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Abstract 

This Thesis describes the development of silver-catalysed dearomatising spirocyclisation 

reactions of alkyne-tethered aromatic and heteroaromatic systems. An overview of 

dearomatisation methodologies and spirocyclisation strategies involving alkyne activation are 

discussed in Chapter 1. 

Chapter 2 describes a novel silica-supported silver-catalysed spirocyclisation method. This 

strategy was applied to a range of aromatic ynone systems (for example I and II) and 

mechanistic information suggesting the involvement of silver nanoparticles in the 

spirocyclisation process is also reported. This silica-supported spirocyclisation reaction was 

then applied to a range of phenol-tethered ynones III furnishing spirocyclic dienone products 

IV which is the focus of Chapter 3. Some preliminary asymmetric spirocyclisation studies 

using silver salts of chiral phosphoric acids (CPAs) are also described as well as a formal 

synthesis of the natural product spirobacillene A VII. 

 

A novel Ag(I)-catalysed synthesis of substituted indoles X/XI using pyrrole-tethered alkynes 

VIII/IX is detailed in Chapter 4. Density functional theory (DFT) calculations are described 

which suggest that benzannulation proceeds initially via spirocyclisation at the pyrrole C-3 

position before undergoing subsequent rearrangement to deliver the indole products.  

Chapter 5 describes the divergent reactivity of phenol-/anisole-tethered α-diazocarbonyls XII. 

Four products (cyclopropanes XIII, tetralones XIV, 1,2-dicarbonyls XV and spirocycle XVI) 

were accessed through distinct reaction pathways in which the outcome was dependent on the 

catalyst used and the nature of the aromatic oxygen substituent. 
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Chapter 1. Introduction 

1.1 Introduction to dearomatisation and spirocyclic scaffolds 

Aromatic compounds are cyclic, planar structures consisting of a fully conjugated π-system, 

with the number of delocalised π-electrons obeying Hückel’s rule (4n + 2, where n is zero or 

any positive integer).1 Due to their high resonance energies, aromatic compounds are 

generally stable, and consequently, dearomatisation of these molecules is typically a 

challenging process. Despite this, a number of powerful dearomatisation reactions have been 

designed, which provide access to valuable fused, bridged and spiro-compounds from 

relatively simple aromatic precursors. Furthermore, the more complex three-dimensional 

structures obtained from such reactions are often reactive species themselves, further 

extending their synthetic utility. Approaches used to achieve dearomatisation include 

oxidation, cycloaddition, inter-/intramolecular alkylation, allylation, arylation and 

halogenation reactions.2–5 As shown in Scheme 1, a number of these dearomatisation 

strategies have been utilised in the total synthesis of natural products.6 

 

Scheme 1. Examples of dearomatisation strategies used in total synthesis. 
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Corey and co-workers employed an alkylative dearomatisation strategy in the total synthesis 

of the natural product cedrane 3 (Scheme 1A).7 Phenol 1 was deprotonated under basic 

conditions to generate the corresponding phenolate which then underwent intramolecular 

para-alkylation to access spirocycle 2 as a mixture of cis and trans-forms. Upon exposure to 

methanolic sodium methoxide the cis/trans-mixture was converted largely into the more 

stable trans-stereoisomer. An impressive cascade process triggered by intramolecular 

oxidative dearomatisation was reported by Sorensen and co-workers in 2009 for construction 

of the core of cortistatin A 7 (Scheme 1B).8 Exposure of phenol 4 to the hypervalent iodine 

reagent, phenyliodine diacetate (PIDA), led to phenol activation followed by nucleophilic 

attack of the proximate tertiary alcohol via intermediate 5. Oxidation of the oxime moiety in 6 

then generated the nitrile oxide which initiated an intramolecular [3+2]-dipolar cycloaddition 

to further construct another ring present in the core structure of cortistatin A 7. Finally, Du 

and Liu used a Pd-catalysed intermolecular allylation dearomatisation reaction to construct the 

bicyclic core of angelicastigmin 11;9 this natural product was accessed in a succinct manner in 

just four steps (Scheme 1C).  

Dearomatisation is also an attractive method used to access valuable spirocyclic scaffolds 

which are prevalent in many natural products and biologically active molecules (Figure 1).10–

13 Spirocyclic compounds have attracted a significant amount of interest in recent years due to 

their rigid, three-dimensional shape, which allows them to access areas of chemical space that 

currently are thought to be under-explored.14,15 Probing new areas of chemical space is 

fundamental in the development of new lead compounds in drug discovery and therefore the 

design of methodologies to access spirocyclic structures is an area of synthetic interest. 

 

Figure 1. Natural products (12 and 13) and drug molecules (14 and 15) containing 

spirocyclic cores. 
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1.2 Dearomatisation of aromatic and heteroaromatic systems 

The dearomatisation of indoles has been studied extensively; they are the most frequently 

utilised substrates in published dearomatisation studies, providing convenient access to 

complex nitrogen-containing skeletons. A recent review by Roche et al. gives a broad and 

detailed overview of this topic,4 describing the dearomatisation of indoles through a range of 

alkylation, cycloaddition and arylation reactions, with selected examples illustrating these 

strategies shown in Scheme 2. In all three of these examples, dearomatisation proceeds via 

nucleophilic attack through the C-3 position of the indole ring onto an electrophile, generating 

a spirocyclic indolenine or derivative thereof. The simplest example of spirocyclic indolenine 

formation is illustrated in a recent example by the You group (Scheme 2A), whereby alkyl 

bromide 16 was successfully converted into indolenine 18 using a Pd-catalysed arylation 

reaction.16 Although indolenine 18 was isolated in 71% yield in You’s procedure, spirocyclic 

indolenines are often difficult to isolate due to their relatively high reactivity, and instead they 

are often used as reactive intermediates to access other scaffolds. This is exemplified in 

Rainier’s procedure in which the indolenine intermediate 21 was trapped with an amine 

nucleophile to generate the stable pentacycle 22 in 79% yield (Scheme 2B).17 Another 

example, reported by Qin et al. describes the intramolecular trapping of intermediate 25 with a 

carbamate tether to furnish fused polycyclic product 26 (Scheme 2C).18 

 

Scheme 2. Indole dearomatisation strategies. 
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The reactive nature of spirocyclic indolenines and their derivatives can be useful, given that 

manipulations can often be performed in a straightforward manner, allowing transformation 

into other privileged scaffolds such as indolines, oxindoles and carbazoles. However, their 

reactivity can also present some synthetic challenges with regards to their isolation and 

handling. In particular, it is well-known that spirocyclic indolenines of the form 27 have a 

propensity to undergo 1,2-migrations under acidic conditions (Scheme 3),19 resulting in the 

formation of more stable aromatic indole products 29. An appreciation of how to avoid this 

reactivity is required if isolation of the spirocyclic indolenine framework is desired. 

 

Scheme 3. Reactivity of spirocyclic indolenines. 

In addition to indole dearomatisation, other aromatic systems including pyridine, quinolines 

and pyrroles have also been explored and similar dearomatisation strategies have been 

developed.20,21 Dearomatisation reactions of phenols have also been studied widely since they 

provide access to synthetically useful cyclohexadienone compounds; as a class of electron-

rich arenes with a hydroxyl group directly bound to the aromatic ring, phenols are readily 

oxidised and therefore dearomatisation strategies tend to focus on oxidative processes.22–24 

Following oxidation of the phenol ring, often achieved using hypervalent iodine reagents,25,26 

intermolecular nucleophilic attack can take place (at C-2 or C-4 depending on the position of 

substitution) furnishing the cyclohexadienone compounds 32 (Scheme 4A). It is also possible 

to achieve ipso-cyclisation affording spirocyclic dienone products 35 instead by employing 

phenols incorporating a tethered nucleophile (Scheme 4B).27 Non-oxidative dearomatisation 

processes of phenols have also been reported,24,28 these methods utilise the nucleophilic sites 

of phenol shown in Scheme 4C, but key to the success of these dearomatisation reactions is 

whether C-alkylation can be preferentially promoted over O-alkylation.  

 



5 
 

 

Scheme 4. Oxidative dearomatisation of phenol and its nucleophilic sites. 

A recent oxidative tandem dearomatising spirocyclisation of anisole-tethered propargyl 

guanidines was reported by the Lovely group in a project directed towards the total synthesis 

of spirocalcaridine A 39 and B 40.29 They proposed that oxidation of either a phenol or 

guanidine unit, as shown in Scheme 5, could trigger the cyclisation/spirocyclisation sequence 

required to access the tricyclic core of the Leucetta alkaloid natural products. 

 

Scheme 5. Cyclisation/spirocyclisation approach to spirocalcaridine natural products. 

Given the large number of phenol oxidations reported in the literature, Lovely and co-workers 

evaluated this approach first but unfortunately, a complex mixture of cyclohexadienone 

products were formed. Instead, oxidation of the guanidine unit successfully promoted clean 
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conversion into the desired cyclohexadienone products 44 in good isolated yields. The authors 

propose that the reaction sequence proceeds via PIDA activation to form electrophilic species 

42, followed by intramolecular cyclisation of the alkyne to deliver the vinylic cation 43, which 

then undergoes ipso-cyclisation with the electron-rich anisole ring to furnish the final 

dearomatised cyclohexadienone products 44. 

 

Scheme 6. Tandem oxidative dearomatising spirocyclisation reported by Lovely and co-

workers.29 

1.3 Catalytic asymmetric dearomatisation (CADA) reactions 

Most published dearomatisation protocols give rise to racemic products, with enantioselective 

variants being less common. However, more recently several catalytic asymmetric 

dearomatisation (CADA) reactions have been developed, generating enantiopure and 

dearomatised products of high synthetic value.24,30,31 The You group have made significant 

advances in this field, which has also been well reviewed.24,30,32 Inspired by initial CADA 

allylation protocols developed by Trost and Quancard,33 the You group have developed a 

series of intramolecular asymmetric allylic alkylation reactions (Scheme 7).21,34–36 Allylic 

carbonates tethered to aromatic systems including indoles 45, phenols 48 and pyrroles 51 were 

employed in these reactions and treated with an iridium complex incorporating chiral 

phosphoramidite ligands, which successfully furnished highly enantiomerically enriched 

dearomatised products. This strategy was originally applied to electron-rich aromatics but has 

since been developed further and applied to other electron-deficient systems including 

pyridines, pyrazines, quinolines and isoquinolines.21 
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Scheme 7. CADA allylic alkylation reactions reported by the You group. 

1.4 Alkyne activation  

The use of transition metals in the activation of alkynes is commonly used to exploit their 

versatile reactivity, facilitating many synthetic transformations, including the dearomatisation 

of aromatic systems. Alkyne activation using platinum and the coinage metals (copper, silver 

and gold) has been studied in detail and the use of π-activated alkynes in nucleophilic addition 

reactions is commonly reported.37–40 The bonding between the π-system of an alkyne and a 

transition metal centre can be viewed as several donor-acceptor interactions based on the 

Dewar-Chatt-Duncanson (DCD) model.41 According to the DCD model, an in-plane σ-donor 

interaction is formed by overlap of a π-bonding orbital of the alkyne with a vacant d-orbital at 

the metal centre (Figure 2A), which is in combination with an in-plane π-accepting 

interaction, resulting through back-donation of electron density from an occupied metal d-

orbital into a vacant antibonding π* orbital of the alkyne (Figure 2B).37,40,42 Two out-of-plane 

interactions can also contribute to the bonding, a π-donor interaction (Figure 2C), which is 

particularly important in complexes when alkyne ligands serve as a four-electron donor, and 

an additional back-donating interaction from a filled metal d-orbital into an empty π* orbital 
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of the alkyne (Figure 2D). This latter interaction, has δ-symmetry, which results in weak 

orbital overlap and therefore provides minimal contribution to the bonding. There is also an 

electrostatic component to bonding between the metal centre and the electron rich π-system 

and computational analyses indicate that approximately half of the total bonding force is 

actually electrostatic in nature.37  

 

Figure 2. Orbital interactions between metal centre and alkyne ligand. 

With overall depletion of electron density from the π-system, due to the dominant σ-donor 

interaction (Figure 2A),43 the alkyne ligand becomes electrophilic, and is susceptible to 

nucleophilic attack from a variety of inter- and intramolecular nucleophiles. Complexation 

and activation of the alkyne π-system constitutes the first step of the chemical transformation, 

and the steps that generally follow alkyne activation in a nucleophilic addition reaction are 

shown in Scheme 8. After activation with a suitable metal catalyst (53  54), nucleophilic 

attack occurs onto the now electrophilic alkyne to form vinyl metal species 55, which then 

undergoes protodemetallation to furnish the alkene product 56. It is important to note that 

there is often no physical evidence for the formation of the putative intermediates (such as 54 

and 55) and therefore mechanisms are often based on reaction outcomes and theoretical 

calculations. 
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Scheme 8. Nucleophilic addition to alkyne activated by transition-metal species. 

Spirocyclisation reactions of indole utilising the electrophilic activation of tethered alkynes 

have only recently been reported in the literature following the first isolation of spirocyclic 

indolenine products by the You group in 2010.34 In the majority of cases, the spirocyclic 

products are often formed as minor side products during other transformations.44–46 An early 

example of spirocyclisation facilitated by alkyne activation was reported by Van der Eycken 

and co-workers, in which they described the formation of spirocyclic indolenine 58 during the 

gold-catalysed cyclisation of propargylic amide 57 (Scheme 9A).45 The annulated indole 

product 59 was also isolated in 25% yield resulting from a 1,2-migration process. 
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Scheme 9. Gold-catalysed syntheses of spirocyclic indolenines. 

Carbery and co-workers also observed small amounts of spirocyclic indolenine formation 

when exploring the gold-catalysed annulation of indoles (Scheme 9B);46 in a single example, 

indolenine 61 was isolated in 25% yield and annulated indole 62 was isolated as the major 

product in 38% yield. More recently, Guinchard and co-workers also published a gold-

catalysed process for the dearomatisation of N-propargyl tryptamines 63 (Scheme 9C).47 The 

isolated yields for the spirocyclic indolenine products 65 generated using this procedure are 

noticeably higher (45–86%) which is particularly impressive given that the C-2 position is 

unsubstituted; this position is often deliberately substituted in related work, in order to 

minimise the impact of competing 1,2-migration processes.48 In addition to gold-catalysed 

dearomatisation processes reported above, there are also several reports on the use of 

palladium-catalysed alkyne activation methods to access spirocyclic indolenines.28,49,50 

Whilst conducting the work described in this Thesis, more recent spirocyclisation efforts 

employing electrophilic activation of alkynes have since been published. A Brønsted acid-

promoted selective synthesis of spirocyclic indolenines 66 and quinolines 68 from indole-

tethered ynones 67 was reported by Van der Eycken and co-workers in 2017 (Scheme 10).51  
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Scheme 10. Temperature switchable synthesis of spirocyclic indolenines and quinolines 

from indole-tethered ynones. 

It was found that selective synthesis of each product could be controlled by the temperature at 

which the reactions were performed; when performing the reaction at RT the spirocyclic 

indolenines 66 were generated but performing the reactions at higher temperatures facilitated 

a rearrangement process (shown in Scheme 11) leading to the formation of quinoline 

structures 68 instead. 

 

Scheme 11. Proposed rearrangement pathway leading to quinoline formation. 

This procedure is very similar to an earlier report on the divergent synthesis of spirocycles, 

carbazoles and quinolines by the Taylor/Unsworth group. In this earlier work, Taylor and co-

workers describe the use of AlCl3·6H2O instead of a Brønsted acid to catalyse the same 

rearrangement process seen in Van der Eycken’s study. This Lewis acid-catalysed procedure 

presumably proceeds via the same mechanism and this work is discussed in more detail in 

Section 1.5.3 (Scheme 18).52 
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1.5 Taylor/Unsworth group methodologies 

1.5.1 Spirobacillenes A and B 

The chemistry described in this Thesis has its origins in a total synthesis project. Following 

the isolation of natural products spirobacillene A 76 and B 79 from acidic coal mine drainage 

in 2012,53 the Taylor/Unsworth group decided to attempt their total synthesis. Retrosynthetic 

routes for each natural product were devised, focusing on phenol/anisole- and indole-tethered 

ynones 78 and 81 which had not been widely explored before this time (Scheme 12). It was 

envisaged that under acidic conditions, the ynone precursors 78 and 81 would undergo an 

intramolecular nucleophilic ipso-cyclisation to provide the enone intermediates 77 and 80, 

respectively. Following this, it was hoped that oxidation of each enone framework would then 

deliver the desired natural products spirobacillene A 76 and B 79. 

 

Scheme 12. Retrosynthesis routes to spirobacillene A 76 and B 79 devised by 

Taylor/Unsworth group. 

Pleasingly, it was found that treatment of anisole-tethered ynone 82 with stoichiometric 

SnCl2·2H2O did indeed promote spirocyclisation and hydrolysis to furnish spirocyclic enone 

83 (Scheme 13A), which could then be converted into spirobacillene A 76 in just five steps.54 

In addition, it was also found that indole-tethered ynone 84 could undergo a similar 

spirocyclisation, upon reaction with catalytic Cu(OTf)2, to yield the key spirocyclic enone 

intermediate 85 towards the natural product spirobacillene B 79 (Scheme 13B), although to 

date, the final steps in the total synthesis of spirobacillene B have not been completed. 
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Scheme 13. Spirocyclisation of ynones 82 and 84 forming key spirocyclic intermediates 

in natural product synthesis. 

1.5.2 Dearomatising spirocyclisation methodology involving alkyne 

activation 

Each of the initial spirocyclisation reactions (shown in Scheme 13) were then further 

optimised and developed into full methodologies, which is important given the rarity of high-

yielding spirocyclisation reactions using alkyne activation reported in the literature.55,56 For 

details regarding the optimisation of the SnCl2·2H2O-mediated spirocyclisation reaction used 

in the total synthesis of spirobacillene A 76, see Chapter 3. Following optimisation studies 

based on the initial Cu(OTf)2-catalysed spirocyclisation reaction of indole-tethered ynone 84 

(Scheme 13B), a novel dearomatisation spirocyclisation methodology was developed which 

efficiently converted a range of aromatic-tethered ynone precursors into their spirocyclic 

scaffolds using Ag(I) or Cu(II) catalysis (Scheme 14).55 This methodology was applied to 

other indole-tethered ynone precursors of the form 86, generating spirocyclic indolenine 

products 87 in 75–100% yields, and in addition, several other ynone-tethered systems 

including anisole 88, pyrrole 90 and benzofuran 92 were also explored furnishing their 

spirocyclic products 89, 91 and 93 in similarly high yields. 
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Scheme 14. Dearomative spirocyclisation methodology developed in the 

Taylor/Unsworth group. 

As illustrated in Scheme 15 using indole-tethered ynone 94 as an example, it is believed that 

the spirocyclisation first proceeds via Ag(I)/Cu(II) alkyne coordination. This coordination 

increases the electrophilicity of the alkyne and subsequently facilitates nucleophilic attack by 

the indole ring through its C-3 position to generate the vinyl metal species 95 via a 5-endo-dig 

cyclisation.57 The vinyl metal intermediate 95 then undergoes rapid protodemetallation to 

furnish the desired spirocyclic product 96. 

 

Scheme 15. Proposed mechanism for spirocyclisation. 

Preliminary asymmetric studies were also performed on the indole-tethered ynone systems 97 

using Ag(I) salts of chiral phosphoric acids (CPAs) as catalysts (Scheme 16). It was found that 
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a combination of increasing the steric bulk around the BINOL backbone (see Ag-CPA catalyst 

98), switching the reaction solvent to chloroform and performing the reaction at −10 °C 

significantly improved the enantioselectivity up to 78% ee. 

 

Scheme 16. Asymmetric indole-tethered ynone spirocyclisations. 

1.5.3 Extension of Taylor/Unsworth group methodologies 

The research and methodologies discussed up until this point describe the state of the 

dearomatising spirocyclisation project at the time I joined the Taylor group, and following the 

success of this work, the initial goal in this PhD was to develop heterogeneous variants of the 

groups’ spirocyclisation reactions (see Section 1.6 for Project Aims). However, whilst 

carrying out the research described in this Thesis, several other related projects have been 

explored by colleagues, and details of these projects are provided below.  

As described previously (see Scheme 3), spirocyclic indolenines have the propensity to 

undergo 1,2-migration. In a subsequent study within the Taylor/Unsworth group, reaction 

conditions were sought that could selectively deliver either spirocyclic indolenines 100 or the 

corresponding 1,2-migration products (carbazoles 102) by modulating the acidity of the 

reaction medium. A generally high-yielding and divergent approach, capable of generating 

two products selectively from a common indole-tethered propargyl alcohol precursor 101 was 

developed and is shown in Scheme 17. 

 

Scheme 17. Divergent synthesis of spirocyclic indolenines 100 and carbazoles 102. 
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It was proposed that the divergent reactivity observed was due to the presence of adventitious 

Brønsted acid, likely to be present in the AgOTf reagent, facilitating a 1,2-migration process 

of the spirocyclic vinyl silver intermediates 103 to furnish the carbazole products 102. This 

theory was put to the test by performing the AgOTf reaction in the presence of triethylamine; 

the expectation here was that in the presence of a basic additive the reactivity would be 

switched so spirocyclic indolenine formation was promoted rather than carbazole formation. 

This was indeed the case; the triethylamine additive appeared to quench any adventitious acid, 

promoting spirocyclisation instead of carbazole formation. It had been suggested previously 

that the electron-withdrawing carbonyl group present in ynones is needed to reduce the 

migratory aptitude of the alkene in the spirocyclic products and prevent 1,2-migration, but this 

study showed that this is not a requirement providing suitable reaction conditions are used. 

The divergent reactivity of spirocyclic vinyl-metal intermediates has been further explored by 

the Taylor/Unsworth group. It was found by varying the metal catalyst used, the nature and 

reactivity of the vinyl metal intermediates 104 could be altered, enabling the formation of 

multiple products by different rearrangement reactions (Scheme 18).52 Indole-tethered ynone 

starting materials 69 were converted into carbazoles 107 via intermediate 105 using Au(I), 

spirocyclic indolenines 71 using Ag(I) and quinolines 75 via enolate 106 using Ag(I)/Al(III) 

in high yields, by simple catalytic processes.  

 

Scheme 18. Divergent synthesis of carbazoles 107, spirocycles 71 and quinolines 75 from 

indole-tethered ynones 69. 
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1.6 Project aims 

The overriding goal of this PhD research was to develop new heterogeneous spirocyclisation 

methodologies. Building on the previous work described in this Introduction, we were keen to 

focus on Ag(I)/Cu(II)-catalysed procedures, especially those able to generate biologically 

important scaffolds. It was also planned to undertake mechanistic studies to better understand 

the underlying catalysis in any successful procedures. 

Chapter 2 describes the development of a silica-supported silver-catalysed spirocyclisation 

reaction. The application of this methodology in the spirocyclisation of a variety of aromatic 

and heteroaromatic systems is reported and mechanistic studies using ReactIRTM technology 

are also described. 

Chapter 3 focuses on the use of phenol-tethered ynones in the silica-supported 

spirocyclisation reaction. Some preliminary asymmetric studies are reported as well as the 

application of this methodology in the formal synthesis of spirobacillene A. 

Chapter 4 describes a new method for the synthesis of substituted indoles using pyrrole-

tethered ynones via π-acidic alkyne activation. Density functional theory (DFT) calculations 

are also reported which suggest an unusual C-3 nucleophilicity of the pyrrole-tethered ynones. 

Finally, Chapter 5 explores the divergent reactivity of α-diazocarbonyl compounds and 

describes how four distinct product classes were accessed from closely related phenol- and 

anisole-tethered α-diazocarbonyl precursors.  
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Chapter 2. Preparation of spirocyclic scaffolds using silica-supported 

silver nitrate 

2.1 Organic synthesis using supported reagents 

Although organic synthesis employing supported reagents and catalysts has recently received 

increased attention from synthetic chemists,58–60 the concept of utilising heterogeneous 

catalysis to promote chemical transformations is not new. Seminal work by Fetizon and 

Golfier introduced the use of silver carbonate on a Celite support in oxidation reactions back 

in 196861 and following their work, several comprehensive reviews and textbooks emerged.62–

65 Originally, supported reagents were designed to disperse reagents over a support, providing 

a high surface area to enhance reagent activity and little attention was paid at the time to 

additional benefits. Now there is more of an appreciation for the many advantages 

accompanying the use of supported reagents and catalysts; whilst improving reactivity they 

can also help simplify product purification, facilitate catalyst recovery and enhance synthetic 

procedures by enabling scale-up and improved safety profiles. A particularly noteworthy 

factor in favour of using supported reagents and catalysts is their recyclability, which often 

provides a more environmentally friendly alternative to conventional reagents. 

Although both organic and inorganic supports are routinely used, inorganic supports are more 

commonly employed. Certain materials have found more widespread use than others and 

silica is one of the most common, primarily due to its excellent stability, porosity, easy 

handling and the ability to chemically modify its surface. These advantages have led to the 

immobilisation of a wide range of reagents and catalysts onto silica over the years.66–68 

2.1.1 Silica-supported silver catalysts 

Silica supports can take a variety of different forms including: hydrated and anhydrous 

crystalline, microcrystalline and amorphous solids; the latter is most generally used due to its 

high surface area and increased porosity. The surface of amorphous silicas consists of siloxane 

(Si-O-Si) and silanol (Si-OH) groups which contribute to its weakly acidic and hydrophilic 

properties. The groups present on the silica surface can serve as reactive sites, enabling 

chemical modifications and immobilisation of reagents to take place, which can tune the 

surface acidity and other properties of the silica. 

Supported silver catalysts enable the selective activation of π-systems with an uncomplicated 

recovery of catalyst and purification of products. AgNO3 immobilised on silica (AgNO3·SiO2) 

was first introduced as a chromatographic medium for the separation of olefins,69–71 however, 

its use as a synthetic reagent is becoming more prevalent. One of the earliest reports of 
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AgNO3·SiO2 being used as a catalytic reagent was in the synthesis of furans, reported by 

Marshall et al. in 1995 and a representative example of their work is shown in Scheme 19, 

whereby Ag(I) initiates cyclisation through π-coordination to the alkyne.72 

 

Scheme 19. Synthesis of furan 109 using AgNO3·SiO2 reported by Marshall et al. 

AgNO3 immobilised on silica served as a suitable catalyst for the conversion of β-alkynyl 

allylic alcohol 108 into furan 109. The supported catalyst could also be recycled and reused, 

albeit with a reduced yield and prolonged reaction time of 2 hours. Following this initial 

report, the methodology was then applied to a range of allenones and allenic acids;73,74 the 

final step in the total synthesis of kallolide B (110  111) exemplifies this transformation 

(Scheme 20).75 

 

Scheme 20. Use of AgNO3·SiO2 in total synthesis of kallolide B. 

Another efficient furan synthesis using AgNO3·SiO2 to promote 5-endo-dig cyclisations of 3-

alkyne-1,2-diols 112 was reported by the Knight group in 2007.76 In this publication, a more 

extensive substrate scope than was previously described by Marshall et al. is reported, with a 

variety of different furan substitution patterns accessible in high yields (Scheme 21). 

 

Scheme 21. General furan synthesis using AgNO3·SiO2 reported by Knight et al. 

The Knight group have since extended the intramolecular cyclisation of π-systems using 

AgNO3·SiO2 to synthesise pyrroles from propargylic glycinates.77 The impressive efficiency 
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of this procedure was exemplified during the synthesis of a range of multi-substituted pyrroles 

115 in near-quantitative yields at ambient temperature (Scheme 22). Terminal alkynes and a 

range of N-protecting groups were tolerated in this protocol, as well as alkyl and aryl 

substituents on the propargylic glycinate precursors. 

 

Scheme 22. General synthesis of substituted pyrroles using AgNO3·SiO2. 

This strategy was then applied in the total synthesis of pyrrolostatin 118 in 2016,78 whereby a 

key pyrrole intermediate 117 was obtained in quantitative yield through the cyclisation of diol 

116 using 10 mol% AgNO3·SiO2 (Scheme 23); this result was a significant improvement upon 

the pyrrole-forming step used in a previous synthesis of pyrrolostatin 118, which suffered 

from a low yield of 18%.79 

 

Scheme 23. Use of AgNO3·SiO2 in the total synthesis of pyrrolostatin 118. 

2.1.2 Silica-supported silver nanoparticles 

Since the pioneering work on silica-supported silver catalysts by the groups of Marshall and 

Knight, the field of heterogeneous silver catalysis has begun to incorporate the use of solid-

supported silver nanoparticles (AgNPs).80–82 Nanoparticles possess unique chemical properties 

and are promising heterogeneous catalysts due to their high surface area and nanoscale size, 

although their application in organic synthesis has often been limited to previously known 

transformations.83 The immobilisation of AgNPs on heterogeneous supports such as silica is 

still at a relatively early stage in development but research exploring the catalytic activity of 

AgNPs has increased significantly in recent years. 

The first example of a metal nanoparticle-catalysed Diels-Alder cycloaddition was reported by 

Porco Jr. et al. in 2010 and this contributed greatly to the development of nanosilver-promoted 

natural product synthesis.84 Initial studies revealed that a combination of AgBF4 and Bu4NBH4 
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generated AgNPs in situ, and these promoted the cycloaddition reaction of hydroxychalcone 

119 and diene 120, favouring the endo Diels-Alder product 121 in high yield as illustrated in 

Scheme 24. The authors observed little or no reactivity when using just AgBF4, Bu4NBH4 or 

commercially available Ag powder. 

 

Scheme 24. AgNP-catalysed Diels-Alder cycloaddition reaction.  

Encouraged by these results, Porco Jr. et al. then went on to develop a heterogeneous and 

reusable catalyst by immobilising the AgNPs onto a silica support. Cycloadditions were also 

successfully catalysed by the silica-supported AgNPs, generally favouring the endo Diels-

Alder products again, in high yields using low catalyst loadings. The synthetic utility of this 

silica-supported AgNP-catalysed Diels-Alder reaction was exemplified in the total synthesis 

of two natural products, panduratin A 12484 and sorocenol B85 (a key step in synthesis of 

panduratin A is shown in Scheme 25), in which the authors propose that the silver 

nanoparticles serve as an electron shuttle during the cycloaddition process.  

 

Scheme 25. Synthesis of panduratin A 124 by Porco Jr. et al. 

Porco Jr. et al. were also able to use their silica-supported AgNPs to promote a key 

intramolecular aldol condensation/dehydration reaction whilst working towards the synthesis 

of natural product sorbiterrin A 127 (Scheme 26).86 
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Scheme 26. Synthesis of sorbiterrin A 127 via aldol condensation and dehydration. 

The AgNP-catalysed reaction of enol 125 generated the cyclised product 126 in a 72% yield 

which could subsequently be converted into sorbiterrin A 127 by treatment with MgI2. The 

unique reactivity of the AgNPs in the aldol reaction was established when a series of other 

conditions failed to promote formation of the desired aldol product 126. In the absence of 

silver or when using Ag2O, no reaction was observed, and in the presence of other metal salts 

such as AgOTf, AgBF4 and Cu(OTf)2 the starting material 125 decomposed.  

In 2010, Shimizu and co-workers described a novel Friedel-Crafts alkylation reaction 

employing silica-supported silver nanoparticles as an effective catalyst (Scheme 27).87 The 

alkylation of anisole 129 with benzyl alcohol 128 was performed, exploiting partially oxidised 

AgNPs formed via a calcination process, to furnish the diphenylmethane product 130 in an 

85% yield. Alternative silver catalysts were evaluated in the reaction and it was found that 

Ag2O, AgNO3 and Ag powder were completely ineffective. 

 

Scheme 27. Friedel-Crafts alkylation catalysed by silica-supported AgNPs. 

Recently, in 2016 during this PhD, a silver nanoparticle-catalysed dearomatisation of indoles 

towards the synthesis of spirocyclic indolenines was reported by the Van der Eycken group 

(Scheme 28).88 It was found that supporting AgNPs on an aluminium-containing mesoporous 

silica (Al-SBA-15) was an effective catalyst system in converting a range of indole-tethered 

alkynes 131 into their spirocyclic indolenines 132. Substrates bearing terminal alkynes 

showed good reactivity, resulting in the formation of 5-exo-dig products 132 in generally high 

yields. However, internal alkynes required higher temperatures, longer reaction times and 

almost equimolar amounts of catalyst to achieve complete reactions; a mixture of endo- and 

exo-cyclisation products were also formed when using internal alkynes which could not be 

separated. 
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Scheme 28. AgNP-catalysed spiroindolenine formation. 

In addition to the applications of silica-supported AgNPs in organic synthesis which have 

been discussed above, there are also a few examples in the literature employing silica-

supported AgNPs in oxidations/reductions and hydrogenation reactions.89,90 Indeed, it is also 

possible that previous protocols describing the use of AgNO3·SiO2 and other supported silver 

reagents may also involve AgNPs, without the researchers realising their importance. It is 

however particularly challenging to determine whether a reaction is proceeding via homo- or 

heterogeneous catalysis; a detailed review by Widegren and Finke explores the difficulties 

behind this and also describes experiments which can be used to identify whether 

nanoparticles may be catalysing a chemical reaction.91 

2.2 Preliminary results 

As the use of heterogeneous catalysis in organic synthesis continues to grow, it was desirable 

to extend Taylor and Unsworth’s spirocyclisation methodology (see Scheme 14 in Chapter 1) 

to a heterogeneous variant, whereby the catalyst for the reaction is immobilised on a solid 

support. During some preliminary studies carried out by Michael James,92 it was realised that 

a supported silver catalyst could also be used to effect the same spirocyclisation (84  85), 

albeit using a stoichiometric amount of catalyst (Scheme 29).  

 

Scheme 29. Preliminary heterogeneous spirocyclisation reaction carried out by Michael 

James. 

2.3 Reaction optimisation studies 

The success of the preliminary heterogeneous spirocyclisation reaction (Scheme 29) prompted 

further optimisation of the reaction conditions. Consideration of both the catalyst loading and 



24 
 

reaction solvent was necessary before moving on to any substrate scoping studies. All 

optimisation reactions were performed on a model phenyl ynone system 136a, prepared in a 

two-step protocol starting from the commercially available carboxylic acid 134a (Scheme 30). 

Firstly, carboxylic acid 134a was converted into Weinreb amide 135a via a simple T3P 

coupling reaction; T3P is a particularly useful coupling reagent as the by-product generated is 

water-soluble and therefore can easily be removed by an aqueous work-up. Weinreb amide 

135a was then treated with lithiated phenylacetylene to furnish the desired phenyl ynone 136a 

in a near-quantitative yield.55 

 

Scheme 30. Preparation of model ynone system 136a. 

The catalyst loading (mol%) in the reaction and AgNO3 loading on the silica (wt%) were the 

first parameters to be investigated in the spirocyclisation reaction (Table 1). It should be noted 

that the AgNO3 loading on silica takes into account the total weight of AgNO3 and therefore 

the actual loading of silver metal on silica is lower than this value. For example, a loading of 1 

wt% AgNO3 immobilised on silica equates to just 0.63 wt% Ag based on the stoichiometry of 

AgNO3. Commercially available 10 wt% AgNO3·SiO2 from Aldrich was purchased and tested 

in the spirocyclisation reaction (Entry 2) but all other catalysts used in the optimisation studies 

were prepared in-house. Preparation of the silica-supported catalysts were very 

straightforward and were based on procedures described by McKillop, Smith and Li.62,69,93 

The silver salt (AgNO3 or AgOTf) was added to a vigorously stirred silica slurry in deionised 

water. This mixture was then stirred for 15 minutes, concentrated in vacuo at 60 °C and dried 

further by heating to 140 °C under a high vacuum for 4–5 hours to provide the supported 

catalysts as free-flowing powders. 
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Entry Catalyst loading / 

mol% 

AgNO3 loading / 

wt% 

Time Conversiona / % 

1 10 30 10 min 100 (100) 

2b 10 10 10 min 100 (98) 

3 1 30 24 h 57 

4 1 10 6 h 80 

5 1 1 30 min 100 (98) 

6 1 0.1 1.5 h 100 

7 0.1 1 2 d 80 

8 0.1 0.1 5 d 45 

9c 1 - 6 h  100 

10d 1 - 2 h  100 

11e 1 - 1 h 100 (88) 

12f - - 24 h Trace 

All reactions were performed in CH2Cl2 at RT and isolated yields are reported in parentheses. 
aConversions calculated by analysis of starting material:product ratio in the unpurified 1H NMR 

spectra. bCommercial 10 wt% AgNO3·SiO2 used. cAgNO3 used. dAgNO3 and SiO2 added separately. e1 

wt% AgOTf·SiO2 used. fHeat-treated (140 °C) SiO2 added. 

Table 1. Catalyst optimisation results. 

A range of both catalyst loadings (0.1–10 mol%) and AgNO3 loadings on silica (0–30 wt%) 

were tested in the spirocyclisation reaction of ynone 136a. Interestingly, lowering the relative 

amount of silver immobilised on silica from 30 wt% (Entry 3) to 1 wt% (Entry 5) significantly 

improved the efficiency of the reaction. Full conversion could still be achieved when lowering 

the loading of AgNO3 on silica to 0.1 wt% (Entry 6) but a longer reaction time was required to 

reach completion. 1 wt% AgOTf·SiO2 also displayed comparable efficiency to 1 wt% 

AgNO3·SiO2 promoting full conversion to spirocycle 137a in 1 hour (Entry 11), however, a 

lower isolated yield was obtained using this catalyst system. As highlighted in Table 1, 1 

mol% catalyst loading and 1 wt% AgNO3 loading on silica (Entry 5) enabled the efficient 

conversion of phenyl ynone 136a to spirocycle 137a in a near-quantitative isolated yield and 

these were the catalyst conditions taken on into solvent optimisation studies.  

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used to verify the 

incorporation of silver in our 1 wt% AgNO3·SiO2 catalyst. ICP-MS analysis of the silver 

concentration in our catalyst before use gave a reading of 4990 ppm which equates to 0.49 

wt% Ag. For a AgNO3 loading of 1 wt% immobilised on silica you would expect a value of 

0.63 wt% Ag as explained previously; the small difference observed between the measured 
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and expected values could be due to experimental error or the quality of commercial AgNO3 

used. There is minimal loss of silver during preparation of the catalyst as neither filtration nor 

an aqueous work-up is involved and therefore theoretically full silver incorporation should be 

achieved.  

After establishing the optimal combination of catalyst loading in the reaction and AgNO3 

loading on silica, some alternative solid supports for the immobilisation of silver were also 

explored (Table 2). Ynone 136a was treated with 1 mol% of each supported catalyst, prepared 

according to literature procedures,62,69,93 and the progress of each reaction was monitored by 

thin layer chromatography (TLC). 

 

Entry Catalyst/support Ag content / wt % Time Conversiona / % 

1 AgNO3/silica 0.63 30 min 100 

2 AgNO3/Celite 0.63 24 h 100 

3 Ag2CO3/Celite 0.63 24 h 50 

4 AgNO3/alumina 0.63 24 h Trace 
aConversions calculated by analysis of starting material:product ratio in the unpurified 1H NMR 

spectra. 

Table 2. Spirocyclisation using alternative solid supports. 

As can be seen in Table 2, AgNO3 supported on Celite (Entry 2) promoted full conversion of 

ynone 136a into spirocycle 137a, although it appeared to be less active than AgNO3 supported 

on silica as a prolonged reaction time of 24 hours was required. In contrast, AgNO3 

immobilised on alumina (Entry 4) performed the worst out of the catalysts tested; only trace 

amounts of spirocycle 137a were observed in the 1H NMR spectrum of the unpurified reaction 

mixture after 24 hours. In conclusion, AgNO3 immobilised on silica remained the best 

supported catalyst for the spirocyclisation, with full conversion of ynone 136a to spirocycle 

137a observed in just 30 minutes. 

After the most suitable catalyst system had been found, a variety of solvents were examined 

(Table 3). Pleasingly, the spirocyclisation proceeded well in the majority of solvents tested; a 

range of polar and non-polar aprotic solvents furnished the spirocyclic product 137a in 6 

hours or less. 
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Entry Solvent Conversiona / %  Conversion / %  

  30 min  6 h 

1 DMF 0 0 

2 TBME 8 60 

3 2-MeTHF 10 60 

4 THF 50 >95 

5 MeCN >95 >95 

6 EtOAc 25 100 

7 Et2O 30 100 

8 Hexane 35 100 

9 MeOH 60 100b 

10 DCE 80 100 

11 Acetone 88 100 

12 EtOH 90 100b 

13 Toluene 90 100 

14 CHCl3 100 - 

15 CH2Cl2 100 - 

All reactions performed on 0.08 mmol of ynone 136a using 1 wt% AgNO3·SiO2 at RT. aConversions 
calculated by analysis of starting material:product ratio in the unpurified 1H NMR spectra. bMixture of 

products observed by 1H NMR spectroscopy but all starting material consumed. 

Table 3. Solvent optimisation results. 

The formation of spirocycle 137a in the presence of polar protic solvents such as MeOH and 

EtOH was observed in the first 30 minutes (Entries 9 and 12); however, as the reaction 

proceeded the spirocycle appeared to decompose leading to a complex mixture of products 

after 6 hours. Both CHCl3 and CH2Cl2 clearly outperformed all other solvents with full 

conversion of ynone 136a into spirocycle 137a observed in the first 30 minutes (Entries 14 

and 15); CH2Cl2 was chosen as the solvent for the spirocyclisation due to its compatibility 

with other transformations, ease of removal and consistency with other spirocyclisation 

conditions previously used in the group. 

2.4 Preparation of spirocyclisation precursors 

As mentioned previously, ynone precursors for the spirocyclisation methodology can be 

accessed via a two-step procedure using commercially available carboxylic acid starting 

materials in the majority of cases. The initial coupling reaction can be performed using either 

T3P (conditions A in Scheme 31) or CDI (conditions B in Scheme 31) as the coupling agent. 

T3P was used for all couplings except when large quantities of Weinreb amide 135a were 
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required (see Flow Chemistry Section 2.9); in this case CDI was favoured as a cheaper 

alternative. 

 

Scheme 31. Conditions used for (A) T3P and (B) CDI couplings. 

Pyrrole carboxylic acid 134f was not commercially available and was prepared via a two-step 

procedure starting from 2,5-dimethylpyrrole 138 (Scheme 32). 

 

Scheme 32. Preparation of pyrrole carboxylic acid 134f. 

A range of Weinreb amides were then prepared using the T3P coupling conditions, all of 

which are shown in Scheme 33. 

 

aPreviously synthesised by Michael James.92 

Scheme 33. Weinreb amides prepared using T3P coupling procedure. 
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In addition to the substrates shown in Scheme 33, dimeric Weinreb amide 135i was prepared 

using a Suzuki cross-coupling reaction (Scheme 34). The standard Weinreb amide 135a was 

brominated using NBS to provide a handle for the cross-coupling reaction. The brominated 

Weinreb amide 140 was then treated with benzene-1,4-diboronic acid in the presence of LiCl, 

Na2CO3 and Pd(PPh3)4 to generate the dimeric Weinreb amide 135i. 

 

Scheme 34. Preparation of Weinreb amide 135i via Suzuki cross-coupling. 

All of the Weinreb amides were then used to access various ynone precursors by treatment 

with a range of different lithium acetylides. An excess of lithiated alkyne (2.5 equivalents) 

was required during the formation of indole and pyrrole-tethered ynones as one equivalent 

was consumed during deprotonation of the heterocycle. A range of indole-tethered ynones, as 

well as, other heterocyclic systems including pyrrole and benzofuran-tethered ynones, were 

prepared (Scheme 35). 
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aSynthesised via in situ generation of lithium acetylide. bPreviously synthesised by Michael James.92 

Scheme 35. Ynones prepared via addition of lithium acetylides. 

The preparation of ynones using this procedure was generally very efficient and high-yielding 

for the indole substrates with slightly lower isolated yields obtained for the pyrrole- and 

benzofuran-tethered ynones. Solubility issues were encountered during the isolation of bis-

ynone 136g which subsequently led to its lower isolated yield.  

In addition to the ynone precursors shown in Scheme 35, propargyl alcohol substrates 141 and 

142 were also prepared (Scheme 36) with the aim of demonstrating the versatility of the 

spirocyclisation reaction.  
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aPrepared by Michael James.92 

Scheme 36. Preparation of propargyl alcohol substrates 141 and 142. 

Due to the instability of terminal ynones, it was necessary to access propargyl alcohol 141 via 

a one-pot reaction incorporating ynone formation, reduction and deprotection. Propargyl 

alcohol 142 was previously prepared in the group by Michael James via the reduction of 

phenyl ynone 136a with NaBH4.
94 

2.5 Scope of spirocyclisation reaction 

2.5.1 Indole-ynone spirocyclisations 

After suitable reaction conditions were established and a range of precursors prepared, the 

scope of the spirocyclisation using silica-supported AgNO3 was examined. The substrate 

scoping studies began with indole-tethered ynones 136a–g encompassing substituents around 

the indole ring, extended ynone tethers and various alkyne functionalities; pleasingly, all 

ynones 136a–g were converted into their corresponding spirocycles 137a–g in excellent 

isolated yields using AgNO3·SiO2 (Scheme 37). Substrates incorporating extended ynone 

tethers (136e and 136f), and therefore furnishing 6-membered spirocycles 137e and 137f, 

required an increased catalyst loading of 10 mol% and elevated temperatures to ensure full 

conversion was achieved. 
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Reactions were performed using 1 mol% catalyst unless stated otherwise. a10 mol% catalyst used. 
bReaction performed at 45 °C. c2 mol% catalyst used. Conversions calculated by analysis of starting 

material:product ratio in the unpurified 1H NMR spectra. 

Scheme 37. Spirocyclisation of indole-tethered ynones. 

As well as performing the spirocyclisation reactions using AgNO3·SiO2 (conditions A in 

Scheme 37) the analogous unsupported reactions were also examined (conditions B in Scheme 

37) and a clear difference in the reactivity of AgNO3·SiO2 and unsupported AgNO3 was 

observed. Not only were shorter reaction times and enhanced isolated yields obtained when 

using AgNO3·SiO2, but the spirocyclisation reactions of ynones 136e and 136f failed to reach 

completion when using unsupported AgNO3, even with a much higher (10 mol%) AgNO3 

loading being employed in these reactions. It was envisaged that bis-ynone 136g was going to 

perform poorly in the spirocyclisation due to its limited solubility. In fact, quite the opposite 

was observed; the supported spirocyclisation (conditions A in Scheme 37) afforded spirocycle 

137g quantitatively, as a mixture of diastereoisomers, in just 1.5 hours. In contrast, the 

unsupported reaction (conditions B in Scheme 37) did not proceed as efficiently or as cleanly 

as the supported reaction, further demonstrating the benefits of the silica-supported catalyst. 
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2.5.2 Pyrrole-ynone spirocyclisations 

The dearomatising spirocyclisation reactions of pyrrole-tethered ynones providing spiro-

2H/3H-pyrroles were of particular interest due to the lack of literature focusing on the 

synthesis of these structures and also due to the occurrence of their derivatives in natural 

products.95,96 There are only a few reports in the literature which describe the dearomatisation 

and spirocyclisation at the C-2 position of pyrroles affording spiro-2H-pyrroles55,97,98 and 

reports on C-3 pyrrole spirocyclisations are particularly rare.99,100 Firstly, the spirocyclisation 

of 2-pyrrole ynones 136h–k was explored using both supported and unsupported AgNO3 and 

the results are shown in Scheme 38.  

 

Conversions calculated by analysis of starting material:product ratio in the unpurified 1H NMR spectra. 

Scheme 38. Supported and unsupported spirocyclisations of 2-pyrrole ynones. 

As can be seen from Scheme 38, all spiro-2H-pyrroles were generated in excellent yields of 

90% or above when using the supported AgNO3·SiO2 catalyst. Once again, unsupported 

AgNO3 was an inferior catalyst, promoting only low levels of spirocyclisation or in the case of 

phenyl ynone 136h not promoting any reaction at all. These results emphasise the significant 

difference in reactivity between AgNO3·SiO2 and unsupported AgNO3 and will be discussed 

later on in the Thesis (see Section 2.7). Characteristic 1H and 13C NMR signals could be used 

to identify the presence of the spirocyclic pyrroline products; imine protons H-2 had a 

chemical shift around 8.3 ppm in the 1H NMR spectrum and the spirocyclic carbon centres C-

4 had a particularly key chemical shift at 89 ppm in the 13C NMR spectrum (Figure 3). 
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Figure 3. Characteristic 
1
H and 

13
C NMR chemical shifts in spiro-2H-pyrroles. 

It was then envisaged that the same supported AgNO3·SiO2 spirocyclisation conditions could 

be applied to 3-pyrrole ynone precursors to furnish valuable spiro-3H-pyrroles. This is a more 

challenging transformation; although indoles readily form C-3 spirocycles due to the inherent 

nucleophilicity of their C-3 position, in contrast, it is well-known that pyrroles are more 

nucleophilic at their C-2 position. Therefore, it may be expected that pyrrole-tethered ynones 

of the form 144 would react via C-2 attack to generate indole products 145 rather than the 

desired C-3 spirocycles 146 as shown in Scheme 39. 

 

Scheme 39. Proposed indole formation using 3-pyrrole ynones 144. 

For this reason, it was proposed that if the 2-position of the pyrrole ring was blocked, direct 

C-2 attack could be avoided, allowing spiro-3H-pyrroles to be accessed. Thus, 2,5-

dimethylpyrrole-tethered ynones (136l–n) were prepared using the standard two-step 

procedure shown previously in Scheme 35. Each ynone precursor was reacted with 1 mol% 

AgNO3·SiO2 and pleasingly complete conversion and quantitative isolation of spirocycles 

147l–n was achieved (Scheme 40). 
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Reactions were performed using 1 mol% catalyst. Conversions calculated by analysis of starting 

material:product ratio in the unpurified 1H NMR spectra. 

Scheme 40. Spirocyclisation of 3-pyrrole ynones. 

In contrast, while unsupported AgNO3 promoted spirocyclisation in all three cases, it did not 

perform as efficiently as AgNO3·SiO2. The quantitative synthesis of spirocyclic pyrroline 

systems 147l–n is especially noteworthy given the lack of dearomatisation methods currently 

available to make these scaffolds. As can be seen from the remarkably short reaction times, 

the 3-pyrrole ynones are a very reactive class of compounds; in fact, they appeared to be the 

most reactive of all ynones tested.  

The reactivity of unsubstituted 3-pyrrole ynones in the presence of our AgNO3·SiO2 catalyst is 

discussed in Chapter 4, Section 4.2. 

2.5.3 Benzofuran-ynone spirocyclisations 

Next, the spirocyclisation conditions were applied to benzofuran substrate 136o (Scheme 41). 

Silica-supported AgNO3 afforded the hydrated spirocyclic product 148 in a 5:1 dr; small 

amounts of ring-opening also took place during the reaction and this is believed to have 

lowered the isolated yield. It is proposed that the presence of small amounts of water in the 

silica-based catalyst facilitates the formation of the ring-opened by-product 150 as illustrated 

in Scheme 41. Benzofuran-tethered ynone 136o was another heterocyclic substrate which 

failed to react in the presence of unsupported AgNO3. 
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aTrace amounts of ring-opened tautomer observed in 1H NMR spectrum. bConversion calculated by 

analysis of starting material:product ratio in the unpurified 1H NMR spectrum. 

Scheme 41. Spirocyclisation of benzofuran-tethered ynone 136o and ring-opening 

pathway. 

We next studied the 2-desmethyl analogue 136p to see what effect this would have on the 

ring-opening and spirocyclisation processes. Unfortunately, using the demethylated analogue 

136p facilitated a 1,2-migration process instead, leading to the formation of the dibenzofuran 

product 151 (Scheme 42). Although this particular reaction did not reach completion when 

using AgNO3·SiO2 (conditions A in Scheme 42), ynone 136p failed to react at all in the 

presence of unsupported AgNO3 (conditions B in Scheme 42). 

 

aConversion calculated by analysis of starting material:product ratio in the unpurified 1H NMR 

spectrum. 

Scheme 42. Synthesis of dibenzofuran product 151 via 1,2-migration. 
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2.5.4 Propargyl alcohol spirocyclisations 

Although the compatibility of a variety of ynones in the spirocyclisation reaction has been 

demonstrated, the ynone functionality is not essential for the spirocyclisation reaction to 

proceed, as demonstrated by the methodology being extended to propargyl alcohol systems. 

The spirocyclisation of propargyl alcohol 142 proceeded cleanly using AgNO3·SiO2 to furnish 

spirocycle 154 in a quantitative yield (Scheme 43).  

 

aConversion calculated by analysis of starting material:product ratio in the unpurified 1H NMR 

spectrum. 

Scheme 43. Spirocyclisation of propargyl alcohol 142. 

It is interesting to note that the reaction in Scheme 43 took hours to reach completion using 

AgNO3·SiO2 which was significantly longer than its respective ynone 136a requiring just 30 

minutes. The decreased reactivity of propargyl alcohol 142 could be attributed to the removal 

of ynone functionality; it is believed that the ynone moiety is involved in electrophilic 

activation making the alkyne more susceptible to nucleophilic attack from the indole. 

Unsupported AgNO3 also displayed comparable reactivity to AgNO3·SiO2, leading to 95% 

conversion into the desired spirocycle 154 in 24 hours.  

Next, propargyl alcohol 141 bearing a terminal alkyne was assessed in the supported and 

unsupported spirocyclisation reactions (Scheme 44). Different reaction outcomes were 

observed depending on the catalyst system used. The use of a terminal ynone appeared to 

make the alcohol more reactive as all of the ynone 141 was consumed in just 4 hours when 

using AgNO3·SiO2. However, propargyl alcohol 141 was not converted cleanly into the 

desired spirocycle 156. The major product of the reaction when using AgNO3·SiO2 

(conditions A in Scheme 44) was the desired spirocyclic product 156 but this was not 

recognised initially as the existence of an equilibrium between spirocycle 156 and trimer 157 

complicated the 1H NMR spectrum and identification of the spirocycle was challenging. 
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Scheme 44. Spirocyclisation of propargyl alcohol 141. 

Previously when trimer formation has been observed in the Taylor group it has been 

interrupted by introducing an acid, which can protonate the imine and remove its ability to 

react with another imine centre. Here, the 1H NMR spectrum was simplified by stirring the 

spirocyclic monomer:trimer mixture with one equivalent of AgNO3; presumably the silver 

coordinates to the nitrogen lone pair; this facilitated identification and characterisation of 

spirocycle 156. The other product isolated in a 41% yield from the supported reaction was the 

hydroxy ketone 155, which is the natural product actinopolymorphol B.101 It is believed that 

this natural product is formed as a result of alkyne hydration102,103 and its isolation has 

previously been reported by the Taylor group, albeit in a low yield.94 In contrast, when 

employing unsupported AgNO3, only the hydroxy ketone 155 was isolated in a 61% yield 

without the formation of any spirocycle 156.  

In an attempt to favour the selective formation of spirocycle 156 using the supported reaction 

conditions, a TBS-protected alcohol 158 was prepared and tested in the spirocyclisation 

(Scheme 45). Unfortunately, the presence of the TBS group did not improve the selectivity of 

the reaction and instead led to the formation of three uncharacterisable compounds. 

 

Scheme 45. Spirocyclisation using TBS-protected alcohol 158. 
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2.5.5 Robustness screen 

In addition to the substrate scope described, a robustness screen was also performed to 

corroborate the functional group tolerance of the spirocyclisation reaction. The robustness 

screening method, first introduced by Glorius in 2013,104 is an efficient way to assess the 

functional group tolerance of a process; this is performed by screening the reaction in the 

presence of a range of additives representing different chemical functionalities. If the reaction 

proceeds as normal in the presence of the additive, this indicates that the method is tolerant of 

the functional groups present in the additive. The robustness screen was performed on the 

standard spirocyclisation reaction of phenyl ynone 136a and the results can be seen in Scheme 

46. 

 

Each additive (1 equiv.) was added at the start of the reaction before catalyst addition. Results quoted as 

conversions which were calculated by analysis of starting material:product ratio in the unpurified 1H 

NMR spectra. aReaction was left for 2 hours. 

Scheme 46. Additives tested in robustness screen. 
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The results from this screen further demonstrate the high functional group compatibility of the 

ynone spirocyclisation reaction. Full conversion within the standard reaction time of 30 

minutes was observed in the presence of halides, amines, alcohols, phenols, aldehydes, esters, 

carboxylic acids, acid anhydrides, alkenes, alkynes and silyl ethers. The reaction was, 

however, sensitive to additives containing a basic nitrogen (see additives 169, 171, 172, 174, 

181, 182 in Scheme 24), which is somewhat surprising considering all of the indole-derived 

spirocyclic products contain an sp2-nitrogen as part of the imine functionality. A strong 

indication of whether the additive was going to retard the reaction could be seen almost 

instantly after additive addition; a colour change from a bright orange to a dark brown 

reaction mixture was observed in all cases where the reaction failed. Proposing a rationale as 

to why certain nitrogen-containing additives shut down the reaction is difficult, but it is 

possible that some of the nitrogen-containing additives may chelate to the catalyst rendering it 

inactive and steric factors may also play a role. 

2.6 Catalyst recycling 

One of the advantages of using a supported silver catalyst is the ability to recover and reuse 

the same catalyst for several consecutive reactions. To test this, the spirocyclisation of 136a 

was performed multiple times, using catalyst recovered from the previous reaction, until a 

reduction in activity was observed (Table 4). After each cycle the catalyst was simply 

removed by filtration, washed with CH2Cl2, dried under vacuum and then used in the 

subsequent spirocyclisations. The product isolated from each spirocyclisation reaction was 

analysed by 1H NMR spectroscopy.  

 

Cycle no. Conversion / %a 

1 100 

2 100 

3 100 

4 100 

5 100 

6 99 

7 94 

8 86 

All reactions were carried out on 0.38 mmol of ynone 136a in CH2Cl2 (0.1 M) at RT. aConversions 

were calculated by analysis of the starting material:product ratio in the unpurified 1H NMR spectra. 

Table 4. Catalyst recycling experiments. 
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As can be seen in Table 4, five repeat cycles using the same batch of recovered catalyst were 

completed without any reduction in activity. Although full conversion was not achieved after 

the fifth spirocyclisation, high conversions were still observed in subsequent reactions 

demonstrating the long-lasting activity of the AgNO3·SiO2 catalyst. 

As catalyst leaching from solid supports is a well-known phenomenon, the silver content of 

the spirocyclic products isolated from the first and eighth recycling experiments were 

analysed by ICP-MS to monitor the levels of silver leaching (Table 5).  

