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Abstract 

Colorectal cancer (CRC) is the second largest cause of cancer deaths in the UK, with 

approximately 16,000 per year. Over 41,000 people are diagnosed annually, and 43% of those 

will die within ten years of diagnosis. The treatment of CRC patients relies on pathological 

examination of the disease to identify visual features that predict growth and spread, and 

response to chemoradiotherapy. These prognostic features are identified manually, and are 

subject to inter and intra-scorer variability. This variability stems from the subjectivity in 

interpreting large images which can have very varied appearances, as well as the time 

consuming and laborious methodology of visually inspecting cancer cells.  

The work in this thesis presents a systematic approach to developing a solution to address this 

problem for one such prognostic indicator, the Tumour:Stroma Ratio (TSR). The steps taken are 

presented sequentially through the chapters, in order of the work carried out. These specifically 

involve the acquisition and assessment of a dataset of 2.4 million expert-classified images of 

CRC, and multiple iterations of algorithm development, to automate the process of generating 

TSRs for patient cases. The algorithm improvements are made using conclusions from observer 

studies, conducted on a psychophysics experiment platform developed as part of this work, and 

further work is undertaken to identify issues of image quality that affect automated solutions. 

The developed algorithm is then applied to a clinical trial dataset with survival data, meaning 

that the algorithm is validated against two separate pathologist-scored, clinical trial datasets, as 

well as being able to test its suitability for generating independent prognostic markers. 
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Chapter 1 - Introduction 

1.1 Problem statement 

Colorectal cancer (CRC) is the second largest cause of cancer deaths in the UK, with 

approximately 16,000 per year. Over 41,000 people are diagnosed annually, and 43% of those 

will die within ten years of diagnosis [2]. Treatment of patients typically involves a combination 

of surgery, chemotherapy and radiotherapy, which is invasive, toxic, and in some cases, lethal. 

Not all patients respond to therapy, and therefore it is important to identify which will benefit 

from treatment before treatment decisions are made. These decisions are based on 

characteristics of the patient’s cancer, which are diagnosed by a pathologist. The diagnosis of a 

cancer is performed on an ex-vivo biopsy that has been sectioned, placed on a glass slide and 

stained for visual inspection, traditionally under a standard microscope.  

Traditional glass slides can be digitised using high resolution slide scanners to create large 

images of tissue, called virtual slides. The University of Leeds Department of Pathology and 

Tumour Biology has been routinely digitising slides for the past 14 years for research use [3] , 

using Leica-Aperio (formerly Aperio) digital slide scanners [4]. Glass slides are typically 

scanned at 0.5 microns per pixel, or 20x resolution, which creates an image approximately one 

gigapixel in size.  

Virtual slides are an excellent basis for the practical implementation of computer vision and 

Machine Learning (ML) techniques, as they facilitate high throughput, calibrated imaging of 

pathology images. Manual diagnoses require laborious visual inspection of patient tissue that is 

subjective and prone to inter-observer variation, and as a result, robust methods for accurate and 

reliable quantification of cancer tissue are highly desirable. Despite many recent attempts, no 

methods for routine application to histological analysis have been widely adopted [5]. Clearly 

there is a need to quickly identify and accurately diagnose CRC to provide appropriate targeted 

treatment to patients that will respond to invasive therapies. Therefore, successfully 
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implementing strategies to more efficiently detect and characterise CRC will ultimately increase 

patient quality of life and survival rates.  

The ratio of tumour to stroma within a cancer (TSR) uses the ratio of tumour epithelium to its 

surrounding connective tissue, to generate a quantifiable metric for determining patient survival. 

There are multiple methodologies for calculating TSR (discussed in 2.2.3), but the concept of 

TSR in general is a consistently validated measurement in pathological analysis for determining 

prognosis [6-8]. However, calculating this ratio manually requires either estimation of the 

quantities of tissue within a tumour, or sampling enough areas within the region of interest 

(ROI) to generate reliable statistics. The process of calculating TSR is therefore time 

consuming, subjective and prone to both inter and intra-observer variation. Automation of this 

task using computer vision is desirable, as it offers the possibility of objective, standardised 

quantification. 

1.2 Research questions 

The work presented in this thesis focuses on the automation of calculating TSRs on digital slide 

images. In order to attempt to achieve this objective, the following questions have been 

identified: 

• Can the manual analysis of TSR be facilitated by using virtual slides? 

• How can manual analysis results be obtained to develop ground truth datasets for both 

reliable ML training and effective evaluation of any automated solutions? 

• Can an automated solution replicate manual scoring with an adequate level of 

agreement, using the ground truth data? 

• What is the minimum amount of visual information required for maximising agreement 

between observers for manual scoring of TSR? 

• Can algorithm performance be improved using conclusions drawn from observations of 

pathologist scoring? 

• What are the issues that affect automated histopathological image analysis? 

• How does the automated solution perform when these issues are not present or 

mitigated? 
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• Using patient survival data as the gold standard, does the algorithm outperform manual 

scoring? 

These questions form the basic structure of the work conducted in this thesis, as an ordered set 

of projects which follow a sequential methodology. Each unit of work uses conclusions and 

questions drawn from previous work to either improve these or motivate new research. 

1.3 Thesis overview 

The work in this thesis is split into 8 chapters, and is outlined below. 

Chapter 2 presents background research relevant to the automated analysis of TSR on CRC 

tissue, providing insight into the pathology of CRC and current methods for acquisition and 

inspection of patient tissue., A brief history of digital pathology is presented, and an exploration 

of appropriate computer vision and ML methods that can be applied to the automated analysis 

of histopathology images. Finally, current systems that use computer vision and ML to solve 

visual pathological tasks are evaluated. 

Chapter 3 presents the RandomSpot system, a web-based systematic random sampling (SRS) 

system for use with digital slides, and shows how the system has helped researchers to calculate 

the TSR in their own work. The chapter then details how the system generates data for 

independent researchers, that is reusable for training and validating image analysis solutions, 

and presents a repository for the expert-classified ground truth data, called RandomSpotDB. 

Work is then undertaken to evaluate one of the datasets contained in the RandomSpotDB, the 

QUASAR clinical trial, in terms of the image data within it, and a thresholding-based algorithm 

is applied as a first step to ascertain whether TSR can be calculated using simple image 

processing techniques. Finally, a ML algorithm is developed to learn features of over 106,000 

pre-classified histopathological images, retrieved from RandomSpotDB as image locations 

(spots). Experiments are performed to ascertain the effect of image size, classifier type and 

classifier parameters on algorithm performance. 

Chapter 4 explores human interaction with digital images, to ascertain optimal scoring 

conditions for histopathological image analysis. This is done with the intent of mimicking these 

conditions in future work, to improve the automated solution. Out of the need to generate 

ground-truth data and agreement statistics, when manipulating scoring conditions, the 

Prospector system was developed. The web-based experiment platform is presented, and used to 

identify optimal image size for manual scoring. The results from this experiment identify an 
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appropriate minimum image patch size for the automated solution, and lead to the conclusion 

that pathologists use surrounding contextual information to correctly score tissue at the centre of 

the image patch. A pilot study is also presented, that looks at pathologist agreement correlated 

to the tissue staining levels. Results show that stain level affects agreement, but the dataset is 

too imbalanced to generate a solution for identifying poorly stained slides automatically. This 

motivates work in Chapter 6. 

Chapter 5 uses the conclusions from Chapter 4, to sequentially modify the ML algorithm 

presented in Chapter 3, so that the impact of each algorithm modification can be individually 

assessed. Five enhancements to the algorithm are presented, based on conclusions drawn from 

the pathologist experiments. These use local contextual analysis and global slide staining 

properties to modify the feature vectors of each patch accordingly. Unsupervised segmentation 

algorithms are assessed for segmentation accuracy and computational speed, and a hybrid 

algorithm is created, applying normalised cuts to cluster superpixels using computed pairwise 

similarity metrics. The final product of the chapter is a combination of the modifications 

applied. 

Chapter 6 focuses on the cases where algorithm-pathologist agreement is lowest, to identify 

visual artefacts that may affect image analysis. The prospector system is used to manually apply 

quality control (QC) checks on all slides in the QUASAR dataset, applying the pre-identified 

visual artefacts as categories. Using only the QC-approved slides, the final algorithm from 

Chapter 5 is re-evaluated, in order to ascertain whether accuracy improves when removing 

slides that have been flagged for issues. Finally, the dataset is used to extend the pilot study 

from Chapter 4, to train a ML classifier on the appearances of suboptimal slides, to create an 

automated QC algorithm. 

Using a second clinical trial dataset, the algorithm accuracy is validated in Chapter 7, and the 

algorithm is assessed for suitability as a real-world prognostic predictor. TSRs generated are 

correlated to survival using a pre-published method to stratify the patients into two groups, TSR 

high and TSR low. Previous studies have shown that TSR high groups have better survival 

statistics, and so the algorithm generated TSRs are evaluated against this criterion, as well as the 

significance value comparing the dissimilarity between the two patient groups. 

Chapter 8 concludes the thesis by summarising the work in each of the chapters, in terms of the 

achievements that the work has output. Algorithm statistics are summarised so that conclusions 

can be drawn about how appropriate the presented automated solution is, and future work 

regarding improvements and extensions to the project are outlined.
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Chapter 2 - Background 

“Automation of the acquisition and interpretation of data in microscopy has been a focus of 

biomedical research for almost a decade. In spite of many serious attempts, mechanical 

perception of microscopic fields with a reliability that would inspire routine application still 

eludes us.” - Judith Prewitt, 1966 

2.1 Introduction 

Interpretation of the visual characteristics of disease (phenotype) is vital for understanding 

invasive behaviour and predicting response to therapy. The problem statement in section 1.1 

outlines the need for consistent and reliable analysis of patient tissue, so that appropriate 

decisions can be made in terms of treatment options. Accurately predicting response to 

chemoradiotherapy (CRT) and similar treatments facilitates longer life expectancy where 

patients are predicted to respond well, and maximises patient quality of life where invasive and 

toxic treatments will not stop or slow disease progression. Furthermore, in a healthcare climate 

of efficiency savings, avoiding giving treatments to patients that will not benefit from them 

reduces costs to health services. 

 

2.1.1 Chapter overview 

Digital pathology has become a rapidly growing field of research, due to the advent of high 

resolution digital slide scanners, capable of scanning glass slides up to and beyond 400x 

magnification (a resolution of 0.25 microns per pixel). The acquisition of large gigapixel images 

allows patient tissue to be visually inspected on standard computer displays (which comes with 

risks, discussed in 2.3), and enables researchers to develop image analysis algorithms which 
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have the capacity to address some of the issues that affect manual analysis of disease, mentioned 

previously. The work in this chapter aims to provide a comprehensive background to the field of 

digital pathology and its use in analysing CRC both manually and automatically. The chapter is 

divided into six sections: 

1) The introduction, which provides a brief overview of the chapter, and outlines potential 

benefits of digital pathology and computer assisted diagnosis. 

2) An overview of colorectal cancer, a brief account on the anatomy of the disease, and a 

description of how it is analysed by pathologists to determine a patient’s prognosis. 

3) A background on the field of digital pathology, in terms of its history, development, and 

impact in clinical application.  

4) A review of current image analysis techniques and methods that have the potential to 

facilitate the development of computer aided diagnosis algorithms and systems, with 

respect to CRC images. 

5) Exploration of currently developed solutions to automating histopathology image 

analysis, and identification of the successes and limitations of those solutions. 

6) A summary based on findings from the chapter, indicating methods with which to direct 

the research for this thesis. 

 

2.1.2 Potential benefits of automating phenotype analysis 

The digitisation of cancer patient tissue facilitates the development and integration of computer 

assisted diagnosis (CAD) for histopathological examination. Successful systems have the 

potential to benefit patients, researchers, clinicians and funding bodies in the following ways: 

1. Provide consistent and reliable metrics that correlate with survival, with low rates of 

variability. 

2. Increase throughput of case analyses, reducing time taken to return results to patients. 

3. Identify statistical information which is impossible for manual inspection to accurately 

assess without considerable effort. 

4. Reduce or eliminate the need to manually assess routine patient cases, so that more time 

can be spent on cases which require further inspection. 

5. Reduce or replace costs spent on manual routine analysis. 

However, the development and implementation of CAD algorithms and systems is non-trivial, 

due to the complex nature of histopathology images, and large quantities of data required for 

analysis. Some of these challenges, specific to this work, are discussed in the next section. 
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2.1.3 Challenges to Computer-Assisted Diagnosis (CAD) 

The successful integration of CAD systems into routine pathological workflow faces several 

key issues which must be addressed before such systems are widely accepted. These issues 

include (but are not limited to) accuracy of analysis, to provide trusted output that is useful to 

the pathologist, as well as the speed of which those outcomes are generated. The systems must 

be well equipped for handling large volumes of throughput, commonly referred to as “big 

data”, and the cost of the systems and infrastructure that supports them must be minimised. Due 

to the complex nature of such analyses, human-computer interaction, or HCI design must 

optimise the balance between simplicity for rapid, easy to use systems, and flexibility, so that all 

possible modifications can be made to customise and improve analysis. Finally, another 

consideration is that traditional light microscopy is still used for training pathologists, and 

therefore uptake is slower amongst those that have either no access or no desire to use these 

expensive, and currently experimental technologies. 

2.1.3.1 Accuracy of algorithms 

The accuracy of any given automated analysis not only needs to sufficiently reduce error to a 

degree that is acceptable to experimental design, but also requires extensive validation on a 

variety of datasets, to be trusted. Simply put - systems that are not trusted do not get used. Many 

CAD systems require extensive parameter optimisation (sometimes referred to as tuning) for 

tasks such as nuclear, membrane or microvessel detection. This often acts as a barrier to end 

users, who are not familiar with computer vision terminology or experimental design, and can 

lead to suboptimal and underperforming algorithms. Accuracy of CAD systems can be 

calculated using a variety of methodologies, typically comparing algorithm output to ground 

truth data, consisting of expert-labelled images, and assessing the rate at which true and false 

positive and negative classes are detected.  

2.1.3.2 Speed of analysis 

Automation or partial automation of the pathologist task has the potential to speed up workflow, 

and return results and treatment decisions back to patients faster than with traditional human 

scoring. Increased pressures on healthcare services from growing and aging populations require 

higher throughput of patient cases, and so optimising turnaround time is essential to maintaining 

these services. CAD has the potential to speed up analysis time by processing images prior to 

pathologist review, highlighting areas of tissue that are more likely to require in depth attention, 

and providing trusted output for routine images. The speed at which this data is generated 
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requires optimised code and systems, and will benefit from high-power processing clusters, 

which can analyse these large images using distributed and parallel processing. 

2.1.3.3 Volume of data 

Digital pathology slides can be gigapixel-sized images that contain hundreds (or thousands, 

depending on magnification and compression) of megabytes of visual information. Glass slides 

are produced routinely in pathology laboratories, and have large amounts of patient data 

associated with each sample. Handling this data efficiently is essential to developing efficient 

and useable CAD systems. 

2.1.3.4 Cost of infrastructure 

Implementing CAD systems requires expenditure in the supporting infrastructure to set up and 

maintain systems and workflow, such as digital slide scanners, servers and appropriate end user 

workstations. Adding requirements for extra workflow steps, in terms of equipment and staff 

incurs significant costs, and the financial benefits of fully digitising pathology labs is difficult to 

predict (see 2.3.4). 

2.1.3.5 HCI and design 

The design of CAD systems needs to consider the large amounts of visual, clinical and meta 

data associated with digital pathology slides. Displaying the minimum amount of data required 

for specific tasks may help speed up workflow, but at the expense of comprehensive data 

analysis. By using intuitive visualisation techniques, such as hierarchical displays and content 

drill-down, CAD systems have the potential to convey large amounts of information to end 

users, that allow pathologists to make informed decisions about patients and treatment. 

2.1.3.6 Uptake of systems  

There are many organisational, technical and financial issues that affect the uptake of CAD 

systems. Pathologists should be the focus when implementing digital pathology solutions, in 

terms of systems design, but also expectation management. Digital pathology is still a relatively 

new discipline that is not routinely used in practice. As such there are no standard practices for 

training pathologists to use digital slides and associated software, that are comparable to 

traditional microscope training. This may lead to preference of the older imaging modalities, or 

conversely, may lead to unrealistic expectations of what digital pathology and CAD systems can 

do. 

The issues of implementing successful CAD systems in practice are by no means limited to 

these considerations. Research at Leeds is currently being conducted, studying the integration of 

digital pathology into routine laboratory workflow, and is discussed in section 2.3.4.  



Automated analysis of colorectal cancer  Chapter 2  

  

 9 

 

2.2 Colorectal cancer 

This section provides an overview of colorectal cancer, a brief account on the anatomy of the 

disease, and a description of how it is analysed by pathologists to determine the best course of 

action for directing a patient’s treatment. 

Colorectal cancer (CRC) is the second highest cause of cancer related mortality in the UK, 

causing 15,903 deaths in 2014 [9]. The disease has a 10-year survival rate of 57%, due to the 

late stage at which most cases are identified. The diagnosis and treatment of CRC patients relies 

on the visual inspection of their biopsy samples to assess a range of phenotypic properties that 

pathologists use to classify the cancer in terms of the spread of invasion (stage) and the 

deformity of the cancer cells (grade). 

 

2.2.1 Anatomy of CRC 

The large bowel is the final part of the digestive tract, which consists of the colon and rectum 

(ergo, ‘colorectal’). Both colon and rectum are tubular in structure, and made of a number of 

layers, labelled in Figure 1. 

 

Figure 1 – Diagrams of colorectal anatomy and structure 

Left: Labelled diagram of bowel anatomy 

Right: Schematic diagram of the structure of a cross section of the bowel 



Automated analysis of colorectal cancer  Chapter 2  

  

 10 

The mucosa consists of cells that line the internal bowel wall, and are arranged in a formation of 

structures similar in appearance to connected test-tubes. These structures, called crypts, are 

glands which secrete mucin, and absorb water and bile salts. Crypts consist mainly of epithelial 

cells, that form the structure of the glands, and mucin is produced by specialised epithelial cells 

called goblet cells. The reproductive cycle of epithelial and goblet cells is approximately 4 days, 

through sustainable and asymmetric division of stem cells, located at the base of each crypt 

[10]. In CRC, the abnormal division of these cells leads to neoplasia and invasive tumours. 

 

Figure 2 – Longitudinal-section and cross-section views of bowel crypts 

Left: Longitudinal-section view of bowel crypts, with the luminal aspect at the top and the muscularis 

mucosa at the bottom. 

Right: Cross-section view of bowel crypts 

The lamina propria supports the mucosa, and contains loose connective tissue. This tissue 

consists of occasional fibroblasts and elastic tissue but also contains small vessels and 

lymphocytes, and is separated from the mucosa by a thin layer of smooth muscle called the 

muscularis mucosa, which can be seen at the bottom of the left image in Figure 2. This layer is 

significant in the diagnosis of CRC, as tumours that penetrate it change classification from 

benign to invasive (malignant), which changes predicted outcomes and treatments for patients. 

The submucosa supports the mucosal layer, and contains lymphatic vessels (lymphatics), blood 

vessels and clusters of immune cells (lymphoid aggregates). Cancers that spread to the 

submucosa have the capacity to metastasise via lymphatics to lymph nodes (lymph node 

metastasis) or via the venous system which drains through the portal system, although patterns 

of metastasis vary between colon and low rectal cancers [11]. The muscularis propria consists of 

two layers of smooth muscle, the inner circular layer that controls the contraction of the lumen, 
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and the outer longitudinal muscle that controls longitudinal movement along the bowel. The 

serosa is the outer lining of the bowel. 

 

2.2.2 Tissue and glass slide preparation 

Traditionally, CRC is visually inspected using the light microscope and glass slides. The 

process of obtaining samples for analysis is comprised of four main steps: 

Collection: Cancer tissue samples are retrieved ex-vivo from the patient via a surgical 

procedure or a biopsy, from the primary or metastatic tumour site. 

Embedding: Once removed from the body, the tissue sample is fixed, processed and then 

embedded in a mountant, such as paraffin wax, to create a rigid structure tissue block that 

preserves the state of the tumour as much as possible, and allows for sectioning. 

Sectioning: The block is sliced using a microtome, to produce a section, typically with a 

thickness of 5 microns, and sections are floated onto the surface of a temperature-controlled 

bath of water that allows the tissue to be attached onto a glass slide. Once on the glass slide, the 

tissue appears colourless, and requires staining to enhance the visual features of the tissue. 

Staining: In order to prepare the tissue for visual inspection, specific stains are applied that 

highlight structures or proteins that are to be analysed (depending on the stain used). Typically, 

a primary stain is applied to enhance contrast in cellular detail, and a second stain (counterstain) 

is applied to enhance the appearance of tissue morphology.  

2.2.2.1 Haematoxylin and Eosin stain (H&E) 

In CRC, the combination of Haematoxylin and Eosin stains (H&E) is routinely applied for 

morphological assessment, meaning that all tissue is stained the same way, highlighting nuclear 

and structural components. This makes H&E a relatively inexpensive stain that can be used for 

general inspection of cancer tissue, allowing trained pathologists to visually inspect tissue at a 

cellular level, as well as a structural level, for local and global contextual analysis of the patterns 

of normal and neoplastic cell growth. As a simplification, Haematoxylin stains nuclei blue, and 

appears purple when co-localised with the counterstain Eosin, which stains tissue structures 

pink. Examples of H&E stained tissue are shown previously in Figure 2. 

2.2.2.2 Variability in glass slide preparation 

The process of preparing glass slides for pathological analysis requires skilled laboratory staff 

that understand the need for consistency in the production of glass slides. However, making 
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these slides routinely is a repetitive and often time-critical task, and as such, human error in 

terms of inconsistencies in appearance are common. Minor inconsistencies are accepted as the 

standard in histopathology, and are generally easily accounted for by pathologists that have 

enough expert knowledge to understand such variation, but some variation affects pathological 

analysis beyond compensation, and so glass slides are rejected and not analysed. It is important 

to factor in this consideration when developing CAD systems, since computers do not have 

expert knowledge and subsequently may be adversely affected in terms of accurate and reliable 

analysis output when analysing suboptimal material. 

Variability can be found through all stages of glass slide production, and can affect the 

appearance of the glass slide tissue in multiple ways. Some are discussed below. 

Collection: The process of extracting the cancer may or may not retrieve the whole tumour, 

affecting how much visual information is available to analyse the invasive edge, the extent of 

invasion and spread.  

Fixation: Any delay in placing the tissue in a preservative such as formalin can allow 

deterioration in the cells and tissue structures. The length of fixation can also affect the 

component biochemistry of the cells. 

Embedding: The medium in which the tissue is embedded affects its appearance (e.g. paraffin 

wax compared to frozen sections), and how well the tissue is preserved. This affects structural 

appearance and in some cases the cell membranes may disintegrate or perforate, rendering 

visual analysis of cell morphometry much more difficult. 

Sectioning: The microtomes used for sectioning are high precision instruments that use medical 

grade blades for slicing tissue precisely at a thickness set by the operator. However, if the 

machine is not calibrated or the blade is not kept sharp, the resulting tissue sections may be 

inconsistent thicknesses (making stain uptake inconsistent), or tissue may be scored or torn, 

instead of cleanly sliced. Calcium in tissues can lead to holes and imperfections, and during the 

process of transferring sections onto the glass slides, folds may occur, which creates areas of 

overlapping tissue. 

Staining: The chemical compounds used for staining tissue samples are variable in terms of the 

colour yielded, depending on the batch produced or the vendor purchased from. The application 

of stains to the tissue is also subject to variation, depending on the length of time the tissue is 

submerged in the stains [12]. As previously mentioned, the thickness of the tissue affects the 

amount of stain uptake and the overall colour of the slide. Finally, the age, coverslip and storage 

conditions of the glass slides affects the stains in terms of fading. 
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2.2.3 Manual examination of CRC on glass slides 

CRC is the end product of the neoplastic development of tissue within the colon or rectum, 

which begins in the epithelial layer. CRC is visually assessed, and diagnosed pathologically 

using phenotypic information derived from observable patterns of growth (or lack thereof) [13]. 

Uncontrolled, abnormal growth in the bowel is caused by excessive division of cells in the base 

of one or more crypts, and is referred to as neoplasia [14]. Neoplastic cells deviate from normal 

maturation (developing from a stem cell into a differentiated, functioning epithelial or goblet 

cell), in terms of shape and behaviour. Groups of neoplastic cells can be classified as benign or 

malignant tumours. A tumour in the colorectum becomes malignant (a cancer) when it has 

penetrated the muscularis mucosa, and if it detaches from the primary tumour, it is considered to 

have metastasised.  

Traditionally, pathologists examine cancer biopsies stained with H&E on glass slides to assess 

how much the cancer has spread (staging), and how fast the cancer is likely to spread (grading). 

Once these characteristics are obtained, appropriate action can be taken regarding treatment of 

the patient. These two assessments can be made using standard methods of classification via 

visual observations of the tissue. Multiple methods for assessing stage and grade of CRC tissue 

exist globally, but this section focuses on methods used in the UK.  

2.2.3.1 Cancer staging 

Staging refers to the assessment of the current state of a patient’s cancer, and was originally 

formally assessed using the Dukes staging system, proposed in 1932 [15]. This classified 

tumours into one of three groups, based on the spread of the disease: A) limited to the bowel 

wall; B) invasion through the bowel wall, but not spread to regional nodes; C) cases where 

lymph node metastases are present. The tumour, lymph nodes and metastasis (TNM) staging 

system [16] was developed into the international system (with variations, depending on the 

organisation developing it). This system proposes that cancer classification can be standardised 

using sub-classifications of each of the three categories, illustrated in Table 1 [17]. TNM is well 

established with eight major revisions, although version five is currently routinely used in the 

UK [18]. Table 1 lists the TNM (version five) scoring methodology with descriptions of the 

categories. 
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TNM Stage Description 

T1 Tumour has grown into the submucosa 

T2 Tumour has grown into the muscularis propria 

T3 Tumour has grown into the serosa 

T4 
Tumour has perforated the peritoneum and / or locally 

spread to other organs 

N1 Tumour has spread to 3 or less regional lymph nodes 

N2 Tumour has spread to more than 3 regional lymph nodes 

M0 No metastasis 

M1 Presence of metastasis 

Table 1 – TNM staging system (version 5) 

Staging is grouped into these categories to minimise subjectivity and inter-observer variation, so 

that consistency in assessing patients can be maximised. 

2.2.3.2 Cancer grading 

Cancer grading relates to the aggressiveness of the tumour, and how likely it is to spread. 

Grading is categorised based on the visual assessment of differentiation, which is defined as the 

extent to which the cell (and subsequently the parent tissue structures) differs from how it 

should look at maturation. Cancer grading is assessed by assigning tumours one of three 

categories, well differentiated, moderately differentiated and poorly differentiated [19]. Cancer 

cells that are well differentiated have reached maturity and resemble the original (epithelial or 

goblet) cells from which they have been derived. Poorly differentiated cancer cells have little or 

no resemblance to their original form, and structures of poorly differentiated cells deviate from 

the shape of regular glandular structures. Moderately differentiated are midway between the 

two. Assessing the extent to which cells are deformed is subjective, and subsequently grading is 

prone to inter-observer variability. 

2.2.3.3 Phenotypic prognostic markers 

In addition to cancer staging and grading, many other prognostic markers have been identified 

that correlate with patient survival [20], some of which require analysis of data that cannot be 

interpreted from standard glass slides, such as DNA or RNA content, cell proteins or other 

molecular markers. However, many studies have generated successful prognostic markers from 

phenotypic information, derived from routine glass slides of patient tissue. Phenotypic 

prognostic markers in CRC include, the proportion of tumour to connective tissue, known as the 

tumour-stroma ratio (TSR) [6-8], the growth pattern of the invasive edge, known as tumour 
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budding [21-28], the configuration of the infiltrating margin of the tumour [29], the level of 

immune response [30], and the presence of lymphovascular invasion [31,32]. These phenotypes 

are typically calculated manually, and are difficult to estimate as continuous numeric features, 

leading to large variation between observers. As such, these image properties have the capacity 

to be improved by automating the task using computer vision. 

2.2.3.4 Stereology and Systematic Random Sampling (SRS) 

Quantitative histology is based on observations of 2-dimensional representations (sections) of 3-

dimensional tissue structures, making the appearance of tissue structures different, depending on 

how they are cut (see Figure 2). By quantifying the amount of tissue on a slide, an assumption is 

inherently made that area in 2D is directly related to volume in 3D, which can lead to falsely 

interpreting the content of the tissue and the growth pattern of tumours [33].  

Stereology is the 3D interpretation of stacked 2D cross sections of materials or tissues. 

Systematic Random Sampling (SRS) is used in stereology to generate unbiased and quantitative 

data, with the intention of sampling serial sections of tissue, generating estimates of total 

volumes and total numbers, as opposed to ratios [34]. For object counts (such as nuclei), many 

methods exist for generating sampling areas [35]. Volume calculations are made using the 

Cavalieri estimator, which calculates the volume of an object by summing the standardised area 

𝑎 to sampling points (probes) 𝑝 and multiplying by section thickness 𝑇.  

𝑉 = 𝑇 ∙ (𝑎/𝑝) ∙ ∑𝑝 

Equation 1 - The Cavalieri estimator for stereology volumetric calculations 

SRS is a sampling method that uses point grids (as opposed to optical graticules) to generate an 

equidistant set of sampling locations, that have a random starting point for the generation of the 

grid. For a given section of tissue, points are placed equidistantly over the region of interest, in a 

uniform distribution. Figure 3 illustrates an example of a grid of sampling points placed over 

CRC tissue. 
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Figure 3 - Example of Systematic Random Sampling (SRS) points 

Each sampling point is classified with its respective tissue type so that a quantifiable proportion of tissue 

types within the image can be calculated. 

The number of sampling points can be optimised by first identifying an acceptable level of 

standard error 𝑆𝐸 for the mean count measure of the target tissue (e.g. five percent), and 

estimating the expected volume ratio of the target tissue 𝑉𝑒 [36]. Equation 2 calculates the 

standard error relative to the mean value of the count which estimates 𝑉𝑒, where 𝑝 is the 

required number of sampling points that fall on the target tissue (excluding other sampling 

points). 

𝑆𝐸 =  
√1 − 𝑉𝑒

√𝑝
 

Equation 2 - Calculation for relative standard error in SRS 

By setting the standard error to 5% and the volume estimation to 55% (i.e. 55% of the sampling 

area should contain the target tissue), we can estimate the number of points that are required to 

fall on the target tissue 𝑝, by solving the worked example in Equation 3. 

√𝑝 = 
√1 − 0.55

0.05
 

Equation 3 - Worked example for calculating number of SRS points 

The worked example shows that 𝑝 is equal to 180 points, which are required to fall on the target 

tissue being estimated. The volume estimation of the worked example is 55% meaning that the 

total number of points required is 180 multiplied by 100 / 55, which equals 327 points. The 

same methodology of point estimation calculates the required number of points for a 50% 
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volume estimation at 400, with larger proportions requiring fewer sampling points, and smaller 

proportions requiring more sampling points, to be adequately represented. 

SRS is a powerful tool for quantifying volumetric measurements from 2D image data. By 

removing inherent assumptions that are made by modelling volumetric calculations applied to 

2D analysis (such as that areas of interest are homogeneously dispersed), the metrics derived 

from stereology reduce deviation from the true 3D representation (bias), and increase 

reproducibility (precision). However, appropriate calculations must be made to ensure the 

appropriate number of sampling points are taken, so that the minimum effect size (according to 

statistical power) can be satisfied [37]. 

A SRS tool based on stereological techniques is presented in Chapter 3. 

2.2.3.5 Survival analysis of phenotypic markers 

The method of assessing a phenotypic marker for prognostic significance involves stratifying 

sets of clinical trial patients into two or more groups. The groups are typically assessed as a 

reference group that is least at risk, or not exposed to risk, and one or more hazard groups that 

are predicted to be more at risk. These groups are based on either categorical phenotypic 

information, such as patients with poorly differentiated vs well differentiated cancers, or by 

identifying an appropriate threshold (referred to as cut-off) to apply to continuous data. Section 

7.4.2.2 details a method using modified Receiver Operator Characteristic (ROC) curves to 

identify appropriate cut-offs. Once grouped, their correlation to survival is computed using Cox 

regression analysis, and Kaplan Meier survival curves are generated [38], so that any difference 

between groups can be evaluated. The most common way of assessing prognostic significance 

uses a log-rank test and hazard ratios confirm the extent to which the hazard group has an 

increased risk of death from the reference group [39]. 

 

2.2.4 The Tumour:Stroma Ratio (TSR) 

The tumour:stroma ratio (TSR) is an observable metric quantifying the proportion of tumour 

epithelium to connective stroma within a patient’s cancer [40]. Consistent generation and 

analysis of TSR is non-trivial, due to the complexity, variation and subjectivity of the task. TSR 

is believed to be an important factor in the development and progression of cancer, whereby 

stroma facilitates growth of cancerous epithelial tissue, such that cancers with a higher 

proportion of stroma have a poorer prognosis than cancers that have less connective tissue. 

Research relating to the “seed and soil” hypothesis describes this relationship between the two 

[41].  



Automated analysis of colorectal cancer  Chapter 2  

  

 18 

Recently, TSR has been found to be an independent prognostic marker in multiple cancers (see 

section 2.2.4) in breast [42-45], lung [46], oesophageal [47], gastrointestinal [47,48], colorectal 

[6,49-51], cervical [53], ovarian [54] and endometrial [55] cancers. It was observed from the 

publications detailing this research that there are two different reported methodologies for 

obtaining pathological assessment of TSR (with minor variations between studies), which were: 

• Estimation based on visual observations 

• Systematic random sampling (SRS) of a given region of interest 

Visual estimations were typically made by two observers, and a large proportion of studies used 

a 50% cut-off to create a scoring system comprised of two bins: less than 50% and greater than 

or equal to 50%. Other variants used more bins, in either ten groups of 10% or twenty groups of 

5%. The studies using SRS used specific software to generate a desired number of sampling 

points within a region of interest, classifying each of the generated sampling points to create a 

ratio between the sum of the tissue types counted (see the RandomSpot system in 3.2). Table 2 

lists the number of publications using these methods and their variations. 

Method Type of data generated Studies 

Visual estimation 2 bins (<50%, >=50%) 8 

Visual estimation 10 bins (of 10%) 3 

Visual estimation 20 bins (of 5%) 1 

Visual estimation Continuous 1 

SRS Continuous 4 

Table 2 - Methodologies used in TSR publications 

The number of TSR studies observed are grouped based on their TSR generation methodology. 

Both methods have advantages and disadvantages, most notably the trade-off between time and 

effort required, and accuracy of results. Analysis of reproducibility by Courrech-Staal et al [56] 

(not included in Table 2) showed that visual estimation of TSR in quartiles (four 25% bins) 

yielded a mean kappa agreement of 0.43 across three observers, whereas grouping the scores 

into two bins increased the agreement to 0.80. Eleven of the studies listed in Table 2 used 

multiple scorers (all of which used visual estimations) and reported agreement statistics. The 

mean kappa value of these reported statistics was 0.84 (S.D. = 0.04). SRS experiments did not 

use double scoring, however West et al reported agreement of 0.97 on a subset of 40 images 

from their dataset [6]. The difference in agreement statistics shows that using quantifiable 

metrics is more reproducible than visual estimations. However, the accuracy gains over 

estimation are only valid if appropriate sampling calculations (based on the calculation in 

Equation 3) have been made so that sampling error rates can be reduced. Also, the resulting 
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number of sampling points can be laborious and repetitive to inspect and therefore the 

methodology is prone to fatigue and inconsistencies. Note that in visual estimation-based 

studies, survival analysis was applied to cases which were split (stratified) into two groups with 

the cut-off between groups applied at 50%, whereas the SRS studies identified a method using a 

modified ROC curve to identify the cut off at 47% (see 7.4 for survival analysis detailing and 

using this method). Using SRS to quantitate multiple types of tissue within a cancer allows TSR 

to be calculated in multiple ways (see 3.3.2), and as such can be referred to using different 

terminology, such as Tumour Cell Density (TCD). 

 

2.2.4.1 TSR in CRC 

TSR in CRC is a strong prognostic indicator that has been consistently validated in numerous 

publications [6,50,51,52,57,58]. As with studies in other cancers, research has shown that the 

TSR in CRC predicts poorer response to therapy and clinical outcomes when cases exhibit 

higher proportions of stroma [59]. This provides a useful tool for directing targeted therapies at 

patients who will benefit from them, and avoiding giving toxic treatments to those who will not. 

TSR has the capacity to enhance the current TNM scoring system (see section 2.2.3) by 

including this information with routine patient assessment [60]. The majority of CRC TSR 

publications report that assessments are made on H&E stained slides, with most studies using 

visual estimations. Locating an appropriate sampling site for observing TSR is consistent 

amongst publications, with the consensus being the application of ROIs to the area of highest 

TCD along the luminal aspect of the tumour. 

By suggesting a new prognostic metric for case reporting, extra work would have to be 

undertaken by the pathologist, per case. This extra work can be minimised by not requiring 

extra (non-routine) stains and making very general estimates, such as assigning a score of either 

above or below 50%. This would add very little to the pathologist workload, and could be easily 

implemented. However, research has not assessed the pathologist agreement levels on cases that 

fall close to either side of the cut-off (e.g. within ±10%), and it is predicted that agreement is 

much lower than the reported kappa values of 0.84 on cases falling within this range (see the 

assessment of research listed in Table 2). It is also not assessed what impact the agreement (or 

lack thereof) would have on patients with TSRs around this cut-off threshold. 

To date, only research at Leeds reports using SRS to quantitate TSR, using the RandomSpot 

system (see section 3.2), which produces a precise continuous value. This method requires more 

time to analyse, with West et al reporting approximately 20 minutes per case, annotated with 

300 sampling points [6]. The two-bin visual assessment of TSR can be simple to manually 
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integrate into routine pathological assessment of patient cases, at the expense of accuracy. Using 

more precise metrics when assessing patients should be encouraged where possible. 

Finally, it should be noted that TSR does not account for tumour heterogeneity, i.e. describing 

whether the tumour is composed of dispersed islands of tumour, or whether the tumour 

epithelium is grouped together. Using a combination of TSR and heterogeneity would provide a 

more complete assessment of a tumour and perhaps prove to be a more strongly correlated 

prognostic marker. 

 

2.2.5 Summary 

Analysis of CRC is non-trivial, due to the variable appearance of neoplastic cells and glands. 

Current scoring systems account for variation in manual assessment by identifying finite 

categories with clear boundaries, such as the extent of invasion. However, these boundaries are 

still open to interpretation, and the amount of change compared to normal cells and crypts is 

made using subjective estimates. This makes manual inspection and analysis of the disease 

prone to inter-observer variability, which may ultimately affect decisions for patient treatment. 

Traditional scoring methods use categorical bins to reduce scorer variation and subjectivity, 

which may be at the expense of better prognostic capabilities of more precise metrics.  

The variability in the end product of the prepared tissue can be affected at every stage of the 

process, which can drastically affect the visual characteristics of the tissue in terms of colour, 

shape and content. The impact of these variations is accounted for in manual analysis, by using 

expert pathological knowledge. This variation must also be considered in automated solutions, 

which are more likely to have rigidly defined models of tissue.  

The tumour:stroma ratio (TSR) is a validated prognostic indicator in CRC and other cancers, 

with multiple manual scoring methods that vary in precision and the amount of time and effort 

spent evaluating images by a pathologist. SRS provides a robust and accurate method of 

quantification, when appropriate calculations are made to minimise error rate in the sample size, 

but as the worked example shows, 400 points are required for an expected target frequency of 

50%. Analysing this many points per case is time consuming, laborious and prone to inter-

scorer variation, and so automation is highly desirable. 

Despite these challenges, there is a clear benefit that consistent and reliable automated analysis 

of CRC will bring to the pathologist workflow, and ultimately patients.  
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2.3 Digital pathology 

This section provides a background on the field of digital pathology, in terms of its history, 

development, as well as current and forecasted impact in clinical application.  

 

2.3.1 History of digital pathology 

Digital pathology (DP) is a rapidly growing discipline which encompasses a wide field of 

research in the histopathology domain, focusing on the acquisition of digital slide images, and 

the creation and management of data that can be derived from them. These fields include (and 

are not limited to) image analysis, artificial intelligence, high performance computing, human-

computer interaction, psychophysics, informatics, data management, communication 

management and colour science. The current spike in interest in this field is due to the reduction 

in cost of high resolution digital slide scanners, which have been commercially available for 

approximately 15 years, combined with the increase in high powered multi-core processing 

available on single workstations and high-performance clusters (HPCs). However, the field of 

digital pathology extends back further to 1955, which saw the first attempt at digital 

microscopy, called the Cytoanalyzer [61]. An article from the Franklin Institute at the time 

writes, 

“The device, called a Cytoanalyzer, scans the microscope images of the cells, automatically 

sorts them in its "mind" according to their characteristics, and classifies them as normal or 

suspicious.” [62]. 

The characteristics that the article alludes to are based on the optical density of the cells. Figure 

4 illustrates examples of cell images digitally captured by the Cytoanalyzer, printed as 

photomicrographs. 
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Figure 4 – Example photomicrograph images captured by the Cytoanalyzer [63] 

Left: Eosinophil 

Centre: Neutrophil 

Right: Lymphocyte 

The quote at the start of the chapter refers to the failure to utilise the Cytoanalyzer for routine 

clinical practice [63], however, one could be forgiven for thinking that the quote could have as 

easily been written in recent years, regarding image analysis solutions to modern digital slide 

images. 

Until the development of high throughput digital slide scanners, microscope-mounted charge-

coupled device (CCD) cameras were used to obtain low resolution digital images of 

microscopic fields of view for research into automated analysis of histopathology images [5]. 

Since the introduction of whole slide scanners in the early 2000s, the digital acquisition of full 

tissue samples at microscopic magnification, known as whole slide imaging (WSI) has become 

common in pathology research environments. Images can be scanned using a 20x, 40x or 80x 

objective, where images scanned with a 20x lens are scanned at a resolution of 0.5 microns per 

pixel. One standard digital slide image is approximately one gigapixel in size, and as such 

requires optimised compression (typically JPEG or JPEG2000 formats) to avoid generating 

images with prohibitive file sizes. As a result of the introduction of digital slide scanners, the 

number of publications presenting algorithms that attempt to automate histopathology image 

analysis exponentially increased [43,44]. However, research into routine clinical use of digital 

slides for primary diagnosis for pathologist interpretation is ongoing [45-47], with the US Food 

and Drug Administration (FDA) approving one single system for clinical use as of 2017 [69]. 

 

2.3.2 Digital slides vs glass slides 

There are many advantages to using digital slides over glass slides [67]. These include 

immediate benefits to the pathologist, such as worldwide access to slides, when using web-

facing digital slide servers, the ability to use computer monitors as inexpensive teaching and 
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collaboration tools instead of multiheaded microscopes, instantaneous sharing of images for 

obtaining second opinions, lack of stains fading in storage and eliminating the danger of slides 

being lost or damaged in transit. Other benefits rely on successful development and integration 

of CAD systems, which are not currently routinely accepted [70]. 

However, there are drawbacks to consider when assessing digital pathology as a replacement for 

traditional light microscopy. The process of generating digital slides still relies on the original 

laboratory workflow of glass slide production, in addition to adding a process to the pipeline, 

and therefore there are no efficiency gains in that respect. This extra step also requires skilled 

scanner operators to scan and apply quality control (QC) checks to every slide scanned. Extra 

hardware and digital slide storage must not only be purchased but also maintained by skilled 

technicians and network administrators. Digital slides are reliant on fast network or internet 

connections to view slides without progressive rendering of image tiles becoming distracting 

and frustrating. Also, end user hardware is not standardised, and the quality of the device used 

for viewing digital slides will greatly affect the experience. 

 

2.3.3 Variability in digital slides 

In addition to the issues of variability in glass slide preparation (section 2.2.2.2), the process of 

digital slide production, as well as the configuration of end user devices adds further scope for 

variation in slide appearance.  

Scanner differences and variation 

The make and model of scanner instrument can affect the appearance of the digital slides. Area 

scanners take traditional 2D photograph-style snapshots of a section of a whole slide image, and 

combine (stitch) them as image tiles. If the whole area is not uniformly illuminated, this can 

create issues with vignettes at the edges of each tile, and can create a gridline-like appearance 

over the whole slide image. Line scanners use linear-array detectors to try to mitigate this 

problem, but can instead create striping artefacts, if illumination is not optimal. As with 

traditional microscopes, digital slide scanners require a backlight to illuminate the tissue as the 

image is captured. Earlier digital slide scanners used halogen backlight bulbs which required 

warming up before reaching optimal brightness. Also, the maximum brightness of each bulb 

gradually reduces over time, meaning that slides scanned are not consistently lit. Brightness and 

colour calibration is intended to compensate for such variation, however, different scanner 

manufacturers use different calibration settings, which achieves varying images of the same 

tissue. 
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Colour calibration and variation 

Histopathological analysis relies on accurate representation of colour so that structures in tissue 

and nuclei can be identified and diagnoses can be made. The colour of digital slide tissue can be 

affected by variation of physical factors, in both the glass slide production process (section 

2.2.2.2), and the digital slide scanning process. Colour is also affected digitally by calibration of 

scanners, which transforms the red, green and blue (RGB) values in an attempt to change the 

scanned image colours to the true tissue slide colours [71]. This technique may also be used to 

digitally enhance colour or contrast to make slides easier to score, or look more striking for 

publications and media. The transformation parameters (colour profiles) are set during scanner 

calibration, typically using a colour calibration slide similar to a Macbeth colour chart [51,52]. 

This allows reference colours to be adjusted to their known values using a linear function that 

can be applied to subsequent scanned images [74]. Scanner calibration of this type may or may 

not be routinely enforced by scanner operators.  

Variation of end user devices 

Finally, the endpoint of the digital slide viewing pipeline affects both user experience, and the 

ease with which subtleties in differences between colour can be observed [54,55]. These issues 

are affected by monitor size and resolution, as well as contrast ratio, and colour calibration. 

Colour calibration of end user devices affects the visual appearance of digital slide images, as 

well as in-built calibration of slide viewing software, featuring enhancements or additional 

colour management profiles.  

Using expensive, high resolution and high contrast medical grade monitors is likely to mitigate 

issues with colour calibration at the display side of the pipeline, and work at Leeds is currently 

being undertaken to establish to what extent such levels of contrast improve pathologist scoring 

[77]. By standardising the appearance of digital slides along all aspects of the digitisation 

pipeline, more consistent diagnoses can be made, and current barriers to using digital slides for 

primary diagnosis can be reduced. 

However, the display resolution and colour management of display devices is less relevant to 

automated solutions, which obtain and process images independently of these device-level 

transformations. Therefore, automating image analysis tasks that require expensive visual 

display equipment may help to reduce future costs in routine diagnostic work. 
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2.3.4 Digital pathology slides for routine clinical use 

The variation in both digital slide production and viewing, discussed in 2.3.3 means that end 

user experience can differ vastly between workstations and images produced by digital slide 

scanning centres. This variability has contributed to the slow uptake of digital pathology for 

routine clinical use [78], and at the time of writing, one digital slide viewing system (Phillips 

IntelliSite Pathology Solution) has been FDA approved for routine diagnostic evaluation of 

patient tissue [69]. Obstacles to widespread implementation of digital pathology include the 

additional investment and workflow steps required, in addition to existing laboratory practises 

[58,59]. Most importantly, is reassurance that the ability to maintain (if not improve) the current 

levels of speed, accuracy and consistency of pathologist scoring is preserved with the new 

technology [60,61]. Subsequently, microscope scoring is typically the gold standard for 

comparative studies using traditional and digital pathology imaging modalities [83]. 

Experiments into replicating fields of view similar to the microscope on high resolution displays 

often find that once familiarised, pathologists can navigate and score tissue as well as traditional 

methods [47,63,64], and time taken spent learning the interface is much quicker than that of a 

microscope [86]. 

 

2.3.5 Summary 

Digital pathology currently has the potential to facilitate faster throughput of patient case 

analysis, by providing faster and more collaborative imaging modalities, and assistive workflow 

technologies. However, variability of the appearance of digital slides can be affected by every 

stage of the image generation pipeline – from obtaining patient specimens, through to viewing 

the scanned tissue on a display. Developing accepted and robust automation solutions requires 

standardisation and extensive validation to be accepted by national regulatory bodies, and very 

few systems currently are. 

Automation of routine visual inspection tasks using computer vision and machine learning has 

the capacity to increase speed, accuracy and reproducibility of results, given that developed 

solutions are validated, and trusted by the pathology community.  
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2.4 Image analysis 

This section presents image analysis techniques, methods and technologies that have the 

potential to facilitate the development of computer aided diagnosis algorithms and systems, with 

respect to CRC images. 

 

2.4.1 Image retrieval 

Digital slide images at the University of Leeds are scanned using Leica-Aperio digital slide 

scanners, which create JPEG2000 compressed BigTIFF image pyramid files with a proprietary 

extension, known as the ScanScope virtual slide format (SVS). At the time of writing, there are 

over 350,000 digital slides stored on the Leeds image server, which use 115 terabytes (TB) of 

hard disk storage. All images are made accessible over the web using the Leica-Aperio 

ImageServer software, which means images can be retrieved programmatically either over 

hypertext transfer protocol (HTTP), or via accessing the images directly on the server. By 

retrieving the images over HTTP, the ImageServer software retrieves the appropriate image tiles 

(set to 256x256 pixels in the scanner software) and combines them. The image is then converted 

into a web-friendly JPEG format and compressed using a quality input value set by the HTTP 

GET request. This method of transmission applied further compression to the images, creates a 

high demand on server resources, and is subject to transmission errors. Therefore it is preferable 

to access the slides locally, using vendor-neutral digital slide libraries such as OpenSlide [87], 

or the Open Microscopy Environment (OME) BioFormats package [88]. 

 

2.4.2 Analysis of colour and stain 

Digital slide images represent colour using the RGB colourspace. This method uses additive 

colour mixing, whereby colours that are combined get brighter. This is representative of 

combining multiple wavelengths in the coloured light spectrum. Pixels can be analysed for their 

individual colour values using RGB values, however, these values are not particularly useful for 

separating colours based on hue. Transforming RGB values into the hue, saturation and value / 

intensity (HSV) colourspace creates values which are more intuitively represented by the human 
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visual system. Figure 5 illustrates that this transformation is useful for separating tissue counter-

stained with Diaminobenzidine (HDAB). 

 

Figure 5 - 3D Scatterplots of representative RGB and HSV values 

The values plotted are representative of pixel values found in H&E and HDAB stained slides. 

Top Left: RGB values of H&E stained tissue 

Top Right: HSV values of H&E stained tissue 

Bottom Left: RGB values of HDAB stained tissue 

Bottom Right: HSV values of HDAB stained tissue 

The figure shows that HDAB staining is separable in the HSV colourspace, whereas the H&E staining is 

not. 

The 3D scatterplot in the bottom right of Figure 5 shows that the HDAB stains can be separated 

and analysed individually with linear thresholding. However, this is not the case for H&E stains 

used in histopathological analysis.  

In histopathology, stains that are combined get darker, which is known as subtractive colour 

mixing. By transforming the (additive) RGB colourspace, using values that represent pure 

Haematoxylin and Eosin, stain colours can be represented independently, digitally separating 

the stains [68,69]. The process of transforming the colourspace is called colour deconvolution, 

and one of the most commonly used methods in histopathology uses orthonormal 

transformation of the RGB colour space using predetermined vectors that represent the optical 
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density (OD) of individual staining components [91]. The resulting transformation produces 

images which have three pixel values representing three stain colours. Since typical 

histopathology staining uses only one counterstain, the third OD vector is usually calculated 

from the cross-product of the other two. 

𝑂𝐷𝐶 = − log10

𝐼𝑐
𝐼0,𝑐

 = 𝐴𝑐𝐶  

Equation 4 – Calculation of OD for pure stains 

Equation 4 shows the calculation of OD for colour channel C, where the ratio 𝐼𝑐  / 𝐼𝑂,𝐶  is the 

intensity of transmitted light, relative to the incident light (the transmission coefficient). A is the 

concentration of stain and 𝑐𝐶 is the absorption factor of the pure stain. To transform the RGB 

image using OD values, the OD image is multiplied by the inverse of the OD matrix.  

 

Figure 6 - H&E stains digitally separated by colour deconvolution 

Left: Original Image 

Centre: Haematoxylin colour channel 

Right: Eosin colour channel 

Note that the Haematoxylin channel image highlights nuclear components and the eosin channel 

highlights structural elements. 

Note that the separated colour channels are single-value intensity images, and in many 

visualisations, often have a prototype stain colour applied to them for visual representation 

purposes only. The third colour channel (representing everything else) is not shown. 

It should be noted that colour deconvolution follows Beer-Lambert’s law, in that there is a 

linear dependency between stain concentration and OD. However, this is not true for all stains, 

most notably the brown DAB stain, which scatters light, breaking one of the prerequisites for 

colour deconvolution [71,72]. 
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2.4.3 Spatial filtering 

Spatial filtering is a general image processing technique that applies an operation to each pixel 

value in an image 𝐼(𝑥, 𝑦), using the intensity values of the surrounding pixels in neighbourhood 

𝑁, with co-ordinates (𝑢, 𝑣). The operation, based on convolution, applies a filter (or kernel) 𝐻, 

the same size as 𝑁, to each pixel in the image. The filter values are referred to as filter 

coefficients, rather than pixels. For linear spatial filtering, filter coefficients are multiplied with 

image pixels at the corresponding point in 𝑁.  

