fault tolerance and mean excess

traffic.

These result resemble closely the previous set of results, although this experiments did not

end until the thirteenth fault resulted in the evolutionary algorithm being unable to find any

viable mappings.

7.5.4 Summary

All the results of these experiments confirmed that the use of the fault-recovery cycle

to implement graceful degradation and graceful amelioration is an effective strategy for

maintaining mappings that minimize the objective values and that the search for alternative

mappings prolong the operational life of a many-core system compared to a static mapping

that would quickly become non-viable after a small number of faults.

The response of the network power fitness to both core fault and link faults, demonstrates

that points that are in close proximity on the Pareto front can have very different underlying

properties even when the fitness values are almost identical. This confirms that a Pareto

front crowding calculation is not always a good mechanism for determining if individuals

are similar and can, therefore, be detrimental to diversity if used for selection.

7.6 Conclusion

The results of this chapter illustrated how the fitness values of two points that are in

close proximity on a Pareto front can react very differently to the same fault. This is a

demonstration of how a crowding calculation is not necessarily a good indicator of how

similar two solutions are. These results supports the idea that care should be taken when

using crowding distance by understanding the relationship between the crowding distance

and the underlying qualitative properties of the individuals.

Graceful Degradation and Amelioration 289

20 30 40 50 60
Link FT (x100)

15

20

25

30
T
ra

ff
ic

 M
e
a
n
 (

x
1

0
0

)

Evolved Pareto Fronts for LinkFailures
E=8x8, P=6x6, Dag=p28s1k3, 100,000 Individuals

Fault 1
Fault 2
Fault 3
Fault 4
Fault 5
Fault 6
Fault 7
Fault 8
Fault 9
Fault 10
Fault 11
Fault 12

(a) Evolved

20 30 40 50 60
Link FT (x100)

15

20

25

30

T
ra

ff
ic

 M
e
a
n
 (

x
1

0
0

)

Faulty Pareto Fronts for LinkFailures
E=8x8, P=6x6, Dag=p28s1k3, 100,000 Individuals

Fault 1
Fault 2
Fault 3
Fault 4
Fault 5
Fault 6
Fault 7
Fault 8
Fault 9
Fault 10
Fault 11
Fault 12

(b) Fault Added

290 7.6 Conclusion

20 30 40 50 60
Link FT (x100)

15

20

25

30

T
ra

ff
ic

 M
e
a
n
 (

x
1

0
0

)

Repaired Pareto Fronts for LinkFailures
E=8x8, P=6x6, Dag=p28s1k3, 100,000 Individuals

Fault 1
Fault 2
Fault 3
Fault 4
Fault 5
Fault 6
Fault 7
Fault 8
Fault 9
Fault 10
Fault 11
Fault 12

(c) Repaired

20 30 40 50 60
Link FT (x100)

15

20

25

30

T
ra

ff
ic

 M
e
a
n
 (

x
1

0
0

)

Not Repaired Pareto Fronts for LinkFailures
E=8x8, P=6x6, Dag=p28s1k3, 100,000 Individuals

Fault 1
Fault 2
Fault 3
Fault 4
Fault 5
Fault 6
Fault 7
Fault 8
Fault 9
Fault 10
Fault 11
Fault 12

(d) Original Repaired

Figure 7.8 – Multi-objective, Link Fault Recovery, Link fault tolerance with Mean
Traffic, Densely Connected Graph

Chapter 8

Conclusions and Future Work

The every decreasing feature size of semiconductor devices provide the opportunity to

design single chip NoC devices with hundreds or thousands of processing cores. The

same reduction in feature size is accompanied by greater variability in the characteristics

of transistors leading to lower reliability. In addition dark silicon is required for devices with

a feature size of 22nm. The use of the run-time fault tolerance strategies presented in this

thesis can take advantage of the large number of cores in a many-core system to protect

against hardware faults and manage dark silicon.

To fully utilise the flexibility of being able to choose the core that hosts a process of a

application process graph, this thesis has developed an implementation of an evolutionary

algorithm that uses knowledge of the status of the many-core hardware to search for a set

of optimal process mappings.

This work has developed four objectives that can be used effectively together in a multi-

objective search of the solution space. These include two examples of fault tolerance

(core fault tolerance and link fault tolerance) that are designed to produce mappings that

are robust in the event of failure in a processing core or a communications link. Such

mappings ensure that the effect of a failure on the functioning of the many-core system is

minimized and that the system can recover to a fully functioning condition, possibly with

some degradation of performance, with minimal reconfiguration.

The other two objectives (network power and excess traffic) are examples of properties

that can be used to manage the run-time environment, illustrating the generality and exten-

sibility of the approach. The network power objective searches for mappings that minimize

the overall consumption of power used to route data between pairs of communicating cores

while the excess traffic objective aims to reduce the overall amount of communication traffic

within the many-core communications array.

The four objectives developed in this thesis are examples of objectives that can be used

to evaluate mappings. Many other objectives are possible, for example the control of

frequency and voltage to reduce the power consumption of individual cores.

The design philosophy of the evolutionary algorithm has been to produce a multi-objective

292

search mechanism that can be used together with any collection of objectives that a

designer judges to be appropriate to the specific problem being solved. Each objective

requires code to calculate the underlying metric, which may require further manipulation

to produce the objective value used to compare mappings. Once the code is available

to evaluate the selected objectives, the evolutionary algorithm can use any collection of

objectives to search the solution space for a set of optimal solutions.

The evolutionary algorithm proved successful in finding good solutions to multi-objective

problems within a defined computational budget.

Having developed a suitable evolutionary algorithm a Monitor process was developed

to implement graceful degradation and amelioration through a fault/recovery life cycle,

consisting of the following steps:

• Normal operation

• Fault detection

• Graceful degradation

• Graceful Amelioration

• Return to normal operation

The experimental results show that the cycle is effective in returning the system to a level

of operation with a performance that is close to the pre-fault performance and prolong the

operational life of a many-core system compared to a static mapping that would quickly

become non-viable after a small number of faults.

All the results of these experiments confirmed that the use of the fault-recovery cycle

to implement graceful degradation and graceful amelioration is an effective strategy for

maintaining mappings that minimize the objective values and that the search for alternative

mappings prolong the operational life of a many-core system compared to a static mapping

that would quickly become non-viable after a small number of faults.

The fault-recovery cycle running in real-time can continue until depletion of the hardware

resources result in the system being unable to accommodate the application due to the

lack of functional cores, or the failure of the evolutionary algorithm to discover any viable

mappings, a behaviour that was observed in the experiment results. Failure to find viable

mappings, is the result of there being too few remaining links in the communications array

to allow communication between all ComPairs or there being so few viable solutions that

they become extremely difficult to find.

The experiments also tracked the effect of repeated failures on the mappings in the original

pre-fault solution set. The results show that the objective values of the original mappings

quickly become significantly worse than those of the new mappings.

The results of the experiments confirm that the use of graceful degradation and ameliora-

tion, and a Monitor to manage the recovery cycle can maintain the performance at a level

Conclusions and Future Work 293

that would not otherwise be possible.

The results of Chapter 7 illustrated how the fitness values of two points that are in close

proximity on a Pareto front can react very differently to the same fault. This is a demon-

stration of how a crowding calculation is not necessarily a good indicator of how similar

two solutions are. These results supports the idea that care should be taken when using

crowding distance by understanding the relationship between the crowding distance and

the underlying qualitative properties of the individuals.

Graceful amelioration can be applied to conditions other than hardware faults, for example

the detection of hot-spots and the effects of thermal ageing. The cores in a hot-spot can

be registered in the hardware map as faulty and then the evolutionary algorithm run to find

new mappings that will not use the hot-stop cores. Once the temperature of hot-spot cores

have return to an acceptable level the cores can be reinstated by changing their status

to idle in the hardware map. Similarly, graceful amelioration can be used to balance the

use of the cores by migrating processes from heavily used cores to low usage cores. The

thermal ageing effect on heavily used cores will shorten their life compared to low usage

cores, so balancing core usage can avoid the early failure of heavily used cores resulting

in an extended live of the many-core system as a whole.

8.1 Future Work

The experiments used to determine the level of correlation between objective pairs show

that there were mappings which were optimal for core fault tolerance which were also

optimal for at least one of the other three objectives. This led to the speculative idea that

a multi-objective problem using all four objectives could be replaced by a single objective

problem of finding a set of optimal mappings for core fault tolerance and then using these

mappings, with the position of the idle cores fixed, for a multi-objective search using the

remaining three objectives. This staged approach is worthy of investigation to determine

how it compares with a four-objective problem in terms of quality of mappings and compu-

tational budget.

This research was carried out in the expectation that it would be implemented on the

many-core array developed by the Graceful project, making this the next step for the work

completed in this thesis.

The target system for the work in this thesis is a many-core system of hundreds of cores. To

achieve this requires the integration of the software with a Monitor process and implemen-

tation of a suitable SoC or embedded hardware. Integration with a Monitor, that collects

actual traffic data and updates the information contained in the application process graph,

will increase the accuracy of the calculation of the metrics and objectives.

The Monitor developed in this thesis has been been designed to demonstrate the validity of

the fault-recovery cycle. The Monitor needs to be extended to implement multiple regions

294 8.1 Future Work

of array cores, each with a dedicated Monitor. Monitor processes will be required to can

exchange information regarding the status of hardware and processing cores forming

a boundary between regions, communication of data between ComPairs that straddle

multiple regions, and processes to mange the migration of tasks between regions.

The model can be extended in a number of ways to increase the overall flexibility and

applicability of the model:

• Map multiple applications simultaneously, which can be achieved by including a set of

graphs for multiple applications in the data structure used to represent the application

process graph.

• Allow multiple tasks to be mapped to a single processing node, an approach used by

the majority of contemporary research.

• Relax the requirement for using only application process graphs represented by a

directed acyclic graph so that applications with bi-directional communication between

processes can be included.

Graceful amelioration can also be applied to conditions other than hardware faults, for

example the detection of hot-spots and the effects of thermal ageing. The cores in a hot-

spot can be registered in the hardware map as faulty and then the evolutionary algorithm

run to find new mappings that will not use the hot-stop cores. Once the temperature of hot-

spot cores have returned to an acceptable level the cores can be reinstated by changing

their status to idle in the hardware map. Similarly, graceful amelioration can be used to

balance the use of the cores by migrating processes from heavily used cores to low usage

cores. The thermal ageing effect on heavily used cores will shorten their life compared to

low usage cores, so balancing core usage can avoid the early failure of heavily used cores

resulting in an extended live of the many-core system as a whole.

Appendix A

Graph Generator

Experiments require a selection of representative application process graphs which have

been generated using a simple graph generator that produces graphs with the desired

characteristics[190].

The following parameters are used to control the behaviour of the graph generator:

Number of Nodes

The total number of nodes required in the graph.

Single Source and Sink Nodes

A graph with a single source and single sink node can be specified. Graphs with single

source and sink nodes are used in the early single objective experiments. Graphs with

multiple sources and sinks are used in later experiments. If a single source and single sink

are not specified then the number of source and sink nodes is random which means the

that graph generator does not guarantee a specific number of processing nodes.

Gaussian Distribution Parameters

The number of outbound edges from nodes and the length of outbound edges in terms

of the number of ranks that they span is determined by a random Gaussian distribution to

ensure that there are a variety of numbers of inbound edges, outbound edges and path

lengths.

The graph generator also ensures that the nodes are numbered one rank at a time from left

to right for the aesthetic quality of making the graph visually easier to read, but otherwise

has no affect on the mapping process from the application process graph to the many-core

array.

Following a review of available description languages for graphs, the DOT Graph Descrip-

tion Language was chosen for its simplicity and available software [191], [192]. The DOT

language is supported by GraphViz which proved to be able to provide a clear, uncluttered

visual representation of the graphs. Utilities called DOT and NEATO provide the means

for producing a pdf, eps or png file of the visual representation of a graph using standard

free tools. Additionally, the DOT language allows groups of nodes to be defined as having

the same rank and provides functionality for controlling the size, shape, colour and text of

296

nodes.

The output from the graph generator consists of both a ".gv" file in "dot" format and an

xml file with tags designed specifically for the thesis. A unix shell file is also produced to

convert the generated .gv into pdf format as well as a file containing LaTeX commands for

inclusion of the pdf file into documents.

Appendix B

Multi-Objective Plots for Sparsely and
Moderately Connect Graphs

The sections of this appendix present the plots produced by running the experiments from

Section 7.5 with the, sparsely connected graph p28s2k1, and the moderately connected

graph p28s3k2.

Both of these graphs have fewer ComPairs which result in lower metrics values for link fault

tolerance, network power and excess traffic metrics. This shows as a larger concentration

of lower value points. Other than these lower value points the sparsely and moderately

connected graphs share the same characteristics as the graphs in Section 7.5.

B.1 Results for a Sparsely Connected Graphs

298 B.1 Results for a Sparsely Connected Graphs

(a) Individuals

10 20 30 40 50
Core FT

10

15

20

25

P
o
w

e
r

(x
1

0
0

)

Pareto Front for Core FT and Power
E=8x8, P=6x6, Dag=p28s2k1, 100,000 Individuals

Generation 1
Generation 10
Generation 100
Generation 1000

(b) Pareto Front Evolution

Figure B.1 – MO Core & Power for Sparsely Connected Graph

Multi-Objective Plots for Sparsely and Moderately Connect Graphs 299

(a) Individuals

2 4 6 8 10 12 14 16 18
Core FT

5

10

15

20

25

30

35

40

Li
n
k

FT
 (

x
1

0
0

)

Pareto Front for Core FT and Link FT
E=8x8, P=6x6, Dag=p28s2k1, 100,000 Individuals

Generation 1
Generation 10
Generation 100
Generation 1000

(b) Pareto Front Evolution

Figure B.2 – MO Core & Link for Sparsely Connected Graph

300 B.1 Results for a Sparsely Connected Graphs

(a) Individuals

(b) Individuals

Multi-Objective Plots for Sparsely and Moderately Connect Graphs 301

0 5 10 15 20
Core FT

5

10

15

20

25

30

M
e
a
n
 T

ra
ff

ic
 (

x
1

0
0

)

Pareto Front for Core FT and Mean Traffic
E=8x8, P=6x6, Dag=p28s2k1, 100,000 Individuals

Generation 1
Generation 10
Generation 100
Generation 1000

(c) Pareto Front Evolution

Figure B.3 – MO Core & Mean Traffic for Sparsely Connected Graph

302 B.1 Results for a Sparsely Connected Graphs

(a) Individuals

(b) Individuals

Multi-Objective Plots for Sparsely and Moderately Connect Graphs 303

5 10 15 20
Core FT

10

12

14

16

18

20

22

24

T
ra

ff
ic

 A
M

D
 (

x
1

0
0

)

Pareto Front for Core FT and Traffic AMD
E=8x8, P=6x6, Dag=p28s2k1, 100,000 Individuals

Generation 1
Generation 10
Generation 100
Generation 1000

(c) Pareto Front Evolution

Figure B.4 – MO Core & Traffic AMD for Sparsely Connected Graph

304 B.1 Results for a Sparsely Connected Graphs

(a) Individuals

(b) Individuals

Multi-Objective Plots for Sparsely and Moderately Connect Graphs 305

10 15 20 25 30
Link FT (x100)

10

12

14

16

18

20

22

T
ra

ff
ic

 A
M

D
 (

x
1

0
0

)

Pareto Front for Link FT and Traffic AMD
E=8x8, P=6x6, Dag=p28s2k1, 100,000 Individuals

Generation 1
Generation 10
Generation 100
Generation 1000

(c) Pareto Front Evolution

Figure B.5 – MO Link & Traffic AMD for Sparsely Connected Graph

306 B.1 Results for a Sparsely Connected Graphs

(a) Individuals

(b) Individuals

Multi-Objective Plots for Sparsely and Moderately Connect Graphs 307

10 15 20 25 30 35 40 45
Link FT (x100)

6

7

8

9

10

11

12

13

14

15

M
e
a
n
 T

ra
ff

ic
 (

x
1

0
0

)

Pareto Front for Link FT and Mean Traffic
E=8x8, P=6x6, Dag=p28s2k1, 100,000 Individuals

Generation 1
Generation 10
Generation 100
Generation 1000

(c) Pareto Front Evolution

Figure B.6 – MO Link & Mean Traffic for Sparsely Connected Graph

308 B.1 Results for a Sparsely Connected Graphs

(a) Individuals

10 20 30 40 50 60
Link FT (x100)

10

15

20

25

30

35

40

P
o
w

e
r

(x
1

0
0

)

Pareto Front for Link FT and Power
E=8x8, P=6x6, Dag=p28s2k1, 100,000 Individuals

Generation 1
Generation 10
Generation 100
Generation 1000

(b) Pareto Front Evolution

Figure B.7 – MO Link & Power for Sparsely Connected Graph

Multi-Objective Plots for Sparsely and Moderately Connect Graphs 309

(a) Individuals

(b) Individuals

310 B.1 Results for a Sparsely Connected Graphs

(c) Individuals

6 8 10 12 14 16
Mean Traffic (x100)

8

10

12

14

16

18

T
ra

ff
ic

 A
M

D
 (

x
1

0
0

)

Pareto Front for Mean Traffic and Traffic AMD
E=8x8, P=6x6, Dag=p28s2k1, 100,000 Individuals

Generation 1
Generation 10
Generation 100
Generation 1000

(d) Pareto Front Evolution

Figure B.8 – MO Mean & Traffic AMD for Sparsely Connected Graph

Multi-Objective Plots for Sparsely and Moderately Connect Graphs 311

(a) Individuals

(b) Individuals

312 B.1 Results for a Sparsely Connected Graphs

10 15 20 25
Power (x100)

10

15

20

25

T
ra

ff
ic

 A
M

D
 (

x
1

0
0

)

Pareto Front for Power and Traffic AMD
E=8x8, P=6x6, Dag=p28s2k1, 100,000 Individuals

Generation 1
Generation 10
Generation 100
Generation 1000

(c) Pareto Front Evolution

Figure B.9 – MO Power & Traffic AMD for Sparsely Connected Graph

Multi-Objective Plots for Sparsely and Moderately Connect Graphs 313

(a) Individuals

(b) Individuals

314 B.1 Results for a Sparsely Connected Graphs

10 15 20 25
Power (x100)

6

8

10

12

14

16

18

T
ra

ff
ic

 M
e
a
n
 (

x
1

0
0

)

Pareto Front for Power and Traffic Mean
E=8x8, P=6x6, Dag=p28s2k1, 100,000 Individuals

Generation 1
Generation 10
Generation 100
Generation 1000

(c) Pareto Front Evolution

Figure B.10 – MO Power & Mean Traffic for Sparsely Connected Graph

Multi-Objective Plots for Sparsely and Moderately Connect Graphs 315

B.2 Results for a Moderately Connected Graphs

(a) Individuals

10 20 30 40 50
Core FT

10

15

20

25

30

35

P
o
w

e
r

(x
1

0
0

)

Pareto Front for Core FT and Power
E=8x8, P=6x6, Dag=p28s3k2, 100,000 Individuals

Generation 1
Generation 10
Generation 100
Generation 1000

(b) Pareto Front Evolution

Figure B.11 – MO Core & Power for Moderately Connected Graph

316 B.2 Results for a Moderately Connected Graphs

(a) Individuals

2 4 6 8 10 12 14
Core FT

10

20

30

40

50

60

Li
n
k

FT
 (

x
1

0
0

)

Pareto Front for Core FT and Link FT
E=8x8, P=6x6, Dag=p28s3k2, 100,000 Individuals

Generation 1
Generation 10
Generation 100
Generation 1000

(b) Pareto Front Evolution

Figure B.12 – MO Core & Link for Moderately Connected Graph

Multi-Objective Plots for Sparsely and Moderately Connect Graphs 317

(a) Individuals

(b) Individuals

318 B.2 Results for a Moderately Connected Graphs

2 4 6 8 10 12 14 16
Core FT

10

12

14

16

18

20

22

24

M
e
a
n
 T

ra
ff

ic
 (

x
1

0
0

)

Pareto Front for Core FT and Mean Traffic
E=8x8, P=6x6, Dag=p28s3k2, 100,000 Individuals

Generation 1
Generation 10
Generation 100
Generation 1000

(c) Pareto Front Evolution

Figure B.13 – MO Core & Mean Traffic for Moderately Connected Graph

Multi-Objective Plots for Sparsely and Moderately Connect Graphs 319

(a) Individuals

(b) Individuals

320 B.2 Results for a Moderately Connected Graphs

4 6 8 10 12 14 16
Core FT

12

14

16

18

20

22

24

26

28

30

T
ra

ff
ic

 A
M

D
 (

x
1

0
0

)

Pareto Front for Core FT and Traffic AMD
E=8x8, P=6x6, Dag=p28s3k2, 100,000 Individuals

Generation 1
Generation 10
Generation 100
Generation 1000

(c) Pareto Front Evolution

Figure B.14 – MO Core & Traffic AMD for Moderately Connected Graph

Multi-Objective Plots for Sparsely and Moderately Connect Graphs 321

(a) Individuals

(b) Individuals

322 B.2 Results for a Moderately Connected Graphs

15 20 25 30 35 40 45 50
Link FT (x100)

12

14

16

18

20

22

24

26

T
ra

ff
ic

 A
M

D
 (

x
1

0
0

)

Pareto Front for Link FT and Traffic AMD
E=8x8, P=6x6, Dag=p28s3k2, 100,000 Individuals

Generation 1
Generation 10
Generation 100
Generation 1000

(c) Pareto Front Evolution

Figure B.15 – MO Link & Traffic AMD for Moderately Connected Graph

Multi-Objective Plots for Sparsely and Moderately Connect Graphs 323

(a) Individuals

(b) Individuals

324 B.2 Results for a Moderately Connected Graphs

10 15 20 25 30 35 40 45 50
Link FT (x100)

10

12

14

16

18

20

22

M
e
a
n
 T

ra
ff

ic
 (

x
1

0
0

)

Pareto Front for Link FT and Mean Traffic
E=8x8, P=6x6, Dag=p28s3k2, 100,000 Individuals

Generation 1
Generation 10
Generation 100
Generation 1000

(c) Pareto Front Evolution

Figure B.16 – MO Link & Mean Traffic for Moderately Connected Graph

Multi-Objective Plots for Sparsely and Moderately Connect Graphs 325

(a) Individuals

10 20 30 40 50 60 70
Link FT (x100)

20

25

30

35

40

45

P
o
w

e
r

(x
1

0
0

)

Pareto Front for Link FT and Power
E=8x8, P=6x6, Dag=p28s3k2, 100,000 Individuals

Generation 1
Generation 10
Generation 100
Generation 1000

(b) Pareto Front Evolution

Figure B.17 – MO Link & Power for Moderately Connected Graph

326 B.2 Results for a Moderately Connected Graphs

(a) Individuals

(b) Individuals

Multi-Objective Plots for Sparsely and Moderately Connect Graphs 327

(c) Individuals

10 15 20 25 30
Mean Traffic (x100)

10

15

20

25

30

T
ra

ff
ic

 A
M

D
 (

x
1

0
0

)

Pareto Front for Mean Traffic and Traffic AMD
E=8x8, P=6x6, Dag=p28s3k2, 100,000 Individuals

Generation 1
Generation 10
Generation 100
Generation 1000

(d) Pareto Front Evolution

Figure B.18 – MO Mean & Traffic AMD for Moderately Connected Graph

328 B.2 Results for a Moderately Connected Graphs

(a) Individuals

(b) Individuals

Multi-Objective Plots for Sparsely and Moderately Connect Graphs 329

15 20 25 30 35
Power (x100)

14

16

18

20

22

24

26

28

30

T
ra

ff
ic

 A
M

D
 (

x
1

0
0

)

Pareto Front for Power and Traffic AMD
E=8x8, P=6x6, Dag=p28s3k2, 100,000 Individuals

Generation 1
Generation 10
Generation 100
Generation 1000

(c) Pareto Front Evolution

Figure B.19 – MO Power & Traffic AMD for Moderately Connected Graph

330 B.2 Results for a Moderately Connected Graphs

(a) Individuals

(b) Individuals

Multi-Objective Plots for Sparsely and Moderately Connect Graphs 331

12 14 16 18 20 22 24 26
Power (x100)

9

10

11

12

13

14

15

16

17

18

T
ra

ff
ic

 M
e
a
n
 (

x
1

0
0

)

Pareto Front for Power and Traffic Mean
E=8x8, P=6x6, Dag=p28s3k2, 100,000 Individuals

Generation 1
Generation 10
Generation 100
Generation 1000

(c) Pareto Front Evolution

Figure B.20 – MO Power & Mean Traffic for Moderately Connected Graph

332 B.2 Results for a Moderately Connected Graphs

Appendix C

Evolution of Microprocessor Based
Systems

This appendix presents a graphical picture of the evolution of Intel processes focusing

on the transistor count in each processor family and relating the transistor count to the

technological advances in processor design. The information used has been sources from

a number of www.wikipedia.org pages, requiring verification from primary sources.

