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Abstract

Causal Bayesian Networks are a widely recognised tool for modelling the

uncertainty of a wide range of processes, particularly when the nature of how

different factors influence each other. The practice of utilising Causal Bayesian

Network is now becoming a growing trend for business that want to fully un-

derstand the demands imposed on them, and how best to adapt their business

in order to be successful. When designing and building a Causal Bayesian

Network, it is often necessary to consult with domain experts for information

about the shape of the model but also the definition of how the causal factors

influence others. The definition of these influences can require the specification

of a large volume of probability distributions, even if a lot of evidential data

is available for analysis. Whilst the definition of the structure of the model

can be a relatively simple task for a domain expert, providing the probability

distributions is a much more difficult task. In this thesis I discuss a method

whereby, given a model structure, a domain expert can provide simple descrip-

tive meta-data so that a hypothetical probability distribution can be generated

for the discrete model variables.
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1 Introduction

A business is composed of many moving parts, and the ability to model and track data

which flows between them or is generated by them is a significant task. Many businesses

simply do not have adequate knowledge in advanced modelling techniques to fundamen-

tally understand how their business works. This is partly due to only gathering data as

outputs of the mechanics of the business. For example, frequently measuring financial

data, or manufacturing rate data in isolation. Whilst this data can be gathered to a

greater or lesser degree of difficulty; it in itself does not help a business analyst to under-

stand the “why” of the data; that is, the reason or cause of a loss in revenue or a rise

in profit, for example. Some businesses invest large amounts of resources and time into

building complex models of key business areas, most prominently using a popular spread-

sheet application to perform the calculations; some businesses employ Data Scientists to

utilise numerous third party data analysis tools to interrogate data.

The trends of “Big Data”, “Business Intelligence” and “Business Analytics” tend to be

strictly focused on performing Business Process analysis and dimensioning of current and

past data to gain an awareness of what the current state of a business is. Invariably these

techniques involve some kind of Extract Transform and Load activity (ETL) to gather large

volumes of data from numerous sources; then transforming this data into a usable state,

and finally loading the data into a centralised repository for further analysis. Whilst these

well proven and commonly used techniques can provide vital information to a business in

understanding its current situation, they do not help an analyst to understand why the

process and figures are in their current state. This understanding allows a business to

identify key elements, which help model future operative performance.

As identified by industry business analyst Gartner Group, a gap in the market exists

which they have described as “Strategy To Execution” [1]. They describe this gap as not

only the ability to model business processes, but also the ability to go beyond this into

aligning changes to the model, and to measure the changes against business outcomes.

Gathering data is the critical starting point for a business to enable it to begin to

understand its business operations. However, this type of data is observational: it is

simply a measure of a process at a particular point in time. Whilst this data can be

cross referenced, dimensioned and aggregated to give interesting insight into a business;

it fundamentally fails to provide insight into how these processes interact, the causal

relationships that exist between them and how sensitive they are to change.

Businesses are changing and adapting all the time in response to both external and

internal pressures and opportunities, this process of change and adaptation is critical to a
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business’s success. Very rarely can a business simply remain static and hope to continue

to be successful. The ability to change and adapt must begin with an understanding of

the current situation, but also equally critical is having an understanding of how processes

work and their inter-dependencies.

Causal reasoning and the application of Causal Bayesian Networks within businesses,

particularly outside of academia or gaming industries, is a relatively rare practice, limited

only to research projects within these industries. However, the application of these models

can be extremely useful to a business to help them understand the workings of their

business operations in a more holistic manner. The employment of Bayesian Networks in

academic use is far reaching given the levels of research actively being undertaken to what

is still an emerging area. The gaming industry is a natural fit for this type of technology

due to the need to understand the player-base and respond accordingly with targeted

offers. Therefore, it is easy to see the opportunities to use Causal Bayesian Networks in

these industries, however the aim of this thesis is to highlight how these techniques can

be applied to everyday business issues, which more often than not only gathers output

or response data from sources such as customer feedback or equipment. In this sense the

business data is observational in that it does not necessarily help in explaining why the

gathered data is the value it is.

Should a business decide to use Causal Bayesian Networks, they can be faced with

numerous challenges in the identification and construction of the models, and the termi-

nology that is used. As many businesses simply do not gather the types and volumes

of data necessary to facilitate the generation of Causal Bayesian Networks from these

sources, it is highly likely that the use of domain expert knowledge is required. This,

however, presents a problem when taking into account the demands and complexities in-

volved in quantifying the model with what can be large amounts of probability numbers.

Assessing the level of uncertainty for how key components of a modelled process in the

form of a probability range by a domain expert or experts, can be extremely prone to

errors and biases. This necessary activity in the modelling of a business’s processes needs

to be rationalised and disambiguated, in order to assist the domain experts to specify

pragmatic baseline uncertainty assessments.
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2 Aim of the thesis

In this thesis, I investigate the application of Causal Bayesian Networks and Constraint

Satisfaction Problems to provide insight into business decisions and the generation of

probability distributions respectively. The application of these technologies allows a deeper

understanding of a business’s key components and concepts and also what factors are

driving them. The existing business data landscape is composed of a graph structure

of inter-connected key business concepts; the relationships between these concepts are

expressed as associative, that is, one concept has an association relationship with other

business concepts. The addition of AI technologies into this data model, allows for a

business analyst to add further business concepts to the model. These can comprise of

outside factors, behavioural factors or key influencing factors for which the business has

no associated data recorded.