Entry Sample Ag content in 137a / % 

1 Spirocycle 137a after cycle 1 0.0067 

2 Spirocycle 137a after cycle 8 0.0056 

Each ICP-MS sample was run three times and the mean silver content is shown. 

Table 5. ICP-MS results from analysis of products from recycling experiments. 

The reason for the gradual decrease in catalytic activity seen in Table 4 appeared to be caused 

by minor amounts of silver leaching; ICP-MS analysis revealed that the products from the first 

and eighth reactions contained 67 ppm and 56 ppm silver, respectively (Entries 1 and 2). 

These relatively low values are promising, since neither column chromatography nor aqueous 

work-ups were used during product isolation (although presumably these methods could be 

utilised in the future should it be necessary to completely remove silver from the spirocyclic 

products).  

Additionally, it was also discovered that by simply changing the reaction solvent to a less 

polar variant significantly reduced the levels of silver leaching. As can be seen in Table 6, the 

silver content of the spirocyclic product 137a was reduced to just 5 ppm by simply performing 

the reaction in toluene (Entry 3). This resulted in over ten times less silver leaching when 

compared to using CH2Cl2 (58 ppm) and is particularly significant given that it is below the 

acceptable limit of silver in any drug product or substance (17 ppm).105 

 

Entry Solvent Ag content in 137a / % 

1 CH2Cl2 0.0058 

2 Acetone 0.1360 

3 Toluene 0.0005 

All reactions were performed using 0.38 mmol of ynone 136a in the appropriate solvent (0.1 M) at RT. 

Table 6. ICP-MS results when performing spirocyclisation in different solvents. 



42 
 

2.7 Mechanistic studies 

In view of the marked differences in reactivity observed when using supported and 

unsupported AgNO3 (see Section 2.5), a mechanistic study was initiated in an attempt to 

identify why AgNO3·SiO2 is a superior spirocyclisation catalyst. 

2.7.1 ReactIRTM 

ReactIRTM technology was used to quantitatively monitor the progress of the spirocyclisation 

reactions. In situ infrared spectra were recorded every minute over a given time period, thus 

enabling the analysis of characteristic infrared peaks throughout the duration of the reaction. 

The conversion of ynone 136a was chosen as the standard system for all ReactIRTM 

experiments and the progress of each reaction was monitored by observing changes in 

intensities of key IR stretches (Scheme 47). 

 

aAll ReactIRTM experiments were performed in CH2Cl2 at RT using 1 mol% of AgNO3·SiO2 (1 wt%) or 

AgNO3 catalyst. 

Scheme 47. IR stretches observed in standard spirocyclisation reaction using ReactIR
TM

. 

The C≡C stretch at 2208 cm-1 in the IR spectrum of ynone 136a is the most reliable signal for 

reaction monitoring as it is in a clear region of the spectrum. The C=O stretches present in the 

IR spectrum of ynone 136a (at 1666 cm-1) and spirocycle 137a (at 1701 cm-1) could also be 

seen decreasing (for 136a) and increasing (for 137a) as the reaction progressed, but due to 

partial overlap they were not used in the ReactIRTM analysis. 

The first ReactIRTM experiments performed were the standard supported and unsupported 

reactions (Figure 4). 
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Figure 4. ReactIR
TM

 plot for the conversion of ynone 136a into spirocycle 137a using 

AgNO3·SiO2 (blue line) and unsupported AgNO3 (purple line). 

The supported reaction (blue line, Figure 4) started immediately after catalyst addition and 

reached completion in just over 30 minutes. In contrast, an induction period of approximately 

2 hours was seen in the unsupported reaction (purple line, Figure 4), which consequently led 

to a prolonged reaction time of ~6.5 hours. It was also possible to see how the rates of reaction 

differed when using the supported and unsupported catalyst systems by inspecting the 

gradients of each line; following the induction period, the unsupported reaction progressed 

notably slower than the supported reaction.  

In the next ReactIRTM experiment, AgNO3 and silica were added to the reaction mixture as 

separate components but in the same quantities as present in the standard supported reaction 

(orange line, Figure 5). The unsupported and supported reactions were also plotted for 

comparison. 
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Figure 5. ReactIR
TM

 plot for the spirocyclisation reaction using AgNO3·SiO2 (blue line) 

and unsupported AgNO3 in the presence of silica (orange line) and in the absence of 

silica (purple line). 

Although an induction period was still observed when silica was added separately (orange 

line, Figure 5), the rate of reaction was comparable to the supported reaction (once 

consumption of ynone 136a began, the reaction was complete in around 30 minutes) and was 

faster than the unsupported reaction (purple line, Figure 5). From this result, it was concluded 

that silica clearly increases the rate of reaction and that the induction period is related to the 

use of unsupported AgNO3. 

The observation of sigmoidal kinetics and induction periods can be indicative of the in situ 

formation of nanoparticles.91 Therefore, it was proposed that the induction period seen in the 

unsupported reaction was associated with the in situ formation of silver nanoparticles 

(AgNPs), with AgNO3 acting as a pre-catalyst in the reaction. To test this hypothesis, a further 

ReactIRTM experiment was performed which explored the potential formation of AgNPs 

during the induction period of the unsupported reaction. AgNO3 was stirred in CH2Cl2 under 

air for 24 hours and the initial colourless solution turned yellow during this period. Several 

reports in the literature describe the observation of a yellow “solution” after the formation of 

AgNPs.82,106 Ynone 136a was then added to the pre-stirred AgNO3 solution and the reaction 

was monitored by ReactIRTM (grey line, Figure 6). 



45 
 

 

Figure 6. ReactIR
TM

 plot for the spirocyclisation reaction using pre-stirred AgNO3 (grey 

line) and unsupported AgNO3 (purple line). 

Evidently, pre-stirring AgNO3 changes the catalytic species present in the reaction mixture as 

the induction period was completely removed and the reaction started to proceed as soon as 

ynone 136a was added. This supports the idea that AgNPs were formed in advance of the 

reaction and therefore negated the induction period. The rate of reaction using pre-stirred 

AgNO3 was comparable to the unsupported AgNO3 reaction (purple line, Figure 6); this was 

expected as both reactions were conducted in the absence of silica. It is worth noting that the 

spirocyclisation using pre-stirred AgNO3 with silica added separately to the reaction mixure 

led to an increase in the rate of reaction; although not monitored by ReactIRTM, the reaction 

was complete within 30 minutes and had a similar rate to the standard supported reaction. 

Although providing unambiguous evidence for heterogeneous catalysis is difficult, and often 

requires several cross-over experiments, the mercury drop test is commonly used as a starting 

point when investigating the potential involvement of heterogeneous particles in a reaction.91 

The theory of this experiment is that a large excess of mercury is added to the reaction 

mixture, and if heterogeneous particles such as nanoparticles are present, the mercury will 

coat the heterogeneous species, rendering them inactive and terminate the reaction. 

Conversely, if the reaction is proceeding via homogeneous catalysis the addition of mercury 

should not affect the reaction. The unsupported reaction was performed as normal using 

ReactIRTM to monitor its progress, when approximately 50% consumption of ynone 136a was 

reached, 200 equivalents of mercury (w.r.t. AgNO3) was added to the reaction mixture (red 
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line, Figure 7). This almost instantly shut down the reaction, which provides additional 

support for the idea of heterogeneous nanoparticles catalysing the reaction. 

 

Figure 7. ReactIR
TM

 plot for the spirocyclisation reaction using unsupported AgNO3 

(purple line) and the mercury drop test experiment (red line). 

2.7.2 Transmission electron microscopy (TEM) 

In order to provide further evidence for the presence of AgNPs and their involvement in 

catalysis, their characterisation in the unsupported reaction was attempted. As it was 

previously shown that pre-stirring AgNO3 appeared to change the catalytic species present and 

removed the induction period, this catalyst system was chosen for initial TEM studies as it 

was considered likely that AgNPs would be present. AgNO3 was stirred in CH2Cl2 for 24 

hours and an aliquot of this solution was removed and dropped onto a copper TEM grid. The 

deposit remaining on the grid after the CH2Cl2 had evaporated was then analysed by TEM 

(Figure 8). 
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Figure 8. TEM images of AgNPs after pre-stirring AgNO3 in CH2Cl2. 

As anticipated, the images shown in Figure 8 indicate the presence of silver nanoparticles 

after pre-stirring AgNO3 in CH2Cl2. A large variation in nanoparticle size can be seen in these 

images with some particularly large particles measuring over 20 nm. The large variation in 

particle size could be attributed to the fact that these particles do not have any support or 

capping agent present to control their growth and aggregation.107,108 

After identifying the potentially active catalytic species in the unsupported reaction, attention 

was drawn to the supported reaction to see whether AgNPs were also present on the surface of 

the silica support. In the literature, several procedures describe the immobilisation of silver 

nanoparticles on solid supports84,86,109 and in view of the above results, it was considered 

likely that AgNPs were also present in the supported catalytic system. TEM images of the 

AgNO3·SiO2 catalyst before (Figure 9) and after (Figure 10) use in the spirocyclisation 

reaction were obtained. 

 

 

 

 

 

 

 

Figure 9. TEM image of AgNO3·SiO2 

before use in spirocyclisation reaction. 

 

 

 

 

 

 

Figure 10. TEM image of AgNO3·SiO2 

after use in spirocyclisation reaction. 
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The TEM images shown above in Figure 9 and Figure 10 confirm the presence of crystalline 

AgNPs on the surface of the silica. There is little difference in the distribution and size of the 

nanoparticles before and after use which is surprising, but may be why the same batch of 

catalyst can perform so well after being recycled (see Section 2.6).  

In conclusion, the presence of silica clearly enhances the rate of reaction; this could be 

attributed to faster protodemetallation (see Scheme 48) and/or its role may be to support the 

formation of AgNPs and modulate their growth/aggregation/stability. It appears that AgNPs 

are involved in the catalysis of both the supported and unsupported spirocyclisation reactions, 

and that AgNO3 itself could act as a pre-catalyst in the formation of these nanoparticles. It is 

also possible that the AgNPs themselves are converted back into Ag+ as part of a catalytic 

cycle but further studies are needed to confirm this. Unambiguously establishing the exact 

species responsible for spirocyclisation is clearly a difficult process given the complexity of 

this system and identification of the catalytically active species remains ambiguous. 

Nonetheless, the obvious synthetic benefits of the catalyst system in terms of its improved 

reactivity over related Ag(I) catalysts and AgNPs are much clearer. 

2.7.3 Deuterium-labelling studies 

As previously described, the postulated mechanism for the spirocyclisation reaction proceeds 

via a 5-endo-dig cyclisation followed by protodemetallation to yield the spirocyclic products 

(see Scheme 15). As ReactIRTM results discussed earlier revealed an increase in the rate of 

spirocyclisation in the presence of silica, the possibility of silanol groups facilitating the final 

protodemetallation step was considered. Silanol groups on the silica surface may deliver 

protons to the vinyl silver species 185, thus releasing the silver for further catalysis and 

increasing the rate of reaction (Scheme 48). Silica-accelerated protodemetallation has 

previously been described by Toste et al., where they propose the surface acidity of the silica 

enhances the protodeauration of a vinyl gold intermediate.110 

 

Scheme 48. Silanol groups facilitating protodemetallation step in spirocyclisation. 
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Although this is a plausible theory, obtaining additional evidence proved to be particularly 

challenging as there are a variety of potential proton sources which could be involved in this 

step. For example, protons could originate from either the silanol groups or residual water 

present in the silica support, or alternatively the iminium functionality present in the 

spirocyclic intermediate 186 could act as a proton shuttle (Scheme 49). 

 

Scheme 49. Potential proton sources in the supported spirocyclisation reaction. 

Deuterium-labelling experiments were utilised to try and determine the source of protons in 

the protodemetallation step (Scheme 50). Ynone 136a was stirred in deuterated methanol 

under an inert atmosphere to generate deuterated ynone 187 (step A in Scheme 50). When 

spirocyclisation using unsupported AgNO3 was performed on deuterated ynone 187 (step B in 

Scheme 50), the same deuterium content was incorporated in the spirocyclic product 188 as 

expected. The spirocyclisation was then performed using the silica-supported catalyst to see if 

silica had any involvement in the protodemetallation step. When spirocyclisation was 

performed using AgNO3·SiO2 (step C in Scheme 50), deuterium was not observed in 

spirocyclic product 137a. Initially, it was thought that the silanol groups on the silica surface 

were providing the protons for protodemetallation in this reaction (source 1 in Scheme 49), 

however, when deuterated ynone 187 was simply stirred in CH2Cl2 in the presence of silica 

(step D in Scheme 50) its deuterium content dropped to just 20%, suggesting the deuterium in 

ynone 187 was exchanging with protons in the silanol groups before spirocyclisation. As a 

result, firm conclusions about the source of protons used in the protodemetallation step could 

not be made from these experiments. 
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Scheme 50. Deuterium-labelling experiments performed on ynone 136a. 

In addition to the deuterium experiments described above, two ReactIRTM experiments were 

performed to explore the effects of water (Figure 11) and spirocyclic imine 137a (Figure 12) 

in the spirocyclisation reaction as these were also identified as potential proton sources/proton 

shuttles in the protodemetallation step. 

 

a1.0 equiv. of H2O added to CH2Cl2 solvent system. 

Figure 11. ReactIR
TM

 plot for the spirocyclisation reaction of ynone 136a using 

AgNO3·SiO2 with water (light blue line) and without water (dark blue line). 
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The addition of water clearly increased the rate of reaction and subsequently led to complete 

conversion of ynone 136a in under 15 minutes (light blue line, Figure 11). Although this rate 

of reaction was favourable, the isolated yield of the spirocyclic product 137a was reduced. 

This result suggests that water could be involved in the protodemetallation step (source 2 in 

Scheme 49), thus explaining the observed increase in the rate of reaction.  

A further ReactIRTM experiment investigating whether the addition of spirocyclic imine 137a 

had an effect on the rate of protodemetallation was performed; this compared the unsupported 

spirocyclisation reaction (purple line, Figure 12) with the unsupported spirocyclisation 

reaction and the addition of spirocyclic imine 137a (pink link, Figure 12). Unsupported 

AgNO3 was used as the catalyst in this experiment rather than AgNO3·SiO2 in order to remove 

any protodemetallation rate enhancements from the silica support. It was anticipated that if 

spirocyclic imine 137a was involved in the protodemetallation step, the rate of reaction would 

be faster and a steeper reaction profile would be observed.  

 

a0.5 equiv. of spirocyclic imine 137a added at the beginning of the reaction. 

Figure 12. ReactIR
TM

 plot for the spirocyclisation reaction of ynone 136a using AgNO3 

(purple line) and AgNO3 with the addition of spirocycle 137a (pink line). 

Since discovering the heterogeneous nature of the unsupported reaction and the likely 

formation of nanoparticles during the induction period, it was surprising to see that the 

addition of imine 137a at the beginning of the unsupported reaction removed the induction 
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period completely (pink line, Figure 12). To aid comparison of reaction rates, the ReactIRTM 

reaction profile when using pre-stirred AgNO3 was used instead as there was not an induction 

period observed in this reaction (Figure 13). 

 

a0.5 equiv. of spirocyclic imine 137a added at the beginning of the reaction. 

Figure 13. ReactIR
TM

 plot for the spirocyclisation reaction of ynone 136a using pre-

stirred AgNO3 (grey line) and AgNO3 with spirocycle 137a (pink line). 

On inspection of the reaction profiles shown in Figure 13 it appears that the addition of 

spirocyclic imine 137a did not increase the rate of reaction and is therefore unlikely to be 

involved in the protodemetallation step (source 3, Scheme 49). Although the exact role of 

imine 137a is still unclear, this result does suggest that the formation of the spirocyclic 

product itself affects the reaction in some way and could be involved in the formation of 

nanoparticles as the induction period was removed on addition of this species. 

In summary, it is clear that there is an important synergistic relationship between the silica 

support and the AgNPs which renders AgNO3·SiO2 an effective catalyst for the 

spirocyclisation methodology. Evidence obtained from ReactIRTM studies and TEM images 

suggests that AgNPs are the active catalytic species in the reaction and it is also believed that 

the nanoparticles are formed during catalyst preparation. The silica support appears to be 

involved in enhancing the rate of reaction; although silica does not promote spirocyclisation 

on its own, the increased rate of reaction observed when in the presence of silica could be due 
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to augmented levels of protodemetallation and hence more effective catalyst turnover. In 

addition to this, silica also provides a surface for the AgNPs which could help to control their 

growth and aggregation, ultimately prolonging their reactivity. 

2.8 Silica-supported AgNPs prepared using literature methods 

There are a variety of methods available to the synthetic chemist for the impregnation of 

AgNPs onto silica, the most common of which is the chemical reduction of a Ag(I) species 

using a reducing agent.111–113 It is reported that the strength of reducing agent used in the 

preparation affects the characteristics of the AgNPs and the addition of ligands during 

impregnation can influence the silver loading of AgNP-impregnated silica.114 

Silica-supported AgNPs were prepared using two different literature procedures reported by 

Waite114 and Porco Jr.84 and their performance in the standard indole spirocyclisation reaction 

was investigated. The aim was to compare the results obtained with our AgNO3·SiO2 catalyst 

and see if there was any difference in the reactivity of the AgNPs prepared using literature 

methods. Waite and co-workers generated their silica-supported AgNPs by treating AgNO3 

with NaBH4 in an aqueous ammonia medium (Scheme 51). They suggested the role of the 

ammonia was not just to act as a base, adjusting the pH of the system, but to also act as a 

ligand to form a [Ag(NH3)2]
+ complex prior to reduction. In comparison, Porco Jr.’s method 

used AgBF4 as their Ag(I) source and Bu4NBH4 as the reductant without any ligand additive. 

 

Scheme 51. Preparation of AgNPs using literature methods and their use in the standard 

spirocyclisation reaction. 

The literature procedures reported by Waite and Porco Jr. were followed to prepare two 

separate batches of silica-supported AgNPs which were then tested in the transformation of 
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ynone 136a into spirocycle 137a. Neither of the two batches of AgNPs prepared were able to 

promote complete conversion into the desired spirocycle 137a; only 45% and 28% conversion 

was observed for Waite’s and Porco Jr.’s nanoparticles, respectively. It is particularly 

important to note that 10 mol% of Waite’s AgNPs were used in the spirocyclisation reaction 

which is significantly more than the 1 mol% of AgNO3·SiO2 typically used for this 

transformation; this highlights the superior activity of the nanoparticles present in our 

AgNO3·SiO2 system. These results also provide additional support for the intermediacy of 

AgNPs in our process. 

2.9 Flow chemistry 

Although organic synthesis has traditionally been performed in batch reactors, flow chemistry 

is a rapidly growing research area, attracting much recent interest due to the benefits 

associated with it including: safer reactions, simplified scale-up, cleaner products and faster 

reaction optimisation.115 Supported reagents and catalysts have been used extensively in batch 

organic syntheses as such reagents can provide clean products without the need of traditional 

work-up procedures and/or chromatography; in recent years, focus has moved towards their 

use in flow chemistry and is now also well documented in the literature.116,117 In view of this, a 

multi-gram spirocyclisation was performed using a continuous FlowSynTM reactor, whereby a 

solution containing ynone 136a in CH2Cl2 was converted into spirocycle 137a over a 12 hour 

period (Table 7, Entry 1). The ynone solution was simply passed through a reactor column 

packed with 1.9 g of 1 wt% AgNO3·SiO2 and TLC was used to monitor the reaction as the 

product solution emerged from the flow machine; when full conversion stopped taking place 

the reaction was terminated. A flow rate of 0.1 mL/min was chosen, giving the ynone 

approximately 1 hour on the column which enabled complete spirocyclisation to take place. 
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Entry Solvent (conc.) Time 

/ h 

Catalyst loadinga 

/ mol% 

Spirocycle 

produced / g 

Full conversion at 

end of reaction? 

1 CH2Cl2 (0.5 M) 12 0.43 6.90 No 
2 Toluene (0.1 M) 51 0.12 23.6 Yes 

a1 wt% AgNO3·SiO2 catalyst was used for each flow reaction. At the end of each reaction the products 

were concentrated in vacuo and analysed by 1H NMR spectroscopy. 

Table 7. Flow chemistry results and representation of flow set-up.  

Our first attempt at performing this continuous flow spirocyclisation reaction in CH2Cl2 was a 

success, generating 6.90 g of spirocycle 137a in just 12 hours. In comparison to the equivalent 

batch spirocyclisation process using 1 mol% AgNO3·SiO2 (Scheme 37), a lower catalyst 

loading of 0.43 mol% was used in this flow reaction. Although the catalyst’s reactivity was 

gradually reduced during the flow process resulting in incomplete conversion at the end of the 

reaction, it was envisaged that switching reaction solvent to a less polar alternative would 

suppress levels of silver leaching (see ICP-MS results in Table 6) and therefore increase the 

catalyst turnover significantly. This was indeed the case, using toluene as the reaction solvent 

facilitated quantitative conversion of 23.6 g of ynone 136a into spirocycle 137a in 51 hours 

(Table 7, Entry 2). Full conversion of ynone was still being achieved at the end of this 

reaction which suggested further spirocyclisation could have been performed if more ynone 

was available. A more dilute reaction mixture was required as the ynone was less soluble in 

toluene than in CH2Cl2 and the flow rate was increased to 0.3 mL/min to offset these more 

dilute conditions. The same amount of AgNO3·SiO2 catalyst (1.9 g, equating to ca. 10 mg of 

silver), was used in this >20 g reaction resulting in an impressive catalyst loading of just 0.12 

mol%. 

  

136a 137a 
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2.10 Summary 

The application of 1 wt% AgNO3·SiO2 in the dearomatising spirocyclisation methodology has 

successfully been demonstrated providing a range of spirocyclic products from their alkyne-

tethered precursors. The facile isolation and recovery of our heterogeneous catalyst system 

has also been exploited through catalyst recycling studies and large-scale flow experiments; 

the same batch of silica-supported AgNO3 can be used repeatedly in over five spirocyclisation 

reactions or in a continuous flow reaction converting over 20 g of an ynone precursor without 

any significant loss in activity. The mechanistic aspects of the spirocyclisation reaction and 

determination of the active catalytic species have also been explored. A combination of 

ReactIRTM experiments and TEM studies not only revealed the presence of the AgNPs but 

also recognised the importance of the silica support itself in enhancing the reactivity of the 

catalyst. A comparison of AgNO3·SiO2 with unsupported AgNO3 has been described 

throughout and a significant difference in their reactivity has been established. In all cases, 

AgNO3·SiO2 was superior to unsupported AgNO3 and it was also more reactive than silica-

supported AgNPs made using literature procedures. 

The work described in this Chapter was reported in Angewandte Chemie (see Appendix I).118 
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Chapter 3. Dearomatisation of phenols and the synthesis of spirocyclic 

dienone frameworks 

3.1 Introduction 

The spirocyclic dienone framework incorporating a quaternary carbon centre and 

cyclohexadiene moiety, is a common motif in bioactive natural products (Scheme 52).53,119 

This abundance in nature has helped to propagate the development of a variety of methods 

which generate key spirocyclic dienone structures. Several of these methods proceed via ipso-

cyclisation of a substituted phenol or anisole derivative which is typically achieved in one of 

two ways, either via electrophilic (A) or nucleophilic (B) activation modes (Scheme 52).  

 

Scheme 52. Natural products containing spirocyclic dienone motif and ipso-cyclisation 

strategies. 

The activation of alkene, alkyne, and allene moieties provides the driving force for a large 

number of electrophilic ipso-cyclisations (Scheme 52A).120–122 Transition-metal catalysts are 

commonly used in these cyclisations to activate the π-system, increasing its electrophilicity 

towards reaction with the nucleophilic phenol derivative.35,123–125 Alternatively, the flow of 

electrons can be reversed and nucleophilic ipso-cyclisations can be utilised (Scheme 52B).126–

128 This is achieved through the oxidation of a substituted phenol, typically using hypervalent 

iodine reagents such as PhI(OAc)2,
27,129–131 followed by interception of the now electrophilic 

phenol with various nucleophiles, affording the spirocyclic dienones. 
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3.2 Project background  

During work towards the synthesis of the natural product spirobacillene A 76, it was found 

that treating anisole-tethered ynone 82 with five equivalents of SnCl2·2H2O at RT in CH2Cl2 

resulted in efficient conversion into the spirocyclic dienone 83 (Scheme 53).54 

 

Scheme 53. Sn(II)-mediated synthesis of spirocyclic dienone 83. 

At the time of publication, this was the only reported reaction of this type and therefore it was 

decided to further optimise this process and explore the substrate scope. During optimisation 

studies carried out by Dr. Will Unsworth and James Cuthbertson, it was established that 

switching from SnCl2·2H2O to Cu(OTf)2 significantly improved the efficiency of the reaction. 

A range of anisole-tethered ynones were prepared and tested in both the Sn(II)- and Cu(II)-

mediated spirocyclisations and the results obtained from this study are shown in Scheme 54. 

The dearomatisation and spirocyclisation reaction worked well on a range of substrates, 

although the reaction failed if electron-donating groups were not present at the terminal 

alkyne position (see ynone 192d). Cu(OTf)2 outperformed SnCl2·2H2O in all cases; however, 

stoichiometric quantities of Cu(OTf)2 were still required for the reactions to reach completion. 

The requirement of electron-rich ynones and relatively large quantities of Sn(II)/Cu(II) 

reagents were therefore identified as areas for improvement.56 
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a5 equiv. of SnCl2·2H2O used. b0.1 equiv. of Cu(OTf)2 used. cReaction performed at 50 °C. 

Conversions calculated by analysis of starting material:product ratio in the unpurified 1H NMR spectra. 

Scheme 54. Spirocyclisation of anisole-tethered ynones using SnCl2·2H2O (A) and 

Cu(OTf)2 (B). 

3.3 Spirocyclisation of phenol-tethered ynones 

It was reasoned that switching from an anisole system to a more reactive phenol system may 

address the limitations associated with the previous Sn(II)/Cu(II)-mediated spirocyclisation 

protocol. The following study began by synthesising a range of phenol-tethered Weinreb 

amides using the standard T3P coupling procedure (Scheme 55). 
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aLow isolated yield due to a lactone-forming side reaction. bReaction performed by BSc student Jack 

Partington. 

Scheme 55. Phenol-tethered Weinreb amides prepared using T3P coupling. 

Ortho-, meta- and para-substituted Weinreb amides 195a–f were prepared with varying levels 

of efficiency, depending on the substitution pattern around the phenol ring. The preparation of 

ortho-substituted Weinreb amide 195c unfortunately suffered from the formation of an 

appreciable amount of lactone 196 which consequently lowered the isolated yield (Scheme 

56). Dihydroxylated Weinreb amide 195e was also obtained in a low yield due to difficulties 

regarding its isolation using the standard acid/base work-up procedure. 

 

Scheme 56. Lactone-forming side reaction 
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Phenol-tethered ynones 197a–o were then prepared from their respective Weinreb amides 

upon treatment with the relevant lithiated alkynes as described previously (Scheme 57).  

 

aReaction performed by Dr. John Liddon. bReaction performed by BSc student Jack Partington. 

Scheme 57. Phenol-tethered ynones prepared by treatment with various lithium 

acetylides. 

Generally, the isolated yields for these phenol-tethered ynones were high, with a range of 

electron-rich, electron-neutral and electron-poor aromatics, saturated cyclic and alkyl 

functional groups incorporated into the ynone tethers.  

The AgNO3·SiO2-catalysed spirocyclisations of para-substituted phenol-tethered ynones were 

examined first, delivering the corresponding spirocyclic dienone frameworks 198a–h in 

excellent yields (Scheme 58). Once again AgNO3·SiO2 proved to be a much more reactive 

catalyst system than unsupported AgNO3; ynones 197a–c, 197e–f, 197h did not react in the 
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presence of AgNO3 and only 7% conversion into the desired spirocyclic dienone 198g was 

observed for ynone 197g. 

 

Reactions were performed using 10 mol% catalyst. aReactions were performed at 40 °C. bReaction 

performed by Dr. John Liddon. Conversions calculated by analysis of starting material:product ratio in 

the unpurified 1H NMR spectra. 

Scheme 58. Spirocyclisations of para-substituted ynones 

As can be seen from the results in Scheme 58, it is not necessary to use electron-rich ynones 

in this procedure; simple alkyl chains along with electron-rich and electron-neutral aromatic 

ynones were all tolerated, providing spirocyclic dienones 198a–d and 198g–h in high yields. 

The incorporation of cyclopropane and cyclopentane rings appeared to increase ynone 

reactivity; spirocyclisations of ynones 197e and 197f reached completion in just 2 h and 6 h, 

respectively, to give spirocyclic products 198e and 198f, which is notably faster than the 

majority of reactions performed in this study. Ynones 197c and 197d bearing protected amine 

and alcohol functionalities reacted smoothly to generate their corresponding spirocyclic 

dienones 198c and 198d; the value of these products was demonstrated by performing 

deprotection and subsequent cyclisation of the protected functional groups in one-pot to 

generate novel tricyclic structures 199 and 200, as single diastereomers in reasonable un-

optimised yields (Scheme 59). 
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aReaction performed by Dr. John Liddon. 

Scheme 59. One-pot deprotection and cyclisation of spirocyclic dienones. 

Ortho-substituted phenols also underwent efficient spirocyclisation, delivering chiral 

spirocyclic products 201k–n in isolated yields of 90% or above (Scheme 60). Electron-rich, 

electron-neutral and electron-deficient aromatic ynone substituents were tolerated, as well as 

cyclopropane-substituted ynone 197n, which delivered spirocyclic dienone 201n in an 

efficient manner. The ability of these ortho-substituted phenols to undergo spirocyclisation 

was particularly pleasing as there are relatively few literature examples of dearomatisation and 

ipso-cyclisation of ortho-substituted phenols.3,27,31,132,133 These results also opened up avenues 

for asymmetric catalysis to be explored. 

 

Reactions were performed using 10 mol% catalyst. Conversions calculated by analysis of starting 

material:product ratio in the unpurified 1H NMR spectra. 

Scheme 60. Spirocyclisations of ortho-substituted ynones. 
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Dihydroxylated ynone 197i, meta-substituted phenol ynone 197j and extended phenol ynone 

197o (shown in Scheme 57) were also subjected to the AgNO3·SiO2 spirocyclisation 

conditions but unfortunately all of these substrates failed to react at both RT and 40 °C and the 

starting ynones were recovered in all cases. 

3.4 Preliminary asymmetric studies 

As the spirocyclisation reaction on ortho-substituted phenol-tethered ynones successfully 

furnished chiral spirocyclic dienones, it was envisaged that the development of an asymmetric 

variant may be possible. Silver salts of chiral phosphoric acids (Ag-CPAs) have previously 

been identified as useful chiral catalysts in related asymmetric reactions55,134 and were chosen 

for our initial asymmetric studies. Phenyl-substituted ynone 197k was used as the test 

substrate, the results of which are shown in Scheme 61. Chiral HPLC was used to obtain the 

ee values presented, with rac-201k used to establish the best HPLC conditions for ee 

determination. 

 

aDetermined using CSP-HPLC: Chiralpak ID column, eluting with 20% IPA in hexanes, bUnable to 

isolate product for chiral separation. Conversions calculated by analysis of starting material:product 

ratio in the unpurified 1H NMR spectra. Ag-CPA catalysts previously prepared by Michael James.55,92 

Scheme 61. Asymmetric spirocyclisation of ynone 197k using Ag-CPAs. 



65 
 

Unfortunately, all the catalysts tested in this study performed poorly, with four out of the six 

Ag-CPAs failing to promote any spirocyclisation. The unsubstituted BINOL framework seen 

in Ag-CPA 202a performed the best, providing spirocycle 201k in 23% ee. In view of the low 

conversions observed a more active cyclopropane-substituted ynone system 197n was chosen 

for additional asymmetric studies, again using Ag-CPAs, as well as two Ag(I) complexes 

formed using chiral phosphine ligands (Scheme 62). 

 

aDetermined using CSP-HPLC: Chiralpak ID column, eluting with 20% IPA in hexanes. Conversions 

calculated by analysis of starting material:product ratio in the unpurified 1H NMR spectra. Ag-CPA 

catalysts previously prepared by Michael James.55,92 

Scheme 62. Asymmetric spirocyclisation of ynone 197n. 

Unfortunately, once again only low enantioselectivites (18–24%) were observed when using 

Ag-CPAs in the spirocyclisation of cyclopropane-substituted ynone 197n, with little 

improvement over the previous results obtained. Silver salts in combination with 

commercially available chiral phosphine ligands were evaluated in the spirocyclisation of 

ynone 197n as there are numerous literature reports describing the use of these conditions in 
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enantioselective silver-catalysed transformations.135 Unfortunately, neither the BINAP 203 

nor the phosphoramidite 204 ligand showed signs of asymmetric induction. 

Previous work has showed that increasing the steric bulk around the BINOL backbone of the 

chiral phosphoric acid increases enantioselectivity during the spirocyclisation of indole-

tethered ynones.55 Unfortunately, the same trend was not observed for phenol-tethered ynones 

and there is clearly a different mode of asymmetric induction involved. It is possible that 

coordination and hydrogen-bonding of the phenol moiety, within the Ag-CPA cavity, could be 

dictating the levels of asymmetric induction observed rather than unfavourable steric 

interactions.  

3.5 Formal synthesis of spirobacillene A 

The indole alkaloids, spirobacillene A 76 and B 79, were isolated from the broth culture of L. 

Fusiformis, a strain of bacteria found in acidic coal mine drainage contaminated with iron-rich 

heavy metals.53 Spirobacillene A 76 is a particularly attractive target, in part due to its 

inhibitory activity against the production of nitric oxide and reactive oxygen species. Since its 

isolation in 2012, there have been two reported total syntheses, both of which were published 

in quick succession in 2013.54,136 A phenol-enol oxidative coupling reaction was developed by 

Tang and co-workers which they used in the final step of their total synthesis, employing 

Ag2O as a single electron transfer agent (Scheme 63). Our group used a dearomatisation and 

ipso-cyclisation strategy requiring five equivalents of SnCl2·2H2O to furnish the key 

spirocyclic dienone intermediate 83 (Scheme 63). 

 

Scheme 63. Key steps in previous reported total syntheses of spirobacillene A 76. 
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It was realised that the key spirocyclic dienone intermediate 83 used as a precursor to 

spirobacillene A 76 could be accessed using our AgNO3·SiO2-catalysed spirocyclisation 

methodology from phenol-tethered ynone 209. Ynone 209 was prepared using the standard 

lithiation conditions, although the indole-tethered alkyne 208 required for this was not 

commercially available and was prepared in two steps prior to ynone formation (Scheme 64). 

 

Scheme 64. Preparation of alkyne 208 (A) and ynone formation (B). 

With phenol-tethered ynone 209 in hand, spirocyclisation was performed on this substrate 

using our AgNO3·SiO2 catalyst (Scheme 65). An extremely successful spirocyclisation was 

achieved, furnishing key spirocyclic dienone 83 in a near-quantitative yield in just 7 h. This 

result was a significant improvement on previous reported syntheses, providing a more 

scalable and catalytic route towards the synthesis of spirobacillene A 76. 

 

Scheme 65. Previous and improved routes to key spirobacillene A precursor 83. 
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3.6 Summary 

Mild and efficient spirocyclisation conditions have been applied to a range of phenol-tethered 

ynones to generate spirocyclic dienones, which are important frameworks present in a broad 

array of natural products. The tolerance of ortho-substituted phenols in the methodology is 

also valuable, given that chiral spirocyclic products are generated, and preliminary 

asymmetric studies have shown that spirocyclisation can be achieved with low levels of 

asymmetric induction. Optimisation of these reaction conditions and modification of the 

catalyst has the potential to improve upon these initial results in future work. Finally, an 

efficient formal synthesis of the natural product spirobacillene A 76 has been completed; 

catalytic quantities of silver in the form of AgNO3·SiO2 efficiently provided the key 

spirocyclic dienone precursor 83 in a near-quantitative yield. 

The work described in this Chapter was reported in Organic and Biomolecular Chemistry (see 

Appendix 2).56 
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Chapter 4. Pyrrole benzannulations: The synthesis of substituted indoles 

4.1 Introduction 

Functionalised indole subunits are privileged heterocyclic structures; they are found in a range 

of natural products, agrochemicals, dyes and biologically active pharmaceuticals.137,138 Their 

importance in biomedical applications is highlighted by their presence in the neurotransmitter 

serotonin and natural amino acid tryptophan, as well as in a variety of marketed drugs 

including: indomethacin 210, pindolol 211, sumatriptan 212 and arbidol 213 (Figure 14).138 

 

Figure 14. Biologically important indole derivatives. 

The biological importance of substituted indoles has stimulated much research into new 

synthetic strategies to access such frameworks.139,140 Since its discovery in 1883, the Fischer 

indole synthesis, (the treatment of phenylhydrazines with aldehydes or ketones under acidic 

conditions), has been widely used to prepare substituted indole frameworks (Scheme 

66A).141,142 Other classical indole syntheses developed include the Bartoli, Larock, Gassman, 

Reissert and Leimgruber-Batcho methods, some of which are summarised in Scheme 66.143,144 

Typically, these methods construct the indole framework via the annulation of a pyrrole ring 

onto a pre-functionalised benzene precursor. 
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Scheme 66. Classical indole syntheses. 

More recently, there have been scattered reports of routes to substituted indoles proceeding 

through the functionalisation of pyrrole precursors, whereby the substituted benzenoid ring is 

constructed during the synthesis, although there are far fewer indole syntheses of this type. 

Selected examples are included below (Scheme 67), although it should be noted that the 

reported methods are generally quite substrate specific with little scope for substituent 

variation.145–148 

 

Scheme 67. Indole syntheses starting from pyrrole precursors. 
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4.2 Preliminary results 

Whilst examining the spirocyclisation of 3-pyrrole ynones it was realised that treatment of 

pyrrole-tethered ynone 214a with 5 mol% AgNO3·SiO2 led to the formation of indole 215a 

and spirocycle 216 in a 4:1 ratio (Scheme 68). Although we had initially hoped to isolate the 

spirocycle in this reaction, the formation of the indole product was not entirely unexpected, 

considering the known tendency for pyrroles to react through their C-2 position. This 

preliminary result prompted further investigation into the possibility of preparing a range of 

substituted indole frameworks from simple pyrrole precursors using silver catalysis. 

 

Scheme 68. Treatment of pyrrole-tethered ynone 214a with AgNO3·SiO2. 

4.3 Reaction optimisation 

Before the scope of this methodology could be examined, the reaction conditions were 

optimised to ensure full and clean conversion of the pyrrole ynones into their indole products. 

Catalyst optimisation studies were performed on pyrrole-tethered ynone 214a and the results 

are summarised in Table 8. 

 

Entry Catalyst Catalyst loading 

/ mol% 

Reaction 

time / h 

Conversiona / % 

SM 

214a 

Indole 

215a 

Spiro 

216 

1 AgNO3·SiO2
b 1 4 65 23 12 

2 AgNO3·SiO2
b 5 2 0 80 20 

3 AgNO3 1 6 78 22 0 

4 AgNO3 5 3 0  100 (97) 0 
aConversions calculated by analysis of starting material:product ratios in the unpurified 1H NMR 

spectra and isolated yields reported in parentheses. bReactions performed using 1 wt% AgNO3·SiO2. 

Table 8. Optimisation of benzannulation conditions. 
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As can be seen from the results in Table 8, with AgNO3·SiO2 the formation of spirocycle 216 

could not be avoided, and consequently, the conversion into the indole product 215a was 

lower (Entries 1 and 2). It was also realised during these reactions that full conversion of 

ynone 214a into 5-hydroxy indole 215a was crucial in enabling clean isolation of the indole 

product, as any remaining ynone starting material could not be separated by column 

chromatography. Fortunately, it was found that simply switching from the AgNO3·SiO2 

catalyst to unsupported AgNO3 enabled the pyrrole benzannulation to proceed cleanly to 

indole 215a, without the formation of spirocycle 216 (Entry 3). Using 5 mol% AgNO3, 

pyrrole ynone 214a underwent full and clean benzannulation furnishing 5-hydroxy indole 

215a in a 97% isolated yield (Entry 4). The mild reaction conditions used in this 

transformation and the near-quantitative yield obtained suggested that the synthesis of indoles 

via this AgNO3-catalysed benzannulation procedure could be competitive with current 

literature methods. 

4.4 Synthesis of pyrrole-tethered ynone precursors 

Before the scope of this benzannualation process could be explored, a suitable method of 

preparing 3-pyrrole-tethered ynones 219 had to be established. Provided that a route to 3-

substituted pyrroles 217 incorporating an ester/carboxylic acid group in the tether could be 

found, it was envisaged that the desired 3-pyrrole-tethered ynones 219 could be accessed 

using hydrolysis, T3P coupling and ynone formation reactions that have previously been used 

in the preparation of similar substrates (Scheme 69).  

 

Scheme 69. Proposed route to 3-pyrrole-tethered ynones. 

Following a literature search, it was found that there were only two synthetic procedures 

describing the synthesis of pyrrole-tethered ynones of the form 219. Both these literature 

procedures were repeated in order to test their reproducibility, in the hope that one of these 

methods could be used as a viable route towards 3-pyrrole-tethered ynones 219. 

Firstly, a route comprising of two literature steps, a Friedel-Crafts reaction149 and 

hydrogenolysis,150 was used to access pyrrole-tethered ethyl ester 222 (Scheme 70). The 

literature yields reported for the Friedel-Crafts and hydrogenolysis steps were 60% and 54%, 

respectively; unfortunately, when repeating both these literature procedures, neither of the 

reported yields were reproducible in our hands, and purification following the Friedel-Crafts 
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reaction was particularly challenging and cumbersome, and thus an alternative strategy was 

explored. 

 

Scheme 70. Synthesis of ethyl ester 222 via Friedel-Crafts and hydrogenolysis. 

Previously, a Cu-catalysed alkylation reaction reported by Reddy and co-workers was used to 

access 2-substituted pyrrole-tethered ethyl ester 224 in 65% yield, as well as a smaller amount 

of 3-substituted pyrrole 222 (Scheme 71).151 It was anticipated that if a bulky N-protecting 

group was used to sterically hinder the 2-position of pyrrole (this concept was employed in the 

Friedel Crafts reaction seen in Scheme 70), the same reaction could be employed to access a 

greater proportion of the 3-substituted pyrrole-tethered ethyl ester 222. When performing the 

Cu-catalysed alkylation reaction on TIPS-protected pyrrole 220, unfortunately pyrrole-

tethered ethyl ester 225 was only isolated in an 18% yield (Scheme 71). This reaction not only 

suffered from incomplete consumption of starting material 220 and dimerisation of ethyl 

diazoacetate (EDA), but also led to the formation of multiple alkylation products as the TIPS 

protecting group was not sufficiently bulky to prevent C-2 alkylation. 

 

Scheme 71. Synthesis of pyrrole-tethered ethyl esters 222 and 225. 

A variety of metal catalysts were screened in the alkylation reaction of TIPS-protected pyrrole 

220, and other reaction parameters (including solvent, temperature, stoichiometry of reagents 

and rate of EDA addition) were varied, but unfortunately full and clean conversion into the 

monoalkylated ethyl ester 225 could not be achieved. Nonetheless, while the isolated yield 



74 
 

was low, recovery of the TIPS-protected pyrrole starting material 220 was straightforward and 

the reaction could be performed in just 2 hours, which were advantages over the previous two-

step procedure described in Scheme 70. Thus, while the preparation of pyrrole-tethered ethyl 

ester 225 was not entirely satisfactory, it was sufficient for us to progress with the next phase 

of the project. 

Weinreb amide 218a was then prepared in three simple steps from TIPS-protected pyrrole-

tethered ethyl ester 225 (Scheme 72). TIPS deprotection was achieved using 

tetrabutylammonium fluoride (TBAF) and the hydrolysis and T3P coupling reactions were 

performed using standard conditions previously used within the group. 

 

Scheme 72. Formation of Weinreb amide 218a from TIPS-protected ethyl ester 225. 

Two additional Weinreb amides (218b and 218c) were also prepared via alkylation reactions 

starting from TIPS-protected pyrrole-tethered ethyl ester 225 and commercially available N-

methyl pyrrole 228 (Scheme 73). 

 

Scheme 73. Preparation of Weinreb amides 218b and 218c. 

A range of 3-pyrrole-tethered ynones were then prepared from their respective Weinreb 

amides using standard lithiation reaction conditions (Scheme 74). The yields of these ynone-

forming reactions were generally high across all substrates; the lowest isolated yield was 

obtained for TMS-protected ynone 214l which is not surprising, given the lability of the TMS 

functional group. 
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Scheme 74. 3-pyrrole-tethered ynones prepared. 

Pyrrole-tethered ynones incorporating substituents in the C-2 and C-3 positions were also 

prepared using a variety of literature procedures,152–154 some of which had to be modified to 

generate the desired products (Scheme 75). A literature procedure by Trost et al. was used to 

prepare the starting propargyl amine 231 which was used in both syntheses; the intial Pd-

catalysed steps were also reported by the Trost group.152 Standard conditions were used for the 

hydrolysis, T3P coupling and ynone formation steps; these conditions are described in 

Scheme 72 and Scheme 74.  
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aIsolated yields for ynone forming step only. bIsolated yields reported over three steps (hydrolysis, T3P 

coupling and ynone formation). 

Scheme 75. Formation of C-2/3 substituted ynones. 

C-2 substituted ynones 233a and 233b were isolated in good yields from their respective 

Weinreb amides. Ynones 237a and 237b incorporating C-2 and C-3 substituents were 

prepared in three consecutive steps from pyrrole-tethered methyl ester 236; the use of the 

unpurified material in each step is likely to have led to the low overall isolated yields 

observed. 

4.5 Pyrrole benzannulations using ynone precursors 

With a range of pyrrole-tethered ynones in hand, the scope of the benzannulation was 

explored. Attention was initially focused on the benzannulation of 3-pyrrole-tethered ynones 

which furnished a range of 5-hydroxy indole products (Scheme 76).  
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aOnly 10 mol% AgNO3 used. b5 mol% AgNO3 and 2.5 mol% Ag2O used. 

Scheme 76. Benzannulations of pyrrole-tethered ynones. 

Monitoring these cyclisations by TLC was difficult due to many of the starting ynones and 

indole products having coincident Rf values. It was also difficult to monitor these reactions by 

1H NMR spectroscopy as there were few characteristic peaks allowing identification of the 

indole products. Therefore, the disappearance of the alkyne stretch (at ca. 2200 cm-1) in the IR 

spectra of the reaction mixtures was generally used to monitor the progress of these reactions. 

In some cases it was also possible to use the highly fluorescent properties of the 5-hydroxy 

indole products, as the ynone starting materials themselves did not fluoresce under UV light. 

A characteristic 13C NMR signal for C-OH was also used to confirm the isolation of the 5-

hydroxy indole products; the C-OH carbon environment had a chemical shift at around 149 

ppm in the 13C NMR spectra.  
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The majority of pyrrole ynones were converted into their corresponding 5-hydroxy indoles in 

good yields. This was particularly pleasing given that the 5-hydroxy indole motif, and 

derivatives thereof, feature in numerous natural products and biologically active 

molecules.138,140 A range of alkyl and aromatic groups were tolerated in the C-7 position and 

an amine tether bearing a Boc-protecting group was also shown to be compatible, providing 

indole 215f in quantitative yield. Ynones 214g and 214h incorporating a chloro group and an 

alkene moiety appeared to be less reactive and both required over 20 h for the reaction to 

reach completion; their hydroxy indoles 215g and 215h are particularly useful though, 

containing functional groups amenable to further modification. Four trisubtituted indoles 

215j–m were also generated, demonstrating the compatibility of N-protected pyrrole ynones 

and C-2/4 substituents in this procedure. Indole products 215j, 215l and 215m required a 

Ag2O additive for the benzannulation to proceed to completion, but nonetheless, the indole 

products were isolated in good yields using these modified conditions. 

The regioselectivity of the benzannulation procedure was confirmed by both nOe experiments 

and X-ray crystallography. Indole 215b was the only product isolated from the reaction of 

ynone 214b; it was obtained as a crystalline solid and its structure was determined by 

crystallography (shown in Scheme 76 and Figure 15). Additionally, nOe experiments were 

performed on the phenyl-substituted indole 215a and the results were supportive of the 

regioisomer 215a-A shown in Scheme 76 rather than regioisomer 215a-B; an enhancement in 

the phenyl proton signal (labelled b) was observed when the amine proton signal (labelled a) 

was irradiated (Figure 16). 

 

 

 

 

 

 

 

 

 

Figure 15. X-ray structure of indole 215b with thermal ellipsoids shown at 50% (CCDC 

1554901). 
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Figure 16. Regioselectivity confirmation using nOe experiments. 

In addition to demonstrating the tolerance of various functional groups in the C-7 position of 

the indole framework, it was also desirable to synthesise the unsubstituted 5-hydroxy indole 

238. TMS-protected ynone 214l failed to react in the presence of AgNO3 and efforts to isolate 

the corresponding deprotected ynone 239 were also unsuccessful. Hence, it was decided to 

focus on the in situ deprotection and immediate reaction of the terminal ynone 239 to afford 5-

hydroxy indole 238. Pleasingly, in situ TMS deprotection promoted by borax 

(Na2B4O7·10H2O), followed by the addition of 10 mol% AgNO3 at RT afforded 5-hydroxy 

indole 238 in 64% yield (Scheme 77). 
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Scheme 77. One-pot deprotection and cyclisation of TMS-protected ynone 214l. 

4.6 Pyrrole benzannulations using propargyl alcohols 

A selection of 3-pyrrole ynones were then transformed using either Grignard/organolithium 

addition (conditions A in Scheme 78) or NaBH4 reduction (conditions B in Scheme 78) to 

prepare propargyl alcohol substrates 240a–f for screening in the benzannulation reaction. 

 

aIsolated yield over three steps. 

Scheme 78. Reduction of 3-pyrrole ynones using organometallic reagents or NaBH4. 

Propargyl alcohols 240d and 240e were obtained in high yields following NaBH4 reduction, 

but the Grignard/organolithium reductions typically did not proceed to completion, which 

could be due to the presence of enolisable protons in these systems. Terminal propargyl 

alcohol 240f was prepared from Weinreb amide 218a in three steps; ynone formation 

followed by NaBH4 reduction and K2CO3-mediated deprotection, provided propargyl alcohol 

240f in an 83% yield (Scheme 79). 
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Scheme 79. Formation of terminal propargyl alcohol 240f from Weinreb amide 218a. 

Propargyl alcohol substrates 240a–f were then examined in the benzannulation process, 

furnishing a range of substituted indole frameworks, the results of which are shown in Scheme 

80. 

 

a15 mol% AgNO3 used. Conversions calculated by analysis of starting material:product ratios in the 

unpurified 1H NMR spectra. 

Scheme 80. Benzannulation reactions using propargyl alcohol substrates. 

Not only did the propargyl alcohol substrates require higher catalyst loadings in comparison to 

the pyrrole ynone substrates described earlier, but in some cases, AgNO3 alone was not able to 

promote full conversion into the indole products. Previously, our group have shown that a 

combination of AgNO3 and Ag2O can be effective in the cyclisation of indole-tethered 

propargyl alcohols;94 it appeared that a Ag2O additive (conditions A in Scheme 80) also had a 

beneficial role in the cyclisation of pyrrole-tethered propargyl alcohols, leading to increased 

conversions and enhanced isolated yields for indoles 241a,d–f. The exact role of the Ag2O 
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additive is not known, but when trying to promote the cyclisation of ynone 240d using 15 

mol% Ag2O no reaction was observed. Therefore, it appears that Ag2O does not catalyse the 

reaction directly, but may work by buffering the reaction mixture. Unfortunately, the 

combination of AgNO3 and Ag2O were less successful conditions for the formation of 

substituted indoles 241b and 241c. In these two cases, switching to the AgNO3·SiO2 catalyst 

previously developed within the group, promoted cyclisation of propargyl alcohols 240b and 

240c and the desired indole products 241b and 241c were isolated in 99% and 43% yields, 

respectively. 

4.7 Mechanistic insight and density functional theory (DFT) 

calculations 

Two possible mechanistic pathways were considered for the benzannulation of pyrrole-

tethered ynones, both of which are depicted in Scheme 81. Coordination of the alkyne to the 

silver(I) catalyst increases its electrophilicity and activates it towards attack from the electron-

rich pyrrole ring. This nucleophilic attack can occur through either the pyrrole C-2 position 

(route A, Scheme 81) or C-3 position (route B, Scheme 81). It was considered likely that 

attack would occur via the most nucleophilic C-2 position, giving rise to intermediate enone 

243 which then undergoes protodemetallation and tautomerisation to generate the 5-hydroxy 

indole product 245. Alternatively, it is possible that attack could occur via the less 

nucleophilic C-3 position to form spirocyclic intermediate 244, which then undergoes a 1,2-

migration followed by protodemetallation and tautomerisation as seen in pathway A. The 

propargyl alcohol series are also expected to undergo one of these described pathways, except 

the tautomerisation step is replaced by the elimination of water.  

 

Scheme 81. Possible mechanistic pathways for benzannulation. 
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Although it was considered most likely that the benzannulation would occur via C-2 attack, 

this original notion was questioned following attempts to cyclise substituted ynones 237a and 

237b (Scheme 82). When treating each ynone with a mixture of AgNO3 and Ag2O, none of 

the expected indole products (247a and 247b) were formed and instead spirocyclic structures 

246a and 246b were isolated. These results were surprising, not only because dearomatisation 

of pyrroles through the C-3 position is rare, but also because this had taken place in preference 

to C-2 annulation. 

 

Scheme 82. Attempted benzannulation of ynones 237a and 237b. 

In view of these surprising results, density functional theory was used to try and gain an 

understanding of the factors underpinning the mechanism, by probing possible pathways for 

C-C bond formation. Before the cyclisations of selected pyrrole ynones could be modelled by 

DFT, a suitable catalyst system that could be modelled effectively had to be established. Due 

to the kinetic lability of silver(I) complexes, the precise nature of the active species of AgNO3 

is unclear and can not be accurately modelled by DFT. However, the reaction of AgOTf with 

an equivalent of PPh3 results in the formation of a known complex Ag(OTf)PPh3,
155,156 and it 

was anticipated that ynone substrates would displace the weakly bound OTf ligand in this 

complex to give a cationic silver(I) phosphine species 248 that could be modelled by DFT. 

The feasibility of this catalyst system was evaluated by treating pyrrole ynone 214a with a 

solution of Ag(OTf)PPh3 (formed in situ by mixing AgOTf and PPh3 in CH2Cl2), pleasingly it 

was found to be a viable catalyst system resulting in the formation of indole 215a in 77% 

isolated yield (Scheme 83). 

 

Scheme 83. Benzannulation of pyrrole ynone 214a using Ag(OTf)PPh3 complex. 

All the DFT calculations were carried out by Dr. Jason Lynam at the University of York. 

Firstly, the Gibbs energies for the transformations shown in Scheme 84a (214a into 216 and 
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215a, 237a into 246a and 247a) were calculated using DFT. It was found that indole 215a 

was the thermodynamic product of the reaction when using unsubstituted pyrrole ynone 214a 

(ΔG298 = –223 kJ mol-1) and that spirocycle 216 would be a kinetic product from this reaction 

(ΔG298 = –58 kJ mol-1). Although, employing substituted pyrrole ynone 237a changed the 

outcome of the experimental reaction (see Scheme 82), it did not significantly alter this 

picture with the indole product 247a being more stable than spirocycle 246a, indicating that 

this reaction is instead under kinetic control. 

 

All DFT calculations were performed by Dr. Jason Lynam. Energies are Gibbs energies at 298 K at the 

D3-PBE0/def2-TZVPP//BP86/SVP(P) level with COSMO solvent correction in CH2Cl2. 

Scheme 84. DFT-calculated energies for (a) formation of compounds 215a/247a and 

216/246a from 214a/237a and (b) silver-catalysed C-C bond formation from alkyne 

complex A. 
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The cyclisation of ynones 214a and 237a were then modelled by DFT using [Ag(PPh3)
+] as 

the catalyst system (Scheme 84b). In the case of the cyclisation reaction of unsubstituted 

pyrrole 214a, two transition states for C-C bond formation were calculated. Transition state 

tsBC is best represented as nucleophilic attack through the C-3 position leading to the vinyl 

silver spirocycle C. The second transition state, tsBD corresponds to C-C bond formation 

through the C-2 position leading to D where subsequent tautomerisation and 

protodemetallation would give indole product 215a. Although the formation of C will occur 

more rapidly than D, the former is, at best, isoenergetic with A, and will be in rapid 

equilibrium with B. As D is significantly lower in energy (–33 kJ mol-1), indole 215a would 

be the expected product from the reaction rather than spirocycle 216. In the case of substituted 

pyrrole ynone 237a the situation is different with corresponding complex C now lower in 

energy than both B and A. As C will have a significant population in this case, it may then 

undergo protodemetallation to give spirocyclic product 246a, consistent with it being a kinetic 

product formed from the lower lying transition state tsBC. 

In summary of these DFT studies, we propose that the cyclisation of pyrrole ynones is likely 

to proceed via initial nucleophilic attack through the C-3 position of pyrrole due to the lower 

lying transition state associated with this transformation. Therefore, it is believed that C-3 

spirocycles are transiently formed in all reactions, but the formation of the C-2 annulated 

products are isolated in the majority of cases due to them being the more thermodynamically 

stable species. The kinetic spirocyclic products are formed in cases when the energy of the 

spirocyclic intermediate C is significantly lower than complex B; the spirocyclic intermediate 

C is not in equilibrium with the ring-opened species B and therefore ring closure via C-2 does 

not occur. 

4.8 Summary 

The use of the pyrrole benzannulation methodology in the synthesis of various substituted 

indole frameworks has been established using silver(I) catalysis. The substrate scoping studies 

began with pyrrole-tethered ynones in which a range of substituted 5-hydroxy indole products 

were isolated in high yields. The benzannulation procedure was also extended to propargyl 

alcohol substrates with varying levels of success, and slight modification of the initial reaction 

conditions was required to access some indole frameworks. Insight into the mechanistic 

pathway was provided by DFT calculations; these studies suggest that the reactions proceed 

via initial nucleophilic attack through the pyrrole C-3 position, going against the generally 

accepted view that pyrroles are most nucleophilic through C-2. The C-2 annulated products 

are formed in the majority of cases, likely via ring-opening of a spirocyclic intermediate and 

re-closing through C-2 attack.  