In 1965 Moore, while employed at Fairchild Semiconductor, wrote a paper in which he

identified the historical increase in complexity of components as doubling every year and

stating that there was no reason why this trend should not continue [2]. In 1975 Moore

revised his prediction for the doubling of transistor counts to take place every two years

[19]. Figure C.1 shows how Intel processor designs have kept up with Moore’s Law over

the 45 years from 1970 to 2015 during which time the transistor count has increased from

2.5× 103 to 5× 109, an increase by a factor of 2× 106.

The vast number of additional transistors have allowed designers to evolve the design of

the single chip microprocessor in a number of directions.

This examination focuses on four areas of design illustrated in: Figure C.2 which shows

the evolution of the processors word size, Figure C.3 showing the evolution of pipeline

stages, Figure C.5 showing the evolution to the number of cores in multi-core processors

and Figure C.4 showing the addition of on chip cache memory, also referred to as Level 1

or L1 cache.

The first observation we can make it that evolution of the design focused on one aspect of

design at a time. The word length evolved to a size of 32 bits before pipelining evolved.

When the number of pipeline stages reached 20 the emphasis moved to the number of

cores. Small L1 cache made an appearance at the same time as pipelines and then

remained static until multi-core processes made an appearance which were accompanied

334 C.1 Word Length

1970 1980 1990 2000 2010 2020
Year of Production

103

104

105

106

107

108

109

1010
N

o
.
o
f

T
ra

n
si

st
o
rs

4040
80088080

8086
80186

i386

i486

Pentium
Pentium Pro

Pentium 4

Core 2 Duo

Core i7 Quad

8-core Xeon
62-core Xeon

Figure C.1 – Processor Transistor Count

by larger caches.

This staged evolution of one design element at a time can be explained by assuming that

designers focused on the design element which offered the best performance gain for the

available transistors.

C.1 Word Length

The 8 bit 8080 processor uses an instruction set whose length is 1, 2 or 3 bytes, while

the 16 bit 8086 uses an instruction set with instruction lengths varying from 1 to 6 bytes

depending on the addressing mode. In both cases the majority of instructions require

the fetching and decoding of multiple words, with the fetching and decoding of each word

occupying a clock cycle. This reduces the effective speed of the processor when compared

to the ideal of each instruction occupying a single word of the machine’s architecture.

With the introduction of the i386 processor with a word length of 32 bits, the opcode,

addressing mode information and register addresses can be contained within one word

with additional words only required for addresses and immediate data, thus reducing the

average cycles per instruction when compared to a 16 bit word length.

The benefits of a 32 bit work length compared to a 16 bit word length are considerable,

Evolution of Microprocessor Based Systems 335

1970 1980 1990 2000 2010 2020
Year of Production

103

104

105

106

107

108

109

1010

N
o
.
o
f

T
ra

n
si

st
o
rs

4040
4 bit 8008

8 bit 8080

8086

16 bit 80186

i386

32 bit
i486

Pentium
Pentium Pro

Pentium 4

64 bit

Core 2 Duo

Core i7 Quad

8-core Xeon
62-core Xeon

Figure C.2 – Processor Word Length

especially when it is recognised that the longer word length also benefits the access of

data as well as instructions, thus making this an obvious priority in the design evolution.

Word lengths of greater than 64 offer the option of encoding more than one operation in a

single word, increasing the number of operations fetched per cycle to more than one.

C.2 Pipeline

Having evolved the word length to 32 bits the emphasis switched to the development of

instruction pipelines. The motivation for pipelining is to increase the number of instructions

that are executed per second by increasing the clock frequency.

Pipelining arises from the realisation that each instruction passes through a number of

serialised stages and that it is not necessary for one instruction to have completed all

stages before the next instruction enters the first stage. For example the Intel i486 breaks

the instruction execution down into 5 stages [20]:

• FI: Fetch the instruction from cache

• D1: Main instruction decode

• D2: Secondary instruction decode, and memory address computation

• EX: First execution clock

336 C.2 Pipeline

1970 1980 1990 2000 2010 2020
Year of Production

103

104

105

106

107

108

109

1010
N

o
.
o
f

T
ra

n
si

st
o
rs

4040
80088080

8086
80186

i386

i486

5 Stages Pentium
Pentium Pro

6 Stages

Pentium 4

20 Stages

Core 2 Duo

14 Stages Core i7 Quad

24 Stages 8-core Xeon
62-core Xeon

Figure C.3 – Processor Pipeline Stages

• WB: Write results into the register file

Each stage takes place in a single clock cycle. Without pipelining an instruction that re-

quires all five stages to be executed requires a long clock cycle to complete. With pipelining

the i486 can execute five instructions simultaneously reducing the average execution time

for some instructions to one faster clock cycle. Pipelining achieves this because each stage

is relatively simple and so uses fewer logic gates, reducing the amount of time required for

the logic to complete its task and therefore allowing the clock frequency to be increased

[21].

The benefit of the i486 five stage pipeline can be illustrated by comparing the number of

clock cycles required to complete execution of a selection of instructions to the equivalent

i386 instructions [20]:

Instruction Clock Cycles

Type i386 i486

LOAD 4 1

STORE 2 1

ALU 2 1

JUMP 9/3 3/1

taken/not

CALL 9 3

Evolution of Microprocessor Based Systems 337

In the Pentium 4 design the number of pipeline stages increased to 20 which, Intel reported,

increased the relative frequency of the Pentium 4 when compared of the to the i486 by a

factor of 2.5 [21].

A balance needs to be achieved between the number of logic gates in a pipeline stage

and therefore the increase in frequency and the number of pipeline stages which increases

the total number of clock cycles required to complete the execution of an instruction. The

optimum, based on Intel processor designs, seems to be in the region of 20 stages.

A further evolution of pipeline technology is superscalar which is a design that has multiple

pipelines working in parallel to increase the number of instructions executing simultane-

ously.

C.3 On Chip Cache

Memory is a relatively transistor hungry resource, using 50M transistors per megabyte of

memory based on a design that uses 6 transistors per memory cell, so was lower down the

list of processor features to take advantage of the increase in transistor numbers. As can

be seen in Figure C.4, L1 cache first appears in the i486 at the same time as pipelining was

introduced into the the processor design. Although the 8KB cache of the i486 seems small,

especially when compared to the later multi-megabyte caches, it accounts for roughly 4%

of the transistor count of the i486.

In single core designs the L1 cache was on-chip and stayed below 1MB while L2 was

generally, but not exclusively off-chip. With the advent of dual core processors, most

designs allocated a quantity of L1 cache for the exclusive use of each core and added

on-chip L2 cache which is shared between multiple processors. As a result we see a step

change in the size of on-chip caches from kilobytes to megabytes that coincides with the

introduction of multi-core designs.

C.4 Processing Cores

The continuing growth of the number of transistors available to designs next found a use

is multi-core designs. Multi-core designs provide two or more identical and sophisticated

processing cores on a single die. The sophistication and power of the cores is similar to

the that of single processor designs. The processing cores are independent while sharing

resources such as memory and communication buses.

338 C.4 Processing Cores

1970 1980 1990 2000 2010 2020
Year of Production

103

104

105

106

107

108

109

1010
N

o
.
o
f

T
ra

n
si

st
o
rs

4040
80088080

8086
80186

i386

i486

8 KB Pentium

16 KB
Pentium Pro

256 KB

Pentium 4

Core 2 Duo

4 MB Core i7 Quad

8 MB 8-core Xeon

24 MB 62-core Xeon

32 MB

Figure C.4 – Processor Cache Size

• 2005 Intel released their first dual core processor, the Intel Pentium Processor Ex-

treme Edition 840

• 2007 Intel released a Core 2 Quad Processor

• 2014 Intel unveiled its first 8 core desktop processor, the Intel Core i7-5960X proces-

sor Extreme Edition

• 2016 Intel released the 64 core Intel Xeon Phi Processor 7210

• 2016 Intel released the 72 core Intel Xeon Phi Processor 7290

Evolution of Microprocessor Based Systems 339

1970 1980 1990 2000 2010 2020
Year of Production

103

104

105

106

107

108

109

1010

N
o
.
o
f

T
ra

n
si

st
o
rs

 (
x
10

6
)

4040

1 Core
80088080

8086
80186

i386

i486

Pentium
Pentium Pro

Pentium 4

Core 2 Duo

2 Cores Core i7 Quad

4 Cores 8-core Xeon

8 Cores 62-core Xeon

64 Cores

Figure C.5 – Processor Number of Cores

340 C.4 Processing Cores

Appendix D

Many-Core Implementations

D.1 The Graceful Project

This appendix is taken from the proposal for the EPSRC funded project EP/L000563/1

Continuous on-line adaptation in many-core systems: From graceful degradation

to graceful amelioration, known informally as the Graceful project which is a joint project

between The University of York, The University Manchester and University of Southampton.

Project Outline Imagine a many-core system with thousands or millions of processing

nodes that gets better and better with time at executing an application, "gracefully" provid-

ing optimal power usage while maximizing performance levels and tolerating component

failures. Applications running on this system would be able to autonomously vary the

number of nodes in use. The proposed project aims at investigating how such mechanisms

can represent crucial enabling technologies for many-core systems.

Specifically, the project focuses on how to overcome three critical issues related to the

implementation of many-core systems, as identified in the Many-Core Architectures and

Concurrency in Distributed and Embedded Systems workshop organized by the EPSRC

in April 2012: reliability, energy efficiency, and on-line optimisation. The need for reliability

is an accepted challenge for many-core systems, considering the large number of com-

ponents and the increasing likelihood of faults of next-generation technologies, as is the

requirement to reduce the heat dissipation related to energy consumption. On-line optimi-

sation, on the other hand, is a mechanism that could be vital to enable the implementation

of these properties in systems where several parameters (e.g. number of available cores,

power profile, substrate defects and on-line faults) cannot be known at compile time and

cannot be managed centrally due to the vast number of cores involved. The 2011 ITRS

roadmap strongly supports these considerations.

The proposed approach is centred around two basic processes: Graceful degradation im-

plies that the system will be able to cope with faults (permanent or temporary) or potentially

damaging power consumption peaks by lowering its performance. Graceful amelioration

implies that the system will constantly seek for alternative implementations that represent

342 D.1 The Graceful Project

an improvement from the perspective of some user-defined parameter (e.g. execution

speed, power consumption).

Approach The project will combine novel fault tolerance and optimisation methods (which

can be optimisation of functional performance but also of power consumption, area, etc.)

using a set of background mechanisms that run concurrently with the applications, making

use of spare cores (of which in a many-core system there will be significant numbers) to

monitor and fix/optimize the operational cores. Thus, an application that runs rarely will be

largely ignored but one that runs often will slowly become more and more optimized.

The basic scenario we will consider is that of an application running on a system consisting

of many, possibly heterogeneous, processor cores. While acknowledging the fundamental

importance of software compilation techniques, the project will focus on the hardware

aspects of a many-core system, assuming that the application has been pre-parallelized

by the user and starting the investigation from the output stage of the compiler. Each core

will then handle a specific subprogram, or task, within the application.

In the project, standard benchmarks (e.g., SPEC2000 and/or PARSEC) will be used for

initial investigations, but we will quickly progress to a number of real-life applications,

selected in consultation with our industrial contacts. We will consider in priority "real-world"

applications (e.g. audio/video encoding and decoding such as MPEG, encryption/decryp-

tion protocols, etc.) with a particular focus on streaming applications, where the data flow

can be mapped onto a directed acyclic graph of task nodes, and applications that can

tolerate temporarily incorrect results (e.g. dropped frames in a video stream). An Industrial

Advisory Board (see Impact section) will help identify commercially-relevant applications.

On the implementation side, we will deploy our system on two platforms. To demonstrate

the "immediate" advantages of the approach, we will implement a software-based solu-

tion to the SpiNNaker system [9], probably the machine that most closely approximates

a many-core system currently available in the UK (see Resources section for details).

Using conventional ARM cores, this implementation will illustrate how the features of the

proposed approach can impact current technology.

To more fully investigate the advantages of our system and to analyse the fundamental

trade-off between homogeneous and heterogeneous systems (a crucial issue in many-core

research), the second platform will consist of a set of custom FPGA-based boards. While

the development of a custom IC would allow greater scope for our investigations (and

remains an option for a continuation project in the future), the exploratory nature of this

project is better suited to a programmable logic device, which will allow us freedom to

investigate alternative node architectures. The design of custom boards will allow us

to introduce complex power measurement and management components that are not

available in off-the-shelf solutions.

Implementation strategy The proposed implementation approach relies on the observa-

tion that, in a many-core system, the abundance of resources implies that not all cores will

be used for the execution of applications. The overall operation of the system (Figure 1)

Many-Core Implementations 343

will rely on four different kinds of units (in addition to the empty nodes, currently not used

but at the disposal of the application):

• Application Units (AU) represent the "conventional" processing nodes running the

target application. These could be conventional processors (e.g. ARM cores in

SpiNNaker) or dedicated units containing programmable logic. If the latter, the Opti-

mization Units will explore hardware/software trade-offs to seek improved implemen-

tations.

• Monitoring Units (MU) will monitor and profile the execution of the AUs and, if nec-

essary, take steps to resolve issues. Monitoring will be carried out according to

user-specified parameters: in this project, we will focus specifically on fault tolerance

and power consumption, with a lesser emphasis on execution speed, but the general

approach could easily be expanded to handle different parameters. They will operate

in the background, without affecting the execution of the application unless an issue

is detected or an improved implementation is found. The optimal density of MUs (and

hence their radius, i.e., the number of monitored AUs) is a parameter that depends

on several factors and will be attentively examined in the project. To avoid single

points of failure, MUs will also instantiate reciprocal monitoring.

• Optimisation Units apply search algorithms to identify alternative implementations of

application nodes. They will operate on intermediate code (e.g. compilation trees)

and apply functionally-neutral code transformations and/or hardware/software trade-

offs to generate and evaluate Candidate Units. Previous research ([2,3,12]) has

shown that Evolutionary Algorithms (EAs) can be an efficient approach for this kind

of search, particularly considering that the optimisation will be implemented as a

background process that requires neither a single optimal solution nor a fast reaction

time.

• Candidate Units, generated by the Optimisation Units, represent alternative imple-

mentations of AUs. They are evaluated according to the desired parameters (power

consumption, performance, etc.) and, if they represent an improvement over the

original nodes, will eventually replace them. The replacement will be handled by the

MUs and will be non-disruptive (e.g., will occur after the internal states of the nodes

have been aligned and at specific and predictable points in the code).

Figure D.1 – Many-core scenario - Monitoring with radius = 1

344 D.1 The Graceful Project

To ensure scalability, all units will be physically implemented by the same processing

nodes (in other words, the same kind of hardware processors) and all interactions will

be local, with no centralized control. To more closely model a probable scenario in future

many-core systems, the general structure of nodes will be based on a processor with a

"base" datapath (Core Processing Unit & Local Memory) plus an area of programmable

logic, which can be used to optimize performance, by exploiting hardware acceleration

and effectively implement heterogeneous systems, and for fault tolerance, by providing

alternative computational elements. However, in order to increase the potential impact of

the approach, all the mechanisms developed in the project will have a general application

to many-core systems that do not include programmable logic, a versatility that will be

demonstrated through the dual implementation on the SpiNNaker architecture and on

custom processing boards.

Operation The following example scenarios illustrate the projected operation of the sys-

tem. These scenarios, by no means exclusive, should illustrate the general operation of the

system to be developed in the project. While these seem rather well defined and worked

out, their practical implementation on many-core systems is far from worked out or trivial.

Achieving the desired properties will involve the development of novel mechanisms at sev-

eral levels of the system design cycle, from the output of the compilation process through to

the hardware architecture of the nodes and the interconnection network. Achieving these

properties in an appropriate way and developing the mechanisms to make them functional

is the core of this proposal.

Secnario I (graceful amelioration for performance): A Monitoring Unit [A] detects that one

of the Application Units is a bottleneck in the performance of the system (e.g., in [2] this was

detected by monitoring I/O FIFOs). If execution speed is a critical factor in the system, the

MU can implement a rapid solution by instantiating an identical copy of the slow Application

Unit to share the load [2]. At the same time [B], it might generate an Optimisation Unit

that will run a search algorithm which will seek alternative implementations for the task.

These are tested by running them in parallel to the existing node in one or more Candidate

Units. The CUs receive the same input data as the original AU, and their performance

is compared. Non-optimal implementations are discarded. If the OU identifies that the

candidate node outperforms existing node [C], the original node is discarded, returned to

the pool of empty nodes, and replaced by the new one, which contains the same state and

can therefore be seamlessly substituted.

Figure D.2 – Graceful amelioration for performance

Secnario II (graceful amelioration and degradation for power consumption): A scenario

Many-Core Implementations 345

for power consumption could be somewhat similar to the scenario for performance (indeed,

the objective of the project is to define general mechanisms that can be applied for the

optimization of any parameter). A Monitoring Unit [A] detects that one of the Application

Units is exceeding acceptable thresholds of power consumption (spikes due to possible

faults or generally high computational load), which could potentially lead to failure. Again,

the MU could act in two steps. First, it could act directly on the AU, for example by

reducing clock frequency and/or lowering voltage (node A2* in [B]), which could lead

to a (graceful) degradation in performance but avoid the risk of catastrophic failures (if

the degraded performance is not adequate, Scenario I will then "kick in", illustrating the

seamless interfacing between optimisation scenarios). At the same time, once again an

Optimization Unit could be created to seek for alternate implementations of the application

task with better power efficiency, using a mechanism identical to the one described for

Scenario I, but with a different target for optimisation ([B] and [C]).

Figure D.3 – Graceful degradation for fault tolerance

Secnario III graceful degradation for fault tolerance): This scenario presents a certain

number of differences compared to the previous two, in that the presence of a fault could

potentially load to immediate catastrophic failure of a node. Once a fault in one of the

monitored has been detected by the MU (A2x in the figure [A]), several different options

are possible. In this project, our main focus will be on streaming DSP applications, where

the loss of information, if temporary, can deemed acceptable A first reaction of the MU

[B] could then be to act on frequency and voltage levels of the node (A2*) to determine

whether the fault can be (temporarily) masked and allow computation to continue, albeit at

a lower speed (graceful degradation). At the same time, the MU will activate one of the

idle units to replace the faulty one, attempt, where possible, to copy and transfer the state

of the faulty AU, and, once the process is complete, disable the original node and bring

on-line its replacement [C]. At this stage, the original node can be thoroughly tested and, if

deemed fault-free (for example, in case of a non-permanent fault), returned to the pool of

idle nodes.

Figure D.4 – Graceful amelioration for performance

346 D.2 Paralella

D.2 Paralella

D.2.1 Adapteva

Adapteva Inc was formed in 2008 and has been successful in fabricating a 16 core chip

called Epiphany with plans to produce a 64 core chip. Adapteva produce credit card

sized development boards which incorporate the 16 core Epiphany chip alongside a Xilinx

7010/7020 Zynq processor.The Epiphany chips are also available as individual compo-

nents which can be incorporated into end user designs.

D.2.2 Epiphany

The Epiphany chip has been designed to be scalable either by fabricating more cores on

a single chip or by connecting a number of chips together. There are two varieties of

the Epiphany chip, one with 16 cores and another with 64 cores. Whilst the 16-core chip

is available in commercial quantities the availability of the 64-core chip has proved to be

limited. Both the 16-core and 64-core chips are designed within an overall framework which

supports architectures of up to 4096 cores. Chips can be directly connected to other chips

in a mesh pattern.

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

C

RN

Figure D.5 – Epiphany Mesh Architecture

Figure D.5 illustrates the basic architecture of the Epiphany mesh consisting of mesh nodes

Many-Core Implementations 347

within a routing network. Each Mesh Node consists of a CPU, DMA Engine, Memory

and Network Interface. The routing network consists of three separate communication

channels, one for on-chip data writes, one for off-chip data writes and one for all reads.

D.2.3 Memory

Each Epiphany core has 1Mb of local memory, giving a total of 4Gb across the maximum

available 4096 cores, requiring 32 bit addressing. Local memory of each core is accessible

by all the other cores in the mesh. The lower 20 bits address memory locations in the

local memory, while the high end 12 bits are used to specify one of the 4096 organized

in a 64x64 mesh. Cores are given an (x,y) coordinate. Taking the top left core as core

(0,0), bits (31-26) of the 32 bit address gives the x coordinate and Bits (25-20) gives the y

coordinate.

Core
00,00

Core
00,01

Core
00,02

Core
00,03

Core
01,00

Core
01,01

Core
01,02

Core
01,03

Core
02,00

Core
02,01

Core
02,02

Core
02,03

Core
03,00

Core
03,01

Core
03,02

Core
03,03

Chip address 0,0

Core
00,04

Core
00,05

Core
00,06

Core
00,07

Core
01,04

Core
01,05

Core
01,06

Core
01,07

Core
02,04

Core
02,05

Core
02,06

Core
02,07

Core
03,04

Core
03,05

Core
03,06

Core
03,07

Chip address 0,1

Core
04,00

Core
04,01

Core
04,02

Core
04,03

Core
05,00

Core
05,01

Core
05,02

Core
05,03

Core
06,00

Core
06,01

Core
06,02

Core
06,03

Core
07,00

Core
07,01

Core
07,02

Core
07,03

Chip address 1,0

Core
04,04

Core
04,05

Core
04,06

Core
04,07

Core
05,04

Core
05,05

Core
05,06

Core
05,07

Core
06,04

Core
06,05

Core
06,06

Core
06,07

Core
07,04

Core
07,05

Core
07,06

Core
07,07

Chip address 1,1

Figure D.6 – Epiphany Core Addressing

Cores are arranged in a grid mesh with a maximum dimension of 64x64, which an be

achieved using a 16x16 array of 16-core Epiphany chips. Figure D.6 illustrates how cores

are addressed using four 16-core Epiphany chips. All addresses are given in decimal. Each

chip is given a row address from 0-15 (decimal) and column address from 0-15 (decimal).