Once a Causal Bayesian Network has been introduced into a business’s data landscape,

key variables of the causal model can be evidenced to any observational data that is rel-

evant within the business data model. In the case study, the causal model is constructed

around the generalised behaviour of a fictitious bank with respect to mortgage application

demands and customer satisfaction. To understand the cause and effect of various influ-

encing factors for specific branches, contextual observations for specific model factors can

be applied. For example, given the area of a specific bank branch, we can contextually

observe the unemployment rate for the area, and report on the model results.

For the design of these Causal Bayesian Networks, I feel that in the current state

of data gathering and analysis practices by most businesses, the dependence on domain

experts for the definition of the causal models variables, and their influence probability

values is still at the forefront. These domain experts are typically key personnel within

the business structure but are not necessarily data analysts and almost certainly not

statisticians; therefore, it is critical that the domain experts should be able to specify

these probabilities in a more natural way, such as using keywords which are based around

a more verbal expression. These verbal expressions, along with the model structure and

a relatively small amount of meta-data can then be used to generate constraints and

ultimately generate a hypothesis about the probabilistic influences of the variables in the

model.

To establish numerical values for a set of verbal expressions, it will involve an ex-

periment via the use of a targeted survey to a select group. The survey will be centred

around calibrating the numerical value of a specific set of probabilistic words; in which a

scenario describing an example of the degree of the word is specified, and the group must
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indicate a numerical estimate of its magnitude given this situation. It is my hope that

a range of descriptive words or phrases will emerge that a subject matter expert might

use as an alternative to specifying a potentially large volume of numerical values during

the construction of a Causal Bayesian Network. Once these probability descriptive words

have been calibrated, a Domain Expert can use them to describe the degree to which a

set of model variables affects another. The aim of using these words is that the Domain

Expert has only to specify a minimal amount of meta-data so that a system of constraints

can be generated and subsequently a range of probability values can be generated from

these constraints using traditional Constraint Satisfaction Problem techniques.

To summarise, I propose the integration of key AI technologies into a single coherent

causal modelling platform, which can be applied to a business’s data landscape; this

results in a platform which can be utilised by business analysts and domain experts to

gain deeper insights into their businesses to effect change. Subsequently, I propose an

uncertainty elicitation method to quantify a Causal Bayesian Network with probability

values, via the use of natural language keywords and Constraint Satisfaction Problem

solving techniques.

2.1 Research Direction

The research is driven by the requirement to complete a conditional probability distri-

bution by a domain expert in the absence of data. Current available options are for the

domain expert to manually enter the probabilities, which can very easily result in an

intractable exercise given the size these distributions can be, due to the size growing ex-

ponentially with the number of parent variables. A basic option can simply be to restrict

the number of parents and their discrete states, however this kind of restriction would be

too inflexible.

An option could simply be to utilise qualitative Bayesian networks [2] for the task,

whereby the stochastic direction of the influences are captured. The domain experts are

required to specify qualitative signs, positive, negative, no change or ambiguous, for each

influence in the model. These influence signs are specified from statements such as “as

the costs increase, then the profits decrease”, which would indicate a negative signed

influence. For the domain experts being able encode their knowledge in this manner

requires significantly less effort than the quantitative method. However, considering these

qualitative indicators of influence direction, they do not allow for an indication of strength

and are modelled at a coarse level of detail, as such qualitative modelling can often lead

to uninformative results. For some domains this level of detail may be specific enough,

however in the domain of business decisions, more detail is required.
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Current available third party Bayesian network software, i.e., Hugin, BayesiaLab, have

options for the user to specify an expression that completes the distributions. These

expressions comprise a standard set of mathematical functions, comparison functions and

if-then-else type operators. These expressions would still need to be specified for each

value in the conditional probability distribution, and can have similar intractability as

manually specifying the values.

There is a well known method which can reduce the number of probabilities that

need to be manually specified in the Noisy-OR [3] model, which is a generalisation of the

logical OR. This method can compute the values required for the conditional probability

distribution from a set of distributions, elicited from the expert. The problem with this

model is the assumption that parents act independently on the child variable; also the

Noisy-OR method works best when the variables have binary states. In real world business

cases, the Bayesian networks being created, the parent variable will most likely not act

independently, and will mostly possess more complex states than binary.

Given these current options, and the fact that they fall short of a practical solution

in the real world, this research is focused on a method of generating the conditional

probability distribution given a simple set of configuration data by a domain expert.

Once this configuration is specified, a conditional probability distribution has a series of

constraints generated, each value will have one or more constraint generated. Then a

constraint solver will produce a candidate distribution for the domain expert to assess for

validity against their expectation.
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3 Outline of the thesis

The thesis is composed of two parts, which correspond to the two objectives mentioned

above. In the first part I describe the mechanics of the AI technologies that are used

in Causal Bayesian Networks, and conditional probability distribution value generation

using a constraint problem. Also explored are the heuristics and biases that can affect

probability assessments made by domain experts.

