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Abstract

The advent of many-core systems, a network on chip containing hundreds or thousands of
homogeneous processors cores, present new challenges in managing the cores effectively
in response to processing demands, hardware faults and the need for heat management.

Continually diminishing feature size of devices increase the probability of fabrication de-
fects and the variability of performance of individual transistors. In many-core systems this
can result in the failure of individual processing cores, routing nodes or communication
links, which require the use of fault tolerant mechanisms. Diminishing feature size also
increases the power density of devices, giving rise to the concept of dark silicon where
only a portion of the functionality available on a chip can be active at any one time.

Core fault tolerance and management of dark silicon can both be achieved by allocating a
percentage of cores to be idle at any one time. Idle cores can be used as dark silicon to
evenly distribute heat generated by processing cores and can also be used as spare cores
to implement fault tolerance. Both of these can be achieved by the dynamic allocation of
processes to tasks in response to changes to the status of hardware resources and the
demands placed on the system, which in turn requires real time task mapping.

This research proposes the use of a continuous fault/recovery cycle to implement graceful
degradation and amelioration to provide real-time fault tolerance. Objective measures
for core fault tolerance, link fault tolerance, network power and excess traffic have been
developed for use by a multi-objective evolutionary algorithm that uses knowledge of the
processing demands and hardware status to identify optimal task mappings.

The fault/recovery cycle is shown to be effective in maintaining a high level of performance
of a many-core array when presented with a series of hardware faults.
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Chapter 1

Introduction

In 1972 Intel released the 4004, a 4-bit microprocessor designed for the Japanese calcu-
lator manufacturer Busicom [1] which is credited as being the first commercially available
microprocessor.

Early microprocessors had transistors numbered in the thousands, which restricted the
functionality on a single device to a relatively simple microprocessor design (by today’s
standards) with additional functionality provided by external devices. With shrinking tran-
sistor sizes, the number of transistors on devices rose rapidly in line with Moore’s Law
[2]. The additional transistors were utilised to increase the complexity of the processor by
increasing the word length, adding features such as floating point arithmetic and pipelin-
ing, adding memory cache and integrating functionality previously provided by external
devices. However, there is a limit to the functionality and throughput that is possible with
a single processor. In response to this, designs started to emerge in the 2000’s with dual
processors on a single chip followed in later years by quad-core and octa-core designs.
These designs have become known as multi-core processors. Each core in a multi-core
processor is complex with the design of the cores being closely related to the prevailing
complex single-core processor designs.

In 2000 Hemani et al. [3] proposed the Network on Chip (NoC) architecture as a solution to
a number of problems foreseen with the projected arrival, in the mid 2000’s, of sub 100nm
fabrication technology capable of producing one billion plus transistor devices [4]. Hemani’s
NoC design incorporates: processing cores, programmable logic, distributed memory and
programmable 1/O, all knitted together by a communication network enabling any element
to communicate with any other element of the NoC. In 2007 Intel announced its intention
to develop a many-core processor [5] proposing to integrate 100 medium 10M transistor
processors, or even 1000 small 1M transistor processors, in a single device.

The difference between multi-core systems and many-core systems are not well defined
but primarily relate to the number, complexity and level of independence of the cores.
Multi-core systems quickly advanced from 2 to 32 or even 64 processors while many-core
system will have cores numbering hundreds or thousands. The complexity of many-core
system will typically be less than that of multi-core systems, sacrificing complexity of the
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processors in favour of greater numbers of processors.

In summary, the Many-Core paradigm offers the potential of increasing processing through-
put compared to single and multi-core processors by spreading processing across the
many, simpler cores, but requires the development of novel scalable solutions in hardware
and software.

1.1 The Many-Core Paradigm

This section introduces the concept of the many-core system and related topics.

The basic architecture of a many-core array is generally represented as in [Figure 1.1]
with a lattice of interconnected routing nodes (the squares marked RN) that provide a
communication fabric with each routing node having a directly connect processing core
(the squares marked 'C’).
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Figure 1.1 — Many-Core Array

While there are other possible arrangements of routing nodes and processing cores, for
example the model proposed by Hemani et al.[3] uses a hexagonal arrangement of pro-
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cessing resources interleaved with a hexagonal communications matrix with each process-
ing resource connected to multiple routing nodes, the model adopted for this thesis will use
the square lattice arrangement of homogeneous processing cores, as shown in[Figure 1.1

Scale Independence

The many-core concept involves cores that number from hundreds to millions of cores
which will require solutions for operation and control of many-core system to be scale
independent.

Scale independence requires that there is no central control mechanism responsible for
configuring or managing all the processors. A central control mechanism has the disadvan-
tage of producing a single point whose failure would be catastrophic to the whole system
and a single processor that would be required to undertake ever increasing amounts of
work as the number of processors increased. The first of these problems is contrary to the
concept of fault tolerance, while the second will place a limit on the maximum number of
processing cores that can be utilised contrary to the concept of scale independence.

Scale independence therefore requires that monitoring and configuration are not cen-
tralised functions. The model that will be used in this thesis (see [Subsection 2.4.5|[Corel
is that a collection of processing cores which are physically close will be treated
as a region, such that each region has independent monitoring and configuration and can

communicate with the monitoring and configuration functions of neighbouring regions.

Dark Silicon

For many years the semiconductor industry has managed to keep pace with Moore’s Law
by doubling the number and density of transistors in devices every two years. However,
reduction of feature size is no longer matched by a proportional reduction in transistor
threshold and supply voltages [6] which is therefore increasing the power density of devices
to the point where they can no longer be efficiently air-cooled. Post-Dennard Scaling
means that because the leakage voltage cannot be ignored with device feature size of
less than 65nm the voltage does not continue to scale down as the number of transistors
increase. Consequently the power density increases in proportion to the increase in the
number of transistors [7]. At a feature size of 22nm it is no longer possible to have the
whole of the device active all the time requiring in the region of 20% of the chip to remain
unused at any time [8]. To alleviate this, the concept of dark silicon where only a portion of
the functionality available on a chip is active at any one time, has been proposed in order to
keep the overall heat generation of the device to an acceptable limit. Many-core arrays can
easily implement dark silicon by managing the number of cores that are active at any one
time. The requirements of dark silicon coincides with the desire to provide fault-tolerance
which also requires leaving a proportion of cores unused at any one time, as investigated
in(Chapter 4||Core Fault Tolerancel

Application Process Graph
An Application process graph (APG) is a graphical representation of an application broken
down into processes represented as nodes and data transfers between processes repre-
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sented by edges. In this research the graphs used to model applications are restricted to
directed acyclic graphs (DAG) (see |[Subsection 2.4.2||Application Process Graph).

Processes are distinct parts of the application whose execution is dependent only on the
data transfers modelled by the graph edges. This is a useful representation for mapping an
application onto a collection of independent processors. An example application process
graph with 8 nodes is shown in The edges of the graph in [Figure 1.2 are
annotated with numbers that represent the volume of traffic that is transmitted between the
processes connected by the edge.

Figure 1.2 — Example Application Process Graph with 8 nodes

Task Mapping

Given an application process graph and a many-core array, task mapping allocates appli-
cation processes as tasks to processing cores. The growth of computational time required
to search all the possible solutions as the problem size increases places this problem in
the NP-hard class of problems. Exhaustive searches are incapable of examining all the
possible solutions in a reasonable length of time, so this research will use evolutionary
algorithm techniques to search the problem space for solutions.

This research uses a multi-objective evolutionary algorithm develop with a set of objectives
which will be used to guide the evolution of process mappings to optimize one or more
objectives.

It is an axiom of this research that the mapping is not predetermined before operation of the
system but evolves in response to the performance demanded of the system, the status of
the system and the changing environmental conditions. To emphasise this point, there is no
predefined initial mapping of any application process graph to the many-core system; the
initial mapping will be determined by an initial placement algorithm (see [Subsection 4.8.3]

[Engineered Mappings) based on the size of the application process graph and the size of

the many-core array, after which alternative mappings will be evolved. This research will
focus on determining in real time the suitable task mappings in response to the hardware
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status of the many-core system.

Fault Tolerance

The approach to fault tolerance taken in this thesis is to use the evolutionary objectives to
search for process mappings that are inherently fault tolerant. A fault tolerance mapping is
one which is either robust to faults so that the application can continue processing or can
be 'repaired’ with minimal disruption to the processing of the application. In either case
performance is likely to be compromised to some extent. This is described as graceful
degradation.

The repair of fault will be followed by graceful amelioration which is search for new map-
pings that improve on the performance of the repaired mapping.

The whole process of fault detection followed by graceful degradation followed by graceful
amelioration is described as a fault-recovery cycle which is discussed in detail in
tion 7.2||Fault/Recovery Cyclel

Task Migration

Repair of a mapping after a fault and re-mapping during amelioration both require tasks
to be migrated from one core to another. This research assumes that task migration
mechanisms that can recover the state of a failed core, and mechanisms to recover lost
packets in the case of a fault link, will be available.

1.2 Problem Description

This thesis sets out to:

"Demonstrate that a run-time fault-recovery cycle that implements graceful degradation and
graceful amelioration along with a multi-objective search algorithm, is an effective strategy
for maintaining task mappings that minimize the objective values and that the search for
alternative mappings prolong the operational life of a many-core system compared to a
static mapping that would quickly become non-viable after a small number of faults."

1.3 Related Work

There has been considerable research on design-time mapping [9-13] which in the vast
majority of cases was applied to applications implemented using a collection of intellectual
property (IP) modules for the design of NoCs consisting of heterogeneous processing
elements (PEs).

Hu and Marculescu [9] analyse a generic video/audio MultiMedia System (MMS) appli-
cation that includes video and mp3 encoders and decoders and partition it into 40 tasks
which are assigned and scheduled onto 25 IP modules. A branch and bound algorithm is
used to construct mappings of IP modules to tiles in an NoC architecture and minimize the
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total communication energy consumption calculated using an energy function that models
the energy consumed by sending a single bit between two tiles of the NoC. The branch
and bound algorithm is shown to be on average 72 times faster than a simulated annealing
optimizer. The algorithm is used at design time to find mappings that are implemented and
fixed pre-execution.

Lei and Kumar [10] use a two-step genetic algorithm to map an application represented by
a task graph onto tiles on an NoC. The work concentrates on the static mapping of IPs at
design time. The calculation of the optimization objective, the average edge delay, which is
used to measure communication delay shares some commonality with the network power
objective of[Chapter 5|in this thesis, as both calculations make use of the distance between
a pair of communication cores.

Murali and De Micheli [11] present a mapping algorithm they call PMAP for placing clusters
onto processors, which produces mappings with lower communication cost than achieved
by previous algorithms. They use bandwidth constraints as the optimization objective,
which is also relevant to the Excess Traffic objective of [Chapter 6| The PMAP algorithm
uses Dijkstra’s shortest path algorithm, applied to the quadrant graph (equivalent to a Com-
Pair, see[Section 5.7), to obtain the minimum path. The algorithm is used at design-time to
find mappings that are implemented and fixed pre-execution.

Ascia et al. [12] investigate the mapping of 12 pre-designed, pre-verified modules in the
form of intellectual property (IP) for an MPEG-2 encoder/decoder system, comprising
DSPs, generic processors, embedded DRAMs and customized ASICs. A genetic algorithm
is used to search for mappings that optimize performance and power consumption for
a b x 5 array. The genetic algorithm is used at design-time to find mappings that are
implemented and fixed pre-execution.

Derin et al. [14] use integer linear programming (ILP) to search for mappings that minimize
the objectives of communication traffic and total execution time of an application in a mesh-
based NoC with deterministic routing. The motivation is to combine the steps of allocating
tasks to IPs to minimize execution time while at the same time minimizing communication
traffic by allocating IPs to tiles. Derin et al. also implement a fault recovery mechanism for a
single faulty core that would either reallocate tasks from a faulty core to IPs on other cores,
or completely remap all tasks to optimize the objectives. These two approaches to recovery
from a faulty core are analogous to the graceful degradation and graceful amelioration used
in this thesis.

Sayuti and Indrusiak [13] use an approach that configure both task mapping and priority as-
signment, using a genetic algorithm to search for solutions. The optimization is performed
at design time of a hard real-time embedded system based on a fixed priority pre-emptive
NoC. As an alternative to searching for mappings with a GA, a constructive task mapping
algorithm can construct task maps based on specific design properties [15].

Das and Kumar[16], Khalili and Zarandi [17], and Chatterjee et al. [18] all use a homoge-
neous NoC as the target platform and allocate multiple tasks to single tiles containing a
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PE.

Das and Kumar[16] create a collection of task maps at design time, creating a mapping for
each fault scenario which are saved so that they are available to at run-time. When a fault
occurs, the map that whose scenario corresponds to the actual fault is used retrieved and
used to re-map tasks.

The approach of Khalili and Zarandi [17] to fault tolerance is to allow the mapping of multiple
applications, one at a time, and allocate a single spare core to each application during the
mapping process. They use a function to calculate the criticality of a vertex in an application
core graph which is influenced by the amount of traffic flowing into and out of the vertex,
sorts the vertices by criticality, and then places the vertices to minimize the Weighted
Manhattan Distance, which is the product of the distance between two communicating
cores and the traffic volume between tasks located at the cores. A heuristic algorithm is
used to first place the vertices onto cores and then allocate spare cores for fault recovery.
The algorithm is used to map multiple applications onto cores of an NoC and allocates
spares cores to specific applications during the mapping process. The algorithm has the
effect of clustering the cores used for an application along with a single spare core while
leaving the remainder of cores unallocated and available for additional applications. The
application mapping is carried out at design time, before the application starts executing
and remains fixed thereafter, while the migration of tasks when a PE becomes faulty is a
run-time process.

Chatterjee et al. [18] developed an algorithm that provides a unified mapping and schedul-
ing method for real-time systems, focusing on meeting application deadlines and minimiz-
ing communication energy while mitigating the effect of failure-prone processing elements.
The platform is a NoC consisting of a lattice of homogeneous processing elements, each of
which can be allocated multiple tasks by the mapping algorithm. The model determines the
communication energy and communication time based on the Manhattan distance between
the source and destination nodes. Fault tolerance is achieved by replicating tasks that have
been allocated to PEs that are judged to be unreliable. The duplicate tasks either run in
parallel with the original or stand by to start execution if the original PE should fail.

1.4 Novel Contributions of this Thesis

This thesis uses a lattice of homogeneous processing cores to a model a many-core array.
In contrast to previous work, it is assumed that there will be sufficiently many cores that a
single task can be allocated to a single core, obviating the need for scheduling multiple
tasks to a processing core and an operating system to manage multitasking between
multiple tasks. Also, in contrast to previous work, the philosophy of the use of spares
cores is that 20%-25% of cores should be idle at any one time to fulfil the dual purpose
of providing spare cores for fault tolerance and maintaining a percentage of the device
inactive as dark silicon.
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This required the development of a new model or the many-core system. The model used
in this thesis includes a hardware map that is a representation of the processing resources
and communication network of the many-core array. The hardware map records the fault
status of every processing core and communication link, and also includes information
regarding sources and sinks to resources external to the many-core array. The sources and
sinks to external resources are regarded as the environment within which any particular
process mapping exists. The environment affects the calculation of the metrics underlying
the optimization objectives. At the time of writing, the aspect of the model that explicitly
models links to external resources, was unique to this work and is regarded as a vital step
from a theoretical model to a practical implementation.

The approach to fault tolerance is also fundamentally different from previous work. Fault
tolerance requirements are represented as objectives which are an integral part of the
search for task mappings so that the resulting task mappings are inherently fault tolerant,
which is to say that the mapping is either robust when confronted with a link fault or, when
a core fault occurs, can effect a repair by migrating the task to a near-by idle core. Core
fault tolerance is achieved by distributing idle cores amongst the processing cores so that
every processing core is in close proximity to an idle core. Link fault tolerance is achieved
by minimizing the number of communicating core pairs that are dependent upon a single
hardware link. No assessment of the reliability of individual cores is attempted; every core
is assumed to be equally reliable until information to the contrary is collected from the
functioning many-core array.

In summary, the novel contributions of this thesis are:

e The development of a hardware map that models interfaces to external resources
and the fault status of cores and links in sufficient detail to enable the calculation of
the metrics and objectives, while remaining computationally tractable.

e The formalization of the following objectives and underlying metrics for use by a
multi-objective evolutionary algorithm to search for mappings:

Core Fault Tolerance

Link Fault Tolerance

Network Power

Excess Traffic

e The formalization of the concept of a pair of communicating cores, a ComPair, that
underpins the calculation of metrics and objectives of the process maps.

e The developed of the concept of link criticality, used alongside the ComPair to deter-
mine how vulnerable a mapping is to the failure of a link.

e The presentation a mathematical proof for an algorithm that calculates the number
of fault free paths in a network with an arbitrary number of faulty links.



Introduction 35

e The implementation of a fault/recovery cycle that implements graceful degradation to
effect a repair of a mapping to recover from core faults and, following a core or link
fault, performs graceful amelioration using the evolutionary algorithm to search for
alternative mappings that improve fault tolerance and/or performance of the repaired

mapping.

e The implementation of a multi-objective evolutionary algorithm to search the solution
space of any number of objectives to produce a Pareto Front of mappings used for
graceful amelioration.

1.5 Research Outcomes

An evolutionary algorithm using the objectives for core fault tolerance and link fault toler-
ance was successful in finding mappings that were resilient to fault events within a defined
computational budget. The results also demonstrate that the fault tolerance objectives can
work successfully with performance objectives to produce Pareto Fronts that include map-
pings that range from weak fault tolerance in combination with good performance to strong
fault tolerance with poorer performance (Subsection 6.8.6} [Figure 6.15|and [Figure 6.21).

Having developed a suitable evolutionary algorithm, a Monitor process was developed
to implement graceful degradation and amelioration through a fault/recovery life cycle,
consisting of the following steps:

e Normal operation

Fault detection

Graceful degradation

Graceful Amelioration

Return to normal operation

The fault-recovery cycle is designed to be used in real-time so that the many-core system
can withstand a series of fault each being mitigated by repair followed by remapping, until
the hardware resources are reduced to a level that can no longer sustain the processing
required by the application.

The experiment results presented in show that the cycle is effective in returning
the post-fault system to a level of operation with a performance that is close to the pre-
fault performance and prolong the operational life of a many-core system compared to a
static mapping that would quickly become non-viable after a small number of faults. The
fault-recovery cycle continues to be effective until there are too few processing cores to
accommodate the application process graph processes, or too few remaining links in the
communications array to allow communication between all ComPairs.
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The results of the experiments confirm that the use of graceful degradation and ameliora-
tion, along with a Monitor to manage the recovery cycle, can maintain system performance,
through a sequence of faults, at a level that would otherwise not be possible.

1.6 Thesis Structure

Chapter [2][Many-Core Systems|reviews the development of microprocessors and network

on chips leading up to the proposal of the many-core paradigm.

Chapter [3|[Fault Tolerance| reviews existing approaches to fault tolerance.

Chapter [4|[Core Fault Tolerance presents the initial many-core model and single objective

evolutionary algorithm to search for task maps that optimize the Core Fault Tolerance
objective.

Chapter [5|[Network Powel introduces a second objective of Network Power along with a

revised multi-objective evolutionary algorithm. The concepts of ComPair and Link Criticality
are introduced.

Chapter [6][Link Fault Tolerance and Network Traffic adds two further objectives of Link

Fault Tolerance and Excess Traffic. The many-core model is expanded further to to include
the Hardware Map used to model faulty cores and links, and the Environment to model
external data sources and sinks.

Chapter|/||Graceful Degradation and Ameliorationjimplements a Fault/Recovery Cycle that

uses Graceful Degradation and Graceful Amelioration.

Chapter [g[Conclusions and Future WorK discusses the results of this thesis and suggests

areas worthy of further research.

Chapter [The Many-Core Modelis a compilation of the complete many-core model devel-
oped in Chapters and|6]

Chapter|Metrics and Objectivesis a compilation of the four metrics developed in Chapters

4] Bland 6l




Chapter 2

Many-Core Systems

2.1 Computer Architecture

This section reviews a range of computer architectures to provide a context for the under-
standing of the origin and motivations for the many-core model.

2.1.1 Evolution of Microprocessor Based Systems

Throughout the development of integrated circuits, feature size has been shrinking, allow-
ing the number transistors on a chip to increase. In 1965 Gordon Moore, while employed
at Fairchild Semiconductor, wrote a paper in which he identified the historical increase in
complexity of components as doubling every year and stating that there was no reason why
this trend should not continue [2]. In 1975 Moore revised his prediction for the doubling of
transistor counts to take place every two years [19]. Intel processor designs kept up with
Moore’s Law over the 45 years from 1970 to 2015, during which time the transistor count
increased from 2.5 x 103 to 5 x 10°, an increase by a factor of 2 x 10°.

The vast number of additional transistors have allowed designers to evolve the design of
the single chip microprocessor in a number of directions. This examination focuses on four
areas of design:

e Word size

e Pipeline stages

e Multi-core architectures
e Cache

Evolution of microprocessor design has tended to focus on one aspect of design at a time.
The word length evolved to a size of 32 bits before pipelining evolved. When the number
of pipeline stages reached was judged to be optimal, the emphasis moved to the number
of cores. Caches are, the exception, first making a debut as small L1 caches at the same
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time as pipelines and then developed alongside pipelines and then multi-core processors
which were accompanied by larger caches.

This staged evolution of one design element at a time is consistent with designers focusing
on the design element that offered the best performance gain for the available transistors,
optimizing one design element before moving on to the next. The exception of the devel-
opment of caches can be explained by caches supporting and enhancing the performance
of pipelines and multi-core processors.

Word Length The 8 bit 8080 processor uses an instruction set whose length is 1, 2 or 3
bytes, while the 16 bit 8086 uses an instruction set with instruction lengths varying from 1
to 6 bytes depending on the addressing mode. In both cases the majority of instructions
require the fetching and decoding of multiple words, with the fetching and decoding of
each word occupying a clock cycle. The multiple length instructions therefore reduce the
effective speed of the processor when compared to instructions that occupy a single word
of the machine’s architecture and are fetched in a single cycle.

With the introduction of the i386 processor with a word length of 32 bits, the opcode,
addressing mode information and register addresses could be contained within one word
with additional words required only for addresses and immediate data, thus reducing the
average cycles per instruction when compared to a 16 bit processor.

The benefits of a 32 bit word length compared to a 16 bit word length are considerable,
especially when it is recognised that the longer word length also benefits the access of
data as well as instructions, thus making this an obvious priority in the design evolution.
Word lengths greater than 64 bits offer the option of encoding more than one operation in
a single word, increasing the number of operations fetched per cycle to more than one.

Pipelining Having evolved the word length to 32 bits, the emphasis switched to the devel-
opment of instruction pipelines. The motivation for pipelining is to increase the number of
instructions that are executed per second by increasing the clock frequency.

Pipelining arises from the realisation that each instruction passes through a number of
serialised stages and that it is not necessary for one instruction to have completed all
stages before the next instruction enters the first stage. For example the Intel i486 breaks
the instruction execution down into 5 stages [20]:

e FI: Fetch the instruction from cache

e D1: Main instruction decode

e D2: Secondary instruction decode, and memory address computation
e EX: First execution clock

e WB: Write results into the register file

Each stage takes place in a single clock cycle. Without pipelining an instruction that re-
quires all five stages to be executed requires a long clock cycle to complete. With pipelining
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the 1486 can execute five instructions simultaneously reducing the average execution time
for some instructions to less than one clock cycle. Pipelining achieves this because each
stage is relatively simple and so uses fewer logic gates, reducing the amount of time
required for the logic to complete its task and therefore allowing the clock frequency to
be increased [21].

The benefit of the 1486 five stage pipeline can be illustrated by comparing the number of
clock cycles required to complete execution of a selection of instructions to the equivalent
i386 instructions [20]:

Instruction | Clock Cycles

Type i386 | 486
LOAD 4 1
STORE 2 1
ALU 2 1
JUMP 9/3 3/1
taken/not
CALL 9 3

In the Pentium 4 design the number of pipeline stages increased to 20 which, Intel reported,
increased the relative frequency of the Pentium 4 when compared of the to the i486 by a
factor of 2.5 [21].

A balance needs to be achieved between lowering the number of logic gates in a pipeline
stage to the increase the frequency and increasing the number of pipeline stages which
increases the total number of clock cycles required to complete the execution of an instruc-
tion. The optimum, based on Intel processor designs, appears to be in the region of 20
stages.

A further evolution of pipeline technology is the superscalar architecture, which is a de-
sign that has multiple pipelines working in parallel to increase the number of instructions
executing simultaneously.

Processing Cores The continuing growth of the number of transistors available to designs
next found a use is multi-core designs. Multi-core designs provide two or more identical and
sophisticated processing cores on a single die. The sophistication and power of the cores
is similar to the that of single processor designs. The processing cores are independent
while sharing resources such as memory and communication buses.

e 2005 Intel released their first dual core processor, the Intel Pentium Processor Ex-
treme Edition 840

e 2007 Intel released a Core 2 Quad Processor

e 2014 Intel unveiled its first 8 core desktop processor, the Intel Core i7-5960X proces-
sor Extreme Edition



40 2.1 Computer Architecture

e 2016 Intel released the 64 core Intel Xeon Phi Processor 7210
e 2016 Intel released the 72 core Intel Xeon Phi Processor 7290

On Chip Cache Memory is a relatively transistor hungry resource, using 50M transistors
per megabyte of memory based on a design that uses 6 transistors per memory cell making
it inevitable that the addition of cache memory to a microprocessor chip was lower down the
list of processor features to take advantage of the increase in transistor numbers. Level 1
(L1) cache first appeared in the i486 at the same time as pipelining was introduced into the
the processor design. Although the 8KB cache of the i486 seems small, especially when
compared to the later multi-megabyte caches, it accounts for roughly 4% of the transistor
count of the i486.

In single core designs L1 cache was on-chip and generally stayed below 1MB while L2
cache was generally, but not exclusively, off-chip. With the advent of dual core processors,
most designs allocated a quantity of L1 cache for the exclusive use of each core and added
on-chip L2 cache which is shared between multiple processors. As a result there was a
step change in the size of on-chip caches from kilobytes to megabytes that coincided with
the introduction of multi-core designs.

2.1.2 Network On Chip (NoC)

In 2000 Hemani et al. [3] proposed the Network on Chip (NoC) architecture as a solution
to a number of problems foreseen with the projected arrival, in the mid 2000’s, of sub
100nm fabrication technology capable of producing one billion plus transistor devices [4].
As transistor density has increased additional functionality has been added to single chips,
resulting in system on chip (Soc), multi-core processors and NoC designs. However there
is a limit to the level of functionality that a single processor can have [5]. A billion transistors
cannot be effectively used by a single processor.

The development of multi-core processors and NoCs are an exercise in increasing the
number of processors on a chip from one to many. Increasing the number of processors
on a chip creates two problems that need to be solved to enable the processors to be used
effectively: how to make effective use of multiple processors to solve a problem (parallel
computing and process mapping) and how to efficiently route data between processors
(routing algorithms).

2.1.3 System on Chip (SoC)

During the 1960’s a number of companies were driving development efforts to produce
digital watches [22]. Early watches were composed of many power hungry components
and were unreliable due to the large number of electrical connections. In 1974 Intel
hired Peter Stoll [23] to develop the 5810, an IC that contained all the electronics required
for an electronic watch including analogue components, timing circuitry and LCD display
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driver logic. The 5810 is considered to be the first example of a system on chip (SoC).
The SoC model is used in embedded devices which use a collection of heterogeneous
systems. The SoC design approach is applied to systems with sub-systems that require the
speed advantage of specialized hardware compared to the flexibility of a general purpose
processor executing software code.

The development of SoCs have continued in parallel with the development of general
purpose processors finding application in mobile phone, digital signal processing and
wireless base stations.[24]

An SoC is a number of subsystems integrated on a single chip that would previously
have been fabricated separately and then brought together on a circuit board. NoCs help
improve physical connection and communication speeds between components that would
previous have been separate devices connected via wire tracks on a circuit board. SoCs
can suffer from bus overload and the inability to transmit the clock signal across the chip
within a single clock cycle.

Guerrier and Greiner [25] propose an on-chip switched network to replace general purpose
buses for inter-processor communications in for SoC designs.

2.1.4 A Processor Centric Perspective

It is useful to examine processing models based on the hardware configuration since it is
the hardware design that limits or promotes possible processing models.

Single Processor This is the classic microprocessor design in which a single processor
executes a sequence of instructions on a data set. Single processor designs work well
for general purpose computing where many different tasks are being performed and the
majority of functions do not involve performing the same processing on many data sets. If
the same computation is required to be performed on many datasets then the processor
will execute the same instructions many times over, once for each individual data set. The
performance of single processor designs has been improving with the introduction of longer
word lengths, FPUs, instruction lookahead, pipelining, memory caching and increasing

clock frequencies as discussed in[Subsection 2.1.1]

In the early years of microprocessor development the increasing transistor count, made
available by shrinking feature size, was used to add design improvements to increase
the speed of single processors. However there is a point where the increasing numbers
of transistors cannot be used effectively to further improve the performance of single
processor designs. The introduction of the multi-core design enables designers to make
effective use of the available transistors.

Multi-Core Multi-core designs provide two or more identical and sophisticated processing
cores on a single die. The sophistication and power of the cores is similar to that of single
processor designs. The processing cores are independent while sharing resources such
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as memory and communication buses. Where cores have independent memory caches
they must be kept consistent by implementing cache coherency.

The features added to single core processors have a direct effect on the speed of execution
of all programs without the need for intervention by the operating system or any special
coding by the application programmer. This is not the case for additional cores. Additional
cores give the potential for increasing overall execution speeds which can be utilised by the
operating system sharing work between cores or application programmers making specific
use of additional cores by adding parallelization constructs to their code.

Multi-core designs are limited to a relatively small number of cores, typically 2-8 cores.

Tightly Coupled Processor Arrays Tightly coupled processor arrays are designs that
incorporate many processor cores, typically more than 16, that are designed such that
each processor can run the same instructions at the same time on different data sets.
These processor arrays may also be referred to as coprocessors as they are under the
control of a single controlling processor. They are capable of very high processing rates
for problems that can be highly parallelized. Programs that take advantage of the large
number of cores, need to be written with parallel specific code using a platform such as
CUDA, OpenCL and OpenMp.

This class of processor arrays includes graphical processing units (GPU’s) such as those
produced by Nvidia and ATI Technologies and the Intel Xeon Phi coprocessors.

Many-Core Array A many-core array is an array of independent processing cores, on a
single die, each of which can execute different program code to any of the other cores
and processing data unconnected to the data processed by the other cores. A many-
core processor will typically have cores numbering hundreds or thousands and the cores’
complexity will be significantly reduced compared to cores in multi-core processors.

The Intel Xeon Phi coprocessors straddle the multi-core and many-core processor models.
As a co-processor with in the region of 60 cores the Xeon Phi is not a multi-core pro-
cessor. The design is closer to a processor array although it is possible to use the cores
independently and therefore can mimick as a many-core processor.

von Neumann Architecture The von Neumann architecture is the design underlying al-
most all computers. It is a design consisting of a processor and memory; address bus,
data bus and control bus; input and output devices. Despite its simplicity it is capable of
processing any computable function. A von Neumann machine, in its original configuration,
is a sequential processor that retrieves and processes a single instruction at a time. The
von Neumann architecture suffers from the twin bottlenecks of execution of one instruction
at a time and a single, limited capacity, data bus between the processing unit and the main
memory that is used for both programs and data [26, 27].

Dataflow Machines have been researched since the 1970s and are architectures with
parallel processing at the heart of their design [28, 29]. The fundamental philosophy of
dataflow machines is that many instructions that are specified and executed sequentially in
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a von Neumann machine are not dependent on each other so can be executed in parallel.
In a data flow machine instructions are not executed in sequence, but are executed when
their required input values become available, allowing many instructions to be executed
simultaneously by a number of functional units [28, 30].

Researchers have proposed various designs for dataflow machines [28, [31-34]. Initial at-
tempts at dataflow machines were fine-grained, working at the instruction level paralleliza-
tion. The the late 1980s and early 1990s the fine grained dataflow machines had largely
been considered to be failures, not because the dataflow concept was considered flawed,
but because the overhead of required to process individual operations in a fine-grained
architecture. A many-core array can be used as a course-grained dataflow machine.

Sequential processing machines and fine-grained dataflow machines can be regarded as
the extreme ends of a continuum both of which have inherent performance limitations.
The success of the dataflow model will be determined by finding a suitable granularity of
process such that the overhead of initiating the processes is insignificant to the gains of
parallel processing.

Flynn’s Taxonomy In 1972 Flynn defined four processing models based on the combi-
nation of types of instruction stream and types of data stream the the processor exploits
resulting in the following four categories as described in [35]:

e SISD (Single Instruction stream, Single Data stream)
e SIMD (Single Instruction stream, Multiple Data streams)
e MISD (Multiple Instruction streams, Single Data stream)

e MIMD (Multiple Instruction streams, Multiple Data streams)

Flynn’s taxonomy was developed to describe the execution of a single application so does
not adequately describe many of today’s systems. However, it is of historical interest and
still provides a useful starting point.

In general terms Flynn’s description of these models can be summarised as:

SISD (Single Instruction stream, Single Data stream) This model describes single core
general purpose computers such as the microprocessor before it evolved into a multi-core
design. There is a single processor which receives a single stream of instructions which
operates on a single data set. There is no parallelism.

SIMD (Single Instruction stream, Multiple Data streams) When describing this model
Flynn specifically mentions the SOLOMON Computer [36] which he describes as an array
processor. The SOLOMON computer is an early example of a design which incorporates
multiple processing units where the default configuration is for each processor to process
the same instruction simultaneously on different data sets. In concept the SOLOMON
Computer is similar to the GPUs (Graphics Processing Units) employed as co-processors
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for image processing that become available in the late 1990s and early 2000s from Nvidia
and ATI Technologies.

MISD (Multiple Instruction streams, Single Data stream) This model is described by
Flynn as:

"[MISD] include specialized streaming organizations using multiple-instruction
streams on a single sequence of data and the derivatives thereof."

A possible interpretation from Flynn’s description is to regard MISD as an extension of
SISD where the results of an action upon a data element remains in the processor to be
acted upon my further processor instructions. Another interpretation is a machine that has
multiple processors, the first of which processes a data element the results of which are
processed by 2nd processor etc, thereby each data element is processed in some way by
a sequence of processors, which is one of the ways in which a many-core system could be
used.

MIMD (Multiple Instruction streams, Multiple Data streams) The notable property of
MIMD systems is that two or more independent processors share some resource, usually
memory, to increase processing throughput. In contrast to the SIMD model, the MIMD
model introduces significant challenges for the coordination of the independent processors
and the safe sharing of shared. The modern concept of multi-core and many-core system
fits within this model. Limitations of memory data access may lead to cores remaining idle
while waiting for data accesses to be completed. [37]

2.1.5 Amdahl’s Law

While at IBM in 1967 Amdahl was asked by IBM to make a presentation with the purpose
of comparing the computing power of a superscalar uni-processor computer to that of
a quasi-parallel ILLIAC IV computer with 16 processors. [38, [39]. Amdahl made the
observation that the speedup of a computed function is limited by the part of the function
whose execution remains sequential. The consequence of this was to become known as
Amdahl’s Law and was stated by Getov [40] as:

"the effort expended on achieving high parallel processing rates is wasted
unless it is accompanied by achievements in sequential processing rates of
very nearly the same magnitude."

Empirically, Amdahl, this reasoning was expressed as Amdahl’'s Equation which gives the
processing rate of a parallel machine as a function of the processing rate of a sequential
machine and the number of processors available in the parallel machine:

S+ P
R:R5+ +

(2.1)

S+ 47

Where:
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R = Processing rate of parallel machine

Rs = Processing rate of sequential machine

S = Proportion of workload that is processed sequentially
P = Proportion of workload that can be parallelized

M = Number of processors in the parallel machine

Rearranging as:

ﬁ_ S+ P
R, P
S—I—M

Where R/R; is the relative speed of the parallel machine compared to the sequential
machine and is often referred to as the speedup. If the sequential machine is given the
processing rate of 1, then the equation simplifies to:

_S4P

SP
Y]

R

Where R is a value which represents the number of times faster the parallel machine
processes the workload than the sequential machine.

Since Amdahl defines .S and P as being the proportion of the total workload that, respec-
tively, remain sequential and and can be parallelized, we have:

S+P=1

Giving the final equation of:

1

SP
]

R =

Amdahl gave an example of the proportion of a problem that remains sequential as 35% of
the original problem, which is equivalent of S = .35 and P = .65. Amdahl originally devel-
oped this equation to model the speedup obtained from the ILLIAC IV with 16 processors
and (generously) assumed all 16 processors could be utilised to maximum effect on the
proportion of the workload that can be parallelized. Using these values the speedup of the
16 processor machine is given by:

1
R=——"
65

30+ —
+ 16

R =256

This gives a speedup figure of 2.56 for a parallel machine with 16 processors. Amdahl’s
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argument was that this speedup is modest compared to the number of processors and
therefore resources should be expended not only in parallelization bit also on speeding up
sequential processing.

Since the original paper Amdahl's Law has been the subject of many research papers
either by attempting to challenge the fundamental limit set by Amdahl [41], or extending it
into new areas [/, 142-46] to mention only a few.

Gustafson [41] argues that Amdahl’s estimate for the sequential element of the total work-
load of 35% is high and reports speedup of 1016-1021 using a 1024 processor machine.
Gustafson’s research uses the three problems of: beam stress analysis using conjugate
gradients, baffled surface wave simulation using explicit finite differences and unstable fluid
flow using flux-corrected transport. In these cases the number of computations that are
parallelized is high so P is large compared to .S which, from the reported results, we can
infer is less than 0.1% of the total workload. According to Gustafson an important property
of these problems is that the sequential element does not increase with an increase in total
workload therefore the more parallelizable computations that need to be carried out the
greater the benefit and the higher the speedup.

2.2 Hardware Considerations Related to Many-Core Systems

This section reviews some of the issues with single core processors that led to the concep-
tion of the many-core systems and some of the technical and design issues that need to
be solved to implement many-core system.

2.2.1 Clock Propagation

Propagation of clock signals becomes problematic as die sizes and clock speeds increase.
The speed of propagation of an electromagnetic signal in a medium is given by the equa-

tion:
C
= — 2.3

v NG (2.3)
Where:
v = signal velocity
¢ = speed of light (3 x 108 m/s)
e = dielectric permittivity

Sylvester and Keutzer [47], [48] use a rearrangement of equation[2.3]to derive an equation
for the Time of Flight (TOF); the time taken for a signal to travel a specified distance. They
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give:

TOF = 33.33\/¢ ps/cm (2.4)

Using equationtogether with projections given in [4] of a die size of 750 mm? equivalent
to a die edge of 27.4 mm, a feature size of 50nm a dielectric permittivity ¢ = 1.5, and
restricting the longest path length, equal to 2 sides of the die, to 80% of the clock cycle,
Sylvester and Keutzer give a maximum clock speed of 3.58 GHz.

The consequence of increasing die sizes and clock rates is that it is not possible for
the whole chip to remain isochronous, leading to clock skew, as one clock cycle cannot
propagate through the whole device before the start of the next cycle.

2.2.2 Globally Asynchronous Local Synchronous (GALS) Architecture

The concept of GALS made a debut in 1984 in a thesis by Chapiro [49]. A GALS architec-
ture can be employed to overcome the problems of non-isochronous devices. In a GALS
architecture, the device is designed as a number of subunits, each with a size of up to 3
x 2° transistors. Each subunit has a clock providing local synchronisation for the subunit,
while communication between subunits is asynchronous.

Hemani et al. [50] (1999) claim that power consumption due to clocks, which are a major
source of power consumption, can be decreased by 70% using a GALS architecture. In
contrast the 2002 paper of lyer and Marculescu [51], using simulations, claim that there is
little power saving from clocks in a GALS architecture, although they identify power savings
of 10% in a 5 domain GALS SoC while performance is reduced by 10-15%.

Muttersbach et al. [52] developed GALS architectures where a locally synchronous module
is surrounded by an asynchronous wrapper using a pausable clock. The pausable clock
was introduced by Yun and Donohue [53], while the asynchronous wrapper was proposed
by Bormann and Cheung [54]. Muttersbach et al. present their work as a practical imple-
mentation of GALS that can be implemented in silicon along with a library of wrapper
components to remove the burden of designing synchronous-asynchronous interfaces.
Muttersbach et al. demonstrate the validity of their design by using it in the implementation
of the Safer cryptoalgorithm in an ASIC.

Moore et al. [55] also present a mechanism for implementing communication between
locally synchronous domains which rely on asynchronous logic techniques. The approach
of Moore et al. is similar to that of Muttersbach et al. as they also use asynchronous
wrappers and clock pausing. In addition both papers use a handshaking protocol as part
of the communication process.

Dobkin et al. [56] examines two principle mechanisms used to achieve communication
between modules in different clock domains. They look at mechanisms involving syn-
chronisation of clocks using pausable delays and those using locally generated arbitrated
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clocks. Their analysis shows that there is a risk of synchronisation failure if clock delays are
not taken into account. They propose a number of circuits designed to prevent metastability
during data synchronisation.

Royal and Cheung [57] investigates the implementation of GALS designs on FPGAs. The
work of Royal and Cheung carried out in 2003 was at that time incomplete. This is an
interesting area of research as the ability to model GALS designs on FPGA’s will be a
critical step when investigating the effectiveness of novel designs.

Many-core systems are likely to use the GALS allowing each core’s processing rate to be
determined by the core’s local clock while the node routing for synchronising communica-
tion with its neighbours.

2.2.3 Dark Silicon

For many years the semiconductor industry has managed to keep pace with Moore’s Law
by doubling the number and density of transistors in devices every two years. However,
reduction of feature size is no longer matched by a proportional reduction in transistor
threshold and supply voltages [6] which is therefore increasing the power density of devices
to the point where they can no longer be efficiently air-cooled. Post-Dennard Scaling
means that because the leakage voltage cannot be ignored with device feature size of
less than 65nm the voltage does not continue to scale down as the number of transistors
increase. Consequently the power density increases in proportion to the increase in the
number of transistors [7]. At a feature size of 22nm it is no longer possible to have the
whole of the device active all the time requiring in the region of 20% of the chip to remain
unused at any time [8]. To alleviate this, the concept of dark silicon where only a portion of
the functionality available on a chip is active at any one time, has been proposed in order to
keep the overall heat generation of the device to an acceptable limit. Many-core arrays can
easily implement dark silicon by managing the number of cores that are active at any one
time. The requirements of dark silicon coincides with the desire to provide fault-tolerance
which also requires leaving a proportion of cores unused at any one time, as investigated

in Chiapter 4

2.3 On-Chip Communication Networks

The communication system is the collection of hardware and software that provides the
functionality required to transmit data between cores, consisting of the physical communi-
cation channels, the routing nodes that manage the traffic, the network switching type and
the routing algorithm.
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2.3.1 Network Switching

This section will describe the network switching methods while section [Subsection 2.3.3|

will describe some routing algorithms that have been developed.

Switching describes the manner in which the network resources are acquired for the pur-
poses of transmitting a message. Switching does not address the problem of how to
choose a route. This section describes the primary models for switching relevant to NoC
networks.

Circuit Switching Circuit switching allocates the resources for the entire end-to-end route
for as long as it takes to complete transmission of the whole message. The quintessential
and most familiar example of a switched network is the traditional land-based telephone
network where the dialling of a number allocates the telephone line exclusively for the
caller for the duration of the call.

Packet Switching Packet switching divides the message into packets which are sent over
the network individually and then reassembled at the receiving location. Each packet
carries the required target address information allowing each packet to be sent separately
without reference to other packets. Each packet from a message may take a different route
from the source to the destination. Each node on the route receives and stores a whole
packet before determining the next leg of the route and sending it onwards requiring buffers
that can store at least one packet [58].

Store and Forward Store and forward is where a whole message is stored at each node
along the path to its destination. At each node the whole message is received and stored
until the resources are available to transmit the message to the next node. It differs from
packet switching in that the whole message is sent and stored as a unit [58]. Examples of
store and forward networks are telegraphs and letters sent by post [59]

Virtual Cut-Through Virtual cut-through is a modified version of packet switching. When
a packet is received at a node, the node does not wait for the whole packet to arrive before
examining the target address and determining the next step on the route Kermani and
Kleinrock [58]. If a route is available then the node will immediately retransmit the packet
to the next node without storing the packet. If no route is available the packet is stored
until a suitable route becomes available. Virtual cut-through can reduce latency compared
to packet switching. Kermani and Kleinrock found virtual cut-through outperformed packet
switching using the performance criteria of network delay, traffic gain and buffer storage
requirements. Virtual cut-through requires sufficient buffer space at each node to store
each packet in the event that the next channel is busy.

Wormhole Switching Wormhole switching, described by Dally and Seitz [60][61], often
incorrectly referred to as wormhole routing, is similar to circuit switching in that the whole
end-to-end route is allocated for the transmission of the whole message. In contrast to
circuit switching, wormhole switching allocates the route as the message is being sent.
Each message is divided into packets and each packet into flits (flow control bits). Only the
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header flit carries the target address. Each node that accepts a header flit is exclusively al-
located for the transmission of the message until the whole message has been transmitted.
As soon as a node successfully transmits a flit, it is sent the next flit. Routing nodes require
buffers to store a small number of flits rather than whole packets, substantially reducing
the buffer size requirements and latency over store and forwards methods. The flits of a
message will become spread out along the communication channel, resembling a worm
working it way through the network, hence the term wormhole.

Although the term wormhole was not used in Dally and Seitz’s 1986 [60] paper, this is the
first printed description of wormhole routing which was developed jointly by Dally and Seitz
when Seitz was Dally’s PhD advisor. Dally also explains that "Wormhole routing is actually
a misnomer - it refers to the flow-control used, not the routing.” (W. J. Dally, personal
communication, September 18th, 2014).

2.3.2 Network Latency

It is important to reduce the latency of messages passing through the network to a min-
imum. Latency will depend on a number of properties of the network and the message
including:

size of message or packets

time taken to allocate communication resources

distance between source and destination nodes

delay at routing nodes

Each of the switching models described above have their own latency profile.

Dally [62] compares the latency of store and forward and wormhole switching methods,
giving the latencies as:

L
Tsrp = <D+W> (2.5)
T = | Dx L (2.6)
WH = W .
Where:
Tsrp = latency for store and forward switching
Twy = latency for wormhole switching

= distance
message length
= data width

SRS
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Felperin et al. [63] give a more detailed analysis of the latency in a wormhole switched
network.

2.3.3 Routing

Routing is the mechanism by which a route through a network, for the transmission of a
message or a message packet, is chosen. In principle any routing algorithm can be used
with any of the switching methods describe above. Receiving, buffering and transmission
of data is the responsibility of hardware. Routing decisions may be made by hardware, soft-
ware or combination of both. All routing algorithms will interact with the routing hardware.
The features provided by the routing hardware will determine how easy it is to implement
an algorithm. A number of the routing algorithms are accompanied with a design for routing
hardware.

A large number of routing algorithms have been developed for use in NoC some of which
are reviewed in this section.

Routing Deadlock Routing deadlock is described by Kleinrock [64] as the inability of a
communications network to transmit data between nodes. This can occur when two routing
nodes have data to transmit to each other and the data buffers of each routing node are full
with the data waiting to transmit. Neither node can transmit its data to the other until the
data buffer of the target node is no longer full. Thus, neither node can transmit or receive
data until some exception action is taken to free up one or other of the buffers. Routing
protocols need to be designed to avoid deadlock situations.

xy Routing In [60][65] Dally and Seitz describes xy routing of packets used in the Torus
Routing Chip. Although described as xy routing Dally and Seitz’s presents a multidi-
mensional model of arbitrary dimensions with each packet containing the n dimensional
address of the destination. xy routing become popular and can, perhaps, be considered
as the benchmark against which all other routing strategies are measured.

xy Deadlock Free Routing Dally and Seitz [61] describes a deadlock free xy routing
algorithm based on virtual channels. Dally and Seitz defines a “routing function" and a
“channel dependence graph” and gives a proof that if a channel dependence graph has no
cycles then the associated routing function is deadlock free. Virtual channels are used to
construct a cycle free channel dependence graph. Each virtual channel is associated with
its own queue ensuring blocked messages do not hinder the progress of other messages
[61][66].

Multi-Cast Routing Lin and Ni [67] develop a multicast wormhole routing strategy to
provide deadlock free routing of messages to multiple nodes. The method demands that
networks have a Hamilton path which is a path through the network where every node
is visited once and only once. Lin and Ni state that almost all topologies being studied,
including 2D-mesh and hypercubes, have Hamilton paths. A given network may have more
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than one Hamilton path. From the point of view of the performance of this routing method,
not all Hamilton paths are equal, some being more efficient than others.

Turn Model Glass and Ni [68][69][70] present the Turn Model, a deadlock free adaptive
routing algorithm for 2D & 3D mesh without using additional physical or virtual channels.
The crux of their work is the realisation that prohibiting one quarter of the possible turns
in these meshes is a necessary and sufficient condition for preventing deadlock. The
increased number of turns available compared to xy routing allows the development of
adaptive routing strategies without the need for adding physical or virtual channels. In the
case of a 2D mesh there is a clockwise cycle of turns and an anticlockwise cycle of turns.
To achieve deadlock free routing it is necessary to prohibit one turn from each cycle. For
a 2D mesh Glass and Ni define three scenarios where two turns are prohibited giving rise
to routing algorithms they call, west-first, north-last and inverse-first routing algorithms. All
other combinations of prohibiting one turn from each cycle are equivalent to one of the
above three scenarios.

Odd-Even Turn Model The adaptiveness of the turn model is uneven, producing only
one minimal path for at least half of the source-destination node pairs [71] resulting in
unfairness and an inability to deal with traffic congestion. To resolve these problems Chiu
developed the Odd-Even Turn Model. This model allows all the available turns, but instead
restricts the nodes where certain turns can be made. Given columns are labelled with
integers starting with zero all columns can be considered to be either even or odd. The
algorithms prohibits EN and ES turns in an even column and NW and SW turns in an odd
column.

Proximity Congestion Awareness (PCA) Nilsson et al. [72] investigate memoryless switches
to transmit messages through a network. To avoid congestion messages can be sent

in a non-ideal direction. Nilsson et al. propose a technique called Proximity Congestion
Awareness (PCA) to increase the maximum load that the network can cope with. PCA

is implemented by transmitting control information, which they describe as a stress value,
from each communication node to its neighbours to improve their own routing decisions.
Each node can examine the stress value from its neighbours to help decide the best node
for routing a data packet. Nilsson et al. report that PCA provides a 20% improvement over
making a random choice.

DyXY Routing Li et al. [73] develop a routing strategy called Dynamic XY Routing (DyXY)
which provides both deadlock and livelock free routing while outperforming xy and odd-
even routing. This solution includes the hardware design of a router to support the routing
algorithm. The important attribute of the routing method is for each router node to inform
each neighbour of its stress level. It this case the stress is a measure of the utilisation of
the input buffer.

MD Routing Ebrahimi et al. [74] observe that DyXY routing [73], in the presence of faulty
communication channels, can send a packet into communications cul-de-sacs from which
the packet needs to be returned before attempting a new route. Ebrahimi et al. extends the
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DyXY routing algorithm creating a fault tolerant algorithm which they call MD routing. The
innovation is for the each node to transmit, to its neighbour nodes, the status of itself and
each of its own neighbours. This is in contrast to DyXY routing which only transmits data
about a node’s own status. The additional information allows sending nodes to avoid dead
ends. This algorithm makes use of virtual channels. In their paper they state that when
all available routes have similar congestion status their algorithm favours sending packets
down the longest route. This is a useful principle that ensures that, at each step, there are
the maximum possible shortest paths to the destination and deserves rigorous study and
associated proof.

Hot Potato Hot Potato policy describes the idea of a node passing on a packet as soon as
it arrives, without any buffering [59]. The original model was proposed by Baran [59] and
further developed by Caragiannis et al. [75] and others.

Lifetime Aware Routing Reliability of NoC routers has a strong correlation with the routing
algorithms used by the NoC. A lifetime aware routing acts to route traffic around hotspots
to balance the load more evenly between routers and extend the lifetime of the routers and
the NoCJ[76], [77].

2.3.4 Network Topology

The network topology is the arrangement of cores within a network and the interconnec-
tions between the cores, both of which will influence the performance of the network. There
are numerous possible arrangements each with its own unique properties. The diagrams in
this section describe a number of possible topologies represented by nodes used to model
processing cores and edges modelling communication channels.

Mesh architectures do not rely on global buses to carry information. Information is trans-
mitted through the mesh from node to node, which replaces the bus overload problem with
the challenge of designing efficient routing algorithms.

Square Lattice Dally and Towles [78] propose a grid structure with an Internal routing
network which they estimate has a 6.6% area overhead. Kumar et al. [79] propose a
square lattice arrangement where each communication node is connected to four other
nodes. Each node is also connected to a single processor providing the processor with a
connection to the communications grid. This arrangement is often referred to as a mesh
network or mesh fopology. Mesh networks are the topology of choice for most research
into NoC.

The square lattice is convenient to work with as it is a simple and familiar geometrical
arrangement that also translates well to digital circuit designs which also often use layouts
that follow a square grid arrangement.

When communication nodes are arranged in a two dimensional mesh and the probability of
any pair of resources communicating with each other is a constant, then more messages



54 2.3 On-Chip Communication Networks

Figure 2.1 — Square Lattice

will be routed through the central region of the mesh creating a hot spot of traffic [72].

Rhombic Lattice The rhombic lattice can be constructed using an equilateral triangle grid
which is composed of equally spaced nodes such that any group of three equally spaced
nodes form an equilateral triangle. The diamonds are formed by connecting nodes using
two sets of parallel lines oriented at an angle of 30° to each other as shown in
The resultant arrangement of nodes and connections is similar to a square mesh placed at
a 45 degree angle to the horizontal, but without the uniform spacing between nodes.

The difference between a diagonal lattice and a square lattice can be appreciated by
studying and respectively. These two lattices have the same number of
nodes.

In the diamond lattice the distance from the central node to a corner node is the same as
the distance from the central node to each of the edge nodes and in this case is 3 steps.
In the square lattice the nodes closest the the middle of an edge are closest to the centre.
The distance of a node from the centre node increases as nodes are traversed from the
middle of an edge, which is 2 steps from the centre, to a corner node, which is 4 steps from
the centre.

The corners and edges of the diamond lattice are less connected than in the square lattice;
in the diamond mesh the corners are connected to only a single node and the edges to two
other nodes, while in the square mesh the corners are connected to two other nodes and
the edges are connected to three other nodes.

Hexagonal The hexagonal lattice is constructed using the same equilateral triangle grid
described in the Rhombic Lattice section. Itis more highly connected than either the square
or rhombic lattices and shares similar properties to the rhombic lattice regarding to distance
between a central node and the edge and corner nodes.

Hemani et al. [3] propose an alternative configuration of processing units based on a hon-
eycomb configuration. Processors are arranged in hexagonal rings with a communication
node in the centre of each ring. In this arrangement each processor is directly connected
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Figure 2.2 — Rhombic Lattice

Figure 2.3 — Hexagonal Mesh

to its three nearest neighbouring processors and three central communication nodes. Con-
necting each processor to more than one communication node provides resilience against
failure of a single node and the connections between the processor and the node. This
resilience comes at a price of increased complexity of communications nodes and routing
algorithms.

Star The Star topology is discussed in [80] in which they discus Cayley graphs which are
defined using a set of generators. They give an example of a 24 node graph which is edge
symmetric - that each edge looks identical and is toroidal in nature.

Toroidal A torus can be constructed from a plane surface where the opposite edges are
rolled round so that they are connected. Consider a square sheet of paper which is rolled
so that the top edge meets the bottom edge and then take the two ends of the cylinder and
join them.

Converting a plane lattice to toroid in this manner ensures that all nodes are equally
connected which means that there are no edges in the sense that planes have edges.
Each node is therefore equally viable for connection to external data sources.

Any of the 2-dimensional lattice structures discussed above can be made into a torus.

Polytopes Polytopes are the generalized set of n-dimensional geometric objects with flat
sides. A polytope in n-dimensional space is termed an n-polytope. A 0-polytope is an
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object with zero dimensions which is a point or vertex, a 1-polytope is a one dimensional

object which is a straight line or edge, a 2-polytope is a two dimensional polygon also called
a face and a 3-polytope is a three dimensional polyhedron also called a cell.
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Figure 2.4 — Polytopes
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As an example the square lattice can be extended into 3-dimensions producing 3-polytope

or a cube lattice as show in
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Figure 2.5 — Cube Lattice

Since each hypercube is an object that exists in n dimensional space, hypercubes with di-
mensions greater than 3 need to be mapped to 3-dimensional space which can be achieved
by using the hypercube graph representation of the n-dimensional object, denoted by Q,,.
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.

Figure 2.6 — )4, Hypercube Graph

2.4 Software Considerations in Many-Core Systems

The successful implementation of many-core system is not just an issue of hardware
design, of equal importance is the ability to make effective use of the processors through
the design and implementation of programs.

2.4.1 Scale Independence

The many-core concept involves cores that number in the hundreds, thousands, hundreds
of thousands and millions. The number of cores on a single die will depend on the feature
size, the complexity of the processors and the amount of cache memory that is desired, but
is likely to be in the tens or hundreds. Systems requiring larger numbers of cores will utilise
many interconnected many-core chips. Since the scale of many-core systems may vary in
orders of magnitude ranging from 10% to 10° the design, operation and control needs to be
scale independent.