86 
 

Chapter 5. Divergent reactivity of phenol- and anisole-tethered donor-

acceptor α-diazocarbonyls 

Chapter 6. Experimental 

6.1 General experimental details 

Except where stated, all reagents were purchased from commercial sources and used without 

further purification. Anhydrous CH2Cl2, toluene, acetonitrile and DMF were obtained from an 

Innovative Technology Inc. PureSolv® solvent purification system. Anhydrous THF was 

obtained by distillation over sodium benzophenone ketyl immediately before use. 1H NMR 

and 13C NMR spectra were recorded on a JEOL ECX400 or JEOL ECS400 spectrometer, 

operating at 400 MHz and 100 MHz. All spectral data was acquired at 295 K. Chemical shifts 

(δ) are quoted in parts per million (ppm). The residual solvent peaks, δH 7.27 and δC 77.0 for 

CDCl3, δH 2.50 and δC 39.5 for (CD3)2SO, δH 3.31 and δC 49.1 for CD3OD, δH 2.05 and δC 

29.8 for (CD3)2CO were used as a reference. Coupling constants (J) are reported in Hertz (Hz) 

to the nearest 0.5 Hz. The multiplicity abbreviations used are: s (singlet), d (doublet), t 

(triplet), q (quartet), dt (doublet of triplets), tt (triplet of triplets), qt (quartet of triplets), m 

(multiplet). Signal assignment was achieved by analysis of DEPT, COSY, HMBC and HSQC 

experiments where required. Infrared (IR) spectra were recorded on a PerkinElmer UATR 2 

Spectrometer as a thin film dispersed from either CH2Cl2 or CDCl3. Mass spectra (high-

resolution) were obtained by the University of York Mass Spectrometry Service, using 

Electrospray Ionisation (ESI) on a Bruker Daltonics, Micro-tof spectrometer. Melting points 

were determined using Gallenkamp apparatus. Thin layer chromatography was carried out on 

Merck silica gel 60F254 pre-coated aluminium foil sheets and were visualised using UV light 

(254 nm) and stained with basic aqueous potassium permanganate. Flash column 

chromatography was carried out using slurry packed Fluka silica gel (SiO2), 35–70 μm, 60 Å, 

under a light positive pressure, eluting with the specified solvent system. Chiral stationary 

phase HPLC was performed on an Agilent 1200 series instrument and a multiple wavelength, 

UV/Vis diode array detector. Numbering schemes on compounds refer to NMR assignments 

and not to compound naming. 
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6.2 Preparation of supported catalysts 

Preparation of 1 wt.% AgNO3·SiO2 catalyst 

Based on procedures reported by Smith and Li.69,93 To a stirred slurry of Fluka silica gel (9.90 

g, pore size 60 Å, 220–440 mesh particle size) in deionised water (27 mL) was added AgNO3 

(100 mg) and the resulting mixture was stirred vigorously for 15 min. The catalyst mixture 

was then concentrated in vacuo (water bath at 60 °C) to form free-flowing AgNO3·SiO2. The 

catalyst was then dried further by heating to 140 °C under a high vacuum for 4-5 h. After 

preparation, the catalyst was stored in the dark at RT 

Preparation of 1 wt.% AgNO3 on Celite catalyst 

Based on a procedure reported by McKillop,62 Celite was first purified by washing 

successively with MeOH containing 10% aq. HCl and then with distilled water until neutral 

pH was reached. The Celite was then dried by heating to 120 °C under a high vacuum for 1 h. 

To a stirred slurry of purified Celite (990 mg) in water (7.5 mL) was added AgNO3 (10 mg) 

and the resulting mixture was stirred vigorously for 15 min. The catalyst mixture was then 

concentrated in vacuo (water bath at 60 °C) and then dried further by heating to 140 °C under 

a high vacuum for 4-5 h. After preparation the catalyst was stored in the dark at RT. 

Preparation of 1 wt.% AgNO3 on alumina catalyst 

Based on a procedure reported by Smith,93 AgNO3 (10 mg) was added to a stirred slurry of 

alumina (990 mg) in water (3 mL) and the resulting mixture was stirred vigorously for 15 min. 

The catalyst mixture was then concentrated in vacuo (water bath at 60 °C) and then dried 

further by heating to 140 °C under a high vacuum for 4-5 h. After preparation the catalyst was 

stored in the dark at RT. 

Preparation of 0.8 wt.% Ag2CO3 on Celite catalyst 

Based on a procedure reported by McKillop,62 Celite was purified by washing successively 

with MeOH containing 10% aq. HCl and then with distilled water until neutral pH was 

reached. The Celite was then dried by heating to 120 °C under a high vacuum for 1 h. To a 

stirred slurry of purified Celite (992 mg) in water (3 mL) was added Ag2CO3 (8 mg) and the 

resulting mixture was stirred vigorously for 15 min. The catalyst mixture was then 

concentrated/dried in vacuo (water bath at 55 °C) for 2 h. After preparation the catalyst was 

stored in the dark at RT. 
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6.3 ReactIRTM studies 

All ReactIRTM experiments were performed using a Mettler Toledo ReactIRTM spectrometer 

with a silicon probe and K6 conduit/R4 (mirror arm). IR spectra were taken in real-time every 

60 seconds between 4000 and 649 cm-1, with a spectral resolution of 4 cm-1. The probe was 

fitted to a shallow glass boiling tube containing a magnetic stirrer bar to provide agitation and 

all reactions were performed under air at RT. 

Procedure for ReactIR
TM

 experiment shown as dark blue line in Figures 4, 5 and 11 

To a shallow boiling tube charged with a stirrer bar was added CH2Cl2 (3.9 mL). Ynone 136a 

(100 mg, 0.386 mmol) was then added followed by the addition of 1 wt.% AgNO3·SiO2 (65.6 

mg, 3.86 μmol) and the reaction mixture was stirred at RT for 1 h. 

Procedure for ReactIR
TM

 experiment shown as purple line in Figures 4, 5, 6, 7 and 12 

To a shallow boiling tube charged with a stirrer bar was added CH2Cl2 (3.9 mL). Ynone 136a 

(100 mg, 0.386 mmol) was then added followed by the addition of AgNO3 (0.66 mg, 3.86 

μmol) and the reaction mixture was stirred at RT for 6 h. 

Procedure for ReactIR
TM

 experiment shown as orange line in Figure 5 

To a shallow boiling tube charged with a stirrer bar was added CH2Cl2 (3.9 mL). Ynone 136a 

(100 mg, 0.386 mmol) was then added followed by the addition of AgNO3 (0.66 mg, 3.86 

μmol) and SiO2 (65.6 mg) and the reaction mixture was stirred at RT for 3 h. 

Procedure for ReactIR
TM

 experiment shown as grey line in Figures 6 and 13 

To a shallow boiling tube charged with a stirrer bar and aged AgNO3 (0.66 mg, 3.86 μmol) in 

CH2Cl2 (3.9 mL) was added ynone 136a (100 mg, 0.386 mmol). The reaction mixture was 

stirred at RT for 3 h. 

Note: Aged AgNO3 was prepared by stirring AgNO3 in CH2Cl2 for 24 h under air at RT. 

Procedure for ReactIR
TM

 experiment shown as red line in Figure 7 

To a shallow boiling tube charged with a stirrer bar was added CH2Cl2 (7.7 mL). Ynone 136a 

(200 mg, 0.771 mmol) was then added followed by the addition of AgNO3 (1.32 mg, 7.71 

μmol) and the reaction mixture was stirred at RT for 2 h 40 min before the addition of Hg 

(22.8 μL, 1.54 mmol). The reaction mixture was stirred vigorously until cessation of the 

reaction was clearly observed. 
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Procedure for ReactIR
TM

 experiment shown as light blue line in Figure 11 

To a shallow boiling tube charged with a stirrer bar was added CH2Cl2 (3.9 mL). Ynone 136a 

(100 mg, 0.386 mmol) was then added followed by the addition of AgNO3 (0.66 mg, 3.86 

μmol) and the reaction mixture was stirred at RT for 20 min. 

Procedure for ReactIR
TM

 experiment shown as pink line in Figures 12 and 13 

To a shallow boiling tube charged with a stirrer bar was added CH2Cl2 (3.5 mL). Ynone 136a 

(90 mg, 0.347 mmol) was then added followed by the addition of spirocyclic imine 137a (45 

mg, 0.174 mmol) and AgNO3 (0.59 mg, 3.47 μmol) and the reaction mixture was stirred at RT 

for 3 h. 

6.4 TEM imaging 

Solid samples for TEM imaging were crushed between two glass slides and pressed onto 3 

mm holey carbon coated copper grids (300 mesh) supplied by Agar Scientific. TEM images 

were obtained using a JEOL 2011 transmission electron microscope operated at 200 kV 

accelerating voltage. CCD images were extracted using Gatan Digital Micrograph software. 

Particle size distributions of nanoparticles were evaluated by averaging the diameter of > 30 

particles from a TEM image. 

6.5 ICP-MS analysis 

Sample preparation: To a glass sample tube charged with a magnetic stirrer bar was added 10 

mg of material to be analysed. 5 mL of HNO3 (TraceSelect® HNO3 99.999% trace metal 

basis, lot no. SHBF1444V, supplied by Sigma Aldrich) was then added and the mixture was 

heated to 110 °C for 3 h. A glass block was placed on top of the sample tube to avoid HNO3 

evaporation. After 3 h, the mixture was left to cool to RT and carefully poured into a 100 mL 

volumetric flask containing approx. 50 mL Milli-Q® water. Milli-Q® water was then added 

to make up a 100 mL solution for analysis. 

Determination of the silver content in samples using Inductively Coupled Plasma Mass 

Spectrometry (ICP-MS) was performed using an Agilent 7700x spectrometer and the analysis 

was run under helium. Each sample was run three times and the overall mean value of silver 

in ppm was obtained.  
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6.6 Flow chemistry 

Flow reactions were performed using a Uniqsis FlowSynTM platform fitted with a 7 bar back 

pressure regulator and PTFE flow paths were used. The AgNO3·SiO2 catalyst was packed into 

a 10 mm id x 100 mm OMNIFIT® column reactor and a flow rate of 0.3 mL/min was used. 

Procedure for > 20g scale flow reaction 

To a reagent vessel was added ynone 136a (23.6 g, 91.0 mmol) and toluene (900 mL) which 

was stirred for 1 h to ensure all of the ynone had dissolved. The 1 wt.% AgNO3·SiO2 catalyst 

(1.93 g, 0.114 mmol) was packed inside the column reactor and toluene was flushed through 

the flow path before starting the reaction. The flow reaction was performed continuously over 

51 h using a flow rate of 0.3 mL/min. All fractions from the flow reaction were combined and 

concentrated in vacuo to afford spirocycle 137a (23.6 g, 100%). 

6.7 Computational chemistry 

All calculations were performed using the TURBOMOLE V6.4 package using the resolution 

of identity (RI) approximation.183–190  

Initial optimisations were performed at the (RI-)BP86/SV(P) level, followed by frequency 

calculations at the same level. Transition states were located by initially performing a 

constrained minimisation (by freezing internal coordinates that change most during the 

reaction) of a structure close to the anticipated transition state. This was followed by a 

frequency calculation to identify the transition vector to follow during a subsequent transition 

state optimisation. A final frequency calculation was then performed on the optimised 

transition-state structure. All minima were confirmed as such by the absence of imaginary 

frequencies and all transition states were identified by the presence of only one imaginary 

frequency. Dynamic Reaction Coordinate analysis confirmed that transition states were 

connected to the appropriate minima. Single-point calculations on the (RI-)BP86/SV(P) 

optimised geometries were performed using the hybrid PBE0 functional and the flexible def2-

TZVPP basis set. The (RI-)PBE0/def2-TZVPP SCF energies were corrected for their zero 

point energies, thermal energies and entropies (obtained from the (RI-)BP86/SV(P)-level 

frequency calculations). A 28 electron quasi-relativistic ECP replaced the core electrons of 

Ag. No symmetry constraints were applied during optimisations. Solvent corrections were 

applied with the COSMO dielectric continuum model191 and dispersion effects modelled with 

Grimme’s D3 method.192,193 
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6.8 General procedures 

General procedure A: Weinreb amide formation 

 

To a stirred solution of acid (1.00 mmol), MeNH(OMe)·HCl (107 mg, 1.10 mmol) and 

DIPEA (0.52 mL, 3.00 mmol) in CH2Cl2 (2.5 mL) was added T3P 50% in EtOAc (955 mg, 

1.50 mmol). The solution was stirred at RT until completion was observed by TLC. The 

reaction mixture was poured into water (20 mL) and acidified using 10% aq. HCl (5 mL). The 

organics were collected and the aqueous extracted with EtOAc (3 × 30 mL). The organics 

were combined, washed with aq. 2 M NaOH (20 mL), brine (20 mL), dried over MgSO4 and 

concentrated in vacuo to afford the Weinreb amide product. 

General procedure B: Ynone formation 

 

To a stirred solution of alkyne (48.0 mmol) in THF (48 mL) at −78 °C under argon was added 

n-BuLi (16.0 mL, 40.0 mmol, 2.5 M in hexanes) dropwise. The mixture was stirred for 30 min 

at −78 °C and then transferred via cannula to a −78 °C solution of Weinreb amide (16.0 

mmol) in THF (80 mL). Upon complete transfer the mixture was warmed to RT and stirred 

for the specified amount of time. The reaction was quenched by the careful addition of sat. aq. 

NH4Cl (100 mL). The organics were separated and the aqueous layer was extracted with 

EtOAc (3 × 100 mL). The organics were combined, washed with brine (100 mL), dried over 

MgSO4, concentrated in vacuo and purified by column chromatography to afford the ynone 

product. 
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General procedure C: Spirocyclisation using AgNO3·SiO2 

 

To a solution of ynone (1 mmol) in CH2Cl2 (10 mL) was added AgNO3·SiO2 (0.01–0.1 equiv., 

1 wt.% AgNO3 on SiO2). The mixture was stirred at the specified temperature until 

completion was observed by TLC. The reaction mixture was filtered, washing the catalyst 

with EtOAc (10 mL), then concentrated in vacuo to afford the spirocyclic product. 

General procedure D: Spirocyclisation using AgNO3 

 

To a solution of ynone (1 mmol) in CH2Cl2 (10 mL) was added AgNO3 (0.01–0.1 equiv.). The 

mixture was stirred at the specified temperature until completion was observed by TLC. The 

reaction mixture was concentrated in vacuo and then purified by column chromatography to 

afford the spirocyclic product. 
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General procedure E: Pyrrole annulation of ynones using AgNO3 

 

To a solution of ynone (1 mmol) in CH2Cl2 (10 mL) was added AgNO3 (0.05–0.10 equiv.). 

The mixture was stirred at RT until completion was observed by TLC. The reaction mixture 

was concentrated in vacuo and then purified by column chromatography to afford the 

benzannulated product. 

General procedure F: Pyrrole annulation of ynones using AgNO3 and Ag2O 

 

To a solution of ynone (1 mmol) in CH2Cl2 (10 mL) was added AgNO3 (0.05–0.10 equiv.) and 

Ag2O (0.025–0.05 equiv.). The mixture was stirred at RT until completion was observed by 

TLC. The reaction mixture was concentrated in vacuo and then purified by column 

chromatography to afford the benzannulated product. 

General procedure G: Pyrrole annulation of propargyl alcohols using AgNO3 and Ag2O 

 

To a solution of propargyl alcohol (1 mmol) in CH2Cl2 (10 mL) was added AgNO3 (0.10 

equiv.) and Ag2O (0.05 equiv.). The mixture was stirred at RT until completion was observed 

by TLC. The reaction mixture was concentrated in vacuo and then purified by column 

chromatography to afford the benzannulated product. 
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General procedure H: Pyrrole annulation of propargyl alcohols using AgNO3·SiO2 

 

To a solution of propargyl alcohol (1 mmol) in CH2Cl2 (10 mL) was added AgNO3·SiO2 (0.10 

equiv.). The mixture was stirred at RT until completion was observed by TLC. The reaction 

mixture was filtered, then concentrated in vacuo and then purified by column chromatography 

to afford the benzannulated product. 
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6.9 Reaction procedures and compound characterisation 

6.9.1 Chapter 2 

2-(1H-Indol-3-yl)-N-methoxy-N-methylacetamide (135a) 

 

Synthesised using general procedure A with indole-3-acetic acid 134a (15.0 g, 85.6 mmol), 

T3P 50% in EtOAc (81.7 g, 128 mmol), DIPEA (44.7 mL, 257 mmol) and MeNH(OMe)·HCl 

(9.18 g, 94.1 mmol) in CH2Cl2 (214 mL) at RT for 1 h. Afforded the title compound 135a 

without further purification as a pale brown solid (18.1 g, 97%); mp 122–124 °C; Rf 0.14 (1:1 

hexane:EtOAc); νmax (thin film)/cm-1 3296, 2936, 1643, 1458, 1426, 1008, 743; δH (400 MHz, 

CDCl3) 3.23 (3 H, s, H-12), 3.67 (3 H, s, H-13), 3.93 (2 H, s, H-10), 7.09–7.21 (3 H, m, H-

3/4/8), 7.33 (1 H, d, J = 8.0 Hz, H-5), 7.67 (1 H, d, J = 8.0 Hz, H-2), 8.27 (1 H, br s, H-7); δC 

(100 MHz, CDCl3) 29.1 (C-10), 32.5 (C-12), 61.4 (C-13), 109.1 (C-9), 111.1 (C-5), 118.8 (C-

2), 119.5 (C-3), 122.0 (C-4), 123.1 (C-8), 127.6 (C-1), 136.2 (C-6), 173.3 (C-11). 

Lab notebook reference: akc01-67 

Spectroscopic data matched those previously reported in the literature.194 

 

Ethyl 2-(1H-pyrrol-2-yl)acetate (S2) 

 

To a stirred solution of pyrrole S1 (1.34 g, 20.0 mmol) in CH2Cl2 (100 mL) at 0 °C was added 

ethyl diazoacetate (3.02 mL, 25.0 mmol, 87 wt.% in CH2Cl2) and Cu(OTf)2 (362 mg, 1.00 

mmol). The reaction mixture was then warmed to RT and stirred for 1 h. The reaction mixture 

was then quenched with water (100 mL). The organics were separated and the aqueous 

extracted with CH2Cl2 (2 x 100 mL). The organics were combined, dried over MgSO4 and 

concentrated in vacuo. The crude material was purified by column chromatography (20:1 

hexane:EtOAc, then 10:1 hexane:EtOAc) to afford the title compound S2 as a pale yellow oil 
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(836 mg, 27%); Rf 0.57 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 3388, 2983, 1727, 1370, 

1243, 1157, 1028, 720; δH (400 MHz, CDCl3) 1.30 (3 H, t, J = 7.0 Hz, H-9), 3.68 (2 H, s, H-

6), 4.19 (2 H, q, J = 7.0 Hz, H-8), 6.02–6.05 (1 H, m, H-4), 6.14–6.18 (1 H, m, H-2/3), 6.76–

6.79 (1 H, m, H-2/3), 8.76 (1 H, br s, H-1); δC (100 MHz, CDCl3) 14.1 (C-9), 33.2 (C-6), 61.1 

(C-8), 107.2 (C-4), 108.2 (C-2/3), 117.7 (C-2/3), 123.3 (C-5), 171.2 (C-7). 

Lab notebook reference: akc01-91 

Spectroscopic data matched those previously reported in the literature.195 

 

2-(1H-Pyrrol-2-yl)acetic acid (134e) 

 

To a solution of ethyl 2-(1H-pyrrol-2-yl)acetate S2 (804 mg, 5.25 mmol) in THF (37 mL) and 

MeOH (3.7 mL) at 0 °C was added 2 M aq. NaOH (30 mL) dropwise. The reaction mixture 

was warmed to RT and stirred for 1 h 20 min. Water (20 mL) was added and the aqueous 

layer was washed with EtOAc (20 mL). The organic extract was discarded. The aqueous layer 

was acidified with 10% aq. HCl (20 mL) until pH = 1 and then extracted with EtOAc (2 x 20 

mL). The organics were combined, dried over MgSO4 and concentrated in vacuo to afford the 

title compound 134e without further purification as an off white solid (621 mg, 95%); mp 77–

79 °C; Rf 0.36 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 3341, 3325, 3119, 2910, 1696, 1415, 

1243, 1209, 745; δH (400 MHz, CDCl3) 3.74 (2 H, s, H-6), 6.07–6.11 (1 H, m, H-4), 6.17–

6.20 (1 H, m, H-2/3), 6.77–6.80 (1 H, m, H-2/3), 8.57 (1 H, br s, H-1), 10.67 (1 H, br s, H-8); 

δC (100 MHz, CDCl3) 33.1 (C-6), 107.9 (C-4), 108.5 (C-2/3), 118.1 (C-2/3), 122.2 (C-5), 

177.3 (C-7). 

Lab notebook reference: akc01-92 

Spectroscopic data matched those previously reported in the literature.196 
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N-Methoxy-N-methyl-2-(1H-pyrrol-2-yl)acetamide (135e) 

 

Synthesised using general procedure A with 2-(1H-pyrrol-2-yl)acetic acid 134e (596 mg, 4.76 

mmol), T3P 50% in EtOAc (4.55 g, 7.14 mmol), DIPEA (2.49 mL, 14.3 mmol) and 

MeNH(OMe)·HCl (511 mg, 5.24 mmol) in CH2Cl2 (24 mL) at RT for 1.5 h. Afforded the title 

compound 135e without further purification as a pale brown solid (633 mg, 79%); mp 63–65 

°C; Rf 0.21 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 3322, 2938, 1646, 1432, 1386, 1175, 

1002, 723; δH (400 MHz, CDCl3) 3.22 (3 H, s, H-8), 3.72 (3 H, s, H-9), 3.83 (2 H, s, H-6), 

6.01–6.03 (1 H, m, H-4), 6.12–6.15 (1 H, m, H-2/3), 6.74–6.76 (1 H, m, H-2/3), 9.05 (1 H, br 

s, H-1); δC (100 MHz, CDCl3) 30.4 (C-6), 32.0 (C-8), 61.5 (C-9), 107.0 (C-4), 107.9 (C-2/3), 

117.5 (C-2/3), 124.3 (C-5), 171.6 (C-7); HRMS (ESI+): Found: 191.0791; C8H12N2NaO2 

(MNa+) Requires 191.0791 (0.1 ppm error), Found: 169.0977; C8H13N2O2 (MH+) Requires 

169.0972 (−3.3 ppm error). 

Lab notebook reference: akc01-93 

Spectroscopic data matched those previously reported in the literature.55 

 

Ethyl 2-(2,5-dimethyl-1H-pyrrol-3-yl)acetate (139) 

 

Procedure adapted from that of Schloemer et al., J. Org. Chem., 1994, 59, 5230–5234.197 

To a stirred solution of 2,5-dimethyl-1H-pyrrole 138 (4.50 g, 47.3 mmol) in THF (71 mL) at 

−15 °C was added methylmagnesium chloride (15.1 mL, 45.4 mmol, 3 M solution in THF). 

The cooling bath was removed, the solution was warmed to RT and stirred for 30 min. The 

solution was then cooled to −10 °C and ethyl bromoacatate was added quickly (2.09 mL, 18.9 

mmol). The reaction mixture was then warmed to RT again and stirred for 1 h. The reaction 

mixture was then quenched with sat. aq. NH4Cl (70 mL) and the aqueous layer was extracted 

with diethyl ether (50 mL). The combined organics were washed with sat. aq. NH4Cl (50 mL), 
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dried over MgSO4 and concentrated in vacuo. The crude material was purified by fractional 

distillation (bp 150–160 °C at 0.2 Torr) to afford the title compound 139 as a yellow oil (1.13 

g, 33%); Rf 0.71 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 3374, 2980, 2922, 1725, 1257, 

1178, 1031, 783; δH (400 MHz, CDCl3) 1.27 (3 H, t, J = 7.5 Hz, H-11), 2.18 (3 H, s, H-2), 

2.21 (3 H, s, H-5), 3.36 (2 H, s, H-8), 4.14 (2 H, q, J = 7.5 Hz, H-10), 5.75–5.78 (1 H, m, H-

6), 7.51 (1 H, br s, H-3); δC (100 MHz, CDCl3) 11.0 (C-2), 12.9 (C-5), 14.2 (C-11), 32.2 (C-

8), 60.5 (C-10), 107.2 (C-6), 111.3 (C-1/7), 123.3 (C-1/7), 125.3 (C-4), 172.7 (C-9); HRMS 

(ESI+): Found: 204.0992; C10H15NNaO2 (MNa+) Requires 204.0995 (1.5 ppm error), Found: 

182.1176; C10H16NO2 (MH+) Requires 182.1176 (−0.2 ppm error). 

Lab notebook reference: akc05-30 

 

2-(2,5-Dimethyl-1H-pyrrol-3-yl)-N-methoxy-N-methylacetamide (135f) 

 

To a solution of ethyl 2-(2,5-dimethyl-1H-pyrrol-3-yl)acetate 139 (1.12 g, 6.18 mmol) in THF 

(43 mL) and MeOH (4.3 mL) at 0 °C was added 2 M aq. NaOH (34 mL). The reaction 

mixture was warmed to RT and stirred for 7 h. Water (30 mL) was added and the aqueous 

layer was washed with EtOAc (30 mL). The organic extract was discarded. The aqueous layer 

was acidified with 10% aq. HCl (30 mL) until pH = 1 and then extracted with EtOAc (2 x 30 

mL). The organics were combined, dried over MgSO4 and concentrated in vacuo to afford the 

crude pyrrole acid 134f as a brown oil (1.01 g, 100%). 

To a stirred solution of crude pyrrole acid 134f (872 mg, 5.70 mmol), MeNH(OMe)·HCl (611 

mg, 6.27 mmol) and DIPEA (2.98 mL, 17.1 mmol) in CH2Cl2 (28 mL) was added T3P 50% in 

EtOAc (5.44 g, 8.54 mmol). The solution was stirred at RT for 1.5 h. Water (15 mL) was 

added and basified using aq. 2 M NaOH until pH = 10. The CH2Cl2 layer was removed and 

the aqueous extracted with EtOAc (2 x 20 mL). The organics were combined, washed with 

10% aq. HCl (20 mL), brine (20 mL), dried over MgSO4 and concentrated in vacuo to afford 

the title compound 135f without further purification as a brown oil (823 mg, 74%); Rf 0.49 

(7:3 EtOAc:hexane); νmax (thin film)/cm-1 3322, 2932, 1638, 1437, 1380, 1178, 1003, 787; δH 

(400 MHz, CDCl3) 2.17–2.22 (6 H, m, H-2,5), 3.19 (3 H, s, H-10), 3.50 (2 H, s, H-8), 3.67 (3 

H, s, H-11), 5.76 (1 H, s, H-6), 7.53 (1 H, br s, H-3); δC (100 MHz, CDCl3) 11.0 (C-2), 12.9 
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(C-5), 30.1 (C-8), 32.2 (C-10), 61.1 (C-11), 107.2 (C-6), 111.8 (C-1/7), 123.2 (C-1/7), 125.2 

(C-4), 173.6 (C-9); HRMS (ESI+): Found: 219.1111; C10H16N2NaO2 (MNa+) Requires 

219.1104 (−3.4 ppm error), Found: 197.1286; C10H17N2O2 (MH+) Requires 197.1285 (−0.7 

ppm error). 

Lab notebook reference: akc05-31/32 

 

2-(Benzofuran-3-yl)-N-methoxy-N-methylacetamide (135g) 

 

Synthesised using general procedure A with 2-(benzofuran-3-yl)acetic acid 134g*198 (514 mg, 

2.92 mmol), T3P 50% in EtOAc (2.78 g, 4.38 mmol), DIPEA (1.52 mL, 8.75 mmol) and 

MeNH(OMe)·HCl (313 mg, 3.21 mmol) in CH2Cl2 (15 mL) at RT for 1.5 h. Purification by 

column chromatography (1:1 hexane:EtOAc) afforded the title compound 135g as a yellow oil 

(622 mg, 97%); Rf 0.46 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 1659, 1452, 1093, 1001, 

742; δH (400 MHz, CDCl3) 3.23 (3 H, s, H-11), 3.71 (3 H, s, H-12), 3.85 (2 H, s, H-9), 7.23–

7.33 (2 H, m, H-3,4), 7.48 (1 H, d, J = 8.0 Hz, H-5), 7.63 (1 H, d, J = 8.0 Hz, H-2), 7.65 (1 H, 

s, H-7); δC (100 MHz, CDCl3) 27.5 (C-9), 32.2 (C-11), 61.3 (C-12), 111.4 (C-5), 113.6 (C-8), 

119.8 (C-2), 122.5 (C-3/4), 124.3 (C-3/4), 127.9 (C-1), 142.9 (C-7), 155.1 (C-6), 171.2 (C-

10); HRMS (ESI+): Found: 242.0795; C12H13NNaO3 (MNa+) Requires 242.0788 (−3.1 ppm 

error), Found: 220.0970; C12H14NO3 (MH+) Requires 220.0968 (−0.9 ppm error). 

Lab notebook reference: akc03-29 

*Material made by M. James 
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N-Methoxy-N-methyl-2-(2-methylbenzofuran-3-yl)acetamide (135h) 

 

Synthesised using general procedure A with 2-(2-methylbenzofuran-3-yl)acetic acid 134h*199 

(872 mg, 4.58 mmol), T3P 50% in EtOAc (4.38 g, 6.88 mmol), DIPEA (2.39 mL, 13.8 mmol) 

and MeNH(OMe)·HCl (492 mg, 5.04 mmol) in CH2Cl2 (20 mL) at RT for 1 h. Purification by 

column chromatography (5:3 hexane:EtOAc) afforded the title compound 135h as a pale 

yellow oil (698 mg, 65%); Rf 0.48 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2937, 1658, 

1455, 1173, 1007, 743; δH (400 MHz, CDCl3) 2.46 (3 H, s, H-8), 3.21 (3 H, s, H-12), 3.66 (3 

H, s, H-13), 3.76 (2 H, s, H-10), 7.18–7.22 (2 H, m, H-2/3/4/5), 7.36–7.40 (1 H, m, H-

2/3/4/5), 7.52–7.55 (1 H, m, H-2/3/4/5); δC (100 MHz, CDCl3) 12.2 (C-8), 28.2 (C-10), 32.3 

(C-12), 61.2 (C-13), 108.2 (C-9), 110.5 (C-2/3/4/5), 119.2 (C-2/3/4/5), 122.3 (C-2/3/4/5), 

123.2 (C-2/3/4/5), 129.3 (C-1), 152.3 (C-7), 153.8 (C-6), 171.5 (C-11). 

Lab notebook reference: akc03-20 

*Material made by G. Coulthard 

Spectroscopic data matched those previously reported in the literature.55 

 

2-(2-Bromo-1H-indol-3-yl)-N-methoxy-N-methylacetamide (140) 

 

Weinreb amide 135a (1.00 g, 4.58 mmol) was stirred in CH2Cl2 (20 mL) at 0 °C and N-

bromosuccinimide (815 mg, 4.58 mmol) was added. The reaction mixture was stirred at 0 °C 

for 5 min. The crude material was purified by column chromatography (1:1 hexane:EtOAc) to 

afford the title compound 140 as a pale yellow solid (677 mg, 50%); mp 98–100 °C; Rf 0.49 

(1:1 hexane:EtOAc); νmax (thin film)/cm-1 3244, 2935, 1641, 1450, 1425, 1338, 1176, 1002, 

742; δH (400 MHz, CDCl3) 3.23 (3 H, s, H-12), 3.68 (3 H, s, H-13), 3.89 (2 H, s, H-10), 7.07–

7.16 (2 H, m, H-3,4), 7.17–7.22 (1 H, m, H-5), 7.61 (1 H, d, J = 7.5 Hz, H-2), 8.39 (1 H, br s, 

H-7); δC (100 MHz, CDCl3) 29.7 (C-10), 32.3 (C-12), 61.2 (C-13), 108.7 (C-9), 109.7 (C-8), 
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110.5 (C-5), 118.6 (C-2), 120.1 (C-3), 122.2 (C-4), 127.7 (C-1), 136.1 (C-6), 171.8 (C-11); 

HRMS (ESI+): Found: 319.0038; C12H13
79BrN2NaO2 (MNa+) Requires 319.0053 (4.7 ppm 

error), Found: 297.0227; C12H14
79BrN2O2 (MH+) Requires 297.0233 (2.1 ppm error). 

Lab notebook reference: akc02-82 

 

2,2'-(2,2'-(1,4-Phenylene)bis(1H-indole-3,2-diyl))bis(N-methoxy-N-methylacetamide) 

(135i) 

 

To a dry two-neck flask was charged Weinreb amide 140 (670 mg, 2.25 mmol), benzene-1,4-

diboronic acid (170 mg, 1.02 mmol), LiCl (174 mg, 4.10 mmol), Na2CO3 (541 mg, 5.10 

mmol), toluene (5.6 mL), EtOH (5.6 mL) and water (3.4 mL). Argon was bubbled through the 

mixture for 10 min before the addition of Pd(PPh3)4 (118 mg, 0.102 mmol). The reaction 

mixture was then stirred overnight at 80 °C. The reaction mixture was cooled to RT and 

poured into water (20 mL), the aqueous was washed with EtOAc (2 x 20 mL). The organics 

were combined and extracted with water (10 mL) and brine (10 mL). All aqueous layers were 

combined and extracted with CHCl3 (3 x 50 mL). (The organic product was soluble in the 

aqueous layer in this procedure.) The CHCl3 layers were combined, washed with brine (20 

mL) and concentrated in vacuo to afford the title compound 135i without further purification 

as a yellow solid (240 mg, 46%); mp 227–229 °C; Rf 0.19 (1:1 hexane:EtOAc); νmax (thin 

film)/cm-1 3252, 2932, 1636, 1455, 1002, 731; δH (400 MHz, (CD3)2SO) 3.15 (6 H, s, H-12), 

3.67 (6 H, s, H-13), 4.00 (4 H, s, H-10), 7.02 (2 H, dd, J = 8.0, 7.5 Hz, H-3/4), 7.13 (2 H, dd, J 

= 8.0, 7.5 Hz, H-3/4), 7.40 (2 H, d, J = 8.0 Hz, H-2/5), 7.52 (2 H, d, J = 8.0 Hz, H-2/5), 7.77 

(4 H, s, H-15), 11.37 (2 H, s, H-7); δC (100 MHz, (CD3)2SO) 28.2 (C-10), 32.2 (C-12), 61.3 

(C-13), 105.7 (C-1/9), 111.2 (C-2/5), 118.9 (C-2/5), 119.0 (C-3/4), 121.8 (C-3/4), 128.1 (C-

15), 129.2 (C-1/9), 131.7 (C-14), 135.4 (C-8/9), 136.1 (C-1/6), 172.0 (C-11); HRMS (ESI+): 

Found: 533.2136; C30H30N4NaO4 (MNa+) Requires 533.2159 (4.4 ppm error). 

Lab notebook reference: akc02-83 
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1-(1H-Indol-3-yl)-4-phenylbut-3-yn-2-one (136a) 

 

Synthesised using general procedure B with phenylacetylene (22.6 mL, 0.206 mol), THF (550 

mL), Weinreb amide 135a (15.0 g, 68.7 mmol) and n-BuLi (68.7 mL, 0.172 mol, 2.5 M in 

hexanes) stirring at RT for 30 min. Purification by column chromatography (9:1 

hexane:EtOAc, then 5:1 hexane:EtOAc) afforded the title compound 136a as a brown solid 

(17.3 g, 97%); mp 90–92 °C; Rf 0.54 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 3409, 2208, 

1666, 1083, 743; δH (400 MHz, CDCl3) 4.10 (2 H, s, H-10), 7.15–7.21 (1 H, m, H-3), 7.21–

7.28 (2 H, m, H-4,8), 7.29–7.45 (6 H, m, H-5,15,16,17), 7.69 (1 H, br d, J = 7.5 Hz, H-2), 

8.18 (1 H, br s, H-7); δC (100 MHz, CDCl3) 42.0 (C-10), 88.0 (C-12), 92.1 (C-13), 107.6 (C-

9), 111.3 (C-5), 118.9 (C-2), 119.8 (C-3), 119.9 (C-14), 122.3 (C-4), 123.7 (C-8), 127.4 (C-1), 

128.5 (C-15/16), 130.6 (C-17), 133.1 (C-15/16), 136.1 (C-6), 185.7 (C-11); HRMS (ESI+): 

Found: 282.0881; C18H13NNaO (MNa+) Requires 282.0889 (2.8 ppm error), Found: 260.1066; 

C18H14NO (MH+) Requires 260.1070 (1.6 ppm error). 

Lab notebook reference: akc02-13/akc03-09 

Spectroscopic data matched those previously reported in the literature.55 

 

1-(1H-Indol-3-yl)pent-3-yn-2-one (136b) 

 

To a −78 °C solution of DIPA (3.06 mL, 21.8 mmol) in THF (22 mL) was added dropwise n-

BuLi (8.72 mL, 21.8 mmol, 2.5 M in hexanes). Upon complete addition the mixture was 

warmed to 0 °C and stirred for 30 min. The mixture was cooled to −78 °C before the dropwise 

addition of 1,2-dibromopropane S3 (0.72 mL, 6.87 mmol). The mixture was warmed to 0 °C 

and stirred for 30 min. The mixture was cooled to −78 °C and transferred via cannula to −78 

°C solution of Weinreb amide 135a (500 mg, 2.29 mmol) in THF (33 mL). Upon complete 
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transfer the reaction mixture was warmed to RT and stirred for 30 min. The reaction mixture 

was quenched with sat. aq. NH4Cl (20 mL). The organics were separated and the aqueous 

extracted with EtOAc (3 x 20 mL). The organics were combined, washed with brine (20 mL), 

dried over MgSO4 and concentrated in vacuo. The crude material was purified by column 

chromatography (9:1 hexane:EtOAc then 3:2 hexane:EtOAc) to afford the title compound 

136b as an orange oil (398 mg, 88%); Rf 0.52 (3:2 hexane:EtOAc); νmax (thin film)/cm-1 3406, 

2215, 1661, 1457, 1244, 1168, 742; δH (400 MHz, CDCl3) 1.96 (3 H, s, H-14), 3.99 (2 H, s, 

H-10), 7.12–7.15 (2 H, m, H-3,8), 7.19–7.25 (1 H, m, H-4), 7.38 (1 H, d, J = 8.0 Hz, H-5), 

7.61 (1 H, d, J = 8.0 Hz, H-2), 8.17 (1 H, br s, H-7); δC (100 MHz, CDCl3) 4.1 (C-14), 42.0 

(C-10), 80.2 (C-12), 91.3 (C-13), 107.3 (C-9), 111.3 (C-5), 118.7 (C-2), 119.6 (C-3), 122.1 

(C-4), 123.6 (C-8), 127.2 (C-1), 136.0 (C-6), 185.7 (C-11); HRMS (ESI+): Found: 220.0726; 

C13H11NNaO (MNa+) Requires 220.0733 (2.9 ppm error), Found: 198.0905; C13H12NO (MH+) 

Requires 198.0913 (4.4 ppm error). 

Lab notebook reference: akc02-65 

Spectroscopic data matched those previously reported in the literature.55 

 

1-(2-Methyl-1H-indol-3-yl)-4-phenylbut-3-yn-2-one (136c) 

 

Synthesised using general procedure B with phenylacetylene (0.43 mL, 3.87 mmol), THF (10 

mL), N-methoxy-N-methyl-2-(2-methyl-1H-indol-3-yl)acetamide 135b*55 (300 mg, 1.29 

mmol) and n-BuLi (1.29 mL, 3.23 mmol, 2.5 M in hexanes) stirring at RT for 30 min. 

Purification by column chromatography (9:1 hexane:EtOAc, then 7:3 hexane:EtOAc) afforded 

the title compound 136c as a yellow solid (310 mg, 88%); mp 102–104 °C; Rf 0.60 (1:1 

hexane:EtOAc); νmax (thin film)/cm-1 3398, 2202, 1660, 1462, 1302, 1117, 1093, 742; δH (400 

MHz, CDCl3) 2.47 (3 H, s, H-9), 4.00 (2 H, s, H-11), 7.11–7.19 (2 H, m, Ar-H), 7.28–7.34 (5 

H, m, Ar-H), 7.37–7.43 (1 H, m, Ar-H), 7.59–7.62 (1 H, m, Ar-H), 7.96 (1 H, br s, H-7); δC 

(100 MHz, CDCl3) 11.8 (C-9), 41.1 (C-11), 88.0 (C-13), 91.6 (C-14), 103.4 (C-10), 110.4 (C-

5), 118.1 (C-2), 119.7 (C-3/4), 119.9 (C-15), 121.3 (C-3/4), 128.4 (C-16/17), 128.6 (C-1), 

130.5 (C-18), 133.0 (C-16/17), 133.5 (C-8), 135.5 (C-6), 185.3 (C-12); HRMS (ESI+): Found: 
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296.1036; C19H15NNaO (MNa+) Requires 296.1046 (3.4 ppm error), Found: 274.1227; 

C19H16NO (MH+) Requires 274.1226 (−0.4 ppm error). 

Lab notebook reference: akc01-53 

*Material made by M. James 

 

1-(5-Bromo-1H-indol-3-yl)-4-phenylbut-3-yn-2-one (136d) 

 

Synthesised using general procedure B with phenylacetylene (0.16 mL, 1.46 mmol), THF (3.9 

mL), 2-(5-bromo-1H-indol-3-yl)-N-methoxy-N-methylacetamide 135c*55 (145 mg, 0.488 

mmol) and n-BuLi (0.49 mL, 1.22 mmol, 2.5 M in hexanes) stirring at RT for 30 min. 

Purification by column chromatography (9:1 hexane:EtOAc, then 7:3 hexane:EtOAc) afforded 

the title compound 136d as an orange solid (85.2 mg, 51%); mp 124–126 °C; Rf 0.44 (1:1 

hexane:EtOAc); νmax (thin film)/cm-1 3419, 2201, 1660, 1489, 1458, 1284, 1096, 791, 757, 

687; δH (400 MHz, CDCl3) 4.06 (2 H, s, H-10), 7.19–7.22 (1 H, d, J = 2.5 Hz, H-8), 7.25 (1 H, 

d, J = 8.5 Hz, H-5), 7.31 (1 H, dd, J = 8.5, 2.0 Hz, H-4), 7.32–7.38 (2 H, m, H-15/16), 7.41–

7.47 (3 H, m, H-15/16,17), 7.83 (1 H, d, J = 2.0 Hz, H-2), 8.30 (1 H, br s, H-7); δC (100 MHz, 

CDCl3) 41.8 (C-10), 87.9 (C-12), 92.4 (C-13), 107.3 (C-9), 112.8 (C-5), 113.2 (C-3), 119.7 

(C-14), 121.6 (C-2), 124.9 (C-8), 125.2 (C-4), 128.6 (C-15/16), 129.1 (C-1), 130.8 (C-17), 

133.1 (C-15/16), 134.7 (C-6), 185.1 (C-11); HRMS (ESI+): Found: 359.9984; 

C18H12
79BrNNaO (MNa+) Requires 359.9994 (2.8 ppm error). 

Lab notebook reference: akc01-63 

*Material made by M. James 
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5-(1H-Indol-3-yl)-1-phenylpent-1-yn-3-one (136e) 

 

Synthesised using general procedure B with phenylacetylene (0.71 mL, 6.46 mmol), THF 

(17.3 mL), 3-(1H-indol-3-yl)-N-methoxy-N-methylpropanamide 135d*55 (500 mg, 2.15 

mmol) and n-BuLi (2.15 mL, 5.38 mmol, 2.5 M in hexanes) stirring at RT for 30 min. 

Purification by column chromatography (9:1 hexane:EtOAc, then 7:3 hexane:EtOAc) afforded 

the title compound 136e as a pale yellow solid (491 mg, 84%); mp 74–76 °C; Rf 0.62 (1:1 

hexane:EtOAc); νmax (thin film)/cm-1 3413, 3057, 2202, 1661, 1489, 1457, 1095, 758, 742; δH 

(400 MHz, CDCl3) 3.08–3.15 (2 H, m, H-11), 3.21–3.28 (2 H, m, H-10), 7.03–7.07 (1 H, m, 

H-8), 7.13–7.19 (1 H, m, H-3), 7.20–7.26 (1 H, m, H-4), 7.35–7.42 (3 H, m, H-5,16/17), 7.43–

7.50 (1 H, m, H-18), 7.52–7.58 (2 H, m, H-16/17), 7.66 (1 H, d, J = 8.0 Hz, H-2), 8.01 (1 H, 

br s, H-7); δC (100 MHz, CDCl3) 19.7 (C-10), 45.9 (C-11), 87.8 (C-13), 91.1 (C-14), 111.2 

(C-5), 114.6 (C-9), 118.6 (C-2), 119.3 (C-3), 119.9 (C-15), 121.6 (C-8), 122.1 (C-4), 127.1 

(C-1), 128.6 (C-16/17), 130.7 (C-18), 133.0 (C-16/17), 136.3 (C-6), 187.7 (C-12); HRMS 

(ESI+): Found: 296.1053; C19H15NNaO (MNa+) Requires 296.1046 (−2.4 ppm error). 

Lab notebook reference: akc01-76 

*Material made by M. James 

 

1,1'-(2,2'-(1,4-Phenylene)bis(1H-indole-3,2-diyl))bis(4-phenylbut-3-yn-2-one) (136g) 

 

To a stirred solution of phenylacetylene (0.13 mL, 1.18 mmol) in THF (1.8 mL) at −78 °C 

under argon was added n-BuLi (0.39 mL, 0.979 mmol, 2.5 M in hexanes) dropwise. The 

mixture was stirred for 30 min at −78 °C and then transferred via cannula to a −78 °C solution 

of Weinreb amide 135i (100 mg, 0.196 mmol) in THF (2 mL). Upon complete transfer the 
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mixture was warmed to RT and stirred for 1 hr. The reaction was quenched by the careful 

addition of sat. aq. NH4Cl (10 mL). The organics were separated and the aqueous layer was 

extracted with EtOAc (3 × 10 mL). The organics were combined, washed with brine (10 mL), 

dried over MgSO4 and concentrated in vacuo. The crude material was purified by column 

chromatography (9:1 hexane:EtOAc, then 6:4 hexane:EtOAc) to afford the title compound 

136g as a yellow solid (43.4 mg, 37%); mp 196–198 °C; Rf 0.66 (1:1 hexane:EtOAc); νmax 

(thin film)/cm-1 3438, 2199, 1668, 1457, 1279, 1190, 1090, 847, 767, 752, 689; δH (400 MHz, 

(CD3)2SO) 4.29 (4 H, s, H-10), 7.09 (2 H, dd, J = 8.0, 7.5 Hz, H-3), 7.19 (2 H, dd, J = 7.5, 7.0 

Hz, H-4), 7.30–7.35 (4 H, m, H-15), 7.35–7.41 (4 H, dd, J = 8.0, 8.0 Hz, H-16), 7.43–7.51 (4 

H, m, H-5,17), 7.68 (2 H, d, J = 8.0 Hz, H-2), 7.88 (4 H, s, H-19), 11.60 (2 H, s, H-7); δC (100 

MHz, (CD3)2SO) 41.6 (C-10), 88.1 (C-12), 91.1 (C-13), 103.8 (C-9), 111.4 (C-5), 118.9 (C-

14), 119.0 (C-2), 119.4 (C-3), 122.2 (C-4), 128.0 (C-19), 129.0 (C-16), 129.1 (C-1), 131.3 (C-

17), 131.5 (C-18), 132.8 (C-15), 135.7 (C-8), 136.2 (C-6), 185.2 (C-11); HRMS (ESI+): 

Found: 615.2019; C42H28N2NaO2 (MNa+) Requires 615.2043 (3.9 ppm error). 

Lab notebook reference: akc02-84 

 

4-Phenyl-1-(1H-pyrrol-2-yl)but-3-yn-2-one (136h) 

 

Synthesised using general procedure B with phenylacetylene (0.98 mL, 8.92 mmol), THF (24 

mL), Weinreb amide 135e (500 mg, 2.97 mmol) and n-BuLi (2.97 mL, 7.43 mmol, 2.5 M in 

hexanes) stirring at RT for 30 min. Purification by column chromatography (9:1 

hexane:EtOAc, then 8:2 hexane:EtOAc) afforded the title compound 136h as a black solid 

(387 mg, 62%); mp 75–77 °C; Rf 0.62 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 3354, 2203, 

1667, 1444, 1282, 1091, 725, 690; δH (400 MHz, CDCl3) 4.02 (2 H, s, H-6), 6.12–6.16 (1 H, 

m, H-2/3/4), 6.19–6.24 (1 H, m, H-2/3/4), 6.79–6.83 (1 H, m, H-2/3/4), 7.36–7.42 (2 H, m, H-

12), 7.45–7.51 (1 H, m, H-13), 7.53–7.58 (2 H, m, H-11), 8.60 (1 H, br s, H-1); δC (100 MHz, 

CDCl3) 43.8 (C-6), 87.6 (C-8), 92.9 (C-9), 108.3 (C-4), 108.6 (C-2/3), 118.2 (C-2/3), 119.6 

(C-10), 122.7 (C-5), 128.6 (C-11/12), 131.0 (C-11/12), 133.2 (C-13), 184.7 (C-7); HRMS 

(ESI+): Found: 232.0736; C14H11NNaO (MNa+) Requires 232.0733 (−1.2 ppm error), Found: 

210.0912; C14H12NO (MH+) Requires 210.0913 (0.7 ppm error).  

Lab notebook reference: akc01-56 
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4-(4-Fluorophenyl)-1-(1H-pyrrol-2-yl)but-3-yn-2-one (136j) 

 

Synthesised using general procedure B with 1-ethynyl-4-fluorobenzene (602 mg, 5.01 mmol), 

THF (13 mL), Weinreb amide 135e (280 mg, 1.67 mmol) and n-BuLi (1.67 mL, 4.18 mmol, 

2.5 M in hexanes) stirring at RT for 30 min. Purification by column chromatography (8:2 

hexane:EtOAc) afforded the title compound 136j as a brown solid (206 mg, 54%); mp 72–74 

°C; Rf 0.43 (8:2 hexane:EtOAc); νmax (thin film)/cm-1 3360, 2205, 1668, 1598, 1506, 1095, 

843, 725; δH (400 MHz, CDCl3) 4.01 (2 H, s, H-6), 6.12–6.15 (1 H, m, H-2/3/4), 6.21 (1 H, 

dd, J = 6.0, 2.5 Hz, H-2/3/4), 6.79–6.83 (1 H, m, H-2/3/4), 7.09 (2 H, dd, 3JHH = 8.5 Hz, 3JHF 

8.5 Hz, H-12), 7.54 (2 H, dd, 3JHH = 8.5 Hz, 4JHF = 5.0 Hz, H-11), 8.58 (1 H, br s, H-1); δC 

(100 MHz, CDCl3) 43.7 (C-6), 87.5 (C-8), 91.9 (C-9), 108.3 (C-2/3/4), 108.6 (C-2/3/4), 115.7 

(d, 4JCF = 3.0 Hz, C-10), 116.2 (d, 2JCF = 23.0 Hz, C-12), 118.3 (C-2/3/4), 122.6 (C-5), 135.5 

(d, 3JCF = 10.0 Hz, C-11), 164.1 (d, 1JCF = 254 Hz, C-13), 184.6 (C-7); HRMS (ESI+): Found: 

250.0638; C14H10FNNaO (MNa+) Requires 250.0639 (0.2 ppm error).  

Lab notebook reference: akc04-93 

 

1-(1H-Pyrrol-2-yl)oct-3-yn-2-one (136k) 

 

Synthesised using general procedure B with with hex-1-yne (1.02 mL, 8.92 mmol), THF (24 

mL), Weinreb amide 135e (500 mg, 2.97 mmol) and n-BuLi (2.97 mL, 7.43 mmol, 2.5 M in 

hexanes) stirring at RT for 30 min. Purification by column chromatography (9:1 

hexane:EtOAc, then 8:2 hexane:EtOAc) afforded the title compound 136k as a brown oil (329 

mg, 59%); Rf 0.61 (7:3 hexane:EtOAc); νmax (thin film)/cm-1 3386, 2959, 2933, 2873, 2211, 

1666, 1237, 718; δH (400 MHz, CDCl3) 0.94 (3 H, t, J = 7.5 Hz, H-13), 1.42 (2 H, app. sextet, 

J = 7.5 Hz, H-12), 1.56 (2 H, app. pentet, J = 7.5 Hz, H-11), 2.38 (2 H, t, J = 7.5 Hz, H-10), 

3.89 (2 H, s, H-6), 6.02–6.05 (1 H, m, H-2/3/4), 6.17 (1 H, dd, J = 5.5, 3.0 Hz, H-2/3/4), 6.73–

6.76 (1 H, m, H-2/3/4), 8.59 (1 H, br s, H-1); δC (100 MHz, CDCl3) 13.4 (C-13), 18.7 (C-10), 
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21.9 (C-12), 29.6 (C-11), 43.8 (C-6), 80.7 (C-8), 96.6 (C-9), 107.9 (C-2/3/4), 108.4 (C-2/3/4), 

118.0 (C-2/3/4), 122.8 (C-5), 184.8 (C-7); HRMS (ESI+): Found: 212.1051; C12H15NNaO 

(MNa+) Requires 212.1046 (−2.6 ppm error), Found: 190.1221; C12H16NO (MH+) Requires 

190.1226 (2.9 ppm error).  

Lab notebook reference: akc05-05 

 

1-(2,5-Dimethyl-1H-pyrrol-3-yl)-4-phenylbut-3-yn-2-one (136l) 

 

Synthesised using general procedure B with phenylacetylene (0.42 mL, 3.82 mmol), THF (10 

mL), Weinreb amide 135f (250 mg, 1.27 mmol) and n-BuLi (1.27 mL, 3.18 mmol, 2.5 M in 

hexanes) stirring at RT for 30 min. Purification by column chromatography (9:1 

hexane:EtOAc, then 2:1 hexane:EtOAc) afforded the title compound 136l as a yellow oil (164 

mg, 54%); Rf 0.83 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 3370, 2918, 2203, 1659, 1489, 

1288, 1071, 758, 689; δH (400 MHz, CDCl3) 2.22 (3 H, s, H-2), 2.23 (3 H, s, H-5), 3.69 (2 H, 

s, H-8), 5.78–5.81 (1 H, m, H-6), 7.35–7.41 (2 H, m, H-13/14), 7.42–7.47 (1 H, m, H-15), 

7.51–7.55 (2 H, m, H-13/14), 7.60 (1 H, br s, H-3); δC (100 MHz, CDCl3) 11.1 (C-2), 12.9 (C-

5), 43.2 (C-8), 88.2 (C-10), 91.1 (C-11), 107.6 (C-6), 110.1 (C), 120.3 (C), 124.2 (C), 125.7 

(C), 128.5 (C-13/14), 130.5 (C-15), 133.0 (C-13/14), 186.2 (C-9); HRMS (ESI+): Found: 

260.1044; C16H15NNaO (MNa+) Requires 260.1046 (0.8 ppm error), Found: 238.1219; 

C16H16NO (MH+) Requires 238.1226 (3.0 ppm error).  

Lab notebook reference: akc05-33 
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1-(2,5-Dimethyl-1H-pyrrol-3-yl)-4-(4-fluorophenyl)but-3-yn-2-one (136m) 

 

Synthesised using general procedure B with 1-ethynyl-4-fluorobenzene (450 mg, 3.75 mmol), 

THF (10 mL), Weinreb amide 135f (245 mg, 1.25 mmol) and n-BuLi (1.25 mL, 3.13 mmol, 

2.5 M in hexanes) stirring at RT for 30 min. Purification by column chromatography (9:1 

hexane:EtOAc, then 7:3 hexane:EtOAc) afforded the title compound 136m as a yellow oil 

(178 mg, 56%); Rf 0.57 (7:3 hexane:EtOAc); νmax (thin film)/cm-1 3369, 2919, 2203, 1656, 

1599, 1505, 1224, 1066, 837; δH (400 MHz, CDCl3) 2.22 (3 H, s, H-2), 2.23 (3 H, s, H-5), 

3.69 (2 H, s, H-8), 5.78–5.81 (1 H, m, H-6), 7.07 (2 H, dd, 3JHH = 8.5 Hz, 3JHF 8.5 Hz, H-14), 

7.49–7.55 (2 H, m, H-13), 7.68 (1 H, br s, H-3); δC (100 MHz, CDCl3) 11.0 (C-2), 12.9 (C-5), 

43.1 (C-8), 88.0 (C-10), 90.1 (C-11), 107.5 (C-6), 110.0 (C-1/7), 116.0 (d, 2JCF = 23.0 Hz, C-

14), 116.3 (d, 4JCF = 4.0 Hz, C-12), 124.2 (C-1/7), 125.7 (C-4), 135.2 (d, 3JCF = 8.5 Hz, C-13), 

163.8 (d, 1JCF = 253 Hz, C-15), 186.1 (C-9); HRMS (ESI+): Found: 278.0944; C16H14FNNaO 

(MNa+) Requires 278.0952 (2.7 ppm error), Found: 256.1127; C16H15FNO (MH+) Requires 

256.1132 (2.2 ppm error). 

Lab notebook reference: akc05-42 

 

1-(2,5-Dimethyl-1H-pyrrol-3-yl)oct-3-yn-2-one (136n) 

 

Synthesised using general procedure B with with hex-1-yne (0.40 mL, 3.45 mmol), THF (9 

mL), Weinreb amide 135f (226 mg, 1.15 mmol) and n-BuLi (1.15 mL, 2.88 mmol, 2.5 M in 

hexanes) stirring at RT for 30 min. Purification by column chromatography (9:1 

hexane:EtOAc, then 7:3 hexane:EtOAc) afforded the title compound 136n as a yellow oil (123 

mg, 49%); Rf 0.62 (7:3 hexane:EtOAc); νmax (thin film)/cm-1 3372, 2958, 2931, 2872, 2211, 
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1658, 1243, 1171, 781; δH (400 MHz, CDCl3) 0.93 (3 H, t, J = 7.5 Hz, H-15), 1.41 (2 H, app. 

sextet, J = 7.5 Hz, H-14), 1.54 (2 H, app. pentet, J = 7.5 Hz, H-13), 2.17 (3 H, s, H-2), 2.21 (3 

H, s, H-5), 2.35 (2 H, t, J = 7.5 Hz, H-12), 3.57 (2 H, s, H-8), 5.71–5.74 (1 H, m, H-6), 7.70 (1 

H, br s, H-3); δC (100 MHz, CDCl3) 10.9 (C-2), 12.8 (C-5), 13.4 (C-15), 18.6 (C-12), 21.8 (C-

14), 29.6 (C-13), 43.2 (C-8), 81.0 (C-10), 94.7 (C-11), 107.3 (C-6), 110.1 (C-1/7), 123.9 (C-

1/7), 125.4 (C-4), 186.5 (C-9); HRMS (ESI+): Found: 240.1359; C14H19NNaO (MNa+) 

Requires 240.1359 (−0.2 ppm error), Found: 218.1539; C14H20NO (MH+) Requires 218.1539 

(0.1 ppm error).  