In the second part of the thesis, a case study is described which is centred on a ficti-

tious bank and its current problems with customer satisfaction and mortgage application

demands. The business problem is described, along with a proposed Causal Bayesian

Network and discrete model variables conditional probability values which have been gen-

erated.

In appendix A the survey analysis data and probability generation investigation anal-

ysis data is catalogued. The thesis is concluded with a summary of presented results and

some directions for further research areas.

All values detailed in this document are generated by Hugin in the case of the Bayesian

network, and Choco Solver [4] in the case of constraint solving. Source code and case

study data used in this thesis can be found on GitHub at https://github.com/mcb539/

CPTGen.
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Part I

4 Causal Bayesian Networks

4.1 Probability Theory

In a mathematical model such as a Bayesian Network , whose aim is to encode the influence

behaviour between connected variables, it is necessary to cast the results in the language

of uncertainty, in which we use probabilities.

Using a language of probabilities is a more common practice in everyday life than we

might recognise. How many times during the day do you hear or use phrases like ‘It’s

clouding over, I think it’s likely it will rain’. This is still a probabilistic statement even

though it isn’t stated more like ‘It’s clouding over, I think there is a 73% of rain’? it’s the

expression of uncertainty that is important.

When expressing a probability of events occurring, it’s based on the principle that

there is at least a basic understanding of the majority space in which the event can occur.

For example, returning to the above statement, we can assign a probabilistic description

to the event of it raining out of the total event space of available weather conditions.

Considering a smaller event such as the roll of a dice, then the space of possible outcomes

or outcome space can be expressed as being one value from the range of values 1 to 6.

This is a basic principle in Bayesian Network modelling, let Ω be the outcome space

for a standard dice roll, Ω = f1; 2; 3; 4; 5; 6g. Given this outcome space, there is a set of

measurable events S to which probabilities can be assigned. In the dice example, the event

f6g represent the event of the dice roll resulting in a 6, and event f2; 4; 6g represents the

event of an even numbered dice roll. Let x 2 S be a subset of Ω.

Definition 4.1. Event Space

An event space must satisfy the following three principles:

� It contains the empty event ;, and the trivial event Ω.

� It is closed under union. If x; y 2 S, then so is x [ y.

� It is closed under complementation. If x 2 S, then so is Ω� x
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Definition 4.2. Probability Distribution

A probability distribution P over (Ω; S) is a mapping from the events in S to real

values that satisfy the following three conditions [5]:

� P (x) � 0 for all x 2 S

� P (Ω) = 1

� If x; y 2 S and x \ y = 0, then P (x [ y) = P (x) + P (y).

Definition 4.3. Conditional Probability

A conditional probability describes the amount of certainty relating to a variable x

given what we know about the certainty of another given variable y. This is expressed as

P (xjy).

P is a joint probability distribution on a set of variables U , and X;Y � U . Any

combination of x for X, and y for Y , where P (y) > 0 the conditional probability of x

given y is expressed as:

P (xjy) = P (y\x)
P (y)

Definition 4.4. Chain Rule

With reference to the definition of Conditional Probability , it’s clear that P (x\ y) =

P (xjy)P (y), this is the fundamental expression of the chain rule. If x1; :::; xi represents a

sequence of events, then total distribution can be expressed as:

P (x1 \ ::: \ xi) = P (x1) � P (x2jx1) � ::: � P (xijx1 \ ::: \ xi�1)

The chain rule describes a method to determine the joint probability of a sequence of

events by the probability of the first event, then the probability of the second event given

what we know about the first event, and so on.

Definition 4.5. Bayes’ Rule

Bayes’ Rule describes a method of computing the inverse of a conditional probability

given a conditional probability; for example, given a conditional probability P (xjy), using

Bayes’ rule it is possible to determine the estimated probability of Y given the information

available from the conditional probability about x and the prior probability information

about x and y.

P (xjy) = P (yjx)�P (x)
P (y)

for all combinations of values x with P (y) > 0
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Definition 4.6. Random Variables

When discussing events as sets of outcomes, it is better to consider the attributes of the

outcome. For example, given a Person, then the person’s attributes could be height, weight

and age, and these could be used to reason about a person’s health. These attributes can

then have probabilities assigned to them, and then events can be considered such as age

> 60, height is 6 foot and weight is 18 stone. It is these attributes and their values for

different outcomes which are defined a random variables.

A random variable is defined by a function which associates to an outcome space Ω a

value. For example, a random variable gender is defined by a function fgender which maps

each person in Ω to their gender, M or F.

The values that can be assigned to random variables can be one of two types, either

discrete or continuous. That is, the value can be categorical or integer / real values

respectively. For this thesis random variables are either discrete or real-valued continuous,

and are denoted by uppercase letter X;Y; Z.