Scale independence requires that there is no central control mechanism responsible for
configuring or managing all the processors. A central control mechanism has the disadvan-
tage of producing a single point whose failure would be catastrophic to the whole system
and a single processor that would be required to undertake ever increasing amounts of
work as the number of processors increased. The first of these problems is contrary to the
concept of fault tolerance, while the second will place a limit on the maximum number of
processing cores that can be utilised contrary to the concept of scale independence.

Scale independence therefore requires that monitoring and configuration are not cen-
tralised functions. The model that will be used in this thesis, as discussed in
tion 2.4.5, is that a collection of processing cores which are physically close will be treated
as a region, such that each region has independent monitoring and configuration and can
communicate with the monitoring and configuration functions of neighbouring regions. The
size of the regions will not be fixed but may be constrained within limits that are proven to
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be effective during the research.

2.4.2 Application Process Graph

An Application process graph (APG) is a graphical representation of an application broken
down into processes with processes represented as nodes and data transfers between
processes represented by edges. A constraint is imposed on the construction of APGs that
they must be directed acyclic graphs (DAG), a simplification that ensures that there are no
closed loops between any arbitrary group of processes which in turn ensures there is no
possibility of deadlocks between processes. An application process graph is a standard
representation that models processes as nodes and data transfers between processes as
edges.

Figure 2.7 — Example Application Process Graph (APG)

A Directed Acyclic Graph(DAG) is, by definition, directed, meaning that an edge between
two nodes originates from one node and terminates at the second and allows flow from
the originator to the terminator and not visa versa. A DAG is, also by definition, acyclic,
meaning that there are no close paths through the graph. A consequence of a graph being
directed and acyclic is that the nodes can be arranged such that all edges are directed
from left to right. Each node can then be assigned an order which describes how many
nodes are to its left.

Consider an application that is required to process a large number of similar, but different
independent data sets, such that on a sequential processor the application will retrieve a
data set, process the data set and store the results of processing the data set, and then
move on the the next data set. Suppose the application is sufficiently complex that it is
possible to break it down into a number of functions, some of which can run concurrently
with other functions, then these functions can be represented as processes in the APG.

Now consider the example APG in[Figure 2.7] that has processes P1 - P8 and processes
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an arbitrarily large number of data sets DS to DS,,. When the application begins, process
P1 starts by retrieving and processing dataset DS;. Once process P1 has completed its
processing of DSy, including the communication to processes P2, P3 and P4, it is free
to start processing the next data set DSy, so at this point process P1 will be processing
data set DS5 and processes P2, P3 and P4 will be processing dataset D.S;. Repeating
the same reasoning across the remainder of the graph, it can be seen that four data sets
can be in different stages of processing at the same time. The simultaneous processing of
multiple data sets is illustrated in the APG Execution Chart as shown in

Time Segment
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Figure 2.8 — Example APG Execution Time Chart

Note that the application process graph gives no information as to whether process P7
can start processing a data set immediately when it receives data from process P4 or P5,
whichever it receives data from first, or whether is must wait for data from some or all of its
inputs before processing can begin; in either case P7 cannot complete its processing until
it has received data from both P4, P5 and P6. In process P7 is shown to start
processing only when it receives data from process P4, P5 and P6 have all completed
processing the data set.

Assuming that all the processes must be completed on every data set, the length of the
time segments will have to be no less than the time taken for the slowest process to
complete. Processes that take less time to complete will be delayed whilst waiting for the
slower processes to compete. As a consequence, the most efficient throughput will occur
when the execution time of each of the processes is identical which is an idealisation that,
although unlikely to be achieved, is worth pursuing. Or, alternatively, we can say that when
designing an APG, care must be taken to ensure that the execution time of the processes
is balanced such that the overall waiting time of the processes, as a whole, is reduced to a
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minimum.

There are similarities between an APG and a staged pipeline used in processor design
although the APG is more complex in that there is a greater number of inter-process
dependencies and multiple processes can be processing the same data set in the same
time segment.

The description of the processing of data sets given above is an example of a coursed
grained dataflow machine as discussed earlier in this chapter.

2.4.3 Task Mapping

Task mapping is the process of mapping processes of an APG to processing cores in the
many-core system. This research is concerned with investigating methods to efficiently
achieve a task mapping of an APG to a many-core system such that the resultant mapping
makes efficient use of the resources available in the many-core system[81]. The phrase
efficient use is subjective and can change from time to time and therefore needs to be
able to be influenced by the initial configuration determined by the designers of a system,
the current processing demands placed upon the system and the current environmental
conditions.

Given an application process graph and a many-core array, task mapping allocates appli-
cation processes as tasks to processing cores. For a graph with n nodes being mapped to
a square array of dimension a with ¢ = a2 cores, the number of solutions is proportional to
the number of permutations of n from c:

np, = : (2.7)

The growth of computational time required to search all the possible solutions as the
problem size increases places this problem in the NP-hard class of problems. Exhaustive
searches are incapable of examining all the possible solutions in a reasonable length of
time, so this research will use evolutionary algorithm techniques to search the problem
space for solutions.

It is an axiom of this research that the configuration of the system is not predetermined
before operation of the system but evolves in response to the performance demanded of
the system and the changing environmental conditions. To emphasise this point, there is
no predefined initial mapping of any APG to the many-core system, the initial mapping will
be determined by the many-core system itself following boot up of the many-core system
after which alternative mappings will be evolved. Mapping will take place in real time in
response to the hardware status of the many-core system

There has been considerable research on design-time mapping [9-13] which in the vast
majority of cases was applied to applications implemented using a collection of intellectual
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property (IP) modules for the design of NoCs consisting of heterogeneous processing
elements (PEs).

Hu and Marculescu [9] analyse a generic video/audio MultiMedia System (MMS) appli-
cation that includes video and mp3 encoders and decoders and partition it into 40 tasks
which are assigned and scheduled onto 25 IP modules. A branch and bound algorithm is
used to construct mappings of IP modules to tiles in an NoC architecture and minimize the
total communication energy consumption calculated using an energy function that models
the energy consumed by sending a single bit between two tiles of the NoC. The branch
and bound algorithm is shown to be on average 72 times faster than a simulated annealing
optimizer. The algorithm is used at design time to find mappings that are implemented and
fixed pre-execution.

Lei and Kumar [10] use a two-step genetic algorithm to map an application represented by
a task graph onto tiles on an NoC. The work concentrates on the static mapping of IPs at
design time. The calculation of the optimization objective, the average edge delay, which is
used to measure communication delay shares some commonality with the network power
objective of[Chapter 5]in this thesis, as both calculations make use of the distance between
a pair of communication core pairs.

Murali and De Micheli [11] present a mapping algorithm they call PMAP for placing clusters
onto processors, which produces mappings with lower communication cost than achieved
by previous algorithms. They use bandwidth constraints as the optimization objective,
which is also relevant to the Excess Traffic objective of [Chapter 6| The PMAP algorithm
uses Dijkstra?s shortest path algorithm, applied to the quadrant graph (equivalent to a
ComPair, see [Section 5.1), to obtain the minimum path. The algorithm is used at design-
time to find mappings that are implemented and fixed pre-execution.

Ascia et al. [12] investigate the mapping of 12 pre-designed, pre-verified modules in the
form of intellectual property (IP) for an MPEG-2 encoder/decoder system, comprising
DSPs, generic processors, embedded DRAMs and customized ASICs. A genetic algorithm
is used to search for mappings that optimize performance and power consumption for
a b x 5 array. The genetic algorithm is used at design-time to find mappings that are
implemented and fixed pre-execution.

Derin et al. [14] use integer linear programming (ILP) to search for mappings that minimize
the objectives of communication traffic and total execution time of an application in a mesh-
based NoC with deterministic routing. The motivation is to combine the steps of allocating
tasks to IPs to minimize execution time while at the same time minimizing communication
traffic by allocating IPs to tiles. Derin et al. also implement a fault recovery mechanism for a
single faulty core that would either reallocate tasks from a faulty core to IPs on other cores,
or completely remap all tasks to optimize the objectives. These two approaches to recovery
from a faulty core are analogous to the graceful degradation and graceful amelioration used
in this thesis.

Sayuti and Indrusiak [13] use an approach that configure both task mapping and priority as-



62 2.4 Software Considerations in Many-Core Systems

signment, using a genetic algorithm to search for solutions. The optimization is performed
at design time of a hard real-time embedded system based on a fixed priority pre-emptive
NoC. As an alternative to searching for mappings with a GA, a constructive task mapping
algorithm can construct task maps based on specific design properties [15].

Das and Kumar[16], Khalili and Zarandi [17], and Chatterjee et al. [18] all use a homoge-
neous NoC as the target platform and allocate multiple tasks to single tiles containing a
PE.

Das and Kumar[16] create a collection of task maps at design time, creating a mapping for
each fault scenario which are saved so that they are available to at run-time. When a fault
occurs, the map that whose scenario corresponds to the actual fault is used retrieved and
used to re-map tasks.

The approach of Khaliliand Zarandi [17] to fault tolerance is to allow the mapping of multiple
applications, one at a time, and allocate a single spare core to each application during the
mapping process. They use a function to calculate the criticality of a vertex in an application
core graph which is influenced by the amount of traffic flowing into and out of the vertex,
sorts the vertices by criticality, and then places the vertices to minimize the Weighted
Manhattan Distance, which is the product of the distance between two communicating
cores and the traffic volume between tasks located at the cores. A heuristic algorithm is
used to first place the vertices onto cores and then allocate spare cores for fault recovery.
The algorithm is used to map multiple applications onto cores of an NoC and allocates
spares cores to specific applications during the mapping process. The algorithm has the
effect of clustering the cores used for an application along with a single spare core while
leaving the remainder of cores unallocated and available for additional applications. The
application mapping is carried out at design time, before the application starts executing
and remains fixed thereafter, while the migration of tasks when a PE becomes faulty is a
run-time process.

Chatterjee et al. [18] developed an algorithm that provides a unified mapping and schedul-
ing method for real-time systems, focusing on meeting application deadlines and minimiz-
ing communication energy while mitigating the effect of failure-prone processing elements.
The platform is a NoC consisting of a lattice of homogeneous processing elements, each of
which can be allocated multiple tasks by the mapping algorithm. The model determines the
communication energy and communication time based on the Manhattan distance between
the source and destination nodes. Fault tolerance is achieved by replicating tasks that have
been allocated to PEs that are judged to be unreliable. The duplicate tasks either run in
parallel with the original or stand by to start execution if the original PE should fail.

2.4.4 Task Migration

Task migration is the action of moving a process from one core to another and involves
loading a new core with the appropriate program to continue the processing and where
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possible transfer of the current state of processing to the new core.

The nature of task migration is different if it is triggered by a hardware fault which requires
immediate migration of the process from the faulty core or triggered by the desire to
ameliorate performance. If the migration is due to the failure of a core then loss of the
current state of processing is usually inevitable in which case the processing that has
been lost will need to be repeated or abandoned completely. The migration needs to
be immediate to minimize the disruption caused by the loss of processing. Whether the
processing is repeated or abandoned depends on whether the application is robust in
the sense that it can cope with some level of lost processing or whether it requires all
processing to be completed even if this delays the final result. Migration in response to a
hardware fault will often only involve the migration of single process.

Implementation of a new mapping to achieve amelioration may require multiple task migra-
tions to complete, in which case the migration of processes will take place in a controlled
manner and can be achieved without loss of processing or significant delay to the execution
of the process. Task migration is a non-trivial undertaking requiring the loading of the
required program to the new core, transfer of the existing execution status, and notification
to all interested parties of the new location of the process. Task migration is expensive
in terms of processing resources, communication bandwidth and time. The total cost of
multiple task migrations required to implement a new mappings needs to be balanced
against the long term benefit of the new mapping.

2.4.5 Core Regions

The concept of a monitoring core was introduced in [Subsection 2.4.6] The philosophy

of this thesis is that the monitoring and management of the many-core system should
be distributed function for many-core arrays that have more and a few tens of cores. To
preserve scale independence it is proposed that the many-core array is logically divided
into a number of regions that are independently managed. A region will consist of a
collection of processing cores that are physically close to each other and are monitored
and configured independently of other regions. Neighbouring regions will interact with
each other enabling communication between processes in different regions and allowing
migration of processes from one region to another. The size of the regions will not be fixed
but may be constrained within limits that are proven to be effective during the research.

The regions that an array of cores is divided into can be disjoint as in or
overlapping as in

2.4.6 Monitoring

A many-core system is ideally suited to be a dynamic system which adapts to changes to
the processing requirements placed upon the system, changes to the system itself and
changes in its operating environment. Graceful degradation and graceful amelioration
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Figure 2.9 — A 12x12 Lattice divided into regions

are achieved through the management of the workload amongst the processing cores
and in response to changing conditions that are assessed through the monitoring of the
processing cores. Monitoring and management can be a centralised function that has a

holistic view of the many-core system however, as stated in|Subsection 2.4.1} this produces

a single point of failure. In contrast, the approach taken by this thesis is that monitoring
and management should be a distributed function carried out by one or more cores within
the many-core array.

A Monitor process is responsible for collecting performance data and managing the re-
sources of the many-core array to comply with the performance parameters supplied to the
Monitor. Examples of the functions that the Monitor node is responsible for are:

e Collecting traffic data

e Collecting thermal data

e Controlling voltage and frequency of individual cores

e Detecting fault conditions

e Managing the fault-recovery cycle

e Maintaining the hardware map with core and link faults
e Maintaining the process map

e Maintaining the application process graph with actual process-process traffic vol-
umes

e Informing routers of the location of processes and faulty links

e Managing process migration
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Managing evolutionary runs to search for process mappings

Maintaining Pareto Front Pf0 between evolutionary runs

Selecting suitable mappings from Pareto Front Pf0
o Communicating with adjacent regions (where they exist)

Monitoring of the status of the cores in the many-core system provides the raw data that
will be used to determine if there are conditions adversely affecting performance and
determine if performance can be improved by reallocating processes to cores in a different
configuration. The specific core or cores that undertake the monitoring and management
functions is not predetermined.

The system can be designed to allow monitoring for example:

e Processing core faults

Routing node faults

Communication channel faults

Processor bottlenecks

e Communication bottlenecks

Heat/power hot spots

Failure to achieve required throughput

Lack of fault tolerance

2.5 Memory Subsystem

The purpose of a processor is to execute programs to manipulate data. For a processor to
function efficiently it must be able access programs and data in a timely manner. This is
the role of memory and storage devices.

The size of memory and speed of access to the contents must be compatible with the
needs of the processor, consequently memory technology has developed alongside the
evolution of processors and computing systems.

This sections reviews the memory subsystems and their development with relevance to
many-core system architecture.

2.5.1 Memory Hierarchy

It has been a constant feature of electronic computers that processor speeds are many
times faster than prevailing bulk memory systems and the cost of available memory tech-
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nology increases with the speed of access the memory technology offers. Both of these
challenges are addressed by implementing multi-level memory systems. Multi-level mem-
ory systems have been a feature of system design from early in the development of
computer systems, as is evidenced by Burks et al. [83] who in 1946 proposed a three
level storage hierarchy based on criteria of speed, cost and size; the same considerations
that are important today [83].

In general the closer memory is to the processor the smaller, faster and more expensive it
is, although the technology used in each level has changed over time.

Burks et al. discusses a hierarchical memory system with the top level storage using a
cathode ray tube based storage device called a Selectron, the second level using on-line
magnetic tapes and the third level using off-line magnetic tapes. Burks et al. also describe
a Selectron Register built of flip-flops, presumably using thermionic vacuum valves (since
this was before the invention of the first transistor by William Shockley and John Bardeen
in December 1947), that is used to store the value retrieved from the Selecton for use by
the arithmetic unit. Incidentally the use of flip-flops for main memory was dismissed as
impractical, presumably because of the complexity, cost and physical size it would require.

In today’s systems the generally implemented hierarchy of memory is: processor registers,
on-chip cache memory using SRAM technology (which is often also multi-level), DRAM
solid state memory and a hard disk mass storage device. Processor registers and on-
chip cache use an SRAM design which is sufficiently fast that a memory access can be
completed within a single clock cycle. The SDRAM design uses six transistor per bit and
is therefore expensive in terms of space when compared compared to the DRAM used
for main storage. Main storage is provided by external memory modules managed by
the memory management unit (MMU). The access time to main memory is greater than
for cache memory because the memory is off-chip, the distance from the processor is
greater and DRAM technology is slower. The DRAM design uses a single transistor and
single capacitor per cell compared to the six transistors of the SRAM design. The result
is that DRAMS have a higher density i.e. more memory locations for a given die size and
ultimately a lower cost.

Cache memory has an access time in the order of a single clock cycle, size in the region
of MBs and is relatively expensive. Main memory has an access time in the region of a few
10s to 100s of clock cycles, has size in the region of giga bytes and is medium cost being
implemented using DRAM external to the processor. Hard disk storage has access times
in the millions of clock cycles, size in the region of tera bytes and is relatively inexpensive.
The size of each level in the hierarchy differ by roughly a factor of 103.

2.5.2 Cache

Cache memory is a mechanism designed to increase the effective bandwidth of data
between the processor and the mass memory and so reduce the amount of time the pro-



Many-Core Systems 67

cessor has to wait for data to be retrieved from memory. Addition of cache into processor
designs followed the realisation that data access is both temporal and spatial in nature.

To illustrate the nature of the temporal and spatial nature of data access we can use the
following small C++ program that uses a loop to sum the corresponding elements of two
arrays and place the results in a third array.

Listing 2.1 — Loop program code in C++

void ArraySum::sum() {

1
2

3 for (int x = 0; x <= 10; ++x) {

4 arrayC[x] = arrayA[x] + arrayB[x];
5

6

}

Temporal Proximity Temporal proximity of data access means that memory locations that
have recently been used are more likely to be used again in the near future than memory
locations that have not been recently accessed.

Consider the program code of [Listing 2.1 consisting a simple loop which will be executed
once for each element of the arrays. When execution is initiated the program is loaded into
main memory from where the processor will retrieve each instruction is in turn. A simple
processor that can execute only a single instruction at a time will retrieve, decode and
execute an instruction before progressing to the next instruction. The loop test condition
and the code internal to the loop will be executed many times over, once for each array
element. Each time through the loop each of the instructions are read from memory even
though they may have been read only a few clock cycles earlier. This is an example of
temporal proximity.

Spatial Proximity Spatial proximity is the property that data that is located in memory
close to data that has recently been used is more likely to be used in the near future than
more distant memory locations.

Again using the program of [Listing 2.1|the elements of each array will typically be stored in
adjacent memory locations, and the arrays stored contiguously in memory. As the program
progresses through the arrays it will be accessing memory locations adjacent or close to
the last memory locations used. This is an example of spatial proximity.

The Cache Model

Single Level Cache: When a processor requests data from a memory location that is not
already in cache, the request will trigger the retrieval of not just the memory location being
requested but of a block of memory containing the desired location. When the requested
data is loaded into cache, it is then transferred to the processor which can continue its
processing whilst the MMU completes the transfer to the whole block of data. As the
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processor continues execution of the program it will read further data elements and by
virtue of temporal and spatial proximity it is likely to find that the required data is already in
cache.

Multi-Level Cache: Cache memory can, and often does, have multiple levels that mirror
the memory hierarchy in that cache closer to the processor is smaller, faster and more
expensive than cache further from the processor and can be on-chip, off-chip or a com-
bination of both. Cache closest to the processor is referred to as Level 1 or L1 cache,
followed by L2 and L3 caches. Processor registers are integrated into the design of the
processor so there is effectively zero distance between the registers and the ALU and are
smometimes referred to as level 0 cache. On-chip L1 cache, measured in kilo bytes, is
placed close to the processor to maintain single clock cycle access times while L2 cache,
measured in mega bytes, is placed on the periphery of the processor die and will have
multi-cycle access times.

Early microprocessor designs such at Intel’s processors up the the i386 did not have
any on-chip cache. Even when there is no on-chip cache it is possible to implement
off-chip cache using smaller and faster memory devices than those used for main memory,
although this would have to be designed into the MMU. As discussed in [Section C.3]
on-chip cache first was introduced into the Intel processor design in the i486 processor.

Unified and Split Caches The von Neumann architecture has a single system bus used for
both addressing and data and a single main storage that contains data and programs while
the Harvard architecture has separate data and instruction buses and correspondingly
separate data and instruction memories. The Harvard architecture benefits from the use
of dedicated buses by being able to simultaneously transfer instructions and data between
processor and memory. The design is also more flexible since word lengths for data and
instructions do not have to be the same.

In practice, systems are designed with dedicated address, data and control buses where
the data bus is used for both instructions and data; which are stored in a single, mixed
purpose, main memory. Instructions and data are only separated in L1 cache and CPU
internal registers dedicated either to data or instructions while L2 cache is usually a unified
instruction and data cache.

Write Strategies When a data item is modified in a cache there are options for how to
manage the update to the main memory. These options are referred to as write strategies
which are write-through and write-back.

Write-through: A write-through policy immediately updates main memory when a value is
modified in the cache ensuring that the value in main memory and the cache are consistent.
Each data item in the same cache block that is modified triggers a new update to main
memory, creating a significant overhead which reduces the benefit of the cache, especially
when multiple modifications are made to the same piece of data.

Write-back: Write-back updates the cache and sets a modified status bit linked to the
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cache entry to indicate that there is now a difference between the cache value and the main
memory value. Main memory is not updated until the cache block is removed at which point
main memory will be updated with all outstanding data modifications in the cache block.
Write-back is faster than write-through because it avoids unnecessary updates to main
memory.

2.5.3 Multi-Processor Memory Architecture

Shared Memory In a shared memory system all processors use the same physical ad-
dress space which refers to a single unified memory through a single interconnect, some-
time referred to as a shared memory multiprocessor (SMP) system. The memory manage-
ment unit coordinates access requests by the processes to the memory. Communication
between processors is through shared variables or memory buffers, both of which are
located within the shared memory. Applications are responsible for ensuring that they use
mechanisms such as memory locks or semaphores to ensure proper synchronization of
memory updates.

Distributed Memory In a distributed memory system each processor has its own private
physical memory that cannot be directly accessed by other processors. This is typical of
clusters comprising many independent machines, each with its own disk drives. Access to
by a processor to another processor's memory must be made through messages with
the first processor making a request for data and the second processor returning the
requested data. Communication between processors via messages requires intervention
of the operating system, packaging of the message for transmission, transmission of the
message and unpacking, which is inherently a slow process when compared to memory
accesses in a SMP system.

Distributed Shared Memory A hybrid arrangement is possible where the memory of a
physical address space is distributed among the processors. In this case the memory
access times will vary depending of how far the memory is from the processor that is
accessing it. This gives rise to non-uniform memory access (NUMA) is contrast to the
uniform memory access (UMA) of an SMP system [82].

Shared Memory with Message Passing Another possible memory arrangement for many-
core system would be to have a shared memory which is equally accessible by all cores
and additional private memory for each individual core sufficiently large to accommodate
the program and data for the process. This would avoid repeated accesses to shared mem-
ory. Processes that are part of the same application process graph would communicate
through message passing so that the shared memory would not be a factor or bottle neck
when a data set passes from one node to the next.
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2.5.4 Memory Coherence in Many-Core Systems

Each core in a multi-core or many-core system will usually have its own dedicated cache,
introducing the possibility of the same data being located in more than one cache at the
same time. Copies of a data element that is in multiple locations can become different
when one copy is modified by one of the cores, a problem described as memory coherency.
Often individual processors will have a dedicated L1 cache and then a group of processors
will share a L2 cache. If the number of processors is small then they may all share a single
L2 cache, for large numbers of processors it may be desirable to have multiple L2 caches
with the L2 caches sharing an L3 cache.

Coherency has been defined by Censier and Feautrier [84] as:

"A memory scheme is coherent if the value returned on a LOAD instruction is
always the value given by the latest STORE instruction with the same address."

Maintaining coherency in a multi-core or many-core system necessitates the development
of controls and mechanisms to ensure that a modified value is reflected accurately in main
memory and that when a process modifies a value it is given exclusive rights to do so until
the update is complete.

There are many possible schemes to maintain coherency in multi-core systems. One
scheme that has been widely used is based on the write-back mechanism described
earlier in this section, with additional flags and signals to indicate when a cache entry has
been updated and has not been written to main memory which is then described as ’dirty’.
Coherency is maintained by each cache monitoring all data requests from all caches. If
a cache identifies a request for an entry in its own cache that has been marked as dirty
then it will signal this to the MMU so that its value is used in preference to the value in the
next lower memory level [85] 86]. In a many-core array snooping requires all transactions
to traverse the entire network, increasing the traffic in proportion to n? of the number of
nodes which grows rapidly with number of nodes making it unsuitable for large many-core
arrays.

An alternative to the above scheme is a directory based approach where the MMU main-
tains a list of which caches have copies of memory blocks. When a write request is sent
from a cache to the main memory the directory is used to inform all other caches using the
same block that their data is now invalid [87] [84]. The scheme reduces the traffic compared
to the snoopy schemes as only affected caches need to be informed when data is modified
in main memory. Although an improvement of the the snoopy scheme the directory based
approach has its own limits because the sizes of the directories will limit the number of L1
caches that can be watched.

A further development of the directory based approach is using distributed directories [88-
92] where directories are maintained in the network nodes instead of centrally with the
main memory. In Eisley et al. the directory is maintained as a linked tree between the
nodes that have of copy of the same data [91].
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2.6 Programming Models

Mainstream traditional programming is primarily based on imperative programming lan-
guages that were designed for writing programs for the single instruction execution stream
of computers with a von Neumann architecture. However imperative languages are not
well suited to writing programs that involve parallel processes. This chapter review a
range of programming paradigms that have been developed to overcome the limitations
of imperative languages.

2.6.1 Evolution of Computation

The development of mechanical computation goes back to the 15 century with Wilhelm
Schickard (1592-1635), Pascal (1923-1662), Gottfried Wilhelm Leibniz (1646-1716) who
all designed mechanical calculation machines. Leibniz, a mathematician and philosopher,
developed a system of calculus at the same time as Newton and it is Leibniz’s notation
that is now used. Leibniz work on mechanical computation and recognition that mathe-
matical algorithms are a list of steps that can be followed mechanically inspired him to
posed the philosophical question of whether there is an algorithm that could decide the
truth of statements in number theory. This together with Hilbert and Ackermann’s 1928
Decision Problem, the Entscheidungsproblemn in his native German [93], was the catalyst
for later generations of mathematicians to develop formal methods for computation. In
the process of attempting to answer these problems many researchers in the field of
mathematics developed calculus and conceptual computing machines. The 1930s and
1940s were a particularly productive for research into formal systems with the publication
of Gddel's 1931 paper [94H96] where he sets out the theory of recursive functions, now
called primitive recursive functions following the work of Kleene; Turing’s 1936 paper on
Turing Machines [95, 97]; Post’s 1936 paper on finite combinatory processes [98] and
Church’s 1941 book "The calculi of Lambda-Conversion” [99]. Shepherdson and Sturgis
in 1963 developed the Unlimited Register Machine (URM) [100] which can be viewed as
a modern equivalent of Turing Machines that allows functions to be expressed in a very
simple programming language making it easier to work with than Turing Machines. These
alternative approaches to formal systems and computability have all been shown to be
equivalent and in particular equivalent to simple recursive functions, which is now referred
to as the "Church-Turing Thesis".

The importance of all these systems to computing is that computers, however sophisti-
cated, are also equivalent to Turing Machines. Shepherdson and Sturgis's URM needs only
four operations to be able to specify any function. The same is true for real computers; any
additional instructions or complexity of design do not increase the computational capability
of the machine but rather make the machines easier to program and more efficient.

The theory of primitive recursive functions gives formal proof of the validity of concate-
nation, substitution and recursion of functions all of which underpin all programming lan-
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guages while Church’s Lambda Calculus is fundamental to the theory and design of func-
tional and dataflow languages.

2.6.2 Imperative Languages

In 1978 Backus described languages that execute a single instruction at a time in the
sequence specified by the programmer as 'von Neumann languages" [26], although are
more accurately described as imperative languages.

The first stored program computers were single processor computers that executed a
single instruction at a time described as the stored-program computer or von Neumann
architecture [101]. As a consequence, the first programs were written to execute a single
instruction at a time in a specific order to achieve the desired effect. Both procedural
languages and object-oriented languages are sequential. The methods of a class in an
object-oriented language contain sequential code as does the code within functions and
procedures of procedural programming languages. There is nothing inherent in these
languages that promotes parallel processing. Where parallelism is required it is provided
by incorporating application program interface (API) directives to an external application
with provides multiprocessing support.

It has been argued that procedural programming constrains the programmer to thinking
an coding solutions in terms of the von Neumann architecture [26] and that a functional
programming approach would free programmers from this restraint.

2.6.3 Functional Programming

In his 1978 paper Backus highlighted the problems of imperative languages and proposed a
functional style programming model. Backus’s approach is very mathematically orientated
being based on Church’s Lambda calculus.

The properties of a functional language that distinguishes it from an imperative language
are that functions are:

e independent: they compute irrespective of other computation states
e stateless: each action is unrelated to any previous action

e deterministic: the same inputs will return the same outputs

Functional programming languages attempt to adhere as closely as possible to these
properties. However in real systems, the purpose of programs is to change the state of
the system. For example, a function that updates database records is changing the state
of the system.

A number of languages fit into the functional language category: Haskell is strongly based
on Lambda calculus and is one of the purest functional languages. Python is a widely
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used, popular language that has features which can be described as functional.

2.6.4 Dataflow Programming

Functional programming and dataflow programming are closely related in that they both
promote the same above properties. Functional languages more closely follow the math-
ematical ideal, whereas dataflow languages were designed for programming dataflow ma-
chines with an emphasis on parallel programming.

The roots of dataflow programming can be traced back to the 1960s and 1970s when
several groups of researchers developed dataflow architectures [28, |33, |102, [103] and
dataflow languages [104-108]. The motivation for dataflow machines was to overcome the
bottlenecks inherent in the von Neumann architecture by designing machines capable of
instruction level parallelization. The name dataflow arises from the change of emphasis
from instructions requesting the data they require during execution to instructions being
triggered when the required data is available for their execution. Any instruction can be
executed by any available processing element as soon at the required data becomes
available. This allows multiple instructions that have no data interdependencies to be
executed simultaneously.

The dataflow programming model uses a directed acyclic graph, sometimes referred to as
a dataflow graph [28| 29, (104}, [107, [109-111] to represent program code as it would be
executed on a dataflow machine. The earliest description of a dataflow graph, by Karp and
Miller, is a directed graph of nodes and edges that Karp and Miller refer to as a Computation
Graph [104]; the edges are augmented by four integers representing information about the
input and output data queues of the nodes and the data consumed and created by the
nodes and are not acyclic. Dataflow graphs are not a programming language, they are a
visualization that can be derived from the program code, representing what the program
will do.

With each new machine design, a corresponding programming language was required.
While each machine may have required its own language to best exploit its architecture,
all languages shared common fundamental features explicitly expressed by Ackerman [27]
and summarised as:

1. Freedom from side effects

N

. Locality of effect

w

. Equivalence of instruction scheduling constraints with data dependencies

N

. Single assignment of variables
5. An unusual notation for iterations due to features 1 and 4

6. A lack of history sensitivity in procedures
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Conway in 1963 set out conditions for separating a program into processing modules [112]
that are the same conditions that are required of a DAG and a pipeline dataflow [[113]:

1. the only communication between modules is in the form of discrete items of informa-
tion

2. the flow of each of these items is along fixed, one-way paths

3. the entire program can be laid out so that the input is at the extreme left, the output is
at the extreme right, and in between all information items flowing between modules
have a component of motion to the right.

Although Conway was not designing a dataflow language his aim was to decouple modules
such that the output of a module was dependent only on the input it received, which
is a essential property for nodes to process in a DAG and could be added as a fourth
requirement to Conway’s list.

The overhead that accompanies parallelization is considerable and in the case of instruc-
tion level parallelization can be significant when compared to the gains. This, coupled
with the rapid improvements in the designs of classic von Neumann machines, resulted in
the dataflow machine architectures of the 1960s and 1970s falling short of the anticipated
benefits to the extent that the research on dataflow machines was eventually abandoned.
Architectural gains of von Neumann machines is finite; clock speeds have levelled off,
pipelines are near optimal, and cache can be as large as required. Parallelization is still
required to realise higher processing throughput so the search for methods to achieve
parallel processing continued. The focus of research moved from instruction level paral-
lelization first to the parallelization of loops [114-117]. Individual iterations of loops can
be run in parallel if the iterations are independent. However this is not always the case
making it difficult to increase processing throughput using multiple processors. Research
next looked at the gains that may be achieved with threads [118-120].

Each stage of research has increased the granularity of the units of code being parallelized.
As already noted instruction level parallelization was found to be too fine grained. The
same is largely true of isolated loops, with processor clocks running at 3 GHz and pipelines
achieveing near single cycle instruction execution, many millions of loop iterations can be
executed in a very quickly.

Early dataflow machines with a fine-grained instruction level parallelism and the sequential
processing von Neumann machines can be viewed as the extreme ends of a continuum.
Both, in their pure form, have performance problems. There is now an expectation that
the best performance will be achieved somewhere between the two. Current research
into parallelization can be viewed, in this context, as a search for the appropriate level of
granularity to achieve useful levels of parallelism while keeping the related overhead small
compared to the gains [29]. As hardware continues to evolve and programming models
mature, the granularity the produces the best results may also change.
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The continued hardware evolution that now allows many-core system to become a reality
gives a new opportunity for the dataflow programming model to realise the ambition of its
original researchers.

2.6.5 Parallel Programming Models

Explicit parallel programming, where programmers have to add constructs into code to
enable it to run in parallel, has been available for some time with platforms such as OpenMP
and CUDA. An alternative approach is that of implicit parallelism which infers from the code
where parallelism can be implemented.

OpenMP OpenMP is a set of directives that can be used within a supported language
such as C++ that enables to programmer to explicitly designate code to run on multiple
processing cores and handle synchronisation issues. OpenMP as its name suggests, is an
open standard.

CUDA CUDA is a collection of compiler directives and language extensions to languages
such as C++ that allows programmers to make explicit use of the multiple processing units
within NVIDIA GPU cards. Originally intended for graphics programming CUDA is also
used to access the power of the GPU cards for highly parallelizable computations.

Implicit Parallelism Hwu et al. promote an implicit parallel programming model in which
the compiler is responsible for identifying parallelism in contrast to the OpenMP approach
in which programmers explicitly include directives to enable code sections to run in parallel
[121].

The use of existing traditional languages do not adhere closely enough to the properties
described by Ackerman and Conway to be amenable to implicit code parallelism. Implicit
parallel coding will require new languages which are more rigorous such as Haskell which
has been designed to closely implement Lambda Calculus.

2.6.6 Code Parallelization

There are at least three conceivable ways in which parallelization of processing can be
achieved:

Instruction Level Instruction level parallelism is currently implemented through super-
scalar and pipeline architectures. Early dataflow machines were designed as instruction
level parallel machines before the realization that this was too fine-grained to be practical.

Array Processing Using an array of processing cores that simultaneously process the
same instruction/program on different data sets. Commonly used in specialized coproces-
sors such as GPUs and useful primarily when many datasets need to be processed by the
same function simultaneously. The processing elements run the same code at the same
time, with possibly small variations.
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Multi-Thread Processing This is the model implemented by systems such as OpenML,
where the same code is run on many processors as threads. The threads are more
independent that for array processing and much more flexible in the code that can be
run.

A Course-Grained Dataflow Using a many-core array and an APG to achieve pipeline
style processing of multiple data sets simultaneously. This is similar in concept the the
original instruction level dataflow model but with a much more coarse grained structure.

2.7 Summary

This chapter has reviewed the evolution of computer processing paradigms, technological
advances and challenges that resulted in Hemani et al. proposing the many-core model
in 2000. Feature sizes are now small enough that single devices can contain billions of
transistors, making available the technology to fabricate many-core systems with hundreds
or thousands.

A major challenge for system designers using devices with feature sizes below 22nm is the
variability of operation and reliability of individual transistors and the need for dark silicon
to ensure that the device does not overheat. The variability and reliability of individual
transistors will increase the occurrence of faults, some of which may be transient while
others will be permanent, causing loss of the processing unit affect by the fault.

The large number of processing cores envisaged in many-core systems present an op-
portunity to help alleviate the problem of reliability due to failure of processing cores or
communication links. Appropriate management of the use of individual cores can also be
effective in management of dark silicon.

This thesis demonstrates one possible approach to the management of the use of cores to
implement fault tolerance and management of dark silicon.



Chapter 3

Fault Tolerance

Fault tolerance has been, and continues to be, an important element of designing reliable
computer systems. Avizienis in 1978 [122] provides the following definition of fault toler-
ance:

"Fault-tolerance is the architectural attribute of a digital system that keeps the
logic machine doing its specified tasks when its host, the physical system,
suffers various kinds of failures of its components.”

Since Avizienis gave the above definition the scope of fault tolerance has been widened to
include software as well as hardware faults. Avizienis and Kelly [123] make the distinction
between a fault that can exist within hardware or software without manifesting itself and an
error which is the result of a fault producing an incorrect output.

Continually diminishing feature size of devices increases the probability of fabrication de-
fects and variability of performance of individual transistors [[124,|125]. Use of technology in
hostile environments continues to increase with a corresponding increase in the likelihood
of single event upsets (SEU) and damage to individual components leading to failure
of complete systems. Inaccessibility of systems can make maintenance impossible or
prohibitively costly. All of the above scenarios can benefit from the application of fault
tolerant strategies.

Microprocessors are now being fabricated with transistor counts in the range of 10% and
10° per device. In these devices the failure of a single transistor during operation may
render the whole device unusable, requiring its replacement. As manufacturers continue to
strive to obtain higher transistor densities and lower power consumption, the feature size
is continually being reduced. For example, feature sizes of 32nm appeared in commercial
devices in 2010 in which the size of a single transistor is in the region of 60 atoms of the
silicon lattice. Components of this size reduce the predictability of the behaviour of the
device and increase the likely hood of damage to transistors causing device failure. In
2005 it was recognised by Borkar [125] that reducing feature size would cause problems:

"As technology scales further we will face new challenges, such as variability,
single-event upsets (soft errors), and device (transistor performance) degra-
dation - these effects manifesting as inherent unreliability of the components,
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posing design and test challenges."

3.1 Reliability

The existence of soft errors or single event upsets (SEUs) in which a single bit of in-
formation is inverted due to external energetic particles entering the device have been
recognised since the 1970s [126]. The source, for example, can be alpha particles from
radioactive contaminants in the packaging, high energy cosmic rays and low energy cosmic
rays [127]. Decreasing feature size magnifies the effect of energetic particles, increasing
the frequency of SEUs and in some cases causing multi-bit upsets (MBUSs).

Detection and correction of single and multi-bit errors can be achieved in hardware using a
variety of techniques such as error correcting codes [128] and radiation hardened designs
[127]. As feature sizes decrease the effect of process variations increase, leading to higher
variation of the properties of the individual transistors in devices. Process variations and
other manufacturing defects, also accentuated by reduced feature size, act to decrease
the yield of monolithic processor designs. Many-Core Arrays on a single die are tolerant to
the failure of individual cores causes by manufacturing defects. The same tolerance during
the lifetime of the device will allow the many-core array as a whole to continue to perform
useful work even when a significant proportion of individual cores fail.

3.2 Error Detection and Correction Codes

One of the earliest forms of fault tolerance was the devising of codes to represent informa-
tion with error detection properties. The simplest error detection code is parity, which can
detect one single bit error. More sophisticated codes have been developed to detect more
than one error or to correct errors.

Alt (1948) [129, 130] wrote two papers describing the design of "A Bell Telephone Labora-
tories’ Computing Machine" in which he describes 2 of 5 and 3 of 5 codes that are capable
of identifying the occurrence of single bit errors. The computer was designed to stop when
errors were identified to allow intervention to correct the problem.

Hamming’s 1950 paper [131] gives a mathematical treatment of error detecting and error
correcting codes. Hamming defines the distance between two codes, which we now know
as the Hamming Distance, and the relationship between various distances and the ability
to detect or correct a given number of single bit errors.

Fontainet and Gallagert [132] analyse communication data and made the observation that
errors are not evenly distributed but occur in bursts. Fontainet and Gallagert conclude that,
for the data under scrutiny, error correction was impractical whereas error detection was
practical with a negligible probability of undetected errors. They also state that the choice
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of error detection and correction codes should be determined by the profile of errors within
the data.

Bell Labs applied for a patent Pulse code communication which included the coding scheme
now referred to as Gray Codes [133] and now classified as a canonical binary single-
distance code.

Berger and Mandelbrot [134] propose two models for describing distributions of errors
while Mandelbrot [135] gives a self similar model of the distribution of errors, noting that
the distribution of errors appears the same regardless of the scale used to examine the
distribution. The property of self similar scale independence is the same property possesed
by fractals, one of the earliest and most well-known of which is the Mandelbrot Set. Another
conclusion of Mandelbrot is that errors are unavoidable so that effort should be directed at
detection and correction as well as reduction.

Peterson and Brown [136] present a mathematical treatment of cyclic codes, now re-
ferred to as Cyclic Redundancy Check (CRC) Codes using generator polynomials to define
codes.

3.3 Hardware Redundancy

Redundancy is a widely used approach to fault tolerance which takes many different forms
[137]. The primary objective is to ensure that in the event of the failure of a module,
there is a backup module that can replace the faulty unit. Some systems require the
replacement to be carried out manually, while more sophisticated approaches make the
transition automatically.

3.3.1 Double Modular Redundancy (DMR)

Double modular redundancy is an approach based on designing systems with a primary
module and a secondary module which can replace the primary module in the event of
a fault. It protects against single module failures in the primary module. Typically, the
secondary modules have no active part in normal operation, other than to ensure that they
are in a position to take over operation from the primary module. This model was used
from 1976 by Tandem Computer Systems in its range of commercial computers [138].

Duplicate modules are designed as an integral part of the system and remain in situ during
normal operation. Duplicate modules are passive backup modules as they remain in a
standby mode taking no active part in the normal operation of the machine. Each primary
module gives regular updates of its status to its corresponding backup module so that
the backup module can resume operation starting from the last status update should the
primary module fail. The design relies on monitoring software and hardware that can
detect failure of a module and switch processing to the backup module. When a fault
has been detected processing is automatically continued by the backup module to enable
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the machine to maintain normal operation. Where the system is accessible an engineer is
alerted who can replace the failed unit without nay downtime of the system. The primary
aim is to reduce the mean time to repair from hours to milliseconds and increase the overall
availability of the system.

The Voyager spacecraft had three dual-redundant computer systems [139]. Voyager’s
computer architecture illustrates the need for testing and monitoring the health status of
primary systems and a mechanism to switch to backup systems. In Voyager’s case the
modules carried out self test which generated status signals, the CCS monitored the health
of the modules via the status signals and was also responsible for switching to backup
systems.

Figure 3.1 — An NASA artist concept of Voyager 1 and 2 which used
dual-redundant computer systems

3.3.2 Triple Modular Redundancy (TMR)

The philosophy behind TMR systems is fundamentally different to that of DMR systems.
TMR systems are usually based on using three replicas of a module, carrying out the same
processing. The outputs of the three modules are routed through a simple majority voter
module to determine the definitive output.

TMR has been implemented in real applications such as the Saturn V launch which uses
TMR with voting elements in the design of the central processor [140] and the fly-by-wire
primary flight computer for the Boeing 777 aircraft [141].

The majority voter is based on Von Neumann'’s work [142] where he defines an automaton
which he calls a 'majority organ’ that gives a single output which is the same value as the
maijority of three inputs as defined by the boolean equation (3.1

m(a,c,b) = ab+ac+bc = (a+b)(a+c)(b+c) (3.1)

The basic TMR architecture protects against a single fault in any one of the three duplicated
modules as illustrated in figure [3.2]
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Module 1

Module 2 @

Module 3

Figure 3.2 — Triple Modular Redundancy arrangement using a von Neumann
inspired voter

Lyons and Vanderkulk [143] examine TMR for use in applications in challenging environ-
ments such as those encountered in space exploration and the military. Lyons and Van-
derkulk look exclusively at permanent component errors, giving a mathematical treatment
of TMR to show that TMR can increase the overall reliability of a system. They note that
TRM works with systems that already display a high level of reliability - the higher the
reliability of the non-redundant system, the more beneficial is the effect of implementing
TMR. The effect of TMR when used with unreliable components is reduced and can, in
some cases, reduce the overall reliability. In particular if the original component has a
reliability probability of less that 0.5, then TMR cannot improve the reliability of the system.

The basic implementation of TMR, shown in figure[3.2] moves the problem of a single point
of failure from the replicated module to the voter module. A more sophisticate arrangement
is given by Lyons and Vanderkulk [143], figure[3.3] which also triplicates the voter modules.
The diagram shows the outputs of stage one being routed through triplicated voters. The
outputs of the voters are used as the inputs to the next module which is also triplicated.
This arrangement can be repeated for each triplicated module. However, if the system is
not closed so that there is a final output, the voter for the last output will still become a single
point of failure as it cannot be triplicated. Lyons and Vanderkulk ’s improved arrangement
is the focus of their paper [143].

T T
L —\ M| "

Figure 3.3 — Triple-modular-redundant configuration.

The traditional implementation of TMR uses bit-by-bit voting schemes. When the redundant
modules have n outputs bits, there are n voters, with the i** voter calculating the majority
vote for the i*" bits of the modules. Bit-by-bit voters can only correct single module errors.
If errors occur in more than one module such that any two modules produce an error on the
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same bit then the bit-by-bit voter will not detect the error and produce an incorrect output.

Mathur and Avizienis [144] give a detailed mathematical treatment of N-tuply modular
redundant system i.e. systems with N copies of the module. Mathur and Avizienis also
discuss a hybrid(N, S) system where there is an N-tuply modular redundant system and S
spares which can be switched in when one of the N redundant modules fail.

Abraham and Siewiorek [145] partition a network into cells and calculate the reliability of
each cell in order to simplify the calculation of the reliability of the the whole network, which
they state as improving the accuracy of calculations over previous work.

To improve the response to multiple module errors, Mitra and McCluskey [146] developed
the TMR architecture further by proposing a word-voter. In the word-voter additional circuity
is added which examines the output words of each module. If two modules are in error and
produce different errors, the outputs of all three modules will be different to each other. In
this case the word-voter produces an error condition. While it is not possible to determine
what the correct value should be it is possible to say that an error has been detected
and report the condition. This word-voter does not help identify errors when two modules
are in error and produce identical errors. In this case the word-voter will still produce an
erroneous value and will not produce an error condition.

Commercial off-the-shelf (COTS) FPGAs are an attractive choice for development of sys-
tems because of the low cost and mature development compared to an ASIC, even in hos-
tile environments such as space-based systems|[147]. SRAM based FPGAs are, however,
vulnerable to single event upsets (SEUs) which can be caused by radiation in space-based
processing [148]. Implementations using FPGAs in such an environment need to use
hardened designs and verification to protect against SEUs [149, [150]. Quinn et al. [147]
investigate the limitations of TMR when presented with multiple-bit upsets.

Wakerly (1976) [151] shows that careful use of TMR can improve the reliability of micro-
computer systems, although he notes that because of the complexity of microprocessors
the additional TMR circuitry could be more unreliable than the microprocessor itself. This
research was carried out when the Intel 8080 microprocessor was popular. The Intel 8080
was one of the early 8 bit microprocessors containing in the region of 6,000 transistors.
Modern microprocessor systems such as the Intel ltanium, released in 2001, contains 3.1
billion transistors and do not use TMR, instead relying on error detection and correction
mechanisms [152].

3.3.3 Synchronised Redundant Systems

An important point to note with voting systems is that the modules need to maintain syn-
chronisation with each other. Independent systems can quickly fall out of synchronisation
simply due to small variation of clock rates.

The designers of the Space Shuttle’s primary computer systems took a different approach
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when using multiple redundant systems to provide fault tolerance [139]. The original
design was to use five separate systems all carrying out the same processing with a voting
mechanism. This configuration would allow two failures and still provide a majority voting
with the three maintaining systems [139].

During development of the systems the configuration evolved into four computers running
the same programs and maintaining synchronisation with the fifth computer providing a
backup that could be switched in to replace one of the others. A major issue with this
configuration was maintaining synchronisation. Varying clock rates between the computers
resulted in a rapid loss of synchronisation which required more frequent synchronisation
than originally envisaged. When events such as input, output or completion of a software
module occurred the computers would attempt synchronisation.

3.4 Fault Tolerance in Memory

Various schemes have been used to increase the yield of semiconductor memory devices,
from error correcting codes, single cell replacement during production, to 1-D and 2-D built
in self repair (BISR) strategies.

Chen and Hsiao (1984) [128] give a review of the state-of-the-art error correcting code
mechanisms in use at that time. Error correcting codes (EXCs) can extend the life of a
memory device by detecting and correcting data errors. The device will only fail when the
quantity of errors exceeds the ability of the ECCs to compensate.

In the early 1990’s all memory devices were designed with redundancy so that faulty cells
could be replaced using lasers and fuse/antifuse techniques within the production process
[153]. Chen and Sunada [153] present a structure that allows the memory to self test
and self repair outside of the production environment and without the need for external
equipment for intervention. Aichelmann [154] makes a review of ECCs and other fault
tolerant design strategies.

Kim et al. [155] propose a design where additional columns are added along with built in
self test (BIST) and built in self repair circuitry. When faulty cells are detected spare rows
can be brought into use by employing multiplexers. This 1-D self repair model has been an
active area of research by others [155H158].

The 1-D model has been further developed into a 2-D model where yield of semiconductor
memory devices is increased by adding spare rows and columns which can be used to
replace faulty cells in the main fabric of the device. When a primary memory cell is faulty,
either the row or the column of which it is a member is made obsolete and a spare row or
column configured to take its place. As the number of faulty cells increases the problem
of determining if there is a mapping of the spare rows and columns that can cover all
fault cells simultaneously is an NP-Complete Problem [159]. Various algorithms have been
developed to to determine an appropriate mapping [159-166].
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3.5 Fault Tolerance in Disks

Patterson et al. [167-169] present the case for RAID (Redundant Arrays of Inexpensive
Disks) as an alternative to the prevailing model of SLED (Single Large Expensive Disks).
They note that while the capacity of large disks had steadily increased there had been only
moderate increase in performance. The RAID concept was based on making use of disks
designed for the personal computer market.

The major issue with RAID disks is the failure rate as measured by MTTF. Patterson et al.’s
calculations show that an array of 100 disks have an MTTF of 300 hours, less than three
weeks, which only gets worse as more disks are added. This makes fault tolerance an
essential part of the design of the RAID model.

Gibson et al. [170] investigate various redundancy codes for use with disk arrays. In their
paper they note that disk support hardware will be subject to failure and may support a
bank of disks. They note that if disk parity groups are arranged orthogonally to disk groups
connected to common support hardware, then this will protect against failure of the support
hardware.

Blaum et al. [171] propose a scheme they call EVENODD which can be implemented as
standard RAID 5 disk controllers which protects against the simultaneous failure of 2 disks.

3.6 Fault Tolerance in Many-Core Systems

As discussed in designers have used a variety of strategies to protect single
and multi-core processors from faults including double modular redundancy, triple modular
redundancy, synchronised redundant systems and error detection and correction mecha-
nisms.

Homogeneous many-core systems offers the opportunity to develop and implement novel
fault tolerant strategies by utilising the inherent redundancy offered by the availability of
large number of identical processing elements on a single chip.

Lei et al. [172] propose a redundant core arrangement they call N + M which describes
a many-core array with a physical arrangement of N processing cores and M redundant
cores. The aim is to use firmware level reconfiguration of the available cores to present
a consistent and regular logical core topology of N cores to the operating system and
programming level. When all of the IV processing cores are fault free none of the M cores
are utilised. In the event of one of the IV cores failing, the cores would be reconfigured
to bring into use one of the spare M cores. This technique increases yields of many-core
chip, presenting IV functional cores, when up to M processing cores are faulty.
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3.6.1 Fault Recovery

In the context of this thesis fault recovery will involve the smooth migration from an existing
process mapping to a new mapping to achieve a performance improvement while minimiz-
ing disruption to the processing of the application. For fault recovery to be successful the
recovery mechanism will need to:

e Monitor performance of nodes and processors.

Identify when a fault occurs.

Migrate tasks from a faulty core to a spare core.

Search for new mappings.

In real-time migrate a process from one core to another to implement the new task
mapping.

3.6.2 Response - Slow Versus Fast

One of the objectives of the search algorithm will be to find mappings that exhibit a level
of fault tolerance. Fault tolerance in the case the many-core systemis protection against
various hardware failures. This is achieved by ensuring that unused idle cores are placed
close to every active processing core.

When fault is detected with a processing core the monitoring node will initiate a task
migration to the closest idle core. There is no need to search for alternative configurations
at this time, the only requirement when a core fails is to migrate the task to the nearest
available Idle core as soon as possible. This is a quick fix, but because the idle cores
should be evenly distributed across the core array, the task mapping should not appear
radically different.

Once the task migration has been completed resolving the immediate issue of fault recov-
ery the system can move on the the next stage which is searching for a new long-term
solution. Since the topology of the system has changed it is possible that there may
be more efficient alternative mappings. The evolutionary algorithm will search for new
mappings using the current monitoring data and network topology. If a suitable alternative
mapping is found then the Monitor will initiate a series of task migrations to implement the
new mapping.

3.6.3 Graceful Amelioration and Degradation

Hardware faults in processors, communications channels, and communication routers are
likely to cause immediate disruption to one or more processes. In these situations the
desire is for the many-core system to minimize the disruption to the system as a whole and
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take steps to reconfigure to compensate for the failure to enable the system to continue
functioning even if the overall performance is reduced. This is described as graceful
degradation.

Other fault conditions such as poor performance or high power usage indicate that parts
of the system, if not the whole system, is under stress. It is possible that these conditions
can be improved by suitable reconfiguration. For example a hot spot can be alleviated
by moving a task to a processor in a less used region of the array or sharing the work
among multiple processors. Migrating to a configuration that improves some aspect of
performance is described as graceful amelioration.

Many-core systems will have cores numbering hundreds or thousands. With so many cores
available, the objective is not to use all of the cores all of the time but rather to maximise
the performance of the system as a whole. Mappings of the application network to the
many-core array will not use all available cores ensuring that there will be spare cores
to recruit when a core fails. The spare cores provide the raw material for implementing
strategies to enable graceful degradation and graceful amelioration. This philosophy of the
managed underutilization of cores coincides with the need to maintain dark silicon.

3.7 Conclusion

This chapter has reviewed a range of approaches to fault tolerance used for a variety of
hardware.

This research will concentrate on the recovery phase making, the assumption that for each
scenario the fault has been detected, diagnosed and identified. Examples of possible
scenarios are the complete failure of a single core, failure of a communication link, failure of
a routing node, intermittent core faults and anticipated loss of a functioning core.. Examples
of performance related scenarios are communication bottlenecks, high power consumption
and sub-optimal performance.

This research will use a wider definition of faults than has been customary in previous
work. As well as actual hardware faults, conditions that can be interpreted as stress to the
system and can be alleviated by a change in configuration will also be considered to be
fault conditions.

Faults can be either hardware related faults such as:
e Processor hardware faults
e Communication channel faults

e Communication router faults

or performance related faults such as:

e Slow performance
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Excessive use of power

Generation of heat spots

Processor bottlenecks

Reduced fault tolerance

Errors in software are not included as faults in this research.

Many-core systems could be used to mimic approaches such as dual modular redundancy
or triple modular redundancy, however both these approaches require the backup modules
to be active, so increasing power consumption. The requirement for dark silicon is a result
of the need to reduce heat generation of the many-core system, so solutions that increase
power consumption are incompatible with this requirement.

The approach to fault tolerance of this thesis, which places spare cores strategically among
processing cores, also requires the spare cores to remain in a low-power standby mode
when not in use.
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3.7 Conclusion




Chapter 4

Core Fault Tolerance

This chapter will explore the core fault tolerance objective using a single objective evolu-
tionary algorithm to search for fault tolerant task mappings. Although any suitable search
algorithm can be used to search the solution space, the evolutionary algorithm approach
has been chosen because it has proved to be effective for searching the multi-objective
solution spaces that dominate this research.

The concept of core fault tolerance in a many-core array is to leave a proportion of the
cores unused, referred to as spare or idle cores so that when a core that is processing a
task, becomes faulty, the task can be migrated to one of the spare cores. The presence of

spare cores also create dark silicon, introduced in [Subsection 2.2.3]

4.1 Assumptions

Migration of a task to a spare core is a non-trivial task which is not within the scope of
this research, however it is assumed that the mechanism required to migrate a task will be
available. Since task migration will require the transmission of the status of the process and
associated local data to a spare core, the target spare core, and the cost of transmission
of information is proportional to the number of routing nodes that the information passes
through, it is assumed that the cost of migration is approximately equal to the number of
routing nodes between the failed core and the target spare core.

It is assumed that minimizing the distance between a failed core and a spare core will also
minimize the duration taken to migrate the task and restore processing thus minimizing
disruption to the processing.

Since the cost of migration is proportional to the distance between a failed core and the
target spare core, the cost of migration of the task from a processing core to a spare core
can be minimized by evenly distributing spare cores amongst the processing cores thus
minimizing the distance between each processing core and its nearest spare core.

This chapter will introduce a simple many-core model, evolutionary algorithm and support-
ing algorithms to place spare cores while minimizing the cost of migration.
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4.2 The Many-Core Array

The many-core architecture is a square lattice arrangement of R rows and C columns
of homogeneous computing nodes. Each node consists of a router that communicates
with its nearest orthogonal neighbours and a core attached to the router. Communication
between two nodes is via a link. Links are required to show the connections between
nodes, however the details of the communication links between nodes is not important
when considering the placement of spare cores. Communication links will be considered
in more detail in the next chapter.