Lab notebook reference: akc05-38 

 

1-(2-Methylbenzofuran-3-yl)-4-phenylbut-3-yn-2-one (136o) 

 

Synthesised using general procedure B with phenylacetylene (0.87 mL, 7.92 mmol), THF (20 

mL), Weinreb amide 135h (616 mg, 2.64 mmol) and n-BuLi (2.64 mL, 6.60 mmol, 2.5 M in 

hexanes) stirring at RT for 30 min. Purification by column chromatography (10:1 

hexane:EtOAc, then 8:1 hexane:EtOAc) afforded the title compound 136o as a yellow solid 

(499 mg, 69%); mp 34–36 °C; Rf 0.29 (10:1 hexane:EtOAc); νmax (thin film)/cm-1 3062, 2921, 

2202, 1669, 1456, 1282, 1251, 1174, 1113, 1078, 746; δH (400 MHz, CDCl3) 2.50 (3 H, s, H-

8), 3.92 (2 H, s, H-10), 7.21–7.29 (2 H, m, H-2/3/4/5), 7.30–7.38 (4 H, m, H-15,16), 7.41–

7.46 (2 H, m, H-2/3/4/5,17), 7.50–7.54 (1 H, m, H-2/3/4/5); δC (100 MHz, CDCl3) 12.2 (C-8), 

40.4 (C-10), 87.7 (C-12), 92.4 (C-13), 107.1 (C-9), 110.7 (C-2/3/4/5), 118.9 (C-2/3/4/5), 

119.6 (C-14), 122.5 (C-2/3/4/5), 123.5 (C-2/3/4/5), 128.6 (C-15/16), 129.1 (C-1), 130.8 (C-

17), 133.1 (C-15/16), 153.3 (C-7), 154.0 (C-6), 184.0 (C-11); HRMS (ESI+): Found: 

297.0882; C19H14NaO2 (MNa+) Requires 297.0886 (1.5 ppm error), Found: 275.1074; 

C19H15O2 (MH+) Requires 275.1067 (−2.8 ppm error). 

Lab notebook reference: akc03-21 
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1-(Benzofuran-3-yl)-4-phenylbut-3-yn-2-one (136p) 

 

Synthesised using general procedure B with phenylacetylene (0.81 mL, 7.35 mmol), THF (20 

mL), Weinreb amide 135g (537 mg, 2.45 mmol) and n-BuLi (2.45 mL, 6.12 mmol, 2.5 M in 

hexanes) stirring at RT for 30 min. Purification by column chromatography (9:1 

hexane:EtOAc) afforded the title compound 136p as a yellow oil (201 mg, 32%); Rf 0.49 (9:1 

hexane:EtOAc); νmax (thin film)/cm-1 2202, 1669, 1453, 1097, 1081, 746; δH (400 MHz, 

CDCl3) 4.04 (2 H, s, H-9), 7.27–7.31 (1 H, m, H-3), 7.32–7.39 (3 H, m, H-4,14/15), 7.40–7.47 

(3 H, m, H-14/15,16), 7.53 (1 H, d, J = 8.0 Hz, H-5), 7.61 (1 H, d, J = 8.0 Hz, H-2), 7.71 (1 H, 

s, H-7); δC (100 MHz, CDCl3) 40.2 (C-9), 87.6 (C-11), 92.6 (C-12), 111.6 (C-5), 112.5 (C-8), 

119.6 (C-13), 119.7 (C-2), 122.8 (C-3), 124.6 (C-4), 127.7 (C-1), 128.6 (C-14/15), 130.9 (C-

16), 133.1 (C-14/15), 143.4 (C-7), 155.2 (C-6), 183.8 (C-10); HRMS (ESI+): Found: 

283.0721; C18H12NaO2 (MNa+) Requires 283.0730 (2.9 ppm error), Found: 261.0898; 

C18H13O2 (MH+) Requires 261.0910 (4.6 ppm error). 

Lab notebook reference: akc03-30 

 

1-(1H-Indol-3-yl)but-3-yn-2-ol (141) 

 

To a stirred solution of TMS acetylene (0.98 mL, 6.87 mmol) in THF (20 mL) at −78 °C 

under argon was added n-BuLi (2.29 mL, 5.73 mmol, 2.5 M in hexanes) dropwise. The 

mixture was stirred for 30 min at −78 °C and then transferred via cannula to a −78 °C solution 

of Weinreb amide 135a (500 mg, 2.29 mmol) in THF (11 mL). Upon complete transfer the 

mixture was warmed to RT and stirred for 40 min. The reaction was quenched by the addition 

of sat. aq. NH4Cl (10 mL). The organics were separated and the aqueous layer extracted with 

EtOAc (3 × 20 mL). The organics were combined, washed with brine (20 mL), dried over 

MgSO4 and concentrated in vacuo. The crude material was then dissolved in MeOH (45 mL), 
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cooled to 0 °C and NaBH4 (347 mg, 9.16 mmol) was added portionwise. The mixture was 

stirred for 30 min at RT and then K2CO3 (633 mg, 4.58 mmol) was added. The mixture was 

stirred for a further 6 h at RT. The reaction was quenched by the addition of sat. aq. NH4Cl 

(20 mL) and diluted with CH2Cl2 (50 mL).The organics were separated and the aqueous layer 

was extracted with CH2Cl2 (3 x 20 mL). The organics were combined, washed with brine (20 

mL), dried over MgSO4, concentrated in vacuo and purified by column chromatography (7:3 

hexane:EtOAc, then 3:2 hexane:EtOAc) to afford the title compound 141 as a brown oil (338 

mg, 80%); Rf 0.21 (7:3 hexane:EtOAc); νmax (thin film)/cm-1 3409, 3282, 1457, 1027, 1010, 

743, 649; δH (400 MHz, CDCl3) 2.09 (1 H, br d, J = 5.5 Hz, H-12), 2.48 (1 H, d, J = 2.5 Hz, 

H-14), 3.19 (1 H, dd, J = 14.5, 7.0 Hz, H-10a), 3.28 (1 H, dd, J = 14.5, 5.5 Hz, H-10b), 4.65–

4.72 (1 H, m, H-11), 7.13–7.19 (2 H, m, H-3,8), 7.23 (1 H, ddd, J = 8.0, 7.5, 1.0 Hz, H-4), 

7.39 (1 H, br d, J = 8.0 Hz, H-5), 7.69 (1 H, br d, J = 8.0 Hz, H-2), 8.13 (1 H, br s, H-7); δC 

(100 MHz, CDCl3) 33.8 (C-10), 62.2 (C-11), 73.1 (C-14), 84.7 (C-13), 110.3 (C-9), 111.2 (C-

5), 118.9 (C-2), 119.6 (C-3), 122.2 (C-4), 123.4 (C-8), 127.5 (C-1), 136.2 (C-6); HRMS 

(ESI+): Found: 208.0730; C12H11NNaO (MNa+) Requires 208.0733 (1.5 ppm error). 

Lab notebook reference: akc03-11 

Spectroscopic data matched those previously reported in the literature.94 

 

2-Phenylspiro[cyclopent[2]ene-1,3'-indol]-4-one (137a) 

 

Method 1. Synthesised using general procedure C with ynone 136a (100 mg, 0.386 mmol), 

AgNO3·SiO2 (65.5 mg, 3.86 μmol) in CH2Cl2 (3.9 mL) at RT for 30 min. Afforded the title 

compound 137a without further purification as a brown solid (98.2 mg, 98%). 

Lab notebook reference: akc02-30  

Method 2. Synthesised using general procedure D with ynone 136a (100 mg, 0.386 mmol), 

AgNO3 (0.66 mg, 3.86 μmol) in CH2Cl2 (3.9 mL) at RT for 6 h. Purification by column 

chromatography (9:1 hexane:EtOAc, then 1:1 hexane:EtOAc) afforded the title compound 

137a as a brown solid (94.4 mg, 94%). 
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Lab notebook reference: akc02-34 

mp 138–140 °C; Rf 0.31 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 3068, 1701, 1591, 757; δH 

(400 MHz, CDCl3) 2.69 (1 H, d, J = 19.0 Hz, H-10a), 3.06 (1 H, d, J = 19.0 Hz, H-10b), 6.85 

(1 H, s, H-12), 6.96–7.01 (2 H, m, H-15), 7.16–7.23 (2 H, m, H-16), 7.24–7.34 (3 H, m, H-

2,3,17); 7.46 (1 H, ddd, J = 8.0, 7.5, 1.5 Hz, H-4), 7.78 (1 H, d, J = 8.0 Hz, H-5), 8.22 (1 H, s, 

H-8); δC (100 MHz, CDCl3) 42.4 (C-10), 65.9 (C-9), 121.5 (C-2/3), 122.1 (C-5), 126.8 (C-15), 

127.7 (C-2/3), 128.9 (C-16), 129.1 (C-4), 130.8 (C-12), 131.4 (C-17), 132.4 (C-14), 140.8 (C-

1), 154.8 (C-6), 172.0 (C-13), 174.1 (C-8), 204.4 (C-11); HRMS (ESI+): Found: 282.0885; 

C18H13NNaO (MNa+) Requires 282.0889 (1.5 ppm error), Found: 260.1068; C18H14NO (MH+) 

Requires 260.1070 (0.9 ppm error). 

Spectroscopic data matched those previously reported in the literature.55 

 

2-Methylspiro[cyclopent[2]ene-1,3'-indol]-4-one (137b) 

 

Method 1. Synthesised using general procedure C with ynone 136b (112 mg, 0.568 mmol), 

AgNO3·SiO2 (96.5 mg, 5.68 μmol) in CH2Cl2 (5.7 mL) at RT for 35 min. Afforded the title 

compound 137b without further purification as a yellow solid (106 mg, 95%).  

Lab notebook reference: akc02-67 

Method 2. Synthesised using general procedure D with ynone 136b (114 mg, 0.578 mmol), 

AgNO3 (0.98 mg, 5.78 μmol) in CH2Cl2 (5.8 mL) at RT for 5 h. Purification by column 

chromatography (9:1 hexane:EtOAc, then 1:1 hexane:EtOAc) afforded the title compound 

137b as a yellow solid (100 mg, 88%).  

Lab notebook reference: akc02-68 

mp 109–111 °C; Rf 0.23 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 1713, 1689, 1619, 1550, 

1455, 1295, 1192, 849, 773, 758; δH (400 MHz, CDCl3) 1.57 (3 H, s, H-14), 2.67 (1 H, d, J = 

19.0 Hz, H-10a), 2.94 (1 H, d, J = 19.0 Hz, H-10b), 6.27–6.30 (1 H, m, H-12), 7.22 (1 H, br d, 

J = 7.0 Hz, H-2), 7.30–7.35 (1 H, m, H-3), 7.44 (1 H, ddd, J = 8.0, 8.0, 1.5 Hz, H-4), 7.71 (1 

H, br d, J = 8.0 Hz, H-5), 7.96 (1 H, s, H-8); δC (100 MHz, CDCl3) 14.6 (C-14), 40.4 (C-10), 
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67.8 (C-9), 121.5 (C-2), 127.7 (C-5), 127.4 (C-3), 129.0 (C-4), 132.8 (C-12), 139.1 (C-1), 

155.6 (C-6), 173.1 (C-8), 175.6 (C-13), 205.5 (C-11); HRMS (ESI+): Found: 220.0726; 

C13H11NNaO (MNa+) Requires 220.0733 (2.9 ppm error), Found: 198.0905; C13H12NO (MH+) 

Requires 198.0913 (4.5 ppm error). 

Spectroscopic data matched those previously reported in the literature.55 

 

2'-Methyl-2-phenylspiro[cyclopent[2]ene-1,3'-indol]-4-one (137c) 

 

Method 1. Synthesised using general procedure C with ynone 136c (100 mg, 0.366 mmol), 

AgNO3·SiO2 (62.2 mg, 3.66 μmol) in CH2Cl2 (3.7 mL) at RT for 10 min. Afforded the title 

compound 137c without further purification as a yellow oil (93.8 mg, 94%).  

Lab notebook reference: akc01-55 

Method 2. Synthesised using general procedure D with ynone 136c (100 mg, 0.366 mmol), 

AgNO3 (0.62 mg, 3.66 μmol) in CH2Cl2 (3.7 mL) at RT for 2 h. Purification by column 

chromatography (9:1 hexane:EtOAc, then 1:1 hexane:EtOAc) afforded the title compound 

137c as a yellow oil (86.7 mg, 87%).  

Lab notebook reference: akc02-59 

Rf 0.22 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 3063, 1723, 1694, 1568, 1447, 1264, 1240, 

1198, 861, 764; δH (400 MHz, CDCl3) 2.22 (3 H, s, H-9), 2.75 (1 H, d, J = 19.0 Hz, H-11a), 

2.84 (1 H, d, J = 19.0 Hz, H-11b), 6.88 (1 H, s, H-13), 6.96–7.02 (2 H, m, Ar-H), 7.17–7.24 (4 

H, m, Ar-H), 7.29–7.35 (1 H, m, Ar-H), 7.38–7.44 (1 H, m, Ar-H), 7.66 (1 H, d, J = 8.0 Hz, 

H-5); δC (100 MHz, CDCl3) 15.8 (C-9), 45.1 (C-11), 66.6 (C-10), 120.8 (C-2/5), 121.7 (C-

2/5), 126.6 (C-3/4), 126.9 (C-16/17), 129.0 (C-3/4), 129.0 (C-16/17), 130.9 (C-13), 131.4 (C-

18), 132.1 (C-15), 141.7 (C-1), 154.6 (C-6), 172.8 (C-14), 182.9 (C-8), 204.7 (C-12); HRMS 

(ESI+): Found: 296.1037; C19H15NNaO (MNa+) Requires 296.1046 (3.2 ppm error), Found: 

274.1220; C19H16NO (MH+) Requires 274.1226 (2.3 ppm error). 

 



115 
 

5'-Bromo-2-phenylspiro[cyclopent[2]ene-1,3'-indol]-4-one (137d) 

 

Method 1. Synthesised using general procedure C with ynone 136d (100 mg, 0.297 mmol), 

AgNO3·SiO2 (50.4 mg, 2.97 μmol) in CH2Cl2 (3 mL) at RT for 1 h. Afforded the title 

compound 137d without further purification as an orange solid (98.8 mg, 98%).  

Lab notebook reference: akc02-53 

Method 2. Synthesised using general procedure D with ynone 136d (100 mg, 0.297 mmol), 

AgNO3 (0.50 mg, 2.97 μmol) in CH2Cl2 (3 mL) at RT for 6 h. Purification by column 

chromatography (9:1 hexane:EtOAc, then 1:1 hexane:EtOAc) afforded the title compound 

137d as an orange solid (97.5 mg, 97%).  

Lab notebook reference: akc02-54 

mp 189–191 °C; Rf 0.29 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 3061, 1697, 1591, 1569, 

1446, 1258, 777; δH (400 MHz, CDCl3) 2.67 (1 H, d, J = 19.0 Hz, H-10a), 3.05 (1 H, d, J = 

19.0 Hz, H-10b), 6.86 (1 H, s, H-12), 6.97–7.02 (2 H, m, H-15/16), 7.20–7.26 (2 H, m, H-

15/16), 7.32–7.38 (1 H, m, H-17), 7.38 (1 H, d, J = 2.0 Hz, H-2), 7.58 (1 H, dd, J = 8.0, 2.0 

Hz, H-4), 7.64 (1 H, d, J = 8.0 Hz, H-5), 8.21 (1 H, s, H-8); δC (100 MHz, CDCl3) 42.2 (C-

10), 66.1 (C-9), 121.6 (C-3), 123.4 (C-5), 125.0 (C-2), 126.7 (C-15/16), 129.1 (C-15/16), 

131.0 (C-12), 131.6 (C-17), 132.1 (C-14), 132.3 (C-4), 143.0 (C-1), 153.8 (C-6), 171.0 (C-

13), 174.4 (C-8), 203.5 (C-11); HRMS (ESI+): Found: 359.9988; C18H12
79BrNNaO (MNa+) 

Requires 359.9994 (1.9 ppm error). 
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1-Phenylspiro[cyclohex[6]ene-2,3'-indol]-5-one (137e) 

 

Synthesised using general procedure C with ynone 136e (99.7 mg, 0.365 mmol), AgNO3·SiO2 

(620 mg, 0.0365 mmol) in CH2Cl2 (3.7 mL) at 45 °C for 24 h. Afforded the title compound 

137e without further purification as a white solid (99.3 mg, 100%); mp 139–141 °C; Rf 0.27 

(1:1 hexane:EtOAc); νmax (thin film)/cm-1 3057, 2930, 1670, 1445, 1331, 1262, 749, 698; δH 

(400 MHz, (CD3)2SO) 1.88–2.02 (1 H, m, H-10a), 2.32–2.43 (1 H, m, H-10b), 2.68–2.83 (2 

H, m, H-11), 6.33 (1 H, s, H-13), 6.75–6.83 (2 H, m, H-16/17), 7.10–7.18 (2 H, m, H-16/17), 

7.19–7.30 (2 H, m, H-3,18), 7.40 (1 H, ddd, J = 8.0, 7.5, 1.0 Hz, H-4), 7.48 (1 H, d, J = 7.5 

Hz, H-2), 7.64 (1 H, d, J = 8.0 Hz, H-5), 8.60 (1 H, s, H-8); δC (100 MHz, (CD3)2SO) 31.1 (C-

10), 34.7 (C-11), 61.5 (C-9), 121.6 (C-5), 123.2 (C-2), 125.6 (C-16/17), 126.7 (C-3), 128.3 

(C-16/17), 128.8 (C-4), 129.2 (C-18), 129.8 (C-13), 137.8 (C-15), 141.2 (C-1), 155.1 (C-6), 

157.3 (C-14), 176.2 (C-8), 197.4 (C-12); HRMS (ESI+): Found: 296.1035; C19H15NNaO 

(MNa+) Requires 296.1046 (3.5 ppm error), Found: 274.1217; C19H16NO (MH+) Requires 

274.1226 (3.6 ppm error).  

Lab notebook reference: akc02-46  

 

1-(4-Methoxyphenyl)spiro[cyclohex[6]ene-2,3'-indol]-5-one (137f) 

 

Synthesised using general procedure C with 5-(1H-indol-3-yl)-1-(4-methoxyphenyl)pent-1-

yn-3-one 136f*55 (100 mg, 0.330 mmol), AgNO3·SiO2 (560 mg, 0.0330 mmol) in CH2Cl2 (3.3 

mL) at 45 °C for 24 h. Afforded the title compound 137f without further purification as a dark 

green oil (100 mg, 100%); Rf 0.35 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2934, 2838, 

1666, 1604, 1510, 1242, 1181, 1031, 831, 758; δH (400 MHz, CDCl3) 1.78 (1 H, dt, J = 13.5, 

5.0 Hz, H-10a), 2.55–2.66 (1 H, m, H-10b), 2.71 (1 H, dt, J = 18.0, 5.0 Hz, H-11a), 2.81–2.93 
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(1 H, m, H-11b) 3.72 (3 H, s, H-19), 6.47 (1 H, s, H-13), 6.63–6.69 (2 H, m, H-17), 6.69–6.76 

(2 H, m, H-16), 7.30 (1 H, dd, J = 7.5, 7.5 Hz, H-3), 7.37 (1 H, d, J = 7.5 Hz, H-2), 7.45–7.52 

(1 H, m, H-4), 7.78 (1 H, d, J = 7.5 Hz, H-5), 8.21 (1 H, br s, H-8); δC (100 MHz, CDCl3) 32.0 

(C-10), 34.3 (C-11), 55.2 (C-19), 61.6 (C-9), 114.1 (C-17), 122.5 (C-2/5), 122.8 (C-2/5), 

127.0 (C-3), 127.3 (C-16), 128.4 (C-13), 129.2 (C-4), 129.6 (C-15), 140.6 (C-1), 154.7 (C-6), 

157.2 (C-14), 161.0 (C-18), 176.7 (C-8), 197.8 (C-12); HRMS (ESI+): Found: 326.1152; 

C20H17NNaO2 (MNa+) Requires 326.1151 (−0.3 ppm error), Found: 304.1330; C20H18NO2 

(MH+) Requires 304.1332 (0.6 ppm error). 

Lab notebook reference: akc02-48 

*Material made by M. James 

Spectroscopic data matched those previously reported in the literature.55 

 

2'-(4-(4-Oxo-2-phenylspiro[cyclopentane-1,3'-indol]-2-en-2'-yl)phenyl)-2-

phenylspiro[cyclopentane-1,3'indol]-2-en-4-one (137g) 

 

To a solution of ynone 136g (24.5 mg, 41.3 μmol) in CH2Cl2 (0.8 mL) was added 

AgNO3·SiO2 (14.1 mg, 0.827 μmol). The mixture was stirred at RT for 1.5 h. The reaction 

mixture was filtered, washing the catalyst with EtOAc (5 mL), then concentrated in vacuo to 

afford the title compound 137g without further purification as a yellow solid (1:1.2 mixture of 

diastereoisomers A:B, 24.5 mg, 100%); mp 128–130 °C; Rf 0.52 (1:1 hexane:EtOAc); νmax 

(thin film)/cm-1 3070, 2925, 1720, 1692, 1587, 1260, 863, 759; δH (400 MHz, CDCl3) 2.66 (2 

H, d, J = 19.0 Hz, H-10a, A), 2.68 (2 H, d, J = 18.5 Hz, H-10a, B), 3.06 (2 H, d, J = 18.5 Hz, 

H-10b, B), 3.09 (2 H, d, J = 19.0 Hz, H-10b, A), 6.98 (2 H, s, H-12, A/B), 7.00 (2 H, s, H-12, 

A/B), 7.01–7.07 (8 H, m, H-15/16/17/2/3, A+B), 7.11–7.30 (20 H, m, H-15/16/17/2/3, A+B), 

7.43–7.49 (4 H, m, H-4, A+B), 7.81 (2 H, d, J = 8.0 Hz, H-5, A/B), 7.82 (2 H, d, J = 8.0 Hz, 

H-5, A/B), 7.98 (4 H, s, H-19, A/B), 7.99 (4 H, s, H-19, A/B); δC (100 MHz, (CD3)2SO) 46.5 

(C-10, A+B), 64.6 (C-9, A+B), 121.1 (CH, A+B), 121.7 (CH, A+B), 126.8 (CH, A+B), 127.6 

(CH, A+B), 128.1 (CH, A+B), 129.1 (CH, A+B), 129.3 (CH, A+B), 130.7 (CH, A+B), 131.4 
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(CH, A+B), 132.3 (C, A+B), 134.2 (C, A+B), 143.5 (C, A+B), 153.3 (C, A+B), 172.4 (C, 

A+B), 172.0 (C, A+B), 204.1 (C-11, A+B); HRMS (ESI+): Found: 593.2248; C42H29N2O2 

(MH+) Requires 593.2224 (−4.1 ppm error). 

Lab notebook reference: akc02-88 

 

9-Phenyl-1-azaspiro[4.4]nona-1,3,8-trien-7-one (143h) 

 

Synthesised using general procedure C with ynone 136h (100 mg, 0.477 mmol), AgNO3·SiO2 

(405 mg, 0.0239 mmol) in CH2Cl2 (4.8 mL) at RT for 2 h. Afforded the title compound 143h 

without further purification as a brown oil (90.2 mg, 90%); Rf 0.12 (1:1 hexane:EtOAc); νmax 

(thin film)/cm-1 3064, 1694, 1593, 1570, 1492, 1340, 1237, 1199, 766; δH (400 MHz, CDCl3) 

2.72 (1 H, d, J = 18.0 Hz, H-5a), 2.95 (1 H, d, J = 18.0 Hz, H-5b), 6.61 (1 H, d, J = 5.0 Hz, H-

2), 6.62 (1 H, s, H-7), 7.19–7.24 (2 H, m, H-10/11), 7.25–7.31 (2 H, m, H-10/11), 7.33–7.39 

(1 H, m, H-12), 7.48 (1 H, d, J = 5.0 Hz, H-3), 8.28 (1 H, s, H-1); δC (100 MHz, CDCl3) 40.8 

(C-5), 88.8 (C-4), 126.7 (C-10/11), 128.4 (C-10/11), 128.5 (C-2), 130.6 (C-12), 131.6 (C-7), 

133.3 (C-9), 157.3 (C-3), 166.2 (C-1), 172.9 (C-8), 203.9 (C-6); HRMS (ESI+): Found: 

232.0732; C14H11NNaO (MNa+) Requires 232.0733 (0.2 ppm error), Found: 210.0916; 

C14H12NO (MH+) Requires 210.0913 (−1.4 ppm error).  

Lab notebook reference: akc01-101 
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9-(4-Methoxyphenyl)-1-azaspiro[4.4]nona-1,3,8-trien-7-one (143i) 

 

Synthesised using general procedure C with 4-(4-methoxyphenyl)-1-(1H-pyrrol-2-yl)but-3-

yn-2-one 136i*55 (19.7 mg, 0.0823 mmol), AgNO3·SiO2 (70.0 mg, 4.11 μmol) in CH2Cl2 (1 

mL) at RT for 2 h. Afforded the title compound 143i without further purification as a brown 

oil (17.9 mg, 91%); Rf 0.12 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 1689, 1604, 1589, 1509, 

1251, 1179, 1027, 833, 772; δH (400 MHz, CDCl3) 2.66 (1 H, d, J = 18.0 Hz, H-5a), 2.90 (1 

H, d, J = 18.0 Hz, H-5b), 3.79 (3 H, s, H-13), 6.59 (1 H, s, H-7), 6.63 (1 H, d, J = 5.0 Hz, H-

2/3), 6.78 (2 H, d, J = 8.5 Hz, H-10/11), 7.19 (2 H, d, J = 8.5 Hz, H-10/11), 7.50 (2 H, d, J = 

5.0 Hz, H-2/3), 8.31 (1 H, s, H-1); δC (100 MHz, CDCl3) 40.9 (C-5), 55.3 (C-13), 88.8 (C-4), 

113.8 (C-10/11), 125.8 (C-9), 128.1 (C-2/3), 128.6 (C-10/11), 129.5 (C-7), 158.1 (C-2/3), 

161.7 (C-12), 166.1 (C-1), 171.7 (C-8), 203.7 (C-6); HRMS (ESI+): Found: 262.0832; 

C15H13NNaO2 (MNa+) Requires 262.0838 (2.4 ppm error), Found: 240.1018; C15H14NO2 

(MH+) Requires 240.1019 (0.4 ppm error). 

Lab notebook reference: akc04-94 

*Material made by M. James 

Spectroscopic data matched those previously reported in the literature.55 

 

9-(4-Fluorophenyl)-1-azaspiro[4.4]nona-1,3,8-trien-7-one (143j) 

 

Synthesised using general procedure C with ynone 136j (20.6 mg, 0.0907 mmol), 

AgNO3·SiO2 (77.0 mg, 4.54 μmol) in CH2Cl2 (1 mL) at RT for 2 h min. Afforded the title 

compound 143j without further purification as a brown oil (19.7 mg, 96%); Rf 0.15 (1:1 
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hexane:EtOAc); νmax (thin film)/cm-1 1694, 1603, 1506, 1237, 1199, 1162, 837, 773; δH (400 

MHz, CDCl3) 2.70 (1 H, d, J = 18.5 Hz, H-5a), 2.93 (1 H, d, J = 18.5 Hz, H-5b), 6.58 (1 H, s, 

H-7), 6.62 (1 H, d, J = 4.5 Hz, H-2/3), 6.96 (2 H, dd, 3JHH = 8.5 Hz, 3JHF 8.5 Hz, H-11), 7.21 

(2 H, dd, 3JHH = 8.5 Hz, 4JHF 5.5 Hz, H-10), 7.47 (1 H, d, J = 4.5 Hz, H-2/3), 8.29 (1 H, s, H-

1); δC (100 MHz, CDCl3) 40.7 (C-5), 88.7 (C-4), 115.6 (d, 2JCF = 22.0 Hz, C-11), 128.6 (C-7), 

128.9 (d, 3JCF = 8.5 Hz, C-10), 129.4 (d, 4JCF = 4.0 Hz, C-9), 131.5 (C-2/3), 157.4 (C-2/3), 

164.0 (d, 1JCF = 252 Hz, C-12), 166.4 (C-1), 171.4 (C-8), 203.5 (C-6); HRMS (ESI+): Found: 

250.0635; C14H10FNNaO (MNa+) Requires 250.0639 (1.5 ppm error), Found: 228.0818; 

C14H11FNO (MH+) Requires 228.0819 (0.5 ppm error). 

Lab notebook reference: akc05-02 

 

9-Butyl-1-azaspiro[4.4]nona-1,3,8-trien-7-one (143k) 

 

Synthesised using general procedure C with ynone 136k (98.6 mg, 0.521 mmol), AgNO3·SiO2 

(443 mg, 0.0261 mmol) in CH2Cl2 (5.2 mL) at RT for 2 h. Afforded the title compound 143k 

without further purification as a brown oil (89.9 mg, 91%); Rf 0.18 (1:1 hexane:EtOAc); νmax 

(thin film)/cm-1 2958, 2931, 1719, 1695, 1615, 1196, 771; δH (400 MHz, CDCl3) 0.85 (3 H, t, 

J = 7.5 Hz, H-12), 1.26 (2 H, app. sextet, J = 7.5 Hz, H-11), 1.37–1.51 (2 H, m, H-10), 1.59–

1.70 (1 H, m, H-9a), 1.73–1.83 (1 H, m, H-9b), 2.61 (1 H, d, J = 18.5 Hz, H-5a), 2.86 (1 H, d, 

J = 18.5 Hz, H-5b), 6.20 (1 H, s, H-7), 6.58 (1 H, d, J = 4.5 Hz, H-2/3), 7.21 (1 H, d, J = 4.5 

Hz, H-2/3), 8.24 (1 H, s, H-1); δC (100 MHz, CDCl3) 13.7 (C-12), 22.2 (C-11), 26.5 (C-9), 

29.6 (C-10), 39.2 (C-5), 89.4 (C-4), 128.7 (C-2/3), 130.6 (C-7), 155.8 (C-2/3), 166.0 (C-1), 

179.8 (C-8), 205.0 (C-6); HRMS (ESI+): Found: 212.1044; C12H15NNaO (MNa+) Requires 

212.1046 (1.0 ppm error), Found: 190.1225; C12H16NO (MH+) Requires 190.1226 (0.9 ppm 

error).  

Lab notebook reference: akc05-08 
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1,3-Dimethyl-9-phenyl-2-azaspiro[4.4]nona-1,3,8-trien-7-one (147l) 

 

Synthesised using general procedure C with 1-(2,5-dimethyl-1H-pyrrol-3-yl)-4-phenylbut-3-

yn-2-one 136l (46.3 mg, 0.195 mmol), AgNO3·SiO2 (33.1 mg, 1.95 μmol) in CH2Cl2 (2 mL) 

at RT for 20 min. Afforded the title compound 147l without further purification as a brown 

solid (46.3 mg, 100%); mp 98–100 °C; Rf 0.17 (2:1 hexane:EtOAc); νmax (thin film)/cm-1 

1723, 1693, 1591, 1568, 1445, 1279, 1254, 770; δH (400 MHz, CDCl3) 2.09 (3 H, s, H-2/4), 

2.21 (3 H, s, H-2/4), 2.54 (1 H, d, J = 19.0 Hz, H-7a), 2.75 (1 H, d, J = 19.0 Hz, H-7b), 5.84–

5.87 (1 H, m, H-5), 6.67 (1 H, s, H-9), 7.24 (2 H, d, J = 7.5 Hz, H-12), 7.33 (2 H, dd, J = 7.5, 

7.5 Hz, H-13), 7.38–7.43 (1 H, m, H-14); δC (100 MHz, CDCl3) 15.2 (C-2/4), 16.3 (C-2/4), 

41.3 (C-7), 69.4 (C-6), 124.2 (C-5), 126.6 (C-12), 129.0 (C-13), 130.0 (C-9), 131.4 (C-14), 

132.9 (C), 153.6 (C), 173.0 (C), 184.7 (C-1), 204.7 (C-8); HRMS (ESI+): Found: 238.1225; 

C16H16NO (MH+) Requires 238.1226 (0.5 ppm error). 

Lab notebook reference: akc05-34 

 

9-(4-Fluorophenyl)-1,3-dimethyl-2-azaspiro[4.4]nona-1,3,8-trien-7-one (147m) 

 

Synthesised using general procedure C with 1-(2,5-dimethyl-1H-pyrrol-3-yl)-4-(4-

fluorophenyl)but-3-yn-2-one 136m (66.0 mg, 0.259 mmol), AgNO3·SiO2 (43.9 mg, 2.59 

μmol) in CH2Cl2 (2.6 mL) at RT for 15 min. Afforded the title compound 147m without 

further purification as a yellow oil (66.0 mg, 100%); Rf 0.21 (1:1 hexane:EtOAc); νmax (thin 

film)/cm-1 1717, 1694, 1601, 1574, 1509, 1238, 1163, 836, 809; δH (400 MHz, CDCl3) 2.08 (3 

H, s, H-2), 2.22 (3 H, s, H-4), 2.54 (1 H, d, J = 19.0 Hz, H-7a), 2.75 (1 H, d, J = 19.0 Hz, H-

7b), 5.84–5.87 (1 H, m, H-5), 6.63 (1 H, s, H-9), 7.02 (2 H, dd, 3JHH = 8.5 Hz, 3JHF 8.5 Hz, H-

13), 7.21–7.27 (2 H, m, H-12); δC (100 MHz, CDCl3) 15.2 (C-2), 16.3 (C-4), 41.3 (C-7), 69.3 

(C-6), 116.2 (d, 2JCF = 22.0 Hz, C-13), 124.2 (C-5), 128.9 (d, 3JCF = 8.5 Hz, C-12), 129.1 (d, 
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4JCF = 4.0 Hz, C-11), 129.8 (C-9), 153.8 (C-3), 164.5 (d, 1JCF = 254 Hz, C-14), 171.5 (C-10), 

184.7 (C-1), 204.4 (C-8); HRMS (ESI+): Found: 256.1136; C16H15FNO (MH+) Requires 

256.1132 (−1.3 ppm error). 

Lab notebook reference: akc05-45 

 

9-Butyl-1,3-dimethyl-2-azaspiro[4.4]nona-1,3,8-trien-7-one (147n) 

 

Synthesised using general procedure C with 1-(2,5-dimethyl-1H-pyrrol-3-yl)oct-3-yn-2-one 

136n (39.5 mg, 0.182 mmol), AgNO3·SiO2 (30.9 mg, 1.82 μmol) in CH2Cl2 (1.8 mL) at RT 

for 10 min. Afforded the title compound 147n without further purification as a yellow oil 

(39.4 mg, 100%); Rf 0.27 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2964, 2931, 1720, 1701, 

1611; δH (400 MHz, CDCl3) 0.88 (3 H, t, J = 7.5 Hz, H-14), 1.24–1.35 (2 H, m, H-13), 1.46 (2 

H, app. pentet, J = 7.5 Hz, H-12), 1.72–1.83 (1 H, m, H-11a), 1.83–1.92 (1 H, m, H-11b), 2.01 

(3 H, s, H-2), 2.18 (3 H, s, H-4), 2.45 (1 H, d, J = 19.0 Hz, H-7a), 2.61 (1 H, d, J = 19.0 Hz, 

H-7b), 5.59–5.63 (1 H, m, H-5), 6.16 (1 H, s, H-9); δC (100 MHz, CDCl3) 13.7 (C-14), 14.9 

(C-2), 16.2 (C-4), 22.3 (C-13), 28.1 (C-11), 29.4 (C-12), 39.3 (C-7), 71.3 (C-6), 122.1 (C-5), 

130.1 (C-9), 154.6 (C-3), 182.0 (C-10), 182.9 (C-1), 206.2 (C-8); HRMS (ESI+): Found: 

218.1547; C14H20NO (MH+) Requires 218.1539 (−3.5 ppm error).  

Lab notebook reference: akc05-41 

 

2-Hydroxy-2-methyl-2'-phenyl-2H-spiro[benzofuran-3,1'-cyclopent[2]en]-4'-one (148) 

 

To a solution of ynone 136o (130 mg, 0.472 mmol) in CH2Cl2 (4.7 mL) was added 

AgNO3·SiO2 (803 mg, 0.0472 mmol). The mixture was stirred at RT for 24 h. The reaction 
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mixture was filtered, washing the catalyst with EtOAc (5 mL), then concentrated in vacuo to 

afford the crude material. Purification by column chromatography (10:1 hexane:EtOAc, then 

8:3 hexane:EtOAc) afforded the title compound 148 as a pale yellow oil (approximately 5:1 

ratio of diastereoisomers A:B and containing trace amounts of ring-opened compound 150, 

86.2 mg, 62%); Rf 0.25 (7:3 hexane:EtOAc); νmax (thin film)/cm-1 3358, 2932, 1686, 1598, 

1478, 1175, 757; HRMS (ESI+): Found: 315.0984; C19H16NaO3 (MNa+) Requires 315.0992 

(2.5 ppm error). 

NMR data for the major diastereoisomer 148: δH (400 MHz, CDCl3) 1.50 (3 H, s, H-9), 2.94 

(1 H, d, J = 19.5 Hz, H-11a), 3.32–3.33 (1 H, m, H-8), 3.49 (1 H, d, J = 19.5 Hz, H-11b), 6.28 

(1 H, s, H-13), 6.73 (2 H, d, J = 8.0 Hz, Ar-H), 6.90 (1 H, d, J = 8.0 Hz, Ar-H), 6.99–7.41 (9 

H, m, Ar-H); δC (100 MHz, CDCl3) 22.7 (C-9), 44.3 (C-11), 63.2 (C-10), 110.8 (C-7), 111.0 

(CH), 122.6 (CH), 124.0 (CH), 127.3 (C-16/17), 128.5 (C-16/17), 130.0 (CH), 130.1 (CH), 

130.4 (C-1/15), 132.2 (C-13), 135.2 (C-1/15), 157.8 (C-6), 176.4 (C-14), 206.4 (C-12). 

Characteristic NMR data for the minor diastereoisomer 148: δH (400 MHz, CDCl3) 2.73 (1 H, 

d, J = 18.5 Hz, H-11a), 3.14 (1 H, d, J = 18.5 Hz, H-11b), 6.49 (1 H, s, H-13). 

Lab notebook reference: akc03-25 

 

4-Phenyldibenzo[b,d]furan-2-ol (151) 

 

To a solution of ynone 136p (22.6 mg, 86.8 μmol) in CH2Cl2 (0.9 mL) was added 

AgNO3·SiO2 (148 mg, 8.68 μmol). The mixture was stirred at RT for 24 h. The reaction 

mixture was filtered, washing the catalyst with EtOAc (5 mL), then concentrated in vacuo to 

afford the crude material. Purification by column chromatography (8:3 hexane:EtOAc) 

afforded the title compound 151 as a yellow oil (9.0 mg, 40%); Rf 0.31 (8:2 hexane:EtOAc); 

νmax (thin film)/cm-1 3359, 1449, 1406, 1171, 773, 748; δH (400 MHz, CDCl3) 4.91 (1 H, br s, 

H-15), 7.14 (1 H, d, J = 2.5 Hz, H-13/16), 7.34 (1 H, dd, J = 7.5 Hz, J = 7.5 Hz, Ar-H), 7.38 

(1 H, d, J = 2.5 Hz, H-13/16), 7.42–7.50 (2 H, m, Ar-H), 7.52–7.60 (3 H, m, H-10/11,Ar-H), 

7.88–7.95 (3 H, m, H-10/11,Ar-H); δC (100 MHz, CDCl3) 105.3 (C-13/16), 111.9 (CH), 114.8 

(C-13/16), 120.7 (CH), 122.5 (CH), 124.2 (C), 125.7 (C), 126.4 (C), 127.4 (CH), 128.0 (CH), 
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128.7 (C-10/11), 128.7 (C-10/11), 136.0 (C), 148.3 (C), 151.7 (C), 156.9 (C); HRMS (ESI+): 

Found: 283.0722; C18H12NaO2 (MNa+) Requires 283.0730 (2.6 ppm error), Found: 261.0922; 

C18H13O2 (MH+) Requires 261.0910 (−4.6 ppm error). 

Lab notebook reference: akc03-31 

 

2-Phenylspiro[cyclopent[2]ene-1,3'-indol]-4-ol (154) 

 

Synthesised using general procedure C with 1-(1H-indol-3-yl)-4-phenylbut-3-yn-2-ol 142*94 

(77.4 mg, 0.293 mmol), AgNO3·SiO2 (497 mg, 2.93 μmol) in CH2Cl2 (2.9 mL) at RT for 24 h. 

Afforded the title compound 154 without further purification as an orange oil (approximately 

1.6:1 ratio of diastereoisomers A:B, 78.5 mg, 100%); Rf 0.19 (1:1 hexane:EtOAc); νmax (thin 

film)/cm-1 3291, 1549, 1455, 1445, 1076, 1043, 1014, 906, 752, 730, 692; δH (400 MHz, 

CDCl3) 2.09 (1 H, dd, J = 14.0, 4.0 Hz, H-10a, B), 2.35 (1 H, dd, J = 13.5, 4.0 Hz, H-10a, A), 

2.48 (1 H, dd, J = 13.5, 6.5 Hz, H-10b, A), 2.57 (2 H, br s, H-18, A+B), 2.80 (1 H, dd, J = 

14.0, 7.0 Hz, H-10b, B), 5.23–5.29 (1 H, m, H-11, B), 5.31–5.38 (1 H, m, H-11, A), 6.58 (1 H, 

d, J = 2.5 Hz, H-12, B), 6.59 (1 H, d, J = 2.5 Hz, H-12, A), 6.78–6.84 (4 H, m, H-15, A+B), 

7.03–7.16 (6 H, m, H-16,17, A+B), 7.18–7.26 (3 H, m, H-2,3, 2 H from A and 1 H from B), 

7.35-7.41 (2 H, m, H-4, A+B), 7.45 (1 H, d, J = 7.5 Hz, H-2, B), 7.70 (1 H, d, J = 8.5 Hz, H-5, 

B), 7.72 (1 H, d, J = 8.0 Hz, H-5, A), 8.11 (1 H, s, H-8, B), 8.25 (1 H, s, H-8, A); δC (100 

MHz, CDCl3) 42.4 (CH2), 43.6 (CH2), 69.6 (C), 69.9 (C), 74.9 (CH), 74.9 (CH), 121.3 (CH), 

121.6 (CH), 121.7 (CH), 123.0 (CH), 125.7 (2CH), 125.8 (2CH), 126.9 (CH), 127.1 (CH), 

128.3 (3CH), 128.3 (2CH), 128.4 (3CH), 133.9 (2C), 134.0 (CH), 134.2 (CH), 141.9 (C), 

142.3 (C), 145.1 (C), 145.6 (C), 154.8 (2C), 176.9 (CH), 177.0 (CH); HRMS (ESI+): Found: 

284.1043; C18H15NNaO (MNa+) Requires 284.1046 (1.2 ppm error), Found: 262.1223; 

C18H16NO (MH+) Requires 262.1226 (1.5 ppm error). 

Lab notebook reference: akc02-81  

*Material made by M. James 
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3-Hydroxy-4-(1H-indol-3-yl)butan-2-one (155) and Spiro[cyclopent[2]ene-1,3'-indol]-4-ol 

(156) 

 

To a solution of alcohol 141 (77.2 mg, 0.417 mmol) in CH2Cl2 (4.2 mL) was added 

AgNO3·SiO2 (708 mg, 0.0417 mmol). The mixture was stirred at RT for 4 h. The reaction 

mixture was poured directly onto silica and purified by column chromatography (1:1 

hexane:EtOAc, then 9:1 CH2Cl2:MeOH) to afford the title compound 155 as an off-white oil 

(34.7 mg, 41%) and title compound 156 as a brown foam (3:1 mixture of diastereoisomers 

A:B and trace amounts trimer 157, 45.2 mg, 58%); to simplify the NMR spectra from a 

monomer:trimer mixture the purified material was dissolved in CDCl3 and 1 equiv. AgNO3 

was added and the monomer:trimer mixture was stirred for 1 h. Data of the resultant monomer 

156: Rf 0.19 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 3350, 1456, 1339, 1013, 908, 729; δH 

(400 MHz, CDCl3) 2.01 (1 H, dd, J = 14.0, 4.0 Hz, H-14a, B), 2.31 (1 H, dd, J = 14.5, 2.5 Hz, 

H-14a, A), 2.44 (1 H, dd, J = 14.5, 6.5 Hz, H-14b, A), 2.74 (1 H, dd, J = 14.0, 7.0 Hz, H-14b, 

B), 5.22 (2 H, m, H-12, A+B), 5.34 (1 H, d, J = 5.5 Hz, H-10, B), 5.40 (1 H, d, J = 5.5 Hz, H-

10, A), 6.32 (1 H, dd, J = 5.5, 1.5 Hz, H-11, B), 6.37 (1 H, dd, J = 5.5, 2.0 Hz, H-11, A), 

7.22–7.41 (5 H, m, Ar-H, 3 H from A and 2 H from B), 7.49 (1 H, d, J = 7.5 Hz, Ar-H, B), 

7.63–7.69 (2 H, m, Ar-H, A+B), 8.22 (1 H, s, H-8, B), 8.45 (1 H, s, H-8, A); δC (100 MHz, 

CDCl3) 39.9 (C-14, B), 40.7 (C-14, A), 68.8 (C-9, A), 69.2 (C-9, B), 76.9 (C-12, A), 77.2 (C-

12, B), 120.4 (CH, B), 120.6 (CH, A) 122.4 (CH, A), 123.6 (CH, B), 127.7 (CH, A), 127.8 

(CH, B), 128.5 (CH, A), 128.6 (CH, B), 131.0 (C-10, B), 132.2 (C-10, A), 140.0 (C-11, A), 

140.1 (C-11, B), 141.1 (C-1, A), 141.2 (C-1, B), 152.6 (C-6, B), 152.7 (C-6, A), 180.4 (C-8, 

B), 181.0 (C-8, A); HRMS (ESI+): Found: 208.0733; C12H11NNaO (MNa+) Requires 208.0733 

(−0.1 ppm error), Found: 186.0912; C12H12NO (MH+) Requires 186.0913 (1.0 ppm error).  

Data for 155: Rf 0.51 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 3405, 1707, 1457, 1355, 1091, 

742; δH (400 MHz, CDCl3) 2.21 (3 H, s, H-14), 3.14 (1 H, dd, J = 15.0, 6.5 Hz, H-10a), 3.33 

(1 H, dd, J = 15.0, 4.5 Hz, H-10b), 3.50 (1 H, br d, J = 4.5 Hz, H-12), 4.50–4.56 (1 H, m, H-

11), 7.09 (1 H, br d, J = 2.0 Hz, H-8), 7.15 (1 H, dd, J = 7.5, 7.0 Hz, H-3), 7.22 (1 H, dd, J = 

8.0, 7.0 Hz, H-4), 7.36 (1 H, d, J = 8.0 Hz, H-5), 7.68 (1 H, d, J = 8.0 Hz, H-2), 8.15 (1 H, br 

s, H-7); δC (100 MHz, CDCl3) 25.8 (C-14), 29.5 (C-10), 77.1 (C-11), 110.3 (C-9), 111.2 (C-
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5), 118.6 (C-2), 119.6 (C-3), 122.2 (C-4), 122.9 (C-8), 127.4 (C-1), 136.0 (C-6), 209.8 (C-13); 

HRMS (ESI+): Found: 226.0846; C12H13NNaO2 (MNa+) Requires 226.0838 (−3.5 ppm error). 

Lab notebook reference: akc03-43 

Spectroscopic data matched those previously reported in the literature.200 

 

3-Hydroxy-4-(1H-indol-3-yl)butan-2-one (155) 

 

To a solution of alcohol 141 (19.5 mg, 0.105 mmol) in CH2Cl2 (1 mL) was added AgNO3 

(1.79 mg, 0.0105 mmol). The mixture was stirred at RT for 24 h. The reaction mixture was 

poured directly onto silica and purified by column chromatography (3:2 hexane:EtOAc) to 

afford the title compound 155 as a brown oil (13.1 mg, 61%). Data for compound 155 

reported above. 

Lab notebook reference: akc03-28 

 

3-(2-((tert-Butyldimethylsilyl)oxy)but-3-yn-1-yl)-1H-indole (158) 

 

To a solution of alcohol 141 (94.7 mg, 0.511 mmol) in CH2Cl2 (2 mL) was added imidazole 

(52.2 mg, 0.767 mmol) at 0 °C. TBSCl (84.8 mg, 0.562 mmol) was then added at 0 °C and 

then the reaction was warmed to RT and stirred for 1.5 h. The reaction mixture was filtered 

through a pad of silica, washed with EtOAc (20 mL) and concentrated in vacuo to afford the 

crude material. Purification by column chromatography (10:1 hexane:EtOAc) afforded the 

title compound 158 as an pale brown solid (116 mg, 76%); mp 63–65 °C; Rf 0.76 (2:1 
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hexane:EtOAc); νmax (thin film)/cm-1 3420, 3308, 2928, 2856, 1457, 1251, 1081, 834, 777, 

738; δH (400 MHz, CDCl3) 0.00 (3 H, s, H-14/15), 0.04 (3 H, s, H-14/15), 0.91 (9 H, s, H-17), 

2.43 (1 H, br d, J = 2.0 Hz, H-13), 3.18 (1 H, dd, J = 14.0, 7.5 Hz, H-10a/10b), 3.23 (1 H, dd, 

J = 14.0, 6.5 Hz, H-10a/10b), 4.63 (1 H, ddd, J = 7.0, 6.5, 2.0 Hz, H-11), 7.12–7.19 (2 H, m, 

H-3,8), 7.23 (1 H, dd, J = 8.0, 7.5 Hz, H-4), 7.37 (1 H, d, J = 8.0 Hz, H-5), 7.66 (1 H, d, J = 

8.0 Hz, H-2), 8.02 (1 H, br s, H-7); δC (100 MHz, CDCl3) −5.2 (C-14/15), −5.0 (C-14/15), 

18.2 (C-16), 25.7 (C-17), 34.8 (C-10), 63.5 (C-11), 72.4 (C-13), 85.7 (C-12), 111.1 (C-5), 

111.5 (C-9), 118.8 (C-2), 119.3 (C-3), 121.8 (C-4), 123.2 (C-8), 127.7 (C-1), 135.9 (C-6); 

HRMS (ESI+): Found: 322.1604; C18H25NNaOSi (MNa+) Requires 322.1598 (−2.0 ppm 

error). 

Lab notebook reference: akc03-103 
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4-Phenyl-1-(1-deutero-1H-indol-3-yl)but-3-yn-2-one (187) and 1-(1H-Indol-3-yl)-4-

phenylbut-3-yn-2-one (136a) 

 

Ynone 136a (130 mg, 0.501 mmol) was stirred in dry CD3OD (3.5 mL) at RT overnight under 

an argon atmosphere. The reaction mixture was then concentrated in vacuo to afford the title 

compounds 187 and 136a as an orange solid (approximately 4:1 ratio of 187:136a product, 

129 mg, 99%); mp 86–88 °C; Rf 0.60 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 3273, 3045, 

2493, 2202, 1652; δH (400 MHz, CDCl3) 4.11 (4 H, s, H-10, D+H compound), 7.15–7.21 (2 

H, m, H-3, D+H compound), 7.21–7.28 (4 H, m, H-4,8, D+H compound); 7.29–7.45 (12 H, 

m, H-5,15,16,17, D+H compound), 7.69 (2 H, br d, J = 8.0 Hz, H-2, D+H compound), 8.22 (1 

H, br s, H-7, H compound); δC (100 MHz, CDCl3) 42.0 (C-10, D+H compounds), 88.0 (C-12, 

D+H compounds), 92.0 (C-13, D+H compounds), 107.5 (C-9, D compound), 107.6 (C-9, H 

compound), 111.2 (C-5, D compound), 111.3 (C-5, H compound), 118.9 (C-2, D+H 

compounds), 119.8 (C-3, D+H compounds), 119.9 (C-14, D+H compounds), 122.3 (C-4, D+H 

compounds), 123.5 (C-8, D compound), 123.7 (C-8, H compound), 127.4 (C-1, D compound), 

127.4 (C-1, H compound), 128.5 (C-15/16, D+H compounds), 130.6 (C-17, D+H 

compounds), 133.1 (C-15/16, D+H compounds), 136.0 (C-6, D compound), 136.1 (C-6, H 

compound), 185.6 (C-11, D+H compounds); HRMS (ESI+): Found: 282.0887; C18H11DNNaO 

(MNa+) Requires 282.0874 (−4.6 ppm error).  

Lab notebook reference: akc02-62/66 
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2-Phenyl-3-deuterospiro[cyclopent[2]ene-1,3'-indol]-4-one (188) and 2-

Phenylspiro[cyclopent[2]ene-1,3'-indol]-4-one (137a) 

 

Synthesised using general procedure D with a 4:1 mixture of ynones 187:136a (130 mg, 0.499 

mmol), AgNO3 (8.48 mg, 4.99 μmol), in CH2Cl2 (5 mL) at RT for 30 min. Afforded the title 

compounds 188 and 137a without further purification as an orange solid (approximately 4:1 

ratio of 188:137a, 107 mg, 85%); mp 143–145 °C; Rf 0.42 (1:1 hexane:EtOAc); νmax (thin 

film)/cm-1 3064, 1698, 1548, 1224, 750; δH (400 MHz, CDCl3) 2.68 (2 H, d, J = 18.5 Hz, H-

10a, D+H compounds), 3.05 (2 H, d, J = 18.5 Hz, H-10b, D+H compounds), 6.85 (1 H, s, H-

12, H compound), 6.95–7.01 (4 H, m, H-15, D+H compounds), 7.16–7.23 (4 H, m, H-16, 

D+H compounds), 7.23–7.34 (6 H, m, H-2,3,17, D+H compounds); 7.45 (2 H, ddd, J = 8.0, 

7.5, 1.5 Hz, H-4, D+H compounds), 7.77 (2 H, d, J = 8.0 Hz, H-5, D+H compounds), 8.22 (2 

H, s, H-8, D+H compounds); δC (100 MHz, CDCl3) 42.4 (C-10, D+H compounds), 65.9 (C-9, 

D+H compounds), 121.5 (C-2/3, D+H compounds), 122.1 (C-5, D+H compounds), 126.8 (C-

15, D+H compounds), 127.7 (C-2/3, D+H compounds), 128.9 (C-16, D+H compounds), 129.1 

(C-4, D+H compounds), 130.8 (C-12, D+H compounds), 131.4 (C-17, D+H compounds), 

132.4 (C-14, D compound), 132.4 (C-14, H compound), 140.8 (C-1, D+H compounds), 154.8 

(C-6, D+H compounds), 171.9 (C-13, D compound) 172.0 (C-13, H compound), 174.1 (C-8, 

D+H compounds), 204.4 (C-11, D+H compounds); HRMS (ESI+): Found: 283.0958; 

C18H12DNNaO (MNa+) Requires 283.0952 (−2.2 ppm error). 

Lab notebook reference: akc02-69 

  



130 
 

6.9.2 Chapter 3 

2-(4-)-N-methoxy-N-methylacetamide (195a) 

 

Synthesised using general procedure A with 2-(4-hydroxyphenyl)acetic acid 194a (2.40 g, 

15.8 mmol), T3P 50% in EtOAc (15.1 g, 23.7 mmol), DIPEA (8.3 mL, 47.4 mmol) and 

MeNH(OMe)·HCl (1.66 g, 17.4 mmol) in CH2Cl2 (40 mL) at RT for 1 h. Afforded the title 

compound 195a without further purification as a white solid (3.00 g, 100%); mp 110–112 °C; 

Rf 0.58 (9:1 EtOAc:hexane); νmax (thin film)/cm-1 3264, 1631, 1614, 1594, 1515, 1446, 1233, 

1172, 1002, 798; δH (400 MHz, CDCl3) 3.22 (3 H, s, H-8), 3.65 (3 H, s, H-9), 3.70 (2 H, s, H-

6), 6.68 (2 H, d, J = 8.5 Hz, H-3), 7.07 (2 H, d, J = 8.5 Hz, H-4); δC (100 MHz, CDCl3) 32.3 

(C-8), 38.2 (C-6), 61.3 (C-9), 115.6 (C-3), 125.9 (C-5), 130.4 (C-4), 155.2 (C-2), 173.3 (C-7); 

HRMS (ESI+): Found: 218.0788; C10H13NNaO3 (MNa+) Requires 218.0788 (−0.3 ppm error), 

Found: 196.0975; C10H14NO3 (MH+) Requires 196.0968 (−3.2 ppm error). 

Lab notebook reference: akc-bsc-01 

 

2-(3-Hydroxyphenyl)-N-methoxy-N-methylacetamide (195b) 

 

Synthesised using general procedure A with 2-(3-hydroxyphenyl)acetic acid 194b (925 mg, 

6.08 mmol), T3P 50% in EtOAc (5.81 g, 9.12 mmol), DIPEA (3.2 mL, 18.2 mmol) and 

MeNH(OMe)·HCl (652 g, 6.68 mmol) in CH2Cl2 (15 mL) at RT for 1 h. Afforded the title 

compound 195b without further purification as a white solid (1.14 g, 96%); mp 59–61 °C; Rf 

0.27 (1:1 EtOAc:hexane); νmax (thin film)/cm-1 3261, 2939, 1632, 1597, 1586, 1485, 1454, 

1387, 1155, 998, 772; δH (400 MHz, CDCl3) 3.22 (3 H, s, H-10), 3.59 (3 H, s, H-11), 3.75 (2 

H, s, H-8), 6.71–6.75 (1 H, m, H-1/3), 6.77 (1 H, d, J = 8.0 Hz, H-1/3), 6.93–6.95 (1 H, br s, 
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H-6), 7.15 (1 H, dd, J = 8.0, 8.0 Hz, H-2), 7.59 (1 H, br s, H-5); δC (100 MHz, CDCl3) 32.3 

(C-10), 39.2 (C-8), 61.4 (C-11), 114.3 (C-1/3), 116.0 (C-6), 121.0 (C-1/3), 129.6 (C-2), 135.8 

(C-7), 156.8 (C-4), 172.8 (C-9); HRMS (ESI+): Found: 218.0783; C10H13NNaO3 (MNa+) 

Requires 218.0788 (2.0 ppm error), Found: 196.0966; C10H14NO3 (MH+) Requires 196.0968 

(1.3 ppm error). 