Within each chip, each core is given a row address from 0-3 (decimal) and column address

from 0-3 (decimal). Combining the chip address with the core address gives a unique

address for each core in the mesh.

348 D.2 Paralella

The routing protocol requires the chip addresses to coincide exactly with the physical

positions of the chips in the mesh. The chip address is set by applying signals to 8 address

pins and applying a reset signal, four pins representing the row address of the chip in binary

and four pins representing the column address in binary. Addresses need to be applied to

each chip during the system boot-up.

According to the documentation only 32Kb of the memory is available for use by the core

with the majority being ’reserved for future use’. This limits the six e of programs and data

that can reside in local memory.

D.2.4 Routing

Routing of data packets between cores is controlled by the routing protocol designed into

the chip fabric. Each packet sent through the mesh is routed first east-west until the packet

arrives at the target column and then north-south until the packet reaches the the target

core.

Core
00,00

Core
00,01

Core
00,02

Core
00,03

Core
01,00

Core
01,01

Core
01,02

Core
01,03

Core
02,00

Core
02,01

Core
02,02

Core
02,03

Core
03,00

Core
03,01

Core
03,02

Core
03,03

Chip address 0,0

Core
00,04

Core
00,05

Core
00,06

Core
00,07

Core
01,04

Core
01,05

Core
01,06

Core
01,07

Core
02,04

Core
02,05

Core
02,06

Core
02,07

Core
03,04

Core
03,05

Core
03,06

Core
03,07

Chip address 0,1

Core
04,00

Core
04,01

Core
04,02

Core
04,03

Core
05,00

Core
05,01

Core
05,02

Core
05,03

Core
06,00

Core
06,01

Core
06,02

Core
06,03

Core
07,00

Core
07,01

Core
07,02

Core
07,03

Chip address 1,0

Core
04,04

Core
04,05

Core
04,06

Core
04,07

Core
05,04

Core
05,05

Core
05,06

Core
05,07

Core
06,04

Core
06,05

Core
06,06

Core
06,07

Core
07,04

Core
07,05

Core
07,06

Core
07,07

Chip address 1,1

Figure D.7 – Epiphany Packet Routing

Figure D.6 illustrates how a packet would be routed between cores (0,0) and (7,7). A packet

travelling from core (0,0) to core (7,7), represented by the dark arrow would first be routed

east through the cores on row 0. When the packet reaches column 7 the packet is routed

south down column 7 until it reaches the core (7,7). The return packet from core (7,7) to

core (0,0), represented by the light arrow, first travels west along row 7 and then north up

Many-Core Implementations 349

column 0. Thus, due to the protocol using an east-west route followed by a north-south

route the outward and inward packets travel along different routes.

When connecting chips together, the routing protocol demands the North side of a chip

is connected to the South side of another and the East side of a chip is connected to the

West side of another.

31 30 29 28 27 26

16 Core Chip
x-addr

On chip
core

x-addr

Memory Address
Bits 31-26

Core Address
x-coordinate

25 24 23 22 21 20

16 Core Chip
y-addr

On chip
core

y-addr

Memory Address
Bits 25-20

Core Address
y-coordinate

Figure D.8 – Epiphany Core Addressing

Combined (x,y) Core Address
Represented as 3 Hexadecimal Digits

31 30 29 28 27 26 25 24 23 22 21 20

Figure D.9 – Epiphany Core Hex Address

Figures D.8 and D.9 illustrate how the 12 high end address bits are used to identify a

core and how these bits are represented as the three high end hexadecimal digits of the

address.

D.2.5 Hardware Platforms

The hardware platform will be based on utilising the Adapteva 16 Core Epiphany chip. The

hardware platform will evolve with the research in three stages.

This research plans to use three different configurations:

• Stage 1 - Parallella Board with a single 16 core Epiphany chip

• Stage 2 - Four Parallella boards connected to produce 4x16 = 64 core array

• Stage 3 [Optional Extension] - Custom board with 16 Epiphany chips producing a

16x16 = 256 core array

350 D.2 Paralella

D.2.6 16 Core - Parallella Board

Parallella is a development board that contains a single 16-core Epiphany chip along side

a Xilinx Zynq 7010 or 7020 processor and a collection of communication ports.

Figure D.10 – Parallella Board

The Xilinx Zynq R©-7000 platform is a family of SoCs that combine Xlinx’s FPGA pro-

grammable logic with a Dual ARM R©CortexTM-A9 MPCoreTM. The ARM processor can

boot Ubuntu from a mini SD card which can then be used to program the Ephiphany cores

and communicate with them.

D.2.7 64 Core - 4 x Parallella Board

The Parallella development board provides connectors to the North and South sides of

the Epiphany chip. The East side of the chip is connected to the Zync SoC and the West

side is unconnected. A number of Parallella boards can be connected together linearly by

connecting the South of one board to the North of another.

A motherboard will be designed that allows the connection of four Parallella boards, giving

a total of 64 cores in a 4 x 16 mesh.

The Parallella board has very limited access to pins on the FPGA and the Epiphany Chip.

In addition to linking four parallel boards together the motherboard will provide breakout

the FPGA, JTAG and the Epiphany address configuration pins.

Many-Core Implementations 351

Ethernet

USB

Power

USB

HDMI

Zynq
7010

Epiphany
16 Core

Power & JTAG
Connector

FPGA
Connector

South
Connector

North
Connector

South – 30 Pins, odd

South – 30 Pins, even

FPGA – 30 Pins, odd

FPGA – 30 Pins, even

Ethernet

USB

Power

USB

HDMI
Zynq
7010

Epiphany
16 Core

Power & JTAG
Connector

FPGA
Connector

South
Connector

North
Connector

JTAG

FPGA – 30 Pins, odd

FPGA – 30 Pins, even

JTAG

Ethernet

USB

Power

USB

HDMI
Zynq
7010

Epiphany
16 Core

Power & JTAG
Connector

FPGA
Connector

South
Connector

North
Connector

FPGA – 30 Pins, odd

FPGA – 30 Pins, even

JTAG

Ethernet

USB

Power

USB

HDMI

Zynq
7010

Epiphany
16 Core

Power & JTAG
Connector

FPGA
Connector

South
Connector

North
Connector

FPGA – 30 Pins, odd

FPGA – 30 Pins, even

JTAG

North – 30 Pins, odd

North – 30 Pins, even

Mini SD
Card

Mini SD
Card

Mini SD
Card

Mini SD
Card

Mini SD
Card

Mini SD
Card

Power – Misc
2 rows of 7

Pwr – Addr
3 rows of 8

Power – Misc
2 rows of 7

Pwr – Addr
3 rows of 8

Power – Misc
2 rows of 7

Pwr – Addr
3 rows of 8

Power – Misc
2 rows of 7

Pwr – Addr
3 rows of 8

Figure D.11 – Motherboard for connection 4 Parallella boards

352 D.3 SpiNNaker chip

D.3 SpiNNaker chip

SpiNNaker is an architecture designed for the construction of massively parallel machines.

Inspired by the human brain a primary goal is to provide a computing platform that can be

used for research into the workings of the mind by simulating the behaviour of neurons.

Figure D.12 – SpiNNaker chip Architecture

The core of the architecture is the SpiNNaker chip, which is described as a multicore

System-on-Chip, with 18 ARM968 Globally Asynchronous Locally Synchronous (GALS)

processing cores. Each SpiNNaker chip package has a 128 MB SDRAM mounted on

top. SpiNNaker chips are mounted on boards of various sizes, the largest of which has

48 SpiNNaker chips, 24 of which can be mounted in a frame of a 19" rack which can

accommodate 5 frames. Each 48 chip board has six 3.1Gbps high-speed serial interfaces,

three of which are used to interconnect the boards into a toroidal mesh.

Of the 18 cores on a SpiNNaker chips one core is used as a monitor node and one is

left spare to provide fault tolerance, leaving 16 cores for processing. A fully populated 19"

rack has a total of 103,680 cores, 92,160 of which are available for processing, 5,760 are

monitoring nodes and 5,760 are spares nodes.

Many-Core Implementations 353

D.4 Intel R© Many Integrated Core (Intel R© MIC) Architecture

In 2012 Intel launched the Intel R© Xeon PhiTM Coprocessor. Mounted on a PCIe 3.0 card, is

designed to be used as a slave to a conventional processor such as the Intel Core i7 CPU

or Intel Xeon CPU. The top-of-the-range has 61 cores, each of which can run 4 threads

concurrently giving a possible 244 concurrent threads. Multiple coprocessor boards can

be installed on a single PC motherboard using the PCIe peer-to-peer interconnect to

communicate without any intervention.

Each core has its own dedicated 32KB L1 instruction cache, a 32KB L1 data cache and

512 KB L2 cache which uses a global-distributed tag directory to maintain coherency. The

cores are connected via a very high bandwidth ring interconnect, interleaved with memory

controllers, as shown in Figure D.13.

Figure D.13 – Intel R© Xeon PhiTM Architecture

Each core also includes a vector processing unit cable of performing 16 single precision

or 8 double precision operations each cycle. The Xeon PhiTM is well suited for vector and

array processing but unlike GPUs the cores have dedicate cache and can be individually

programmed, allowing the use of the coprocessor to be extended into areas inaccessible

to GPUs. Programming for the cores is through C++ and Open MP.

354 D.4 Intel R© Many Integrated Core (Intel R© MIC) Architecture

Appendix E

The Many-Core Model

For ease of reference, the individual components of the many-core model described in

Chapter 4 Core Fault Tolerance, Chapter 5 Network Power and Chapter 6 Link Fault

Tolerance and Network Traffic are presented here.

E.1 The Many-Core Array

The many-core architecture is a square lattice arrangement of R rows and C columns

of homogeneous computing nodes. Each node consists of a router that communicates

with its nearest orthogonal neighbours and a core attached to the router. Communication

between two nodes is via a link. Links are required to show the connections between

nodes, however the details of the communication links between nodes is not important

when considering the placement of spare cores. Communication links will be considered

in more detail in the next chapter.

0,0 0,1

1,0

0,2

1,1

0,3

1,2

0,4

1,3

0,5

1,4 1,5

2,0 2,1 2,2 2,3 2,4 2,5

3,0 3,1 3,2 3,3 3,4 3,5

4,0 4,1 4,2 4,3 4,4 4,5

5,0 5,1 5,2 5,3 5,4 5,5

Figure E.1 – A 6× 6 many-core array showing the coordinates of each node.

The many-core array A is represented as a tuple of the set Va of nodes and the set Ea of

356 E.1 The Many-Core Array

links:

A := (Va, Ea) (E.1)

Given that there are Ra rows and Ca columns, the number of nodes and links are defined

as Va and Ea:

|Va| = Va

= RaCa (E.2)

|Ea| = Ea

= Ra(Ca − 1) + (Ra − 1)Ca

= 2RaCa −Ra − Ca (E.3)

The set of nodes is defined as:

Va = {v1, . . . , vm | m = Va} (E.4)

With a node defined as an ordered tuple consisting of the row and column coordinates of

the node within the many-core array, which are also referred to as its location:

vn = (r, c)

= loc (E.5)

Where:

loc = (r, c) (E.6)

and:
r Is the row coordinate of node vn | 0 ≤ r < Ra.

c Is the column coordinate of node vn | 0 ≤ c < Ca.

Row and column coordinates are defined above as beginning at 0 and location (0, 0) is

arbitrarily assigned to the top-left hand core of the many-core array and location (Ra −
1, Ca − 1) refers to the bottom-right hand core of the many-core array.

The set of links is defined as:

Ea = {e1, . . . , em | m = Ea} (E.7)

A link is defined as a set of ordered tuples consisting of a source node and a target node:

en = (s, t) (E.8)

The Many-Core Model 357

Where:
en is a link from the set Ea | 1 ≤ n ≤ Ea.

s is the source node of link en from the set Va | 1 ≤ s ≤ Va.

t is the target node of link en from the set Va | 1 ≤ t ≤ Va.

Since the definition of the node includes its location, the source and target nodes of a link

also specify the locations of each end of the link. Figure E.1 illustrates a 6 × 6 many-core

array showing the coordinates of the location of each node and the links between nodes.

E.2 Application Process Graph (APG)

This section extends the application process graph model given in Section 4.3 by adding

source and sink nodes which model interfaces to resources external to the circuitry of

the many-core system. Examples of external resources are memory systems, sensors,

controllers or neighbouring many-core array regions. As before, each process or interface

to an external resource, is represented as a node with data transfers between nodes

represented as edges. The nodes of the revised application process graph can be one

of the following types:

• a source node, an interface to an external source of data received by an APG

process, is a node that has no inbound edges

• a process node, has both inbound and outbound edges

• a sink node, an interface that is the recipient of data from an APG process, is a node

that has no outbound edges

As in Section 4.3 the graph G is represented as a tuple of the set of nodes, Vg, and the set

of edges, Eg:

G := (Vg, Eg) (E.9)

The set of nodes Vg is now the union of three distinct sets of nodes within the application

process graph: the set of source nodes Sg, the set of sink nodes Kg, the set of process

nodes Pg:

Each node in the APG is identified by a label: process nodes by Pn | 1 ≤ n ≤ Pg where

Pg is the number of process nodes in the graph, sources nodes by Sn | 1 ≤ n ≤ Sg where

Sg is the number of source nodes in the graph and sink nodes by Kn | 1 ≤ n ≤ Kg where

Kg is the number of sink nodes in the graph.

The total number of nodes is denoted by Vg, where:

V = |Vg| = S + K + P (E.10)

358 E.2 Application Process Graph (APG)

S1

P116

P8
16

S2

P2

1

P723

P3
16

P4

20

P66

P13

21

2

P5

6

3

P17

14

P14
24

P1618

14

1

P10

4

P9
4

P11

22

P22

10

13

P128

5

20

16

16

21

12

P1512
P19

18

P18

3

9

15

17

P21
8

P20
20

P25
7

14

19

18

P23

14

P2414

P27

17

21

P28

9

13 K1

15

20

23 8

14

P26
22

13

22

11

16

10

13

Figure E.2 – Sparsely connected graph with 2 source nodes, 28
processing nodes and 1 sink node.

S1

P3

43

P421

P9
10

S2

P1
11

P11

23

S3
33

P5

23

P10

24

P2

15

22

19

1

P6

6

P718

P14

20

11

19

P1224

28

P16
8

P818

4

15

5

P15
13

P19

4

3

12

P20

3

17

P22

7

P131

1

P17

17

11

20

11

19

P1816

8

19

22

14

21

10

P21

7

16

14

27

15

P25

15

P26

5

13

16 K2
23

P23

4

6

K1

20

P24
17

13

P2710

P28

17

10

24

20

6

11

7

17

13

Figure E.3 – Moderately connected graph with 3 source nodes ,28
processing nodes and 2 sink nodes.

The Many-Core Model 359

S1

P1
5

P2

18

P5

20

P1022

P316

P12

21

P47

19

P7

23 P9
3

P6

22

P17

11

7

P13

14

P14

3117

8

17

P16

6

13

P8

13

P11

18

8

11

6 P22

2

18

9

6

P23

6

24

19
P19

17

8

P18

13

9

P15

16

3

20

3

P20

23

11
P28

1

24

16

12

P21

13

7

P25
5

11

23

P26

12

19

24

7

P2419

P27

9

3

23

K2

15

16

K3

8

14

2

11

14

4

K1

20

18

18

12

11

21

20

15

18

16

19

13

18

24

16

Figure E.4 – Densely connected graph with 1 source node, 28
processing nodes and 3 sink nodes.

The number of edges is:

E = |Eg| (E.11)

The node sets are defined as:

Sg = {s1, . . . , sn | 1 ≤ n ≤ S} (E.12)

Kg = {k1, . . . , kn | 1 ≤ n ≤ K} (E.13)

Pg = {p1, . . . , pn | 1 ≤ n ≤ P} (E.14)

Vg = Sg ∪ Kg ∪ Pg (E.15)

Eg = {e1, . . . , en | 1 ≤ n ≤ Eg} (E.16)

An APG can be characterised by the three numbers representing the number of process

nodes, source nodes and sinks nodes; for example the graph in fig E.4 can be charac-

360 E.3 Process Map

terised by the three numbers s = 1, p = 28, k = 3 or, more compactly, by V (1 : 28 : 3).

More densely connected graphs will, by definition, have more edges, which implies a

greater total volume of traffic, which will affect metrics based on traffic volumes. To quantify

the effect of graph density on the metrics, we categorized graphs as sparsely connected,

moderately connected and densely connected depending on the density of edges in the

graph. A sparsely connected graph is defined as a graph where there are less than two

edges per node, a moderately connected graph is a graph where the number of edges is

more than or equal to 2 edges per node and less than 2.5 edges per node, and a densely

connected graph is a graph where the number of edges is more than or equal to 2.5 edges

per node. These are arbitrary values which were found to be useful in this work.

The connection density of graphs is defined by Equation E.17

Cg


sparse, if E < 2 · V

moderate, if (E ≥ 2 · V) ∧ (E < 2.5 · V)

dense, otherwise

(E.17)

Where:

Cg = The connectivity of graph G.

The graph density also has an impact on the number of mappings that are link fault tolerant.

Each edge creates a ComPair so with more edges creates more ComPairs, and the greater

number of ComPairs makes it more difficult to arrange the processes in cores of the many-

core array such that, the source node and target node of each ComPair are not on the

same row and column i.e.there are no critical links.

E.3 Process Map

A process map or mapping is a data structure that, for each processing node of the

application process graph, gives the location of the core in the array that will run the

process. Cores that are running a process are given a task name that is the process

name from the application process graph. Many-core array cores that are not allocated a

process are spare cores and are considered to be idle so are given a task name of ’i’, while

failed cores are given a task name of ’f’. Figure E.5 illustrates a 6× 6 many-core array.

Figure shows a process map for the application process graph in Figure 4.2 mapped to the

many-core array of Figure 4.1

The process map has the same dimensions as the many-core array, given as R rows and

C columns defined in Section 4.2.

The Many-Core Model 361

i

P2

P12

P5

P4

P6

i

i

P11

P1

P13

P16

P9

P7

P10

P18

P19

i

i

i

P14

i

P21

P20

P3

P15

P17

i

P24

P25

P8

i

P22

P23

P26

i

Figure E.5 – A Process Map for a 26 node APG in a 6x6 Many-Core Array

The process mapM is represented as a set of nodes Vm:

M := Vm (E.18)

The number of nodes is defined as Vm and is the same as Va:

Vm = |Vm|

= Va

= RmCm (E.19)

Given that there are Rm rows and Cm columns, the set of nodes are defined as:

Vm = {v1, . . . , vn | 1 ≤ n ≤ Vm} (E.20)

A node is a set of ordered tuples consisting of a location which is the coordinates of the

corresponding node in the many-core array and a process name:

vm = (r, c, p)

= (loc, p) (E.21)

Where:

loc = (r, c) (E.22)

and:

362 E.4 Communicating Core Pair (ComPair)

vm Is a node of the set Vm.

r Is the row coordinate of the node vm | 0 ≤ r < Rm, where row 0 is the top row.

c Is the column coordinate of the node vm | 0 ≤ c < Cm, where column 0 is the

left most column.

p Is the process name of the APG process mapped to the many-core array node

at location (r, c) or, if no process is mapped to the many-core array node, the

value i representing a spare core | p ∈ Pg ∪ {i}.

The location coordinates are illustrated in Figure 4.1.

E.4 Communicating Core Pair (ComPair)

A pair of processes from an application process graph connected by an edge will cause

data traffic to flow between the cores in the many-core array that the processes are mapped

to. The two cores in the many-core array where the processes are located are referred

to as a communicating core pair or ComPair. Since the application process graph is a

directed graph each ComPair will have a source node from where data traffic originates

and a target node, where the data is received for use by the target process. For this work,

the assumption is made that traffic will use a path of minimal length between the source

and the target of the ComPair subnet.

The ComPair is introduced in this chapter to support the calculation of the power metric

presented in Section 5.3. ComPairs will also be used extensively in the calculation of traffic

metrics presented in Chapter 6.

Definition: Given an edge of an application process graph and the source node and target

node of the edge, a ComPair consists of the two cores of the many-core array to which the

source node and target node have been mapped. The ComPair has a subnet that consists

of all the routing nodes and links between and including the node where the source core is

located and the node where the target core is located.

Between the source and target nodes of a ComPair there will one or more minimal length

paths, which are paths where each step in the path gets closer to the target node. In this

work metrics are based on minimal length paths.

Once an application process graph has been mapped to a many-core array there will be

as many ComPairs in the array as there are edges in the application process graph. Note

that a physical link of the many-core array may carry traffic from multiple ComPairs.

The properties of a ComPair are given in Table E.1 and those of a ComPair subnet inTable E.2.

As an example, two ComPairs that are created by mapping the application process graph

of Figure 4.2 to a 6× 6 many-core array, are illustrated in Figure E.6.

Note that when discussing ComPairs, they will usually be referred to by the symbol Q,

The Many-Core Model 363

i P12

P2

P9

P4

i

P7

P3

i

P8

P15 i

P5 i P10 P14 P17 P22

P6 P11 P18 i i P23

i P13 P19 P21 P24 P26

P1 P16 i P20 P25 i

(a) Subnet for the ComPair with
source node P4 and target node
P19

i P12

P2

P9

P4

i

P7

P3

i

P8

P15 i

P5 i P10 P14 P17 P22

P6 P11 P18 i i P23

i P13 P19 P21 P24 P26

P1 P16 i P20 P25 i

(b) Subnet for the ComPair with
source node P6 and target node
P15

Figure E.6 – ComPair and subnet examples. Source nodes are coloured light
orange, target nodes coloured dark orange and the subnets are bounded by a
dashed blue line.

taken to mean any unspecified ComPair. When it is necessary to associate a ComPair

with an edge in the application process graph the ComPair will be referred to by the symbol

Qe, where e represents the specific edge of the application process graph that generates

the ComPair in the many-core array.

The number of rows and columns in a ComPair subnet can be calculated from the source

and target locations using equations E.23 and E.24.

Rq = |tr − sr|+ 1 (E.23)

Cq = |tc − sc|+ 1 (E.24)

The number of links in a ComPair subnet is given by Equation E.25.

Ql = Rq(Cq − 1) + (Rq − 1)Cq (E.25)

The number of shortest length paths from the source node to the target node of a ComPair

subnet that is fault free is given by Equation E.26 as explained in Section 6.7. If there are

faulty links in the subnet then the number of links can be calculated using the recursive

algorithm described in Section 6.7.

Pq =
(Rq − 1)(Cq − 1)!