𝑔(𝑢, 𝑣) =  ∑ 𝐼(𝑢 + 𝑖, 𝑢 + 𝑗)𝐻(𝑖, 𝑗)

(𝑖,𝑗)∈𝑁

 

Equation 5 – Linear spatial filtering 

Equation 5 describes the process of linear spatial filtering, where 𝑔(𝑢, 𝑣) denotes the resulting 

value for pixel (u, v). The sum of all values is taken from the pixels in neighbourhood N. 

Two examples of linear spatial filters in image analysis are blurring and edge detection. 

Blurring functions use averaging filters, which take the average value of the pixel values in 

neighbourhood N, such that the filter coefficients are all set to 1, divided by the number of 

elements in the filter. This is so that the sum of the filter is equal to 1, and is referred to as 

normalisation. Edge detection filters are directional, in that they are applied in both horizontal 

and vertical orientations, and the mean value for all directional results is taken per pixel. Figure 

7 shows examples of both filters applied to the same greyscale image of CRC tissue. 

 

Figure 7 - Examples of two spatial filters on CRC tissue 

Left: Original greyscale image taken from intensity channel of HSV image 

Centre: Averaging filter applied, blurring the image 

Right: Edge detection filter (Prewitt) applied, enhancing edges in the image 

These filters form the basis of more advanced computer vision techniques. 
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Other filters provide variations on these two methods, such as Gaussian blurring, and Sobel 

edge detection. Median filtering, simply sets the pixel value (𝑖, 𝑗) to the median value of all 

pixels in the neighbourhood 𝑁. This method is less affected by noise in the neighbourhood, 

when compared to the standard averaging (or box) filter, and so can be used for noise reduction 

in image analysis. This method may be particularly useful when removing sparse areas of nuclei 

(such as stroma when compared to tumour), when analysed at low power. 

Convolutional Neural Networks are a form of Deep Learning, which independently learn spatial 

filters that appropriately model image data, instead of using human-generated filters or features, 

and are discussed in section 2.4.6.8. 

 

2.4.4 Texture analysis 

Texture is an important image feature which can be used to distinguish between areas of 

heterogeneous and homogeneous appearance [94]. Textures can be described as images (or 

areas of images) that contain repeated structures, often contain a degree of randomness, and can 

be modelled statistically. This section focuses on two common techniques that use statistical 

methods, although there are many others that fall under four categories, listed below [95]. 

• Statistical methods 

The spatial distribution of intensity levels within an image 

• Geometric methods 

Derision of numeric values from texture elements, called primitives 

• Model based methods 

Predefining image models that can be used to analyse or synthesise texture 

• Signal processing methods 

Applying frequency analysis, computing features from filtered images 

2.4.4.1 Grey Level Co-occurrence Matrices (GLCM) 

Textural analysis using Grey Level Co-occurrence Matrices (GLCM) assesses differences 

between pixel pairs in a greyscale (intensity) image [96]. Initially a greyscale image is reduced 

from an 8-bit unsigned integer matrix with 256 grey values to 𝑁 grey values, (typically 8), and 

an empty 𝑁𝑥𝑁 matrix is constructed. For every pixel in the down-sampled image, a 

predetermined offset defines pixel pairs to compare to. Depending on the implementation, an 

offset of [1 0] would indicate a comparison to be made +1 along the x axis and 0 along the y 

axis. Some implementations specify offset in degrees. The down-sampled grey values of both 
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pixels represent co-ordinates in the 𝑁𝑥𝑁 matrix, and the number of co-occurrences of the pixel 

pair values is stored at those co-ordinates. This 2D histogram is referred to as the GLCM. 

 

Figure 8 - Example of an 8x8 GLCM on CRC tissue 

Left: Original greyscale image taken from intensity channel of HSV image 

Centre: Down-sampled image to 8 grey values 

Right: GLCM showing counts of co-occurrences between pixel pairs with offset [1 0] 

Images with a higher proportion of pairs along the diagonal indicate a more homogeneous image. 

Figure 8 illustrates the process of generating a GLCM for an image with an offset of [1 0]. 

However, as with the edge detection convolution kernels, GLCM calculation is a directional 

function, and therefore it is often more appropriate to repeat the process in four directions, and 

take the average value of each GLCM co-ordinate.  

Once the GLCM has been generated, features can be calculated from the distribution of pixel 

pairs. Haralick features are calculations that quantify properties of texture, based on statistics of 

the computed GLCM [97]. These features include: contrast, which is a measure of how intensity 

differs between pixel pairs over the whole image; energy (also referred to as angular second 

moment), which is the sum of squared elements in the GLCM; homogeneity, which measures 

how closely the distribution in the GLCM fits the diagonal. 

GLCM texture properties are commonly used and robust features for texture analysis, and may 

be useful for discriminating between different areas of CRC tissue. Methods using texture to 

segment and classify tissue are discussed in 2.5.3 and 2.5.4. 

2.4.4.2 Local Binary Patterns (LBP) 

The Local Binary Patterns (LBP) algorithm is a rotationally invariant texture descriptor, using 

neighbouring pixels to analyse differences in intensity [98]. Traditionally LBP is computed per-

pixel using 8-neighbourhood connectivity, obtaining each value as a 1x8 vector. For every value 

in the vector, the current pixel (i, j) is applied as a threshold, where values lower than the 

threshold are set to zero, and values above the threshold are set to one. This yields a vector of 8 
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binary digits (bits), which is converted into an 8-bit number, and assigned as the value to pixel 

(i, j). 

𝐿𝐵𝑃𝑃,𝑅 = ∑ 𝑠(𝑔𝑝 − 𝑔𝑐)2
𝑃

𝑃−1

𝑝=0

 

Equation 6 – LBP value for a given pixel with neighbourhood size of 8 

Equation 6 describes the process of generating an LBP value for a given pixel, such that P is the 

number of sampling points (neighbourhood size), and R is the radius. The value 𝑔𝑐  represents 

the intensity value at the centre of the local neighbourhood, and 𝑔𝑝 denotes the intensity values 

of the surrounding pixels. Figure 9 visualises this process. 

 

Figure 9 – Example of LBP operation performed on a single pixel neighbourhood 

Left: Original greyscale image 

Centre: Intensity values of pixel (i, j) with surrounding neighbourhood of size 8 and radius 1, and 

thresholded values, using pixel (i, j) as the threshold. 

Right: Resulting LBP image  

The LBP algorithm can be adapted to accommodate number of neighbouring values and radius 

size to act as a multi-resolution and rotationally invariant measure of texture [99]. Increasing the 

number of sampling points makes the resulting descriptor more accurate, at higher 

computational cost, and increasing the radius incorporates larger scales, but loses local 

information. 
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2.4.5 Segmentation 

Image segmentation is the process of partitioning sections of a given image into multiple 

segments, typically into regions that represent the component objects of the overall image. 

There are many segmentation techniques that exist [100], and evaluation of such techniques is 

well documented [80-85]. A selection of segmentation algorithms is presented in this section, 

which may be useful for analysis of CRC images. 

2.4.5.1 Thresholding 

Thresholding is a simple and computationally inexpensive operation that segments objects 

based on intensity values falling above, below or equal to a threshold value. For a given 

intensity image 𝐼(𝑥, 𝑦), segmentation can be performed using thresholding described in 

Equation 7 to produce binary image 𝐵𝑊(𝑥, 𝑦). 

𝐵𝑊(𝑥, 𝑦) = {
 1 𝐼(𝑥, 𝑦)  ≥  𝑇

 0 𝐼(𝑥, 𝑦)  <  𝑇
 

Equation 7 - Binary image thresholding 

Threshold 𝑇 is used to determine which pixels in binary image 𝐵𝑊 are set to 1 and which are 

set to 0, so that foreground objects (pixels set to 1) can be analysed or further processed using 

connected components analysis (CCA) or binary image morphology.  

Identifying thresholds that yield the best possible segmentation are critical for subsequent 

processing and analysis. However, due to the large amount of variation in CRC digital slide 

images (section 2.3.3), including non-uniform staining and background illumination levels 

across slides, identifying adaptive techniques that provide best case segmentations is non-trivial. 

One common method for solving this problem (known as Otsu’s method) uses global clustering 

[107], which assumes an image is comprised of two classes with different intensity values, and 

the optimal threshold lies at the minima between the two peaks of the bimodal distribution 

represented by an intensity histogram. However, determining thresholds when minima between 

peaks are not well defined is difficult, and the concept of fuzzy sets is a proposed method to 

identify thresholds where boundaries may not be clear [108]. Furthermore, with respect to CRC 

images, multi-level thresholding may be required to partition images into foreground tissue and 

non-informative background, and then identify classes or objects within the foreground tissue. 

One method for achieving this is to remove background pixels that are a known value before 

applying a second segmentation. In this instance, the University of Leeds’s Leica-Aperio 

scanners have a default background RGB colour setting of 240, 240, 240 [109], and so the 

appropriate threshold value for removing background pixels in an HSV intensity image would 
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be 𝑇 = 240. The remaining values can be analysed to identify a second threshold between 

foreground and background tissue using an appropriate method.  

𝐷𝐶𝐻𝑓(𝑢, 𝑣)  ∈  𝐷𝐶𝐻(𝑥, 𝑦) × 𝐵𝑊𝑓(𝑥, 𝑦) > 0  

𝐵𝑊𝑓𝑡(𝑥, 𝑦)  = 𝐷𝐶𝐻(𝑥, 𝑦)  ≤  𝜇𝐷𝐶𝐻𝑓(𝑢, 𝑣) − 
𝜎𝐷𝐶𝐻𝑓(𝑢, 𝑣)

2
 

Equation 8 - Creating a foreground tissue mask 

Equation 8 details this process, such that 𝐵𝑊𝑓(𝑥, 𝑦) is the segmentation for foreground pixels, 

described in Equation 7, with 𝑇 = 240. 𝐷𝐶𝐻𝑓(𝑢, 𝑣) is the subset of foreground pixels in the 

Haematoxylin deconvolution channel 𝐷𝐶𝐻(𝑥, 𝑦), using the foreground pixels in 𝐵𝑊𝑓(𝑥, 𝑦) to 

remove background pixels. 𝐵𝑊𝑓𝑡(𝑥, 𝑦) is the resulting binary image segmentation of 

foreground tissue in 𝐷𝐶𝐻(𝑥, 𝑦) when the thresholded using a calculation of the mean values of 

foreground Haematoxylin intensity, 𝐷𝐶𝐻𝑓(𝑢, 𝑣) subtracted by half of one standard deviation of 

the same distribution 𝜎𝐷𝐶𝐻𝑓(𝑢, 𝑣) / 2. 

 

Figure 10 – Comparison of two thresholding methods, on CRC tissue 

Both methods assume a bimodal distribution of foreground and background tissue, after background 

pixels have been removed. 

Left: Original RGB CRC image 

Centre: Thresholded image using Ostu’s method on 𝐷𝐶𝐻𝑓(𝑢, 𝑣) 

Right: Thresholded image using method from Equation 8 on 𝐷𝐶𝐻𝑓(𝑢, 𝑣) 

The Otsu method shows that more pixels around the edge of the nuclei are retained using this method. 

Figure 10 shows a comparison of methods using adaptive thresholding using the subset of pixels 

𝐷𝐶𝐻𝑓(𝑢, 𝑣). The segmentation is applied to all channels in the RGB image, and the original 

deconvolution result 𝐷𝐶𝐻(𝑥, 𝑦) can be seen in Figure 6. It should be noted that thresholding and 

colour models may be applied in multiple colourspaces, or staining channels (using colour 

deconvolution). 
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2.4.5.2 Minima-seeded region-growing 

Region-growing uses the concept of expanding seed points (pixels) into segmented areas by 

adding neighbouring pixels that fit a predefined criterion of similarity or homogeneity, such as 

difference in intensity, texture or (for deconvoluted stain channels) intensity of stain. This has 

the effect of grouping pixels based on their appearance. Seed points are calculated using salient 

parts of an image, depending on the desired segmentation result. In the case of CRC images, 

seed points may be chosen at pixels with the lowest intensity (areas of local minima), as they 

could represent the centres of nuclei (not including the nucleolus).  

H-minima transform 

The H-minima transform is a morphological method which supresses local minima in a given 

image [110]. The transform itself is performed using a non-linear filter 𝑁𝑥𝑁 pixels in size, that 

sets each pixel to the lowest value of all pixels in the filter neighbourhood. The image result is 

modified with the value H added, which ensures that no value in the resulting image is lower 

than its original value. This creates larger areas of homogeneous minima, which are useful for 

seeding region growing segmentation algorithms. 

Watershed algorithm 

The watershed algorithm is a region-growing segmentation algorithm, which uses the concept of 

viewing intensity images as topographical maps [90,91], so that low intensity values are lower 

points (valleys), and high intensity values are higher points (peaks). By applying region-

growing to areas of minima, the concept is likened to filling basins with water, until region 

boundaries meet. At this point a partition is created between the two, using the region’s 

maximum intensity, representing a dam, or watershed, between two lakes, to prevent them 

merging. The resulting segmentation creates partitions between objects which are likely 

touching, and so is a useful tool for nuclear detection [113] The process is sensitive to noise, 

both over and under-segmentation, and is also dependent on regional minima representing the 

true number of objects in the image. Figure 11 shows an example of the H-minima transformed 

𝐷𝐶𝐻(𝑥, 𝑦) image, generating seeds for the watershed segmentation function, and the resulting 

segmentation partitioning the thresholded image 𝐷𝐶𝐻𝑓(𝑢, 𝑣) from Figure 10. 
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Figure 11 - Local minima and watershed segmentation of CRC image 

Left: Original RGB CRC image 

Centre: Image 𝐷𝐶𝐻(𝑥, 𝑦), transformed by H-minima function, and watershed region boundaries 

Right: Segmentation image 𝐷𝐶𝐻𝑓(𝑢, 𝑣) from Figure 10 further partitioned by watershed boundaries 

Note that the amount of clustered nuclei that have not been segmented using this method – this highlights 

that the number and distribution of seeds used for region growing are not sufficient. 

It should be noted that the watershed algorithm, and other minima-seeded region-growing 

algorithms can be applied to pre-segmented nuclei (binary image) as a function specifically to 

separate touching objects. In this case, the seeds can be identified as minima in the complement 

(inverse) of the distance transform of the binary image, where the distance transform is a 

function that sets each pixel’s value to the Euclidean distance in pixels to the nearest object.  

 

2.4.5.3 Segmentation by clustering 

Clustering is the process of grouping data points in an N-dimensional feature space, based on 

their similarity or distance. The feature space can apply to pixels, areas or objects for clustering 

pixels or segments into larger segments, and also to classify objects based on their feature 

similarity. This section focuses on clustering as a segmentation tool. 

K-Means clustering 

The K-Means clustering algorithm attempts to identify appropriate cluster groups based on the 

minimisation of the mean Euclidean distance between the prototype cluster centres and their 

associated data points [114]. The parameter 𝑘 is set to determine the number of clusters to be 

used, and as such, the number of clusters to find needs to be known. For each cluster, a 

randomly selected start point is selected within the feature space, and data points are assigned to 

the nearest one. The mean of the distances for all associated data points to the cluster centre is 

calculated for all 𝑘 clusters (hence K-Means). The position of the cluster centres is iteratively 

moved, so that the means can be recomputed to identify if the new positions reduce the mean 
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distance for all clusters. Because of this, K-Means clustering is thought of as a gradient descent 

algorithm. Equation 9 shows this formally, where 𝑆 is the group of k data point sets, and 𝜇𝑖 is 

the mean of points in 𝑆𝑖. 

arg min
𝑆

∑ ∑‖𝑥 − 𝜇𝑖‖
2

𝑥∈𝑆𝑖

𝑘

𝑖=1

 

Equation 9 – K-Means Clustering minimisation of sum of squares 

K-Means clustering is a fast and efficient algorithm for segmenting images using a given feature 

space. Using this technique in various colourspaces is a common method in image processing, 

and may be useful for separating stain colours. However, the algorithm suffers from reliance on 

appropriate initialisation of the cluster centres, and as such, it can be considered good practice to 

run the algorithm several times to find the optimal solution. Also, since mean values are taken, 

the distance values are sensitive to noise. 

Mean-shift segmentation  

Mean-shift segmentation is another localised homogenisation technique using mean distance 

values to identify optimal clusters [115]. However, unlike K-Means clustering, Mean-shift does 

not have a random initialisation method, and does not require a predefined number of clusters. 

The algorithm analyses every data point in the feature space iteratively, and for each co-

ordinate, all other points within a given radius are identified. The mean co-ordinate of all points 

within the radius is calculated, and this is set as the centroid for the next iteration, which repeats 

the calculation, until the convergence of all iterations in that cluster. The appropriateness of the 

radius size is dictated by the density of the clusters. For large datasets, a number of maximum 

iterations can be set (depending on the algorithm implementation). 

Simple Linear Iterative Clustering (SLIC) 

Simple Linear Iterative Clustering of superpixels (SLIC), is a localised clustering algorithm 

which, instead of identifying cluster centres in a given feature space, uses an regular grid of k 

seed points to create nearly uniform segmentations [116]. For each seed point, cluster centres 

are created in a five-dimensional space using LAB colour and x and y co-ordinates. The regular 

grid is deformed slightly by moving each centre to the co-ordinate with the lowest intensity 

value within an 𝑁𝑥𝑁 neighbourhood. The surrounding pixels are then clustered to these new 

centres based on their values in the five-dimensional space, and connectivity is enforced. This 

method is efficient and computationally inexpensive [117], and may be useful for segmenting 

complex structures in CRC tissue. 
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Figure 12 - Example of clustering methodologies on CRC tissue 

Left: K-Means using 4 clusters 

Centre: Mean shift with radius of 10 and minimum segment size of 100 pixels 

Right: SLIC using a compactness value of 10 and merging radius of 1 

Figure 12 shows examples of the three clustering algorithms applied to CRC tissue, using input 

parameters that yield visually similar results. Note that the clusters are coloured by their mean 

RGB values. 

2.4.5.4 Graph-cut segmentation 

Graph-cut segmentation models images as graphs, where graph 𝐺 contains nodes or vertices 𝑉, 

that represent pixels in the image, and edges 𝐸, that are weighting functions called costs, using 

the similarity between the nodes. This is modelled as 𝐺 = {𝑉, 𝐸}. Removing enough edges in a 

graph to create two separate partitions is known as a cut, which has a calculated cost. Given two 

partitions 𝐴 and 𝐵, the cost of the cut can be calculated as the sum of the edge costs 𝑤(𝑝, 𝑞), 

shown in Equation 10. 

𝑐𝑢𝑡(𝐴, 𝐵)  = ∑ 𝑤(𝑝, 𝑞)

𝑝∈𝐴,𝑞∈𝐵

 

Equation 10 - The graph-cut cost function 

Min-cut segmentation 

The min-cut (or max-flow) method identifies cuts with the minimum cost value, as the most 

appropriate segmentation [118]. However, since the cost is a summation of all the edge weights 

between 𝐴 and 𝐵, this method inherently penalises longer cuts, therefore is prone to making 

smaller partitions that are not necessarily optimal. 
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Normalised cut segmentation 

Normalised cuts addresses the bias in the min-cut algorithm by normalising the sum of the 

costs, dividing them by their association [119]. Equation 11 shows that for a graph cut of two 

partitions (𝐴, 𝐵), their normalised cut cost value is the sum of the cost value divided by the sum 

of all vertices touching 𝐴, and the cost value, divided by the sum of all vertices touching B. 

𝑁𝑐𝑢𝑡(𝐴, 𝐵)  =
𝑐𝑢𝑡(𝐴, 𝐵)

𝑎𝑠𝑠𝑜𝑐(𝐴, 𝑉)
+

𝑐𝑢𝑡(𝐴, 𝐵)

𝑎𝑠𝑠𝑜𝑐(𝐵, 𝑉)
 

Equation 11 – The Normalised cut cost function 

Where 𝑎𝑠𝑠𝑜𝑐(𝐴, 𝑉) is the total connection from the vertices in 𝐴 to all nodes in the graph, with 

𝑎𝑠𝑠𝑜𝑐(𝐵, 𝑉) being respectively the same. Finding the minimum cost for cuts in this manner is 

computationally prohibitive, and therefore an approximate minimisation of the 𝑁𝑐𝑢𝑡 value is 

made by solving a generalised eigenvalue problem. 

  

Figure 13 - Comparison of graph cut methodologies on CRC tissue 

Left: Original Image 

Centre: Min-cut method partitioning into 16 (non-contiguous) regions 

Right: Normalised cuts method partitioning into 16 (contiguous) regions 

The min-cut example illustrates that partitions are made using cuts that have the lowest cost, and do not 

take into account segment size. The segments from the normalised cut method are more consistent in size. 

Figure 13 shows a comparison between the min-cut and normalised cuts methods in CRC tissue, 

using a target number of 16 graph partitions. It is evident from these examples that the min-cut 

method prioritises cuts that are shorter in length. Note that the segments are coloured by their 

mean RGB values. 
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2.4.6 Supervised learning 

It should be noted that the distinction between segmentation and classification is not always 

clear, due to some segmentation methods defining their own prototype classes based on 

similarity, homogeneity or distance, and grouping pixels by those metrics. In this respect, 

clustering may be considered a form of unsupervised learning, in that the clusters are made 

without any input on what they should be. This section focuses on classification of images using 

expert-labelled images and features to train machine learning (ML) algorithms.  

2.4.6.1 Image features 

Image features are descriptors that parameterise a specific characteristic over an entire image, or 

at a particular location within an image. Features are often continuous variables, but are not 

limited to single values, and so can be histograms, vectors, matrices, etc. Features are selected 

for their ability to discriminate between classes, and therefore the accuracy of the classifier is 

dependent on the features chosen. If 𝑥 is a single feature, a set of n features is described as 

𝑓 =  

[
 
 
 
 
𝑥1

𝑥2
𝑥3

⋮
𝑥𝑛]

 
 
 
 

 

and a feature set is represented as 𝑆 =  [𝑓1, 𝑓2, … 𝑓𝑛] where each vector 𝑓 has a classification 

label. The desired outcome is a trained classifier using 𝑓 to predict its classification, 

independent of the label. Using regression and model fitting techniques, this can equate to a 

probability that the feature vector belongs to a class, for example, tumour: 𝑃(𝑡𝑢𝑚𝑜𝑢𝑟 | 𝑓𝑛). In 

the case of binary predictions, the output value is thresholded (typically at 0.5), and in multi-

class predictions, the highest value is selected. There are a number of prominent supervised 

learning algorithms that use feature vectors and training labels to generate statistical models 

representing object classes [120]. Some of these are explored in this section.  

2.4.6.2 Naïve Bayes classifier 

A Naïve Bayes classifier (NB) is based on Bayes Theorem, and uses conditional probability of 

the frequency of classifications in the training data (class labels), given some predictive and 

independent observations (features), to predict outcomes [121]. This makes the predictor unable 

to function when given unseen values, which results in a probability outcome of zero (known as 

the zero-frequency problem), and is solved using a smoothing function such as Laplace 

estimation [122]. For a given set of observations, their probability of resulting in a specific class 
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is modelled, based on the combined probability of the observed outcomes in the training data, 

normalised by the total frequency of the observed event occurrences (see Equation 12). 

NB can be used for categorical or continuous observations, where, an assumption is made that 

continuous observations are normally distributed, which would not be the case in most CRC 

image features. If the classifier uses the assumption that a threshold of 0.5 separates the data 

appropriately, the probability an image segment being tumour, given two continuous values 

thresholded at 0.5, can be computed as  

𝑃(𝑡𝑢𝑚𝑜𝑢𝑟 | 𝑓) =  
𝑃( 𝑥1 | 𝑡𝑢𝑚𝑜𝑢𝑟) 𝑃(𝑥2 | 𝑡𝑢𝑚𝑜𝑢𝑟)

𝑃(𝑥1) 𝑃(𝑥2) 
 

Equation 12 – Naïve Bayes classifier computing probability of tumour, given features 𝑥1 and 𝑥2 

where 𝑥1 and 𝑥2 are features in feature vector 𝑓. The features correspond to the mean intensity 

outputs from colour deconvolution in the haematoxylin channel 𝜇𝐷𝐶𝐻(𝑢, 𝑣) and the eosin 

channel 𝜇𝐷𝐶𝐸(𝑢, 𝑣) from 𝐼(𝑢, 𝑣), which is a subset of the whole image 𝐼(𝑥, 𝑦). The 

corresponding probability calculation is computed for the probability of those values being 

stroma, and the classification is selected based on the highest value.  

The NB is known as a bad estimator, as it is limited by the severe assumptions that it builds the 

model on, making the algorithm inflexible, affecting accuracy [123]. However, due to this 

simplicity, NBs are computationally inexpensive. As such, it may be useful to use an NB as a 

benchmark to compare against other ML algorithms for CRC image data.  

2.4.6.3 Logistic Regression as a classifier 

Logistic regression uses linear regression in conjunction with a sigmoid (logistic) function to 

model class features, and fit a probability distribution between zero and one. For each feature in 

the feature vector, regression is used to identify a model that fits the distribution of data between 

one observed variable (feature) 𝑥𝑖 and the dependent variable 𝑦. The generated regression 

models are straight lines with an intercept and a gradient, that have the capacity to predict 

values above and below zero. The model is normalised to fit a continuous scale of zero to one 

using the logistic function, shown in Figure 14. 
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Figure 14 - Logistic Regression classification of tumour using one feature 

Left: Linear regression model applied to the binary dataset (extending beyond 0 and 1 in the y axis) 

Right: The resulting model with the sigmoid function applied, and a threshold identified for number of 

nuclei per mm2 where y = 0.5 

Using the model, the probability of 𝑦 (tumour) can be made from the feature 𝑥𝑖 (number of 

nuclei per mm2), and a classification threshold for splitting the data is typically determined at 𝑦 

= 0.5. Logistic regression is a computationally efficient method for modelling features, 

however, the linear model means that more complex non-linear data cannot be accurately 

represented. Also, the method assumes that there is no error in the output variable when training 

and is therefore sensitive to noise. 

2.4.6.4 Support Vector Machines (SVM) 

Support Vector Machines (SVM) conceptualise multi-dimensional space in order to attempt to 

create partitions between clusters within it [124]. For each element 𝑥 in a given feature vector 𝑓, 

the value is treated as a co-ordinate in one dimension, such that a feature vector of size 𝑛 can be 

plotted as a single point in 𝑛 dimensional space. The classifier uses an optimisation function to 

identify a hyperplane for splitting the 𝑛 dimensional data into two (binary) classes, by 

maximising the distance (margin) between the hyperplane and the nearest points (support 

vectors) in the feature space. Figure 15 visualises this concept for two features, 𝑥1and 𝑥2, 

showing examples of successful hyperplane partitions, each of which yields the same 

classification result, and the optimal hyperplane, which maximised the margin between the 

hyperplane and the support vectors. 
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Figure 15 - Optimising the hyperplane margin for SVM classification 

Left: Examples of multiple successful candidate hyperplanes 

Right: The optimal hyperplane for the data points, by maximising the margin between the hyperplane and 

the nearest data points (support vectors) 

Traditional SVMs provide binary classifications, which may be useful in CRC for separating 

tumour and stroma tissue, however, multi-class SVMs can be developed using different 

methodologies. One of the simpler methodologies uses multiple binary SVM classification 

models, and combines the predictions, making multiclass SVMs more computationally 

expensive [125]. SVMs also work on non-linearly separable data, by extending the optimisation 

problem to incorporate misclassification as a new variable that should be minimised. By 

extending the SVM implementation to classify non-linearly separable data, complex data such 

as CRC tissue features may be appropriately modelled [126]. 

2.4.6.5 Decision trees and Random Forests (RF) 

The concept of decision trees is simple and widely used for both classification and regression, 

whereby classification trees generate categorical dependant variables, and regression trees 

output continuous dependent variables [127].  

Decision trees 

Classification And Regression Tree (CART) analysis is conceptually similar to a flow diagram, 

where a binary decision tree represents a Boolean function, using feature values as input to split 

the data into two groups [128]. Binary trees are made up of multiple nodes, whereby each node 

represents a test to perform on a given attribute. In random decision trees, the attribute used for 

splitting is chosen at random from the training dataset, and the threshold used to make the split 

is generated using regression to minimise the error in the resulting class predictions. The tree 

begins at a single (root) node, and the first split is made. Subsequent nodes split the data further, 
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and stop splitting the data when some stopping criteria has been met, such as the number or 

proportion of data points in the resulting class distribution. A node that reaches the stopping 

criteria is known as a terminal node, or leaf node, and each leaf node is assigned a classification 

or a number, depending on the type of CART analysis. For classification trees, the prediction 

class is set to the classification found most frequently in the resulting subset of data. Figure 16 

shows the visual representation of a 2-class dataset with two splits on the left, and the equivalent 

decision tree process on the right. 

 

Figure 16 - Binary tree classification of 2-dimensional feature data 

Left: Pre-classified two-dimensional data, with two partitions 

Right: Binary tree representation with the resulting class distributions at each node 

Note that in this example, optimum performance of the algorithm is dependent on splitting 𝑥2 

before 𝑥1. The process of splitting the data is known as growing the trees, as the splits occur 

independently, and are not limited to a specific number of nodes. The process of fully growing a 

decision tree means that all leaf nodes in the tree have reached their stopping criteria. This 

typically generates large trees that are too specific for application to other datasets, or have 

over-fitted the training data. Pruning is a process that reduces the complexity of the fully-grown 

tree, in an attempt to create a more generalised model capable of being applied to other data. 

Pruning can be achieved by removing nodes, based on the effect the removal has on the overall 

error rate of the predictions, as well as more complex methods [129]. Decision trees are a useful 

and intuitive ML tool, that is unaffected by non-linear data. However, they are prone to 

overfitting training data, and can be sensitive to variance, to the extent that noise in the data will 

change the entire structure of the tree. Decision trees are also sensitive to biased data, since the 

stopping criteria will be met sooner, if the training data is imbalanced. The concept of using 

multiple trees as an ensemble classifier attempts to mitigate these issues, and Random Forests is 

one of the most commonly used methods. 
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Random Forests 

Random Forests (RF) is a ML technique based on the concept of bootstrap aggregation 

(bagging) – that multiple weak predictors can combine to form a more robust one, by averaging 

noisy models to create a model with low variance [130]. In RF, a collection of 𝑛 trees are 

grown, using randomly selected subsets (with replacement) from the training data. For each 

node in each tree, a predefined number of 𝑚 features are selected at random, and the feature that 

provides the split of data with the lowest error is chosen. Each of the 𝑛 trees are fully grown 

without pruning, and for each feature vector tested on the fully trained classifier, every tree is 

used to make a prediction. The predictions made by each of the classification models are 

aggregated as votes, and the modal average is used to select the final classification. For 

regression, the mean value of all predictions is taken.  

Since each tree in the RF uses a subset of the feature set, the unused portion of the dataset, 

known as the out-of-bag samples, can be used to calculate the error rate of the model, and 

internally optimise the RF result by minimising the out-of-bag error [131]. 

Because of this methodology, RF is known as an ensemble classifier. Since the predictions are 

aggregated over 𝑛 number of trees, the issue of overfitting is reduced, and so pruning is not 

necessary. This means that highly specific trees can be used and datasets with high 

dimensionality can be computed in the same manner. However, there is very little control over 

how models are generated [132], and the process of generating the trees is still sensitive to 

imbalanced data (data containing more examples of one class than another), although this can be 

mitigated using balanced sampling of the dataset, preproduction of feature vectors in the 

minority class, or applying a cost function to the dataset, based on the proportion of data in each 

class [133]. 

RFs are regarded as a computationally efficient and flexible solution for ML solutions, and have 

the capacity to learn classes with complex and high dimensional feature space, which makes 

them appropriate for application to CRC image data. However, independent analysis should be 

taken to assess whether RF are the most appropriate solution for learning CRC features [134]. 

2.4.6.6 Boosting 

Boosting is an umbrella term for improving a given ML algorithm through combining multiple 

classifiers to make a more accurate prediction [135]. Like bagging in RF, boosting is an 

ensemble classification technique, used to average over noise and variance in the multiple 

models that have been generated. Boosting differs from bagging in that the output generated 

from each classifier is weighted, based on the out of bag error rate that each classifier generates. 
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For 𝑘 classifiers, each ensemble classifier 𝑒 is weighted by its error rate 𝑤. Equation 13 shows 

the difference between bagging and boosting calculations. 

𝑒 =
1

𝑘
 ∑𝑒𝑖

𝑘

𝑖=1

 𝑒 =  ∑𝑤𝑒𝑖

𝑘

𝑖=1

 

Bagging Boosting 

Equation 13 - Bagging vs boosting 

Boosting may also include an extra step, which is to discard entire classifiers if their error rate is 

too high, such as the AdaBoost method, which uses a cut-off of 50% [136]. Boosting is a useful 

technique for further avoiding bias in ensemble methods, by removing classifiers which contain 

higher levels of bias or noise. However, if the models are overfitting, then higher weighting is 

given to the models with the higher accuracy, and so bagging is often more effective.  

2.4.6.7 Artificial Neural Networks (ANN) 

Artificial Neural Networks (ANN) utilise the concept of biological neural networks to model a 

web of classifiers that resembles interconnected neurons in the brain [137]. An ANN consists of 

a graph structure, where neurons are represented by nodes, and connections are represented by 

edges. The network is structured in layers, with an input layer, multiple hidden layers and an 

output layer (see Figure 17).  

 

Figure 17 - Visual representation of an Artificial Neural Network (ANN) 

Each neuron in the network represents a classifier, and edges model the relationships between 

the neurons in different layers. Classification results are passed forward (forward propagation), 

starting with features at the input layer, passing the output from each neuron to the next hidden 
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layer, until classification results are returned by the output layer. The classification is compared 

to the ground truth training data, and a cost is generated, representing the difference between the 

ground truth and the classification. The network is optimised using edge weights, and neuron 

biases, with the aim of minimising this cost [138].  

The optimisation process incrementally alters weights and biases in the network over many 

training examples, and assesses the impact on the classification result. The rate at which 

changes to the weight or bias affects the cost is known as the gradient [139]. A higher (steeper) 

gradient indicates that changes to the weight or bias have a larger effect on the cost, and a low 

(shallow) gradient requires larger changes to the weight or bias to have the same effect. As the 

changes are performed iteratively, functions with higher gradients take less iterations to 

optimise, reducing training time.  

The optimisation is performed backwards through the layers (back propagation) [140], so that a 

gradient at any point in the network is the product of all previous gradients up to that point. 

Therefore, having more layers in the network leads to exponentially smaller gradients in earlier 

layers. This ultimately means that changing weights and biases in these layers has very little 

effect on the cost, and takes much longer to optimise. This problem is known as the vanishing 

gradient [141], and has limited the use of large ANNs in practice until the advent of Deep 

Learning. 

 

2.4.7 Deep Learning (DL) 

Deep Learning (DL) is an umbrella term for a range of ML algorithms that aim to improve 

traditional specific classification algorithms, requiring predefined image features and large 

amounts of hand-labelled training data [142]. The architecture of DL algorithms is structurally 

similar to ANNs, but uses Restricted Boltzmann Machines (RBMs) to optimise layers in the 

network individually. By automatically defining features, independent of human intervention 

(and therefore error and biases), training data is partitioned into unlabelled sets, which can then 

be refined into labelled classes using relatively few hand-labelled examples [143]. Two 

common DL methodologies exist for image processing which are called Deep Belief Networks 

and Convolutional Neural Networks. These are discussed in the following sections. 

2.4.7.1 Unsupervised learning using Restricted Boltzmann Machines 

Restricted Boltzmann Machines (RBM) are shallow, two-layer restricted networks, that process 

data via both a forward and a backward pass in attempt to reconstruct the original input data 

[144]. The network is restricted in that no two nodes of a single layer are connected. Input 
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feature data is processed using weights and biases, in the same way as ANNs (section 2.4.6.7), 

but instead of generating output predictions and costs, the data is fed backwards, in attempt to 

reconstruct the input features (see Figure 18). 

 

Figure 18 - Restricted Boltzmann Machine (RBM) structure and behaviour 

The reconstructions are directly compared to their input features, using Kullback-Liebler (KL) 

divergence (relative entropy), so that the weights and biases can be optimised, as opposed to 

using the ANN method of calculating costs between output and ground truth. This means that 

the data does not need to be labelled, and therefore human classification error is eliminated. 

Also, features that do not reconstruct adequately after optimisation can be discarded, making the 

RBM a type of feature extractor, called an autoencoder [145]. 

2.4.7.2 Deep Belief Networks (DBN) 

Deep Belief Networks (DBN) are structurally similar to ANNs, but used stacks of RBMs to 

internally pass self-trained RBM outputs from their respective hidden layers to the input layer of 

the next RBM [146]. This means that each layer is optimised before passing the output to the 

next layer, and so does not require back propagation, eliminating the vanishing gradient 

problem. By circumventing the vanishing gradient problem, DBNs can stack many layers in the 

(deep) network without requiring exponentially more resources to optimise weights and biases 

in earlier layers. The result is an optimised set of layers that improve in accuracy as data is 

passed along the network. 

Since features are automatically selected, output classes from the network are initially 

unlabelled, and so require small examples of labelled input data to be classified. This small 

training set can also be used to make final adjustments to the weights and biases in the network, 

and increase accuracy further.  
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2.4.7.3 Convolutional Neural Networks (CNN) 

Convolutional Neural Networks (CNN) are inspired by work by Hubel and Weisel (1968) 

describing the architecture of monkey striate cortex, which categorises cells attributed to visual 

sensory information in a hierarchical structure [147]. Cell functions are described as simple, 

complex or hypercomplex, referring to the processing of simple lines and edges, and combining 

them into shapes, ultimately combining those shapes into complex objects. Receptive fields are 

defined as small areas of the overall visual field, where processing of such an area will activate 

neurons based on its properties. The paper discusses that smaller receptive fields are associated 

with more highly developed brains (comparing monkeys to cats), and hierarchical processing of 

a visual field requires complex layered connections of many receptive fields.  

Local connections with receptive fields  

As opposed to traditional NN architecture, neurons in CNNs are not connected to every neuron 

in the next layer, as performing such operations on individual, or small groups of pixels would 

be computationally prohibitive when processing large images. Instead, images are processed 

using a two-dimensional window of a predefined size, with each window being referred to as a 

receptive field. Each receptive field is processed by one node in one layer of the network, using 

the three types of processing layers, convolution, transformation of the resulting images using a 

non-linear function such as Rectified Linear Units (ReLU), and pooling [148], illustrated in 

Figure 19. Note that the order of these layers is not limited to the order shown. 

 

Figure 19 - Visualisation of the types of layers in a Convolutional Neural Network (CNN) 

The illustration shows a receptive field containing CRC epithelial nuclei, which is processed by four 

rotated variants of the Prewitt edge detection convolution kernel (see 2.4.3), with the resulting four 

images being normalised by Rectified Linear Units (ReLU), and reducing the result using max pooling. 

The pixels in the output images after max pooling are reshaped into a list and their values are used for 

class voting. 

Note that these images are for illustrative purposes only – pixel values are colourised using a heatmap, 

receptive fields are typically smaller, and filters are randomly generated. 
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Convolutional layer 

A number of convolution kernels (also referred to as filters or weight matrices) are randomly 

generated and applied to the receptive field (see 2.4.3 for spatial filtering). This results in as 

many output images as there are filters. The filters are initiated randomly, and RBM 

autoencoding selects the most appropriate ones for identifying reproducible edges and basic 

shapes [149]. The result is a set of convolution filters that model generalisable low-level image 

features that can be used to identify basic properties of the receptive fields. Note that the filters 

in Figure 19 are rotated variations of the Prewitt filter, described in 2.4.3, and are for illustrative 

purposes only. 

Rectified Linear Unit (ReLU) layer 

Convolution filters in CNNs have a randomly generated set of weights with a numeric range of  

-1 to 1. Applying the filters to an image therefore may result in output images with negative 

values. Approximating the values to Rectified Linear Units (ReLU) is a form of normalisation, 

described by the formula 𝑥 = max(0, 𝑥) ,which simply converts all negative numbers to zero 

[150]. The process is also referred to as activation, where the resulting image is called an 

activation map. 

Pooling layer 

Pooling reduces the size of the convolution result or activation maps by taking a single value of 

a sliding window of a predefined size, and iterates over an image with a given step size. Max-

pooling is most common in CNNs due to computational efficiency, where for each window, the 

maximum value in that area is taken. Pooling is applied to reduce computational overheads and 

to prevent overfitting. 

Fully connected layer and voting 

The final layer in the CNN converts the resulting max-pooled images into a discretised list of 

numbers, and their values are used for voting for a class. The numbers are discretised using a 

soft-max function (similar to the sigmoid function in logistic regression, in section 2.4.6.3), and 

the resulting values are used as votes for classifications, typically using argmax to get the most 

likely class. 

CNN structure and hierarchical layering 

The structure of a given CNN can be altered by changing the order of, and by stacking multiple 

layers, depending on the design choices made by the programmer. By applying multiple sets of 

layers, activation images begin to contain models that represent higher level shapes and objects. 
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Regularisation 

Also, referred to as dropout, regularisation randomly turns neurons off (sets weights to zero), to 

force the network to learn multiple representations of the same thing, increasing the 

generalisation of the trained network, and reducing overfitting. 
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2.5 Application of image analysis to digital 

pathology slides 

This section provides an overview of currently developed solutions for automating 

histopathology image analysis, and identification of the successes and limitations of those 

solutions. 

 

2.5.1 Overview 

With the advent of digital slide scanners and high-performance computing in the last 15 years, 

research in the field of image analysis on histopathology images has substantially increased. 

[43,44,130-136]. This section highlights some of the current state-of-art applications and 

technologies in this area, with a focus on how these technologies might be used for CRC 

analysis. 

 

2.5.2 Stain (colour) correction 

The variable appearance of digital slides can be affected by biological, histological or digital 

issues, at all levels of the digital slide production workflow, discussed in section 2.3.3. Colour 

normalisation is the process of transforming the original image colourspace, for digital 

enhancement or standardisation, using a set of reference values to normalise to [158]. The 

normalisation process is traditionally based on the assumption that the colours can be corrected 

via a linear transform, or rotation of the colourspace, which may be derived using colour 

deconvolution [138-141], although non-linear methods also exist [142,143] 

Magee et al present a method for normalising colour using context in addition to colour 

deconvolution [165]. The method takes a ‘target image’ as input, so that the colour values from 

it can be mapped to a ‘transform image’, that is to be normalised. Initially a classifier is trained 

on an unrelated dataset, using feature vectors calculated per-pixel. The vectors consist of the 

RGB values, combined with a ‘context vector’ based on a low-dimensional image colour 

histogram of the whole image. For training, vectors are calculated and assigned to one of three 
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classes: stain 1 (haematoxylin); stain 2 (eosin or DAB); background. The classes are assigned to 

pixels via manual segmentation and labelling. The labelled feature set is applied to ML, using 

an implementation of the Relevance Vector Machine method (RVM), which uses a 

methodology similar in principle to SVMs, but outputs probabilistic classification [166]. One 

RVM is trained on each of the three classes, so that predictions on unseen images output three 

probability values per-pixel, and each of the three values is normalised according to Equation 

14. 

𝑃(𝐶𝑙𝑎𝑠𝑠𝑛 | 𝑓) =
𝑃(𝑅𝑛|𝑓)

 ∑ 𝑃(𝑅𝑖|𝑓)𝑘
𝑖=1

  

Equation 14 – Normalisation of RVM pixel class predictions 

Where 𝐶𝑙𝑎𝑠𝑠𝑛 ∈ {𝑆𝑡𝑎𝑖𝑛1, 𝑆𝑡𝑎𝑖𝑛2, 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑} and 𝑃(𝑅𝑛 | 𝑓) is the probabilistic output from 

the RVM trained on pixels from 𝐶𝑙𝑎𝑠𝑠𝑛 (with the other two classes being grouped as the 

negative examples), given the combined feature vector 𝑓, and 𝑘 is the number of elements in 

𝐶𝑙𝑎𝑠𝑠. 

RGB values from pixels classified with a probability value above a predefined threshold 

(reported in the paper as 0.99) are used to generate the OD vectors for colour deconvolution (see 

section 2.4.2). If less than 200 pixels satisfying this criterion are present in the image, then 

pixels with the top 200 probability values are chosen – this should be noted when reviewing the 

example images in Figure 20 and Figure 21. 

Using the colour deconvolution methodology described in 2.4.2, both the target and the 

transform images derive OD values for independent colour deconvolution, using the classified 

pixels in each image. It is noted that OD values need to be derived independently, due to the 

variation of stain that may exist (discussed in 2.3.3). For both target and transform image, the 

three staining probability maps are generated, and pixels are classified, based on Algorithm 1. 
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for each stain channel n 

  for each pixel p 

    if all RGB OR DC channels in n(p) < t(black)  

      Class = Black 

    elseif n(p) > t(white) 

      Class = White 

    elseif RVM P(background) > t(background) 

      Class = Background 

    elseif RVM P(stain(n)) > t(foreground) 

      Class = Stained 

    else 

      Class = Other 

    end 

  end 

end  

Algorithm 1 - Classification of pixels using RVM probability and DC channels 

By classifying pixels into these groups, the black and white classified pixels can be ignored so 

that they remain unchanged when mapping. Statistics are generated from the remaining pixel 

classes (mean, and upper and lower 5th percentiles), which are used to map the transform image 

values to the target image values. Finally, the mapped values are transformed back into RGB 

using the colour deconvolution transform method. Figure 20 shows examples of original 

transform images and their normalised outputs. 

 

Figure 20 – Example of colour normalisation on six CRC images 

Top: Transform images  

Bottom: Normalised images  

The normalisation process transforms the colour of each image to the colours of the target image (not 

pictured). 

It is important to note that (as mentioned previously) if less than 200 pixels of a given class can 

be found in each image using the combined RVM classification method, colour deconvolution 

OD vectors will be generated from 200 pixels with the highest probability of that class. 
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Therefore, digital slide images exhibiting characteristics outside of expected colour ranges due 

to issues discussed in section 2.3.3, will not adequately be compensated for using normalisation 

techniques. Figure 21 shows examples of images too extreme in terms of weak staining, causing 

colour artefacts, or simply causing the algorithm to fail. Also, note that if large areas of lumen 

dominate the image, then the algorithm identifies background as foreground, and normalises it. 

 

Figure 21 - Example of colour normalisation underperforming on six CRC images 

Top: Transform images  

Bottom: Normalised images  

In these examples, there is not enough colour information in the original images to transform to a 

meaningful result. 

Five of the six images in Figure 21 are extreme examples of weak staining that are part of the 

dataset presented in Chapter 3, and identified as not scorable in pathologist interaction studies in 

Chapter 4. It is important to consider that correction of stain does not account for other artefacts 

such as tissue folds, or tears, and identification of such artefacts may be useful for application to 

digital slides before normalisation and subsequent analyses [167]. 

The Magee et al colour normalisation algorithm is used in the image processing algorithms 

presented in Chapter 3. 

 

2.5.3 Nuclear and cellular detection in CRC images 

In CRC analysis, the ability to delineate between boundaries of tissue types and cells is a 

prerequisite to classification, staging, grading and diagnosis of disease. In automated analysis of 

CRC, the segmentation task is typically split into two disciplines – segmentation of cells and 

nuclei, and segmentation of tissue structures such as glands, vessels and nodules.  

Cell and nuclear segmentation is a discipline over 50 years old [5]. Methods of segmentation 

have changed with imaging modalities and technological advances, yet the problem is not trivial 
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to solve, due to the variable appearance and characteristics of histopathological tissue (see 

section 2.2 and 2.3). CRC tissue contains various types of cells and nuclei which have different 

visual characteristics, and the detection of these cells typically involves segmentation or 

separation, and classification based on appearance. This separation is non-trivial due to the 

deformable size and shape of the nuclei, as well as touching and overlapping objects. Typical 

solutions developed for the problem of nuclear detection include: thresholding, morphological 

filtering and connected components analysis (see section 2.4.5.1) [147-149]; texture-based 

segmentation (see section 2.4.4) [150,151]; watershed transform (see section 2.4.5.2) 

[89,92,152-155]; clustering (see section 2.4.5.3) [176]; graph cuts (see section 2.4.5.4) 

[157,158]; active contours and deformable model fitting [159-161]. Recently, state-of-the-art 

technology known as Deep Learning has also been used to identify nuclei [181]. One issue with 

most reported methods is a lack of standardised benchmarks for evaluation, as solutions are 

typically only developed and tested on datasets that researchers have access to [182]. 

2.5.3.1 The Bennett et al algorithm 

Bennett et al [183] present a nuclear detection algorithm based on the Hough transform [184], 

extending the parameter (and subsequently accumulator) space to detect more complex shapes 

[185], so that nuclei edge segments can be joined by the highest probable lines in the 

accumulator space [186]. Initially, colour deconvolution (see section 2.4.2) is applied to 

digitally separate the H&E stains, and the haematoxylin (nuclear) staining channel is used for 

analysis. The Canny edge detection filter (see section 2.4.3) is applied to generate a binary 

image of disjointed nuclear edge segments. Edges that are within distance 𝑑 of another edge are 

joined recursively until the merged edge is greater than length 𝑙, and then any edges left that are 

shorter than length s are discarded. 

To account for the varying elongation and rotation of nuclei, the Hough transform is applied 

multiple times with different hypothesis orientations. Hypothesis orientation is quantised into 4 

angles, 𝛼 = {0, 45, 90, 135}, to reduce the number of iterations and increase computational 

efficiency. For each edge segment, only the centre pixel is plotted in a 5-dimensional parameter 

space, using x location, y location, nuclear aspect ratio, edge directions, and the hypothesis 

orientation, and the voting direction is specified towards the negative gradient direction, such 

that: 

−
∇𝐼(𝑥, 𝑦)

‖∇𝐼(𝑥, 𝑦)‖
=  −(cos(𝜃(𝑥, 𝑦)), sin(𝜃(𝑥, 𝑦))) 

Equation 15 – Hough transform for edge segment voting in the negative gradient direction 
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where 𝜃 is the angle of the image gradients ∇𝐼(𝑥, 𝑦), with respect to the x axis. The voting space 

for each pixel is created using a pyramidal kernel with voting directions 𝑉𝜃 and scale 𝑟𝑚𝑖𝑛 to 

𝑟𝑚𝑎𝑥. The votes within the kernel area are weighted by a 2D gaussian kernel centred over the 

centre point of the pyramid kernel. Figure 22 visualises this voting space. 

The process is repeated for each of the hypothesis orientations, and votes are aggregated from 

all four accumulator spaces. Centroids are then identified using the mean shift algorithm (see 

section 2.4.5.3). To reduce over detection, centroids that do not overlap binary objects in the 

haematoxylin channel image, thresholded by Otsu’s method (see section 2.4.5.1), are discarded. 

 

Figure 22 – Pyramid voting kernels for nuclear segment centroid voting 

Left: Pyramid kernel with (magenta) 2D gaussian filter for one edge segment 

Centre: Combined pyramid kernels for all segments showing centroid probability 

Right: Detected nuclear centroids on deconvolution haematoxylin image after mean shift clustering 

Edges are grouped by the centroids that they voted for, and the segments are then combined 

using ellipse fitting. The process joins the edges, minimising the distance measure of the set of 

points, using least squares error minimisation. Finally, some of the false positive detections are 

removed by identifying overlapping segmentations, and identifying the levels of haematoxylin 

inside the segmentation boundaries, compared to outside the boundaries. Figure 23 shows 

results from the algorithm detections. 
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Figure 23 - Nuclear detection results for the Bennett et al algorithm [183] 

Top: Original H&E stained images 

Bottom: Nuclear detection results 

The algorithm performs well on clearly separable nuclei, and copes adequately with densely 

clustered nuclei, with no input parameters (tuning). 

The Bennett et al nuclear detection algorithm is used in Algorithm A, presented in Chapter 3. 

 

2.5.4 Glandular detection in CRC images 

Due to the complex and deformable nature of cancerous tissue, detecting glands and structures 

in CRC is a non-trivial task. Segmenting tissue structures such as tumour epithelium can be 

attempted using traditional feature based methods, such as texture [168,169], or traditional 

unsupervised segmentation such as graph cuts (see section 2.4.5.4) [170-173]. More recently, 

published methodology applies multi-scale analysis, using either a “top-down” approach, 

whereby characteristics of the tissue types are ascertained using general features of the tissue 

(typically at a scaled view, rather than native magnification) [174,175] or a “bottom-up” 

approach, that uses segmentation at native resolution (superpixels, clustering, nuclei detection) 

and combines visually similar regions [195]. Methods that use the bottom up approach have 

modelled glands as polygons using nuclei centres as co-ordinates [177-179], and are typically 

represented as graphical models such as Markov Random Fields (MRF) [199]. 
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Table 3 lists publications that focus on detecting tumour in various cancers, recording the tissue 

type, stain, image size, number of images used in the development and testing of the algorithms, 

and their reported accuracy rating. 