Figure 4.1 — A 6 x 6 many-core array showing the coordinates of each node.

The many-core array A is represented as a tuple of the set V, of nodes and the set &, of
links:
A=V, &) (4.1)

Given that there are R, rows and C,, columns, the number of nodes and links are defined
as V, and E,:

Wa‘ =Va
= R,C, (4.2)
€a| = Eq

= Roy(Cy — 1) + (Ra — 1)C,

=2R,C, — R, — C, (4.3)
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The set of nodes is defined as:
Vo={v1,...,0m | m =V} (4.4)

With a node defined as an ordered tuple consisting of the row and column coordinates of
the node within the many-core array, which are also referred to as its location:

vn = (r,c)
= loc (4.9)
Where:
loc = (r,c) (4.6)

and:
r Is the row coordinate of node v,, | 0 < r < R,.

c Is the column coordinate of node v, | 0 < ¢ < C,,.

Row and column coordinates are defined above as beginning at 0 and location (0,0) is
arbitrarily assigned to the top-left hand core of the many-core array and location (R, —
1,C, — 1) refers to the bottom-right hand core of the many-core array.

The set of links is defined as:
Ea=A{e1,...,em | m=E,} (4.7)
A link is defined as a set of ordered tuples consisting of a source node and a target node:
en = (5,1) (4.8)

Where:
e, isalinkfromtheseté, |1 <n < E,.

S is the source node of link e,, from the set V, | 1 < s < V.
t is the target node of link e,, from the set V, | 1 <t < V.

Since the definition of the node includes its location, the source and target nodes of a link
also specify the locations of each end of the link. Figure illustrates a 6 x 6 many-core
array showing the coordinates of the location of each node and the links between nodes.

4.3 Application Process Graph

The Graceful Project concept, that this work uses, requires that an application program is
divided into a number of processes that can run independently with data flowing between
the processes. The resulting program model is an Application Process Graph which is an
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Directed Acyclic Graph, where the processes are represented by nodes and data flows
between processes are represented by edges.

An example of an application process graph with 26 processes application processes is

illustrated in

Since the application process graph is a directed graph, each edge has an arrow head
which specifies in which direction the data flows between the processes. Each node can
have data receiving inbound edges which are edges where the arrowhead of the edge is
attached to the node, and data sending outbound edges which are edges where the tail of
the edge is attached to the node. A node must have at least one edge which can be either
an inbound or an outbound edge; a node with no edges would be disconnected from the
application process graph so would not be part of the graph. For an application process
graph a source node is a node that has no inbound edges while a sink node is a node
that has no outbound edges. In this example there is a single source node and single sink
node.

Figure 4.2 — An application process graph for a 26 node APG in a
6x6 Many-Core Array

Nodes are arbitrarily arranged on the graph so that source nodes are on the extreme
left and sink nodes are on the extreme right, and data flows between nodes from left to
right. Nodes are grouped by ranks from left to right, each rank containing nodes which are
the same distance from a source node in terms of the largest number of nodes from the
source node to the nodes in the rank. Ranks are used to improve the aesthetic quality of
the visualisation of the graph but otherwise have no effect on the mapping process from

the application process graph to the many-core array. The graph in in has 12
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ranks.

The graph generator (see |Appendix A) assigns each node in a graph a unique identifier,
beginning with "P" followed by a sequential identifier, starting at 1, to ensure that each node

has a unique identifier representing the specific process which will be used throughout the
model.

Each edge has a source node and target node and is annotated with an integer value that
represents the traffic volume as a percentage of the bandwidth of the hardware link. It is
allowed for the traffic volume to be greater than 100, in which case at least two hardware
links will be required to carry the traffic between the processes.

The graph G is represented as a tuple of the set V, of nodes and the set &, of edges:
G = (Vy, &) (4.9)
The number of nodes and edges are defined as V,, and E:

Vy =Vl (4.10)

E, =&, (4.11)

The set of nodes are defined as:

Vy={v1,...,00 | 1<n <V} (4.12)

Where each node v,, has a single value, the process name that is the string 'Pn’ which
is the concatenation of the letter ’P’ and the value of n, that uniquely identifies the APG
process.

The set of edges are defined as:

Eg={e1,...,en |1 <n < Ey} (4.13)

A node is a set of ordered 3-tuples consisting of a source node, a target node and an edge
value representing the volume of traffic that will be generated by the source for transmission

to the target:
en = (s,t,d) (4.14)
Where:

e, isanedgefromthesetl, |1 <n < E,.

s is the source node of edge ¢, fromthe setV, |1 < s < V.

t  isthe target node of edge e, fromthe setV, | 1 <t < V.

d is an integer representing the traffic volume on edge e,, as a percentage of the
bandwidth of links in the many-core array.
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The traffic volume d, will be used in the calculation of the power metric described in
[Section 6.5||Network Power Metric and Objective,

4.4 Process Map

A process map or mapping is a data structure that, for each processing node of the
application process graph, gives the location of the core in the array that will run the
process. Cores that are running a process are given a task name that is the process
name from the application process graph. Many-core array cores that are not allocated a
process are spare cores and are considered to be idle so are given a task name of ’i’, while
failed cores are given a task name of 'f’. Figure [4.3]illustrates a 6 x 6 many-core array.

Figure 4.3 — A Process Map for a 26 node APG in a 6x6 Many-Core Array

Figure shows a process map for the application process graph in mapped to the

many-core array of

The process map has the same dimensions as the many-core array, given as R rows and

C' columns defined in

The process map M is represented as a set of nodes V,,,:
M=V, (4.15)
The number of nodes is defined as V,,, and is the same as V:
Vin = [Vl
=V,

= RnCim (4.16)
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Given that there are R,, rows and C,,, columns, the set of nodes are defined as:
Vin ={v1,...,0n | 1 <n <V, } (4.17)

A node is a set of ordered tuples consisting of a location which is the coordinates of the
corresponding node in the many-core array and a process name:

v = (1, ¢,p)

= (loc, p) (4.18)

Where:
loc = (r,¢) (4.19)

and:
vm Is @ node of the set V,,.

r Is the row coordinate of the node vy, | 0 < r < R,,, where row 0 is the top row.

c Is the column coordinate of the node v,, | 0 < ¢ < C,,, where column 0 is the
left most column.

p Is the process name of the APG process mapped to the many-core array node
at location (r, ¢) or, if no process is mapped to the many-core array node, the
value 7 representing a spare core | p € P, U {i}.

The location coordinates are illustrated in

4.5 Metrics and Objectives

Metrics are measurements of fundamental properties of the system that is being studied.
Here we are interested in measuring properties of a mapping of an application process
graph onto a many-core array. Objectives are used by a search algorithm to make a
comparative measure of fithess between mappings and often use a metric in the calculation
of the value of the objective.

For example, the rectilinear distance between two nodes in a many-core array is the sum
of the number of horizontal and vertical edges between the two nodes; this is a metric. A
corresponding objective could be to minimize the sum of the rectilinear distance between
all pairs of communicating cores. In this case, the metric measures the actual distance for
a single pair of communicating cores, while the objectives uses the metric to calculate a
single value for all pairs of communicating cores in the mapping.

This thesis will present four objectives along with their supporting metrics. These are:

e Core fault tolerance
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e Link fault tolerance
o Network power
e Excess traffic

This is only a selection of possible objectives for optimization of mappings for many-core
arrays selected to illustrate the work of this thesis.

The core fault tolerance objective is the subject of this chapter. The other objectives will be
presented in subsequent chapters.

4.6 Core Fault Tolerance Metric and Objective

Metrics are measurements of fundamental properties of the system that is being studied.
Here we are interested in measuring properties of a mapping of an application process
graph onto a many-core array. Objectives are used by a search algorithm to make a
comparative measure of fitness between mappings and often use a metric in the calculation
of the value of the objective.

For example, the rectilinear distance between two nodes in a many-core array is the sum
of the number of horizontal and vertical edges between the two nodes; this is a metric. A
corresponding objective could be to minimize the sum of the rectilinear distance between
all pairs of communicating cores. In this case, the metric measures the actual distance for
a single pair of communicating cores, while the objectives uses the metric to calculate a
single value for all pairs of communicating cores in the mapping.

4.6.1 Core Fault Tolerance

Problem Description
This section develops the metric for measuring the distance between cores and the objec-
tive, which makes use of the metric, that is used by the evolutionary algorithm.

Given a fault free many-core array with R rows and C' columns and an application process
graph with V,, processes where V, < RC, arrange the spare cores to minimize the cost of
task migration in the event of the failure of a processing core.

The cost of task migration will be defined explicitly in

4.6.2 Distance to Nearest Idle Core Metric

The distance to nearest idle core metric will be a measure of the distance between an
individual processing core and its nearest idle core. As stated in[Section 4.2} given an array
of R rows and C' columns, each node’s location can be given by a tuple, (r, ¢) representing
the row r and column c of the node relative to the top left-hand corner of the array. The
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(a) Distribution on a 4x4 Array

(c) Mapping on a 6x6 array with
weak core fault tolerance

Figure 4.4 — Examples of Distribution of Spare Cores

distance to nearest idle core metric, Mdnic,, ., is the distance between a processing core
at location p;,. = (pr, pc) and its nearest idle core at location i;,. = (i,,%.) and is defined
as the rectilinear distance between the location of the processing core and the location of

the idle core, given by [Equation 4.20

Mdnic(.cy = |(pr — ir)| + |(pe — ic)] (4.20)

Where:
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Mdnic(, .y = The distance to nearest idle core metric for the
process located at (r, ¢).

Dr = The row of the location of the process.

De = The column of the location of the process.

. = The row of the location of the nearest idle core.

le = The column of the location of the nearest idle core

The minimum value of the nearest idle core metric is 1 which is the distance when a
processing core is adjacent to an idle core.

4.6.3 Core Fault Tolerance Objective

The fault tolerance objective is to minimize the sum of the distances between each pro-
cessing core and its nearest idle core. When an idle core is adjacent to a processing core,
i.e. one step away, the fault tolerance objective value is defined as zero. When t steps are
required to reach the nearest idle core the fault tolerance objective value will be ¢ — 1 (In
other words, to obtain an adjacent idle core objective value of zero the metric value of each
process-idle core pair is reduced by one). This is an arbitrary choice made to ensure that
the lowest possible fault tolerance value for any array size is zero.

For example, (a) and (b) illustrate respectively, for 4 x 4 and 6 x 6 arrays, arrange-
ments of idle cores among processing cores where every processing core is adjacent to at
least one idle core, while [Figure 4.4c|illustrates a mapping which has weak fault tolerance
due to some processing cores having no adjacent idle core. The mapping [4.4a and
are assigned an objective value of zero, by the objective function, as no other distribution
of idle cores is considered to be any better for the purposes of core fault tolerance.

A fault tolerance cost of zero for the task map as a whole indicates that each processing
core is adjacent to at least one idle core. A processing core that has more than one
adjacent idle core is not regarded as having any additional benefit from the additional
adjacent idle cores. The core fault tolerance objective Jcore is given as:

R-1C-1 . . . .
Mdnic — 1, ifcore(r,c) is a processing core
Jeore = E g (re) (r,) P g (4.21)
=0 =0 |0, otherwise

4.7 Nearest Spare Core Search

The optimization process of the core fault tolerance objective for a mapping will require
searching for the nearest idle core to each processing core in each candidate mapping
examined by the search algorithm. For an array size of 6 x 6 and 28 processes and 1000
generations with a population of 100 then the number of nearest core searches during an
evolutionary run will be 28 x 1000 x 100 = 2.8 million searches where each search could
make as many of 28 x (6 x 6 — 1) = 1008 comparisons.
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Searching for the nearest core with a specific property is therefore worthy of examination
to develop an efficient algorithm. This section will discuss possible search methods.

4.7.1 Problem Statement

Given a processing node in a square lattice, develop an algorithm for efficiently finding the
nearest spare core the the processing core.

4.7.2 Method 1 - Exhaustive Search with Early Termination

An exhaustive search takes a processing core, searches through all the remaining cores
for idle cores and calculates the distance to each idle core, retaining the location with the
minimum distance. The search ends when an idle core with a distance of one has been
found or all cores have been examined. Using this method it is not possible to know if the
nearest idle core has been found until all cores have been searched unless an idle core
with a distance of one has been found, which is the minimum possible distance.

If it is assumed that the exhaustive search algorithm would process cores from the be-
ginning to the end of the data structure used to represent the cores then, in general, the
algorithm gives no preference to cores it is examining based on the distance of cores from
the processing core. If there are c cores in the array of which p cores are processing cores,
then p * (¢ — 1) core pairs will be examined unless there is an idle core adjacent to the
processing core. The number of comparisons will increase in proportion to increases of
both ¢ and p.

4.7.3 Method 2 - Concentric Diamond Search

A more efficient search strategy to find the nearest idle core to an processing core is to
examine all cores at a distance of one step away from the processing core, followed by
all cores with a distance of two steps and so on until all cores have been examined. In a
two dimensional mesh all cores that are a distance of n steps from the processing core
form a diamond shape centred around the processing core. Starting from the processing
core, the search proceeds by examining each core in a succession of concentric diamonds
of increasing size until either an idle core is found or all cores have been examined. The
worst case scenario is where the processing core is at one corner of an array and the only
idle core is in the opposite corner.

When discussing the diamond search pattern it is convenient to refer to the number of
steps from the processing core to the cores of a diamond as the radius of the diamond.
The coordinates of the cores in a diamond of radius n relative to an processing core can
be calculated using only the radius n.
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To determine the coordinates of all the cores in a diamond the mathematical concept of
a partition of an integer can be employed. A partition of an integer n is a set of integers
whose sum is n.

For example, if n = 3 then the partitions are {3}, {2,1} and {1,1,1}.

The number of integers in a partition are described as parts; so {3} is a partition of one
part, {2,1} is a partition of two parts and {1,1,1} is a partition of 3 parts. For this discussion
it is convenient to regard the partition of {3} as having two parts written as {3,0}.

If the order is important, then the partition is described as a composition. The compositions
for n = 3 are {3,0}, {2,1}, {1,1,1}, {1,2} and {0,3}. In this case we are working with a two
dimensional array so we are only interested in the two part compositions. Note, that this
method can easily be extended to d-dimensional lattices by using compositions with d
parts.

The two part compositions of 3 are {3,0}, {2,1}, {1,2} and {0,3} which can be interpreted as
coordinates of the side of the diamond that is in quadrant I of the Cartesian plane. The
Cartesian plane can be divided into four quadrants referred to by the Roman numerals
1,11, 111 and IV starting with quadrant I where x and y coordinates are positive and then
working anti-clockwise, where quadrant 11 has positive y and negative x, quadrant 111 has
negative y and negative x and finally quadrant IV which has negative y and positive x.

Given the two part compositions of 3 that are located in quadrant I of the Cartesian plane,
the coordinates of the points on the diamond in the other three quadrants of the Cartesian
plane can be obtained from the permutations of positive and negative values of the parts
of each composition. The negative and positive permutations for n = 3, treating zero as
a positive value, give quadrant I coordinates of (0,3), (1,2) and (2,1), (3,0), quadrant 1]
coordinates of (-1,2), (-2,1) and (-3,0) quadrant 711 coordinates of (-2,-1) and (-1,-2) and
quadrant I'V coordinates of(0,-3), (1,-2) and (2,-1).

In general, for a diamond of radius n there are 4n points which are a distance of n steps
from the core at the centre of the diamond.

If each of the twelve coordinates are added, in turn, to the coordinates of the processing
core then the coordinates of all cores on the diamond of radius 3 are obtained as shown in

The 2 part compositions of a given integer can easily be obtained by use of a simple
counting loop. The permutations of negative and positive values of each compositions are
also simple to derive. An algorithm can therefore easily calculate the relative coordinates
of all points on a diamond with radius n.

Since the above obtains coordinates of points in a 2-dimensional space it is easy to apply
to a 2-dimensional data structure representation. The relative coordinates can also be
applied to a 1-dimensional data structure representation of the 2-dimensional space with
appropriate mapping calculations.
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Diamond Search Pattern - Radius = 3
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Figure 4.5 — Diamond Search Pattern - Radius = 3

In the worst case scenario where the processing core is at one corner of an n x n array
and the only idle core is in the opposite corner then 2n? 4 2n candidate positions would be
calculated of which only n? — 1 are valid core coordinates that have to be examined.

The search ends when an idle core is identified or all cores have been examined.

4.8 Many-Core Evolutionary Algorithm

Previous sections (Section 4.2|describing the many-core model and describing

the metrics) are applicable to any search method suitable for exploring the solution space
of process maps.

The solution space for mappings using a single objective of core fault tolerance consists of
all the possible arrangements of 1, processes in an array with V,, nodes. The size of the
search space is the given by the number of permutations of V, processes within an array

with V;, nodes, given by [Equation 4.8|

Va!

P = v

(4.22)
An exhaustive search of the arrangements of processes in an array falls within the category
of NP-hard problems, so for even a moderately sized problem of 28 processes withina 6 x 6
array, the search cannot be completed using an exhaustive search.

At this point in the research core fault tolerance is the only objective, however, the remain-
der of the research will use multiple objectives required the exploration of multi-dimensional
solution spaces.

Evolutionary algorithms have proved to be an effective tool for searching solution spaces



102 4.8 Many-Core Evolutionary Algorithm

of a size that cannot be exhaustively searched in polynomial time. The process allocation
problem is NP-hard with the complexity increasing as a factorial of the size of the array
[173L1174]. An evolutionary algorithm is, therefore, a suitable tool for exploring mappings
of application process graph processes to a many-core array.

This chapter describes the evolutionary algorithm that has been designed to search the
solution space for many-core array mappings.

The evolutionary algorithm is composed of a collection of processes that run in a cycle
to manipulate the population of one generation to produce the population of the next
generation. Each of the processes will be explored individually as they are independent of
each other. With the exception of the process that generates the initial population, each
process takes as input a population which it manipulates to create a new population as its
output.

The individual elements of the evolutionary algorithm, listed below, will be discussed in the
remaining sections of this chapter.

e The Evolutionary Cycle
e Phenome and Genome

e Population Dynamics

4.8.1 Evolutionary Cycle

An evolutionary algorithm is a process by which a population is progressively changed
from one generation to the next to improve the fitness of individuals within the population.
The section explains how changes to the population, from one generation to the next, are
influenced through a collection of parameters.

4.8.1.1 The Cycle

The evolutionary cycle is implemented as a series of populations, summarised in[Table 4.1

The evolutionary algorithm is implemented as an evolutionary cycle, illustrated in [Fig-]
ure 4.6, which show the populations in the cycle and the processes that transform one
population into another. At the end of each evolutionary cycle, or generation, a new primary
population is produced which is also the starting point for the next evolutionary cycle. The
transformation processes and termination of the evolutionary cycle are controlled by the
evolutionary algorithm parameters.
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Table 4.1 — Evolutionary Algorithm Populations

Population Description
Initial The initial population which is provided to the evolutionary
cycle as a starting point for evolution.

Generation Zero The first primary population created by evaluating and sorting
the initial population and is the starting point for evolution.

Primary The sorted population that is the product of each evolutionary
cycle (and the starting point for the next cycle).

Intermediate The population created through cloning and genetic manipu-
lation of the primary population of the previous evolutionary
cycle.

Fitness Evaluated The intermediate population after the objectives have been
evaluated.

Initial Objective e Objective Intermediate
. . Evaluated - .
Population Evaluation : Evaluation Population
Population
- A
[
Olo
e
o|E
o3
o Selection
and
Mutation
Primary
Population

Figure 4.6 — Evolutionary Algorithm Cycle

4.8.1.2 Initial Population

The initial population is composed of a combination of engineered mappings (discussed in
[Subsection 4.8.3) and random mappings. The initial population is located in the top left of
Once the individuals of the initial population have been created their metrics are
evaluated, producing a fitness evaluated population and sorted to produce the generation
zero population, the first primary population. The size of the initial population is governed
by the population size parameter, P,.
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4.8.1.3 Generation Zero Population

The generation zero population is the result of the evaluation and sorting of the initial
population and is the first primary population which is used as the starting point of the
evolutionary process. The name generation zero is given to this population to distinguish it
from all other primary populations that are created through the evolutionary process.

4.8.1.4 Primary Population

The primary population is the sorted population produced at the end of each evolution-
ary cycle and is also the population that is produced on completion of the evolutionary
algorithm. The primary population is the population that is used as the starting population
for each evolutionary cycle. In the primary population is represented as the
green box at the bottom of the diagram. Outside of this section the primary population will
normally be referred to simply as the population.

The size of the primary population, P, is setto 10. On each iteration the primary population
is replaced by a new population of the same size.

4.8.1.5 Intermediate Population

The intermediate population is created by selection and mutation of individuals from the pri-
mary population. The creation of the individuals in the intermediate population, illustrated
in[Figure 4.7] is controlled by the following parameters, choose to create a new population
with the same size of the primary population (P, = 10).

Elite Individuals
The elite parameter, P, set to 2, is used to specify the minimum number of fittest individuals
of the input population that are copied directly to the new intermediate population.

Descendants

The number of individuals specified by the Parents parameter, P, set at 4, are selected
from the input population. The Descendants parameter, P; set to 4, determines how
many times each parent is copied and mutated before being added to the intermediate
population.

The size of the intermediate population is determined by the evolution parameters using

which limits the intermediate population to be the same size as the primary
population.

Q.= P.+ (P, x Py) (4.23)
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Figure 4.7 — Population Selection and Mutation, using 2 elite
individuals, 4 parents mutated twice each to create a population
of size 10.

4.8.1.6 Fitness Evaluated Population

Once the intermediate population has been created, the objectives for each individual need
to be evaluated in preparation for sorting the population. The fitness evaluated population
contains the same individuals as the intermediate population with the evaluated objectives

added to each individual.

4.8.1.7 Population Evolution Parameters

The size of the primary population and the intermediate population are determined by the

properties and evolution parameters given in

Table 4.2 — Population Properties and Parameters

Parameter Description

P The primary population

Q The intermediate population
P, Primary population size

Q. Intermediate population size
P, Number of elite Individuals
P, Number of parents

Py

Number of descendants
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4.8.2 Phenome and Genome

The phenome is a representation of where processes and idle cores are placed within the
environment of the many-core model. The genome is a representation used to carry out
manipulation to produce new individuals from existing individuals. The genomic represen-
tation can either be a direct representation of the phenome or an indirect representation
that requires a mapping, through the process of expression, to produce the phenome. Each
representation has associated benefits and disadvantages.

A particular genomic representation will have a its own correlation profile with respect to the
phenomic representation. Correlation describes how a mutation in the genome is exhibited
in the phenome. A good correlation is one where mutations in the genome will be exhibited
by corresponding changes to the phenome. A poor correlation is one where mutations
in the genome cause the phenome to exhibit changes that do not correspond well with
the changes in the genome, for example, where a single change to the genome results in
multiple and chaotic changes to the phenome. A good correlation makes the changes to
the phenome via the genome more controllable.

An advantage of using a coded representation is that random generation of genomes and
the genetic manipulation of genomes can be much simpler than manipulating the phenome
directly. In contrast the expression of a genome using a coded representation requires a
mapping to be carried out to express the phenome which needs to enforce any constraints
required by the phenome.

There are three properties of uniqueness that must be present in a phenome for it to
represent a valid mapping of an application process graph to a many-core array. The first
property is that each process is represented exactly once in the phenome; the second
property is that at most one phene is mapped to each node of the many-core array; and
the third property is that processes must only be mapped to non-faulty nodes. These
requirements must be enforced when creating phenomes either directly or through the
expression of a coded genomic representation.

4.8.2.1 Phenome

In the same way that a genome consists of a collection of genes, the phenome can be
modelled as a collection of phenes. A natural and programmatically simple method to
represent a phenome is to use a two dimensional array of phenes where the location of the
phene in the array is analogous to the location of the node in the many-core array so that
it is not necessary to specifically code the location of the node within the phene.

Each location in the array contains a tuple representing the status and name of the node.
The valid values for the status of the node is given in

Irrespective of the genomic representation the fitness is calculated using the phenome after
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Table 4.3 — Node Status Values

Status Description Name

i Idle node i

f Failed node f

p Processing node Process name

expression from the genome to the phenome has taken place.
lists the properties of phenome and genomes.

Table 4.4 — Phenome & Genome Properties

Parameter Description

P The phenome composed of the set phenes {p; ...pp}
P The number of phenes |P| in the phenome

Prows The number of rows of nodes in the phenome

P.ois The number of columns of nodes in the phenome
D(r.c) The phene at location (r, ¢) in the phenome

r The row where phene p, ) is located

c The column where phene p,. ., is located

G The genome composed of the set of genes {g1 ... g, }
Gn The nt" gene of the genome

A The set of alleles of a genome

4.8.2.2 Genome - Phenomic Representation

In order to keep the evolutionary algorithm simple, the genome will be a direct representa-
tion of the phenome. The next chapter will compare a variety of genomic representations
to establish which representation gives the best overall performance.

A genome that uses a phenomic representation has a one-to-one correspondence between
the genes in the genome and the phenes in the phenome which, in this case, is a two
dimensional array of genes. The expression of the phenome from the genome is a trivial
one-to-one mapping from the genes to the phenes.

The genetic alphabet consists of P, + 1 alleles, one for each processing node of the
application process graph and one to represent the idle condition. Each gene can be
any one of the alleles, but the genome as a whole must conform to the constraints for a
valid phenome defined in[Subsection 4.8.2]

Permutation

For a genome using a direct phenomic representation, the constraints defined in
need to be enforced by the genetic operators used to manipulate the genome.
Permutation involves swapping two randomly selected genes one of which must be a
process and second must be either a process or an idle core, which excludes the possibility
that either gene is in the failed state. The constraint that at least one gene must be a
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process ensures that time is not wasted on exchanging two idle cores, which has no effect
on the genome. Assuming that the parent gene is valid, swapping a pair of genes in the
manner described will guarantee that the new genome will be valid.

Mutation

Mutation is problematic because the genome can only have one copy of each allele.
Mutation, by definition, will transform one allele into another resulting in a genome that
will be missing one allele while having two copies of another. A repair mechanism would
be required to remove duplicates and add missing alleles. The complication of adding a
repair mechanism makes mutation unsuitable for a phenomic representation.

Crossover

Crossover has similar problems to mutation, although via a different route. If two parents
are chosen and portions of each parent are mixed to produce a genome of the same length
then it cannot be guaranteed that all the alleles will be unique. A repair mechanism would
be required to remove duplicates and add missing alleles. This makes mutation unsuitable
for a phenomic representation.

Correlation
As there is a one-to-one mapping between the genome and phenome, every change to the
genome will be mirrored in the phenome producing a perfect correlation between them.

Random Generation of Genomes

Random generation of genomes must enforce the constraints defined in[Subsection 4.8.2

This is achieved by first creating a genome which is filled with idle genes while ensuring that
any failures in the hardware map are reflected in the genome. The processes are retrieved
from the application process graph one at a time and replace a randomly selected idle
core. Taking processes from the application process graph ensures that each process is
represented in the genome exactly once. Ensuring a randomly selected gene is in the idle
state ensures that only one process is mapped to each node in the underlying hardware
map.

4.8.3 Engineered Mappings

Before evolution begins an initial population is required. An obvious method of producing
individuals for generation zero is to randomly map processing nodes to nodes in the many-
core array. While this may be an acceptable method in many situations, the aim here
is to improve upon random generation, motivated by the desire to improve the quality of
mappings obtained for a given computational effort. This section will present a collection
of deterministic algorithms to generate engineered mappings for inclusion in generation
zero. In general, generation zero will be a mixture of engineered solutions and randomly
generated solutions.

There are two properties of mappings that the engineered mappings will attempt to exploit.
The first is that, to attain good core fault tolerance, the processing nodes need to be evenly
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distributed across the many-core array; the second is that the power metric, introduced in
the next chapter, is minimized when pairs of communicating cores are close to each other.
As noted in[Section 4.3} application process graph nodes are numbered one rank at a time,
and since data flows from the low order ranks to high order ranks, preserving the order of
the nodes may help keep pairs of communicating cores close together therefore producing
mappings with lower than average power metrics.

The engineered solutions attempt to capitalise on these two observations by using algo-
rithms that control the distribution of processing nodes and the order in which array nodes
are selected for allocation of a process.

4.8.3.1 Random Placement

To create a random mapping, each processing core of the application process graph is
taken in turn and a random number generator is used to produce coordinates for an array
node. If the array node has an idle status then the processing node is mapped to the array
node. If the status of the array node is not idle then new coordinates are generated until
an array node one is found that is idle.

No specific knowledge of the application graph is required as each process can be placed
without reference to the other processes. The random placement of processes means that
pairs of communicating cores are as likely to be on opposite sides of the network as they
are likely to be next to each other. The average distance between v is expected to be
higher than the engineered solutions.

It is assumed throughout this section that there are at least as many idle cores in the
many-core array as there are application processes in the application process graph.

4.8.3.2 Engineered Mapping Concept

The concept for producing engineered mappings is to first determine a process distribution
pattern of processing nodes using a one-dimensional list, and then fill the nodes of the
array from the elements of the list using an array node ordering. The following sections will
first describe the the distribution pattern and the the array node ordering which when used
together produce a collection of engineered mappings.

4.8.3.3 Process Distribution Pattern

The process distribution pattern determines how the application process graph processing
nodes are distributed along a one dimensional list.

The algorithm starts with a one dimensional node distribution list that has one element rep-
resenting each node in the many-core array with each element initially representing an idle
core as shown in Then it uses a distribution method to place each processing
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node from the application process graph into the node list to produce a distribution pattern

as shown in[Figure 4.8b| and [Figure 4.8c]

(a) All idle Cores

1 2|34 5|6 |7 |89 |10 1112|1314 |15 ]| 16

P1 P2 | P3| P4 | P5 P6|P7 P8 |P9 P10/P11|P12] i [ [ [

(b) 12 Clustered processes

1 2, 3|4 |5 |6 |7 |89 |10|11]12]13 |14 |15 ]| 16

P1 P2 P3| i P4/ P5 P6| i P7 P8 P9| i |P10|P11|P12] i

(c) 12 Distributed Processes

Figure 4.8 — String Length of 16 Cores

Distribution
The distribution method can be either clustered or distributed:

Clustered means that each processing node is placed in the node list in consecutive
positions with no gaps until the list of application process graph processing nodes has

been exhausted. The result is shown in[Figure 4.8b

To distribute processing nodes evenly across the many-core array a calculation can be
made using the number of available idle cores in the many-core array and the number
of processing nodes from the application process graph to determine a cluster size of
consecutive list nodes that have processing nodes placed in them and the number of idle

cores between each cluster. The result is shown in

4.8.3.4 Array Node Ordering

The placement algorithm will control the order in which nodes in the array are visited for
the purpose of mapping processing nodes from the node distribution list. Throughout this
section the default first node to be considered is taken to be the top left-hand cornet of the

array number 1 in[Figure 4.9bjand|Figure 4.10]

There are four parameters, listed in [Table 4.5 designed to determine the order in which
nodes in the many-core array are visited. The parameters are used in combination to
produce a variety of orderings of the array nodes.
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Table 4.5 — Array Node Ordering Parameters

Parameter Description
Traversal Defines if nodes are scanned horizontally or diagonally
Transition Method of moving from one scanned line to the next
Direction Direction in which the scan starts
Orientation Positioning of first node

Orientation

Orientation defines the direction of lines of array nodes for scanning. The orientation is

either horizontal, as illustrated in or diagonal, as illustrated in

Transition

The ordering of array nodes is based on scanning lines of nodes, one line at a time. The
transition parameter determines how the scan proceeds from one line to the next when the
scan reaches the end of a line. Transition and can be either raster or snake.

Raster
The term raster is used here to refer to the process of scanning lines of nodes, one line
at a time and scanning each line in the same direction, for example from left to right. The

array in [Figure 4.93| illustrates a raster scan with horizontal traversal, while [Figure 4.104

illustrates a raster scan with a diagonal traversal.

If nodes are numbered in the order in which they are visited, then in each line neighbouring
nodes will have consecutive numbers. However, there will be a discontinuity at the end of
each line because the node with the next consecutive number is at the beginning of the

next line.
1= 2 = 3 — 4 1= 2 = 3 — 4
f ' {
5 > 6 7 — 8 8 = 7 +=— 6 = 5
f ' ¥
9 — 10 —~ 11 — 12 9 = 10 —~ 11 = 12
§ ' !
13 = 14 — 15 — 16 16 <= 15 <+ 14 |« 13
(a) Raster Transition (b) Snake Transition
Figure 4.9 — Scan transition for horizontal traversal
Snake

A snake scan differs from a raster scan in that, when the end of the line being traversed
is reached, the next node to visit is the node immediately below the one just visited and
the next line is traversed in the opposite direction to the one that has just been completed.
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This method of scanning lines ensures that each node visited is a neighbour of the previous

visited node as illustrated for a horizontal traversal in and a diagonal traversal
in[Figure 4.10b
1 3 6 10 1 3 | 4 10
{ { {
2 5 9 13 2 5 9 11
4 8 12 15 6 8 12 15
{ {
7 11 14 16 7 13 — 14 16
(a) Diagonal Raster (b) Diagonal Snake
Transition Transition

Figure 4.10 — Scan transition for diagonal traversal

Direction

The direction of a scan from the starting point can either be clockwise or anti-clockwise.
Changing the direction from clockwise to to anti-clockwise will not change the relative
position of mapped processing nodes, assuming all other parameters are unchanged, but
will produce a mirror image of the clockwise mapping. For the application process graph
defined in and process map defined in a pair of mappings that
are different only by symmetry will have the same metrics. However, when sources and
sinks external to the many-core array are added to the application process graph (see

Section 6.1) symmetrical mappings will no longer have the same metrics.

Rotation

Rotation determines where the starting corner is by specifying a rotation in as either 0,
90, 180 or 270 degrees. When the starting position is the top-left corner, the rotation is
0. A rotation of 90 will move the starting position the top-right corner. As discussed above
symmetry has no effect on the metrics when using the application process graph defined
in[Section 4.3|but will effect the metrics when sources and sinks external to the many-core

array are added to the application process graph in

4.8.3.5 Example Engineered Mappings

Combining the distribution patterns of[Subsubsection 4.8.3.3|with the array node orderings

of [Subsubsection 4.8.3.4|produces a total of 64 different arrangements of processes within

the many-core array. Due to rotations and reflections some of these arrangements will be
topologically identical, as discussed above. The arrangements can, in principle, be applied
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to any size of array, however the resultant diversity of mappings will not be evident in small
array such as 2 x 2 array.

shows the results of combining the distributed pattern of [Figure 4.8c| with an

array node ordering define by a diagonal orientation, snake transition, zero rotation and
clockwise direction of The process of combining the node distribution list
with the array node ordering, is the simple process of matching the reference numbers of
the node distribution list with the reference numbers of the array node ordering and then
placing the process from the list element into the array element.

Figure 4.11b| shows the results of combining the distributed pattern of with an

array node ordering define by a horizontal orientation, raster transition, zero rotation and

clockwise direction of |[Figure 4.9a

OO O
0RO ON I OSCSOS O
(a) Diagonal Snake (b) Horizontal Rasta

Figure 4.11 — Mappings generated by initial placement algorithms

The arrangement of processes in [Figure 4.11|are examples of mappings without sources
and sinks so any rotations and reflections that produce topologically identical arrangements
will have identical objective values.

The mappings in [Figure 4.12| show 4 examples of the possible 64 engineered mappings
for the application process graph illustrated in [Figure 4.2 with 26 processing nodes. The
parameters used to generate each mapping are given in the caption of the figures.

4.9 Experiments and Analysis

The experiments presented in this section are designed to ensure that the model and
evolutionary algorithm defined in this chapter can produce mappings that exhibit good core
fault tolerance for a range of array sizes, each with a range of application process graph
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(a) Horizontal, Raster, Clockwise, (b) Horizontal, Snake,
0, Distributed Anti-Clockwise, 270, Clustered

(c) Diagonal, Snake, Clockwise, (d) Diagonal, Snake,
90, Distributed Anti-Clockwise, 270, Clustered

Figure 4.12 — Examples of Engineered Mappings

sizes, as explained in[Subsection 4.9.2] A piece of information, of particular interest, that is

obtained from these experiments is the minimum discovered fitness for each combination of
array size and application process graph size and the computational effort required to find
the minimum discovered fitness. It should be noted that, due to the size of the search space
and the nature of evolutionary algorithms, the minimum discovered fitness may not be the
actually minimum fitness. For each minimum discovered fitness, statistics are collected
from multiple evolutions to determine how quickly the evolutions found the minimum discov-
ered fitness, in terms of computational effort. The results of these experiments will be used
to determine suitable sizes of array and application process graph for experiments in the
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following chapters. Finally, there is an exploration of a variety of methods for determining
when the evolutionary runs should be terminated.

Specifically, the experiments will:

e Determine the minimum discovered fitness for each combination of array size and
application process graph size.

e Discover the optimal application process graph size (see [Subsection 4.9.1) for a
range of many-core array sizes.

e Examine the computational effort required to find the minimum discovered fitness.

o Investigate the effectiveness of a variety of termination conditions for the evolutionary
algorithm.

4.9.1 Description and Assumptions

The effect of array size on the computational effort required for the evolutionary algorithm
to find a good, if not optimal, solution will be investigated; the results of which will be used
to determine practical array sizes for later experimental phases.

For any given size of array there is an maximum size of application process graph that can
be mapped to the processing cores while ensuring that each processing core is protected
by being adjacent to at least one idle core. The size of such an application process graph
can be considered optimal in the sense that smaller application process graphs will leave
more cores idle than are necessary for core fault tolerance and larger application process
graphs will leave some processing cores unprotected. For some optimal application pro-
cess graph sizes it will be possible to arrange processing and idle cores such that each
processing core is adjacent to exactly one idle core, while in other cases some processing
cores will be doubly protected by being adjacent to more than one idle core.

As the number of nodes in the application process graph decreases from the optimum num-
ber of nodes the problem of finding a mapping, where all processing cores are protected,
becomes increasingly trivial. An extreme example is when there are only two processes
which will both be protected when placed anywhere within an array with a minimum dimen-
sion of 2 x 2. When the number of processing nodes in the application process graph is
close to the number of cores in the array then there will be a corresponding small number
of idle cores. When the number of processes in the application process graph is greater
than the optimal for the array, some of the processing cores will be left unprotected while
the smaller number of idle cores reduces the number of unique combinations of locations
where they can be placed, although these combinations are repeated many times. Neither
of these scenarios pose interesting problems because finding an optimum placement for
the idle cores becomes increasingly trivial as difference between the number of processes
in the application process graph and the optimal application process graph size increases.
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Consider the case, where the number of processing nodes in the application process graph
is 50% of the number of cores, then the processing cores and idle cores can be arranged
in a chequered pattern. In the case each processing core is adjacent to two, three or four
idle cores depending whether the processing core is located in a corner, on an edge or
internally. This illustrates that with 50% of the number of cores being idle, all processing
cores will be protected by at least 2 idle cores, giving an initial lower bound the the optimal
application process graph size. As graph size increases above the 50% of the number of
cores, the mapping problem will become increasingly difficult. This analysis has been used
to guide the initial selection of graph sizes for each array as being from 50% of the number
or cores to a size of 2 nodes less than the number of cores.

4.9.2 Experiment Parameters

Array Size

Experiments will be conducted with array sizes from 4 x 4 to 8 x 8. The lower bound
of this range has been chosen on the basis that an array of size 3 x 3 does not present
an interesting problem for this research. By inspection, a placement of idle cores on a
3 x 3 array such that each processing core is adjacent to an idle core requires a minimum
of three idle cores for which there is only one possible arrangement while leaving only 6
cores available for processing. A 3 x 3 array is therefore limited both in terms of the size
fo application process graph that can be accommodated and the number and arrangement
of idle cores.

The upper bound has been chosen with respect to the processing time required to find
good solutions. The size of the problem, measured by the number of permutations of
placing a graph of V, nodes in an array of size R x V C'is proportional to RC'/(RC — V),
which increases rapidly as the array size and graph size increase. Since the basis of this
research is to develop an algorithm for manageable-sized regions that interact with each
other, the upper size of the problem has been chosen as an 8 x 8 array which presents
a sufficiently challenging problem for this research while keeping the computation effort
within acceptable limits.

The actual array size of a real many-core array will be determined at design time. It is
not expected that arrays of size greater than 8 x 8 will be materially different, from a
scientific point of view, from the array sizes studied, although the computation effort will
be significantly greater.

Application Process Graph Size

As discussed in[Subsection 4.9.1|the size of application process graphs has been chosen

to be in the range of (RC/2) nodes to (RC — 2) nodes. Experiments in this phase will be
used to explore whether these initial limits can be refined by increasing the lower bound
limit and reducing the upper bound limit, without loss of generality.
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4.9.2.1 Test Parameters

The following parameters were used for these tests:

Table 4.6 — Fault Tolerant Single Objective Test Parameters

Parameter Value

Array Size, R x C 4x4t08 %8

Graph size, V, BC to RC — 2

Number of evolutions 100

Static generations BELC x V,

Population size 10

Elite 2 fittest individuals cloned

Parents 4 fittest individuals used as parents
Descendants 2 from each parent via permutation
Mutation Rate Fixed single mutation

4.9.3 Minimum Discovered Fitness

The results of the experiments for array sizes 4 x 4 to 8 x 8 are presented as pairs of box
plots in figures [4.13|to the first plot showing the minimum fitness found by each of
100 evolutions and the second plot showing the number of generations before termination
of the same evolutions. Both diagrams also include the minimum discovered fitness of all
100 generations.

For the 4 x 4 array the minimum fitness flat box plot shows that all evolutions found the
same minimum value of fithess indicating that the problem is sufficiently tractable for the
evolutionary algorithm to find an optimal solution. This is borne out by the Generations to
Termination box plot which shows that all evolutions terminated within 40 generations.

The minimum fitness box plots for array sizes of 5 x 5 to 8 x 8 show a clear pattern, that for
application process graphs that have solutions with zero fitness, the range of fitness values
found is small and in many cases the algorithm found a solution with fitness of zero in the
first generation. Examining the box plot[Figure 4.15a] for the 6 x 6 array, there appears to
be an anomaly for the graph with 22 nodes, for the number of generations taken to find the
minimum discovered fitness, compared to graphs with application process graphs with 21,
23 and 24 nodes. This is explained by observing that the initial mapping algorithms work
better for some combinations of graph size and array size than for others. In the case of
the 6 x 6 array the initial placement algorithms finds zero fithess mappings for graphs sizes
of 21, 23 and 24 but not for a graph size of 22 nodes. This is illustrated by the mappings
(a), (b) and (c) in[Figure 4.18] This property of the initial mapping algorithms working better
for some combinations than other is further illustrated by the mapping of a 39 node graph
onto a 7 x 7 array, which places nodes in exactly the same pattern as seen in the infinite
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Figure 4.13 — Fault Free Mappings - 4x4 Array

plane as shown in

Application process graphs that have three or four fewer nodes than there are cores in the
array have flat box plots for minimum fitness indicating that there are a small number of
possible fitness levels. [Figure 4.18d| shows a mapping with the best fitness for a 32 node
graph on a 6 x 6 array, in which the idle nodes are each positioned at the centre of a
3 x 3 area of the array. The number of generations it takes the evolutionary algorithm to
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find the optimum solutions is also relatively low, which reflects the fact that the solutions

that can be found are found relatively quickly, which in turn indicates that there are a

large number of arrangements of idle cores that have the same minimum fitness. For a

given array size the minimum fitness increases smoothly, while the associated number of

generations required to find the minimum fitness is erratic. The erratic nature of the number

of generations required to find minimum fitness, as the graph size increases, for a particular

array size gives an indication of how difficult it is to find minimum fitness solutions, which
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is a reflection of how many minimum fitness solutions there are. Some combinations of
graph size and array size have many minimum fitness solutions, while other combinations
have few minimum fitness solutions.

Summary
The results of these experiments have allowed us to obtain the minimum discovered fitness
for each combination of array size and application process graph size. Although the
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minimum discovered fithess may not be the actual minimum fitness, the box plots showing
the distribution of minimum fitness found by each of 100 evolutions show a small range of
values, which is strong supporting evidence that the minimum discovered fitness is also
the actual minimum.

The number of generations is takes the evolutionary algorithm to terminate is erratic leading
to the conclusion that the most significant factor is the properties of the specific combina-
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tion of array size and application process graph size, and the number minimum fitness
mappings solutions each combination has. The greater the number of minimum fitness
mappings, the quicker the evolutionary algorithm will find one.

Mappings for application process graph with a size smaller than the optimum size, are
relatively easy for the evolutionary algorithm to find, often taking a few 10s of generations.
For this reason these are not considered interesting application process graph sizes for
use in later experiments.

The search for zero fitness mappings for the optimal size of application process graph is
generally harder than application process graph sizes one smaller or one larger than the
optimal size (the exception is the 8 x 8 array). Finding zero fithess mappings for the optimal
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size of application process graph is therefore a challenging problem for later experiments.
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(d) Best Fithess Mapping for 32
(c) Initial mapping for 24 nodes Nodes

Figure 4.18 — Selected Fault Free Mappings - 6x6 Array
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Figure 4.19 — Initial Mapping of 39 Nodes on a 7x7 Array
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4.9.4 Optimum Graph Size

The results presented in figures to show the maximum size of application process
graph, for each array size, for which the fault tolerance objective value is zero. These are
referred to as the optimum application process graph size for the array size which are listed

in[Table 4.7|along with the percentage of cores of the array that are idle. [Figure 4.21|shows

example mappings with zero fithess for the optimal application process graphs.

Table 4.7 — Summary of optimum graph size for zero fitness

Array Graph Percent
Size Size Idle

4 12 25.0
5 18 28.0
6 26 27.8
7 36 26.5
8 48 25.0
00 n/a 20.0

As a reference for the results obtained from the experiments, illustrates a
portion of an infinite plane with an ideal arrangement of idle cores where every processing
core is adjacent to exactly one idle core and each idle core protects exactly four processing
cores. The arrangement is a tiling of a cross shape with an idle core at its centre and a
processing core on each of the four compass points producing a pattern of idle cores which
are all separated by a chess knight’s move. Portions of this pattern are found in the all of
the mappings in To protect all processing cores In the infinite plane, only 20%
of cores are required to be idle.

The best arrangements discovered by the evolutionary algorithm is 25% of the cores being
idle, for array sizes where R and C' are multiples of 4. It might naturally be expected that
as arrays increase in size the percent of idle cores will tend towards the value of 20% of
the infinite plane. This, however, is not the case for the array sizes studied, with the lowest
% of idle cores being found in the 4 x 4 array and the 8 x 8 array consisting of four copies
of the 4 x 4 array.

The explanation can be found by examining the edges of the arrays. It is possible to select
a 4 x 4 portion of the infinite array where each idle core protects three processing cores
and each processing core is protected by exactly one idle core. For portions of the infinite
array of sizes 5, 6, 7 and 8, which have been studied, there are always processing cores on
the edge of the array that are unprotected. To protect these requires replacement of some
of the processing cores with idle cores together with a rearrangement. The proportion of
cores on the edges compared to the array as a whole is significant for small array sizes,
giving a high cost to the replacement of processing cores with idle cores when compared
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to the array size. This proportion reduces as the array size increases indicating that larger
arrays will have less than 25% of cores idle. A rough calculation indicates that the crossover
may occur with an array size of about 15.

For the 4 x 4 array there is only one arrangement of idle cores which achieve a fithess
value of zero. This arrangement is a subset of the idle core arrangement found in the
infinite plane of [Figure 4.20] The arrangement of idle cores for the 4 x 4 array is found in
all of the mappings of the larger arrays and can be seen five times in the 8 x 8 array.

Summary

For an infinite array the percentage of cores that need to remain idle to fully protect
the processing cores is 20%. For the array sizes used in these experiments the small
percentage of idle cores was 25%, which achieved for the 4 x 4 array and can therefore
be achieved for any rectangular array whose number of rows and columns of cores are
multiples of 4.
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A smaller percentage of idle cores may be sufficient for larger array sizes, although this
has not be explored in this work.
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(e) Minimum discovered fitness for na 8 x 8 array

Figure 4.21 — Minimum discovered fithesses for array sizes 4 x 410 8 x 8



Core Fault Tolerance 131

4.9.5 Evolution of a Mapping of a 26 Node Graph to a 6x6 Array

To illustrate how the evolutionary algorithm works this section presents an example of an
evolution from an engineered mapping through to a mapping with a zero fitness value to
illustrate how the evolutionary algorithm works. The mapping of a 26 node application
process graph onto a 6 x 6 many-core array was chosen because it a problem that is
large enough to be interesting and the solution was found reasonably quickly.
illustrates the mappings from the initial engineered mapping to the final mapping with a
fitness of zero.

The initial mapping was generated by the initial placement algorithm using a diagonal
snake pattern with distribution of idle nodes. This generates a mapping of fitness value
of 4 with nodes P1, P2, P9 and P14 all having individual fitness values of 1.

(a) Initial Mapping

The transformation from the initial mapping to the final mapping went through 6 transfor-
mations over 17 generations, while the other 11 generations produced cloned individuals
from the previous generations. The mappings show the 6 transformations with the nodes
that have been exchanged highlighted. provides a commentary of the interesting
points of the evolutionary chain showing at each point the generation, fithess and rank of
the individual that was part of the evolutionary chain.

Summary

Tracing through the evolution from an engineered mapping to a zero fithess mapping
has illustrated how the evolutionary algorithm search functions and the reason that each
individual in the chain was selected for the next generation.
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(f) Transformation 5 (g) Transformation 6

Figure 4.22 — Evolution of a mapping of a 26 node graph to a 6x6 array
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Table 4.8 — Summary of evolution of mapping of a 26 node graph to a 6 x 6 array

Gn Ft Rk Opr Description

0 4 2 Initial One of two mappings with the best fitness value of
placement 4 and ranked 2"¢ so that it will be cloned and used

as a parent.
1 4 1 Cloned With a rank of 1 this individual will again be cloned

and used as a parent.

2 4 3 Cloned With a rank of 3 this individual is is not cloned but is
used as a parent.

3 5 4 Descendant A descendant of the previously cloned individual, it
has a lower fitness than its parent but is ranked 4"
so will be used as a parent.

4 4 4 Descendant A descendant of the previous individual it is ranked
4t 5o will be used as a parent.

5 4 4 Cloned

6 3 1 Descendant  This is the first individual in this evolutionary chain
that has a better fitness than the generation zero
ancestor.

79 3 12 Cloned Cloned for three generations each with a ranking of
1or2.

10 3 1 Descendent  Having the same fitness as its parent, this individual
is ranked 2"? replacing its parent, ranked 37¢, as
one of the two elite individuals of this generation.

11 2 1 Descendent A further improvement in fitness.

12- 2 1-2 Cloned Cloned for five generations each with a ranking of 1

16 or 2.

17 0 1 Descendent  The final transformation of the genome resulted in

a jump in fitness from 2 to 0. Zero being the fitness
minimum value attainable the evolution stops here.
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4.9.6 Termination Condition

When using a single objective, strategies can be used to define the termination conditions
of the evolutionary algorithm to ensure that the computational effort is kept as low as
possible while being sufficient to find good solutions for the given objective. Termination of
the evolutionary algorithm by one of three conditions listed below has been investigated:

e Maximum computation effort expended
e Zero fitness found

e Termination parameter ¢, the number of generations the fithess remains static

An informed determination of a strategy for the selection of a suitable termination point in
terms of the number of generations ¢ is useful to balance the computational effort to find
solutions against the fithess of the solutions.

To understand the effect of termination parameter ¢, the evolutionary algorithm was run

using the parameter values described in [Subsection 4.9.2, but without the static genera-

tions termination parameter, allowing the algorithm to run until either the fitness is zero or
the maximum number of generations is reached. The data collected was then analysed to
determine the influence that a variety of termination conditions had upon the computational
effort used by the evolutionary algorithm.

The results are given in Tables to Descriptions of the values in the table columns
are given here:

The first three columns of each table are:

Table 4.9 — Termination Condition Array and Application Process Graph Size

Name Description

a The size of the array in terms of the dimension of one side of the array.

n The number of nodes in the application process graph being mapped to
the array.

fm The minimum fitness the evolutionary algorithm discovered (not necessar-

ily the minimum possible fitness).

Each table contains data for three termination conditions. Each termination condition has
the following columns:

The computational effort is defined as the total number of individuals the evolutionary
algorithm evaluated before termination. Note that for these tables computational effort
has been divided by 10 to enhance the presentation and readability.

Each table contains data for two of the six termination conditions which are:
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Table 4.10 — Termination Condition Column Descriptions

Name Description
tc The termination condition i.e. the number of generations the fitness
remains static before the evolutionary algorithm terminates.

% fim The percentage of evolutions that found a solution with the minimum
fitness.
Cef,, The average computational effort of those evolutions that found a mapping

with the minimum fitness. This figure ignores any evolutions that did not
find a mapping with the minimum fitness. It does not say anything about
the evolutions that failed to find a mapping with the minimum fitness. A
lower figure is more desirable, however, if no evolutions found a mapping
with the minimum fitness this value is set to zero.

cey The average computational effort across all evolutions. If a computational
effort budget is imposed on the evolutionary algorithm, then this figure can
be directly compared to the budget to determine if the termination condition
will keep the evolutionary algorithm within budget. If all evolutions found a
mapping with the minimum fitness this value is set to zero.

cer/% fm The total computational effort for all evolutions divided by the number of
evolutions that found a mapping with the minimum fitness. This figure gives
an indication of the cost of finding solutions with minimum fitness, however
it does not take into account the fitness of the non-minimum solutions. It
does not say anything about the fitness of the evolutions that did not find a
mapping with the minimum fitness. If no evolutions found a mapping with
the minimum fitness this value is set to zero.

|

The average fitness of all evolutions.

Each table contains data for three termination conditions. Each termination condition has
the following columns:

The different formulae for calculating the termination condition are distinguished by the rate
at which they grow as the number of nodes in the graph and the number of cores in the
array grow. The constants for the formulae have been chosen so that the values are near
equal for a 26 node graph on a 6 x 6 array. This particular combination of graph and array
size has been chosen because the 6 x 6 array is a suitable sized array of cores to apply
the fault tolerant mechanisms of the research and 26 is the largest graph which can be
mapped to a 6 x 6 with a fitness of zero.

Analysis of Results

In general increasing the number of generations of the termination condition increases
the number of evolutions that find a mapping with the minimum fitness (% f.,.), the cost of
finding each minimum value mapping (cey,,) and the average computational effort (ce;).
This is expected as the evolutionary algorithm is generating and evaluating more individ-



136 4.9 Experiments and Analysis

uals which increases the computational effort and the likelihood of finding more minimum
fitness mappings. The total computation effort for all evolutions divided by the number of
evolutions that found a minimum fitness (ce; /% f,»,) and the average fitness (f) tends to
decrease. These last two measures given the best indication that a higher termination

condition gives better value for the total computational effort.

A good illustration of the observed affect is the mapping of a 21 node graph onto a 5x5
array, |Table 4.13] which shows a 25% increase in the number of minimum value mappings
found in return for a 20% increase in total computational effort.

More significant than the absolute value of the initial termination condition, is the effect
of the dynamically changing termination condition. shows that, In most cases,
increasing the termination condition each time the fitness improves is a successful strategy
for find a greater number of minimum value solutions.

An example where the dynamic termination condition has not worked is where a 12 node
graph is being mapped to a 4x4 array, where both the dynamic and non-
dynamic conditions find only 33% of the minimum fitness mappings compared to the
control, that finds the minimum fitness in all 100 evolutions. This is a result of
the initial termination condition value of 48 being too low to be effective. The corresponding
termination condition of 150 in the k(n/a?) column, finds 65% of the minimum
fitness mappings. If the starting condition for the dynamic variant was also 150 then we
would expect it to perform much better.

The dynamic increase is achieved by taking the number of generations since the last
improvement in fithess and multiplying by 10. The value of 10 was chosen by making the
observation that each improvement in in fitness took between 5 and 10 times the number
of generations than the previous improvement in fitness.
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Table 4.11 — Termination Conditions

Description

Name

No Condition
kn:k=6
ka?: k=4

k(n/a?) : k =200

Dynamic : a.n

There is no termination condition dependent on the
number of generations the fithess remains static. Each
evolution continues until a fithess of zero is found
or the maximum number of generations has been
reached. This is the control group which shows how the
evolutionary algorithm performs when constrained only
by an arbitrary limit to the computational effort.

The number of generations that the fithess remains
static before the evolution is terminated is calculated as
the number of nodes multiplied by the constant 6.

The number of generations that the fithess remains
static before the evolution is terminated is calculated as
the number of cores, that is the square of the array size,
multiplied by the constant 4.

The number of generations that the fithess remains
static before the evolution is terminated is calculated as
the number of nodes divided by the number of cores,
multiplied by the constant 200.

The number of generations that the fithess remains
static before the evolution is terminated is calculated as
the number of nodes multiplied by the number of cores.

The initial number of generations that the fitness
remains static before the evolution is terminated is
calculated as the number of nodes multiplied by the
number of cores. As an evolution progresses and
the fitness improves, it becomes more difficult to
find a mapping with an improved fitness. To reflect
this the dynamic approach adjusts the termination
condition each time the fitness improves by taking
the number of generations evaluated since the last
improvement, multiplying by 10 and then replacing the
current condition if the new value is greater than the
existing value.
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Summary

The analysis of the effects of schemes to determine a suitable termination condition for the
evolutionary algorithm have shown that the initial value needs to be sufficiently large to find
the first improvement in fitness, after which the best result is to dynamically increase the
termination condition when the fitness improves. The simplest calculation for the initial
termination condition which gives a sufficiently high value to successfully find the first
improvement in fitness is to multiply the array dimension by the number of nodes in the
graph. The dynamic increase is achieved by taking the number of generations between
the last improvement in fitness and multiplying by 10.