Lab notebook reference: akc-bsc-02-6 

Spectroscopic data matched those previously reported in the literature.201 

 

2-(2-Hydroxyphenyl)-N-methoxy-N-methylacetamide (195c) 

 

Synthesised using general procedure A with 2-(2-hydroxyphenyl)acetic acid 194c (2.00 g, 

13.1 mmol), T3P 50% in EtOAc (12.6 g, 19.7 mmol), DIPEA (6.9 mL, 39.4 mmol) and 

MeNH(OMe)·HCl (1.41 g, 14.6 mmol) in CH2Cl2 (33 mL) at RT for 1.5 h. Purification by 

column chromatography (9:1 hexane:EtOAc, then 1:1 hexane:EtOAc) afforded the title 

compound 195c as a white solid (788 mg, 31%); mp 63–65 °C; Rf 0.39 (1:1 EtOAc:hexane); 

νmax (thin film)/cm-1 3260, 1628, 1596, 1456, 1246, 1000, 753; δH (400 MHz, CDCl3) 3.24 (3 

H, s, H-10), 3.80 (3 H, s, H-11), 3.87 (2 H, s, H-8), 6.85 (1 H, dd, J = 8.0, 7.5 Hz, H-2), 6.99 

(1 H, d, J = 8.0 Hz, H-4), 7.09 (1 H, d, J = 7.5 Hz, H-1), 7.19 (1 H, dd, J = 8.0, 8.0 Hz, H-3), 

9.50 (1 H, s, H-6); δC (100 MHz, CDCl3) 32.0 (C-10), 35.1 (C-8), 62.0 (C-11), 118.2 (C-4), 

120.2 (C-2), 120.9 (C-7), 129.1 (C-3), 130.9 (C-6), 156.8 (C-5), 173.5 (C-9); HRMS (ESI+): 

Found: 218.0794; C10H13NNaO3 (MNa+) Requires 218.0788 (−3.0 ppm error), Found: 

196.0967; C10H14NO3 (MH+) Requires 196.0968 (−0.8 ppm error). 

Lab notebook reference: akc-bsc-06 and akc04-61 
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2-(4-Hydroxy-3-methoxyphenyl)-N-methoxy-N-methylacetamide (195d) 

 

Synthesised using general procedure A with 2-(4-hydroxy-3-methoxyphenyl)acetic acid 194d 

(1.15 g, 6.34 mmol), T3P 50% in EtOAc (6.05 g, 9.50 mmol), DIPEA (3.3 mL, 19.0 mmol) 

and MeNH(OMe)·HCl (679 mg, 6.97 mmol) in CH2Cl2 (15 mL) at RT for 1 h. Afforded the 

title compound 195d without further purification as a clear and colourless oil (810 mg, 48%); 

Rf 0.21 (1:1 EtOAc:hexane); νmax (thin film)/cm-1 3316, 2939, 1639, 1514, 1432, 1271, 1200, 

1151, 1033; δH (400 MHz, CDCl3) 3.19 (3 H, s, H-11), 3.62 (3 H, s, H-12), 3.70 (2 H, s, H-9), 

3.87 (3 H, s, H-3), 5.35 (1 H, br s, H-5), 6.75 (1 H, d, J = 8.0 Hz, H-7), 6.82–6.86 (2 H, m, H-

1/6); δC (100 MHz, CDCl3) 32.2 (C-11), 38.8 (C-9), 55.8 (C-3), 61.3 (C-12), 111.7 (C-1), 

114.2 (C-6), 122.1 (C-7), 126.5 (C-8), 144.5 (C-4), 146.5 (C-2), 172.7 (C-10); HRMS (ESI+): 

Found: 248.0884; C11H15NNaO4 (MNa+) Requires 248.0893 (3.7 ppm error), Found: 

226.1070; C11H16NO4 (MH+) Requires 226.1074 (1.6 ppm error). 

Lab notebook reference: akc-bsc-04 

 

2-(3,4-Dihydroxyphenyl)-N-methoxy-N-methylacetamide (195e) 

 

Synthesised using general procedure A with 2-(3,4-dihydroxyphenyl)acetic acid 194e (1.00 g, 

5.95 mmol), T3P 50% in EtOAc (5.68 g, 8.92 mmol), DIPEA (3.1 mL, 17.8 mmol) and 

MeNH(OMe)·HCl (638 mg, 6.54 mmol) in CH2Cl2 (15 mL) at RT for 1 h. Afforded the title 

compound 195e without further purification as a clear and colourless oil (139 mg, 11%); Rf 

0.35 (8:2 EtOAc:hexane); νmax (thin film)/cm-1 3242, 2938, 1627, 1601, 1518, 1444, 1388, 

1280, 1260, 1194, 1115, 1004, 797; δH (400 MHz, CDCl3) 3.23 (3 H, s, H-11), 3.62 (3 H, s, 

H-12), 3.67 (2 H, s, H-9), 6.39 (1 H, br s, H-4/6), 6.59 (1 H, d, J = 7.5 Hz, H-1/2), 6.72 (1 H, 

d, J = 7.5 Hz, H-1/2), 6.86 (1 H, s, H-7), 7.89 (1 H, br s, H-4/6); δC (100 MHz, CDCl3) 32.4 

(C-11), 38.4 (C-9), 61.4 (C-12), 115.0 (C-1/2), 116.0 (C-7), 121.4 (C-1/2), 125.9 (C-8), 143.6 
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(C-3/5), 144.3 (C-3/5), 173.7 (C-10); HRMS (ESI+): Found: 234.0734; C10H13NNaO4 (MNa+) 

Requires 234.0737 (1.1 ppm error). 

Lab notebook reference: akc-bsc-06 

 

1-(4-Hydroxyphenyl)-4-phenylbut-3-yn-2-one (197a) 

 

Synthesised using general procedure B with phenylacetylene (0.34 mL, 3.07 mmol), THF (8.2 

mL), Weinreb amide 195a (200 mg, 1.02 mmol) and n-BuLi (1.02 mL, 2.56 mmol, 2.5 M in 

hexanes) stirring at RT for 30 min. Purification by column chromatography (9:1 

hexane:EtOAc, then 1:1 hexane:EtOAc) afforded the title compound 197a as a pale yellow 

solid (135 mg, 56%); mp 96–98 °C; Rf 0.51 (6:4 hexane:EtOAc); νmax (thin film)/cm-1 3368, 

2202, 1655, 1514, 1224, 1079, 758, 688; δH (400 MHz, CDCl3) 3.87 (2 H, s, H-6), 5.42 (1 H, 

br s, H-1), 6.83–6.88 (2 H, m, H-3), 7.16–7.21 (2 H, m, H-4), 7.33–7.39 (2 H, m, H-11/12), 

7.42–7.50 (3 H, m, H-11/12,13); δC (100 MHz, CDCl3) 51.3 (C-6), 87.7 (C-8), 93.3 (C-9), 

115.7 (C-3), 119.7 (C-10), 125.1 (C-5), 128.6 (C-11/12), 130.9 (C-13), 131.1 (C-4), 133.1 (C-

11/12), 155.1 (C-2), 186.1 (C-7); HRMS (ESI+): Found: 259.0731; C16H12NaO2 (MNa+) 

Requires 259.0730 (−0.6 ppm error), Found: 237.0919; C16H13O2 (MH+) Requires 237.0910 

(−3.8 ppm error). 

Lab notebook reference: akc03-08 

 

1-(4-Hydroxyphenyl)-4-(4-methoxyphenyl)but-3-yn-2-one (197b) 

 

Synthesised using general procedure B with 1-ethynyl-4-methoxybenzene (983 mg, 7.44 

mmol), THF (18 mL), Weinreb amide 195a (484 mg, 2.48 mmol) and n-BuLi (2.48 mL, 6.20 
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mmol, 2.5 M in hexanes) stirring at RT for 1 h. Purification by column chromatography (9:1 

hexane:EtOAc, then 7:3 hexane:EtOAc) afforded the title compound 197b as a yellow solid 

(502 mg, 76%); mp 86–88 °C; Rf 0.62 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 3353, 2195, 

1651, 1600, 1510, 1254, 1170, 1076, 834; δH (400 MHz, CDCl3) 3.83 (3 H, s, H-14), 3.85 (2 

H, s, H-6), 5.52 (1 H, br s, H-1), 6.86 (4 H, m, H-3,12), 7.17 (2 H, d, J = 8.0 Hz, H-4), 7.41 (2 

H, d, J = 8.5 Hz, H-11); δC (100 MHz, CDCl3) 51.1 (C-6), 55.4 (C-14), 87.8 (C-8), 94.7 (C-9), 

111.5 (C-10), 114.3 (C-3/12), 115.6 (C-3/12), 125.4 (C-5), 131.1 (C-4), 135.2 (C-11), 155.1 

(C-2), 161.7 (C-13), 186.3 (C-7); HRMS (ESI+): Found: 289.0839; C17H14NaO3 (MNa+) 

Requires 289.0835 (−1.4 ppm error). 

Lab notebook reference: akc-bsc-07 

 

tert-Butyl (6-(4-hydroxyphenyl)-5-oxohex-3-yn-1-yl)(methyl)carbamate (197c) 

 

Synthesised using general procedure B with tert-butyl but-3-yn-1-yl(methyl)carbamate*52 

(568 mg, 3.10 mmol), THF (8 mL), Weinreb amide 195a (202 mg, 1.03 mmol) and n-BuLi 

(1.03 mL, 2.58 mmol, 2.5 M in hexanes) stirring at RT for 1 h. Purification by column 

chromatography (9:1 hexane:EtOAc, then 1:1 hexane:EtOAc) afforded the title compound 

197c as a yellow oil (241 mg, 74%); Rf 0.62 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 3331, 

2977, 2212, 1663, 1515, 1395, 1366, 1225, 1145, 730; δH (400 MHz, CDCl3) 1.47 (9 H, s, H-

15), 2.54 (2 H, t, J = 7.0 Hz, H-10/11), 2.86 (3 H, s, H-12), 3.36 (2 H, t, J = 7.0 Hz, H-10/11), 

3.71 (2 H, s, H-6), 6.07 (1 H, br s, H-1), 6.81 (2 H, d, J = 8.0 Hz, H-3/4), 7.08 (2 H, d, J = 8.0 

Hz, H-3/4); δC (100 MHz, CDCl3) 18.6 (C-10/11), 28.4 (C-15), 35.0 (C-12), 47.2 (C-10/11), 

51.2 (C-6), 80.3 (C-14), 81.7 (C-8), 92.9 (C-9), 115.8 (C-3/4), 124.8 (C-5), 130.9 (C-3/4), 

155.6 (C-2), 155.6 (C-13), 185.4 (C-7); HRMS (ESI+): Found: 340.1522; C18H23NNaO4 

(MNa+) Requires 340.1519 (−0.9 ppm error). 

Note: Majority of peaks broadened in 1H NMR spectrum due to presence of rotamers. 

Lab notebook reference: akc04-73 

*Material made by J. Liddon 
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4-Cyclopropyl-1-(4-hydroxyphenyl)but-3-yn-2-one (197e) 

 

Synthesised using general procedure B with ethynylcyclopropane (0.40 mL, 4.61 mmol), THF 

(20 mL), Weinreb amide 195a (300 mg, 1.54 mmol) and n-BuLi (1.54 mL, 3.84 mmol, 2.5 M 

in hexanes) stirring at RT for 1 h. Purification by column chromatography (1:1 

hexane:EtOAc) afforded the title compound 197e as a white solid (276 mg, 90%); mp 81–83 

°C; Rf 0.59 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 3367, 2201, 1647, 1514, 1222; δH (400 

MHz, CDCl3) 0.80–0.85 (2 H, m, H-11a), 0.92–0.98 (2 H, m, H-11b), 1.31–1.39 (1 H, m, H-

10), 3.71 (2 H, s, H-6), 5.30 (1 H, br s, H-1), 6.80 (2 H, d, J = 8.0 Hz, H-3), 7.09 (2 H, d, J = 

8.0 Hz, H-4); δC (100 MHz, CDCl3) −0.3 (C-10), 9.9 (C-11), 51.1 (C-6), 76.5 (C-8), 101.6 (C-

9), 115.5 (C-3), 125.3 (C-5), 130.9 (C-4), 154.9 (C-2), 186.0 (C-7); HRMS (ESI+): Found: 

223.0734; C13H12NaO2 (MNa+) Requires 223.0730 (−2.1 ppm error), Found: 201.0906; 

C13H13O2 (MH+) Requires 201.0910 (1.9 ppm error). 

Lab notebook reference: akc04-55 

 

4-Cyclopentyl-1-(4-hydroxyphenyl)but-3-yn-2-one (197f) 

 

Synthesised using general procedure B with ethynylcyclopentane (0.36 mL, 3.07 mmol), THF 

(8 mL), Weinreb amide 195a (200 mg, 1.02 mmol) and n-BuLi (1.02 mL, 2.55 mmol, 2.5 M 

in hexanes) stirring at RT for 1 h. Purification by column chromatography (9:1 

hexane:EtOAc, then 7:3 hexane:EtOAc) afforded the title compound 197f as a pale yellow oil 

(207 mg, 89%); Rf 0.74 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 3376, 2961, 2871, 2205, 

1650, 1514, 1224, 1172; δH (400 MHz, CDCl3) 1.50–1.76 (6 H, m, H-11/12), 1.83–1.97 (2 H, 

m, H-11/12), 2.73 (1 H, tt, J = 7.5, 7.5 Hz, H-10), 3.74 (2 H, s, H-6), 5.49 (1 H, br s, H-1), 

6.80 (2 H, d, J = 8.0 Hz, H-3), 7.10 (2 H, d, J = 8.0 Hz, H-4); δC (100 MHz, CDCl3) 25.1 (C-

11/12), 30.0 (C-10), 33.0 (C-11/12), 51.3 (C-6), 80.2 (C-8), 101.3 (C-9), 115.5 (C-3), 125.2 
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(C-5), 130.9 (C-4), 154.9 (C-2), 186.6 (C-7); HRMS (ESI+): Found: 251.1041; C15H16NaO2 

(MNa+) Requires 251.1043 (0.7 ppm error). 

Lab notebook reference: akc04-81 

 

1-(4-Hydroxyphenyl)oct-3-yn-2-one (197g) 

 

Synthesised using general procedure B with hex-1-yne (0.35 mL, 3.07 mmol), THF (8 mL), 

Weinreb amide 195a (200 mg, 1.02 mmol) and n-BuLi (1.02 mL, 2.55 mmol, 2.5 M in 

hexanes) stirring at RT for 1 h. Purification by column chromatography (9:1 hexane:EtOAc, 

then 7:3 hexane:EtOAc) afforded the title compound 197g as a yellow oil (181 mg, 82%); Rf 

0.76 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 3373, 2959, 2933, 2209, 1652, 1514, 1224, 

796; δH (400 MHz, CDCl3) 0.89 (3 H, t, J = 7.5 Hz, H-13), 1.35 (2 H, qt, J = 7.5, 7.5 Hz, H-

12), 1.48 (2 H, tt, J = 7.5, 7.0 Hz, H-11), 2.32 (2 H, t, J = 7.0 Hz, H-10), 3.74 (2 H, s, H-6), 

5.93 (1 H, br s, H-1), 6.80 (2 H, d, J = 8.0 Hz, H-3/4), 7.09 (2 H, d, J = 8.0 Hz, H-3/4); δC 

(100 MHz, CDCl3) 13.4 (C-13), 18.6 (C-10), 21.8 (C-12), 29.5 (C-11), 51.3 (C-6), 80.7 (C-8), 

97.3 (C-9), 115.6 (C-3/4), 124.9 (C-5), 130.9 (C-3/4), 155.1 (C-2), 186.7 (C-7); HRMS 

(ESI+): Found: 239.1050; C14H16NaO2 (MNa+) Requires 239.1043 (−3.2 ppm error). 

Lab notebook reference: akc04-74 

 

1-(4-Hydroxy-3-methoxyphenyl)-4-(4-methoxyphenyl)but-3-yn-2-one (197h) 

 

Synthesised using general procedure B with 1-ethynyl-4-methoxybenzene (880 mg, 6.66 

mmol), THF (18 mL), Weinreb amide 195d (500 mg, 2.22 mmol) and n-BuLi (2.22 mL, 5.55 

mmol, 2.5 M in hexanes) stirring at RT for 1 h. Purification by column chromatography (9:1 
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hexane:EtOAc, then 7:3 hexane:EtOAc) afforded the title compound 197h as a yellow solid 

(443 mg, 58%); mp 61–63 °C; Rf 0.20 (7:3 hexane:EtOAc); νmax (thin film)/cm-1 3437, 2195, 

1655, 1601, 1509, 1254, 1237, 1170; δH (400 MHz, CDCl3) 3.84 (5 H, s, H-9,3/17), 3.89 (3 H, 

s, H-3/17), 5.63 (1 H, br s, H-5), 6.78–6.95 (5 H, m, Ar-H), 7.43 (2 H, d, J = 8.5 Hz, H-

14/15); δC (100 MHz, CDCl3) 51.7 (C-9), 55.4 (C-3/17), 55.9 (C-3/17), 87.7 (C-11), 94.1 (C-

12), 111.6 (C-13), 112.0 (C-1/7), 114.3 (C-14/15), 114.5 (C-6), 122.8 (C-1/7), 125.2 (C-8), 

135.1 (C-14/15), 144.9 (C-4), 146.6 (C-2/16), 161.7 (C-2/16), 185.7 (C-10); HRMS (ESI+): 

Found: 319.0939; C18H16NaO4 (MNa+) Requires 319.0941 (0.7 ppm error). 

Lab notebook reference: akc-bsc-011 

 

1-(3,4-Dihydroxyphenyl)-4-phenylbut-3-yn-2-one (197i) 

 

Synthesised using general procedure B with phenylacetylene (0.26 mL, 2.33 mmol), THF (8 

mL), Weinreb amide 195e (123 mg, 0.582 mmol) and n-BuLi (0.81 mL, 2.04 mmol, 2.5 M in 

hexanes) stirring at RT for 1 h. Purification by column chromatography (1:1 hexane:EtOAc) 

afforded the title compound 197i as a white solid (91 mg, 62%); mp 117–119 °C; Rf 0.81 (8:2 

EtOAc:hexane); νmax (thin film)/cm-1 3369, 2202, 1648, 1607, 1519, 1444, 1286, 1191, 1114, 

1083, 758; δH (400 MHz, (CD3)2CO) 2.93 (1 H, s, H-3/5), 3.79 (2 H, s, H-9), 6.70 (1 H, dd, J 

= 8.0, 2.0 Hz, H-7), 6.82 (1 H, d, J = 8.0 Hz, H-6), 6.86 (1 H, d, J = 2.0 Hz, H-1), 7.42–7.48 

(2 H, m, Ar-H), 7.50–7.58 (3 H, m, Ar-H), 7.92 (1 H, br s, H-3/5); δC (100 MHz, (CD3)2CO) 

52.0 (C-9), 88.3 (C-11), 91.8 (C-12), 116.2 (C-6), 117.7 (C-1), 120.7 (C-8/13), 122.2 (C-7), 

126.0 (C-8/13), 129.7 (C-14/15/16), 131.8 (C-14/15/16), 133.7 (C-14/15/16), 145.3 (C-2/5), 

146.0 (C-2/5), 185.6 (C-10); HRMS (ESI+): Found: 275.0678; C16H12NaO3 (MNa+) Requires 

275.0679 (0.4 ppm error). 

Lab notebook reference: akc04-59 
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1-(3-Hydroxyphenyl)-4-phenylbut-3-yn-2-one (197j) 

 

Synthesised using general procedure B with phenylacetylene (0.34 mL, 3.07 mmol), THF (8.2 

mL), Weinreb amide 195b (200 mg, 1.02 mmol) and n-BuLi (1.02 mL, 2.56 mmol, 2.5 M in 

hexanes) stirring at RT for 45 min. Purification by column chromatography (10:1 

hexane:EtOAc, then 7:3 hexane:EtOAc) afforded the title compound 197j as an orange oil 

(195 mg, 81%); Rf 0.57 (6:4 hexane:EtOAc); νmax (thin film)/cm-1 3371, 2202, 1655, 1589, 

1489, 1456, 1284, 1078, 758; δH (400 MHz, CDCl3) 3.89 (2 H, s, H-8), 5.44–5.61 (1 H, m, H-

5), 6.78–6.84 (2 H, m, H-1/3,6), 6.89 (1 H, d, J = 8.0 Hz, H-1/3), 7.24 (1 H, dd, J = 8.0, 8.0 

Hz, H-2), 7.32–7.40 (2 H, m, Ar-H), 7.42–7.50 (3 H, m, Ar-H); δC (100 MHz, CDCl3) 51.9 

(C-8), 87.6 (C-10), 93.5 (C-11), 114.5 (C-1/3/6), 116.8 (C-1/3/6), 120.0 (C-7/12), 122.2 (C-

1/3), 128.6 (C-13/14), 129.9 (C-2), 130.9 (C-15), 133.2 (C-13/14), 134.7 (C-4), 156.0 (C-4), 

185.5 (C-9); HRMS (ESI+): Found: 259.0731; C16H12NaO2 (MNa+) Requires 259.0730 (−0.5 

ppm error), Found: 237.0916; C16H13O2 (MH+) Requires 237.0910 (−2.4 ppm error). 

Lab notebook reference: akc-bsc-06-5 

 

1-(2-Hydroxyphenyl)-4-phenylbut-3-yn-2-one (197k) 

 

Synthesised using general procedure B with phenylacetylene (2.0 mL, 18.1 mmol), THF (78 

mL), Weinreb amide 195c (1.18 g, 6.04 mmol) and n-BuLi (6.04 mL, 15.1 mmol, 2.5 M in 

hexanes) stirring at RT for 1 h. Purification by column chromatography (9:1 hexane:EtOAc, 

then 7:3 hexane:EtOAc) afforded the title compound 197k as a yellow solid (1.33 g, 93%); mp 

106–108 °C; Rf 0.67 (6:4 hexane:EtOAc); νmax (thin film)/cm-1 3333, 2982, 2202, 1661, 1489, 

1458, 1156,753; δH (400 MHz, CDCl3) 4.01 (2 H, s, H-8), 6.27 (1 H, br s, H-1), 6.94–6.98 (2 

H, m, Ar-H), 7.19–7.26 (2 H, m, Ar-H), 7.39 (2 H, m, H-13/14), 7.45–7.50 (1 H, m, Ar-H), 

7.51–7.55 (2 H, m, H-13/14); δC (100 MHz, CDCl3) 47.5 (C-8), 87.8 (C-10), 94.0 (C-11), 
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116.8 (CH), 119.6 (C-7/12), 120.4 (C-7/12), 121.0 (CH), 128.6 (C-13/14), 129.3 (CH), 131.1 

(CH), 131.5 (CH), 133.3 (C-13/14), 154.8 (C-2), 187.0 (C-9); HRMS (ESI+): Found: 

259.0722; C16H12NaO2 (MNa+) Requires 259.0730 (3.1 ppm error), Found: 237.0914; 

C16H13O2 (MH+) Requires 237.0910 (−1.5 ppm error). 

Lab notebook reference: akc04-13 

 

1-(2-Hydroxyphenyl)-4-(4-methoxyphenyl)but-3-yn-2-one (197l) 

 

Synthesised using general procedure B with 1-ethynyl-4-methoxybenzene (1.01 g, 7.68 

mmol), THF (20 mL), Weinreb amide 195c (500 mg, 2.56 mmol) and n-BuLi (2.56 mL, 6.40 

mmol, 2.5 M in hexanes) stirring at RT for 1 h. Purification by column chromatography (9:1 

hexane:EtOAc, then 7:3 hexane:EtOAc) afforded the title compound 197l as a yellow solid 

(478 mg, 70%); mp 108–110 °C; Rf 0.29 (7:3 hexane:EtOAc); νmax (thin film)/cm-1 3364, 

2193, 1645, 1599, 1508, 1254, 1080, 834; δH (400 MHz, CDCl3) 3.85 (3 H, s, H-16), 3.99 (2 

H, s, H-8), 6.64 (1 H, s, H-1), 6.87–6.96 (4 H, m, Ar-H), 7.17–7.24 (2 H, m, H-3/4/5,6), 7.49 

(2 H, d, J = 8.0 Hz, H-13/14); δC (100 MHz, CDCl3) 47.6 (C-8), 55.4 (C-16), 87.0 (C-10), 

95.8 (C-11), 111.2 (C-12), 114.4 (C-13/14), 117.1 (C-3/4/5), 120.7 (C-7), 121.0 (C-3/4/5), 

129.2 (C-3/4/5), 131.5 (C-6), 135.5 (C-13/14), 154.9 (C-2), 162.0 (C-15), 187.2 (C-9); HRMS 

(ESI+): Found: 289.0833; C17H14NaO3 (MNa+) Requires 289.0835 (0.6 ppm error). 

Lab notebook reference: akc-bsc-011 

 

4-(4-Fluorophenyl)-1-(2-hydroxyphenyl)but-3-yn-2-one (197m) 

 

Synthesised using general procedure B with 1-ethynyl-4-fluorobenzene (923 mg, 7.68 mmol), 

THF (20 mL), Weinreb amide 195c (500 mg, 2.56 mmol) and n-BuLi (2.56 mL, 6.40 mmol, 
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2.5 M in hexanes) stirring at RT for 1 h. Purification by column chromatography (9:1 

hexane:EtOAc, then 7:3 hexane:EtOAc) afforded the title compound 197m as a yellow solid 

(430 mg, 66%); mp 115–117 °C; Rf 0.46 (7:3 hexane:EtOAc); νmax (thin film)/cm-1 3357, 

2203, 1651, 1598, 1505, 1458, 1234, 1082, 838, 754; δH (400 MHz, CDCl3) 3.99 (2 H, s, H-

8), 6.25 (1 H, s, H-1), 6.89–6.97 (2 H, m, H-3/4/5), 7.08 (2 H, dd, 3JHH = 8.5 Hz, 3JHF 8.5 Hz, 

H-14), 7.18–7.25 (2 H, m, H-3/4/5,6), 7.51 (2 H, dd, 3JHH = 8.5 Hz, 4JHF = 5.5 Hz, H-13); δC 

(100 MHz, CDCl3) 47.4 (C-8), 87.7 (C-10), 92.8 (C-11), 115.7 (d, 4JCF = 4.0 Hz, C-12), 116.2 

(d, 2JCF = 22.0 Hz, C-14), 116.8 (C-3/4/5), 120.4 (C-7), 121.1 (C-3/4/5), 129.3 (C-3/4/5), 

131.5 (C-6), 135.6 (d, 3JCF = 8.5 Hz, C-13), 154.7 (C-2), 164.1 (d, 1JCF = 255 Hz, C-15), 186.8 

(C-9); HRMS (ESI+): Found: 277.0628; C16H11FNaO2 (MNa+) Requires 277.0635 (2.5 ppm 

error). 

Lab notebook reference: akc-bsc-011 

 

4-Cyclopropyl-1-(2-hydroxyphenyl)but-3-yn-2-one (197n) 

 

Synthesised using general procedure B with ethynylcyclopropane (0.65 mL, 7.68 mmol), THF 

(35 mL), Weinreb amide 195c (500 mg, 2.56 mmol) and n-BuLi (2.56 mL, 6.40 mmol, 2.5 M 

in hexanes) stirring at RT for 1 h. Purification by column chromatography (1:1 

hexane:EtOAc) afforded the title compound 197n as an off-white solid (452 mg, 88%); mp 

98–100 °C; Rf 0.78 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 3369, 2202, 1649, 1458, 1269, 

755; δH (400 MHz, CDCl3) 0.87–0.92 (2 H, m, H-13a), 0.97–1.04 (2 H, m, H-13b), 1.37–1.45 

(1 H, m, H-12), 3.85 (2 H, s, H-8), 6.70 (1 H, br s, H-1), 6.88–6.93 (2 H, m, H-3,5), 7.11 (1 H, 

app. d, J = 7.5 Hz, H-6), 7.19 (1 H, app. dd, J = 8.0, 8.0 Hz, H-4); δC (100 MHz, CDCl3) −0.1 

(C-12), 10.2 (C-13), 47.5 (C-8), 76.8 (C-10), 103.2 (C-11), 117.1 (C-3/5), 120.6 (C-7), 120.9 

(C-3/5), 129.2 (C-4), 131.3 (C-6), 154.9 (C-2), 187.2 (C-9); HRMS (ESI+): Found: 223.0738; 

C13H12NaO2 (MNa+) Requires 223.0730 (−3.6 ppm error), Found: 201.0918; C13H13O2 (MH+) 

Requires 201.0910 (−3.8 ppm error). 

Lab notebook reference: akc04-64 
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4-Phenylspiro[4.5]deca-3,6,9-triene-2,8-dione (198a) 

 

Synthesised using general procedure C with ynone 197a (100 mg, 0.423 mmol), AgNO3·SiO2 

(719 mg, 0.0423 mmol) in CH2Cl2 (4.2 mL) at 40 °C for 24 h. Afforded the title compound 

198a without further purification as a pale brown solid (94.0 mg, 94%); mp 124–126 °C; Rf 

0.31 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 3068, 1693, 1658, 1592, 1251, 859, 764; δH 

(400 MHz, CDCl3) 2.80 (2 H, s, H-5), 6.49 (2 H, d, J = 10.0 Hz, H-2/3), 6.71 (1 H, s, H-7), 

6.96 (2 H, d, J = 10.0 Hz, H-2/3), 7.34–7.40 (2 H, m, H-10/11), 7.42–7.48 (1 H, m, H-12), 

7.49–7.54 (2 H, m, H-10/11); δC (100 MHz, CDCl3) 46.9 (C-5), 51.2 (C-4), 127.4 (C-10/11), 

129.0 (C-10/11), 129.9 (C-2/3/7), 130.0 (C-2/3/7), 131.6 (C-12), 132.9 (C-9), 151.4 (C-2/3), 

173.9 (C-8), 184.7 (C-1), 203.3 (C-6); HRMS (ESI+): Found: 259.0732; C16H12NaO2 (MNa+) 

Requires 259.0730 (−0.9 ppm error). 

Lab notebook reference: akc02-27  

Spectroscopic data matched those previously reported in the literature.202 

 

4-(4-Methoxyphenyl)spiro[4.5]deca-3,6,9-triene-2,8-dione (198b) 

 

Synthesised using general procedure C with ynone 197b (100 mg, 0.376 mmol), AgNO3·SiO2 

(638 mg, 0.0376 mmol) in CH2Cl2 (3.8 mL) at 40 °C for 3 h. Afforded the title compound 

198b without further purification as a brown solid (100 mg, 100%); mp 135–137 °C; Rf 0.33 

(1:1 hexane:EtOAc); νmax (thin film)/cm-1 1691, 1659, 1602, 1586, 1509, 1251, 1179, 1027, 

860, 833; δH (400 MHz, CDCl3) 2.77 (2 H, s, H-5), 3.83 (3 H, s, H-13), 6.49 (2 H, d, J = 10.0 

Hz, H-2), 6.64 (1 H, s, H-7), 6.87 (2 H, d, J = 8.0 Hz, H-10/11), 6.97 (2 H, d, J = 10.0 Hz, H-

3), 7.50 (2 H, d, J = 8.0 Hz, H-10/11); δC (100 MHz, CDCl3) 46.8 (C-5), 51.0 (C-4), 55.4 (C-
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13), 114.4 (C-10/11), 125.3 (C-9), 127.5 (C-7), 129.5 (C-10/11), 129.7 (C-2), 152.0 (C-3), 

162.4 (C-12), 173.1 (C-8), 184.8 (C-1), 203.1 (C-6); HRMS (ESI+): Found: 289.0835; 

C17H14NaO3 (MNa+) Requires 289.0835 (0.1 ppm error), Found: 267.1009; C17H15O3 (MH+) 

Requires 267.1016 (2.4 ppm error). 

Lab notebook reference: akc-bsc-010 

Spectroscopic data matched those previously reported in the literature.203 

 

tert-Butyl (2-(3,8-dioxospiro[4.5]deca-1,6,9-trien-1-yl)ethyl)(methyl)carbamate (198c) 

 

Synthesised using general procedure C with ynone 197c (73.5 mg, 0.232 mmol), AgNO3·SiO2 

(394 mg, 0.0232 mmol) in CH2Cl2 (2.3 mL) at RT for 10 h. Afforded the title compound 198c 

without further purification as a pale yellow oil (68.5 mg, 93%); Rf 0.22 (1:1 hexane:EtOAc); 

νmax (thin film)/cm-1 2975, 1720, 1688, 1662, 1624, 1615, 1392, 1365, 1165, 1144, 860; δH 

(400 MHz, CDCl3) 1.43 (9 H, s, H-14), 2.31 (2 H, t, J = 7.0 Hz, H-9/10), 2.62 (2 H, s, H-5), 

2.81 (3 H, s, H-11), 3.39 (2 H, t, J = 7.0 Hz, H-9/10), 6.20 (1 H, s, H-7), 6.43 (2 H, d, J = 9.5 

Hz, H-2/3), 6.65–6.73 (2 H, br m, H-2/3); δC (100 MHz, CDCl3) 27.2 (C-9/10), 28.4 (C-14), 

34.2 (C-11), 45.1 (C-5), 47.1 (C-9/10), 52.8 (C-4), 80.0 (C-13), 130.9 (C-2/3), 132.0 (C-7), 

149.4 (C-2/3), 155.5 (C-12), 176.9 (C-8), 184.5 (C-1), 203.8 (C-6); HRMS (ESI+): Found: 

340.1522; C18H23NNaO4 (MNa+) Requires 340.1519 (−0.8 ppm error). 

Note: Majority of peaks broadened in 1H NMR spectrum due to presence of rotamers. 

Lab notebook reference: akc04-79/80  
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4-Cyclopropylspiro[4.5]deca-3,6,9-triene-2,8-dione (198e) 

 

Synthesised using general procedure C with ynone 197e (101 mg, 0.504 mmol), AgNO3·SiO2 

(857 mg, 0.0504 mmol) in CH2Cl2 (5.0 mL) at RT for 2 h. Afforded the title compound 198e 

without further purification as a white solid (100 mg, 99%); mp 109–111 °C; Rf 0.45 (1:1 

hexane:EtOAc); νmax (thin film)/cm-1 1689, 1666, 1624, 1605, 1401, 1252, 860; δH (400 MHz, 

CDCl3) 0.77–0.82 (2 H, m, H-10a), 1.11−1.17 (2 H, m, H-10b), 1.18−1.24 (1 H, m, H-9), 2.64 

(2 H, s, H-5), 5.75 (1 H, s, H-7), 6.45 (2 H, d, J = 10.0 Hz, H-2), 6.72 (2 H, d, J = 10.0 Hz, H-

3); δC (100 MHz, CDCl3) 11.0 (C-9), 13.8 (C-10), 45.0 (C-5), 52.8 (C-4), 123.5 (C-7), 130.6 

(C-2), 150.0 (C-3), 184.9 (C-8), 185.6 (C-6), 204.2 (C-1); HRMS (ESI+): Found: 223.0733; 

C13H12NaO2 (MNa+) Requires 223.0730 (−1.7 ppm error), Found: 201.0906; C13H13O2 (MH+) 

Requires 201.0910 (2.2 ppm error). 

Lab notebook reference: akc04-60 

 

4-Cyclopentylspiro[4.5]deca-3,6,9-triene-2,8-dione (198f) 

 

Synthesised using general procedure C with ynone 197f (60.2 mg, 0.264 mmol), AgNO3·SiO2 

(448 mg, 0.0264 mmol) in CH2Cl2 (2.6 mL) at RT for 6 h. Afforded the title compound 198f 

without further purification as a white solid (60.0 mg, 100%); mp 129–131 °C; Rf 0.43 (1:1 

hexane:EtOAc); νmax (thin film)/cm-1 2958, 1697, 1657, 1621, 1609, 1403, 1249, 864; δH (400 

MHz, CDCl3) 1.37–1.50 (2 H, m, H-10/11), 1.52−1.67 (2 H, m, H-10/11), 1.68–1.82 (2 H, m, 

H-10/11), 1.83−1.95 (2 H, m, H-10/11), 2.30 (1 H, tt, J = 8.0, 8.0 Hz, H-5), 2.64 (2 H, s, H-5), 

6.22 (1 H, s, H-7), 6.44 (2 H, d, J = 10.0 Hz, H-2/3), 6.69 (2 H, d, J = 10.0 Hz, H-2/3); δC (100 

MHz, CDCl3) 25.5 (C-10/11), 34.8 (C-10/11), 40.2 (C-9), 45.0 (C-5), 53.0 (C-4), 129.0 (C-7), 

130.5 (C-2), 150.0 (C-3), 185.0 (C-1), 186.8 (C-8), 204.7 (C-6); HRMS (ESI+): Found: 
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251.1033; C15H16NaO2 (MNa+) Requires 251.1043 (3.9 ppm error), Found: 229.1215; 

C15H17O2 (MH+) Requires 229.1223 (3.7 ppm error). 

Lab notebook reference: akc04-82  

 

4-Butylspiro[4.5]deca-3,6,9-triene-2,8-dione (198g) 

 

Synthesised using general procedure C with ynone 197g (85.4 mg, 0.395 mmol), AgNO3·SiO2 

(671 mg, 0.0395 mmol) in CH2Cl2 (4.0 mL) at RT for 24 h. Afforded the title compound 198g 

without further purification as a pale yellow solid (80.3 mg, 94%); mp 100–102 °C; Rf 0.35 

(1:1 hexane:EtOAc); νmax (thin film)/cm-1 2959, 2929, 2875, 2857, 1720, 1696, 1657, 1614, 

1599, 1255, 1232, 862; δH (400 MHz, CDCl3) 0.90 (3 H, t, J = 7.5 Hz, H-12), 1.33 (2 H, qt, J 

= 7.5, 7.5 Hz, H-11), 1.52 (2 H, tt, J = 7.5, 7.5 Hz, H-10), 2.10 (2 H, t, J = 7.5 Hz, H-9), 2.65 

(2 H, s, H-5), 6.22 (1 H, s, H-7), 6.45 (2 H, d, J = 9.0 Hz, H-2/3), 6.66 (2 H, d, J = 9.0 Hz, H-

2/3); δC (100 MHz, CDCl3) 13.7 (C-12), 22.2 (C-11), 28.8 (C-9), 29.5 (C-10), 45.0 (C-5), 52.6 

(C-4), 130.58 (C-2/3), 130.61 (C-7), 150.0 (C-2/3), 181.6 (C-8), 184.9 (C-1), 204.6 (C-6); 

HRMS (ESI+): Found: 239.1043; C14H16NaO2 (MNa+) Requires 239.1043 (−0.3 ppm error), 

Found: 217.1219; C14H17O2 (MH+) Requires 217.1223 (2.0 ppm error). 

Lab notebook reference: akc04-75 

Spectroscopic data matched those previously reported in the literature.204 

 

7-Methoxy-4-(4-methoxyphenyl)spiro[4.5]deca-3,6,9-triene-2,8-dione (198h) 

 

Synthesised using general procedure C with ynone 197h (59.0 mg, 0.199 mmol), AgNO3·SiO2 

(338 mg, 0.0199 mmol) in CH2Cl2 (2.0 mL) at 40 °C for 24 h. Purification by column 
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chromatography (8:2 hexane:EtOAc) afforded the title compound 198h an off-white oil (50.9 

mg, 86%); Rf 0.14 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 1691, 1664, 1636, 1603, 1587, 

1509, 1258, 1208, 1177, 831; δH (400 MHz, CDCl3) 2.78 (1 H, d, J = 18.5 Hz, H-8a), 2.86 (1 

H, d, J = 18.5 Hz, H-8b), 3.66 (3 H, s, H-3/16), 3.83 (3 H, s, H-3/16), 5.86 (1 H, d, J = 2.5 Hz, 

H-1), 6.50 (1 H, d, J = 9.5 Hz, H-5), 6.61 (1 H, s, H-10), 6.85 (2 H, d, J = 8.5 Hz, H-13/14), 

6.97 (1 H, dd, J = 9.5, 2.5 Hz, H-6), 7.48 (2 H, d, J = 8.5 Hz, H-13/14); δC (100 MHz, CDCl3) 

48.0 (C-8), 51.6 (C-7), 55.2 (C-3/16), 55.4 (C-3/16), 114.3 (C-13/14), 119.4 (C-1), 125.3 (C-

12), 127.1 (C-10), 129.0 (C-5), 129.4 (C-13/14), 151.7 (C-2/15), 152.4 (C-6), 162.2 (C-2/15), 

173.7 (C-11), 180.1 (C-4), 203.4 (C-9); HRMS (ESI+): Found: 319.0947; C18H16NaO4 (MNa+) 

Requires 319.0941 (−2.0 ppm error). 

Lab notebook reference: akc04-41 

 

5-Methyl-4a,5,6,7-tetrahydrocyclopenta[d]quinoline-3,9(4H,10H)-dione (199) 

 

To a stirred solution of spirocyclic dienone 198c (64.2 mg, 0.202 mmol) in CH2Cl2 (2 mL) at 

0 °C was added TFA (0.2 mL) dropwise. The mixture was warmed to RT and stirred for 2 h. 

The reaction was quenched by the addition of sat. aq. NaHCO3 (5 mL). The organic layer was 

separated and the aqueous layer extracted with CH2Cl2 (2 × 5 mL). The organics were 

combined, washed with brine, dried over MgSO4 and concentrated in vacuo. The crude 

material was purified by column chromatography (9:1 EtOAc:MeOH) to afford the title 

compound 199 as a colourless oil (29.2 mg, 66%); Rf 0.47 (9:1 EtOAc:MeOH); νmax (thin 

film)/cm-1 2790, 1709, 1684, 1632, 1209; δH (400 MHz, CDCl3) 2.23–2.32 (4 H, m, H-7, 

CHHʹ), 2.45–2.54 (2 H, m, H-6, CHHʹ), 2.58–2.75 (4 H, m, CH2, CHHʹ (×2)), 2.87 (1 H, dd, J 

= 16.0, 2.5 Hz, CHHʹ), 3.10 (1 H, ddd, J = 11.0, 5.5, 2.5 Hz, CHHʹ), 6.00 (1 H, s, H-11), 6.09 

(1 H, d, J = 10.0 Hz, H-3), 6.41 (1 H, dd, J = 10.0, 2.5 Hz, H-2); δC (100 MHz, CDCl3) 29.7 

(CH2), 40.0 (CH2), 42.1 (C-7), 45.9 (CH2), 49.4 (C-1), 56.7 (CH2), 70.2 (C-6), 127.7 (C-11), 

129.2 (C-3), 149.8 (C-2), 181.3 (C-10), 196.1 (C-4/12), 204.9 (C-4/12); HRMS (ESI+): 

Found: 218.1170; C13H16NO2 (MH+) Requires 218.1176 (2.5 ppm error). 

Lab notebook reference: akc05-11 
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4-Phenylspiro[4.5]deca-3,7,9-triene-2,6-dione (201k) 

 

 

Synthesised using general procedure C with ynone 197k (115 mg, 0.487 mmol), AgNO3·SiO2 

(826 mg, 0.0487 mmol) in CH2Cl2 (4.9 mL) at RT for 24 h. Purification by column 

chromatography (9:1 hexane:EtOAc, then 1:1 hexane:EtOAc) afforded the title compound 

201k a pale yellow oil (103 mg, 90%); Rf 0.22 (7:3 hexane:EtOAc); νmax (thin film)/cm-1 

1694, 1659, 1595, 1195, 760; δH (400 MHz, CDCl3) 2.54 (1 H, d, J = 18.0 Hz, H-7a), 2.78 (1 

H, d, J = 18.0 Hz, H-7b), 6.34 (1 H, d, J = 10.0 Hz, H-2/4), 6.44–6.49 (2 H, m, Ar-H), 6.77 (1 

H, s, H-9), 7.24–7.30 (1 H, m, H-2/3/4), 7.30–7.38 (4 H, m, H-12,13), 7.38–7.44 (1 H, m, H-

14); δC (100 MHz, CDCl3) 48.3 (C-7), 60.5 (C-6), 121.8 (C-2/3/4), 126.5 (C-2/4), 127.3 (C-

12/13), 129.0 (C-12/13), 129.5 (C-9), 131.5 (C-14), 132.3 (C-11), 142.3 (C-2/3/4), 144.6 (C-

5), 173.7 (C-10), 200.2 (C-1), 204.6 (C-8); HRMS (ESI+): Found: 259.0723; C16H12NaO2 

(MNa+) Requires 259.0730 (2.5 ppm error), Found: 237.0906; C16H13O2 (MH+) Requires 

237.0910 (1.9 ppm error). 

Lab notebook reference: akc04-76 

 

4-(4-Methoxyphenyl)spiro[4.5]deca-3,7,9-triene-2,6-dione (201l) 

 

Synthesised using general procedure C with ynone 197l (50 mg, 0.188 mmol), AgNO3·SiO2 

(319 mg, 0.0188 mmol) in CH2Cl2 (1.8 mL) at RT for 24 h. Afforded the title compound 201l 

without further purification as a yellow oil (49.5 mg, 99%); Rf 0.25 (1:1 hexane:EtOAc); νmax 

(thin film)/cm-1 1689, 1659, 1602, 1587, 1510, 1262, 1179, 1026, 833, 731; δH (400 MHz, 

CDCl3) 2.51 (1 H, d, J = 18.0 Hz, H-7a), 2.75 (1 H, d, J = 18.0 Hz, H-7b), 3.81 (3 H, s, H-15), 
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6.34 (1 H, d, J = 9.5 Hz, Ar-H), 6.45–6.47 (2 H, m, Ar-H), 6.68 (1 H, s, H-9), 6.85 (2 H, d, J = 

8.5 Hz, H-12/13), 7.25–7.31 (3 H, m, Ar-H); δC (100 MHz, CDCl3) 48.3 (C-7), 55.4 (C-15), 

60.4 (C-6), 114.4 (C-12/13), 121.5 (CH), 124.8 (C-11), 126.5 (CH), 127.2 (CH), 129.2 (C-

12/13), 142.3 (CH), 145.0 (CH), 162.2 (C-14), 173.4 (C-10), 200.5 (C-1), 204.5 (C-8); HRMS 

(ESI+): Found: 289.0834; C17H14NaO3 (MNa+) Requires 289.0835 (0.4 ppm error), Found: 

267.1004; C17H15O3 (MH+) Requires 267.1016 (4.2 ppm error). 

Lab notebook reference: akc-bsc-012 

 

4-(4-Fluorophenyl)spiro[4.5]deca-3,7,9-triene-2,6-dione (201m) 

 

Synthesised using general procedure C with ynone 197m (98.8 mg, 0.389 mmol), 

AgNO3·SiO2 (661 mg, 0.0389 mmol) in CH2Cl2 (3.9 mL) at RT for 48 h. Purification by 

column chromatography (8:2 EtOAc:hexane) afforded the title compound 201m a yellow oil 

(88.7 mg, 90%); Rf 0.36 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 1694, 1659, 1601, 1582, 

1508, 1238, 1193, 1163, 836; δH (400 MHz, CDCl3) 2.53 (1 H, d, J = 18.0 Hz, H-7a), 2.76 (1 

H, d, J = 18.0 Hz, H-7b), 6.33 (1 H, d, J = 9.5 Hz, H-2/4), 6.42–6.50 (2 H, m, Ar-H), 6.70 (1 

H, s, H-9), 7.03 (2 H, dd, 3JHH = 8.5 Hz, 3JHF 8.5 Hz, H-13), 7.25–7.29 (1 H, m, Ar-H), 7.29–

7.34 (2 H, m, H-12); δC (100 MHz, CDCl3) 48.4 (C-7), 60.5 (C-6), 116.2 (d, 2JCF = 22.0 Hz, 

C-13), 121.9 (CH), 126.5 (CH), 128.6 (d, 4JCF = 3.0 Hz, C-11), 129.2 (C-9), 129.5 (d, 3JCF = 

8.5 Hz, C-12), 142.4 (CH), 144.3 (C-5), 164.3 (d, 1JCF = 254 Hz, C-14), 172.3 (C-10), 200.1 

(C-1), 204.3 (C-8); HRMS (ESI+): Found: 277.0642; C16H11FNaO2 (MNa+) Requires 

277.0635 (−2.4 ppm error), Found: 255.0818; C16H12FO2 (MH+) Requires 255.0816 (−0.7 

ppm error). 

Lab notebook reference: akc04-42 
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4-Cyclopropylspiro[4.5]deca-3,7,9-triene-2,6-dione (201n) 

 

Synthesised using general procedure C with ynone 197n (108 mg, 0.538 mmol), AgNO3·SiO2 

(915 mg, 0.0538 mmol) in CH2Cl2 (5.4 mL) at RT for 2 h. Afforded the title compound 201n 

without further purification as a yellow oil (104 mg, 96%); Rf 0.34 (1:1 hexane:EtOAc); νmax 

(thin film)/cm-1 1694, 1660, 1632, 1607, 1557, 1200, 862; δH (400 MHz, CDCl3) 0.68–0.79 (2 

H, m, H-12/13), 0.97−1.09 (2 H, m, H-12/13), 1.20−1.28 (1 H, m, H-11), 2.39 (1 H, d, J = 

18.0 Hz, H-7a), 2.77 (1 H, d, J = 18.0 Hz, H-7b), 5.72 (1 H, s, H-9), 6.23 (1 H, d, J = 9.5 Hz, 

H-2), 6.28 (1 H, d, J = 9.0 Hz, H-5), 6.47 (1 H, dd, J = 9.0, 5.5 Hz, H-4), 7.19 (1 H, ddd, J = 

9.5, 5.5, 1.5 Hz, H-3); δC (100 MHz, CDCl3) 11.0 (C-11), 11.9 (C-12/13), 13.2 (C-12/13), 

46.8 (C-7), 62.7 (C-6), 122.8 (C-4), 123.9 (C-9), 126.7 (C-2), 142.5 (C-3/5), 142.8 (C-3/5), 

184.5 (C-10), 200.3 (C-1), 206.2 (C-8); HRMS (ESI+): Found: 223.0732; C13H12NaO2 (MNa+) 

Requires 223.0730 (−1.3 ppm error), Found: 201.0907; C13H13O2 (MH+) Requires 201.0910 

(1.3 ppm error). 

Lab notebook reference: akc04-68 

 

tert-Butyl 3-iodo-1H-indole-1-carboxylate (207) 

 

To a solution of indole 206 (1.00 g, 8.54 mmol) in DMF (20 mL) was added KOH (1.20 g, 

21.3 mmol) followed by the addition of iodine (2.17 g, 8.54 mmol). The reaction mixture was 

stirred at RT for 1 h. The resulting brown solution was quenched with sat. aq. Na2S2O3 (100 

mL), extracted with diethyl ether (3 x 100 mL), dried over MgSO4 and concentrated in vacuo. 

The crude material was then dissolved in CH2Cl2 (44 mL) and triethylamine (3.6 mL) 

followed by the sequential addition of dimethylaminopyridine (104 mg, 0.854 mmol) and di-

tert-butyl dicarbonate (2.24 g, 10.2 mmol). The reaction was stirred at RT for 1 h, diluted with 
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CH2Cl2 (100 mL), washed with water (70 mL), dried over MgSO4 and concentrated in vacuo. 

The crude material was purified by column chromatography (9:1 hexane:EtOAc) to afford the 

title compound 207 as a clear and colourless oil (2.64 g, 90%); Rf 0.78 (7:3 hexane:EtOAc); 

νmax (thin film)/cm-1 2978, 1735, 1448, 1369, 1310, 1246, 1154, 1052, 744; δH (400 MHz, 

CDCl3) 1.68 (9 H, s, H-11), 7.30–7.44 (3 H, m, Ar-H), 7.74 (1 H, s, H-7), 8.14 (1 H, br d, J = 

8.0 Hz, Ar-H); δC (100 MHz, CDCl3) 28.2 (C-11), 65.4 (C-8), 84.3 (C-10), 115.1 (CH), 121.6 

(CH), 123.4 (CH), 125.4 (CH), 130.2 (C-7), 132.3 (C-1/6), 135.0 (C-1/6), 148.8 (C-9). 

Note: Some peaks broadened in 1H and 13C NMR spectra due to presence of rotamers. 

Lab notebook reference: akc04-83 

Spectroscopic data matched those previously reported in the literature.205 

 

tert-Butyl 3-ethynyl-1H-indole-1-carboxylate (208) 

 

A solution of tert-butyl 3-iodo-1H-indole-1-carboxylate 207 (2.63 g, 7.66 mmol) in 

triethylamine (7.7 mL) and DMF (7.7 mL) was degassed in a sonic bath for 30 min. 

Pd(PPh3)2Cl2 (108 mg, 0.153 mmol) and CuI (58.4 mg, 0.307 mmol) were added, followed by 

ethynyltrimethylsilane (1.62 mL, 11.5 mmol) and the resulting solution was stirred at 60 °C 

for 2 h. The reaction mixture was cooled to RT, quenched with water (50 mL), extracted with 

EtOAc (3 x 50 mL), dried over MgSO4 and concentrated in vacuo. The crude material was 

then passed through a short plug of silica (10:1 hexane:EtOAc), concentrated and redissolved 

in THF (77 mL). The solution was then cooled to 0 °C, before adding TBAF (9.19 mL, 9.19 

mmol, 1 M solution in THF) and stirring at 0 °C for 10 min. The reaction was then quenched 

by the addition of sat. aq. NH4Cl (50 mL), extracted with diethyl ether (3 x 50 mL), dried over 

MgSO4 and concentrated in vacuo. The crude material was purified by column 

chromatography (20:1 hexane:EtOAc, then 10:1 hexane:EtOAc) to afford the title compound 

208 as a yellow oil (1.04 g, 56%); Rf 0.63 (10:1 hexane:EtOAc); νmax (thin film)/cm-1 3292, 

2980, 1734, 1451, 1358, 1227, 1148, 1081, 745; δH (400 MHz, CDCl3) 1.70 (9 H, s, H-13), 

3.25 (1 H, s, H-1), 7.29–7.41 (2 H, m, Ar-H), 7.70 (1 H, d, J = 8.0 Hz, Ar-H ), 7.83 (1 H, s, H-
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10), 8.17 (1 H, d, J = 8.0 Hz, Ar-H); δC (100 MHz, CDCl3) 28.1 (C-13), 75.8 (C-2/3), 80.7 (C-

1), 84.4 (C-12), 102.3 (C-2/3), 115.2 (CH), 120.0 (CH), 123.2 (CH), 125.2 (CH), 129.9 (C-

10), 130.4 (C-4/9), 134.5 (C-4/9), 149.0 (C-11). 

Lab notebook reference: akc04-85 

Spectroscopic data matched those previously reported in the literature.54 

 

tert-Butyl 3-(4-(4-hydroxyphenyl)-3-oxobut-1-yn-1-yl)-1H-indole-1-carboxylate (209) 

 

Synthesised using general procedure B with alkyne 208 (738 mg, 3.06 mmol), THF (8 mL), 

Weinreb amide 195a (199 mg, 1.02 mmol) and n-BuLi (1.02 mL, 2.54 mmol, 2.5 M in 

hexanes) stirring at RT for 1 h. Purification by column chromatography (9:1 hexane:EtOAc, 

then 8:2 hexane:EtOAc) afforded the title compound 209 as a yellow oil (306 mg, 80%); Rf 

0.37 (7:3 hexane:EtOAc); νmax (thin film)/cm-1 3374, 2980, 2188, 1743, 1369, 1232, 1150, 

1072; δH (400 MHz, CDCl3) 1.70 (9 H, s, H-10), 3.89 (2 H, s, H-15), 4.98 (1 H, br s, H-20), 

6.87 (2 H, d, J = 8.0 Hz, Ar-H), 7.23 (2 H, d, J = 8.0 Hz, Ar-H), 7.32 (1 H, dd, J = 8.0, 7.5 Hz, 

H-4/5), 7.38 (1 H, dd, J = 8.0, 7.5 Hz, H-4/5), 7.51 (1 H, d, J = 8.0 Hz, Ar-H), 7.91 (1 H, s, H-

11), 8.14 (1 H, d, J = 8.0 Hz, Ar-H); δC (100 MHz, CDCl3) 28.2 (C-10), 51.2 (C-15), 85.3 (C-

1/9), 86.8 (C-1/9), 92.4 (C-12/13), 100.5 (C-12/13), 115.5 (CH), 115.8 (CH), 120.1 (C-3/6), 

123.8 (C-4/5), 125.7 (C-4/5), 125.8 (C-16), 129.9 (C-2/7), 131.2 (C-17/18), 133.1 (C-11), 

134.8 (C-2/7), 148.6 (C-8), 155.2 (C-19), 185.3 (C-14); HRMS (ESI+): Found: 398.1357; 

C23H21NNaO4 (MNa+) Requires 398.1363 (1.5 ppm error). 

Note: Some peaks broadened in 13C NMR spectrum due to presence of rotamers. 

Lab notebook reference: akc04-86 
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tert-Butyl 3-(3-oxo-5-(4-oxocyclohexa-2,5-dien-1-yl)cyclopent-1-en-1-yl)-1H-indole-1-

carboxylate (83) 

 

Synthesised using general procedure C with ynone 209 (68.4 mg, 0.182 mmol), AgNO3·SiO2 

(310 mg, 0.0182 mmol) in CH2Cl2 (1.8 mL) at RT for 7 h. Afforded the title compound 83 

without further purification as a pale brown solid (67.9 mg, 99%); mp 190–192 °C; Rf 0.46 

(1:1 hexane:EtOAc); νmax (thin film)/cm-1 1742, 1694, 1662, 1595, 1370, 1351, 1228, 1148, 

1109, 861, 732; δH (400 MHz, CDCl3) 1.63 (9 H, s, H-10), 2.76 (2 H, s, H-15), 6.50 (2 H, d, J 

= 9.5 Hz, H-17/18), 6.91 (1 H, s, H-13), 6.97 (2 H, d, J = 9.5 Hz, H-17/18), 7.34–7.45 (2 H, 

m, H-4,5), 7.78 (1 H, d, J = 8.0 Hz, H-3/6), 7.93 (1 H, s, H-11), 8.25 (1 H, d, J = 8.0 Hz, H-

3/6); δC (100 MHz, CDCl3) 28.0 (C-10), 45.6 (C-15), 51.9 (C-16), 85.4 (C-9), 114.0 (C), 

115.7 (C-3/6), 120.3 (C-3/6), 124.2 (C-4/5), 125.7 (C-4/5), 127.8 (C), 128.2 (C-11/13), 128.4 

(C-11/13), 129.7 (C-17/18), 135.8 (C), 148.4 (C), 151.9 (C-17/18), 165.9 (C), 184.3 (C-19), 

203.4 (C-14). 