Definition 4.7. Marginal Distribution

Given a random variable X, the distribution by which the events could occur on

X is referred to as the marginal distribution over X, and is expressed as P (X). For

example, the marginal distribution over a random variable weather given the event space

of Ω = fsunny; raing, the marginal distribution could be P (weather = sunny) = 0:71

and P (weather = rain) = 0:29. Marginal distributions must adhere to the conditions

outlined in definition 4.1.

Definition 4.8. Joint Distribution

Often we will be required to ask a question which involves the values from several

random variables, for example given the random variables weather W and region R, we

might be interested in the event weather = sunny and region = north. The marginal

distribution of the random variable region is defined as P (region = north) = 0:70 and

P (region = south) = 0:30.

When an event contains several random variables the concept of a joint distribution

must be employed over the random variables. A joint distribution is a distribution which

assigns probabilities to a set of events with respect to the random variables.

The joint distribution must be consistent with the marginal distribution of the random

variables, given that P (x) =
P

y P (x; y). This is shown in table 1 assuming the set of

events is fregion;weatherg, by summing the columns of joint probabilities for sunny we

can arrive back at the marginal probability, and likewise for all other events. In this

example there are sixteen atomic outcomes given the two random variables.

17



weather

sunny rain

region
north 0.652 0.048 0.70

south 0.058 0.242 0.30

0.71 0.29 1.00

Table 1: Joint distribution example for P (weather; region)

Definition 4.9. Conditional Probability Distribution

Given a joint distribution we can alternatively express in a more natural way with

respect to the chain rule as detailed in definition 4.1. For example, given the joint dis-

tribution in table 1, the joint distribution can be expressed as P (W;R) = P (R)P (W jR).

Therefore it is more desirable to express the joint distribution by using each random vari-

able’s conditional probability distribution (CPD) values. Given this example the CPD of

region represent a prior distribution and weather is a conditional probability distribution

region

north south

0.70 0.30

Table 2: CPD for the region variable

weather

sunny rain

region
north 0.931 0.069

south 0.193 0.807

Table 3: CPD for the weather variable

Definition 4.10. Marginalisation

When we have a joint distribution on two variables X and Y , the marginal probability

is described as a subset of the joint distribution by summing over the other variables to

which the value is observed.

P is a joint probability distribution on a set of variables U , Y 2 U is a variable with

values yi; i = 1; :::; n; let X � U , then the marginal probability of X is

P (X) =
nX
i=1

P (X ^ Yi)

18



for all combinations of values x for X define a joint probability distribution on X.

Definition 4.11. Independence

Given a distribution P (XjY ), the variable X is dependent on changes in belief of Y .

However, given two random variables X and Y , if P (XjY ) = P (X), then the variables X

and Y are said to be independent; any changes in belief about Y has no effect upon the

belief of X. The notation for this independence is given as (X ? Y ).

A distribution P satisfies (X ? Y ) if and only if P (X \ Y ) = P (X)P (Y ) [5]

Proof. P (XjY ) = P (X\Y )
P (Y ) = P (X)P (Y )

P (Y ) = P (X)

Given this definition its clear that independence is symmetrical.

Definition 4.12. Conditional Independence

Conditional independence describes the notion that given information about an event,

it does not provide any other information about other events. Two events X and Y

are conditionally independent given a third event Z, if the both events X and Y are

conditionally independent given a third event Z.

(X ? Y jZ), if and only if P (X \ Y jZ) = P (XjZ)P (Y jZ) [5]

Events can become conditionally dependent given a third event, however it is highly

dependent on the nature of the third event.

For example, if two separate dice are rolled, these two events are independent from

each other; each dice roll does not influence the other dice roll. A third event of the sun

shining is also independent of the dice rolls. However, if the third event is the probability

that the sum of the dice rolls is even, then the two dice roll events become conditionally

dependent given the third event, as knowing the first dice roll value and the probability

of the third event infers belief about the second dice roll [6].
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4.2 Graphs

Throughout this document the techniques used are primarily based upon Causal Bayesian

Networks (see section 4.5 ), which in turn use graphs as their base construct.

4.2.1 Vertices and Edges

A graph structure G consists of a set of vertices and a set of edges, which can be either

directed, undirected or in some special circumstances bi-directed.

In this thesis a vertex is represented by V and a set of vertices � = fV1; :::; Vng. A pair

of vertices Vi and Vj can be connected by a directed edge, represented as Vi ! Vj , or as

an undirected edge, represented as Vi � Vj . Therefore the set of edges E in the graph is a

set of vertex pairs.

Furthermore, a variable is synonymous with a graph vertex. For the purposes of this

thesis, only directed graphs are considered. However, during the graph transformation

process of constructing a clique graph, it is necessary to describe the usage of undirected

edges.

When there is directed edge Vi ! Vj 2 E, we define Vi as the parent of Vj , and that Vj

is the child of Vi. In this thesis parents are represented as PaV , which denotes the parent

vertices of V . Child vertices are represented as ChV to denote the child vertices of X.

Directed graphs encode independence between the variables in the graph, therefore

building on the independence definitions in section 4.1, it will be necessary to describe the

usage of a bi-directed edge.

Definition 4.13. Directed Acyclic Graph

A directed acyclic graph is the primary graphical representation for a Bayesian Net-

work. If all edges in a graph are directed, indicated by a single arrowhead, and the graph

contains no cycles, then the graph can be considered a directed acyclic graph .