4.10 Conclusions

The experiments presented in this chapter were designed to ensure that the model and
evolutionary algorithm defined in this chapter can produce mappings that exhibit good core
fault tolerance and determine suitable sizes of array and application process graph for the
following experiments.

Initial placement algorithms have been shown to be effective in producing mappings with a
good distribution of idle cores across the many-core array and will continue to be used in
later experiments to create the zero generation population along with random mappings.

Experiments have demonstrated that the evolutionary algorithm using the optimization
objective of fault tolerance was effective in finding mappings with minimum fitness values.
The evolutionary algorithm has also been able to find mappings with zero fitness for the
optimal combinations of graph sizes and array sizes.

An evolution has been traced from the initial mapping to its final zero fitness mapping
demonstrating the ability of the evolutionary algorithm to produce graceful amelioration in
terms of improving the fault tolerance of the many-core array.

Experiments have been able to identify which combinations of graph sizes and array sizes
are trivial or interesting problems. In general, when there are four or less idle cores there
are few unique solutions that are repeated many times so the evolutionary algorithm is able
to find a near optimal solution with relatively low computational effort. Also as a general
rule, for a given array size, the mapping problem is trivial for graphs with four nodes fewer
than the size of the optimal, zero fithess graph.

Experiments in the following chapters will use an array size of 6 x 6 which finding good
fault tolerant mappings is a sufficiently challenging problem for the evolutionary algorithm
while being small enough to make run time practical for performing large numbers of tests.
An application process graph size of 26 has been found to be optimal for a 6 x 6, being the
largest application process graph that has a fault tolerance fitness of zero.
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Chapter 5

Network Power

Having explored the ability of the evolutionary algorithm to find solutions that minimize the
objective of core fault tolerance, a second objective of network power is introduced with the
aim of finding solutions that simultaneously minimize both the core fault tolerance and the
network power objectives.

The fault tolerance objective of the previous chapter has the effect of evenly distributing
idle cores amongst the processing cores, which has the effect of pushing processing cores
away from each other. The power objective of this chapter will have the effect of bring
processing cores closer together to reduce the length of paths between pairs of communi-
cating cores. The effects of the fault tolerance and power objectives are conflicting which
gives an interesting solution space for multi-objective searches, compared to objectives
which are closely aligned.

Adding a second objective requires the expansion of the evolutionary algorithm to accom-
modate multiple objectives, which in turn requires a change to the evolutionary cycle.
ComPair is added to the many-core model, a sorting method for multi-objective solution

spaces (see [Subsection 5.4.1). Additional genomic representations are also added to the

evolutionary algorithm and an exploration of the parameters to control the behaviour of the
multi-objective evolutionary algorithm is carried out to establish the best combination of
genomic representation and evolutionary algorithm parameters to make the multi-objective
evolutionary algorithm as efficient as possible.

The calculation of the power objective requires the introduction of a new concept, the
CompPair, that is added to the many-core model.

When a search space has two or more objectives the solution space has a Pareto Front,
at set of solutions that are all considered to be equally good.

Problem Description

Given a fault free many-core array with R rows and C' columns and an application process
graph with V,, processes where V, < RC, arrange the processing cores and idle cores
to minimize the cost of task migration in the event of the failure of a processing core
while simultaneously minimising the overall amount of power consumed by network traffic.
Network power will be defined explicitly in
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5.1 Communicating Core Pair (ComPair)

A pair of processes from an application process graph connected by an edge will cause
data traffic to flow between the cores in the many-core array that the processes are mapped
to. The two cores in the many-core array where the processes are located are referred
to as a communicating core pair or ComPair. Since the application process graph is a
directed graph each ComPair will have a source node from where data traffic originates
and a target node, where the data is received for use by the target process. For this work,
the assumption is made that traffic will use a path of minimal length between the source
and the target of the ComPair subnet.

The ComPair is introduced in this chapter to support the calculation of the power metric
presented in ComPairs will also be used extensively in the calculation of traffic

metrics presented in

Definition: Given an edge of an application process graph and the source node and target
node of the edge, a ComPair consists of the two cores of the many-core array to which the
source node and target node have been mapped. The ComPair has a subnet that consists
of all the routing nodes and links between and including the node where the source core is
located and the node where the target core is located.

Between the source and target nodes of a ComPair there will one or more minimal length
paths, which are paths where each step in the path gets closer to the target node. In this
work metrics are based on minimal length paths.

Once an application process graph has been mapped to a many-core array there will be
as many ComPairs in the array as there are edges in the application process graph. Note
that a physical link of the many-core array may carry traffic from multiple ComPairs.

The properties of a ComPair are given in|Table 5.1|and those of a ComPair subnet inTable 5.2

As an example, two ComPairs that are created by mapping the application process graph

of [Figure 4.2|to a 6 x 6 many-core array, are illustrated in[Figure 5.1

Note that when discussing ComPairs, they will usually be referred to by the symbol @,
taken to mean any unspecified ComPair. When it is necessary to associate a ComPair
with an edge in the application process graph the ComPair will be referred to by the symbol
Q., where e represents the specific edge of the application process graph that generates
the ComPair in the many-core array.

The number of rows and columns in a ComPair subnet can be calculated from the source
and target locations using equations[5.1]and[5.2]

Ry =ty —s;| +1 (5.1)
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(a) Subnet for the ComPair with (b) Subnet for the ComPair with
source node P4 and target node source node P6 and target node
P19 P15

Figure 5.1 — ComPair and subnet examples. Source nodes are coloured light
orange, target nodes coloured dark orange and the subnets are bounded by a
dashed blue line.

Cy=lte —se| +1 (5.2)

The number of links in a ComPair subnet is given by |Equation 5.3

Qi =Ry(Cq—1) + (R — 1) (5.3)

The number of shortest length paths from the source node to the target node of a ComPair

subnet that is fault free is given by [Equation 5.4| as explained in If there are

faulty links in the subnet then the number of links can be calculated using the recursive
algorithm described in

(By — D(Cq — 1)

"= R, — e, - 1)

—1)!
i (5.4)

The path length of a ComPair in terms of the number of links on a shortest length path
between the source and target nodes of is given by

Py=(Ry = 1) +(Cg—1) (5.5)
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Table 5.1 — ComPair Properties

Name Description

Q. The ComPair representing edge e of the application process graph

Qs The source node of ComPair ()

Qioc, The location of the source node of ComPair ) within the array

Sy The row of the source location

Se The column of the source location

Q: The target node of ComPair @)

Qloc, The location of the target node of ComPair Q within the array

t, The row of the target location

te The column of the target location

R, The number of rows of nodes in ComPair

Cq The number of columns of nodes in ComPair ()

Q The path length of the ComPair in terms of the number of links on the
shortest path between the source and target nodes

P, the number of shortest length paths between the source and target nodes

Qq The network load for the ComPair taken from d,, for the edge e,, of the

application process graph that the ComPair represents

Table 5.2 — ComPair Path and Link Properties

Name Description
Py The set of unique shortest length paths between the source and target
nodes of the ComPair Q)

P, The number of shortest length paths in the set | P,|

Pn The nt" path of ComPair Q

Ly The set of links in the subnet of ComPair @)

L, The number of links in set | L, | in the subnet of ComPair Q
Iy The n*" link of ComPair Q

5.2 Link Criticality

The many-core array architecture described in uses a lattice of routers for
transmission of traffic through the network. Traffic from the source to the target of a
ComPair will be transmitted as a number of packets which will pass through a series of
routers, each with a buffer where received packets are temporarily stored before being
forwarded to the next router.

Link criticality is a method of categorizing the effect that the failure of a physical link can
have on traffic in a ComPair. The classification of a link is specific to a ComPair, so can
have different criticalities for each ComPair subnet that it is part of. A link is classified as
one of the three following types defined by the effect its failure will have on the transmission
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of data in the ComPair subnet of which is is part:
e Critical Links
e Significant links
e Normal links

Each of these three types of links will be explained below with reference the the graphs in
When developing the metrics it will become apparent that the number of paths
that use each link will be important in the calculation of the metric. The edges of the graphs
in[Figure 5.2) are labelled with the number of paths that use each link.

Critical Link
A critical link is a link where all paths from the source to the target pass through the link,
such that a fault will cause complete failure of communication. Figures and
illustrate subnets with critical links, shown in red, where the failure of a single link causes
complete communication failure. Traffic that passes through a critical link is described as
critical traffic.

If, for ComPair @, there are P, paths between the source and target nodes and there are

ln, paths through link [,,, then link [, is defined as a critical link by [Equation 5.6} i.e. when
the number of paths through the link is equal to the total number of paths between the

source node and target node of the ComPair.

Iy is critical < 1,, = P, (5.6)
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== ==

(a) Critical Link of length 1 (b) Critical Link of length 2

(c) Network with 2 Significant (d) Network with 3 Significant

Links Links

2@2@

(e) Network with a single Link fault and 5 Significant Links

2@2@2@

(f) Network with a 2 Link faults and 7 Significant Links
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(g) Network with 4 Significant (h) Network with a 4 Link faults
Links and 6 Significant Links

(i) Network with 2 Link faults, 2 Significant
Links and 1 Critical Link

Figure 5.2 — Networks illustrating Critical and Significant links

Where:
P, = The total number of paths of the ComPair subnet.
Iy = The I*" link of the Q; links in the ComPair subnet.
ln, = The number of paths through link I,, of ComPair Q.
@ = The number of links in the ComPair subnet.

Significant Link
A significant link is a link which is the only link from its source node and is a link where
only a (proper) subset of paths from the source to the target pass through the link i.e. not

all paths use pass through the link, as defined by [Equation 5.7}

I, is significant < (I, < P;) A (ls,,, = 1) (5.7)
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Where
P, = The total number of paths of the ComPair subnet.
In = The I*" link of the Q; links in the ComPair subnet.
ln, = The number of paths through link /,, of ComPair Q.
Q = The number of links in the ComPair subnet.
Sout = The number of outbound edges of source node [,
ls = The source node of link

A faulty significant link will sever the paths that use the link while still leaving one or more
viable paths that do not use the faulty link. Traffic that passes through a significant link
is described as significant traffic. A fault in a significant link will potentially cause some
packets to be lost where packets are stored in the buffers of routers that have become
disconnected from the target node due to the appearance of the fault. Figures and
illustrate subnets where there are significant links shown by orange arrows. Packets
will be lost when the routing node attempts to transmit packets through the link after the
link has failed.

A significant link exists when it is on the only path from its routing node to the target node
of the ComPair but the path it is on is not the only path between the ComPair. Failure of
a significant link will create a dead end path of arbitrary length causing the loss of packets
that travel down the "dead end". A router only has knowledge of the status of directly
connected links so each router will continue to route packets down the dead end until the
loss of packets is detected and propagated back up the path until the router at the head
of the dead end path is reached. The router at the head of the dead end will eventually
establish that packets are not being received through that path so will modify its behaviour
to only send packets down the alternative path, thereby maintaining communication. The
loss of a significant link will redistribute traffic to other links which may in turn create bottle-
necks and reduce the overall performance of the system. In some case, for example in
figures [5.2] (c), (d), (e), (f), (h) and (i), bit not (g), the loss of a significant link will have the
effect of changing the criticality of other links from significant to critical, making the network
vulnerable to further link failure.

Notice that a ComPair subnet will contain as least one critical link or two significant links.
This can be confirmed by considering the target node: if there is only one inbound link to
the target node then it must be a critical link, if there are two inbound links to the target
node then they must both be significant links since failure of either link will cause packet
loss.

Normal Link
A Normal Link is a link whose failure does not cause the loss of transmission of packets,
more specifically it is a link whose routing node has more than one outgoing link to the

target of the ComPair. A normal link is defined by [Equation 5.8

l,, is significant < (Is,,, = 2) (5.8)
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Where:
ln = The I*" link of the Q) links in the ComPair subnet.

lsout

ls

The number of outbound edges of source node I,
The source node of link [

Traffic that passes through a normal link is described as normal traffic. Figures[5.2¢|to[5.2]
illustrate subnets where normal links are shown by black arrows.

Failure of a normal link has no negative effect on the transmission of packets because the
routing node it is connected to has a choice of two links for the transmission of packets.
Given that the router has knowledge of the status of its directly connected links it is able to
transmit packets along the remaining healthy link when one link fails. Each of the two links
are on distinct, alternative paths from the source to the destination.

5.3 Network Power Metric and Objective

Communication traffic is a major contributor to power consumption in a many-core array.
The total traffic flow within the many-core array can be used as an approximation for power
consumed by communication traffic. This section defines a simple network power metric
and objective.

Problem Description

Given a mapping of an application process graph, with £, edges, to a many core array
and the corresponding £, ComPairs that this mapping creates, define a metric that gives
an approximation to the power consumed by the traffic generated by a ComPair and an
objective that gives a measure of the total power consumed by the network traffic for whole
many-core array.

The power consumed by traffic between a ComPair, for a given router/NoC architecture, is
a function of both the traffic volume and the distance in terms of routing nodes and links
that the traffic has to traverse between the source and target nodes. Reducing the total
network traffic of all ComPairs will reduce the power consumption of the many-core array.
The volume of traffic between each ComPair is determined by the application and cannot
be influenced by the many-core system whereas the distance the traffic has to travel is
dependent on the relative position of the source and target nodes of each ComPair, which
is under the control of the many-core system through task migration and remapping.

At this stage in the development of the metrics, a simple calculation based only on the
ComPair path length is preferred to a more accurate calculation involving the path length
and the traffic volume taken from the application process graph. A more accurate power
metric and objective will be developed in
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5.3.1 Distance Between Communicating Core Pairs

As a first approximation for power consumption due to network traffic, the power metric for
a simple ComPair is defined as the path length of the ComPair as defined by |Equation 5.5
in

The distance between a ComPair is the rectilinear distance between the source and target
nodes and, assuming minimal length paths, represents the number of links the data will
travel through from the source node to the target node. Faults on paths between the
source and target have no effect on the length of the path that the data will travel along,
providing the faults do not sever all paths between the source and target. For a ComPair
q with source location @), ) and target location of Q, .y the ComPair Path Length
metric (i.e the distance between the source node and the target node) M cppl, is given by

Mepply = |(sr — )| + |(sc — tc)| (5.9)

5.3.2 Simple Power Objective

The power objective is to minimize the total power consumption across the whole network.
A power consumption of zero is assigned to the power objective when the source and
target of a ComPair are adjacent, equivalent to the ComPair path length minus 1. If the
source and target nodes of every ComPair are adjacent then the value for the mapping will

be zero. The power objective is given in
E!I
Jsp =Y (Mcpply — 1) (5.10)
q=0

5.4 Many-Core Evolutionary Algorithm
To enable multi-objective search of the solution space, the evolutionary cycle of
has to be extended and additional genomic representations introduced.

The individual elements of the evolutionary algorithm, listed below, will be discussed in the
remaining sections of this chapter.

e Pareto Front Sorting
e The Evolutionary Cycle

e Phenome and Genome
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5.4.1 Pareto Front Sorting

Pareto front sorting is a method of dividing the individuals of a population into sets using
the values of the objectives, such that the individuals in each set are considered to be
equivalent and the sets themselves form a hierarchy. The individuals in each set are said
to belong to the same Pareto front while the Pareto fronts can be arranged in a ordered list
which are numbered, with the best individuals in the first Pareto front also referred to as
the Pareto optimal front (Pf1).

5.4.1.1 Definition of Pareto Front

Sorting a population into a series of Pareto front relies on the concept of dominance
between individuals in the population. Deb (1999) [175] credits Steuer (1986) [176] with
the following definition of domination:

For a problem having more than one objective function (say, f;,j =1,...,M)and M > 1),
a solution z(!) is said to dominate the other solution z(?) if both the following conditions are
true:

1. The solution z(!) is no worse (say the operator < donates worse and > denotes
better) than z(?) in all objectives, or f;(z) £ f;(x?) forall j = 1,2,...,M
objectives.

2. The solution z(Vis strictly better than () in at least one objective, or f;(z(1)) =
fi(x?)) for atleast one j € {1,2,..., M}.

The concept of dominance is then used to define Pareto fronts. A non-dominated Pareto
front is a set of individuals, all of which are not dominated by any other individual. If
the non-dominated set is removed from the population of individuals and designated Pf7,
then the new reduced population will have a non-dominated set of individuals, which can
be removed and labelled Pf2. This procedure can be repeated until all individuals of the
population have been allocated to a Pareto front.

The Pareto fronts so formed have a strict hierarchy where the individuals in Pf1 are better
solutions than those in Pf1 and so on. Individuals in Pf1 are considered better than those
in Pf2 because each individual in Pf2 is dominated by at least one individual in Pf1. Within
each Pareto front the individuals are considered to be equivalent, that is one individual
cannot be said to be better than another, based on the values of the objectives. The
individuals within a Pareto front are not all identical and there may be attributes of the
individuals, other than the objective values used in Pareto front sorting, that can be used
to differentiate the individuals.

A more formal definition of Multi-Objective problems, Pareto dominance, Pareto optimality,
Pareto optimal set and Pareto optimal front can be found in Wang et al. (2014) [177].
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5.4.1.2 Significance of Pareto Fronts

Pareto fronts are significant because they allow a set of individuals from a population to be
identified as better than the rest of the population. In the case of an evolutionary algorithm
obtaining the Pareto front of each generation is an important step in the evolutionary cycle
because the Pareto optimal front represents the best individuals from that generation. It is
important for the evolutionary algorithm to know which are the best solutions so that they
can be used to create the next generation via mutation.

Because the evolutionary algorithm requires the Pareto front to each generation to be
identified, Pareto front sorting is carried out once for each generation, making the efficiency
of Pareto front sorting an important topic. With a population of 100 and a 1000 generations
Pareto front sorting will be carried out at least 1000 times on a population of 100 individuals
during the evolutionary process.

Deb et al.’s paper of 2002 [178] presents the NSGAII sorting algorithm that requires in the
order of O(M N?) comparisons, where M is the number of objectives and NN is the number
of individuals.

Jensen’s (2003) [179] algorithm improves upon Deb et al.’'s NSGAII run-time with a run-time
of O(N (log N)M~1) in the worst case. However, Jensen makes an assumption that no
two individuals will have the same value for any of the objectives. However, when two
individuals share a value for one of the objectives the Pareto fronts calculated by Jensen’s
algorithm can be erroneousFortin and Parizeau [180} 181].

Fang et al., 2008 [181], developed a data structure that they refer to as a dominance tree to
avoid making unnecessary comparisons between individuals, with an estimated run-time
complexity of O(M N log N) with O(M N?) in the worst case.

Fortin and Parizeau (2013) [180] correct the problems and generalize Jensen’s algorithm
for the case where individuals share an objective value. The number of comparisons
required for Fortin and Parizeau’s algorithm are given as O(N(log N)) in the best case,
when every objective for every individual is identical, due to sorting the data as preparation
for the Pareto front sorting, O(N (log N)™~1) in the general case and O(M N?) in the
worst case.

Buzdalov et al. (2015) [182] proposed a number of modifications to Fortin and Parizeau’s
algorithm resulting in a proven number of comparisons of O(N (log N)*~1) in the worst
case.

5.4.2 Evolutionary Cycle

In this chapter the many-core evolutionary algorithm has been extended to a multi-objective
evolutionary algorithm, the implementation of which, allows for the selection of the objec-
tives to be controlled by parameters. Note that, if only a single objective is selected, as
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will be the case for early experiments, then the implementation will function as a single
objective evolutionary algorithm.

5.4.2.1 The Cycle

The evolutionary cycle is implemented as a series of populations, summarised in[Table 5.3

Table 5.3 — Evolutionary Algorithm Populations

Population Description
Initial The initial population which is provided to the evolutionary
cycle as a starting point for evolution.

Generation Zero The first primary population created by evaluating and sorting
the initial population and is the starting point for evolution.

Primary The population that is the product of each evolutionary cycle
(and the starting point for the next cycle).

Intermediate The population created through cloning and genetic manipu-
lation of the primary population of the previous evolutionary
cycle, possibly with the addition of a number of new randomly
created individuals.

Fitness Evaluated The intermediate population after the objectives have been
evaluated.
Sorted The fitness evaluated population sorted using a Pareto front

sorting algorithm.

Pareto Front Zero A population that, at the end of each cycle, is guaranteed to
(Pf0) contain the Pareto front obtained from all individuals from all
generations.

The extended multi-objective evolutionary algorithm is implemented as the evolutionary
cycle illustrated in [Figure 5.3|the additional population .

5.4.2.2 Initial Population

The initial population is composed of a combination of engineered mappings (discussed

in[Subsection 4.8.3) and random mappings. The initial population is located in the bottom
left of the Once the individuals of the initial population have been created,
their metrics are evaluated and the population is sorted to produce the generation zero

population, the first primary population. The size of the initial population is governed by the
population size parameter, P.,.
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5.4.2.3 Generation Zero Population

The generation zero population is the result of the evaluation and sorting of the initial
population and is the first primary population which is used as the starting point of the
evolutionary process. The name generation zero is given to this population to distinguish it
from all other primary populations that are created through the evolutionary process.

5.4.2.4 Primary Population

The primary population is the population produced at the end of each evolutionary cycle
and is also the population that is produced on completion of the evolutionary algorithm.
The primary population is the population that is used as the starting population for each
evolutionary cycle. In the [Figure 5.3|the primary population is represented as the green
box in the bottom right of the diagram. Outside of this section the primary population will
normally be referred to simply as the population.

The size of the primary population is determined by the population parameter, P,, which is
the minimum number of individuals copied from the sorted population, to create each new

primary population. If the population Pf0 (see[Subsubsection 5.4.2.8) becomes larger than

P, then the primary population is allowed to grow dynamically so it contains at least the
individuals of Pf0.

Initial Objective Fitness Objective _ Intermediate
Population Evaluation Evaluatg d Evaluation Population
Population
5 c
|2 S s
ol5 3 5|8
Ty >
5|° 3 2
Pareto PI0 + Pif
Sort and Sorted Selection Primary
of Fittest Population

Front .
Zero Select Population

Figure 5.3 — Evolutionary Algorithm Cycle

5.4.2.5 Intermediate Population

The intermediate population is created by selection and mutation of individuals from the pri-
mary population. The creation of the individuals in the intermediate population, illustrated

in[Figure 5.4} is controlled by the following parameters:
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Elite Individuals

The elite parameter, P, , is used to specify the minimum number of fittest individuals of the
input population that are copied directly to the new intermediate population. If the number
of individuals in Pf0 is more than the value of the elite parameter, then all the individuals of
Pf0 are added to the intermediate population.

Descendants

The number of individuals specified by the Parents parameter, P,, are selected from the
input population. The Descendants parameter, P;, determines how many times each
parent is copied and mutated before being added to the intermediate population.

Novel
The novel parameter, P,, determines how many new randomly generated individuals are
added to the intermediate population.

Primary Intermediate
Population Population
1 il _ ) ) 1 i1
2 i Elite Clones 5 112
3 i3 3 13
4 14 Parents 4 |14
5 §ib 7 5 | i15
6 6 _ 6 16
7 i7 7 |17
8 8 X 2 8 |18
9 i9 9 19
10 | 10 4>< 0 B0
Descendants 11 | i21

12 | 122

13 | i23

14 | 124

15 | 125

S_ 16 | i26

17 | i27

Novel 18 | i28

= 19 |29

| 20 |i30

Figure 5.4 — Population Selection and Mutation, using 4 elite
individuals, 6 parents mutated twice each and 4 novel individuals,
to create an intermediate population of size 20.
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The size of the intermediate population is determined by the evolution parameters using
Since the number of individuals regarded as elite is the greater of the elite
parameter or the number of individuals in Pf0 , the intermediate population is not limited
the intermediate population to be the same size as the primary population.

P. + (Py x Py) + Py, if P, > |Pf0|
Q. = (5.11)
|PfO| + (P, x P;) + P,, otherwise

5.4.2.6 Fitness Evaluated Population

Once the intermediate population has been created, the objectives for each individual need
to be evaluated in preparation for sorting the population. The fitness evaluated population
contains the same individuals as the intermediate population with the evaluated objectives
added to each individual.

Some of the objectives, for example excess traffic, require detailed analysis of the volume
of traffic that flows through each link in each ComPair making evaluation a lengthy process.

5.4.2.7 Sorted Population

Pareto front sorting is a method of dividing the individuals of a population into sets using
the values of the objectives, such that the individuals in each set are considered to be
equivalent and the sets themselves form a hierarchy. The individuals in each set are said
to belong to the same Pareto front while the Pareto fronts can be arranged in an ordered,
numbered list with the best individuals in the first Pareto front denoted by Pf1.

The Pareto front sorting algorithm takes as input the fitness evaluated population and
produces as output the sorted population.

The sorted population is used as input into the process that selects the fittest individuals
to produce the primary population. The process of selecting and copying individuals to
the primary population must ensure that when the Pareto front is complete the individual
remain sorted. This ensures that the selection and mutation process that creates the
intermediate population does not need to sort the population of individuals.

5.4.2.8 Pareto Front Zero (Pf0)

In the evolutionary cycle it is possible that points on Pf1 of one generation may be omitted
from the population of the next generation even though they would qualify for inclusion of
Pareto optimal front of the new generation. This happens when the number of points on
the Pareto optimal front is greater than the number of elite individuals, P., then some of
the points on the the Pareto optimal front will be lost when the elite individuals are copied
to the intermediate population. It is also possible that after a large number of generations
the number of points on the Pareto optimal front exceeds the primary population size.
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As it is undesirable to lose any individuals from the Pareto optimal front without them first
being dominated by a new individual a separate population contains all the points from
the Pareto optimal front regardless of how many points are on the front. This additional
population has been given the name Pareto Front Zero (Pf0) to distinguish it from Pf1 of
each individual generation.

Pf0 is maintained as an additional population to the primary population. Once the inter-
mediate population has been sorted and the individuals on the Pareto optimal front are
copied into Pf0. Pf0 is then subjected to a Pareto sort to determine which individuals are
still in Pf1. Only the individuals on the Pareto optimal front of PfO are retained. All other
individuals are removed from Pf0.

5.4.2.9 Population Evolution Parameters

The size of the primary population and the intermediate population are determined by the
properties and evolution parameters given in

Table 5.4 — Population Properties and Parameters

Parameter Description

P The primary population

Q The intermediate population
P, Primary population size

Q. Intermediate population size

P, Number of elite Individuals

P, Number of parents

Py Number of descendants

P, Number of novel Individuals

P, Number of non-viable individuals created before abandonment of a
process that creates new individuals

5.4.3 Phenome and Genome

In addition to the genome using a direct phenomic representation described in[Subsubsec-|
tion 4.8.2.2] this section describes an additional two genome representations are added
here which are then compared to original representation.

5.4.3.1 Genome - String Representing Absolute Position

Genomic Representation

This representation is based on the typical genomic representation that uses a string of
bits to represent the genes. For programming simplicity, integers are used in preference to
a string of bits to represent a gene, so that the genome is represented by an ordered list
of integers. The length of the list, the number of genes in the genome, is the number
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of processes in the application process graph, V,, so that each gene in the genome
represents a specific process from the application process graph. The processing nodes
of the application process graph are numbered sequentially, so each gene in the list
will represent the corresponding process in the list of processing nodes, ensuring that
each process is represented exactly once in the genome. The alleles of the genetic
alphabet represent the position of the gene in the phenome so consist of the set of numbers

{1,2...,P}, where P is given by |Equation 5.12

P: ‘P‘ :Prows'Pcols (512)

Phenomic Representation

The value of each gene is an allele from the genetic alphabet which, as defined above, are
integers that represent each position in the array. The alleles, through expression of the
genome, translate to a two dimensional Cartesian coordinate within the phenome. Given a
phenome P composed of the set of phenes {p; ...pp}, the Cartesian coordinates of the
phene in the phenome can be calculated from the gene value using the formulae given in

equations5.13|and [5.14]

¢ = gn (mod Pyoys) (5.13)
gn — C

= 14

" Pcols (5 )

An example of mapping 12 process to a 4 x 4 array is illustrated in

Gene Allele Node [ P1 i P2 P3
1 1 0,0

2 3 02

3 4 0,3

4 5 1,0 [ P4 P5 P6 i

5 6 1,1

6 7 12

7 10 21

8 11 2.2 [ P7 P8 P9 |
9 12 23

10 | 13 3,0

11 | 14 | 31

12 | 16 3,3 (P10 P11 i P12

Figure 5.5 — Genome Absolute Position Mapping

Other than for the special case where the number of processes in the application process
graph is the same as the number of nodes in the many-core array, the length of the gene
will always be less than the number alleles in the genetic alphabet. An allele can appear
in a single gene, in multiple genes or in none of the genes. The value of the each gene is
interpreted as the preferred target phene of the phenome. If the target phene is unavailable
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because it either has a failed status or already has a process mapped to it then a search
is made for the nearest idle core which ensures that expression of the genome results in a
valid phenome.

Permutation

Permutation, in this representation, does not affect the alleles represented in the genome,
it can only reorder those alleles that are in the original genome. The location of idle cores
and processing cores remain unchanged, while the processes are rearranged among the
processing cores. This will limit the genetic diversity reducing the ability of this genetic
operator to produce only a fraction of possible mappings.

If all alleles are unique then, selecting and swapping two genes will cause corresponding
two phenes in the phenome to be swapped, giving good correlation.

When an allele appears more than once in the genome the first allele will map to the
preferred target phene. Each time the same allele appears in the genome the target phene
will not be available, having already been used. The allele will therefore be mapped to the
nearest available phene which will cause a larger change in the phenome.

If all genes have the same allele, then swapping a pair of genes will have no effect giving
poor correlation.

If only one allele is represented in the genome then all but one phene will be relocated
away from the preferred target which is likely to produce very poor correlation between the
genome and the phenome.

Permutation has poor correlation and poor genetic diversity, making this an unsuitable
genetic operator.

Mutation

Mutation is implemented by randomly selecting a gene and then randomly selecting a new
allele for the selected gene. If the new allele was not present in the original genome,
then the expression of the mutated genome will produce a phenome where a process has
been swapped with an idle core, giving good correlation. If the new allele already exists
in the genome then the expression of the mutated genome is likely to produce a phenome
exhibiting multiple changes, giving poor correlation.

Figure 5.6/ shows how a single mutation, where the gene for process 8 has been changed
from 11 to 14, results in process 8 being located at (3, 1) which in turn causes process 11
to be relocated to position (3, 2), resulting in three phenes being altered.

Crossover

Crossover can be implemented by selecting two parents and randomly selecting sections
of each genome to combine. The difficulty with this genetic operator is that there will be little
evidence of either parent in the resulting phenome. The first block of alleles will produce a
recognisable correspondence with the phenome for the parent, however each subsequent
block of genes will become increasingly "scrambled" in the phenome as duplicate alleles
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Figure 5.6 — Genome Absolute Position Mutation

are discovered and relocated giving particularly poor correlation. For this reason crossover
is not considered to be a reasonable genetic operator to use.

Correlation

As noted above the correlation between the genome and phenome is not fixed, but is
dependent on the diversity of alleles in the genome, the position of the gene that is changed
and the genetic operator used to produce new individuals. Consideration of the above
genetic operators leads to the conclusion that mutation will maintain the best diversity of
alleles and the best correlation between the genome and phenome.

Even when mutation is used, many mutations will have poor correlation between the genome

and phenome.

5.4.3.2 Genome - String Representing Relative Position

Genomic Representation

The string representation with relative positioning has the same length of the genome and
uses the same alphabet of alleles that are used by the absolute positioning genome. The
difference between the two representations is in the interpretation of the values of alleles.
In the relative positioning representation, the alleles represent the number of available
positions from the previously placed process to the placement of the current process.

Phenomic Expression

For the first gene in the genome, the phenome is scanned, starting from position (0, 0) of
the phenome, for phenes containing the idle phene which can be replaced by a process
phene. Counting the first idle phene as 1, idle phenes are counted until the count reaches
the number corresponding to the value of the allele in the gene. The phenome is scanned
using a left to right raster scan and when the last phene has been scanned the scan wraps
around to continue at (0,0). The phene, thus found, has the idle phene replaced by the
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Figure 5.7 — Genome Relative Position Mapping

process phene represented by the position of the gene in the genome.

After the first gene is expressed, the next gene is similarly expressed but with the start
position in the phenome being the phene immediately after the phene that has just been
replaced with a process.

A change of allele of a gene will change the place where the process is placed within
the phenome. It will also affect the placement of all remaining processes which results in
all genetic operators producing poor correlation. illustrates a relative position
genome that produces the same phenome as the absolute position genome in

Gene Allele Node P1 P11 P2 P3
1 1 00
2 2 02
3 11/03
4 1 1,0 P4 P5 P6 :
5 1 1,1
6 1 12
7 | 3 |21
8 4 22 P12 P7 i i
9 1 23
10 1 3,0
1 1 3,1
12 | 2 133 i P8 P9 P10

Figure 5.8 — Genome Relative Position Mutation

Genetic Operators

As explained above, all genetic operators produce poor correlation due to the fact than any
change to a gene in the genome will affect the expression of all remaining genes in the
genome. Consequently there is little to choose between the genetic operators. To allow a
comparison with the absolute position genome the mutation operator will be used and will



170 5.5 Exploring Evolutionary Algorithm Parameters

function identically to the mutation operator of the absolute position genome.

shows the effect of a mutation for process 8 from 1 step to 4 steps. The
relocation of process 8 causes all remain processes (9-12) to be relocated resulting in
six phenes being changed. This example illustrates how a single mutation in the genome
can have a significant effect on the phenome giving poor correlation.

5.5 Exploring Evolutionary Algorithm Parameters

This set of experiments are designed to explore the parameters that control the evolution-
ary algorithm to establish a suitable set of parameters for later experiments.

It is important to select a combination of genomic representation and associated parame-
ters that maximise the efficiency of finding high quality solutions. The selection of genomic
representation and the values of parameters used by the evolutionary algorithm can signifi-
cantly affect the EA’s ability of finding good solutions within an acceptable time frame. Initial
experiments are designed to guide selection of the genomic representation and establish
appropriate parameters for the evolutionary algorithm.

The number of combinations of evolutionary parameters is so large that it is impossible to
exhaustively test all the combinations of parameters that are of interest. The order in which
the parameters are explored is, to some extent, arbitrary. The approach taken is to explore
combinations of a small number of related parameters while keeping the other parameters
fixed, use the results to select a set of values that appear to work well together, then fix
these parameters and move on to another set of related parameters to explore.

The evolutionary algorithm will be used in single objective mode for both core fault tolerance
and network power to explore combinations of population size, number of generations and
genome representation to determine parameters that are appropriate for both objectives.

5.5.1 Core Fault Tolerance Objective

For each combination of graph size and array size there is a minimum discovered fitness
for the core fault tolerance objective that the evolutionary runs can find sufficiently often to
make this a good indicator of the performance of the evolutionary algorithm parameters.
This allows the results of these experiments to be expressed in terms of the number of
evolutions that found the minimum discovered fithess. The number of evolutions that find
the minimum discovered fitness is represented by f,,.

The result tables for the core fault tolerance experiments will use the column headings

which are explained in

The application process graph used in this set of experiments is illustrated in
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Table 5.5 — Explanation of Table Columns

Column Description

Evols: The number of evolutions.

Gens: The number of generations.

Pop: The population size.

EA: The genomic representation rd=Random; ph=phenome, sa=string;
absolute position; sr=string, relative position.

mr: The mutation rate m=fixed rate; g=Gaussian distribution; with the following
number r representing the maximum mutation rate.

a: The size of the array in terms of the dimension of one side of the array.

n: The number of nodes in the application process graph being mapped to
the array.

fm: The number of evolutions that found the minimum possible fitness.

% fm: The percentage of evolutions that found a solution with the minimum
fitness.

cey, - The average computation effort of those evolutions that found a mapping

with the minimum fitness. This calculation ignores any evolutions that did
not find a mapping with the minimum fitness. It does not say anything
about the evolutions that failed to find a mapping with the minimum fitness.
A lower figure is more desirable.

amd: The absolute mean deviation of the computational effort.

sd: The standard mean deviation of the computational effort.

Figure 5.9 — Graph ‘’dag0026’ - A 26 Node Application Process Graph

5.5.1.1 Effect of Population Size with Core Fault Tolerance Objective

The first exploration is to determine the effect of variations in the number generations and
population size, while keeping the total number of evolutions constant. A mutation rate of
m1 (a single mutation) is used in theses experiments.

Seven combinations of generations and population size are used, while keeping the num-



172 5.5 Exploring Evolutionary Algorithm Parameters

Table 5.6 — EA Parameter Exploration Test Parameters

Parameter Value
Environment 6x6
Array Size 6x6
Graph size 26
Graph dag0026
Evolutions 100
Individuals 100,000
Elite The greater of 10% of the population or all individuals in pf1
Parents 20%
Descendants 4

Novel 10%
Mutation m1

ber of evaluated individuals fixed at 100,000. Fixing the total number of evaluated individu-
als imposes a computational budget on the evolutionary process, which will be necessary
in an embedded system - the target platform for this work. A fixed computational budget
also ensures that the experiments are comparing like for like so that direct comparison of
the results is valid. The number of evolutions is set to 100 for the collection of statistical
data. The combinations of generations and population are tested against each of the three
genomic representations using a fixed single mutation to produce new individuals from a
parent.

A random generation of 100,000 individuals is included as a benchmark to ensure that the
evolutionary algorithm performs better than random generation.

The evolutionary algorithm parameters used are given in and the results are
given in table[Table 5.7,

The random generation of 100,000 individuals failed to find the minimum value for core fault
tolerance, while all of the evolutionary algorithm experiments did find the minimum value.
One evolutionary algorithm experiment (relative positioning phenome with population size
10) found the minimum value in 40% of evolutions, which appears to be an anomaly
compared to all the other experiments that found the minimum value in at least 86% of
evolutions. This confirms that the evolutionary algorithm is significantly better than random
generation and that there is sufficient randomness in the evolutionary algorithm search of
the solution space to find good solutions.

The statistical measures of absolute mean deviation (AMD) and standard deviation (SD)
generally follow the average computational effort so, to compare experiments, only the
percentage of experiments that found the minimum value and the average computation
effort that it took to find the value need to be considered. The difference between AMD and
SD is only in the magnitude of the values; they are identical for the purposes of comparing
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Table 5.7 — Effect Population Size with Core Fault Tolerance Objective

Evols Gens Pop |EA mr|a n | fn, %fm ce, amd sd
100 1000 100 | rd m1 |6 26| O 0 0 0 0
100 10000 10 | ph mi1 |6 26| 93 93 3357 4251 9876
100 5000 20 | ph m1 |6 26| 100 100 6425 5813 9504
100 2000 50 | ph m1 |6 26| 99 99 8776 8182 12336
100 1000 100 | ph m1 |6 26| 96 96 11411 10133 15370
100 800 125 | ph m1 |6 26| 95 95 15746 16100 21613
100 500 200 | ph m1 |6 26| 86 86 15207 15256 19696
100 400 250 | ph m1 |6 26| 88 88 20474 19266 23977
100 10000 10 | sa mi1 |6 26| 90 90 6640 7099 11282
100 5000 20 | sa m1 |6 26| 86 86 2679 2482 3811
100 2000 50 | sa m1 |6 26| 95 95 2395 1614 2432
100 1000 100 | sa mi1 |6 26| 99 99 5628 5326 11033
100 800 125 sa m1 |6 26| 99 99 5284 4303 9687
100 500 200 | sa mi1 |6 26| 98 98 6259 4507 9261
100 400 250 | sa ml1 |6 26| 99 99 4619 1648 2758
100 10000 10 st mi |6 26| 40 40 23866 21564 26501
100 5000 20 | sr ml1 |6 26| 95 95 19841 18341 23530
100 2000 50 sr mli |6 26|100 100 11714 9312 14218
100 1000 100 | sr m1 |6 26| 97 97 10676 8104 12511
100 800 125 | sr m1 |6 26 | 100 100 10465 7225 12249
100 500 200 | sr ml1 |6 26| 99 99 10103 5822 9561
100 400 250 | sr m1 |6 26| 100 100 10520 6073 8935

Objective: Core Fault Tolerance.
Number of evaluated individuals fixed at 100,000.
Population sizes 10 - 250.

experiments which confirms that AMD can be used in preference to SD without loss of
information and since the computation of AMD is significantly simpler than for SD, AMD is
the preferred statistical method for this work.

The results are grouped by genomic representation each of which have a different results
profile.

Analysis

The value of %f,, obtained by the ph genomic representation peaks for a population
size of 20 with a value of 100% although the difference for populations between 20 and
125 is not significant, indicating that any of the population sizes in this range are good
choices. This pattern can be explained by larger populations allowing for more genetic
variation in each generation, while the decrease in the number of generations brings
the evolutionary process to a premature halt. These two processes, acting in opposite
directions result in poor performance for small and large populations while producing a
higher performance region for population sizes between the two extremes. The average
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computational effort generally increases as the population size increases, except for the
small dip for the population of 200, suggesting that, as the population size increase, the
number of generations it takes to find the minimum solution increases.

The value of % f,, obtained by the sa genomic representation is almost 100% for popula-
tions between 100 and 250. Changes to the sa genome will often cause multiple changes
to the phenome, which will cause greater variation of descendants. The results suggest
that the larger phenomic variation has a more significant effect with populations larger than
50 resulting in more evolutions finding the best fithess. The average computational effort
is also lower than for the ph genomic representation, which indicates that the minimum
solutions are being found faster due to the larger changes to the phenome.

The value of % f,,, obtained by the sr genomic representation has consistently high values
of % f.. for all population sizes except the population size of 10 and are similar to the
values for sr. Since the phenomic variation resulting from changes to the sr genome is
also greater than the ph genome, these experiments confirm that the greater phenomic
variation is responsible for the improved results.

The two string based genomic representations seem to work equally well with the middle
and large population sizes. The phenomic representation works best will the middle pop-
ulations, suggesting that the middle populations will perform more consistently in a wider
range of situations.

Summary

For the mutation rate of m1 which give a single point mutation per generation, the sa and
sr genomes give high performance across the whole range of population size while the ph
representation performs best in the middle population sizes. The lower correlation of the
sa and sr genomes with the phenome results in larger changes to the phenome for the m1
mutation rate compared to the highly correlated ph genome.

5.5.1.2 Effect of Mutation Rate with Core Fault Tolerance Objective

The mutation rate controls the number of changes made to the genome to create a new
individual. If the changes are too small then the solutions may become confined to a
localised area, while changes that are too large will be little better than randomly generated
individuals.

This group of experiments will compare a single point mutation with Gaussian distributions
with a range of upper limits.

For these experiments a population size of 100 has been chosen based on the results of the
experiments in the previous section. The number of evolutions has been increased to 200
to provide a larger number of data points for the collection of statistics. The evolutionary
algorithm parameters used for these experiments are in and the results are in
[Table 5.9
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Table 5.8 — EA Parameter Exploration Test Parameters

Parameter Value
Environment 6x6
Array Size 6x6
Graph size 26
Graph dag0026
Evolutions 200
Generations 1000
Population 100
Elite The greater of 10% of the population or all individuals in pf1
Parents 20%
Descendants 4
Novel 10%
Analysis

The value of % f,, obtained by the ph genomic representation is 100% for mutation rates of
g10 and above and only sightly below this level for m1 and g5. The average computational
effort decreases with the increase in mutation rate. Taking these two measures together,
implies that a higher mutation rate is beneficial for performance in terms of the ability to
find an optimal solution and the number of generations required to find it.

The results for the sa and sr genomic representations both display better results for the
lower mutation rates than the higher mutation rates. In both cases the results for the
mutation rate of m1 are better that the results for all the other mutation rates.

Since the phenomic variation due to genomic changes is lower for ph than for sa which
is lower than that for sr, the ph genome requires a higher mutation rate than the other
representations to achieve the same phenomic variations. When the number of mutations
becomes too large, the resultant changes to the phenome become random in nature and
performance drops. This effect can be seen in the results of these experiments for the sa
than for sr genomes.

As the performance of sa and sr reduces, the average computational effort increases which
suggests that the larger changes to the phenomes is making solutions with good core fault
tolerance harder to find.

The higher mutation rate for ph improved for performance, while for sa and sr performance
was adversely affected. The choice of mutation rate is, therefore, dependent upon which
genomic representation is used; lower values are better with string representations and
higher values work better with the phenomic representation.

Summary
These results show that the ph genome outperforms the sa and sr genomes in terms of
how many evolutions found an optimal mapping and how quickly the mapping was found.
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Table 5.9 — Effect of Mutation Rate with Core Fault Tolerance Objective

3

Evols Gens Pop | EA mr
200 1000 100 | ph  m1
200 1000 100 | ph g5
200 1000 100 | ph g10
200 1000 100 | ph g12
200 1000 100 | ph g15
200 1000 100 | ph Q20
200 1000 100 | sa m1
200 1000 100 | sa @5
200 1000 100 | sa g10
200 1000 100 | sa g12
200 1000 100 | sa @15
200 1000 100 | sa @20
200 1000 100 | sr mi
200 1000 100 | sr g5
200 1000 100 | sr g10
200 1000 100 | sr gi12
200 1000 100 | sr g15
200 1000 100 | sr Q20

fm  SNfm  cep, amd sd
26 | 193 96.5 13242 13485 20463
26 | 197 98.5 10574 9755 14020
26 | 200 100.0 8930 9187 14590
26 | 200 100.0 7857 7594 13158
26 | 200 100.0 6303 5931 9366
26 | 200 100.0 4661 3472 5296
26 | 197 98.5 5286 4459 8576
26 | 191 955 6927 6174 117083
26 | 193 96.5 11957 9576 14264
26 | 184 92.0 12145 10004 15310
26 | 188 94.0 14319 10818 15162
26 | 184 92.0 16516 13031 18449
26 | 199 99.5 10471 7190 11548
26 | 199 99.5 14762 9604 15105
26 | 196 98.0 22859 13307 18313
26 | 190 95.0 26508 16638 21046
26 | 193 96.5 31611 18887 23595
26 | 167 83.5 37620 19450 23438

DD OO OO OO OO OO OO OO OO R

Objective: Core Fault Tolerance.
Number of evaluated individuals fixed at 100,000.
Generations: 1000, Population: 100.

This is due to the correlation of the genome and phenome making the same number of
changes to the phenome as a made to the genome.

The ph genome looks like a good choice for latter experiments with a mutation rate of at
least g10.

5.5.1.3 Effect of Population Size with Core Fault Tolerance Objective Revisited

We now return to the comparison of population size, but this time using a mutation rate of
g15. The sr genome is omitted because, while the experiments results were reasonable,
they are judged to be more erratic than the other two representations and the average com-
putation effort required is, overall, greater than for the other two genomic representations.

For these experiments a mutation rate of g15 has been chosen based on the results of the
experiments in the previous section. The evolutionary algorithm parameters used for these

experiments are in and the results are in

The number of evolutions has been increased to 200 to increase the accuracy of the results
of the experiments.

Analysis
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Table 5.10 — EA Parameter Exploration Test Parameters

Parameter Value
Environment 6x6
Array Size 6x6
Graph size 26
Graph dag0026
Evolutions 200
Individuals 100,000
Elite The greater of 10% of the population or all individuals in pf1
Parents 20%
Descendants 4

Novel 10%
Mutation m1

The value of % f,,, obtained by the ph genomic representation is 100% for all populations
except for the population of 10 which is the smallest population. Compared to the results
using the m1 mutation rate the results obtain with the g15 mutation rate are significantly

better except for the population of 10. As observed in the [Subsubsection 5.5.1.1| experi-

ments, the average computational effort increases with population size.

The results of these experiments shows a marked difference between the ph and sa
with the phenomic genome outperforming the string genome in both % f,, and average
computational effort.

Summary

The conclusion from this set of experiments is that the combination of phenomic genome,
population of 100 and mutation rate of g15, gives a high level of performance and is a good
compromise compared to other high performing combinations.

5.5.2 Network Power Objective

In contrast to the core fault tolerance objective value, whose minimum value can be easily
established, the network power objective value is much more varied with a lower bound that
cannot be established with a high level of certainty. The number evolutions that find the
same minimum value of the network power objective is so low that statistics based on the
number of evolutions finding the minimum value are not useful. Instead these experiments
will use statistics based on the actual minimum fitness found and the computational effort
required to find the value.

Because there is not an established minimum value to find, each evolution will evaluate
all individuals in all generations specified by the evolutionary algorithm parameters. The
evolutionary algorithm has been designed to keep track of the generation in which the
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Table 5.11 — Effect of Population Size with Core Objective

3

Evols Gens Pop | EA mr
200 10000 10 | ph g15
200 5000 20 | ph g15
200 2000 50 | ph g15
200 1000 100 | ph g15
200 800 125 | ph g15
200 500 200 | ph @15
200 400 250 | ph g15
200 10000 10 | sa g15
200 5000 20 | sa g15
200 2000 50 | sa g15
200 1000 100 | sa g15
200 800 125 | sa @15
200 500 200 | sa @15
200 400 250 | sa @15

fm  %fm  cep, amd sd
26 | 175 875 8128 8654 13665
26 | 200 100.0 3062 2598 4258
26 | 200 100.0 4845 4216 7214
26 | 200 100.0 5568 4825 7477
26 | 200 100.0 7555 6944 12435
26 | 200 100.0 8633 8104 12460
26 | 200 100.0 7368 5827 9276
26 | 154 77.0 18632 16571 21526
26 | 141 70.5 13470 12962 18868
26 | 171 85.5 10812 8891 14442
26 | 181 90.5 11970 9370 13498
26 | 186 93.0 13515 10643 16075
26 | 193 96.5 17196 11211 16314
26 | 190 95.0 15559 9760 14757

DO OO OO OO OO OO OO OO O

Obijective: Core Fault Tolerance.
Number of evaluated individuals fixed at 100,000.
Population sizes 10 - 250.

minimum value of the whole evolution was found, which is then used as the computational
effort for finding the value.

The result tables for the network power experiments will use the column headings which

are explained in

Table 5.12 — Explanation of Table Columns

Column Description

Evols: The number of evolutions.

Gens: The number of generations.

Pop: The population size.

EA: The genomic representation rd=Random; ph=phenome, sa=string;
absolute position; sr=string, relative position.

mr: The mutation rate m=fixed rate; g=Gaussian distribution; with the following
number representing the maximum mutation rate.

a: The size of the array in terms of the dimension of one side of the array.

n: The number of nodes in the application process graph being mapped to
the array.

f: The average of the minimum fitness found by each evolution.

ce: The computation effort required to find the minimum fitness.

cey,. The average computation effort of each evolution.

amd: The absolute mean deviation of the computational effort.

sd: The standard mean deviation of the computational effort.
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5.5.2.1 Effect of Population Size with Power Metric

Guided by the results of experiments in[Subsection 5.5.1] the mutation rate is fixed at g15,

and the genomic representations are restricted to ph and sa while the population size is
varied from 10 to 250. The evolutionary algorithm parameters used for these experiments
arein and the results are in

Table 5.13 — EA Parameter Exploration Test Parameters

Parameter Value
Environment 6x6
Array Size 6x6
Graph size 26
Graph dag0026
Evolutions 100
Individuals 100,000
Elite The greater of 10% of the population or all individuals in pf1
Parents 20%
Descendants 4
Novel 10%
Mutation g15
Analysis

For the ph genome there is no clear correlation between the population size and the aver-
age minimum fitness found. The worst results were obtained from the smallest population
size of 10 and the best results from the population of size 20 with the population size of 100
having the median value. The average computational effort increases and the statistical
deviation reduces as the population size increases.

The population sizes of 200 and 250 have the 2" and 3™ highest average minimum
fitness and highest computational effort. The poor average minimum fitness and high
computational effort implies that the lowest fithess was found by the evolution towards the
end of the evolution and so a greater number of generations may improve performance.

For the population size of 10, which has the worst average minimum fitness and the lowest
computational effort. This suggest that the best fitness solution was found early in the run
and the small population size prevented the evolutionary algorithm finding better mappings.

For the sa genome the average minimum fitness found tended to decrease, the computa-
tional effort increased, and the statistical deviation decreased with increasing population
size.

For population size 10 - 125 the ph genome outperformed the sa genome, while for popu-
lation sizes 200 and 200 the sa genome outperformed the ph genome.

These results have not provided a clear picture, so an additional set of experiments with a
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Table 5.14 — Effect of Population Size with Power Objective 100K Individuals

n f ce amd sd
26 | 96.72 31099 31155 34206
26 | 48.43 37689 21311 25464
26 | 43.84 59495 20039 23527
26 | 43.90 66658 17292 20508
26 | 4450 76144 13758 16632
26 | 43.92 77588 13771 16297
26 | 45.12 83240 10026 13020
26 | 45.06 85838 9098 11676
26 | 50.99 48314 24730 28496
26 | 47.05 52762 19135 23462
26 | 45.88 60038 22754 26418
26 | 4493 65280 20120 23457
26 | 44.34 67118 19373 22798
26 | 44.80 69352 13872 17756
26 | 4458 76145 14568 17096

Evols Gens Pop | EA mr
100 1000 100 | rd m1
100 10000 10 | ph g15
100 5000 20 | ph g15
100 2000 50 | ph g15
100 1000 100 | ph @15
100 800 125 | ph g15
100 500 200 | ph @15
100 400 250 | ph g15
100 10000 10 | sa @15
100 5000 20 | sa g15
100 2000 50 | sa g15
100 1000 100 | sa @15
100 800 125 | sa @15
100 500 200 | sa g15
100 400 250 | sa g15

(22N> o> RN o> RN o> BN o> e >N e >R > B o) BN e >R o) B o) BN O N o) R S}

Objective: Network.
Number of evaluated individuals fixed at 100,000.
Population sizes 10 - 250.

four fold increase in the computational budget to 400,000 evaluated individuals were run.
The results obtained from these experiments are in presented in[Table 5.15

The extended experiments show an overall improvement in performance with the average
minimum fithess reduced compared to the experiments with a smaller number of individu-
als. The improvement is small compared to the additional computation effort, which is four
times larger.

For both the ph genome and sa genome, the best average minimum fitness were obtained
with the largest population of 250 which also had the highest computational effort.

In terms of average minimum fitness, there is little difference in the results of ph genome
and sa genome, however the combination of good average minimum fitness and low
computational effort is best for the ph genome with population sizes 20,50 and 100.

Summary

Overall, the results suggest that finding an optimal solution for the network power objective
is much more difficult than for core fault tolerance. This reflects the comments at the
beginning of this section that the power objective values are much more varied and a
minimum value more difficult to identify.

There is not one "best" combination of genome and population size for finding a low
average minimum fitness and low computational effort, although the results indicate the the
choice of population size of 100 with a 1000 generations for an evolution remain reasonable
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Table 5.15 — Effect of Population Size with Power Objective 400K Individuals

3

f ce amd sd
26 | 47.55 131698 91788 107801
26 | 41.72 144930 86280 105357
26 | 42.22 148142 82009 101741
26 | 41.24 197944 78968 90116
26 | 41.33 207313 83235 95525
26 | 41.84 234520 83188 96835
26 | 41.02 255648 72538 83791
26 | 47.33 178985 92941 110180
26 | 44.23 202843 103548 120952
26 | 42.75 219694 88250 104183
26 | 41.79 204852 87388 101112
26 | 4193 211638 87319 101888
26 | 41.39 210178 85526 98039
26 | 40.97 241428 89078 101662

Evols Gens Pop | EA mr
100 40000 10 | ph g15
100 20000 20 | ph g15
100 8000 50 | ph g15
100 4000 100 | ph g15
100 3200 125 | ph g15
100 2000 200 | ph g15
100 1600 250 | ph g15
100 40000 10 | sa g15
100 20000 20 | sa g15
100 8000 50 | sa g15
100 4000 100 | sa g15
100 3200 125 | sa g15
100 2000 200 | sa g15
100 1600 250 | sa g15

3D O OO OO OO OO OO OO OO O

Objective: Network Power.
Number of evaluated individuals fixed at 400,000.
Population sizes 10 - 250.

choices.

5.5.2.2 Network Power and Mutation Rate

To explore the effect of mutation rate with the network power objective the population size
is fixed at 100 and the number of generations fixed at 2000, resulting in the evaluation of
200,000 individuals. The evolutionary algorithm parameters used for these experiments

are in[Table 5.76] and the results are in[Table 5.171

Analysis

For both the ph genome and sa genome, the average minimum fitness and computational
effort increase with the mutation rate. The difference between the best performance for the
mutation rate m1, and the worst performance with mutation rate g20 is less than 10%. The
average minimum fitness is very similar for both genomes, while the computational effort
is generally lower for the ph genome.

Taking these results alongside those of [Table 5.15, where better solutions are found with
larger population sizes, leads to the conclusion that, to find the best solution for the network
power objective, the best strategy is to use a large population, with single point mutations
and a large number of generations. This, however, is not generally an efficient strategy as
it involves the evaluation of a large number of similar individuals, and so is inappropriate
for more general multi-objective problems.

Summary
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Table 5.16 — EA Parameter Exploration Test Parameters

Parameter Value
Environment 6x6
Array Size 6x6
Graph size 26
Graph dag0026
Evolutions 100
Generations 2000
Population 100

Elite The greater of 10% of the population or all individuals in pf1
Parents 20%
Descendants 4

Novel 10%

Finding minimum fitness solutions for the network power objective has proved to be signif-
icantly more difficult than find good fault tolerance mappings. The results imply that, by a
relatively small margin, the best strategy is to a mutation rate of m1, with a large population
size and since the benefit is margin for the power objective and is not compatible with the
results for the fault tolerance objective, the preferred choice of population size remains at
100 and the mutation rate remains at g15.