Note: Some peaks broadened in 13C NMR spectrum due to presence of rotamers. 

Lab notebook reference: akc04-87 

Spectroscopic data matched those previously reported in the literature.54 
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6.9.3 Chapter 4 

Ethyl 2-oxo-2-(1H-pyrrol-3-yl)acetate (221) 

 

To a stirred solution of TIPS-pyrrole 220 (13.0 g, 58.2 mmol) in anhydrous 1,2-DCE (100 

mL) at RT was added ethyl oxalyl chloride (19.5 mL, 175 mmol) and pyridine (14.1 mL, 175 

mmol). The reaction mixture was then heated to 73 °C and stirred for 16 h. The reaction 

mixture was then cooled to RT and quenched with sat. aq. NH4Cl (100 mL). The aqueous 

layer was extracted with CH2Cl2 (2 x 50 mL), organics were combined, washed with brine (50 

mL), dried over MgSO4 and concentrated in vacuo. The crude material was purified by 

column chromatography (5:1 hexane:EtOAc, then 2:1 hexane:EtOAc) to afford the title 

compound 221 as a brown solid (3.53 g, 36%); mp 80–82 °C; Rf 0.22 (2:1 hexane:EtOAc); 

νmax (thin film)/cm-1 3300, 2983, 1732, 1641, 1509, 1422, 1261, 1235, 1072; δH (400 MHz, 

CDCl3) 1.40 (3 H, t, J = 7.0 Hz, H-9), 4.39 (2 H, q, J = 7.0 Hz, H-8), 6.82–6.86 (2 H, m, H-

1/3/4), 7.85–7.89 (1 H, m, H-1/3/4); δC (100 MHz, CDCl3) 14.1 (C-9), 62.1 (C-8), 110.2 (C-

1/3/4), 120.2 (C-1/3/4), 121.7 (C-5), 128.4 (C-1/3/4), 163.0 (C-7), 178.9 (C-6); HRMS (ESI+): 

Found: 190.0480; C8H9NNaO3 (MNa+) Requires 190.0475 (−3.0 ppm error). 

Lab notebook reference: akc05-52 

Spectroscopic data matched those previously reported in the literature.149 

 

Ethyl 2-(1H-pyrrol-3-yl)acetate (222) 

 

To a rbf under argon containing ethyl 2-oxo-2-(1H-pyrrol-3-yl)acetate 221 (3.53 g, 21.1 

mmol) at RT was added Pd/C (706 mg, 6.63 mmol, 10 wt.%), followed by 1,4-dioxane (64 

mL). A solution of NaH2PO2·H2O (11.8 g, 110 mmol) in H2O (11 mL) was then added and the 

reaction mixture was heated to 110 °C and stirred for 4 h. The mixture was cooled to RT and a 

second solution of NaH2PO2·H2O (11.8 g, 110 mmol) in H2O (11 mL) was added, the mixture 
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was heated to 110 °C and stirred for 4 h. The reaction mixture was cooled to RT, filtered 

through Celite washing with several portions of diethyl ether. The filtrate was dried over 

MgSO4 and concentrated in vacuo to afford the crude material. Purification by column 

chromatography (2:1 hexane:EtOAc) afforded the title compound 222 as a brown oil (1.23 g, 

38%); Rf 0.51 (2:1 hexane:EtOAc); νmax (thin film)/cm-1 3393, 2982, 1725, 1279, 1148, 1061; 

δH (400 MHz, CDCl3) 1.28 (3 H, t, J = 7.0 Hz, H-9), 3.53 (2 H, s, H-6), 4.17 (2 H, q, J = 7.0 

Hz, H-8), 6.18–6.22 (1 H, m, H-1/3/4), 6.73–6.77 (2 H, m, H-1/3/4), 8.17 (1 H, br s, H-2); δC 

(100 MHz, CDCl3) 14.2 (C-9), 33.0 (C-6), 60.6 (C-8), 109.2 (C-1/3/4), 115.6 (C-5), 116.5 (C-

1/3/4), 118.0 (C-1/3/4), 172.6 (C-7). 

Lab notebook reference: akc05-53 

Spectroscopic data matched those previously reported in the literature.151,206 

 

Ethyl 2-(1-(triisopropylsilyl)-1H-pyrrol-3-yl)acetate (225) 

 

To a stirred solution of TIPS-pyrrole 220 (3.00 g, 13.4 mmol) in CH2Cl2 (67 mL) at 0 °C was 

added ethyl diazoacetate (2.03 mL, 16.8 mmol, 87 wt.% in CH2Cl2) and Cu(OTf)2 (486 mg, 

1.34 mmol). The reaction mixture was then warmed to RT and stirred for 2 h. The reaction 

mixture was then quenched with water (50 mL). The organics were separated and the aqueous 

extracted with CH2Cl2 (2 x 50 mL). The organics were combined, washed with brine (50 mL), 

dried over MgSO4 and concentrated in vacuo. The crude material was purified by column 

chromatography (20:1 hexane:EtOAc) to afford the title compound 225 as a colourless oil 

(756 mg, 18%); Rf 0.65 (6:1 hexane:EtOAc); νmax (thin film)/cm-1 2946, 2868, 1737, 1464, 

1096; δH (400 MHz, CDCl3) 1.10 (18 H, d, J = 7.5 Hz, H-1), 1.26 (3 H, t, J = 7.0 Hz, H-10), 

1.43 (3 H, septet, J = 7.5 Hz, H-2), 3.51 (2 H, s, H-7), 4.15 (2 H, q, J = 7.0 Hz, H-9), 6.24–

6.27 (1 H, m, H-4/6), 6.68–6.73 (2 H, m, H-3,4/6); δC (100 MHz, CDCl3) 11.6 (C-2), 14.2 (C-

10), 17.8 (C-1), 33.2 (C-7), 60.4 (C-9), 111.2 (C-4/6), 117.5 (C-5), 122.6 (C-4/6), 124.2 (C-3), 

172.6 (C-8); HRMS (ESI+): Found: 332.2012; C17H31NNaO2Si (MNa+) Requires 332.2016 

(1.2 ppm error), Found: 310.2191; C17H32NO2Si (MH+) Requires 310.2197 (1.9 ppm error). 

Lab notebook reference: akc05-19 
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N-Methoxy-N-methyl-2-(1H-pyrrol-3-yl)acetamide (218a) 

 

To a solution of ethyl ester 225 (740 mg, 2.39 mmol) in THF (7 mL) at RT was added TBAF 

(2.39 mL, 2.39 mmol, 1 M solution in THF). The reaction mixture was stirred for 5 min at 

RT. EtOAc was added (10 mL) and the organic layer washed with water (2 x 10 mL). The 

organic layer was dried over MgSO4 and concentrated in vacuo to afford the crude 

deprotected pyrrole as a brown oil. To a solution of the crude material (554 mg, 3.62 mmol) in 

THF (25 mL) and MeOH (2.5 mL) at 0 °C was added 2 M aq. NaOH (20 mL). The reaction 

mixture was warmed to RT and stirred for 4 h. Water (20 mL) was added and the aqueous 

layer was washed with EtOAc (20 mL). The organic extract was discarded. The aqueous layer 

was acidified with 10% aq. HCl (15 mL) until pH = 1 and then extracted with EtOAc (2 x 20 

mL). The organics were combined, dried over MgSO4 and concentrated in vacuo to afford the 

crude pyrrole acid 226 as a brown oil (332 mg, 73%). 

To a stirred solution of crude pyrrole acid 226 (332 mg, 2.65 mmol), MeNH(OMe)·HCl (284 

mg, 2.92 mmol) and DIPEA (1.38 mL, 7.95 mmol) in CH2Cl2 (13 mL) was added T3P 50% in 

EtOAc (2.53 g, 3.98 mmol). The solution was stirred at RT for 1 h. Water (20 mL) was added 

and basified using aq. 2 M NaOH until pH = 10. The CH2Cl2 layer was removed and the 

aqueous extracted with EtOAc (2 x 30 mL). The organics were combined, washed with 10% 

aq. HCl (20 mL), brine (20 mL), dried over MgSO4 and concentrated in vacuo to afford the 

crude material. Purification by column chromatography (9:1 hexane:EtOAc, then 5:1 

EtOAc:hexane) afforded the title compound 218a as a colourless oil (232 mg, 52%); Rf 0.43 

(5:1 EtOAc:hexane); νmax (thin film)/cm-1 3314, 2937, 1641, 1435, 1384, 1071, 1004, 768; δH 

(400 MHz, CDCl3) 3.21 (3 H, s, H-8), 3.66 (2 H, s, H-6), 3.68 (3 H, s, H-9), 6.17–6.21 (1 H, 

m, H-1/3/4), 6.71–6.76 (2 H, m, H-1/3/4), 8.25 (1 H, br s, H-2); δC (100 MHz, CDCl3) 30.8 

(C-6), 32.2 (C-8), 61.2 (C-9), 109.3 (C-1/3/4), 116.2 (C-5), 116.6 (C-1/3/4), 117.8 (C-1/3/4), 

173.4 (C-7); HRMS (ESI+): Found: 191.0792; C8H12N2NaO2 (MNa+) Requires 191.0791 (−0.4 

ppm error), Found: 169.0979; C8H13N2O2 (MH+) Requires 169.0972 (−4.6 ppm error). 

Lab notebook reference: akc05-20/22/23 
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N-Methoxy-N-methyl-2-(1H-pyrrol-3-yl)propanamide (218b) 

 

To a solution of ethyl ester 225 (500 mg, 1.62 mmol) in THF (8 mL) at −78 °C was added 

LiHMDS (2.42 mL, 2.42 mmol, 1 M solution in THF) dropwise. The resulting solution was 

then stirred at 0 °C for 30 min. The solution was then recooled to −78 °C and MeI (0.30 mL, 

4.85 mmol) was added dropwise. The reaction mixture was warmed to RT and stirred for 2 h. 

The reaction was quenched by the addition of sat. aq. NH4Cl (20 mL). The organics were 

separated and the aqueous layer was extracted with EtOAc (2 × 20 mL). The organics were 

combined, washed with brine (20 mL), dried over MgSO4, concentrated in vacuo to afford the 

crude alkylated product as a yellow oil (522 mg, 100%). 

To a solution of the crude alkylated product (518 mg, 1.60 mmol) in THF (5 mL) at RT was 

added TBAF (1.60 mL, 1.60 mmol, 1 M solution in THF). The reaction mixture was stirred 

for 5 min at RT. EtOAc was added (10 mL) and the organic layer washed with water (2 x 10 

mL). The organic layer was dried over MgSO4 and concentrated in vacuo to afford the crude 

deprotected pyrrole as a brown oil. To a solution of the crude material (447 mg, 2.92 mmol) in 

THF (20 mL) and MeOH (2 mL) at 0 °C was added 2 M aq. NaOH (16 mL). The reaction 

mixture was warmed to RT and stirred for 21 h. Water (20 mL) was added and the aqueous 

layer was washed with EtOAc (20 mL). The organic extract was discarded. The aqueous layer 

was acidified with 10% aq. HCl (15 mL) until pH = 1 and then extracted with EtOAc (3 x 20 

mL). The organics were combined, dried over MgSO4 and concentrated in vacuo to afford the 

crude pyrrole acid 227 as a brown oil (191 mg, 86%). 

To a stirred solution of crude pyrrole acid 227 (187 mg, 1.34 mmol), MeNH(OMe)·HCl (144 

mg, 1.48 mmol) and DIPEA (0.70 mL, 4.03 mmol) in CH2Cl2 (7 mL) was added T3P 50% in 

EtOAc (1.28 g, 2.01 mmol). The solution was stirred at RT for 1 h. Water (10 mL) was added 

and basified using aq. 2 M NaOH until pH = 10. The CH2Cl2 layer was removed and the 

aqueous extracted with EtOAc (2 x 20 mL). The organics were combined, washed with brine 

(20 mL), dried over MgSO4 and concentrated in vacuo to afford the crude material. 

Purification by column chromatography (9:1 hexane:EtOAc, then 1:1 EtOAc:hexane) afforded 

the title compound 218b as a pale orange oil (201 mg, 82%); Rf 0.36 (1:1 EtOAc:hexane); νmax 

(thin film)/cm-1 3313, 2972, 2935, 1640, 1460, 1384, 1071, 989, 769; δH (400 MHz, CDCl3) 

1.44 (3 H, d, J = 7.5 Hz, H-6), 3.19 (3 H, s, H-9), 3.62 (3 H, s, H-10), 4.12–4.22 (1 H, m, H-

7), 6.16–6.22 (1 H, m, H-1/3/4), 6.67–6.74 (2 H, m, H-1/3/4), 8.24 (1 H, br s, H-2); δC (100 
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MHz, CDCl3) 19.3 (C-6), 32.3 (C-9), 33.9 (C-7), 61.3 (C-10), 107.7 (C-1/3/4), 115.1 (C-

1/3/4), 117.7 (C-1/3/4), 123.9 (C-5), 176.5 (C-8); HRMS (ESI+): Found: 205.0940; 

C9H14N2NaO2 (MNa+) Requires 205.0947 (3.8 ppm error), Found: 183.1121; C9H15N2O2 

(MH+) Requires 183.1128 (−4.1 ppm error). 

Lab notebook reference: akc06-12/13/14/16 

 

Ethyl 2-(1-methyl-1H-pyrrol-3-yl)acetate (229) 

 

Procedure based on US Pat., US2004192720A1, 2004. 

To a 100 mL rbf was added N-methyl pyrrole 228 (6.87 g, 84.7 mmol) and Cu(OTf)2 (160 mg, 

0.44 mmol). This mixture was heated to 40 °C and ethyl diazoacetate (25 mL, 29.4 mmol, 

15% in toluene) was added dropwise over 2.5 h. After addition was complete the reaction 

mixture was maintained at 50 °C for a further 15 min. The reaction mixture was then filtered 

through a short pad of Celite, washed through with CH2Cl2 (50 mL) and concentrated in 

vacuo. The crude material was purified by column chromatography (9:1 hexane:EtOAc, then 

85:15 hexane:EtOAc) to afford the title compound 229 as a yellow oil (682 mg, 14%); Rf 0.44 

(8:2 hexane:EtOAc); νmax (thin film)/cm-1 2981, 1733, 1508, 1300, 1267, 1241, 1164, 1033, 

764; δH (400 MHz, CDCl3) 1.28 (3 H, t, J = 7.0 Hz, H-9), 3.47 (2 H, s, H-6), 3.62 (3 H, s, H-

1), 4.16 (2 H, q, J = 7.0 Hz, H-8), 6.06–6.10 (1 H, m, H-3), 6.52–6.58 (2 H, m, H-2,5); δC 

(100 MHz, CDCl3) 14.2 (C-9), 33.1 (C-6), 36.1 (C-1), 60.5 (C-8), 108.9 (C-3), 115.6 (C-4), 

120.5 (C-2/5), 121.7 (C-2/5), 172.6 (C-7); HRMS (ESI+): Found: 190.0846; C9H13NNaO2 

(MNa+) Requires 190.0838 (3.7 ppm error). 

Lab notebook reference: akc07-72 

Spectroscopic data matched those previously reported in the literature.207 
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N-Methoxy-N-methyl-2-(1-methyl-1H-pyrrol-3-yl)acetamide (218c) 

 

To a solution of ethyl ester 229 (359 mg, 2.15 mmol) in THF (15.1 mL) and MeOH (1.5 mL) 

at 0 °C was added 2 M aq. NaOH (11.8 mL). The reaction mixture was warmed to RT and 

stirred for 3.5 h. Water (20 mL) was added and the aqueous layer was washed with EtOAc (20 

mL). The organic extract was discarded. The aqueous layer was acidified with 10% aq. HCl (8 

mL) until pH = 1 and then extracted with EtOAc (2 x 20 mL). The organics were combined, 

dried over MgSO4 and concentrated in vacuo to afford the crude pyrrole acid as a brown oil 

(372 mg, 100%). 

To a stirred solution of crude pyrrole acid (372 mg, 2.67 mmol), MeNH(OMe)·HCl (286 mg, 

2.94 mmol) and DIPEA (1.4 mL, 8.01 mmol) in CH2Cl2 (13 mL) was added T3P 50% in 

EtOAc (2.55 g, 4.01 mmol). The solution was stirred at RT for 1 h. Water (15 mL) was added 

and basified using aq. 2 M NaOH until pH = 10. The CH2Cl2 layer was removed and the 

aqueous extracted with EtOAc (2 x 20 mL). The organics were combined, washed with brine 

(10 mL), dried over MgSO4 and concentrated in vacuo. The crude material was purified by 

column chromatography (1:1 hexane:EtOAc) to afford the title compound 218c as a clear and 

colourless oil (360 mg, 74%); Rf 0.14 (6:4 hexane:EtOAc); νmax (thin film)/cm-1 2937, 1655, 

1507, 1419, 1379, 1160, 1006, 764; δH (400 MHz, CDCl3) 3.20 (3 H, s, H-8), 3.61 (5 H, s, H-

1/6), 3.69 (3 H, s, H-9), 6.04–6.09 (1 H, m, H-3), 6.51–6.54 (1 H, m, H-2/5), 6.55–6.58 (1 H, 

m, H-2/5); δC (100 MHz, CDCl3) 30.8 (C-1/6), 32.2 (C-8), 36.0 (C-1/6), 61.2 (C-9), 109.0 (C-

3), 116.2 (C-4), 120.5 (C-2/5), 121.5 (C-2/5), 173.4 (C-7); HRMS (ESI+): Found: 205.0941; 

C9H14N2NaO2 (MNa+) Requires 205.0947 (3.3 ppm error). 

Lab notebook reference: akc07-76 
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4-Phenyl-1-(1H-pyrrol-3-yl)but-3-yn-2-one (214a) 

 

Synthesised using general procedure B with phenylacetylene (0.44 mL, 4.02 mmol), THF (11 

mL), Weinreb amide 218a (225 mg, 1.34 mmol) and n-BuLi (1.34 mL, 3.35 mmol, 2.5 M in 

hexanes) stirring at RT for 30 min. Purification by column chromatography (9:1 

hexane:EtOAc, then 7:1 hexane:EtOAc) afforded the title compound 214a as a yellow oil (186 

mg, 66%); Rf 0.74 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 3389, 2200, 1657, 1489, 1285, 

1070, 1058, 756, 687; δH (400 MHz, CDCl3) 3.85 (2 H, s, H-6), 6.23–6.27 (1 H, m, H-1/3/4), 

6.78–6.82 (2 H, m, H-1/3/4), 7.35–7.40 (2 H, m, H-11/12), 7.42–7.48 (1 H, m, H-13), 7.51–

7.56 (2 H, m, H-11/12), 8.27 (1 H, br s, H-2); δC (100 MHz, CDCl3) 43.9 (C-6), 87.9 (C-8), 

91.7 (C-9), 109.6 (C-1/4), 114.5 (C-5), 117.2 (C-1/4), 118.3 (C-3), 120.1 (C-10), 128.5 (C-

11/12), 130.6 (C-13), 133.0 (C-11/12), 186.3 (C-7); HRMS (ESI+): Found: 232.0739; 

C14H11NNaO (MNa+) Requires 232.0733 (−2.8 ppm error), Found: 210.0920; C14H12NO 

(MH+) Requires 210.0913 (−3.1 ppm error).  

Lab notebook reference: akc05-24 

 

4-(4-Fluorophenyl)-1-(1H-pyrrol-3-yl)but-3-yn-2-one (214b) 

 

Synthesised using general procedure B with 1-ethynyl-4-fluorobenzene (1.39 mg, 1.16 mmol), 

THF (3.2 mL), Weinreb amide 218a (65.0 mg, 0.386 mmol) and n-BuLi (0.39 mL, 0.966 

mmol, 2.5 M in hexanes) stirring at RT for 30 min. Purification by column chromatography 

(9:1 hexane:EtOAc, then 6:1 hexane:EtOAc) afforded the title compound 214b as a pale 

brown solid (65.6 mg, 75%); mp 67–69 °C; Rf 0.59 (3:2 hexane:EtOAc); νmax (thin film)/cm-1 

3393, 2203, 1655, 1599, 1505, 1232, 1156, 1071, 1058, 838; δH (400 MHz, CDCl3) 3.83 (2 H, 

s, H-6), 6.21–6.26 (1 H, m, H-1/3/4), 6.77–6.83 (2 H, m, H-1/3/4), 7.07 (2 H, dd, 3JHH = 8.5 

Hz, 3JHF 8.5 Hz, H-12), 7.52 (2 H, dd, 3JHH = 8.5 Hz, 4JHF 5.5 Hz, H-11), 8.24 (1 H, br s, H-2); 
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δC (100 MHz, CDCl3) 43.8 (C-6), 87.9 (C-8), 90.6 (C-9), 109.7 (C-1/3/4), 114.5 (C-5), 116.1 

(d, 2JCF = 22.0 Hz, C-12), 116.2 (d, 4JCF = 4.0 Hz, C-10), 117.2 (C-1/3/4), 118.3 (C-1/3/4), 

135.3 (d, 3JCF = 8.5 Hz, C-11), 163.9 (d, 1JCF = 253 Hz, C-13), 186.2 (C-7); HRMS (ESI+): 

Found: 250.0635; C14H10FNNaO (MNa+) Requires 250.0639 (1.4 ppm error).  

Lab notebook reference: akc05-60 

 

4-(4-Methoxyphenyl)-1-(1H-pyrrol-3-yl)but-3-yn-2-one (214c) 

 

Synthesised using general procedure B with 1-ethynyl-4-methoxybenzene (177 mg, 1.34 

mmol), THF (3.6 mL), Weinreb amide 218a (75 mg, 0.446 mmol) and n-BuLi (0.45 mL, 1.12 

mmol, 2.5 M in hexanes) stirring at RT for 30 min. Purification by column chromatography 

(9:1 hexane:EtOAc, then 5:1 hexane:EtOAc, then 3:1 hexane:EtOAc) afforded the title 

compound 214c as a yellow solid (93.5 mg, 88%); mp 82–84 °C; Rf 0.78 (1:1 hexane:EtOAc); 

νmax (thin film)/cm-1 3393, 2193, 1655, 1600, 1508, 1251, 1169, 1070, 1057, 1025, 833; δH 

(400 MHz, CDCl3) 3.83 (2 H, s, H-6), 3.84 (3 H, s, H-14), 6.23–6.26 (1 H, m, H-1/3/4), 6.77–

6.82 (2 H, m, H-1/3/4), 6.88 (2 H, d, J = 8.5 Hz, H-11), 7.48 (2 H, d, J = 8.5 Hz, H-12), 8.25 

(1 H, br s, H-2); δC (100 MHz, CDCl3) 43.8 (C-6), 55.4 (C-14), 87.9 (C-8), 92.9 (C-9), 109.7 

(C-1/4), 111.9 (C-10), 114.3 (C-11), 114.8 (C-5), 117.1 (C-1/4), 118.2 (C-3), 135.1 (C-12), 

161.5 (C-13), 186.4 (C-7); HRMS (ESI+): Found: 262.0839; C15H13NNaO2 (MNa+) Requires 

262.0838 (0.0 ppm error), Found: 240.1024; C15H14NO2 (MH+) Requires 240.1019 (−2.2 ppm 

error).  

Lab notebook reference: akc05-72 
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4-(4-(Benzyloxy)phenyl)-1-(1H-pyrrol-3-yl)but-3-yn-2-one (214d) 

 

Synthesised using general procedure B with 1-(benzyloxy)-4-ethynylbenzene*208 (260 mg, 

1.25 mmol), THF (3.4 mL), Weinreb amide 218a (70.0 mg, 0.416 mmol) and n-BuLi (0.42 

mL, 1.04 mmol, 2.5 M in hexanes) stirring at RT for 30 min. Purification by column 

chromatography (7:1 hexane:EtOAc, then 5:1 hexane:EtOAc) afforded the title compound 

214d as a pale brown solid (127 mg, 97%); mp 82–84 °C; Rf 0.23 (5:1 hexane:EtOAc); νmax 

(thin film)/cm-1 3392, 2197, 1659, 1601, 1508, 1250, 1170, 1078, 1058, 833, 698; δH (400 

MHz, CDCl3) 3.83 (2 H, s, H-6), 5.10 (2 H, s, H-14), 6.22–6.27 (1 H, m, H-1/3/4), 6.77–6.83 

(2 H, m, H-1/3/4), 6.96 (2 H, d, J = 8.5 Hz, H-11/12), 7.33–7.45 (5 H, m, H-16,17,18), 7.48 (2 

H, d, J = 8.5 Hz, H-11/12), 8.24 (1 H, br s, H-2); δC (100 MHz, CDCl3) 43.8 (C-6), 70.1 (C-

14), 87.9 (C-8), 92.8 (C-9), 109.7 (C-1/3/4), 112.2 (C-10/15), 114.8 (C-5), 115.1 (C-11/12), 

117.1 (C-1/3/4), 118.2 (C-1/3/4), 127.5 (C-16/17), 128.2 (C-18), 128.7 (C-16/17), 135.1 (C-

11/12), 136.1 (C-10/15), 160.7 (C-13), 186.4 (C-7); HRMS (ESI+): Found: 338.1144; 

C21H17NNaO2 (MNa+) Requires 338.1151 (2.2 ppm error), Found: 316.1331; C21H18NO2 

(MH+) Requires 316.1332 (0.5 ppm error).  

Lab notebook reference: akc05-62 

*Material made by W. Unsworth 

 

1-(1H-Pyrrol-3-yl)oct-3-yn-2-one (214e) 

 

Synthesised using general procedure B with hex-1-yne (0.16 mL, 1.43 mmol), THF (3.8 mL), 

Weinreb amide 218a (80.0 mg, 0.476 mmol) and n-BuLi (0.48 mL, 1.19 mmol, 2.5 M in 

hexanes) stirring at RT for 30 min. Purification by column chromatography (9:1 

hexane:EtOAc, then 1:1 hexane:EtOAc) afforded the title compound 214e as a yellow oil 
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(80.5 mg, 89%); Rf 0.75 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 3394, 2959, 2933, 2873, 

2210, 1665, 1235, 1071, 765; δH (400 MHz, CDCl3) 0.92 (3 H, t, J = 7.5 Hz, H-13), 1.40 (2 H, 

app. sextet, J = 7.5 Hz, H-12), 1.54 (2 H, app. pentet, J = 7.5 Hz, H-11), 2.35 (2 H, t, J = 7.5 

Hz, H-10), 3.72 (2H, s, H-6), 6.15–6.20 (1 H, m, H-1/3/4), 6.71–6.74 (1 H, m, H-1/3/4), 6.75–

6.79 (1 H, m, H-1/3/4), 8.22 (1 H, br s, H-2); δC (100 MHz, CDCl3) 13.5 (C-13), 18.7 (C-10), 

21.8 (C-12), 29.7 (C-11), 43.9 (C-6), 80.9 (C-8), 95.2 (C-9), 109.5 (C-1/3/4), 114.6 (C-5), 

117.0 (C-1/3/4), 118.1 (C-1/3/4), 186.5 (C-7); HRMS (ESI+): Found: 212.1047; C12H15NNaO 

(MNa+) Requires 212.1046 (−0.4 ppm error), Found: 190.1229; C12H16NO (MH+) Requires 

190.1226 (−1.4 ppm error).  

Lab notebook reference: akc05-58 

 

tert-Butyl methyl(5-oxo-6-(1H-pyrrol-3-yl)hex-3-yn-1-yl)carbamate (214f) 

 

Synthesised using general procedure B with tert-butyl but-3-yn-1-yl(methyl)carbamate*52 

(262 mg, 1.43 mmol), THF (3.9 mL), Weinreb amide 218a (80.0 mg, 0.476 mmol) and n-

BuLi (0.48 mL, 1.19 mmol, 2.5 M in hexanes) stirring at RT for 30 min. Purification by 

column chromatography (9:1 hexane:EtOAc, then 3:1 hexane:EtOAc) afforded the title 

compound 214f as a yellow oil (121 mg, 88%); Rf 0.67 (1:1 hexane:EtOAc); νmax (thin 

film)/cm-1 3334, 2976, 2935, 2211, 1669, 1481, 1393, 1366, 1168, 1145; δH (400 MHz, 

CDCl3) 1.47 (9 H, s, H-15), 2.52–2.60 (2 H, m, H-10), 2.87 (3 H, s, H-12), 3.35–3.42 (2 H, m, 

H-11), 3.70 (2H, s, H-6), 6.11–6.15 (1 H, m, H-1/3/4), 6.68–6.72 (1 H, m, H-1/3/4), 6.72–6.77 

(1 H, m, H-1/3/4), 8.42 (1 H, br s, H-2); δC (100 MHz, CDCl3) 18.5 (C-10), 28.4 (C-15), 35.0 

(C-12), 43.9 (C-6), 47.3 (C-11), 79.9 (C-14), 81.8 (C-8), 91.6 (C-9), 109.5 (C-1/3/4), 114.5 

(C-5), 117.1 (C-1/3/4), 118.1 (C-1/3/4), 155.4 (C-13), 185.8 (C-7); HRMS (ESI+): Found: 

313.1521; C16H22N2NaO3 (MNa+) Requires 313.1523 (0.6 ppm error).  

Note: Majority of peaks broadened in 1H NMR spectrum due to presence of rotamers. 

Lab notebook reference: akc05-76 

*Material made by J. Liddon 
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7-Chloro-1-(1H-pyrrol-3-yl)hept-3-yn-2-one (214g) 

 

Synthesised using general procedure B with 5-chloropent-1-yne (0.13 mL, 1.25 mmol), THF 

(3.3 mL), Weinreb amide 218a (70.0 mg, 0.416 mmol) and n-BuLi (0.42 mL, 1.25 mmol, 2.5 

M in hexanes) stirring at RT for 30 min. Purification by column chromatography (9:1 

hexane:EtOAc, then 3:1 hexane:EtOAc) afforded the title compound 214g as an orange oil 

(84.0 mg, 96%); Rf 0.34 (3:1 hexane:EtOAc); νmax (thin film)/cm-1 3392, 2924, 2211, 1665, 

1234, 1071, 765; δH (400 MHz, CDCl3) 1.98 (2 H, app. pentet, J = 6.5 Hz, H-11), 2.54 (2 H, t, 

J = 6.5 Hz, H-10), 3.56 (2 H, t, J = 6.5 Hz, H-12), 3.71 (2H, s, H-6), 6.14–6.20 (1 H, m, H-

1/3/4), 6.71–6.75 (1 H, m, H-1/3/4), 6.75–6.80 (1 H, m, H-1/3/4), 8.26 (1 H, br s, H-2); δC 

(100 MHz, CDCl3) 16.4 (C-10), 30.3 (C-11), 43.2 (C-12), 43.8 (C-6), 81.4 (C-8), 92.7 (C-9), 

109.5 (C-1/3/4), 114.5 (C-5), 117.1 (C-1/3/4), 118.2 (C-1/3/4), 186.3 (C-7); HRMS (ESI+): 

Found: 232.0497; C11H12
35ClNNaO (MNa+) Requires 232.0500 (1.2 ppm error). 

Lab notebook reference: akc05-74 

 

5-Methyl-1-(1H-pyrrol-3-yl)hex-5-en-3-yn-2-one (214h) 

 

Synthesised using general procedure B with 2-methylbut-1-en-3-yne (0.12 mL, 1.25 mmol), 

THF (3. mL), Weinreb amide 218a (70.0 mg, 0.416 mmol) and n-BuLi (0.42 mL, 1.04 mmol, 

2.5 M in hexanes) stirring at RT for 30 min. Purification by column chromatography (9:1 

hexane:EtOAc, then 5:1 hexane:EtOAc) afforded the title compound 214h as an orange oil 

(59.0 mg, 82%); Rf 0.77 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 3393, 2923, 2195, 2165, 

1660, 1296, 1118, 764; δH (400 MHz, CDCl3) 1.92 (3 H, s, H-12), 3.77 (2H, s, H-6), 5.48–

5.53 (1 H, m, H-11a), 5.54–5.58 (1 H, m, H-11b), 6.17–6.22 (1 H, m, H-1/3/4), 6.72–6.81 (1 

H, m, H-1/3/4), 8.23 (1 H, br s, H-2); δC (100 MHz, CDCl3) 22.4 (C-12), 43.8 (C-6), 86.7 (C-

8), 92.5 (C-9), 109.6 (C-1/3/4), 114.5 (C-5), 117.1 (C-1/3/4), 118.2 (C-1/3/4), 124.9 (C-10), 
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127.5 (C-11), 186.3 (C-7); HRMS (ESI+): Found: 196.0729; C11H11NNaO (MNa+) Requires 

196.0733 (2.2 ppm error).  

Lab notebook reference: akc05-66 

 

5-(4-Methoxyphenoxy)-1-(1H-pyrrol-3-yl)pent-3-yn-2-one (214i) 

 

Synthesised using general procedure B with 1-methoxy-4-(prop-2-yn-1-yloxy)benzene (203 

mg, 1.25 mmol), THF (3.3 mL), Weinreb amide 218a (70.0 mg, 0.416 mmol) and n-BuLi 

(0.42 mL, 1.04 mmol, 2.5 M in hexanes) stirring at RT for 30 min. Purification by column 

chromatography (7:1 hexane:EtOAc, then 5:1 hexane:EtOAc) afforded the title compound 

214i as an orange oil (75.1 mg, 67%); Rf 0.66 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 3395, 

2910, 2217, 1672, 1506, 1206, 1039, 826; δH (400 MHz, CDCl3) 3.72 (2 H, s, H-6), 3.80 (3 H, 

s, H-15), 4.77 (2 H, s, H-16), 6.09–6.13 (1 H, m, H-1/3/4), 6.62–6.66 (1 H, m, H-1/3/4), 6.71–

6.75 (1 H, m, H-1/3/4), 6.83–6.93 (4 H, m, H-12,13), 8.20 (1 H, br s, H-2); δC (100 MHz, 

CDCl3) 43.7 (C-6), 55.7 (C-15), 56.6 (C-16), 85.6 (C-8), 87.3 (C-9), 109.5 (C-1/3/4), 113.7 

(C-5), 114.6 (C-12/13), 116.3 (C-12/13), 117.2 (C-1/3/4), 118.2 (C-1/3/4), 151.4 (C-11/14), 

154.7 (C-11/14), 185.3 (C-7); HRMS (ESI+): Found: 292.0944; C16H15NNaO3 (MNa+) 

Requires 292.0944 (0.2 ppm error), Found: 270.1116; C16H16NO3 (MH+) Requires 270.1125 

(3.1 ppm error).  

Lab notebook reference: akc05-63 
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1-Phenyl-4-(1H-pyrrol-3-yl)pent-1-yn-3-one (214j) 

 

Synthesised using general procedure B with phenylacetylene (0.34 mL, 3.08 mmol), THF (8 

mL), Weinreb amide 218b (187 mg, 1.03 mmol) and n-BuLi (1.03 mL, 2.57 mmol, 2.5 M in 

hexanes) stirring at RT for 30 min. Purification by column chromatography (8:2 

hexane:EtOAc) afforded the title compound 214j as an orange oil (204 mg, 89%); Rf 0.75 (1:1 

hexane:EtOAc); νmax (thin film)/cm-1 3392, 2975, 2196, 1651, 1489, 1443, 1287, 1122, 1069, 

1042, 970, 756, 687; δH (400 MHz, CDCl3) 1.57 (3 H, d, J = 7.5 Hz, H-7), 3.92 (1 H, q, J = 

7.5 Hz, H-6), 6.24–6.29 (1 H, m, H-1/3/4), 6.75–6.82 (2 H, m, H-1/3/4), 7.33–7.39 (2 H, m, 

H-13), 7.41–7.47 (1 H, m, H-14), 7.51–7.54 (2 H, m, H-12), 8.23 (1 H, br s, H-2); δC (100 

MHz, CDCl3) 16.8 (C-7), 47.3 (C-6), 87.3 (C-9), 92.0 (C-10), 108.1 (C-1/3/4), 115.9 (C-

1/3/4), 118.2 (C-1/3/4), 120.3 (C-11), 121.5 (C-5), 128.5 (C-13), 130.5 (C-14), 133.0 (C-12), 

189.5 (C-8); HRMS (ESI+): Found: 246.0886; C15H13NNaO (MNa+) Requires 246.0889 (1.5 

ppm error), Found: 224.1067; C15H14NO (MH+) Requires 224.1070 (−1.4 ppm error).  

Lab notebook reference: akc06-20 

 

1-(1-Methyl-1H-pyrrol-3-yl)-4-phenylbut-3-yn-2-one (214k) 

 

Synthesised using general procedure B with phenylacetylene (0.30 mL, 2.77 mmol), THF (10 

mL), Weinreb amide 218c (252 mg, 1.38 mmol) and n-BuLi (0.83 mL, 2.07 mmol, 2.5 M in 

hexanes) stirring at RT for 30 min. Purification by column chromatography (9:1 

hexane:EtOAc, then 8:2 hexane:EtOAc) afforded the title compound 214k as a yellow oil (239 

mg, 78%); Rf 0.89 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 2201, 1661, 1489, 1286, 1160, 

1071, 756; δH (400 MHz, CDCl3) 3.65 (3 H, s, H-1), 3.81 (2 H, s, H-6), 6.11–6.15 (1 H, m, H-

3), 6.57–6.62 (2 H, m, H-2,5), 7.35–7.42 (2 H, m, H-11/12), 7.42–7.48 (1 H, m, H-13), 7.53–

7.58 (2 H, m, H-11/12); δC (100 MHz, CDCl3) 36.2 (C-1), 44.0 (C-6), 88.0 (C-8), 91.5 (C-9), 
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109.4 (C-3), 114.4 (C-4), 120.2 (C-10), 121.1 (C-2/5), 122.0 (C-2/5), 128.5 (C-11/12), 130.5 

(C-13), 133.0 (C-11/12), 186.2 (C-7); HRMS (ESI+): Found: 246.0884; C15H13NNaO (MNa+) 

Requires 246.0889 (−2.1 ppm error).  

Lab notebook reference: akc07-77 

 

1-(1H-Pyrrol-3-yl)-4-(trimethylsilyl)but-3-yn-2-one (214l) 

 

Synthesised using general procedure B with ethynyltrimethylsilane (0.30 mL, 2.19 mmol), 

THF (6 mL), Weinreb amide 218a (123 mg, 0.731 mmol) and n-BuLi (0.73 mL, 1.83 mmol, 

2.5 M in hexanes) stirring at RT for 30 min. Purification by column chromatography (9:1 

hexane:EtOAc) afforded the title compound 214l as a yellow oil (79.5 mg, 53%); Rf 0.20 (9:1 

hexane:EtOAc); νmax (thin film)/cm-1 3399, 2962, 2151, 1668, 1252, 1095, 845, 760; δH (400 

MHz, CDCl3) 0.23 (9 H, s, H-10), 3.75 (2 H, s, H-6), 6.15–6.19 (1 H, m, H-1/3/4), 6.72–6.75 

(1 H, m, H-1/3/4), 6.75–6.80 (1 H, m, H-1/3/4), 8.22 (1 H, br s, H-2); δC (100 MHz, CDCl3) 

−0.8 (C-10), 43.7 (C-6), 98.7 (C-9), 102.1 (C-8), 109.6 (C-1/3/4), 114.2 (C-5), 117.1 (C-

1/3/4), 118.1 (C-1/3/4), 185.9 (C-7); HRMS (ESI+): Found: 228.0811; C11H15NNaOSi (MNa+) 

Requires 228.0815 (1.7 ppm error), Found: 206.0996; C11H16NOSi (MH+) Requires 206.0996 

(−0.1 ppm error).  

Lab notebook reference: akc05-88 
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Methyl 4-((tert-butoxycarbonyl)amino)but-2-ynoate (231) 

 

Prepared according to literature procedure: B. M. Trost, J.-P. Lumb and J. M. Azzarelli, J. 

Am. Chem. Soc., 2011, 133, 740–743 

An oven-dried flask was charged with Boc-protected propargyl amine S4 (1.25 g, 8.05 mmol) 

and purged with a steady stream of argon for 5 min, at which point dry CH2Cl2 (16 mL) was 

added to afford a homogeneous, light yellow reaction mixture that was cooled to 0 °C. After 5 

min, freshly distilled NEt3 (2.24 mL, 16.1 mmol) was added, followed by the dropwise 

addition of TMSOTf (1.89 mL, 10.5 mmol). After 5 min the reaction mixture was warmed to 

RT, stirred for 15 min and then quenched by the addition of sat. aq. NaHCO3 (20 mL). The 

organics were separated, washed with sat. aq. NaHCO3 (3 x 20 mL), dried over MgSO4 and 

concentrated in vacuo.  

An oven-dried flask was charged with THF (11 mL) followed by diisopropylamine (0.84 mL, 

6.0 mmol) and the resulting mixture was cooled to 0 °C. To this mixture was added n-BuLi 

(2.31 mL, 5.76 mmol, 2.5 M in hexanes) and the resulting mixture was stirred at 0 °C for 30 

min. The reaction mixture was then cooled to −78 °C and the crude material S5 (1.05 g, 4.61 

mmol) was added as a solution in THF (6 mL) which was then stirred at −78 °C for 1 h. 

Methyl chloroformate (0.39 mL, 5.07 mmol) was added as a solution in THF (3 mL, 3 mL 

rinse) via cannula. The reaction mixture was then allowed to warm to RT over the course of 

16 h. The reaction mixture was then removed from the cooling bath and stirred at RT for an 

additional 2 h, quenched by the addition of 10% aq. HCl (20 mL) and the resulting solution 

was stirred at RT for 1 h. The organic phase was separated and the aqueous phase was washed 

with Et2O (2 x 20 mL). The organics were combined, washed with brine, dried over MgSO4 

and concentrated in vacuo. The crude material was purified by column chromatography (6:1 

hexane:EtOAc, then 3:1 hexane:EtOAc) to afford the title compound 231 as a pale orange 

solid (585 mg, 60%); mp 33–35 °C; Rf 0.17 (6:1 hexane:EtOAc); νmax (thin film)/cm-1 3354, 

2980, 2243, 1716, 1514, 1249, 1166; δH (400 MHz, CDCl3) 1.46 (9 H, s, H-9), 3.78 (3 H, s, 

H-1), 4.07 (2 H, br d, J = 4.5 Hz, H-5), 4.78 (1 H, br s, H-6); δC (100 MHz, CDCl3) 28.3 (C-

9), 30.3 (C-5), 52.8 (C-1), 74.6 (C-3/4/8), 80.5 (C-3/4/8), 84.1 (C-3/4/8), 153.6 (C-2/7), 155.0 

(C-2/7); HRMS (ESI+): Found: 236.0893; C10H15NNaO4 (MNa+) Requires 236.0893 (0.2 ppm 

error). 
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Lab notebook reference: akc07-15/16 

Spectroscopic data matched those previously reported in the literature.152 

 

tert-Butyl 4-(2-methoxy-2-oxoethyl)-2-phenyl-1H-pyrrole-1-carboxylate (S6) 

 

Prepared according to literature procedure: B. M. Trost, J.-P. Lumb and J. M. Azzarelli, J. 

Am. Chem. Soc., 2011, 133, 740–743 

Generation of 0.007 M 1:1 Pd(OAc)2 and TDMPP catalyst solution: A rbf was charged 

with Pd(OAc)2 (5.0 mg, 22.3 µmol), TDMPP (9.8 mg, 22.3 µmol) and toluene (3.01 mL). The 

resulting mixture was then stirred rapidly for 15 min to afford a bright orange/red, 

homogeneous mixture. 

To a rbf under argon was added propargyl amine 231 (518 mg, 2.43 mmol). To this was added 

an aliquot of the pre-formed catalyst solution (2.38 mL, 0.167 mmol, 0.007 M, which 

corresponds to the addition of 0.75 mol% of both the Pd(OAc)2 and TDMPP components). 

The resulting homogeneous, orange solution was stirred at RT for 10 min before the addition 

of phenylacetylene (0.27 mL, 2.43 mmol). The reaction mixture was then stirred at RT for 10 

h before the addition of Pd(TFA)2 (16.2 mg, 48.6 µmol) in one portion. The reaction mixture 

was then stirred at RT overnight, diluted with a 1:1 mixture of CH2Cl2:Et2O (15 mL), filtered 

through a short pad of Florosil eluting with CH2Cl2:Et2O (1:1, 2 x 20 mL) and then Et2O (1 x 

30 mL). The reaction mixture was then concentrated in vacuo and the crude material was 

purified by column chromatography (9:1 hexane:EtOAc, then 6:1 hexane:EtOAc) to afford the 

title compound S6 as a pale yellow oil (547 mg, 74%); Rf 0.40 (6:1 hexane:EtOAc); νmax (thin 

film)/cm-1 2980, 2952, 1732, 1341, 1252, 1149, 769, 698; δH (400 MHz, CDCl3) 1.35 (9 H, s, 

H-14), 3.49 (2 H, s, H-3), 3.73 (3 H, s, H-1), 6.16 (1 H, d, J = 1.5 Hz, H-5/6), 7.26–7.36 (6 H, 

m, Ar-H); δC (100 MHz, CDCl3) 27.6 (C-14), 32.6 (C-3), 52.0 (C-1), 83.5 (C-13), 115.5 (C-

5/6), 117.7 (C-4/7/8), 120.8 (CH), 127.2 (CH), 127.5 (CH), 129.1 (CH), 134.1 (C-4/7/8), 

135.3 (C-4/7/8), 149.1 (C-12), 172.0 (C-2); HRMS (ESI+): Found: 338.1350; C18H21NNaO4 

(MNa+) Requires 338.1363 (3.9 ppm error). 
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Lab notebook reference: akc07-21/25 

Spectroscopic data matched those previously reported in the literature.152 

 

Methyl 2-(5-phenyl-1H-pyrrol-3-yl)acetate (232) 

 

Procedure adapted from literature procedure: K. Ravinder, A. V. Reddy, K. C. Mahesh, M. 

Narasimhulu and Y. Venkateswarlu, Synth. Commun., 2007, 37, 281–287 

To a solution of Boc-protected pyrrole methyl ester S6 (495 mg, 1.57 mmol) in dry MeOH 

(12 mL) was added NaOMe (93 mg, 1.72 mmol) in one portion. The reaction mixture was 

stirred for 26 h at 30 °C. The mixture was then diluted with water (15 mL) and extracted with 

EtOAc (2 x 15 mL). The organics were combined, washed with brine, dried over MgSO4 and 

concentrated in vacuo. The crude material was purified by column chromatography (9:1 

hexane:EtOAc, then 8:2 hexane:EtOAc) to afford the title compound 232 as a pale yellow oil 

(289 mg, 86%); Rf 0.31 (8:2 hexane:EtOAc); νmax (thin film)/cm-1 3376, 2951, 1724, 1607, 

1515, 1455, 1436, 1263, 1196, 1155, 1123, 978, 760; δH (400 MHz, CDCl3) 3.56 (2 H, s, H-

3), 3.73 (3 H, s, H-1), 6.48 (1 H, s, H-5/6), 6.79 (1 H, s, H-5/6), 7.21 (1 H, t, J = 7.5 Hz, H-

12), 7.36 (2 H, dd, J = 8.0, 8.0 Hz, H-11), 7.46 (2 H, d, J = 8.0 Hz, H-10), 8.36 (1 H, br s, H-

7); δC (100 MHz, CDCl3) 32.9 (C-3), 52.0 (C-1), 106.9 (C-5/6), 117.3 (C-4/8/9), 117.6 (C-

5/6), 123.8 (C-10), 126.3 (C-12), 128.8 (C-11), 132.3 (C-4/8/9), 132.5 (C-4/8/9), 172.8 (C-2); 

HRMS (ESI+): Found: 216.1018; C13H14NO2 (MH+) Requires 216.1019 (0.7 ppm error). 

Lab notebook reference: akc07-28/31 
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N-Methoxy-N-methyl-2-(5-phenyl-1H-pyrrol-3-yl)acetamide (S7) 

 

To a solution of methyl ester 232 (277 mg, 1.29 mmol) in THF (9 mL) and MeOH (0.9 mL) at 

0 °C was added 2 M aq. NaOH (7.1 mL). The reaction mixture was warmed to RT and stirred 

for 5.5 h. Water (10 mL) was added and the aqueous layer was washed with EtOAc (10 mL). 

The organic extract was discarded. The aqueous layer was acidified with 10% aq. HCl (5 mL) 

until pH = 1 and then extracted with EtOAc (2 x 20 mL). The organics were combined, dried 

over MgSO4 and concentrated in vacuo to afford the crude pyrrole acid as a dark purple solid 

(246 mg, 95%). 

To a stirred solution of crude pyrrole acid (244 mg, 1.21 mmol), MeNH(OMe)·HCl (130 mg, 

1.33 mmol) and DIPEA (0.63 mL, 3.63 mmol) in CH2Cl2 (6 mL) was added T3P 50% in 

EtOAc (1.16 g, 1.82 mmol). The solution was stirred at RT for 1.5 h. Water (15 mL) was 

added and basified using aq. 2 M NaOH until pH = 10. The CH2Cl2 layer was removed and 

the aqueous extracted with EtOAc (2 x 10 mL). The organics were combined, washed with 

10% aq. HCl (10 mL), brine (10 mL), dried over MgSO4 and concentrated in vacuo. The 

crude material was purified by column chromatography (8:2 hexane:EtOAc, then 1:1 

hexane:EtOAc) to afford the title compound S7 as a pale brown oil (286 mg, 97%); Rf 0.43 

(7:3 EtOAc:hexane); νmax (thin film)/cm-1 3299, 2939, 1638, 1607, 1513, 1458, 1384, 1004, 

764; δH (400 MHz, CDCl3) 3.22 (3 H, s, H-2), 3.68 (2 H, s, H-4), 3.70 (3 H, s, H-1), 6.49 (1 

H, s, H-6/7), 6.78 (1 H, s, H-6/7), 7.19 (1 H, t, J = 7.5 Hz, H-13), 7.34 (2 H, dd, J = 8.0, 8.0 

Hz, H-12), 7.46 (2 H, d, J = 8.0 Hz, H-11), 8.47 (1 H, br s, H-8); δC (100 MHz, CDCl3) 30.8 

(C-4), 32.2 (C-2), 61.3 (C-1), 107.0 (C-6/7), 117.7 (C-6/7), 118.0 (C-5/9/10), 123.7 (C-11), 

126.1 (C-13), 128.8 (C-12), 132.1 (C-5/9/10), 132.7 (C-5/9/10), 173.2 (C-3); HRMS (ESI+): 

Found: 267.1100; C14H16N2NaO2 (MNa+) Requires 267.1104 (1.4 ppm error). 

Lab notebook reference: akc07-33/37 
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4-Phenyl-1-(5-phenyl-1H-pyrrol-3-yl)but-3-yn-2-one (233a) 

 

Synthesised using general procedure B with phenylacetylene (0.17 mL, 1.58 mmol), THF (4.2 

mL), Weinreb amide S7 (129 mg, 0.526 mmol) and n-BuLi (0.53 mL, 1.32 mmol, 2.5 M in 

hexanes) stirring at RT for 30 min. Purification by column chromatography (6:1 

hexane:EtOAc, then 7:3 hexane:EtOAc) afforded the title compound 233a as an orange oil 

(107 mg, 71%); Rf 0.72 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 3380, 3058, 2202, 1660, 

1489, 1282, 1076, 758, 689; δH (400 MHz, CDCl3) 3.87 (2 H, s, H-10), 6.53 (1 H, s, H-1/8), 

6.84 (1 H, s, H-1/8), 7.22 (1 H, t, J = 7.5 Hz, H-7/17), 7.32–7.40 (4 H, m, Ar-H), 7.41–7.50 (3 

H, m, Ar-H), 7.53 (2 H, d, J = 7.5 Hz, H-5/15), 8.50 (1 H, br s, H-2); δC (100 MHz, CDCl3) 

43.9 (C-10), 88.0 (C-12), 92.0 (C-13), 107.3 (C-1/8), 116.3 (C), 118.30 (C-1/8), 118.30 (C) 

120.0 (C), 123.7 (CH), 126.3 (C-7/17), 128.5 (CH), 128.8 (CH), 130.6 (CH), 132.5 (C), 133.1 

(C-5/15), 186.2 (C-11); HRMS (ESI+): Found: 308.1031; C20H15NNaO (MNa+) Requires 

308.1046 (−4.8 ppm error), Found: 286.1218; C20H16NO (MH+) Requires 286.1226 (2.9 ppm 

error).  

Lab notebook reference: akc07-38 

 

1-(5-Phenyl-1H-pyrrol-3-yl)oct-3-yn-2-one (233b) 

 

Synthesised using general procedure B with hex-1-yne (0.23 mL, 2.02 mmol), THF (5.4 mL), 

Weinreb amide S7 (151 mg, 0.673 mmol) and n-BuLi (0.67 mL, 1.68 mmol, 2.5 M in 

hexanes) stirring at RT for 30 min. Purification by column chromatography (8:2 

hexane:EtOAc) afforded the title compound 233b as a brown oil (97.7 mg, 55%); Rf 0.81 (1:1 

hexane:EtOAc); νmax (thin film)/cm-1 3382, 2958, 2869, 2210, 1663, 1607, 1514, 1455, 1239, 

1119, 763; δH (400 MHz, CDCl3) 0.89 (3 H, t, J = 7.5 Hz, H-17), 1.40 (2 H, app. sextet, J = 

7.5 Hz, H-16), 1.54 (2 H, app. pentet, J = 7.5 Hz, H-15), 2.36 (2 H, t, J = 7.0 Hz, H-14), 3.73 
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(2H, s, H-10), 6.46 (1 H, s, H-1/8), 6.78 (1 H, s, H-1/8), 7.21 (1 H, t, J = 7.0 Hz, H-7), 7.36 (2 

H, dd, J = 8.0, 7.5 Hz, H-6), 7.46 (2 H, d, J = 8.0 Hz, H-5); δC (100 MHz, CDCl3) 13.5 (C-17), 

18.7 (C-14), 21.9 (C-16), 29.7 (C-15), 43.9 (C-10), 80.9 (C-12), 95.5 (C-13), 107.2 (C-1/8), 

116.5 (C-3/4/9), 118.1 (C-1/8), 123.7 (C-5), 126.3 (C-7), 128.8 (C-6), 132.4 (C-3/4/9), 132.5 

(C-3/4/9), 186.3 (C-11); HRMS (ESI+): Found: 288.1351; C18H19NNaO (MNa+) Requires 

288.1359 (2.7 ppm error), Found: 266.1532; C18H20NO (MH+) Requires 266.1539 (−2.6 ppm 

error).  

Lab notebook reference: akc07-41 

 

(Z)-Methyl 3-(((tert-butoxycarbonyl)amino)methyl)-5-phenylpent-2-en-4-ynoate (234) 

 

Prepared according to literature procedure: B. M. Trost, J.-P. Lumb and J. M. Azzarelli, J. 

Am. Chem. Soc., 2011, 133, 740–743 

Generation of 0.007 M 1:1 Pd(OAc)2 and TDMPP catalyst solution: A rbf was charged 

with Pd(OAc)2 (5.0 mg, 22.3 µmol), TDMPP (9.8 mg, 22.3 µmol) and toluene (3.01 mL). The 

resulting mixture was then stirred rapidly for 15 min to afford a bright orange/red, 

homogeneous mixture. 

To a rbf under argon was added propargyl amine 231 (300 mg, 1.41 mmol). To this was added 

an aliquot of the pre-formed catalyst solution (1.57 mL, 0.011 mmol, 0.007 M, which 

corresponds to the addition of 0.75 mol% of both the Pd(OAc)2 and TDMPP components). 

The resulting homogeneous, orange solution was stirred at RT for 10 min before the addition 

of phenylacetylene (0.15 mL, 1.41 mmol). The reaction mixture was stirred at RT for 14.5 h, 

concentrated in vacuo and the crude material was purified by column chromatography (9:1 

hexane:EtOAc, then 6:1 hexane:EtOAc) to afford the title compound 234 as an off-white solid 

(388 mg, 87%); Rf 0.25 (6:1 hexane:EtOAc); νmax (thin film)/cm-1 3386, 2978, 2208, 1710, 

1606, 1199, 1170, 1118, 758; δH (400 MHz, CDCl3) 1.44 (9 H, s, H-9), 3.75 (3 H, s, H-1), 

4.44 (2 H, br d, J = 6.0 Hz, H-5), 5.14 (1 H, br s, H-6), 6.22 (1 H, s, H-3), 7.32–7.40 (3 H, m, 

Ar-H), 7.48–7.52 (2 H, m, Ar-H); δC (100 MHz, CDCl3) 28.4 (C-9), 41.1 (C-5), 51.6 (C-1), 

79.5 (C-8), 88.0 (C-10/11), 97.2 (C-10/11), 122.0 (C-12), 124.0 (C-3), 128.4 (CH), 129.3 
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(CH), 132.1 (CH), 140.8 (C-4), 155.8 (C-7), 166.0 (C-2); HRMS (ESI+): Found: 338.1347; 

C18H21NNaO4 (MNa+) Requires 338.1363 (−4.8 ppm error). 

Lab notebook reference: akc07-47 

Spectroscopic data matched those previously reported in the literature.152 

 

(E)-tert-Butyl 3-(hex-1-en-1-yl)-4-(2-methoxy-2-oxoethyl)-2-phenyl-1H-pyrrole-1-

carboxylate (235) 

 

Procedure adapted from literature procedure: A. Yasuhara, Y. Takeda, N. Suzuki and T. 

Sakamoto, Chem. Pharm. Bull., 2002, 50, 235–238 

To a rbf under argon was added Boc-protected amine 234 (326 mg, 1.03 mmol) and THF (20 

mL). To this was added hex-1-ene (0.2 mL, 1.55 mmol), PdCl2 (9.17 mg, 51.7 µmol), 

CuCl2·2H2O (386 mg, 2.27 mmol) and TBAF (1.24 mL, 1.24 mmol, 1 M solution in THF). 