(Rq − 1)!(Cq − 1)!
(E.26)

The path length of a ComPair in terms of the number of links on a shortest length path

364 E.5 Link Criticality

Table E.1 – ComPair Properties

Name Description
Qe The ComPair representing edge e of the application process graph
Qs The source node of ComPair Q
Qlocs The location of the source node of ComPair Q within the array
sr The row of the source location
sc The column of the source location

Qt The target node of ComPair Q
Qloct The location of the target node of ComPair Q within the array
tr The row of the target location
tc The column of the target location

Rq The number of rows of nodes in ComPair Q
Cq The number of columns of nodes in ComPair Q

Ql The path length of the ComPair in terms of the number of links on the
shortest path between the source and target nodes

Pq the number of shortest length paths between the source and target nodes
Qd The network load for the ComPair taken from dn for the edge en of the

application process graph that the ComPair represents

between the source and target nodes of is given by Equation E.27.

Pq = (Rq − 1) + (Cq − 1) (E.27)

Table E.2 – ComPair Path and Link Properties

Name Description
Pq The set of unique shortest length paths between the source and target

nodes of the ComPair Q
Pq The number of shortest length paths in the set |Pq|
pn The nth path of ComPair Q

L(q) The set of links in the subnet of ComPair Q
Lq The number of links in set |L(q)| in the subnet of ComPair Q
ln The nth link of ComPair Q

E.5 Link Criticality

The many-core array architecture described in Section 4.2 uses a lattice of routers for

transmission of traffic through the network. Traffic from the source to the target of a

ComPair will be transmitted as a number of packets which will pass through a series of

routers, each with a buffer where received packets are temporarily stored before being

forwarded to the next router.

The Many-Core Model 365

Link criticality is a method of categorizing the effect that the failure of a physical link can

have on traffic in a ComPair. The classification of a link is specific to a ComPair, so can

have different criticalities for each ComPair subnet that it is part of. A link is classified as

one of the three following types defined by the effect its failure will have on the transmission

of data in the ComPair subnet of which is is part:

• Critical Links

• Significant links

• Normal links

Each of these three types of links will be explained below with reference the the graphs in

Figure E.7. When developing the metrics it will become apparent that the number of paths

that use each link will be important in the calculation of the metric. The edges of the graphs

in Figure E.7 are labelled with the number of paths that use each link.

Critical Link

A critical link is a link where all paths from the source to the target pass through the link,

such that a fault will cause complete failure of communication. Figures E.7a and E.7b

illustrate subnets with critical links, shown in red, where the failure of a single link causes

complete communication failure. Traffic that passes through a critical link is described as

critical traffic.

If, for ComPair Q, there are Pq paths between the source and target nodes and there are

lnp paths through link ln, then link ln is defined as a critical link by Equation E.28, i.e. when

the number of paths through the link is equal to the total number of paths between the

source node and target node of the ComPair.

ln is critical ⇔ lnp = Pq (E.28)

366 E.5 Link Criticality

0,0 0,11

(a) Critical Link of length 1

0,0 0,11 0,21

(b) Critical Link of length 2

0,0 0,11

1,0

1

1,1

1

1

(c) Network with 2 Significant
Links

0,0 0,12

1,0

1

0,21

1,1

1

1,2

1

1 2

(d) Network with 3 Significant
Links

0,0 0,12

1,0

1

0,21

1,1

1

0,31

1,3

1

1 1,22 2

(e) Network with a single Link fault and 5 Significant Links

0,0 0,11

1,0

1

0,21

1,1

2

0,31 0,41

1,4

1

1 1,22 1,32 2

(f) Network with a 2 Link faults and 7 Significant Links

The Many-Core Model 367

0,0 0,13

1,0

3

0,21

1,1

2

1,2

1

2

2,0

1

2

2,1

2

2,2

3

1 3

(g) Network with 4 Significant
Links

0,0 0,11

1,0

1

0,21

1,2

1

2,0

1

2,2

1

2,11 1

(h) Network with a 4 Link faults
and 6 Significant Links

0,0 0,11

1,0

1

0,2

1,1

1

1,21 2

(i) Network with 2 Link faults, 2 Significant
Links and 1 Critical Link

Figure E.7 – Networks illustrating Critical and Significant links

Where:
Pq = The total number of paths of the ComPair subnet.

ln = The lth link of the Ql links in the ComPair subnet.

lnp = The number of paths through link ln of ComPair Q.

Ql = The number of links in the ComPair subnet.

Significant Link

A significant link is a link which is the only link from its source node and is a link where

only a (proper) subset of paths from the source to the target pass through the link i.e. not

all paths use pass through the link, as defined by Equation E.29:

ln is significant ⇔ (lnp < Pq) ∧ (lsout = 1) (E.29)

368 E.5 Link Criticality

Where:
Pq = The total number of paths of the ComPair subnet.

ln = The lth link of the Ql links in the ComPair subnet.

lnp = The number of paths through link ln of ComPair Q.

Ql = The number of links in the ComPair subnet.

lsout = The number of outbound edges of source node ls

ls = The source node of link l

A faulty significant link will sever the paths that use the link while still leaving one or more

viable paths that do not use the faulty link. Traffic that passes through a significant link

is described as significant traffic. A fault in a significant link will potentially cause some

packets to be lost where packets are stored in the buffers of routers that have become

disconnected from the target node due to the appearance of the fault. Figures E.7c and

E.7d illustrate subnets where there are significant links shown by orange arrows. Packets

will be lost when the routing node attempts to transmit packets through the link after the

link has failed.

A significant link exists when it is on the only path from its routing node to the target node

of the ComPair but the path it is on is not the only path between the ComPair. Failure of

a significant link will create a dead end path of arbitrary length causing the loss of packets

that travel down the "dead end". A router only has knowledge of the status of directly

connected links so each router will continue to route packets down the dead end until the

loss of packets is detected and propagated back up the path until the router at the head

of the dead end path is reached. The router at the head of the dead end will eventually

establish that packets are not being received through that path so will modify its behaviour

to only send packets down the alternative path, thereby maintaining communication. The

loss of a significant link will redistribute traffic to other links which may in turn create bottle-

necks and reduce the overall performance of the system. In some case, for example in

figures E.7 (c), (d), (e), (f), (h) and (i), bit not (g), the loss of a significant link will have the

effect of changing the criticality of other links from significant to critical, making the network

vulnerable to further link failure.

Notice that a ComPair subnet will contain as least one critical link or two significant links.

This can be confirmed by considering the target node: if there is only one inbound link to

the target node then it must be a critical link, if there are two inbound links to the target

node then they must both be significant links since failure of either link will cause packet

loss.

Normal Link

A Normal Link is a link whose failure does not cause the loss of transmission of packets,

more specifically it is a link whose routing node has more than one outgoing link to the

target of the ComPair. A normal link is defined by Equation E.30:

ln is significant ⇔ (lsout = 2) (E.30)

The Many-Core Model 369

Where:
ln = The lth link of the Ql links in the ComPair subnet.

lsout = The number of outbound edges of source node ls

ls = The source node of link l

Traffic that passes through a normal link is described as normal traffic. Figures E.7c to E.7i

illustrate subnets where normal links are shown by black arrows.

Failure of a normal link has no negative effect on the transmission of packets because the

routing node it is connected to has a choice of two links for the transmission of packets.

Given that the router has knowledge of the status of its directly connected links it is able to

transmit packets along the remaining healthy link when one link fails. Each of the two links

are on distinct, alternative paths from the source to the destination.

E.6 Hardware Map

A hardware map or network topology map models, for a single region, the cores and links

of the many-core array and the interfaces that connect the many-core array to external

resources or neighbouring regions and the status of each element of the map.

The purpose of the hardware map is to model the essential elements of the many-core

array and interfaces to external resources in sufficient detail to enable valid mappings to

be generated and the metrics of the mappings to be calculated.

E.6.1 Nodes and Links of a Hardware Map

The definition of the hardware map is similar to the many-core array defined in Section 4.2

with the addition of information defining the type of each node and the status of each core

and link.

The hardware map must maintain information to:

• Specify the type of each node

• Specify the status of each node and link

• Uniquely identify each node and link

Nodes

Nodes represent the cores of a many-core array or interfaces to resources external to the

many-core array or cores of neighbouring regions. Interfaces to external systems can be

classified as capable of acting as both sources or sinks, sources only or sinks only. The

node types are summarised in Table E.3.

370 E.6 Hardware Map

Table E.3 – Hardware Map Node Types

Type Description
c Core: A node that can be used by an APG process node.
s Source: A node that can be used only by an APG source nodes.
k Sink: A node that can be used only by an APG sink nodes.
b Both: A node that can be used by an APG source or sink node.
r Region: A node that is either shared with or belongs to a neighbouring region.

Links

All links are unidirectional and are identical whether they are part of the internal circuitry

of the many-core array or a link between the many-core array and external interfaces or

regions.

Node Identity

Each node is given a location (c, r) starting with coordinate (0, 0) at the top left most corner

as illustrated in Figure 4.1.

Link Identity

Each link is directional so is identified by the location of the source node followed by the

location of the target node (loc(s), loc(t)).

E.6.2 Modelling Faults

Node and Link Status

Each node and link in the hardware map has a status which indicates if the element is in

good working condition or faulty as summarised in Table E.4

Table E.4 – Core and Link Status Values

Status Description
g Good: The element is fully functioning.
f Faulty: The element is faulty and cannot be used.

Using the status of nodes and links the hardware map can model:

• Processing Core Faults

• Link Faults

• Routing Node Faults

A fault free hardware map and three types of hardware faults are illustrated in the hardware

maps of Figure E.8 with the faulty nodes and links being marked f and highlighted in red.

Processing Core Faults

Figure E.8b illustrates a hardware map with a single faulty processing core, while the

The Many-Core Model 371

c c

c

c

c

c

c

c

c

c

c c

c c c c c c

c c c c c c

c c c c c c

c c c c c c

(a) Fault free

c c

c

c

c

c

f

c

c

c

c c

c c c c c c

c c c c c c

c c c c c c

c c c c c c

(b) A single core fault

c c

c

c

c

c

c

c

c

c

c c

c

f

c c

f

c c c

c c c c c c

c c c c c c

c c c c c c

(c) Two link faults

c c

c

c

c

c

f

f

c

c

c

c c

c

f

c

f

f

f

c

f
f

c c c

c c

f

c c c c

c c c c c c

c c c c c c

(d) A single routing node fault

Figure E.8 – Hardware Maps representing a 6 × 6 many-core array
with interfaces to external resource on each of the four edges of the
many-core array.

routing node and all links are functioning normally. Traffic passing though the routing node

is unaffected.

Link Faults

Figure E.8c illustrates a hardware map with two faulty links that are unable to carry any

traffic.

Routing Node Faults

Figure E.8d illustrates a hardware map with a single faulty routing node, which is modelled

by marking the node, and all 8 adjacent links, as failed. If the routing node fails then

the processing node becomes unavailable because it cannot receive or transmit any data;

this allows the routing node to be modelled as a combination of a processing node failure

together with the failure of all links attached to the routing node which is a considerable

simplification compared to modelling the processing node and routing node separately.

372 E.6 Hardware Map

E.6.3 Hardware Map Definition

The hardware map H is represented as a tuple of the set Vh of nodes and the set Eh of

links:

H := (Vh, Eh) (E.31)

Given that there are Rh rows and Ch columns, the number of nodes and links are defined

as Vh and Eh:

|Vh| = Vh

= RhCh (E.32)

|Eh| = Eh

= Rh(Ch − 1) + (Rh − 1)Ch

= 2RhCh −Rh − Ch (E.33)

The set of nodes is defined as:

Vh = {v1, . . . , vm | qm = Vh} (E.34)

with a node defined as an ordered tuple consisting of the row and column coordinates of

the node within the many-core array, which is also its location:

vn = (loc, t, s) (E.35)

Where:

loc = (r, c) (E.36)

and:
r is the row coordinate of node vn.

c is the column coordinate of node vn.

t is the type of the node vnt | t ∈ {c, b, s, k, r} as defined in Table E.3.

s is the status of the node vn | s ∈ {g, f} as defined in Table E.4.

Row and column coordinates are arbitrarily defined as beginning at 0 and location (0, 0)

referring to the top-left hand core of the many-core array with location (Rh − 1, Ch − 1)

referring to the bottom-right hand core of the many-core array.

The set of links is defined as:

Eh = {e1, . . . , em | m = Eh} (E.37)

The Many-Core Model 373

A link is defined as a set of ordered tuples consisting of a source node location, a target

node location and a status:

en = (locs, loct, s) (E.38)

Where:
en is a link from the set Eh.

locs is the location of the source node of link en.

loct is the location of the target node of link en.

s is the status of the link en | s ∈ {g, f} as defined in Table E.4.

E.6.4 Hardware Map Configurations

The hardware map is designed to be flexible so that it can model a range of configurations,

a selection of which are illustrated in Figure E.9. Configurations are defined through the

use of the set of parameters listed in Table E.5.

Table E.5 – Hardware Map Definition Parameters

Parameter Description
Rh The number of rows of nodes in the hardware map
Ch The number of columns of nodes in the hardware map

Ra The number of rows of nodes in the many-core array
Ca The number of columns of nodes in the many-core array

Ro The position of the first of the row of the many-core array relative to
the first row of the hardware map

Co The position of the first of the column of the many-core array relative
to the first row of the hardware map

Bn The border type of the north edge, see Table E.6
Bw The border type of the west edge, see Table E.6
Be The border type of the east edge, see Table E.6
Bs The border type of the south edge, see Table E.6
Hdf A dataflow machine is modelled when this boolean switch is set to

true

L(h) The set of links in the hardware map

Border types are used to define how the nodes on the rows and columns, that are on the

edges of the hardware map are configured. The parameters allow for borders to have of

multiple rows or columns, which allow for a variety of multi-region arrangements. The types

of borders are listed in Table E.6.

374 E.6 Hardware Map

Table E.6 – Border Types

Type Description
s Source: A node that can be used only by an APG source nodes.
k Sink: A node that can be used only by an APG sink nodes.
b Both: A node that can be used by an APG source or sink node.
r Region: A node that is either shared with or belongs to a neighbouring region.
n None: There is no border.

A hardware map has four borders which are described using the four compass points of

north, east, south and west. The four borders can be represented as a list of border

types and width pairs, starting with the north border and working clockwise. For example,

a hardware map that has a single row/column on each side that can be used for both

sources and sinks can be described as B((b, 1), (b, 1), (b, 1), (b, 1)). If there is no border

on one of the edges then the border is described using the border type and width pair of

(n, 0).

A selection of possible hardware map configurations are presented in Figure E.9, each

showing a 6× 6 array of processing cores with different combinations of border types. The

four example configurations are described below.

To fully specify a configuration, the following information is required:

• The number of rows and columns of the hardware map.

• The number of rows and columns of the many-core array.

• The offset row and column of the many-core array with respect to the top-left corner

of the hardware map.

• The type and width of the border of each edge of the hardware map.

The Many-Core Model 375

c c

c

c

c

c

c

c

c

c

c c

c c c c c c

c c c c c c

c c c c c c

c c c c c c

(a) A detached 6x6 Hardware
Map with no source or sinks:
B((n, 0), (n, 0), (n, 0), (n, 0)).

 b

b

b

c

b

c

b

c

b

c

b

c

c b

b c c c c c c b

b c c c c c c b

b c c c c c c b

b c c c c c c b

b c c c c c c b

 b b b b b b

(b) A connected 8x8 Hardware
Map were all borders can
be either sources or sinks:
B((b, 1), (b, 1), (b, 1), (b, 1)).

 b

b

b

c

b

c

b

c

b

c

b

c

b

c r

b c c c c c c r

b c c c c c c r

b c c c c c c r

b c c c c c c r

b c c c c c c r

b r r r r r r r

(c) A multi-region 8x8 Hardware
Map for a with north and
west borders that can be
either sources or sinks and
east and south borders that
are neighbouring regions:
B((b, 1), (r, 1), (r, 1), (b, 1)).

s c

s

c

c

c

c

c

c

c

c

c

c

k

c k

s c c c c c c k

s c c c c c c k

s c c c c c c k

s c c c c c c k

(d) A 6x8 Hardware Map for a
Dataflow Machine with no bor-
ders on the north and south
edges, sources on the west bor-
der and sinks on the east border:
B((n, 0), (k, 1), (n, 0), (s, 1)).

Figure E.9 – Hardware Maps for a Variety of Configurations. The
nodes inside the blue dotted lines represent the cores of the many-
core array while the nodes outside of the blue dotted box represent
interfaces to resource external to the many-core array and cores of
adjacent regions.

376 E.7 The Environment

Configuration for Detached Many-Core Array

The many-core arrays being modelled in Figure E.9a is defined as a detached many-core

array with a 6 × 6 array of nodes with no external data sources or sinks, or neighbouring

regions. Although this is an unrealistic configuration for practical systems, it was useful

for the initial experiments in chapters 4 and 5. Since the configuration is modelling only

cores and links of the many-core array, the hardware map and the many-core array have

the same dimensions and the application process graph must consist only of processing

cores. This hardware map has a border definition of B((n, 0), (n, 0), (n, 0), (n, 0)) and is

the model used is most literature on the subject of fault tolerance in many-core arrays.

Configuration for Connected Many-Core Array

The hardware map configuration in Figure E.9b is modelling a 6 × 6 connected many-

core array which has sources and sinks to external resources but does not have any

neighbouring many-core arrays or regions. The many-core array is located in the inner

6 × 6 nodes of the hardware map with source and sink communication ports to external

resources modelled by the outside edges of the 8× 8 hardware map. This hardware map

has a border definition of B((b, 1), (b, 1), (b, 1), (b, 1)).

The connected configuration will be used in the majority of the experiments of this chapter.

Configuration for Multi-Region Many-Core Array

The hardware map configuration shown in Figure E.9c models a many-core array that is

part of a multi-region arrangement many-core arrays. The north and west edges have a

border type of b indicating the the nodes can be either sources or sinks while the east and

south edges have a border type of r to indicate that the nodes are either under shared

control with a neighbouring region or under the exclusive control of a neighbouring region.

This hardware map has a border definition of B((b, 1), (r, 1), (r, 1), (b, 1)).

Configuration for Dataflow Many-Core Array

The hardware map in Figure E.9d is an arrangement that forces all source nodes to be

located on the left edge of the array and all sink nodes to be located on the right edge of

the array. This arrangement will ensure that all data arrives via the west edge of the array

and leaves via the east edge, producing a flow of data from west to east, hence the name

dataflow machine. This hardware map has a border definition of B((n, 0), (k, 1), (n, 0), (s, 1)).

E.7 The Environment

The application process graph is a model of the application processes and its sources and

sinks. The hardware map is a model of the many-core array and the connections between

the many-core array and external resources. A process map is the mapping of process

nodes from the application process graph to cores in the many-core array.

Since the process map only includes process nodes from the application process graph,

an additional mapping is required to map the application process graph source and sinks

The Many-Core Model 377

nodes and nodes belonging to adjacent regions; this is the role of the environment.

This section describes the environment, and the relationship between the application pro-

cess graph, the hardware map, the environment and the process map.

The Environment Mapping

The environment maps the resources that are external to the many-core array to the

borders defined in the hardware map. Application process graph source nodes can be

mapped to nodes in borders of type b or s while sink nodes can be mapped to nodes of

borders of type b or k and nodes of neighbouring regions are mapped to nodes of borders

of type r.

The environment mapping is established at the beginning of an evolution and remains fixed

for the duration of the evolution. The calculation of the metrics of process maps that are

generated during the evolution are affected by the position of resources in the environment

map and are therefore calculated with respect to the environment mapping.

From the hardware map in Figure E.10a, that is a connected many-core array with a

border of B((b, 1), (b, 1), (b, 1), (b, 1)) and the application process graph of Figure 6.2,

the environment map of Figure E.10b and process map of Figure E.10c are created, the

environment map containing the source and sink nodes from the APG and the process

map contain for the processing nodes of the APG. The illustrations of the hardware map,

the environment map and the process map all include a dotted blue line, the many-core

array boundary. Inside the boundary are the nodes relating to the many-core array, while

the nodes outside of the boundary relate to the environment.

The environment map consists only of the nodes outside of the many-core array boundary

while the process map consists only of the nodes inside the boundary.

The environment and process maps only tell us which cores in the hardware map each

node of the APG is mapped to but do not have any information regarding the status of links

between the nodes. In the illustrations of environment and process maps, the lines linking

the nodes are included to illustrate that the nodes are connected by links. The status of

links is maintained in the hardware map.

The Aggregate Map

The calculation of metrics for a process map can only be made within the context of the

environment. The metrics are therefore calculated using an aggregate map which is a

combination of the environment map and process map and illustrated in Figure E.10d.

378 E.7 The Environment

 b

b

b

c

b

c

b

c

b

c

b

c

c b

b c c c c c c b

b c c c c c c b

b c c c c c c b

b c c c c c c b

b c c c c c c b

 b b b b b b

(a) An 8x8 Hardware Map where
all borders can be either sources
or sinks.

 b

b

b

b

b

S1

b

 b

b b

S3 b

b b

b K2

S2 b

 b b K1 b b b

(b) An environment map of the
source and sink nodes.

P1

P2

P3

P4

i

P5

 P6 P7 i P8 P9 P10

 P11 i P12 P13 P14 i

 P15 P16 P17 P18 i Pq9

 P20 P21 i P22 P23 P24

 P25 P26 i P27 P28 i

(c) A process map of the process-
ing nodes.

 b

b

b

P1

b

P2

b

P3

S1

P4

b

i

P5 b

b P6 P7 i P8 P09 P10 b

S3 P11 i P12 P13 P14 i b

b P15 P16 P17 P18 i P19 b

b P20 P21 i P22 P23 P24 K2

S2 P25 i P26 P27 P28 i b

 b b K1 b b b

(d) An aggregate map which is
the combination of environment
map (b) and process map (c).

Figure E.10 – From the information in the APG in Figure 6.2 and
the hardware map (a) the environment map (b) and process map
(c) are produced. The environment map and process maps are
then combined to make the aggregate map (d) used to calculate
the metrics of the process map.

Appendix F

Metrics and Objectives

For ease of reference, the metrics and objectives described in Chapter 4 Core Fault Tol-

erance, Chapter 5 Network Power and Chapter 6 Link Fault Tolerance and Network Traffic

are presented here.

F.1 Metrics and Objectives

Metrics are measurements of fundamental properties of the system that is being studied.

Here we are interested in measuring properties of a mapping of an application process

graph onto a many-core array. Objectives are used by a search algorithm to make a

comparative measure of fitness between mappings and often use a metric in the calculation

of the value of the objective.

For example, the rectilinear distance between two nodes in a many-core array is the sum

of the number of horizontal and vertical edges between the two nodes; this is a metric. A

corresponding objective could be to minimize the sum of the rectilinear distance between

all pairs of communicating cores. In this case, the metric measures the actual distance for

a single pair of communicating cores, while the objectives uses the metric to calculate a

single value for all pairs of communicating cores in the mapping.

This thesis will present four objectives along with their supporting metrics. These are:

• Core fault tolerance

• Link fault tolerance

• Network power

• Excess traffic

This is only a selection of possible objectives for optimization of mappings for many-core

arrays selected to illustrate the work of this thesis.

The core fault tolerance objective is the subject of this chapter. The other objectives will be

presented in subsequent chapters.

380 F.2 Core Fault Tolerance Metric and Objective

F.2 Core Fault Tolerance Metric and Objective

Metrics are measurements of fundamental properties of the system that is being studied.