Primary author Year Tissue type Stain 
Image 
type 

Image  
size 

Image 
count Accuracy 

Reis [200] 2017 Breast H&E ROI 12x12 224 0.84 

Bejnordi [201] 2017 Breast H&E WSI - 646 0.96 

Kainz [202] 2017 CRC H&E ROI 775x522 165 0.95 

Kather [203] 2016 CRC H&E ROI 150x150 5000 0.99 

Wang [198] 2016 Lung H&E TMA 300x300 9 0.80 

Wang [198] 2016 Lung IHC TMA 500x500 9 0.78 

Chen [204] 2015 Breast H&E ROI 1360x1024 1150 - 

Rogojanu [205] 2015 CRC H&E ROI - 50 0.97 

Bianconi [206] 2015 CRC IHC ROI 161x161 1412 0.97 

Hamilton [207] 2015 Lung H&E WSI 31x31 136 0.97 

Paakkonen [208] 2014 Prostate H&E TMA 1280x960 - 0.79 

van Engelen [209] 2013 Brain H&E ROI 800x800 13 0.76 

McKenna [210] 2013 Breast IHC TMA 76x76 64 - 

Angell [211] 2013 CRC IHC ROI - 65 - 

Mattfeldt [212] 2013 Prostate H&E ROI 512x512 103 0.82 

Linder [213] 2012 CRC IHC TMA 80x80 1376 0.97 

Doyle [214] 2012 Prostate H&E ROI 256x256 2000 0.86 

Beck [215] 2011 Breast H&E TMA - 1444 0.89 

Law [216] 2011 Endometrial IHC ROI 200x200 60 0.85 

Eramian [217] 2011 Oral H&E ROI 1300x1300 73 0.85 

Signolle [218] 2010 Ovarian IHC ROI 512x512 61 0.72 

Yang [219] 2009 Breast IHC TMA 1200x1200 3789 0.89 

Huang [220] 2009 Prostate H&E ROI 512x384 205 0.95 

Naik [221] 2008 Breast H&E ROI - 54 0.82 

Datar [222] 2008 Prostate H&E ROI 1024x768 109 - 

Table 3 – List of published algorithms for segmenting tumour epithelium in histopathology images 

List is sorted by year of publication. Some values are not reported in the publications, these are marked 

with a hyphen. Image type ROI = region of interest, TMA = Tissue MicroArray core image, WSI = Whole 

Slide Image, typically analysed in small image tiles / patches. 

The data in this table provides a clear and concise set of data for drawing benchmark levels and 

noticing trends between types of analyses. For example, Figure 24 plots accuracy results of all 

algorithms, grouped by stain type. This shows that a reasonable state of the art benchmark level 

of accuracy is 86.5%, and that results on IHC images are slightly, but not significantly higher 

than results on H&E images (p = 0.79), but the spread of distribution is higher, and therefore 

reported accuracy results are not as consistent. 
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Figure 24 – Boxplots of published algorithm accuracies, grouped by stain type 

Left: Image analysis applied to routine H&E images (mean = 0.87, median = 0.86, S.D. = 0.08)  

Right: Image analysis applied to IHC images (mean = 0.86, median = 0.87, S.D. = 0.10)  

The plot shows reported accuracy levels with state of the art algorithms. Image analysis results using 

IHC are slightly higher than on H&E, but not as consistent. 

The slight increase in average accuracy on IHC image may be due to the tumour component of 

the tissue being highlighted by histochemical staining. In the case of antibodies such as 

cytokeratin (CK), this makes the tumour epithelium appear brown, and stroma blue. In terms of 

the segmentation task, this is simpler problem than on H&E. However, the spread of the 

distribution suggests that complicating factors may exist, such as quality of stain, or other issues 

relating to image variability, discussed in 2.3.3. 

Figure 25 shows a scatterplot of image size used and accuracy reported in attempt to identify if 

there is a trend between the two. The x axis is plotted on a log scale due to the variability and 

spread of the number of images used. 
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Figure 25 – Scatterplot accuracy vs total number of images use in the studies listed in Table 3 

The overall trend shows a weak positive correlation (R2 = 0.18). Note that the x axis is plotted on a log 

scale. The correlation suggests that algorithms using larger datasets lead to higher accuracy levels. 

The scatterplot shows a weak positive correlation (R2 = 0.18), which is exaggerated by the log 

scale in the higher numbers of the x axis. This implies that accuracy is likely to increase when 

using more images, and that the ideal number should be in the thousands, rather than hundreds.  

2.5.4.1 The Kather et al algorithm 

A large proportion of published tissue classification algorithms that are not based on 

segmentation use texture features to discriminate tissue classes [151,182-188]. Kather et al 

(2016) present a methodology for multi-class texture analysis in CRC [203], performed on 

greyscale images derived from H&E slides. The texture statistics generated were from six 

different methods: lower and higher order histogram features [227]; GLCM (see section 

2.4.4.1); LBP (see section 2.4.4.2); Gabor filters [228]; Perceptron-like filters [206]; Combined 

feature sets. The features were tested against four different classifiers, 1 Nearest Neighbour 

(kNN) [229], two variants of SVMs and a decision tree classifier. Each classifier was trained 

using the texture features and one of eight hand labelled classes: Tumour epithelium; Simple 

stroma; Complex stroma; Immune cells; Debris (including necrosis, haemorrhage and mucus); 

Normal mucosal glands; Adipose tissue; Background. Ten-fold cross-validation is performed on 

a dataset of 10 hand-labelled slides, split into 5,000 150x150px images, and report 98.6% 

accuracy for the combined texture features using SVM with a radial basis function.  

The Kather et al algorithm uses patch-based analysis to train classifiers using eight classes of 

CRC tissue. Of all the published algorithms found in the literature, this algorithm is the most 
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similar to Algorithm A presented in this research (Chapter 3). A comparison between the 

algorithms developed in this work and the Kather et al algorithm is made in the section 8.2.4. 

2.5.4.2 The Gland Segmentation (GlaS) challenge 

CRC gland segmentation was the focus of the Medical Image Computing and Computer 

Assisted Intervention society (MICCAI) annual conference in 2015, launching the colorectal 

gland segmentation challenge (GlaS) [230], which invited researchers to submit their algorithms 

for benchmark testing against other state of the art solutions, by validating developed solutions 

on the same dataset. One dataset was released prior to the challenge which allowed participants 

to train and test their algorithms (60 images), whereas an unseen dataset (20 images) was 

released on the day of the challenge. Participants had a 45-minute window to process them. 

All but one of the top ten submissions used Convolutional Neural Network (CNN) technology 

(see 2.4.7) as a classifier [148], with the other method using K-Means clustering (see section 

2.4.5.3) and a naïve Bayes classifier (see section 2.4.6.2). The nine entries using CNNs differed 

in the pre-processing and post-processing methodologies, the depth of the network, and the 

tissue class number and definitions. Figure 26 shows the distribution of accuracy results for all 

algorithms on the pre-released dataset and the unseen dataset. 

 

Figure 26 -Boxplots of GlaS challenge accuracy results, reported by dataset 

Left: Pre-released test data results (mean = 0.82, median = 0.87, S.D. = 0.10)  

Right: Unseen test data results (mean = 0.63, median = 0.69, S.D. = 0.14)  

The graph shows that the algorithms developed on the pre-released test data were not generalised 

enough to repeat the same level of accuracy on the unseen dataset. 
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Accuracy in this case is reported as an F1 score, which is calculated as the harmonic average of 

precision and recall. Automatically segmented gland objects that intersect with over 50% of a 

ground truth gland are considered true positive, otherwise the object is considered a false 

positive. Algorithms performed significantly better on the pre-released test set compared to the 

unseen dataset, with means of 0.82 and 0.63 respectively. The distributions of the results were 

statistically significantly different to each other (t-test p < 0.01). Most of the methodologies 

used data augmentation to increase the number of training examples, in attempt to improve the 

generalisation of the algorithms. The results presented for the unseen dataset imply that the 

variation of image data was not adequately compensated for by this method. It is therefore an 

important message that adequate numbers of training examples and validation images are 

required when evaluating algorithm performance. 

A comparison of segmentation algorithms for CRC images is presented in Chapter 5. 

The GlaS challenge represents the general trend of research into CRC classification, shifting 

towards using CNNs as a black box to automatically identify visual features without bias in 

model or parameter creation [193]. Alternatively, Levenson et al hypothesise that understanding 

the cognitive and visual systems of animals may be useful as a gateway to understanding the 

processes involved in pathologically assessing images [233]. The paper explores the concept 

that pigeons have the capacity to distinguish between malignant and benign tumour samples, 

and using a touch sensitive interface, trained Columba Livia pigeons by automatically 

dispensing pellets to reward pecks on the screen that corresponded with a correct diagnosis. 

After 20 days training, pathologist-pigeon agreement rose to 88% on images presented at 20x 

magnification. The levity of this concept detracts from the message of the paper – that 

understanding their performance on visual tasks may assist in guiding future vision research. 

However, coining the term “flock-sourcing” (a take on crowd-sourcing) and suggesting pigeons 

have the potential to be cost effective medical image observers does not help. 

CRC classification algorithms are developed in Chapter 3, 5 and 7 in this work to identify CRC 

tissue on digital slides, and also in Chapter 4 and 6 for the application of automated QC. The 

work presented in these chapters predates the popularity of the deep learning methodology. 

 

2.5.5 Automated TSR analysis 

Due to the emerging research into TSR as a prognostic marker, no articles have been published 

focusing on automating the task. TSR can be generated as a by-product of gland segmentation 

(assuming TSR is the ratio of gland area to other tissue detected in the image), and as such is 
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reported in three of the previously referenced publications, although it is not the focus of the 

studies [203, 206, 207]. Hamilton et al [207] report TSR analysis on 10 slides, yielding a high 

correlation to ground truth (R2 = 0.97), using a pathologist to count over 500,000 cells as the 

benchmark. This is compared to their observations of human inter-observer variability, which is 

less well correlated (R2 = 0.32). Kather et al [203] present a similar methodology to the work 

presented in Chapter 3 and Chapter 5, using multi-class image patches to learn sub-classes of 

tumour and stroma tissue. TSR values and ground truth correlations are not reported but 

mention that their work could be used to generate TSR. It should be noted that this work was 

published after the development of the algorithms in this thesis. Bianconi et al [206] report a 

0.97 accuracy rating using a two class system (tumour and stroma), generating confusion 

matrices on a per-patch basis, but show no correlations to pathologist-generated ratios. It should 

be noted that the study uses IHC images which have the tumour component stained with DAB, 

and are more visually distinguishable than H&E images. In all three publications mentioned, 

SVM classifiers are used to learn image features and predict the classifications of image patches 

retrieved, in small image tile areas. 

2.5.6 Quality assessment 

The scope for variability of digital slide images has been outlined in section 2.2.2 from a 

histological and slide preparation perspective, and in section 2.3.3 in relation to digital slide 

scanning, and calibration of devices. These factors can influence the appearance of digital 

slides, and subsequently, how image analysis solutions perform on them. Research into colour 

standardisation (discussed in 2.3.3) and stain normalisation (discussed in 2.5.2) allows 

algorithms to process images that have a more consistent appearance, to improve accuracy. 

However, as seen from the adverse normalisation performance shown in Figure 21, extreme 

deviations in image quality lead these techniques to exacerbate the issues rather than improve 

them. 

Quality assessment is a visual inspection task assigned to scanner operators, and the Quality 

Control (QC) procedure typically involves identifying slides that have digital scanning artefacts, 

such as out of focus areas or incorrect stitching of image tiles (striping artefacts on line 

scanners). However, histological issues on the slides themselves cannot be accounted for, such 

as weak staining, tissue folds, tears, or even permanent marker on the slide, used by researchers 

to delineate regions of interest. These issues have the potential to negatively affect image 

analysis solutions, whilst being considered a QC pass, and therefore should be considered when 

designing automated solutions. 
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There are few documented examples of research into this area in the literature, and typically QC 

algorithms focus on replicating the work of the digital slide scanner operator, evaluating 

scanning artefacts such as irregular illumination, overall brightness, contrast, colour separation 

and blur, as opposed to the content of the image [234] [235]. Ameisen et al [236] present a 

method of whole slide image analysis for automation of the QC task, that analyses a given slide 

using each layer of the tiled pyramid. Initially saturation in the HSV colourspace is used to 

identify background and weakly stained tissue, and image tiles considered to contain foreground 

objects (including artefacts) are further processed for blur, contrast, brightness and colour, and a 

threshold is set for each, in order to pass or fail the slide on that metric. Avanaki et al [237] 

present work on developing an algorithm to QC both scanning and histological artefacts using 

two separate estimators. 

The issue of image quality is addressed in Chapter 6. 

 

2.5.7 Validation against clinical data 

The pathological image analysis methods presented in this section (2.5) are based on existing 

computer vision methods, and model human methods of scoring, which are evaluated against 

images scored by a human. As mentioned in the problem statement in 1.1, these methods are 

prone to inter and intra-scorer variation, meaning that most algorithm validation is performed on 

imperfect ground truth. Aeffner et al refer to this problem as the ‘Gold Standard Paradox’ [238], 

which points out that computer vision systems require validation against the pathologist as the 

gold standard to achieve validity – however, such systems are developed out of a need to 

address the flaws in human analytical methods, and so to compare them to humans as ground 

truth is not ideal. 

By regressing the problem back to the original reason for pathological assessment – prediction 

of patient survival and response to therapy – it should be considered that the more appropriate 

evaluation strategy for automated pathological assessment is whether the algorithms perform 

this task better or worse than a human.  

Currently, computer vision researchers have limited access to existing gold standard data, and 

generating such data is laborious and time consuming for pathologists. This has led to calls for 

shared repositories of data between researchers [239]. Survival data on the other hand, is 

generated by expensive clinical trials, that require years of patient follow-up data, and therefore 

clinical trial data centres typically do not disclose survival data, without certain controls. 

Researchers are blinded to the data, so that independent statisticians can perform hypothesis 
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testing on their behalf, so as not to over-engineer solutions to the datasets. Validation of image 

analysis algorithms against clinical datasets should be performed with this in mind. 

Beck et al [215] remark that human pathological scoring relies on minimal observations, and 

that vast amounts of computer-generated image feature data have the capacity to identify 

phenotypic prognostic markers that are currently unknown, due to their complexity and 

infeasibility for the visual inspection task. The Computational Pathologist (C-Path) system is 

presented as a computer vision system that identifies 6,642 features from two breast cancer 

cohorts using H&E stained Tissue MicroArray (TMA) digital slide images (totalling 576 patient 

cases, with a mean value of 2 TMA cores per patient). The C-Path system was developed as a 

processing pipeline using the Definiens Developer XD image analysis environment [240], and 

as such, the exact methodology was not reported in the paper. The process of tissue analysis has 

been broken down into the steps outlined in Algorithm 2. 

for each H&E TMA core image i (total n = 158) 

  Partition i into superpixels 

  for each superpixel p 

    Segment nuclei in p 

    Generate feature vector v (size = 31)  

    Append v to feature set f 

  end 

end  

Train Logistic Regression classifier on f 

Algorithm 2 – Beck et al tumour-stroma classifier using Definiens Developer XD 

The 31 features generated in Algorithm 2 are based on intensity, texture, size, shape, and 

relational properties of neighbouring superpixels. The subset of 158 images was hand labelled, 

and combined with the feature set to train an L1-regularised logistic regression classifier (see 

section 2.4.6.3 for logistic regression) [241], and reported 89% accuracy using 8-fold cross 

validation. 

Using the trained classifier, the entire dataset of 576 cases was automatically partitioned into 

tumour, stroma and unclassified regions. Within those regions, nuclear detection was applied so 

that their shape metrics could be used to identify regular and atypical epithelial nuclei, stromal 

round and spindled nuclei, and unclassified round and spindled nuclei. The set of 6,642 features 

was generated from these statistics, in combination with the features used in the previous 

classifier, and their spatial characteristics (such as distances of one nuclear type to a different 

type, or distance between tumour or stromal regions). For all metrics, the mean, standard 

deviation, minimum and maximum was calculated.  
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To compare against survival data, a Boolean set of training labels was made per case, splitting 

patients into groups “alive at five years” and “not alive at five years”. The labels were combined 

with the final feature set and were trained and tested using 8-fold cross validation on a second 

L1-regularised logistic regression classifier. The trained and tested algorithm was validated on 

an unseen dataset, where the algorithm stratified the patients into groups predicted to live 

beyond five years or not. Kaplan-Meier curves [242] and log-rank tests confirmed that the 

model had statistically significant prognostic capabilities on both of the datasets used (p < 0.01 

for both). Hazard Ratios (HR) were not presented. 

The visual features in the second classifier used were reported individually for their prognostic 

significance, using their coefficient estimates. Of the 6,642 features used, 11 (0.002%) yielded 

estimates with 95% confidence intervals that did not overlap zero (zero or negative probability). 

Seven of the top 11 were relational features assessing contextual relationships, such as distance 

between nuclei or regions. In the supplementary materials provided with the paper, coefficients 

are provided for 41 of the 6,642 features in descending (absolute) numerical order, and Figure 

27 shows the absolute values of these features. 

 

Figure 27 - Beck et al coefficient estimates of 43 algorithm features 

Of the top 11 features, 3 were related to stroma, and an independent model built on these three 

features alone was as strong a predictor as one built on all 6,642. The top three features were 

also stronger than the remaining eight epithelial features combined.  

One thing to note is the number of TMA core images is reported in the study - 576 cases with a 

total of 1286 core image. Tissue MicroArrays can contain upwards of 400 cores per slide and so 

the entire dataset may have been analysed using 3 or 4 slides, which would mean the algorithm 

does not account for histological or digital variability discussed in previous sections. 
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Chen et al present a similar approach, using 730 features generated from a combination of 

image features over 230 patient digital slide images, SVM classifiers and watershed nuclei 

detection, and 12 features were significantly associated with survival [204]. 

The algorithms developed in this thesis are evaluated against clinical data in Chapter 7. 

 

2.5.8 Summary 

Computer vision and ML within digital pathology research is an exciting and rapidly developing 

field, tackling a variety of subjects including stain normalisation, nuclear and structural 

segmentation, tissue classification, quality assessment, and automatic prediction of survival. 

Image analysis provides a logical method for automating quantitation of subjective and 

laborious tasks, with consistent and predictable accuracy. 

Many automated solutions exist for specific problems in histopathological analysis, and as such, 

are not generalisable to other tasks. Classifiers used for creating models of tissue are 

traditionally built using hand-selected features, of varying types and quantities. 

Methodology for validation of computer vision and ML algorithms is typically limited to using 

cross validation, and the number of image used varies dramatically. Of the papers analysed in 

this chapter, numbers of digital slides ranged from 10 or potentially fewer (see discussion on 

Beck et al’s work), to 230. 

There are many algorithms that exhibit promising accuracy statistics, yet the uptake of an 

accepted solution in this area is ongoing. Without appropriate levels of validity in terms of the 

number of datasets used for validation, and perhaps even survival statistics, these solutions 

cannot be fully trusted. 
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2.6 Summary 

The work presented in this chapter is already summarised in the appropriate sections, and is 

briefly listed below. 

Colorectal cancer  

• CRC has a high economic cost worldwide. 

• CRC is non-trivial to analyse. 

• Pathologists provide recommendations for CRC treatment based on prognostic 

indicators 

• The current methodology for identifying prognostic indicators relies on manual 

assessment. 

• Subjectivity and fatigue cause inter and intra scorer variability. 

However, despite these challenges, there is a clear benefit that consistent and reliable automated 

analysis of CRC will bring to the pathologist workflow, and ultimately patients. 

Digital pathology 

• Digital pathology is an exciting and modern innovation that encompasses a broad 

spectrum of research fields. 

• The digital slide creation pipeline crosses between laboratory practice and computer 

science, and there is scope to create variation in both areas. 

• Digitisation of glass slides offers the capacity to develop automated solutions. 

Automation of routine visual inspection tasks using computer vision and machine learning has 

the capacity to increase speed, accuracy and reproducibility of results, given that developed 

solutions are validated, and trusted by the pathological community. 

Computer vision 

• Computer vision is applied to digital slide images for enhancement, detection, 

classification, quantification and prediction. 

• Many solutions exist, but not enough widely available datasets exist for robust 

algorithms to be extensively validated.  
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• Survival analysis can be replicated by machine learning, and has the capacity to learn 

new prognostic markers. 

Thesis aims 

Moving forward, the work in this thesis aims to: 

• Generate a large dataset of pathologist scored CRC images, representative of routine 

work, to use as a robust bank of gold standard data 

• Automate the pathologist scoring task for prognostic features 

• Address issues with image quality that may affect image analysis 

• Validate the automated solution on large amounts of data from the dataset developed 

• Automate survival prediction 

These five tasks are split across the next five chapters (3 to 7), involving algorithm 

development, refinement, web systems development, human computer interaction experimental 

design, algorithm refinement, automated image quality assessment, and survival analysis using 

the automatically generated prognostic markers. 
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Chapter 3 - Automation of systematic 

random sampling 

3.1 Introduction 

3.1.1 Chapter overview 

The work in this chapter presents a systematic random sampling (SRS) system based on 

stereological methods (see section 2.2.3.4), for the manual analysis of histopathology images. 

The system is used to collect ground truth data to make a large repository of labelled image 

data, which is then used to develop an automated system for application of SRS to digital slides. 

The chapter is divided into five sections: 

1) The introduction, which builds on the description of SRS and stereology from 2.2.3.4, 

and discusses how SRS can be used effectively for the analysis of CRC. 

2) Presentation of the RandomSpot system, a SRS tool for manual quantitation of digital 

slide tissue, and how it has been used in clinical trial research to determine prognostic 

factors in CRC, and a description of RandomSpotDB, a repository for ground truth data 

relating to manually scored images using the RandomSpot system. 

3) An overview of one CRC trial which used the RandomSpot system, the data that it 

generated, and how this data can be used as an input to train image analysis algorithms, 

with exploratory analysis of the dataset, and assessment of basic image processing 

techniques for their suitability of application to the dataset. 

4) Development of a machine learning (ML) algorithm, which uses the original clinical 

trial image label data as a training set, for learning the appearance of tumour and stroma 

tissue. 

5) Discussion of the work presented in this chapter and conclusions. The discussion 

focuses on the how well the algorithms perform compared to a human, the main 

challenges of processing histopathological image data, the quality control issues 
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involved when processing a longitudinal dataset and how validation can be flawed when 

comparing against subjective assessments. 

 

3.1.2 Systematic random sampling for CRC tissue 

See section 2.2.3.4 for a background on stereology and systematic random sampling. 

Recap of 2.2.3: The manual quantification of tissue containing highly complex cellular 

structures within regions of interest (ROI) on pathological slides is laborious and prone to 

interobserver and intra-observer variation. Current quantification methods (scoring) rely on 

experienced pathologists to make informed estimations of the proportions of tissue, either on a 

Whole Slide Image (WSI), or within a given region of interest (ROI). These estimations are 

subjective, and require broad category bins to maintain inter and intra scorer consistency 

(typically three to four bins).  

Virtual slide viewing software solutions often provide inbuilt tools for drawing boundaries 

around tissue types, or counting cells with mouse clicks. Although applying these techniques to 

gigapixel resolution images is possible, due to the number of cells per image, the application is 

not practical. SRS provides a feasible alternative to manual whole slide quantification, but can 

be prone to biases when choosing areas for sampling.  

Systematic Random Sampling (SRS) allows accurate unbiased estimation of the proportion of 

classes while minimising the number of measurements needed. Traditionally, systematic 

random sampling involves placing a fixed grid (usually on an optical graticule) at a random seed 

point on a slide and counting objects under the points on the grid [35]. The efficacy of the SRS 

technique fundamentally relies on selecting an appropriate density of the sampling points within 

the grid. The density of the grid should be based on the estimation of the relative proportions of 

tissue within the area being analysed (low vs high frequency), as well as the distribution of 

those proportions (sparsely vs densely distributed) [243]. 

With an appropriate number of samples, the true frequency of objects in the whole tissue can be 

estimated effectively from the sampled frequency using the grid [33,208], which ensures higher 

reproducibility and consistency in scoring (see 2.2.3.4 for a worked example calculating optimal 

number of samples). However systematic random sampling is still laborious, requiring the user 

to make hundreds of measurements using a conventional microscope and an optical graticule. 

Errors are easily made, and it is difficult to pause and recommence work.  
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3.2 Systematic random sampling and ground 

truth acquisition 

3.2.1 Aim 

To develop a tool that applies SRS to digital slide images, within a given ROI, allowing 

researchers to quantitate the area and ratios of tissue types within that area. 

 

3.2.2 Methods 

The RandomSpot system [245] is a web-based HTML5 SRS tool designed to generate a 

uniform distribution of discrete, quantifiable targets within a given region of interest (ROI). 

These targets are used for systematic sampling of cancer tissue, to generate an estimation of the 

relative area of features within a given region.  

3.2.2.1 The RandomSpot algorithm 

Spots are created using a MATLAB compiled executable program, which initially generates a 

grid with an arbitrary number of spots, with a random seed to initiate the first spot [246]. Spots 

are spaced equidistantly using a hexagonal mesh, which is iteratively increased or decreased in 

size until the number of spots within the ROI matches the number chosen by the user, within the 

percentage tolerance specified. 

Initially the minimum and maximum x and y values of the ROI are padded with borders 10% of 

the width and height respectively (see Figure 29). A single co-ordinate, randomly generated 

within the bottom left corner of the border (the seed point area) is used to instantiate the seed 

point for the grid. This random seed point ensures that sampling points are randomly (as well as 

systematically) placed. Horizontal grid spacing (distance) is defined by the constant 𝑑, and 

vertical grid spacing ℎ is defined as ℎ = 𝑑 × sin(𝑟) where 𝑟 is 60 degrees, expressed in 

radians, to generate an equidistant set of points, based on a hexagonal mesh structure. A 

hexagonal mesh structure is chosen over square or triangle in order to reduce sampling bias 

from edge effects of the grid shape, caused by having higher ratios of perimeter to area. Point 

distance 𝑑 is initialised using the following formula: 
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𝑑 =
𝑃𝑤 × 𝑃ℎ

𝑇2
 

Equation 16 - Initialisation of RandomSpot mesh grid point distance 

Where 𝑃𝑤 is the width of the polygon and 𝑇 is the target number of spots. Points are generated 

along each row and column, with the stopping criteria set as the maximum ROI x or y value 

plus the 10% border.  

 

Figure 28 – RandomSpot mesh grid generation 

Top Left: Original ROI drawn by a pathologist 

Top Right: The isolated ROI showing the maximum and minimum x and y values, with the 10 height and 

width borders, and the randomised seed point area 

Bottom Left: Example sampling grid with random seed point and sampling distance d 

Bottom Right: Example sampling grid with the same random seed point and a smaller value for d 

Points are created along the x axis with a spacing of 𝑑 pixels, and every row is created using a 

spacing of ℎ pixels. To create the hexagonal mesh, alternating rows are spaced with 𝑑 + 𝑑/2 

pixels.  
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After the mesh grid is generated, and stopping criteria are met, the number of sampling points 

within the ROI boundary are calculated. If the number of points falls within the target number, ± 

the tolerance value (set as a percentage of the target number), then the algorithm converts the 

sampling points to XML (eXtensible Markup Language) and saves them in the Leica-Aperio 

annotations file format. If the number of points within the ROI is too low, the grid is 

regenerated with 𝑑 set to 𝑑/(1.2 + 𝑘), and if the number of the points is too high, 𝑑 is set to 

𝑑 × (1.1 + 𝑘), where 𝑘 is a randomly generated number between 0 and 0.01. This process is 

repeated until the target number of points is fitted in the ROI, within the tolerance specified. 

3.2.2.2 The RandomSpot system 

RandomSpot is a web-based SRS system, designed by Wright et al at Leeds, using HTML5, 

jQuery and PHP, with a MySQL database and MATLAB compiled executable programs used 

for background data processing. As a result, the system is both platform and browser 

independent. RandomSpot is primarily modelled on two simple use cases:  

1) Creating SRS points for a given region / several regions of interest 

2) Collecting hand-labelled SRS points as expert classified co-ordinates 

These use cases are explained in the following sections. 

3.2.2.3 Use-case 1: Generating spots 

Use case one utilises HTML5 and jQuery to create a simple, user-friendly interface for 

uploading XML regions of interest (ROIs). Regions of interest can be rectangular, elliptical or 

polygonal. Once uploaded, the RandomSpot algorithm places equidistant, systematic, randomly 

distributed spots within the ROIs. The number of spots required will rely on the expected 

frequency of the tissue type being measured. By default, the system sets 300 as the target 

number of spots, as this is optimal for minimising the coefficient of variation for a target 

frequency of 50% i.e. a normal two class system (see section 2.2.3.4) 
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Figure 29 - Example of a virtual slide annotated using the RandomSpot software 

Top Left: Hand-annotated polygonal ROI delineating a tumour boundary  

Top Right: The resultant spots added to the ROI by RandomSpot 

Bottom Left: Zoomed in view of sampling points 

Bottom Right: Single Sampling point at 20x magnification 

Figure 28 shows the ROI illustrated in Figure 29, overlaying the hexagonal mesh grid. The 

number of hexagons within the ROI is 373, which falls within the tolerance limits of the target 

number of spots set (400 ± 15%). Decreasing the tolerance level typically requires more 

iterations to fit the mesh grid to the ROI, increasing time taken to generate to sampling points. 

Figure 29 illustrates how the software systematically adds these targets, known as ‘spots’, 

equidistantly within the ROI, and depicts the resolution at which a single spot is manually 

viewed and scored. The process of scoring involves manual visual inspection of each given 

spot, and recording the type of tissue at that location. The types of tissue (classes) that are 
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recorded are subject to the organ from which the tissue has been taken. Typical scoring systems 

involve giving a spot a number that corresponds to a pre-set selection of tissue classes, designed 

by the investigator. An example of the tissue classes used for TSR scoring in CRC can be found 

in Figure 33.  

Each spot within the ROI is visually inspected and a classification is given for the type of tissue 

at that spot. The number of spots typically ranges from 50 to 300 per region on the slide. This 

number is dependent on the frequency of the observed objects in order to achieve a low 

coefficient of error (see 2.2.3.4). 

Once all spots have been visually assessed and scored, statistics can be produced regarding the 

proportion and distribution of tissue types. One such metric is the proportion of epithelial cells 

to stromal cells within a cancer, known as the tumour-stroma ratio (TSR). Since the introduction 

of this sampling system, research at Leeds has shown that the proportion of tumour to stroma is 

a prognostic marker in colorectal cancer [6], and that the level of tumour cell density is a 

prognostic indicator of response to preoperative therapy [247]. 

3.2.2.4 Use-case 2: Collecting ground truth data 

Use case two focuses on retaining the value of the hand annotated data, by encouraging users to 

submit their completed XML files after they have used the data for their own research. As with 

creating spots, XML files can be uploaded individually or as a zip archive. These files are 

processed, and each spot is added to the RandomSpot database – RandomSpotDB. These hand 

labelled locations are processed and stored as text classifications, paired with the URL strings 

containing x and y co-ordinates of the spot that has been scored, as well as the location of the 

virtual slide which the spot relates to. In addition to uploading XML files, users are encouraged 

to submit a scoring key, which matches the shortcut keys they used whilst scoring, to the actual 

semantic text classifications that are used when analysing the data. Also, to add further value to 

RandomSpotDB, each time the user submits their XML files, they are asked which type of 

tissue it is that they have scored. Having an extensive set of manually scored images, which is 

searchable by tissue type is extremely useful for training computer vision algorithms.  

3.2.2.5 Collation of ground truth data into RandomSpotDB 

The aim of the RandomSpotDB is to create a repository for the spot counting data that has been 

generated by experts for clinical trial studies and other research, so that the data can be reused 

for purposes such as image analysis and ML. 

Using the annotation data collected from the RandomSpot system (section 3.2) a database of 

spot co-ordinates and manually classified labels was created. As per the usage guidelines of the 
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RandomSpot system, each XML annotation file was saved with the corresponding slide’s 

unique file name (the Aperio SVS number). These XML files were grouped by the project that 

they were generated for, if available, the pathological data (tissue type, disease type), the stain 

applied to the slide, and the sampling method. The XML files were parsed using a custom script 

written in MATLAB, which extracted the XY co-ordinates of each spot, along with a numeric 

score that had been used to denote different types of tissue. Different projects used different 

numbering systems, so a key was generated for each project. Table 4 shows an example of a key 

used to convert numeric labels to text descriptions to store in the database. 

Numeric Value Tissue Type 

0 Non-informative 

1 Tumour 

2 Stroma or Fibrosis 

3 Necrosis 

4 Vessels 

5 Inflammation 

6 Tumour Lumen 

7 Mucin 

8 Muscle 

Table 4 - Example scoring key for one of the RandomSpotDB projects 

Once the data was fully parsed, a MySQL relational database was populated with each spot 

saved as one record, using the schema described in Figure 30. 

 

Figure 30 - ER Schema for RandomSpotDB 

Note that the sampling methods field was stored in the slide table, meaning that if one slide was 

scored using multiple sampling methods, the spot data would be kept separate. 
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Once inserted into the database, the integrity of the data was checked by extracting each record 

and overlaying a coloured dot representing the classification label on a scaled thumbnail image 

of its parent slide at its correspondingly scaled XY co-ordinate. The labels were grouped into 

three groups, tumour (red), stroma (green) and other classifications (blue). Figure 31 shows 

examples of data that has been collated and overlaid on their parent slide thumbnail image. 

 

Figure 31 – Examples of RandomSpotDB ground truth data 

Images visualising manual scores added to the Spot Counting training database from multiple clinical 

trials (red dot = tumour, green dot = stroma, blue dot = other) 

The images are from four separate studies and have been sampled in different ways. Once the 

output images from the database had been generated, they were visually inspected (per database 

project) and verified. 

 

3.2.3 Results 

RandomSpot has been used extensively at Leeds [245] and is continually being improved 

iteratively, in response to user feedback. Since the introduction of this sampling system, 

research at Leeds has shown that the level of tumour cell density is a prognostic indicator of 
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response to preoperative therapy [247]. It has also been used in studies which have successfully 

identified the prognostic significance of the ratio of tumour to stroma in breast [42] and upper 

gastro-intestinal [48] cancers. Currently the system has been adopted by over 40 active users, 

which have generated over 21,000 sets of spots, with an estimated total of 6.3 million 

classifications (assuming 300 spots per ROI, and only one ROI per set). These sets of data are 

being used extensively by researchers, research students and in clinical trials [7,213-217]. After 

publication, the clinically valuable datasets have been reused and collected in RandomSpotDB. 

With all the data parsed and inserted into the database, the total amount of data stored in the 

repository consisted of over 2.4 million expert-classified XY co-ordinates (spots). Table 5 

shows the number of records in each table. 

Spot Counting Database  Contents 

Projects / Trials 32 

Slides 11,989 

Spots 2,470,628 

Table 5 - The number of trials, slides and spots in the Spot Counting Database 

 

3.2.4 Summary 

The RandomSpot system provides a reproducible, quantitative method of estimating tissue 

proportions within CRC. However, manually inspecting each spot is a time-consuming task, 

with each spot taking an experienced pathologist an estimated five seconds (see section 4.2.4). 

Also, manually inspecting and classifying each spot still suffers from subjectivity, with mean 

pathologist agreement of 89% (see section 4.3). Therefore, automation of the spot counting task 

is highly desirable. 

RandomSpotDB is a valuable resource for extensive training and validation of image analysis 

algorithms on histopathology images, containing over 2.4 million expert-classified images over 

approximately 12,000 digital slides, used in 32 independent clinical trials and research projects.  
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3.3 Exploratory analysis of the QUASAR dataset 

3.3.1 Aim 

To gain a better understanding of the QUASAR dataset, by analysing descriptive statistics of the 

SRS data from RandomSpotDB.  

To identify issues which may affect automated solutions, using visual features of the digital 

slides, using statistical analysis and basic image processing techniques, by automating TSR 

generation and identifying images where performance is poorest. 

 

3.3.2 Methods 

3.3.2.1 The QUASAR CRC clinical trial 

The QUick And Simple And Reliable (QUASAR) trial [253] was a multi-centre clinical trial 

that aimed to identify any survival benefits from applying chemotherapy to patients after 

curative resections of colon or rectal cancer. The trial consisted of 3239 patients, 2291 of which 

had stage II colon cancer, who were recruited between 1994 and 2003. Patients were 

randomised so that half received chemotherapy after surgery, and half did not. The trial was a 

longitudinal study, where five-year mortality and recurrence was recorded per patient. 

Therefore, when combined with patient demographics and pathological data, the trial is a 

valuable resource for applying statistical tests in order to identify prognostic indicators for CRC 

[254].  

3.3.2.2 Image data 

All patients in the QUASAR trial had pathological data recorded and Formalin-Fixed, Paraffin-

Embedded (FFPE) biopsies, or blocks, were created for each patient. The blocks were sectioned 

into 5-micron thick samples, and stained with Haematoxylin and Eosin (H&E) to identify 

tumour regions. Glass slides were scanned using an Aperio1 AT scanner at 20x objective zoom 

(0.5 microns per pixel). 

                                                      
1 The QUASAR glass slides were scanned before Leica’s acquisition of Aperio  
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3.3.2.3 Staining variation 

Presented in this section are some example cases from the dataset. These have been grouped by 

similarity in terms of staining levels. This is to illustrate the effect of staining on the clarity of 

tissue structures within digital slides. 

 

Figure 32 - Example cases, grouped by perceived levels of staining  

Staining levels were subjectively assessed by a pathologist and are displayed in columns (left to right) as 

over stained, well stained, low levels of haematoxylin, low levels of eosin and weakly stained overall. 

Based on the performance of the colour normalisation algorithm in 2.5.2, it is likely that the 

variation exhibited in these images is too extreme for the trained RVM to identify enough 

relevant foreground pixels in the weakly stained slides to apply colour deconvolution and stain 

mapping.  

3.3.2.4 Scoring data 

The RandomSpot SRS system (section 3.2) was applied to digital slides from the QUASAR 

dataset, to assess the prognostic capabilities of the ratio of tumour to stroma [52]. For each of 

the colorectal cancer cases scanned (n = 2,211), tumours were identified by a trained 

pathologist, and annotations were drawn around the whole tumour. In addition, a 3x3mm square 

was placed over the area with the highest perceived tumour cell density. A subset of 145 cases 

were sampled using 300 spots per region of interest (ROI), and all cases were sampled using a 

target of 50 spots per ROI, with a tolerance of 15%. This was to minimise the overall workload 

of the pathologist, whilst maintaining results that were statistically similar to the methodology 
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using 300 spots. Table 6 shows the full amount of scoring data generated by this study, held in 

the RandomSpotDB.  

Sampling Location  ROI Boundary Type # Sampling Points # Cases  

Whole tumour Freehand polygon 300 145 

Whole tumour Freehand polygon 50 2210 

Highest area of TCD 3x3mm square highest TCD 300 145 

Highest area of TCD 3x3mm square highest TCD 50 2211 

Table 6 - Pathologist-scored data generated by the QUASAR TSR study, available for image analysis 

training 

Once the sampling points were generated, each one was individually assessed by either a trained 

pathologist or technician, according to the available scoring categories detailed in the key in 

Table 4. The scoring categories used were all sub-classes of the tumour or stroma categories, 

and Figure 33 illustrates examples of the different sub-classes for both tumour and stroma. 

Tumour Patches 

    

Tumour Lumen Necrosis Mucin 

Stroma Patches 

    

Stroma Muscle Inflammation Blood Vessel 

Figure 33 - Subtypes of tumour and stroma classes,  

Green arrows illustrate the exact centre that determines the classification of each patch 

Top: Left to right; tumour, lumen, necrosis, mucin  

Bottom: Left to right; stroma, muscle, inflammation, blood vessels 

Images shown are 256x256 pixels in size and extracted at 20x objective zoom. 

Note that each of the sampling points were generated using the RandomSpot SRS system, and 

therefore classifications only apply to the centre of the images shown (at the tip of the 
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arrowhead). Examples of the four different sampling methods are shown in Figure 34, applied 

to the same digital slide. The TSR is slightly different in each of the examples (approximately 

0.46 tumour to 0.32 stroma). 

 

Figure 34 – Sampling methods used on the QUASAR trial data 

The same tumour sampled by a pathologist, using the four methods described in Table 6  

Top Left: 300 spots on the whole tumour  

Top Right: 50 points on the whole tumour  

Bottom Left: 300 points within a 3x3mm square placed over the area with the highest TCD  

Bottom Right: 50 points within a 3x3mm square placed over the area with the highest TCD.  

Red dots indicate tumour labels, green dots indicate stroma, and blue indicate other types of tissue / non-

informative areas 

The method of placing a 3x3mm box over the highest perceived area of tumour cell density was 

applied to the full dataset in the original study. This was because the statistics derived from this 

technique were more strongly correlated with survival, and therefore of higher clinical value. 

Note that because the 50-point sampled ROIs were applied to the full dataset and that the 



Automated analysis of colorectal cancer  Chapter 3  

  

 85 

original manually-scored study used the 3x3mm box annotations to confirm the TSR as a 

prognostic marker, the same dataset was used with this work.  

Tumour cell density can be calculated in multiple ways, and for the original study (described at 

the start of this section), the manual analysis of the QUASAR dataset was calculated using 

Method 1 from Table 7 to identify the TSR as a prognostic indicator in CRC.  

Method Formula  

1 
∑𝑇

∑𝑇, 𝑆
 

2 
∑𝑇𝑡𝑢𝑚𝑜𝑢𝑟

∑𝑇, 𝑆
 

3 

∑𝑇𝑡𝑢𝑚𝑜𝑢𝑟

∑𝑇𝑡𝑢𝑚𝑜𝑢𝑟 , 𝑆𝑠𝑡𝑟𝑜𝑚𝑎
 

Table 7 - Methods for calculating TSR 

Where 𝑇 ∋ {𝑡𝑢𝑚𝑜𝑢𝑟, 𝑙𝑢𝑚𝑒𝑛, 𝑛𝑒𝑐𝑟𝑜𝑠𝑖𝑠,𝑚𝑢𝑐𝑖𝑛} and 𝑆 ∋ {𝑠𝑡𝑟𝑜𝑚𝑎,𝑚𝑢𝑠𝑐𝑙𝑒, 𝑣𝑒𝑠𝑠𝑒𝑙𝑠, 𝑖𝑛𝑓𝑙𝑎𝑚𝑚𝑎𝑡𝑖𝑜𝑛}. 

The tumour and stroma parent classes each have four subclasses, which are described in Figure 33. 

Method 1 is calculated as the ratio of the count of all tumour subclass observations to all tumour 

and stroma subclasses within a sampling area, and is referred to as the Tumou:Stroma ratio 

(TSR). Method 2 is calculated as the ratio of the total number of tumour subclass observations 

to all tumour and stroma subclasses, and is referred to as Tumour Cell Density (TCD). Method 

3 is the ratio of the tumour subclass to the tumour and stroma subclasses only, ignoring all other 

data points. This method discards 8% of the data. 

3.3.2.5 Feature analysis for image processing 

Using the ground truth data (see section 3.3.2.1), the TSRs were plotted against six image 

intensity features, so that correlations between features and TSRs could be assessed as models 

for predicting TSR. The intensity features used were: 

• Mean image HSV intensity 

• Standard deviation of image HSV intensity 

• Mean intensity of the stain deconvolution H channel  

• Standard deviation of H channel intensity 
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• Mean intensity of the stain deconvolution E channel  

• Standard deviation of E channel intensity 

Features were calculated describing the overall sampling area, at a fixed zoom of 6x 

(2000x2000 pixel images from 20x slides at 0.5 microns per pixel). Figure 35 shows hex scatter 

plots of TSRs against mean and standard deviation of intensities for the cases (HSV intensity 

and stain intensity for deconvoluted H&E staining). 

 

Figure 35 - Hex scatter plots of slide features compared to TSRs 

Each figure plots TSRs along the x axis and the image feature values along the y axis 

Heatmaps indicate the density of distribution with darker colours representing higher numbers, referred 

to by their scales 

The resulting plots show no correlations between TSR and image features, and therefore it is 

concluded that these features alone are not sufficient for predicting TSR.  

3.3.2.6 Thresholding 

It was hypothesised that, due to the higher cellular density of epithelial tissue, tumour and 

stroma would be separable using thresholding on the Haematoxylin intensity image, generated 

by colour deconvolution (see section 2.4.2). This is an over-simplified observation that appears 

true in a large proportion of the observed images.  
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Figure 36 - Colour deconvolution applied to an example image from the dataset  

Left: original image  

Centre: The Haematoxylin channel  

Right: The Eosin channel 

The image size in all cases was a 3x3mm square, at 20x (0.5mpp) resolution, meaning that 

fibroblasts (stromal nuclei) would be included if the H channel image were simply thresholded. 

By using a simple median filter (size, 20x20 with symmetric border replication), these nuclei 

were filtered out as noise. Figure 37 illustrates that the median filtering process has the capacity 

to transform the pixel intensity values into an easily thresholdable bimodal distribution. 
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Figure 37 – Threshold comparison with and without median blur for filtering out stromal nuclei  

Left: Haematoxylin image channel from Figure 36, thresholded using the method detailed in Equation 8 

to separate tumour (red) from stroma (blue), and a static threshold to separate background (blue) of 240 

Right: The original image is median filtered with a size of 50 (see 2.4.3). 

Blurring the image affects the distribution of intensity values in the image histogram. 
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After using median filtering as a pre-processing step, the image was thresholded using the mean 

intensity of the non-background pixels (threshold = 240 intensity) – this assumed that the image 

had a bimodal distribution of pixel intensities, and that the bimodal distribution was 

approximately equal for both peaks. This means that images that are not well stained, or have 

unequal amounts of tumour and stroma will most likely not be analysed accurately using this 

technique. 

After thresholding, the resulting image mask, which provided an area of candidate tumour 

pixels. The ratio of tumour to stroma could then be counted as the number of tumour pixels to 

the number of non-background pixels. For visualisation purposes, the mask was applied to the 

haematoxylin image, and a colour heatmap applied to it. The haematoxylin channel was used 

again as an alpha (transparency) map to create an overlay for the original RGB image (see 

Figure 38). Note that the threshold markup image combines the foreground tissue mask in the 

blue channel and the tumour mask in the red channel to create an RGB image, where co-

localised foreground and tumour is represented as magenta. 

 

Figure 38 – Heatmap of haematoxylin stain intensity after median filter and threshold  

Left: Blurred image heatmap  

Centre: Thresholded image – magenta is tumour, blue is stroma  

Right: The markup image applying the tumour mask to the heatmap, and overlaying the original image 

with an alpha (transparency) map equivalent to the Haematoxylin stain intensity  

 

3.3.3 Results 

3.3.3.1 Dataset observations  

Using the full dataset from RandomSpotDB (section 3.2.2.5), the data were analysed to assess 

the distribution of classifications given. Figure 39 shows that out of all 360,698 expert-classified 

locations for the QUASAR dataset, 203,616 (56%) belonged to the Tumour class (Tumour, 
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Lumen, Necrosis and Mucin subclasses), 129,119 (36%) belonged to the Stroma class (Stroma, 

Muscle, Vessels and Inflammation), and 27,963 (8%) of them were non-informative. 

 

Figure 39 - Bar plot of all available data for the QUASAR set, grouped by classification 

The bars are grouped by their parent class (top group being tumour, and middle group being stroma). 

The dataset has more examples of tumour than stroma, which may affect the training of ML algorithms. 

Each of the 2,211 cases in the dataset had been scored using two of the four sampling 

methodologies described in Table 6: 50 spots within a 3x3mm box annotation over the area with 

the highest tumour cell density, and 50 spots within the whole tumour boundary. These data 

were separated and analysed independantly for their TSRs per case (Figure 40).  

Method 1 was implemented in the original manual spot counting analysis study, applied to the 

QUASAR dataset (see 3.3.2.1), in order to generate the most statistically significant prognostic 

markers [52]. Therefore, to maintain comparability between the results of the original study and 

the algorithm output, the same method was applied to all subsequent analyses of this dataset.  
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Figure 40 - Histograms of TSR distribution per case for the two pathologist sampling methods  

Left: 3x3 mm box over the highest area of TCD (mean = 0.6, standard deviation = 0.18)  

Right: Whole tumour region (mean = 0.48, standard deviation = 0.16) 

The distribution shows that sampling ROIs placed over the perceived area of highest TCD yield higher 

TSR values. 

The distributions illustrate that ROIs sampled in the areas of highest perceived TCD yield 

higher TSR values. For the highest TCD and whole tumour datasets, the means are 0.6 and 0.48 

resepectively. The highest TCD dataset has a standard deviation of 0.18, whereas the whole 

tumour dataset has a standard deviation of 0.16. This indicates that the whole tumour dataset is 

more normalised, wherease the highest TCD dataset predicts higher TSRs, but with a stronger 

skew to the left of the mean.  

3.3.3.2 Correlation of TSRs using different manual sampling methods 

Using the highest TCD dataset as the ground truth, the remaining dataset (whole tumour) was 

used to compare the TSRs for both methodologies. The graphs in Figure 41 compare both sets 

of ratios generated for each case.  
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Figure 41 - Comparison charts of ground truth for the two pathologist sampling methods  

Comparisons of 50 spot sampling method, using 3x3mm box over highest TCD area, to the whole tumour 

area (left) histogram of ratio differences per case (mean = 0.11, standard deviation 0.15) and (right) hex 

plot scatter heatmap (R2 = 0.41). 

The figures show that the relationship between the two sampling methods is consistently skewed due to 

the area of highest TCD having higher TSRs than whole tumour areas. 

Using the differences per case (between sampling methods, highest TCD area minus whole 

annotations area), the histogram shows that the whole annotations underestimate the proportions 

of tumour. The comparison dataset has a mean bias of 0.11, and a standard deviation of 0.15. 

These results indicate that the whole tumour sampling method identifies a lower proportion of 

tumour by comparison, which is as expected, due to the location of the box annotations being at 

the area of highest TCD. 

A paired samples T-Test rejected the null hypothesis that the pairwise mean comparison is equal 

to zero (p < 0.01). A Spearman’s nonparametric rank correlation test confirms that a positive 

relationship extists (rho = 0.61) and that the correlation is significantly different from zero (p < 
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0.01). The fitted linear regression model (grey line on the plot) to the dataset has a coefficient of 

determination (R2) of 0.41. 

 

Figure 42 - Bland-Altman plot of TSRs generated by the two sampling methods 

The BA plot shows that the differences between the two sampling methods have a large spread (C.I. = 

0.29), but there is no obvious point in the distribution where this spread is likely to be larger or smaller. 

This means that the two methods have consistently high levels of variance, indicating that either human 

scoring methods are not consistent, or that cancers with high TSR in the highest area of TCD may not 

necessarily have high TSR overall.  

The Bland-Altman plot in Figure 42 shows that the data has a bias of 0.11, and that the 95% 

confidence intervals (1.96 standard deviation, indicated by the outer dashed lines) are ±0.29 

[255]. The mean bias of 0.11 indicates that the highest area of TCD is has 11% more tumour 

than the overall whole cancer ROI. The data shows that cancers with high TSRs in the area of 

highest TCD do not necessarily have high TSR rates over the whole tumour area. The spread of 

data gives an indication of how much this figure may vary from case to case, but may also be 

subject to human inconsistencies with scoring. 

3.3.3.3 Image analysis results observations 

Using the methods described in 3.3.2.6, each of the cases from the dataset was processed to 

identify tumour and stroma tissue, whereby their TSR was recorded, and a markup image 

denoting the presence of tumour was saved for visual inspection. Examples of some of the 

markup images are shown in Figure 43. 
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Figure 43 - Examples of image analysis markup from the initial thresholding-based algorithm 

Top: Original images 

Bottom: Markup images.  

Green indicates tissue detected as stroma, red indicates tissue detected as tumour and white indicates 

detected background. 

The examples show that using the thresholding method is not appropriate for images with lower contrast 

between tumour epithelium and stroma (poorer staining). 

Overall the algorithm appeared to robustly identify tumour areas, but due to the median filtering 

of the haematoxylin channel, smaller areas of tumour, or transversely sliced glandular structures 

lost edge fidelity and were detected at smaller sizes. Areas of tumour lumen that contained 

mucin or debris were often detected as stroma due to their lighter appearance, instead of their 

position in relation to the tumour gland structures. Also, images that were poorly stained in 

terms of haematoxylin did not yield accurate detection results (example shown in top left of 

Figure 43). 

 

3.3.3.4 Correlations of TSRs between manual and automated methods 

Each of the cases from the full dataset were analysed using the techniques described to generate 

a percentage of tumour and stroma ratio (TSR) per case. This ratio was compared to ratios 

generated by pathologist scoring from the original study, and comparisons were made by 

subtracting the algorithm-generated ratio from the manually generated ratio per case. 

Using the highest TCD spots as the ground truth, the algorithm-generated ratios were compared 

in order to assess how the algorithm results correlate with the manual data. The graphs in Figure 

44 compare both sets of ratios generated for each case. 
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Figure 44 – Comparison plots of pathologist scores to thresholding-based algorithm  

Left: Histogram of TSR differences per case  

Right: Hex scatter plot showing distribution of the ratios 

The histogram shows that the algorithm has a positive bias, meaning that it underrepresents tumour in 

the analysis. This is due to the median filter blurring small areas of tumour into larger areas of stroma. 

Using the differences per case (ground truth highest TCD method, minus exploratory algorithm 

method), the histogram shows that the automated method underestimates the proportions of 

tumour. The comparison dataset has a mean bias of 0.27, and a standard deviation of 0.20. A 

paired samples T-Test rejected the null hypothesis that the pairwise mean comparison is equal 

to zero (p <0.01). 

The distribution of ratio differences indicates that the algorithm underestimates the proportions 

of tumour. This is likely due to the naïve assumption of the algorithm, that intensity is an 

appropriate feature for independently segmenting tumour from stroma. Issues with this 

assumption are explored in 3.4.3.3, however, the blurring method may also be too aggressive in 

cases where stains were weaker – such that the contrast between the resulting areas was too low 

to identify a useful threshold. Also, areas of lumen in the tissue are considered part of tumour 

tissue in the ground truth, but applying larger average filters over them raises the intensity over 

the overall area, which would cause the algorithm to incorrectly predict stroma instead.  