5.6 Core FT with Network Power Results

These experiments explore the effect of varying the graph size, for a given array size, for a
multi-objective problem.

The array size chosen is a 6 x 6 with application process graph sizes ranging from 24 to
34 processing nodes. The full set of evolutionary parameters can be found in

The objectives chosen for these experiments are core fault tolerance and network power.

5.6.1 Data Presentation

In each experiment 100,000 individuals are evaluated and plotted using graded colours
representing the generation when the individual first appeared. The colour bar relating the
generation of creation to a colour is shown in The points of the last generation
are plotted first, and the first generation plotted last so that points in the early generations
are not masked by the points of later generations.

Plots of Individuals
The purpose of these experiments is to compare how the application process graph size
affects the fitness values of individuals. To facilitate a like for like comparison between plots
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Table 5.17 — Network Power Objective - Mutation Rate

n f ce amd sd
26 | 41.07 69363 41532 49607
26 | 41.38 81354 40581 48896
26 | 41.99 115823 43168 48898
26 | 42.00 122319 38853 45760
26 | 42.37 118742 34812 41633
26 | 43.07 141894 32964 38786
26 | 40.99 86817 44553 51588
26 | 41.78 99179 44531 53342
26 | 42.72 111966 45836 51826
26 | 42.80 112224 48522 54660
26 | 43.20 116688 45066 51731
26 | 44.65 122021 40422 48344

Evols Gens Pop | EA mr
100 2000 100 | ph mi1
100 2000 100 | ph g5
100 2000 100 | ph @10
100 2000 100 | ph gi12
100 2000 100 | ph @15
100 2000 100 | ph @20
100 2000 100 | sa mi1
100 2000 100 | sa @5
100 2000 100 | sa @10
100 2000 100 | sa @12
100 2000 100 | sa g¢15
100 2000 100 | sa @20

(>N >IN o) RNe >R o) B o) N e >IN e> e >N e ) BN e ) RN ) )} §S]

Number of evaluated individuals fixed at 200,000.
Generations: 2000, Population size: 100.
Generation Colour Code

0 200 400 600 800 1000
Generation

Figure 5.10 — Generations Colour Bar

the scale of the axes is identical for all plots. The scale and range have been chosen so
that all individuals for all graph sizes can be shown.

Two plots are shown for each graph size: figure (a) showing the whole dataset, with figure
(b) magnifying the bottom left hand corner of figure (a) to emphasise the points on the
Pareto front.

5.6.2 Results Analysis

Core Fault Tolerance Objective

We know from the single objective experiments in [Chapter 4]that, for core fault tolerance
the minimum objective value is 0 for graph sizes up to 26, and then the minimum fitness
increases as the graph size continues to increase. also gave an indication that
the range of fitness values increased as the graph size increased

Both of these patterns are also evident with multi-objective plots, where we see the points
moving away from ’Core FT = 0’ axis and expanding at the same time. This confirms
that the ability to find mappings with optimum core fault tolerance fithess has not been
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Table 5.18 — Power with Core Fault Test Parameters

Parameter Value

Hardware Map Size 6 x 6

Many-Core Array Size 6x6

Many-Core Array Offset 0,0

Number of Generations 1000

Population Size 100

Elite 10 fittest individuals cloned
Parents 20 fittest individuals used as parents
Descendants 4 from each parent via permutation
Novel 10 randomly generated individuals
Mutation Pattern g15

compromised by the move from single to multi-objective giving confidence that the multi-
objective evolutionary algorithm is performing well.

An additional feature that was not evident in the single objective experiments is that the
number of unique fitness values for core fault tolerance for the large graph of 34 nodes in
[Figure 5.21a] suddenly reduces compared to the graph with 33 nodes. The explanation is
that for a graph size of 34 there are only two idle cores. The number of unique placements
of two cores in a 6 x 6 array is considerably smaller than for three idle cores.

Network Power Objective

The minimum values of the network power objective are lowest for the smallest graph sizes.
This is expected as the smaller graph sizes allows more options for placing ComPairs close
together, which reduces the network power objective values, while being able to maintain
good core fault tolerance properties.

The minimum values of the network power objective increase from graph size 24 to 25
and 26, followed by lower minimum values for graph sizes 27 and 28 before increasing

again. From|Figure 4.14b|in|Chapter 4/ we know that the solutions for some combinations
of array size and graph size are found quicker than for other combinations. In[Figure 4.14b}
solutions the graph with 27 nodes were found particularly quickly, which is an indication

that this combination results in a large number of mappings with the optimal arrangement.
Although similar single object experiments were not carried out for the network power
objective, we can speculate that the same may be true for objectives other than core fault
tolerance and that this is the effect we are observing for the power objective for graphs of
size 27 and 28.
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5.6 Core FT with Network Power Results
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5.6 Core FT with Network Power Results
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5.7 Conclusion

These results build on the results of the single objective experiments exploring the effect
of the size of an application process graph for a fixed many-core array size.

The result of the single objective and multi-objective experiments support each other,
giving confidence that the evolutionary algorithm is functioning well. Both sets of results
also show that the objective values do not follow a smooth path of change as the graph
sizes increase. For certain combinations of array size and graph size, it is easier to find
optimal solutions indicating that there are more optimal solutions in the solution set. This
effect was first observed in the single objective experiments for core fault tolerance, while
the multi-objective experiments indicate this is also true for the network power objective,
and by implication for other objectives. To confirm this, further work with single objective
experiments are required.

The ability of the evolutionary algorithm to find good quality mappings has been shown to
be superior to randomly generated mappings.

The evolutionary algorithm parameters have been explored in an attempt to find a set
of parameters that perform well in a range of situations. Different sets of parameters
performed better in different situations, so any single set of parameters is a compromise.
The set of parameters chosen for future experiments are:

e Population size: 100

e Generations: 1000

Total individuals 100,000

Mutation rate Gaussian with maximum of 15 mutations

Genome type: Phenomic



Chapter 6

Link Fault Tolerance and Network
Traffic

This chapter extends the fault tolerance properties of mappings by adding fault tolerance
of links to the core fault tolerance defined in for which a new textitLink Fault
Tolerance objective is added. The hardware links also feature in a new Network Traffic
objective, design to spread traffic evenly across the network.

A series of multi-objective experiments are run, using with pairs of objectives, to explore
the efficacy of the new objectives and also to establish the orthogonality between each pair
of objectives. The results of the experiments are used to select suitable objectives for the
final chapter.

The Link Fault Tolerance objective is designed to direct the search algorithm to find map-
pings that are tolerant to a faulty link and the Network Traffic objective, for which a variety
of metrics are proposed, is designed to direct the search algorithm to find mappings where
the traffic is evenly distributed across the many-core array. The simple power objective of
is replaced with a more sophisticated and accurate Network Power objective.

To support the calculation of the new and revised metrics and to more accurately model a
many-core system, the model is also revised and extended. The application process graph
of Chapter 4]is revised and a hardware map and an environment map are added to model
multiple sources of data received by the application and multiple sinks for data produced by
the application, where the sources and sinks equate to interfaces between the many-core
array and external data sources, data sinks, sensors, actuators and neighbouring many-
core regions. The hardware map also maintains a real-time inventory of faulty cores and
faulty links.

6.1 Application Process Graph (APG)

This section extends the application process graph model given in by adding
source and sink nodes which model interfaces to resources external to the circuitry of
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the many-core system. Examples of external resources are memory systems, sensors,
controllers or neighbouring many-core array regions. As before, each process or interface
to an external resource, is represented as a node with data transfers between nodes
represented as edges. The nodes of the revised application process graph can be one
of the following types:

e a source node, an interface to an external source of data received by an APG
process, is a node that has no inbound edges

e a process node, has both inbound and outbound edges

e a sink node, an interface that is the recipient of data from an APG process, is a node
that has no outbound edges

Figure 6.1 — Sparsely connected graph with 2 source nodes, 28
processing nodes and 1 sink node.

Asin the graph G is represented as a tuple of the set of nodes, V,, and the set
of edges, &,;:

G = (Vy, &) (6.1)

The set of nodes V, is now the union of three distinct sets of nodes within the application
process graph: the set of source nodes S, the set of sink nodes Ky, the set of process
nodes Py:

Each node in the APG is identified by a label: process nodes by Pn | 1 < n < P, where
P, is the number of process nodes in the graph, sources nodes by Sn | 1 < n < S, where
Sy is the number of source nodes in the graph and sink nodes by Kn | 1 < n < K, where
K, is the number of sink nodes in the graph.
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Figure 6.2 — Moderately connected graph with 3 source nodes ,28
processing nodes and 2 sink nodes.

Figure 6.3 — Densely connected graph with 1 source node, 28
processing nodes and 3 sink nodes.

The total number of nodes is denoted by V,, where:

V=[V,| =S+K+P (6.2)
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The number of edges is:
E = |gg’ (6.3)

The node sets are defined as:

Sy={s1,...,5n|1<n <58} (6.4)
Kg={ki,....,kn|1<n<K} (6.5)
Py={p1,...,pn |1 <n < P} (6.6)
Vy=S,UK,UP, (6.7)
Eg={e1,...,en |1 <n < Eg} (6.8)

An APG can be characterised by the three numbers representing the number of process
nodes, source nodes and sinks nodes; for example the graph in fig[6.3|can be characterised
by the three numbers s = 1,p = 28, k = 3 or, more compactly, by V(1 : 28 : 3).

More densely connected graphs will, by definition, have more edges, which implies a
greater total volume of traffic, which will affect metrics based on traffic volumes. To quantify
the effect of graph density on the metrics, we categorized graphs as sparsely connected,
moderately connected and densely connected depending on the density of edges in the
graph. A sparsely connected graph is defined as a graph where there are less than two
edges per node, a moderately connected graph is a graph where the number of edges is
more than or equal to 2 edges per node and less than 2.5 edges per node, and a densely
connected graph is a graph where the number of edges is more than or equal to 2.5 edges
per node. These are arbitrary values which were found to be useful in this work.

The connection density of graphs is defined by

sparse, if&E<2-V
Cy { moderate, if (E>2-V)A(E<25-V) (6.9)
dense, otherwise

Where:
Cy = The connectivity of graph G.
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The graph density also has an impact on the number of mappings that are link fault tolerant.
Each edge creates a ComPair so with more edges creates more ComPairs, and the greater
number of ComPairs makes it more difficult to arrange the processes in cores of the many-
core array such that, the source node and target node of each ComPair are not on the
same row and column i.e.there are no critical links.

6.2 Hardware Map

A hardware map or network topology map models, for a single region, the cores and links
of the many-core array and the interfaces that connect the many-core array to external
resources or neighbouring regions and the status of each element of the map.

The purpose of the hardware map is to model the essential elements of the many-core
array and interfaces to external resources in sufficient detail to enable valid mappings to
be generated and the metrics of the mappings to be calculated.

6.2.1 Nodes and Links of a Hardware Map

The definition of the hardware map is similar to the many-core array defined in
with the addition of information defining the type of each node and the status of each core
and link.

The hardware map must maintain information to:
e Specify the type of each node
e Specify the status of each node and link

e Uniquely identify each node and link

Nodes

Nodes represent the cores of a many-core array or interfaces to resources external to the
many-core array or cores of neighbouring regions. Interfaces to external systems can be
classified as capable of acting as both sources or sinks, sources only or sinks only. The

node types are summarised in

Table 6.1 — Hardware Map Node Types

Type Description

¢ Core: A node that can be used by an APG process node.

s Source: A node that can be used only by an APG source nodes.
k Sink: A node that can be used only by an APG sink nodes.
b
r

Both: A node that can be used by an APG source or sink node.
Region: A node that is either shared with or belongs to a neighbouring region.
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Links

All links are unidirectional and are identical whether they are part of the internal circuitry
of the many-core array or a link between the many-core array and external interfaces or
regions.

Node Identity
Each node is given a location (¢, r) starting with coordinate (0, 0) at the top left most corner

as illustrated in|Figure 4.

Link Identity
Each link is directional so is identified by the location of the source node followed by the
location of the target node (loc(s), loc(t)).

6.2.2 Modelling Faults

Node and Link Status
Each node and link in the hardware map has a status which indicates if the element is in
good working condition or faulty as summarised in{Table 6.2

Table 6.2 — Core and Link Status Values

Status Description
g Good: The element is fully functioning.
f Faulty: The elementis faulty and cannot be used.

Using the status of nodes and links the hardware map can model:
e Processing Core Faults
e Link Faults
e Routing Node Faults

A fault free hardware map and three types of hardware faults are illustrated in the hardware
maps of [Figure 6.4 with the faulty nodes and links being marked f and highlighted in red.

Processing Core Faults

illustrates a hardware map with a single faulty processing core, while the
routing node and all links are functioning normally. Traffic passing though the routing node

is unaffected.

Link Faults
Figure 6.4c|illustrates a hardware map with two faulty links that are unable to carry any
traffic.

Routing Node Faults
[Figure 6.4d)illustrates a hardware map with a single faulty routing node, which is modelled
by marking the node, and all 8 adjacent links, as failed. If the routing node fails then
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(b) A single core fault

(c) Two link faults (d) A single routing node fault

Figure 6.4 — Hardware Maps representing a 6 x 6 many-core array
with interfaces to external resource on each of the four edges of the
many-core array.

the processing node becomes unavailable because it cannot receive or transmit any data;
this allows the routing node to be modelled as a combination of a processing node failure
together with the failure of all links attached to the routing node which is a considerable
simplification compared to modelling the processing node and routing node separately.

6.2.3 Hardware Map Definition

The hardware map H is represented as a tuple of the set V}, of nodes and the set &, of
links:

H = (Vh,gh) (6.10)

Given that there are R;, rows and C}, columns, the number of nodes and links are defined
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as Vj, and Ej,:
Vil = Vi
= R;,C}, (6.11)
|En| = B

=Rp(Cp— 1)+ (R, — 1)C},

=2R,C), — Ry, — C), (6.12)

The set of nodes is defined as:

Vi ={v1,...,0;m | gm =V} (6.13)

with a node defined as an ordered tuple consisting of the row and column coordinates of
the node within the many-core array, which is also its location:

v, = (loc, t, s) (6.14)
Where:
loc = (r,c) (6.15)
and:
T is the row coordinate of node v,,.
c is the column coordinate of node v,,.
t  isthe type of the node v,t | t € {¢,b, s, k,r} as defined in|Table 6.1

is the status of the node v,, | s € {g, f} as defined in[Table 6.2

»

Row and column coordinates are arbitrarily defined as beginning at 0 and location (0, 0)
referring to the top-left hand core of the many-core array with location (R, — 1,C}, — 1)
referring to the bottom-right hand core of the many-core array.

The set of links is defined as:

En={e1,...,em | m=Ex} (6.16)

A link is defined as a set of ordered tuples consisting of a source node location, a target
node location and a status:

en = (locs, locy, s) (6.17)

Where:
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e, is alink from the set &},.

locs is the location of the source node of link e,,.

locy is the location of the target node of link e,,.

s  listhe status of the link e,, | s € {g, f} as defined in|Table 6.2

6.2.4 Hardware Map Configurations

The hardware map is designed to be flexible so that it can model a range of configurations,
a selection of which are illustrated in [Figure 6.5 Configurations are defined through the

use of the set of parameters listed in

Table 6.3 — Hardware Map Definition Parameters

Parameter Description

Ry, The number of rows of nodes in the hardware map

Ch, The number of columns of nodes in the hardware map

R, The number of rows of nodes in the many-core array

C, The number of columns of nodes in the many-core array

R, The position of the first of the row of the many-core array relative to
the first row of the hardware map

C, The position of the first of the column of the many-core array relative
to the first row of the hardware map

By, The border type of the north edge, see [Table 6.4

By, The border type of the west edge, see|Table 6.4

B The border type of the east edge, see(Table 6.4

B The border type of the south edge, see(Table 6.4

Hgp A dataflow machine is modelled when this boolean switch is set to
true

Ln The set of links in the hardware map

Table 6.4 — Border Types

Type Description

s Source: A node that can be used only by an APG source nodes.

k Sink: A node that can be used only by an APG sink nodes.

b Both: A node that can be used by an APG source or sink node.

r Region: A node that is either shared with or belongs to a neighbouring region.

n None: There is no border.

Border types are used to define how the nodes on the rows and columns, that are on the
edges of the hardware map are configured. The parameters allow for borders to have of
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multiple rows or columns, which allow for a variety of multi-region arrangements. The types
of borders are listed in

A hardware map has four borders which are described using the four compass points of
north, east, south and west. The four borders can be represented as a list of border
types and width pairs, starting with the north border and working clockwise. For example,
a hardware map that has a single row/column on each side that can be used for both
sources and sinks can be described as B((b,1), (b,1), (b,1),(b,1)). If there is no border
on one of the edges then the border is described using the border type and width pair of
(n,0).

A selection of possible hardware map configurations are presented in [Figure 6.5, each
showing a 6 x 6 array of processing cores with different combinations of border types. The
four example configurations are described below.

To fully specify a configuration, the following information is required:
e The number of rows and columns of the hardware map.
e The number of rows and columns of the many-core array.

e The offset row and column of the many-core array with respect to the top-left corner
of the hardware map.

e The type and width of the border of each edge of the hardware map.
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(a) A detached 6x6 Hardware
Map with no source or sinks:
B((n,0),(n,0),(n,0),(n,0)).

--------------------------

(c) A multi-region 8x8 Hardware
Map for a with north and
west borders that can be
either sources or sinks and
east and south borders that
regions:

are neighbouring

B((b,1),(r,1),(r,1), (b,1)).

(b) A connected 8x8 Hardware
Map were all borders can
be either sources or sinks:
B((b,1), (b,1), (b,1), (b,1)).

------------------------------------

(d) A 6x8 Hardware Map for a
Dataflow Machine with no bor-
ders on the north and south
edges, sources on the west bor-
der and sinks on the east border:

B((n,0), (k,1),(n,0), (s,1)).

Figure 6.5 — Hardware Maps for a Variety of Configurations. The
nodes inside the blue dotted lines represent the cores of the many-
core array while the nodes outside of the blue dotted box represent
interfaces to resource external to the many-core array and cores of

adjacent regions.
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Configuration for Detached Many-Core Array

The many-core arrays being modelled in is defined as a detached many-core
array with a 6 x 6 array of nodes with no external data sources or sinks, or neighbouring
regions. Although this is an unrealistic configuration for practical systems, it was useful
for the initial experiments in chapters |4/ and [5| Since the configuration is modelling only
cores and links of the many-core array, the hardware map and the many-core array have
the same dimensions and the application process graph must consist only of processing
cores. This hardware map has a border definition of B((n,0), (r,0), (r,0), (n,0)) and is
the model used is most literature on the subject of fault tolerance in many-core arrays.

Configuration for Connected Many-Core Array

The hardware map configuration in is modelling a 6 x 6 connected many-core
array which has sources and sinks to external resources but does not have any neighbour-
ing many-core arrays or regions. The many-core array is located in the inner 6 x 6 nodes
of the hardware map with source and sink communication ports to external resources
modelled by the outside edges of the 8 x 8 hardware map. This hardware map has a
border definition of B((b, 1), (b, 1), (b,1), (b,1)).

The connected configuration will be used in the majority of the experiments of this chapter.

Configuration for Multi-Region Many-Core Array

The hardware map configuration shown in models a many-core array that is
part of a multi-region arrangement many-core arrays. The north and west edges have a
border type of b indicating the the nodes can be either sources or sinks while the east and
south edges have a border type of r to indicate that the nodes are either under shared
control with a neighbouring region or under the exclusive control of a neighbouring region.
This hardware map has a border definition of B((b,1), (r, 1), (r, 1), (b,1)).

Configuration for Dataflow Many-Core Array

The hardware map in is an arrangement that forces all source nodes to be
located on the left edge of the array and all sink nodes to be located on the right edge of
the array. This arrangement will ensure that all data arrives via the west edge of the array
and leaves via the east edge, producing a flow of data from west to east, hence the name
dataflow machine. This hardware map has a border definition of B((n,0), (k, 1), (n,0), (s,1)).

6.3 The Environment

The application process graph is a model of the application processes and its sources and
sinks. The hardware map is a model of the many-core array and the connections between
the many-core array and external resources. A process map is the mapping of process
nodes from the application process graph to cores in the many-core array.

Since the process map only includes process nodes from the application process graph,
an additional mapping is required to map the application process graph source and sinks
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nodes and nodes belonging to adjacent regions; this is the role of the environment.

This section describes the environment, and the relationship between the application pro-
cess graph, the hardware map, the environment and the process map.

The Environment Mapping

The environment maps the resources that are external to the many-core array to the
borders defined in the hardware map. Application process graph source nodes can be
mapped to nodes in borders of type b or s while sink nodes can be mapped to nodes of
borders of type b or k and nodes of neighbouring regions are mapped to nodes of borders
of type 7.

The environment mapping is established at the beginning of an evolution and remains fixed
for the duration of the evolution. The calculation of the metrics of process maps that are
generated during the evolution are affected by the position of resources in the environment
map and are therefore calculated with respect to the environment mapping.

From the hardware map in that is a connected many-core array with a border
of B((b,1),(b,1),(b,1),(b,1)) and the application process graph of |Figure 6.2, the envi-
ronment map of [Figure 6.6bjand process map of [Figure 6.6c|are created, the environment

map containing the source and sink nodes from the APG and the process map contain for
the processing nodes of the APG. The illustrations of the hardware map, the environment
map and the process map all include a dotted blue line, the many-core array boundary.
Inside the boundary are the nodes relating to the many-core array, while the nodes outside
of the boundary relate to the environment.

The environment map consists only of the nodes outside of the many-core array boundary
while the process map consists only of the nodes inside the boundary.

The environment and process maps only tell us which cores in the hardware map each
node of the APG is mapped to but do not have any information regarding the status of links
between the nodes. In the illustrations of environment and process maps, the lines linking
the nodes are included to illustrate that the nodes are connected by links. The status of
links is maintained in the hardware map.

The Aggregate Map

The calculation of metrics for a process map can only be made within the context of the
environment. The metrics are therefore calculated using an aggregate map which is a
combination of the environment map and process map and illustrated in |[Figure 6.6d

6.4 Link Fault Tolerance Metric and Objective

Failure of a link can result in disruption to communication in the array by causing packets
to take longer routes, lose packets or sever communications completely. The exact effect
a failed link has on communications of the array depends of how critical the link is for
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(a) An 8x8 Hardware Map where (b) An environment map of the

all borders can be either sources source and sink nodes.

or sinks.

(c) A process map of the process- (d) An aggregate map which is
ing nodes. the combination of environment
map (b) and process map (c).

Figure 6.6 — From the information in the APG in and the
hardware map (a) the environment map (b) and process map (c)

are produced. The environment map and process maps are then
combined to make the aggregate map (d) used to calculate the
metrics of the process map.

each ComPair that uses the link. In this section link failures will be explored and a metric
developed that is designed to measure the detrimental effect the failure of a link would have
on the network.

The metrics developed in this section relate to a single ComPair, a ComPair. The objective
combines the metrics for all ComPairs into a single value representative of the vulnerability
of the whole mapping to link failure.
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6.4.1 Problem Description

Develop a metric that measures the effect that failure of a link will have on network traffic
and an objective that can be used to minimize the negative effects of possible link failures.

The definition of the metrics in this section refers to discussion of link criticality and the ac-
companying ComPair subnets in[Section 5.2|Link Criticality} For convenience the ComPair

subnets are reproduced here as [Figure 6.7]

6.4.2 Vulnerability to Critical Link Failure Metric

A failed critical link causes communication failure because it is used by all paths between
the source and target nodes of the ComPair . Comparing figures [6.7a] and it can be
observed that the graph of [Figure 6.7a] has a single path consisting of a single critical link
and the graph of[Figure 6.7b]has a single path consisting of two critical links. In this respect
the graph of[Figure 6.7b|can be described as being twice as vulnerable to critical link failure
when compared to It is also possible for a critical link to have multiple paths
using it as shown in Failure of such a link will sever all the paths that pass
through it so the metric must reflect the number of paths affected by the link.

The number of paths of a ComPair subnet that include a link [, is given by I, and by
a link is critical when I, = Q,. The metric Muvclf. is a measure of the
Vulnerability to Critical Link Failure of a ComPair, is defined as the sum of the number of
paths that pass through each of the critical links in the ComPair subnet. Metric Muvcl f,. is
given by which include the equivalence that makes use of the fact that all
critical links, by definition, must be included in all paths of the ComPair.

Q| lp,, iflinkl, = @Q,i.e.isa critical link
Muclf, = =Qp-le (6.18)
i=1 |0, otherwise

Where:
Muvclf. = The vulnerability to critical failure metric for the ComPair Q.
Q: = The number of links in the ComPair subnet.
lnp = The number of paths that use link [,,.
Qp = The total number of paths of the ComPair subnet.
le = The number of critical links in a ComPair

Equation will give a value of 1 for the ComPair illustrated in [Figure 6.7al and give a
metric value of 2 for the ComPair illustrated [Figure 6.7b| which is consistent with the notion
that[6.7h]is twice as vulnerable as
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(a) Critical Link of length 1 (b) Critical Link of length 2

(c) Network with 2 Significant (d) Network with 3 Significant

Links Links
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(e) Network with a single Link fault and 5 Significant Links
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(f) Network with a 2 Link faults and 7 Significant Links
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(g) Network with 4 Significant (h) Network with a 4 Link faults
Links and 6 Significant Links

(i) Network with 2 Link faults, 2 Significant
Links and 1 Critical Link

Figure 6.7 — Networks illustrating Critical and Significant links

6.4.3 Vulnerability to Significant Link Failure Metric

Failure of a significant link is less disruptive than a critical link because, although some
packets may be lost, there are alternative paths for the packets from the source to the
target. A metric is required to give a value to represent the impact of the failure of a
significant link.

Failure of a significant link can affect multiple paths of a ComPair as illustrated in
where significant link g is a component of paths 2 and 3, while significant links e and f are
both on only one path. The impact of link g failing is more severe than if link e or f fails.
To account for this, it is important to know the number of paths each significant link affects.
The links of the graphs in[Figure 6.7]are labelled with the number of paths that use the link.
If the number of paths that use each significant link are added together for a ComPair then
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(a) 2 x 3 Array (b) Path 1

(c) Path 2 (d) Path 3

Figure 6.8 — Paths Through a 2 x 3 Array

this gives a metric for the vulnerability to significant link failure for the ComPair.

@ |1y, iflinki, is a significant link
Muslf. =" (6.19)
1=1 |0, otherwise

Where:
Muslf. = The vulnerability to significant link failure for ComPair Q.
Q = The number of links in the ComPair subnet.
lnp = The number of paths that use link [,,.
Qp = The total number of paths of the ComPair subnet.

6.4.4 \Vulnerability to Link Failure Metric

The remaining task is to integrate the two metrics of Vulnerability to Critical Link Failure
and Vulnerability of Significant Link Failure into a single metric that gives a single measure
of the Wulnerability to Link Failure. Normal links are not included in the metric because
they do not cause loss data. The definition of both of the above metrics is identical in that
they both measure the number of paths that are affected by the failure of the link. As an
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initial attempt at creating a single metric, the individual metrics are summed together to
produce a single value representing the total number of paths that are affect by a critical or
significant link. [Figure 6.8|list values of the sum of the two metrics in the column > under

"Vulnerability Metric", for the subnets in

Table 6.5 — Comparison of Vulnerability Metrics

Graph | Graph Dimension Paths Vulnerability Metric
Ref | Height | Width | Total | Affected | ¥ | 100 x 2= | 100 x C%
6.7a 1 2 1 1 1 100 100
6.7b 1 3 1 1 2 200 200
6.7¢ 2 2 2 2 2 100 50
6.7d 2 3 3 4 4 133 44
6.7¢e 2 4 3 7 7 233 77
6.71 2 5 3 10 10 333 111
6.79 3 3 6 8 8 133 22
6.7h 3 3 2 6 6 300 150
6.7i 1 2 2 2 4 200 100

Relating the metric values to the graphs, it is evident that this simple sum does not give a
consistent value for the purposes of comparing the vulnerability of different graphs. Graph
has the best fitness of 1, while graphs [Figure 6.7b| and [Figure 6.7¢c| have the
same fithness of 2. However graph is clearly less vulnerable than either [6.7a] or [6.70]
The reason is that graph is a larger graph and has more paths, so there are more
paths that can be affected and the metric is greater. This implies that the metric should

take into account the number of paths in the graph between the source and target nodes.

Two additional metrics have been calculated, which are the sum divided by the number
of paths in the ComPair and the sum divided by the square of the number of paths in the
ComPair, in an attempt to correct the deficiencies of the simple sum metric. Dividing by
the number of paths improves the metric but still gives anomalous values, for example the
graph of [Figure 6.7b| and [6.7c| have the same metric value even though the graph
has two paths so is clearly less vulnerable than Dividing by the square of
the number of paths gives comparative values that work well, for example the metric value
for graph is three times greater than the metric value for[6.7c|because, although they
both have two paths, [6.7h|has three times more significant links than[6.7¢} so is three times

more vulnerable. The additional metrics are shown in columns % and p% with the values
l

having been multiplied by 100 to give useful integer values.

The final metric calculation for Vulnerability to Link Failure is given by |Equation 6.20
Gl if link { is a critical or significant link
100 nps
Mulfe= 534 (6.20)
P y=0 |0, otherwise

Where:
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Mvlf. = The vulnerability to significant link failure for ComPair C.
C = The number of links in the ComPair subnet.

lnp = The number of paths that use link [,,.

Cp = The total number of paths of the ComPair subnet.

6.4.5 Link Fault Objective

This section describes an objective that combines the metrics for all ComPairs into a single
value representative of the vulnerability of the whole mapping to link failure.

The link fault objective is to minimize the sum of the metric values for all ComPairs in the
application process graph. The link fault metric gives a value for a single ComPair so the
value for the objective is the sum of the fault metric values for all ComPairs in the application
process graph:

C
Jlink = Mulf. (6.21)
I=1
Where:

Mol f, = The vulnerability to link failure for ComPair C.

; = The number of links in the ComPair subnet.

ln, = The number of paths that use link [,,.

Cp = The total number of paths of the ComPair subnet.

6.5 Network Power Metric and Objective

Communication traffic is a major contributor to power consumption in a many-core array
[183, [184]. The total traffic flows in the many-core array can be used as an approximation
for power consumed by communication traffic. This section will explore the measurement
of the traffic in a many-core array and develop an objective designed to direct a search
algorithm to find solutions that minimize the traffic.

6.5.1 Problem Description

The power consumed by traffic between a ComPair, for a given router/NoC architecture,
is a function of both the traffic volume and the distance in terms of routing nodes and
links that the traffic has to traverse between the source and target nodes. Reducing the
total network traffic of all ComPairs will reduce the power consumption of the many-core
array. The volume of traffic between a ComPair is predetermined by the application and
cannot be influenced by the many-core system whereas the distance the traffic has to travel
is dependent on the relative position of the source process node and the target process
node, which is under the control of the many-core system.
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6.5.2 Distance Between Communicating Core Pairs

To relate traffic to power it is necessary to know both the amount of traffic and the distance
it has to travel, as the product of these gives us the total amount of traffic that is processed
by the routing nodes and transmitted down the links between the source and target nodes.
The distance between a ComPair is the rectilinear distance between the source and target
nodes and, assuming minimal length paths, represents the number of links the data will
travel through from the source node to the target node. Faults on paths between the
source and target have no effect on the length of the path that the data will travel along,
providing the faults do not sever all paths between the source and target. For a ComPair @,
corresponding the edge e,, of the application process graph with source location Q,(s;, sc)
and target location of Q,,(t,,t.) the Distance Between a ComPair metric Mdccp,,, (i.e the

distance between the source node and the target node), is given by [Equation 6.22

Mdcepg, = |(sr — tr)| + |(5c — tc)| (6.22)

If the assumption is made that traffic volume between all ComPairs is the same then the
distance between cores can itself be used as an approximation for the traffic and therefore
the power consumption. This is not a particularly good assumption as the traffic between
different ComPairs can be very different, so a more precise calculation is desired.

6.5.3 Traffic Volume Metric

An improvement to the distance between ComPairs as a metric is to use a measure that
takes into account both the distance and the traffic volume for each ComPair, which will
typically be different for each pair.

For a ComPair @),, corresponding the edge e, of the application process graph the traffic
volume @, is the attribute traffic volume, d, from edge e,, of the application process graph.
A metric that measures the Traffic Volume Between a ComPair, Mtccp,,,, is given by the

quation 6.23

Mtcepg, = Mdcepg,, X Qn, (6.23)

6.5.4 Power Objective

The corresponding power objective is to minimize the total power consumption across the
whole network.

For the objective, a power consumption of zero is assigned when the source and target
of a ComPair are adjacent, so that if the source and target nodes of every ComPair are
adjacent then the value for the mapping will be zero. However, when a ComPair’s source
and target nodes are adjacent, the traffic volume metric Mtccp,, will have a value of @,,,.
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Therefore when the traffic metric is used in the objective it must be adjusted down by the

value of ),,,. The power objective is given in|Equation 6.24
EQ
Jpower = Z Mtcepg,, — Qny (6.24)

e=1

6.6 Excess Traffic Metric and Objective

This section examines traffic flow through the many-core array that can lead to excess
traffic. Each link in a many-core array may carry traffic from multiple ComPairs, the total
of which could exceed the bandwidth of the link. The excess traffic is the traffic above the
bandwidth of a link that the link is required to carry. This can be described as a link-centric
with, since the excess traffic is related to each individual link, although the details of the
traffic from all the ComPairs that have paths that use the link.

A link that is required to carry excess traffic is referred to as an overloaded link. Excess
traffic for a link will eventually fill the buffers of the routing node, creating a bottleneck so
potentially causing disruption throughout the network as traffic above the link’s capacity
is rerouted down alternative paths which may then overload other links causing more
rerouting which can result in a cascade of overloaded links. If there are alternative paths
to a path that uses an overloaded link, then the effect of the bottleneck may be mitigated
by using an adaptive routing algorithm.

A routing node can monitor the status of the links it is using to transmit data. If a bottleneck
develops on a link, the routing node is able to detect this and then employ an adaptive
routing algorithm to redirect traffic down alternative paths, if they exist, using another link.
In doing so, the alternative paths must still be minimal-length paths. If no alternative paths
exists for the traffic, because the traffic is critical traffic, adaptive routine cannot alleviate
the bottleneck. The excess traffic metric is only an approximation of the expected traffic
volumes based on the traffic volume data containing the the application process graph.
Only a cycle accurate simulation, with knowledge of how each process generates traffic
and an understanding of the intended routing algorithm, will be able to accurately predict

traffic volumes. As discussed in[Chapter 7||Graceful Degradation and Amelioration, one of

the roles of the Monitor will be to update the traffic volume attributes of the edges in the
application process graph with actual observed traffic volume data to increase the accuracy
of calculations of metrics and objectives.

Critical traffic cannot be rerouted; significant traffic can be rerouted by the first routing node,
back up the path, that has a choice of paths for transmission of the data; normal traffic can
be rerouted by the routing node link. The severity of the effect of a bottleneck will therefore
depend on whether the link is carrying critical, significant or normal traffic.

Each ComPair in a mapping will have at least one, and often many, paths between the
source and the target through which traffic will travel. Each path will consist of at least
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one link, and typically a chain of links. Each link in the array will typically be part of many
paths between many ComPairs and the role of the link in each path may be either critical,
significant or normal. As a result the traffic profile of each link is complex, consisting of the
aggregation of a variety of types of traffic from many paths between many ComPairs.

In this section, a metric will be developed to represent the excess traffic of a link and
evolutionary algorithm objectives designed to minimize the potential disruption of excess
traffic.

6.6.1 Problem Description

The impact an overloaded link has on the network as a whole will depend of the volume
of each traffic type that uses the link. Critical traffic has no other option than to use the
link, so a link that is overloaded with critical traffic will cause an unavoidable bottleneck.
Significant traffic, does have other available routes, but these can only be used when the
congestion of traffic has propagated back up the path until it reaches a node than can direct
traffic down an alternative path. Excess normal traffic can be rerouted immediately by a
congested link’s routing node, so will have lower impact than critical or significant traffic.
This suggest the concept of weighted excess traffic metric which is a measure of excess
traffic obtained by giving a weight to each type of excess traffic so that critical traffic makes
a greater contribution to excess traffic metric than significant traffic, which in turn makes a
greater contribution to the metric than normal traffic. This penalizes mappings with excess
critical and excess significant traffic. For a fault free array, critical links can be avoided
completely while significant links can be reduced in number but not eliminated completely
since the links attached directly to the target node cannot be normal (see
[Communicating Core Pair (ComPair)).

A metric that measures the excess traffic of a link can only suggest which links could
be overloaded in normal operation. Calculating the expected traffic through each link,
using either the non-weighted or weighted calculations, is only an approximation used to
reduce computational time, based on the average predicted network load taken from the
application process graph, which might prove to be very different to the actual traffic result-
ing from adaptive routing. In a working many-core array the on-line Monitor, discussed in

[Chapter 7||Graceful Degradation and Amelioration, will be be able to detect real bottlenecks

and actual data flows between ComPairs, which can then be used in these metrics to
increase accuracy.

6.6.2 Excess Traffic Metric
In this section the metric will be developed starting with a simple calculation using raw
traffic followed by a more sophisticated approach involving link level traffic weighting.

Traffic Distribution
Traffic flowing between the source and target of a ComPair will be distributed amongst the
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available paths by the routing algorithm used by the routing nodes between the source and
the target nodes. Two algorithms for distribution of the traffic through the ComPair subnet
have been considered. The first is that the traffic is split equally between the available
paths at each routing node, illustrated in [Figure 6.92] the second it that the traffic is split
equally between the paths from the source to the target, illustrated in Both
strategies would require an adaptive routing algorithm that has the ability to understand
the strategy and keep track of the traffic that has been sent down each link so that it sends
each new packet down the link that will maintain the desired balance.

(a) Distribute traffic evenly be- (b) Distribute traffic evenly be-
tween links at each node. tween ComPair paths at each
node.

Figure 6.9 — Traffic distribution across the links used by a ComPair. The numbers on
the links are percentages of the total ComPair traffic.

When the traffic is divided equally between links at each node the minimum
and maximum traffic volumes on individual links is between are 25% and 75%, giving a
range of 50% When the traffic is divided equally among the ComPair paths at each node
the minimum and maximum traffic volumes on individual links is between
33.3% and 66.6% giving a range of 33.3%. As it is preferable for the traffic to be as evenly
distributed as possible the smaller range of 33.3% is more attractive than 50%. Conse-
quently in the sections that follow the traffic will be evenly distributed between ComPair
paths.

Non-Weighted Excess Traffic

The starting point is to calculate the actual traffic that is expected to flow through a link.
The method is to consider each ComPair, and for each pair calculate the traffic that will
travel through each link between the source and target nodes of the ComPair. Between
the source and target nodes there may be many paths. In many cases paths will overlap
i.e. they will use links that are used by other paths.

As an example, take a ComPair with source and target nodes that are one row and two
columns apart as in[Figure 6.8al There are a total of three paths in the ComPair, illustrated
in Figures[6.8b},[6.8c|and[6.8d] Links b, ¢, e and f are used by only one path while links a, d
and ¢ are used by multiple paths. The volume of traffic between each ComPair is taken
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from the application process graph which provides a traffic volume for each edge in the
graph. Traffic for a ComPair is distributed evenly between each of the paths between the

source and target, as discussed in[Subsection 6.6.2] Traffic that travels along a path must

travel through each link of the path. Each path is analysed in turn with traffic from each
path being added to each link in the path. Each ComPair must be analysed and traffic
added to each link in each path of each ComPair to produce a total traffic for each link.

Having calculated the total traffic for each link the excess traffic is calculated which is the
traffic above the bandwidth for the link. Each overloaded link will have a value for excess
traffic that is greater than zero while links that are not overloaded will have an excess traffic
value of zero.

The traffic volume through a link I,, of a ComPair is the network load, ()4, of the ComPair
multiplied by the proportion of paths for the ComPair that include the link and is given by

quation 6.25

ln, = g‘; Qu (6.25)
Where:
ln, = the traffic through link /,, of ComPair @
ln, = the number of paths through link /,, of ComPair )
@p = the total number of paths in ComPair @
®q = the network load of ComPair @

Given that there is a mapping from each link in a ComPair path to a link in the hardware
map represented by the function f : L, ) — L) each link [,;, of the hardware map has an
associated set of traffic volumes from the ComPair paths that use the hardware link [,,. If
each of the paths from all ComPairs of the mapping is assigned an integer identifier from 1
to Qqp, Where (4, is the total number of paths from all ComPairs of the mapping, then the
traffic volume ¢, . is the traffic contributed from path ¢ to hardware link /,,,. The traffic
volumes for each ComPair link calculated using [Equation 6.25| can be mapped to a traffic

volume ¢;,. .y which allows the definition of traffic volume metrics in terms of ¢, ).

The metric of total traffic for link ,,, is the sum of all traffic volumes from the ComPair paths
that use the link and is given by [Equation 6.26

Qtp
Mttg,) = tana (6.26)
q=1

The excess traffic for link I, is given by [Equation 6.27

0, it Mttg,,) < lm,
M.Cct(lm) = (6.27)
Mttg,,y — lm,, otherwise

lm

Where:
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Mttg,,y = The total traffic through link I,.

Maxt,,y = The excess traffic through link [,,.

Im = The my, link of the hardware map.

L, = The bandwidth of link ,,.

Q = The number of paths of all ComPairs for the mapping.
Ulmq) = The traffic through link [,,, contributed by path q.

Weighted Excess Traffic

A more sophisticated approach is to apply weighting to traffic through a link, based on the
criticality of the link within each ComPair, producing an artificially high traffic value when
the link is critical or significant. The rationale for this approach is that if a link is a critical link,
then there are no alternative paths for the data, so the effect of the link being overloaded
will be more severe than if the link is not a critical link. Similarly, if a link is a significant
link, then there is only a single path between the significant link and the target node of a
ComPair even though there is at least one other alternative path from the source node to
the target node of the ComPair. The effect of a significant link being overloaded will be
less severe than for a critical link but more severe than for a normal link. This section will
propose a method of modifying the value of the traffic metric by applying weighting to traffic
passing though different types of link.

For each link in a path the link may be critical, significant or normal. A link may be a
critical link in one path, while being a significant link in another path and a normal link in
yet another path.

The approach taken is to calculate the total critical, significant and normal traffic through a
link from all the paths that use the link, then apply weighting in the following manner:

1) If the critical traffic is above the link’s bandwidth then the weighted traffic is calculated by
taking the excess critical traffic and applying the critical traffic weight, adding the significant
traffic weighted by the significant traffic weight and adding the normal traffic.

2) If the critical traffic is below the link’s bandwidth then the sum of critical traffic and
significant traffic is compared to the link’'s bandwidth, and if greater than the bandwidth
then the weighted traffic is the excess of the sum of critical traffic and significant traffic
weighted using the significant traffic weight added to the normal traffic.

3) If sum of critical traffic and significant traffic is below the the link’'s bandwidth, then
the sum of the critical traffic, significant traffic and normal traffic is compared to the link’s
bandwidth, and if greater than the bandwidth then the weighted traffic is the excess of the
sum of critical traffic the significant and the normal traffic.

4) If the sum of the critical traffic, significant traffic and normal traffic is below the link’s
bandwidth then the weighted traffic is zero.

The weighting applied to critical traffic is greater than the weighting applied to significant
traffic, while the normal traffic is not weighted. The initial values for weights are set at 5 for
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critical traffic and 2 for significant traffic. These values are arbitrary and will be explored by
experiments.

shows the non-weighted excess traffic (NWET) and the weighted excess traffic
(WET) for a selection of bandwidths and fixed traffic on a link, illustrating that the weighted
traffic calculation produces larger traffic and excess traffic values than the non-weighted
calculation for the same traffic profile. For bandwidths above 500 the actual traffic is
less than the bandwidth, but the presence of critical and significant traffic exaggerates
the calculated traffic which would cause the search algorithm to discriminate against such
a mapping in favour of one with less critical and significant traffic.

Table 6.6 — Comparison of Non-Weighted and Weighted Excess Traffic

Traffic Excess Link  Weighted Bandwidth
Criticality =~ Weight Traffic  Traffic 500 1000 1500 2000
Weighted Excess Traffic

Critical 5 200 1000 500 0 0 0
Significant 2 200 400 400 400 0 0
Normal 1 600 600 600 600 500 0
WET Total 2000 1500 1000 500 0
NWET Total 1000 500 0 0 0

[Table 6.7|shows a variety of traffic profiles for a fixed bandwidth illustrating how the weighted
traffic calculation affects the excess traffic when compared to the non-weighted traffic.
The four different traffic profiles are indistinguishable when weighting is not used. When
weighting is used there is a clear difference in the calculated traffic values between the
profiles, which will direct the search algorithm to select solutions with lower critical and
significant traffic.

Table 6.7 — Comparison of Non-Weighted and Weighted Excess Traffic

Traffic Excess Bandwidth : 5000

Criticality ~ Weight Tr WET Tt WET T WET Tr WET
Critical 5 1500 2500 1000 0 500 0 500 0
Significant 2 1000 2000 1500 3000 1000 0 500 0
Normal 1 500 500 500 500 1500 1000 2000 500
Weighted Total 10000 5000 8500 3500 6000 1000 5500 500
Non-Weighted Total 3000 3000 3000 3000

The excess traffic metric is calculated for each link in the network using the following set
of equations. First the critical, significant and normal traffic components through each link
from each path are defined given that 7{; , is the traffic through link [ contributed by path
q.

T,q), iflink [ is critical for the path ¢

MCt(Lq) = (628)
0, otherwise
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T,q), iflink [ is significant for the path ¢
Mst( q) = (6.29)
0, otherwise

T(,q), iflink [ is normal for the path ¢
Mntg q) = (6.30)
0, otherwise

Now the components for each traffic type for each link are summed to give a total of each
traffic type for each link.

Q
Mect; =Y~ Met(, (6.31)
q=1
Q
Mst; = Mstq (6.32)
q=1
Q
Mnt; = Mntq,, (6.33)
qg=1

Now the excess traffic for each link can be defined in terms of each of the individual traffic
types and the traffic type weights.

(Mctl - Bwl) x We+

Ts; x Ws+ Mnt, if Mct; > Buwy

(Mcty + Ts; — Bwy) x Ws+

Maxwt; = (6.34)
Mnt, if (Mct;+ Ts;) > Buy

Mect; + Ts; + Mnt; — Bwy, if (Mct; + Mst; + Mnt;) > Bwy;

0, otherwise

Where:
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Maxwt; = The excess weighted traffic through link /.

Mecty = The critical traffic through link .

Mctqq = The critical traffic through link [ from path q.

M st = The significant traffic through link {.

Mst;, = The significant traffic through link 7,, from path g.
Mnt; = The normal traffic through link I.

Mntg, = The normal traffic through link [ from path q.
We = The critical traffic weight.

Ws = The significant traffic weight.

T,9) = The traffic through link [ contributed by path q.

6.6.3 Excess Traffic Objectives

The previous section described methods for calculating the traffic metric for a link. The
next step is to determine how the link excess traffic metric can be used to produce objective
measures for an evolutionary algorithm. The link traffic metric can be analysed in a number
of ways, each of which has different merits.

Link Traffic Landscape

To evaluate the alternatives it is necessary to have an understanding of the link traffic
landscape that is desirable. If we view the links as points on a 2-dimensional plane surface
where the traffic metric can be viewed as the height of each point above plane. When all
links have a zero excess traffic, which is the ideal landscape, the surface will be perfectly
flat.

A small number of links with significantly higher values than the other links would be
represented by a surface with a small number of high peaks. Links with high values
would represent bottlenecks which could seriously degrade the whole network, so are
undesirable. Another possibility is that the excess traffic is evenly distributed across the
network, which would be represented by a raised but relatively level surface.

The landscape has two properties of interest: the first is the total of the excess traffic, which
is the total height of each point above the plane; the second is how smooth or rugged the
landscape is, i.e. how varied is the height of the points. These properties are independent
of each other so require two different objectives for the evolutionary algorithm to minimize:
Total Excess Traffic and Excess Traffic Variance.

Sum of Excess Traffic

The excess traffic of all links in the network are summed giving a measure of the total
excess traffic for the mapping. The sum of excess traffic does not distinguish between two
mappings that have a similar sum but significantly different landscapes, one with a small
number of very high values alongside many small values, the other where there is a larger
number of similar values without a single very large value. The sum of excess traffic of all
links is a candidate for the total excess traffic metric. The sum of excess traffic of all links
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in the network, Jxts,,, is given by [Equation 6.35

L

JTtsum = Z Mzwt; (6.35)
I=1

Mean Average of Excess Traffic

The excess traffic values of all links in the network are summed and then divided by the

number of links in the network. This measure gives the same information as the simple

sum since the number of links in a network is constant. The mean average of excess traffic

of all links in the network is another candidate for the total excess traffic metric. The mean

average of excess traffic of all links in the network, Jxt,,cqn iS given as:

L
— 1
JTtmean = Mxwt = 7 lz; Mzwt; (6.36)

This measure of traffic suffers from the same inability as the simple sum measure to distin-
guish between mappings with similar traffic values but significantly different landscapes.

Maximum Value of Excess Traffic

This objective considers only the highest value of excess traffic of a single link from all the
links in the network. Minimising the objective reduces the maximum single value of excess
traffic in the network but does not consider the overall level of excess traffic, which is the
opposite of using a simple sum measure of excess traffic. This is a candidate for a simple
excess traffic variance objective, since a lower maximum single value will also reduce the
variance. The maximum value of excess traffic of all links in the network, Jxt,,.. is given

by [EqUation 6.37)

JTtmar = max{Mzwt; : 1 =1,...,L} (6.37)

Standard Deviation (SD) of Excess Traffic

The standard deviation gives a measure of how much variation from the mean there is in a
population. A value of zero means that all values are equal, so in the case of excess traffic
a zero value translates to all links having equal levels of excess traffic, however the SD
does not give any information about the absolute level of excess traffic across the whole
network. The standard deviation of excess traffic of all links in the network is a candidate
for the excess traffic variance objective. The standard deviation of excess traffic of all links
in the network, Jxt,, is given as:

L
1 -
Jrteg = T ;(watl — Maxwt)? (6.38)
On its own, using standard deviation will not help to reduce the overall level of excess traffic
as a zero SD can be obtained for any level of excess traffic.

Absolute Mean Deviation (AMD) of Excess Traffic
Absolute Mean Deviation is an alternative to standard deviation that is simpler to calculate
because it uses the absolute difference in place of the square of the difference. For a
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calculation that will be repeated many millions of times the difference in computation time
between finding the absolute difference and computing the square of a difference and then
later obtaining a square root, is significant. The absolute mean deviation of excess traffic of
all links in the network is a candidate for the excess traffic variance objective. The absolute
mean deviation of excess traffic of all links in the network, Jxt,,.q is given as:

L

1 .
Jxtomd = 7 Z | M xwt; — Mxwt| (6.39)
=1

It can be argued that the AMD is as good as and in some cases a better measure than
SD [185]. The same comments made for the suitability of SD can also be made for AMD,
however due to the simpler computation AMD would be preferred over SD.

6.7 Determining Paths Through a Lattice

During the development of the metrics and objectives, a formal description of a ComPair
was provided. ComPairs are an important and heavily used construct in the calculation of
the metrics involving the communication of traffic through the many-core array. An essential
piece of information, in at least one of the metric calculations, is the number of paths that
exist between the source and target nodes of a ComPair or, more generally, between any
two nodes in a square lattice. There is a well known formula for calculating the number of
paths between two nodes in a fault-free lattice, however the author has been unable to find
any references regarding a calculation in a lattice with faults, i.e. with broken links between
nodes. Without the availability of a calculation, an algorithm would have to trace and count
each viable path, which is a problem with O(n!) complexity. As an activity that is required
for every ComPair, for every mapping for every generation, this is a serious computational
problem for any but the smallest of array sizes.

In response to this problem, an algorithm has been developed that can calculate the
number of paths between two nodes in a faulty network, using only the position of the
nodes and a list of faults in the network.

This section provides the mathematics required to calculate the number of fault-free paths
between two nodes in a square lattice.

Using set notation we will show that the number of fault-free paths through a lattice with
faulty edges can be represented by:

Ps¢(S,T) = R(S,T)
—R(&F),VEF € R"(&p)[FkeZ n=2k+1

+R(EY), VEF € RME) |3k eZ:n=2k (6.40)
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6.7.1 Definitions
This section gives definitions used in the following sections.

Definition 1. Lattice : A lattice consists of nodes arranged in equally spaced rows and
columns. In general a lattice can be considered to have an infinite number of rows and
columns. For practical purposes lattices can be made finite by specifying a size of R rows
and C columns.

Definition 2. Location : A location is a 2-tuple specifying the row and column coordinates,
for an infinite lattice loc = (r,c) | r,¢ € Z, » > 0, ¢ > 0 and for a finite lattice loc =
(r,e)|ryeceZ, 0<r<(R—1),0< ¢<(C—-1). illustrates the locations in
a b x b lattice.

Figure 6.10 — A 6 x 6 Lattice showing the location coordinates of each node.

Definition 3. Origin : The Origin is location (0, 0), denoted by O.

Definition 4. Subnet : A subnet is any portion of a lattice defined by a source location
Sioc = (Sr,Sc) and a target location ¢, = (s, s.) where s, is not necessarily < ¢, and

S¢ is not necessarily < t..

Definition 5. Node : A node is uniquely identified by it's location loc(r, ¢); being the row
and column coordinates of the node within the lattice. Each node can be connected, via
edges, to each of its north, south, east and west neighbours (where they exist) as in figure
6.10]

Definition 6. Edge : An edge connects two nodes and is identified by the locations of the
nodes that it connects. An edge has a source node, the node closest the origin of a lattice
or source node of the subnet, and a target node, the node furthest from the origin of a
lattice or closest to the target node of the subnet. An edge e is, therefore, identified by an
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ordered 2-tuple of node locations, (Sioc, tioc) = ((Sr, Sc), (tr, tc))-

Definition 7. Minimum Length Path : A minimum length path from the Source to the Target
of a lattice or subnet is a path where each traversal of an edge, a step, increases the
distance from the source and decreases the distance to the Target; there are no steps
going "backwards" towards the source. All minimum length paths between the Source and
Target are the same length consisting of (R — 1) horizontal steps and (C' — 1) vertical steps
for a subnet of size R x C.

Definition 8. Ordered Set of Edges : An ordered set of edges {e1,...,e,} | n > 1is a set
of edges ordered such that:

Definition 9. Path-Coincident Edges : Given a lattice with a set of edges &;, take an
ordered set of n edges from &, suchthat 1 < n < Ej, then if:

(tk, < Sk+1,) A (tg, < Spt1.), Ve[ 1<k < (n—1)

at least one minimal length path traverses all of the selected edges. Such a set of edges
is described as a set of path-coincident edges, denoted by £, of order n where n is
the number of edges in the set. In addition, each individual edge is considered to be a
path-coincident set of order 1.

Using P(&;) to represent the power set of & the set £,(&) is the set of all sets in P(&;) of
order n that are path-coincident.

Definition 10. Edge-Coincident Paths : The set of paths that traverse every edge in the
set of edges & € &](&), are described as the set of edge-coincident paths for the set
of edges & and are denoted by R(&,) which is a member of the set of edge-coincident
sets of paths denoted by R™ (&), where n is the number of edges in the set &', that is
R(E)) € R™(&)and R™(&) = {R(&)) 1 &y € &) (&)}

The set of edge-coincident paths R(E,') is the intersection of the sets of paths that pass
through each edge in & individually, that is () = R({e1}) N ... NR({en}).

Definition 11. Number of Minimum Length Paths in a Subnet : The number of minimum
length paths in a subnet is denoted by R(s,t) where s is the source location and ¢ is the
target location.

Definition 12. Number of Edge-Coincident Paths : The number edge-coincident paths
that traverse a set of edges &, is denoted by R(E}). If, for clarity, the subnet needs to
be identified, then the source and target locations identifying the subnet follow the set of
edges e.g. R(&y, (S5, T))

Definition 13. Faulty Edge : A faulty edge is an edge that cannot be used by a path, in
effect removing the edge from the lattice.
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Definition 14. Faulty Node : A faulty node is a node that cannot be visited by a path, in
effect removing, from the lattice, the node and all edges leading to and from the node.

Definition 15. Fault-Free : A fault-free lattice is a lattice where all nodes and edges are
present and can be used by paths.

6.7.2 Pascal’s Triangle

This section begins with a study Pascal’s triangle in preparation for showing its relationship
to the number of paths in a lattice.

Pascal studied what he referred to as the "Triangle Arithmetique", show in figure[Figure 6.11]
as Pascal originally presented it in his 1665 treatise [186]. Pascal describes a method of
generating the numbers in each cell by placing a number, the "generator", in the top-right
hand cell and then describes how the value of every other cell is generated by summing the
values of the cells immediately above and to the right of a given cell [187]. The generator
can be any value; Pascal used the value of 1 which is also the value relevant for this work.
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Figure 6.11 — Pascal’s "Arithmetical Triangle," as presented in his 1665 Traite
du Triangle Arithmetique [186] (Treatise on the Arithmetical Triangle) (Image
(©Cambridge University Press).

Pascal notes a number of properties of the numbers in the triangle, one of which is that the
numbers correspond to the binomial coefficients.