Here we are interested in measuring properties of a mapping of an application process

graph onto a many-core array. Objectives are used by a search algorithm to make a

comparative measure of fitness between mappings and often use a metric in the calculation

of the value of the objective.

For example, the rectilinear distance between two nodes in a many-core array is the sum

of the number of horizontal and vertical edges between the two nodes; this is a metric. A

corresponding objective could be to minimize the sum of the rectilinear distance between

all pairs of communicating cores. In this case, the metric measures the actual distance for

a single pair of communicating cores, while the objectives uses the metric to calculate a

single value for all pairs of communicating cores in the mapping.

F.2.1 Core Fault Tolerance

Problem Description

This section develops the metric for measuring the distance between cores and the objec-

tive, which makes use of the metric, that is used by the evolutionary algorithm.

Given a fault free many-core array with R rows and C columns and an application process

graph with Va processes where Va < RC, arrange the spare cores to minimize the cost of

task migration in the event of the failure of a processing core.

The cost of task migration will be defined explicitly in Section 4.5.

F.2.2 Distance to Nearest Idle Core Metric

The distance to nearest idle core metric will be a measure of the distance between an

individual processing core and its nearest idle core. As stated in Section 4.2, given an array

of R rows and C columns, each node’s location can be given by a tuple, (r, c) representing

the row r and column c of the node relative to the top left-hand corner of the array. The

distance to nearest idle core metric, Mdnic(r,c), is the distance between a processing core

at location ploc = (pr, pc) and its nearest idle core at location iloc = (ir, ic) and is defined

as the rectilinear distance between the location of the processing core and the location of

the idle core, given by Equation F.1.

Mdnic(r,c) = |(pr − ir)|+ |(pc − ic)| (F.1)

Metrics and Objectives 381

P3

i

P2

P12

P4

P9

P7

i

i

P6

P1

P8

P5

P10

i

P11

(a) Distribution on a 4x4 Array

i

P2

P12

P5

P4

P6

i

i

P11

P1

P13

P16

P9

P7

P10

P18

P19

i

i

i

P14

i

P21

P20

P3

P15

P17

i

P24

P25

P8

i

P22

P23

P26

i

(b) Distribution on a 6x6 Array

P1 P2

P12

P3

P11

P4

P10

P5

P9

P6

P8 P7

P13 P14 P15 P16 P17 P18

P24 P23 P22 P21 P20 P19

P25 P26 i i i i

i i i i i i

(c) Mapping on a 6x6 array with
weak core fault tolerance

Figure F.1 – Examples of Distribution of Spare Cores

Where:
Mdnic(r,c) = The distance to nearest idle core metric for the

process located at (r, c).

pr = The row of the location of the process.

pc = The column of the location of the process.

ir = The row of the location of the nearest idle core.

ic = The column of the location of the nearest idle core

The minimum value of the nearest idle core metric is 1 which is the distance when a

processing core is adjacent to an idle core.

382 F.3 Link Fault Tolerance Metric and Objective

F.2.3 Core Fault Tolerance Objective

The fault tolerance objective is to minimize the sum of the distances between each pro-

cessing core and its nearest idle core. When an idle core is adjacent to a processing core,

i.e. one step away, the fault tolerance objective value is defined as zero. When t steps are

required to reach the nearest idle core the fault tolerance objective value will be t − 1 (In

other words, to obtain an adjacent idle core objective value of zero the metric value of each

process-idle core pair is reduced by one). This is an arbitrary choice made to ensure that

the lowest possible fault tolerance value for any array size is zero.

For example, Figure F.1 (a) and (b) illustrate respectively, for 4×4 and 6×6 arrays, arrange-

ments of idle cores among processing cores where every processing core is adjacent to at

least one idle core, while Figure F.1c illustrates a mapping which has weak fault tolerance

due to some processing cores having no adjacent idle core. The mapping F.1a and F.1b,

are assigned an objective value of zero, by the objective function, as no other distribution

of idle cores is considered to be any better for the purposes of core fault tolerance.

A fault tolerance cost of zero for the task map as a whole indicates that each processing

core is adjacent to at least one idle core. A processing core that has more than one

adjacent idle core is not regarded as having any additional benefit from the additional

adjacent idle cores. The core fault tolerance objective Jcore is given as:

Jcore =
R−1∑
r=0

C−1∑
c=0

Mdnic(r,c) − 1, if core(r, c) is a processing core

0, otherwise
(F.2)

F.3 Link Fault Tolerance Metric and Objective

Failure of a link can result in disruption to communication in the array by causing packets

to take longer routes, lose packets or sever communications completely. The exact effect

a failed link has on communications of the array depends of how critical the link is for

each ComPair that uses the link. In this section link failures will be explored and a metric

developed that is designed to measure the detrimental effect the failure of a link would have

on the network.

The metrics developed in this section relate to a single ComPair, a ComPair. The objective

combines the metrics for all ComPairs into a single value representative of the vulnerability

of the whole mapping to link failure.

F.3.1 Problem Description

Develop a metric that measures the effect that failure of a link will have on network traffic

and an objective that can be used to minimize the negative effects of possible link failures.

Metrics and Objectives 383

The definition of the metrics in this section refers to discussion of link criticality and the ac-

companying ComPair subnets in Section 5.2 Link Criticality. For convenience the ComPair

subnets are reproduced here as Figure F.2.

F.3.2 Vulnerability to Critical Link Failure Metric

A failed critical link causes communication failure because it is used by all paths between

the source and target nodes of the ComPair . Comparing figures F.2a and F.2b, it can be

observed that the graph of Figure F.2a has a single path consisting of a single critical link

and the graph of Figure F.2b has a single path consisting of two critical links. In this respect

the graph of Figure F.2b can be described as being twice as vulnerable to critical link failure

when compared to Figure F.2a. It is also possible for a critical link to have multiple paths

using it as shown in Figure F.2i. Failure of such a link will sever all the paths that pass

through it so the metric must reflect the number of paths affected by the link.

The number of paths of a ComPair subnet that include a link ln is given by lnp and by

Equation 5.6 a link is critical when lnp = Qp. The metric Mvclfc is a measure of the

Vulnerability to Critical Link Failure of a ComPair, is defined as the sum of the number of

paths that pass through each of the critical links in the ComPair subnet. Metric Mvclfc

is given by Equation F.3 which include the equivalence that makes use of the fact that all

critical links, by definition, must be included in all paths of the ComPair.

Mvclfc =

Ql∑
l=1

lnp , if link lnp = Qp i.e. is a critical link

0, otherwise
≡ Qp · lc (F.3)

Where:
Mvclfc = The vulnerability to critical failure metric for the ComPair Q.

Ql = The number of links in the ComPair subnet.

lnp = The number of paths that use link ln.

Qp = The total number of paths of the ComPair subnet.

lc = The number of critical links in a ComPair

Equation F.3 will give a value of 1 for the ComPair illustrated in Figure F.2a and give a

metric value of 2 for the ComPair illustrated Figure F.2b which is consistent with the notion

that F.2b is twice as vulnerable as F.2a.

F.3.3 Vulnerability to Significant Link Failure Metric

Failure of a significant link is less disruptive than a critical link because, although some

packets may be lost, there are alternative paths for the packets from the source to the

target. A metric is required to give a value to represent the impact of the failure of a

significant link.

384 F.3 Link Fault Tolerance Metric and Objective

0,0 0,11

(a) Critical Link of length 1

0,0 0,11 0,21

(b) Critical Link of length 2

0,0 0,11

1,0

1

1,1

1

1

(c) Network with 2 Significant
Links

0,0 0,12

1,0

1

0,21

1,1

1

1,2

1

1 2

(d) Network with 3 Significant
Links

0,0 0,12

1,0

1

0,21

1,1

1

0,31

1,3

1

1 1,22 2

(e) Network with a single Link fault and 5 Significant Links

0,0 0,11

1,0

1

0,21

1,1

2

0,31 0,41

1,4

1

1 1,22 1,32 2

(f) Network with a 2 Link faults and 7 Significant Links

Metrics and Objectives 385

0,0 0,13

1,0

3

0,21

1,1

2

1,2

1

2

2,0

1

2

2,1

2

2,2

3

1 3

(g) Network with 4 Significant
Links

0,0 0,11

1,0

1

0,21

1,2

1

2,0

1

2,2

1

2,11 1

(h) Network with a 4 Link faults
and 6 Significant Links

0,0 0,11

1,0

1

0,2

1,1

1

1,21 2

(i) Network with 2 Link faults, 2 Significant
Links and 1 Critical Link

Figure F.2 – Networks illustrating Critical and Significant links

Failure of a significant link can affect multiple paths of a ComPair as illustrated in Figure F.3

where significant link g is a component of paths 2 and 3, while significant links e and f are

both on only one path. The impact of link g failing is more severe than if link e or f fails.

To account for this, it is important to know the number of paths each significant link affects.

The links of the graphs in Figure F.2 are labelled with the number of paths that use the link.

If the number of paths that use each significant link are added together for a ComPair then

this gives a metric for the vulnerability to significant link failure for the ComPair.

Mvslfc =

Ql∑
l=1

lnp , if link ln is a significant link

0, otherwise
(F.4)

Where:

386 F.3 Link Fault Tolerance Metric and Objective

0,0 0,1a

1,0

c

0,2b

1,1

d

1,2

e

f g

(a) 2× 3 Array

0,0 0,1a

1,0

0,2b

1,1 1,2

e

(b) Path 1

0,0 0,1a

1,0

0,2

1,1

d

1,2g

(c) Path 2

0,0 0,1

1,0

c

0,2

1,1 1,2f g

(d) Path 3

Figure F.3 – Paths Through a 2× 3 Array

Mvslfc = The vulnerability to significant link failure for ComPair Q.

Ql = The number of links in the ComPair subnet.

lnp = The number of paths that use link ln.

Qp = The total number of paths of the ComPair subnet.

F.3.4 Vulnerability to Link Failure Metric

The remaining task is to integrate the two metrics of Vulnerability to Critical Link Failure

and Vulnerability of Significant Link Failure into a single metric that gives a single measure

of the Vulnerability to Link Failure. Normal links are not included in the metric because

they do not cause loss data. The definition of both of the above metrics is identical in that

they both measure the number of paths that are affected by the failure of the link. As an

initial attempt at creating a single metric, the individual metrics are summed together to

produce a single value representing the total number of paths that are affect by a critical or

significant link. Figure F.3 list values of the sum of the two metrics in the column
∑

under

"Vulnerability Metric", for the subnets in Figure F.2.

Metrics and Objectives 387

Table F.1 – Comparison of Vulnerability Metrics

Graph Graph Dimension Paths Vulnerability Metric

Ref Height Width Total Affected
∑

100×
∑
Cp

100×
∑
C2

p

F.2a 1 2 1 1 1 100 100
F.2b 1 3 1 1 2 200 200
F.2c 2 2 2 2 2 100 50
F.2d 2 3 3 4 4 133 44
F.2e 2 4 3 7 7 233 77
F.2f 2 5 3 10 10 333 111
F.2g 3 3 6 8 8 133 22
F.2h 3 3 2 6 6 300 150
F.2i 1 2 2 2 4 200 100

Relating the metric values to the graphs, it is evident that this simple sum does not give a

consistent value for the purposes of comparing the vulnerability of different graphs. Graph

Figure F.2a has the best fitness of 1, while graphs Figure F.2b and Figure F.2c have the

same fitness of 2. However graph F.2c is clearly less vulnerable than either F.2a or F.2b.

The reason is that graph F.2c is a larger graph and has more paths, so there are more

paths that can be affected and the metric is greater. This implies that the metric should

take into account the number of paths in the graph between the source and target nodes.

Two additional metrics have been calculated, which are the sum divided by the number

of paths in the ComPair and the sum divided by the square of the number of paths in the

ComPair, in an attempt to correct the deficiencies of the simple sum metric. Dividing by

the number of paths improves the metric but still gives anomalous values, for example the

graph of Figure F.2b and F.2c have the same metric value even though the graph F.2c has

two paths so is clearly less vulnerable than Figure F.2b. Dividing by the square of the

number of paths gives comparative values that work well, for example the metric value for

graph F.2h is three times greater than the metric value for F.2c because, although they

both have two paths, F.2h has three times more significant links than F.2c, so is three times

more vulnerable. The additional metrics are shown in columns
∑
pl

and
∑
p2l

with the values

having been multiplied by 100 to give useful integer values.

The final metric calculation for Vulnerability to Link Failure is given by Equation F.5.

Mvlfc =
100

Cp
2

Cl∑
l=0

lnp , if link l is a critical or significant link

0, otherwise
(F.5)

Where:
Mvlfc = The vulnerability to significant link failure for ComPair C.

Cl = The number of links in the ComPair subnet.

lnp = The number of paths that use link ln.

Cp = The total number of paths of the ComPair subnet.

388 F.4 Network Power Metric and Objective

F.3.5 Link Fault Objective

This section describes an objective that combines the metrics for all ComPairs into a single

value representative of the vulnerability of the whole mapping to link failure.

The link fault objective is to minimize the sum of the metric values for all ComPairs in the

application process graph. The link fault metric gives a value for a single ComPair so the

value for the objective is the sum of the fault metric values for all ComPairs in the application

process graph:

Jlink =

Cl∑
l=1

Mvlfc (F.6)

Where:
Mvlfc = The vulnerability to link failure for ComPair C.

Cl = The number of links in the ComPair subnet.

lnp = The number of paths that use link ln.

Cp = The total number of paths of the ComPair subnet.

F.4 Network Power Metric and Objective

Communication traffic is a major contributor to power consumption in a many-core array

[183, 184]. The total traffic flows in the many-core array can be used as an approximation

for power consumed by communication traffic. This section will explore the measurement

of the traffic in a many-core array and develop an objective designed to direct a search

algorithm to find solutions that minimize the traffic.

F.4.1 Problem Description

The power consumed by traffic between a ComPair, for a given router/NoC architecture,

is a function of both the traffic volume and the distance in terms of routing nodes and

links that the traffic has to traverse between the source and target nodes. Reducing the

total network traffic of all ComPairs will reduce the power consumption of the many-core

array. The volume of traffic between a ComPair is predetermined by the application and

cannot be influenced by the many-core system whereas the distance the traffic has to travel

is dependent on the relative position of the source process node and the target process

node, which is under the control of the many-core system.

F.4.2 Distance Between Communicating Core Pairs

To relate traffic to power it is necessary to know both the amount of traffic and the distance

it has to travel, as the product of these gives us the total amount of traffic that is processed

by the routing nodes and transmitted down the links between the source and target nodes.

Metrics and Objectives 389

The distance between a ComPair is the rectilinear distance between the source and target

nodes and, assuming minimal length paths, represents the number of links the data will

travel through from the source node to the target node. Faults on paths between the

source and target have no effect on the length of the path that the data will travel along,

providing the faults do not sever all paths between the source and target. For a ComPair Qn

corresponding the edge en of the application process graph with source location Qn(sr, sc)

and target location of Qn(tr, tc) the Distance Between a ComPair metric Mdccpqn (i.e the

distance between the source node and the target node), is given by Equation F.7.

Mdccpqn = |(sr − tr)|+ |(sc − tc)| (F.7)

If the assumption is made that traffic volume between all ComPairs is the same then the

distance between cores can itself be used as an approximation for the traffic and therefore

the power consumption. This is not a particularly good assumption as the traffic between

different ComPairs can be very different, so a more precise calculation is desired.

F.4.3 Traffic Volume Metric

An improvement to the distance between ComPairs as a metric is to use a measure that

takes into account both the distance and the traffic volume for each ComPair, which will

typically be different for each pair.

For a ComPair Qn corresponding the edge en of the application process graph the traffic

volume Qnd
is the attribute traffic volume, d, from edge en of the application process graph.

A metric that measures the Traffic Volume Between a ComPair, Mtccpqn , is given by the

Equation F.8.

Mtccpqn = Mdccpqn ×Qnd
(F.8)

F.4.4 Power Objective

The corresponding power objective is to minimize the total power consumption across the

whole network.

For the objective, a power consumption of zero is assigned when the source and target

of a ComPair are adjacent, so that if the source and target nodes of every ComPair are

adjacent then the value for the mapping will be zero. However, when a ComPair’s source

and target nodes are adjacent, the traffic volume metric Mtccpqn will have a value of Qnd
.

Therefore when the traffic metric is used in the objective it must be adjusted down by the

value of Qnd
. The power objective is given in Equation F.9.

Jpower =

Eg∑
e=1

Mtccpqn −Qnd
(F.9)

390 F.5 Excess Traffic Metric and Objective

F.5 Excess Traffic Metric and Objective

This section examines traffic flow through the many-core array that can lead to excess

traffic. Each link in a many-core array may carry traffic from multiple ComPairs, the total

of which could exceed the bandwidth of the link. The excess traffic is the traffic above the

bandwidth of a link that the link is required to carry. This can be described as a link-centric

with, since the excess traffic is related to each individual link, although the details of the

traffic from all the ComPairs that have paths that use the link.

A link that is required to carry excess traffic is referred to as an overloaded link. Excess

traffic for a link will eventually fill the buffers of the routing node, creating a bottleneck so

potentially causing disruption throughout the network as traffic above the link’s capacity

is rerouted down alternative paths which may then overload other links causing more

rerouting which can result in a cascade of overloaded links. If there are alternative paths

to a path that uses an overloaded link, then the effect of the bottleneck may be mitigated

by using an adaptive routing algorithm.

A routing node can monitor the status of the links it is using to transmit data. If a bottleneck

develops on a link, the routing node is able to detect this and then employ an adaptive

routing algorithm to redirect traffic down alternative paths, if they exist, using another link.

In doing so, the alternative paths must still be minimal-length paths. If no alternative paths

exists for the traffic, because the traffic is critical traffic, adaptive routine cannot alleviate

the bottleneck. The excess traffic metric is only an approximation of the expected traffic

volumes based on the traffic volume data containing the the application process graph.

Only a cycle accurate simulation, with knowledge of how each process generates traffic

and an understanding of the intended routing algorithm, will be able to accurately predict

traffic volumes. As discussed in Chapter 7 Graceful Degradation and Amelioration, one of

the roles of the Monitor will be to update the traffic volume attributes of the edges in the

application process graph with actual observed traffic volume data to increase the accuracy

of calculations of metrics and objectives.

Critical traffic cannot be rerouted; significant traffic can be rerouted by the first routing node,

back up the path, that has a choice of paths for transmission of the data; normal traffic can

be rerouted by the routing node link. The severity of the effect of a bottleneck will therefore

depend on whether the link is carrying critical, significant or normal traffic.

Each ComPair in a mapping will have at least one, and often many, paths between the

source and the target through which traffic will travel. Each path will consist of at least

one link, and typically a chain of links. Each link in the array will typically be part of many

paths between many ComPairs and the role of the link in each path may be either critical,

significant or normal. As a result the traffic profile of each link is complex, consisting of the

aggregation of a variety of types of traffic from many paths between many ComPairs.

In this section, a metric will be developed to represent the excess traffic of a link and

evolutionary algorithm objectives designed to minimize the potential disruption of excess

Metrics and Objectives 391

traffic.

F.5.1 Problem Description

The impact an overloaded link has on the network as a whole will depend of the volume

of each traffic type that uses the link. Critical traffic has no other option than to use the

link, so a link that is overloaded with critical traffic will cause an unavoidable bottleneck.

Significant traffic, does have other available routes, but these can only be used when the

congestion of traffic has propagated back up the path until it reaches a node than can direct

traffic down an alternative path. Excess normal traffic can be rerouted immediately by a

congested link’s routing node, so will have lower impact than critical or significant traffic.

This suggest the concept of weighted excess traffic metric which is a measure of excess

traffic obtained by giving a weight to each type of excess traffic so that critical traffic makes

a greater contribution to excess traffic metric than significant traffic, which in turn makes a

greater contribution to the metric than normal traffic. This penalizes mappings with excess

critical and excess significant traffic. For a fault free array, critical links can be avoided

completely while significant links can be reduced in number but not eliminated completely

since the links attached directly to the target node cannot be normal (see Section 5.1

Communicating Core Pair (ComPair)).

A metric that measures the excess traffic of a link can only suggest which links could

be overloaded in normal operation. Calculating the expected traffic through each link,

using either the non-weighted or weighted calculations, is only an approximation used to

reduce computational time, based on the average predicted network load taken from the

application process graph, which might prove to be very different to the actual traffic result-

ing from adaptive routing. In a working many-core array the on-line Monitor, discussed in

Chapter 7 Graceful Degradation and Amelioration, will be be able to detect real bottlenecks

and actual data flows between ComPairs, which can then be used in these metrics to

increase accuracy.

F.5.2 Excess Traffic Metric

In this section the metric will be developed starting with a simple calculation using raw

traffic followed by a more sophisticated approach involving link level traffic weighting.

Traffic Distribution

Traffic flowing between the source and target of a ComPair will be distributed amongst the

available paths by the routing algorithm used by the routing nodes between the source and

the target nodes. Two algorithms for distribution of the traffic through the ComPair subnet

have been considered. The first is that the traffic is split equally between the available

paths at each routing node, illustrated in Figure F.4a; the second it that the traffic is split

equally between the paths from the source to the target, illustrated in Figure F.4b. Both

strategies would require an adaptive routing algorithm that has the ability to understand

392 F.5 Excess Traffic Metric and Objective

the strategy and keep track of the traffic that has been sent down each link so that it sends

each new packet down the link that will maintain the desired balance.

0,0 0,150

1,0

50

0,225

1,1

25

1,2

25

50 75

(a) Distribute traffic evenly be-
tween links at each node.

0,0 0,166.6

1,0

33.3

0,233.3

1,1

33.3

1,2

33.3

33.3 66.6

(b) Distribute traffic evenly be-
tween ComPair paths at each
node.

Figure F.4 – Traffic distribution across the links used by a ComPair. The numbers on
the links are percentages of the total ComPair traffic.

When the traffic is divided equally between links at each node (Figure F.4a) the minimum

and maximum traffic volumes on individual links is between are 25% and 75%, giving a

range of 50% When the traffic is divided equally among the ComPair paths at each node

(Figure F.4b) the minimum and maximum traffic volumes on individual links is between

33.3% and 66.6% giving a range of 33.3%. As it is preferable for the traffic to be as evenly

distributed as possible the smaller range of 33.3% is more attractive than 50%. Conse-

quently in the sections that follow the traffic will be evenly distributed between ComPair

paths.

Non-Weighted Excess Traffic

The starting point is to calculate the actual traffic that is expected to flow through a link.

The method is to consider each ComPair, and for each pair calculate the traffic that will

travel through each link between the source and target nodes of the ComPair. Between

the source and target nodes there may be many paths. In many cases paths will overlap

i.e. they will use links that are used by other paths.

As an example, take a ComPair with source and target nodes that are one row and two

columns apart as in Figure 6.8a. There are a total of three paths in the ComPair, illustrated

in Figures 6.8b, 6.8c and 6.8d. Links b, c, e and f are used by only one path while links a, d

and g are used by multiple paths. The volume of traffic between each ComPair is taken

from the application process graph which provides a traffic volume for each edge in the

graph. Traffic for a ComPair is distributed evenly between each of the paths between the

source and target, as discussed in Subsection F.5.2. Traffic that travels along a path must

travel through each link of the path. Each path is analysed in turn with traffic from each

path being added to each link in the path. Each ComPair must be analysed and traffic

added to each link in each path of each ComPair to produce a total traffic for each link.