A Spearman’s nonparametric rank correlation test confirms that a positive relationship extists 

(rho = 0.69) and that the correlation is significantly different from zero (p < 0.01). The fitted 

linear regression model (grey line on the plot) to the dataset has a coefficient of determination 

(R2) of < 0.01. 
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Figure 45 - Bland-Altman plot comparing TSRs generated by the algorithm and the manual analysis 

methods  

The distribution of the BA plot shows the data has a high variance (C.I. = 0.52), with a positive bias, 

indicating the algorithm underrepresents stroma. The distribution also shows that the algorithm is likely 

to perform more poorly on cancers with a TSR of approximately 0.45, with better agreement on cases 

with more polarised values. 

The Bland-Altman plot in Figure 45 shows that the data has a bias of 0.27, and that the 95% 

confidence intervals (1.96 standard deviation, indicated by the outer dashed lines) are ±0.52. 

The combined bias and spread of the distribution indicates that the algorithm is not an adequate 

substitute for human scoring, but provides a baseline with which to identify issues with 

performance and mitigate them. 

3.3.3.5 Poor algorithm performance 

The dataset was processed using the described methodology from 3.3.2.6 and observations were 

made where the algorithm performed poorly. Poor performance in this instance is defined as 

results from images where the difference between pathologist-generated TSR and algorithm-

generated TSR falls outside of the 95% confidence intervals, shown in the resulting Bland-

Altman plot of TSR difference distributions (see Figure 45). Observations were made by 

manually inspecting the markup of the processed images. Four recurring issues were identified: 

1) Slides that are stained inconsistently compared to the majority of the dataset 

2) Tissue that has a strong lymphocyte immune response 

3) Images that had technical artefacts upon retrieval from the server 

4) Images containing tissue that does not have the characteristics of a stage II cancer  
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These issues are addressed independently in the following sections. 

Issue 1: Staining inconsistencies 

Inconsistent staining affects the threshold levels for object detection and the output images from 

colour deconvolution. This means that either the thresholding method should compensate for 

such variation, or the images should be adjusted before analysis. Colour normalisation [165] 

provides a robust solution to staining variation (see section 2.5.2), and was applied as a pre-

processing step. However, despite colour normalisation’s robust method for correcting stain 

variation, there are small numbers of cases where the images have very little colour information 

(staining is faded or too weak), or the colour information is too far outside the expected range 

(extreme overstaining in one or two staining channels).  

 

Figure 46 – Examples of colour normalisation on sub optimal images  

Top: Examples of slides with sub-optimal staining 

Bottom: The slides with colour normalisation applied in 1000x100 pixel blocks 

Figure 46 shows examples of colour normalisation being applied to suboptimal images, in order 

to assess its suitability. Note that the block artefacts are created due to the normalisation being 

applied to 1000x1000 pixel image patches before concatenation of the final image. The 

examples show that colour normalisation is appropriate for use with images that are both too 

weak and too strongly stained, however some extreme cases may not be correctable. Applying 

colour normalisation to the whole slide prior to analysis may provide better colour correction 

than block-based normalisation, however this was not possible with the software available. 

It is concluded that the application of colour normalisation should, for the most part, improve 

the overall consistency of slide images to allow more consistent analysis. 
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Issue 2: Lymphocytic infiltrate 

Lymphocytes are immune cells that provide an inflammatory response to cells that are being 

attacked by viruses and diseases. These cells are dark, round and consistent in appearance, and 

appear in dense clusters. Inflammation in CRC is a sub class of the stroma category, and breaks 

the naïve assumption of the algorithm, that areas of tumour are darker than stroma. The density 

of lymphocytes in inflammation means that unlike stromal fibroblasts, lymphocytes are 

removed by median filtering alone.  

Lymphocytes are typically consistent in size, shape and colour, with dark appearance and well-

defined cell boundaries. By creating an edge (strength) probability map, the edge information 

can be used to identify areas with high levels of edge strength and subtract them from the 

tumour probability (median filtered haematoxylin image) map. 

 

Figure 47 - Example of lymphocytic immune response  

Left: Illustration of lymphocytes (top) having lower intensity than tumour (bottom), making simple 

intensity thresholding inaccurate  

Right: Maximally filtered edge strength map using canny edge detector, showing lymphocytes have 

higher edge strength 

Firstly, the image is filtered using a canny edge detector, and then to amplify the areas with 

strong edges, a maximum filter (size [5 5]) is applied. This image is subtracted from the tumour 

probability map.  
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Figure 48 – Removing lymphocyte cells from analysis using edge intensity 

Left: Stain intensity heatmap 

Centre: Edge intensity ieatmap 

Right: Original image, overlaid with subtracted heatmaps, removing areas of lymphocytes 

The example images in Figure 48 illustrate that when subtracted from the haematoxylin stain 

image, the edge probability map has the capacity to remove lymphocytic infiltrate from the 

tumour probability map. Accounting for edge strength in future algorithm versions should be 

useful for mitigating this issue. 

Issue 3: Image retrieval artefacts 

Images retrieved over http via the Leeds digital slide server have an inbuilt size cap of 

2000x2000 pixels. The larger the images retrieved, the more load placed on the server, which 

also causes more issues with latency and digital artefacts. In order to read in and process the 

3x3mm ROIs (20x zoom or 0.5 microns per pixel), it is sensible to process the image in blocks. 

 

Figure 49 - Examples of image retrieval failure 

Left to Right: Original (out of focus) 256x256 pixel image – out of focus but as intended, image retrieved 

over http using Aperio ImageServer (caused by memory leak), image retrieved over local filesystem using 

OME BioFormats package, image atypical 
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 To reduce the overall memory requirements of the algorithm, the images were split into 

1000x1000 tiles using a sliding window methodology with an additional 100-pixel border and 

concatenated. This methodology created two issues: 

1) Sometimes tiles would be retrieved from the server without any visual information (all 3 

of the RGB channels set to 0) 

2) Colour normalisation is applied per image tile and so areas with little colour information 

are overcompensated (see 2.4.2). 

  

Figure 50 - Examples of artefacts caused by processing images in tiles 

Applying colour normalisation to sliding window areas means that image tiles are corrected 

using local colour information (as opposed to global), which has the capacity to alter the 

processing results per block. 

Issue 4: Pathological factors affecting analysis 

Upon visual inspection, some of the cases in the dataset were negatively affecting TSR 

generation due to pathological factors. Examples of these include mucinous cancers, where 

large amounts of mucin are present in the images, poorly differentiated tissue, which has little to 

no structure, and appears homogeneous, and necrotic tissue, where cells have died and are 

scattered. In all of these cases, the assumption that tumour and stroma are visually separable 

using intensity is broken, meaning that the thresholding algorithm under performs on these 

images. Figure 51 illustrates examples of mucinous, undifferentiated and necrotic cancers, 

which do not contain any discernible glandular structures. 
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Figure 51 - Examples of tissue in the dataset that negatively affected algorithm performance 

Top Left: Mucinous adenocarcinoma  

Top Right: Undifferentiated tissue  

Bottom Left: Undifferentiated tissue 

Bottom Right: Necrotic tissue 

The illustrated examples show that the pathological reasons for affecting TSR are likely due to their 

lighter and more homogeneous appearance. The lack of contrast between glands and stroma mean that 

thresholding assumptions based on structural differences within a given image are broken. Note that in 

all four cases, these images are considered to contain mostly tumour. 

These images show examples of atypical cancers in stage II cancer patients, but to maintain 

completeness of the dataset, were not removed from the analysis. The appearance of these 

cancers has the capacity to negatively affect the results of image analysis algorithms due to their 

deviation in appearance to typically CRC tissue, and their homogeneous appearance. The lack 

of structural information in the images makes the task of gland segmentation very difficult, and 

there is very little contextual information, even given the large field of view (2000x2000 
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pixels). An in depth look at images that negatively affect image analysis performance id 

undertaken in Chapter 6. 

 

3.3.4 Conclusions 

The results presented are consistent with the methodologies that generated them. Sampling the 

highest area of TCD generates higher TSRs than whole tumour areas, creating a mean 

difference bias skewed towards 1. 

The spread of data indicated by the confidence intervals in Figure 42 shows that the distribution 

of differences has a high amount of variance, which supports the motivation for this work, that 

manual scoring methodologies are subjective and largely inconsistent. 

The area of highest TCD within a 3x3mm box annotation is used in previous publications, due 

to this method having the strongest correlation with survival this method will be the gold 

standard for further work.  

The algorithm performs basic processing that accommodates for some but not all of the 

complex histopathological features.  

The performance of the algorithm has a mean difference of +0.15, indicating that the algorithm 

underestimates the presence of tumour. This is confirmed by the visual inspections made of the 

markup images in section 3.3.3.3, and is due to smaller or thinner epithelial areas being filtered 

out as noise, as well as mucin and luminal debris being counted as stroma.  

The spread of the distribution of ratio differences would appear to be too wide to make the 

algorithm of clinical use without further improvements. These improvements could be made by 

using the existing ground truth data to train a ML algorithm, in order to learn the appearances of 

different tissue types. This approach could reduce the false negative rate by identifying tumour 

lumen and excluding it from analysis. Section 3.4 adopts this approach.  
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3.4 Algorithm A: Automated SRS using a fixed 

patch size 

3.4.1 Aim 

To develop a ML algorithm for automatically generating TSRs, using the QUASAR dataset as 

the ground truth data for training. 

 

3.4.2 Methods 

The image data for the QUASAR clinical trial dataset, obtained using the RandomSpot system 

(detailed in section 3.2), was used to develop a ML based image analysis solution. Instead of 

using the whole 3x3mm annotation (as per the previous algorithm), the original image spot 

classifications were taken individually in order to extract an image patch using the spot as the 

centre coordinate. Using this methodology, each of the 2,211 cases had approximately 50 pre-

scored spots, which were classified as one of the eight tissue types (illustrated in Figure 33). 

The ninth classification that was used for non-informative spots, which represented areas that 

could not be scored, such as non-luminal background pixels, or histological and digital artefacts, 

was discarded.  

3.4.2.1 Processing pipeline 

To ensure consistency in processing methodologies, and maximise the reliability of results, each 

algorithm that processed the RandomSpotDB datasets using ML used the following processing 

pipeline as a template for analysing tissue images. Any deviations from or extensions to the 

pipeline are explicitly mentioned in the corresponding methodology sections.  

1. Image retrieval 

Image co-ordinates were retrieved from the RandomSpotDB, and extracted at a given size, with 

the ground truth label lying at the centre of the image. Image patches were retrieved directly 

from the Leeds digital slide server hard drives using the OpenSlide library as opposed to over 

HTTP using the Leica-Aperio ImageServer software (see section 2.4.1). Using the QUASAR 

dataset, 2,211 patient cases were available for processing, consisting of 106,242 image patches, 
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scored with one of the eight subclasses illustrated in Figure 33. All images in this dataset were 

sampled using the 3x3mm box annotation described in section 3.3.2. 

2. Stain variation correction 

Stain variation was corrected using the Magee et al colour normalisation algorithm, detailed in 

section 2.5.2. To compensate for errors illustrated in Figure 21, an assessment was made using 

the intensity and saturation values of the normalised image patch, and images that did not meet 

these criteria were rejected in favour of the original image. 

3. Image feature calculation 

Image features were calculated for each patch, generating a feature vector consisting of 18 

features, listed below: 

• Median HSV hue 

• Median HSV saturation 

• Median HSV intensity 

• Percentage of foreground area2 

• Percentage of haematoxylin deconvolution channel foreground area 

• Percentage of eosin deconvolution channel foreground area 

• Median intensity of haematoxylin deconvolution channel foreground  

• Median intensity of eosin deconvolution channel foreground 

• Threshold value of foreground haematoxylin pixels as described by Equation 8  

• Threshold value of foreground eosin pixels as described by Equation 8  

• Percentage of haematoxylin deconvolution channel foreground area after threshold 

• Percentage of eosin deconvolution channel foreground area after threshold 

• Standard deviation of HSV intensity 

• GLCM (section 2.4.4.1) energy value  

• GLCM homogeneity value 

• Nuclear detection count, using Bennett et al algorithm (section 2.5.3.1) 

• Mean nuclei size 

• Ratio of total nuclei area to total image area 

 

                                                      
2 Foreground is defined as pixels with saturation > 0.04 and intensity < 240 for HSV colour 

images, and pixels < 240, or 0.94 for greyscale images. 
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4. Data splitting 

After feature vectors for every patch in the dataset were generated, the data was randomly 

grouped (by case, rather than by patch) into ten folds for cross validation. 

5. ML classifier training 

Using the ten groups of feature vectors, a ML classifier was trained using nine of the groups. 

Unless otherwise specified, a RF algorithm (section 2.4.6.5) was implemented.  

6. ML classifier testing 

The trained ML algorithm was applied to the left-out group, using the generated model on the 

unseen data, so that predictions could be made for each of the feature vectors. 

The training and testing processes were repeated for each of the ten groups, so that predictions 

were made for each image patch. 

7. TSR generation 

TSRs were generated for each case, using all three methods described in Table 7. However, for 

results analysis, Method 1 was used so that TSRs were comparable to the results of the original 

study. 

8. Results analysis 

Results analysis was performed on classification agreement, and TSR differences and 

correlation. For agreement, statistics were calculated from an 8x8 confusion matrix comparing 

predictions with ground truth for all sub classes. The matrix was condensed to a 2x2 matrix, 

grouping the four tumour subclasses and the four stroma sub classes, and agreement statistics 

were calculated again. Receiver Operator Characteristic (ROC) curves were generated for each 

tissue subclass, so that Area Under the Curve (AUC) could be calculated and assessments could 

be made as to which tissue types are modelled appropriately by the algorithm, and which are 

not. 

TSRs were compared using ratio difference, subtracting pathologist-generated TSRs from 

algorithm generated TSRs, so that negative values indicated that the algorithm overestimated 

the amount of stroma in the image, and positive values indicated that tumour was 

underestimated, and 0 indicated perfect agreement. Correlation between algorithm and 

pathologist generated TSRs were also calculated. 

3.4.2.2 Optimising algorithm parameters 

With a computer vision algorithm established, three key questions were addressed, in order to 

optimise algorithm performance: 
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1. What is the optimum image patch size for processing these images? 

2.  What classifier provides the highest pathologist agreement? 

3. What settings are most appropriate for use with the selected classifier? 

For the initial parameter optimisation, the dataset was reduced to tumour and stroma classified 

image patches only. This reduced the number of images from 106,242 to 80,802. 

Also, for the purposes of assessing impact input parameters on per-patch accuracy, TSRs were 

not generated. 

1. Image patch size 

Image patches were extracted using the x-y coordinate of each spot as the centre point. To 

assess the impact of patch size on the accuracy of the algorithm, images were extracted at 16, 

32, 48, 64, 128, 256, 512 and 1024 pixels in width and height at native (20x) magnification, and 

processed as separate datasets. Figure 52 illustrates a scaled example of the image sizes, 

showing the same spot (with the same x-y coordinate), but with increasing amounts of visual 

information, going from left to right. Note that the black lines are to help identify the centre of 

the patch, and are for illustration purposes only. 

 

Figure 52 - Image patch sizes, ordered by size  

Left to Right: 16, 32, 48, 64, 128, 256, 512 and 1024 pixels in both width and height.  

Note that the images are proportionally accurate, but scaled down to fit the document. 

Initially, an implementation of the RF algorithm was trained using 300 trees, with three 

predictors (features) sampled for splitting at each node. The ten-fold cross validation repeated 

training and testing for each of the seven patch sizes so that agreement statistics could be used 

to identify the optimal image patch size. 
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2. Classifier selection 

Once the image size with the highest percentage agreement had been identified, several ML 

algorithms were used for training and testing, to assess their accuracy. In addition to the RF 

algorithm (section 2.4.6.5), the following four classifiers were used: 

• A Naïve Bayes classifier (section 2.4.6.2) 

• Logistic Regression (section 2.4.6.3) 

• Support Vector Machine (section 2.4.6.4) 

• AdaBoost applied to RF (section 2.4.6.6) 

All algorithms processed the reduced dataset containing tumour and stroma patches only, 

extracting images at the most appropriate size, identified by the previous experiment (64x64 

pixels), using ten-fold cross validation. 

3. Parameter optimisation 

With the optimal patch size (64x64 pixels) and ML algorithm identified (RF), an experiment to 

identify the optimal number of trees for the RF was created, again analysing the reduced dataset 

of 80,802 patches, and using ten-fold cross validation. The experiment was repeated for 10, 20, 

30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400 and 500 trees.  

3.4.2.3 Analysis using optimised algorithm 

The findings from the previous sections are presented in sections 3.4.3, which identify optimal 

patch size, ML classifier and parameters. These settings are used to create a ML algorithm on 

the full dataset of 2,211 cases, using a patch size of 64 pixels, and a RF classifier with 100 trees. 

Analysis was performed using the pipeline described in 3.4.2.1, on the full set of 106,242 

images. Spots classified as non-informative were discarded from the feature set for training. 

3.4.2.4 Image processing hardware 

Image processing, feature generation and classifier training and testing was implemented in 

MATLAB, and performed on a VMWare powered Windows Server 2008 R2 64-bit virtual 

machine with Intel Xeon processors and 32GB RAM. The MATLAB implementation utilised 

the parallel computing toolbox, assigning 8 processors to parallelise the task. 
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3.4.3 Results 

3.4.3.1 Optimal algorithm parameters 

4. Patch size 

The algorithm was trained and tested on different patch sizes of 16, 32, 48, 64, 128, 256 and 

1024 square pixels, to identify the optimal size for accuracy. Figure 53 contains boxplots for the 

mean percentages of correctly classified spots per cross validation fold, for each of the patch 

sizes.  

  

Figure 53 – Results of algorithm accuracy at multiple patch sizes 

Note the vertical axis is scaled for readability. Highest mean algorithm agreement observed on 64x64 

pixel patches (0.79) and decreases either side. Lowest agreement is recorded on 1024x1024 pixel images 

(0.67). This indicates that algorithm performance decreases with larger amounts of visual information, 

which may be due to containing averaged feature values form multiple classes (see discussion). 

The accuracy of the algorithm is highest at the patch size of 64 square pixels in size and 

decreases with larger as well as smaller sizes. Table 8 contains the agreement statistics for the 

algorithm across all image patch sizes tested. When analysing the 64 square pixel image 

patches, the mean accuracy of the algorithm was 0.79 (SD < 0.01), has a sensitivity of 0.84 and 

a specificity of 0.81. 
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 Patch Size (x) 

 16 32 48 64 128 256 1024 

Mean 0.77 0.77 0.78 0.79 0.78 0.75 0.67 

STD <0.01 <0.01 <0.01 <0.01 0.01 0.01 0.01 

IQR 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Table 8 – Agreement statistics for baseline algorithm on multiple image patch sizes 

The table shows the statistical data represented in the boxplots in Figure 53. The algorithm accuracy 

peaks at 64x64 pixels and sizes 128x128 and above have larger variance. 

2. Classifier selection 

Once the optimal image patch size was identified at 64 square pixels, the algorithm was trained 

and tested using multiple classifiers to ascertain which had the best performance. 

 

Figure 54 – ROC curves for multiple ML algorithms on the baseline algorithm feature set. 

The curves show that the RF algorithm has the highest levels of pathologist agreement. The SVM curve 

contains one point due to outputting binary class predictions. 

The ROC curves in Figure 54 show the performance of the five different algorithms used: 

Support Vector Machine (AUC = 0.69); Bayesian Networks (AUC = 0.75); AdaBoost applied to 

RF (AUC = 0.79); Logistic Regression (AUC = 0.85); RF (AUC = 0.87). The RF algorithm had 

the highest AUC, and so was selected for further analysis of pathologist agreement, and TSR 

correlation. 

Naïve Bayes 
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5. Parameter optimisation 

The selected RF algorithm was optimised by identifying an appropriate number of decision 

trees. The box plots in Figure 55 show the algorithm-pathologist agreement for each of the ten 

folds of cross validation, per number of trees tested. 

 

Figure 55 – Boxplots showing agreement between RF classifier and pathologists when using a range of 

trees to identify grouped agreement 

The distributions indicate that using 100 trees provides the most appropriate trade-off between 

maximising accuracy and minimising computational cost.  

In ascending order, the means of each distribution were 0.75, 0.76, 0.76, 0.76, 0.77, 0.77, 0.77, 

0.77, 0.77, 0.77, 0.77, 0.77, 0.77, 0.77. The minimal differences between values led to the 

decision to use 100 trees in further experiments. 

3.4.3.2 Processing time 

The Algorithm A feature set took 6,314 seconds to generate for 64x64 pixel images, using the 

methodology and hardware previously described. This equates to approximately 0.06 seconds 

per patch. 

3.4.3.3 Agreement 

With the optimal parameters identified, a 10-fold cross validation was applied to the dataset of 

2,211 cases, and each iteration used 106,242 patches in total, with approximately 95,400 for 

training, and 10,600 patches for testing. 

Agreement was calculated in two ways: calculating per-patch agreement for all eight tissue 

classes, and grouping the eight classes into their parent class: tumour and stoma. Figure 56 

shows the confusion matrices for both evaluation methods of Algorithm A. The left matrix 
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shows the agreement between algorithm and pathologist for the eight tissue classes. The eight 

by eight matrix is subdivided into four quadrants, which group the eight classes into the two 

parent classes, tumour and stroma. The summations of these results into the parent classes are 

depicted in the two by two confusion matrix to the right.  

 

Figure 56 – Confusion matrices showing pathologist – Algorithm A agreement 

Left: Confusion matrix of all 8 tissue subtypes from dataset. Accuracy = 70.06%, sensitivity (true positive 

rate / recall) = 0.70, kappa = 0.51 (moderate agreement) 

Right: Confusion matrix of subtypes grouped into Tumour and Stroma parent classes. Accuracy = 

77.66%, sensitivity (true positive rate / recall) = 0.82, specificity (true negative rate) = 0.69, kappa = 

0.51 (moderate agreement) 

The matrices show that the prediction error is not skewed towards tumour or stroma, and that the 

majority of false predictions are classifying the subclasses tumour and stroma. 

The accuracy of the algorithm for the individual tissue classes was 70.06%, with a sensitivity of 

0.70 and a kappa [256] of 0.51, indicating moderate agreement. Grouping the individual classes 

into the parent tumour and stroma classes yielded 77.66% accuracy, a sensitivity of 0.82, a 

specificity of 0.69 and a kappa value of 0.51, indicating moderate agreement. The algorithm has 

a higher number of false negatives than false positives (11,009 and 11,286 respectively). 

The 2x2 confusion matrix shows that the distribution of false positives and negatives in the 

grouped results is relatively balanced. This means that the algorithm performance is less likely 

to be overfitting to a specific class. Looking at the 8x8 matrix shows that he majority of false 

positives are from incorrect predictions of stroma that should be tumour, and the overall false 

negative count is caused by tumour being classified as stroma, but also necrosis being classified 

as stroma. The confusion between tumour and stroma shows that there is a large overlap in the 

representation of these two classes in the feature space, and further work needs to be done to 



Automated analysis of colorectal cancer  Chapter 3  

  

 112 

separate the two classes. Necrosis can appear lighter and more sparsely textured than tumour 

due to the break-up of the cells, which is believed to be causing the ambiguity in the classifier 

between necrosis and stroma. Lumen and mucin are also more likely to be incorrectly classified 

as stroma than vice-versa, however, the algorithm has a high level of accuracy for detecting 

lumen. This is due to the simple and distinctive appearance of homogeneous areas of white 

background. 

 

Figure 57 – ROC Curves for all 8 tissue subtypes, classified by Algorithm A 

The graph shows Area Under the Curve for each tissue subtype: 

Tumour parent class: Tumour (0.86), Lumen (0.92), Mucin (0.84), Necrosis (0.81) 

Stroma parent class: Stroma (0.84), Vessels (0.76), Muscle (0.84), Inflammation (0.74) 

The ROC curves show that the algorithm performs best on patches of lumen, and poorest on 

inflammation.  

Figure 57 shows the ROC curves for each individual tissue class when classified by the votes-

based algorithm. The tumour subtypes have an AUC of 0.86 for tumour, 0.92 for lumen, 0.84 

for mucin and 0.81 for necrosis. The stroma subtypes have an AUC of 0.84 for stroma, 0.76 for 

vessels, 0.84 for muscle and 0.74 for inflammation. The mean AUC for all tissue types is 0.83. 

 

3.4.3.4 Correlation of TSRs 

Using the highest TCD spots as the ground truth, the algorithm-generated ratios were compared 

in order to assess how the algorithm results correlate with the pathologist data. The graphs in 

Figure 58 compare both sets of ratios generated for each case. 
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Figure 58 – Comparison plots of pathologist scores to Algorithm A  

Left: Histogram of ratio differences generated by pathologist and regular segment algorithm. 

Distribution has a mean bias of 0 (median 0), and standard deviation of 0.19. 

Right: Heatmap Correlation plot of the distribution of the ratios. Correlation has R2 coefficient of 0.27. 

The mean bias of zero indicates that the algorithm is generating TSRs comparable to human scoring, but 

the standard deviation and correlation statistics  

Using the differences per case (gound truth highest TCD method, minus baseline algorithm 

method), the histogram shows that the whole annotations overestimate the proportions of 

tumour. The comparison dataset has a mean bias of 0, and a standard deviation of 0.19. The 

distribution of the histogram indicates that the algorithm is not biased towards over estimating 

tumour or stroma, but the standard deviation indicates that the method is less reproducible than 

comparing the two pathologist-scoring methodologies observed in section 3.3.3. This may be 

due to the variability if the data in terms of staining and composition of structural information.  

For assessing correlation between the pathologist and algorithm-generated TSRs, a paired 

samples T-Test did not reject the null hypothesis that the pairwise mean comparison is equal to 

zero (p = 0.62). A Spearman’s nonparametric rank correlation test confirms that a positive 

relationship extists (rho = 0.50) and that the correlation is significantly different from zero (p < 

0.01). The fitted linear regression model (red line on the plot) to the dataset has a coefficient of 

determination (R2) of 0.27. The slope of the least squares line in Figure 58 indicates that 

algorithm performance is likely to overestimate the presence of tumour where it is low, and 

underestimate it, where it is high. 



Automated analysis of colorectal cancer  Chapter 3  

  

 114 

 

Figure 59 – Bland-Altman plot of pathologist and Algorithm A generated TSRs per case 

Distribution has a mean bias of 0, with upper and lower limits of agreement of 0.37 and -0.36 

respectively (±0.37). 

The distribution shows that mean TSR values are higher than the thresholding-based algorithm and 

variance is likely to be higher in cases with a TSR of approximately 0.6. 

The Bland-Altman plot in Figure 59 shows that the data has a bias of 0, and that the 95% 

confidence intervals (1.96 standard deviation, indicated by the outer dashed lines) are ±0.37. 

The distribution shows a smaller spread compared to the thresholding-based algorithm 

presented in 3.3.2, but still has larger variance than human scoring. Variance is also likely to be 

lower at more polarised TSR values. 

Results figures for Algorithm A are also provided in Appendix D.1. 

 

3.4.4 Conclusions 

The baseline ML algorithm out performs the basic thresholding algorithm (described in 3.4) in 

terms of correlation. The mean bias of ratio differences observed is 0, which indicates that the 

algorithm TSRs are aligned with pathologist-generated TSRs. However, the spread of the data 

(standard deviation 0.19, C.I. ±0.37) indicate that although the distribution is centred around 

zero, the algorithm is not adequately consistent, when compared to pathologist agreement in 

section (standard deviation 0.15, C.I. ±0.29). 
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The thresholding algorithm is more likely to underestimate the presence of tumour, with a mean 

bias of 0.27. Since the thresholding algorithm does not report predictions per spot (rather a 

single ratio of tumour to stroma), accuracy per spot cannot be compared. 

The highest baseline algorithm accuracy is 0.79, but this is when compared to a single human 

scorer, and therefore could be considered to be a suboptimal comparative measure. The highest 

accuracy reported uses the RF classifier and an image patch size of 64x64 pixels. The image 

accuracy reported (per patch size) suggests that the feature vectors become subject to a trade-off 

between containing insufficient amounts of visual data (patches are too small), and containing 

multiple tissue classes (patches are too big). Establishing how limiting fields of view affects 

pathologist scoring may provide insights into how the algorithm can be improved. 
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3.5 Discussion 

Systematic random sampling is a valuable tool for quantitation of prognostic markers in CRC. 

The use of the RandomSpot system for applying SRS to virtual slides has facilitated the 

research into identification of the tumour stroma ratio as a prognostic marker. As a result, the 

pathologist-labelled coordinates have provided a database of valuable ground truth data, which 

have been used in this chapter to develop a ML algorithm in order to automate the task of spot 

counting.  

The RandomSpot system has been used routinely at Leeds since its initial development in 2008, 

and has been used to identify prognostic markers in multiple types of tissue. The simplicity of 

the spot generation interface allows users to generate a simple sampling method for quantitation 

of tissue types within their chosen regions. This leads to higher reproducibility of results, and 

has facilitated numerous research projects in their analyses. The system itself generates XML 

annotation data which is then imported into Aperio ImageScope slide viewing software, which 

allows users to view image spots with unrestricted fields of view. 

The raw scoring data for these projects has been collected in the RandomSpotDB, which 

currently contains 2.4 million spot locations with manual scores. This data is spread across 

multiple tissue types and stains, and has the potential for training image analysis algorithms to 

automate the task for different diseases. The spot classifications have not been counter scored or 

checked before entering into the database, and so using these data is subject to typical levels of 

human error and biases, that are encountered in day to day pathological analysis. This provides 

an interesting dilemma for using the data in both the training and evaluation of any supervised 

learning algorithms.  

The QUASAR clinical trial dataset has been visually inspected by a pathologist using the 

RandomSpot system, using multiple sampling techniques. Ideally, the full dataset would have 

been analysed using the method placing 300 spots within the whole tumour ROI in order to 

provide a higher frequency of samples. Using higher frequency data should lead to a higher 

precision result with reduced error rates. However, due to time constraints this was not feasible 

in the original (pathological) study, and therefore the full dataset has only been analysed with 

sampling techniques using 50 spots. The method of placing a 3x3mm box over the highest 
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perceived area of tumour cell density was used for training the algorithm. This was because the 

statistics from this technique were more strongly correlated with survival in the original study, 

and therefore of higher clinical value. However, once the algorithm has been proved to work 

satisfactorily on this dataset, it would be useful to apply training and testing to all the available 

data to assess how that affects performance. 

After examining the dataset, it became apparent that it the images are very varied in terms of 

phenotypic information, as well as staining quality, and artefacts. Some issues could be 

mitigated using colour normalisation, however, staining on some slides was so weak that 

normalisation could not rectify it. Processing was affected by tissue that contained little to no 

structural information (i.e. glands were not detectable), such as poorly differentiated tissue or 

large areas of necrotic tissue. Mucinous adenocarcinomas also affected analysis in that they 

appear as large light areas of the image and are classified as tumour. Due to the low frequency 

of these types of cancers in the dataset, it is proposed that these should be removed from 

training and testing. The presence of suboptimal and abnormal slides in the dataset motivated 

the work in Chapter 6 to automate a quality control (QC) procedure for flagging such images. 

Digital artefacts arose from colour normalisation, if images contained almost no colour 

information, as discussed in 2.5.2. This was typically due to large areas of background, lumen 

or mucin, or tissue that was very weakly stained / faded. As a result, simple checks were built 

into the program in order to identify images that were entirely black (a result of colour 

normalisation failing), and these images were processed without normalisation applied. 

Initial comparisons of the two sets of pathologist data compared TSRs from the two sampling 

methods, 50 spots on whole tumour regions, and 50 spots on 3x3mm boxes placed on the areas 

with the highest perceived tumour cell density. The data from both sets was generated using 

unrestricted fields of view on Aperio ImageScope software, and the results indicate that, as 

expected, sampling a smaller area with higher perceived tumour cell density, yields slightly 

higher TSRs.  

It was initially hypothesised that TSRs could be simply calculated using thresholding in order to 

separate the lighter stroma from the darker tumour. The QUASAR dataset was used to develop 

an algorithm that used the nuclear staining channel from colour deconvolution to identify dense 

areas of nuclei as tumour (excluding lymphocytes). The purpose of developing such a simple 

algorithm was to identify where the methodology worked well and where it did not - and in the 

cases that it did not, ascertain the reasons why. Aside from the image variation and technical 

issues mentioned previously, areas of immune response (lymphocytes) broke the assumption of 

darker areas represent tumour cells. A simple attempt at mitigation used edge strength to 
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identify areas where probability of lymphocytes was higher in order to subtract them from the 

tumour probability map. In comparison to the ground truth, the algorithm is likely to 

underestimate the presence of tumour, which may be due to miscounting areas of tumour that 

appear lighter such as mucin, lumen and necrosis. 

In order to fully utilise the RandomSpotDB data, a machine vision algorithm using artificial 

intelligence for supervised learning was implemented on the QUASAR dataset. This algorithm 

used basic features in order to train the classifier and was tested on multiple image sizes to find 

the most appropriate for maximising agreement with the pathologist data. The 64x64 pixel patch 

size was identified as the most accurate, and a variety of classifiers were used to assess which 

was most accurate. The RF algorithm provided the highest AUC and so was used for the 

purposes of assessing overall performance. 

It was concluded that the 64x64 pixel patch size yielded the highest accuracy due to optimising 

the following two conditions: 

1. Being large enough to contain useful visual data 

2. Being small enough to only contain one tissue class within the image 

Issues with larger patches are illustrated in Figure 60, where the classification of one patch 

taken at multiple resolutions can be affected by the surrounding visual information.  

The three different image sizes contain varying percentages of the ground truth classification 

(stroma). From smallest to largest, the percentage of stroma in each image is 82%, 25% and 

20%. Therefore, in the larger two images, the feature vectors generated are more likely to 

represent tumour in this example. 
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Figure 60 – Surrounding contextual information influencing feature generation in Algorithm A 

Left: 64x64 pixel image patch, containing 18% tumour (red) and 82% stroma (green). 

Centre: 256x256 pixel image patch, containing 75% tumour and 25% stroma. 

Right: 1024x1024 pixel image patch, containing 80% tumour and 20% stroma. 

Note in all cases, the classification is applied to the centre of the patch, which is stroma. 

The figure shows that by increasing the amount of visual information in the image (increasing the size of 

the image patch), there is more scope for including more than one class (tissue type). The feature vectors 

used for ML mostly contain use average values to represent the appearance of the image, which in turn 

means that the visual characteristics derived from it are more likely to represent the class that is more 

prominent within the images. Therefore, by having larger image patches, without accounting for multiple 

classes within them, accuracy will decrease. 

The results from Algorithm A suggest that larger images will negatively affect algorithm 

performance, but the ground truth data was scored by a pathologist on an unrestricted field of 

view (they were able to zoom in and out of the whole slide image). Utilising the unrestricted 

fields of view would allow them the use of surrounding contextual information to make a 

decision on the classification. Therefore, contextual information is important for human scoring, 

but this leaves an unanswered question of how much contextual information is required for a 

pathologist to confidently score a single spot. The answer to this question will facilitate the 

development of an algorithm that more closely mirrors manual scoring.  
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Chapter 4 - Optimisation of manual 

analysis conditions  

4.1 Introduction 

4.1.1 Chapter overview 

The work in this chapter focuses on exploring optimal conditions for manual analysis of 

digitally scanned CRC tissue, using the conclusions drawn from work in the previous chapter. 

The primary objective of the work is the development of a user-centric data collection system 

for rapid acquisition of manual scoring data. The system (called Prospector) is initially used to 

create a simple experiment, which assesses the levels of agreement between the ground truth 

(pathologist) scores presented in Chapter 3, and pathologist scores when using a restricted field 

of view. The purpose of the experiment is to establish the amount of surrounding contextual 

information required for pathologists to score an image, which can then be used to optimise the 

image analysis solution. Also, a preliminary experiment is carried out with the objective of 

understanding the relationship between pathologist agreement and tissue staining levels, as a 

precursor to introducing a basic quality control factor into subsequent image analysis. The 

chapter is divided into five sections: 

1) The introduction, which reiterates the discussion of the previous chapter, and details the 

questions raised from it. 

2) An explanation of the web-based experiment platform, Prospector, which was 

specifically designed to capture expert ground truth data for assessing agreement and 

qualitative assessment under varying conditions.  

3) An experiment using the Prospector system, created to identify levels of pathologist 

agreement when constrained by image size, and to determine appropriate amounts of 

surrounding context to include in the automated solution. 
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4) A second experiment using the Prospector system, created to identify levels of 

pathologist agreement when compared to tissue staining levels, in order to assess 

whether features related to tissue staining can be used as an appropriate quality control 

factor for accepting/rejecting images for image analysis. 

5) Discussion of the work presented in this chapter and conclusions. The discussion 

focuses on the performance of the Prospector system, and potential uses of the system. 

The experiments are discussed, and the how the conclusions of each will affect the 

development of the algorithm in the next chapter.  

 

4.1.2 Insights from Chapter 3 

The results presented in Chapter 3 identified that the automated solution had the highest levels 

of agreement when analysing 64x64 pixel image patches. The main conclusion drawn from the 

data was that 64x64 pixel sized patches contained the optimal amount of visual information, 

which a) minimised distorting the feature vectors with image information from more than one 

tissue class, and b) avoided containing too little visual information to be of practical use. The 

original dataset was scored by a pathologist on an unrestricted field of view (a standard 

computer screen, with the ability to pan freely and to zoom in to native resolution), and so 

allowed surrounding contextual information to be factored into the scoring process. It was 

hypothesised that mimicking manual scoring more closely in terms of contextual analysis would 

improve the algorithm accuracy. However, the available data did not indicate how much 

surrounding contextual information is required in order to manually score an image. 

Establishing the amount of visual information required for a pathologist to score an image will 

inform how much visual information is appropriate for the automated solution. 

 

4.1.3  Manual scoring on digital slides 

The main application used for scoring virtual slides at the University of Leeds is Leica-Aperio’s 

desktop application ImageScope, due to vendor-specific digital slide formats and viewing 

software. Scoring is typically achieved using hand-drawn annotations (stored in the specific 

Leica-Aperio XML format), using a mouse and keyboard. The pathologist’s field of view is 

limited to the size of the workstation monitor, but the software allows pan and zoom actions in 

order to navigate the entire slide. Monitors are rarely colour-calibrated, and users have the 

option to enable or disable the in-built colour calibration functions within ImageScope. As 
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presented in Chapter 3, the ground truth data for the algorithm is simple x-y coordinates stored 

with a numerical key, denoting the tissue type at that coordinate.  

 

Figure 61 - The Leica-Aperio ImageScope software interface 

The image view has been annotated with three different sized box annotations – 64, 256 and 1024 pixels 

in height and width. These represent some of the image patch sizes that were used in the evaluation of 

algorithm performance in Chapter 3. 

In order to compare the ground truth data to pathologist scoring on restricted fields of view, it 

was concluded that the ImageScope software was not appropriate, due to the lack of 

functionality for masking areas of the screen that were not annotated. This resulted in a need for 

a system which is designed for the rapid acquisition of ground truth data, with the ability to 

present images with restricted fields of view. 

  



Automated analysis of colorectal cancer  Chapter 4 

  

 124 

 

4.2 The Prospector system  

4.2.1 Aim 

To develop a system that facilitates rapid acquisition of manual scoring data in order to create 

experiments for evaluating pathologist agreement when manipulating various conditions. 

 

4.2.2 Introduction 

Image analysis algorithms have the potential to either fully or partially automate visual 

inspection tasks to assist pathologists with their workload. However, due to the amount of 

variation in appearance between both tissue and disease types, complex algorithms need to be 

developed specifically for one purpose, rather than general image analysis pathologist tasks 

[64].  

In order to be properly validated, image analysis algorithms must be trained on an extensive and 

varied set of pre-classified images [156,167,187,222-224]. For the trained algorithms to be 

trusted (let alone useful), classification of these images must be done by clinically trained 

pathologists with working experience of the tissue and disease being analysed [132,225,226]. 

However, labelling large quantities of data for training and testing is time consuming for 

pathologists and therefore expensive to generate. This often results in pathologists providing 

insufficient amounts of data for training algorithms and validation experiments [262]. 

Insufficient training and validation of pathological image analysis algorithms leads to 

overfitting to the ground truth, meaning that algorithms fail when exposed to the wide variety of 

real world image data.  

Obtaining reliable ground truth data for experiments is time consuming, and requires effort from 

pathologists in addition to their daily workload [263]. Therefore, the process with which the 

pathologist generates this data should be as simple and effective as possible. Maximising the 

amount of ground truth data obtained, compared to the effort spent by the pathologist generating 

the data, will provide computer vision researchers with larger expert-classified data sets for 

training, testing and validation of their algorithms. Prospector is a lightweight web-based 

system specifically designed to capture pathologist scores and opinions rapidly.  
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4.2.3 Methods 

Prospector is a web-based interactive pathology scoring system, using an HTML5 and jQuery 

powered interface, PHP server-side script, with a MySQL database back end. As a result, the 

system is both platform and browser independent. Figure 62 illustrates a simplified view of the 

network architecture used by participants of a given experiment set up on the system. 

 

Figure 62 - Network architecture diagram of the Prospector system 

Participant requests to load an experiment over http. Requests are processed by the Prospector server, 

and images are retrieved from the user-defined image host for any given experiment (anywhere on the 

web). 

Prospector is primarily modelled on two simple use cases:  

1) Administering an experiment 

2) Participating in an experiment 

These use cases are explained in detail in this section. 

4.2.3.1 Use-case 1: Administering an experiment 

Part one allows administrator users to create an experiment, whereby administrators are required 

to provide a comma separated value (CSV) list of URLs pointing to static images. These images 

should be hosted on a fast, reliable server, and should not exceed the expected size of the image 

viewing area (relative to participant monitor size), in order to maximise the efficiency of the 

experiment. Images can be any web browser enabled format (jpeg, png etc) and subject matter 
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can include, but is not limited to, micrographs, extracts from virtual slides, or macroscopic 

images. Images can also be generated from within predefined regions of interest on a virtual 

slide, creating randomly sampled, equidistant and systematically placed images, using the 

RandomSpot system. With the CSV image list created as a preparatory measure, administrators 

are required to step through a simple setup wizard, which consists of four screens.  

 

Figure 63 - The Prospector experiment setup screen  

The left-hand pane shows a collapsible list of all the experiments that the administrator has made. From 

the expanded view, administrators can edit the experiment, download existing results, invite participants 

using a generic email template or delete the experiment. The right hand pane shows step one of the 

experiment setup wizard, asking for the experiment title, shortname, description, brief, debrief and 

optional start and end dates. 

Initially the administrator is presented with a list of available experiments to view and edit, or to 

create a new experiment. This functionality is contained within the left-hand pane of the screen, 

shown in Figure 63, and existing experiments may be selected and edited from here. Built into 

the system is an automatic mailto email link that, which automatically opens a template email in 

the user’s default email client containing a message that invites recipients to participate in the 

experiment, and provides them with a hyperlink to follow. The user simply needs to add 

recipient email addresses. Once participants have completed the experiment, their data can be 

downloaded (by the administrator) as a zip archive of CSV files, where one CSV file contains 

all the responses from one participant. 

The first screen of the setup wizard asks the administrator to provide a name and description of 

the experiment, a brief and debrief, and optional start and end dates which can limit the period 
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of the experiment’s availability to participants. If left blank, the experiment will run 

indefinitely. The brief and debrief are used to present to the participants before and after the 

experiment has taken place. 

The second screen prompts users to upload their list of image hyperlinks with optional ground 

truth data. Ground truth should be a short text classification applied to each image in the list as 

the second column, denoting the correct or ideal classification that should be given by the 

participant. Providing existing ground truth data changes the experiment type from ‘collection’ 

to ‘comparison’, and is useful for studies compare levels of agreement, or the effects of 

controlled manipulation of pathologist scoring conditions (see the subsequent sections for 

examples of the ‘comparison’ experiment). These classifications will be used to compare to 

participant scores, so it is important that the text classifications provided can be matched to the 

available scoring categories (specified in screen three). Collection experiments are simply for 

obtaining ground truth from pathologists. Images can be presented to the user sequentially or in 

a random order, and can be rotated and translated randomly in order to prevent repetition biases.  

The third screen is for setting the available scores with which participants may respond. Each 

possible score requires a name, a description and a shortcut key. Names of scores should be 

directly comparable to ground truth data, if provided. It should be noted that the system has 

specifically been designed to give single keystroke responses in order to maximise throughput 

of data. 

The fourth and final screen of the wizard concerns privacy. By default, the experiment is open 

to anyone in the world, and only requires a name and valid email address to participate. 

Administrators may however provide a csv white-list of email addresses that are allowed to 

participate in their experiments. For ease of use, using an asterisk and email domain will 

whitelist all addresses from a particular organisation (e.g. *@leeds.ac.uk). The type of 

anonymity given to the participant can also be set with one of three options: ‘forced anonymity’, 

where all participation is anonymous; ‘optional anonymity’, where participants may choose to 

participate anonymously; ‘no anonymity’, where participant identity is required to be linked to 

their results. The default setting is ‘optional anonymity’. 

4.2.3.2 Use-case 2: Participating in an experiment 

Part two allows users to participate in an existing experiment that has been created previously. 

The participant is asked to log in, providing their name and an email address, and then is 

presented with advice on how to setup their environment before continuing the experiment. This 

relates to room conditions, browser settings, screen size, brightness and contrast (using a 

calibration scale). Once the participant has optimised their conditions, they are presented with 
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the experiment brief (set by the administrator), and instructions on how to use the system before 

proceeding to the scoring screen (see Figure 64). 

 

Figure 64 - The Prospector participant scoring screen  

The figure shows an example experiment for scoring colorectal cancer tissue in order to identify the ratio 

of tumour to stroma. The screen consists of a large viewing area for the images, a control panel 

containing available scores and associated keyboard shortcut keys, a slim progress bar at the top, and a 

‘back’ navigation button to correct scores made in error. Also, note that as an optional feature, 

crosshairs have been placed over the image to help participants identify the centre of the image, where 

the classification is to be made. 

Figure 64 illustrates the scoring screen for the participant. The main image is a non-navigable, 

static snapshot, which has been embedded in the page using the http links in the image CSV file 

previously uploaded by the administrator. This is primarily in order to reduce time spent 

navigating and loading the image, but also allows the system to be able to apply random rotation 

and translation for prevention of repetition biases. The image in Figure 64 also has 

automatically placed guides over it, because in this example, the participant is being asked to 

identify the tissue type at the very centre of the image. The control panel on the right-hand side 

has been optimised for tablet users, with large, simple buttons. Desktop users are encouraged to 

use the keyboard shortcuts described at the top of the panel. These methods of scoring have 

been used to reduce as many clicks, taps or keystrokes as possible to increase the speed of data 

acquisition. 
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Figure 65- The Prospector experiment debrief screen  

The debrief screen provides feedback on the participant's performance and informs them of the purpose 

of the study 

Once all the images have been scored, the data is saved and instantly available for the 

administrator to download. If the experiment is comparing scores to existing ground truth, then 

the data is matched and added to the dataset. The participant is presented with a debrief screen 

(Figure 65) and if applicable, the level agreement with the original ground truth data.  

Note that for end user simplicity, level of agreement is calculated as a percentage of the 

numbers of participant responses that matched the ground truth, as opposed to calculating more 

complex statistics such as kappa values. More complex statistical analysis can be performed by 

the administrator when downloading the raw results data. 

4.2.3.3 Comparison of speed between Prospector and ImageScope 

Prospector is designed to be a high throughput, rapid data acquaistion tool, and as such a simple 

pilot study was created in order to ascertain whether it outperformed data capture using existing 

methods. As a basic test to ensure the efficacy of the system, an input capture experiment 

comparing the scoring of data points generated by RandomSpot (section 3.2) was set up.  

The experiment consisted of six cases from the QUASAR dataset, and already had XML 

annotations and RandomSpot sampling applied. The six cases were sampled using a target 

number of 50 spots per case, and a tolerance of 15%, creating a dataset of 313 spots in total. 
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Each spot was visually inspected by participants using the existing methodology, which 

involved loading the RandomSpot-generated XML annotations into Leica-Aperio ImageScope, 

and scoring them using the annotations window (Figure 66). 

 

Figure 66 - ImageScope scoring interface using the annotations window 

Each sampling point (spot) is analysed using the annotations window (bottom left). On typing in one of 

four responses (t = tumour, s = stroma, o = other, blank = unknown), participants can then press enter 

on the keyboard to jump to the next spot. 

Participants were required to load each of the six digital slides using a pre-generated XML file 

containing a hyperlink to a slide (Leica-Aperio SIS file). After loading an image, participants 

were then required to load the corresponding pre-generated XML file, which contained the 

annotation and sampling points. These steps were taken prior to scoring. Users scored each spot 

individually by recording a letter T, S, O, or Space in the “Text” Field of the Annotations 

window. Once each slide was scored, Microsoft excel files were saved with the results (one per 

slide). The time taken to complete the whole task (of scoring the six slides and saving the data) 

was recorded. 

The task using Prospector was set up as a single experiment for data capture, containing all 313 

images from the six slides. The sample points were extracted as images 1024x1024 pixels in 

size prior to the experiment, using the co-ordinates from the RandomSpot-generated XML files. 

Four answers were available to choose from – “Tumour”, “Stroma”, “Other” and “Don’t 

Know”. Hotkeys were set to T, S, O and space respectively. Users were required to score the 

images, which were presented in a randomised order, and a CSV of results was automatically 

saved at the end. Time taken to score all 313 images was recorded. 
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One technician participated in the study, trained in spot counting techniques, and routinely used 

the methodology (RandomSpot and ImageScope) in day to day use. 

 

4.2.4 Results 

Prospector is a customisable web-based system for generating simple experiments which rapidly 

acquire data. Two such experiments are detailed in the subsequent sections (4.3 and 4.4), which 

in total capture 960 opinions on 240 images across two case studies, with a mean scoring time 

of 1.83 seconds per image. Also, the speed comparison study showed that the Prospector system 

was faster, taking 499 seconds to complete the task, as opposed to ImageScope taking 644 

seconds (Table 9). 

Method Total Time (s) Average Time Per Spot (s) 

ImageScope 643.87 2.06 

Prospector 499.23 1.59 

Table 9 – Comparison of time taken to complete the experiment using both platforms 

Performing the task on ImageScope took 644 seconds compared to Prospector which took 499 seconds. 

The time taken using Prospector was 23% lower than the ImageScope method. 

 

4.2.5 Conclusions 

Prospector is a simple and powerful tool for assisting computer vision and clinical researchers 

in obtaining pathologist-classified image data. The pilot study showed the increase of efficiency 

of using Prospector over the current methodology for scoring using the RandomSpot-generated 

sampling points, by decreasing the time taken by 23%. However, the system was not designed 

to replace routine scoring, and the study does not consider time taken to set up the experiment in 

Prospector, and generating the images to score. Prospector is not intended as a replacement 

workflow for standard pathological tasks such as SRS. 

Prospector is a suitable platform for obtaining ground truth data for identifying levels of 

agreement between pathologists when scoring under constrained fields of view. 
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4.3 Image size experiment 

4.3.1 Aim 

To identify an optimal minimum image size for manual analysis, by restricting fields of view to 

varying degrees, and assessing pathologist agreement compared to the unrestricted field of view. 

 

4.3.2 Introduction 

The results from the baseline algorithm study presented in Chapter 3 show that the algorithm 

accuracy peaks when run using the RF algorithm, trained on features from image patches 64x64 

pixels in size. The ground truth data was obtained using whole slide images (WSIs), with 

unrestricted fields of view, thus allowing pathologists to gain contextual information from the 

surrounding tissue. It is hypothesised that in order to improve algorithm accuracy, this 

surrounding contextual information should be taken into account, but the amount of context 

required is unknown. By using the RandomSpot co-ordinates from the QUASAR trial, the 

Prospector system can be used to assess to what extent limiting the fields of view for 

pathologists has on their agreement with the original ground truth. 

 

4.3.3 Methods 

The Prospector system was configured to create an interactive web-based experiment, with the 

aim of finding the minimum patch size that pathologists can accurately and consistently score 

at. Participants were chosen based on availability, and a mixture of pathologists and histology 

research technicians (np = 6) took part. Technicians were trained in using the RandomSpot 

system, and had already been using the system routinely for at least three months. Participants 

were presented with 120 images of pre-diagnosed haematoxylin and eosin (H&E) stained CRC, 

extracted from the spot counting data at three different sizes: 64x64, 256x256 and 1024x1024 

pixels. Each image patch was randomly rotated or flipped to avoid biases from participants 

recognising repeated images of different sizes. Scores were collected based on whether the 

participant classified the centre of the images as tumour or stroma, or didn’t know. These 
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classifications were subsequently compared with the ground truth spot counting data, where the 

original observer was not restricted to any specific level of context for analysis. 

 

Figure 67 - Comparison of contextual information between patch sizes 

The three images are proportionally displayed, showing 64x64 (left), 256x256 (centre) and 1024x1024 

pixel (right) patches, illustrating that larger patches contain more tissue of varying types 

All participants viewed the images on a 30-inch Dell 3008WPF monitor, running in an HTML5 

compliant web browser (Google Chrome version 26.0.1410.64 m) in full screen mode at 2560 x 

1600 resolution. This monitor was specifically chosen for the high dynamic contrast ratio 

(3000:1). After being briefed about the experiment, participants were sequentially presented 

with the images, and were given one of three options to score the image, “Tumour”, “Stroma” 

or “Don’t Know”. Each participant was presented with the same images in the same order. 

Upon completion, the participant was then presented with a debrief screen and a graph of how 

their scores correlated with the ground truth. 
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Figure 68 – The Prospector interface displaying an image at 256x256 pixels.  