Let G be a directed graph with a pair G = (�;E), where � is a finite set of vertices

and E is a set of ordered pairs of vertices Vi ! Vi 2 E, as edges.

Definition 4.14. Markov Blanket

The Markov Blanket [3] of a graph vertex describes a vertex and edge set which shield

the vertex from the remainder of the graph. In this the Markov Blanket consists of the

vertex parents, its children and its children’s parents.

Let G be a DAG. Let Vi; Vj be vertices in G. Vertex Vj is a parent of vertex Vi if

Vj ! Vi 2 E; vertex Vi is a child of Vj .

The set Pa(Vi) [ Ch(Vi) [ Pa(Ch(Vi)) is the Markov Blanket of vertex Vi.
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Definition 4.15. Path

A path is an ordered alternating sequence of vertices and edges which describes the

route from vertex Vi to Vk.

Let G(�;E) be a DAG. Let � = fV0; :::; Vkg ; k � 1, be a set of vertices in G. A path

p from vertex V0 to Vk in G is defined as the sequence V0; E1; V1; :::; Ek; Vk of vertices

and edges Ei 2 E; i = 1; :::; k. Each edge Ei � Vi�1 ! Vi or Ei � Vi ! Vi�1 for every

ordered pair of vertices Vi�1; Vi in the sequence. k is the length of the path p. If every

edge between the vertices in a path has an arrow pointing in the same direction from the

first to the second vertex, then the path is a directed path.

Any concatenation of two paths in G, results in a path in G.

Definition 4.16. Cycle

A cycle in G is a directed path p with a length of one or more, where the head and tail

of the path are both V0. It is assumed in this thesis that any graphs depicted are directed

acyclic graphs , and therefore will not contain any cycles, unless otherwise stated.
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4.3 Bayesian Networks

The concepts of probability theory and graph theory come together as graphical models

in the use of Bayesian Networks. The variables are represented as vertices in the graph,

and are also commonly referred to as nodes; the probabilistic relationship between vari-

ables is represented by a graph edge, again more commonly referred to as an arc. Any

conditional independence in the structure is represented by the lack of an arc between

variables. By representing the probability distribution as a directed acyclic graph, the

flow on probabilistic influence can be computed exactly.

Using a directed acyclic graph as a structure to model the framework for a joint

probability distribution, the graph nodes represent a probability variable and so for the

remainder of this document there will be no explicit distinction made between the two

concept of variable and node. Conditional independence is captured by a graph edge

in the DAG, via these relationships in the graph structure the variable independence is

described.

A Bayesian network graph structure is comprised of three basic node structures: chain,

fork and collider. From these building blocks it is possible to create a fully connected

Bayesian network which adequately describes a joint probability distribution.

Definition 4.17. Chain

Let G(�;E) be a directed acyclic graph. Let Vi, Vm and Vj be vertices in �. If edges

exist such that Vi ! Vm 2 E and Vm ! Vj 2 E then the vertex set fVi; Vm; Vjg is said to

be a chain.

Definition 4.18. Fork

Let G(�;E) be a directed acyclic graph. Let Vi, Vm and Vj be vertices in G. If edges

exist such that Vi  Vm 2 E and Vm ! Vj 2 E then the vertex set fVi; Vm; Vjg is said to

be a fork.

Definition 4.19. Collider

Let G(�;E) be a directed acyclic graph. Let Vi, Vm and Vj be vertices in G. If edges

exist such that Vi ! Vm 2 E and Vm  Vj 2 E then the vertex set fVi; Vm; Vjg is said to

be a collider.

Definition 4.20. Independence Map

Let G(�;E) be a directed acyclic graph , and let P be a joint distribution on �. G is

an independence map, or I-map for P if

hXjZjY iG ) P (XjY Z) = P (XjZ)
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for all sets of variables X;Y; Z � �.

An independence map is a directed acyclic graph which encodes the independence of

variables: any variables that do not have an arc between them are independent of each

other is the joint probability distribution. In order for Bayesian network to accurately

model a probability distribution, each variable is conditionally independent of its non-

descendants given the values of all its parent variables.

In order to determine the correct independence between variables within the graph

structure, the concept of d-separation can be used. D-separation is a criteria for inferring

whether two sets of variables which are connected by a path are conditionally independent

from each other, given a third set of variables.

Definition 4.21. d-Separation

A path p is said to be blocked, by a set of nodes Z if and only if

� p contains a chain i! m! j or a fork i m! j such that the middle node m is

in Z

� p contains a collider i! m j such that the middle node m is not in Z and such

that no descendant of m is in Z.

A set Z is said to d-Separate X from Y if and only if Z blocks every path from a node in

X to a node in Y [7]

Figure 1: d-separation given a DAG which contains no conditioning set Z

The DAG illustrated in figure 1 contains no conditioned vertices, however X and Y

are d-separated due to there being a single collider vertex C.