The resulting solution was heated to 70 °C and stirred for 1.5 h. Water (20 mL) was added and 

the mixture was extracted with EtOAc (3 x 15 mL). The organics were combined, dried over 

MgSO4, concentrated in vacuo and the crude material was purified by column 

chromatography (8:1 hexane:EtOAc) to afford the title compound 235 as a yellow oil (60.5 

mg, 19%); Rf 0.41 (6:1 hexane:EtOAc); νmax (thin film)/cm-1 2930, 1736, 1436, 1367, 1255, 

1152, 1004, 992, 851, 767; δH (400 MHz, CDCl3) 0.85 (3 H, t, J = 7.0 Hz, H-20), 1.22–1.30 

(13 H, m, H-8,18,19), 1.96–2.05 (2 H, m, H-17), 3.60 (2 H, s, H-3), 3.74 (3 H, s, H-1), 5.63 (1 

H, dt, J = 16.5, 7.5 Hz, H-16), 5.92 (1 H, d, J = 16.5 Hz, H-15), 7.22–7.41 (6 H, m, Ar-H); δC 

(100 MHz, CDCl3) 13.9 (C-20), 22.0 (C-18/19), 27.5 (C-8), 31.6 (C-18/19), 32.3 (C-3), 33.4 

(C-17), 52.0 (C-1), 83.3 (C-7), 116.4 (C), 120.9 (C-5/13/15), 121.4 (C-5/13/15), 123.8 (C), 

127.3 (C-5/13), 127.6 (C-11/12), 130.6 (C-11/12), 131.1 (C), 132.2 (C-16), 133.7 (C), 149.1 

(C-6), 172.1 (C-2); HRMS (ESI+): Found: 420.2128; C24H31NNaO4 (MNa+) Requires 

420.2145 (4.2 ppm error). 

Lab notebook reference: akc07-49/51 
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(E)-Methyl 2-(4-(hex-1-en-1-yl)-5-phenyl-1H-pyrrol-3-yl)acetate (236) 

 

Procedure adapted from literature procedure: K. Ravinder, A. V. Reddy, K. C. Mahesh, M. 

Narasimhulu and Y. Venkateswarlu, Synth. Commun., 2007, 37, 281–287 

To a solution of Boc-protected pyrrole methyl ester 235 (446 mg, 1.41 mmol) in dry MeOH 

(11 mL) was added NaOMe (115 mg, 2.12 mmol) in one portion. The reaction mixture was 

stirred for 19 h at 30 °C followed by the addition of a further portion of NaOMe (38 mg, 0.703 

mmol). The reaction mixture was then stirred for a further 6 h at 30 °C. The mixture was 

concentrated in vacuo and the crude material was purified by column chromatography (7:1 

hexane:EtOAc) to afford the title compound 236 as a pale yellow oil (188 mg, 45%); Rf 0.19 

(5:1 hexane:EtOAc); νmax (thin film)/cm-1 3372, 2954, 2925, 2855, 1729, 1603, 1457, 1436, 

1157, 767, 698; δH (400 MHz, CDCl3) 0.93 (3 H, t, J = 7.5 Hz, H-18), 1.33–1.46 (4 H, m, H-

16,17), 2.13–2.20 (2 H, m, H-15), 3.64 (2 H, s, H-3), 3.73 (3 H, s, H-1), 5.77 (1 H, dt, J = 

16.0, 7.0 Hz, H-14), 6.34 (1 H, d, J = 16.0 Hz, H-13), 6.76–6.80 (1 H, m, H-5), 7.24–7.29 (1 

H, m, H-11), 7.36–7.42 (2 H, dd, J = 7.5, 7.5 Hz, H-10), 7.45 (2 H, d, J = 7.5 Hz, H-9), 8.13 

(1 H, br s, H-6); δC (100 MHz, CDCl3) 14.0 (C-18), 22.2 (C-16/17), 31.8 (C-3/16/17), 32.2 (C-

3/16/17), 33.4 (C-15), 51.9 (C-1), 115.4 (C-4/7), 117.7 (C-5), 118.4 (C-12), 122.3 (C-13), 

126.5 (C-11), 127.3 (C-9/10), 128.6 (C-9/10), 129.5 (C-4/7/8), 131.6 (C-14), 133.3 (C-4/7/8), 

173.0 (C-2); HRMS (ESI+): Found: 320.1608; C19H23NNaO2 (MNa+) Requires 320.1621 (4.0 

ppm error), Found: 298.1792; C19H24NO2 (MH+) Requires 298.1802 (−3.4 ppm error) 

Lab notebook reference: akc07-55 
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(E)-1-(4-(Hex-1-en-1-yl)-5-phenyl-1H-pyrrol-3-yl)-4-phenylbut-3-yn-2-one (237a) 

 

To a solution of methyl ester 236 (163 mg, 0.548 mmol) in THF (3.8 mL) and MeOH (0.4 

mL) at 0 °C was added 2 M aq. NaOH (3 mL). The reaction mixture was warmed to RT and 

stirred for 23 h. Water (10 mL) was added and the aqueous layer was aqueous layer was 

acidified with 10% aq. HCl (2 mL) until pH = 1. The aqueous layer was then extracted with 

EtOAc (3 x 20 mL), the organics were combined, dried over MgSO4 and concentrated in 

vacuo to afford the crude pyrrole acid as a brown oil (156 mg, 100%). 

To a stirred solution of crude pyrrole acid (155 mg, 0.547 mmol), MeNH(OMe)·HCl (58.7 

mg, 0.602 mmol) and DIPEA (0.29 mL, 1.64 mmol) in CH2Cl2 (3 mL) was added T3P 50% in 

EtOAc (522 mg, 0.821 mmol). The solution was stirred at RT for 1 h. Water (10 mL) was 

added and basified using aq. 2 M NaOH until pH = 10. The CH2Cl2 layer was removed and 

the aqueous extracted with EtOAc (2 x 10 mL). The organics were combined, brine (10 mL), 

dried over MgSO4 and concentrated in vacuo to afford the crude Weinreb amide as a brown 

oil (179 mg, 100%).  

To a stirred solution of phenylacetylene (0.18 ml, 1.64 mmol) in THF (1.6 mL) at −78 °C 

under argon was added n-BuLi (0.55 mL, 1.37 mmol, 2.5 M in hexanes) dropwise. The 

mixture was stirred for 30 min at −78 °C and then transferred via cannula to a −78 °C solution 

of crude Weinreb amide (178 mg, 0.547 mmol) in THF (2.6 mL). Upon complete transfer the 

mixture was warmed to RT and stirred for 1 h. The reaction was quenched by the careful 

addition of sat. aq. NH4Cl (5 mL). The organics were separated and the aqueous layer was 

extracted with EtOAc (3 × 10 mL). The organics were combined, washed with brine (10 mL), 

dried over MgSO4 and concentrated in vacuo to afford the crude material. The crude material 

was purified by column chromatography (9:1 hexane:EtOAc, then 4:1 hexane:EtOAc) to 

afford the title compound 237a as a yellow oil (44.4 mg, 22%); Rf 0.49 (5:2 hexane:EtOAc); 

νmax (thin film)/cm-1 3373, 2955, 2925, 2855, 2201, 1660, 1489, 1072, 758, 688; δH (400 MHz, 

CDCl3) 0.89 (3 H, t, J = 7.5 Hz, H-1), 1.31–1.46 (4 H, m, H-2,3), 2.14–2.17 (2 H, m, H-4), 

3.94 (2 H, s, H-16), 5.82 (1 H, dt, J = 16.0, 7.0 Hz, H-5), 6.37 (1 H, d, J = 16.0 Hz, H-6), 

6.81–6.85 (1 H, m, H-14), 7.25–7.31 (1 H, m, Ar-H), 7.33–7.53 (9 H, m, Ar-H), 8.20 (1 H, br 

s, H-13); δC (100 MHz, CDCl3) 14.0 (C-1), 22.2 (C-2/3), 31.8 (C-2/3), 33.4 (C-4), 43.0 (C-

16), 88.2 (C-18), 91.9 (C-19), 114.8 (C), 118.4 (C-14), 118.8 (C), 120.1 (C), 122.3 (C-6), 
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126.6 (CH), 127.2 (CH), 128.5 (CH), 128.6 (CH), 129.6 (C), 130.6 (CH), 132.0 (C-5), 133.1 

(CH), 133.3 (C), 186.6 (C-17); HRMS (ESI+): Found: 368.2019; C26H26NO (MH+) Requires 

368.2009 (−2.7 ppm error). 

Lab notebook reference: akc07-57/58/59 

 

(E)-1-(4-(Hex-1-en-1-yl)-5-phenyl-1H-pyrrol-3-yl)oct-3-yn-2-one (237b) 

 

To a solution of methyl ester 236 (188 mg, 0.632 mmol) in THF (4.4 mL) and MeOH (0.44 

mL) at 0 °C was added 2 M aq. NaOH (3.5 mL). The reaction mixture was warmed to RT and 

stirred for 22.5 h. Water (10 mL) was added and the aqueous layer was aqueous layer was 

acidified with 10% aq. HCl (2.5 mL) until pH = 1. The aqueous layer was then extracted with 

EtOAc (3 x 20 mL), the organics were combined, dried over MgSO4 and concentrated in 

vacuo to afford the crude pyrrole acid as a brown oil (239 mg, 100%). 

To a stirred solution of crude pyrrole acid (239 mg, 0.843 mmol), MeNH(OMe)·HCl (90.5 

mg, 0.928 mmol) and DIPEA (0.44 mL, 2.53 mmol) in CH2Cl2 (4.2 mL) was added T3P 50% 

in EtOAc (804 mg, 1.26 mmol). The solution was stirred at RT for 1 h. Water (10 mL) was 

added and basified using aq. 2 M NaOH until pH = 10. The CH2Cl2 layer was removed and 

the aqueous extracted with EtOAc (2 x 10 mL). The organics were combined, washed with 

brine (10 mL), dried over MgSO4 and concentrated in vacuo to afford the crude Weinreb 

amide as a brown oil (202 mg, 73%).  

To a stirred solution of hex-1-yne (0.21 ml, 1.86 mmol) in THF (1.9 mL) at −78 °C under 

argon was added n-BuLi (0.62 mL, 1.55 mmol, 2.5 M in hexanes) dropwise. The mixture was 

stirred for 30 min at −78 °C and then transferred via cannula to a −78 °C solution of crude 

Weinreb amide (202 mg, 0.619 mmol) in THF (3.1 mL). Upon complete transfer the mixture 

was warmed to RT and stirred for 1 h. The reaction was quenched by the careful addition of 

sat. aq. NH4Cl (5 mL). The organics were separated and the aqueous layer was extracted with 

EtOAc (3 × 10 mL). The organics were combined, washed with brine (10 mL), dried over 

MgSO4 and concentrated in vacuo to afford the crude material. The crude material was 

purified by column chromatography (9:1 hexane:EtOAc, then 4:1 hexane:EtOAc) to afford the 
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title compound 237b as a yellow oil (59.2 mg, 28%); Rf 0.71 (3:2 hexane:EtOAc); νmax (thin 

film)/cm-1 3370, 2961, 2929, 2873, 2211, 1667, 1604, 1458, 1165, 767, 698; δH (400 MHz, 

CDCl3) 0.85–0.97 (6 H, m, H-1,23), 1.31–1.45 (6 H, m, H-2,3,22), 1.46–1.56 (2 H, m, H-21), 

2.11–2.19 (2 H, m, H-4), 2.33 (2 H, t, J = 7.0 Hz, H-20), 3.79 (2 H, s, H-16), 5.73 (1 H, dt, J = 

16.0, 7.0 Hz, H-5), 6.30 (1 H, d, J = 16.0 Hz, H-6), 6.74 (1 H, d, J = 2.5 Hz, H-14), 7.25 (1 H, 

t, J = 7.0 Hz, H-12), 7.38 (2 H, dd, J = 7.5, 7.0 Hz, H-11), 7.44 (2 H, d, J = 7.5 Hz, H-10), 

8.15 (1 H, br s, H-13); δC (100 MHz, CDCl3) 13.5 (C-1/23), 14.0 (C-1/23), 18.7 (C-20), 21.8 

(C-2/3/22), 22.2 (C-2/3/22), 29.6 (C-21), 31.8 (C-2/3/22), 33.4 (C-4), 43.0 (C-16), 81.1 (C-

18), 95.3 (C-19), 114.8 (C-7/8/9/15), 118.3 (C-14), 118.6 (C-7/8/9/15), 122.3 (C-6), 126.5 (C-

12), 127.2 (C-10/11), 128.6 (C-10/11), 129.5 (C-7/8/9/15), 131.8 (C-5), 133.3 (C-7/8/9/15), 

186.7 (C-17); HRMS (ESI+): Found: 348.2313; C24H30NO (MH+) Requires 348.2322 (−2.6 

ppm error). 

Lab notebook reference: akc07-61/62/64 

 

7-Phenyl-1H-indol-5-ol (215a) 

 

Method 1: Synthesised using general procedure E with ynone 214a (81.2 mg, 0.388 mmol), 

AgNO3 (3.30 mg, 19.4 μmol) in CH2Cl2 (3.9 mL) at RT for 3 h. Purification by column 

chromatography (1:1 hexane:EtOAc) afforded the title compound 215a as a yellow oil (78.8 

mg, 97%). 

Lab notebook reference: akc05-57 

 

Method 2: A solution of AgOTf (6.1 mg, 23.9 µmol) and PPh3 (6.3 mg, 23.9 µmol) in CH2Cl2 

(1.2 mL) was stirred for 1 h at RT. To this pre-mixed catalyst solution was added a solution of 
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ynone 214a (50 mg, 0.239 mmol) in CH2Cl2 (1.2 mL). The reaction mixture was then stirred 

at RT for 3 h. The reaction mixture was concentrated in vacuo and the crude material was 

purified by column chromatography (1:1 hexane:EtOAc) to afford the title compound 215a as 

a yellow oil (38.3 mg, 77%).  

Rf 0.80 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 3432, 1591, 1485, 1416, 1162, 1132, 890, 

758; δH (400 MHz, CDCl3) 4.65 (1 H, br s, H-8), 6.50–6.53 (1 H, m, H-2/3), 6.84 (1 H, d, J = 

2.5 Hz, H-6/9), 7.07 (1 H, d, J = 2.5 Hz, H-6/9), 7.19–7.23 (1 H, m, H-2/3), 7.42 (1 H, t, J = 

7.5 Hz, H-14), 7.52 (2 H, dd, J = 7.5, 7.5 Hz, H-13), 7.63 (2 H, d, J = 7.5 Hz, H-12), 8.29 (1 

H, br s, H-1); δC (100 MHz, CDCl3) 102.4 (C-2/3), 104.3 (C-6/9), 111.6 (C-6/9), 125.4 (C-

2/3), 126.3 (C-4/10/11), 127.6 (C-14), 128.1 (C-12), 129.0 (C-4/10/11), 129.15 (C-13), 129.13 

(C-4/10/11), 138.7 (C-5), 149.9 (C-7); HRMS (ESI+): Found: 210.0909; C14H12NO (MH+) 

Requires 210.0913 (2.1 ppm error). 

 

7-(4-Fluorophenyl)-1H-indol-5-ol (215b) 

 

Synthesised using general procedure E with ynone 214b (49.0 mg, 0.216 mmol), AgNO3 (1.83 

mg, 10.8 μmol) in CH2Cl2 (2.2 mL) at RT for 2.5 h. Purification by column chromatography 

(9:1 hexane:EtOAc, then 7:1 hexane:EtOAc) afforded the title compound 215b as a yellow oil 

(46.3 mg, 94%); Rf 0.70 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 3435, 1607, 1504, 1223, 

1159, 1133, 835, 803, 731; δH (400 MHz, CDCl3) 4.85 (1 H, br s, H-8), 6.49–6.54 (1 H, m, H-

2/3), 6.78 (1 H, d, J = 2.5 Hz, H-6/9), 7.06 (1 H, d, J = 2.5 Hz, H-6/9), 7.15–7.23 (3 H, m, H-

2/3,13), 7.56 (1 H, dd, 3JHH = 8.5 Hz, 3JHF = 5.5 Hz, H-12), 8.21 (1 H, br s, H-1); δC (100 

MHz, CDCl3) 102.6 (C-2/3), 104.5 (C-6/9), 111.7 (C-6/9), 116.1 (d, 2JCF = 21.0 Hz, C-13), 

125.2 (C-4/5/10), 125.5 (C-2/3), 129.0 (C-4/5/10), 129.1 (C-4/5/10), 129.7 (d, 3JCF = 8.0 Hz, 

C-12), 134.7 (d, 4JCF = 3.0 Hz, C-11), 149.8 (C-7), 162.3 (d, 1JCF = 247 Hz, C-14); HRMS 

(ESI+): Found: 228.0820; C14H11FNO (MH+) Requires 228.0819 (−0.4 ppm error). 

Lab notebook reference: akc05-61 
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7-(4-Methoxyphenyl)-1H-indol-5-ol (215c) 

 

Synthesised using general procedure E with ynone 214c (55.6 mg, 0.232 mmol), AgNO3 (1.97 

mg, 11.6 μmol) in CH2Cl2 (2.3 mL) at RT for 4 h. Purification by column chromatography 

(9:1 hexane:EtOAc, then 5:1 hexane:EtOAc) afforded the title compound 215c as a yellow oil 

(55.6 mg, 100%); Rf 0.11 (6:1 hexane:EtOAc); νmax (thin film)/cm-1 3393, 2928, 1610, 1506, 

1286, 1246, 1179, 1163, 1134, 833, 725; δH (400 MHz, CDCl3) 3.89 (3 H, s, H-15), 4.72 (1 H, 

br s, H-8), 6.48–6.52 (1 H, m, H-2/3), 6.77–6.81 (1 H, m, H-6/9), 7.02–7.08 (3 H, m, H-

6/9,11/12), 7.18–7.22 (1 H, m, H-2/3), 7.55 (2 H, d, J = 8.5 Hz, H-11/12), 8.26 (1 H, br s, H-

1); δC (100 MHz, CDCl3) 55.4 (C-15), 102.4 (C-2/3), 103.9 (C-6/9), 111.4 (C-6/9), 114.6 (C-

12/13), 125.3 (C-2/3), 126.0 (C), 128.9 (C), 129.19 (C-12/13), 129.23 (C), 131.1 (C), 149.9 

(C-7), 159.1 (C-14); HRMS (ESI+): Found: 240.1008; C15H14NO2 (MH+) Requires 240.1019 

(4.5 ppm error). 

Lab notebook reference: akc05-73 

 

7-(4-(Benzyloxy)phenyl)-1H-indol-5-ol (215d) 

 

Synthesised using general procedure E with ynone 214d (85.5 mg, 0.271 mmol), AgNO3 (2.30 

mg, 13.6 μmol) in CH2Cl2 (2.7 mL) at RT for 2 h. Purification by column chromatography 

(9:1 hexane:EtOAc, then 4:1 hexane:EtOAc) afforded the title compound 215d as a white 

solid (72.5 mg, 85%); mp 122–124 °C; Rf 0.78 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 

3435, 1608, 1505, 1240, 1162, 1133, 832, 732; δH (400 MHz, CDCl3) 4.60 (1 H, s, H-8), 5.15 

(2 H, s, H-15), 6.48–6.52 (1 H, m, H-2/3), 6.79 (1 H, d, J = 2.0 Hz, H-6/9), 7.03 (1 H, d, J = 

2.0 Hz, H-6/9), 7.12 (2 H, d, J = 8.5 Hz, H-12/13), 7.18–7.22 (1 H, m, H-2/3), 7.33–7.40 (1 H, 
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m, H-19), 7.43 (2 H, dd, J = 7.5, 7.5 Hz, H-18), 7.49 (2 H, d, J = 7.5 Hz, H-17), 7.55 (2 H, d, 

J = 8.5 Hz, H-12/13), 8.25 (1 H, br s, H-1); δC (100 MHz, CDCl3) 70.1 (C-15), 102.4 (C-2/3), 

103.9 (C-6/9), 111.4 (C-6/9), 115.5 (C-12/13), 125.3 (C-2/3), 126.0 (C), 127.5 (C-17/18), 

128.1 (C-19), 128.7 (C-17/18), 128.9 (C), 129.2 (C-12/13), 131.4 (C), 136.8 (C), 149.9 (C-7), 

158.4 (C-14); HRMS (ESI+): Found: 316.1324; C21H18NO2 (MH+) Requires 316.1332 (2.6 

ppm error). 

Lab notebook reference: akc05-64 

 

7-Butyl-1H-indol-5-ol (215e) 

 

Synthesised using general procedure E with ynone 214e (69.3 mg, 0.366 mmol), AgNO3 (3.11 

mg, 18.3 μmol) in CH2Cl2 (3.7 mL) at RT for 5 h. Purification by column chromatography 

(9:1 hexane:EtOAc, then 6:1 hexane:EtOAc) afforded the title compound 215e as a pale 

yellow oil (57.9 mg, 84%); Rf 0.16 (7:1 hexane:EtOAc); νmax (thin film)/cm-1 3418, 3340, 

2956, 2929, 2859, 1595, 1430, 1138, 840, 725; δH (400 MHz, CDCl3) 0.97 (3 H, t, J = 7.5 Hz, 

H-14), 1.43 (2 H, app. sextet, J = 7.5 Hz, H-13), 1.72 (2 H, app. pentet, J = 7.5 Hz, H-12), 

2.79 (2 H, t, J = 7.5 Hz, H-11), 4.71 (1 H, br s, H-8), 6.43–6.47 (1 H, m, H-2/3), 6.64 (1 H, d, 

J = 2.0 Hz, H-6/9), 6.92 (1 H, d, J = 2.0 Hz, H-6/9), 7.16–7.21 (1 H, m, H-2/3), 8.02 (1 H, br 

s, H-1); δC (100 MHz, CDCl3) 13.9 (C-14), 22.6 (C-13), 30.9 (C-11), 31.6 (C-12), 102.3 (C-

2/3), 102.5 (C-6/9), 111.4 (C-6/9), 124.7 (C-2/3), 126.2 (C-4/5/10), 128.1 (C-4/5/10), 130.2 

(C-4/5/10), 149.5 (C-7); HRMS (ESI+): Found: 190.1235; C12H16NO (MH+) Requires 

190.1226 (−4.5 ppm error). 

Lab notebook reference: akc05-59 
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tert-Butyl (2-(5-hydroxy-1H-indol-7-yl)ethyl)(methyl)carbamate (215f) 

 

Synthesised using general procedure E with ynone 214f (72.4 mg, 0.249 mmol), AgNO3 (2.12 

mg, 12.5 μmol) in CH2Cl2 (2.5 mL) at RT for 4 h. Purification by column chromatography 

(9:1 hexane:EtOAc, then 3:1 hexane:EtOAc) afforded the title compound 215f as a pale 

yellow oil (72.4 mg, 100%); Rf 0.67 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 3316, 2977, 

2933, 1662, 1484, 1431, 1396, 1367, 1165, 1142, 727; δH (400 MHz, CDCl3) 1.54 (9 H, s, H-

16), 2.92 (3 H, s, H-13), 2.99–3.08 (2 H, m, H-11), 3.46–3.53 (2 H, m, H-12), 5.60 (1 H, br s, 

H-8), 6.38–6.45 (1 H, m, H-2/3/6), 6.59–6.65 (1 H, m, H-9), 6.95–7.01 (1 H, m, H-2/3/6), 

7.16–7.22 (1 H, m, H-2/3/6), 9.88 (1 H, br s, H-1); δC (100 MHz, CDCl3) 28.5 (C-16), 31.1 

(C-11), 35.3 (C-13), 49.6 (C-12), 80.1 (C-15), 101.7 (C-2/3/6), 103.5 (C-2/3/6), 111.9 (C-9), 

122.5 (C-4/5/10), 125.4 (C-2/3/6), 128.7 (C-4/5/10), 130.9 (C-4/5/10), 149.7 (C-7), 156.5 (C-

14); HRMS (ESI+): Found: 313.1514; C16H22N2NaO3 (MNa+) Requires 313.1523 (2.7 ppm 

error), Found: 291.699; C16H23N2O3 (MH+) Requires 291.1703 (1.3 ppm error). 

Note: Majority of peaks broadened in 1H NMR spectrum due to presence of rotamers. 

Lab notebook reference: akc05-79 

 

7-(3-Chloropropyl)-1H-indol-5-ol (215g) 

 

Synthesised using general procedure E with ynone 214g (32.4 mg, 0.155 mmol), AgNO3 (1.31 

mg, 7.73 μmol) in CH2Cl2 (1.5 mL) at RT for 24 h. Purification by column chromatography 

(9:1 hexane:EtOAc, then 3:1 hexane:EtOAc) afforded the title compound 215g as a pale 

yellow oil (25.5 mg, 79%); Rf 0.37 (3:1 hexane:EtOAc); νmax (thin film)/cm-1 3417, 2927, 
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2855, 1595, 1494, 1430, 1138, 840, 727; δH (400 MHz, CDCl3) 2.18 (2 H, app. pentet, J = 7.0 

Hz, H-12), 2.97 (2 H, t, J = 7.0 Hz, H-11), 3.58 (2 H, t, J = 7.0 Hz, H-13), 4.75 (1 H, br s, H-

8), 6.43–6.49 (1 H, m, H-2/3), 6.63 (1 H, d, J = 2.0 Hz, H-6/9), 6.94 (1 H, d, J = 2.0 Hz, H-

6/9), 7.17–7.22 (1 H, m, H-2/3), 8.21 (1 H, br s, H-1); δC (100 MHz, CDCl3) 27.7 (C-11), 32.5 

(C-12), 44.7 (C-13), 102.4 (C-2/3), 103.2 (C-6/9), 111.6 (C-6/9), 124.1 (C-10), 125.1 (C-2/3), 

128.5 (C-4/5), 130.4 (C-4/5), 149.6 (C-7); HRMS (ESI+): Found: 210.0684; C11H13
35ClNO 

(MH+) Requires 210.0680 (−1.6 ppm error). 

Lab notebook reference: akc05-77 

 

7-(Prop-1-en-2-yl)-1H-indol-5-ol (215h) 

 

Synthesised using general procedure E with ynone 214h (52.1 mg, 0.301 mmol), AgNO3 (2.56 

mg, 15.0 μmol) in CH2Cl2 (3.0 mL) at RT for 21 h. Purification by column chromatography 

(9:1 hexane:EtOAc, then 4:1 hexane:EtOAc) afforded the title compound 215h as a yellow oil 

(36.5 mg, 70%); Rf 0.33 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 3428, 1590, 1491, 1422, 

1306, 1139, 724; δH (400 MHz, CDCl3) 2.22 (3 H, s, H-13), 4.68 (1 H, br s, H-8), 5.33–5.46 

(2 H, m, H-12), 6.40–6.51 (1 H, m, H-2/3), 6.71–6.78 (1 H, m, H-9), 6.93–7.04 (1 H, m, H-6), 

7.16–7.25 (1 H, m, H-2/3), 8.34 (1 H, br s, H-1); δC (100 MHz, CDCl3) 23.4 (C-13), 102.3 (C-

2/3), 104.2 (C-6), 109.8 (C-9), 114.1 (C-12), 125.0 (C-2/3), 127.0 (C-10/11), 128.6 (C-4/5), 

128.8 (C-4/5), 142.4 (C-10/11), 149.4 (C-7); HRMS (ESI+): Found: 196.0728; C11H11NNaO 

(MNa+) Requires 196.0733 (2.2 ppm error), Found: 174.0914; C11H12NO (MH+) Requires 

174.0913 (−0.4 ppm error). 

Lab notebook reference: akc05-71 
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7-((4-Methoxyphenoxy)methyl)-1H-indol-5-ol (215i) 

 

Synthesised using general procedure E with ynone 214i (69.2 mg, 0.257 mmol), AgNO3 (2.18 

mg, 12.8 μmol) in CH2Cl2 (2.6 mL) at RT for 3.5 h. Purification by column chromatography 

(9:1 hexane:EtOAc, then 5:1 hexane:EtOAc) afforded the title compound 215i as a white oil 

(19.0 mg, 27%); Rf 0.68 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 3421, 2929, 1506, 1439, 

1222, 1142, 1033, 825; δH (400 MHz, CDCl3) 3.77 (3 H, s, H-16), 4.77 (1 H, br s, H-8), 5.28 

(2 H, s, H-11), 6.43–6.47 (1 H, m, H-2/3), 6.70–6.76 (1 H, m, H-6/9), 6.84 (2 H, d, J = 9.0 Hz, 

H-13/14), 6.96 (2 H, d, J = 9.0 Hz, H-13/14), 7.01–7.04 (1 H, m, H-6/9), 7.18–7.21 (1 H, m, 

H-2/3), 8.63 (1 H, br s, H-1); δC (100 MHz, CDCl3) 55.7 (C-16), 69.9 (C-11), 101.9 (C-2/3), 

105.0 (C-6/9), 110.5 (C-6/9), 114.8 (C-13/14), 115.9 (C-13/14), 120.9 (C-4/5/10), 125.4 (C-

2/3), 129.1 (C-4/5/10), 129.8 (C-4/5/10), 149.2 (C-7), 152.5 (C-12/15), 154.3 (C-12/15); 

HRMS (ESI+): Found: 292.0942; C16H15NNaO3 (MNa+) Requires 292.0944 (0.7 ppm error), 

Found: 270.1129; C16H16NO3 (MH+) Requires 270.1125 (−1.5 ppm error). 

Lab notebook reference: akc05-65 

 

4-Methyl-7-phenyl-1H-indol-5-ol (215j) 

 

To a solution of ynone 214j (51.0 mg, 0.228 mmol) in CH2Cl2 (2.3 mL) at RT was added 

AgNO3 (1.94 mg, 11.4 µmol) and Ag2O (1.32 mg, 5.71 µmol). The reaction mixture was 

stirred at RT for 24 h. A further portion of both AgNO3 (1.94 mg, 11.4 µmol ) and Ag2O (1.32 

mg, 5.71 µmol) were added and the mixture was stirred for 3 days. The reaction mixture was 

concentrated in vacuo and the crude material was purified by column chromatography (9:1 

hexane:EtOAc, then 7:3 hexane:EtOAc) to afford the title compound 215j as a yellow oil 

(38.2 mg, 75%); Rf 0.33 (8:2 hexane:EtOAc); νmax (thin film)/cm-1 3436, 2922, 2852, 1598, 



183 
 

1491, 1388, 1346, 1095, 850, 763, 724, 705; δH (400 MHz, CDCl3) 2.50 (3 H, s, H-7), 4.58 (1 

H, br s, H-9), 6.56–6.59 (1 H, m, H-2/3), 6.83 (1 H, s, 10), 7.20–7.23 (1 H, m, H-2/3), 7.37–

7.43 (1 H, m, H-15), 7.47–7.53 (2 H, m, H-13/14), 7.59–7.64 (2 H, m, H-13/14), 8.32 (1 H, br 

s, H-1); δC (100 MHz, CDCl3) 11.8 (C-7), 101.3 (C-2/3), 111.8 (C-10), 112.8 (C-6), 123.6 (C-

4/5/11/12), 124.8 (C-2/3), 127.4 (C-15), 128.1 (C-13/14), 128.7 (C-4/5/11/12), 129.1 (C-

13/14), 129.3 (C-4/5/11/12), 138.8 (C-4/5/11/12), 147.1 (C-8); HRMS (ESI+): Found: 

246.0889; C15H13NNaO (MNa+) Requires 246.0889 (−0.2 ppm error), Found: 224.1067; 

C15H14NO (MH+) Requires 224.1070 (1.4 ppm error). 

Lab notebook reference: akc06-62 

 

1-Methyl-7-phenyl-1H-indol-5-ol (215k) 

 

Synthesised using general procedure E with ynone 214k (50.3 mg, 0.225 mmol), AgNO3 (3.80 

mg, 22.5 μmol) in CH2Cl2 (2.3 mL) at RT for 1 h. Purification by column chromatography 

(9:1 hexane:EtOAc, then 8:2 hexane:EtOAc) afforded the title compound 215k as a yellow oil 

(38.5 mg, 77%); Rf 0.84 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 3344, 1605, 1586, 1485, 

1409, 1165, 1139, 1098, 993, 810, 770; δH (400 MHz, CDCl3) 3.26 (3 H, s, H-1), 4.67 (1 H, br 

s, H-8), 6.42 (1 H, d, J = 3.0 Hz, H-2/3), 6.63 (1 H, d, J = 3.0 Hz, H-6/9), 6.96 (1 H, d, J = 3.0 

Hz, H-2/3), 7.05 (1 H, d, J = 3.0 Hz, H-6/9), 7.40–7.46 (5 H, m, Ar-H); δC (100 MHz, CDCl3) 

36.7 (C-1), 100.3 (C-2/3), 104.3 (C-6/9), 113.8 (C-6/9), 127.3 (C-14), 127.5 (C), 127.6 (C-

12/13), 129.7 (C), 129.9 (C-12/13), 130.4 (C), 131.8 (C-2/3), 139.8 (C-10/11), 148.6 (C-7); 

HRMS (ESI+): Found: 224.1063; C15H14NO (MH+) Requires 224.1070 (−3.2 ppm error). 

Lab notebook reference: akc07-78 
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2,7-Diphenyl-1H-indol-5-ol (215l) 

 

Synthesised using general procedure F with ynone 233a (30.9 mg, 0.108 mmol), AgNO3 (1.84 

mg, 10.8 µmol) and Ag2O (1.25 mg, 5.40 µmol) in CH2Cl2 (1.1 mL) at RT for 1.5 h. 

Purification by column chromatography (8:2 hexane:EtOAc) afforded the title compound 215l 

as a brown solid (28.1 mg, 91%); mp 133–135 °C; Rf 0.53 (7:3 hexane:EtOAc); νmax (thin 

film)/cm-1 3466, 3350, 3057, 1594, 1480, 1191, 1156, 907, 845, 759, 733, 704; δH (400 MHz, 

CDCl3) 4.60 (1 H, br s, H-12), 6.78 (1 H, d, J = 2.5 Hz, H-7), 6.82 (1 H, d, J = 2.5 Hz, H-

10/13), 7.04 (1 H, d, J = 2.5 Hz, H-10/13), 7.29–7.35 (1 H, m, H-6/18), 7.40–7.48 (3 H, m, H-

6/8,5/17), 7.56 (2 H, dd, J = 8.0, 7.5 Hz, H-5/17), 7.63 (2 H, d, J = 8.0 Hz, H-4/16), 7.68 (2 H, 

d, J = 7.5 Hz, H-4/16), 8.39 (1 H, br s, H-1); δC (100 MHz, CDCl3) 99.9 (C-7), 104.2 (C-

10/13), 111.9 (C-10/13), 125.2 (C-4/16), 126.2 (C), 127.7 (C-6/18), 127.8 (C-6/18), 128.1 (C-

4/5/16/17), 129.0 (C-4/5/16/17), 129.3 (C-4/5/16/17), 130.1 (C), 130.4 (C), 132.2 (C), 138.7 

(C), 139.2 (C), 150.1 (C-11); HRMS (ESI+): Found: 308.1032; C20H15NNaO (MNa+) Requires 

308.1046 (−4.3 ppm error), Found: 286.1218; C20H16NO (MH+) Requires 286.1226 (2.8 ppm 

error). 

Lab notebook reference: akc07-40 

 

7-Butyl-2-phenyl-1H-indol-5-ol (215m) 

 

Synthesised using general procedure F with ynone 233b (46.2 mg, 0.174 mmol), AgNO3 (1.48 

mg, 8.71 µmol) and Ag2O (1.00 mg, 4.35 µmol) in CH2Cl2 (1.7 mL) at RT for 4 h. 

Purification by column chromatography (8:2 hexane:EtOAc) afforded the title compound 

215m as a yellow oil (44.0 mg, 95%); Rf 0.54 (7:3 hexane:EtOAc); νmax (thin film)/cm-1 3353, 

2955, 2928, 2859, 1617, 1599, 1452, 1375, 1245, 1138, 842, 763, 746; δH (400 MHz, CDCl3) 

0.99 (3 H, t, J = 7.5 Hz, H-18), 1.47 (2 H, app. sextet, J = 7.5 Hz, H-17), 1.77 (2 H, app. 
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pentet, J = 7.5 Hz, H-16), 2.83 (2 H, t, J = 8.0 Hz, H-15), 4.49 (1 H, br s, H-12), 6.64 (1 H, d, 

J = 2.0 Hz, H-10/13), 6.72 (1 H, d, J = 2.0 Hz, H-7), 6.90 (1 H, d, J = 2.0 Hz, H-10/13), 7.34 

(1 H, t, J = 7.5 Hz, H-6), 7.46 (2 H, dd, J = 8.0, 8.0 Hz, H-5), 7.68 (2 H, d, J = 7.5 Hz, H-4), 

8.11 (1 H, br s, H-1); δC (100 MHz, CDCl3) 14.0 (C-18), 22.7 (C-17), 30.8 (C-15), 31.6 (C-

16), 100.0 (C-7), 102.5 (C-10/13), 111.7 (C-10/13), 125.1 (C-4), 126.1 (C), 127.6 (C-6), 129.0 

(C-5), 129.6 (C), 131.2 (C), 132.5 (C), 138.4 (C), 149.9 (C-11); HRMS (ESI+): Found: 

288.1348; C18H19NNaO (MNa+) Requires 288.1359 (3.7 ppm error), Found: 266.1528; 

C18H20NO (MH+) Requires 266.1539 (4.4 ppm error). 

Lab notebook reference: akc07-48 

 

1H-Indol-5-ol (238) 

 

To a solution of ynone 214l (80 mg, 0.390 mmol) in MeOH (3.9 mL) at RT was added a 

solution of Borax (0.39 mL, 3.90 μmol, 0.01 M solution in water). The reaction mixture was 

stirred at RT for 1 h, followed by the addition of AgNO3 (6.63 mg, 39.0 μmol) at RT. The 

mixture was then stirred for a further 1.5 h at RT until completion was observed by TLC. 

Brine (5 mL) was added and the aqueous layer was extracted with EtOAc (3 x 10 mL). The 

organics were combined, dried over MgSO4 and concentrated in vacuo. The crude material 

was purified by column chromatography (7:3 hexane:EtOAc) to afford the title compound 238 

as an white solid (33.2 mg, 64%); mp 95–97 °C; Rf 0.22 (7:3 hexane:EtOAc); νmax (thin 

film)/cm-1 3408, 1627, 1583, 1487, 1455, 1341, 1219, 1145, 1129, 947, 802, 757, 726; δH (400 

MHz, (CD3)2SO) 6.16–6.27 (1 H, m, H-2/3), 6.59 (1 H, d, J = 8.5 Hz, H-9/10), 6.81–6.86 (1 

H, m, H-2/3), 7.16 (1 H, d, J = 8.5 Hz, H-9/10), 7.19–7.22 (1 H, m, H-6), 8.58 (1 H, br s, H-

8), 10.74 (1 H, br s, H-1); δC (100 MHz, (CD3)2SO) 100.1 (C-2/3), 103.8 (C-2/3), 111.2 (C-

9/10), 111.5 (C-9/10), 125.4 (C-6), 128.3 (C-4/5), 130.4 (C-4/5), 150.4 (C-7). 

Lab notebook reference: akc06-19 

Spectroscopic data matched those previously reported in the literature.209 
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2-Methyl-4-phenyl-1-(1H-pyrrol-3-yl)but-3-yn-2-ol (240a) 

 

To a stirred solution of ynone 214a (50.6 mg, 0.242 mmol) in THF (3.6 mL) at −78 °C under 

argon was added MeMgCl (0.40 mL, 1.21 mmol, 3.0 M in THF). The mixture was stirred for 

1 h at −78 °C. The reaction was quenched by the addition of sat. aq. NH4Cl (10 mL) and left 

to stir for 5 min whilst warming to RT. The organics were separated and the aqueous layer 

extracted with EtOAc (3 × 10 mL). The organics were combined, washed with brine (10 mL), 

dried over MgSO4 and concentrated in vacuo. The crude material was purified by column 

chromatography (9:1 hexane:EtOAc, then 7:3 hexane:EtOAc) to afford the title compound 

240a as a pale yellow oil (25.1 mg, 46%); Rf 0.32 (7:3 hexane:EtOAc); νmax (thin film)/cm-1 

3392, 2980, 2930, 1598, 1489, 1059, 756, 738, 691; δH (400 MHz, CDCl3) 1.65, (3 H, s, H-8), 

2.40 (1 H, br s, H-9), 2.88 (1 H, d, J = 14.0 Hz, H-6a), 3.06 (1 H, d, J = 14.0 Hz, H-6b), 6.30–

6.34 (1 H, m, H-1/3/4), 6.77–6.83 (2 H, m, H-1/3/4), 7.28–7.36 (3 H, m, H-13/14,15), 7.40–

7.46 (2 H, m, H-13/14), 8.24 (1 H, br s, H-2); δC (100 MHz, CDCl3) 29.1 (C-8), 41.7 (C-6), 

67.9 (C-7), 83.1 (C-10), 93.5 (C-11), 110.5 (C-1/3/4), 117.5 (C-5), 117.6 (C-1/3/4), 118.0 (C-

1/3/4), 123.0 (C-12), 128.1 (C-15), 128.2 (C-13/14), 131.6 (C-13/14); HRMS (ESI+): Found: 

248.1041; C15H15NNaO (MNa+) Requires 248.1046 (2.1 ppm error). 

Lab notebook reference: akc06-02 

 

2-Methyl-1-(1H-pyrrol-3-yl)oct-3-yn-2-ol (240b) 

 

To a stirred solution of ynone 214e (92.4 mg, 0.488 mmol) in THF (7.3 mL) at −78 °C under 

argon was added MeMgCl (0.81 mL, 2.44 mmol, 3.0 M in THF). The mixture was stirred 

vigorously for 1.5 h at −78 °C. The reaction was quenched by the addition of sat. aq. NH4Cl 

(10 mL) and left to stir for 5 min whilst warming to RT. The organics were separated and the 
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aqueous layer extracted with EtOAc (3 × 10 mL). The organics were combined, dried over 

MgSO4 and concentrated in vacuo. The crude material was purified by column 

chromatography (9:1 hexane:EtOAc, then 7:3 hexane:EtOAc) to afford the title compound 

240b as an orange oil (50.4 mg, 50%); Rf 0.31 (7:3 hexane:EtOAc); νmax (thin film)/cm-1 3396, 

2957, 2931, 2872, 1431, 1456, 1374, 1353, 1060, 937, 784, 738; δH (400 MHz, CDCl3) 0.92 

(3 H, t, J = 7.5 Hz, H-15), 1.35–1.44 (2 H, m, H-13/14), 1.44–1.50 (2 H, m, H-13/14), 1.51 (3 

H, s, H-8), 2.21 (2 H, t, J = 7.0 Hz, H-12), 2.78 (1 H, d, J = 14.0 Hz, H-6a), 2.92 (1 H, d, J = 

14.0 Hz, H-6b), 6.23–6.27 (1 H, m, H-1/3/4), 6.72–6.79 (2 H, m, H-1/3/4), 8.24 (1 H, br s, H-

2); δC (100 MHz, CDCl3) 13.6 (C-15), 18.3 (C-12), 21.9 (C-13/14), 29.5 (C-8), 30.8 (C-

13/14), 41.8 (C-6), 67.5 (C-7), 83.6 (C-10/11), 84.4 (C-10/11), 110.5 (C-1/3/4), 117.5 (C-

1/3/4), 117.7 (C-5), 117.8 (C-1/3/4); HRMS (ESI+): Found: 228.1357; C13H19NNaO (MNa+) 

Requires 228.1359 (0.7 ppm error). 

Lab notebook reference: akc06-30 

 

2-Phenyl-1-(1H-pyrrol-3-yl)oct-3-yn-2-ol (240c) 

 

To a stirred solution of ynone 214e (87.4 mg, 0.462 mmol) in Et2O (2.5 mL) at −78 °C under 

argon was added PhLi (0.73 mL, 1.39 mmol, 1.9 M in Et2O). The mixture was warmed to RT 

and stirred vigorously for 4 h. The reaction was quenched by the addition of sat. aq. NH4Cl 

(10 mL) and left to stir for 5 min. The organics were separated and the aqueous layer extracted 

with EtOAc (3 × 10 mL). The organics were combined, dried over MgSO4 and concentrated 

in vacuo. The crude material was purified by column chromatography (8:2 hexane:EtOAc) to 

afford the title compound 240c as a pale yellow oil (75.1 mg, 61%); Rf 0.26 (8:2 

hexane:EtOAc); νmax (thin film)/cm-1 3399, 2956, 2930, 2871, 1448, 1060, 1032, 767, 699; δH 

(400 MHz, CDCl3) 0.94 (3 H, t, J = 7.5 Hz, H-18), 1.44 (2 H, sextet, J = 7.5 Hz, H-17), 1.55 

(2 H, pentet, J = 7.5 Hz, H-16), 2.29 (2 H, t, J = 7.5 Hz, H-15), 2.65 (1 H, s, H-8), 3.02 (1 H, 

d, J = 14.0 Hz, H-6a), 3.12 (1 H, d, J = 14.0 Hz, H-6b), 6.10–6.16 (1 H, m, H-1/3/4), 6.62–

6.68 (1 H, m, H-1/3/4), 6.70–6.76 (1 H, m, H-1/3/4), 7.30 (1 H, t, J = 7.5 Hz, H-12), 7.36 (2 

H, dd, J = 7.5, 7.5 Hz, H-11), 7.66 (2 H, d, J = 7.5 Hz, H-10), 8.16 (1 H, br s, H-2); δC (100 

MHz, CDCl3) 13.6 (C-8), 18.5 (C-15), 22.0 (C-17), 30.7 (C-16), 44.2 (C-6), 72.4 (C-7), 83.1 
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(C-13/14), 86.3 (C-13/14), 110.6 (C-1/3/4), 117.2 (C-5), 117.7 (C-1/3/4), 117.8 (C-1/3/4), 

125.5 (C-10), 127.2 (C-12), 127.9 (C-11), 145.1 (C-7); HRMS (ESI+): Found: 290.1513; 

C18H21NNaO (MNa+) Requires 290.1515 (0.8 ppm error). 

Lab notebook reference: akc06-46/52 

 

4-(4-Fluorophenyl)-1-(1H-pyrrol-3-yl)but-3-yn-2-ol (240d) 

 

To a stirred solution of ynone 214b (155 mg, 0.682 mmol) in MeOH (14 mL) at 0 °C was 

added NaBH4 (103 mg, 2.73 mmol) portionwise. The mixture was stirred at 0 °C for 30 min. 

The reaction was quenched by the addition of sat. aq. NH4Cl (10 mL) at 0 °C and the aqueous 

layer extracted with EtOAc (3 × 10 mL). The organics were combined, dried over MgSO4 and 

concentrated in vacuo. The crude material was purified by column chromatography (9:1 

hexane:EtOAc, then 1:1 hexane:EtOAc) to afford the title compound 240d as a pale yellow 

solid (144 mg, 92%); mp 81–83 °C; Rf 0.53 (1:1 hexane:EtOAc); νmax (thin film)/cm-1 3396, 

2929, 2204, 1657, 1599, 1506, 1232, 1157, 1059, 837; δH (400 MHz, CDCl3) 2.12 (1 H, d, J = 

6.0 Hz, H-8), 2.98 (1 H, dd, J = 14.0, 6.0 Hz, H-6a), 3.05 (1 H, dd, J = 14.0, 6.0 Hz, H-6b), 

4.72 (1 H, dd, J = 6.0, 6.0, 6.0 Hz, H-7), 6.22–6.28 (1 H, m, H-1/3/4), 6.76–6.83 (2 H, m, H-

1/3/4), 7.01 (2 H, dd, 3JHH = 8.5 Hz, 3JHF 8.5 Hz, H-13), 7.39–7.46 (2 H, m, H-12), 8.20 (1 H, 

br s, H-2); δC (100 MHz, CDCl3) 35.7 (C-6), 63.1 (C-7), 83.7 (C-9/10), 89.8 (C-9/10), 109.5 

(C-1/3/4), 115.5 (d, 2JCF = 22.0 Hz, C-13), 117.1 (C-1/3/4), 117.5 (C-5), 118.3 (C-1/3/4), 

118.8 (d, 4JCF = 4.0 Hz, C-11), 133.5 (d, 3JCF = 8.5 Hz, C-12), 162.5 (d, 1JCF = 249 Hz, C-14); 

HRMS (ESI+): Found: 252.0798; C14H12FNNaO (MNa+) Requires 252.0795 (−1.3 ppm error), 

Found: 230.0975; C14H13FNO (MH+) Requires 230.0976 (0.5 ppm error) 

Lab notebook reference: akc06-66 

  



189 
 

1-(1H-Pyrrol-3-yl)oct-3-yn-2-ol (240e) 

 

To a stirred solution of ynone 214e (86.1 mg, 0.455 mmol) in MeOH (9 mL) at 0 °C was 

added NaBH4 (68.8 mg, 1.82 mmol) portionwise. The mixture was stirred at 0 °C for 30 min. 

The reaction was quenched by the addition of sat. aq. NH4Cl (10 mL) at 0 °C and the aqueous 

layer extracted with CH2Cl2 (3 × 10 mL). The organics were combined, dried over MgSO4 and 

concentrated in vacuo. The crude material was purified by column chromatography (9:1 

hexane:EtOAc, then 7:3 hexane:EtOAc) to afford the title compound 240e as a pale yellow oil 

(79.8 mg, 92%); Rf 0.13 (8:2 hexane:EtOAc); νmax (thin film)/cm-1 3394, 2957, 2931, 2872, 

1488, 1466, 1431, 1380, 1061, 1034, 999, 964, 774, 711; δH (400 MHz, CDCl3) 0.92 (3 H, t, J 

= 7.0 Hz, H-14), 1.36–1.44 (2 H, m, H-12/13), 1.45–1.55 (2 H, m, H-12/13), 2.00 (1 H, d, J = 

5.5 Hz, H-8), 2.24 (2 H, td, J = 7.0, 2.0 Hz, H-11), 2.85 (1 H, dd, J = 14.0, 5.5 Hz, H-6a), 2.94 

(1 H, dd, J = 14.0, 5.5 Hz, H-6b), 4.45–4.53 (1 H, m, H-7), 6.17–6.22 (1 H, m, H-1/3/4), 6.70–

6.74 (1 H, m, H-1/3/4), 6.75–6.80 (1 H, m, H-1/3/4), 8.21 (1 H, br s, H-2); δC (100 MHz, 

CDCl3) 13.6 (C-14), 18.4 (C-11), 21.9 (C-12/13), 30.7 (C-12/13), 36.1 (C-6), 63.0 (C-7), 81.0 

(C-9/10), 85.4 (C-9/10), 109.4 (C-1/3/4), 116.9 (C-1/3/4), 118.0 (C-5), 118.2 (C-1/3/4); 

HRMS (ESI+): Found: 214.1201; C12H17NNaO (MNa+) Requires 214.1202 (0.6 ppm error). 

Lab notebook reference: akc06-31 

 

1-(1H-Pyrrol-3-yl)but-3-yn-2-ol (240f) 

 

To a stirred solution of TMS acetylene (0.31 mL, 2.27 mmol) in THF (2.5 mL) at −78 °C 

under argon was added n-BuLi (0.76 mL, 1.88 mmol, 2.5 M in hexanes) dropwise. The 

mixture was stirred for 30 min at −78 °C and then transferred via cannula to a −78 °C solution 

of Weinreb amide 218a (127 mg, 0.755 mmol) in THF (4 mL). Upon complete transfer the 
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mixture was warmed to RT and stirred for 30 min. The reaction was quenched by the addition 

of sat. aq. NH4Cl (10 mL). The organics were separated and the aqueous layer extracted with 

EtOAc (3 × 20 mL). The organics were combined, washed with brine (20 mL), dried over 

MgSO4 and concentrated in vacuo. The crude material was then dissolved in MeOH (15 mL), 

cooled to 0 °C and NaBH4 (114 mg, 3.02 mmol) was added portionwise. The mixture was 

stirred for 30 min at RT and then K2CO3 (209 mg, 1.51 mmol) was added. The mixture was 

stirred for a further 5 h at RT. The reaction was quenched by the addition of sat. aq. NH4Cl 

(20 mL) and diluted with CH2Cl2 (50 mL).The organics were separated and the aqueous layer 

was extracted with CH2Cl2 (3 x 20 mL). The organics were combined, washed with brine (20 

mL), dried over MgSO4, concentrated in vacuo and purified by column chromatography (9:1 

hexane:EtOAc, then 6:4 hexane:EtOAc) to afford the title compound 240f as an orange oil 

(84.4 mg, 83%); Rf 0.25 (7:3 hexane:EtOAc); νmax (thin film)/cm-1 3392, 3285, 2919, 1430, 

1025, 780, 732, 643; δH (400 MHz, CDCl3) 2.04–2.15 (1 H, m, H-8), 2.47 (1 H, d, J = 2.0 Hz, 

H-10), 2.90 (1 H, dd, J = 14.0, 6.5 Hz, H-6a), 2.98 (1 H, dd, J = 14.0, 5.5 Hz, H-6b), 4.48–

4.56 (1 H, m, H-7), 6.19–6.23 (1 H, m, H-1/3/4), 6.72–6.80 (2 H, m, H-1/3/4), 8.22 (1 H, br s, 

H-2); δC (100 MHz, CDCl3) 35.5 (C-6), 62.5 (C-7), 72.8 (C-10), 84.8 (C-9), 109.5 (C-1/3/4), 

117.1 (C-1/3/4), 117.3 (C-5), 118.3 (C-1/3/4); HRMS (EI+): Found: 135.0681; C8H9NO (M+) 

Requires 135.0684 (−2.2 ppm error). 

Lab notebook reference: akc05-88/89 

 

5-Methyl-7-phenyl-1H-indole (241a) 

 

Synthesised using general procedure G with propargyl alcohol 240a (75 mg, 0.333 mmol), 

AgNO3 (5.66 mg, 33.3 μmol) and Ag2O (3.86 mg, 16.7 µmol) in CH2Cl2 (3.3 mL) at RT for 

21 h. Purification by column chromatography (9:1 hexane:EtOAc, then 6:4 hexane:EtOAc) 

afforded the title compound 241a as a pale yellow oil (64.3 mg, 86%); Rf 0.76 (7:3 

hexane:EtOAc); νmax (thin film)/cm-1 3433, 3029, 2918, 1592, 1477, 1413, 1325, 1305, 1136, 

850, 758, 702; δH (400 MHz, CDCl3) 2.53 (3 H, s, H-8), 6.54–6.60 (1 H, m, H-2/3), 7.09 (1 H, 

s, H-6/9), 7.18–7.22 (1 H, m, H-2/3), 7.42 (1 H, t, J = 7.5 Hz, H-14), 7.46 (1 H, s, H-6/9), 7.53 

(2 H, dd, J = 7.5, 7.5 Hz, H-13), 7.66 (2 H, d, J = 7.5 Hz, H-12), 8.33 (1 H, br s, H-1); δC (100 
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MHz, CDCl3) 21.4 (C-8), 102.5 (C-2/3), 119.7 (C-6/9), 123.5 (C-6/9), 124.4 (C-2/3), 125.2 

(C), 127.3 (C-14), 128.2 (C-12), 128.6 (C), 129.1 (C-13), 129.5 (C-7), 132.0 (C), 139.3 (C); 

HRMS (ESI+): Found: 208.1122; C15H14N (MH+) Requires 208.1121 (−0.5 ppm error). 

Lab notebook reference: akc07-17 

 

7-Butyl-5-methyl-1H-indole (241b) 

 

Synthesised using general procedure H with propargyl alcohol 240b (25.2 mg, 0.123 mmol), 

AgNO3·SiO2 (209 mg, 12.3 μmol) in CH2Cl2 (1.2 mL) at RT for 24 h. Purification by column 

chromatography (8:2 hexane:EtOAc) afforded the title compound 241b as a dark brown oil 

(22.8 mg, 99%); Rf 0.63 (8:2 hexane:EtOAc); νmax (thin film)/cm-1 3420, 2956, 2928, 2859, 

1593, 1480, 1455, 1411, 1342, 1116, 845, 723; δH (400 MHz, CDCl3) 0.98 (3 H, t, J = 7.5 Hz, 

H-14), 1.45 (2 H, sextet, J = 7.5 Hz, H-13), 1.74 (2 H, pentet, J = 7.5 Hz, H-12), 2.45 (3 H, s, 

H-8), 2.81 (2 H, t, J = 7.5 Hz, H-11), 6.47–6.51 (1 H, m, H-2/3), 6.84–6.89 (1 H, m, H-6/9), 

7.15–7.20 (1 H, m, H-2/3), 7.28–7.33 (1 H, m, H-6/9), 8.03 (1 H, br s, H-1); δC (100 MHz, 

CDCl3) 14.0 (C-14), 21.4 (C-8), 22.8 (C-13), 31.1 (C-11), 31.9 (C-12), 102.5 (C-2/3), 118.0 

(C-6/9), 123.2 (C-6/9), 123.7 (C-2/3), 124.8 (C-5/10), 127.9 (C-4), 129.1 (C-7), 133.2 (C-

5/10); HRMS (ESI+): Found: 188.1427; C13H18N (MH+) Requires 188.1434 (3.4 ppm error). 

Lab notebook reference: akc06-39 
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7-Butyl-5-phenyl-1H-indole (241c) 

 

Synthesised using general procedure H with propargyl alcohol 240c (68.5 mg, 0.256 mmol), 

AgNO3·SiO2 (435 mg, 25.6 μmol) in CH2Cl2 (2.6 mL) at RT for 48 h. Purification by column 

chromatography (9:1 hexane:EtOAc) afforded the title compound 241c as a pale brown oil 

(29.5 mg, 43%); Rf 0.54 (8:2 hexane:EtOAc); νmax (thin film)/cm-1 3431, 2955, 2927, 2857, 

1598, 1470, 1444, 1347, 1324, 1115, 870, 760, 725, 698; δH (400 MHz, CDCl3) 0.99 (3 H, t, J 

= 7.5 Hz, H-17), 1.48 (2 H, sextet, J = 7.5 Hz, H-16), 1.80 (2 H, pentet, J = 7.5 Hz, H-15), 

2.91 (2 H, t, J = 7.5 Hz, H-14), 6.61–6.65 (1 H, m, H-2/3), 7.24–7.27 (1 H, m, H-2/3), 7.28–

7.35 (2 H, m, H-6/12,11), 7.45 (2 H, dd, J = 8.0, 8.0 Hz, H-10), 7.67 (2 H, d, J = 8.0 Hz, H-9), 

7.73 (1 H, s, H-6/12), 8.14 (1 H, br s, H-1); δC (100 MHz, CDCl3) 14.0 (C-17), 22.8 (C-16), 

31.2 (C-14), 31.8 (C-15), 103.4 (C-2/3), 117.0 (C-6/12), 121.5 (C-6/12), 124.4 (C-2/3), 125.3 

(C), 126.2 (C-11), 127.4 (C-9), 128.1 (C), 128.6 (C-10), 133.6 (C), 134.4 (C), 142.8 (C); 

HRMS (ESI+): Found: 272.1415; C18H19NNa (MNa+) Requires 272.1410 (2.1 ppm error), 

Found: 250.1595; C18H20N (MH+) Requires 250.1590 (1.8 ppm error). 