Metrics and Objectives 393

Having calculated the total traffic for each link the excess traffic is calculated which is the

traffic above the bandwidth for the link. Each overloaded link will have a value for excess

traffic that is greater than zero while links that are not overloaded will have an excess traffic

value of zero.

The traffic volume through a link ln of a ComPair is the network load, Qd, of the ComPair

multiplied by the proportion of paths for the ComPair that include the link and is given by

Equation F.10.

lnt =
lnp

Qp
·Qd (F.10)

Where:
lnt = the traffic through link ln of ComPair Q

lnp = the number of paths through link ln of ComPair Q

Qp = the total number of paths in ComPair Q

Qd = the network load of ComPair Q

Given that there is a mapping from each link in a ComPair path to a link in the hardware

map represented by the function f : L(qe) → L(h) each link lm of the hardware map has an

associated set of traffic volumes from the ComPair paths that use the hardware link lm. If

each of the paths from all ComPairs of the mapping is assigned an integer identifier from 1

to Qtp, where Qtp is the total number of paths from all ComPairs of the mapping, then the

traffic volume t(lm,q) is the traffic contributed from path q to hardware link lm. The traffic

volumes for each ComPair link calculated using Equation F.10 can be mapped to a traffic

volume t(lm,q) which allows the definition of traffic volume metrics in terms of t(lm,q).

The metric of total traffic for link lm is the sum of all traffic volumes from the ComPair paths

that use the link and is given by Equation F.11.

Mtt(lm) =

Qtp∑
q=1

t(lm,q) (F.11)

The excess traffic for link lm is given by Equation F.12

Mxt(lm) =

0, if Mtt(lm) ≤ lmb

Mtt(lm) − lmb
, otherwise

(F.12)

Where:
Mtt(lm) = The total traffic through link lm.

Mxt(lm) = The excess traffic through link lm.

lm = The mth link of the hardware map.

lmb
= The bandwidth of link lm.

Q = The number of paths of all ComPairs for the mapping.

t(lm,q) = The traffic through link lm contributed by path q.

Weighted Excess Traffic

394 F.5 Excess Traffic Metric and Objective

A more sophisticated approach is to apply weighting to traffic through a link, based on the

criticality of the link within each ComPair, producing an artificially high traffic value when

the link is critical or significant. The rationale for this approach is that if a link is a critical link,

then there are no alternative paths for the data, so the effect of the link being overloaded

will be more severe than if the link is not a critical link. Similarly, if a link is a significant

link, then there is only a single path between the significant link and the target node of a

ComPair even though there is at least one other alternative path from the source node to

the target node of the ComPair. The effect of a significant link being overloaded will be

less severe than for a critical link but more severe than for a normal link. This section will

propose a method of modifying the value of the traffic metric by applying weighting to traffic

passing though different types of link.

For each link in a path the link may be critical, significant or normal. A link may be a

critical link in one path, while being a significant link in another path and a normal link in

yet another path.

The approach taken is to calculate the total critical, significant and normal traffic through a

link from all the paths that use the link, then apply weighting in the following manner:

1) If the critical traffic is above the link’s bandwidth then the weighted traffic is calculated by

taking the excess critical traffic and applying the critical traffic weight, adding the significant

traffic weighted by the significant traffic weight and adding the normal traffic.

2) If the critical traffic is below the link’s bandwidth then the sum of critical traffic and

significant traffic is compared to the link’s bandwidth, and if greater than the bandwidth

then the weighted traffic is the excess of the sum of critical traffic and significant traffic

weighted using the significant traffic weight added to the normal traffic.

3) If sum of critical traffic and significant traffic is below the the link’s bandwidth, then

the sum of the critical traffic, significant traffic and normal traffic is compared to the link’s

bandwidth, and if greater than the bandwidth then the weighted traffic is the excess of the

sum of critical traffic the significant and the normal traffic.

4) If the sum of the critical traffic, significant traffic and normal traffic is below the link’s

bandwidth then the weighted traffic is zero.

The weighting applied to critical traffic is greater than the weighting applied to significant

traffic, while the normal traffic is not weighted. The initial values for weights are set at 5 for

critical traffic and 2 for significant traffic. These values are arbitrary and will be explored by

experiments.

Table F.2 shows the non-weighted excess traffic (NWET) and the weighted excess traffic

(WET) for a selection of bandwidths and fixed traffic on a link, illustrating that the weighted

traffic calculation produces larger traffic and excess traffic values than the non-weighted

calculation for the same traffic profile. For bandwidths above 500 the actual traffic is

less than the bandwidth, but the presence of critical and significant traffic exaggerates

the calculated traffic which would cause the search algorithm to discriminate against such

Metrics and Objectives 395

a mapping in favour of one with less critical and significant traffic.

Table F.2 – Comparison of Non-Weighted and Weighted Excess Traffic

Traffic Excess Link Weighted Bandwidth
Criticality Weight Traffic Traffic 500 1000 1500 2000

Weighted Excess Traffic
Critical 5 200 1000 500 0 0 0
Significant 2 200 400 400 400 0 0
Normal 1 600 600 600 600 500 0
WET Total 2000 1500 1000 500 0
NWET Total 1000 500 0 0 0

Table F.3 shows a variety of traffic profiles for a fixed bandwidth illustrating how the weighted

traffic calculation affects the excess traffic when compared to the non-weighted traffic.

The four different traffic profiles are indistinguishable when weighting is not used. When

weighting is used there is a clear difference in the calculated traffic values between the

profiles, which will direct the search algorithm to select solutions with lower critical and

significant traffic.

Table F.3 – Comparison of Non-Weighted and Weighted Excess Traffic

Traffic Excess Bandwidth : 5000
Criticality Weight Tr WET Tr WET Tr WET Tr WET
Critical 5 1500 2500 1000 0 500 0 500 0
Significant 2 1000 2000 1500 3000 1000 0 500 0
Normal 1 500 500 500 500 1500 1000 2000 500
Weighted Total 10000 5000 8500 3500 6000 1000 5500 500
Non-Weighted Total 3000 3000 3000 3000

The excess traffic metric is calculated for each link in the network using the following set

of equations. First the critical, significant and normal traffic components through each link

from each path are defined given that T(l,q) is the traffic through link l contributed by path

q.

Mct(l,q) =

T(l,q), if link l is critical for the path q

0, otherwise
(F.13)

Mst(l,q) =

T(l,q), if link l is significant for the path q

0, otherwise
(F.14)

Mnt(l,q) =

T(l,q), if link l is normal for the path q

0, otherwise
(F.15)

396 F.5 Excess Traffic Metric and Objective

Now the components for each traffic type for each link are summed to give a total of each

traffic type for each link.

Mctl =

Q∑
q=1

Mct(l,q) (F.16)

Mstl =

Q∑
q=1

Mst(l,q) (F.17)

Mntl =

Q∑
q=1

Mnt(l,q) (F.18)

Now the excess traffic for each link can be defined in terms of each of the individual traffic

types and the traffic type weights.

Mxwtl =



(Mctl −Bwl)×Wc +

Tsl ×Ws + Mntl, if Mctl > Bwl

(Mctl + Tsl −Bwl)×Ws +

Mntl, if (Mctl + Tsl) > Bwl

Mctl + Tsl + Mntl −Bwl, if (Mctl + Mstl + Mntl) > Bwl

0, otherwise

(F.19)

Where:
Mxwtl = The excess weighted traffic through link l.

Mctl = The critical traffic through link l.

Mct(l,q) = The critical traffic through link l from path q.

Mstl = The significant traffic through link l.

Mst(l,q) = The significant traffic through link ln from path q.

Mntl = The normal traffic through link l.

Mnt(l,q) = The normal traffic through link l from path q.

Wc = The critical traffic weight.

Ws = The significant traffic weight.

T(l,q) = The traffic through link l contributed by path q.

F.5.3 Excess Traffic Objectives

The previous section described methods for calculating the traffic metric for a link. The

next step is to determine how the link excess traffic metric can be used to produce objective

measures for an evolutionary algorithm. The link traffic metric can be analysed in a number

Metrics and Objectives 397

of ways, each of which has different merits.

Link Traffic Landscape

To evaluate the alternatives it is necessary to have an understanding of the link traffic

landscape that is desirable. If we view the links as points on a 2-dimensional plane surface

where the traffic metric can be viewed as the height of each point above plane. When all

links have a zero excess traffic, which is the ideal landscape, the surface will be perfectly

flat.

A small number of links with significantly higher values than the other links would be

represented by a surface with a small number of high peaks. Links with high values

would represent bottlenecks which could seriously degrade the whole network, so are

undesirable. Another possibility is that the excess traffic is evenly distributed across the

network, which would be represented by a raised but relatively level surface.

The landscape has two properties of interest: the first is the total of the excess traffic, which

is the total height of each point above the plane; the second is how smooth or rugged the

landscape is, i.e. how varied is the height of the points. These properties are independent

of each other so require two different objectives for the evolutionary algorithm to minimize:

Total Excess Traffic and Excess Traffic Variance.

Sum of Excess Traffic

The excess traffic of all links in the network are summed giving a measure of the total

excess traffic for the mapping. The sum of excess traffic does not distinguish between two

mappings that have a similar sum but significantly different landscapes, one with a small

number of very high values alongside many small values, the other where there is a larger

number of similar values without a single very large value. The sum of excess traffic of all

links is a candidate for the total excess traffic metric. The sum of excess traffic of all links

in the network, Jxtsum is given by Equation F.20.

Jxtsum =
L∑
l=1

Mxwtl (F.20)

Mean Average of Excess Traffic

The excess traffic values of all links in the network are summed and then divided by the

number of links in the network. This measure gives the same information as the simple

sum since the number of links in a network is constant. The mean average of excess traffic

of all links in the network is another candidate for the total excess traffic metric. The mean

average of excess traffic of all links in the network, Jxtmean is given as:

Jxtmean = Mxwt =
1

L

L∑
l=1

Mxwtl (F.21)

This measure of traffic suffers from the same inability as the simple sum measure to distin-

guish between mappings with similar traffic values but significantly different landscapes.

Maximum Value of Excess Traffic

398 F.5 Excess Traffic Metric and Objective

This objective considers only the highest value of excess traffic of a single link from all the

links in the network. Minimising the objective reduces the maximum single value of excess

traffic in the network but does not consider the overall level of excess traffic, which is the

opposite of using a simple sum measure of excess traffic. This is a candidate for a simple

excess traffic variance objective, since a lower maximum single value will also reduce the

variance. The maximum value of excess traffic of all links in the network, Jxtmax is given

by Equation F.22.

Jxtmax = max{Mxwtl : l = 1, . . . , L} (F.22)

Standard Deviation (SD) of Excess Traffic

The standard deviation gives a measure of how much variation from the mean there is in a

population. A value of zero means that all values are equal, so in the case of excess traffic

a zero value translates to all links having equal levels of excess traffic, however the SD

does not give any information about the absolute level of excess traffic across the whole

network. The standard deviation of excess traffic of all links in the network is a candidate

for the excess traffic variance objective. The standard deviation of excess traffic of all links

in the network, Jxtsd is given as:

Jxtsd =

√√√√ 1

L

L∑
l=1

(Mxwtl −Mxwt)2 (F.23)

On its own, using standard deviation will not help to reduce the overall level of excess traffic

as a zero SD can be obtained for any level of excess traffic.

Absolute Mean Deviation (AMD) of Excess Traffic

Absolute Mean Deviation is an alternative to standard deviation that is simpler to calculate

because it uses the absolute difference in place of the square of the difference. For a

calculation that will be repeated many millions of times the difference in computation time

between finding the absolute difference and computing the square of a difference and then

later obtaining a square root, is significant. The absolute mean deviation of excess traffic of

all links in the network is a candidate for the excess traffic variance objective. The absolute

mean deviation of excess traffic of all links in the network, Jxtamd is given as:

Jxtamd =
1

L

L∑
l=1

|Mxwtl −Mxwt| (F.24)

It can be argued that the AMD is as good as and in some cases a better measure than

SD [185]. The same comments made for the suitability of SD can also be made for AMD,

however due to the simpler computation AMD would be preferred over SD.

Glossary

Absolute mean deviation (AMD)

A statistical measure similar that uses the differences between means.

Adjacent Cores

Two cores are adjacent if they are separated by a single step in one direction.

Aggregate Map

A combination of the environment map and the process map use to calculate metrics that

rake into account data sources and sinks external to the many-core array.

Amdahl’s Law

Was stated by Getov [66] as: "the effort expended on achieving high parallel processing

rates is wasted unless it is accompanied by achievements in sequential processing rates

of very nearly the same magnitude."

Application

Software designed to complete a well define computational task which may be subdivided

into processes.

Application Process Graph (APG)

A graph representing the processes and process to process relationships of an application.

Cloned

EA: a copy of an individual without any changes to the genome.

ComPair

A pair of communicating cores in a many-core array. Used in the calculation of metrics.

Computational Budget

A set amount of processor resource allocated for an evolutionary algorithm expressed in

term of the number of individuals evaluated.

Core

The processing element of a many-core array consisting of a CPU, accelerator and local

resources, including memory.

400 Glossary

Core Fault Tolerance

On objective that is used to measure how well a mapping protects a many-core system

from core faults.

Correlation (1)

EA: Describes the how closely changes to the genome are reflected in the phenome.

Correlation (2)

EA: Describes the how well aligned are the fitness values of multiple objectives.

Critical Links

A link whose failure will sever communication between a ComPair.

Critical Traffic

Traffic that traverses a critical link.

Critical Traffic Weight

A weighting given to critical traffic the calculation the excess traffic metric.

Crossover

A genetic operator that takes two parents and generates a descent using genetic

information form both parents.

Densely Connected

An APG that has 2.5 or more edges per node.

Descendants

EA: Individuals derived from mutations applied to one parent or crossover of two parents.

Directed Acyclic Graph(DAG)

A graph with directed edges such that information only flows from the source node of the

edge to the target node of the edge.

Double Modular Redundancy (DMR)

A system design where hardware modules are duplicated, one used for processing and

the second one in standby mode.

Edge

A connection in the application process graph between two processes that represents

data transfer from one process to the other.

Edge

An edge connects two nodes and is identified by the locations of the nodes that it connects.

An edge has a source node, the node closest the origin of a lattice or source node of the

subnet, and a target node, the node furthest from the origin of a lattice or closest to the

target node of the subnet. An edge e is, therefore, identified by an ordered 2-tuple of node

locations, (sloc, tloc) = ((sr, sc), (tr, tc)).

Glossary 401

Edge-Coincident Paths

A set of edges that have at least one path that traverse all edges in the set.

Elite Individuals

EA: The individuals in a generation that are copied unchanged to the next generation.

Engineered Mappings

Mappings that are generated from deterministic algorithms.

Environment

A mapping that contains the source and sinks to resource external to the many-core array.

Evolutionary algorithm (EA)

An algorithm that mimics biological evolutionary processes to search for a solution space.

Evolutionary Cycle

EA: the series of populations and processes that transformations one generation to the

next.

Excess Traffic

Traffic exceeds the bandwidth of a hardware link.

Failed Core

A core that has a fault which will make it permanently unavailable for use.

Fault-Free

A fault-free lattice is a lattice where all nodes and edges are present and can be used by

paths.

Fault-tolerance

is the architectural attribute of a digital system that keeps the logic machine doing its

specified tasks when its host, the physical system, suffers various kinds of failures of its

components.

Fault-Recovery Cycle

The control software used to implement fault detection, graceful degradation and graceful

amelioration.

Faulty Edge

A faulty edge is an edge that cannot be used by a path, in effect removing the edge from

the lattice.

Faulty Node

A faulty node is a node that cannot be visited by a path, in effect removing, from the lattice,

the node and all edges leading to and from the node.

402 Glossary

Fitness Evaluated Population

The population in the evolutionary cycle created by calculating the objective values of

each individual.

Flynn’s Taxonomy

In 1972 Flynn defined four processing models based on the combination of types of

instruction stream and types of data stream the the processor exploits resulting in the

following four categories as described in [61]:

Generation Zero

The first generation of an evolution that is created from engineered and random mappings.

Genetic Operator

A method of changing the genome of an individual.

Genome

A representation of the process map that is used to manipulate the process map.

Globally Asynchronous Local Synchronous (GALS)

The concept of a large device using individual clocks for localise processing units, to

overcome clock propagation delays in large devices.

Graceful Amelioration

The ability of a system to improve performance

Graceful Degradation

The ability of a system to continue functioning with reduced performance when faults occur.

Hardware Map

A representation of the hardware of a many-core system.

Idle Core

A core of a many-core does not have a process allocated to it (synonym with spare)

Initial Population

The population in the evolutionary cycle created as the stating point for the evolutionary

process.

Intermediate Population

The population created by selection and mutation of individuals from the primary

population.

Lattice

A lattice consists of nodes arranged in equally spaced rows and columns. In general a

lattice can be considered to have an infinite number of rows and columns. For practical

purposes lattices can be made finite by specifying a size of R rows and C columns

Glossary 403

Link

A hardware link between two routing nodes.

Link Criticality

A description of how the failure of a link will affect a ComPair.

Link Fault Tolerance

An objective that measure how well mapping protects a many-core system from link faults.

Location

A location is a 2-tuple specifying the row and column coordinates

Many-core

A SoC with 10s, 100s or 1000s of independent processing cores.

MIMD

Flynn’s Taxonomy: Multiple Instruction streams, Multiple Data streams.

Minimum discovered fitness

The minimum fitness for an objective that was found during one or more evolutionary runs.

Minimum Length Path

A path that is the shortest possible path between a ComPair.

MISD

Flynn’s Taxonomy: Multiple Instruction streams, Single Data stream.

Moderately Connected

An APG with at least 2 edges per node and less than 2.5 edges per node.

Monitor

A process that is responsible for monitoring and supervising a region of cores.

Monitor Node

The many-core node assigned to execute the monitor process.

Multi-core

A processor technology with multiple (between 2 an 64) sophisticated cores.

Mutation

EA: The action of making changes to the genetic representation of an individual.

Mutation Rate

EA: the number of genes changed during mutation of a genome.

Nearest Spare Core Search

A search algorithm to find the nearest spare core to a processing core.

404 Glossary

Network hop

A network hop is the minimum possible distance between two many-core nodes.

Network Power

A measure of the power used by communication of data through a NoC.

Network on Chip (NoC)

A system where processing elements are interconnected via routing nodes creating an on

chip communications network.

Node

A node is uniquely identified by it’s location loc(r, c); being the row and column coordinates

of the node within the lattice. Each node can be connected, via edges, to each of its north,

south, east and west neighbours (where they exist) as in figure 6.10.

Non-Weighted Excess Traffic (NWET)

A measure of network traffic with no weighting applied.

Normal links

Links whose failure causes no immediate disruption to traffic.

Normal Traffic

Traffic that traverses a normal link.

NSGAII

A non-dominated Pareto front sorting genetic algorithm.

Ordered Set of Edges

A set whose members are order by defined criteria.

Origin

The location (0, 0) of a lattice

Pareto Front

A set of points in a multi-objective space that are considered equivalent because no point

can be considered to better, for all objectives, than any of the other points in the set.

Path-Coincident Edges

A set of edges for which there is at least one path that passes through all of the edges in

the set.

Permutation

EA: a genetic operator that takes a genome and produces a new genome by swapping

one or pairs of genes.

Pf0

Pareto Front 0: A cumulative Pareto Front that includes all non-dominated solution from

the generations of an evolution.

Glossary 405

Pf1

The non-dominated solutions from a single generation.

Phenome

A direct representation of a process map.

Primary Population

The population that is the produced at the end of each evolutionary cycle.

Process

The smallest part of an application that can be executed independently on a dedicated

core.

Process Map

A mapping of APG processes to cores in a many-core array (synonym for task map).

Process Node

A node in an APG that represents a process of the application.

Processing Node

A hardware unit of a many-core array consisting of a network router and processing core.

Protected Core

A core with at least one adjacent idle core.

Rectilinear distance

The distance between two nodes in a square lattice. The sum of the absolute difference of

the x-coordinates and the absolute difference of the y-coordinates, of the two nodes.

Region

A group of cores in a many-core array that are collectively monitored by a single monitor.

Routing Node

The node in a NoC that is responsible for receiving and transmitting data packets through

the network.

Significant links

A link whose failure will cause disruption and possible loss of traffic between a ComPair

but will not completely sever communication between the ComPair.

Significant Traffic

Traffic that traverses a significant link.

Significant Traffic Weight

A weight applied to significant traffic when calculating the excess traffic metric.

SIMD

Flynn’s taxonomy: Single Instruction stream, Multiple Data streams.

406 Glossary

Sink Node

A node which represents a receiver of data external to the many-core array.

SISD

Flynn’s Taxonomy: Single Instruction stream, Single Data stream.

Sorted Population

EA: The population created by performing a Pareto sort on an evaluated population

Source Node

A node which represents a source of data external to the many-core array.

Spare Core

A core of a many-core does not have a process allocated to it (synonym with idle).

Sparsely Connected

An APG with less than 2 edges per node.

Step

A single network hop.

Subnet

A subnet is any portion of a lattice defined by a source location and a target location.

Synchronised Redundant Systems

Two or more systems that carry out the same processing and periodically synchronize to

ensure they their computations agree

System on Chip

A system which is composed of a collection of IPs on a single device

Task Migration

Relocation of a task from one core to another.

Task Map

A mapping of application process graph processes to cores in a many-core array (synonym

for process map).

Triple Modular Redundancy (TMR)

System where three identical modules carry out the same processing and the results of all

three are used as the input of a voting system to determine the final output.

Vulnerability of Significant Link Failure

A metric that measures how vulnerable a ComPair is to the failure of a significant link.

Vulnerability to Critical Link Failure

A metric that measures how vulnerable a ComPair is to the failure of a critical link.

Glossary 407

Vulnerability to Link Failure

A metric that measures how vulnerable a ComPair is to the failure of any link.

Weighted Excess Traffic (WET)

A measure of network traffic with weighting applied to critical and significant traffic.

408 Glossary

Bibliography

[1] R. N. Noyce and M. E. Hoff. “A History of Microprocessor Development at Intel”. In:

Micro, IEEE 1.1 (1981), pp. 8–21.

[2] G. E. Moore. “Cramming More Components onto Integrated Circuits”. In: Electron-

ics 38.8 (1965), pp. 114–117.

[3] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg, M. Millberg, and D. Lindqvist.

“Network on chip: An architecture for billion transistor era”. In: Proceeding of the

IEEE NorChip Conference. 2000, pp. 166–173.

[4] SIA-Semiconductor-Industry-Association. “The National Technology Roadmap for

Semiconductors”. In: Semiconductor Industry Association (1997).

[5] S. Borkar. “Thousand Core Chips - A Technology Perspective”. In: Proceedings of

the 44th annual Design Automation Conference (2007), pp. 746–749.

[6] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. “Toward Dark Silicon in

Servers”. In: IEEE Micro 31.4 (2011), pp. 6–15.