The coefficient of the (k + 1) term of an expanded binomial to the n‘"* power, where k
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takes the values from 0 to n, is given by the binomial coefficient formula:

n\ n!
<k> = Hn—h)! (6.41)

This can be related to the value in Pascal’s triangle by denoting the rows of Pascal’s triangle
by r and columns by ¢, with both r and ¢ both starting at 0, the value in each cell can be
calculated by using the binomial coefficient formula by substituting »n for » + ¢ and & for r

(or equivalently k£ for ¢) giving
!
(7“ + c) _ (r+c¢)! (6.42)

r rlel

As we shall see, Pascal’s triangle and the binomial coefficients are relevant when deter-
mining the number of paths through a lattice.

6.7.3 The Number of Minimal Length Paths in a Fault Free Lattice

Theorem 1. The number of minimal length paths between opposite corners of an r x c
lattice, is given by ("1¢).

Proof. Using the principle of mathematical induction:

Given the number of paths from the Origin of a lattice to the node at location loc(r, ¢) is
denoted by R(O, (r, ¢)) then the number of paths can be calculated as:

Base cases: If the source and target nodes are on the same row or column, there will be
exactly one path between the source and the target. Since the any node is on the same
row and column as itself, we take the number of paths from a node to itself as 1. We
therefore have the following base cases:

R(O,(0,¢)) =1 (6.43)
R(O, (r,0)) =1 (6.44)
R(0,0) =1 (6.45)

Induction hypothesis: assume the theorem is true for r = m and ¢ = n i.e. location
loc(m,n), so

(6.46)
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Induction step:
R(O,(m+1,n+1)) = R(O, (m,n+1)) + R(O, (m +1,n))

(m4+n+1)! (m+1+n)!

=) T (mt Dn)!

_(mAn+DI((m+ 1)l +ml(n +1)!)
N (m+ 1)Intm!(n + 1)!

_ (mAn+1) <(m+1)!n!+m!(n+1)!>
 (m+1D)(n+1)!

(m+n+1)! <(m+1)! (n+1)!>

Inlm!

T mADin+ 1\ ml In!

~ (m+n+1)!
(m+D!(n+1)

'(m+n+2)

~ (m+n+2)!
C(m A+ D!(n+1)! (6.47)

Hence we have shown that R(O,0O), R(0,c) and R(O, (r,0)) hold and Vm > 1, Vn >
1, R(O,(m,n) = R(O,(m + 1,n+ 1)). Therefore R(O, (r,c)) is true Vr > 1, Yc > 1 by
mathematical induction. O

Corollary 1.1. Given a subnet with a Source node (S) and Target node (T), the number
of minimal length paths between the Source and Target that traverse an edge e = (e, e;),
denoted by R({e}), is the product of the number of minimal length paths, R(S, es), between
the Source and the edge’s source node and the number of minimal length paths, R(e;, T,
between the edge’s target node and the Target.

R({e}) = R(S,es) - R(er, T) (6.48)

Figure 6.12alillustrates a subnet of size 8 x 8 with an edge between (1, 1) and (1, 2) through
which traverses 2 x 362 = 2708 paths, giving the number of fault-free paths through the
subnet from the source to the target of 3432 — 724 = 2708.

Similarly, [Figure 6.12b]illustrates a subnet of size 8 x 8 with an edge between (4, 3) and
(5,3) through which traverses 35 x 15 = 525 paths, giving the number of fault-free paths
through the subnet from the source to the target of 3432 — 525 = 2907.

6.7.4 Number of Paths Traversing Path-Coincident Edges

The equation for calculating the paths through a single edge given in[Equation 6.48|can be
generalized for multiple path-coincident edges.
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(a) The number of paths that (b) The number of paths that
traverse edge e; = 2 x 362 = 724. traverse edge e; = 35 x 15 = 525.

Figure 6.12 — Calculating the number of paths that traverse an edge.

Figure 6.13|illustrates a network with a pair of edges, e; and e, that are path-coincident.

Figure 6.13 — Example of two edge faults.

Theorem 2. The number of minimal length paths that pass through an ordered pair of
path-coincident edges, £2 = {e1, e2}, is given by:

R(E2) = R(S,e1,).R(e1,, e2,)-R(es,, T) (6.49)

Proof. From |[Equation 6.48, the number of paths of the subnet that traverse edge e; is
given by:

R({e1}) = R(S,e1,).R(e1,, T (6.50)
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The set of edges {e1,e2} are ordered and path-coincident, so edge es is in the subnet
defined by the locations (e;,,7") and R(e1,,T") is the number of minimal length paths in

subnet (ey,,T). Using [Equation 6.48, the number of paths of the subnet (e;,,T") that

traverse edge e is given by:

R({€2}7 (61t7 T)) = R(eltv 625)-R(€2t7T) (651)

From equations and[6.51] the number of paths that traverse both e; and es is:

R({el, 62}) = R(S, 613).R(€1t, 625).R(€Qt s T) (6.52)

O

More generally for any ordered set of edges, &, taken from the set of edges, &, of a
subnet of size R x C there can be multiple sets of path-coincident edges R" |1 < n <
min(Ey, (R—1)-(C—1)) where E¢ = |£¢| and n represents the order of the path-coincident
set.

Theorem 3. The number of minimal length paths that pass through a set of path-coincident
edges, E}L ={e1, ... ,en}, is given by:

R(E}l) = R(S, 618).R(€1t, 623). ce .R(e(n_l)t, ens)'R(ean) (653)

Proof. Using the principle of mathematical induction:

Base case: From|Equation 6.48| the number of paths that traverse edge e; is given by:

R({e1}) = R(S, e1,)-R((e1,, T)) (6.54)

Induction hypothesis: assume the theorem is true for n = k so:

R({e1, ... yex}, (S, T)) = R(S,e1,)). ... -Rleg—-1),,ex,)-Rlex,,T) (6.55)

Induction step: The set of edges {ei, ... ,e,} are ordered and path-coincident, so edges

e(L+1), --- »€n} are in the subnet defined by the locations (eg,,T"). From|Equation 6.48|
(k+1) t

the number of paths of the subnet (e, , T') that traverse edge e ;1) is given by:

R({ew+1)}s (ex,, T)) = Rle,s errr),)-Rleryny,, T) (6.56)

From equations [6.55| and [6.56| we have:

R({e1, .- sewy1)}, (S, T)) = R(S,e1,)). --. R, ek41),)-R(€ht1),,T) (6.57)
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Hence we have shown that R({e1}) holds and Vk > 1, R({ex}) = R({e@+1)})- Therefore
R({e1, ... ,en}) is true Vn > 1 by mathematical induction. O

6.7.5 Number of Paths Through Multiple Faulty Edges

Theorem 4. Given a lattice with £}, edges and a set of m faulty edges £; = {e1, ... ,em}|E r C
&1, then the number of paths that traverse at least one faulty edge is given by:

Pr(S,T) =+ R(EY), VEF € R™(E) |3k eZ:in=2k+1

~ R(EP), VE € R™&) |3keZin=2k (6.58)

Proof. If none of the faulty edges are path-coincident then all of the sets of paths that pass
through each faulty edge, represented by Rl(é'f), are disjoint. Then the number of paths
that traverse a fault edge, denoted by Py, (S,T) is:

Py, (S,T) = RY(&y) (6.59)

If the set of faulty edges includes pairs of edges that are path-coincident, then the number
of paths that traverse both edges in a pair of path-coincident edges are also included in
the sets of paths that traverse each edge individually. Each set of paths in Rz(Ef) are
included twice in R' (&), once for each edge that is path-coincident. Therefore to correctly
calculate the number of paths that traverse a set of fault edges when there is at least one
pair of path-coincident edges (and no triplets of path-coincident edges), R2(8f) must be
subtracted from the total:

Py, (S,T) = RY(&r) — R%(&p) (6.60)

If the set of faulty edges includes triplets of edges that are path-coincident, then the number
of paths that traverse all three edges in a path-coincident set of edges are also included in
the sets of paths that traverse each pair of the three edges. Each set of paths in R3(Ey) are
included three times in RQ(Ef), once for each pair of edges in the path-coincident triplet.
Therefore to correctly calculate the number of paths that traverse a set of fault edges when
there is at least one ftriplet of path-coincident edges (and no sets of four edges that are
path-coincident), R3(€) must be added to the total:

Py (S,T) = RYEp) — R*(&y) + R (&) (6.61)

In set theory this requirement for subtracting and adding alternate sets of higher order in-
tersections of sets to correctly calculate the number of elements in the union of intersecting
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sets is referred to as the principle of inclusion and exclusion [188].

Therefore, for a set of faulty edges with arbitrary sized sets of path-coincident edges the
calculation for the number of paths that traverse at least one faulty edge is:

Pr(S,T) =+ R(EY), VEF € RMEy) [Tk eZ:n=2k+1

~R(E}), Y E € RME)|3keZ:n=2k (6.62)

6.7.6 Number of Paths Through a Lattice with Multiple Faulty Edges

Theorem 5. : Given a lattice with £ edges and a set of m faulty edges {e1, ... ,en} =
Er C &, then the number of fault-free paths from the source to the target of the lattice is
given by:

Py(S,T) = P(S,T)
~R(E}),VE € RME)|TkEZ:n=2k+1

+ R(EP), VE € RME)|FkeZ:n=2k (6.63)

Proof. Given a lattice with £}, edges and a set of m faulty edges £ = {e1, ... ,en} | Ef C
&, then the number of fault-free paths in the lattice is the number of paths that traverse at
least one faulty edge subtracted from the number of paths in the equivalent fault-free lattice.

The number of paths in a fault-free lattice is:

P(S,T) = R' (&) — R*(&f) + R3(&y) (6.64)

The number of paths that traverse at least one faulty path is given by [Equation 6.58]
The number of fault-free paths in a lattice is therefore:
Pss(S,T) = P(S,T)
— R(EF), V& € R (&) |FkeZ:n=2k+1

+R(EP), VE" € RME)|3keZ:n=2k (6.65)
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6.7.7 Summary

This section presented a calculation for the number fo paths through a faulty network using
only the location of the nodes and a list of the faulty edges in the network.

This calculation has been implemented in an algorithm has been designed to work with
directional edges and with the source and target nodes of a ComPair in any possible
orientation. Although the algorithm has been designed for a two dimensional lattice, the
principles are valid for a regular lattice of any dimension. In addition it is possible to
employ the algorithm to calculate paths through non-regular lattices by first converting the
non-regular lattice to a regular lattice with faults and then using the algorithm to calculate
the number of paths in the faulty lattice.

6.8 Multi-Objective Correlation

The experiments in this section have been designed to explore the level of correlation that
there exists between the evolutionary objectives described in this and previous chapters.

6.8.1 Correlation

If two objectives are highly correlated, then, when they are plotted on a graph, the plotted
points will be aligned along an axis such as the z = y axis and will present only a few
closely positioned points as a Pareto front. A pair of highly correlated objectives can be
replaced by just one of the objectives - the second objective does not add any useful
information.

If two objectives are poorly correlated, then their plotted points will form a cloud and
the Pareto front will consist of many points on a curve with a shape of, for example,
Yy = ax~! or Yy = ax~2.

one objective against the other from which one can be selected on the basis of additional

Such a Pareto front provides a range of points that trade-off

criteria. For example if the objectives of core fault tolerance and power consumption are
poorly correlated then a Pareto front will have a range of points: at one end of the Pareto
front there will be a point that has good core fault tolerance and poor power consumption,
while at the other end of the Pareto front there will be a point with poor core fault tolerance
and good power consumption. In between these two points there will be numerous points
that have different degrees of trade-off between the two objectives. Such a Pareto front
allows a particular point to be chosen to promote a particular property.

The selection criteria do not have to remain fixed so different points of the Pareto front
can be selected at different times in response to changing demands and environmental
conditions.

In multi-dimensional space, axes are described as orthogonal, which is the multi-dimension
equivalent of perpendicular axes in two and three dimensional space. Each each pair of
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axes {z,y},{z, 2z} and {y, z} in three dimensional space are orthogonal to each other and
are said to form an orthogonal set. We can use the same terminology to describe a pair of
objectives as orthogonal if they are not highly correlated.

For multi-dimensional problems we want to select a set of objectives that are all pair-wise
orthogonal and as a whole form an orthogonal set, so that each objective is adding a useful
influence to the selection of solutions from the solution space. Exploring the correlation of
pairs of objectives in a 2-dimensional multi-objective problem is an efficient way to ensure
that an effective selection of objectives can be made for higher dimensional multi-objective
problems.

6.8.2 Objectives

The objectives explored in this set of experiments are:
e Core fault tolerance
e Link fault tolerance
o Network Power
e Excess traffic (mean traffic)
e Excess traffic (traffic AMD)
Experiments are performed for each pair combination of the objectives.

For excess traffic, both the mean value and the deviation measure of AMD are included to
determine, experimentally, what degree of correlation there is between the mean and AMD
measures.

6.8.3 Evolutionary Algorithm Parameters

The experiments are run using the evolutionary algorithm parameters selected in
ftion 5.5)and listed in The hardware is fault free throughout these experiments.

6.8.4 Graph Selection

The experiments are repeated for each of the three densities of graphs listed in
The graph names are based on the number of processing nodes, source nodes and sink
nodes, so the first graph with 28 processing (p) nodes,1 source (s) node and 2 sinks (k)
nodes is referred to as p28s1k2.

The graphs all have 28 processing nodes which will be mapped onto a 6 x 6 array within
a 8 x 8 hardware map with a border of B((b,1),(b,1),(b,1),(b,1)). Graphs with 28
processing nodes were chosen because, based on the experiment results in
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Table 6.8 — Multi-Objective Fault Free Experiment Parameters

Parameter Value

Hardware Map Size 8 x 8

Hardware Map border B((b,1),(b,1),(b,1),(b,1))
Many-Core Array Size 6x6

Number of generations 1000

Population size 100

Elite

Parents
Descendants
Novel

Mutation Pattern

10 fittest individuals cloned

20 fittest individuals used as parents
4 from each parent via permutation
10 randomly generated individuals
g15

Table 6.9 — Test Application Process Graphs

Parameter

Value

Graph p28s2k1

Graph p28s3k2

Graph p28s1k3

28 Process Node

2 Source Nodes

1 Sink Nodes
Sparsely Connected

28 Process Node

3 Source Nodes

2 Sink Nodes
Moderately Connected

Figure 6.2

28 Process Node

1 Source Nodes

3 Sink Nodes
Densely Connected

Figure 6.3

[Core Fault Tolerance presented in [Figure 4.15] it was known that the minimum core fault

tolerance value was non-zero and that mappings are reasonably difficult to find.

For each pair of experiments the sources and sink processing nodes are randomly allo-
cated to the source and sink nodes of the environment. No attempt has been made to
force all the experiments to place the sources and sinks at the same locations. The actual
position of the source and sink processes will have an effect on the values of the objectives,
but is not expected to have an effect on the correlation of a pair of objectives.
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The results of experiments for the densely connected graph p28s1k3 are presented in this
chapter. The results for the sparsely and moderately connected graphs are presented

in IMulti-Objective Plots for Sparsely and Moderately Connect Graphs| as the results are

recognizably similar to those of the densely connected graph and do not merit repeating
the detailed analysis.

6.8.5 Data Presentation

In each experiment 100,000 individuals are evaluated and plotted using graded colours
representing the generation when the individual first appeared. The colour bar relating the
generation of creation to a colour is shown in[Figure 6.14] The points of the last generation
are plotted first, and the first generation plotted last so that points in the early generations
Generation Colour Code
I

0 200 400 600 800 1000
Generation

are not masked by the points of later generations.

Figure 6.14 — Generations Colour Bar

Plots of Individuals

When interpreting the plots, the absolute value of the objectives is not important. Of more
interest is the how the objectives relate to each other. Therefore, the range of values, and
scale of axes have been chosen for each individual plot to achieve the best presentation of
the data to illustrate the relationship between the two objectives.

Some objectives have a very large range which can have the effect of compressing the
interesting data into a very small area close to an axis. All results start with a plot of
all individuals, to give a perspective of the whole data set. Where the interesting data is
compressed into a small portion of the dataset close to one of the axes, additional plots
have been added which focus on the interesting data points.

Pareto Front Plots

The Pareto front plots show the Pareto front for generations 1, 10, 100 and 1000 which
prove to be appropriate generations to illustrate the improvement of the Pareto front over
the 1000 generations of the experiments.

The scale of the axes has been chosen to illustrate the improvement of the Pareto front
from generation 1 to generation 1000, and are not the scales used to plot the individuals.
In some cases, for example in this results in the Pareto front appearing
flattened, which may give the false impression that the values for one of the objectives are
not very different, and therefore are not materially different. It is important to realise that
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it is not the presentation of the Pareto front, but the number of points on the Pareto front
that is significant, as a larger number of points gives more flexibility in choosing a suitable
solution based on other criteria.

6.8.6 Results for a Densely Connected Graph

This section presents the results of the experiments using the densely connected graph
p28s1k3.

Core Fault Tolerance with Network Power -
shows the results for the multi-objective combination of Core Fault Tolerance

and Network Power.

exhibits two features that can be seen in all the experiments where one of
the objectives is core fault tolerance, which is the discrete nature of the core fault tolerance
values with a minimum value of 3. This is explained by noting that the values for core fault
tolerance have a relatively low range and that a graph with 28 processing nodes being
mapped on to a 6 x 6 array has a minimum possible core fault tolerance value of 3. Both
of these features were observed and discussed in

Since the evolutionary algorithm is finding the minimum value for core fault tolerance, it
can be deduced that there is a sufficiently large number of optimum solutions for core fault
tolerance that they are reasonably easy to find.

The Pareto front for generation 1000 has nine well-spaced points. The colour of the plotted
points show that the evolutionary algorithm continued to improve on the network power
objective after solutions with optimal core fault tolerance were found. This indicates that
optimal solutions for core fault tolerance are ’easier’ to find than those for network power,
which is consistent with the single objective experiments that explored the evolutionary
algorithm parameters in and is due to there being many possible mappings
which have an optimal arrangement of processing cores for core fault tolerance.

Core Fault Tolerance with Link Fault Tolerance - [Figure 6.16]

The core fault tolerance with link fault tolerance plot has a similar profile to the core-power.
A scale of x100 has been used to enable the plot to show all individuals. The use of the
scale has the effect of flattening the Pareto front, which is revealed by a plot that focuses

on the lower half of the the link scale as in

The plot of individuals suggests that the two objectives are not correlated because it is
not possible to predict the value of one objective from the value of the other objective
however, the small number of points on the Pareto front reveals that there are solutions that
have good values for both objectives simultaneously. The Pareto front has a sharp corner,
indicating that there are some solutions that simultaneously have good core fault tolerance
and good link fault tolerance. The sharp corner also means that a small improvement
in one objective is balanced with a relatively large deterioration in the other objective. It
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Figure 6.15 — Core FT with Network Power

is important to remember, when reading these plots, that the scale for the plot has been
chosen to illustrate the improvement of the Pareto front over 1000 generations and not to

illustrate the detail of the final Pareto front.
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p28s1k3, 100,000 Individuals

6x6, Dag

MO Mapping of Core FT and Link FT

E=8x8, P

120

to evenly distribute cores across the array, while the relative position between processing
cores has no effect on the metric. Therefore, there can be many alternative arrangements

To understand these results requires an examination of the effect of the metric calculations
on the placement of process core and idle cores. The core fault tolerance calculation acts
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Pareto Front for Core FT and Link FT

270 E=8x8, P=6x6, Dag=p28s1k3, 100,000 Individuals
‘ ‘ ‘ — Generation 1
Generation 10
60} Generation 100 |7
Generation 1000
50} - | R
S
o
— <
x : : : v :
x
£
10| S SO U PO OO SO STS
10 ; J ; ; ;
2 4 6 8 10 12 14
Core FT

(c) Pareto Front Evolution

Figure 6.16 — Core FT with Link FT

of processing cores, all of which have the same core fault tolerance fitness. The link fault
tolerance objective gives an evolutionary pressure to avoid critical links, which results in
the placement of the source and target nodes of ComPairs in different rows and columns.
Evenly distributed idle cores are not detrimental to the link fault tolerance and may actually
be helpful.

Although the sharp corner shows that there are some solutions that simultaneously have
good core fault tolerance and good link fault tolerance, the spread of solutions does not
imply that core fault tolerance and link fault tolerance are high correlated objectives.

This analysis suggests the possibility of alternative mechanisms for finding optimal so-
lutions for this pair of objectives by, for example, using a single objective evolutionary
algorithm on core fault tolerance to find an optimum arrangements of idle cores, and
then fixing the idle cores and using a single objective evolutionary algorithm on link fault
tolerance to find an optimal arrangement of the processing cores around the idle cores.
This strategy may reduce the processing time required for the particular objective pairing.

Core Fault Tolerance with Mean Traffic - [Figure 6.17|

Core Fault Tolerance with mean traffic is similar to the core-link plot in respect of the shape
and number of points in the final Pareto front, while the plots of the individuals show the
there is not a strong correlation between the two objectives.

The scale of the plot of all individuals in [Figure 6.17a|is so large that the detail of the
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Pareto front is compressed into a very small region above the core FT axis. Two more

plots are provided with smaller scales to reveal the detail of the dataset close to the core

FT axis.

b| shows that there is a "break” in the data between traffic objective

value between 3.500 and 5,000, while shows a Pareto front corner similar,



246 6.8 Multi-Objective Correlation

MO Mapping of Core FT and Mean Traffic
E=8x8, P=6x6, Dag=p28s1k3, 100,000 Individuals

35
30} i
s .o
= 25 :
< 25| ‘ N
o Lo
E * .
© .
i_ .
< 20} P
()
=
154 _
10 L L L L L L
0 10 20 30 40 50 60
Core FT
(c) Mean range 1,000 - 3,500
Pareto Front for Core FT and Mean Traffic
24 E=8x8, P=6x6, Dag=p28s1k3, 100,000 Individuals
: : \ — Generation 1
ol Generation 10 ||
! ! ! ! Generation 100
; ; : . | = Generation 1000
20b - b b NG T P T
8 . . . . . .
= : : : : : :
— : : : : : :
Zﬁ 18_ ............. ............... ................ ................ ................ ................ ................
k] : : : : : :
=
e : : : : : :
el SO - S S S— A— —
8 : : : : : :
=
10 J J 1 1 1 1
2 4 6 8 10 12 14 16
Core FT

(d) Pareto Front Evolution

Figure 6.17 — Core FT with Mean Traffic

but sharper, than that for the combination of core Fault Tolerance with link Fault Tolerance.

Looking at the details of the metric calculation for excess traffic, the effect the metric will
have on the placement of the nodes of a ComPair are that it will attempt to make the
distance between the nodes as small of possible to reduce overall traffic, but will also
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attempt to avoid overloading individual links by avoiding arrangements where the nodes
are on the same row and column. The second of these is similar to the effect of link fault
tolerance discussed for core fault tolerance with link fault tolerance.

The conclusion is that, like link fault tolerance, evenly distributed idle cores have no detri-
mental affect on the mean traffic objective value and suggests the single objective approach
may also work for this objective pairing.

The area above this plot which is devoid of an data points is an interesting feature which
requires explanation. The excess traffic calculation uses a weighted approach that pe-
nalises critical links more than significant links which are penalised more than normal links.
The weight approach is designed to discriminate against mappings with critical links. The
weighting of critical links is the cause of the sudden increase in the traffic objective value.
The mapping below the break will be free of critical links while the solutions above the
gap will have at least one critical link. This is shows that the weighting of links based on
criticality does discriminate against critical links and vindicates their use.

Core Fault Tolerance with Traffic AMD -

The plots for core Fault Tolerance with traffic AMD are very similar those of the core-mean
plots in This indicates that the mean traffic and traffic AMD objectives are
similar due to them being based on the same underlying metric of excess traffic. The
relationship between mean traffic and traffic AMD is explored later in this section.

The analysis of the core FT with mean traffic is also relevant to this experiment.

Link Fault Tolerance with Traffic AMD -

The dataset for link Fault Tolerance with traffic AMD has some interesting detail which only
becomes evident with a series of fours plots with progressively focusing on smaller subsets
of the whole dataset.

The traffic AMD objective shows a number of distinct "strata" of data points. Deviation
measures such as AMD and SD tell us about the variation between the values of the data
set. The stratification of the traffic AMD values tells us that the amount of variation of traffic
through links is increasing, i.e the difference between those will the lowest amount of traffic
and those with the greatest amount of traffic. The effect of the weighting of critical links will,
when the number of critical links in a mapping increments, suddenly increase the metric
value for some links while leaving others unchanged, so increasing the variation. This
analysis suggests that each stratum will be related to a specific number of critical links.

Why the core-traffic AMD dataset only exhibits two levels of data instead of multiple levels,
is not obvious and would merit additional investigation.

The Pareto front has many more points arranged in a more identifiable curve and does not
exhibit the sharp corner of solutions of the previous experiment groups, which could be
described as a good quality. The shape and number of points on the Pareto front offer a
large selection of degrees of trade off between the two objectives.
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The quality of the Pareto front indicates that the underlying metric calculations of the

objectives are competing against each other in a manner that has not been present in

previous objective pairings. A particular example of this is that to achieve the smallest

traffic volume ComPairs node pairs need to be adjacent to each other, however this it not
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Figure 6.18 — Core FT with Traffic AMD

good for link FT because it would result in a large number of critical links.

The pairing of link Fault Tolerance with traffic AMD is a good example of a pairing that
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works well as a multi-dimensional problem.

Link Fault Tolerance and Mean Traffic -[Figure 6.20|
The plots for link Fault Tolerance and mean traffic have a varied Pareto front, similar to
the link-AMD Pareto front. The data plots exhibit two strata instead of the multiple strata
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of the link FT and traffic AMD plots. This highlights the qualitative difference the mean
of traffic and the traffic AMD: if there are two mappings that differ by a single critical link,
as discussed eariler, the AMD measure will jump significantly, however the mean will rise
by a smaller amount because the mean calculation averages the rise of value on one link
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Pareto Front for Link FT and Traffic AMD
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Figure 6.19 — Link FT with Traffic AMD

across all links in the network.

Link FT and Network Power - [Figure 6.21]

The link FT and network power pairing produces a good quality Pareto front with many
points forming a smooth curve, providing many options for trade off between the two
objectives. The shape of the plot of individuals and the Pareto front suggest that the two
objectives are not correlated and may be orthogonal.

As previously discussed, the link FT objective is lowest when all ComPair node pairs are
on different rows and columns. The network power objective is at a minimum when all
ComPair node pairs are adjacent. The results of the experiment of this pairing shows that
these two objectives work against each other and so form a good pairing in a multi-objective
scenario.

Mean Traffic and AMD Traffic -

The Mean Traffic and AMD Traffic data plot is very different from all the previous plots.
The narrow, long cigar shape aligned along the x = y diagonal is a clear illustration that
the mean traffic and AMD traffic are highly correlated which means that only one of the
objectives is required.

The mean is a measure of the average traffic that flows through all the links. The AMD
measures the deviation of the excess traffic, of the links, from the mean traffic. The
expectation was that it should be possible to have all combinations of low/medium/high
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Traffic Mean (x100)

Mean Traffic (x100)
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average mean traffic with low/medium/high deviation. It was also expected, that it should
be possible to find solutions where, for example, the mean average was high, but the
deviation from the mean was low which would indicate that the excess traffic was evenly
spread across the network. That this is not the case requires explanation. A possible
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Figure 6.20 — Link FT with Mean Traffic

explanation is that the underlying data for both metrics is the excess traffic and the excess
traffic is dominated by a small number of critical links because of the weighting applied to
critical traffic. This would cause the deviation of the values of excess traffic to increase in
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MO Mapping of Link FT and Power
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Figure 6.21 — Link FT with Network Power

proportion to the increase in the value of the mean the excess traffic.

Network Power and Traffic AMD - [Figure 6.23]
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MO Mapping of Mean Traffic and Traffic AMD
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Network power and traffic AMD share similar properties to link-mean pairing shown in
Figure 6.20} although the stratification is not as evident as for the link-mean pairing.

The Pareto front contains many points offering a good selection of trade-offs between the
two objective.
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Figure 6.22 — Mean Traffic with Traffic AMD

Network Power and Mean Traffic - [Figure 6.24]
Network Power and Traffic Mean and Network Power and Mean Traffic both share similar
properties to link-AMD. The Pareto front contains many points offering a good selection of
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MO Mapping of Power and Traffic AMD
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trade off between the two objectives, although the dataset in shows signs of
alignment of data points along a * = ky axis. Although not as pronounced as the cigar
shape for the traffic mean and traffic AMD pairing, this does suggest that there is some
correlation between the power and mean traffic objectives.
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Figure 6.23 — Network Power with Traffic AMD

Examining the metrics, the power metric will be lowest when the nodes of a ComPair
are close or adjacent, while the excess traffic metric will be lowest when the nodes of
ComPairs are close together and on different rows and columns. The conditions for low
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metric values for this pair of objectives are similar, but not identical, which accounts for
there being moderate correlation between them.

It is interesting to note the the correlation of traffic AMD, based on the dataset plot of

Figure 6.22c¢, appears to be weaker than for the mean traffic dataset in [Figure 6.24c]
indicating the the correlation between mean traffic and traffic AMD may be strong but not
absolute.
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6.9 Conclusion

The results show that, for the majority of the objective pairs, the multi-objective evolutionary
approach can find a good range of solutions with degrees of trade-off between the objec-
tives, the most orthogonal pair of objectives being link fault tolerance and mean traffic.

The most correlated pair is the mean traffic and traffic AMD pairing. With existing critical
weight parameters influencing the mean traffic and traffic AMD objectives, making them
strongly correlated, only one of these objectives is required. Of these two objectives, the
mean traffic objective is the natural choice, given that it is a cheaper calculation than the
AMD objective.

Both the link fault tolerance and network power objectives work reasonably well with the
traffic objectives even though there appear to be some correlation between the metrics.

The behaviour of the core fault tolerance objective with each of the others suggest that
there may be a better approach than to include it as an objective in a multi-objective
problem. The suggested approach is to first find optimal arrangements of the idle cores
using core fault tolerance as a single objective. The core fault tolerance objective is
very cheap to calculate and there are many possible arrangements of idle cores with
the minimum possible objective value that can be discovered quickly with an evolutionary
algorithm. A discovered idle core arrangement can then be selected and fixed for a
multi-objective evolution of link fault tolerance, network power and mean traffic.

The results suggest that a multi-objective problem using core fault tolerance, link fault
tolerance, network power and mean traffic will be effective in finding solutions that have
a range of trade-offs of the competing demands of the objectives. An alternative to using
four objectives is to fix idle core positions using a single objective evolution with core fault
tolerance, and then perform a three objective evolution with the remaining three objectives.

For the multi-objective experiments in the next|Chapter 7||(Graceful Degradation and Ame-

[lioratior] will use the pairings of core fault tolerance with network power, link fault tolerance
with network power and link fault tolerance with mean traffic.

During the development of the metrics and objectives, a formal description of a ComPair
was provided. ComPairs are an important and heavily used construct in the calculation of
the metrics involving the communication of traffic through the many-core array. An essential
piece of information in at least one of the metric calculations is the number of paths that
exist between the source and target nodes of a ComPair or, more generally, between any
two nodes in a square lattice. There is a well known formula for calculating the number of
paths between two nodes in a fault free lattice, however the author has been unable to find
any references regarding a calculation in a lattice with faults, i.e. with broken links between
nodes. Without the availability of a calculation, an algorithm would have to trace and count
each viable path, which is a problem with O(n!) complexity. As an activity that is required
for every ComPair, for every mapping for every generation, this is a serious computational
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problem for any but the smallest of array sizes.

In response to this problem, an algorithm has been developed that can calculate the
number of paths between two nodes in a faulty network, using only the position of the
nodes and a list of faults in the network. The algorithm has been designed to work with
directional edges and with the source and target nodes of a ComPair in any orientation.
Although the algorithm has been designed for a two dimensional lattice, the principles are
valid for a regular lattice of any dimension. In addition, it is possible to employ the algorithm
to calculate paths through non-regular lattices by first converting the non-regular lattice to
a regular lattice with faults and then using the algorithm to calculate the number of paths
in the faulty lattice.



Chapter 7

Graceful Degradation and Amelioration

In this chapter the Monitor process and fault-recovery cycle are presented. The Monitor
is an executive program that is responsible for collecting information from the many-core
system and managing all aspects of the routers and cores of the many-core region which it
oversees. The information that the Monitor collects is used to determine whether fault con-
ditions have occurred. The fault-recovery cycle is managed by the Monitor and implements
the concepts of graceful degradation and graceful amelioration to maintain fault tolerance
and performance when the system suffers from faults.

When a fault occurs that requires the immediate migration of a process the migration is
described as a repair to the mapping. The repositioning of the process within the array
is likely to adversely affect the performance, an example of graceful degradation. The
level of disruption that the application experiences during the migration is assumed to
be dependent upon the distance between the cores between which the process is being
migrated, the disruption increasing as the distance increases.

The results of two sets of experiments, the first set using single objectives followed by a
set using two objectives, are presented that demonstrate that the fault-recovery cycle is
effective in maintaining performance and fault tolerance when the system is affected by
a series of faults. In the first set of experiments, within this chapter, the fault-recovery
cycle uses each of core fault tolerance and link fault tolerance as single objectives. The
second set of experiments applies the fault-recovery cycle to the combinations of: core
fault tolerance and power, link fault tolerance and power, and link fault tolerance and mean
traffic. Both sets of experiments, compare the fithess of the original mappings with re-
evolved mappings through a series of fault-recovery cycles, that demonstrate the benefit
of evolving new mappings after each fault.

7.1 The Monitor

The Monitor process is responsible for collecting performance data and managing the
resources of the many-core array to comply with the performance parameters supplied
to the Monitor. Examples of the functions that the Monitor node is responsible for are:
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e Collecting traffic data

e Collecting thermal data

e Controlling voltage and frequency of individual cores

e Detecting fault conditions

e Managing the fault-recovery cycle

e Maintaining the hardware map with core and link faults
e Maintaining the process map

e Maintaining the application process graph with actual process-process traffic vol-
umes

¢ Informing routers of the location of processes and faulty links
e Managing process migration

e Managing evolutionary runs to search for process mappings
e Maintaining Pareto Front Pf0 between evolutionary runs

e Selecting suitable mappings from Pareto Front Pf0

e Communicating with adjacent regions (where they exist)

Note that if there are multiple regions, then there will be one Monitor process for each
region. A Monitor processes will occupy one of the homogeneous processing cores in the
region of the many-core array for which it is responsible, the specific core being determined
during the initialization phase of the system; no special hardware is required for the Monitor
process. What happens if the core fails, where the Monitor is located, is not within scope
of this thesis.

Tasks of the Monitor, listed above, will be discussed as part of the fault recovery cycle
where they apply.

7.2 Fault/Recovery Cycle

Previous chapters have demonstrated how the evolutionary algorithm using core fault
tolerance and link fault tolerance objectives can produce mappings that are robust to
faults. The core fault tolerance objective directs the search to find mappings that place idle
cores close to processing cores to minimize the disruption to processing while repair and
recovery takes place. The link fault tolerance objective directs the search to find mappings
that will minimize disruption of communication between ComPairs when a link fails.

The mappings that have been found by the search directed by the fault tolerance objectives
minimizes the disruption caused by the fault while the fault-recovery cycle returns the
system back to normal operation.
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Figure 7.1 — The Fault-Recovery Cycle

The fault-recovery cycle is illustrated in which shows the state of the system
being one of:

e Normal Operation
e Graceful Degradation
e Graceful Amelioration

When discussing the fault recovery cycle, it is assumed that mechanisms for task migration
and state recovery and recovery of lost packets are available.

The remainder of this section will describe the elements of the fault-recovery cycle in detail.

7.2.1 Normal Operation

Normal operation is the desired steady state of the many-core system, during which cores
perform the processing required of them. During normal operation the Monitor collects
performance data that enables it to detect fault conditions.

Fault Detection
One of the functions of the Monitor is to use the performance data to identify when a fault
condition occurs and then take appropriate action to return the system to normal operation.
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The detection of faults is not a trivial problem, and is not one that this thesis attempts to
solve. Analysis of traffic flow data can form the basis for identifying faulty cores, faulty links
and traffic bottlenecks. Similarly analysis of thermal data can be used to identify hot-spots.
Any of the these fault conditions can trigger the fault-recovery cycle. When the Monitor
detects a fault event the state of the system moves to graceful degradation.

Examples of fault conditions are discussed below:

Core Faults are defined as the failure of a processing core. The function of the routing
node and links to adjacent nodes are unaffected. If a core is processing a task when
failure occurs, then the task needs to be migrated to a spare core.

Link faults are defined as the failure of a link between two adjacent routing nodes. The
function of router nodes and their associated cores, at either end of the link are unaffected
other than their inability to the use the affected link.

Routing node faults are defined as a failure of the routing node with the associated loss of
the attached core and links, equivalent to the simultaneous failure of the processing core
and the links to all adjacent nodes (which is how it is modelled in the hardware map). If the
core is processing a task when the routing node fails, then the task needs to be migrated
to a spare core.

Excess traffic destined for a link can have an adverse affect across the whole of the many-
core array as the excess traffic is routed through alternative links, which may in turn create
excess traffic on those links and etc. It may be possible to reduce traffic by slowing the
clock rate of the processes that are generating high traffic volumes. However, it may be
necessary to search for new mappings that reduce the overall traffic volume by rearranging
processes to reduce the total distance between ComPairs. The Monitor will substitute the
traffic volumes figure of the application process graph (which are only estimates), with the
observed actual traffic volumes to increase the accuracy of the calculation of the excess
traffic objectives.

Hot-spots are areas of the chip that are heating up to a level that may be harmful to
the device if no action is taken. Hot spots can be alleviated in a number of ways, for
example by reducing the clock rate and voltage of the processing cores in the hot-spot.
If such adjustments are not effective then the Monitor can change the status of cores in
the hot-spot to faulty in the hardware map. A search for new mappings will then produce
only mappings that do not use the hot-spot cores. The Monitor will continue to monitor
temperatures of the hot-spot cores and reinstate them as idle cores when the temperature
has returned to an acceptable level making them eligible for inclusion in future mappings.

The fault conditions that have been used in the experiments of this section are core faults,
link faults.

Update Hardware Map
It is essential that the hardware map reflects the actual status of the many-core hardware
so the hardware map is updated as soon as the fault is detected.
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Move to Fault-recovery cycle Graceful Degradation State
The Monitor moves the fault-recovery cycle to graceful degradation.

7.2.2 Graceful Degradation

The concept of graceful degradation is to allow an application to continue running on
faulty hardware, although with degraded performance. Detection of a fault may require
an immediate response to repair the fault.

Identify Affected Component

If a core fault has been detected then the Monitor will determine if the core was an idle core
or a processing core. If the core was an idle core then no repair is required. If the core
was a processing core then the Monitor will mange the repair by selecting a suitable idle
core and migrating the process to it, allowing the system as a whole to continue to function
even though performance may be degraded.

Identify Idle Cores

If core failure requires the migration of a process then the Monitor will execute a search to
find the nearest idle core the to the failed core. This process is described in
[Nearest Spare Core Search

The failure of a normal link will not cause packet loss but may cause bottlenecks to appear
in the remaining links, so does not require any immediate action to repair the fault.

Failure of a significant link will cause loss of some packets until the first up-stream routing
node with a choice of paths to the target node establishes that a link has failed. Failure of
normal or significant links do not need an immediate repair from the Monitor, although the
Monitor may play a role in informing upstream routers of the failed link.

If a critical link fails, then either a non minimal path routing algorithm [74, [189] will be
required to re-route traffic over non-minimal paths or a new mapping will have to be found
that has at least one minimal length path for each ComPair. The source and target nodes,
of a ComPair that has a critical link, share either a common row or common column with the
critical link, the failure of which can be repaired by migrating the target node off the common
row or column. If a failed link is critical to multiple ComPairs, then to guarantee repair, the
target node of each ComPair must be migrated off the common row or column. Although
possibly requiring multiple migrations, the migrations are sufficiently easy to identify and
limited in number that they could be regarded as an immediate repair. If it is not possible
to migrate each of the target nodes of the affected ComPairs then an graceful degradation
is not possible and the state of the fault-recovery cycle will move to graceful amelioration.

This emphasises that a mapping with no critical links is highly desirable as no immediate
action is required in the event of a link failure and the state of the fault-recovery cycle can
immediately move to graceful amelioration.

Update Process Map
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If repair requires the migration of one or more processes to spare cores and then the
process map will be updated to reflect the new mapping.

Remapping Strategy
Having identifies the processes that need to be migrated and the spares cores that are the
target of the migration, the Monitor will supervise the migration of the processes.

Move to Fault-recovery cycle Graceful Amelioration State

The values of the optimization objectives for the revised process map and hardware map
are likely to be degraded compared to the original mapping, so must be recalculated to
ensure comparison of the objectives with alternative mappings are accurate. The recalcu-
lation of the objectives can wait until after the migration of tasks is complete.

After the graceful degradation phase is complete the Monitor will move to the graceful
amelioration mode.

7.2.3 Graceful Amelioration

Having recovered from the immediate fault, the next step is to recover fault tolerance and
performance through graceful amelioration. The fault-recovery cycle therefore moves from
degradation to amelioration.

Disconnected Groups Check

Multiple link faults in a many-core array will eventually lead to groups of cores being
disconnected. When this occurs the metric calculations for ComPairs with their source
and targets in disjoint groups of cores will fail. To prevent this only one group of cores can
be used for the mapping of processes.

The fault-recovery cycle needs to include a process that will analyses the hardware map to
determine if the cores have become disjoint groups. If the analysis determines that there
are disjoint groups, all but the largest group will have all cores and link set to faulty. This
ensures that the metric calculations will function correctly.

Note that the presence of disjoint groups of cores may have left the many-core system in a

state where are no viable mappings (see[Section 7.3|[Viable Mappings).

Search for New Mappings

The Monitor will invoke the evolutionary algorithm to search for new optimal mappings using
the updated hardware map, process map and application process graph. The evolutionary
algorithm will use, as its initial population, the repaired mapping and all the individuals in
Pareto Front Pf0 from the last evolution. There is an assumption here that the addition of a
single fault is likely to require only small changes to the mappings of the Pareto Front Pf0
from the last evolution, to produce mappings that dominate the repair mapping.

Mapping Selection
The Monitor selects of a suitable mapping from Pareto Front Pf0.
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The criteria for selecting an appropriate mapping will be determined by the relative impor-
tance of the objectives used in the search algorithm, which may change over time. How the
relative importance of the objectives is determined is not within the scope of this research.

Remapping Strategy

Having selected a new mapping the Monitor will supervise the migration of processes
to implement the new mapping, so achieving graceful amelioration. Multiple migrations
may be required to implement the new mapping. If the system is still functioning then the
migrations can be scheduled over a period of time, however, if the fault caused the system
to become inoperable, then all migrations have to be completed before the system can
resume processing.

Move to Fault-recovery cycle normal Operation State
Having completed graceful amelioration the Monitor will move the state of the fault-recovery
cycle to normal operation.

7.3 Viable Mappings

When considering the fault-recovery cycle, the evolutionary algorithm will start with a
many-core array with pre-existing faults, which can cause the evolutionary algorithm to
create individuals that are not viable. A viable mapping is one for which there are sufficient
functioning cores to host all of the processes from the application process graph and where
all ComPairs have at least one communication route.

If the number of core faults results in there being fewer functioning cores than there are
processes, then it will not be possible to find any viable mappings resulting in system
failure.

Where there are sufficient cores for the processes, then faulty links could also result in
some mappings being not viable. The evolutionary algorithm has the responsibility to
ensure that it identifies and discards any non-viable mappings. It is possible to ensure
that a mapping is viable by calculating the number of paths between the nodes of each
ComPair. If there is at least one ComPair with no paths, then the mapping is not viable.

After individuals have been created through cloning, mutation, random generation or engi-
neered, they are checked to ensure they are viable before being added to the intermediate
population. If an individual is not viable, then another individual can be created to add to
the intermediate population. Checking the viability of individuals at this point prevents a full
objective evaluation being carried out on non-viable individuals.

If there is a series of link failures then there will come a point where there are either no
viable mappings, or so few that they become unreasonably difficult to find. To ensure
that the processes that create individuals for the intermediate population do not enter
into an infinite loop while attempting to find a viable mapping, a parameter P,, is used to
determine the maximum number of consecutive non-viable individuals that can be created
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by a process before the attempt is abandoned. This ensures that the evolutionary algorithm
will terminate when it fails to find any viable mappings.

7.4 Single Objective Graceful Degradation and Amelioration

In these experiments the cumulative effect of faults and the recovery process, for a single
objective problem, are illustrated by graphs that plot the following four sets of fitness values:

e Evolved Fitness

e Faulty Fitness

e Re-evolved Fitness

¢ Original Repaired Fitness

Evolved Fitness

The evolved fitness plot is the minimum fithess found for the mappings discovered by the
evolutionary algorithm. There are typically many possible mappings with the minimum
fitness, one of which will be selected to map processes to cores in the many-core array.
For each fault the evolved fitness is the fithess of the mapping before the fault occurred.

Faulty Fitness

When a fault occurs the fitness of the evolved mappings are re-evaluated to give the 'faulty
fitness’. This is the best case scenario for the mapping currently in use by the many-core
system. The faulty fithess of the evolved mappings can vary significantly as some will be
more severely affected than others. This fitness gives a measure of the minimum disruption
that the many-core system will experience from the fault.

Re-evolved Fitness

After a fault event the Monitor node will run the evolutionary process to search for mappings
that are an improvement on the existing mapping. The re-evolved fitness is the minimum
fitness of the newly evolved mappings. The re-evolved mappings for fault n will become
the evolved mappings for fault n + 1.

Original Repaired Fitness

The original mappings are retained throughout all of the fault-recovery cycles. When each
new core fault occurs, the original mappings are repaired by migrating the process from
the failed core to an idle core. If this is not done then the original mapping will quickly
become non-viable. If the fault is a link fault then no repair is attempted. The objective is
then re-evaluated so that the fitness of the repaired original mappings can be compared
with the re-evolved mappings.

Fault Cycles
For core fault experiments, the graphs show seven iterations of the fault repair cycle. The
eighth fault removes the last idle core which renders the core fault tolerance measure moot
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as there is no idle core that the metric calculation can use. For this reason only the first
seven faults are included.

For link faults the decision was made to use a maximum of seventeen fault-recovery cycles
which is 15% of the number of links in a 6 x 6 array. This limit may seem somewhat
arbitrary but proved to be sufficient to demonstrate the value of the fault-recovery cycle,
while being able to complete the tests within an acceptable time period. Experiments
with link failures have the potential of not being able to find viable mappings. To ensure
the tests terminated, a limit of twenty attempts to find a viable mapping at each step of
the evolutionary algorithm was imposed. Some experiments ended without finding viable
mappings before the maximum number of link faults had been applied.

7.4.1 Evolutionary Algorithm Parameters

The experiments are run using the evolutionary algorithm parameters selected in
ffion 5.5/ and listed in[Table 7.11

Table 7.1 — Multi-Objective Fault Free Experiment Parameters

Parameter Value

Hardware Map Size 8 x 8

Hardware Map border B((b,1),(b,1),(b,1),(b,1))
Many-Core Array Size 6x6

Number of generations 1000

Population size 100

Elite 10 fittest individuals cloned
Parents 20 fittest individuals used as parents
Descendants 4 from each parent via permutation
Novel 10 randomly generated individuals
Mutation Pattern g15

Non-viable mapping limit 20

7.4.2 Graph Selection

The experiments are repeated for each of the three density of graphs listed in
The graph names are based on the number of processing nodes, source nodes and sink
nodes, so the first graph with 28 processing (p) nodes, 2 source (s) nodes and 1 sinks (k)
nodes is referred to as p28s2ki1.

The graphs all have 28 processing nodes which will be mapped onto a 6 x 6 array within
a 8 x 8 hardware map with a border of B((b,1),(b,1),(b,1),(b,1)). For each pair of
experiments the source and sink nodes are randomly allocated to the source and sink
nodes of the environment. No attempt has been made to force all the experiments to place
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Table 7.2 — Test Application Process Graphs

Parameter Value

Graph p28s2k1 28 Process Node
2 Source Nodes
1 Sink Nodes

Sparsely Connected

Graph p28s1k3 28 Process Node
1 Source Nodes
3 Sink Nodes
Densely Connected

Figure 6.3

the sources and sinks at the same locations. The actual position of the source and sink

processes will have an effect on the values of the objectives, but is not expected to have
an effect on the correlation of a pair of objectives.

7.4.3 Data Presentation

When interpreting the plots, the absolute value of the objectives is not important, of more
interest is the how the objectives relate to each other, therefore the range of values, and
scale of axes have been chosen for each individual plot to achieve the best presentation of
the data to illustrate the relationship between the two objectives.

7.4.4 Results

Core Faults - Core Fault Tolerance - [Figure 7.2|

The graph in show the results when a series of core faults are applied to
the mapping of a densely connected application process graph optimized for core fault
tolerance, while the graph in show the results when a series of core faults are
applied to the mapping of a sparsely connected application process graph also optimized
for core fault tolerance.

The evolved fithess (green line) is the pre-fault fitness immediately before each fault is
applied. When a fault is applied there is a clear deterioration of the fitness, represented
by the faulty fitness (red line). The re-evolved fitness (blue line) shows that re-evolution
improves upon the repaired mappings. The cyan line represents the original mapping that
is repaired after the application of each fault and can be seen to quickly become worse
than either the repaired or re-evolved mappings, as the number of faults accumulate.

The sparsely connected graph maintains lower fithess values than those of the densely
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(a) Single Objective Core Fault Tolerance for a Densely Connect Graph
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(b) Single Objective Core Fault Tolerance for a Sparsely Connect
Graph

Figure 7.2 — Single Objective Fault Recovery for Core Fault Tolerance

connect graph, through all fault-recovery cycles. The cyan line, which represents the
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original mapping that is repaired after the application, appears to show greater resilience to
the series of faults than the densely connected mapping. However, since the density of the
graph has no effect on the core fault tolerance objective the observed differences between
the two graphs must be normal statistical variations the core fault tolerance is unaffected
by the number of ComPairs in the network.

These results demonstrate that the repair process of migrating a process from a failed core
to an idle core can keep an original mapping viable, but to maintain the core fault tolerance
objective as low as possible requires re-evolution.

Link Faults - Link Fault Tolerance - |[Figure 7.3]
The graph in |Figure 7.3a| shows the results when a series of link faults are applied to a

mapping of a densely connected application process graph optimized for link fault toler-
ance, while the graph in[Figure 7.3b|shows the results when a series link faults are applied
to a mapping of a sparsely connected application process graph also optimized for clink
fault tolerance.

These graphs show that the effect of a link failure on the objective value of link fault
tolerance can vary considerably. In many cases the effect is moderate, in others the effect
is significant. The significant effect on fitness is due to a significant link becoming a critical
link, which will have the dual effect of the reducing the number of links between a ComPair
to one and then penalising the link because it is the only remaining link. Evolving new
mappings works well, bringing the fitness back down towards the original evolved value and
in some cases finding mappings with a superior fithess to the original evolved mappings.

The fitness of the original mapping that is left unchanged through the series of fault injec-
tions, quickly deteriorates, demonstrating the value of the fault-recovery cycle. In [Fig]
the original mapping became non-viable after the tenth fault. Following the
seventeenth fault the evolutionary algorithm did not find ay viable mappings so the recovery
phase of the cycle failed.

These graphs suggest an improvement to the fault recovery cycle: if the change to the
fitness value is small, then the improvement in the objective value that can be achieved
through evolution is minimal, suggesting that this step could be omitted. This approach
would be useful for avoiding unnecessary and unproductive evolutionary cycles.

7.4.5 Summary

This set of experiments demonstrated that the fault-recovery cycle implementing graceful
degradation and amelioration can maintain the performance of a many-core system by us-
ing an evolutionary algorithm to search for new mappings after a fault occurs. A refinement
of the process could take into account the level of degradation of the objective values to
decide if using the evolutionary algorithm is an effective use of processing time compared
to the benefits in performance or fault tolerance that would result.
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Figure 7.3 — Single Objective Fault Recovery for Link Fault Tolerance
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7.5 Multi-Objective Graceful Degradation and Amelioration

In these experiments the effect of faults and the recovery process for a multi-objective
problem are illustrated by a sets of four graphs each plotting a series of Pareto fronts for
each occurrence of a fault. The graphs display the following Pareto fronts:

e Evolved

e Faulty

e Re-evolved

e Original repaired

The Pareto fronts are the multi-objective equivalents of the single objective plots for the

experiments in

Evolved
The Pareto front of the evolved solution at the start of the cycle before any a fault occurs.

Faulty

After a fault occurs and any repairs that are possible have been made, the points on the
Pareto front are re-evaluated. If an individual becomes non-viable, it is removed from the
list.

Re-evolved

The evolutionary algorithm is used to search for a new Pareto front in an attempt to improve
performance over the repaired individuals. This Pareto front will become the evolved Pareto
front for the start of the next cycle.

Original mapping

The original mappings, repaired if possible, are retained throughout all of the fault/repair
cycles. This Pareto front represents the original mappings re-evaluated with the current
hardware map. If an individual becomes non-viable, it is removed from the Pareto front.

7.5.1 Evolutionary Algorithm Parameters

The same parameters that are specified in are used for these experiments.

7.5.2 Graph Selection

The same graphs that are specified in are used for these experiments.

7.5.3 Data Presentation

Pareto Front Plots
When interpreting the plots, the absolute value of the objectives is not important, of more
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interest is the how the objectives relate to each other, therefore the range of values, and
scale of axes have been chosen for each individual plot to achieve the best presentation of
the data to illustrate the relationship between the two objectives.

Core Faults applied to Core fault tolerance with Power -
[Figure 7.4]shows the results for a series of core faults impacting a many-core system using
mappings optimized for the multiple objectives of core fault tolerance and network power.

These results show the Pareto front for 7 iterations of the fault-recovery cycle, colour coded
for each fault. Comparing [Figure 7.4b| with [Figure 7.4a] shows the effect of the faults on the
fitness of the individuals in the Pareto front, showing a clear degradation in fitness. In this

case the degradation resulting from each of the first five faults is moderate, however as the
pool of idle cores becomes depleted the effect of each new fault becomes more severe.

The benefit of re-evolving is illustrated in|Figure 7.4a, which demonstrates an improvement
of the individuals on the Pareto front compared to the faulty Pareto front mappings of

Figure 7.5bjand the repaired mappings of

The original re-evaluated Pareto front in [Figure 7.4d| illustrates how the fithess of the
original mappings rapidly deteriorate if the mappings are repaired and remain in use when
the next fault occurs.

These results are consistent with the results of [Section 7.4] giving confidence that the
evolutionary algorithm works effective in single and multi-objective modes.

The effect of faults appears more erratic in these experiments when compared to the single
objective results. This is due to the single objective experiments only using an individual
with the best fitness. The Pareto front of mappings optimized for multiple objects result
in mappings with a range of fitnesses of the twp objectives ranging from poor to good.
Each mapping, representing a different balance of the two objectives, can respond very
differently to the same fault.

A second set of results in[Figure 7.5] with only the connection density of the graph changing
from dense to sparse, show a similar picture to the densely connected graph.

Core Faults applied to Link fault tolerance with Power -
[Figure 7.6|shows the results for a series of core faults impacting a many-core system using
mappings optimized for the multiple objectives of link fault tolerance and network power.

The plots of the objective values for the mappings after a fault has occurred,
exhibit a series of near vertical lines connecting the individuals. This indicates that the
network power fitness is affected while the link fault tolerance fithess remains unchanged.
The loss of a core, which can require the migration of a process to repair, can affect the
value of the network power objective by significantly increasing the path length for some
ComPairs, however the link fault tolerance objective value is unaffected by a core failure.

The vertical lines show that there are many instances where there are two individuals that
are very closely placed on the Pareto front where the change in fitness in reaction to the
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same fault is very different. The mappings only need to differ in the use of the failed core,
with one using it as an idle core and the other as a processing core, for the fault and repair
mechanism to have a profound effect on one individuals while having little affect on the
other individual.
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Figure 7.4 — Multi-objective, Core Fault Recovery, Core fault tolerance with
Power, Densely Connected Graph

This is an example of where the crowding distance between individuals on the Pareto front
is a poor guide to how similar or different the individuals are. Although the fitness values
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are very similar, the mappings are sufficiently different that the qualitative difference of the
individuals is large, which results in a very different response to the same fault condition.

By deciding not to use crowding distance for the selection of individuals from the Pareto
front, the evolutionary algorithm retained individuals with similar fithesses but very different
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Figure 7.5 — Multi-objective, Core Fault Recovery, Core fault tolerance with
Power, Sparsely Connected Graph

underlying properties which increases the genetic diversity of the individuals in the Pareto
front.
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(b) Fault Added
The original points of the Pareto front show a particularity erratic picture of the effect of

cumulative faults on the neighbouring points. It is evident that the evolution of new solutions
is very beneficial to maintaining good quality mappings.

Link Faults applied to mappings for Link fault tolerance with Power -
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Figure 7.6 — Multi-objective, Core Fault Recovery, Link fault tolerance with
Power, Sparsely Connected Graph

[Figure 7.7| shows the results for a series of link faults impacting a many-core system using
mappings optimized for the multiple objectives of link fault tolerance and network power.
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This experiment ended after only nine link faults at which point the evolutionary algorithm
was unable to find any viable mappings. These results look similar to the previous set of
results, where the fault has very different effects on the network power value of neighbour-
ing points on the Pareto front. A faulty link can have a severe effect of the length of paths
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between a ComPair; if the link is a critical link for the ComPair then the fault will result in

there being no minimal length paths for the ComPair making the mapping non-viable, if the
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link is a significant link for the ComPair then the fault can result in another significant link
becoming a critical link for the ComPair increasing the value of the objective value.

The fitness values of the link fault tolerance have also been affected by the link faults.
Some of the link fault tolerance values appear to have an increase in response to the link
faults, although the effect is much less pronounced than for the power metric.