The screenshot of the shows the image patch display area, with progress bar (left) control panel with 

scoring buttons and shortcut keys (right) 

The aim of the experiment was to identify how much contextual information is required in order 

for a pathologist to classify a given point on a piece of tissue. Forty images of colorectal cancer 

(CRC) tissue were used in the experiment, which had already been classified by a pathologist as 

part of a clinical trial study. The clinical trial used anonymised virtual slides scanned at 20x 

objective zoom (0.5 microns per pixel). The classifications were made by pathologists 

evaluating single point locations, within each virtual slide containing CRC tissue, in order to 

identify the type of tissue found at each of the locations. For the purposes of this study, 

classifications were simplified into one of two classes: tumour or stroma. The forty images for 

this experiment were randomly selected from the full set of 2,211 clinical CRC cases, 

containing over 100,000 pathologist-scored point locations. Each of the forty images were 

extracted at the virtual slide native resolution (0.5 microns per pixel), using three different sizes, 

in order to present to the participant’s images with different amounts of visual contextual 

information surrounding the classified point. The image sizes were 64x64, 256x256 and 

1024x1024 pixels. The intention of the study was to establish whether there were significant 

effects on the level of agreement between participants, when scoring images of different sizes.  
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 Image size 

 64x64 256x256 1024x1024 

Tumour 20 20 20 

Stroma 20 20 20 

Table 10 - Number of patch size variations used for manual scoring 

For the image patch size experiment, three sizes were used (64x64, 256x256 and 1024x1024 pixels), and 

for each size used, 20 images of tumour and 20 images of stroma were presented to the participant. 

Six participants (3 trained pathologists and three technicians experienced in TSR scoring) were 

presented with the 120 images, and asked to classify each of them. As described previously, 

images were rotated and translated randomly to avoid repetition biases, and guides were placed 

over the images to explicitly illustrate the exact point that should be classified. Participant 

agreement was calculated by the system and presented in the experiment debrief. Results were 

collated by the Prospector system, and made available in CSV format for analysis. 

 

4.3.4 Results 

Participant responses were grouped by image size, and a percentage of agreement (with the 

ground truth) was generated per participant. This included the scores where a participant didn’t 

know the answer. Figure 69 contains box plots showing the percentage agreement, for all 

participants, per patch size, compared to the baseline algorithm agreement using tenfold cross 

validation. 
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Figure 69 - Box plots of pathologist-pathologist agreement, and algorithm-pathologist agreement on 

three restricted fields of view 

Left: Human agreement with ground truth, with means of 0.28, 0.80 and 0.85.  

Right: Algorithm A agreement with ground truth, with means of 0.79, 0.75 and 0.67. 

The boxplots show the levels of agreement between the pathologists and algorithm change when limited 

to three fields of view – 64x64, 256x256 and 1024x1024 pixels. The median line is represented in black, 

the coloured boxes indicate the inter quartile range, and the whiskers show the 95% confidence intervals 

of the distribution. 

The plots show a positive relationship between patch size and accuracy for human scoring, and an 

inverse relationship between patch size and accuracy for algorithm scoring, indicating that the algorithm 

methodology does not adequately recreate the human scoring method. 

For the manual scoring experiment results, a Friedman’s ANOVA of the mean percentage of 

correct responses was conducted with image sizes (64x64, 256x256 and 1024x1024) as the 

repeated measures independent variable. Results revealed a significant effect of image size 

(χ2(2) = 10.17, p < 0.01). Pairwise comparisons revealed that participants performed 

significantly worse on the 64x64 pixel patches compared with patch sizes 256 (Z = -1.25, p = 

0.30) and 1024 (Z = -1.75, p < 0.01). There were no significant differences in performance 

between patch sizes 256 and 1024 (Z = -0.50, p = 0.39). 
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Image Size  

64x64 256x256 1024x1024 Total 

28 (13) 80 (6) 83 (10) 64 (10) 

Table 11 - Mean accuracy and standard error for all participants of the image size experiment 

The table displays statistics that are visualised in the boxplots presented in Figure 69, showing that 

participants perform significantly worse on 64x64 pixel images. 

Further analysis of the results was conducted by distinguishing discordant answers from the 

answers where participants could not confidently score the images (the “Don’t Know” 

category). Figure 70 highlights that the low levels of agreement exhibited by the 64x64 pixel 

category in Figure 69 are mostly due to the image rejection, rather than incongruous 

assessments. 

 

Figure 70 - Distribution of all participant responses per patch size 

64x64 pixel patch size showed a 63.3% rejection rate by participants, with 256x256 and 1024x1024 pixel 

patches having 10% and 8.3% respectively. Incorrect responses stayed consistent across patch sizes at 

7.6% (64), 8.6% (256) and 10% (1024). 

The figure illustrates that the agreement levels presented in Figure 69 may misrepresent the pathologist 

scoring methods, in that a pathologist is more likely to reject an image at the smaller patch sizes, rather 

than disagree on a particular classification. The classification disagreement proportions stay consistent 

regardless of size. 

For the 64x64 pixel images, 63.3% of the patches were rejected, where pathologists rejected 

these patches 79.16% of the time, compared with 47.5% for technicians. Of the patches that 

were not rejected, pathologists had higher levels of agreement for 256x256 square pixel patches, 

attaining 95.04% agreement, compared with 93.68% agreement on 1024x1024. Technicians 
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also showed this trend, scoring 85.8%and 84.4% respectively. Rejection rates of the two larger 

patches decreased, with 10% for 256x256 and 8.3% for 1024x1024. 

 

4.3.5 Conclusions 

The work in this section was conducted in order to establish a minimum size for image analysis 

algorithms to classify tissue, using appropriate levels of context (neighbouring tissue). The 

discussion in section 3.5 details the need for context, and Figure 60 illustrates how different 

levels of surrounding contextual information affect the classification results of algorithms that 

do not incorporate it (such as Algorithm A). 

The experiment was successful in identifying that 64x64 pixel images were not appropriate for 

human inspection, whereas both 256x256 and 1024x1024 pixel images were. Since agreement 

levels were slightly higher on 256x256 pixel images (excluding image rejection rates), it is 

concluded that 256x256 pixels is an appropriate image size for scoring CRC tissue for TSR 

analysis. 
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4.4 Assessing agreement against tissue stain 

features 

 

4.4.1 Aim 

To establish the effect of tissue staining on pathologist agreement, using image features relating 

to staining levels as a basic quality control measure. 

 

4.4.2 Introduction 

The issues with tissue staining variation discussed in section 3.3.2.3 highlight that colour 

normalisation is an appropriate method for correcting for stain variation, within reason. As 

previously discussed, the images in the QUASAR dataset are from a longitudinal study where 

slides may not have been digitally scanned for a number of years after initially being stained. It 

is reasonable to exclude these images from the analysis, as they would typically be rejected by 

the pathologist for microscopic analysis. However, rejection of images should be treated as a 

last resort in order to minimise loss of data, and ultimately, the costs of re-sectioning and 

staining another slide from donor tissue blocks. In order to assess whether an image is suitable 

for analysis, the Prospector system was again used to present images to a trained pathologist, in 

order to assess the impact of staining levels on pathologist agreement. It was hypothesised that a 

lack of nuclear staining would impair the pathologist’s ability to score the images, and 

agreement levels would be lower on images that had lower levels of staining. 

 

4.4.3 Methods 

4.4.3.1 Observer agreement 

A similar methodology to the experiment in 4.3 was employed to identify how staining 

intensity, or lack thereof, affects a pathologist’s ability to score images of tissue. A set of 240 
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spot co-ordinates (120 tumour and 120 stroma) was taken from the RandomSpot-sampled 

QUASAR dataset, and images were extracted at native resolution (scanned at 0.5 microns per 

pixel), at 256x256 pixels in size. This size was chosen based on the conclusions of the previous 

experiment (4.3.5).  

 

Figure 71 – The Prospector interface showing the image quality experiment 

As with the previous experiment, participants were given the choice of three responses, tumour, stroma or 

don’t know. The images were to be classified at the centre of the patch (where the original score was 

applied), and small black lines acted as guides to illustrate where the centre was. 

Staining intensity values for each image were calculated prior to being presented to the 

pathologist. The values were generated from the means of three different channels of intensity; 

the HSV intensity channel, and the intensities of the deconvoluted staining channels for 

Haematoxylin and Eosin. Mean intensity was calculated for both the whole image and 

foreground pixels only. Foreground pixels were determined by statically thresholding HSV 

intensity less than 240 and HSV saturation greater than 0.04. Finally, for each image, adaptive 

threshold values were calculated for each of the three channels using Otsu’s thresholding 

method (see 2.4.5.1). 

The images were presented sequentially using the Prospector system. Since the images were not 

repeated, images were not randomly rotated or translated to prevent repetition biases. As with 

the previous study, scores were collected based on whether the participant classified the centre 

of the images as tumour or stroma, or didn’t know. These classifications were again compared 
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with the ground truth spot counting data, where the original observer was not restricted to any 

specific level of context for analysis. 

As with the previous study, participants viewed the images on a 30-inch Dell 3008WPF 

monitor, running in an HTML5 compliant web browser (Google Chrome version 26.0.1410.64 

m) in full screen mode at 2560 x 1600 resolution. This monitor was specifically chosen for the 

high dynamic contrast ratio (3000:1). After being briefed about the experiment, participants 

were sequentially presented with the images, and were given one of three options to score the 

image, “Tumour”, “Stroma” or “Don’t Know”. Each participant was presented with the same 

images in the same order. Upon completion, the participant was then presented with a debrief 

screen and a graph of how their scores correlated with the ground truth. This created three 

categories “agreement”, “disagreement” and “rejection”, where rejection represented the 

instances a participant could not use the visual information to make a confident classification of 

the tissue type (“Don’t Know” response). One pathologist participated in the study, and 

responses were correlated against the previously generated staining intensity statistics.  

4.4.3.2 Machine learning 

A simple ML experiment was set up, using the precomputed image intensity values as the 

features, and the pathologist response as the ground truth. Using tenfold cross validation, a RF 

algorithm was trained to identify images that the pathologist would not answer. The experiment 

was performed twice, once for attempting to predict images with responses, and images that 

remain unanswered, and once for predicting whether the images are answered with agreement or 

disagreement, as well as whether they were unanswered.  

 

4.4.4 Results 

The average time taken to complete this experiment was approximately 454 seconds, equating 

to a mean scoring time of 1.89 seconds per image. Each of the scores given was compared to the 

ground truth data, and given one of three categories, answered with agreement, answered with 

disagreement and unanswered. The distribution of these responses was 206, 13 and 21 

respectively, as illustrated in Figure 72.  
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Figure 72 - Distribution of response types for the image quality experiment 

Experiment used 240 images of 256x256 pixel size. Number of responses per category: agreement (206), 

disagreement (13) and unanswered (21). The distribution indicates that the dataset is too imbalanced to 

create an accurate model of the classes using a ML classifier. 

4.4.4.1 Image rejection 

The distribution of responses was analysed as three groups, and the mean feature values (types 

of image channel intensity) for each group was calculated. Images that were unanswered 

(participant response “Don’t Know”) were considered to be unsuitable for analysis (rejected). 

Figure 73 shows boxplots of the distribution of multiple types of intensities for the three 

responses. 

 

Figure 73 - Boxplots of mean feature values, grouped by response type 

For each feature of every image scored by the pathologist, values were grouped by pathologist response 

type (answered with agreement to ground truth, answered with disagreement to ground truth, and 

unanswered), in order to ascertain whether these features were appropriate for predicting whether a 

pathologist would reject images, or whether they would affect agreement with other pathologists.  
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A one-way ANOVA of the feature values was conducted (per feature) with the participant 

response as the independent variable. For all features tested, results revealed a significant effect 

of image intensity on rejection rates (p < 0.01 for all features). 

Pair-wise comparisons revealed that participants consistently rejected images with higher 

intensities, yielding significant differences between all intensity features for rejected and 

accepted images (Table 12). There were no significant differences between feature values for all 

images that were answered with both agreement and disagreement. 

 P-value for Bonferroni-corrected pairwise comparisons 

between groups 

Image Feature 

Unsure vs  

Agreement 

Unsure vs 

Disagreement 

Agreement vs  

Disagreement 

Image Intensity < 0.01 < 0.01 0.57 

Image Foreground Intensity < 0.01 < 0.01 0.78 

H Channel Intensity < 0.01 < 0.01 0.74 

H Channel Foreground Intensity < 0.01 < 0.01 0.86 

E Channel Intensity < 0.01 < 0.01 0.33 

E Channel Foreground Intensity  < 0.01 < 0.01 0.38 

Adaptive Threshold on Intensity < 0.01 < 0.01 0.48 

Adaptive Threshold on H < 0.01 < 0.01 0.58 

Adaptive Threshold on E 0.01 0.01 0.42 

Table 12 - Bonferroni-corrected pairwise comparisons for post-hoc analysis of image features 

For all image features, there were significant differences between images that had been rejected, and 

images that had been scored (either with agreement or disagreement). There were no significant 

differences between features of images that had been scored with agreement and disagreement. 

4.4.4.2 Machine learning 

The ROC curves in Figure 74 show the prediction accuracy of agreement (or disagreement and 

rejection) between pathologists, when analysing image features related to staining levels. 

Results show a higher AUC for predicting the binary response (answered and rejected = 0.79) 

versus further specifying the answered responses with pathologist agreement (agreement = 0.62, 

disagreement = 0.36 rejection = 0.77).  
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Figure 74 - ROC curves of trained RF algorithms for basic image QC 

Two separate classifiers were trained independently to assess difference between agreement, 

disagreement and rejection. Both algorithms used the intensity values as features and the QC agreement 

as ground truth. One classifier was trained using rejected images and images that were scored, 

regardless of agreement (left) answered category includes answers that both agree and disagree with the 

ground truth (right) answers that agree with the ground truth are separated. 

Using the algorithm for the binary predictions, the confusion matrix in Table 13 illustrates that 

the algorithm correctly identifies one image for rejection, and incorrectly accepts 20 images for 

analysis. The imbalance in the dataset groups means that the accuracy, sensitivity and 

specificity remain high, at 0.90, 0.98 and 0.95 respectively, whereas kappa agreement is 0.04. 

  
Algorithm 

Accept Reject 

Pathologist 
Accept 214 4 

Reject 20 1 

Table 13 - Confusion matrix showing algorithm-pathologist agreement for QC  

The table shows mean pathologist – algorithm agreement over 10 folds of cross validation for the binary 

QC dataset, where images that showed both agreement and disagreement counted as a QC pass. 

Accuracy = 0.90, sensitivity = 0.98, specificity = 0.95, kappa = 0.04 (poor agreement). 

 

4.4.5 Conclusions 

Image and stain intensity features are appropriate for identifying images that would be rejected 

for analysis by a pathologist. Analysis of the data showed no significant differences between 
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agreement and intensity, but showed a trend towards higher intensities being rejected by the 

pathologist (unsure category).  

The prototype algorithm for automatically identifying images that should be rejected was 

created after the original experiment had been implemented, and as a result, the dataset was too 

imbalanced to create any firm conclusions. Results from the RF predictions indicate that 

training with more examples of rejected images should yield a more accurate classifier. This 

pilot experiment uses the data obtained from one pathologist and therefore the findings are 

simply meant to indicate trends in patterns of manual analysis, and for more concrete 

conclusions to be drawn, a larger study would be required. 

It would be naïve to assume that tissue staining intensity is the only reason for pathologists to 

reject images for analysis, however, the results clearly indicate that obtaining appropriately 

stained images is fundamental to the visual inspection process. Therefore, assessing staining 

levels should be accounted for prior to analysis in any automated computer vision solutions. 
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4.5 Discussion 

Obtaining acceptable quantities of ground truth from pathologists is a barrier to improving 

computer vision algorithms, and the generation of such data should be as efficient as possible. 

Out of this need, Prospector has been developed as a simple and powerful web-based system for 

rapid acquisition of ground truth data, whereby a set of pathologist-labelled images is generated. 

The system can also be used for comparing pathologist scores to existing ground truth data. This 

is beneficial for use in experiments either examining the efficacy of the characteristics of a 

given set of images, or manipulating conditions in order to understand their effects on 

pathologist agreement. The system has been designed to be as minimalistic as possible to 

expedite experiment setup time and minimise participation time for pathologists, providing 

experimenters with a platform for rapidly capturing pathologist scores. A simple pilot study 

showed a decrease in scoring time of 23% over current scoring methodology. 

Prospector is used in two experiments presented in this chapter (4.3 and 4.4), which capture a 

total of 960 opinions on 240 images across the two studies, with a mean scoring time of 1.83 

seconds per image. As such, Prospector demonstrates that it is an effective tool for 

experimenters wishing to analyse images using a simple, rapid interface. The two experiments 

illustrate that the types of analyses are not limited to gathering training data for computer vision 

algorithms or pathologists wishing to score their own clinical images. The “comparison” 

experiment methodology has the capacity to be incorporated into experiments where pathologist 

counter scoring is required for validation, or for validating image analysis algorithm results, by 

recruiting pathologists to score markup images. Its use could also be extended to studies 

gathering opinions on images from multiple pathologists.  

Once familiarised with the shortcut keys, the mean time taken for a pathologist to score an 

image was less than 2 seconds for a simple three-class scoring system. The time taken to 

analyse images will be subject to the type of analysis, and the bandwidth of the client machines. 

As Prospector is a web-based system, it can also be used for worldwide collaborations, such as 

clinical trials or inter-observer studies. The images used need not be photomicrographs or 

virtual slides, as the system could be used for macroscopic images, clinical images, or snapshots 

of radiological images. Currently, Prospector only allows static images of virtual slides, as 

embedding navigable slides will slow down the user experience and is beyond the scope of the 
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project. Further extensions of the system might provide an opportunity for crowd-sourcing 

online image assessment (citizen science) experiments that do not require expert training to 

classify images.  

The image size experiment concluded that 64x64 pixel images are not appropriate for manual 

scoring, and 256x256 pixel images have sufficient contextual information for basic visual 

inspection. This is the key finding in the work presented in this chapter. 

The initial purpose of the experiment was to assess the minimum appropriate image size for 

maximising pathologist agreement on CRC tissue, however, it emerged that image rejection 

(being unable to score the images) was more salient than the level of pathologist agreement. The 

levels of pathologist-pathologist agreement (including rejection) were compared to levels of 

pathologist-algorithm agreement, which showed an inverse relationship. The work presented in 

Chapter 3 concluded that algorithm analysis required smaller image patches to ensure feature 

vectors contained information relating to one tissue class (see Figure 60 in section 3.5). 

However, the work presented in this chapter demonstrates that manual scoring requires more 

visual information in order to make appropriate classifications. It is concluded that human 

visual assessment requires the presence of structural information (context), including both 

tumour and stroma tissue classes, so that distinctions can be made between the two. Smaller 

images that contain single tissue classes are more likely to appear homogenous, and therefore do 

not contain the necessary visual information to make comparisons, and subsequently 

differentiate between types of tissue. Therefore, using a larger image patch size in an automated 

solution would require some form of contextual analysis to utilise this information and increase 

the representational acuity of the feature vectors. Image segmentation within larger patches may 

be necessary to minimise the probability of containing multiple tissue types within a given 

segment, whilst including the surrounding contextual information. Results from the image size 

experiment in 4.3 indicated that an appropriate amount of visual information is 256x256 pixels 

in size, which equates to a 128x128 micron field of view. This conclusion drives the contextual 

analysis research in Chapter 5. 

Using the list of published algorithms (Table 3) in 2.5.4, image size was recorded for each 

study, so that comparisons could be made. Figure 75 shows two boxplot distributions for the 

image sizes used, separated by stain type. Note that some papers reported non-square image 

sizes, and so to maintain comparability, the square root of total area size is plotted on the graph. 



Automated analysis of colorectal cancer  Chapter 4 

  

 148 

 

Figure 75 – Boxplots showing square root of image size in other studies, for H&E and IHC images 

Left: Image size for 18 studies using H&E stained slides (mean = 527, median = 443, S.D. = 438) 

Right: Image size for 8 studies using IHC stained slides (mean = 390, median = 200, S.D. = 401) 

The horizontal line is placed at 256, which represents the optimised size found by the work in this 

chapter. 

Image size is taken from the results presented in Table 3, and split by stain type. Note that some studies 

reported using non-square images for analysis and so the square root of total area size is taken to 

improve the comparability of results. 

The boxplots show that studies analysing H&E stained tissue use larger image patch sizes 

compared to IHC (mean 527 compared to 390). The difference in distribution may be 

exaggerated due to the imbalanced numbers of studies for each stain type (H&E = 18, IHC = 8), 

but may also be due to the comparative complexity of the task - such that IHC images contain 

histochemical staining to highlight specific tissue components for visual inspection. This 

increased contrast facilitates both manual and automated analysis, which may result in less of a 

need for surrounding contextual information. It was also observed that studies using hand drawn 

annotations of whole epithelial glands (therefore requiring larger images) were performed on 

H&E images. Using the optimised patch size of 256x256 pixels is not appropriate for 

identifying large epithelial glands, but is more consistent with algorithms using a patch-based 

approach to segmentation and classification. It can be concluded from this that appropriateness 

of patch size is based on the appearance (size, contrast etc) of the objects being analysed. 

Note that aside from the studies using freehand ROIs drawn by a pathologist (where the 

annotation dictates the image size), none of these papers presented rationale for the image size 

used. Reis et al [200] comment on image size optimisation as possible research area that could 

provide insight into the minimum amount of visual information required to distinguish between 

tissue types. The work in this chapter attempted to address this issue, and found that 256x256 
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was appropriate for manually distinguishing between tumour and stroma on H&E stained CRC 

images. 

There are many issues in digital slide analysis pertaining to image quality, and as previously 

discussed, these issues can relate to many factors. However, one of the main issues is in the 

level of staining. The level of stain has the potential to affect image analysis algorithm 

performance, and the image quality experiment set out to identify if there was a way of 

automatically identifying whether an image was appropriate for analysis. The study concluded 

that image intensity values were a useful predictor in ascertaining whether a pathologist would 

reject an image, when presented using an appropriate field of view (determined by the previous 

Prospector experiment). However, the results generated from the data were imbalanced, which 

meant that training an automated solution had high sensitivity and specificity, but very low 

kappa agreement, and therefore is not usable in automated solutions. As this was a pilot test, 

further research into this area would need to include more participants, as well as a more 

balanced dataset, since the binary class distribution was 91% of accepted images and 9% of 

rejected. This could have been artificially balanced using repetition of data, but balancing the 

dataset using data augmentation would not have been appropriate in this case due to the 

extremity of the skew. For the purposes of the pilot study, the results were sufficient for 

directing further analysis, which is conducted in Chapter 6.  

Using the conclusions drawn from this chapter, the following work has been identified for 

improving the automated solution presented in Chapter 3: 

• Use an image patch size of 256x256 pixels in order to utilise surrounding contextual 

information. 

• Apply unsupervised segmentation to the image patch in order to minimise the 

probability of containing multiple tissue types per segment. 

• Analyse each segment individually and apply this contextual to analysing the segment 

that has the ground truth applied.  

• Use global slide intensity features as a benchmark for assessing image segments 

It is hypothesised that by applying these changes to the algorithm, the analysis techniques will 

be more aligned with that of a pathologist, and in turn should increase algorithm-pathologist 

agreement. 
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Chapter 5 – Algorithm improvement 

using contextual analysis 

5.1 Introduction 

5.1.1 Chapter overview 

The work in this chapter uses the conclusions drawn from Chapter 4, in order to develop the ML 

based algorithm from Chapter 3, and improve per-patch agreement and TSR correlation with the 

ground truth data. These conclusions lead to work using unsupervised segmentation to generate 

features from image segments containing only one tissue class, and so are more representative 

of singular tissue class features. The conclusions also lead to work creating contextual analysis, 

at both local (native zoom) and global (whole slide) levels, in order to more closely mirror 

pathologist scoring methods. The chapter is divided into four sections: 

1) The introduction, which summarises the conclusions from Chapter 3 and Chapter 4, and 

describes the direction of work that the conclusions suggest. 

2) An experiment into unsupervised segmentation methods and the performance of 

multiple algorithms, in terms of their ability to create segments that only contain one 

tissue class, for application to CRC images. 

3) Iterative development of the ML algorithm presented in 3.4, which sequentially applies 

multiple modifications to the algorithm, utilising the contextual information that was 

concluded as important for human visual assessment in 4.3. The work details six 

separate modifications, which are individually evaluated on the full dataset of 2,211 

cases and 106,242 images.  

4) Discussion of the work presented in the chapter and conclusions.  
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5.1.2 Conclusions from Algorithm A and human scoring  

The ML algorithm presented in Chapter 3 showed that algorithm accuracy peaked on 64x64 

pixel image patches, leading to two conclusions: 

- Larger image patches were likely to contain visual information from multiple tissue classes, 

which would negatively affect the descriptive power of the feature vectors.  

- Smaller image patches were not big enough to contain enough meaningful visual 

information 

The behaviour exhibited by pathologists when visually classifying CRC images was assessed in 

the experiments presented in Chapter 4, which concluded that manual scoring required larger 

images in order to maintain optimal levels of agreement. It was concluded that the larger images 

provide more contextual information surrounding the centre of the image patch, where the 

ground truth classification is applied. The pilot image quality experiment identified a 

relationship between image brightness (a surrogate for level of staining) and pathologist 

rejection of images. This led to the conclusion that the overall level of staining, and therefore 

global appearance of the slide may affect the value of the visual data at a local level. 

These findings suggest that by incorporating contextual information into image analysis, the 

methodology will more closely resemble expert manual scoring, and therefore improve 

agreement with the ground truth. 

Based on these conclusions, changes to the algorithm were to be made in the following ways: 

1) Use the smallest patch size appropriate for manual scoring (256x256 pixels). 

2) Apply segmentation to divide the patch into non-square segments that are less likely to 

contain multiple tissue classes. 

3) Use the segmentation results to analyse the local contextual information at the native 

resolution. 

4) Assess the impact of incorporating global contextual analysis using whole slide 

features. 

5) Combine both levels of contextual analysis in order to more closely mirror pathologist 

scoring. 

These modifications were implemented sequentially to assess the impact of each one on the 

agreement with the ground truth data, before combining them. 
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5.1.3 Algorithm evaluation methodology 

The work in this chapter presents several iterations of improvements to Algorithm A (section 

3.4), which uses the same base methodology detailed in section 3.4.2.1, and expands on it in 

various ways.  

Conclusions are drawn from the results of the evaluation, and these are used to improve the 

algorithm further. As such the development and evaluation of the algorithm is similar for each 

iteration. To avoid repetition in this chapter, the basic algorithm methodology and evaluation is 

recapped in this section only, and omitted in subsequent sections. Results are summarised in 

section 5.3.3, and all results figures (with exception to the final algorithm) are removed from the 

main text, and can be found in Appendix D. 

 

5.1.3.1 Consistencies in algorithm development  

Each algorithm uses the full available QUASAR dataset of 2,211 slides, which contains 106,242 

usable image spot locations. Images are extracted using the OpenSlide library to process images 

directly, rather than reading them over http, and subjecting them to image compression. Based 

on the conclusions from 4.3, image patches are extracted at 256x256 pixels in size, in order to 

maintain surrounding contextual information, and processed for the same image features, unless 

stated otherwise. Each algorithm generated a feature set for each image patch, and the base 

features generated are detailed in 3.4.2. 

 

5.1.3.2 Consistencies in algorithm evaluation 

For each feature set, a RF classifier was used for training and testing, and evaluated using ten-

fold cross validation for all available image patches in the full dataset. Cross validation 

grouping was randomised by slide rather than per image patch, to maintain comparability to 

manual scoring, and generation of TSR per slide. Using conclusions from the experiment in 3.4, 

the classifier used 100 trees and three predictors sampled for splitting at each node. 

For each algorithm, agreement was calculated in two ways – using the eight individual tissue 

classes (per-class agreement), and by grouping the eight classes into one of the two parent 

classes, tumour or stroma. For each method, a confusion matrix was generated, and agreement 

statistics were calculated from them. ROC curves were generated for each class to ascertain 

algorithm performance on individual tissue types. 
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Finally, TSRs were generated for each case, using the algorithm predictions for every spot in the 

case sampling set. TSRs were calculated using all three methods described in Table 7, but were 

compared against the pathologist method used in the original study that the QUASAR 

annotations were generated for. In the case of the algorithms presented in this chapter, that 

corresponds to Method 1. The algorithm-generated TSRs were subtracted from the pathologist-

generated TSRs (using the same method), in order to create a histogram of TSR differences, and 

statistics regarding the distribution were recorded. In this case, a TSR difference value of zero 

indicates perfect agreement, a value below zero indicates that the algorithm overestimates the 

presence of tumour, and above zero indicates that stroma is overrepresented in the results. A 

Bland-Altman plot is generated to visually inspect the distribution further, and a heatmap 

scatterplot is visualised so that correlation statistics can be calculated. 

 

5.1.3.3 Consistencies in hardware and software used  

Image processing, feature generation and classifier training and testing was implemented in 

MATLAB v9.0.0.341360, and performed on a VMWare powered Windows Server 2008 R2 64-

bit virtual machine with Intel Xeon processors and 32GB RAM. The MATLAB implementation 

utilised the parallel computing toolbox, assigning 8 logical processors to parallelise the task. 

 

5.1.4 Algorithm reference table 

The work in this thesis details the iterative development of a computer vision algorithm, for the 

generation of TSR on CRC images. Incremental improvements to the algorithm are made, and 

evaluated independently so that the effects of each modification can be observed. There are 11  
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Name Description 

Algorithm A Presented in 3.4, RF-based classifier using a fixed image patch size of 64x64 

pixels. 

Algorithm B The methodology from Algorithm A, using a patch size of 256x256 pixels. 

Algorithm C 

 

The methodology from Algorithm B, using regular partitioning of the image 

patch to split into five equal-sized segments in order to analyse context, 

generating tissue class predictions for each of the segments, with a confidence 

metric. 

Algorithm D The methodology from Algorithm C, using RF classifier votes for each tissue 

class (8 sets of votes per segment), for each segment, per image (as opposed 

to one prediction and one confidence metric per segment, per image). 

Algorithm E Incorporation of the unsupervised segmentation algorithm from 5.2 in order to 

extract image segments more likely to contain one single tissue type in them. 

Algorithm F Combination of the unsupervised segmentation of Algorithm E with the 

contextual information processing of Algorithm D, creating an algorithm that 

uses local contextual analysis to improve pathologist agreement. 

Algorithm G Application of global (whole slide) contextual analysis to Algorithm E to 

mitigate issues with overall staining variation. 

Algorithm H Combination of Algorithm F and Algorithm G, creating an improved 

algorithm that uses both local and global contextual analysis to improve 

pathologist-algorithm agreement. 

Algorithm I The application of Algorithm H to a subset of the QUASAR dataset that has 

been manually QC approved 

Algorithm J The application of Algorithm H to the CR07 dataset 

Algorithm K The application of Algorithm H to a subset of the QUASAR dataset, that has 

been automatically assessed and substandard cases removed by the QC 

algorithm presented in 6.5. 

Table 14 - Names and descriptions of all algorithms developed up to and including Chapter 5 
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5.2 Unsupervised segmentation  

5.2.1 Aim 

To assess multiple unsupervised segmentation algorithms for their suitability for calculating 

TSR in CRC digital slide images, and to identify the most appropriate algorithm for maximising 

accurate segmentations whilst minimising computation cost.  

 

5.2.2 Methods 

Note that Algorithm C and D (presented in 5.3) were created and evaluated prior to the image 

segmentation work in this section. The conclusions from the results of these two algorithms 

identified the need for unsupervised segmentation rather than regular partitioning. The work is 

presented in this order so that the ML algorithm iteration work is reported sequentially and 

concisely. 

The results from the development and evaluation of Algorithms C and D indicate that using 

fixed partitions as a form of image segmentation is too rigid to create meaningful segments of 

tissue components within CRC images, and that the issue of containing multiple class types per 

image segment is not resolved. In order to attempt to limit the number of classes to one per 

image segment, unsupervised segmentation is explored in this section (see section 2.4.5). The 

chosen unsupervised segmentation method should create non-uniform segments that follow the 

tissue boundaries. It is hypothesised that this methodology will improve the quality of the 

feature vectors for individual classes and improve ML training sets, yielding a more accurate 

classifier. For work presented in this section, evaluation criteria are based on whether 

segmentation contains segments with more than one class. 

5.2.2.1 Segmentation ground truth 

To assess the suitability of multiple unsupervised segmentation algorithms on digital CRC 

images, a subset of data points was randomly selected (without replacement) from the 

QUASAR dataset. Using the conclusions from the previous experiments presented in Chapter 4, 

a 256x256 pixel patch size was chosen, with the original pathologist classification label at the 

centre of the patch. This was in order to minimise the size of the patch whilst maintaining 
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enough visual information for pathologists to classify the tissue at the centre. A trained 

technician with six years’ experience of spot counting was recruited to apply classification 

labels to all tissue within each patch. Fifty-three patches were hand labelled using Adobe 

Photoshop CC 2016, using the brush tool to colour tissue class areas. Tumour was coloured red 

(RGB value [255 0 0]), stroma was coloured green (RGB value [0 255 0]), and other objects, 

including tissue, debris and background were coloured blue (RGB [0 0 255]). Figure 76 shows 

three examples of the original patch images and the hand-labelled classes within them.  

 

Figure 76 - Examples of images to be segmented and their hand drawn ground truth labels  

Top: Original input images to be segmented.  

Bottom: Hand drawn ground truth images, where red = tumour, green = stroma and blue = other.  

The ground truth obtained in this manner can then be used to identify the presence of multiple 

tissue classes within a given automatically generated image segment. 

5.2.2.2 Number of segments 

For each segmentation methodology tested, the target number of partitions is addressed in this 

section. The number of segments made by each method was affected by the type of 

segmentation algorithm.  
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Class-based segmentation 

For algorithms that do not account for spatial characteristics such as n-by-n neighbourhoods or 

Euclidean distance, segments may be grouped by features such as colour and intensity. As a 

result, pixels are clustered into non-contiguous groups. In this case, the number of clusters was 

set to the equivalent of the three ground truth classes: Tumour, Stroma and Other. This 

methodology allows the possibility of making single pixel segments, and so steps to avoid over-

segmentation, such as median filtering, were taken as a pre-processing step (see the 

segmentation methods section). 

Region-based segmentation 

For algorithms that use localised clustering or other forms of spatial analysis, the number of 

clusters may be manually set. In this instance, two methodologies were compared in order to 

assess the most appropriate number to divide into. The first was to define a number of partitions 

that would create segments of a similar size to 64x64 pixels, which was the best-case image 

patch size identified by Algorithm A presented in Chapter 3. In this case, an image of 256x256 

pixels will yield 16 segments exactly 64x64 pixels in size, illustrated by Figure 77. 

 

Figure 77 - Illustration of the 256x256 size patch being divided into 64x64 pixel patches 

Note that 64x64 pixel patches yielded the highest accuracy when processed by Algorithm A, and so 

dividing the larger images into similar sized segments should maintain this level of performance. 

The second methodology used an optimisation technique in order to automatically select the 

best number of segments. The technique applied multiple segmentations with different numbers 

of partitions (from 1 to 20 segments) to the same image patch, and attempted to identify an 

appropriate trade-off between minimising the number of segments and maximising similarity 

metrics. The mean standard deviation of intensity per segment was selected as the metric to 

identify the most appropriate number of partitions, and was selected as the feature to minimise 

(see Figure 78).  
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Figure 78 - Investigation into number of partitions vs segment standard deviation of intensity 

Left: Original image to be segmented 

Centre: 20 separate segmentations, ranging from one segment (top left) to 20 segments (bottom right) 

using the normalised cuts method 

Right: Plot of number of segments against mean standard deviation of intensity per segment 

The trade-off between minimising standard deviation (used to derive segmentation accuracy), 

and minimising the number of segments (indicating lower computational requirements) was 

calculated by identifying the smallest Euclidean distance between the pair of metrics in 2D 

space, and the zero origin (0,0) the line graph in Figure 78 indicates that 11 segmentations yield 

the most appropriate result for that image, using this methodology. 

However, applying each segmentation method 20 times to every image in order to select the 

number with a minimised number of segments and mean standard deviation proved to be 

computationally expensive compared to a static number of 16 segments (596 seconds compared 

to 28 using a MATLAB implementation of normalised cuts for both methods). Given that the 

optimal image patch size for maximising pathologist agreement with Algorithm A was 64px, 

and that the automatic optimisation yielded minimal increases in segmentation accuracy, the 

methodology using a static number of 16 cuts was implemented. 

5.2.2.3 Segmentation methods 

Nine different unsupervised segmentation methods were used for evaluation, which either used 

class-based segmentation or region-based segmentation, depending on whether the algorithms 

used spatial information to cluster pixels. These methods are described below.  

Method 1: Pixel intensity thresholding 

Pixels were clustered into three different classes, depending on their intensity values (see 

section 2.4.5.1). In order to avoid over-segmentation, a median filter of size 75x75 pixels was 

applied to the intensity channel of the HSV colourspace (see explanation of the method in 

section 3.3.2.6). Background pixels were thresholded at a static value of 240, and the remaining 
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pixel values were binned into two groups, using a threshold of the mean intensity value, minus 

one half of the standard deviation of the intensity values. This created a label image of three 

non-contiguous classes, which meant that the number of segments produced was variable, 

depending on the image data. 

 

Figure 79 - Pixel intensity thresholding segmentation method 

Left: Original Image 

Centre Left: The median filtered greyscale image, using a 75x75 pixel kernel 

Centre Right: The histogram of intensities after pre-processing. The grey line shows the background 

threshold of 240 (as a percentage of 255), and the red line shows the threshold of the mean intensity, 

minus half of one standard deviation 

Right: The resulting segmentation (note that there is no background (pixels > 240 intensity) accounted 

for in this image 

Method 2: Watershed segmentation 

Segments were created using local minima as seed points, and regions were grown using the 

watershed segmentation technique (see section 2.4.5.2). As a pre-processing step, images were 

median filtered with a 75x75 pixel kernel on the intensity channel of the HSV colourspace, and 

intensity values were adjusted using automatic histogram stretching. An H-minima transform 

was applied to supress minima of a value less than 20 before applying the watershed 

segmentation algorithm. 
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Figure 80 - Watershed thresholding segmentation method 

Left: Original Image 

Centre Left: Greyscale image patch, with histogram stretching to create areas of minima 

Centre Right: Identified areas of minima 

Right: Watershed segmentation using minima-seeded regions 

Method 3: Texture-based segmentation 

A local entropy filter was applied, using a 9x9 kernel to the intensity channel from the HSV 

colourspace. The resulting image was thresholded using a static threshold of 0.8 in order to 

identify areas of high levels of textural appearance (higher local intensity variance). Once 

binarized, morphological clearing was used to remove objects smaller than 2000 pixels in size, 

using a closing neighbourhood of 9x9 pixels. 

 

Figure 81 - Texture based thresholding segmentation method 

Left: Original Image 

Centre Left: Entropy-based texture filter on greyscale image patch 

Centre Right: Histogram equalisation applied to the entropy image 

Right: Segmented image, using the adjusted texture image to identify regions of similar values. 

Method 4: K-Means clustering 

Images were median filtered by applying a 75x75 kernel across each of the RGB channels of the 

three-tensor matrix in order to reduce noise before applying K-Means clustering (see section 

2.4.5.3). The images were clustered into three prototype classes based on the RGB colour of 

each pixel, in an attempt to generate non-contiguous segmentations for tumour, stroma and 

background. 
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Figure 82 - K-Means Clustering image segmentation method 

Left: Original Image 

Centre Left: Greyscale image patch with median filter of size 75x75 

Centre Right: Intensity histogram with 3 cluster centres overlaid in red, green and blue 

Right: Segmented image into 3 non-contiguous classes 

Method 5: Mean-shift segmentation 

Images were median filtered by applying a 10x10 kernel across each of the RGB channels of the 

three-tensor matrix in order to reduce noise before applying mean-shift segmentation (see 

section 2.4.5.3). The parameters used for mean shift segmentation were a spatial bandwidth of 

20, range bandwidth of 20 and a minimum segment size of 5000 pixels.  

 

Figure 83 - Mean-shift segmentation method 

Left: Original Image 

Centre Left: Median-filtered image using 10x10 kernel over the individual RGB channels 

Centre Right: Mean-shift segmentation using prototype colours to label the segments 

Right: Segmented image 

Method 6: SLIC – Simple Linear Iterative Clustering of superpixels 

Using the SLIC algorithm (see section 2.4.5.3), segments were created by clustering around a 

randomly sampled equidistant grid of seed points (similar to the RandomSpot system in 3.2.2). 

Images were median filtered on individual RGB channels using a kernel size of 10x10. The 

target number of clusters (and so grid seed points) was 16, but due to the random nature of the 

grid application, that number was variable. Weighting between colour and spatial information 
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was set to 20 and a merging radius (for merging small segments) was set to 7 pixels. The cluster 

centres were calculated using mean colour values. 

 

Figure 84 – SLIC superpixel segmentation method 

Left: Original Image 

Centre Left: Median-filtered image using 10x10 kernel over the individual RGB channels 

Centre Right: Segment labels generated by SLIC algorithm 

Right: Segment boundaries overlaid on original image 

 

Method 7: Graph cuts 

Graph cuts (see section 2.4.5.4) was applied to the median-filtered RGB patch image, using a 

filter kernel size of 10x10 on each of the three channels. K-Means clustering was applied to 

identify 3 class prototypes. For each of the classes, the Euclidean distance image was calculated 

for each pixel, to each of the three class prototypes. A smoothing cost constant of 1.5 was 

applied to enhance neighbourhood constraints and create larger segments. Graph cuts 

optimisation was applied to the resulting distance images, in order to create non-contiguous 

labels for each of the three prototypes. 

 

Figure 85 – Graph-cut based segmentation method 

Left: Original Image 

Centre Left: Median-filtered image using 10x10 kernel over the individual RGB channels 

Centre Right: Heatmap of pixel distances to class prototypes (3 used, bottom right is blank) 

Right: Segmented image, partitioning prototypes into 3 clusters 
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Method 8: Normalised cuts 

The normalised cuts algorithm (see section 2.4.5.4) was applied to the intensity channel of the 

HSV colourspace using the pixel values as a 2D graph problem. The intensity channel was 

chosen as opposed to the deconvoluted H or E channel because of the loss of structural tissue 

information that would occur. Per-pixel comparisons were made using several features to 

compute the affinity matrix. These features were differences in intensity and texture values, 

Euclidean distance and the maximum edge strength between the two pixels (known as 

intervening contours, illustrated in Figure 88). The graph was partitioned into 16 clusters per 

image using the dissimilarity metrics to apply the graph cuts. 

 

Figure 86 - Normalised Cuts algorithm applied to a greyscale image patch 

Left: Original Image 

Centre Left: Greyscale image showing the Haematoxylin channel of a 256x256 pixel H&E image patch. 

Centre Right: Eigenvalues of the 16 clusters of pixel features for segmentation. 

Right: Normalised cut segmentation into 16 segments. 

5.2.2.4 Extension to segmentation methods 

Through the development and application of the 8 described methods, it became apparent that 

the normalised cuts method provided an accurate solution, but at a high computing cost. This 

was due to the algorithm being applied to a symmetric affinity matrix, which calculated a 

similarity metric for every pixel pair, meaning that the 256x256 pixel image required 65,536 

feature vectors to be computed (one for each pixel), and 4,294,967,296 pairwise comparisons 

between sets of features to be computed.  

 

Method 9: Normalised cuts to cluster superpixels 

To reduce the size of the affinity matrix, and therefore the number of pairwise comparisons to 

be computed, the normalised cuts algorithm was applied to a set of superpixels (instead of per-

pixel). Each image was over-segmented into superpixels using the SLIC algorithm, using a 

target number of 168 superpixels, which divided the 256x256 pixel image into areas 
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approximately the same size as one nucleus (10µm2, given that the slides were scanned at 0.5µm 

per pixel). 

 

Figure 87 - Example of SLIC superpixel clustering 

Left: 256x256 pixel image patch of H&E stained CRC tissue. 

Centre: Superpixel clustering to perform over-segmentation. 

Right: Colour heatmap of median superpixel intensity values. 

For every superpixel, statistics were calculated to be used in the feature vector for generating the 

similarity metric between superpixel pairs. For every superpixel pair, a similarity metric was 

computed, which used the same features as the Normalised Cuts algorithm, except that median 

intensity was used instead of pixel intensity and Euclidean distance was calculated between 

superpixel centroids. The similarity metric consisted of Euclidean distance, median intensity 

difference, mean absolute difference of intensity, texture difference (comparing localised texture 

features called textons [264]) and maximum intervening contours. Figure 88 illustrates these 

features. 



Automated analysis of colorectal cancer  Chapter 5 

  

 166 

 

Figure 88 - Visualisations of features used for calculating the superpixel similarity metric for Normalised 

cuts 

Top Left: Original 256x256 H&E stained CRC image. 

Top Centre: Over-segmentation boundaries and highlighted superpixel pairs to compare. 

Top Right: Highlighted superpixel pairs on colour heatmap, comparing median intensity values. 

Bottom Left: Euclidean distance between centroids of superpixel pairs. 

Bottom Centre: Colour heatmap of edge intensities. 

Bottom Right: Euclidean distance between superpixel centroid pairs, denoting the line to calculate 

maximum edge intensity value along (intervening contours). 

Similarity metrics were used to create a symmetric affinity matrix, and the normalised graph cuts 

algorithm was applied so that superpixels were clustered into image segments. As previously 

discussed, a fixed number of sixteen segments was chosen in order to create images approximately 

64x64px in size, which yielded the highest accuracy result using the original algorithm. Figure 89 

illustrates the superpixel clustering process combined with the affinity matrix to make an image 

segmentation.  
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Figure 89 - Superpixel clustering combined into segments using normalised cuts on custom affinity matrix 

Left: Over-segmentation using SLIC superpixel clustering 

Centre: 168x168 affinity matrix comparing all superpixel pairs 

Right: Image segmentation applying normalised cuts to superpixel affinity matrix  

With all nine segmentation methods established, they were each run on the 53 images to 

compare to the hand-labelled ground truth data. 

5.2.2.5 Evaluation methods 

Each of the segmentation methods generates a set of segment labels and no classification data. 

The success of the method depends upon successfully delineating boundaries without over-

segmenting the image. The aim of the evaluation for this work was to identify the algorithm that 

optimised the following criteria: 

• Maximise the accuracy of the segmentation 

• Minimise the time taken to compute 

Accuracy, in this instance was the agreement with the ground truth. Since the boundaries of the 

tissue in the image were of no standardised appearance, and objects in the image had no 

consistent shape, assessing segmentation by comparing boundary tracing would be less 

meaningful than identifying whether the segments generated had one single class of tissue 

within them. The methodology for evaluation used the ground truth as an image mask to apply 

to each generated segment, and the percentage area of the three ground truth classes was 

calculated per segment. The tissue class with the highest percentage coverage per segment was 

considered to be the most appropriate classification for that segment, which meant that the 

percentage coverage of that particular class would be the percentage accuracy of the 

segmentation. This was repeated for all segments in the image, and repeated for all images, for 

every method. Figure 90 illustrates the combination of the segmentation result and the ground 

truth in order to calculate the percentage accuracy for that segmentation. The bottom right 

image in the figure shows a segmentation with a coverage of 5% tumour, 95% stroma and 0% 
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other. Since stroma has the largest coverage, the accuracy of that particular segmentation is 

95%. 

 

Figure 90 - Evaluation of segmentation algorithms comparing to ground truth 

Top Left: Algorithm segmentation result (SLIC + Normalised cuts in this example). 

Top Right: Hand-drawn ground truth label image. 

Bottom Left: Single segment for evaluation. 

Bottom Right: Segment mask applied to ground truth image, for establishing percentage of tissue types 

within segmentation result (5% Tumour, 95% Stroma, 0% Other). 

The percentage accuracy was calculated for every segment, for every image, for every 

segmentation method. 
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5.2.3 Results 

Results for each method were calculated as mean processing time per image, the mean number 

of segments each method generated per image, the success rate (mean percentage area covered 

of one class per segment, per image), and the standard deviation of the success rate. Table 15 

displays these data for all nine segmentation methods. 

Method Processing time Mean # segments Success rate SD 

Intensity thresholding 4.12s 6.90 0.89 0.09 

Watershed segmentation 4.16s 4.52 0.78 0.16 

Texture thresholding 0.23s 8.23 0.92 0.09 

K-Means clustering 4.25s 9.79 0.90 0.07 

Mean-shift segmentation 2.79s 5.10 0.91 0.07 

Superpixel clustering 1.18s 15.65 0.92 0.05 

Graph cuts 0.82s 3.65 0.90 0.10 

Normalised cuts 20.18s 16.00 0.97 0.02 

Hybrid clustering 10.71s 16.00 0.93 0.05 

Table 15 - Results for all nine segmentation algorithms 

Processing time is recorded per image, mean number of segments and success rates are calculated across 

all segments for all images in the test set. The normalised cuts algorithm yields the highest accuracy with 

a success rate of 0.97, but has the highest computational cost of 20.18 seconds. 

Algorithms were assessed on the evaluation criteria described in 5.2.2.5 

5.2.3.1 Maximise accuracy of segmentation 

Segmentation accuracy (success rate) of the algorithm is defined as the mean percentage area 

coverage of a single tissue class per image segment, per image (see Figure 90). The highest 

success rate is generated by the Normalised Cuts algorithm, which has a rate of 0.97, and a 

standard deviation of 0.02. The lowest success rate is generated by the watershed segmentation 

algorithm, which has a rate of 0.78 and a standard deviation of 0.16. Figure 91 displays the 

success rates of all nine algorithms in boxplots for visual comparison. 
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Figure 91 - Boxplots showing mean success rate of each segmentation method 

Success rate is the highest percentage of area covered by one of the three classes provided by the ground 

truth markup images, per image segment, per evaluation image. The normalised cuts method yields the 

highest segmentation accuracy, and watershed segmentation yields the lowest. 

For the unsupervised segmentation results, a Friedman’s (repeated measures) ANOVA of the 

mean percentage of maximum segment area was conducted with segmentation method (total = 

9) as the repeated measures independent variable. Results revealed a significant effect of 

segmentation method (χ2 = 139.82, p < 0.01). Post-hoc analysis of pairwise comparisons using 

the Wilcoxon signed rank test are presented in Figure 92.  
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Figure 92 – Wilcoxon signed rank test significance values for all segmentation method success rate 

pairwise comparisons 

Note that Bonferroni correction changes the significance cut-off value from 0.05 to 0.006, and 

subsequently, significance is reported to three decimal places. Only the results of the normalised cuts and 

watershed algorithms report statistically significant differences, meaning that all other algorithms 

perform similarly. 

Note that Bonferroni correction changes the significance cut-off value from 0.05 to 0.006, due 

to the nine groups being compared. 

5.2.3.2 Optimise computational time 

Each algorithm was individually run on the same set of 53 images, and the time taken to process 

each was recorded. The texture-based segmentation algorithm took the least amount of time to 

process the images, averaging 0.23 seconds per image, and the normalised cuts algorithm 

required the most processing time, taking 20.18 seconds per image. The distribution of times per 

algorithm is presented in Figure 93. 
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Figure 93 - Boxplots of segmentation method processing times 

Normalised cuts algorithm took the longest time to compute with a mean time of 20.18 seconds per 

image. The texture-based segmentation algorithm required the least processing time, taking 0.23 seconds 

per image. 

The purpose of the hybrid clustering algorithm was to improve on the normalised cuts 

processing time, and Figure 94 illustrates the reduction in complexity of the affinity matrix 

between the two algorithms. However, the reduction in computing time per algorithm appeared 

disproportionate to the decrease in computations required. 
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Figure 94 - Affinity matrix comparison between two segmentation methods 

Left: Affinity matrix for the Normalised Cuts image segmentation algorithm, 65,5362 in size. 

Right: Affinity matrix for the Hybrid superpixel clustering algorithm, 1682 in size. 

The features that were calculated for the superpixels were to be used in the ML algorithm 

further down the processing pipeline. Therefore, for ease of comparison, the computational 

gains that would occur elsewhere in the algorithm were subtracted from the results. Table 16 

displays the modified mean processing time per image, which reduces the hybrid clustering 

algorithm from 10.71 seconds to 2.53 seconds per image, reducing time taken over the original 

normalised cuts algorithm by 87%.  

Method Processing Time 

Intensity Thresholding 4.12s 

Watershed Segmentation 4.16s 

Texture Thresholding 0.23s 

K-Means Clustering 4.25s 

Mean Shift Segmentation 2.79s 

Superpixel Clustering 1.18s 

Graph Cuts 0.82s 

Normalised Cuts 20.18s 

Hybrid Clustering 2.53s 

Table 16 - Time taken to perform segmentations when removing feature calculation from the hybrid 

clustering method 

The table shows that the hybrid clustering algorithm is more comparable to the previous methods in 

terms of computation time. 
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The modified timing results are displayed in the box plots in Figure 95. 

 

Figure 95 - Boxplots of segmentation method processing times removing feature calculation from the 

Hybrid Clustering method 

The graph illustrates that hybrid the clustering method requires less computation time when accounting 

for feature vector reuse. The normalised cuts method requires significantly more processing time.  

Finally, to assist with selection of an appropriate algorithm, Figure 96 plots the two 

unsupervised segmentation algorithm optimisation criteria (mean segmentation accuracy and 

processing time per segment). In this plot, segmentation error is simply the inverse of the 

previously presented success rate, in order to visualise that the smallest distance to [0,0], which 

identifies the most suitable algorithm for the task.  
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Figure 96 - Scatter plot illustrating optimisation criteria for unsupervised segmentation methods 

The two criteria are processing time and algorithm accuracy, and in this plot, segmentation error (the 

inverse of segmentation accuracy) is used so that plot points closer to [0,0] are more suited to the task.  