Figure 2: d-separation given a DAG which contains a conditioning set Z on A and E

The DAG illustrated in figure 2 contains a conditioning set Z = fA;Eg (indicated by

the dark circles). The set Z does not condition on the collider vertex C, therefore X and

Y are still d-separated. However, given the set Z, X and B are now d-separated, and so

are D and Y . In this example only B and C and D and C are d-connected.
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Figure 3: d-separation given a DAG which contains a conditioning set Z on A and G

The DAG illustrated in figure 3 contains a conditioning set Z = fA;Gg (indicated by

the dark circles). The vertices B and Y are d-connected by Z, this is because the collider

vertex C has a descendant vertex G in Z which unblocks the path from B to Y . The path

from X to D is still d-separated due to the vertex A being in Z.
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4.4 Inference in Bayesian Networks

The graphical structure of a Bayesian Network provides a good mechanism for an analyst to

understand the relationships between concepts, which are represented as variables within

the network; furthermore, the graphical structure affords the evaluation of the graph’s

structural properties, such as independence, in a much more digestible way. The other

major benefit of a Bayesian Network is the ability to use the structure for inference, so

that queries on distribution structure can be answered. The process of inference is to

make observations about the concept being modelled, and then calculate the posterior

probability of some variables.

Given a directed acyclic graph structure, which for example a domain expert(s) have

created, in order to compute inference on this structure there are several graph transfor-

mations and algorithms that need to be performed; these transformations and algorithms

are covered in this section.

Firstly, in order to be able to perform the posterior probability calculations, the graph

structure must be transformed into a tree structure of cliques, called a clique graph;

this transformation process involves several algorithms and is known to be an NP-Hard

problem to produce an optimal tree structure. Secondly, once a clique graph has been

created exact inference can be calculated for all variables in the network.

This thesis explores using Bayesian Networks which have a mixture of both discrete

and continuous variables, commonly known as hybrid networks. Consequently, the trans-

formation and calculation algorithms used to perform exact inference on hybrid networks

have subtle and important differences to those used if the network were composed solely of

discrete variables. The case study for this thesis depends on being able to calculate exact

continuous values for monetary amounts, and as such using a discrete only model poses

flexibility and accuracy problems, due to the necessity to discretize the variable values; in

some circumstances this discretization may be desirable, as it represents an approximate

value, however this concept is not explored in this document.
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4.4.1 Moralization

The initial step of decomposing a Bayesian Network graph structure into a clique graph

involves the process of moralizing the graph structure. Moralization casts the directed

acyclic graph structure into an undirected graph structure, whereby the parent variables

PA(X) of variable X have an undirected edge between them if an edge does not exist.

The moral graph Gm from the original graph G is moral if for each pair of variables Vx,

Vy that share a child variable, there is an edge between Vx and Vy.

Definition 4.22. Moralization

Let G(�;E) be a directed acyclic graph. Let U be the undirected graph of G. Let Gm

be a moral graph of G over U if either:

� an edge exists such that Vx � Vy or Vy � Vx 2 E

� Vx and Vy are both parents on of the same vertex

Figure 4: Original DAG

Figure 5: Moralized graph, dashed lines indicate moral edges added
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Definition 4.23. Chordal Graph

Let G(�;E) be an undirected graph, and Gm be a moral graph of G. A cycle � exists

in Gm with the cycle being in the sequence fv0; v1; :::vng with v0 = vn. A chord of cycle

� is a pair of vertices in � (vi; vj) which are non-neighbouring vertices in � such that an

edge exists between them vi � vj .

The undirected graph G is a chordal graph if any cycle in the graph which has a cycle

length of 4 or more vertices, contains a chord which ensures that every cycle in the graph

has at most 3 vertices.

Figure 6: A chordal graph, the chord detailed by the dashed edge B �C triangulates the

cycle A�B �D � C �A

The addition of chords to eliminate large cycles is through an algorithm known as tri-

angulation; the algorithm requires an ordering of vertices to systematically eliminate from

the undirected graph. At each elimination the remaining undirected graph is inspected

for cycles of length � 4 and a chord (also commonly referred to a fill-in edge) is added.

4.4.2 Junction Tree

A Junction Tree transformation of a DAG is designed to represent and enable computations

on the joint distribution of the original graph representation. The transformation process is

performed using the undirected moral graph and ensures that the factorisation of variables

within the graph structure remain intact; any loops within the moral graph are eliminated

via a process known as triangulation, which results in an undirected graph structure known

as a chordal graph.

A Junction Tree is defined by a specific structural constraint referred to as the Running

Intersection Property:

Definition 4.24. Running Intersection Property

Let T be a tree graph structure, and let C be a collection of variable subsets of the set

of vertices V . T is a junction tree if any intersection C1 \C2 of a pair of sets C1; C2 in C

is contained in every variable on the unique path between C1 and C2.
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Figure 7: A junction tree with the running intersection property in C1 and C2, C1 and C4

, C2 and C3, C2 and C4.