Link Faults applied to Link fault tolerance with Mean Traffic - |[Figure 7.8,
[Figure 7.8 shows the results for a series of link faults impacting a many-core system using
mappings optimized for the multiple objectives of link fault tolerance and mean excess
traffic.

These result resemble closely the previous set of results, although this experiments did not
end until the thirteenth fault resulted in the evolutionary algorithm being unable to find any
viable mappings.

7.5.4 Summary

All the results of these experiments confirmed that the use of the fault-recovery cycle
to implement graceful degradation and graceful amelioration is an effective strategy for
maintaining mappings that minimize the objective values and that the search for alternative
mappings prolong the operational life of a many-core system compared to a static mapping
that would quickly become non-viable after a small number of faults.

The response of the network power fitness to both core fault and link faults, demonstrates
that points that are in close proximity on the Pareto front can have very different underlying
properties even when the fitness values are almost identical. This confirms that a Pareto
front crowding calculation is not always a good mechanism for determining if individuals
are similar and can, therefore, be detrimental to diversity if used for selection.

7.6 Conclusion

The results of this chapter illustrated how the fithess values of two points that are in
close proximity on a Pareto front can react very differently to the same fault. This is a
demonstration of how a crowding calculation is not necessarily a good indicator of how
similar two solutions are. These results supports the idea that care should be taken when
using crowding distance by understanding the relationship between the crowding distance
and the underlying qualitative properties of the individuals.
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Chapter 8

Conclusions and Future Work

The every decreasing feature size of semiconductor devices provide the opportunity to
design single chip NoC devices with hundreds or thousands of processing cores. The
same reduction in feature size is accompanied by greater variability in the characteristics
of transistors leading to lower reliability. In addition dark silicon is required for devices with
a feature size of 22nm. The use of the run-time fault tolerance strategies presented in this
thesis can take advantage of the large number of cores in a many-core system to protect
against hardware faults and manage dark silicon.

To fully utilise the flexibility of being able to choose the core that hosts a process of a
application process graph, this thesis has developed an implementation of an evolutionary
algorithm that uses knowledge of the status of the many-core hardware to search for a set
of optimal process mappings.

This work has developed four objectives that can be used effectively together in a multi-
objective search of the solution space. These include two examples of fault tolerance
(core fault tolerance and link fault tolerance) that are designed to produce mappings that
are robust in the event of failure in a processing core or a communications link. Such
mappings ensure that the effect of a failure on the functioning of the many-core system is
minimized and that the system can recover to a fully functioning condition, possibly with
some degradation of performance, with minimal reconfiguration.

The other two objectives (network power and excess traffic) are examples of properties
that can be used to manage the run-time environment, illustrating the generality and exten-
sibility of the approach. The network power objective searches for mappings that minimize
the overall consumption of power used to route data between pairs of communicating cores
while the excess traffic objective aims to reduce the overall amount of communication traffic
within the many-core communications array.

The four objectives developed in this thesis are examples of objectives that can be used
to evaluate mappings. Many other objectives are possible, for example the control of
frequency and voltage to reduce the power consumption of individual cores.

The design philosophy of the evolutionary algorithm has been to produce a multi-objective
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search mechanism that can be used together with any collection of objectives that a
designer judges to be appropriate to the specific problem being solved. Each objective
requires code to calculate the underlying metric, which may require further manipulation
to produce the objective value used to compare mappings. Once the code is available
to evaluate the selected objectives, the evolutionary algorithm can use any collection of
objectives to search the solution space for a set of optimal solutions.

The evolutionary algorithm proved successful in finding good solutions to multi-objective
problems within a defined computational budget.

Having developed a suitable evolutionary algorithm a Monitor process was developed
to implement graceful degradation and amelioration through a fault/recovery life cycle,
consisting of the following steps:

o Normal operation

e Fault detection

e Graceful degradation

e Graceful Amelioration

e Return to normal operation

The experimental results show that the cycle is effective in returning the system to a level
of operation with a performance that is close to the pre-fault performance and prolong the
operational life of a many-core system compared to a static mapping that would quickly
become non-viable after a small number of faults.

All the results of these experiments confirmed that the use of the fault-recovery cycle
to implement graceful degradation and graceful amelioration is an effective strategy for
maintaining mappings that minimize the objective values and that the search for alternative
mappings prolong the operational life of a many-core system compared to a static mapping
that would quickly become non-viable after a small number of faults.

The fault-recovery cycle running in real-time can continue until depletion of the hardware
resources result in the system being unable to accommodate the application due to the
lack of functional cores, or the failure of the evolutionary algorithm to discover any viable
mappings, a behaviour that was observed in the experiment results. Failure to find viable
mappings, is the result of there being too few remaining links in the communications array
to allow communication between all ComPairs or there being so few viable solutions that
they become extremely difficult to find.

The experiments also tracked the effect of repeated failures on the mappings in the original
pre-fault solution set. The results show that the objective values of the original mappings
quickly become significantly worse than those of the new mappings.

The results of the experiments confirm that the use of graceful degradation and ameliora-
tion, and a Monitor to manage the recovery cycle can maintain the performance at a level
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that would not otherwise be possible.

The results of [Chapter 7] illustrated how the fitness values of two points that are in close
proximity on a Pareto front can react very differently to the same fault. This is a demon-
stration of how a crowding calculation is not necessarily a good indicator of how similar
two solutions are. These results supports the idea that care should be taken when using
crowding distance by understanding the relationship between the crowding distance and
the underlying qualitative properties of the individuals.

Graceful amelioration can be applied to conditions other than hardware faults, for example
the detection of hot-spots and the effects of thermal ageing. The cores in a hot-spot can
be registered in the hardware map as faulty and then the evolutionary algorithm run to find
new mappings that will not use the hot-stop cores. Once the temperature of hot-spot cores
have return to an acceptable level the cores can be reinstated by changing their status
to idle in the hardware map. Similarly, graceful amelioration can be used to balance the
use of the cores by migrating processes from heavily used cores to low usage cores. The
thermal ageing effect on heavily used cores will shorten their life compared to low usage
cores, so balancing core usage can avoid the early failure of heavily used cores resulting
in an extended live of the many-core system as a whole.

8.1 Future Work

The experiments used to determine the level of correlation between objective pairs show
that there were mappings which were optimal for core fault tolerance which were also
optimal for at least one of the other three objectives. This led to the speculative idea that
a multi-objective problem using all four objectives could be replaced by a single objective
problem of finding a set of optimal mappings for core fault tolerance and then using these
mappings, with the position of the idle cores fixed, for a multi-objective search using the
remaining three objectives. This staged approach is worthy of investigation to determine
how it compares with a four-objective problem in terms of quality of mappings and compu-
tational budget.

This research was carried out in the expectation that it would be implemented on the
many-core array developed by the Graceful project, making this the next step for the work
completed in this thesis.

The target system for the work in this thesis is a many-core system of hundreds of cores. To
achieve this requires the integration of the software with a Monitor process and implemen-
tation of a suitable SoC or embedded hardware. Integration with a Monitor, that collects
actual traffic data and updates the information contained in the application process graph,
will increase the accuracy of the calculation of the metrics and objectives.

The Monitor developed in this thesis has been been designed to demonstrate the validity of
the fault-recovery cycle. The Monitor needs to be extended to implement multiple regions



294 8.1 Future Work

of array cores, each with a dedicated Monitor. Monitor processes will be required to can
exchange information regarding the status of hardware and processing cores forming
a boundary between regions, communication of data between ComPairs that straddle
multiple regions, and processes to mange the migration of tasks between regions.

The model can be extended in a number of ways to increase the overall flexibility and
applicability of the model:

o Map multiple applications simultaneously, which can be achieved by including a set of
graphs for multiple applications in the data structure used to represent the application
process graph.

¢ Allow multiple tasks to be mapped to a single processing node, an approach used by
the majority of contemporary research.

e Relax the requirement for using only application process graphs represented by a
directed acyclic graph so that applications with bi-directional communication between
processes can be included.

Graceful amelioration can also be applied to conditions other than hardware faults, for
example the detection of hot-spots and the effects of thermal ageing. The cores in a hot-
spot can be registered in the hardware map as faulty and then the evolutionary algorithm
run to find new mappings that will not use the hot-stop cores. Once the temperature of hot-
spot cores have returned to an acceptable level the cores can be reinstated by changing
their status to idle in the hardware map. Similarly, graceful amelioration can be used to
balance the use of the cores by migrating processes from heavily used cores to low usage
cores. The thermal ageing effect on heavily used cores will shorten their life compared to
low usage cores, so balancing core usage can avoid the early failure of heavily used cores
resulting in an extended live of the many-core system as a whole.



Appendix A

Graph Generator

Experiments require a selection of representative application process graphs which have
been generated using a simple graph generator that produces graphs with the desired
characteristics[190].

The following parameters are used to control the behaviour of the graph generator:

Number of Nodes
The total number of nodes required in the graph.

Single Source and Sink Nodes

A graph with a single source and single sink node can be specified. Graphs with single
source and sink nodes are used in the early single objective experiments. Graphs with
multiple sources and sinks are used in later experiments. If a single source and single sink
are not specified then the number of source and sink nodes is random which means the
that graph generator does not guarantee a specific number of processing nodes.

Gaussian Distribution Parameters

The number of outbound edges from nodes and the length of outbound edges in terms
of the number of ranks that they span is determined by a random Gaussian distribution to
ensure that there are a variety of numbers of inbound edges, outbound edges and path
lengths.

The graph generator also ensures that the nodes are numbered one rank at a time from left
to right for the aesthetic quality of making the graph visually easier to read, but otherwise
has no affect on the mapping process from the application process graph to the many-core
array.

Following a review of available description languages for graphs, the DOT Graph Descrip-
tion Language was chosen for its simplicity and available software [191], [192]. The DOT
language is supported by GraphViz which proved to be able to provide a clear, uncluttered
visual representation of the graphs. Ultilities called DOT and NEATO provide the means
for producing a pdf, eps or png file of the visual representation of a graph using standard
free tools. Additionally, the DOT language allows groups of nodes to be defined as having
the same rank and provides functionality for controlling the size, shape, colour and text of
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nodes.

The output from the graph generator consists of both a ".gv" file in "dot" format and an
xml file with tags designed specifically for the thesis. A unix shell file is also produced to
convert the generated .gv into pdf format as well as a file containing LaTeX commands for
inclusion of the pdf file into documents.



Appendix B

Multi-Objective Plots for Sparsely and
Moderately Connect Graphs

The sections of this appendix present the plots produced by running the experiments from
with the, sparsely connected graph p28s2k1, and the moderately connected
graph p28s3k2.

Both of these graphs have fewer ComPairs which result in lower metrics values for link fault
tolerance, network power and excess traffic metrics. This shows as a larger concentration
of lower value points. Other than these lower value points the sparsely and moderately
connected graphs share the same characteristics as the graphs in

B.1 Results for a Sparsely Connected Graphs
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Pareto Front for Core FT and Traffic AMD
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Figure B.4 — MO Core & Traffic AMD for Sparsely Connected Graph
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MO Mapping of Link FT and Traffic AMD
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Pareto Front for Link FT and Traffic AMD
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MO Mapping of Link FT and Traffic Mean
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Pareto Front for Link FT and Mean Traffic
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MO Mapping of Link FT and Power
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MO Mapping of Mean Traffic and Traffic AMD
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Pareto Front for Power and Traffic AMD
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MO Mapping of Power and Mean Traffic
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Pareto Front for Power and Traffic Mean
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Pareto Front for Core FT and Mean Traffic
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Multi-Objective Plots for Sparsely and Moderately Connect Graphs

MO Mapping of Core FT and Traffic AMD

8x8, P=

E=

p28s3k2, 100,000 Individuals

6x6, Dag

. . . -
-
c @ o e . . <
.o
. .o
. .
. .

. . . .
. .. . * sssee ce E
. o o . L
wee ¢ o @ o+ mwe
. . .o ese o DI Y o
o cmoe o e sces @ oo e e o e of
s o eswe ey @ Deees see > BEmees o ee o
. . . o ®iee swew w ® o D e o3
- . - - ° o . * o @ oo of
. oo DCO Wes We  wee semm 00 Biwme oo
00 8 00 0 B EWEWILB® DU G S WEOME CO@ETS ) WIS e
. . . ® 00 oo e e sie0e emen O
ce o ©e e 20 ©messImiamee X} X - e Dreed

P EINO G CRKIEN CIDSE ) - B « POR DO e T
3

I0EC 6 MECE S IBOS COMe ¢ wesomen
IE D 0O GIND @  eEmIIM METIIO D@ >3 L4

* €O W SUUEN . DU CISEI NN XD € N S JONT IS LK 00T 16

) 0 IETT TR Sais TR BC 10 Sme &0 W3 MG e T T

e (00 @GN C(EIN €1 X IOMMEISN (5 KX MIILI I CNIMENe 3 ad
. ® - emmIo s (¥ MG TINIID MY TNE XXX ST INY W TENOMS (ste: e
© 0 Co EBC WIS @ WI I ICE WS TBE EB<II IR M-I III T NI (2 19

© @ @SB O @ eI B MO I AN NI M N S M08 T N Y

© o eEES 30eIEIIC MBI ITEITX

TSTTIIEEe I 1T T30 G M

.
@ ®) eewemce eIl B SLI WO GG 14N LN L SIS ICS Aea 3N
o-l'.uBIl\lﬁlH.Hnul‘l]nnHulw'ili!dllu.
l

50

—
o

0TX) AWV dijely

60

40

30

20

Core FT

(a) Individuals

MO Mapping of Core FT and Traffic AMD

8x8, P

- . - .« e .
2]
© "
>
e . .
.w . . . ..
= * em  scee came e
=4 e o ¢ wmmeme s oo
o - . we oo o .
- P cecsemm: 1 e e e
o o ee e o . - . .
. . e * e®m ermecewss o
o © ceem mBumiens meme o .
o o 00 3600300 emmme cones oo
- s @ eosseme oo wemee o
o e mmiemes s e mman s
o .o se moe e memmer AP WEmE BoN) @) .
- s ¢+ smesemimImen OO
— . e o smeos® sn swsscame o
N s 00m  e0e  emme JmmeeeBENC D D ¢ w0 o .
~ sens e © se cEe e CNEwIINe Hecees B 88
v . o, Some vomsmmmunme e ew oo o
. . (@ ‘xommm wWee WO EEIEeE o .
M| e . St L s r e o cee o e
7)) . S8 SIEIND EIE WEIIMEISENED ® 00 0 NE®E o
ol e o @ er erce i corcENmE G ® ot €0 ¢ ® 00 0 6o
. Se e o B CECEMUSRGT X DEGI0 CWMSS ® o ¢ o
NL .. e o 000500 ) ® @rN’ AN ISAE S TT T MM X iMmei 0 e 0 e o & o
o . O 31088 SEEW(T WINEDINL ITEIE T D) G0 0 €0 008
T IR © Eim @S CHINIEMITIRINDENES Ge ¢ @  ece oee
e o @ 000 ¢ WD s © EEEEET———CE——E S 00 © w0t ¢ 06
O)| svee o ememed @ WEEM E I LN IE ISEX 0 MM MEBECEG e® o
| * = ¢ o ocnemsoe s mom sxin e amis © O e erente o
o ® . © 8 OO (W WM EINCRE LR I RN LI eE IS 6 @ e
Db oe o0 woe  corvrsem scoseamm s —aws——u x .
. e SR e e s ¢ AL ©LIN I EIGSSI ISl e XN LN EE—
abr e ees o e @ ceemirEMTEET FTET I TE I Naece @ we @
e 2 cwe @ ¢ @ emeroerTImEm I TS $ B
x R R L Ll e ST e eTTTEE T
O P e onseios @e ¢ ramcmr mmcsexs aaaere. e Tt o ma—

* @e e ¢ memte e AT WEBITES T 06 5N CMEE $T T TE T T T YT

E=

45

(00TX) AWV djell

60

50

40

30

20

Core FT

(b) Individuals



320 B.2 Results for a Moderately Connected Graphs

Pareto Front for Core FT and Traffic AMD
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Figure B.14 — MO Core & Traffic AMD for Moderately Connected Graph
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MO Mapping of Link FT and Traffic AMD
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Pareto Front for Link FT and Traffic AMD
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MO Mapping of Link FT and Mean Traffic
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Pareto Front for Link FT and Mean Traffic
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MO Mapping of Link FT and Power
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MO Mapping of Mean Traffic and Traffic AMD
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MO Mapping of Mean Traffic and Traffic AMD
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Appendix C

Evolution of Microprocessor Based
Systems

This appendix presents a graphical picture of the evolution of Intel processes focusing
on the transistor count in each processor family and relating the transistor count to the
technological advances in processor design. The information used has been sources from
a number of www.wikipedia.org pages, requiring verification from primary sources.

In 1965 Moore, while employed at Fairchild Semiconductor, wrote a paper in which he
identified the historical increase in complexity of components as doubling every year and
stating that there was no reason why this trend should not continue [2]. In 1975 Moore
revised his prediction for the doubling of transistor counts to take place every two years
[19]. shows how Intel processor designs have kept up with Moore’s Law over
the 45 years from 1970 to 2015 during which time the transistor count has increased from
2.5 x 103 to 5 x 10?, an increase by a factor of 2 x 106.

The vast number of additional transistors have allowed designers to evolve the design of
the single chip microprocessor in a number of directions.

This examination focuses on four areas of design illustrated in: [Figure C.2| which shows
the evolution of the processors word size, showing the evolution of pipeline
stages, showing the evolution to the number of cores in multi-core processors
and [Figure C.4] showing the addition of on chip cache memory, also referred to as Level 1
or L1 cache.

The first observation we can make it that evolution of the design focused on one aspect of
design at a time. The word length evolved to a size of 32 bits before pipelining evolved.
When the number of pipeline stages reached 20 the emphasis moved to the number of
cores. Small L1 cache made an appearance at the same time as pipelines and then
remained static until multi-core processes made an appearance which were accompanied
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Figure C.1 — Processor Transistor Count

by larger caches.

This staged evolution of one design element at a time can be explained by assuming that
designers focused on the design element which offered the best performance gain for the
available transistors.

C.1 Word Length

The 8 bit 8080 processor uses an instruction set whose length is 1, 2 or 3 bytes, while
the 16 bit 8086 uses an instruction set with instruction lengths varying from 1 to 6 bytes
depending on the addressing mode. In both cases the majority of instructions require
the fetching and decoding of multiple words, with the fetching and decoding of each word
occupying a clock cycle. This reduces the effective speed of the processor when compared
to the ideal of each instruction occupying a single word of the machine’s architecture.

With the introduction of the i386 processor with a word length of 32 bits, the opcode,
addressing mode information and register addresses can be contained within one word
with additional words only required for addresses and immediate data, thus reducing the
average cycles per instruction when compared to a 16 bit word length.

The benefits of a 32 bit work length compared to a 16 bit word length are considerable,
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especially when it is recognised that the longer word length also benefits the access of
data as well as instructions, thus making this an obvious priority in the design evolution.
Word lengths of greater than 64 offer the option of encoding more than one operation in a
single word, increasing the number of operations fetched per cycle to more than one.

C.2 Pipeline

Having evolved the word length to 32 bits the emphasis switched to the development of
instruction pipelines. The motivation for pipelining is to increase the number of instructions
that are executed per second by increasing the clock frequency.

Pipelining arises from the realisation that each instruction passes through a number of
serialised stages and that it is not necessary for one instruction to have completed all
stages before the next instruction enters the first stage. For example the Intel i486 breaks
the instruction execution down into 5 stages [20]:

e Fl: Fetch the instruction from cache
e D1: Main instruction decode
e D2: Secondary instruction decode, and memory address computation

e EX: First execution clock



336 C.2 Pipeline

1010 [
62-core Xepn
10° } [24 Stages| / |8-core Xeon| |
14 Stages Core i7 Quad
Core 2 Duo
108}
20 Stages
" £Y Dtades
é Pentium 4
§ 107 } 6 Stages
o |Pentium Pro
% . Pentium
g 10 1486
-4
10°
10*
Lo? L 14638

1970 1980 1990 2000 2010 2020
Year of Production

Figure C.3 — Processor Pipeline Stages

e WB: Write results into the register file

Each stage takes place in a single clock cycle. Without pipelining an instruction that re-
quires all five stages to be executed requires a long clock cycle to complete. With pipelining
the 1486 can execute five instructions simultaneously reducing the average execution time
for some instructions to one faster clock cycle. Pipelining achieves this because each stage
is relatively simple and so uses fewer logic gates, reducing the amount of time required for
the logic to complete its task and therefore allowing the clock frequency to be increased
[21].

The benefit of the 1486 five stage pipeline can be illustrated by comparing the number of
clock cycles required to complete execution of a selection of instructions to the equivalent
i386 instructions [20]:

Instruction | Clock Cycles

Type i386 | 486
LOAD 4 1
STORE 2 1
ALU 2 1
JUMP 9/3 3/1
taken/not
CALL 9 3
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In the Pentium 4 design the number of pipeline stages increased to 20 which, Intel reported,
increased the relative frequency of the Pentium 4 when compared of the to the 486 by a
factor of 2.5 [21].

A balance needs to be achieved between the number of logic gates in a pipeline stage
and therefore the increase in frequency and the number of pipeline stages which increases
the total number of clock cycles required to complete the execution of an instruction. The
optimum, based on Intel processor designs, seems to be in the region of 20 stages.

A further evolution of pipeline technology is superscalar which is a design that has multiple
pipelines working in parallel to increase the number of instructions executing simultane-
ously.

C.3 On Chip Cache

Memory is a relatively transistor hungry resource, using 50M transistors per megabyte of
memory based on a design that uses 6 transistors per memory cell, so was lower down the
list of processor features to take advantage of the increase in transistor numbers. As can
be seen in L1 cache first appears in the i486 at the same time as pipelining was
introduced into the the processor design. Although the 8KB cache of the i486 seems small,
especially when compared to the later multi-megabyte caches, it accounts for roughly 4%
of the transistor count of the i486.

In single core designs the L1 cache was on-chip and stayed below 1MB while L2 was
generally, but not exclusively off-chip. With the advent of dual core processors, most
designs allocated a quantity of L1 cache for the exclusive use of each core and added
on-chip L2 cache which is shared between multiple processors. As a result we see a step
change in the size of on-chip caches from kilobytes to megabytes that coincides with the
introduction of multi-core designs.

C.4 Processing Cores

The continuing growth of the number of transistors available to designs next found a use
is multi-core designs. Multi-core designs provide two or more identical and sophisticated
processing cores on a single die. The sophistication and power of the cores is similar to
the that of single processor designs. The processing cores are independent while sharing
resources such as memory and communication buses.
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e 2005 Intel released their first dual core processor, the Intel Pentium Processor Ex-
treme Edition 840

e 2007 Intel released a Core 2 Quad Processor

e 2014 Intel unveiled its first 8 core desktop processor, the Intel Core i7-5960X proces-
sor Extreme Edition

e 2016 Intel released the 64 core Intel Xeon Phi Processor 7210

e 2016 Intel released the 72 core Intel Xeon Phi Processor 7290
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Appendix D

Many-Core Implementations

D.1 The Graceful Project

This appendix is taken from the proposal for the EPSRC funded project EP/L000563/1
Continuous on-line adaptation in many-core systems: From graceful degradation
to graceful amelioration, known informally as the Graceful project which is a joint project
between The University of York, The University Manchester and University of Southampton.

Project Outline Imagine a many-core system with thousands or millions of processing
nodes that gets better and better with time at executing an application, "gracefully” provid-
ing optimal power usage while maximizing performance levels and tolerating component
failures. Applications running on this system would be able to autonomously vary the
number of nodes in use. The proposed project aims at investigating how such mechanisms
can represent crucial enabling technologies for many-core systems.

Specifically, the project focuses on how to overcome three critical issues related to the
implementation of many-core systems, as identified in the Many-Core Architectures and
Concurrency in Distributed and Embedded Systems workshop organized by the EPSRC
in April 2012: reliability, energy efficiency, and on-line optimisation. The need for reliability
is an accepted challenge for many-core systems, considering the large number of com-
ponents and the increasing likelihood of faults of next-generation technologies, as is the
requirement to reduce the heat dissipation related to energy consumption. On-line optimi-
sation, on the other hand, is a mechanism that could be vital to enable the implementation
of these properties in systems where several parameters (e.g. number of available cores,
power profile, substrate defects and on-line faults) cannot be known at compile time and
cannot be managed centrally due to the vast number of cores involved. The 2011 ITRS
roadmap strongly supports these considerations.

The proposed approach is centred around two basic processes: Graceful degradation im-
plies that the system will be able to cope with faults (permanent or temporary) or potentially
damaging power consumption peaks by lowering its performance. Graceful amelioration
implies that the system will constantly seek for alternative implementations that represent
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an improvement from the perspective of some user-defined parameter (e.g. execution
speed, power consumption).

Approach The project will combine novel fault tolerance and optimisation methods (which
can be optimisation of functional performance but also of power consumption, area, etc.)
using a set of background mechanisms that run concurrently with the applications, making
use of spare cores (of which in a many-core system there will be significant numbers) to
monitor and fix/optimize the operational cores. Thus, an application that runs rarely will be
largely ignored but one that runs often will slowly become more and more optimized.

The basic scenario we will consider is that of an application running on a system consisting
of many, possibly heterogeneous, processor cores. While acknowledging the fundamental
importance of software compilation techniques, the project will focus on the hardware
aspects of a many-core system, assuming that the application has been pre-parallelized
by the user and starting the investigation from the output stage of the compiler. Each core
will then handle a specific subprogram, or task, within the application.

In the project, standard benchmarks (e.g., SPEC2000 and/or PARSEC) will be used for
initial investigations, but we will quickly progress to a number of real-life applications,
selected in consultation with our industrial contacts. We will consider in priority "real-world"
applications (e.g. audio/video encoding and decoding such as MPEG, encryption/decryp-
tion protocols, etc.) with a particular focus on streaming applications, where the data flow
can be mapped onto a directed acyclic graph of task nodes, and applications that can
tolerate temporarily incorrect results (e.g. dropped frames in a video stream). An Industrial
Advisory Board (see Impact section) will help identify commercially-relevant applications.

On the implementation side, we will deploy our system on two platforms. To demonstrate
the "immediate" advantages of the approach, we will implement a software-based solu-
tion to the SpiNNaker system [9], probably the machine that most closely approximates
a many-core system currently available in the UK (see Resources section for details).
Using conventional ARM cores, this implementation will illustrate how the features of the
proposed approach can impact current technology.

To more fully investigate the advantages of our system and to analyse the fundamental
trade-off between homogeneous and heterogeneous systems (a crucial issue in many-core
research), the second platform will consist of a set of custom FPGA-based boards. While
the development of a custom IC would allow greater scope for our investigations (and
remains an option for a continuation project in the future), the exploratory nature of this
project is better suited to a programmable logic device, which will allow us freedom to
investigate alternative node architectures. The design of custom boards will allow us
to introduce complex power measurement and management components that are not
available in off-the-shelf solutions.

Implementation strategy The proposed implementation approach relies on the observa-
tion that, in a many-core system, the abundance of resources implies that not all cores will
be used for the execution of applications. The overall operation of the system (Figure 1)
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will rely on four different kinds of units (in addition to the empty nodes, currently not used
but at the disposal of the application):

e Application Units (AU) represent the "conventional” processing nodes running the
target application. These could be conventional processors (e.g. ARM cores in
SpiNNaker) or dedicated units containing programmable logic. If the latter, the Opti-
mization Units will explore hardware/software trade-offs to seek improved implemen-
tations.

e Monitoring Units (MU) will monitor and profile the execution of the AUs and, if nec-
essary, take steps to resolve issues. Monitoring will be carried out according to
user-specified parameters: in this project, we will focus specifically on fault tolerance
and power consumption, with a lesser emphasis on execution speed, but the general
approach could easily be expanded to handle different parameters. They will operate
in the background, without affecting the execution of the application unless an issue
is detected or an improved implementation is found. The optimal density of MUs (and
hence their radius, i.e., the number of monitored AUs) is a parameter that depends
on several factors and will be attentively examined in the project. To avoid single
points of failure, MUs will also instantiate reciprocal monitoring.

e Optimisation Units apply search algorithms to identify alternative implementations of
application nodes. They will operate on intermediate code (e.g. compilation trees)
and apply functionally-neutral code transformations and/or hardware/software trade-
offs to generate and evaluate Candidate Units. Previous research ([2,3,12]) has
shown that Evolutionary Algorithms (EAs) can be an efficient approach for this kind
of search, particularly considering that the optimisation will be implemented as a
background process that requires neither a single optimal solution nor a fast reaction
time.

e Candidate Units, generated by the Optimisation Units, represent alternative imple-
mentations of AUs. They are evaluated according to the desired parameters (power
consumption, performance, etc.) and, if they represent an improvement over the
original nodes, will eventually replace them. The replacement will be handled by the
MUs and will be non-disruptive (e.g., will occur after the internal states of the nodes
have been aligned and at specific and predictable points in the code).
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Figure D.1 — Many-core scenario - Monitoring with radius = 1
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To ensure scalability, all units will be physically implemented by the same processing
nodes (in other words, the same kind of hardware processors) and all interactions will
be local, with no centralized control. To more closely model a probable scenario in future
many-core systems, the general structure of nodes will be based on a processor with a
"base" datapath (Core Processing Unit & Local Memory) plus an area of programmable
logic, which can be used to optimize performance, by exploiting hardware acceleration
and effectively implement heterogeneous systems, and for fault tolerance, by providing
alternative computational elements. However, in order to increase the potential impact of
the approach, all the mechanisms developed in the project will have a general application
to many-core systems that do not include programmable logic, a versatility that will be
demonstrated through the dual implementation on the SpiNNaker architecture and on
custom processing boards.

Operation The following example scenarios illustrate the projected operation of the sys-
tem. These scenarios, by no means exclusive, should illustrate the general operation of the
system to be developed in the project. While these seem rather well defined and worked
out, their practical implementation on many-core systems is far from worked out or trivial.
Achieving the desired properties will involve the development of novel mechanisms at sev-
eral levels of the system design cycle, from the output of the compilation process through to
the hardware architecture of the nodes and the interconnection network. Achieving these
properties in an appropriate way and developing the mechanisms to make them functional
is the core of this proposal.

Secnario I (graceful amelioration for performance): A Monitoring Unit [A] detects that one
of the Application Units is a bottleneck in the performance of the system (e.g., in [2] this was
detected by monitoring 1/0 FIFOs). If execution speed is a critical factor in the system, the
MU can implement a rapid solution by instantiating an identical copy of the slow Application
Unit to share the load [2]. At the same time [B], it might generate an Optimisation Unit
that will run a search algorithm which will seek alternative implementations for the task.
These are tested by running them in parallel to the existing node in one or more Candidate
Units. The CUs receive the same input data as the original AU, and their performance
is compared. Non-optimal implementations are discarded. If the OU identifies that the
candidate node outperforms existing node [C], the original node is discarded, returned to
the pool of empty nodes, and replaced by the new one, which contains the same state and
can therefore be seamlessly substituted.
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Figure D.2 — Graceful amelioration for performance

Secnario I1 (graceful amelioration and degradation for power consumption): A scenario
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for power consumption could be somewhat similar to the scenario for performance (indeed,
the objective of the project is to define general mechanisms that can be applied for the
optimization of any parameter). A Monitoring Unit [A] detects that one of the Application
Units is exceeding acceptable thresholds of power consumption (spikes due to possible
faults or generally high computational load), which could potentially lead to failure. Again,
the MU could act in two steps. First, it could act directly on the AU, for example by
reducing clock frequency and/or lowering voltage (node A2* in [B]), which could lead
to a (graceful) degradation in performance but avoid the risk of catastrophic failures (if
the degraded performance is not adequate, Scenario | will then "kick in", illustrating the
seamless interfacing between optimisation scenarios). At the same time, once again an
Optimization Unit could be created to seek for alternate implementations of the application
task with better power efficiency, using a mechanism identical to the one described for
Scenario |, but with a different target for optimisation ([B] and [C]).
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Figure D.3 — Graceful degradation for fault tolerance

Secnario I1I graceful degradation for fault tolerance): This scenario presents a certain
number of differences compared to the previous two, in that the presence of a fault could
potentially load to immediate catastrophic failure of a node. Once a fault in one of the
monitored has been detected by the MU (A2x in the figure [A]), several different options
are possible. In this project, our main focus will be on streaming DSP applications, where
the loss of information, if temporary, can deemed acceptable A first reaction of the MU
[B] could then be to act on frequency and voltage levels of the node (A2*) to determine
whether the fault can be (temporarily) masked and allow computation to continue, albeit at
a lower speed (graceful degradation). At the same time, the MU will activate one of the
idle units to replace the faulty one, attempt, where possible, to copy and transfer the state
of the faulty AU, and, once the process is complete, disable the original node and bring
on-line its replacement [C]. At this stage, the original node can be thoroughly tested and, if
deemed fault-free (for example, in case of a non-permanent fault), returned to the pool of
idle nodes.
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Figure D.4 — Graceful amelioration for performance
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D.2 Paralella

D.2.1 Adapteva

Adapteva Inc was formed in 2008 and has been successful in fabricating a 16 core chip
called Epiphany with plans to produce a 64 core chip. Adapteva produce credit card
sized development boards which incorporate the 16 core Epiphany chip alongside a Xilinx
7010/7020 Zynq processor.The Epiphany chips are also available as individual compo-
nents which can be incorporated into end user designs.

D.2.2 Epiphany

The Epiphany chip has been designed to be scalable either by fabricating more cores on
a single chip or by connecting a number of chips together. There are two varieties of
the Epiphany chip, one with 16 cores and another with 64 cores. Whilst the 16-core chip
is available in commercial quantities the availability of the 64-core chip has proved to be
limited. Both the 16-core and 64-core chips are designed within an overall framework which
supports architectures of up to 4096 cores. Chips can be directly connected to other chips
in a mesh pattern.
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Figure D.5 — Epiphany Mesh Architecture

Figure[D.5illustrates the basic architecture of the Epiphany mesh consisting of mesh nodes
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within a routing network. Each Mesh Node consists of a CPU, DMA Engine, Memory
and Network Interface. The routing network consists of three separate communication
channels, one for on-chip data writes, one for off-chip data writes and one for all reads.

D.2.3 Memory

Each Epiphany core has 1Mb of local memory, giving a total of 4Gb across the maximum
available 4096 cores, requiring 32 bit addressing. Local memory of each core is accessible
by all the other cores in the mesh. The lower 20 bits address memory locations in the
local memory, while the high end 12 bits are used to specify one of the 4096 organized
in a 64x64 mesh. Cores are given an (x,y) coordinate. Taking the top left core as core
(0,0), bits (31-26) of the 32 bit address gives the x coordinate and Bits (25-20) gives the y
coordinate.

Chip address 0,0 Chip address 0,1
Core | Core | Core | Core Core | Core | Core | Core
00,00 | 00,01 | 00,02 | 00,03 00,04 | 00,05 | 00,06 | 00,07
Core | Core | Core | Core Core | Core | Core | Core
01,00 | 01,01 | 01,02 | 01,03 01,04 | 01,05 | 01,06 | 01,07
Core | Core | Core | Core Core | Core | Core | Core
02,00 | 02,01 | 02,02 | 02,03 02,04 | 02,05 | 02,06 | 02,07
Core | Core | Core | Core Core | Core | Core | Core
03,00 | 03,01 | 03,02 | 03,03 03,04 | 03,05 | 03,06 | 03,07

Chip address 1,0 Chip address 1,1
Core | Core | Core | Core Core | Core | Core | Core
04,00 | 04,01 | 04,02 | 04,03 04,04 | 04,05 | 04,06 | 04,07
Core | Core | Core | Core Core | Core | Core | Core
05,00 | 05,01 | 05,02 | 05,03 05,04 | 05,05 | 05,06 | 05,07
Core | Core | Core | Core Core | Core | Core | Core
06,00 | 06,01 | 06,02 | 06,03 06,04 | 06,05 | 06,06 | 06,07
Core | Core | Core | Core Core | Core | Core | Core
07,00 | 07,01 | 07,02 | 07,03 07,04 | 07,05 | 07,06 | 07,07

Figure D.6 — Epiphany Core Addressing

Cores are arranged in a grid mesh with a maximum dimension of 64x64, which an be
achieved using a 16x16 array of 16-core Epiphany chips. Figure [D.g|illustrates how cores
are addressed using four 16-core Epiphany chips. All addresses are given in decimal. Each
chip is given a row address from 0-15 (decimal) and column address from 0-15 (decimal).
Within each chip, each core is given a row address from 0-3 (decimal) and column address
from 0-3 (decimal). Combining the chip address with the core address gives a unique
address for each core in the mesh.
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The routing protocol requires the chip addresses to coincide exactly with the physical
positions of the chips in the mesh. The chip address is set by applying signals to 8 address
pins and applying a reset signal, four pins representing the row address of the chip in binary
and four pins representing the column address in binary. Addresses need to be applied to
each chip during the system boot-up.

According to the documentation only 32Kb of the memory is available for use by the core
with the majority being ‘reserved for future use’. This limits the six e of programs and data
that can reside in local memory.

D.2.4 Routing

Routing of data packets between cores is controlled by the routing protocol designed into
the chip fabric. Each packet sent through the mesh is routed first east-west until the packet
arrives at the target column and then north-south until the packet reaches the the target

core.

Chip address 0,0 Chip address 0,1
Core r r e r r r re
00,00 %‘ 1%5% éﬁ)ﬁ%‘ ﬁ'ﬁ 5 ﬁﬁw
C e | Core | Core | Core Core | Core | Core | Cdre
0.J.0 | 01,01 | 01,02 | 01,03 01,04 | 01,05 | 01,06 | 01§07
Ccre | Core | Core | Core Core | Core | Core | Cdre
02 00 | 02,01 | 02,02 | 02,03 02,04 | 02,05 | 02,06 | 02807
Ccre | Core | Core | Core Core | Core | Core | Cdre
03 00 | 03,01 | 03,02 | 03,03 03,04 | 03,05 | 03,06 | 03807

CFM ddress 1,0 Chip address 1,1 I
Ccre | Core | Core | Core Core | Core | Core | Cdre
04 00 | 04,01 | 04,02 | 04,03 04,04 | 04,05 | 04,06 | 04807
Ccre | Core | Core | Core Core | Core | Core | Cdre
0500 | 05,01 | 05,02 | 05,03 05,04 | 05,05 | 05,06 | 05807
Ccre | Core | Core | Core Core | Core | Core
06 00 | 06,01 | 06,02 | 06,03 06,04 | 06,05 | 06,06 | OGWD7
Ccre | Core | Core | Core Core | Core | Core | Core
07,00 | 07,01 ‘ 07,02 ‘ 07,03 ‘ ‘ 07,04 ‘ 07,05 ‘ 07,06 | 07,07

Figure D.7 — Epiphany Packet Routing

Figure[D.6illustrates how a packet would be routed between cores (0,0) and (7,7). A packet
travelling from core (0,0) to core (7,7), represented by the dark arrow would first be routed
east through the cores on row 0. When the packet reaches column 7 the packet is routed
south down column 7 until it reaches the core (7,7). The return packet from core (7,7 ) to
core (0,0), represented by the light arrow, first travels west along row 7 and then north up
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column 0. Thus, due to the protocol using an east-west route followed by a north-south
route the outward and inward packets travel along different routes.

When connecting chips together, the routing protocol demands the North side of a chip
is connected to the South side of another and the East side of a chip is connected to the
West side of another.

Core Address Core Address
x-coordinate y-coordinate
Memory Address Memory Address
Bits 31-26 Bits 25-20
16 Core Chip Ogo(iglp 16 Core Chip Ogoiglp
x-addr x-addr y-addr y-addr

31302028 (27|26 |25 24|23|22 21 20

Figure D.8 — Epiphany Core Addressing

Combined (x,y) Core Address
Represented as 3 Hexadecimal Digits

31302028 27/26/25/24 232221 20
Figure D.9 — Epiphany Core Hex Address
Figures and illustrate how the 12 high end address bits are used to identify a

core and how these bits are represented as the three high end hexadecimal digits of the
address.

D.2.5 Hardware Platforms
The hardware platform will be based on utilising the Adapteva 16 Core Epiphany chip. The
hardware platform will evolve with the research in three stages.
This research plans to use three different configurations:
e Stage 1 - Parallella Board with a single 16 core Epiphany chip
e Stage 2 - Four Parallella boards connected to produce 4x16 = 64 core array

e Stage 3 [Optional Extension] - Custom board with 16 Epiphany chips producing a
16x16 = 256 core array
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D.2.6 16 Core - Parallella Board

Parallella is a development board that contains a single 16-core Epiphany chip along side
a Xilinx Zynq 7010 or 7020 processor and a collection of communication ports.
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Figure D.10 — Parallella Board

The Xilinx Zynq®-7000 platform is a family of SoCs that combine Xlinx's FPGA pro-
grammable logic with a Dual ARM®Cortex™-A9 MPCore™. The ARM processor can
boot Ubuntu from a mini SD card which can then be used to program the Ephiphany cores
and communicate with them.

D.2.7 64 Core - 4 x Parallella Board

The Parallella development board provides connectors to the North and South sides of
the Epiphany chip. The East side of the chip is connected to the Zync SoC and the West
side is unconnected. A number of Parallella boards can be connected together linearly by
connecting the South of one board to the North of another.

A motherboard will be designed that allows the connection of four Parallella boards, giving
a total of 64 cores in a 4 x 16 mesh.

The Parallella board has very limited access to pins on the FPGA and the Epiphany Chip.
In addition to linking four parallel boards together the motherboard will provide breakout
the FPGA, JTAG and the Epiphany address configuration pins.
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Souh— 30 Pins, odd

Figure D.11 — Motherboard for connection 4 Parallella boards
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D.3 SpiNNaker chip

SpiNNaker is an architecture designed for the construction of massively parallel machines.
Inspired by the human brain a primary goal is to provide a computing platform that can be
used for research into the workings of the mind by simulating the behaviour of neurons.

Tightly-col
| RAM

Core 15

|

Figure D.12 — SpiNNaker chip Architecture

The core of the architecture is the SpiNNaker chip, which is described as a multicore
System-on-Chip, with 18 ARM968 Globally Asynchronous Locally Synchronous (GALS)
processing cores. Each SpiNNaker chip package has a 128 MB SDRAM mounted on
top. SpiNNaker chips are mounted on boards of various sizes, the largest of which has
48 SpiNNaker chips, 24 of which can be mounted in a frame of a 19" rack which can
accommodate 5 frames. Each 48 chip board has six 3.1Gbps high-speed serial interfaces,
three of which are used to interconnect the boards into a toroidal mesh.

Of the 18 cores on a SpiNNaker chips one core is used as a monitor node and one is
left spare to provide fault tolerance, leaving 16 cores for processing. A fully populated 19"
rack has a total of 103,680 cores, 92,160 of which are available for processing, 5,760 are
monitoring nodes and 5,760 are spares nodes.
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D.4 Intel® Many Integrated Core (Intel® MIC) Architecture

In 2012 Intel launched the Intel® Xeon Phi™ Coprocessor. Mounted on a PCle 3.0 card, is
designed to be used as a slave to a conventional processor such as the Intel Core i7 CPU
or Intel Xeon CPU. The top-of-the-range has 61 cores, each of which can run 4 threads
concurrently giving a possible 244 concurrent threads. Multiple coprocessor boards can
be installed on a single PC motherboard using the PCle peer-to-peer interconnect to
communicate without any intervention.

Each core has its own dedicated 32KB L1 instruction cache, a 32KB L1 data cache and
512 KB L2 cache which uses a global-distributed tag directory to maintain coherency. The
cores are connected via a very high bandwidth ring interconnect, interleaved with memory

controllers, as shown in
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Figure D.13 — Intel® Xeon Phi™ Architecture

Each core also includes a vector processing unit cable of performing 16 single precision
or 8 double precision operations each cycle. The Xeon Phi™ is well suited for vector and
array processing but unlike GPUs the cores have dedicate cache and can be individually
programmed, allowing the use of the coprocessor to be extended into areas inaccessible
to GPUs. Programming for the cores is through C++ and Open MP.



354 D.4 Intel® Many Integrated Core (Intel® MIC) Architecture




Appendix E

The Many-Core Model

For ease of reference, the individual components of the many-core model described in
[Chapter 4] [Core Fault Tolerance, [Chapter 5| [Network Power and [Chapter 6| [Link Fauli
[Tolerance and Network raffid are presented here.

E.1 The Many-Core Array

The many-core architecture is a square lattice arrangement of R rows and C' columns
of homogeneous computing nodes. Each node consists of a router that communicates
with its nearest orthogonal neighbours and a core attached to the router. Communication
between two nodes is via a link. Links are required to show the connections between
nodes, however the details of the communication links between nodes is not important
when considering the placement of spare cores. Communication links will be considered
in more detail in the next chapter.

Figure E.1 — A 6 x 6 many-core array showing the coordinates of each node.

The many-core array A is represented as a tuple of the set V, of nodes and the set &, of
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links:
A=V, &) (E.1)

Given that there are R, rows and C,, columns, the number of nodes and links are defined
as V, and E,:

Wa‘ =V,
= R,C, (E.2)
|ga’ =E,

= Ruo(Cy — 1)+ (R, — 1)C,
=2R,C, — R, — C, (E.3)
The set of nodes is defined as:
Vo ={v1,...,0m | m=V,} (E.4)

With a node defined as an ordered tuple consisting of the row and column coordinates of
the node within the many-core array, which are also referred to as its location:

on = (r,c)
= loc (E.9)
Where:
loc = (r,c) (E.6)

and:
r Is the row coordinate of node v, | 0 < r < R,.

¢ Is the column coordinate of node vy, | 0 < ¢ < C.

Row and column coordinates are defined above as beginning at 0 and location (0, 0) is
arbitrarily assigned to the top-left hand core of the many-core array and location (R, —
1,C, — 1) refers to the bottom-right hand core of the many-core array.

The set of links is defined as:
Eo={e1,...,em | m=E,} (E.7)
A link is defined as a set of ordered tuples consisting of a source node and a target node:

en = (s,1) (E.8)
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Where:
e, isalinkfromtheset&, |1 <n < E,.

s s the source node of link ¢, fromthe setV, | 1 < s < V.
t is the target node of link e,, from the set V, | 1 <t < V.

Since the definition of the node includes its location, the source and target nodes of a link
also specify the locations of each end of the link. Figure [E.1]illustrates a 6 x 6 many-core
array showing the coordinates of the location of each node and the links between nodes.

E.2 Application Process Graph (APG)

This section extends the application process graph model given in by adding
source and sink nodes which model interfaces to resources external to the circuitry of
the many-core system. Examples of external resources are memory systems, sensors,
controllers or neighbouring many-core array regions. As before, each process or interface
to an external resource, is represented as a node with data transfers between nodes
represented as edges. The nodes of the revised application process graph can be one
of the following types:

e a source node, an interface to an external source of data received by an APG
process, is a node that has no inbound edges

e a process node, has both inbound and outbound edges

e a sink node, an interface that is the recipient of data from an APG process, is a node
that has no outbound edges

Asin the graph G is represented as a tuple of the set of nodes, V,;, and the set
of edges, &,;:

G =V, &) (E-9)
The set of nodes V), is now the union of three distinct sets of nodes within the application

process graph: the set of source nodes S, the set of sink nodes Ky, the set of process
nodes P,:

Each node in the APG is identified by a label: process nodes by Pn | 1 < n < P, where
P, is the number of process nodes in the graph, sources nodes by Sn | 1 <n < S, where
Sy is the number of source nodes in the graph and sink nodes by Kn | 1 < n < K, where
K, is the number of sink nodes in the graph.

The total number of nodes is denoted by V,, where:

V=V =S+K+P (E.10)
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Figure E.3 — Moderately connected graph with 3 source nodes ,28
processing nodes and 2 sink nodes.
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Figure E.4 — Densely connected graph with 1 source node, 28
processing nodes and 3 sink nodes.

The number of edges is:
E =& (E.11)

The node sets are defined as:

Sg={s1,...,5, |1 <n <S5} (E.12)
Kg={ki,....kn |1 <n < K} (E.13)
Py={p1r-opn | 1 <0 < P} (E.14)
Vg =S UKy UPy (E.15)
Ey={e1,...,en |1 <n < Ey} (E.16)

An APG can be characterised by the three numbers representing the number of process
nodes, source nodes and sinks nodes; for example the graph in fig can be charac-
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terised by the three numbers s = 1, p = 28, k = 3 or, more compactly, by V(1 : 28 : 3).

More densely connected graphs will, by definition, have more edges, which implies a
greater total volume of traffic, which will affect metrics based on traffic volumes. To quantify
the effect of graph density on the metrics, we categorized graphs as sparsely connected,
moderately connected and densely connected depending on the density of edges in the
graph. A sparsely connected graph is defined as a graph where there are less than two
edges per node, a moderately connected graph is a graph where the number of edges is
more than or equal to 2 edges per node and less than 2.5 edges per node, and a densely
connected graph is a graph where the number of edges is more than or equal to 2.5 edges
per node. These are arbitrary values which were found to be useful in this work.

The connection density of graphs is defined by

sparse, if&E<2.-V
Cy { moderate, if (E>2-V)AN(E<25-V) (E.17)
dense, otherwise
Where:
Cy = The connectivity of graph G.

The graph density also has an impact on the number of mappings that are link fault tolerant.
Each edge creates a ComPair so with more edges creates more ComPairs, and the greater
number of ComPairs makes it more difficult to arrange the processes in cores of the many-
core array such that, the source node and target node of each ComPair are not on the
same row and column i.e.there are no critical links.

E.3 Process Map

A process map or mapping is a data structure that, for each processing node of the
application process graph, gives the location of the core in the array that will run the
process. Cores that are running a process are given a task name that is the process
name from the application process graph. Many-core array cores that are not allocated a
process are spare cores and are considered to be idle so are given a task name of ’i’, while
failed cores are given a task name of 'f’. Figure [E.§)illustrates a 6 x 6 many-core array.

Figure shows a process map for the application process graph in mapped to the
many-core array of [Figure 4.1

The process map has the same dimensions as the many-core array, given as R rows and
C columns defined in
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Figure E.5 — A Process Map for a 26 node APG in a 6x6 Many-Core Array

The process map M is represented as a set of nodes V,,,:

M=V, (E.18)

The number of nodes is defined as V,,, and is the same as V,:
Vin = |Vm’

= RiyCim (E.19)

Given that there are R,,, rows and C,,, columns, the set of nodes are defined as:

Vin =A{v1,...,0n | 1 <n <V, } (E.20)

A node is a set of ordered tuples consisting of a location which is the coordinates of the
corresponding node in the many-core array and a process name:

v = (r,¢,p)

= (loc,p) (E.21)

Where:

loc = (r,c) (E.22)

and:
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v, |s a node of the set V,,.

r Is the row coordinate of the node v, | 0 < r < R,,, where row 0 is the top row.

c Is the column coordinate of the node v, | 0 < ¢ < C,,, where column 0 is the
left most column.

p Is the process name of the APG process mapped to the many-core array node
at location (r, ¢) or, if no process is mapped to the many-core array node, the
value i representing a spare core | p € P, U {i}.

The location coordinates are illustrated in

E.4 Communicating Core Pair (ComPair)

A pair of processes from an application process graph connected by an edge will cause
data traffic to flow between the cores in the many-core array that the processes are mapped
to. The two cores in the many-core array where the processes are located are referred
to as a communicating core pair or ComPair. Since the application process graph is a
directed graph each ComPair will have a source node from where data traffic originates
and a target node, where the data is received for use by the target process. For this work,
the assumption is made that traffic will use a path of minimal length between the source
and the target of the ComPair subnet.

The ComPair is introduced in this chapter to support the calculation of the power metric
presented in ComPairs will also be used extensively in the calculation of traffic
metrics presented in

Definition: Given an edge of an application process graph and the source node and target
node of the edge, a ComPair consists of the two cores of the many-core array to which the
source node and target node have been mapped. The ComPair has a subnet that consists
of all the routing nodes and links between and including the node where the source core is
located and the node where the target core is located.

Between the source and target nodes of a ComPair there will one or more minimal length
paths, which are paths where each step in the path gets closer to the target node. In this
work metrics are based on minimal length paths.

Once an application process graph has been mapped to a many-core array there will be
as many ComPairs in the array as there are edges in the application process graph. Note
that a physical link of the many-core array may carry traffic from multiple ComPairs.

The properties of a ComPair are given in{lable E.1|and those of a ComPair subnet inTable E.2

As an example, two ComPairs that are created by mapping the application process graph

of [Figure 4.2]to a 6 x 6 many-core array, are illustrated in

Note that when discussing ComPairs, they will usually be referred to by the symbol @,
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(a) Subnet for the ComPair with (b) Subnet for the ComPair with
source node P4 and target node source node P6 and target node
P19 P15

Figure E.6 — ComPair and subnet examples. Source nodes are coloured light
orange, target nodes coloured dark orange and the subnets are bounded by a
dashed blue line.

taken to mean any unspecified ComPair. When it is necessary to associate a ComPair
with an edge in the application process graph the ComPair will be referred to by the symbol
Q., Where e represents the specific edge of the application process graph that generates
the ComPair in the many-core array.

The number of rows and columns in a ComPair subnet can be calculated from the source
and target locations using equations [E.23|and [E.24]

Ry=t,—s;|+1 (E.23)

Cy=lte—se| +1 (E.24)

The number of links in a ComPair subnet is given by

Qi =Ry(Cy—1) + (R, —1)C, (E.25)

The number of shortest length paths from the source node to the target node of a ComPair

subnet that is fault free is given by |[Equation E.26|as explained in If there are

faulty links in the subnet then the number of links can be calculated using the recursive

algorithm described in

(Ry —1)(Cq — 1)!
(Ry = DI(Cy = 1)!

P, = (E.26)

The path length of a ComPair in terms of the number of links on a shortest length path
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Table E.1 — ComPair Properties

Name Description

Q. The ComPair representing edge e of the application process graph

Qs The source node of ComPair ()

Qioc, The location of the source node of ComPair ) within the array

Sy The row of the source location

Se The column of the source location

Q: The target node of ComPair @)

Qloc, The location of the target node of ComPair Q within the array

t, The row of the target location

te The column of the target location

R, The number of rows of nodes in ComPair

Cq The number of columns of nodes in ComPair ()

Q The path length of the ComPair in terms of the number of links on the

shortest path between the source and target nodes
P, the number of shortest length paths between the source and target nodes
Qq The network load for the ComPair taken from d,, for the edge e,, of the

application process graph that the ComPair represents

between the source and target nodes of is given by |Equation E.27|

P,=(Ry— 1)+ (Cy—1) (E.27)

Table E.2 — ComPair Path and Link Properties

Name Description

Py The set of unique shortest length paths between the source and target
nodes of the ComPair @

P, The number of shortest length paths in the set |P,|

Pn The n*" path of ComPair Q

Lq) The set of links in the subnet of ComPair ()

L, The number of links in set | L, | in the subnet of ComPair Q

The n*" link of ComPair Q

E.5 Link Criticality

The many-core array architecture described in uses a lattice of routers for
transmission of traffic through the network. Traffic from the source to the target of a
ComPair will be transmitted as a number of packets which will pass through a series of

routers, each with a buffer where received packets are temporarily stored before being

forwarded to the next router.
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Link criticality is a method of categorizing the effect that the failure of a physical link can
have on traffic in a ComPair. The classification of a link is specific to a ComPair, so can
have different criticalities for each ComPair subnet that it is part of. A link is classified as
one of the three following types defined by the effect its failure will have on the transmission
of data in the ComPair subnet of which is is part:

e Critical Links
e Significant links
e Normal links

Each of these three types of links will be explained below with reference the the graphs in
When developing the metrics it will become apparent that the number of paths
that use each link will be important in the calculation of the metric. The edges of the graphs
in[Figure E.7|are labelled with the number of paths that use each link.

Critical Link
A critical link is a link where all paths from the source to the target pass through the link,
such that a fault will cause complete failure of communication. Figures and
illustrate subnets with critical links, shown in red, where the failure of a single link causes
complete communication failure. Traffic that passes through a critical link is described as
critical traffic.

If, for ComPair @, there are P, paths between the source and target nodes and there are

ln, paths through link I,,, then link [,, is defined as a critical link by [Equation E.28| i.e. when
the number of paths through the link is equal to the total number of paths between the

source node and target node of the ComPair.

Iy is critical < 1,, = P, (E.28)
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== ==

(a) Critical Link of length 1 (b) Critical Link of length 2

(c) Network with 2 Significant (d) Network with 3 Significant

Links Links

2@2@

(e) Network with a single Link fault and 5 Significant Links

2@2@2@

(f) Network with a 2 Link faults and 7 Significant Links
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(g) Network with 4 Significant (h) Network with a 4 Link faults
Links and 6 Significant Links

(i) Network with 2 Link faults, 2 Significant
Links and 1 Critical Link

Figure E.7 — Networks illustrating Critical and Significant links

Where:
P, = The total number of paths of the ComPair subnet.
Iy = The I*" link of the Q; links in the ComPair subnet.
ln, = The number of paths through link I,, of ComPair Q.
@ = The number of links in the ComPair subnet.