The figure shows that the hybrid clustering method is the most successful at minimising error and time. 

 

5.2.4 Conclusions 

The normalised cuts algorithm has the highest mean accuracy rate of 97%, at the expense of a 

20.18 second computing time per image patch. Pairwise comparisons revealed that the 

normalised cuts algorithm is statistically higher than all other algorithms (p < 0.001 for all 

comparisons). However, the cost in computing time is currently considered too high for 

processing large clinical datasets. 

Optimisation of the affinity matrix using nucleus-sized superpixels decreases computing time by 

half. However, this time is disproportionately high compared to the reduction in size of the 

affinity matrix, due to inefficient feature calculation. The resulting features are to be reused in 

the ML of the image analysis algorithm, which reduces processing time elsewhere in the 

algorithm, and therefore was discounted from the results analysis. This reduced the processing 

time of the hybrid clustering algorithm to 2.53 seconds.  

The trade-off between segmentation accuracy and computational performance illustrated in 

Figure 96 meant that the hybrid clustering algorithm was chosen for implementation in the 

development of the artificial intelligence algorithm (Algorithm E and onwards).  
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5.3 Iterative algorithm development using 

unsupervised segmentation and contextual 

analysis 

 

5.3.1 Aim 

To improve Algorithm A, by iteratively applying modifications based on the conclusions from 

the previous studies.  

 

5.3.2 Methods 

The incremental improvements to Algorithm A were made by applying one modification at a 

time in order to assess their effect on agreement individually. All algorithms and their 

modifications are described in Table 14. For the purposes of clarity, each algorithm has been 

assigned a letter, so that they may be referred to concisely in figures. 

Using the methodology from Algorithm A presented in 3.4, and the conclusions drawn from the 

observer experiments in section 4.3 and 4.4, each algorithm was developed, focusing on one 

single conclusion drawn from the previous work. 

As with Algorithm A, the image data from the QUASAR clinical trial dataset was used to train 

and test the algorithm using 10-fold cross validation over 2,211 cases, containing 106,242 

expert-classified image coordinates (see section 3.3).  

All algorithms presented in this section extracted image patches at a size of 256x256 pixels. The 

patch size of 256x256 pixels was chosen so that the surrounding visual information (context) 

could be included in the analysis, based on the conclusions from the image size experiment 

presented in 4.3. This contextual information was averaged in the feature vectors of Algorithm 

A and B (discussed in section 3.5), which led to the conclusion that some form of segmentation 
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was required to create image segments that contained only one tissue class, and subsequently 

feature data which more accurately represented each class. 

All processing was performed on the hardware detailed in section 5.1.3. 

5.3.2.1 Algorithm C and Algorithm D: Contextual analysis using 

regular partitioning 

Note that Algorithm C and D were created and evaluated prior to the image segmentation work 

in section 5.2. The conclusions from the results of these two algorithms identified the need for 

unsupervised segmentation rather than regular partitioning. The work is presented in this order 

so that the ML algorithm iteration work is reported sequentially and concisely. 

Algorithm C and D attempt the segmentation task using fixed size and shape partitions of a 

given image patch. Several methods of dividing the patch into regular segments were 

considered, and an appropriate partitioning method was selected, based on the following 

specifications: 

1. Each partition should have the same area size in pixels (but not necessarily shape). 

2. Minimise the number of partitions, and subsequently the number of feature vectors 

generated per image. 

3. Avoid segment boundaries crossing the centre of the image patch (the ground truth 

classification point). 

4. Utilise all of the information from the extracted image. 

A visual example of the partition design chosen is displayed in Figure 97, applied to a CRC 

patch. Note that the resulting partitions may or may not contain multiple tissue classes per 

patch. 
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Figure 97 - Illustrated examples of image segments using regular segmentation method D 

Regular partitioning is applied in order to reduce the probability of containing more than one tissue class 

per partition, as well as obtaining contextual information within the image patch. Each partition is a 

consistent size in terms of pixel area (13107px2), but not shape. The centre partition is a square of 

114x114 pixels. 

To combine the visual information from each of the partitions into a single feature vector per 

patch, two methodologies were implemented and assessed as separate algorithms (Algorithm C 

and D). Both methods generated feature vectors for all five segments of the patch, using the 18 

features detailed in Algorithm A in section 3.4. Once generated, the features were used to train 

the RF classifier (optimised in section 3.4.2.2) using features calculated from the centre 

partition only (where the ground truth classification was applied).  

The trained classifier was applied to the surrounding partitions in order to generate features for 

the final feature vector of the image patch. The new feature vector for the centre partition was 

created using the original features of the centre partition, and either the classifier predictions 

(Algorithm C), or the votes (Algorithm D) for each class. The algorithms differed in the 

following way: 

• The prediction-based algorithm had one prediction per partition, with a confidence 

metric (largest percentage of the 8 sets of votes from the RF classifier) 

• The votes-based algorithm had 8 sets of votes for each partition 
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Algorithm C: Predictions-based features 

 

Figure 98 - Diagram illustrating the feature vector generation process for Algorithm D - with classifier 

predictions and confidence values 

The diagram shows that for every partition, two values were recorded – the numeric class prediction and 

the probability of that class, as a percentage of the total votes given by the RF classifier. 

The centre partition features were concatenated with a numeric class prediction for each of the 

remaining four partitions, as well as a confidence metric, which was calculated as the 

percentage of the votes that the predicted class obtained (see Figure 98). This created a feature 

vector of 26 columns. 

Algorithm D: Votes-based features 

 

Figure 99 - Diagram illustrating the feature vector generation process for Algorithm D - with classifier 

votes for each class, per segment 

The diagram shows that for every partition, eight values are recorded – the number of votes obtained for 

each of the tissue classes, as distributed by the RF classifier. 
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The centre partition features were concatenated with the number of votes for each of the eight 

candidate classifications, for all four of the neighbouring partitions (see Figure 99). This created 

a 50-column feature vector. 

5.3.2.2 Algorithm E: Unsupervised segmentation of image patches 

Algorithm E incorporates the unsupervised segmentation from 5.2 in order to extract image 

segments more likely to contain one single tissue type in them, mitigating the issue of larger 

image patches containing too much surrounding contextual information, discussed in 3.5 and 

illustrated in Figure 60. The algorithm was developed focusing on identifying a single segment 

at the centre of the patch, with the aim of that segment containing only one tissue class.  

Using the unsupervised segmentation method developed in section 5.2, Algorithm A was 

extended to extract images at 256x256 pixels, and identify the image segment at the centre of 

the patch (where the ground truth classification was applied). This created a non-regular image 

segment, in terms of size and shape. This was performed with the intent of containing only one 

tissue class, for generating more precise feature vectors.  

5.3.2.3 Algorithm F: Contextual processing of segmented of images 

Combining the contextual analysis methodology from Algorithm D in section 5.3.2.1, with the 

unsupervised segmentation methodology detailed in section 5.2, Algorithm F focuses on 

utilising the contextual data surrounding the centre of the patch, with non-uniform segment 

boundaries. 

Algorithm F used a similar methodology to Algorithm D, in that it applied a trained classifier to 

the neighbouring segments of the patch, and used the classifier votes for each segment in the 

feature vector for that patch. The trained classifier developed in Algorithm E was used to 

provide votes for candidate classes, for the neighbouring patches. The contextual information 

had two key differences to Algorithm D’s contextual analysis: 

1. The neighbouring segments were of a non-uniform shape 

2. The number of neighbouring segments was not constant 

The variable number of neighbours, and therefore number of votes to add to the patch feature 

vector, was accounted for by combining the number of votes for each class, for all segments 

(eight features, one for each tissue class). The non-uniform segmentation of the neighbours 

meant that cumulative counting of votes per neighbour would favour multiple smaller segments. 

This issue was mitigated by using the percentage length of the segment boundary that 

overlapped the centre segment perimeter boundary, as a weighting function of the votes for that 

neighbour (see Figure 100). 
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Figure 100 – Perimeter-based tumour probability weighting 

Left: Neighbouring image segments comprised of clustered superpixels, highlighted in red 

Centre: Colour heatmap of tumour segment probability on neighbouring segments 

Right: Neighbouring segment probabilities as a percentage of centre segment boundary length 

By using the summation of the surrounding tissue class probabilities, weighted by the length of 

the adjacent perimeter length as a percentage, artefacts (in the form of disproportionate counts 

of class votes) from over-segmented regions are avoided. 

The resulting feature vector contained the original 18 features from section 3.4.2, with eight 

additional features: the boundary-weighted votes for each of the eight tissue classes.  

5.3.2.4 Algorithm G: Global contextual analysis of stain 

There are many factors involved when considering the global appearance of histological tissue 

samples. Most notable is the inconsistency in colour, which can be attributed to issues such as 

section thickness, variations in staining chemical compounds, application of the stains, quality 

of the glass slides and cover slips, length of time between slide generation and digital slide 

scanning, slide scanning hardware, and colour profiles of the digital scanners to name a few. 

The clinical dataset used for the development of the algorithms in this chapter was designed to 

provide five-year survival data, and as such, has large variation in appearance (see Figure 101).  
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Figure 101 - Examples of different levels of staining in the clinical dataset 

The top row illustrates different levels of eosin staining from low to high when haematoxylin staining is 

weak. The bottom row illustrates examples of weak to strong haematoxylin staining. 

This variation becomes problematic when using image and stain intensities as training features, 

and therefore must be compensated for in the algorithm. Colour normalisation provides a robust 

method for correcting for inconsistent staining in tissue, however overcompensates in areas that 

do not require normalising, such as larger areas of mucin, lumen, tissue tearing or retraction 

artefact. Section 3.3.3.5 briefly explores the effect of colour normalisation on correcting staining 

issues, and highlights that normalisation is unable to correct for stains that are extremely weak, 

as there is not enough visual information to be corrected. Without appropriate correction of the 

stains, features based on colour and intensity will become less powerful image features for 

training classifiers. 

By examining the intensity values of the two classes; tumour and stroma, there is too much 

overlap in the dataset to create a simple linear classifier. This is detailed in the exploratory 

analysis, in section 3.3. However, when plotting these intensity values in conjunction with the 

overall intensity of the slide (the global property), there is a more distinguishable distribution of 

the two classes (see Figure 102). 
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Figure 102 - Scatterplot of correlation between local and global intensity for tumour and stroma patches 

Global intensity values are median HSV intensity of an 8x zoomed out view of the whole slide (excluding 

background pixels) - compared to the mean value of median intensity of tumour and stroma intensities for 

RandomSpot sampled locations within that slide. The least-squares line of best fit is calculated for both 

groups. 

Figure 102 plots the average (mean) median intensity of tumour and stroma image patches (y 

axis) against the median intensity of their parent whole slide (x axis) at low power (scaled to 3x 

objective zoom). This indicates that the visual information derived from local features can be 

enhanced when combined with global features. It was proposed that using visual features of 

global contextual information in conjunction with the local image features will give a reliable 

comparative measure, with respect to colour variation.  

Five global features were calculated to make a small context vector, similar to Magee et al’s 

work discussed in 2.5.2. However, the features calculated were all median values (as the 

distribution of intensities was not expected to be normally distributed), so that they could be 

used to modify existing feature values from the vector described in 3.4.2.1. The five values 

were: 

• Median hue 

• Median saturation 

• Median intensity  

• Median haematoxylin staining channel intensity  

• Median eosin staining channel intensity  

Median haematoxylin and eosin values were calculated after applying a simple threshold to  
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remove background pixels (mean intensity minus half of one standard deviation intensity). 

These global features were calculated once per slide, prior to image patch analysis. Global 

values were subtracted from their respective feature vector values for each local image patch in 

order to create the feature set for training and testing. This resulted in feature values that ranged 

from -1 to 1.  

As with Algorithm A, the image data from the QUASAR clinical trial dataset was used to train 

and test the algorithm (see section 3.4.2). 

5.3.2.5 Algorithm H: Combined contextual analysis using all algorithm 

modifications 

Algorithm H uses the methodology from Algorithm G to calculate global slide characteristics 

prior to local patch feature calculation. Again, these global characteristics (whole slide) were 

based on image intensities, so that overall staining levels could be ascertained, and used to 

explain how these levels affected the appearance of local tissue at native magnification. The 

local contextual analysis (per-patch) used the hybrid segmentation method of superpixel 

clustering and normalised cuts to group superpixels based on a distance-weighted similarity 

metric (see section 5.2). Once image patches were segmented, the pre-trained RF classifier was 

applied to each of the centre segment’s neighbours, so that the class votes generated could be 

combined using a weighting based on the length of the segment boundary that shared the 

perimeter with the centre segment (see section 5.3.2.3). As with Algorithm F, these weighted 

votes were concatenated with the 18 features (see section 3.4.2) for the centre segment.  

 

5.3.3 Results 

All results presented in this chapter are summarised in this section. Individual figures for all 

algorithm results can be found in Appendix D. 

5.3.3.1 Processing time 

Processing time was calculated for generating the image feature set for all patches, for all 

algorithms. The processing time is indicative of the algorithms complexity, but it is important to 

note that each algorithm was run using the same hardware and software configuration (detailed 

in section 3.4.2.4), and the task was parallelised across eight logical processors. Training and 

testing was computed independently of the feature generation processing, and the training times 

are recorded as a mean value of the time (in seconds) taken to train each of the ten folds of data 

for cross validation. 
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Algorithm Feature generation (s) Training per fold (s) 

A Fixed patch size (64x64)  6,314 159 

B Fixed patch size (256x256)  13,765 200 

C Regular segmentation predictions 214,189 157 

D Regular segmentation votes 214,306 185 

E Unsupervised segmentation 242,090 191 

F Local context 295,829 184 

G Global context 250,499 185 

H Combined context 303,764 190 

Table 17 - Processing times for all algorithms 

The table shows the algorithms processing times for feature generation, and classifier training (per cross 

validation fold). The feature generation times show that processing time required increases with the 

complexity of the algorithms. Training times remain similar due to the size of each feature vector falling 

between 18 and 50 features. Algorithm B shows the highest training time, which may be attributed to the 

large patch size without context - containing more overlap and ambiguity in the feature space, requiring 

the RF to make more splits before convergence.  

It should be noted that for all algorithms except Algorithm A (fixed patch size of 64x64 pixels), 

the image patch size processed was 256x256 pixels, following the conclusions of the observer 

experiments in Chapter 4. 

Table 17 shows that there is increase in feature generation processing time, in relation to the 

complexity of the algorithm. The training times show less variance as the feature vectors for 

each algorithm are similar sizes. Time taken to train the RF algorithm is higher in Algorithm B, 

despite the feature vectors being smaller than Algorithms C and D. This may be due to the fact 

that the feature vectors are harder to separate, given that they contain statistics derived from 

visual information of larger images, likely to contain multiple tissue classes. 

5.3.3.2 Algorithm agreement 

Algorithm agreement is calculated on a per-image patch basis, comparing pathologist ground 

truth labels to algorithm predictions, and is explained in 3.4.3. Table 18 lists the agreement (also 

referred to as accuracy) for two the methods of evaluation. The first is the mean accuracy result 

of the ten-fold cross validation applied to the image patches from the full 2,211 cases, using all 

eight tissue classes (per-class agreement). The second uses the same accuracy results, and 

groups the tissue classes into their parent class, either tumour or stroma. The tumour and stroma 

parent classes are used to generate the prognostic marker, the TSR. 
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Algorithm 

Per-patch 

accuracy Kappa 

Mean 

AUC 

Grouped 

accuracy 

Sensitivity 

TPR 

Specificity 

TNR Kappa 

A 0.7006 0.51 0.83 0.7766 0.82 0.69 0.51 

B 0.6399 0.39 0.81 0.7605 0.85 0.60 0.46 

C 0.7037 0.51 0.86 0.7972 0.87 0.66 0.55 

D 0.7032 0.51 0.86 0.7988 0.88 0.66 0.55 

E 0.6916 0.50 0.85 0.7674 0.81 0.68 0.49 

F 0.7172 0.54 0.88 0.7936 0.85 0.70 0.55 

G 0.7115 0.53 0.87 0.7773 0.82 0.70 0.52 

H 0.7285 0.56 0.89 0.8048 0.85 0.72 0.57 

Table 18 – Agreement statistics for all algorithms 

The table displays mean accuracies for the ten-fold cross validation performed on all the reported 

algorithms. Per-class agreement represents algorithm-pathologist agreement for all eight of the tissue 

classes, and grouped agreement combines the eight classes into the tumour or stroma parent class. The 

statistics show that incremental improvements translate to small increases in accuracy in the algorithm 

predictions, with the combined context algorithm yielding the highest accuracy levels. 

The accuracy of the algorithms is reported to four decimal places due to the results falling 

within a narrow percentage bracket. Table 18 shows that Algorithm H exhibits the highest 

agreement for both per-patch comparisons and grouped patch comparisons, as well as having 

the highest mean AUC and kappa value. This supports the initial hypothesis drawn from 

previous conclusions that contextual information is required in order to improve algorithm 

accuracy. It is unsurprising that the progression of algorithm development improves algorithm 

accuracy, given that the modifications made were based on conclusions from previous 

iterations. Comparing effects of the individual improvements on accuracy shows that local 

contextual analysis (Algorithm F) has a higher impact then global contextual analysis 

(Algorithm G), which is expected, given that accuracy is assessed on local patch-level 

classifications. Combining the two levels of contextual analysis improves the algorithm further 

over either of the methods being used independently.  

All algorithms have higher sensitivity than specificity, which means that tumour is 

overrepresented by the classifier. This may be due to the distribution of the training data classes 

(more tumour than stroma – see 3.3.3), but may also be due to the more variable appearance of 

stroma compared to tumour. In the context of medical image analysis, false positives are 

preferred over false negatives.  
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Table 19 lists all receiver-operator characteristic (ROC) AUC statistics for each tissue class 

using each algorithm. 

Algorithm Tum. Lum. Muc. Nec. Str. Ves. Mus. Inf. Mean 

A 0.86 0.92 0.84 0.81 0.84 0.76 0.84 0.74 0.83 

B 0.80 0.83 0.83 0.74 0.82 0.72 0.88 0.88 0.81 

C 0.86 0.91 0.90 0.81 0.85 0.77 0.89 0.91 0.86 

D 0.86 0.91 0.90 0.81 0.85 0.77 0.89 0.91 0.86 

E 0.86 0.94 0.89 0.77 0.83 0.76 0.82 0.91 0.85 

F 0.88 0.95 0.93 0.82 0.86 0.80 0.89 0.94 0.88 

G 0.88 0.93 0.90 0.81 0.84 0.79 0.89 0.89 0.88 

H 0.89 0.94 0.92 0.83 0.87 0.81 0.90 0.95 0.89 

Table 19 – AUC for pathologist-algorithm agreement for all tissue types 

AUC is displayed for all tissue subclasses, for each algorithm presented. The table shows a steady 

progression of increasing AUC for all subclasses as algorithm development iterations are made.  

Algorithm H has the highest AUC for all tissue classes, with the exception of lumen and mucin 

in Algorithm F. This is likely due to the compensation for stain variation in Algorithm H, 

meaning Algorithm F will have more feature values relating to weakly stained tissue, and 

subsequently may be more sensitive to such values. Algorithm H shows highest AUC on 

inflammatory cells, which is consistently high across all algorithms since the introduction of 

local context. This may be due to contextual inferences made by the algorithm that 

inflammatory cells are likely to be surrounded by stroma, in spite of the comparatively low 

number of examples in the dataset for training and testing. 

All context-based algorithms perform consistently well on lumen patches, which is due to the 

relatively simple appearance in terms of texture and colour. Also, AUC for inflammation is 

consistently high for all context-based algorithms, which may be due to the contextual 

information (i.e. inflammation is found in stroma) providing more accurate description of the 

class in the feature vector. This theory is supported by the non-contextual algorithms 

performing more poorly on inflammation. Given that blood vessels have a distinct bright red 

appearance (when filled with blood cells) it is perhaps surprising that performance on vessel 

images is consistently poorest. This may be explained by both the comparatively low frequency 

of examples, but also that blood vessels may or may not have red blood cells within them, and 

so empty vessels may be classified as lumen. 
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Finally, the algorithm performs slightly better on tumour patches than stroma ones. This may be 

due to the less consistent appearance of stroma, which may be sparse or densely packed with 

nuclei such as fibroblasts, depending on the proximity to the epithelial cells. 

5.3.3.3 Per-class agreement 

Each algorithm was processed using ten-fold cross validation. The ten subsequent accuracy 

results from each fold (per algorithm) are plotted in the boxplots in Figure 103. The mean 

accuracies of each algorithm are presented previously in Table 18. 

 

Figure 103 – Boxplots showing all algorithm accuracies per tissue class 

The box plots show the ten accuracy results obtained by using 10-fold cross validation on all eight 

algorithms, analysing the eight tissue classes individually (per-class agreement). The mean accuracies of 

each algorithm are presented in Table 18. The figure shows that algorithm accuracy improves with the 

addition of contextual analysis, and peaks when combining both local and global context. 

Algorithm H exhibits the highest mean accuracy (0.73), and the global context algorithm 

(Algorithm G) has the lowest standard deviation (< 0.01). The progression of algorithm 

development shows that the implementations of contextual analysis improve per-class 

agreement individually, with the local contextual analysis exhibiting higher levels of 

improvement compared to global contextual analysis. Combining both local and global 

contextual information improves the results further. The graph also highlights that without 

contextual analysis, using an image patch size of 256x256 pixels negatively affects performance 

to a significant degree (Algorithm B - p < 0.001 for all comparisons), which supports the 

previous conclusion that image patch size affects the amount of contextual information in the 

image, which has the capacity to negatively affect the feature vector’s representation of a single 

class. 
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For algorithm accuracy results, a Friedman’s (repeated measures) ANOVA was conducted with 

algorithm type (total = 8) as the repeated measures independent variable. Results revealed a 

significant effect of algorithm methodology (χ2 = 51.50, p < 0.01). Post-hoc analysis of 

pairwise comparisons using the Mann-Whitney test are presented in a cropped confusion matrix 

in Figure 104.  

 

Figure 104 – Mann-Whitney test significance values for all algorithm accuracy pairwise comparisons 

The matrix shows pairwise comparisons between algorithm accuracy results. Comparisons with a 

significance value less than the cut-off are considered significantly different to each other. Algorithm B 

and H are significantly different from all other algorithms. Note that Bonferroni correction changes the 

significance cut-off value from 0.05 to 0.063, and subsequently, significance is reported to three decimal 

places. 

Note that Bonferroni correction changes the significance cut-off value from 0.05 to 0.063, due 

to the eight groups being compared. By accepting the null hypothesis (significance values above 

0.063), the test indicates that the difference between the two sets of results has a mean 

difference of 0. Rejecting the null hypothesis indicates that the distributions of results are 

significantly different from one another. The matrix shows that the results of both algorithms B 

and H are significantly different to all other algorithms. Algorithm B is significantly worse than 

all others, due to processing of the larger patch size without contextual analysis. Algorithm H 

combines local and global contextual analysis, and exhibits significantly higher levels of 

agreement than all other algorithms. 

5.3.3.4 Grouped agreement 

The ten accuracy results from each cross-validation fold (per algorithm) are plotted in the 

boxplots in Figure 105. The mean accuracies of each algorithm are presented in Table 18. 
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Figure 105 – Boxplots showing all algorithm accuracies grouped by tumour or stroma 

The box plots show the ten accuracy results obtained by using 10-fold cross validation on all eight 

algorithms, and grouping the eight tissue classes into the two parent tissue classes, tumour and stroma 

(grouped agreement). The figure shows that algorithm accuracy increases as algorithm development 

iterations are made. However, the static segmentation Algorithms C and D have higher commparative 

values than when comparing individual class agreement. The mean accuracies of each algorithm are 

presented in Table 18. 

The overall relationship of accuracy to algorithm development is similar to the per-class 

agreement results shown in Figure 103, with the exception of Algorithms C and D being visibly 

higher in relation to the other algorithms. This may be due to both algorithms having larger 

(albeit rigid) image segments, which have the potential to contain multiple tissue classes, and so 

their feature vectors have the capacity to model image segments containing two or more classes. 

The rigidity of the segments could mean that these averaged feature vector values are useful for 

determining contextual information when grouped by their parent classes. However, it is more 

likely that this is an artefact of grouping incorrect classifications into a correct parent class. 

Algorithm H exhibits the highest mean accuracy (0.80) as well as the lowest standard deviation 

(< 0.01), indicating that unsupervised segmentation is the better method. 

For algorithm accuracy results, a Friedman’s (repeated measures) ANOVA was conducted with 

algorithm type (total = 8) as the repeated measures independent variable. Results revealed a 

significant effect of algorithm methodology (χ2 = 61.07, p < 0.01). As with the per-class 

agreement results, post-hoc analysis of pairwise comparisons using the Mann-Whitney test are 

presented in a cropped confusion matrix, in Figure 106. 
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Figure 106 – Mann-Whitney test significance values for all algorithm grouped accuracy pairwise 

comparisons 

As with Figure 104, the matrix shows pairwise comparisons between all algorithms using their grouped 

accuracy statistics. In this case, only Algorithm B is significantly different to all other algorithms, and the 

combined context algorithm shows no significant difference over Algorithm D. It is believed that this is 

due to an artefact of the grouping process. Note that Bonferroni correction changes the significance cut-

off value from 0.05 to 0.063, and subsequently, significance is reported to three decimal places. 

Note that Bonferroni correction changes the significance cut-off value from 0.05 to 0.063, due 

to the eight groups being compared. The matrix shows that only the results of Algorithm B are 

significantly different to all other algorithms. Algorithm H (combined context) is not 

significantly different to Algorithm D (regular segmentation using votes). However, given that 

the algorithms are significantly different when analysing the individual tissue classes, the 

accuracy of Algorithm C and D may be an artefact of grouping classes which were originally 

misclassified. 

5.3.3.5 Correlation of TSRs 

The TSRs are calculated per case (total 2,211), using the ratio of the number of all patches that 

are classified with one of the four tumour subtypes, to the total number of patches for the case. 

The generated ratios are subtracted from the pathologist-generated ratios, so that the mean 

difference and standard deviation of the distribution can be calculated. Table 20 displays these 

values for all eight algorithms. Note that Algorithms B and C were not reported previously, as 

they were minor variations of Algorithms A and D, which were more accurate per-patch. 
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Algorithm Mean bias Median SD R2 C.I. 

A 0 0 0.19 0.27 ±0.37 

B -0.03 -0.06 0.20 0.28 ±0.39 

C -0.04 -0.05 0.16 0.43 ±0.31 

D -0.04 -0.06 0.15 0.45 ±0.30 

E 0.01 0 0.17 0.29 ±0.33 

F -0.01 -0.02 0.16 0.37 ±0.31 

G 0.01 0 0.17 0.27 ±0.33 

H 0 0.02 0.15 0.40 ±0.29 

Table 20 – All algorithm TSR difference results 

The mean difference and standard deviation relate to the distribution of the ratio generated by the 

pathologist manual scoring, minus the algorithm generated ratio. This means that a mean difference 

lower than 0 indicates the algorithm over-estimates tumour. The table shows that mean bias shows very 

little change over the algorithms, but the spread of data decreases, meaning that the TSR distribution is 

more closely aligned with human scoring methods. 

Algorithm H exhibits the most favourable results with a mean difference of 0 and the lowest 

standard deviation (0.15). As with the reported accuracy and AUC, the algorithm development 

iterations improve the results when contextual analysis is added, and peak with the combined 

local and global context algorithm. Interestingly, Algorithm D shows the highest correlation to 

ground truth ratios, with an R-squared of 0.45. However, TSR is calculated on grouped 

accuracy, so algorithm D’s better correlation may be an artefact of the grouping process - 

especially given that the algorithm produces results with the furthest mean bias from zero. The 

R-squared correlation value for Algorithm H is 0.40, which when compared to Hamilton et al’s 

previously published correlation of 0.97 (see section 2.5.5), does not appear to be state of the 

art. However, the number of slides used in the publication totals 10, compared to the 2,211 

slides of the QUASR trial, and so it would be interesting to compare the two algorithms on the 

same dataset to see if that difference changes.  

Most of the algorithms have a mean bias below 0, meaning that they over-estimate the presence 

of tumour in a given slide. This is consistent with the specificity and sensitivity observed in the 

previous tables and figures. The mean bias of all algorithms appears appropriate for replicating 

human scoring, but the standard deviation of the distribution should be minimised also. 

Algorithm H has the lowest standard deviation of 0.15, indicating that the algorithm is the most 

capable of producing consistently well correlated TSRs, but further work should be done in 

attempt to reduce this spread, and increase the algorithm performance further. Examining cases 
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where the algorithm performs poorly is the focus of section 6.2, with the intent of minimising 

the standard deviation and confidence intervals reported in this section. 

Figure 107 displays boxplot distributions of the ratio differences per algorithm, per case. This is 

a visual representation of the data displayed in Table 20. The declining spread of the data on the 

context-based algorithms is visualised by the narrower boxplots. 

 

Figure 107 – Boxplots showing distribution of mean difference between pathologist and algorithm-

generated ratios for all algorithms 

The box plots visualise the distributions described in Table 20. Mean bias of all algorithms is close to 

zero, and the spread of data gets smaller with each algorithm iteration, indicating that the algorithm-

generated TSRs become more similar to pathologist scoring with each algorithm improvement. 

Note that the ratio difference is calculated by subtracting the algorithm generated ratio from the 

pathologist generated ratio, and so a mean bias below zero (the grey area on the plot) indicates 

that the algorithm overestimates the presence of tumour, and a mean bias above zero indicates 

that the algorithm underestimates the presence of tumour. Both Figure 103 and Figure 105 

illustrate that the incremental improvements in accuracy affect the distribution of TSR 

differences, making the spread (standard deviation and confidence intervals) smaller, and the 

bias (mean and medians) closer to zero. The distributions of these ratio differences are made 

clearer in the Band-Altman plots for each individual algorithm, in Appendix D.1 to D.8. 

 

5.3.4 Conclusions 

The algorithm development presented in this chapter shows gradual and incremental 

improvements in accuracy, when compared to Algorithm A. These incremental improvements 
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support the conclusions from the work in Chapters 3 and 4 that were used to develop the 

algorithm further. 

Regular segmentation as presented in Algorithms C and D does not account for the variable 

appearance of CRC, specifically in relation to the shape of class boundaries. Unsupervised 

segmentation yields higher agreement levels and therefore is more appropriate to the task of 

CRC analysis. 

Local contextual analysis improves algorithm-pathologist agreement, therefore is an important 

factor when aligning the algorithm methodology to the pathologist visual scoring task.  

Accounting for stain variation by assessing global contextual features improves accuracy, but 

not to the same degree as local contextual analysis. Combining the two improves accuracy over 

all other algorithms. 

The final algorithm combines methodologies developed from the conclusions of previous 

observer experiments in Chapter 4, and shows an overall improvement in accuracy, agreement 

and correlation with the ground truth data. 

The image dataset (QUASAR) used in this is work highly valuable for its associated survival 

data. However, the dataset itself contains suboptimal images (see 3.3), which adversely affect 

image analysis in terms of generating accurate feature vectors, and the subsequent training of 

classifiers and making class predictions. Analysing the quality of this dataset in detail has the 

potential to improve the image analysis performance. This drives the research in Chapter 6. 
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5.4 Discussion 

The work in this chapter is based on the conclusions drawn from Chapter 3 and Chapter 4, 

which identified a need for contextual analysis surrounding point co-ordinates from SRS 

sampling, where the gold standard classification is applied.  

The results from processing Algorithm A at multiple image sizes led to conclude that larger 

image patches contained multiple tissue classes and therefore distorted the features calculated 

for training the classifier. The human interaction experiments highlighted that Algorithm A’s 

lack of contextual information processing was one of the key differences when comparing to 

pathologist visual assessment. In order to incorporate the surrounding contextual information 

into the algorithm, a larger image patch size was selected, based on the minimum size that 

maximised pathologist agreement when scoring with a restricted field of view. A minimum 

patch size of 256x256 pixels was identified as appropriate for pathologist scoring, due to there 

being no significant differences between pathologist agreement on images 256x256 pixels in 

size or larger. To maximise algorithm efficiency, this size was implemented in all iterations of 

development presented in this chapter (as opposed to using larger patch sizes). 

Initially, a contextual analysis algorithm was developed using regular segments (Algorithms C 

and D), dividing the patch into five equally sized (but not shaped) segments. This preserved a 

single segment that overlapped the centre of the patch, where the original ground truth 

classification was applied. A classifier was trained on the features generated from the centre 

segment of each patch in the dataset, so that the classifier could be applied to the surrounding 

segments, and generate predictions and votes for candidate classes. The surrounding 

information was incorporated into the centre segment’s feature vector in two separate ways – 

using the classifier predictions and a confidence metric, comprised of a percentage of the votes 

given to that tissue class (Algorithm C), and using the number of votes for each class for each 

segment (Algorithm D). Both methods took a similar amount of time to generate the feature 

vector (see section 5.3.3), and the votes-based method took slightly longer to train using the RF 

classifier, this was due to the larger feature vector (containing the number of votes of each of the 

eight tissue classes, for each of the four neighbouring image segments). Algorithm D yielded a 

slightly higher level of agreement, which was not statistically significant (see 5.3.3), this is 

arguably due to Algorithm C disregarding some of the contextual information. By disregarding 



Automated analysis of colorectal cancer  Chapter 5 

  

 196 

all of the votes and using the number of the predicted class votes as a percentage, there was no 

information regarding the other candidate classes. To clarify, the votes-based method 

(Algorithm D) contained all the votes for each of the eight subclasses, which meant that 

information was preserved. For example, if a segment is predicted to be tumour with less than 

half of the votes, the distribution of the other votes may be important to the final classification. 

Another reason could simply be that the votes-based algorithm had a larger feature vector, and 

so less likely to underfit the data (the predictions-based algorithm had 26 features as opposed to 

50).The TSRs generated by the algorithm slightly overestimated tumour compared to the 

pathologist (see 5.3.3), which is unsurprising, given the algorithm’s relatively low specificity 

(true negative rate) of 0.66, compared to the sensitivity of 0.88. The results of the algorithm led 

to the conclusion that the rigid segmentation techniques did not adequately solve the issue of 

image segments / patches containing multiple tissue classes, and therefore creating ambiguity in 

the feature set. This led to an experiment to identify an appropriate unsupervised segmentation 

method. 

Unsupervised segmentation of colorectal cancer tissue is non-trivial due to the many biological, 

histological and technical considerations that affect the variation in appearance of tissue on 

digital slides. This variation affects the appearance of slides in terms of colour, texture and 

shape, and so model based segmentation was not considered appropriate for this task. Several 

unsupervised segmentation methods were evaluated against expert-labelled ground truth data, 

and a hybrid method of superpixel generation and normalised cuts clustering of superpixels was 

chosen. This was due to the prohibitive amount of processing time required by the normalised 

cuts algorithm, when generating the per-pixel pairwise feature values to construct the affinity 

matrix. Unsupervised segmentation was applied by initially discretising the pixel data of each 

image patch into a much smaller set of superpixels, which approximately represented the size of 

one nucleus. This resulted in a graph cut problem which was less computationally expensive 

than calculating similarities per-pixel, whilst maintaining segment boundaries at a cell level. 

The inclusion of unsupervised segmentation meant that training images were less likely to 

include more than one tissue class per segment, thus reducing ambiguity in the feature set.  

Initially the unsupervised segmentation was applied to the dataset, and the centre segment was 

used to calculate the image feature set. This was trained and tested without any contextual 

analysis, and in this respect, the methodology was identical to Algorithm A. Algorithm E was 

extended to incorporate local contextual information, in a similar method to Algorithm D. 

However, Algorithm E did not generate a fixed number of neighbours to the centre segment of 

the image patch, and therefore neighbour perimeter length-based weighting was applied to the 

votes per class, and a summation of these weighted votes was appended to the feature vector of 
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the centre segment. This improved the algorithm accuracy compared to previous algorithms to a 

statistically significant degree. This improvement (specifically over Algorithm D) is due to the 

unsupervised segmentation, allowing each segment to more accurately represent one single 

class, and therefore create more precise feature vectors. 

By applying segmentation to the image patches, and a trained classifier to the surrounding 

segments, the predicted classes and votes provide contextual information which was used to 

weight the contextual features for the centre segment. In previous work (Chapter 4), this local 

contextual information has been shown to be important to pathologists for scoring images, and 

therefore should be a consideration when developing image analysis solutions to automate the 

pathologist task. Currently the algorithm design uses the assumption that higher amounts of 

surrounding tissue increase the likelihood of that same classification, and is a naïve assumption 

that could be improved in future work. This could be extended to include important biological 

structural rules, for example, lumen must be surrounded by tumour, or that a candidate lumen 

segment lying between stroma and tumour is more likely to be a retraction artefact. By 

incorporating these rules, the algorithm may model human behaviour more closely, which is 

likely to improve agreement levels further. 

A separate algorithm was also developed so that contextual information was also applied at the 

macro level, in order to provide information about the slide as a whole. This global information 

is important when considering sets of data that have been stained inconsistently, or in this case, 

as part of a five-year longitudinal study, where the fading of stains before digital slide scanning 

was inevitable. By combining the features of the slide with the feature set for each image patch, 

the algorithm adapts the feature set to maintain the visual relationship between tumour and 

stroma, based upon such global features. The algorithm results showed a statistically significant 

increase in accuracy over Algorithm E without context, but did not improve on Algorithm F 

(local contextual analysis). This suggests that the global context is not as important to the patch-

level classification as local context. This work could be extended to incorporate a prediction of 

the type of cancer being analysed, which could help improve classification accuracy. For 

example, mucinous adenocarcinomas are considered mostly tumour, but the light appearance of 

the mucin is likely to be classified as weakly stained stroma at the microscopic level.  

Finally, both levels of context (global and local) were combined into one algorithm (Algorithm 

H), so that the global and local contextual information could be used to improve the 

classification accuracy. Algorithm H yielded the highest per-patch agreement with the ground 

truth, both on individual tissue classes and when grouping into the two parent classes, tumour 

and stroma. The incorporation of context was identified as important in Chapters 3 and 4, and 

by incrementally adding in these modifications to the algorithm, it is evident that the results 
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support these observations. Analysis of significance values shows that Algorithm H accuracy is 

statistically different to all algorithms, except Algorithm D, but only when analysing grouped 

accuracy, rather than per-patch accuracy. It is assumed that the increased accuracy of Algorithm 

D may be an artefact of grouping the predictions into the parent classes, based on the 

observations of the confusion matrices in Appendix D.4, where a high number of errors are 

reported as subclasses of tumour, being classified as other tumour subclasses. Algorithm H also 

yielded the most reliable TSRs, with a mean difference (to the pathologist generated ratios) of 0, 

and the smallest standard deviation (0.15). The increase in accuracy per-patch combined with 

the improved TSR correlation shows that the patch-level accuracy gains are more likely to be 

consistent across the whole dataset, as opposed to correcting for issues in relatively few slides. 

The processing time of each algorithm was recorded, and the time taken for feature set 

generation varied significantly, depending on the algorithm. All context-based algorithms took 

over 200,000 seconds, with Algorithm H taking over 300,000 seconds, due to the combination 

of both local and contextual analysis. Algorithm A took 6,314 seconds, processing 64x64 pixel 

patches. All algorithms used the same hardware and software configuration, utilising parallel 

processing across eight logical processors. With the task already parallelised, the time taken to 

compute is less significant, given that the number of processors could be increased, depending 

on the hardware used. The feature generation was for over 100,000 images, and arguably, in a 

practical setting, this would only need to be done for training – then application of the trained 

classifier would be done on a per slide basis.  

The incremental changes to the algorithm presented in this chapter show gradual, and relatively 

small improvements. The quality of the dataset is referred to in Chapter 3, and is a major 

contributing factor to issues caused by ambiguity in the feature set. Given that the dataset is so 

large, the variability accounted for in Algorithm G may not be sufficient, and it would be 

beneficial to inspect where algorithm performance is poorest. This could be achieved by looking 

at the cases that had the largest mean differences in TSRs, and quantifying the issues present (if 

any). Accuracy and agreement may also be improved if an image quality check was enforced, so 

that poor images could be rejected prior to analysis. This has the potential to improve the 

classifier, and subsequently the predictions made by it. This could be achieved by extending the 

pilot quality control study from section 4.4, and the work in Chapter 6 focuses on the issue of 

image quality, and how it affects analysis. 

Finally, in order to assess the algorithms for clinical use, they must be applied to a clinical 

dataset where the correlation to survival data can be calculated, to establish whether the 

statistics generated correlate to survival, as a prognostic phenotypic marker. 
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Chapter 6 – Effects of quality control on 

algorithm accuracy 

6.1 Introduction 

6.1.1 Chapter Overview 

The work in this chapter extends the previous work in Chapter 4, using the Prospector system to 

visually assess images for their suitability to the task of visual histopathological analysis. A 

Quality Controlled (QC) dataset is generated for all cases, which labels each case with its QC 

metric. The dataset is then used to assess the impact of image quality on algorithm performance, 

in terms of classification agreement, as well as the differences between pathologist and 

machine-generated TSR results. Finally, the dataset is used to try to develop an automated 

solution for identifying issues with virtual slides before they are processed, extending the work 

in 4.4. The chapter is divided into six sections: 

1) The introduction, which reiterates the findings from the image quality pilot study in 

Chapter 4, and addresses the limitations of that study, proposing the need for higher 

levels of detail and more results. 

2) Analysis of previous algorithm performance on the QUASAR dataset, for the 

identification of key issues that affect image quality, that commonly affect image 

analysis algorithms. 

3) Utilisation of the identified image quality issues as QC categories, to apply quality 

control labelling to the whole image dataset, using the Prospector system. 

4) The effect of image quality on Algorithm H (section 5.3.2.5), and how the algorithm 

performs on a dataset of slides that have been through QC screening for image analysis. 

5) The development of an algorithm that has been trained to identify slides which may be 

likely to fail image quality control checks, using the dataset generated from 6.3. 

6) Discussion of the work presented in this chapter and conclusions.  
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6.1.2 Image quality 

The issue of image quality has been repeatedly addressed throughout this thesis. The importance 

of obtaining good quality images that are consistently sectioned, stained and scanned is 

highlighted in these sections, and methods such as colour normalisation and global contextual 

analysis have been employed to mitigate these issues. However, there are cases where image 

variability is too extreme for this level of adaptive analysis, and in most cases, images would 

not be confidently analysed by a pathologist. The issue of quality control in histopathological 

analysis extends along the entire pipeline of image generation, from tissue retrieval, to staining, 

to colour calibration of scanning. Histopathological analysis is a demanding and high 

throughput discipline, and it is difficult to maintain consistent standards within single 

laboratories, let alone cross-site collaborations that may have different reagents, staining 

compounds, protocols and practises. It is beyond to scope of this work to address laboratory 

processes, but the quality of images being passed to image analysis algorithms is an issue that 

must be addressed prior to processing.  

 

6.1.3 Tissue stain features affecting manual scoring 

Previous work detailed in section 4.4 briefly addresses the level of staining as a quality control 

factor in a simple pilot study. The study used pathologist agreement as an indicator of adequate 

quality, and whether certain levels of staining affect it. The study used 250 256x256 pixel sized 

patch images, and the conclusions drawn were that there was too little data to assess whether 

image intensity is a useful surrogate for image quality. This chapter details the work carried out 

to extend this pilot study. 
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6.2 Algorithm worst case performance 

6.2.1 Aim 

To evaluate the cases where algorithm agreement was lowest, in order to establish any recurring 

issues that affect image analysis results. 

 

6.2.2 Methods 

Using the algorithm performance from Algorithm H in section 5.3.2.5, the TSRs were generated 

per-case, and subtracted from the ratios generated by the pathologists, from the ground truth 

dataset. The resulting distribution of differences ranged from -1 to 1, with a difference of zero 

meaning that the algorithm and pathologist generated the same ratio for that case. Each of the 

ratio differences generated for the 2,211 cases were ordered by absolute difference, and the 100 

cases with the highest absolute difference were manually inspected to identify any issues with 

the cases that may have adversely affected image analysis. Figure 108 highlights the data points 

for the 100 highest absolute differences in the dataset (when analysed by Algorithm H) in red on 

the Bland-Altman plot.  
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Figure 108 – Bland-Altman plot of Pathologist - Combined Context algorithm generated TSRs, 

highlighting the 100 cases with the highest absolute difference in red. 

Cases were visually inspected by the author on a 30-inch Dell 3008WPF monitor using Leica-

Aperio ImageScope virtual slide viewing software, in full screen mode at 2560 x 1600 

resolution. This monitor was specifically chosen for the high dynamic contrast ratio (3000:1), so 

that differences in staining intensities were more easily observed. Answers were recorded 

manually in a spreadsheet, where the perceived level of both Haematoxylin and Eosin stains 

were given a score from zero to three (no visible stain, weak staining, acceptable staining, 

strong staining). An additional column for other observations was used for noting issues that 

would also affect analysis. This meant that multiple issues could be observed per case, and these 

observations were analysed for key themes and issues. 

 

6.2.3 Results 

Out of the observations made from the 100 cases, 12 recurring issues were identified (total 245 

issues). Table 21 lists the issues with the frequency of their appearance in the identified subset 

of data.  
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Issue Count 

Weak haematoxylin 61 

Weak eosin 47 

Poorly differentiated tumour 38 

Tissue tears 25 

Weak overall staining 20 

Debris 19 

Tissue folds 14 

Coverslip edges 11 

Necrotic tissue 4 

Sectioning 2 

Bubbles 2 

Mucinous tissue 2 

Table 21 – Recurring quality issues identified in cases with poorest agreement 

Issues manually identified on 100 cases exhibiting the highest absolute difference between pathologist 

and algorithm generated TSRs. Note that multiple issues could be reported per case (total = 245). 

Of the issues identified, the top five relate to either some form of weak staining, or artefact that 

makes the average appearance of the slide lighter in appearance. This accounts for 78% of the 

issues observed. 

Figure 109 shows cases displaying each of the issues identified in Table 21. Note that these are 

singular examples, and the visual characteristics of these issues can still vary from the images 

shown. Note that an explanation of these categories can be found in the description column of 

Table 22. 
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Figure 109 - Visual examples of the 12 QC categories identified from the top 100 worst correlated cases 

In reading order from top left to bottom right: weak overall staining, weak haematoxylin staining, weak 

eosin staining, tissue tearing, tissue sectioning artefact (tissue is too thick), debris on slide, large areas of 

mucin, tissue folded over, poorly differentiated tumour, necrotic tissue, coverslip edge and bubbles on the 

slide. 

By visually inspecting these images, it is clear that their appearances break some of the 

assumptions of the algorithm. For example, in using an unsupervised segmentation algorithm, it 

is assumed that there are existing structures and shapes which can be visually distinguished 

using their boundaries. This is not the case for poorly differentiated, necrotic and mucinous 

tissue. An early assumption made in 3.3 was that tumour is darker than stroma, and so quality 

issues that affect the brightness of images would also break this assumption, especially staining 

that is too strong or weak, and tissue folds. Tissue tears would likely be represented as lumen in 

the image, and debris, bubbles and coverslip edges may be interpreted as large areas of dark 

tumour. 

6.2.4 Conclusions 

There are several issues that appear to negatively affect the results generated by the automated 

analysis of CRC. Some of these issues are characteristic of the type of disease being analysed, 

but are not part of the scope of this work, and other issues are caused by slide preparation.  
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The 12 categories established from analysis of the cases exhibiting poorest algorithm 

performance are variable in appearance, and appear to affect the image analysis results in 

multiple ways (creating ratios that fall outside of the standard deviation either side of the mean). 

The majority of observations (78%) related to issues that increase the average intensity of the 

overall slide, such as staining levels. This relates to the issues discussed in 2.3.3, and observed 

in 3.4.3. Algorithm A initially attempted to mitigate similar staining issues using colour 

normalisation (2.5.2), but was replaced by global analysis of image features in Algorithm G, 

due to artefacts from small images with little colour information. The issues presented in these 

top 100 worst cases seem to be too extreme for the global analysis to compensate for. 

Application of image analysis to a dataset free from these artefacts should improve analysis 

results, and assessing the full dataset for these issues would help create an optimal training set.  
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6.3 Quality control experiment 

6.3.1 Aim 

To use the QC issues observed in section 6.2 as scoring categories in a study utilising the 

Prospector system (presented in section 4.2), to fully assess the QUASAR dataset (presented in 

3.3.2) for suitability for analysis in Algorithm H (presented in section 5.3.2.5). 

 

6.3.2 Methods 

The Prospector system (see section 4.2) was used to develop an experiment that required the 

user to visually assess each of the digital slide images from the 2,211 cases, and apply a 

categorical label, denoting whether the image was suitable for image processing, or had any 

visual defects which had the potential to affect algorithm training and/or testing. The categorical 

labels used in the experiment were derived from the QC issues identified in 6.2. A list of these 

categories and a description of the issues that they represent is presented in Table 22. 
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Category Description 

Accept Image is suitable for analysis 

Weak staining Overall stain is visually too weak 

Weak haematoxylin Haematoxylin stain is visually too weak 

Weak eosin Eosin stain is visually too weak 

Tissue tears Tissue has tearing, affecting appearance  

Sectioning Sectioning artefacts present, such as score 

marks or the tissue is sliced too thickly 

Debris Debris either on tissue or on the coverslip is 

affecting appearance 

Tissue folds Tissue is folded 

Mucinous tissue Tissue contains large areas of mucin 

Necrotic tissue Tissue contains large areas of necrosis 

Poorly differentiated 

tumour 

Tissue has no discernible structure 

Bubbles Bubbles under the coverslip have formed 

Coverslip edges The coverslip edge overlaps the tissue 

Table 22 – Quality Control categories used in the Prospector QC experiment 

Categories were chosen based on visual inspection of the 100 worst cases in terms of algorithm 

agreement levels (section 6.2). 

The experiment was run using one participant (the author), a trained technician who had six 

years’ experience working with closely with pathologists on CRC digital slides. Initially, the 

participant was trained to identify these issues by a pathologist who completed the study on a 

test set of 250 cases. Where images had more than one of the QC issues, the issue that was 

perceived to have the highest detrimental effect to visual analysis was selected. Since the cases 

had no QC metrics to serve as ground truth, the experiment was set to ‘collection’ mode (as 

opposed to ‘comparison’). 

The 2,211 case images were presented sequentially as a static (non-zoomable) jpeg image 

(compression quality 100), embedded into the system web page. Cases were visually inspected 

on a 30-inch Dell 3008WPF monitor running in an HTML5 compliant web browser (Google 

Chrome version 26.0.1410.64 m) in full screen mode at 2560 x 1600 resolution. This monitor 

was specifically chosen for the high dynamic contrast ratio (3000:1), so that differences in 

staining intensities were more easily observed. Answers were recorded automatically by the 

system in CSV format. Figure 110 shows the Prospector scoring window, with an example case 

image to be analysed. 
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Figure 110 – Prospector scoring interface for QC experiment 

Left: Viewing window showing a low-power static image of the digital slide to be assessed. 

Right: The available qualitative scoring categories in the participant control panel. 

The participant was presented with a briefing screen, explaining the purpose of the study, and a 

contrast calibration scale to ensure the monitor could adequately display the images. The 

participant was then required to visually inspect all images in the dataset and apply the single 

most appropriate classification to each case. Once all images had been scored, the participant 

was presented with a debrief screen, again, detailing the purpose of the study. Since this 

experiment required such a large volume of images to be visually inspected, ten-minute breaks 

were incorporated into the experiment for every 50 minutes of participation. 

 

6.3.3 Results 

The experiment took 10,856 seconds (181 minutes) to complete the inspection of all 2,211 

cases, averaging a time of 4.91 seconds per image. This excluded the 10-minute breaks taken 

every 50 minutes. It was observed that the number of available classifications affected the 

complexity of the UI, which slowed the scoring process.  

The results of the experiment were saved by the Prospector system and stored in CSV format. 

Each row in the list of results contained the case number, the participant name, a hyperlink to 
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the image and the scoring classification. The distribution of responses is displayed in Figure 

111. Note the explanations of each category are listed in Table 22. 

 

Figure 111 – Distribution of responses from QC experiment 

The distribution of results, in order of frequency is as follows: Accept (701), weak haematoxylin (443), 

weak overall staining (310), weak eosin staining (205), tissue tears (90), sectioning artefacts (88), debris 

(83), tissue folds (52), large areas of mucin (48), large areas of necrosis (44), poorly differentiated 

tumour (38), bubbles over the tissue (5) and coverslip edges (4). 

The distribution of QC classes shows that over half of the dataset is considered suboptimal in terms of 

visual representation of the tissue. This shows that the dataset itself may be causing the algorithm results 

to be lower than if they were applied to a set of virtual slides of higher visual quality. 

The QC classification labels for each slide meant that further analysis of previously generated 

results could be undertaken. The TSR data generated by the previously presented algorithms 

was grouped by the QC label applied to each case, in order to visualise the effect of each issue 

on the automatic analysis. Figure 112 shows the TSR differences, between the pathologist 

scoring and Algorithm H (presented in 5.3.2.5). Note that a skew to the left of zero indicates the 

algorithm over estimates tumour compared to the pathologist, and to the right, the algorithm 

over estimates stroma. 

Poorly Differentiated 



Automated analysis of colorectal cancer  Chapter 6 

  

 210 

 

Figure 112 – Boxplot of TSR differences grouped by QC classification 

The TSR differences are between pathologist and combined contextual algorithm H. The black line on the 

box plots shows the median difference for the distribution. The figure shows that different QC 

classifications affect the agreement of TSR between pathologist and algorithm to different degrees. 