[7] C. Martin. “Multicore Processors: Challenges, Opportunities, Emerging Trends”. In:

Embedded World Conference 2014 (2014).

[8] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger. “Dark

Silicon and the End of Multicore Scaling”. In: Proceeding of the 38th annual inter-

national symposium on Computer architecture - ISCA ’11 (2011), pp. 365–376.

[9] J. Hu and R. Marculescu. “Energy-Aware Mapping for Tile-based NoC Architectures

Under Performance Constraints”. In: Design Automation Conference, ASP-DAC

2003. Asia and South Pacific (2003), pp. 233–239.

[10] T. Lei and S. Kumar. “A Two-step Genetic Algorithm for Mapping Task Graphs to a

Network on Chip Architecture”. In: Euromicro Symposium on Digital System Design

(DSD’03). 2003.

[11] S. Murali and G. De Micheli. “Bandwidth-Constrained Mapping of Cores onto NoC

Architectures”. In: Design, Automation and Test in Europe Conference and Exhibi-

tion, 2004. (2004), pp. 1–5.

[12] G. Ascia, V. Catania, and M. Palesi. “Multi-objective Mapping for Mesh-based NoC

Architectures”. In: Hardware/Software Codesign and System Synthesis, 2004. CODES

+ ISSS 2004. (2004), pp. 182–187.

[13] M. N. S. M. Sayuti and L. S. Indrusiak. “Simultaneous Optimisation of Task Mapping

and Priority Assignment for Real-Time Embedded NoCs”. In: Proceedings - 23rd

410 Bibliography

Euromicro International Conference on Parallel, Distributed, and Network-Based

Processing, PDP 2015 (2015), pp. 692–695.

[14] O. Derin, D. Kabakci, and L. Fiorin. “Online Task Remapping Strategies for Fault-

tolerant Network-on-Chip Multiprocessors”. In: NOCS (2011).

[15] M. N. S. M. Sayuti and L. S. Indrusiak. “A Constructive Task Mapping Algorithm

for Hard Real-Time Embedded NoCs”. In: 2015 IEEE Conference on Systems,

Process and Control (ICSPC) December (2015), pp. 123–128.

[16] A. Das and A. Kumar. “Fault-aware task Re-mapping for throughput constrained

multimedia applications on NoC-based MPSoCs”. In: Proceedings - IEEE Interna-

tional Symposium on Rapid System Prototyping, RSP (2012), pp. 149–155.

[17] F. Khalili and H. R. Zarandi. “A fault-tolerant core mapping technique in networks-

on-chip”. In: IET Computers & Digital Techniques 7.6 (2013), pp. 238–245.

[18] N. Chatterjee, S. Paul, and S. Chattopadhyay. “Fault-Tolerant Dynamic Task Map-

ping and Scheduling for Network-on-Chip-Based Multicore Platform”. In: ACM Trans-

actions on Embedded Computing Systems 16.4 (2017), pp. 1–24.

[19] G. E. Moore. “Progress in digital integrated electronics”. In: Electron Devices Meet-

ings, 1975 International 21 (1975), pp. 11–13.

[20] J. Crawford. “The Execution Pipeline of the Intel i486 CPU”. In: Compcon Spring

’90. Intellectual Leverage. Digest of Papers. Thirty-Fifth IEEE. 1990, pp. 254–258.

[21] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Roussel.

“The Microarchitecture of the Pentium 4 Processor”. In: Intel Technology Journal

Q1 (2001), pp. 1–13.

[22] C. Stephens and M. Dennis. “Engineering time: inventing the electronic wristwatch”.

In: The British Journal for the History of Science 33.4 (2000), S0007087400004167.

[23] A. M. Volk, P. A. Stoll, and P. Metrovich. “Recollections of Early Chip Development

at Intel”. In: Intel Technology Journal Q1 (2001), pp. 1–12.

[24] W. Wolf, A. A. Jerraya, and G. Martin. “Multiprocessor system-on-chip (MPSoC)

technology”. In: IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems 27.10 (2008), pp. 1701–1713.

[25] P. Guerrier and A. Greiner. “A Generic Architecture for On-Chip Packet-Switched

Interconnections”. In: Design, Automation and Test in Europe Conference and Ex-

hibition 2000. (2000).

[26] J. Backus. “Can programming be liberated from the von Neumann style?: a func-

tional style and its algebra of programs”. In: Communications of the ACM 21.8 (Aug.

1978), pp. 613–641.

[27] W. B. Ackerman. “Data Flow Languages”. In: Computer 15.2 (1982), pp. 15–25.

[28] J. B. Dennis and D. P. Misunas. “A Computer Architecture for Highly Parallel Signal

Processing”. In: December 1973 ACM ’74: Proceedings of the 1974 annual ACM

conference. ACM, 1974, pp. 402–409.

[29] W. M. Johnston, J. R. P. Hanna, and R. J. Millar. “Advances in dataflow programming

languages”. In: ACM Computing Surveys 36.1 (Mar. 2004), pp. 1–34.

Bibliography 411

[30] J. B. Dennis. “Data Flow Computer Architecture”. In: Encyclopedia of Parallel Com-

puting. Springer US, 2011, pp. 508–512.

[31] A. Davis. “The Architecture and System Method of DDM1: A Recursively Structured

Data Driven Machine”. In: Proceedings of the 5th Annual Symposium on Computer

Architecture July (1978), pp. 210–215.

[32] P. C. Treleaven, D. R. Brownbridge, and R. P. Hopkins. “Data-Driven and Demand-

Driven Computer Architecture”. In: ACM Computing Surveys (CSUR) 14.1 (1982),

pp. 93–143.

[33] A. Kathail and V. Kathail. “A Multiple Processor Data Flow Machine that Supports

Generalized Procedures”. In: ISCA 81 Proceedings of the 8th annual symposium

on Computer Architecture. IEEE Computer Society Press Los Alamitos, CA, USA,

1981, pp. 291–302.

[34] H. Veen. “Dataflow Machine Architecture”. In: ACM Computing Surveys (CSUR)

18.4 (1986), pp. 365–396.

[35] M. J. Flynn. “Some Computer Organizations and Their Effectiveness”. In: IEEE

Transaction on Computers C-21.9 (1972), pp. 948–960.

[36] J. Gregoryt and R. Mcreynoldst. “The SOLOMON Computer”. In: IEEE Transactions

on Electronic Computers (1963), pp. 774–781.

[37] R. P. Mohanty, A. K. Turuk, and B. Sahoo. “Analysing the Performance of Multi-

core Architecture”. In: 1st Int.Conf. On Computing Communication and Sensor

Networks-CCSN’2012 (2012).

[38] G. M. Amdahl. “Validity of the single processor approach to achieving large scale

computing capabilities”. In: AFIPS Conference Proceedings - Spring Point Com-

puter Conference, 1967 30 (1967), pp. 483–485.

[39] G. M. Amdahl. “Computer Architecture and Amdahls Law”. In: Computer 46.12

(2013), pp. 38–46.

[40] V. Getov. “A Few Notes on Amdahls Law”. In: Computer 64.12 (2013), p. 45.

[41] J. L. Gustafson. “Reevaluating Amdahls Law”. In: 31.5 (1988), pp. 532–533.

[42] J. Bui, C. Xu, and S. Gurumurthi. “Understanding Performance Issues on both

Single Core and Multi-core Architecture”. In: (2007).

[43] I. Onyuksel and S. H. Hosseini. “Amdahls Law: A Generalization Under Processor

Failures”. In: IEEE Transactions on Reliability 44.3 (1995), pp. 455–462.

[44] B. Parhami. “Amdahls Reliability Law: A Simple Quantification of the Weakest-Link

Phenonmenon”. In: Computer 48.7 (2015), pp. 55–58.

[45] M. Annaratone. “MPPs, Amdahls Law, and Comparing Computers”. In: Proceed-

ings of The Fourth Symposium on the Frontiers of Massively Parallel Computation

(1992), pp. 465–470.

[46] M. D. Hill and M. R. Marty. “Amdahls Law in the Multicore Era”. In: Computer

41.July (2008), pp. 33–38.

[47] D. Sylvester and K. Keutzer. “Getting to the Bottom of Deep Submicron II : A Global

Wiring Paradigm”. In: Proceedings of the 1999 international symposium on Physical

design. ACM, 1999, pp. 193–200.

412 Bibliography

[48] D. Sylvester and K. Keutzer. “A Global Wiring Paradigm for Deep Submicron De-

sign”. In: Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-

actions on 19.2 (2000), pp. 242–252.

[49] D. Chapiro. “Globally-Asynchronous Locally-Synchronous Systems”. PhD thesis.

Stanford University, 1984.

[50] A. Hemani, T. Meincke, S. Kumar, A. Postula, T. Olsson, P. Nilsson, P. Ellervee,

and D. Lundqvist. “Lowering power consumption in clock by using Globally Asyn-

chronous Locally Synchronous deisgn style”. In: ACM/IEEE Design (1999).

[51] A. Iyer and D. Marculescu. “Power and Performance Evaluation of Globally Asyn-

chronous Locally Synchronous Processors”. In: ACM SIGARCH Computer Archi-

tecture News 30.2 (May 2002), p. 158.

[52] J. Muttersbach, T. Villiger, H. Kaeslin, N. Felber, and W. Fichtner. “Globally-Asynchronous

Locally-Synchronous Architectures to Simplify the Design of On-Chip Systems”.

In: Twelfth Annual IEEE International ASIC/SOC Conference (Cat. No.99TH8454)

(1999), pp. 317–321.

[53] K. Y. Yun and R. P. Donohue. “Pausible Clocking: A First Step Toward Heteroge-

neous Systems”. In: iccd. Published by the IEEE Computer Society, 1996, p. 118.

[54] D. S. Bormann and P. Y. Cheung. “Asynchronous Wrapper for Heterogeneous Sys-

tems”. In: Proceedings International Conference on Computer Design VLSI in Com-

puters and Processors (1997), pp. 307–314.

[55] S. Moore, G. Taylor, R. Mullins, and P. Robinson. “Point to point GALS interconnect”.

In: Asynchronous Circuits and Systems, 2002. Proceedings. Eighth International

Symposium on. IEEE, 2002, pp. 69–75.

[56] R. R. Dobkin, R. Ginosar, and C. P. Sotiriou. “Data Synchronization Issues in GALS

SoCs”. In: 10th International Symposium on Asynchronous Circuits and Systems,

2004. Proceedings. (2004), pp. 170–180.

[57] A. Royal and P. Y. Cheung. “Globally Asynchronous Locally Synchronous FPGA Ar-

chitectures”. In: Field-Programmable Logic and Applications. Springer, 2003, pp. 355–

364.

[58] P. Kermani and L. Kleinrock. “Virtual Cut-Through : A New Computer Communica-

tion Switching Technique”. In: Computer Networks 3.4 (1979), pp. 267–286.

[59] P. Baran. “On Distributed Communications Networks”. In: Communications Sys-

tems 12.1 (1963), pp. 1–9.

[60] W. J. Dally and C. L. Seitz. “The torus routing chip”. In: Distributed Computing 1.4

(1986), pp. 187–196.

[61] W. J. Dally and C. L. Seitz. “Deadlock-Free Message Routing in Multiprocessor

Interconnection Networks”. In: Computers, IEEE Transactions on 100.5 (May 1987),

pp. 547–553.

[62] W. J. Dally. “Performance Analysis of k-ary n-cube Interconnection Networks”. In:

Computers, IEEE Transactions on 39.6 (June 1990), pp. 775–785.

[63] S. Felperin, P. Raghavan, and E. Upfal. “A Theory of Wormhole Routing in Parallel

Computers”. In: IEEE Transactions On Computers 45.6 (1996).

Bibliography 413

[64] L. Kleinrock. Queueing System, Volume II Computer Applications. Vol. II. Wiley,

New York, 1976, p. 1976.

[65] W. J. Dally. “A VLSI Architecture for Concurrent Data Structures”. PhD thesis.

California Institute of Technology, 1986.

[66] W. J. Dally. “Virtual-Channel Flow Control”. In: ACM SIGARCH Computer Architec-

ture News 18 (1990), pp. 60–68.

[67] X. Lin and L. M. Ni. “Deadlock-Free Multicast Wormhole Routing in Multicomputer

Networks”. In: ISCA’91 18th International Symposium on Computer Architecture

(1991), pp. 116–125.

[68] C. J. Glass and L. M. Ni. “Adaptive Routing in Mesh-Connected Networks”. In:

Distributed Computing Systems, 1992., Proceedings of the 12th International Con-

ference (1992), pp. 12–19.

[69] C. J. Glass and L. M. Ni. “The Turn Model for Adaptive Routing”. In: Journal of the

ACM (JACM) (1992).

[70] C. J. Glass and L. M. Ni. “Maximally Fully Adaptive Routing in 2D Meshes”. In:

International Conference on Parallel Processing. 1992.

[71] G.-M. Chiu. “The Odd-Even Turn Model for Adaptive Routing”. In: and Distributed

Systems, IEEE Transactions on 11.7 (2000), pp. 729–738.

[72] E. Nilsson, M. Millberg, J. Oberg, and A. Jantsch. “Load distribution with the Proxim-

ity Congestion Awareness in a Network on Chip”. In: Proceedings of the conference

on Design, Automation and Test in Europe-Volume 1. IEEE Computer Society,

2003.

[73] M. Li, Q.-A. Zeng, and W.-B. Jone. “DyXY - A Proximity Congestion-Aware Deadlock-

Free Dynamic Routing Method for Network on Chip”. In: DAC ’06 Proceedings of

the 43rd annual Design Automation. 2006, pp. 849–852.

[74] M. Ebrahimi, M. Daneshtalab, J. Plosila, and F. Mehdipour. “MD: Minimal path-

based fault-tolerant routing in on-Chip Networks”. In: 2013 18th Asia and South

Pacific Design Automation Conference (ASP-DAC). Ieee, Jan. 2013, pp. 35–40.

[75] I. Caragiannis, C. Kaklamanis, and I. Vergados. “Greedy Dynamic Hot-Potato Rout-

ing on Arrays”. In: Parallel Architectures, Algorithms and Networks, 2000. I-SPAN

2000. 2000, pp. 178–185.

[76] L. Wang, X. Wang, and T. S. Mak. “Dynamic Programming-Based Lifetime Aware

Adaptive Routing Algorithm for Network-on-Chip”. In: IEEE/IFIP International Con-

ference on VLSI and System-on-Chip, VLSI-SoC. Vol. 2015-Janua. January. 2015.

[77] L. Wang. “Lifetime Reliability and Performance Optimization in NoC-Based Many-

Core Computing Systems”. In: June (2017).

[78] W. J. Dally and B. Towles. “Route Packets, Not Wires: On-Chip Interconnection

Networks”. In: Design Automation Conference, 2001. (2001), pp. 684–689.

[79] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J. Oberg, K. Tiensyrja,

and A. Hemani. “A network on chip architecture and design methodology”. In:

Proceedings IEEE Computer Society Annual Symposium on VLSI. New Paradigms

for VLSI Systems Design. ISVLSI 2002 (2002), pp. 117–124.

414 Bibliography

[80] S. B. Akers and B. Krishnamurthy. “A Group-Theoretic Model for Symmetric In-

terconnection Networks”. In: IEEE Transactions on Computers 38.4 (Apr. 1989),

pp. 555–566.

[81] Y. Robert. “Task graph scheduling”. In: Encyclopedia of Parallel Computing (2011),

pp. 2013–2025.

[82] D. A. Patterson and J. L. Hennessy. Computer Organization and Design. Fourth.

Elsevier, 2009, p. 2009.

[83] A. W. Burks, H. H. Goldstine, and J. von Neumann. Preliminary Discussion of

The Logical Design of an Electronic Computing Instrument. Tech. rep. Institute of

Advanced Study report for the U.S. Army Ordnance Department, 1946.

[84] L. M. Censier and P. Feautrier. “A New Solution to Coherence Problems in Multi-

cache Systems”. In: IEEE Transactions on Computers C-27.12 (1978), pp. 1112–

1118.

[85] F. Baskett, T. Jermoluk, and D. Solomon. “The 4D-MP graphics superworkstation:

computing+graphics=40 MIPS+MFLOPS and 100000 lighted polygons per sec-

ond”. In: Compcon Thirty-Third IEEE Computer Society International Conference.

1988, pp. 468–471.

[86] J. Croll. “VAX 6000 model 400 system overview”. In: Compcon Spring ’90. Intellec-

tual Leverage. Digest of Papers. Thirty-Fifth IEEE (1990), pp. 110–114.

[87] C. Tang. “Cache system design in the tightly coupled multiprocessor system”. In:

AFIPS’76 National Computer Conference (1976), pp. 749–754.

[88] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz. “An Evaluation of Directory

Schemes for Cache Coherence”. In: Computer Architecture, 1988. Conference Pro-

ceedings. 15th Annual International Symposium on (1988), pp. 280–289.

[89] D. Chaiken, C. Fields, K. Kurihara, and A. Agarwal. “Directory-Based Cache Coher-

ence in Large-Scale Multiprocessors”. In: Computer 23.June (1990), pp. 49–58.

[90] P. Stenstrom. “A Survey of Cache Coherence for Multiprocessors”. In: IEEE Com-

puter 23.6 (1990), pp. 12–24.

[91] N. Eisley, L.-S. Peh, and L. Shang. “In-Network Cache Coherence”. In: Microarchi-

tecture, 2006. MICRO-39. 39th Annual IEEE/ACM International (2006), pp. 321–

332.

[92] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi. “Cuckoo directory: A scalable

directory for many-core systems”. In: Proceedings - International Symposium on

High-Performance Computer Architecture (2011), pp. 169–180.

[93] D. Hilbert and W. Ackermann. Principles of Mathematical Logic. Chelsea Publishing

Company, New York, 1950, 1928.

[94] K. Gödel. “Über formal unentscheidbare Sätze der Principia Mathematica und ver-

wandter Systeme I”. In: Monatshefte für Mathematik und Physik 38 (1931), pp. 173–

198.

[95] M. Davis. The Undecidable. Raven Press, Hewlett, New York, 1965.

[96] M. Hirzel. “On Formally Undecidable Propositions of Principia Mathematica and

Related Systems (Translation)”. In: Philosophical Books 4 (2000), pp. 1–22.

Bibliography 415

[97] A. M. Turing. “ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO THE

ENTSCHEIDUNGSPROBLEM”. In: Proceedings of the London Mathematical Soci-

ety 42 (1936), pp. 230–265.

[98] E. L. Post. “Finite Combinatory Processes-Formulation 1”. In: The Journal of Sym-

bolic Logic 1.3 (1936), pp. 103–105.

[99] A. Church. “The Calculi of Lambda-Conversion”. In: Annals of Mathematics Studies

Number 6 (1941). arXiv: arXiv:1011.1669v3.

[100] J. C. Shepherdson and H. E. Sturgis. “Computability of Recursive Functions”. In:

Journal of the ACM (JACM) 10.2 (1963), pp. 217–255.

[101] J. von Neumann. First Draft of a Report on the EDAVAC. Tech. rep. 1945, pp. 1–49.

[102] R. M. Keller, G. Lindstrom, and S. Patil. “A Loosely-Coupled Applicative Multi-

Processing System”. In: National Computer Conference. 1979, pp. 613–622.

[103] I. Watson and J. Gurd. “A Practical Data Flow Computer”. In: Computer 15.2 (1982),

pp. 51–57.

[104] R. M. Karp and R. E. Miller. “Properties of a Model for Parallel Computations:

Determinancy, Termination, Queueing”. In: SIAM Journal on Applied Mathematics

14.6 (1966), pp. 1390–1411.

[105] J. B. Dennis. “On the design and specification of a common base language”. In:

Proceedings of the Symposium on Computers and Automata. Polytechnic Press of

the Polytechnic Institute of Brooklyn, Brooklyn, N. Y., 1971, pp. 47–74.

[106] J. B. Dennis, J. Fosseen, and J. Linderman. “Data Flow Schemas”. In: International

Symposium on Theoretical Programming. Vol. 5. 1972, pp. 187–216. arXiv: arXiv:

1011.1669v3.

[107] J. B. Dennis. “First Version of a Data Flow Procedure Language”. In: Programming

Symposium. Springer Berlin Heidelberg, 1974, pp. 362–376.

[108] G. Kahn and D. B. MacQueen. “Coroutines and networks of parallel processes”. In:

IFIP Congress Proceedings. 1977.

[109] A. L. Davis and R. M. Keller. “Data Flow Program Graphs”. In: Computer 15.2

(1982), pp. 26–41.

[110] Arvind, D. E. Culler, and G. K. Maa. “Assessing the Benefits of Fine- Grain Paral-

lelism in Dataflow Programs”. In: International Journal of High Performance Com-

puting Applications 2.3 (1988), pp. 10–36.

[111] J. B. Dennis. “Data Flow Graphs”. In: Encyclopedia of Parallel Computing. Springer

US, 2011, pp. 512–518.

[112] M. E. Conway. “Design of a Separable Transition-Diagram Compiler”. In: Commu-

nications of the ACM 6.7 (1963), pp. 396–408.

[113] W. W. Wadge and E. A. Ashcroft. Lucid, the Dataflow Programming Language.

Academic Press, 1985.

[114] L. Lamport. “The Parallel Execution of DO oops”. In: Communications of the ACM

17.2 (1974), pp. 83–93.

http://arxiv.org/abs/arXiv:1011.1669v3
http://arxiv.org/abs/arXiv:1011.1669v3
http://arxiv.org/abs/arXiv:1011.1669v3

416 Bibliography

[115] J. R. Allen and K. Kennedy. “Automatic Loop Interchange”. In: SIGPLAN ’84 Pro-

ceedings of the 1984 SIGPLAN symposium on Compiler construction. Vol. 19. 6.

1984, pp. 233–246.

[116] A. Aiken and A. Nicolau. “Perfect Pipelining: A New Loop Parallelization Technique”.

In: 2nd European Symposium on Programming. Vol. 300. 1988, pp. 221–235.

[117] R. Gupta. “Synchronization and Communication Costs of Loop Partitioning on Shared-

Memory Multiprocessor Systems”. In: IEEE Transactions on Parallel and Distributed

Systems 3.4 (1992), pp. 505–512.

[118] K. Lakshmanan, S. Kato, and R. (Rajkumar. “Scheduling Parallel Real-Time Tasks

on Multi-core Processors”. In: Real-Time Systems Symposium (RTSS). 2010, pp. 259–

268.

[119] A. Saifullah, K. Agrawal, C. Lu, and C. Gill. “Multi-core Real-Time Scheduling for

Generalized Parallel Task Models”. In: 2011 IEEE 32nd Real-Time Systems Sym-

posium (2011), pp. 217–226.

[120] A. Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, and C. D. Gill. “Parallel Real-Time

Scheduling of DAGs”. In: IEEE Transactions on Parallel and Distributed Systems

25.12 (2014), pp. 3242–3252.

[121] W.-m. Hwu, S. Ryoo, S.-Z. Ueng, J. H. Kelm, I. Gelado, S. S. Stone, R. E. Kidd,

S. S. Baghsorkhi, A. A. Mahesri, S. C. Tsao, N. Navarro, S. S. Lumetta, M. I.

Frank, and S. J. Patel. “Implicitly Parallel Programming Models for Thousand-Core

Microprocessors”. In: ACM/IEEE 44th Design Automation Conference (DAC-07)

(2007), pp. 754–759.