Lab notebook reference: akc06-54 

 

7-(4-Fluorophenyl)-1H-indole (241d) 

 

Synthesised using general procedure G with propargyl alcohol 240d (50.0 mg, 0.218 mmol), 

AgNO3 (3.7 mg, 21.8 µmol) and Ag2O (2.5 mg, 10.9 µmol) in CH2Cl2 (2.2 mL) at RT for 5 h. 

Purification by column chromatography (8:2 hexane:EtOAc) afforded the title compound 

241d as a pale yellow oil (43.3 mg, 94%); Rf 0.58 (8:2 hexane:EtOAc); νmax (thin film)/cm-1 

3428, 1603, 1519, 1503, 1485, 1412, 1330, 1220, 1158, 840, 793, 729; δH (400 MHz, CDCl3) 
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6.64–6.69 (1 H, m, H-2/3), 7.18–7.26 (5 H, m, H-2/3,6/8,7,12), 7.58–7.65 (2 H, m, H-11), 

7.69 (1 H, d, J = 8.0 Hz, H-6/8), 8.33 (1 H, br s, H-1); δC (100 MHz, CDCl3) 103.2 (CH), 

116.0 (d, 2JCF = 21.0 Hz, C-12), 120.1 (CH), 120.3 (CH), 121.9 (CH), 124.4 (CH), 124.6 (C-

4/5/9), 128.3 (C-4/5/9), 129.8 (d, 3JCF = 7.5 Hz, C-11), 133.7 (C-4/5/9), 135.2 (d, 4JCF = 3.0 

Hz, C-10), 162.2 (d, 1JCF = 247 Hz, C-13); HRMS (ESI+): Found: 212.0863; C14H11FN (MH+) 

Requires 212.0870 (−3.4 ppm error).  

Lab notebook reference: akc06-69 

Spectroscopic data matched those previously reported in the literature.210 

 

7-Butyl-1H-indole (241e) 

 

Synthesised using general procedure G with propargyl alcohol 240e (20.7 mg, 0.108 mmol), 

AgNO3 (1.84 mg, 10.8 µmol) and Ag2O (1.25 mg, 6.41 µmol) in CH2Cl2 (1 mL) at RT for 19 

h. Purification by column chromatography (9:1 hexane:EtOAc) afforded the title compound 

241e as a pale yellow oil (17.6 mg, 94%); Rf 0.68 (8:2 hexane:EtOAc); νmax (thin film)/cm-1 

3425, 2956, 2926, 2855, 1465, 1432, 1342, 1110, 970, 726; δH (400 MHz, (CDCl3) 1.00 (3 H, 

t, J = 7.5 Hz, H-13), 1.47 (2 H, sextet, J = 7.5 Hz, H-12), 1.77 (2 H, pentet, J = 7.5 Hz, H-11), 

2.87 (2 H, t, J = 7.5 Hz, H-10), 6.56–6.64 (1 H, m, H-2/3), 7.05 (1 H, d, J = 7.5 Hz, H-6/8), 

7.11 (1 H, dd, J = 7.5, 7.5 Hz, H-7), 7.19–7.24 (1 H, m, H-2/3), 7.55 (1 H, d, J = 7.5 Hz, H-

6/8), 8.10 (1 H, br s, H-1); δC (100 MHz, (CDCl3) 14.0 (C-13), 22.8 (C-12), 31.0 (C-10), 31.8 

(C-11), 103.0 (C-2/3), 118.4 (C-6/8), 119.9 (C-7), 121.4 (C-6/8), 123.7 (C-2/3), 125.1 (C-

4/5/9), 127.6 (C-4/5/9), 134.9 (C-4/5/9); HRMS (ESI+): Found: 174.1273; C12H16N (MH+) 

Requires 174.1277 (−2.6 ppm error).  

Lab notebook reference: akc06-59 
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1H-Indole (241f) 

 

Synthesised using general procedure G with propargyl alcohol 240f (77.6 mg, 0.574 mmol), 

AgNO3 (9.75 mg, 57.4 μmol) and Ag2O (6.65 mg, 28.7 µmol) in CH2Cl2 (5.7 mL) at RT for 

24 h. Purification by column chromatography (9:1 hexane:EtOAc) afforded the title 

compound 241f as a white solid (48.8 mg, 63%); mp 42–44 °C; Rf 0.60 (7:3 hexane:EtOAc); 

νmax (thin film)/cm-1 3401, 3051, 1456, 1416, 1353, 1337, 1247, 1091, 745, 723; δH (400 MHz, 

CDCl3) 6.60 (1 H, s, Ar-H), 7.16 (1 H, d, J = 7.0 Hz, Ar-H), 7.20–7.26 (2 H, m, Ar-H), 7.42 

(1 H, d, J = 8.0 Hz, Ar-H), 7.69 (1 H, d, J = 8.0 Hz, Ar-H), 8.13 (1 H, br s, H-1); δC (100 

MHz, CDCl3) 102.6 (CH), 111.0 (CH), 119.8 (CH), 120.7 (CH), 122.0 (CH), 124.1 (CH), 

127.8 (C-4/5), 135.7 (C-4/5). 

Lab notebook reference: akc07-18 

Spectroscopic data matched those previously reported in the literature.210 

 

(E)-4-(Hex-1-en-1-yl)-3,9-diphenyl-2-azaspiro[4.4]nona-1,3,8-trien-7-one (246a) 

 

To a solution of ynone 237a (16.9 mg, 0.046 mmol) in CH2Cl2 (0.5 mL) at RT was added 

AgNO3 (0.78 mg, 4.60 µmol) and Ag2O (0.53 mg, 2.30 µmol). The reaction mixture was 

stirred at RT for 2 h. The reaction mixture was concentrated in vacuo and the crude material 

was purified by column chromatography (5:1 hexane:EtOAc, then 2:1 hexane:EtOAc) to 

afford the title compound 246a as a brown oil (11.6 mg, 69%); Rf 0.10 (5:1 hexane:EtOAc); 

νmax (thin film)/cm-1 2956, 2926, 2856, 1694, 1590, 1569, 1445, 769, 698; δH (400 MHz, 

CDCl3) 0.81 (3 H, t, J = 7.0 Hz, H-1), 1.01–1.19 (2 H, m, H-2/3), 1.19–1.30 (2 H, m, H-2/3), 

1.97–2.13 (2 H, m, H-4), 2.87 (2 H, s, H-15), 5.67 (1 H, dt, J = 16.5, 7.0 Hz, H-5), 6.52 (1 H, 

d, J = 16.5 Hz, H-6), 6.75 (1 H, s, H-17), 7.23–7.33 (4 H, m, Ar-H), 7.37–7.43 (2 H, m, Ar-

H), 7.49 (2 H, dd, J = 7.5, 7.5 Hz, H-11/21), 7.72 (2 H, d, J = 7.5 Hz, H-10/20), 8.13 (1 H, s, 
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H-13); δC (100 MHz, CDCl3) 13.8 (C-1), 22.0 (C-2/3), 31.3 (C-2/3), 33.5 (C-4), 42.0 (C-15), 

70.1 (C-14), 121.2 (C-6), 126.6 (C-10/11/20/21), 128.4 (CH), 128.5 (C-10/11/20/21), 128.7 

(C-10/11/20/21), 129.0 (C-10/11/20/21), 130.2 (C-17), 131.5 (CH), 133.0 (C), 134.1 (C), 

134.3 (C), 135.7 (C-5), 151.5 (C), 173.6 (C-13), 173.7 (C), 204.3 (C-16); HRMS (ESI+): 

Found: 368.1996; C26H26NO (MH+) Requires 368.2009 (3.5 ppm error). 

Lab notebook reference: akc07-60 

 

(E)-9-Butyl-4-(hex-1-en-1-yl)-3-phenyl-2-azaspiro[4.4]nona-1,3,8-trien-7-one (246b) 

 

To a solution of ynone 237b (23.4 mg, 0.0673 mmol) in CH2Cl2 (0.7 mL) at RT was added 

AgNO3 (1.14 mg, 6.73 µmol) and Ag2O (0.78 mg, 3.37 µmol). The reaction mixture was 

stirred at RT for 1.5 h. The reaction mixture was concentrated in vacuo and the crude material 

was purified by column chromatography (4:1 hexane:EtOAc) to afford the title compound 

246b as a brown oil (12.2 mg, 52%); Rf 0.20 (4:1 hexane:EtOAc); νmax (thin film)/cm-1 2956, 

2927, 2871, 1717, 1692, 1610, 1445, 1186, 771, 699; δH (400 MHz, CDCl3) 0.82–0.92 (6 H, 

m, H-1,22), 1.23–1.41 (6 H, m, H-2,3,21), 1.50 (2 H, quintet, J = 7.5 Hz, H-20), 1.76–1.86 (1 

H, m, H-19a), 1.93–2.04 (1 H, m, H-19b), 2.09–2.17 (2 H, m, H-4), 2.72 (1 H, d, J = 19.0 Hz, 

H-15a), 2.81 (1 H, d, J = 19.0 Hz, H-15b), 5.56 (1 H, dt, J = 16.0, 7.0 Hz, H-5), 6.28 (1 H, s, 

H-17), 6.58 (1 H, d, J = 16.0 Hz, H-6), 7.40 (1 H, t, J = 7.5 Hz, H-12), 7.48 (2 H, dd, J = 7.5, 

7.5 Hz, H-11), 7.73 (2 H, d, J = 7.5 Hz, H-10), 7.82 (1 H, s, H-13); δC (100 MHz, CDCl3) 13.7 

(C-1/22), 13.9 (C-1/22), 22.2 (C-2/3/21), 22.3 (C-2/3/21), 28.7 (C-19), 29.0 (C-20), 31.5 (C-

2/3/21), 33.6 (C-4), 40.0 (C-15), 71.9 (C-14), 121.5 (C-6), 128.45 (C-12), 128.47 (C-11), 

128.8 (C-10), 130.7 (C-17), 132.3 (C-7), 134.0 (C-9), 134.6 (C-5), 152.4 (C-8), 172.6 (C-13), 

182.0 (C-18), 205.6 (C-16); HRMS (ESI+): Found: 348.2311; C24H30NO (MH+) Requires 

348.2322 (3.2 ppm error). 

Lab notebook reference: akc07-65 
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6.9.4 Chapter 5 

N-Methoxy-3-(4-methoxyphenyl)-N-methylpropanamide (273a) 

 

Synthesised using general procedure A with 3-(4-hydroxyphenyl)propanoic acid 272a (7.00 g, 

38.8 mmol), T3P 50% in EtOAc (37.0 g, 58.3 mmol), DIPEA (20.3 mL, 116 mmol) and 

MeNH(OMe)·HCl (4.20 g, 42.7 mmol) in CH2Cl2 (100 mL) at RT for 1 h. Afforded the title 

compound 273a without further purification as a yellow oil (8.70 g, 100%); Rf 0.46 (1:1 

hexane:EtOAc); δH (400 MHz, CDCl3) 2.71 (2 H, t, J = 7.5 Hz, H-6/7), 2.91 (2 H, t, J = 7.5 

Hz, H-6/7), 3.18 (3 H, s, H-9), 3.61 (3 H, s, H-10), 6.84 (2 H, d, J = 8.0, H-3), 7.15 (2 H, d, J 

= 8.0 Hz, H-4); δC (100 MHz, CDCl3) 29.8 (C-6/7), 32.1 (C-9), 34.0 (C-6/7), 55.2 (C-1), 61.2 

(C-10), 113.8 (C-3), 129.3 (C-4), 133.4 (C-5), 157.9 (C-2), 173.7 (C-8); HRMS (ESI+): 

Found: 246.1097; C12H17NNaO3 (MNa+) Requires 246.1101 (−1.6 ppm error), Found: 

224.1277; C12H18NO3 (MH+) Requires 224.1281 (1.9 ppm error). 

Lab notebook reference: akc07-74 

Spectroscopic data matched those previously reported in the literature.211 

 

3-(4-Hydroxyphenyl)-N-methoxy-N-methylpropanamide (273b) 

 

Synthesised using general procedure A with 3-(4-hydroxyphenyl)propanoic acid 272b (7.00 g, 

42.1 mmol), T3P 50% in EtOAc (40.2 g, 63.2 mmol), DIPEA (22.0 mL, 126 mmol) and 

MeNH(OMe)·HCl (4.50 g, 46.3 mmol) in CH2Cl2 (105 mL) at RT for 1 h. Afforded the title 

compound 273b without further purification as a yellow oil (7.61 g, 86%); Rf 0.21 (1:1 

hexane:EtOAc); νmax (thin film)/cm-1 3263, 2938, 1632, 1614, 1593, 1515, 1446, 1388, 1266, 

1228, 1172, 987; δH (400 MHz, CDCl3) 2.72 (2 H, t, J = 7.5 Hz, H-6/7), 2.90 (2 H, t, J = 7.5 

Hz, H-6/7), 3.19 (3 H, s, H-9), 3.61 (3 H, s, H-10), 5.85 (1 H, br s, H-1), 6.77 (2 H, d, J = 8.0, 

H-3), 7.08 (2 H, d, J = 8.0 Hz, H-4); δC (100 MHz, CDCl3) 29.8 (C-6/7), 32.2 (C-9), 34.0 (C-

6/7), 61.2 (C-10), 115.3 (C-3), 129.5 (C-4), 133.0 (C-5), 154.3 (C-2), 173.9 (C-8); HRMS 



197 
 

(ESI+): Found: 232.09591; C11H15NNaO3 (MNa+) Requires 232.0944 (2.8 ppm error), Found: 

210.1127; C11H16NO3 (MH+) Requires 210.1125 (−1.2 ppm error). 

Lab notebook reference: akc07-73 

 

4-(4-Methoxyphenyl)-1-phenylbutan-2-one (274a) 

 

Procedure based on: Taylor et al., Angew. Chem. Int. Ed., 2016, 55, 9671–9675.173 

To a solution of Weinreb amide 273a (2.00 g, 8.96 mmol) in THF (90 mL) at 0 °C under 

argon was added benzylmagnesium chloride (13.4 mL, 26.9 mmol, 2.0 M in THF) dropwise 

using a syringe pump. The resulting solution was warmed to RT and stirred for 1.5 h. The 

reaction was then cooled to 0 °C, quenched with sat. aq. NH4Cl (20 mL), diluted with water 

(20 mL) and extracted with EtOAc (3 x 30 mL). The organics were combined, washed with 

brine (20 mL), dried over MgSO4 and concentrated in vacuo. The crude material was purified 

by column chromatography (9:1 hexane:EtOAc, then 8:2 hexane:EtOAc) to afford the title 

compound 274a as a clear and colourless oil (1.76 g, 77%); Rf 0.70 (7:3 hexane:EtOAc); νmax 

(thin film)/cm-1 2908, 1712, 1512, 1245, 1178, 1033, 830, 735, 699; δH (400 MHz, CDCl3) 

2.72–2.78 (2 H, m, H-6/7), 2.79–2.86 (2 H, m, H-6/7), 3.67 (2 H, s, H-9), 3.79 (3 H, s, H-1), 

6.81 (2 H, d, J = 8.0 Hz, H-3/4), 7.06 (2 H, d, J = 8.0 Hz, H-3/4), 7.18 (2 H, d, J = 7.0 Hz, H-

11), 7.25–7.36 (3 H, m, H-12,13); δC (100 MHz, CDCl3) 28.9 (C-6/7), 43.7 (C-6/7), 50.4 (C-

9), 55.2 (C-1), 113.8 (C-3/4), 127.0 (C-13), 128.7 (CH), 129.2 (CH), 129.4 (CH), 132.9 (C-5), 

134.1 (C-10), 157.9 (C-2), 207.6 (C-8); HRMS (ESI+): Found: 277.1189; C17H18NaO2 (MNa+) 

Requires 277.1199 (−3.7 ppm error). 

Lab notebook reference: akc07-82 
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4-(4-Hydroxyphenyl)-1-phenylbutan-2-one (274b) 

 

Procedure based on: Taylor et al., Angew. Chem. Int. Ed., 2016, 55, 9671–9675.173 

To a solution of Weinreb amide 273b (1.53 g, 7.31 mmol) in THF (70 mL) at 0 °C under 

argon was added benzylmagnesium chloride (14.6 mL, 29.2 mmol, 2.0 M in THF) dropwise 

using a syringe pump. The resulting solution was warmed to RT and stirred for 2 h. The 

reaction was then cooled to 0 °C, quenched with sat. aq. NH4Cl (20 mL), diluted with water 

(20 mL) and extracted with EtOAc (3 x 30 mL). The organics were combined, washed with 

brine (20 mL), dried over MgSO4 and concentrated in vacuo. The crude material was purified 

by column chromatography (9:1 hexane:EtOAc then 3:2 hexane:EtOAc) to afford the title 

compound 274b as a white solid (1.51 g, 86%); mp 112–114 °C; Rf 0.46 (6:4 hexane:EtOAc); 

νmax (thin film)/cm-1 3387, 3027, 2929, 1707, 1614, 1515, 1451, 1362, 1221, 833, 741, 699; δH 

(400 MHz, CD3OD) 2.68–2.81 (4 H, m, H-6,7), 3.68 (2 H, s, H-9), 6.66 (2 H, d, J = 8.0 Hz, 

H-3/4), 6.93 (2 H, d, J = 8.0 Hz, H-3/4), 7.11–7.17 (2 H, m, Ar-H), 7.19–7.33 (3 H, m, Ar-H); 

δC (100 MHz, CD3OD) 30.2 (C-6/7), 44.9 (C-6/7), 51.0 (C-9), 116.3 (C-3/4), 128.0 (C-13), 

129.7 (CH), 130.4 (CH), 130.7 (CH), 133.2 (C-5), 136.0 (C-10), 156.8 (C-2), 210.7 (C-8); 

HRMS (ESI+): Found: 263.1034; C16H16NaO2 (MNa+) Requires 263.1043 (−3.4 ppm error). 

Lab notebook reference: akc08-17 

 

1-Diazo-4-(4-methoxyphenyl)-1-phenylbutan-2-one (275a) 

 

Procedure based on: Taylor et al., Angew. Chem. Int. Ed., 2016, 55, 9671–9675.173 

To a solution of benzyl ketone 274a (977 mg, 3.84 mmol) and p-ABSA (1.11 g, 4.61 mmol) 

in MeCN (11.5 mL) at RT under argon was added DBU (0.8 mL, 5.38 mmol) dropwise. The 

resulting solution was stirred for 50 min before being concentrated in vacuo. The crude 

material was purified by column chromatography (9:1 hexane:EtOAc then 7:3 hexane:EtOAc 

with 3% Et3N as a basic additive) to afford the title compound 275a as a yellow solid (797 
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mg, 74%); mp 79–81 °C; Rf 0.73 (7:3 hexane:EtOAc); νmax (thin film)/cm-1 3009, 2951, 2836, 

2074, 1631, 1611, 1511, 1497, 1362, 1246, 1176, 1034, 821, 753; δH (400 MHz, CDCl3) 2.87 

(2 H, t, J = 7.5 Hz, H-6/7), 2.99 (2 H, t, J = 7.5 Hz, H-6/7), 3.97 (3 H, s, H-1), 6.84 (2 H, d, J 

= 8.5 Hz, H-3/4), 7.13 (2 H, d, J = 8.5 Hz, H-3/4), 7.27 (1 H, t, J = 7.5 Hz, H-13), 7.41 (2 H, 

dd, J = 8.0, 7.5 Hz, H-12), 7.47 (2 H, d, J = 8.0 Hz, H-11); δC (100 MHz, CDCl3) 29.8 (C-

6/7), 41.1 (C-6/7), 55.2 (C-1), 72.3 (C-9), 113.9 (C-3/4), 125.4 (C-10), 126.1 (C-11), 127.0 

(C-13), 129.0 (C-12), 129.4 (C-3/4), 132.7 (C-5), 158.1 (C-2), 192.0 (C-8); HRMS (LIFDI+): 

Found: 280.1211; C17H16N2O2 (M
+) Requires 280.1212 (−0.4 ppm error). 

Lab notebook reference: akc07-87 

 

4-(4-((tert-Butyldimethylsilyl)oxy)phenyl)-1-phenylbutan-2-one (274c) 

 

To a solution of alcohol 274b (1.39 g, 5.77 mmol) in anyhrous DMF (11.5 mL) was added 

imidazole (590 mg, 8.66 mmol) at 0 °C. TBSCl (1.30 g, 8.66 mmol) was then added at 0 °C 

and then the reaction was warmed to RT and stirred for 2 h. The reaction mixture was then 

diluted with Et2O (20 mL) and the organic layer was washed with water (3 x 30 mL). The 

organic layer was then washed with brine (20 mL), dried over MgSO4 and concentrated in 

vacuo. The crude material was purified by column chromatography (9:1 hexane:EtOAc) 

afforded the title compound 274c as a white solid (1.53 g, 75%); mp 64–66 °C; Rf 0.51 (9:1 

hexane:EtOAc); νmax (thin film)/cm-1 2955, 2931, 2859, 1708, 1510, 1255, 910, 839, 779, 732; 

δH (400 MHz, CDCl3) 0.19 (6 H, s, H-3), 0.99 (9 H, s, H-1), 2.71–2.77 (2 H, m, H-8/9), 2.78–

2.84 (2 H, m, H-8/9), 3.66 (2 H, s, H-11), 6.74 (2 H, d, J = 8.0 Hz, H-5/6), 6.99 (2 H, d, J = 

8.0 Hz, H-5/6), 7.17 (2 H, d, J = 7.5 Hz, H-13), 7.24–7.36 (3 H, m, H-14,15); δC (100 MHz, 

CDCl3) −4.5 (C-3), 18.2 (C-2), 25.7 (C-1), 29.0 (C-8/9), 43.7 (C-8/9), 50.4 (C-11), 120.0 (C-

5/6), 127.0 (CH), 128.7 (CH), 129.2 (CH), 129.4 (CH), 133.5 (C-7/12), 134.1 (C-7/12), 153.9 

(C-4), 207.7 (C-10); HRMS (ESI+): Found: 377.1905; C22H30NaO2Si (MNa+) Requires 

377.1907 (0.7 ppm error), Found: 355.2084; C22H31O2Si (MH+) Requires 355.2088 (1.1 ppm 

error). 

Lab notebook reference: akc08-20 



200 
 

4-(4-((tert-Butyldimethylsilyl)oxy)phenyl)-1-diazo-1-phenylbutan-2-one (275c) 

 

Procedure based on: Taylor et al., Angew. Chem. Int. Ed., 2016, 55, 9671–9675.173 

To a solution of benzyl ketone 274c (150 mg, 0.423 mmol) and p-ABSA (122 mg, 0.508 

mmol) in MeCN (1.5 mL) at RT under argon was added DBU (88.5 µL, 0.592 mmol) 

dropwise. The resulting solution was stirred for 1 h before being concentrated in vacuo. The 

crude material was purified by column chromatography (9:1 hexane:EtOAc with 3% Et3N as a 

basic additive) to afford the title compound 275c as an orange oil (109 mg, 68%); Rf 0.49 (9:1 

hexane:EtOAc); νmax (thin film)/cm-1 2955, 2929, 2857, 2067, 1648, 1509, 1497, 1252, 1204, 

912, 838, 780, 1176, 1034, 821, 753; δH (400 MHz, CDCl3) 0.19 (6 H, s, H-3), 0.98 (9 H, s, 

H-1), 2.86 (2 H, t, J = 7.5 Hz, H-8/9), 2.97 (2 H, t, J = 7.5 Hz, H-8/9), 6.76 (2 H, d, J = 8.0 

Hz, H-5/6), 7.06 (2 H, d, J = 8.0 Hz, H-5/6), 7.24–7.29 (1 H, m, H-15), 7.41 (2 H, dd, J = 8.0, 

7.5 Hz, H-14), 7.46 (2 H, d, J = 8.0 Hz, H-13); δC (100 MHz, CDCl3) −4.5 (C-3), 18.2 (C-2), 

25.7 (C-1), 30.1 (C-8/9), 41.0 (C-8/9), 72.4 (C-11), 120.1 (C-5/6), 124.1 (C-7/12), 126.1 (C-

13), 127.1 (C-15), 129.0 (C-14), 129.3 (C-5/6), 133.2 (C-7/12), 154.1 (C-4), 192.1 (C-10); 

HRMS (ESI+): Found: 403.1816; C22H28N2NaO2Si (MNa+) Requires 403.1812 (−0.9 ppm 

error). 

Lab notebook reference: akc08-22 

 

1-Diazo-4-(4-hydroxyphenyl)-1-phenylbutan-2-one (275b) 

 

To a solution of α-diazocarbonyl 275c (785 mg, 2.06 mmol) in THF (4 mL) at 0 °C was added 

TBAF (3.09 mL, 3.09 mmol, 1 M solution in THF). The resulting solution was warmed to RT 

and stirred for 30 min. The reaction mixture was then diluted with Et2O (10 mL) and washed 

with water (10 mL). The organic layer was dried over MgSO4 and concentrated in vacuo to 

afford the title compound 275b without further purification as a yellow solid (509 mg, 93%); 
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mp 77–79 °C; Rf 0.63 (6:4 hexane:EtOAc); νmax (thin film)/cm-1 3361, 2077, 1612, 1515, 

1497, 1448, 1370, 1205, 830, 756; δH (400 MHz, CDCl3) 2.86 (2 H, t, J = 7.5 Hz, H-6/7), 2.97 

(2 H, t, J = 7.5 Hz, H-6/7), 4.70 (1 H, br s, H-1), 6.76 (2 H, d, J = 8.5 Hz, H-3/4), 7.08 (2 H, d, 

J = 8.5 Hz, H-3/4), 7.24–7.29 (1 H, m, H-13), 7.41 (2 H, dd, J = 8.0, 7.5 Hz, H-12), 7.47 (2 H, 

d, J = 7.5 Hz, H-11); δC (100 MHz, CDCl3) 30.0 (C-6/7), 41.1 (C-6/7), 72.6 (C-9), 115.4 (C-

3/4), 125.4 (C-5/10), 126.2 (C-11/12), 127.2 (C-13), 129.0 (C-11/12), 129.5 (C-3/4), 132.5 

(C-5/10), 154.2 (C-2), 192.4 (C-8); HRMS (ESI+): Found: 289.0951; C16H14N2NaO2 (MNa+) 

Requires 289.0947 (−1.3 ppm error). 

Lab notebook reference: akc08-33 

 

5-Methoxy-3a-phenyl-3a,3b-dihydro-1H-cyclopenta[1,3]cyclopropa[1,2]benzen-3(2H)-

one (279a) 

 

A flame-dried rbf was charged with α-diazocarbonyl 275a (100 mg, 0.357 mmol) and Ag2O 

(1.7 mg, 7.13 µmol) and purged with argon for 10 min. Anhydrous CH2Cl2 (3.6 mL) was 

degassed with argon for 20 min before adding to the diazo/catalyst mixture. The reaction 

mixture was then stirred at RT for 22.5 h before being concentrated in vacuo to afford the 

crude product. The crude material was purified by column chromatography (9:1 

hexane:EtOAc) to afford the title compound 279a as a pale yellow oil (74.5 mg, 83%); Rf 0.33 

(9:1 hexane:EtOAc); νmax (thin film)/cm-1 3028, 2934, 2829, 1745, 1715, 1647, 1489, 1446, 

1416, 1219, 1167, 1109, 1020, 816, 756; δH (400 MHz, CDCl3) 2.33–2.45 (1 H, m, H-8a/9a), 

2.55–2.67 (1 H, m, H-8b/9b), 2.72–2.82 (1 H, m, H-8a/9a), 2.83–2.95 (1 H, m, H-8b/9b), 3.41 

(3 H, s, H-1), 5.07 (1 H, br d, J = 8.5 Hz, H-4), 5.60 (1 H, d, J = 8.0 Hz, H-5/6), 5.87 (1 H, d, 

J = 8.5 Hz, H-3), 6.38 (1 H, d, J = 8.0 Hz, H-5/6), 7.14–7.24 (5 H, m, Ar-H); δC (100 MHz, 

CDCl3) 27.4 (C-8/9), 34.8 (C-8/9), 54.6 (C-1), 109.1 (C-5/6), 115.5 (C-3), 123.3 (C-5/6), 

126.9 (C-13/14), 127.7 (C-13/14,C-4/15), 128.5 (C-4/15,C-7/11), 136.6 (C-11/12), 157.2 (C-

2), 215.7 (C-10); HRMS (ESI+): Found: 275.1040; C17H16NaO2 (MNa+) Requires 275.1043 

(−0.9 ppm error), Found: 253.1222; C17H17O2 (MH+) Requires 253.1223 (−0.4 ppm error). 

Lab notebook reference: akc08-26 

Note: Missing 1 x C peak (C-7/11) due to Buchner ring expansion equilibrium.179 
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7-Methoxy-1-phenyl-3,4-dihydronaphthalen-2(1H)-one (280a) 

 

A flame-dried rbf was charged with α-diazocarbonyl 275a (100 mg, 0.357 mmol) and AgOTf 

(9.2 mg, 35.7 µmol) and purged with argon for 10 min. Anhydrous CH2Cl2 (3.6 mL) was 

degassed with argon for 20 min before adding to the diazo/catalyst mixture. The reaction 

mixture was then stirred at RT for 16 h before being concentrated in vacuo to afford the crude 

product. The crude material was purified by column chromatography (9:1 hexane:EtOAc) to 

afford the title compound 280a as a yellow oil (71.1 mg, 79%); Rf 0.38 (9:1 hexane:EtOAc); 

νmax (thin film)/cm-1 2940, 2844, 1714, 1611, 1502, 1450, 1260, 1156, 1037, 729; δH (400 

MHz, CDCl3) 2.52–2.61 (1 H, m, H-9a), 2.72 (1 H, ddd, J = 17.0, 6.5, 6.0 Hz, H-9b), 2.93–

3.11 (2 H, m, H-8a,8b), 3.75 (3 H, s, H-1), 4.72 (1 H, s, H-11), 6.56 (1 H, d, J = 2.5 Hz, H-3), 

6.84 (1 H, dd, J = 8.0, 2.5 Hz, H-5), 7.12 (2 H, d, J = 7.5 Hz, H-13), 7.21 (1 H, d, J = 8.0 Hz, 

H-6), 7.24–7.34 (3 H, m, H-14,15); δC (100 MHz, CDCl3) 27.2 (C-8), 37.2 (C-9), 55.2 (C-1), 

59.9 (C-11), 113.0 (C-5), 114.6 (C-3), 127.2 (C-15), 128.56 (C-13/14), 128.64 (C-13/14), 

128.8 (C-6), 129.0 (C-4/7/12), 137.3 (C-4/7/12), 137.6 (C-4/7/12), 158.7 (C-2), 209.6 (C-10); 

HRMS (ESI+): Found: 275.1044; C17H16NaO2 (MNa+) Requires 275.1043 (0.4 ppm error), 

Found: 253.1232; C17H17O2 (MH+) Requires 253.1223 (3.4 ppm error). 

Lab notebook reference: akc08-32 

 

(3bR,4R,7R,7aR)-Dimethyl 8-methoxy-3-oxo-3a-phenyl-2,3,3a,3b,4,7-hexahydro-1H-4,7-

ethenocyclopenta[1,3]cyclopropa[1,2]benzene-5,6-dicarboxylate (285a) 

 

A rbf was charged with cyclopropane 279a (65 mg, 0.258 mmol) in toluene (0.5 mL) under 

argon. Dimethyl acetylenedicarboxylate (63 µL, 0.515 mmol) was added and the reaction 
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mixture was stirred at 80 °C for 24 h. The reaction mixture was then cooled to RT and 

concentrated in vacuo to afford the crude product. The crude material was purified by column 

chromatography (7:3 hexane:EtOAc) to afford the title compound 285a as a clear and 

colourless oil (83.4 mg, 82%); Rf 0.21 (7:3 hexane:EtOAc); νmax (thin film)/cm-1 2952, 1713, 

1653, 1626, 1435, 1265, 1211, 1111, 1058, 1007, 915, 728; δH (400 MHz, CDCl3) 1.83 (1 H, 

d, J = 4.0 Hz, H-17), 2.17–2.31 (2 H, m, H-9/10), 2.36–2.49 (5 H, m, H-9/10,14), 3.80 (3 H, s, 

H-21/23), 3.85 (3 H, s, H-21/23), 4.09–4.13 (2 H, m, H-12,16), 4.33 (1 H, dd, J = 7.0, 3.0 Hz, 

H-13), 6.89–6.93 (1 H, m, Ar-H), 7.12 (1 H, d, J = 7.5 Hz, Ar-H), 7.15–7.23 (2 H, m, Ar-H), 

7.29–7.34 (1 H, m, Ar-H); δC (100 MHz, CDCl3) 27.1 (C-9/10), 33.6 (C-17), 35.4 (C-9/10), 

44.0 (C-12/16), 44.7 (C-12/16), 52.3 (C-21/23), 52.4 (C-21/23), 52.8 (C-11), 54.6 (C-14), 60.2 

(C-7), 99.1 (C-13), 126.5 (CH), 127.3 (CH), 128.1 (CH), 130.1 (CH), 130.5 (CH), 133.7 (C-

6), 144.0 (C-15/18/19), 152.9 (C-15/18/19), 160.6 (C-15/18/19), 165.0 (C-20/22), 167.2 (C-

20/22), 211.8 (C-8); HRMS (ESI+): Found: 417.1316; C23H22NaO6 (MNa+) Requires 417.1309 

(−1.8 ppm error), Found: 395.1485; C23H23O6 (MH+) Requires 395.1489 (1.0 ppm error). 

Lab notebook reference: akc08-82 

 

4-(4-Methoxyphenyl)-1-phenylbutane-1,2-dione (281a) 

 

Procedure based on: Toste et al., J. Am. Chem. Soc., 2007, 129, 5838–5839.181 

A heterogeneous solution of Au(PPh3)3Cl (2.65 mg, 5.35 µmol) and AgSbF6 (1.84 mg, 5.35 

µmol) in CH2Cl2 (0.5 mL) was stirred for 5 min under air and cooled to 0 °C. A solution of α-

diazocarbonyl 275a (30 mg, 0.107 mmol) and diphenyl sulfoxide (86.6 g, 0.428 mmol) in 

CH2Cl2 (0.5 mL) was then added to the catalyst mixture at 0 °C, the vial containing diazo 

solution was rinsed with CH2Cl2 (0.2 mL). The reaction mixture was stirred under air at 0 °C 

for 2 h. The reaction mixture was then concentrated in vacuo to afford the crude product. The 

crude material was purified by column chromatography (9:1 hexane:EtOAc) to afford the title 

compound 281a as a yellow oil (25.9 mg, 90%); Rf 0.32 (9:1 hexane:EtOAc); νmax (thin 

film)/cm-1 2934, 2836, 1711, 1670, 1596, 1449, 1245, 1177, 1033, 825, 689; δH (400 MHz, 

CDCl3) 3.00 (2 H, t, J = 7.5 Hz, H-6/7), 3.21 (2 H, t, J = 7.5 Hz, H-6/7), 3.79 (3 H, s, H-1), 

6.83 (2 H, d, J = 8.5 Hz, H-3/4), 7.15 (2 H, d, J = 8.5 Hz, H-3/4), 7.48 (2 H, dd, J = 7.5, 7.5 

Hz, H-12), 7.64 (1 H, t, J = 7.5 Hz, H-13), 7.91 (2 H, d, J = 7.5 Hz, H-14); δC (100 MHz, 
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CDCl3) 28.0 (C-6/7), 40.4 (C-6/7), 55.2 (C-1), 113.9 (C-3/4), 128.7 (C-3/4/12), 129.4 (C-

3/4/12), 130.2 (C-11), 131.8 (C-5/10), 132.1 (C-5/10), 134.6 (C-13), 158.1 (C-2), 192.1 (C-

8/9), 202.4 (C-8/9); HRMS (ESI+): Found: 291.0990; C17H16NaO3 (MNa+) Requires 291.0992 

(0.5 ppm error). 

Lab notebook reference: akc08-69 

 

1-Phenylspiro[4.5]deca-6,9-diene-2,8-dione (287) 

 

Method 1: A flame-dried rbf was charged with α-diazocarbonyl 275b (38 mg, 0.143 mmol) 

and Cu(OTf)2 (2.6 mg, 7.14 µmol) and purged with argon for 10 min. Anhydrous CH2Cl2 (1.4 

mL) was degassed with argon for 20 min before adding to the diazo/catalyst mixture. The 

reaction mixture was then stirred at RT for 3 h before being concentrated in vacuo to afford 

the crude product. The crude material was purified by column chromatography (1:1 

hexane:EtOAc) to afford the title compound 287 as a white solid (23.4 mg, 70%) 

Lab notebook reference: akc08-41-2 

 

Method 2: To a solution of cyclopropane 279c (36.8 mg, 0104 mmol) in THF (0.6 mL) at −78 

°C was added TBAF (0.16 mL, 0.156 mmol, 1 M solution in THF) dropwise to afford an 

orange solution. The resulting solution was stirred at −78 °C for 3 h. The reaction mixture was 

then quenched with water (10 mL) and extracted with EtOAc (3 x 10 mL). The organics were 

combined, dried over MgSO4 and concentrated in vacuo to afford the crude product. The 

crude material was purified by column chromatography (7:3 hexane:EtOAc, then 1:1 

hexane:EtOAc) to afford the title compound 287 as a white solid (16.6 mg, 67%) 

Lab notebook reference: akc08-76 
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mp 135–137 °C; Rf 0.21 (6:4 hexane:EtOAc); νmax (thin film)/cm-1 3035, 1746, 1663, 1622, 

1499, 1135, 868, 700; δH (400 MHz, CDCl3) 2.17 (1 H, ddd, J = 13.5, 8.5, 2.5 Hz, H-7a/8a), 

2.32–2.42 (1 H, m, H-7b/8b), 2.64–2.84 (2 H, m, H-7/8), 3.75 (1 H, s, H-10), 6.14 (1 H, dd, J 

= 10.0, 2.0 Hz, H-2/3/4/5), 6.32 (1 H, dd, J = 10.0, 2.0 Hz, H-2/3/4/5), 6.86 (1 H, dd, J = 10.0, 

3.0 Hz, H-2/3/4/5), 6.93–6.97 (2 H, m, Ar-H), 7.00 (1 H, dd, J = 10.0, 3.0 Hz, H-2/3/4/5), 

7.21–7.29 (3 H, m, Ar-H); δC (100 MHz, CDCl3) 31.4 (C-7/8), 35.3 (C-7/8), 51.4 (C-6), 65.5 

(C-10), 127.9 (C-14), 128.3 (C-12/13), 129.4 (C-12/13), 130.1 (C-2/3/4/5), 130.5 (C-2/3/4/5), 

132.5 (C-11), 147.5 (C-2/3/4/5), 152.4 (C-2/3/4/5), 185.3 (C-1), 213.1 (C-9); HRMS (ESI+): 

Found: 261.0875; C16H14NaO2 (MNa+) Requires 261.0886 (−4.2 ppm error), Found: 

239.1057; C16H15O2 (MH+) Requires 239.1067 (−4.1 ppm error). 
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5-((tert-Butyldimethylsilyl)oxy)-3a-phenyl-3a,3b-dihydro-1H-

cyclopenta[1,3]cyclopropa[1,2]benzen-3(2H)-one (279c) 

 

A flame-dried rbf was charged with α-diazocarbonyl 275c (150 mg, 0.394 mmol) and Ag2O 

(4.57 mg, 19.7 µmol) and purged with argon for 10 min. Anhydrous CH2Cl2 (3.9 mL) was 

degassed with argon for 20 min before adding to the diazo/catalyst mixture. The reaction 

mixture was then stirred at RT for 16 h before being concentrated in vacuo to afford the crude 

product. The crude material was purified by column chromatography (10:1 hexane:EtOAc) to 

afford the title compound 279c as a yellow oil (110 mg, 79%); Rf 0.42 (9:1 hexane:EtOAc); 

νmax (thin film)/cm-1 2955, 2929, 2857, 1747, 1622, 1407, 1252, 1202, 1183, 1110, 900, 873, 

837, 781, 749; δH (400 MHz, CDCl3) −0.36 (3 H, s, H-3/4), −0.27 (3 H, s, H-3/4), 0.77 (9 H, s, 

H-1), 2.38 (1 H, ddd, J = 18.0, 9.0, 6.5 Hz, H-11a/12a), 2.64 (1 H, ddd, J = 18.0, 11.0, 7.0 Hz, 

H-11b/12b), 2.80–3.03 (2 H, m, H-11/12), 5.41 (1 H, d, J = 9.5 Hz, H-7), 5.76 (1 H, d, J = 7.5 

Hz, H-8/9), 5.98 (1 H, d, J = 9.5 Hz, H-6), 6.41 (1 H, d, J = 7.5 Hz, H-8/9), 7.11–7.21 (3 H, 

m, Ar-H), 7.21–7.26 (2 H, m, Ar-H); δC (100 MHz, CDCl3) −5.4 (C-3/4), −5.1 (C-3/4), 17.8 

(C-2), 25.4 (C-1), 27.3 (C-11/12), 35.3 (C-11/12), 56.9 (C-10/14), 114.0 (C-7), 116.1 (C-8/9), 

122.4 (C-8/9), 123.8 (C-6), 127.1 (C-8), 127.74 (C-16/17), 127.79 (C-16/17), 137.4 (C-15), 

153.2 (C-5), 216.0 (C-13); HRMS (ESI+): Found: 353.1939; C22H29O2Si (MH+) Requires 

353.1931 (−2.1 ppm error).  

Lab notebook reference: akc08-70 

Note: Missing 1 x C peak (C-10/14) due to Buchner ring expansion equilibrium.179 
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7-Hydroxy-1-phenyl-3,4-dihydronaphthalen-2(1H)-one (280b) 

 

A flame-dried rbf was charged with α-diazocarbonyl 275c (150 mg, 0.394 mmol) and AgOTf 

(10.1 mg, 39.4 µmol) and purged with argon for 10 min. Anhydrous CH2Cl2 (3.9 mL) was 

degassed with argon for 20 min before adding to the diazo/catalyst mixture. The reaction 

mixture was then stirred at RT for 16 h before being concentrated in vacuo to afford the crude 

product. The crude material was purified by column chromatography (7:3 hexane:EtOAc) to 

afford the title compound 280b as an orange oil (80.9 mg, 86%); Rf 0.38 (7:3 hexane:EtOAc); 

νmax (thin film)/cm-1 3372, 3027, 1704, 1612, 1587, 1493, 1450, 1342, 1297, 1232, 1153, 821; 

δH (400 MHz, CDCl3) 2.57 (1 H, ddd, J = 17.0, 6.5, 6.5 Hz, H-8a/9a), 2.70 (1 H, ddd, J = 17.0, 

6.5, 6.5 Hz, H-8b/9b), 2.91–3.09 (2 H, m, H-8/9), 4.66 (1 H, s, H-11), 5.63 (1 H, br s, H-1), 

6.46 (1 H, d, J = 2.5 Hz, H-3), 6.76 (1 H, dd, J = 8.0, 2.5 Hz, H-5), 7.10 (2 H, d, J = 7.0 Hz, 

H-13), 7.14 (1 H, d, J = 8.0 Hz, H-6), 7.25–7.33 (3 H, m, H-14,15); δC (100 MHz, CDCl3) 

27.3 (C-8/9), 37.3 (C-8/9), 59.7 (C-11), 114.5 (C-5), 116.0 (C-3), 127.3 (C-15), 128.69 (C-

13/14), 128.71 (C-13/14), 128.8 (C-4/7/12), 129.1 (C-6), 137.2 (C-4/7/12), 137.7 (C-4/7/12), 

154.9 (C-2), 210.5 (C-10); HRMS (ESI+): Found: 261.0885; C16H14NaO2 (MNa+) Requires 

261.0886 (0.2 ppm error). 

Lab notebook reference: akc08-65 

 

4-(4-((tert-Butyldimethylsilyl)oxy)phenyl)-1-phenylbutane-1,2-dione (281c) 

 

Procedure based on: Toste et al., J. Am. Chem. Soc., 2007, 129, 5838–5839.181 

A heterogeneous solution of Au(PPh3)3Cl (32.5 mg, 65.7 µmol) and AgSbF6 (22.5 mg, 65.7 

µmol) in CH2Cl2 (6 mL) was stirred for 5 min under air and cooled to 0 °C. A solution of α-

diazocarbonyl 275c (500 mg, 1.31 mmol) and diphenyl sulfoxide (1.06 g, 5.24 mol) in CH2Cl2 
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(6 mL) was then added to the catalyst mixture at 0 °C and the reaction mixture was stirred 

under air for 1.5 h. The reaction mixture was then concentrated in vacuo to afford the crude 

product. The crude material was purified by column chromatography (20:1 hexane:EtOAc) to 

afford the title compound 281c as a yellow oil (294 mg, 61%); Rf 0.70 (9:1 hexane:EtOAc); 

νmax (thin film)/cm-1 2955, 2930, 2858, 1713, 1672, 1509, 1253, 912, 838, 781; δH (400 MHz, 

CDCl3) 0.18 (6 H, s, H-3), 0.98 (9 H, s, H-1), 2.98 (2 H, t, J = 7.5 Hz, H-8), 3.21 (2 H, t, J = 

7.5 Hz, H-9), 6.76 (2 H, d, J = 8.0 Hz, H-5), 7.08 (2 H, d, J = 8.0 Hz, H-6), 7.48 (2 H, dd, J = 

7.5, 7.5 Hz, H-14), 7.64 (1 H, t, J = 7.5 Hz, H-15), 7.91 (2 H, d, J = 7.5 Hz, H-13); δC (100 

MHz, CDCl3) −4.5 (C-3), 18.2 (C-2), 25.7 (C-1), 28.1 (C-8), 40.4 (C-9), 120.1 (C-5), 128.8 

(C-14), 129.3 (C-6), 130.2 (C-13), 131.8 (C-7/12), 132.7 (C-7/12), 134.6 (C-15), 154.1 (C-4), 

192.1 (C-11), 202.5 (C-10); HRMS (ESI+): Found: 391.1705; C22H28NaO3Si (MNa+) Requires 

391.1700 (−1.2 ppm error). 

Lab notebook reference: akc08-75 

 

(3bR,4S,7R,7aR)-Dimethyl 9-((tert-butyldimethylsilyl)oxy)-3-oxo-3a-phenyl-

2,3,3a,3b,4,7-hexahydro-1H-4,7-ethenocyclopenta[1,3]cyclopropa[1,2]benzene-5,6-

dicarboxylate (285c) 

 

A rbf was charged with cyclopropane 279c (191 mg, 0.541 mmol) in toluene (1.1 mL) under 

argon. Dimethyl acetylenedicarboxylate (0.13 mL, 1.08 mmol) was added and the reaction 

mixture was stirred at 80 °C for 30 h. The reaction mixture was then cooled to RT and 

concentrated in vacuo to afford the crude product. The crude material was purified by column 

chromatography (20:1 hexane:EtOAc, then 1:1 hexane:EtOAc) to afford the title compound 

285c as a clear and colourless oil (220 mg, 82%); Rf 0.58 (6:4 hexane:EtOAc); νmax (thin 

film)/cm-1 2953, 2858, 1714, 1651, 1625, 1435, 1342, 1303, 1256, 1225, 1204, 1110, 1061, 

913, 864, 839, 785; δH (400 MHz, CDCl3) −0.32 (3 H, s, H-15/16), −0.19 (3 H, s, H-15/16), 

0.75 (9 H, s, H-18), 1.80 (1 H, d, J = 4.0 Hz, H-20), 2.13–2.33 (2 H, m, H-9/10), 2.34–2.49 (2 

H, m, H-9/10), 3.81 (3 H, s, H-24/26), 3.83 (3 H, s, H-24/26), 3.91–3.95 (1 H, m, H-19), 4.07 

(1 H, d, J = 6.5 Hz, H-12), 4.49 (1 H, dd, J = 6.5, 3.0 Hz, H-13), 6.82 (1 H, d, J = 7.5 Hz, Ar-
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H), 7.11–7.22 (3 H, m, Ar-H), 7.24–7.29 (1 H, m, Ar-H); δC (100 MHz, CDCl3) −5.4 (C-

15/16), −4.7 (C-15/16), 17.9 (C-17), 25.4 (C-18), 27.2 (C-9/10), 34.0 (C-20), 35.4 (C-9/10), 

44.7 (C-12), 47.0 (C-19), 52.3 (C-24/26), 52.4 (C-24/26), 52.9 (C-11), 60.4 (C-7), 106.9 (C-

13), 126.5 (CH), 127.5 (CH), 128.2 (CH), 130.0 (CH), 130.6 (CH), 133.8 (C-6), 146.1 (C-

14/21/22), 151.0 (C-14/21/22), 156.7 (C-14/21/22), 165.7 (C-23/25), 166.8 (C-23/25), 212.2 

(C-8); HRMS (ESI+): Found: 517.2017; C28H34NaO6Si (MNa+) Requires 517.2017 (−0.1 ppm 

error), Found: 495.2195; C28H35O6Si (MH+) Requires 495.2197 (0.5 ppm error). 

Lab notebook reference: akc08-94 

 

(3bR,4S,7R,7aR)-Dimethyl 9-hydroxy-3-oxo-3a-phenyl-2,3,3a,3b,4,7-hexahydro-1H-4,7-

ethenocyclopenta[1,3]cyclopropa[1,2]benzene-5,6-dicarboxylate (285b) 

 

A rbf was charged with TBS-protected alcohol 285c (35 mg, 0.0708 mmol) in THF (0.5 mL) 

at −78 °C and TBAF (0.11 mL, 0.106 mmol, 1 M solution in THF) was added dropwise 

leading to the formation of a pale yellow milky solution. The reaction mixture was then stirred 

at −78 °C for 3 h. The reaction mixture was then quenched by the addition of water (2 mL) at 

−78 °C and extracted with EtOAc (3 x 5 mL). The organics were combined, dried over 

MgSO4 and concentrated in vacuo to afford the crude product. The crude material was 

purified by column chromatography (9:1 hexane:EtOAc, then 1:1 hexane:EtOAc) to afford the 

title compound 285b as a clear and colourless oil (23 mg, 85%); Rf 0.66 (1:1 hexane:EtOAc); 

νmax (thin film)/cm-1 2953, 1718, 1626, 1435, 1333, 1270, 1218, 1115, 1064, 729, 718; δH (400 

MHz, CDCl3) 1.82 (1 H, dd, J = 19.0, 3.0 Hz, H-13a), 2.06–2.14 (2 H, m, H-13b,15), 2.24–

2.36 (2 H, m, H-9/10), 2.36–2.49 (2 H, m, H-9/10), 3.72–3.75 (1 H, m, H-12), 3.82 (3 H, s, H-

20/22), 3.87 (3 H, s, H-20/22), 4.16 (1 H, d, J = 4.0 Hz, H-16), 7.09 (1 H, dd, J = 6.0, 2.0 Hz, 

Ar-H), 7.22–7.37 (4 H, m, Ar-H); δC (100 MHz, CDCl3) 27.5 (C-9/10), 33.1 (C-9/10), 34.1 

(C-15), 37.2 (C-13), 41.0 (C-12), 47.6 (C-11), 51.8 (C-16), 52.7 (C-20/22), 52.8 (C-20/22), 

57.7 (C-7), 128.3 (CH), 128.7 (CH), 128.8 (CH), 131.2 (C-6), 131.3 (CH), 132.5 (CH), 136.9 

(C-17/18), 150.5 (C-17/18), 164.0 (C-19/21), 166.4 (C-19/21), 204.8 (C-14), 211.1 (C-8); 
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HRMS (ESI+): Found: 403.1158; C22H20NaO6 (MNa+) Requires 403.1152 (−1.5 ppm error), 

Found: 381.1335; C22H21O6 (MH+) Requires 381.1333 (−0.5 ppm error). 

Lab notebook reference: akc08-92 

 

4-(4-Hydroxyphenyl)-1-phenylbutane-1,2-dione (281b) 

 

A flame-dried round-bottomed flask was charged with 1,2-dicarbonyl 281c (118 mg, 0.320 

mmol) in anhydrous CH2Cl2 (3.2 ml) under argon. The solution was cooled to 0 °C and 

BF3·Et2O (0.4 ml, 3.20 mmol) was added dropwise. The resulting solution was stirred at 0 °C 

for 1 h before warming to RT and stirring for another 4.5 h. The reaction mixture was then 

quenched by the addition of water (10 ml) and extracted with CH2Cl2 (3 x 10 ml). The 

organics were combined, dried over MgSO4 and concentrated in vacuo. The crude material 

was purififed by column chromatography (8:2 hexane:EtOAc) to afford the title compound 

281b as a yellow oil (17.1 mg, 21%); 

Rf 0.27 (8:2 hexane:EtOAc); νmax (thin film)/cm-1 3416, 3027, 2932, 1712, 1669, 1596, 1515, 

1449, 1254; δH (400 MHz, CDCl3) 2.98 (2 H, t, J = 7.5 Hz, H-6/7), 3.20 (2 H, t, J = 7.5 Hz, H-

6/7), 4.90 (1 H, br s, H-1), 6.76 (2 H, d, J = 8.0 Hz, H-3/4), 7.10 (2 H, d, J = 8.0 Hz, H-3/4), 

7.48 (2 H, dd, J = 8.0, 7.5 Hz, H-12), 7.64 (1 H, t, J = 7.5 Hz, H-13), 7.91 (2 H, d, J = 7.5 Hz, 

H-11); δC (100 MHz, CDCl3) 28.0 (C-6/7), 40.4 (C-6/7), 115.3 (C-3/4), 128.8 (C-12), 129.6 

(C-3/4), 130.2 (C-11), 131.8 (C-5/10), 132.3 (C-5/10), 134.6 (C-13), 154.0 (C-2), 192.1 (C-9), 

202.5 (C-8); HRMS (ESI+): Found: 277.0837; C16H14NaO3 (MNa+) Requires 277.0835 (0.6 

ppm error). 

Lab notebook reference: akc08-85 
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Appendicies 

Appendix I. Silica-Supported Silver Nitrate as a Highly Active Dearomatizing 

Spirocyclization Catalyst: Synergistic Alkyne Activation by Silver Nanoparticles and 

Silica 
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Appendix II. Dearomatisation Approaches to Spirocyclic Dienones via the 

Electrophilic Activation of Alkynes 
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Appendix III. Divergent Reactivity of Phenol- and Anisole-Tethered Donor-

Acceptor α-Diazoketones 
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Appendix IV. Catalyst-Driven Scaffold Diversity: Selective Synthesis of Spirocycles, 

Carbazoles and Quinolines from Indolyl Ynones 
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Appendix V. Preparation and Reactions of Indoleninyl Halides: Scaffolds for the 

Synthesis of Spirocyclic Indole Derivatives 
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Abbreviations 

Ac  acetyl 

acac  acetylacetonate 

AgNPs  silver nanoparticles 

app.  apparent 

aq.  aqueous 

Ar  aryl 

BINOL  1,1’-bi-2-naphthol 

Bn  benzyl 

Boc  tert-butoxycarbonyl 

br  broad 

Bu  butyl 

CADA  catalytic asymmetric dearomatisation 

CCDC  Cambridge crystallographic data centre 

CDI  1,1’-carbonyldiimidazole 

COSY  correlation spectroscopy 

CSP-HPLC chiral stationary phase high-performance liquid chromatography 

δ  chemical shift 

d  doublet 

DABCO 1,4-diazabicyclo[2.2.2]octane 

DBU  1,8-diazabicyclo[5.4.0]undec-7-ene 

DCE  1,2-dichloroethane 

DEPT  distortionless enhancement by polarisation transfer 

DIPA  diisopropylamine 

DIPEA  N,N-diisopropylethylamine 

DMAP  4-dimethylaminopyridine 

DMF  dimethylformamide 

dr  diastereomeric ratio 

EDA  ethyl diazoacetate 

EDG  electron donating group 

ee  enantiomeric excess 
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equiv.  equivalents 

ESI  electrospray ionisation 

Et  ethyl 

Et2O  diethyl ether 

EWG  electron withdrawing group 

h  hour(s) 

HMBC  heteronuclear multiple bond correlation 

HPLC  high performance liquid chromatography 

HRMS  high resolution mass spectrometry 

HSQC  heteronuclear single quantum coherence 

ICP-MS inductively coupled mass spectrometry 

IR  infrared 

LDA  lithium diispropylamide 

LIFDI  liquid injection field desorption ionisation 

m  multiplet 

M  molar 

Me  methyl 

min  minute(s) 

mp  melting point 

Ms  mesyl 

NBS  N-bromosuccinimide 

NEt3  triethylamine 

NMR   nuclear magnetic resonance 

nOe  nuclear Overhauser effect 

[O]  oxidation 

OAc  acetate 

oct  octanoate 

p-ABSA 4-acetamidobenzenesulfonyl azide 

Ph  phenyl 

ppm  parts per million 

Pr  propyl 
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q  quartet 

Rf  retention factor 

Rh2[oct]4 [Rh[CH3(CH2)6CO2]2]2 

RT  room temperature 

s  singlet 

sat.  saturated 

t  triplet 

TBME  tert-butyl methyl ether 

TBAF  tetrabutylammonium fluoride 

TBS  tert-butyldimethylsilyl 

TDMPP tris-(2,6-dimethoxyphenyl)phosphine 

TEM  transmission electron microscopy 

TFA  trifluoroacetic acid 

THF  tetrahydrofuran 

TIPS  triisopropylsilane 

TLC  thin layer chromatography 

T3P  propylphosphonic anhydride 

TPA  triphenylacetate 
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