Poorly differentiated tissue affects the TSR most of all, which may be due to the homogenous appearance 

being classified as stroma. 

The TSRs are grouped by the QC label that was applied to the slide that they are generated 

from. The mean ratio difference for Algorithm H was 0, with a median difference of -0.02. The 

boxplots indicate that some of the QC metrics affect the TSR more than others (weak staining, 

tissue folds, necrosis, undifferentiated tissue, bubbles and coverslip artefacts). Table 23 displays 

the statistics for the distributions of TSR differences for each QC category. 

Poorly Differentiated 
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QC Category # Cases Mean Median SD 

Accept 701 -0.02 -0.02 0.11 

Weak staining 310 0.06 0.04 0.16 

Weak haematoxylin 443 -0.01 -0.02 0.14 

Weak eosin 205 -0.02 -0.02 0.14 

Tissue tears 90 -0.04 -0.03 0.14 

Sectioning 88 -0.01 -0.02 0.14 

Debris 83 -0.01 -0.02 0.10 

Tissue folds 52 -0.13 -0.13 0.13 

Mucin 48 0.01 0 0.17 

Necrosis 44 0.14 0.11 0.19 

Poorly differentiated tumour 38 0.25 0.25 0.24 

Bubbles 5 0 -0.9 0.20 

Coverslip edges 4 -0.10 -0.12 0.08 

Table 23 – TSR difference distribution statistics for individual QC groups 

The table presents the statistics from Figure 112, confirming that poorly differentiated tissue affects 

pathologist-algorithm TSR difference the most. Necrosis, tissue folds and coverslip edges all affect the 

TSR difference by 10% or more. Weak overall staining levels affect analysis more than weak 

haematoxylin or weak eosin individually. This may be because structural information is preserved if one 

of the two stains is adequate, allowing distinctions to be made between the tissue types. 

 

6.3.4 Conclusions 

Over half of the number of cases in the dataset used for developing the algorithms in previous 

chapters have at least one issue that is perceived to have a negative impact on image analysis. 

Analysis of the algorithm performance on individual QC categories shows that the categories 

affect pathologist-algorithm agreement to varying degrees. 

The weak haematoxylin and weak eosin categories have mean differences of -0.01 and -0.02 

respectively, indicating that the global contextual analysis used in Algorithm H adequately 

compensates for stain variation.  

Poorly differentiated tumour had the largest effect on TSR difference, which may be due to the 

lack of structural information, and similar visual characteristics of uniform distribution of 

homogeneous tissue. 

Identification of QC issues prior to image analysis may be useful for improving accuracy 

results. Application of image analysis to the accepted dataset only should yield higher accuracy 

results. 
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6.4 Algorithm I: Effect of quality control on 

algorithm performance 

6.4.1 Aim 

Using only the accepted cases from the QC data (section 6.3), assess the impact of image 

quality on the performance of Algorithm H. 

 

6.4.2 Methods 

The 2,211 cases of the QUASAR dataset were reduced to the 701 cases accepted by the QC 

process in 6.3. The full dataset of cases was originally generated by Algorithm H presented in 

section 5.3.2.5. This dataset was filtered based on the case number associated with the QC 

metric. This left 33,736 image feature vectors for training and testing. 

The RF classifier was trained and tested using the ten-fold cross validation method on the full 

set of remaining feature vectors, previously described in 3.4.2. 

 

6.4.3 Results 

6.4.3.1 Processing time 

The image feature set was previously generated by the Combined Context alforithm in 5.3.2.5, 

and filtered based on case number. The RF model building (training) took an average of 44.46 

seconds per cross validation fold on the smaller dataset. 

6.4.3.2 Agreement 

Agreement was calculated in two ways: calculating the agreement for all eight tissue classes, 

and grouping the eight classes into their parent class: tumour and stoma. Figure 113 shows the 

results for both of these methods in the confusion matrices. 
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Figure 113 - Confusion matrices showing pathologist – Combined Context algorithm agreement on QC 

approved cases only 

Left: Confusion matrix of all 8 tissue subtypes from dataset. Accuracy = 75.45%, sensitivity (true positive 

rate / recall) = 0.75, kappa = 0.60 (substantial agreement). 

Right: Confusion matrix of subtypes grouped into Tumour and Stroma parent classes. Accuracy = 

83.18%, sensitivity (true positive rate / recall) = 0.86, specificity (true negative rate) = 0.77, kappa = 

0.64 (substantial agreement). 

The distribution of classification errors is similar to those presented for Algorithm A in 3.4.3. The 

algorithm appears to have a balanced distribution of false positive and negatives, with a slight bias to 

overrepresenting stroma. Again, the highest proportion of errors is due to tumour being classified as 

stroma and vice versa, and necrosis being classified as stroma. 

The accuracy of the algorithm for the individual tissue classes was 75.45%, with a sensitivity of 

0.75 and a kappa of 0.6, indicating substantial agreement. Grouping the individual classes into 

the parent tumour and stroma classes yielded an 83.18% accuracy, a sensitivity of 0.86, a 

specificity of 0.77 and a kappa value of 0.64, indicating substantial agreement. The algorithm 

has a higher number of false negatives than false positives (2,899 and 2,775 respectively).  
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Figure 114 - ROC Curves for all 8 tissue subtypes, classified by Algorithm H on QC approved cases only 

The graph shows Area Under the Curve for each tissue subtype: 

Tumour parent class: Tumour (0.91), Lumen (0.96), Mucin (0.92), Necrosis (0.82) 

Stroma parent class: Stroma (0.89), Vessels (0.82), Muscle (0.91), Inflammation (0.98) 

The algorithm performs best on patches containing inflammation and least well on necrosis. However, 

there are only 32 instances of necrosis presented in the confusion matrix in Figure 113, most of which are 

classified as stroma. Necrosis is also more likely to be classified as stroma, due to the lighter, less dense 

appearance. 

Figure 114 shows the ROC curves for each individual tissue class when classified by Algorithm 

H. The tumour subtypes have an AUC of 0.91 for tumour, 0.96 for lumen, 0.92 for mucin and 

0.82 for necrosis. The stroma subtypes have an AUC of 0.89 for stroma, 0.82 for vessels, 0.91 

for muscle and 0.98 for inflammation. The mean AUC for all categories is 0.90. 
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6.4.3.3 Comparison to manual scoring 

For comparison, the algorithm grouped accuracy results are plotted against the pathologist 

agreement statistics generated on the best-case data from the image patch size experiment in 

Chapter 4.  

 

Figure 115 – Comparison boxplots for pathologist - pathologist agreement and pathologist -algorithm 

agreement 

Left: Pathologist - pathologist agreement (mean = 0.85, median = 0.88., SD = 0.10, IQR = 0.10) 

Right: Pathologist - algorithm agreement (mean = 0.83, median = 0.83., SD = 0.01, IQR = 0.01) 

Mann-Whitney test P = 0.30 

Human agreement is generated from six participants scoring 40 images 1024x1024 pixels in size, using 

the Prospector system (section 4.3). The boxplot shows a difference in means of 0.02, and that the 

distributions are not significantly different. The IQR of the algorithm agreement is smaller than 

pathologist agreement by a factor of 10, indicating that the algorithm is suitable for replicating human 

scoring with more predictable levels of error. 

The Mann-Whitney test accepts the null hypothesis that the two distributions are from 

independent samples with equal means and unknown variance (p = 0.30). This indicates that the 

two methods are statistically similar. 

6.4.3.4 Correlation of TSRs 

As with Algorithm H, TSR was calculated for all the QC-approved cases and compared to the 

ratios calculated from manual scoring.  
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Figure 116 - Histogram and Heatmap Correlation Plots for Algorithm H on QC approved cases only 

Left: Histogram of ratio differences generated by pathologist and regular segment algorithm. 

Distribution has a mean bias of 0 (median 0), and standard deviation of 0.11. 

Right: Heatmap Correlation plot of the distribution of the ratios. Correlation has R2 coefficient of 0.58. 

The distribution and correlation show higher levels of agreement compared to the analysis applied to the 

dataset with no QC applied.  

Using the QC approved differences per case (ground truth highest TCD method, minus 

Combined Context algorithm method), the comparison dataset has a mean bias of 0, and a 

standard deviation of 0.11. A paired samples T-Test rejected the null hypothesis that the 

pairwise mean comparison of pathologist and algorithm TSRs is equal to zero (p < 0.01). A 

Spearman’s nonparametric rank correlation test confirms that a positive relationship exists (rho 

= 0.74) and that the correlation is significantly different from zero (p < 0.01). The fitted linear 

regression model (red line on the plot) to the dataset has a coefficient of determination (R2) of 

0.58. 
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Figure 117 - Bland-Altman plot of Pathologist and Regular Segmentation algorithm-generated TSRs per 

case 

Distribution has a mean bias of 0, with upper and lower limits of agreement of 0.23 and -0.22 

respectively (±0.22). The plot shows a smaller level of variance then previous algorithms, with a 

consistent distribution that does not have higher variance at certain TSR levels. 

The Bland-Altman plot in Figure 117 shows that the data has a bias of 0, and that the 95% 

confidence intervals (1.96 standard deviation, indicated by the outer dashed lines) are ±0.22. 

This improves over Algorithm A, which yielded upper and lower limits of agreement at ±0.37. 

6.4.3.5 Results comparison 

For clarity in assisting evaluation of the algorithm performance, Figure 118 displays boxplots of 

agreement for the human interaction experiment, performed on the Prospector system (in 

section 4.3), Algorithm H cross-validation results from section 5.3.2.5, and Algorithm H on the 

QC approved dataset (Algorithm I). 
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Figure 118 – Boxplot showing between-pathologist agreement and Algorithm H, with and without QC 

Mean agreement for pathologist = 0.88, Combined Context without QC = 0.81, Combined Context with 

QC = 0.83 

Note that pathologist agreement was calculated from the image size experiment, in section 4.3. The 

results from Algorithm H were when trained and tested on either the full dataset or the QC’d subset of 

slides. The figure shows that applying a QC filter on the dataset increases accuracy by 3%, and is more 

aligned with pathologist scoring.  

To reiterate the previous findings, the pathologist agreement statistics were generated from six 

participants, looking at 40 images, compared to 106,262 images for Algorithm H, and 33,736 

images for Algorithm I. The pathologist results were taken from the dataset using 1024x1024 

pixel image patches, which yielded the highest level of agreement (but not statistically 

significantly so). Both algorithm results were generated from 256x256 pixel images, with 

Algorithm I, showing an increase median accuracy from 0.81 to 0.83, and a Mann-Whitney test 

reveals a statistically significant difference in distribution (p < 0.01). The pathologist agreement 

has a higher median accuracy, but has a larger spread of results. The pathologist boxplot data 

was generated from six participants instead of the algorithm methodology using ten-fold cross 

validation. 

Note that another dataset was generated, which trained Algorithm H on the QC approved 

dataset, and tested on the full dataset. However, this reduced accuracy from the original 

combined context algorithm (H) and so was not reported. It is believed that this was because the 

RF classifier was trained on best-case images, which accounted for 32% of the total number of 

cases. It was therefore considered that reducing the number and type of training examples in this 

manner had a detrimental effect on the overall performance. 
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6.4.4 Conclusions 

The results of this experiment have established that QC is important for increasing agreement to 

ground truth data, and improving correlation between pathologist and algorithm-generated 

TSRs.  

The per-patch accuracy of Algorithm H increases from 80.50% to 83.18%. This is the first 

algorithm presented in this work which generates a kappa value of substantial agreement (0.64). 

The comparison of pathologist and Algorithm I accuracy distributions shows that they are not 

statistically different (p = 0.30). The mean difference of TSRs is 0, and the standard deviation of 

the distribution of differences per case is 0.11. 

The increase in accuracy comes at a cost – since over half of the dataset was flagged as having 

at least one QC issue that would negatively affect image analysis. Removing this much data 

from a clinical trial is infeasible in practical applications, however, the dataset used for this 

work is abnormally faded, and the QC approved dataset is more representative of live clinical 

datasets. 

Since the number of feature vectors in the training and testing dataset is reduced by 68%, 

algorithm performance is improved, but the results become less consistent. 

Automation of the QC process based on overall features would be a useful tool as a pre-analysis 

step for automatic analysis of virtual slides.  
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6.5 Automation of quality control 

6.5.1 Aim 

To use the QC labelled dataset, generated in 6.3, for generating features and training a RF 

classifier to detect slides that are likely to fail a pathologist quality control check.  

 

6.5.2 Methods 

Quality control was superficially addressed as a pilot study in section 4.4, using levels of 

staining intensities. The main conclusion from that experiment was that images with less stain 

present were more likely to be rejected by a pathologist. This work in this section extends that 

study by looking at the QC issues identified from 6.3, and developing an image analysis 

solution for automatically flagging virtual slides with potential QC issues, if any. 

Using the dataset of quality control labels generated from the work in section 6.3, cases were 

analysed for image features, using their respective 3x3mm box annotation, at the area of highest 

tumour cell density (described in 3.3.2.4). Images were retrieved at native zoom using block 

processing of image tiles, 2000x2000 pixels in size. The visual features generated were either 

using area-based quantification (pixel classification and area coverage using masks), or value-

based quantification (pixel intensity values and statistics on those values). Image masks were 

created using both static and dynamic thresholds. In order to identify viable image foreground 

pixels, background pixels were isolated using a threshold of HSV intensity greater than 240, and 

black objects (representing debris, coverslip edges and bubbles) were identified as pixels with 

HSV intensity less than 30. Dynamic thresholds were applied to the foreground pixels to 

identify areas where staining was darker (to identify folds in tissue), using a threshold of one 

standard deviation below the mean foreground pixel intensity, and lighter (to identify areas of 

relative weak staining within the image), using a threshold of one standard deviation above the 

mean intensity of the foreground pixel values. The percentage area of these pixel classes present 

in the image was recorded in the feature vector, and Figure 119 illustrates these thresholds on 

the histogram of intensities for the image displayed. Using an edge strength heatmap (described 

in 5.2.2.4), basic textural properties were derived, using statistics from the intensities of the 
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edges. Finally, the median and standard deviation for individual HSV colour channels and 

Haematoxylin and Eosin channels were used after the (white) background pixel threshold was 

applied.  

 

Figure 119 - Example of intensity cut-off values for pixel groupings 

Left: Annotated histogram of all pixel intensities for the greyscale image on the right, with red lines 

indicating cut-off points. Black object threshold is set to 30 (of 255). White object threshold is set to 240 

(of 255). Median intensity, and light and dark foreground values are calculated on the remaining pixel 

values (called foreground pixels). 

Right: HSV intensity image of 3x3 mm area of tissue from the QUASAR dataset 

A RF classifier was trained and tested using 10-fold cross validation of the 16-column feature 

vector, using the parameters detailed in 3.4.2.3. The classifier was trained and tested using three 

separate methods: with all 13 individual classes, by grouping the 12 reject classes into four 

parent classes, and binary accept/reject classes. The parent classes and groupings are displayed 

in Table 24. 
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QC category Short code QC group QC binary 

Accept Acc Accept Accept 

Weak overall staining wkO Staining Reject 

Weak haematoxylin wkH Staining Reject 

Weak eosin wkE Staining Reject 

Tissue tears Trs Preparation  Reject 

Sectioning Sec Preparation  Reject 

Tissue folds Fld Preparation  Reject 

Mucin Muc Pathology Reject 

Necrosis Nec Pathology  Reject 

Poorly differentiated tumour  PrD Pathology  Reject 

Debris Dbr Objects Reject 

Bubbles Bub Objects Reject 

Coverslip edges Cov Objects Reject 

Table 24 – QC categories grouped by type of QC issue 

The table distils the 12 reject categories into four groups: staining issues, preparation issues, 

pathological issues and foreign objects. The right-hand column simply groups the 12 reject categories 

into one. 

The processing was performed on the hardware detailed in section 3.4.2.4. 

 

6.5.3 Results 

6.5.3.1 Processing time 

The QC feature set took 35,834 seconds to generate, using the methodology and hardware 

previously described. This equates to approximately 16.21 seconds per case. Training and 

testing for the feature set using individual QC categories took an average of 2.11 seconds to 

build each of the models of the 10-folds. Grouping the reject categories into the four parent 

classes yielded a quicker mean model-building time of 1.36 seconds per fold, and the binary 

classification took 1 second exactly. 

 

6.5.3.2 Agreement 

Agreement was calculated in three ways: calculating per-category agreement for all 13 QC 

categories, grouping the 13 classes into five parent classes (see Table 24), and grouping the 13 

categories into a binary class dataset of accept and reject.  
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Figure 120 shows the confusion matrices for both evaluation methods of Algorithm E. The left 

matrix shows the agreement between algorithm and pathologist for the 13 QC categories. The 

13 by 13 matrix is subdivided into five quadrants, which group the 12 reject classes into the four 

parent classes described. The summations of these results into the binary classes are depicted in 

the two by two confusion matrix to the right. Note for this evaluation, true positives were the 

correct prediction of the accepted QC class, and true negatives were the correct prediction of the 

rejected QC class. 

 

Figure 120 - Confusion matrices showing algorithm agreement for QC classification on all 13 categories 

Left: Confusion matrix of all 13 QC subtypes from dataset. Accuracy = 64.58%, sensitivity (true positive 

rate / recall) = 0.65, Kappa = 0.53 (moderate agreement). The darker lines indicate the distinction 

between accepted images and rejected images, and the lighter lines delineate between the grouped QC 

categories. 

Right: Confusion matrix of subtypes grouped into Accept and Reject parent classes. Accuracy = 78.09%, 

sensitivity (true positive rate / recall) = 0.89, specificity (true negative rate) = 0.73, kappa = 0.55 

(moderate agreement). 

The distribution of predictions shows that the algorithm is more likely to accept QC failed slides, which 

may be due to the distribution of classes in the training set. The algorithm shows highest levels of 

agreement on classes related to staining levels. 

Figure 120 shows that the accuracy of the algorithm when applied to the individual QC 

categories was 64.85%, with a sensitivity of 0.65 and a kappa of 0.53, indicating moderate 

agreement. Grouping the individual categories into the parent accept/reject classes yielded a 

78.09% accuracy, a sensitivity of 0.89, a specificity of 0.73 and a kappa value of 0.55, 

indicating moderate agreement. The algorithm has a higher number of false positives than false 

negatives (380 and 79 respectively). 

PrD 

PrD 
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Figure 121 - Confusion matrices showing algorithm agreement for QC classification when trained and 

tested on using the five grouped category labels 

Left: Confusion matrix of all five QC subtype groups from dataset. Accuracy = 70.69%, sensitivity (true 

positive rate / recall) = 0.83, kappa = 0.52 (moderate agreement). The darker lines indicate the 

distinction between accepted images and rejected images. 

Right: Confusion matrix of subtypes grouped into Accept and Reject parent classes. Accuracy = 79.28%, 

sensitivity (true positive rate / recall) = 0.85, specificity (true negative rate) = 0.77, kappa = 0.57 

(moderate agreement). 

Grouping the QC issues into parent classes increases overall prediction accuracy by 1%. The confusion 

matrices again show that prediction error is lower in cases with staining issues. 

Figure 121 shows that the accuracy of the algorithm when applied to the grouped QC categories 

was 70.69%, with a sensitivity of 0.83 and a kappa of 0.52, indicating moderate agreement. 

Grouping the individual categories into the parent accept/reject classes yielded a 79.28% 

accuracy, a sensitivity of 0.85, a specificity of 0.77 and a kappa value of 0.57, indicating 

moderate agreement. The algorithm has a higher number of false positives than false negatives 

(328 and 106 respectively). 
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Figure 122 - ROC Curves for algorithm predictions of QC classifications 

The graph shows Area Under the Curve for each QC classification: 

Left: ROC curves for the individual QC categories – weak overall staining (0.96), weak eosin staining 

(0.96), weak haematoxylin staining (0.92), accepted images(0.88), large areas of necrotic tissue (0.81), 

large areas of mucin lakes (0.80), sectioning artefacts (0.79), tissue tears (0.71), poorly differentiated 

tumour (0.65), tissue folds (0.58), coverslip edges obscuring tissue (0.56), debris on the slide (0.49), 

bubbles under the coverslip (0.45) 

Right: ROC curves for the grouped QC categories - staining issues (0.91), accepted images (0.88), 

pathological issues (0.79), slide preparation issues (0.74), foreign objects (0.53). 

The ROC curves reiterate the findings that QC prediction is too variable to be of practical use, with the 

curve for bubbles showing a prediction rate less than 0.5 (equivalent to random). QC issues relating to 

stain have the highest AUC, and the lowest AUC is generated by predictions of issues relating to foreign 

objects on the slide. 

Figure 122 shows both sets of ROC curves for the algorithm results presented in Figure 120 and 

Figure 121. The left figure shows the algorithm results for training and testing on individual QC 

categories, compared to the grouped categories on the right.  

The individual QC categories have an AUC of 0.96 for weak overall staining, 0.96 for weak 

eosin staining, 0.92 for weak haematoxylin staining, 0.88 for accepted images, 0.81 for large 

areas of necrotic tissue, 0.80 for large areas of mucin lakes, 0.79 for sectioning artefacts, 0.72 

for tissue tears, 0.65 for poorly differentiated tumour, 0.58 for tissue folds, 0.56 for coverslip 

edges obscuring the tissue, 0.49 for debris on the slide and 0.45 for bubbles under the coverslip. 

The prediction of individual QC categories had a mean AUC of 0.74. The grouped QC 

categories have an AUC of 0.91 for staining issues, 0.88 for accepted images, 0.79 for 

pathological issues, 0.47 for preparation issues and 0.53 for foreign objects. The mean AUC for 

the grouped categories was 0.77.  

 

PrD 
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Figure 123- Confusion matrix and ROC curve showing algorithm agreement for QC classification when 

trained and tested on using the binary (accept-reject) labels 

Left: Confusion matrix of all five QC subtype groups from dataset. Accuracy = 79.67%, sensitivity (true 

positive rate / recall) = 0.70, specificity (true negative rate) = 0.84, kappa = 0.54 (moderate agreement).  

Right: The graph shows Area Under the Curve for the Accept binary QC classification (0.88) 

By simply grouping the results into accept or reject, accuracy does not improve. The AUC for accept 

remains consistent (0.88) for all three methods tested. This means that the training examples are too 

varied to be of practical use when combined into one reject category.  

Figure 123 shows both the confusion matrix and the ROC curve for the binary accept/reject QC 

categories. Accuracy of the algorithm is recorded at 79.67%, with a sensitivity of 0.70, a 

specificity of 0.84 and a kappa value of 0.54, indicating moderate agreement. The AUC for the 

accept rate is 0.88. 

 

6.5.3.3 Post-hoc analysis: Algorithm as a QC tool for staining levels 

Whilst analysing the results for this section, it was observed both agreement and AUC for stain-

related categories was notably higher than the other rejection categories. As such, further 

analyses were conducted to identify the algorithm performance when only applied to weak 

staining as a QC metric. The feature vectors for all 2,211 cases were filtered by QC metric, 

leaving cases labelled with ‘Accept’, ‘Weak Overall’, ‘Weak Haematoxylin’ or ‘Weak Eosin’. 

The number of remaining rows was 1,647. 
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Figure 124 - Confusion matrices showing algorithm agreement for stain-related QC classification, 

trained and tested on the four classes only 

Left: Confusion matrix of all 13 QC subtypes from dataset. Accuracy = 82.51%, sensitivity (true positive 

rate / recall) = 0.82, specificity (true negative rate) = 0.83, kappa = 0.75 (substantial agreement). 

Right: Confusion matrix of subtypes grouped into Accept and Reject parent classes. Accuracy = 89.31%, 

sensitivity (true positive rate / recall) = 0.89, specificity (true negative rate) = 0.89, kappa = 0.78 

(substantial agreement). 

The confusion matrices show that when analysing staining as a QC metric isolated from other issues, the 

accuracy level is significantly higher. This means that the feature vectors used in the algorithm are suited 

to staining levels more so than objects. This is because the features used in this algorithm relate to 

intensity only. 

Figure 124 shows that the accuracy of the algorithm when applied to the stain-based QC 

categories was 82.51%, with a sensitivity of 0.82 and a kappa of 0.75, indicating substantial 

agreement. Grouping the individual categories into the parent accept/reject classes yielded an 

89.31% accuracy, a sensitivity of 0.89, a specificity of 0.89 and a kappa value of 0.78, 

indicating substantial agreement. The algorithm has a higher number of false positives than 

false negatives (102 and 74 respectively). 
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Figure 125 - ROC Curves for algorithm predictions of stain-based QC classifications 

The graph shows Area Under the Curve for each stain-based QC classification: 

Weak overall staining (0.96), weak eosin staining (0.96), accepted images (0.96), weak haematoxylin 

staining (0.95). 

The curves show that the algorithm performs equally well on all staining related QC issues, with 

exception to the identification of weakly stained haematoxylin (AUC is 0.01 lower). This is due to the 

algorithm predicting more weakly stained haematoxylin slides as acceptable. This may be due to the 

ground truth data being biased towards assessing haematoxylin stain more stringently, since it is used to 

highlight nuclei and epithelial components. There are more issues related to weak H than any other QC 

issue.  

The stain-based QC categories had an AUC of 0.96 for weak overall staining, 0.96 for weak 

eosin staining, 0.96 for accepted images and 0.95 for weak haematoxylin staining. The mean 

AUC was 0.96.  

 

6.5.4 Conclusions 

By using the image features described in 6.5.2, and the ground truth data generated in 6.3, QC 

can be applied to digital slide images with 79% accuracy, and a kappa value of 0.57. Grouping 

the categories before training and testing yields slightly higher levels of accuracy per-image, but 

not kappa agreement. Analysis of ROC curves shows that some individual QC categories have 

higher AUC values compared to when part of bigger groups. The loss of specific class 

definitions in the model is therefore detrimental to the individual class accuracy, but not the 

overall result.  

As with the pilot data in 4.4, the dataset is imbalanced, and therefore model predictions favour 

the classes with the higher training examples. 
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Post-hoc analysis revealed that application of the algorithm to the staining-related QC issues 

yielded much higher accuracy, agreement and AUC statistics. The size of the dataset used for 

this analysis was reduced by 26% (to 1,647 cases), after removing cases not related to staining 

issues. 

The algorithm presented has potential use for identification of staining issues as a QC metric in 

routine digital pathology applications. However, the algorithm is less successful at identifying 

other QC-related issues.  
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6.6 Discussion 

The work in this chapter extends the pilot study from 4.4, which processed 256x256 pixel image 

patches for features, and trained a classifier based on labels generated from agreement statistics 

using the Prospector system.  

The results from Algorithm H presented in 5.3.2.5 are analysed, and 100 cases with the highest 

levels of disagreement to the pathologist-generated TSRs are identified. These cases are 

qualitatively assessed for any visual issues that may affect image processing results. As a result, 

12 QC issues were identified, and these were used as categories in the subsequent sections. The 

process of visually inspecting the cases was done on a standard computer screen, and results 

noted in excel. Most issues noted were extracted from comments made about the slides, but 

some (such as weak levels of stain) were pre-identified, and a simple stain presence metric was 

generated for each case. The number of cases was not scientifically selected, and there was no 

change or cut-off identified in the distribution of the TSR differences to suggest that the worst 

100 cases would contain all the QC issues present in the dataset.  

The manual QC experiment in 6.3 presented a single participant with all 2,211 cases, and the 

participant manually selected whether each case contained one of the QC issues (identified from 

the previous work), or was acceptable for analysis. This presented several issues, most notably 

the fact that the participant manually analysed such a large collection of images, that even with 

regular breaks, the dataset is likely to contain errors from fatigue, as well as the expected 

subjectivity. Another issue with the way that the experiment was conducted was that the 

participant could only select one of the QC issues. This meant that a slide presenting more than 

one of the conditions that would cause a case to be rejected, would be classified by the most 

visually prominent issue (adding another layer of subjectivity). Also, a number of QC issues 

identified were not whole-slide specific. Such issues didn’t affect all of the tissue (which may or 

may not be adequate for analysis otherwise), meaning that even though these issues existed, by 

simply identifying them on the slide and removing that area from the analysis, the problem 

would be mitigated. This consideration relates more to object-based issues, such as debris, folds, 

tears, bubbles etc. The distribution of QC classes was unbalanced – 32% of the dataset was 

accepted for analysis without issue, 20% of the dataset had insufficient levels of haematoxylin 

staining present, 14% of the cases were weakly stained in both staining channels, and 9% had 
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weak eosin staining. This meant that approximately 75% of the data was accounted for by these 

four categories (out of 12). As briefly explored in 4.4, having an imbalanced dataset is not ideal 

for ML. 

Having applied QC labels to the entire dataset, Algorithm H was further analysed to assess the 

pathologist-algorithm TSR differences, grouped by QC category. This information assisted in 

identifying which of the QC metrics had the biggest impact on skewing the data, which led to 

suggestions on how to improve the algorithm further. The distribution of ratio differences for 

weakly stained slides (H, E or both), was largely unaffected by the perceived inadequate levels 

of stain, which may be (at least in part) due to the global contextual analysis that factors the 

whole slide appearance into the local patch analysis. 

With the dataset split by QC categories, Algorithm H was run on the accepted cases only. This 

was a subset of 701 from the 2,211 cases, and as such reduced the local feature set from 106,242 

to 33,736 feature vectors. The reduction in data made the reproducibility of the algorithm 

slightly lower, but increased the mean accuracy by 3%. This increase equates to 1,012 images. 

The indications from this study are that reducing the number of suboptimal slides for automated 

analysis will improve accuracy, at the cost of losing data.  

The final portion of work in this chapter focused on using the existing QC labels in order to 

apply them to global slide statistics, and use that data for training a classifier to learn the 

appearance of QC issues. The metrics used for analysis were similar to Algorithm G, using 

median pixel values as well as percentage of pixels in each image within a defined intensity 

range. The feature vectors were trained and tested using individual QC metrics as the labels, as 

well as grouping the QC labels into parent classes, and grouping into the simple accept-reject 

binary classes. All accuracy results were roughly the same (±0.5%) after grouping into 

accept/reject categories, but AUC of individual categories indicated that the accuracy of stain 

related QC fails was much more reliable. 

Post-hoc analysis of the QC algorithm explored the accuracy of results when just applied to 

stain-based QC issues. The agreement results for the algorithm were higher (89% with 0.78 

kappa agreement), and the ROC curves for all classes were 0.95 or above, indicating the 

algorithm is adequate for application as a stain quality tool. The fact that stain-based QC 

identification was much more reliable suggests that the features used to analyse the slide images 

were only suitable for that task, and identification of other types of fails that are localised or 

object-based need other image analysis methodologies to compensate for them. 

The use of automated QC in a clinical dataset is a potentially important tool to remove images 

that will not yield accurate results for automated solutions. However, this methodology would 
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mean that data would be lost, and this is not an optimal solution. It may be more viable to use 

such a tool as a method for flagging cases where optimal QC conditions are not met, either 

before or after analysis, allowing the pathologist to review the cases which may have less 

accurate results. 
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Chapter 7 – Application to clinical data 

7.1 Introduction 

7.1.1 Chapter overview 

The work in this chapter evaluates Algorithm H presented in Chapter 5, applied to a clinical 

dataset so that the algorithm’s practical use for predicting survival can be evaluated. The chapter 

is divided into five sections: 

1) The introduction, which briefly outlines the clinical datasets available via the 

RandomSpotDB (presented in Chapter 3), the availability of survival data within those 

datasets, and the algorithm selection for processing that data. 

2) Exploration of the MRC CR07 dataset, describing the original project, the digital slides 

used for an experiment using SRS on the cases, and associated spot counting data stored 

in RandomSpotDB.  

3) Application of Algorithm H to the CR07 dataset, in order to evaluate its accuracy using 

the same methodology as previous chapters. 

4) Analysis of survival statistics of groups of patients, stratified by identifying appropriate 

cut-off points using cases ordered by algorithm-generated TSRs. 

5) Discussion of the work presented in this chapter and conclusions. The discussion 

focuses on the how well the algorithms perform compared to the manual scoring and 

concludes by discussing whether the algorithm is appropriate for application to clinical 

data. 

 

7.1.2 Clinical datasets 

The RandomSpotDB (presented in 3.2.2.5) contained 32 separate projects that used the 

RandomSpot system (section 3.2.2.2) for various research purposes. Of the 32 projects, 13 were 
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from clinical trial studies, including the QUASAR dataset (section 3.3.2.1). This dataset was 

originally chosen for the work in previous chapters due to the large number of patient cases 

(2,211 available in the system) that had been scored by a pathologist, and the survival data 

associated with that trial (including survival and response to chemoradiotherapy). However, 

survival data was only accessible via the trial’s national data centre, which required independent 

statisticians to run tests on the data. During the course of algorithm development, it emerged 

that it would not be feasible to retrieve survival analyses in a timescale appropriate to the 

project, and so other datasets were considered. One dataset in the RandomSpotDB, which had 

readily accessible survival data for independent analysis was selected instead of the QUASAR 

dataset. The trial, referred to as the CR07 dataset, is presented in section 7.2. 

 

7.1.3 Algorithm selection for survival analysis 

Of all the algorithms presented in this work, Algorithm H (section 5.3.2.5) exhibited the highest 

level of algorithm-pathologist agreement, and so was considered the most appropriate for 

application to survival analysis. The application of the algorithm to the CR07 dataset is 

presented in 7.3, and uses the same methodology from Algorithm H, presented in Chapter 5.  
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7.2 The CR07 dataset 

7.2.1 The CR07 trial 

The Medical Research Council (MRC) CR07 and National Cancer Institute of Canada (NCIC) 

clinical trial consisted of 1,350 patients with operable adenocarcinomas of the rectum, which 

were randomised in 80 centres across four countries [265]. Patients were randomised between 

two trial arms: arm 1 patients had preoperative short-course radiotherapy (SCRT, n=674) and 

arm 2 patients had selective postoperative chemoradiotherapy (CRT, n=676). Survival of 

patients was recorded in terms as the number of days that had elapsed between the patient 

entering the trial, and the final follow-up session for that patient. The status of the patient was 

recorded, in terms of whether they were alive, or had died of cancer or other causes at the time 

of the final follow-up session, in terms of whether the patient’s cancer progressed to other 

organs (metastasised).  

 

7.2.2 Image data 

A subset of cases from the CR07 trial that were resected in Leeds were identified for a study 

using the RandomSpot system (section 3.2.2.2) for manual generation of TSRs [6]. These cases 

were fixed in paraffin wax blocks, sectioned into 5-micron thick samples, and stained with 

Haematoxylin and Eosin (H&E) to visually identify tumour regions. Glass slides were scanned 

using an Aperio AT scanner using a 20x objective (0.5 microns per pixel), using JPEG2000 

compression quality 50. 

It is important to note that the CR07 image data contained images from both arms of the 

randomised trial. This meant that half of the image data (n=674) was of tissue that had already 

undergone SCRT, and as such reduced the amount of tumour in the tissue. This reduction in 

tumour subsequently affects the TSR of the images, and does not correspond to the published 

prognostic significance of TSR in tumours. Therefore, for image analysis validation in terms of 

per-image patch pathologist agreement (section 7.3), both arms of the trial were combined to 

form the full dataset, and for survival analysis (section 7.4), the datasets for each of the trial 

arms were separately analysed. 
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7.2.3 Scoring data 

The RandomSpot system was used on a subset of cases from the CR07 trial to manually 

quantify the TSR as a prognostic marker for CRC. The scoring data for these cases was 

generated using the same methodology described in section 3.2.2.2, and once generated and 

analysed for its original purpose, the scoring data was added to the RandomSpotDB (section 

3.2.2.5). TSR was calculated using Method 2 in Table 7, which is referred to as Tumour Cell 

Density (TCD) in the original study. 

Three different methods for sampling the tumours were used in the original study, outlined in 

Table 25. Each method used 300 sampling points, and the number of cases stored in the 

RandomSpotDB is recorded.  

Sampling location  ROI boundary type # Sampling points # Cases  

Whole tumour Freehand polygon 300 344 

Luminal TCD 3x3mm square highest TCD 

on luminal aspect 

300 76 

Greatest TCD 3x3mm square highest TCD 

away from luminal aspect 

300 5 

Table 25 – Sampling methods applied to the CR07 dataset 

The three sampling methods used for previous studies calculating the TSR manually on the CR07 dataset 

and the number of cases sampled with each, available in RandomSpotDB [247] 

The whole tumour method involved manually drawing a polygon around the whole tumour on 

the slide, using the freehand polygon tool in ImageScope. The Luminal TCD used a 3x3mm 

rectangle region of interest, manually placed over the area with highest perceived level of 

tumour cell density. The Greatest TCD method was only applied if there appeared to be an area 

on the slide which had higher perceived tumour cell density away from the luminal aspect. 

Figure 126 illustrates these methods with examples. 
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Figure 126 - Sampling methods applied to the MRC CR07 clinical trial dataset 

Left: Whole tumour annotations using 300 sampling points (with tolerance of 15%) 

Centre: Luminal TCD annotations using 300 sampling points (with tolerance of 15%) 

Right: Greatest TCD annotations using 300 sampling points (with tolerance of 15%) 

Note that sampling points in these examples are colour coded: red for tumour, green for stroma and blue 

for other classes. 

In most cases, the Luminal TCD annotation contained the highest area of tumour cell density on 

the whole slide, and so Greatest TCD was not generated. The dataset from RandomSpotDB also 

contained one double scored whole tumour case, and 4 biopsy cases, totalling 430 sets of 

annotations for training and testing. 

Note that the original TSR study using the CR07 dataset used the Luminal TCD annotations to 

show that the TSR is an independent prognostic marker. However, due to the smaller number of 

cases available in RandomSpotDB that used the Luminal TCD method, survival analysis in 

section 7.4 is performed on the whole tumour annotations dataset. 

 

7.2.4 Data observations 

Distribution 

Using the full dataset from RandomSpotDB (section 3.2.2.5), the data were analysed to assess 

the distribution of classifications. Figure 127 shows that out of all 128,878 expert-classified 

locations for the CR07 dataset, 37,158 (42%) belonged to the Tumour class (Tumour, Lumen, 

Necrosis and Mucin subclasses), 62,937 (49%) belonged to the Stroma class (Stroma, Muscle, 

Vessels and Inflammation), and 11,697 (9%) of them were non-informative. 
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Figure 127 - Bar plot of all available data for the CR07 set, grouped by classification 

Bars are grouped by parent classes, tumour (top), stroma (middle) and non-informative (bottom). 

The distribution has a higher proportion of stroma to tumour. This is the inverse of the QUASAR dataset, 

and likely due to the sampling methods chosen. The CR07 dataset uses sampling from the whole tumour 

area, and therefore is likely to have lower TSR ratees than when sampling from the areas of highest TCD. 

TSR 

For each of the 430 cases in the dataset, TSRs were generated, and their distributions plotted in 

Figure 128, spearating the two different sampling methods into separate histograms so that their 

distributions could be compared. Note that in the original CR07 TCD study, the TSR was 

calculated differently to the QUASAR dataset, using Method 2, instead of Method 1, described 

in section 3.3.2.4. 
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Figure 128 – TSR distribution for both sampling methods of the CR07 dataset, available in 

RandomSpotDB 

Left: Whole tumour region (hand drawn polygon) with 300 sampling points (mean = 0.30, median = 0.29, 

SD = 0.12) 

Right 3x3mm box annotation over the area with highest tumour cell density with 300 sampling points 

(mean = 0.41, median = 0.44, SD = 0.15) 

The histograms confirm that the sampling methods affect the distributions of TSR. Despite the lack of 

examples for sampling the area of highest TCD, it is still clear that this method yields higher TSRs. 

For the whole tumour and highest TCD datasets, the means are 0.30 and 0.41 resepectively. The 

whole tumour dataset had a standard deviation of 0.12 and the highest TCD dataset has a 

standard deviatin of 0.15. For both of the datasets, both Shapiro-Wilk and Kolmogorov-Smirnov 

tests reject the null hypothesis that the data is from a standard normal distribution (both tests p < 

0.01).  

Histograms of TSR by trial arm are presented in 7.4.2. 

 

7.2.5 Summary 

The data from the CR07 dataset contains proportionally more stroma sampling points than the 

QUASAR dataset. The original TCD study found that survival for the CR07 cases was lower 

than the other trials used to generate the results. This is consistent with the previous findings 

that lower proportions of tumour indicate a worse prognosis. 

As with the QUASAR dataset, the differences in TSR distributions of the sampling methods are 

caused by either sampling at the area of highest TCD or the overall tumour. Previous studies 

found that sampling at the highest area of TCD is more strongly correlated to survival, however 
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the amount of data available for this work means that reproducing survival analysis on the areas 

of highest TCD would discard 81% of the data.  

There are a smaller number of cases in the CR07 dataset than the QUASAR dataset (430 and 

2,211 respectively), but there are more individual expert-classified labels in the CR07 dataset 

available for analysis, due to sampling 300 spots per region of interest rather than 50. 
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7.3 Algorithm J: Algorithm H applied to the 

CR07 dataset 

7.3.1 Aim 

To apply Algorithm H to the CR07 dataset, and establish algorithm accuracy, validating it 

against a different clinical trial. 

 

7.3.2 Methods 

The methodology for Algorithm H presented in section 5.3.2.5 was used to train a RF classifier 

using the globally-weighted local features, described in the global context algorithm (Algorithm 

G) section in 5.3.2.4. Once trained, the algorithm used the local contextual algorithm 

(Algorithm F) methodology to generate the classifier predictions at the centre of each image 

patch (section 5.3.2.3), making the final feature set containing 116,591 vectors. Once the feature 

dataset (with weighted predictions) was generated, another RF classifier was trained and tested 

using 10-fold cross validation. This algorithm is referred to as Algorithm J. 

The study was also implemented using the trained QC stain classifier presented in section 

6.5.3.3, to establish whether there were any suboptimal slides in the dataset that should be 

excluded for image analysis. The methodology of the original QC algorithm used the 3x3mm 

box annotations from the QUASAR dataset to train on, which had higher density of tumour and 

higher levels of stain intensity (weaker staining). Therefore, the algorithm was not appropriately 

trained for the whole annotations used in the CR07 dataset. It was presumed that the whole 

annotations would have a different overall appearance, thus rendering the original trained 

classifier ineffectual. The original QC algorithm was applied to the dataset to test the 

presumption, and rejected 55% of the cases. The algorithm was subsequently retrained using the 

QUASAR whole annotations, using a NaN mask over areas that were outside of the freehand 

annotation. This algorithm is referred to as Algorithm K. 

The processing was performed on the hardware detailed in section 3.4.2.4. 
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7.3.3 Results 

7.3.3.1 Processing time 

Algorithm J took 339,566 seconds (94.32 hours) to generate the image patch feature set, using 

the methodology and hardware previously described. This equates to approximately 2.91 

seconds per patch.  

 

7.3.3.2 QC analysis 

The QC algorithm presented in Chapter 6 was modified with training data from the QUASAR 

dataset, using whole tumour, freehand ROI annotations, instead of the 3x3mm boxes originally 

used. This was re-implemented in order to maintain comparability between datasets, so that the 

QC algorithm was trained on whole annotations from the QUASAR dataset and was tested on 

the CR07 whole annotations only. This reduced the dataset from 430 to 344 cases before QC 

was applied. Of the 344 remaining cases, 264 slides were approved for image analysis by the 

automated QC method (77%), 43 slides were identified as having suboptimal levels of 

haematoxylin (13%), 25 slides were classified as having weak eosin staining (7%), and 7 slides 

were flagged for weak overall staining (2%). The five slides unaccounted for were cases that 

had been double scored, and so to prevent duplicates, one of the annotations was excluded from 

analysis for each pair. By removing cases flagged for QC issues, the size of the dataset of spot 

features reduced by 31%, from 116,591 to 80,493. Due to the comparatively smaller number of 

cases compared to the QUASAR series, in depth analysis was performed on the full set of CR07 

dataset to maximise the number of results, and QC results were applied as a filter afterwards. 

Creating the new trained classifier using whole annotations took 5,470 seconds of processing 

time, and application of the algorithm to the CR07 dataset took 2,326 seconds, using the 

hardware previously described.  

 

7.3.3.3 Accuracy (agreement) 

Agreement was calculated in two ways: calculating per-patch agreement for all eight tissue 

classes, and grouping the eight classes into their parent class: tumour and stoma. Figure 129 

shows the confusion matrices for both evaluation methods of Algorithm J. The left matrix 

shows the agreement between algorithm and pathologist for the eight tissue classes. The eight 

by eight matrix is subdivided into four quadrants, which group the eight classes into the two 
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parent classes, tumour and stroma. The summations of these results into the parent classes are 

depicted in the two by two confusion matrix to the right.  

 

Figure 129 – Confusion matrices showing pathologist – Algorithm J agreement using the CR07 dataset 

for training and testing 

Left: Confusion matrix of all 8 tissue subtypes from dataset. Accuracy = 79.17%, sensitivity (true positive 

rate / recall) = 0.79, kappa = 0.66 (substantial agreement) 

Right: Confusion matrix of subtypes grouped into Tumour and Stroma parent classes. Accuracy = 

85.72%, sensitivity (true positive rate / recall) = 0.82, specificity (true negative rate) = 0.89, kappa = 

0.71 (substantial agreement) 

The matrices show that the algorithm applied to the CR07 dataset is more likely to overestimate stroma 

compared to tumour. This shift (compared to other algorithms overestimating tumour) is likely due to 

there being more examples of stroma in the training set. As with all other algorithms, the majority of false 

positives and negatives are from incorrect predictions of tumour and stroma subclasses, with incorrect 

predictions of necrosis having the third highest number of false predictions. The false positives and false 

negatives exhibited in this figure are lower than that of any other algorithm presented. 

The accuracy of the algorithm for the individual tissue classes was 79.17%, with a sensitivity of 

0.79 and a kappa of 0.66, indicating substantial agreement. Grouping the individual classes into 

the parent Tumour / Stroma classes yielded an 85.72% accuracy, a sensitivity of 0.82, a 

specificity of 0.89 and a kappa value of 0.71, indicating substantial agreement. The algorithm 

has a higher number of false negatives than false positives (9,798 and 6,851 respectively). 

The results show a significant improvement over Algorithm H (6% increase in grouped 

accuracy, Mann-Whitney test P = < 0.01), which uses the same methodology applied to the 

QUASAR dataset (as opposed to the CR07 dataset). The confusion matrices show that 

Algorithm J is more likely to overestimate the presence of stroma by 2.52% (9,798 false 

negatives (8%) compared to 6,851 false positives (6%)), where Algorithm H is more likely to 

overestimate tumour (10,568 false positives (10%) compared to 10,174 false positives (10%)). 
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This may be due to the faded staining in the QUASAR dataset used for algorithm H, leading to 

feature vectors for tumour containing higher intensity values, which would be more likely to 

represent stroma in a well stained dataset. It may also be due to the balance of examples in the 

dataset – 49% of the CR07 dataset is stroma, compared to 35% in the QUASAR dataset. The 

CR07 dataset has a mix of patients with preoperative SCRT and postoperative CRT, meaning 

that half of the dataset is comprised of images that have areas of tumour destroyed by radiation 

therapy, leading to higher proportions of stroma. Having more examples of stroma in the 

training set could lead to algorithm biases, which may be mitigated by data balancing, or 

augmentation of the dataset.  

A comparison of results can be found in section 7.4.3. 

 

Figure 130 - ROC Curves for all 8 tissue subtypes of the CR07 dataset, classified by Algorithm J 

The graph shows Area Under the Curve for each tissue subtype: 

Tumour parent class: Tumour (0.94), Lumen (0.97), Mucin (0.98), Necrosis (0.90) 

Stroma parent class: Stroma (0.92), Vessels (0.86), Muscle (0.97), Inflammation (0.96) 

The curves show that the algorithm is least accurate at correctly predicting vessels, and has the highest 

AUC for mucin. Despite the larger number of training examples, the algorithm is still better at predicting 

tumour than stroma. This suggests that the variable appearance of stroma is more difficult to model 

accurately. 

Figure 130 shows the ROC curves for each individual tissue class when classified by Algorithm 

J. The tumour subtypes have an AUC of 0.94 for tumour, 0.97 for lumen, 0.98 for mucin and 

0.90 for necrosis. The stroma subtypes have an AUC of 0.92 for stroma, 0.86 for vessels, 0.97 

for muscle and 0.96 for inflammation. The mean AUC for all subtypes is 0.94. 
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7.3.3.4 Comparison to manual scoring 

For comparison, the algorithm grouped accuracy results are plotted against the pathologist 

agreement statistics generated on the best-case data from the image patch size experiment in 

Chapter 4.  

 

Figure 131 – Comparison boxplots for pathologist-pathologist agreement and pathologist-algorithm 

agreement 

Left: Pathologist - pathologist agreement (mean = 0.85, median = 0.88., SD = 0.10, IQR = 0.10) 

Right: Pathologist -algorithm agreement (mean = 0.85, median = 0.85., SD = 0.01, IQR = 0.01) 

Mann-Whitney test P = 0.69 

Human agreement is generated from six participants, each scoring 40 images 1024x1024 pixels in size, 

using the Prospector system (section 4.3). The boxplots show that the automated analysis of the CR07 

dataset is comparable to the agreement levels of human scoring. 

Note the slight difference between accuracy reported by the Figure 129 confusion matrix 

compared to the Figure 131 boxplot. This is due to the grouping methods per cross validation 

fold for boxplot results (mean of 10 accuracy levels), and grouping applied after all cross-

validation predictions have been made for the calculation of the confusion matrix statistics (one 

single accuracy level). 

A Mann-Whitney test accepts the null hypothesis that the two distributions are from 

independent samples with equal means and unknown variance (p = 0.69). This indicates that the 

two methods are statistically similar. 
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7.3.3.5 Correlation of pathologist and algorithm TSRs 

 

Figure 132 – Histogram and Heatmap Correlation Plots for Algorithm J on the CR07 dataset 

Left: Histogram of ratio differences generated by pathologist and regular segment algorithm. 

Distribution has a mean bias of 0 (median 0), and standard deviation of 0.09. 

Right: Heatmap Correlation plot of the distribution of the ratios. Correlation has R2 coefficient of 0.61. 

The histogram and correlation plot show that the TSRs generated by pathologist and machine are more 

similar than previous algorithms. 

Using the differences of TSR per case (ground truth TSRs minus algorithm TSRs), the 

histogram shows that Algorithm J shows no bias to overestimating tumour or stroma. The 

comparison dataset has a mean bias of 0, and a standard deviation of 0.09. The distribution of 

the TSR differences shows that the algorithm performs similarly to pathologist scoring, and has 

the lowest variance of any algorithm presented in this work. This confirms that conclusions 

from Chapter 6, that the algorithm performs better on better quality images. 

A paired samples T-Test accepted the null hypothesis that the pairwise mean comparison of 

pathologist-algorithm TSRs is equal to zero (p = 0.90). A Spearman’s nonparametric rank 

correlation test confirms that a positive relationship exists (rho = 0.78) and that the correlation is 

significantly different from zero (p < 0.01). The fitted linear regression model (red line on the 

plot) to the dataset has a coefficient of determination (R2) of 0.67. The distribution of the 

correlation shows that the TSRs are closer to zero, which is caused by the sampling area being 

appliedto the whole tumour rather than the area of highest TCD. 
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Figure 133 - Bland-Altman plot of Pathologist and Combined Contextual Analysis algorithm-generated 

TSRs per case, using the CR07 dataset 

Distribution has a mean bias of 0, with upper and lower limits of agreement of 0.18 and -0.18 

respectively (±0.18). This distribution shows that the algorithm consistency is slightly higher at lower 

levels of TSR, with more outliers in the distribution above 0.3 on the x axis. 

The Bland-Altman plot in Figure 133 shows that the data has a bias of 0, and that the 95% 

confidence intervals (1.96 standard deviation, indicated by the outer dashed lines) are ±0.18. 

 

7.3.3.6 Algorithm performance on QC dataset 

Algorithm K ran on the reduced dataset that had been automatically approved for analysis by 

the automatic QC algorithm. As a result, the algorithm agreement statistics improved minimally, 

with per-patch agreement increasing from 79.17% to 79.56%, and grouped agreement 

increasing from 85.72% to 86.08%. A paired samples T-test confirmed that the distributions 

were not statistically different to the dataset where QC was not applied (p = 0.15 and p= 0.29 

for per-patch and grouped agreement methods respectively), and Figure 134 visualises this in 

the respective boxplots. Because of these findings, further analyses are not presented in this 

section, but can be observed in Appendix D.11. 
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Figure 134 – Boxplots comparing Algorithm J and K agreement (with and without automatic QC)  

Left: Per-patch agreement statistics for the algorithm without QC (mean = 0.7917) and with QC (mean = 

0.7956). Mann-Whitney test indicates no statistically significant differences between groups (P = 0.13). 

Right: Per-patch agreement statistics for the algorithm without QC (mean = 0.8572) and with QC (mean 

= 0.8608). Mann-Whitney test indicates no statistically significant differences between groups (P = 0.38). 

The boxplots indicate that applying QC to the dataset does not improve the accuracy results enough to 

justify removing the slides and discarding their data. 

The boxplots in Figure 134 illustrate that the statistical difference between the two algorithms in 

both per-patch and grouped agreement datasets is not significant. However, the distribution for 

Algorithm K (with QC) exhibits reduced variance when grouping the tumour and stroma sub 

classes, with an inter quartile range of 0.0044, compared to 0.0177 – a reduction of 75%. 