[122] A. Avizienis. “Fault-Tolerance: The Survival Attribute of Digital Systems”. In: Pro-

ceedings of the IEEE 66.10 (1978).

[123] A. Avizienis and J. P. J. Kelly. “Fault Tolerance by Design Diversity: Concepts and

Experiments”. In: Computer 17.8 (1984), pp. 67–80.

[124] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De. “Parameter

Variations and Impact on Circuits and Microarchitecture”. In: DAC ’03: Proceedings

of the 40th Annual Design Automation Conference (2003), pp. 338–342.

[125] S. Borkar. “Designing Reliable Systems From Unreliable Components: The chal-

lenges of Transistor Variability and Degradation”. In: Ieee Micro (2005), pp. 10–16.

[126] T. C. May. “Alpha-Particle-Induced Soft Errors in Dynamic Memories”. In: IEEE

Transactions on Electron Devices 26.1 (1979), pp. 2–9.

[127] R. C. Baumann. “Radiation-induced soft errors in advanced semiconductor tech-

nologies”. In: IEEE Transactions on Device and Materials Reliability 5.3 (2005),

pp. 305–315.

[128] C. L. Chen and M. Y. Hsiao. “Error-Correcting Codes for Semiconductor Memory

Applications: A State-of-the-Art Review”. In: IBM Journal of Research and Devel-

opment 28.2 (1984), pp. 124–134.

[129] F. Alt. “A Bell Telephone Laboratories’ Computing Machine-I”. In: Mathematical

tTables and Other Aids to Computation 3.21 (1948), pp. 1–13.

Bibliography 417

[130] F. Alt. “A Bell Telephone Laboratories’ Computing Machine-II”. In: Mathematical

tTables and Other Aids to Computation 3.22 (1948), pp. 69–84.

[131] R. Hamming. “Error Detecting and Error Correcting Codes”. In: The Bell System

Technical Journal XXIX.2 (1950).

[132] A. B. Fontainet and R. G. Gallagert. “Error Statistics and Coding for Binary Trans-

mission Over Telephone Circuits”. In: Proceedings of the IRE 49.6 (1961), pp. 1059–

1065.

[133] R. W. Doran. “The Gray Code”. In: CDMTCS Research Reports CDMTCS-304

March (2007).

[134] J. M. Berger and B. Mandelbrot. “A New Model for Error Clustering in Telephone

Circuits”. In: IBM Journal of Research and Development 7.3 (1963), pp. 224–236.

[135] B. Mandelbrot. “Self-Similar Error Clusters in Communication Systems and the

Concept of Conditional Stationarity”. In: Communication Technology, IEEE Trans-

actions on 13.1 (1965), pp. 71–90.

[136] W. W. Peterson and D. T. Brown. “Cyclic Codes for Error Detection”. In: Proceedings

of The IRE (1960), pp. 228–235.

[137] I. Koren and C. M. Krishna. Fault-Tolerant Systems. Morgan-Kaufman, 2007, p. 400.

[138] J. Bartlett, J. Gray, and B. Horst. “Fault Tolerance in Tandem Computer Systems”.

In: (1986).

[139] J. E. Tomayko. Computers in spaceflight: the NASA experience. Vol. 18. NASA

Contractor Report 182505, 1988.

[140] J. Anderson and F. Marci. “Multiple redundancy applications in a computer(Design,

redundancy, reliability and tradeoffs for Launch Vehicle Digital Computer and Data

Adapter/LVDC/LVDA/ for uprated Saturn I and V vehicles, noting logic circuit, mem-

ory, input/ output, power supply)”. In: Annual Symposium on Reliability (1967),

pp. 553–562.

[141] Y. Yeh. “Triple-Triple Redundant 777 Primary Flight Computer”. In: 1996 IEEE Aerospace

Applications Conference. Proceedings 1 (1996), pp. 293–307.

[142] J. von Neumann. “Probabilistic Logics and the Synthesis of Reliable Organisms

from Unreliable Components”. In: Automata studies (1956).

[143] R. Lyons and W. Vanderkulk. “The Use of Triple-Modular Redundancy to Improve

Computer Reliability”. In: IBM Journal of Research and Development 6.2 (Aug.

1962), pp. 200–209.

[144] F. P. Mathur and A. Avizienis. “Reliability analysis and architecture of a hybrid-

redundant digital system: Generalized triple modular redundancy with self-repair”.

In: Proceedings of the May 5-7, 1970, spring (1970).

[145] J. A. Abraham and D. P. Siewiorek. “Algorithm for the Accurate Reliability Evaluation

of Triple Modular Redundancy Networks”. In: Computers, IEEE Transactions C.7

(1974), pp. 682–692.

[146] S. Mitra and E. J. McCluskey. “Word-Voter: A new voter design for triple modular

redundant systems”. In: vts (2000).

418 Bibliography

[147] H. Quinn, K. Morgan, P. Graham, J. Krone, M. Caffery, and K. Lundgreen. “Domain

Crossing Errors: Limitations on Single Device Triple-Modular Redundancy Circuits

in Xilinx FPGAs”. In: Nuclear Science, 54.6 (Dec. 2007), pp. 2037–2043.

[148] E. Fuller, M. Caffrey, P. Blain, C. Carmichael, N. Khalsa, A. Salazar, and A. V.

Fpga. “Radiation Test Results of the Virtex FPGA and ZBT SRAM for Space Based

Reconfigurable Computing”. In: 1999 MAPLD (Military & Aerospace Applications of

Programmable Logic Devices) 836 (1999).

[149] P. K. Samudrala and J. Ramos. “Selective Triple Modular Redundancy (STMR)

Based Single-Event Upset (SEU) Tolerant Synthesis for FPGAs”. In: Nuclear Sci-

ence, IEEE 51.5 (Oct. 2004), pp. 2957–2969.

[150] L. Sterpone and M. Violante. “A New Analytical Approach to Estimate the Effects

of SEUs in TMR Architectures Implemented Through SRAM-Based FPGAs”. In:

Nuclear Science, IEEE 52.6 (2005), pp. 2217–2223.

[151] J. F. Wakerly. “Microcomputer Reliability Improvement Using Triple-Modular Redun-

dancy”. In: Proceedings of the IEEE 15.5 (1976), pp. 375–375.

[152] N. Quach. “High Availability and Reliability in the Itanium Processor”. In: IEEE Micro

20.5 (2000), pp. 61–69.

[153] T. Chen and G. Sunada. “Design of a Self-Testing and Self-Repairing Structure

for Highly Hierarchical Ultra-Large Capacity Memory Chips”. In: Very Large Scale

Integration (VLSI) Systems, IEEE Transactions 1.2 (1993), pp. 88–97.

[154] F. J. J. Aichelmann. “Fault-Tolerant Design Techniques for Semiconductor Mem-

ory Applications”. In: IBM journal of research and development 28.2 (Mar. 1984),

pp. 177–183.

[155] I. Kim, Y. Zorian, G. Komoriya, H. Pham, F. P. Higgins, and J. L. Lewandowski.

“BUILT IN SELF REPAIR FOR EMBEDDED HIGH DENSITY SRAM”. In: Test Con-

ference, 1998. Proceedings. 1998, pp. 1112–1119.

[156] V. Schober, S. Paul, and O. Picot. “Memory Built-In Self-Repair using redundant

words”. In: Test Conference, 2001. 2001, pp. 995–1001.

[157] M. Nicolaidis, N. Achouri, and S. Boutobza. “Optimal Reconfiguration Functions for

Column or Data-bit Built-In Self-Repair”. In: Design, Automation and Test in Europe

Conference and Exhibition, 2003. 2003.

[158] M. Nicolaidis, N. Achouri, and S. Boutobza. “Dynamic Data-bit Memory Built-In Self-

Repair”. In: Computer Aided Design, 2003. ICCAD-2003. 2003, pp. 588–594.

[159] S.-Y. Kuo and K. W. Fuchs. “EFFICIENT SPARE ALLOCATION IN RECONFIG-

URABLE ARRAYS”. In: Design Automation, 1986. 23rd Conference. 1986, pp. 385–

390.

[160] V. G. Hemmady and S. M. Reddy. “ON THE REPAIR OF REDUNDANT RAMs”. In:

DAC ’89: 26th ACM/IEEE Design Automation Conference. 1989, pp. 710–713.

[161] T. Kawagoe, J. Ohtani, M. Niiro, T. Ooishi, M. Hamada, H. Hidaka, and M. Tech-

nology. “A Built-In Self-Repair Analyzer (CRESTA) for embedded DRAMs”. In: Test

Conference, 2000. 2000, pp. 567–574.

Bibliography 419

[162] Y. Zorian. “Embedded Memory Test & Repair: Infrastructure IP for SOC Yield”. In:

2002, pp. 340–349.

[163] X. Du, S. M. Reddy, and W.-T. Cheng. “At-Speed Built-in Self-Repair Analyzer for

Embedded Word-Oriented Memories”. In: VLSI Design, 2004. Proceedings. 17th

International Conference. 2004, pp. 895–900.

[164] J.-F. Li, J.-C. Yeh, R.-F. Huang, and C.-W. Wu. “A Built-In Self-Repair Design for

RAMs With 2-D Redundancy”. In: Very Large Scale Integration (VLSI) Systems

13.6 (2005), pp. 742–745.

[165] P. Öhler, S. Hellebrand, and H.-J. Wunderlich. “An Integrated Built-in Test and

Repair Approach for Memories with 2D Redundancy Hans-Joachim Wunderlich”.

In: Test Symposium, 2007. ETS ’07. 12th IEEE European. 2007, pp. 91–96.

[166] T.-W. Tseng, J.-F. Li, and C.-C. Hsu. “ReBISR : A Reconfigurable Built-In Self-

Repair Scheme for Random Access Memories in SOCs”. In: Very Large Scale

Integration (VLSI) Systems 18.6 (2010), pp. 921–932.

[167] D. A. Patterson, G. Gibson, and R. H. Katz. “A Case for Redundant Arrays of

Inexpensive Disks (RAID)”. In: SIGMOD international conference on Management

of data. 1988, pp. 109–116.

[168] D. A. Patterson, P. Chen, G. Gibson, and R. H. Katz. “Introduction to redundant

arrays of inexpensive disks (RAID)”. In: COMPCON Spring ’89. Thirty-Fourth IEEE

Computer Society International Conference: Intellectual Leverage. 1989, pp. 112–

117.

[169] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson. “RAID: High-

Performance, Reliable Secondary Storage”. In: Computing Surveys (CSUR) 26.2

(1994), pp. 145–185.

[170] G. A. Gibson, L. Hellerstein, R. M. Karp, R. H. Katz, and D. A. Patterson. “Failure

Correction Techniques for Large Disk Arrays”. In: ASPLOS III: Proceedings of the

third international conference on Architectural support for programming languages

and operating systems. 1989, pp. 123–132.

[171] M. Blaum, J. Brady, J. Bruck, and J. Menon. “EVENODD : An Optimal Scheme for

Tolerating Double Disk Failures in RAID Architectures”. In: Computer Architecture,

1994., Proceedings the 21st Annual International Symposium. 1994, pp. 245–254.

[172] Z. Lei, H. Yinhe, L. Huawei, and L. Xiaowei. “Fault Tolerance Mechanism in Chip

Many-Core Processors”. In: Tsinghua Science & Technology 12.July (2007), pp. 169–

174.

[173] D. S. Hochbaum. Approximation Algorithms for NP-Hard Problems. PWS Publishing

Company, 1997, p. 1997.

[174] R. Michael and S. David. Computers and intractability : a guide to the theory of

NP-completeness. W.H. Freeman and Company, 1979, p. 1979.

[175] K. Deb. “Multi-objective Genetic Algorithms: Problem Difficulties and Construction

of Test Problems”. In: Evolutionary computation 7.3 (1999), pp. 205–230. arXiv:

arXiv:1011.1669v3.

http://arxiv.org/abs/arXiv:1011.1669v3

420 Bibliography

[176] R. Steuer. Multiple Criteria Optimization: Theory, Computation and Application.

John Wiley, 1986.

[177] R. Wang, P. J. Fleming, and R. C. Purshouse. “General framework for localised

multi-objective evolutionary algorithms”. In: 258 (2014), pp. 29–53.

[178] K. Deb, S. Pratab, S. Agarwal, and T. Meyarivan. “A Fast and Elitist Multiobjective

Genetic Algorithm: NGSA-II”. In: IEEE Transactions on Evolutionary Computation

6.2 (2002), pp. 182–197.

[179] M. T. Jensen. “Reducing the Run Time Complexity of Multiobjective EAs: The NGSA-

II and Other Algorithms”. In: IEEE Transactions on Evolutionary Computing 7.5

(2003), pp. 503–515.

[180] F.-A. Fortin and M. Parizeau. “Revisiting the NSGA-II Crowding-Distance Computa-

tion”. In: Proceeding of the fifteenth annual conference on Genetic and evolutionary

computation conference - GECCO ’13 (2013), p. 623 630.

[181] H. Fang, Q. Wang, Y.-C. Tu, and M. F. Horstemeyer. “An efficient non-dominated

sorting method for evolutionary algorithms”. In: Evolutionary computation 16.3 (2008),

pp. 355–384.

[182] M. Buzdalov, I. Yakupov, and A. Stankevich. “Fast Implementation of the Steady-

State NSGA-II Algorithm for Two Dimensions Based on Incremental Non-Dominated

Sorting”. In: Proceedings of the 2015 Annual Conference on Genetic and Evolution-

ary Computation (2015), pp. 647–654.

[183] H. Wang, L. S. Peh, and S. Malik. “Power-driven design of router microarchitectures

in on-chip networks”. In: Proceedings of the Annual International Symposium on

Microarchitecture, MICRO 2003-Janua (2003), pp. 105–116.

[184] R. R. Dobkin, Y. Perelman, T. Liran, R. Ginosar, and A. Kolodny. “High Rate Wave-

pipelined Asynchronous On-chip Bit-serial Data Link”. In: 13th IEEE International

Symposium on Asynchronous Circuits and Systems (ASYNC’07) (2007), pp. 3–14.

[185] S. Gorard. “REVISITING A 90-YEAR-OLD DEBATE : THE ADVANTAGES OF THE

MEAN DEVIATION”. In: British Journal of Educational Studies, 53.4 (2005), pp. 417–

430.

[186] B. Pascal. Traite du Triangle Arithmetique,: auec quelques autres petits traitez sur

la mesme matiere. Chez Guillaume Desprez, 1665.

[187] D. Pengelley. “Pascal’s Treatise on the Arithmetical Triangle: Mathematical Induc-

tion, Combinations, the Binomial Theorem and Fermat’s Theorem”. In: (), pp. 1–14.

[188] E. J. Borowski and B. M. Jonathan. Collins Dictionary of Mathematics. Harper

Collins, 1989.

[189] J. Wang, X. Wang, L. Huang, T. S. Mak, and G. Li. “A Fault-tolerant Routing Al-

gorithm for NoC Using Farthest Reachable Routers”. In: Proceedings - 2013 IEEE

11th International Conference on Dependable, Autonomic and Secure Computing,

DASC 2013. 2013, pp. 153–158.

[190] P. Campos, N. Dahir, C. A. Bonney, M. A. Trefzer, A. M. Tyrrell, and G. Tempesti.

“XL-STaGe: A Cross-Layer Scalable Tool for Graph Generation, Evaluation and

Bibliography 421

Implementation”. In: IEEE Embedded Computer Systems: Architectures, Modeling,

and Simulation (SAMOS), 2016. 2016.

[191] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull. “Graphviz

and Dynagraph - Static and Dynamic Graph Drawing Tools”. In: Graph Drawing

Software. Springer Berlin Heidelberg, 2004, pp. 127–148.

[192] E. R. Gansner and S. C. North. “An open graph visualization system and its appli-

cations to software engineering”. In: Software — Practice and Experience 30.May

(1999), pp. 1203–1233.

	Abstract
	Contents
	List of Tables
	List of Figures
	List of Equations
	Acknowledgements
	Declaration
	Introduction
	The Many-Core Paradigm
	Problem Description
	Related Work
	Novel Contributions of this Thesis
	Research Outcomes
	Thesis Structure

	Many-Core Systems
	Computer Architecture
	Evolution of Microprocessor Based Systems
	Network On Chip (NoC)
	System on Chip (SoC)
	A Processor Centric Perspective
	Amdahl's Law

	Hardware Considerations Related to Many-Core Systems
	Clock Propagation
	Globally Asynchronous Local Synchronous (GALS) Architecture
	Dark Silicon

	On-Chip Communication Networks
	Network Switching
	Network Latency
	Routing
	Network Topology

	Software Considerations in Many-Core Systems
	Scale Independence
	Application Process Graph
	Task Mapping
	Task Migration
	Core Regions
	Monitoring

	Memory Subsystem
	Memory Hierarchy
	Cache
	Multi-Processor Memory Architecture
	Memory Coherence in Many-Core Systems

	Programming Models
	Evolution of Computation
	Imperative Languages
	Functional Programming
	Dataflow Programming
	Parallel Programming Models
	Code Parallelization

	Summary

	Fault Tolerance
	Reliability
	Error Detection and Correction Codes
	Hardware Redundancy
	Double Modular Redundancy (DMR)
	Triple Modular Redundancy (TMR)
	Synchronised Redundant Systems

	Fault Tolerance in Memory
	Fault Tolerance in Disks
	Fault Tolerance in Many-Core Systems
	Fault Recovery
	Response - Slow Versus Fast
	Graceful Amelioration and Degradation

	Conclusion

	Core Fault Tolerance
	Assumptions
	The Many-Core Array
	Application Process Graph
	Process Map
	Metrics and Objectives
	Core Fault Tolerance Metric and Objective
	Core Fault Tolerance
	Distance to Nearest Idle Core Metric
	Core Fault Tolerance Objective

	Nearest Spare Core Search
	Problem Statement
	Method 1 - Exhaustive Search with Early Termination
	Method 2 - Concentric Diamond Search

	Many-Core Evolutionary Algorithm
	Evolutionary Cycle
	The Cycle
	Initial Population
	Generation Zero Population
	Primary Population
	Intermediate Population
	Fitness Evaluated Population
	Population Evolution Parameters

	Phenome and Genome
	Phenome
	Genome - Phenomic Representation

	Engineered Mappings
	Random Placement
	Engineered Mapping Concept
	Process Distribution Pattern
	Array Node Ordering
	Example Engineered Mappings

	Experiments and Analysis
	Description and Assumptions
	Experiment Parameters
	Test Parameters

	Minimum Discovered Fitness
	Optimum Graph Size
	Evolution of a Mapping of a 26 Node Graph to a 6x6 Array
	Termination Condition

	Conclusions

	Network Power
	Communicating Core Pair (ComPair)
	Link Criticality
	Network Power Metric and Objective
	Distance Between Communicating Core Pairs
	Simple Power Objective

	Many-Core Evolutionary Algorithm
	Pareto Front Sorting
	Definition of Pareto Front
	Significance of Pareto Fronts

	Evolutionary Cycle
	The Cycle
	Initial Population
	Generation Zero Population
	Primary Population
	Intermediate Population
	Fitness Evaluated Population
	Sorted Population
	Pareto Front Zero (Pf0)
	Population Evolution Parameters

	Phenome and Genome
	Genome - String Representing Absolute Position
	Genome - String Representing Relative Position

	Exploring Evolutionary Algorithm Parameters
	Core Fault Tolerance Objective
	Effect of Population Size with Core Fault Tolerance Objective
	Effect of Mutation Rate with Core Fault Tolerance Objective
	Effect of Population Size with Core Fault Tolerance Objective Revisited

	Network Power Objective
	Effect of Population Size with Power Metric
	Network Power and Mutation Rate

	Core FT with Network Power Results
	Data Presentation
	Results Analysis

	Conclusion

	Link Fault Tolerance and Network Traffic
	Application Process Graph (APG)
	Hardware Map
	Nodes and Links of a Hardware Map
	Modelling Faults
	Hardware Map Definition
	Hardware Map Configurations

	The Environment
	Link Fault Tolerance Metric and Objective
	Problem Description
	Vulnerability to Critical Link Failure Metric
	Vulnerability to Significant Link Failure Metric
	Vulnerability to Link Failure Metric
	Link Fault Objective

	Network Power Metric and Objective
	Problem Description
	Distance Between Communicating Core Pairs
	Traffic Volume Metric
	Power Objective

	Excess Traffic Metric and Objective
	Problem Description
	Excess Traffic Metric
	Excess Traffic Objectives

	Determining Paths Through a Lattice
	Definitions
	Pascal's Triangle
	The Number of Minimal Length Paths in a Fault Free Lattice
	Number of Paths Traversing Path-Coincident Edges
	Number of Paths Through Multiple Faulty Edges
	Number of Paths Through a Lattice with Multiple Faulty Edges
	Summary

	Multi-Objective Correlation
	Correlation
	Objectives
	Evolutionary Algorithm Parameters
	Graph Selection
	Data Presentation
	Results for a Densely Connected Graph

	Conclusion

	Graceful Degradation and Amelioration
	The Monitor
	Fault/Recovery Cycle
	Normal Operation
	Graceful Degradation
	Graceful Amelioration

	Viable Mappings
	Single Objective Graceful Degradation and Amelioration
	Evolutionary Algorithm Parameters
	Graph Selection
	Data Presentation
	Results
	Summary

	Multi-Objective Graceful Degradation and Amelioration
	Evolutionary Algorithm Parameters
	Graph Selection
	Data Presentation
	Summary

	Conclusion

	Conclusions and Future Work
	Future Work

	Graph Generator
	Multi-Objective Plots for Sparsely and Moderately Connect Graphs
	Results for a Sparsely Connected Graphs
	Results for a Moderately Connected Graphs

	Evolution of Microprocessor Based Systems
	Word Length
	Pipeline
	On Chip Cache
	Processing Cores

	Many-Core Implementations
	The Graceful Project
	Paralella
	Adapteva
	Epiphany
	Memory
	Routing
	Hardware Platforms
	16 Core - Parallella Board
	64 Core - 4 x Parallella Board

	SpiNNaker chip
	Intel® Many Integrated Core (Intel® MIC) Architecture

	The Many-Core Model
	The Many-Core Array
	Application Process Graph (APG)
	Process Map
	Communicating Core Pair (ComPair)
	Link Criticality
	Hardware Map
	Nodes and Links of a Hardware Map
	Modelling Faults
	Hardware Map Definition
	Hardware Map Configurations

	The Environment

	Metrics and Objectives
	Metrics and Objectives
	Core Fault Tolerance Metric and Objective
	Core Fault Tolerance
	Distance to Nearest Idle Core Metric
	Core Fault Tolerance Objective

	Link Fault Tolerance Metric and Objective
	Problem Description
	Vulnerability to Critical Link Failure Metric
	Vulnerability to Significant Link Failure Metric
	Vulnerability to Link Failure Metric
	Link Fault Objective

	Network Power Metric and Objective
	Problem Description
	Distance Between Communicating Core Pairs
	Traffic Volume Metric
	Power Objective

	Excess Traffic Metric and Objective
	Problem Description
	Excess Traffic Metric
	Excess Traffic Objectives

	Glossary
	Bibliography