4.4.3 Variable Elimination Ordering

Algorithm 1: Greedy search for constructing an elimination ordering

M // a moralized graph over �

initialise all variables in � as unmarked

for k = 1::: j�j do

select an unmarked variable V 2 � with the minimum edges needed to be added

if eliminated

�(V ) k

Add new undirected edges in M between all neighbours of V

mark V

end

return �;

At the point of assigning a cost value to the unmarked node, the algorithm evaluates a

cost based upon the amount of additional edges that would have to be added to the graph

in order to produce a clique, the selection will be based upon a minimum of fill-in edges.

This minimum fill-in cost based heuristic ensures that the complexity to create the clique

graph is kept to a minimum. Once the algorithm is complete the variables � will contain

an ordering of variables from � in reverse order by which the triangulation process can

be performed. Algorithm 1 is a good all-purpose variable elimination algorithm to use

for what is an NP-Hard problem; the aim of generating an efficient variable elimination

ordering is so that during triangulation and clique building for the junction tree, the

created cliques are kept as small as possible. It is desirable to keep the junction tree

cliques to a small size so that computation within the cliques is also kept to a small size,

and as such the speed of calculation is kept low.
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Figure 8: Variable Elimination Ordering Algorithm Performance

4.4.4 Triangulation and Clique Building

If the graph is not yet chordal, then it can be made chordal via the triangulation algorithm

by the additional of fill-in edges. Given an ordering of the graph variables, triangulation

occurs by analysing each variable in turn of the reverse order of the elimination ordering;

each variable under inspection is joined to each neighbour that appears earlier in the

ordering, but are not already joined to the variable under inspection.

Once each neighbour is joined to the variable that is under inspection, this cluster

of graph variables is identified as a clique. It is possible that the set of cliques which

are generated from the chordal graph contains cliques which are proper subsets of other

cliques. These subsets can be removed from the candidate set of cliques, as they are

subsumed by the super-set cliques.

Definition 4.25. Clique

Let Ci be a subset of vertices � from the graph G(�;E), such that the every pair of

vertices in Ci is joined by an edge. This subset is referred to as being complete. A subset

of vertices which forms a subgraph, whereby it cannot be extended by adding adjacent

vertices, is known as a complete subgraph which is maximal. A subgraph which is maximal

is referred to as a clique.
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Figure 9: A directed graph, with the cliques fA,B,Cg, fB,C,Eg and fB,D,Eg

As previously mentioned, the variable elimination ordering is critical to the produc-

tion of optimally sized cliques, this optimisation problem of finding triangulations for

undirected graph is an NP-Hard problem.

4.4.5 Strong Triangulation

When performing triangulation for hybrid networks, the triangulation algorithm needs to

be modified into a strong triangulation. When calculating hybrid causal models, a specific

rule exists when marginalizing over cliques which contain both discrete and continuous

variables. In these cases we must first marginalize over the continuous variables and then

marginalize over the discrete variables. When marginalizing over the discrete variables

if all the variables within the clique are discrete, then a strong marginalization can be

performed; otherwise a weak marginalization must be performed. In order to exploit

this computational behaviour, we must ensure that strong triangulation is performed, to

facilitate this the concept of a strong decomposition is introduced [8]. Strong decomposition

and strong triangulation both operate on a marked graph, a marked graph is where the

variables of the graphs are marked with their type, discrete ∆ or continuous Γ.

Definition 4.26. Strong Decomposition

Given a set of vertices V (A;B;C) in an undirected graph G, is said to form a strong

decomposition of G if V = A [B [ C and all the following three conditions hold true:

i C separates A from B

ii C is a complete subset of V

iii C � ∆ or B � Γ

Figure 10 shows various examples of the rules for strong decomposition.

Strong triangulation is the same as the standard discrete only network triangulation,

except that an additional step of adding edges prior to the triangulation. These additional

edges to be added must link non-neighbouring discrete variables, when these variables have
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(a) (b) (c)

Figure 10: Strong decomposition. Solid variables are discrete, clear variables are continu-

ous. (a) strong decomposition with C � ∆. (b) strong decomposition with B � Γ. (c) no

strong decomposition as the variables in C are not complete.

a path between them which contain any continuous variables; these additional graph edges

enforce the strong decomposition rule.

Algorithm 2: Add strong elimination edges

Result: Add Strong Triangulation Edges

foreach discrete variable d in the moral graph Gm do

n all non-neighbouring discrete variables of d

foreach non-neighbouring variable v in n do

p count of any shortest paths between d and v which exclusively go

through any continuous nodes

if p > 0 then

add a new undirected edge e between d and v

end

end

end

(a) base directed graph (b) moralized (c) strongly triangulated

Figure 11: Strong triangulation. Solid variables are discrete, clear variables are continuous.
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4.4.6 Clique Trees

Once the cliques of variables have been generated, it is necessary to join the cliques into

a tree structure; that is a structure whereby every pair of cliques has one and only one

direct path between them. As previously stated the resulting clique tree must exhibit the

running intersection property. The method chosen to construction the clique tree that

satisfies these properties is an implementation of the Maximum Spanning Tree which is

a modification of the Kruskal Minimum Spanning Tree algorithm, the modification is the

inversion of the weight attributed to the clique edges so that the algorithm calculated

the maximum costing path. In this case, the clique edge weights are the cardinality of

intersecting variables given a pair of cliques.