Significant Link
A significant link is a link which is the only link from its source node and is a link where
only a (proper) subset of paths from the source to the target pass through the link i.e. not

all paths use pass through the link, as defined by [Equation E.29;

I, is significant < (I, < P;) A (ls,,, = 1) (E.29)
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Where
P, = The total number of paths of the ComPair subnet.
In = The I*" link of the Q; links in the ComPair subnet.
ln, = The number of paths through link /,, of ComPair Q.
Q = The number of links in the ComPair subnet.
Sout = The number of outbound edges of source node [,
ls = The source node of link

A faulty significant link will sever the paths that use the link while still leaving one or more
viable paths that do not use the faulty link. Traffic that passes through a significant link
is described as significant traffic. A fault in a significant link will potentially cause some
packets to be lost where packets are stored in the buffers of routers that have become
disconnected from the target node due to the appearance of the fault. Figures and
illustrate subnets where there are significant links shown by orange arrows. Packets
will be lost when the routing node attempts to transmit packets through the link after the
link has failed.

A significant link exists when it is on the only path from its routing node to the target node
of the ComPair but the path it is on is not the only path between the ComPair. Failure of
a significant link will create a dead end path of arbitrary length causing the loss of packets
that travel down the "dead end". A router only has knowledge of the status of directly
connected links so each router will continue to route packets down the dead end until the
loss of packets is detected and propagated back up the path until the router at the head
of the dead end path is reached. The router at the head of the dead end will eventually
establish that packets are not being received through that path so will modify its behaviour
to only send packets down the alternative path, thereby maintaining communication. The
loss of a significant link will redistribute traffic to other links which may in turn create bottle-
necks and reduce the overall performance of the system. In some case, for example in
figures[E.7] (c), (d), (e), (f), (h) and (i), bit not (g), the loss of a significant link will have the
effect of changing the criticality of other links from significant to critical, making the network
vulnerable to further link failure.

Notice that a ComPair subnet will contain as least one critical link or two significant links.
This can be confirmed by considering the target node: if there is only one inbound link to
the target node then it must be a critical link, if there are two inbound links to the target
node then they must both be significant links since failure of either link will cause packet
loss.

Normal Link
A Normal Link is a link whose failure does not cause the loss of transmission of packets,
more specifically it is a link whose routing node has more than one outgoing link to the

target of the ComPair. A normal link is defined by [Equation E.30}

l,, is significant < (Is,,, = 2) (E.30)

Sout
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Where:
ln = The I*" link of the Q) links in the ComPair subnet.

lsout

ls

The number of outbound edges of source node I,
The source node of link [

Traffic that passes through a normal link is described as normal traffic. Figures[E.7c|to[E.7]|
illustrate subnets where normal links are shown by black arrows.

Failure of a normal link has no negative effect on the transmission of packets because the
routing node it is connected to has a choice of two links for the transmission of packets.
Given that the router has knowledge of the status of its directly connected links it is able to
transmit packets along the remaining healthy link when one link fails. Each of the two links
are on distinct, alternative paths from the source to the destination.

E.6 Hardware Map

A hardware map or network topology map models, for a single region, the cores and links
of the many-core array and the interfaces that connect the many-core array to external
resources or neighbouring regions and the status of each element of the map.

The purpose of the hardware map is to model the essential elements of the many-core
array and interfaces to external resources in sufficient detail to enable valid mappings to
be generated and the metrics of the mappings to be calculated.

E.6.1 Nodes and Links of a Hardware Map

The definition of the hardware map is similar to the many-core array defined in
with the addition of information defining the type of each node and the status of each core
and link.

The hardware map must maintain information to:
e Specify the type of each node
e Specify the status of each node and link

e Uniquely identify each node and link

Nodes

Nodes represent the cores of a many-core array or interfaces to resources external to the
many-core array or cores of neighbouring regions. Interfaces to external systems can be
classified as capable of acting as both sources or sinks, sources only or sinks only. The

node types are summarised in
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Table E.3 — Hardware Map Node Types

Type Description
c¢ Core: A node that can be used by an APG process node.
Source: A node that can be used only by an APG source nodes.

k Sink: A node that can be used only by an APG sink nodes.
b Both: A node that can be used by an APG source or sink node.
A node that is either shared with or belongs to a neighbouring region.

.‘
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Links

All links are unidirectional and are identical whether they are part of the internal circuitry
of the many-core array or a link between the many-core array and external interfaces or
regions.

Node Identity
Each node is given a location (¢, r) starting with coordinate (0, 0) at the top left most corner

as illustrated in

Link Identity
Each link is directional so is identified by the location of the source node followed by the
location of the target node (loc(s), loc(t)).

E.6.2 Modelling Faults

Node and Link Status
Each node and link in the hardware map has a status which indicates if the element is in

good working condition or faulty as summarised in

Table E.4 — Core and Link Status Values

Status Description
g Good: The element is fully functioning.
f Faulty: The elementis faulty and cannot be used.

Using the status of nodes and links the hardware map can model:
e Processing Core Faults
e Link Faults
e Routing Node Faults

A fault free hardware map and three types of hardware faults are illustrated in the hardware
maps of [Figure E.8|with the faulty nodes and links being marked f and highlighted in red.

Processing Core Faults
illustrates a hardware map with a single faulty processing core, while the
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(b) A single core fault

(c) Two link faults (d) A single routing node fault

Figure E.8 — Hardware Maps representing a 6 x 6 many-core array
with interfaces to external resource on each of the four edges of the
many-core array.

routing node and all links are functioning normally. Traffic passing though the routing node
is unaffected.

Link Faults
illustrates a hardware map with two faulty links that are unable to carry any
traffic.

Routing Node Faults

[Figure E.8d)illustrates a hardware map with a single faulty routing node, which is modelled
by marking the node, and all 8 adjacent links, as failed. If the routing node fails then
the processing node becomes unavailable because it cannot receive or transmit any data;
this allows the routing node to be modelled as a combination of a processing node failure
together with the failure of all links attached to the routing node which is a considerable
simplification compared to modelling the processing node and routing node separately.
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E.6.3 Hardware Map Definition

The hardware map H is represented as a tuple of the set V}, of nodes and the set &, of
links:

H = (Vn,En) (E.31)

Given that there are Ry, rows and C}, columns, the number of nodes and links are defined
as Vj, and Fy:

Vil = Vi
— RyChy (E.32)
|En| = En

= Rp(Ch — 1) + (Rp — 1)Cy
=2R,Cy, — Ry, — C, (E.33)
The set of nodes is defined as:
Vi ={v1,...,0m | gm = V3} (E.34)

with a node defined as an ordered tuple consisting of the row and column coordinates of
the node within the many-core array, which is also its location:

vp, = (loc, t, s) (E.35)
Where:
loc = (r,¢) (E.36)
and:
r is the row coordinate of node v,,.
¢ is the column coordinate of node v,,.
t is the type of the node v,,t | t € {c,b, s, k,r} as defined in[Table E.3

s s the status of the node v,, | s € {g, f} as defined in|Table E.4

Row and column coordinates are arbitrarily defined as beginning at 0 and location (0, 0)
referring to the top-left hand core of the many-core array with location (R, — 1,C}, — 1)
referring to the bottom-right hand core of the many-core array.

The set of links is defined as:

En=A{e1,...,em | m=Ep} (E.37)
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A link is defined as a set of ordered tuples consisting of a source node location, a target
node location and a status:

en = (locs, locy, s) (E.38)

Where:
e, is alink from the set &j,.

loc, is the location of the source node of link e,,.
locy is the location of the target node of link e,,.
s s the status of the link e,, | s € {g, f} as defined in|Table E.4

E.6.4 Hardware Map Configurations

The hardware map is designed to be flexible so that it can model a range of configurations,
a selection of which are illustrated in [Figure E.9 Configurations are defined through the

use of the set of parameters listed in

Table E.5 — Hardware Map Definition Parameters

Parameter Description

Ry The number of rows of nodes in the hardware map

Ch, The number of columns of nodes in the hardware map

R, The number of rows of nodes in the many-core array

C, The number of columns of nodes in the many-core array

R, The position of the first of the row of the many-core array relative to
the first row of the hardware map

C, The position of the first of the column of the many-core array relative
to the first row of the hardware map

B, The border type of the north edge, see[Table E.6

By The border type of the west edge, see|Table E.6

B The border type of the east edge, see[Table E.6

B The border type of the south edge, see[Table E.6

Hgp A dataflow machine is modelled when this boolean switch is set to
true

L The set of links in the hardware map

Border types are used to define how the nodes on the rows and columns, that are on the
edges of the hardware map are configured. The parameters allow for borders to have of
multiple rows or columns, which allow for a variety of multi-region arrangements. The types
of borders are listed in[Table E.6l
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Table E.6 — Border Types

Type Description

s Source: A node that can be used only by an APG source nodes.

k Sink: A node that can be used only by an APG sink nodes.

b Both: A node that can be used by an APG source or sink node.

r Region: A node that is either shared with or belongs to a neighbouring region.
n None: There is no border.

A hardware map has four borders which are described using the four compass points of
north, east, south and west. The four borders can be represented as a list of border
types and width pairs, starting with the north border and working clockwise. For example,
a hardware map that has a single row/column on each side that can be used for both
sources and sinks can be described as B((b,1), (b,1), (b,1),(b,1)). If there is no border
on one of the edges then the border is described using the border type and width pair of
(n,0).

A selection of possible hardware map configurations are presented in each
showing a 6 x 6 array of processing cores with different combinations of border types. The
four example configurations are described below.

To fully specify a configuration, the following information is required:

The number of rows and columns of the hardware map.

The number of rows and columns of the many-core array.

The offset row and column of the many-core array with respect to the top-left corner
of the hardware map.

The type and width of the border of each edge of the hardware map.



The Many-Core Model

375

(a) A detached 6x6 Hardware
Map with no source or sinks:
B((n,0),(n,0),(n,0),(n,0)).

--------------------------

(c) A multi-region 8x8 Hardware
Map for a with north and
west borders that can be
either sources or sinks and
east and south borders that
are neighbouring regions:

B((b,1),(r,1),(r,1), (b,1)).

(b) A connected 8x8 Hardware

Map were all borders can
be either sources or sinks:
B((b,1),(b,1),(b,1), (b, 1)).

------------------------------------

(d) A 6x8 Hardware Map for a
Dataflow Machine with no bor-
ders on the north and south
edges, sources on the west bor-
der and sinks on the east border:

B((n,0), (k,1),(n,0), (s,1)).

Figure E.9 — Hardware Maps for a Variety of Configurations. The
nodes inside the blue dotted lines represent the cores of the many-
core array while the nodes outside of the blue dotted box represent
interfaces to resource external to the many-core array and cores of

adjacent regions.
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Configuration for Detached Many-Core Array

The many-core arrays being modelled in is defined as a detached many-core
array with a 6 x 6 array of nodes with no external data sources or sinks, or neighbouring
regions. Although this is an unrealistic configuration for practical systems, it was useful
for the initial experiments in chapters |4/ and [5l Since the configuration is modelling only
cores and links of the many-core array, the hardware map and the many-core array have
the same dimensions and the application process graph must consist only of processing
cores. This hardware map has a border definition of B((n,0), (r,0), (n,0), (n,0)) and is
the model used is most literature on the subject of fault tolerance in many-core arrays.

Configuration for Connected Many-Core Array

The hardware map configuration in is modelling a 6 x 6 connected many-
core array which has sources and sinks to external resources but does not have any
neighbouring many-core arrays or regions. The many-core array is located in the inner
6 x 6 nodes of the hardware map with source and sink communication ports to external
resources modelled by the outside edges of the 8 x 8 hardware map. This hardware map
has a border definition of B((b, 1), (b, 1), (b, 1), (b,1)).

The connected configuration will be used in the majority of the experiments of this chapter.

Configuration for Multi-Region Many-Core Array

The hardware map configuration shown in models a many-core array that is
part of a multi-region arrangement many-core arrays. The north and west edges have a
border type of b indicating the the nodes can be either sources or sinks while the east and
south edges have a border type of r to indicate that the nodes are either under shared
control with a neighbouring region or under the exclusive control of a neighbouring region.
This hardware map has a border definition of B((b, 1), (r, 1), (r, 1), (b,1)).

Configuration for Dataflow Many-Core Array

The hardware map in is an arrangement that forces all source nodes to be
located on the left edge of the array and all sink nodes to be located on the right edge of
the array. This arrangement will ensure that all data arrives via the west edge of the array
and leaves via the east edge, producing a flow of data from west to east, hence the name
dataflow machine. This hardware map has a border definition of B((n,0), (k, 1), (n,0), (s,1)).

E.7 The Environment

The application process graph is a model of the application processes and its sources and
sinks. The hardware map is a model of the many-core array and the connections between
the many-core array and external resources. A process map is the mapping of process
nodes from the application process graph to cores in the many-core array.

Since the process map only includes process nodes from the application process graph,
an additional mapping is required to map the application process graph source and sinks
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nodes and nodes belonging to adjacent regions; this is the role of the environment.

This section describes the environment, and the relationship between the application pro-
cess graph, the hardware map, the environment and the process map.

The Environment Mapping

The environment maps the resources that are external to the many-core array to the
borders defined in the hardware map. Application process graph source nodes can be
mapped to nodes in borders of type b or s while sink nodes can be mapped to nodes of
borders of type b or k and nodes of neighbouring regions are mapped to nodes of borders
of type 7.

The environment mapping is established at the beginning of an evolution and remains fixed
for the duration of the evolution. The calculation of the metrics of process maps that are
generated during the evolution are affected by the position of resources in the environment
map and are therefore calculated with respect to the environment mapping.

From the hardware map in that is a connected many-core array with a

border of B((b,1),(b,1),(b,1),(b,1)) and the application process graph of |Figure 6.2,
the environment map of |[Figure E.10b] and process map of |Figure E.10c| are created, the

environment map containing the source and sink nodes from the APG and the process
map contain for the processing nodes of the APG. The illustrations of the hardware map,
the environment map and the process map all include a dotted blue line, the many-core
array boundary. Inside the boundary are the nodes relating to the many-core array, while
the nodes outside of the boundary relate to the environment.

The environment map consists only of the nodes outside of the many-core array boundary
while the process map consists only of the nodes inside the boundary.

The environment and process maps only tell us which cores in the hardware map each
node of the APG is mapped to but do not have any information regarding the status of links
between the nodes. In the illustrations of environment and process maps, the lines linking
the nodes are included to illustrate that the nodes are connected by links. The status of
links is maintained in the hardware map.

The Aggregate Map
The calculation of metrics for a process map can only be made within the context of the
environment. The metrics are therefore calculated using an aggregate map which is a

combination of the environment map and process map and illustrated in
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(a) An 8x8 Hardware Map where (b) An environment map of the

all borders can be either sources source and sink nodes.

or sinks.

(c) A process map of the process- (d) An aggregate map which is
ing nodes. the combination of environment
map (b) and process map (c).

Figure E.10 — From the information in the APG in and

the hardware map (a) the environment map (b) and process map
(c) are produced. The environment map and process maps are
then combined to make the aggregate map (d) used to calculate
the metrics of the process map.



Appendix F

Metrics and Objectives

For ease of reference, the metrics and objectives described in [Chapter 4|[Core Fault To]
erancé, [Chapter 5|[Network Power and [Chapter 6|[Link Fault Tolerance and Network Traffic
are presented here.

F.1 Metrics and Objectives

Metrics are measurements of fundamental properties of the system that is being studied.
Here we are interested in measuring properties of a mapping of an application process
graph onto a many-core array. Objectives are used by a search algorithm to make a
comparative measure of fitness between mappings and often use a metric in the calculation
of the value of the objective.

For example, the rectilinear distance between two nodes in a many-core array is the sum
of the number of horizontal and vertical edges between the two nodes; this is a metric. A
corresponding objective could be to minimize the sum of the rectilinear distance between
all pairs of communicating cores. In this case, the metric measures the actual distance for
a single pair of communicating cores, while the objectives uses the metric to calculate a
single value for all pairs of communicating cores in the mapping.

This thesis will present four objectives along with their supporting metrics. These are:
e Core fault tolerance
e Link fault tolerance
e Network power
e Excess traffic

This is only a selection of possible objectives for optimization of mappings for many-core
arrays selected to illustrate the work of this thesis.

The core fault tolerance objective is the subject of this chapter. The other objectives will be
presented in subsequent chapters.
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F.2 Core Fault Tolerance Metric and Objective

Metrics are measurements of fundamental properties of the system that is being studied.
Here we are interested in measuring properties of a mapping of an application process
graph onto a many-core array. Objectives are used by a search algorithm to make a
comparative measure of fitness between mappings and often use a metric in the calculation
of the value of the objective.

For example, the rectilinear distance between two nodes in a many-core array is the sum
of the number of horizontal and vertical edges between the two nodes; this is a metric. A
corresponding objective could be to minimize the sum of the rectilinear distance between
all pairs of communicating cores. In this case, the metric measures the actual distance for
a single pair of communicating cores, while the objectives uses the metric to calculate a
single value for all pairs of communicating cores in the mapping.

F.2.1 Core Fault Tolerance

Problem Description
This section develops the metric for measuring the distance between cores and the objec-
tive, which makes use of the metric, that is used by the evolutionary algorithm.

Given a fault free many-core array with R rows and C' columns and an application process
graph with V,, processes where V, < RC, arrange the spare cores to minimize the cost of
task migration in the event of the failure of a processing core.

The cost of task migration will be defined explicitly in

F.2.2 Distance to Nearest Idle Core Metric

The distance to nearest idle core metric will be a measure of the distance between an
individual processing core and its nearest idle core. As stated in[Section 4.2} given an array
of R rows and C' columns, each node’s location can be given by a tuple, (r, ¢) representing
the row r and column ¢ of the node relative to the top left-hand corner of the array. The
distance to nearest idle core metric, Mdnic, ), is the distance between a processing core
at location p;,. = (pr, pc) and its nearest idle core at location i;,. = (i, i.) and is defined
as the rectilinear distance between the location of the processing core and the location of

the idle core, given by

MdniC(r7C) = !(pr - Zr)’ + ’(pc - Zc)’ (E1)
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(a) Distribution on a 4x4 Array

(c) Mapping on a 6x6 array with
weak core fault tolerance

Figure F.1 — Examples of Distribution of Spare Cores

Where:
Mdnic(, ) = The distance to nearest idle core metric for the
process located at (7, ¢).
Dr = The row of the location of the process.
De = The column of the location of the process.
iy = The row of the location of the nearest idle core.
le = The column of the location of the nearest idle core

The minimum value of the nearest idle core metric is 1 which is the distance when a
processing core is adjacent to an idle core.
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F.2.3 Core Fault Tolerance Objective

The fault tolerance objective is to minimize the sum of the distances between each pro-
cessing core and its nearest idle core. When an idle core is adjacent to a processing core,
i.e. one step away, the fault tolerance objective value is defined as zero. When t steps are
required to reach the nearest idle core the fault tolerance objective value will be ¢ — 1 (In
other words, to obtain an adjacent idle core objective value of zero the metric value of each
process-idle core pair is reduced by one). This is an arbitrary choice made to ensure that
the lowest possible fault tolerance value for any array size is zero.

For example, [Figure F-1](a) and (b) illustrate respectively, for 4 x 4 and 6 x 6 arrays, arrange-
ments of idle cores among processing cores where every processing core is adjacent to at
least one idle core, while illustrates a mapping which has weak fault tolerance
due to some processing cores having no adjacent idle core. The mapping and [F.1b]
are assigned an objective value of zero, by the objective function, as no other distribution
of idle cores is considered to be any better for the purposes of core fault tolerance.

A fault tolerance cost of zero for the task map as a whole indicates that each processing
core is adjacent to at least one idle core. A processing core that has more than one
adjacent idle core is not regarded as having any additional benefit from the additional
adjacent idle cores. The core fault tolerance objective Jcore is given as:

& | Mdnicq, ) — 1, if core(r, c) is a processing core

Jcore = Z Z

—0 —0 |0, otherwise

(F2)

F.3 Link Fault Tolerance Metric and Objective

Failure of a link can result in disruption to communication in the array by causing packets
to take longer routes, lose packets or sever communications completely. The exact effect
a failed link has on communications of the array depends of how critical the link is for
each ComPair that uses the link. In this section link failures will be explored and a metric
developed that is designed to measure the detrimental effect the failure of a link would have
on the network.

The metrics developed in this section relate to a single ComPair, a ComPair. The objective
combines the metrics for all ComPairs into a single value representative of the vulnerability
of the whole mapping to link failure.

F.3.1 Problem Description

Develop a metric that measures the effect that failure of a link will have on network traffic
and an objective that can be used to minimize the negative effects of possible link failures.
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The definition of the metrics in this section refers to discussion of link criticality and the ac-

companying ComPair subnets in[Section 5.2|[Link Criticality, For convenience the ComPair

subnets are reproduced here as [Figure F.2|

F.3.2 Vulnerability to Critical Link Failure Metric

A failed critical link causes communication failure because it is used by all paths between
the source and target nodes of the ComPair . Comparing figures and it can be
observed that the graph of [Figure F2al has a single path consisting of a single critical link
and the graph of [Figure F.2b| has a single path consisting of two critical links. In this respect
the graph of [Figure F.2bjcan be described as being twice as vulnerable to critical link failure
when compared to It is also possible for a critical link to have multiple paths
using it as shown in Failure of such a link will sever all the paths that pass
through it so the metric must reflect the number of paths affected by the link.

The number of paths of a ComPair subnet that include a link /,, is given by I, and by
a link is critical when I, = @Q,. The metric Muvclf. is a measure of the
Vulnerability to Critical Link Failure of a ComPair, is defined as the sum of the number of
paths that pass through each of the critical links in the ComPair subnet. Metric Muvcl f.
is given by [Equation F:3|which include the equivalence that makes use of the fact that all
critical links, by definition, must be included in all paths of the ComPair.

Q| lp,, iflinkl, = @Q,i.e.is a critical link
Muvclf, = Z =Qp-le (F.3)

i=1 |0, otherwise

Where:
Muwoclf. = The vulnerability to critical failure metric for the ComPair Q).
Qi = The number of links in the ComPair subnet.
ln, = The number of paths that use link [,,.
Qp = The total number of paths of the ComPair subnet.
le = The number of critical links in a ComPair

Equation |F.3| will give a value of 1 for the ComPair illustrated in |Figure F.2al and give a
metric value of 2 for the ComPair illustrated [Figure F.2b| which is consistent with the notion
that[E2Blis twice as vulnerable as[F2al

F.3.3 Vulnerability to Significant Link Failure Metric

Failure of a significant link is less disruptive than a critical link because, although some
packets may be lost, there are alternative paths for the packets from the source to the
target. A metric is required to give a value to represent the impact of the failure of a
significant link.
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(a) Critical Link of length 1 (b) Critical Link of length 2

(c) Network with 2 Significant (d) Network with 3 Significant

Links Links

2@2@

(e) Network with a single Link fault and 5 Significant Links

2@2@2@

(f) Network with a 2 Link faults and 7 Significant Links
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(g) Network with 4 Significant (h) Network with a 4 Link faults
Links and 6 Significant Links

(i) Network with 2 Link faults, 2 Significant
Links and 1 Critical Link

Figure F.2 — Networks illustrating Critical and Significant links

Failure of a significant link can affect multiple paths of a ComPair as illustrated in
where significant link g is a component of paths 2 and 3, while significant links e and f are
both on only one path. The impact of link g failing is more severe than if link e or f fails.
To account for this, it is important to know the number of paths each significant link affects.
The links of the graphs in[Figure F.2|are labelled with the number of paths that use the link.
If the number of paths that use each significant link are added together for a ComPair then
this gives a metric for the vulnerability to significant link failure for the ComPair.

Q lnp, if link [,, is a significant link

Muoslf. = Z (F4)

1=1 |0, otherwise

Where:
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(a) 2 x 3 Array (b) Path 1

(c) Path 2 (d) Path 3

Figure F.3 — Paths Through a 2 x 3 Array

Muslf. = The vulnerability to significant link failure for ComPair Q.
Q = The number of links in the ComPair subnet.

lnp = The number of paths that use link [,,.

Qp = The total number of paths of the ComPair subnet.

F.3.4 Vulnerability to Link Failure Metric

The remaining task is to integrate the two metrics of Vuinerability to Critical Link Failure
and Vulnerability of Significant Link Failure into a single metric that gives a single measure
of the Wulnerability to Link Failure. Normal links are not included in the metric because
they do not cause loss data. The definition of both of the above metrics is identical in that
they both measure the number of paths that are affected by the failure of the link. As an
initial attempt at creating a single metric, the individual metrics are summed together to
produce a single value representing the total number of paths that are affect by a critical or
significant link. [Figure F.3]list values of the sum of the two metrics in the column > under
"Vulnerability Metric", for the subnets in
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Table F.1 — Comparison of Vulnerability Metrics

Graph Dimension Paths Vulnerability Metric

Height | Width | Total | Affected | 3 | 100 x &= | 100 C%
1 2 1 1 1 100 100
1 3 1 1 2 200 200
2 2 2 2 2 100 50
2 3 3 4 4 133 44
2 4 3 7 7 233 77
2 5 3 10 10 333 111
3 3 6 8 8 133 22
3 3 2 6 6 300 150
1 2 2 2 4 200 100

Relating the metric values to the graphs, it is evident that this simple sum does not give a
consistent value for the purposes of comparing the vulnerability of different graphs. Graph
has the best fitness of 1, while graphs [Figure F.2b| and [Figure F.2c| have the
same fitness of 2. However graph is clearly less vulnerable than either or
The reason is that graph is a larger graph and has more paths, so there are more

paths that can be affected and the metric is greater. This implies that the metric should
take into account the number of paths in the graph between the source and target nodes.

Two additional metrics have been calculated, which are the sum divided by the number
of paths in the ComPair and the sum divided by the square of the number of paths in the
ComPair, in an attempt to correct the deficiencies of the simple sum metric. Dividing by
the number of paths improves the metric but still gives anomalous values, for example the
graph of [Figure F.2b| and [F-2c| have the same metric value even though the graph has
two paths so is clearly less vulnerable than Dividing by the square of the
number of paths gives comparative values that work well, for example the metric value for
graph is three times greater than the metric value for because, although they
both have two paths, [F:2h has three times more significant links than[F.2c| so is three times
more vulnerable. The additional metrics are shown in columns % and % with the values

having been multiplied by 100 to give useful integer values.

The final metric calculation for Vulnerability to Link Failure is given by

100 & ln,, iflink [ is a critical or significant link
Mulf, = o2 > (F.5)
P =0 |0, otherwise

Where:
Mwvlf. = The vulnerability to significant link failure for ComPair C.
C; = The number of links in the ComPair subnet.

The number of paths that use link [,,.

o~
3
]

9
I

The total number of paths of the ComPair subnet.
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F.3.5 Link Fault Objective

This section describes an objective that combines the metrics for all ComPairs into a single
value representative of the vulnerability of the whole mapping to link failure.

The link fault objective is to minimize the sum of the metric values for all ComPairs in the
application process graph. The link fault metric gives a value for a single ComPair so the
value for the objective is the sum of the fault metric values for all ComPairs in the application
process graph:

C
Jlink = Ml f. (F.6)
I=1
Where:

Mwolf. = The vulnerability to link failure for ComPair C'.

C = The number of links in the ComPair subnet.

ln, = The number of paths that use link [,,.

Cp = The total number of paths of the ComPair subnet.

F.4 Network Power Metric and Objective

Communication traffic is a major contributor to power consumption in a many-core array
[183l[184]. The total traffic flows in the many-core array can be used as an approximation
for power consumed by communication traffic. This section will explore the measurement
of the traffic in a many-core array and develop an objective designed to direct a search
algorithm to find solutions that minimize the traffic.

F.4.1 Problem Description

The power consumed by traffic between a ComPair, for a given router/NoC architecture,
is a function of both the traffic volume and the distance in terms of routing nodes and
links that the traffic has to traverse between the source and target nodes. Reducing the
total network traffic of all ComPairs will reduce the power consumption of the many-core
array. The volume of traffic between a ComPair is predetermined by the application and
cannot be influenced by the many-core system whereas the distance the traffic has to travel
is dependent on the relative position of the source process node and the target process
node, which is under the control of the many-core system.

F.4.2 Distance Between Communicating Core Pairs

To relate traffic to power it is necessary to know both the amount of traffic and the distance
it has to travel, as the product of these gives us the total amount of traffic that is processed
by the routing nodes and transmitted down the links between the source and target nodes.
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The distance between a ComPair is the rectilinear distance between the source and target
nodes and, assuming minimal length paths, represents the number of links the data will
travel through from the source node to the target node. Faults on paths between the
source and target have no effect on the length of the path that the data will travel along,
providing the faults do not sever all paths between the source and target. For a ComPair @,
corresponding the edge e¢,, of the application process graph with source location @, (s, s.)
and target location of Q,,(t,,t.) the Distance Between a ComPair metric Mdccp,, (i.e the
distance between the source node and the target node), is given by [Equation F7]

Mdccepg, = |(sr — )| + |(sc — te)| (F7)

If the assumption is made that traffic volume between all ComPairs is the same then the
distance between cores can itself be used as an approximation for the traffic and therefore
the power consumption. This is not a particularly good assumption as the traffic between
different ComPairs can be very different, so a more precise calculation is desired.

F.4.3 Traffic Volume Metric

An improvement to the distance between ComPairs as a metric is to use a measure that
takes into account both the distance and the traffic volume for each ComPair, which will
typically be different for each pair.

For a ComPair (),, corresponding the edge e,, of the application process graph the traffic
volume @, is the attribute traffic volume, d, from edge e,, of the application process graph.
A metric that measures the Traffic Volume Between a ComPair, Mtccp,,,, is given by the

Mtcepg,, = Mdccepg, < Qn, (F.8)

F.4.4 Power Objective

The corresponding power objective is to minimize the total power consumption across the
whole network.

For the objective, a power consumption of zero is assigned when the source and target
of a ComPair are adjacent, so that if the source and target nodes of every ComPair are
adjacent then the value for the mapping will be zero. However, when a ComPair’s source
and target nodes are adjacent, the traffic volume metric Mtccp,, will have a value of @, .
Therefore when the traffic metric is used in the objective it must be adjusted down by the
value of ),,,. The power objective is given in

Eg

Jpower = Z Mtcepg,, — @n, (F.9)
e=1
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F.5 Excess Traffic Metric and Objective

This section examines traffic flow through the many-core array that can lead to excess
traffic. Each link in a many-core array may carry traffic from multiple ComPairs, the total
of which could exceed the bandwidth of the link. The excess traffic is the traffic above the
bandwidth of a link that the link is required to carry. This can be described as a link-centric
with, since the excess traffic is related to each individual link, although the details of the
traffic from all the ComPairs that have paths that use the link.

A link that is required to carry excess traffic is referred to as an overloaded link. Excess
traffic for a link will eventually fill the buffers of the routing node, creating a bottleneck so
potentially causing disruption throughout the network as traffic above the link’s capacity
is rerouted down alternative paths which may then overload other links causing more
rerouting which can result in a cascade of overloaded links. If there are alternative paths
to a path that uses an overloaded link, then the effect of the bottleneck may be mitigated
by using an adaptive routing algorithm.

A routing node can monitor the status of the links it is using to transmit data. If a bottleneck
develops on a link, the routing node is able to detect this and then employ an adaptive
routing algorithm to redirect traffic down alternative paths, if they exist, using another link.
In doing so, the alternative paths must still be minimal-length paths. If no alternative paths
exists for the traffic, because the traffic is critical traffic, adaptive routine cannot alleviate
the bottleneck. The excess traffic metric is only an approximation of the expected traffic
volumes based on the traffic volume data containing the the application process graph.
Only a cycle accurate simulation, with knowledge of how each process generates traffic
and an understanding of the intended routing algorithm, will be able to accurately predict

traffic volumes. As discussed in|Chapter 7||Graceful Degradation and Amelioration, one of

the roles of the Monitor will be to update the traffic volume attributes of the edges in the
application process graph with actual observed traffic volume data to increase the accuracy
of calculations of metrics and objectives.

Critical traffic cannot be rerouted; significant traffic can be rerouted by the first routing node,
back up the path, that has a choice of paths for transmission of the data; normal traffic can
be rerouted by the routing node link. The severity of the effect of a bottleneck will therefore
depend on whether the link is carrying critical, significant or normal traffic.

Each ComPair in a mapping will have at least one, and often many, paths between the
source and the target through which traffic will travel. Each path will consist of at least
one link, and typically a chain of links. Each link in the array will typically be part of many
paths between many ComPairs and the role of the link in each path may be either critical,
significant or normal. As a result the traffic profile of each link is complex, consisting of the
aggregation of a variety of types of traffic from many paths between many ComPairs.

In this section, a metric will be developed to represent the excess traffic of a link and
evolutionary algorithm objectives designed to minimize the potential disruption of excess
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traffic.

F.5.1 Problem Description

The impact an overloaded link has on the network as a whole will depend of the volume
of each traffic type that uses the link. Critical traffic has no other option than to use the
link, so a link that is overloaded with critical traffic will cause an unavoidable bottleneck.
Significant traffic, does have other available routes, but these can only be used when the
congestion of traffic has propagated back up the path until it reaches a node than can direct
traffic down an alternative path. Excess normal traffic can be rerouted immediately by a
congested link’s routing node, so will have lower impact than critical or significant traffic.
This suggest the concept of weighted excess traffic metric which is a measure of excess
traffic obtained by giving a weight to each type of excess traffic so that critical traffic makes
a greater contribution to excess traffic metric than significant traffic, which in turn makes a
greater contribution to the metric than normal traffic. This penalizes mappings with excess
critical and excess significant traffic. For a fault free array, critical links can be avoided
completely while significant links can be reduced in number but not eliminated completely
since the links attached directly to the target node cannot be normal (see
[Communicating Core Pair (ComPair)).

A metric that measures the excess traffic of a link can only suggest which links could
be overloaded in normal operation. Calculating the expected traffic through each link,
using either the non-weighted or weighted calculations, is only an approximation used to
reduce computational time, based on the average predicted network load taken from the
application process graph, which might prove to be very different to the actual traffic result-
ing from adaptive routing. In a working many-core array the on-line Monitor, discussed in

[Chapter 7||Graceful Degradation and Amelioration, will be be able to detect real bottlenecks

and actual data flows between ComPairs, which can then be used in these metrics to
increase accuracy.

F.5.2 Excess Traffic Metric

In this section the metric will be developed starting with a simple calculation using raw
traffic followed by a more sophisticated approach involving link level traffic weighting.

Traffic Distribution

Traffic flowing between the source and target of a ComPair will be distributed amongst the
available paths by the routing algorithm used by the routing nodes between the source and
the target nodes. Two algorithms for distribution of the traffic through the ComPair subnet
have been considered. The first is that the traffic is split equally between the available
paths at each routing node, illustrated in [Figure F.4a} the second it that the traffic is split
equally between the paths from the source to the target, illustrated in Both
strategies would require an adaptive routing algorithm that has the ability to understand
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the strategy and keep track of the traffic that has been sent down each link so that it sends
each new packet down the link that will maintain the desired balance.

(a) Distribute traffic evenly be- (b) Distribute traffic evenly be-
tween links at each node. tween ComPair paths at each
node.

Figure F.4 — Traffic distribution across the links used by a ComPair. The numbers on
the links are percentages of the total ComPair traffic.

When the traffic is divided equally between links at each node the minimum
and maximum traffic volumes on individual links is between are 25% and 75%, giving a
range of 50% When the traffic is divided equally among the ComPair paths at each node
the minimum and maximum traffic volumes on individual links is between
33.3% and 66.6% giving a range of 33.3%. As it is preferable for the traffic to be as evenly
distributed as possible the smaller range of 33.3% is more attractive than 50%. Conse-
quently in the sections that follow the traffic will be evenly distributed between ComPair
paths.

Non-Weighted Excess Traffic

The starting point is to calculate the actual traffic that is expected to flow through a link.
The method is to consider each ComPair, and for each pair calculate the traffic that will
travel through each link between the source and target nodes of the ComPair. Between
the source and target nodes there may be many paths. In many cases paths will overlap
i.e. they will use links that are used by other paths.

As an example, take a ComPair with source and target nodes that are one row and two
columns apart as in[Figure 6.8al There are a total of three paths in the ComPair, illustrated
in Figures[6.8b},[6.8c|and[6.8d] Links b, ¢, e and f are used by only one path while links a, d
and ¢ are used by multiple paths. The volume of traffic between each ComPair is taken

from the application process graph which provides a traffic volume for each edge in the
graph. Traffic for a ComPair is distributed evenly between each of the paths between the
source and target, as discussed in[Subsection F.5.2] Traffic that travels along a path must
travel through each link of the path. Each path is analysed in turn with traffic from each

path being added to each link in the path. Each ComPair must be analysed and traffic
added to each link in each path of each ComPair to produce a total traffic for each link.
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Having calculated the total traffic for each link the excess traffic is calculated which is the
traffic above the bandwidth for the link. Each overloaded link will have a value for excess
traffic that is greater than zero while links that are not overloaded will have an excess traffic
value of zero.

The traffic volume through a link /,, of a ComPair is the network load, @4, of the ComPair
multiplied by the proportion of paths for the ComPair that include the link and is given by

Equation F-10
l

ln, = le Qq (F10)
Where:
ln, = the traffic through link I, of ComPair @
ln, = the number of paths through link /;, of ComPair Q)
@, = the total number of paths in ComPair
Qa4 = the network load of ComPair )

Given that there is a mapping from each link in a ComPair path to a link in the hardware
map represented by the function f : L, ) — L) each link [,;, of the hardware map has an
associated set of traffic volumes from the ComPair paths that use the hardware link [,,. If
each of the paths from all ComPairs of the mapping is assigned an integer identifier from 1
to Q1p, Where @y, is the total number of paths from all ComPairs of the mapping, then the
traffic volume Elmsq) is the traffic contributed from path ¢ to hardware link [,,,. The traffic
volumes for each ComPair link calculated using can be mapped to a traffic

volume ¢;,. .y which allows the definition of traffic volume metrics in terms of ¢, ..

The metric of total traffic for link [,,, is the sum of all traffic volumes from the ComPair paths
that use the link and is given by [Equation F.11]

Qtp
Mtt,) =Yt (F11)
q=1

The excess traffic for link [,,, is given by [Equation F.12

0, if Mttq,,) < lm,
M.%'t(lm) = (F-12)
Mtt(lm) —lpm,, Otherwise
Where:

Mtt,,y = The total traffic through link [,,,.

Mztq,,y = The excess traffic through link I,.

lin, = The my, link of the hardware map.

iy, = The bandwidth of link Z,,,.

Q = The number of paths of all ComPairs for the mapping.

(lmsq) = The traffic through link /,,, contributed by path gq.

Weighted Excess Traffic
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A more sophisticated approach is to apply weighting to traffic through a link, based on the
criticality of the link within each ComPair, producing an artificially high traffic value when
the link is critical or significant. The rationale for this approach is that if a link is a critical link,
then there are no alternative paths for the data, so the effect of the link being overloaded
will be more severe than if the link is not a critical link. Similarly, if a link is a significant
link, then there is only a single path between the significant link and the target node of a
CompPair even though there is at least one other alternative path from the source node to
the target node of the ComPair. The effect of a significant link being overloaded will be
less severe than for a critical link but more severe than for a normal link. This section will
propose a method of modifying the value of the traffic metric by applying weighting to traffic
passing though different types of link.

For each link in a path the link may be critical, significant or normal. A link may be a
critical link in one path, while being a significant link in another path and a normal link in
yet another path.

The approach taken is to calculate the total critical, significant and normal traffic through a
link from all the paths that use the link, then apply weighting in the following manner:

1) If the critical traffic is above the link’s bandwidth then the weighted traffic is calculated by
taking the excess critical traffic and applying the critical traffic weight, adding the significant
traffic weighted by the significant traffic weight and adding the normal traffic.

2) If the critical traffic is below the link’s bandwidth then the sum of critical traffic and
significant traffic is compared to the link’'s bandwidth, and if greater than the bandwidth
then the weighted traffic is the excess of the sum of critical traffic and significant traffic
weighted using the significant traffic weight added to the normal traffic.

3) If sum of critical traffic and significant traffic is below the the link’'s bandwidth, then
the sum of the critical traffic, significant traffic and normal traffic is compared to the link’s
bandwidth, and if greater than the bandwidth then the weighted traffic is the excess of the
sum of critical traffic the significant and the normal traffic.

4) If the sum of the critical traffic, significant traffic and normal traffic is below the link’s
bandwidth then the weighted traffic is zero.

The weighting applied to critical traffic is greater than the weighting applied to significant
traffic, while the normal traffic is not weighted. The initial values for weights are set at 5 for
critical traffic and 2 for significant traffic. These values are arbitrary and will be explored by
experiments.

shows the non-weighted excess traffic (NWET) and the weighted excess traffic
(WET) for a selection of bandwidths and fixed traffic on a link, illustrating that the weighted
traffic calculation produces larger traffic and excess traffic values than the non-weighted
calculation for the same traffic profile. For bandwidths above 500 the actual traffic is
less than the bandwidth, but the presence of critical and significant traffic exaggerates
the calculated traffic which would cause the search algorithm to discriminate against such
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a mapping in favour of one with less critical and significant traffic.

Table F.2 — Comparison of Non-Weighted and Weighted Excess Traffic

Traffic Excess Link Weighted Bandwidth
Criticality =~ Weight Traffic  Traffic 500 1000 1500 2000

Weighted Excess Traffic

Critical 5 200 1000 500 0 0 0
Significant 2 200 400 400 400 0 0
Normal 1 600 600 600 600 500 0
WET Total 2000 1500 1000 500 0
NWET Total 1000 500 0 0 0

[Table F.3shows a variety of traffic profiles for a fixed bandwidth illustrating how the weighted
traffic calculation affects the excess traffic when compared to the non-weighted traffic.
The four different traffic profiles are indistinguishable when weighting is not used. When
weighting is used there is a clear difference in the calculated traffic values between the
profiles, which will direct the search algorithm to select solutions with lower critical and

significant traffic.

Table F.3 — Comparison of Non-Weighted and Weighted Excess Traffic

Traffic Excess Bandwidth : 5000

Criticality ~ Weight Tr WET Tr WET Tr WET T WET
Critical 5 1500 2500 1000 0 500 0 500 0
Significant 2 1000 2000 1500 3000 1000 0 500 0
Normal 1 500 500 500 500 1500 1000 2000 500
Weighted Total 10000 5000 8500 3500 6000 1000 5500 500

Non-Weighted Total

3000 3000 3000 3000

The excess traffic metric is calculated for each link in the network using the following set
of equations. First the critical, significant and normal traffic components through each link
from each path are defined given that 7{; , is the traffic through link [ contributed by path

q.

Ti,q),
MCt(l,q) =

0,

Ti,q9),
Mstq) =

0,

Ti,q),
M’I”Lt(hq) =

0,

if link [ is critical for the path ¢

(F.13)
otherwise
if link [ is significant for the path ¢

(F.14)
otherwise
if link [ is normal for the path ¢

(F.15)

otherwise
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Now the components for each traffic type for each link are summed to give a total of each

traffic type for each link.

Q
Mct; = Z MCt(l,q)
q=1
Q
MStl = Z MSt(l,q)
q=1
Q

Mnt; = Z Mnt(l,q)
q=1

Now the excess traffic for each link can be defined in terms of each of the individual traffic

types and the traffic type weights.

watl =

Where:
Mxwt; =

Mctl =
Mctag =
Mstl =
Mstqq) =
Mntl =
Mntqq) =

1)

(Mct; — Bw;) x We+

Ts; x Ws+ Mnty, if Mct; > Buwy

(Mct;+Ts; — Bwy) x Ws +

Mnty, if (Mct; +Ts;) > Buy
Mect; + T's; + Mnt; — Buy, if (Mct; + Mst; + Mnt;) > By,

0, otherwise

The excess weighted traffic through link /.

The critical traffic through link .

The critical traffic through link [ from path q.

The significant traffic through link [.

The significant traffic through link Z,, from path q.
The normal traffic through link {.

The normal traffic through link [ from path q.
The critical traffic weight.

The significant traffic weight.

The traffic through link | contributed by path q.

F.5.3 Excess Traffic Objectives

(F.16)

(F.17)

(F.18)

(F19)

The previous section described methods for calculating the traffic metric for a link. The

next step is to determine how the link excess traffic metric can be used to produce objective

measures for an evolutionary algorithm. The link traffic metric can be analysed in a number
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of ways, each of which has different merits.

Link Traffic Landscape

To evaluate the alternatives it is necessary to have an understanding of the link traffic
landscape that is desirable. If we view the links as points on a 2-dimensional plane surface
where the traffic metric can be viewed as the height of each point above plane. When all
links have a zero excess traffic, which is the ideal landscape, the surface will be perfectly
flat.

A small number of links with significantly higher values than the other links would be
represented by a surface with a small number of high peaks. Links with high values
would represent bottlenecks which could seriously degrade the whole network, so are
undesirable. Another possibility is that the excess traffic is evenly distributed across the
network, which would be represented by a raised but relatively level surface.

The landscape has two properties of interest: the first is the total of the excess traffic, which
is the total height of each point above the plane; the second is how smooth or rugged the
landscape is, i.e. how varied is the height of the points. These properties are independent
of each other so require two different objectives for the evolutionary algorithm to minimize:
Total Excess Traffic and Excess Traffic Variance.

Sum of Excess Traffic

The excess traffic of all links in the network are summed giving a measure of the total
excess traffic for the mapping. The sum of excess traffic does not distinguish between two
mappings that have a similar sum but significantly different landscapes, one with a small
number of very high values alongside many small values, the other where there is a larger
number of similar values without a single very large value. The sum of excess traffic of all
links is a candidate for the total excess traffic metric. The sum of excess traffic of all links

in the network, Jxts,,, is given by

L
Tt sum = Y _ Mawt (F.20)
=1
Mean Average of Excess Traffic
The excess traffic values of all links in the network are summed and then divided by the
number of links in the network. This measure gives the same information as the simple
sum since the number of links in a network is constant. The mean average of excess traffic
of all links in the network is another candidate for the total excess traffic metric. The mean
average of excess traffic of all links in the network, Jxt,,cqn IS given as:

L
— 1
Jxtmean = Mawt = Z lz; Mazxwt, (F21)

This measure of traffic suffers from the same inability as the simple sum measure to distin-
guish between mappings with similar traffic values but significantly different landscapes.

Maximum Value of Excess Traffic
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This objective considers only the highest value of excess traffic of a single link from all the
links in the network. Minimising the objective reduces the maximum single value of excess
traffic in the network but does not consider the overall level of excess traffic, which is the
opposite of using a simple sum measure of excess traffic. This is a candidate for a simple
excess traffic variance objective, since a lower maximum single value will also reduce the
variance. The maximum value of excess traffic of all links in the network, Jxt,,.. is given

by [Equation F.22}

Jxtmag = max{Mzwt; : l =1,...,L} (F.22)

Standard Deviation (SD) of Excess Traffic

The standard deviation gives a measure of how much variation from the mean there is in a
population. A value of zero means that all values are equal, so in the case of excess traffic
a zero value translates to all links having equal levels of excess traffic, however the SD
does not give any information about the absolute level of excess traffic across the whole
network. The standard deviation of excess traffic of all links in the network is a candidate
for the excess traffic variance objective. The standard deviation of excess traffic of all links
in the network, Jxt,, is given as:

L
1 .
Jatsy = T E (Mxwt; — Mxwt)? (F.23)
=1

On its own, using standard deviation will not help to reduce the overall level of excess traffic
as a zero SD can be obtained for any level of excess traffic.

Absolute Mean Deviation (AMD) of Excess Traffic

Absolute Mean Deviation is an alternative to standard deviation that is simpler to calculate
because it uses the absolute difference in place of the square of the difference. For a
calculation that will be repeated many millions of times the difference in computation time
between finding the absolute difference and computing the square of a difference and then
later obtaining a square root, is significant. The absolute mean deviation of excess traffic of
all links in the network is a candidate for the excess traffic variance objective. The absolute
mean deviation of excess traffic of all links in the network, Jzt,,,q is given as:

L
1 _
Jxtomd = I lz_; | M zwt; — M zwt| (F.24)
It can be argued that the AMD is as good as and in some cases a better measure than
SD [185]. The same comments made for the suitability of SD can also be made for AMD,
however due to the simpler computation AMD would be preferred over SD.
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Absolute mean deviation (AMD)
A statistical measure similar that uses the differences between means.

Adjacent Cores
Two cores are adjacent if they are separated by a single step in one direction.

Aggregate Map
A combination of the environment map and the process map use to calculate metrics that
rake into account data sources and sinks external to the many-core array.

Amdahl’s Law

Was stated by Getov [66] as: "the effort expended on achieving high parallel processing
rates is wasted unless it is accompanied by achievements in sequential processing rates
of very nearly the same magnitude.”

Application
Software designed to complete a well define computational task which may be subdivided
into processes.

Application Process Graph (APG)
A graph representing the processes and process to process relationships of an application.

Cloned
EA: a copy of an individual without any changes to the genome.

ComPair
A pair of communicating cores in a many-core array. Used in the calculation of metrics.

Computational Budget
A set amount of processor resource allocated for an evolutionary algorithm expressed in
term of the number of individuals evaluated.

Core
The processing element of a many-core array consisting of a CPU, accelerator and local
resources, including memory.
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Core Fault Tolerance
On objective that is used to measure how well a mapping protects a many-core system
from core faults.

Correlation (1)
EA: Describes the how closely changes to the genome are reflected in the phenome.

Correlation (2)
EA: Describes the how well aligned are the fitness values of multiple objectives.

Critical Links
A link whose failure will sever communication between a ComPair.

Critical Traffic
Traffic that traverses a critical link.

Critical Traffic Weight
A weighting given to critical traffic the calculation the excess traffic metric.

Crossover
A genetic operator that takes two parents and generates a descent using genetic
information form both parents.

Densely Connected
An APG that has 2.5 or more edges per node.

Descendants
EA: Individuals derived from mutations applied to one parent or crossover of two parents.

Directed Acyclic Graph(DAG)
A graph with directed edges such that information only flows from the source node of the
edge to the target node of the edge.

Double Modular Redundancy (DMR)
A system design where hardware modules are duplicated, one used for processing and
the second one in standby mode.

Edge
A connection in the application process graph between two processes that represents
data transfer from one process to the other.

Edge

An edge connects two nodes and is identified by the locations of the nodes that it connects.
An edge has a source node, the node closest the origin of a lattice or source node of the
subnet, and a target node, the node furthest from the origin of a lattice or closest to the
target node of the subnet. An edge e is, therefore, identified by an ordered 2-tuple of node
locations, (sloc, tloc) = ((sr, sc), (i, tc)).
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Edge-Coincident Paths
A set of edges that have at least one path that traverse all edges in the set.

Elite Individuals
EA: The individuals in a generation that are copied unchanged to the next generation.

Engineered Mappings
Mappings that are generated from deterministic algorithms.

Environment
A mapping that contains the source and sinks to resource external to the many-core array.

Evolutionary algorithm (EA)
An algorithm that mimics biological evolutionary processes to search for a solution space.

Evolutionary Cycle
EA: the series of populations and processes that transformations one generation to the
next.

Excess Traffic
Traffic exceeds the bandwidth of a hardware link.

Failed Core
A core that has a fault which will make it permanently unavailable for use.

Fault-Free
A fault-free lattice is a lattice where all nodes and edges are present and can be used by
paths.

Fault-tolerance

is the architectural attribute of a digital system that keeps the logic machine doing its
specified tasks when its host, the physical system, suffers various kinds of failures of its
components.

Fault-Recovery Cycle
The control software used to implement fault detection, graceful degradation and graceful
amelioration.

Faulty Edge
A faulty edge is an edge that cannot be used by a path, in effect removing the edge from
the lattice.

Faulty Node
A faulty node is a node that cannot be visited by a path, in effect removing, from the lattice,
the node and all edges leading to and from the node.
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Fithess Evaluated Population
The population in the evolutionary cycle created by calculating the objective values of
each individual.

Flynn’s Taxonomy

In 1972 Flynn defined four processing models based on the combination of types of
instruction stream and types of data stream the the processor exploits resulting in the
following four categories as described in [61]:

Generation Zero
The first generation of an evolution that is created from engineered and random mappings.

Genetic Operator
A method of changing the genome of an individual.

Genome
A representation of the process map that is used to manipulate the process map.

Globally Asynchronous Local Synchronous (GALS)
The concept of a large device using individual clocks for localise processing units, to
overcome clock propagation delays in large devices.

Graceful Amelioration
The ability of a system to improve performance

Graceful Degradation
The ability of a system to continue functioning with reduced performance when faults occur.

Hardware Map
A representation of the hardware of a many-core system.

Idle Core
A core of a many-core does not have a process allocated to it (synonym with spare)

Initial Population
The population in the evolutionary cycle created as the stating point for the evolutionary
process.

Intermediate Population
The population created by selection and mutation of individuals from the primary
population.

Lattice

A lattice consists of nodes arranged in equally spaced rows and columns. In general a
lattice can be considered to have an infinite number of rows and columns. For practical
purposes lattices can be made finite by specifying a size of R rows and C columns
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Link
A hardware link between two routing nodes.

Link Criticality
A description of how the failure of a link will affect a ComPair.

Link Fault Tolerance
An objective that measure how well mapping protects a many-core system from link faults.

Location
A location is a 2-tuple specifying the row and column coordinates

Many-core
A SoC with 10s, 100s or 1000s of independent processing cores.

MIMD
Flynn’s Taxonomy: Multiple Instruction streams, Multiple Data streams.

Minimum discovered fitness
The minimum fitness for an objective that was found during one or more evolutionary runs.

Minimum Length Path
A path that is the shortest possible path between a ComPair.

MISD
Flynn’s Taxonomy: Multiple Instruction streams, Single Data stream.

Moderately Connected
An APG with at least 2 edges per node and less than 2.5 edges per node.

Monitor
A process that is responsible for monitoring and supervising a region of cores.

Monitor Node
The many-core node assigned to execute the monitor process.

Multi-core
A processor technology with multiple (between 2 an 64) sophisticated cores.

Mutation
EA: The action of making changes to the genetic representation of an individual.

Mutation Rate
EA: the number of genes changed during mutation of a genome.

Nearest Spare Core Search
A search algorithm to find the nearest spare core to a processing core.
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Network hop
A network hop is the minimum possible distance between two many-core nodes.

Network Power
A measure of the power used by communication of data through a NoC.

Network on Chip (NoC)
A system where processing elements are interconnected via routing nodes creating an on
chip communications network.

Node

A node is uniquely identified by it’s location loc(r, c¢); being the row and column coordinates
of the node within the lattice. Each node can be connected, via edges, to each of its north,
south, east and west neighbours (where they exist) as in figure 6.10.

Non-Weighted Excess Traffic (NWET)
A measure of network traffic with no weighting applied.

Normal links
Links whose failure causes no immediate disruption to traffic.

Normal Traffic
Traffic that traverses a normal link.

NSGAII
A non-dominated Pareto front sorting genetic algorithm.

Ordered Set of Edges

A set whose members are order by defined criteria.
Origin

The location (0, 0) of a lattice

Pareto Front

A set of points in a multi-objective space that are considered equivalent because no point
can be considered to better, for all objectives, than any of the other points in the set.

Path-Coincident Edges
A set of edges for which there is at least one path that passes through all of the edges in
the set.

Permutation
EA: a genetic operator that takes a genome and produces a new genome by swapping
one or pairs of genes.

Pf0
Pareto Front 0: A cumulative Pareto Front that includes all non-dominated solution from
the generations of an evolution.
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Pf1
The non-dominated solutions from a single generation.

Phenome
A direct representation of a process map.

Primary Population
The population that is the produced at the end of each evolutionary cycle.

Process
The smallest part of an application that can be executed independently on a dedicated
core.

Process Map
A mapping of APG processes to cores in a many-core array (synonym for task map).

Process Node
A node in an APG that represents a process of the application.

Processing Node
A hardware unit of a many-core array consisting of a network router and processing core.

Protected Core
A core with at least one adjacent idle core.

Rectilinear distance
The distance between two nodes in a square lattice. The sum of the absolute difference of
the x-coordinates and the absolute difference of the y-coordinates, of the two nodes.

Region
A group of cores in a many-core array that are collectively monitored by a single monitor.

Routing Node
The node in a NoC that is responsible for receiving and transmitting data packets through
the network.

Significant links
A link whose failure will cause disruption and possible loss of traffic between a ComPair
but will not completely sever communication between the ComPair.

Significant Traffic
Traffic that traverses a significant link.

Significant Traffic Weight
A weight applied to significant traffic when calculating the excess traffic metric.

SIMD
Flynn’s taxonomy: Single Instruction stream, Multiple Data streams.
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Sink Node
A node which represents a receiver of data external to the many-core array.

SISD
Flynn’s Taxonomy: Single Instruction stream, Single Data stream.

Sorted Population
EA: The population created by performing a Pareto sort on an evaluated population

Source Node
A node which represents a source of data external to the many-core array.

Spare Core
A core of a many-core does not have a process allocated to it (synonym with idle).

Sparsely Connected
An APG with less than 2 edges per node.

Step
A single network hop.

Subnet
A subnet is any portion of a lattice defined by a source location and a target location.

Synchronised Redundant Systems
Two or more systems that carry out the same processing and periodically synchronize to
ensure they their computations agree

System on Chip
A system which is composed of a collection of IPs on a single device

Task Migration
Relocation of a task from one core to another.

Task Map
A mapping of application process graph processes to cores in a many-core array (synonym
for process map).

Triple Modular Redundancy (TMR)
System where three identical modules carry out the same processing and the results of all
three are used as the input of a voting system to determine the final output.

Vulnerability of Significant Link Failure
A metric that measures how vulnerable a ComPair is to the failure of a significant link.

Vulnerability to Critical Link Failure
A metric that measures how vulnerable a ComPair is to the failure of a critical link.



Glossary 407

Vulnerability to Link Failure
A metric that measures how vulnerable a ComPair is to the failure of any link.

Weighted Excess Traffic (WET)
A measure of network traffic with weighting applied to critical and significant traffic.
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