(a) base directed

graph

(b) moralised and

strongly triangu-

lated

(c) cliques with weighted intersection

joins

(d) selected joins from Maximum Span-

ning Tree algorithm

Figure 12: Strong triangulation. Solid variables are discrete, clear variables are continuous.

The final clique tree in fig 12 (d) exhibits the running intersection property for the

selected clique edges added to form the clique tree, therefore satisfying definition 4.24.
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A separator is a structure which contains the message data and the structure of the

separator is determined by the intersection of clique variables for each pairing of cliques;

Therefore, the number of separators in a clique graph is the same as the number of graph

undirected edges between cliques.

Definition 4.27. Clique Separator

Let Ci and Cj be two cliques in the clique tree which are connection by an undirected

edge, then Si;j = Ci \ Cj is a separator between Ci and Cj .

Figure 13 shows the separators for an example clique graph.

Figure 13: A clique graph with the separator structures highlighted

Given a tree structured graph T whose nodes are maximal cliques C1; :::; Cn, then

W<(i;j)(W<(j;i)) are all the variables that appear in any clique on the Ci(Cj) side of the

edge [5].

Definition 4.28. Clique Tree

A tree structured graph T is a clique tree for an undirected graph H if:

� each node in T corresponds to a clique in H

� each maximal clique in H corresponds to a node in T

� each separator Si;j separates W<(i;j) and W<(j;i) in H
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4.4.7 Clique Factors

The sets of random variables in a Bayesian network can be described as a factor, that is

each variable describes a function to a value, these factors can be used to define the joint

probability function, and can be defined as:

Definition 4.29. Factor Let D be a set of random variables, a factor ’ is a function from

Val(D) to R

Definition 4.30. Joint Probability Density

P (x) =
Y
v2V

P (xvjxPA(xv))

Each factor in the Bayesian network must be allocated to an appropriate clique in the

clique tree.

Definition 4.31. Factor Clique Assignment

Let C be a clique with a variable set V , a factor ’ is assigned to one and only one

clique C if V is a superset of ’

C(V ) � ’

(a) (b)

Figure 14: Factor assignment to a clique tree. (a) the original DAG. (b) the clique graph,

assigned factors are shown next to the cliques.
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4.4.8 Strong Roots

When computing exact inference for hybrid networks on a strong clique tree, it is necessary

to initiate the computations from a clique which can be labelled as a strong root.

Definition 4.32. Strong Root

In a junction tree, any clique R is a strong root, if any pair of neighbouring cliques

A;B with A closer to R than B and satisfies

(B nA) � Γ or (B \A) � ∆

In order to determine each strong root in the junction tree, in turn each junction tree

neighbouring clique separators are inspected against the condition detailed in definition

4.32 in both directions. An intermediate table of results can be generated as shown in

table 4, then each junction tree clique is analysed by inspecting each definition entry in

the intermediate table to determine if it passes the rule in definition 4.32. The analysis

of each clique separator is done by via an inward sequential ordering from the furthest

distance clique to the immediate neighbouring cliques from the clique being inspected; an

example implementation of this rule is shown in figure 15. If and only if each separator

passes the rule in definition 4.32 can the clique being analysed be a strong root.

Figure 15: A junction tree showing the inward direction check of each clique pairs separator

variables, when analysing clique (B;C)
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Clique Separator Strong Root Analysis

B A (B\A) � ∆ (B nA) � Γ Passes definition 4.32

BC EWBF B C Yes

EWBD BC B EWF Yes

EWBF EWBD WBE F No

EWBD EWBF WBE D Yes

EWBD DMW WD EB No

DMW EWBD WD M Yes

DMW OMD DM W No

OMD DMW DM O Yes

OMD DL D OM Yes

DL OMD D L Yes

Table 4: Junction tree clique separators tested against definition 4.32. Underlined variable

letters are discrete nodes. Bold values for yes/no indicate the lookup values for the analysis

of clique (B;C) as shown in figure 15.

4.4.9 Message Passing Algorithm

When calculating the causal model on the clique graph, we utilise the message passing

algorithm which ensures that the calculation dependencies which are encoded into the

clique graph via the junction tree algorithm are adhered to. As the algorithm name

suggests the message passing algorithm involves each clique in the clique graph passing a

belief propagation message to its neighbouring cliques after each clique has performed its

local calculation. When calculating the algorithm begins at the strong root clique, then a

recursive traversal of the graph structure is performed; during the traversal, at each clique

a decision is made to continue onto the cliques unvisited neighbours if any exist. Figure

16a shows the graph traversal order from the strong root clique C1; in turn the cliques

C2; C3; C4; C5 are visited, at each of these cliques it is true that an unvisited neighbouring

clique exists which is further away from the strong root. Once the clique C6 is visited this

is no longer true, therefore C6 performs its local calculation and passes its belief message,

called a separator message, on to clique C5; this recursive inspection continues and hence

C5 performs its local calculation including the message from C6 and then passes its belief

message to clique C4 and so on.

This recursive local calculation and message passing continues until all the cliques have

been visited and the algorithm returns back to the strong root. Figure 16b shows a more

complex tree structure and a potential message passing ordering.
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