 

7.3.3.7 Summary of algorithm development 

To help summarise the progression of iterative algorithm development presented in this thesis, 

Figure 135 displays the pathologist agreement statistics from the experiment in 4.3, compared to 

the cross-validation accuracy results when grouping the eight tissue classes in to the parent 

tumour or stroma classes. There is a clear progression indicating that algorithm accuracy 

improves with the alterations applied.  
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Figure 135 – Boxplots of pathologist-pathologist and pathologist-algorithm agreement results, grouped 

into tumour and stroma parent classes 

Algorithms A-K can be identified using the name columns in Table 14. The boxplot labelled P is for 

pathologist agreement, which was generated from the best-case performance from the image size 

experiment in section 4.3. The boxplots show gradual improvements in accuracy over the development of 

the algorithms, with the application to the CR07 dataset yielding the highest results. Mean accuracy rates 

are identical between pathologist and Algorithm K (both 0.85), however human scoring is higher when 

using median accuracy (shown in the box plots), with agreement of 0.88 compared to 0.85. The spread of 

the distribution however makes the algorithm a more consistent evaluator.  

For algorithm accuracy results, a Friedman’s (repeated measures) ANOVA was conducted with 

algorithm type (total = 11) as the repeated measures independent variable. Results revealed a 

significant effect of algorithm methodology (χ2 = 19.29, p < 0.04). Post-hoc analysis of 

pairwise comparisons using the Mann-Whitney test can be found in the cropped confusion 

matrices in Appendix E. The significance testing reveals that only Algorithms B is statistically 

significantly different to all other algorithms. Algorithms J and K are significantly different 

compared to all other algorithms, but are not significantly different to each other. This means 

that using the CR07 dataset significantly improves algorithm performance, but applying the QC 

algorithm to the CR07 set does not. These findings confirm the observation that the CR07 

dataset is of better visual quality, and that optimised datasets yield higher agreements statistics. 

The mean difference of TSR generated by pathologist and algorithm shows a similar trend of 

improvement. Figure 136 displays mean TSR difference with standard deviation and confidence 

intervals for all algorithms presented. 
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Figure 136 - Line plot of mean difference between pathologist and algorithm-generated TSRs  

The plot shows the mean difference (red line) of pathologist and algorithm-generated TSRs, which 

progressively improves (gets closer to zero) over the algorithm iterations (x axis). The dashed line shows 

the width of the standard deviation of the difference distribution and the dotted line shows the confidence 

intervals that represent 95% of the data. The distributions become more tightly aligned in the later 

contextual algorithms, and algorithms on higher quality datasets. 

Most notably, the standard deviation and confidence intervals of the TSR difference 

distributions become progressively narrower over iterations, meaning that the improvements 

made to the algorithm yield more tightly aligned distributions of agreement. The improvement 

of this distribution becomes more apparent starting with the combination of both local and 

global context, and improved further with QC and the higher quality CR07 dataset. It should be 

noted that all algorithms except Algorithm A use a patch size of 256x256 pixels, which without 

context (Algorithm B) performs the poorest. It is the contextual analysis that allows analysis of 

the 265x256 pixel patches to surpass the performance of the 64x64 pixel algorithm. 

The progression of algorithm development and improved agreement means that the final 

algorithm performance is the most similar to human scoring, and may be appropriate for testing 

against survival data. 

 

7.3.4 Conclusions 

Algorithm J yields the highest accuracy rate of any results set presented so far (79% per patch 

and 86% grouped by tumour and stroma parent classes). The improvement in accuracy is 

reflected in the increase in AUC for all tissue subtypes (mean AUC = 0.94), the correlation (R2 
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= 0.67) and TSR differences (mean = 0, SD = 0.09), and the Bland-Altman statistics (mean = 0, 

upper and lower limits of agreement = ±0.18).  

The improvement over the results from the same algorithm applied to the QUASAR dataset 

(even with QC filtering applied) indicate that the CR07 dataset is more appropriate for image 

analysis. From undocumented visual inspection of the digital slides, it is apparent (but not 

conclusive) that ML is improved due to image quality rather than accuracy of pathologist data 

labelling. The QC algorithm has a higher pass rate on the CR07 dataset, with 77% of the CR07 

dataset (344 cases) being accepted, compared to 32% of the QUASAR dataset (2,211 cases). A 

Chi Squared test shows that the proportions are significantly different (p < 0.01) indicating that 

this observation is valid. 

The application of QC to the dataset required retraining of the algorithm on whole tumours 

rather than 3x3mm boxes over areas of highest TCD. Once retrained, the QC algorithm rejected 

23% of the slides, but there was no manual scoring to validate these results. The remaining 

dataset yielded a slight, but not statistically significant increase in accuracy. The slight increase 

in accuracy was not a worthwhile trade-off, when considering the loss of data from removing 

the suboptimal slides. Therefore, it was decided that the smaller QC’d dataset would not be used 

when applying the algorithm to survival data.  
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7.4 Survival analysis on CR07 dataset 

7.4.1 Aim 

To use the TSRs generated by Algorithm J on the CR07 dataset, in order to stratify patients into 

groups for survival analysis. The work should conclude by assessing whether the automated 

solution is a feasible alternative to manual scoring. 

 

7.4.2 Methods 

Using the TSRs generated by Algorithm J on the CR07 dataset (presented in 7.3.3), the data 

were prepared for analysis by identifying cases deemed appropriate for analysis. The 

preparation methodology is presented in the next section. 

7.4.2.1 Case selection 

Of the 430 TSRs generated, 314 had unique case numbers, which was due to the slides being 

sampled using different methods (see 7.2.3). One of the unique 314 cases was not scored using 

the whole tumour annotation method, and was discarded, leaving 313 cases with TSRs and 

survival data. Out of the remaining 313 cases, 142 were from the arm of the study that were 

given preoperative SCRT (arm 1), and 171 were from the arm that were given selective 

postoperative CRT (arm 2). As discussed in 7.2.2, survival analysis was applied separately to 

individual trial arm groups.  

Distributions of TSRs for both trial arms, using both pathologist and algorithm methodologies 

are presented in Figure 137 for trial arm 1 and trial arm 2. Note that as with 7.2 and 7.3, TSRs 

were calculated using Method 2 detailed in section 3.3.2.4, as opposed to Method 1 which was 

used in the QUASAR trial. This method yielded lower ratios, and so the histograms show 

average values closer to 0, when compared to the other ratio calculation method. 
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Trial arm 1 (preoperative SCRT) 

 

Trial arm 2 (selective postoperative CRT) 

 

Figure 137 - Distribution of CR07 TSRs for generated by algorithm and pathologist, for trial arm 1 (top 

and trial arm 2 (bottom) 

Left: Arm 1 pathologist ratios. Mean = 0.29, median = 0.28, SD = 0.13. 

Right Arm 1 algorithm ratios. Mean = 0.29, median = 0.27, SD = 0.13. 

Bottom Left: Arm 2 pathologist ratios. Mean = 0.41, median = 0.40, SD = 0.14. 

Bottom Right Arm 2 algorithm ratios. Mean = 0.45, median = 0.45, SD = 0.13. 

The distributions show that TSRs are higher when analysing cases with preoperative SCRT, and that the 

TSRs generated are comparatively lower than when analysis patients without preoperative SCRT. Both 

these observations are represented in the pathologist and algorithm-generated TSRs. 

Both sets of distributions show that algorithm and pathologist-generated ratios are comparable 

when analysing trial arms individually, with the algorithm ratios more closely aligned to the 

ground truth on patients with preoperative SCRT. The distributions show that cases with 
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preoperative SCRT exhibit lower ratios, which is indicative of tumour cells being destroyed by 

radiation therapy.  

The case survival data available consisted of the following fields: the number of days to the 

final follow-up date; the state of the patient at the final follow-up date (alive, died of cancer, or 

died of other causes); whether the patient’s cancer had progressed (metastasised); and the 

number of days since starting the trial that the progression had been identified. Table 26 shows 

the number and proportion of patient statuses at the time of their final follow-up. 

Trial arm Alive Cancer death Other death Total Progression 

1 86 (61%) 17 (12%) 39 (27%) 142 6 (4%) 

2 96 (56%) 30 (18%) 45 (26%) 171 25 (15%) 

Table 26 – Survival statistics for patients in both arms of CR07 trial 

Cancer stage and grade was not included in the dataset, neither was recurrence (other research 

has shown that TCD is a good predictor of recurrence, but that data was not available for this 

analysis work [52]).  

7.4.2.2 Patient stratification 

Prior to survival analysis, cases were stratified into groups, based on a threshold of TSR, 

referred to here as a cut-off. Initially a test to assess the linearity of the TSR results was 

established, based on existing work using the RandomSpot system [48]. Cases were sorted into 

ascending TSR order, and split into equally sized groups (which may or may not have equal 

numeric intervals between TSR cut-offs), and their survival curves plotted. This method was 

repeated for stratifying into two, three and five equal groups. By splitting the data into this 

format, observations could be made to see if there is any clear proportionate threshold that 

differentiates survival rates, based on TSR. 

The main goal of the analysis however was to use the same methodology as the previous CR07 

SRS study, by splitting the cases into two groups: TSR High and TSR Low. The groups were 

divided based on a pre-identified cut-off value, which was calculated per dataset.  

The method for finding appropriate cut-offs for stratification of patients was presented in the 

original work that used the CR07 dataset to identify TSR as a prognostic marker [6]. Using an 

iterative cut-off value of 0.01 to 1 in increments of 0.01, sensitivity and specificity was 

calculated based on the correct prediction of survival between groups less than the cut-off value 

(TSR low), and greater than or equal to the cut-off value (TSR high). For the analysis, the TSR 

low group was the ‘at-risk’ group. A modified ROC curve was created using the cut-off value as 
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the x-axis and the sensitivity plus the specificity as the y-axis. The cut-off value with the highest 

sensitivity plus specificity was deemed the most appropriate. Examples of these curves can be 

found in Appendix F. 

7.4.3 Results 

Results are summarised in Table 27. 

7.4.3.1 Group linearity 

The results in this section use the survival statistics, discussed in 7.4.2.1, split into either two, 

three or five equal sized groups, so that observations can be made based on the linearity of the 

distributions, in relation to patient survival. Kaplan Meier survival curves (KM) [242] for both 

cancer specific survival and overall survival, for two equal sized groups ordered by TSR, are 

presented in Figure 138 for trial arm 1 and Figure 139 for trial arm 2. The legends on each of 

the graphs show that the cut off points for stratifying the patients into groups.  
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Trial arm 1 (preoperative SCRT) 

 

Figure 138 – KM curves for arm 1 cases stratified into equally sized groups using ordered TSR generated 

by Algorithm J 

Cases were ordered by ascending TSR, and grouped into equal sized groups. The legends on the graphs 

show the upper cut-offs for TSR low group.  

Left: Cancer specific survival  

Right Overall survival 

Note that Group 1 is the equivalent of the TSR low group when using 2 groups only. The graphs show 

that stratification of groups using the median value does not create significant differences in survival. 

A log-rank test for comparing the distributions of the two-group method showed no significant 

differences between groups for both cancer and overall survival in arm 1 (p = 0.17 and p= 0.95 

respectively) or arm 2 (p = 0.44 and p = 0.77 respectively).  

0.17   HR = 1.98 (C.I. 0.73 – 5.35) P = 0.95   HR = 0.98 (C.I. 0.58 – 1.66) 
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Trial arm 2 (selective postoperative CRT) 

 

Figure 139 – KM curves for arm 2 cases stratified into equally sized groups using ordered TSR generated 

by Algorithm J 

Cases were ordered by ascending TSR, and grouped into equal sized groups. The legends on the graphs 

show the upper cut-offs for TSR low group.  

Left: Cancer specific survival  

Right Overall survival  

Note that Group 1 is the equivalent of the TSR low group when using 2 groups only. The graphs show 

that stratification of groups using the median value does not create significant differences in survival. 

Analysis stratifying the patients into three and five equal group sizes, ordered by TSR was also 

attempted. These results are presented in Appendix F.1 for arm1 and Appendix F.2 for arm 2. 

Both the three and five-group methodology also showed no significant test values, when 

comparing all groups independently. These values are displayed for clarity in a cropped 

confusion matrix, with description, in the respective Appendix section. 

The grouping of patients into equal sizes using ordered TSRs shows no significant differences 

between groups. 

7.4.3.2 Survival using modified ROC curves for cut-off 

The results in this section use the survival statistics, discussed in 7.4.2.1, split into two groups, 

TSR high and TSR low, where previously published studies showed that the TSR high group 

should correlate with higher survival rates. It should be noted that cut-offs closer to 0 will create 

smaller groups of TSR low cases, and larger cut off values will create larger groups of TSR low 

cases. 

For both pathologist and machine generated ratios, TSR high and low groups were created using 

the modified ROC curves (see section 7.4.2.2) to identify the most appropriate cut-off point. 

P = 0.44   HR = 0.76 (C.I. 0.37 – 1.56) P = 0.77   HR = 0.93 (C.I. 0.59 – 1.47) 
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Subsequently a KM curve was generated for each group, using the number of days passed 

between the trial beginning and the final follow-up session occurred, for each patient. The status 

of the patient at the final follow-up was recorded as alive, cancer death or other cause of death. 

Figure 140 and Figure 141 show the survival curves for cancer specific survival (patient either 

alive or died of cancer at final follow-up) for arms 1 and 2 respectively. Figure 142 and Figure 

143 uses cases from all three categories to show overall survival for trial arms 1 and 2 

respectively.  

Cancer specific survival on trial arm 1 (preoperative SCRT)  

 

Figure 140 - KM survival curves for cancer specific survival on arm 1 using pathologist and machine 

generated TSRs 

Left: KM survival curves for pathologist-generated ratios, thresholded by modified ROC cut-off (0.26). 

Log-rank test had a significance value of 0.17 comparing the TSR High group (n = 39) to TSR Low group 

(n = 64), with a Hazard Ratio of 2.17 (confidence intervals 0.71 – 6.65). 

 

Right: KM survival curves for algorithm-generated ratios, thresholded by modified ROC cut-off (0.32). 

Log-rank test had a significance value of 0.04 comparing the TSR High group (n = 36) to TSR Low group 

(n = 67), with a Hazard Ratio of 4.15 (confidence intervals 0.95 – 18.14).  

Note that modified ROC curves used for generating cut-offs can be found in Appendix F. 

The curves show that algorithm-generated TSRs using a dynamic cut-off creates a significant 

stratification of patient groupings that predicts cancer-specific survival for patients with preoperative 

SCRT, whereas using the same methodology for pathologist-generated ratios does not. 

The log-rank test of the groups, split using pathologist-generated ratios, accepts the null 

hypothesis that the two survival distributions are not significantly different (p = 0.17). TSR high 

and low groups numbered 39 and 64 respectively, with the TSR low group yielding a Hazard 

Ratio (HR) of 2.17 (C.I. = 0.71 – 6.65). The distribution of the groups using algorithm-

generated ratios rejects the log-rank test null hypothesis, with a smaller significance value than 

P = 0.17   HR = 2.17 (C.I. 0.71 – 6.65) P = 0.04   HR = 4.15 (C.I. 0.95 – 18.14) 
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pathologist assessment (p = 0.04). HR for the TSR low group was 4.15 (C.I. = 0.95 – 18.14), 

with a TSR high group of 36 and TSR low group of 67 in size. 

Cancer specific survival on trial arm 2 (selective postoperative CRT) 

 

Figure 141 –KM survival curves for cancer specific survival on arm 2 using pathologist and machine 

generated TSRs 

Left: KM survival curves for pathologist-generated ratios, thresholded by modified ROC cut-off (0.47). 

Log-rank test had a significance value of 0.02 comparing the TSR High group (n = 24) to TSR Low group 

(n = 102), with a Hazard Ratio of 7.81 (confidence intervals 1.06 – 57.36).  

 

Right: KM survival curves for algorithm-generated ratios, thresholded by modified ROC cut-off (0.47). 

Log-rank test had a significance value of 0.04 comparing the TSR High group (n = 20) to TSR Low group 

(n =106), with a Hazard Ratio of 6.12 (confidence intervals 0.83 – 44.93).  

Note that modified ROC curves used for generating cut-offs can be found in Appendix F. 

The curves show that algorithm-generated TSRs using a dynamic cut-off creates a significant 

stratification of patient groupings that predicts cancer-specific survival for patients with selective 

postoperative CRT. However, using the same methodology for pathologist-generated ratios creates a 

more significant stratification (p = 0.02 compared to 0.04). 

The log-rank test of the groups, split using pathologist-generated ratios, rejects the null 

hypothesis that the two survival distributions are not significantly different (p = 0.02). TSR high 

and low groups numbered 24 and 102 respectively, with the TSR low group yielding a Hazard 

Ratio (HR) of 7.81 (C.I. = 1.06 – 57.36). The distribution of the groups using algorithm-

generated ratios accepts the log-rank test null hypothesis, with a larger significance value than 

pathologist assessment (p = 0.04). HR for the TSR low group was 6.12 (C.I. = 0.83 – 44.93), 

with a TSR high group of 20 and TSR low group of 106 in size. 

 

P = 0.02   HR = 7.81 (C.I. 1.06 –  57.36) P = 0.04   HR = 6.12 (C.I. 0.83 – 44.93) 
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Overall survival on trial arm 1 (preoperative SCRT) 

 

Figure 142 - KM survival curves for overall survival on arm 1 using pathologist and machine generated 

TSRs 

Left: KM survival curves for pathologist-generated ratios, thresholded by modified ROC cut-off (0.20). 

Log-rank test had a significance value of 0.22 comparing the TSR High group (n = 84) to TSR Low group 

(n = 58), with a Hazard Ratio of 1.39 (confidence intervals 0.82 – 2.35). 

 

Right: KM survival curves for algorithm-generated ratios, thresholded by modified ROC cut-off (0.32). 

Log-rank test had a significance value of 0.01 comparing the TSR High group (n = 43) to TSR Low group 

(n = 99), with a Hazard Ratio of 2.44 (confidence intervals 1.19 – 4.97).  

Note that modified ROC curves used for generating cut-offs can be found in Appendix F. 

The curves show that algorithm-generated TSRs using a dynamic cut-off creates a significant 

stratification of patient groupings that predicts overall survival for patients with preoperative SCRT, 

whereas using the same methodology for pathologist-generated ratios does not. 

The log-rank test of the groups, split using pathologist-generated ratios, accepts the null 

hypothesis that the two survival distributions are not significantly different (p = 0.22). TSR high 

and low groups numbered 84 and 58 respectively, with the TSR low group yielding a HR of 

1.39 (C.I. = 0.82 – 2.35). The distribution of the groups using algorithm-generated ratios rejects 

the log-rank test null hypothesis, with a smaller significance value (p = 0.01) than algorithm 

generated TSRs for cancer specific survival. The Hazard Ratio for the TSR low group was 2.44 

(C.I. = 1.19 – 4.97), with a TSR high group of 43 and TSR low group of 99 in size. 

Pathologist analysis is outperformed by the automated solution on trial arm 1 patients, which 

may be due to algorithm assessment being more consistent, especially across more difficult 

cases where tissue has been affected by radiation therapy. However, the group stratification for 

both methods yields different proportions of TSR high and low group sizes, due to the cut-off 

levels being identified at 0.20 for pathologist ratios and 0.32 for algorithm ratios. 

P = 0.22   HR = 1.39 (C.I. 0.82 – 2.35) P = 0.01   HR = 2.44 (C.I. 1.19 – 4.97) 
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Overall survival on trial arm 2 (selective postoperative CRT) 

 

Figure 143 - KM survival curves for overall survival on 2 using pathologist and machine generated TSRs 

Left: KM survival curves for pathologist-generated ratios, thresholded by modified ROC cut-off (0.47). 

Log-rank test had a significance value of < 0.01 comparing the TSR High group (n = 27) to TSR Low 

group (n = 144), with a Hazard Ratio of 4.13 (confidence intervals 1.51 – 11.33). 

 

Right: KM survival curves for algorithm-generated ratios, thresholded by modified ROC cut-off (0.43). 

Log-rank test had a significance value of 0.04 comparing the TSR High group (n = 43) to TSR Low group 

(n = 128), with a Hazard Ratio of 1.83 (confidence intervals 1.01 – 3.33).  

Note that modified ROC curves used for generating cut-offs can be found in Appendix F. 

The curves show that algorithm-generated TSRs using a dynamic cut-off creates a significant 

stratification of patient groupings that predicts overall survival for patients with selective postoperative 

CRT. However, using the same methodology for pathologist-generated ratios creates a more significant 

stratification (p < 0.01 compared to 0.04). 

The log-rank test of the groups, split using pathologist-generated ratios, rejects the null 

hypothesis that the two survival distributions are not significantly different (p < 0.01). TSR high 

and low groups numbered 27 and 144 respectively, with the TSR low group yielding a HR of 

4.13 (C.I. = 1.51 – 11.33). The distribution of the groups using algorithm-generated ratios also 

rejects the log-rank test null hypothesis, with a significance value of 0.04. The HR for the TSR 

low group was 1.83 (C.I. = 1.01 – 3.33), with a TSR high group of 43 and TSR low group of 

128 in size.  

Algorithm-generated TSR shows a statistically significant stratification of patient groups on trial 

arm 2, yet underperforms compared to human analysis. This may be due the cut-off level 

identified, which has created a slightly more balanced set of TSR high and TSR low cases (but 

is still imbalanced). Using a static threshold of 0.74 for both human and machine results may 

show improved algorithm performance.  

 

P < 0.01   HR = 4.13 (C.I. 1.51 – 11.33) P = 0.04   HR = 1.83 (C.I. 1.01 – 3.33) 
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Using the same methodology as 7.4.3.2, progression was analysed instead of survival, creating 

modified ROC curves to identify appropriate group cut-offs and inverse KM plots (Figure 144 

for arm 1 and Figure 145 for arm 2).  

Cancer progression on trial arm 1 (preoperative SCRT) 

 

Figure 144- Progression curves for arm 1 using pathologist and machine generated TSRs 

Left: Pathologist-generated ratios thresholded by the modified-ROC modified ROC cut-off (0.42). Los-

rank test had a significance value of 0.14 comparing the TSR High group (n = 136) to TSR Low group (n 

= 6), with a Hazard Ratio of 4.46 (C.I. = 0.52 – 38.28). 

 

Right: Algorithm-generated ratios thresholded by the modified-ROC modified ROC cut-off (0.44). Log-

rank test had a significance value of 0.17 comparing the TSR High group (n = 136) to TSR Low group (n 

= 6), with a Hazard Ratio of 4.07 (C.I. = 0.48 – 34.89). 

The graphs show that neither pathologist nor algorithm TSRs were able to generate preoperative SCRT 

patient groupings that predicted progression with significance. The lack of events in the dataset may 

contribute to this. 

The log-rank test of the groups split using pathologist-generated ratios accepts the null 

hypothesis that the two survival distributions are not significantly different (p = 0.14). Group 

sizes for high and low TSR were 136 and 6 respectively, and TSR low group had a HR of 4.46 

(C.I. = 0.52 – 38.28). The distribution of the groups using algorithm-generated ratios is similar, 

with a significance value that also accepts the null hypothesis that the two curves are not 

significantly different (p = 0.17), equally sized TSR high and low groups, and a HR of 4.07 (C.I. 

= 0.48 – 34.89).  

Only six of the 142 cases in the dataset had cancers that progressed, and the algorithm and 

pathologist methods both identified different cut-offs which created a TSR low group of only 

six patients. Both methods contained the same single patient (out of the six in the dataset) that 

had progressed, hence the identical curve step size and time. The log-rank significance values 

P = 0.14   HR = 4.46 (C.I. 0.52 – 38.28) P = 0.17   HR = 4.07 (C.I. 0.48 – 34.89) 
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are different due to the differences in the other patients in the group (all of which were alive at 

their final follow-up, but were at different times), which can be seen by the length of the curves. 

Cancer progression on trial arm 2 (selective postoperative CRT) 

 

Figure 145 - Progression curves for arm 2 using pathologist and machine generated TSRs 

Left: Pathologist-generated ratios thresholded by the modified-ROC modified ROC cut-off (0.27). Log-

rank test had a significance value of 0.54 comparing the TSR High group (n = 38) to TSR Low group (n = 

133), with a Hazard Ratio of 1.40 (C.I. = 0.48 – 4.07). 

 

Right: Algorithm-generated ratios thresholded by the modified-ROC modified ROC cut-off (0.34). Log-

rank test had a significance value of 0.61 comparing the TSR High group (n = 89) to TSR Low group (n = 

82), with a Hazard Ratio of 1.23 (C.I. = 0.56 – 2.70). 

The graphs show that neither pathologist nor algorithm TSRs were able to generate selective 

postoperative CRT patient groupings that predicted progression with significance.  

The log-rank test of the groups split using pathologist-generated ratios accepts the null 

hypothesis that the two survival distributions are not significantly different (p = 0.54). Group 

sizes for high and low TSR were 38 and 133 respectively, and TSR low group had a HR of 1.40 

(C.I. = 0.48 – 4.07). The distribution of the groups using algorithm-generated ratios also accepts 

the null hypothesis, with a significance value of 0.61. Algorithm-stratified group sizes were 82 

for TSR high and 89 for TSR low, with a TSR low group HR of 1.23 (C.I. = 0.56 – 2.70). 

Trial arm 2 contains 25 cases that progressed, out of 171 in total (15%). The progression curves 

for trial arm 2 show less extreme step sizes due to the proportional increase in number of cases 

that progressed over trial arm 1.  

 

P = 0.54   HR = 1.40 (C.I. 0.48 – 4.07) P = 0.61   HR = 1.23 (C.I. 0.56 – 2.70) 
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7.4.3.3 Summary of survival results 

Table 27 presents the survival statistics for the different trial arms, methods and analysis types. 

The algorithm-generated TSRs outperform pathologist-generated TSRs on trial arm 1, but not 

trial arm 2. 

Arm Method Analysis type Cut-off 

n TSR 

high 

n TSR 

low 

Log-

rank P HR C.I. 

1 Linear Split Cancer specific 0.24 51 52 0.17 1.98 0.73 - 5.35 

1 Algorithm Cancer specific 0.32 36 67 0.04 4.15 0.95 – 18.14 

1 Pathologist 

 

Cancer specific 0.26 39 64 0.17 2.17 0.71 – 6.65 

1 Linear Split Overall  0.25 71 71 0.95 0.98 0.58 – 1.66 

1 Algorithm Overall  0.32 43 99 0.01 2.44 1.19 – 4.97 

1 Pathologist 

 

Overall  0.20 84 58 0.22 1.39 0.82 – 2.35 

1 Algorithm Progression 0.44 136 6 0.17 4.07 0.48 – 34.89 

1 Pathologist Progression 0.42 136 6 0.14 4.46 0.52 – 38.28 

2 Linear Split Cancer specific 0.35 63 63 0.44 0.76 0.37 – 1.56 

2 Algorithm Cancer specific 0.47 20 106 0.04 6.12 0.83 – 44.93 

2 Pathologist 

 

Cancer specific 0.47 24 102 0.02 7.81 1.06 – 57.36 

2 Linear Split Overall  0.35 135 136 0.77 0.93 0.59 – 1.47 

2 Algorithm Overall  0.43 27 144 0.04 1.83 1.01 – 3.33 

2 Pathologist 

 

Overall  0.47 43 128 < 0.01 4.13 1.51 – 11.33 

2 Algorithm Progression 0.34 82 89 0.61 1.23 0.56 – 2.70 

2 Pathologist Progression 0.27 38 133 0.54 1.40 0.48 – 4.07 

Table 27 – All statistics from survival analysis 

The table shows that algorithm-generated TSRs create statistically significant stratifications when 

predicting both cancer-specific and overall survival in both patients with preoperative SCRT, and 

selective postoperative CRT. The algorithm outperforms pathologist-generated TSRs on trial arm 1, but 

not trial arm 2. Neither methodology predicts progression with statistical significance, and applying a 

linear split to the data does not predict survival. Therefore, it can be concluded that algorithm-generated 

TSRs may be an appropriate substitute for human scoring. 

The table shows the results for pathologist and machine methods of analysis for cancer specific 

survival, overall survival and progression, for both trial arms. The columns display statistics for 

the cut-off value (to stratify the patient groups), the numbers of cases in the high and low TSR 
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groups, the log-rank test significance value, and the hazard ratios (HR) for the TSR low groups. 

All of these results can be viewed in their respective figures throughout 7.4.3. 

The modified ROC curve method for identifying appropriate TSR cut-off points shows that cut-

offs generated from algorithm TSRs are higher than those generated from pathologist TSRs on 

patients with preoperative radiotherapy. These cut-offs are lower than those reported in the 

literature due to the original study presenting findings from the selective postoperative CRT 

patients only (arm 2). Cut-offs generated using TSRs generated from patients with selective 

postoperative CRT are identical to previously published results. 

Algorithm-generated TSRs yield statistically significant differences between TSR high and low 

groups, when analysing patients with preoperative SCRT (log rank p = 0.04 for cancer-specific 

survival and p = 0.01 for overall survival). The HR confidence intervals for cancer-specific 

survival suggest that this significance is not replicated using a cox proportional hazards model 

(HR = 4.15, C.I. = 0.95 – 18.14), which may be due to the smaller number of cases compared to 

the overall survival dataset. In all cases for trial arm 1, the algorithm-generated-TSRs 

outperform pathologist-generated TSRs for survival prediction. 

For patients with selective postoperative CRT, the algorithm-generated TSRs also generate 

statistically significant differences between TSR high and low groups for cancer-specific and 

overall survival (p = 0.04 for both). As with arm 1, the confidence intervals for cancer-specific 

survival suggest there is not enough data to show significance when analysing hazard ratios (HR 

= 6.12, C.I. = 0.83 – 44.93). For arm 2, pathologist-generated TSRs outperform algorithm-

generated TSRs for survival prediction.  

Progression was not significantly predicted by either pathologist or algorithm generated TSRs 

on either of the trial arms. However, both distributions have almost similar appearances, log-

rank p-values and hazard ratios for patients with preoperative SCRT. For patients with selective 

postoperative CRT, there were also no significant differences between TSR high and low 

groups, showing log-rank significance values of 0.54 for pathologist-generated TSRs, and 0.61 

for algorithm-generated TSRs. 

 

7.4.4 Conclusions 

The survival curves in this chapter show that algorithm-generated TSRs predict both cancer and 

overall survival with statistically significant differences between high and low TSR groups, on 

patients with preoperative SCRT (p = 0.04 for cancer specific survival and p = 0.01 for overall 

survival). Stratification of patients with selective postoperative CRT also showed significant 
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differences for both cancer specific survival and overall survival (both p = 0.04). However, HR 

confidence intervals suggest that algorithm predictions for cancer survival require more data to 

support the log-rank test results.  

The algorithm outperforms manual analysis in terms of survival prediction for both cancer 

specific survival and overall survival on patients with preoperative SCRT, but not on patients 

with selective postoperative CRT.  

For both methods of analysis, on both trial arms, there were no significant results for 

progression analysis. 

Stratifying patients into two, three and five equal sized groups, when ordered by TSR did not 

predict survival for either trial arm. 

The original study that generated the pathologist TSRs used 3x3mm annotation boxes for 

sampling at the area where TCD was perceived to be highest. This data was not available in the 

RandomSpotDB repository, but had more consistent correlation to survival, and so obtaining 

this dataset would be useful to confirm the algorithm’s prognostic capabilities. 
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7.5 Discussion 

The development and evaluation of Algorithms A to I were performed entirely on a single CRC 

dataset (QUASAR), and conclusions were made that validation could be improved by exposing 

the algorithm to more sets of real-world data. The MRC CR07 trial was chosen out of the 

datasets from RandomSpotDB to validate the algorithm across other CRC clinical trials. One of 

the reasons for this was that the anonymised follow-up data for the trial was held locally in 

Leeds and so survival analyses could be calculated. The original available data presented in this 

work (from the QUASAR trial) contained 1,898 more patient cases, and so had the potential for 

much more robust survival analysis. However, it became apparent that it was infeasible to 

retrieve survival analyses from the centralised (and protected) data centre, in a timescale 

appropriate to the project.  

Due to the larger sample sizes used in the CR07 trial (300 spots compared to 50 per case), a 

similar number of labelled points existed in each data set (106,242 for QUASAR and 116,591 

for CR07). This meant that despite the lower number of patients for survival data, algorithm 

validation using per-patch agreement was comparable. The distribution of tissue classes in the 

CR07 dataset had a higher proportion of stroma than the QUASAR dataset. The original paper 

analysing these tumours reports that the cases had an overall poorer prognosis, which is 

consistent with the literature, and suggests patients with low TSRs (proportionally higher levels 

of intra-tumoural stroma, or a lower TCD) have poorer response to therapy.  

By analysing pathologist-algorithm agreement on a patch-by-patch basis, Algorithm J exhibits 

an 86% accuracy rate, which is 3% higher than on the QUASAR dataset, after manual 

optimisation using the QC process from 6.3, and 6% higher than the full dataset, without QC 

applied (Algorithm I). Application of the QC algorithm (modified for use on whole tumour 

annotations) reduced the size of the dataset of spot features reduced by 31%, from 116,591 to 

80,493, and showed no significant differences in accuracy over the original dataset, so was not 

used for further analysis. This is likely due to the dataset having less stain variation and overall 

better-quality slides (where quality is based on the criteria described in Chapter 6). The 

algorithm has a higher number of false negatives (predicted stroma when tumour) than false 

positives (by 2.53%), which is likely due to the balance of classes within the dataset, meaning 

that stroma is more highly represented. The higher number of false negatives on the CR07 set is 
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lower than the number of both false positives and negatives when performed on the QUASAR 

set. The distribution of TSR differences is also improved on the CR07 dataset, with a mean and 

median difference of 0, and a standard deviation of 0.09. It should be noted that the method for 

calculating TSR on the CR07 dataset was different to the QUASAR dataset (Method 2 and 

Method 1 respectively from Table 7), which meant that TSRs were lower (closer to 0 before 

calculating difference) in the CR07 dataset. Without further analysis of the dataset, it is unclear 

whether image quality or the expert-labelling is the leading contributing factor to the overall 

improvement in performance. 

With an improved algorithm generating results that correlated well with pathologist-generated 

TSRs, Algorithm J was predicted to generate equally well correlated survival statistics. The 

original West et al study used 3x3mm box annotations for sampling at the area of highest TCD, 

to show prognostic significance. Unfortunately, the largest set of sampling co-ordinates 

available for the CR07 dataset in the RandomSpotDB was on polygonal whole tumour regions 

of interest (313 unique cases compared to 76). This meant that the TSRs being analysed in this 

study were lower (closer to 0), which compressed the data (especially on patients with 

preoperative SCRT), meaning that the automatically generated cut-offs (for group stratification) 

were more sensitive to variation in the dataset than previous studies.  

A point perhaps not important to this research, but worthy of consideration is that by using 

whole annotations, the ratio of tumour to stroma may be indicative of cancers that are more 

advanced, and therefore more infiltrative, since they will likely have a higher proportion of 

stroma on the invasive front. This could mean that the TSR is a surrogate for cancer staging (see 

2.2), rather than being an independent prognostic marker. However, recent research has shown 

that there is no association between TSR and cancer stage [52].  

The method for automatic grouping of patients used modified ROC curves proposed in the 

original study. This method created a clear peak for selecting the appropriate cut-off point, and 

examples of curves can be found in Appendix F. The cut-offs generated created TSR high and 

low group sizes that were more balanced in patients with preoperative SCRT than patients with 

selective postoperative CRT. This may be due to the more consistent appearance of tissue that 

has gone through radiotherapy (containing less tumour overall), affecting TSR. It is beyond the 

scope of this work (and the author’s knowledge) to pathologically interpret these results. 

The proportion of group sizes presented in the original study is also imbalanced, having a higher 

number of TSR high (n = 110) to TSR low (n = 35), with a cut-off of 0.47. This cut-off was 

replicated in the results for selective postoperative CRT, but not preoperative SCRT, which was 

lower for all methods. This shows consistency between studies (despite differences in sampling 
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method), where results presented in the original study are for postoperative CRT only. It is 

expected that cut-off values would be lower for patients in trial arm 1, where preoperative 

SCRT has reduced the amount of tumour in the tissue. 

The method for generating cut-offs based on the modified ROC curve (plotting sensitivity and 

specificity of survival prediction) effectively means that the methodology engineers the most 

appropriate threshold for the stratification task. This is not appropriate when trying to develop a 

tool for generating a prognostic marker for use with any CRC dataset. Most of the literature 

reports using a cut-off of 0.5. This is due to the visual inspection task being estimated into two, 

four, five or ten bins, and so fits with the methodology. Using more precise SRS methods, the 

cut-off was consistently reported at 0.47. This value was also reported by the algorithm on trial 

arm 2 patients (patients with selective postoperative CRT), but the value was lower on patients 

with preoperative SCRT. This finding is supported by the distributions of TSR reported in the 

histograms of Figure 137, which show that TSR on patients that have had their cancer exposed 

to radiation therapy is lower than those who have not.  

Significance testing on TSR high and low groups in arm 1 showed that pathologist-generated 

TSRs were not prognostic on patients with preoperative SCRT, with p values of 0.17 for cancer 

specific survival and 0.22 for overall survival. Algorithm-generated TSRs out-performed 

pathologist assessment, with significance values of 0.04 for cancer specific survival, and 0.01 

for overall survival. HR confidence intervals contradicted the significance values for the cancer-

specific survival analysis, which may be due to the smaller group sizes and small number of 

events in the TSR high group. The overall lower TSRs of the patients with preoperative SCRT 

means that the distribution of TSRs was more compressed, and therefore more sensitive to 

noise. It is therefore predicted that the superior algorithm performance for trial arm 1 is perhaps 

due (at least in part) to consistency and reproducibility of analysis. It is concluded that the 

algorithm performance is appropriate for survival prediction on patients that have undergone 

preoperative SCRT. 

Applying significance testing to TSR high and low groups for arm 2 showed that pathologist-

generated TSRs predict survival with log-rank significance values of 0.02 for cancer specific 

survival and <0.01 for overall survival. Algorithm-generated TSRs did not perform as well as 

the pathologist-generated TSRs, with significance values of 0.04 for both cancer specific 

survival and overall survival. It is concluded that algorithm performance may be appropriate for 

survival prediction of patients that have selective postoperative CRT, but investigations into 

causes of the confidence intervals for cancer specific survival would need to be undertaken.  
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Stratification of patients for cancer progression was not significant for either methodology, on 

either trial arm. All results exhibited non-significant log-rank test values, with pathologist and 

algorithm-generated ratios yielding 0.14 and 0.17 respectively on trial arm 1, and 0.54 and 0.61 

respectively for arm 2. For arm 1, the distribution of groups was one cause of the poor 

performance (TSR low = 6, TSR high = 136), with only 4% of the available cases presenting 

cancers that had progressed (n = 6). Both pathologist and algorithm methodologies identified 

the same single patient in the TSR low group, which accounted for 17% of the cases in that 

group, and so the progression curves appear similar. A dataset containing a proportionally 

higher number of cases with progression may have yielded better significance results for 

stratification of the data. However, progression analysis in arm 2 had a proportionally higher 

number of patients with cancers that had progressed (25 out of 171, or 15%), and also did not 

yield statistically significant results. 

In summary: 

• Algorithm J yields statistically significant results when analysing differences between 

TSR high and low groups on all survival data, using the log-rank test. 

• For patients with preoperative SCRT, in both presented methods of survival analysis, 

Algorithm J exhibits results that outperform manual analysis. 

• For patients with postoperative CRT, in both presented methods of survival analysis, 

pathologist assessment exhibits results that outperform automated analysis. 

• When analysing progression, both the algorithm and pathologist show equally poor 

stratification between groups, for both trial arms. 

To conclude, the Algorithm J shows promising results for automatic prediction of survival that 

outperforms human analysis on patients with preoperative SCRT, but not postoperative CRT. 

The dataset that was analysed in this work was not optimal, for the reasons previously 

discussed, and so application of the algorithm to areas of highest TCD may improve results 

further.  
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Chapter 8 – Discussion 

8.1 Thesis overview 

The motivation for the work presented in this thesis is discussed in Chapter 1. The treatment of 

CRC patients relies on pathological examination of the disease to identify visual features that 

predict growth and spread, and response to chemoradiotherapy. These prognostic features are 

identified manually, and are subject to inter and intra-scorer variability. This variability stems 

from the subjectivity in qualitatively (or semi-qualitatively) interpreting the images, and the 

time consuming and laborious methodology of visually inspecting cancer cells.  

The work in this thesis presents a systematic approach to developing a solution to address this 

problem for one such prognostic indicator, the tumour:stroma ratio (TSR). The steps taken are 

presented sequentially through the chapters, in order of the work carried out. These specifically 

involve the acquisition and assessment of a large dataset of expert-classified images of CRC and 

multiple iterations of algorithm development, in order to automate the process of generating 

TSRs for patient cases. The algorithm improvements are made using conclusions from observer 

studies, conducted on a platform developed as part of this work, and further work is undertaken 

to identify issues of image quality that affect automated solutions. The developed algorithm is 

then applied to a clinical trial dataset with survival data, meaning that the algorithm is validated 

against two separate pathologist-scored, clinical trial datasets, as well as being able to test its 

suitability for generating independent prognostic markers against patient survival. 
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8.2 Achievements 

The work conducted in this thesis delivers the following key achievements: 

1. A web-based quantitative Systematic Random Sampling (SRS) tool used for clinical 

research (the RandomSpot system), and a ground truth repository of pathological 

images containing over 2.4 million expert-classified labels (RandomSpotDB). 

2. A web-based experiment platform used for rapid acquisition of ground truth data 

(Prospector), and psychophysics experiments that lead to the identification of criteria 

for maximising manual scoring agreement. 

3. A novel hybrid unsupervised segmentation algorithm that maximises CRC tissue 

segmentation accuracy and minimises computational cost. 

4. A novel, iteratively designed Machine Learning (ML) algorithm that automatically 

calculates TSR with 86% accuracy, compared to manual scoring, using contextual 

information from the local surrounding tissue to improve classifications and global stain 

characteristics to compensate for variation in the dataset,  

5. An automatic stain-based Quality Control (QC) algorithm that labels slides with 89% 

accuracy, compared to manual scoring. 

6. Validation of the TSR algorithm on two clinical trial datasets, and human survival data, 

showing that the algorithm is capable of predicting survival on suboptimal datasets. 

These achievements are summarised in the subsequent sections. 

8.2.1 RandomSpot and RandomSpotDB 

RandomSpot uses SRS to generate semi-quantitative assessments of digital slide tissue, where 

traditionally qualitative or semi-qualitative methods are used (see section 2.2). The system 

generates digital slide annotations which are used to generate statistical analyses of the 

proportions of tissue type within their specified ROI. This data is also reusable for image 

analysis development. 

RandomSpot has been used in multiple publications to generate precise numeric quantitation of 

tissue types within a cancer, and has been used to prove the prognostic capability of TSR in 

CRC, breast, endometrial and upper GI cancers. RandomSpot was developed out of a need to 

quantitate WSIs more quickly, and no other SRS systems were publicly available for use with 

digital slides at the time of development. This methodology improves upon the visual estimation 

used in other publications by providing a specific continuous variable with comparatively low 

inter scorer variability (see section 2.2.4 for a review on TSR).  
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The data from some of these studies was acquired and stored in RandomSpotDB, which 

currently contains over 2.4 million data points with expert-classified labels. As discussed in 

Chapter 7, some of the projects stored in RandomSpotDB are from clinical trials which have 

survival data associated with them, allowing algorithms to be validated against outcomes rather 

than the maximisation of agreement with subjective pathologist assessments. 

The ground truth is stored as single x-y coordinates with an expert-classified label for each 

point. The incorporation of this data into a ML solution posed an interesting problem, in that the 

single point annotations contained no tissue boundaries to delineate between neighbouring 

tissue classes. This meant that without some form of further segmentation, surrounding visual 

information that was not considered relevant to the classification label would be included in 

analysis of the data points. 

The RandomSpotDB dataset is a useful tool for developing and validating image analysis 

solutions, and has the potential to be a valuable collaborative research dataset to open to the 

digital pathology community. This will be explored in future work, and may be potentially 

released as a community exercise similar to the GlaS challenge [230], where researchers are 

invited to try their algorithms on the data. 

 

8.2.2 Prospector and psychophysics experiments 

Pathologist time is expensive, and difficult to obtain for research projects. The Prospector 

system was specifically designed to minimise the amount of time and cognitive effort required, 

to obtain adequate numbers of ground truth data, by facilitating capture of high throughput of 

ground truth information. 

Prospector was used to present pathologists with pre-scored images of three different sizes, in 

order to identify an appropriate minimum size for maintaining levels of agreement. It was found 

that reducing the pathologists field of view when scoring images reduces the agreement between 

them, and 256x256 pixel images (at 20x objective or 0.5 microns per pixel) was identified as an 

appropriate minimum size. Figure 146 illustrates how this finding compares to image sizes used 

in previous research. 
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Figure 146 – Boxplot distributions of image size used in previous publications compared to 

psychophysics experiment findings 

The plot breaks down the results previously presented in Figure 75, so that image patch size data is 

represented separately to ROI data. The horizontal line is placed at 256, which represents the optimised 

size found in research.. 

Image size is taken from the results presented in Table 3, and split by stain type. Note that some studies 

reported using non-square images for analysis and so the square root of total area size is taken to 

improve the comparability of results. 

The boxplot data is taken from Table 3 and presents a broken down view of Figure 75 (from 

section 4.5) into all image sizes per stain, and image sizes for algorithms that use patch-based 

analysis. The patch size found by the research presented in Chapter 4 is higher than the size of 

published H&E patches (mean = 178x178 pixels, median = 150x150 pixels), which may be due 

to the contextual information not being taken into account in other studies. It should be noted 

that there were no publications that justified the reason for the patch size used, or that presented 

analyses on multiple patch sizes (unless using them for multi-scale analysis). 

It was concluded that the image size impacted the pathologist’s ability to score images by 

including or excluding contextual information that allows them to understand what the image 

shows. The contextual information surrounding the centre of the patch was likely to contain 

useful structural cues that enabled the observer to orientate their viewpoint and assess the centre 

of the image with higher levels of confidence (shown by the high rate of rejection in smaller 

image sizes). However, this extra information was averaged out in the feature vectors of the 

initial algorithms, instead of being used as separate contextual features, creating more overlap in 

the feature space. This drove the research in Chapter 5. 
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A pilot study also found that weak staining levels were consistently rejected for scoring by a 

pathologist, where one pathologist viewed 250 images, and accepted 86% of them. This resulted 

in an imbalanced dataset of pathologist classifications, and attempts at making a trained RF 

classifier to automatically QC images did not adequately detect slides that would be rejected 

based on stain. These initial findings and limitations drove the research in Chapter 6. 

The prospector system itself was designed specifically to minimise choice and increase the 

speed at which answers are recorded. It was observed that digital pathology systems with 

complex user interfaces are rarely used - and if they are, they are rarely used effectively. By 

designing the system to be used with touch enabled devices, more possibilities are opened up in 

terms of collaborative or ad hoc data collection projects. One limitation with the system is that it 

uses images hosted on external URLs. This was a deliberate design choice, so that the image 

hosting and subsequent data transfer rates are solely the responsibility of the user (experiment 

designer). By restricting the participant to view static fields of view, the experiment can be 

effectively restricted to conditions set by the designer, but not being able to navigate embedded 

virtual slides is a limitation which affects the usability of the system, and limits the 

experimental design choices. 

Currently prospector is used internationally by multiple research institutions for rapid 

acquisition of ground truth data. The system also has the capacity to be used in citizen science 

projects to collaboratively generate big data, such as Candido et al’s work [266] enlisting over 

100,000 participants to look for oestrogen receptors in TMA cores. 

 

8.2.3 Unsupervised segmentation algorithm 

The unsupervised segmentation algorithm was developed out of a need to separate areas of 

tissue within an image patch, that only contained one tissue class. The algorithm combined 

superpixel clustering with normalised cuts to generate a smaller affinity matrix and reduce 

processing time. The hybrid segmentation method reported a segmentation accuracy of 0.93, 

which was the second highest accuracy rating of the nine algorithms tested. The normalised cuts 

algorithm (using per-pixel pairwise comparisons) yielded 0.97 segmentation accuracy, but 

increased in computational time by 698%. The hybrid clustering algorithm was selected for 

incorporation into the ML algorithm based on the trade-off between speed and accuracy.  

One thing that is not measured in this work is the importance of segmentation accuracy. One 

logical assumption of the work is that accuracy should be maximised, but a minimum 

acceptable level was not established. This is a common theme when discussing comparisons to 
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ground truth data, especially when inter-scorer variability is high. Pathologist agreement will be 

discussed in more detail in the next section, but for the segmentation task, the effect of the 4% 

accuracy difference between normalised cuts and the hybrid solution was not investigated. From 

working closely with pathologists, and inspecting ROI annotation data, assessment of digital 

pathology slides is rarely precise to the levels of segmentation accuracy exhibited by these 

algorithms. This may be a noteworthy factor when trying to attain perfect human-algorithm 

agreement. 

The comparison plots between the hybrid clustering technique and other segmentation methods 

showed that normalised cuts performed significantly better than all other algorithms, and 

watershed segmentation performed significantly worse. Had computation time not been a factor 

in algorithm development, then the normalised cuts method may have improved the ML 

algorithm performance, however, with a 698% increase in computing time, the feature vectors 

would have taken approximately 24.5 days to complete on the QUASAR dataset. 

When processing time is considered in digital pathology research, it is often placed below 

accuracy in terms of priority. This is logical given that the field is focused on increasing levels 

of agreement to ultimately maximise the efficacy patient treatments. Also, the research setting 

that such algorithms are typically developed in does not place time-critical demands upon 

processing. A common justification for accepting slower algorithm times is that processing can 

be computed in batches prior to pathological inspection, which is a reasonable approach to 

implementing such algorithms. However, with a view to implementing these algorithms into 

routine medical practice, consideration must be taken that the routine volumes of slides 

generated will greatly exceed the number of images that researchers report training and testing 

their algorithms on.  

  

8.2.4 Automated TSR algorithm 

The base methodology of the automated TSR algorithm used an optimised RF classifier to learn 

features of image patches that were generated by the RandomSpot system and stored in 

RandomSpotDB. This methodology was modified based on conclusions from processing results 

and psychophysics experiments in order to improve the agreement statistics between pathologist 

ground truth and algorithm-generated results. The algorithm modifications are described in 

Table 14, and were implemented sequentially to assess the effect of each on performance. 

Figure 147 reiterates the accuracy levels reported by other publications, presented in Table 3. 

The red line on the plot indicates the 0.86 accuracy level reported by Algorithm K, which falls 
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slightly above the average accuracy level reported on H&E images (0.85) and below the average 

accuracy level reported on IHC images (0.87). 

 

Figure 147 – Published algorithm-pathologist agreement results compared to Algorithm J 

The boxplot distributions are taken from Table 3, and grouped by stain type. The red line represents the 

86% accuracy level attained by the algorithm development in this thesis. The plot shows that the 

developed algorithm attains similar accuracy levels to published solutions.  

The accuracy of the developed solution therefore is comparable to the current state of the art 

solutions. It is predicted that the increased application of deep learning in this area is likely to 

increase the average reported accuracy of digital pathology image analysis, and in the near 

future, the distribution of results presented in Figure 147 is likely to change. However, given the 

results in the GlaS challenge (mean accuracy = 0.82 for pre-released image dataset and 0.63 for 

the unseen dataset), it seems that deep learning solutions still require expert knowledge to 

appropriately design and tune the network architectures to optimise results. It should also be 

noted that the training, testing and validation of the algorithm developed in this work used over 

200,000 expert-labelled patch images, and the highest number in the literature reported 5,000 

(generated from 8 slides containing 625 patches). Arguably, this amount of data facilitated the 

accuracy of the algorithm, in that there were many more images available for algorithm training. 

However, this meant that the RF classifier was exposed to much more variability and 

suboptimal quality images, which equates to more overlap of classes in the feature space. It 

would be interesting to see how the published solutions perform on the same dataset. 

Kather et al [203] presented a research methodology similar to that described in this work. The 

incorporation of multi-class CRC patches was reported as novel, despite being published two 

years after the work from Chapters 3 and 4 [259]. The paper reports using 5000 multi-class 



Automated analysis of colorectal cancer  Chapter 8 

  

 280 

patches, 150x150 pixels in size, using 8 hand-annotated WSIs to create 625 patches for each 

slide. The authors reported 98.6% accuracy for two-class (tumour and stroma patches only) 

agreement, and 87.4% accuracy for eight-class agreement. The two-class classification method 

discarded all other tissue types (as opposed to grouped them as sub-classes), so that the dataset 

was reduced to 1250 patch images for that part of the analysis. The methodology examined 

several classifiers using multiple textural features on greyscale image patches (converted from 

RGB). No segmentation was performed, and no contextual analysis was applied, making the 

algorithm more comparable to Algorithm A from this research. Even with such a small dataset 

(8 slides), the authors anecdotally noted a large amount of stain variation, which was neither 

quantified nor illustrated with examples.  

The eight classes used differed from the ground truth classes presented in this thesis. They were: 

tumour epithelium; simple stroma; complex stroma; immune cells; debris or mucus; mucosal 

glands; adipose tissue; background. Through experience working with CRC slides, it is 

predicted that separating stroma into simple and complex may have increased algorithm 

accuracy, if it were included in the ground truth data. 

The accuracy reported by this Kather et al are significantly higher than the algorithms presented 

in this thesis. Despite the lack of images, justification of patch size and contextual analysis, the 

methodology uses a rigorous approach to evaluating classifiers and texture features, and reports 

impressive agreement statistics. Investigations into alternate texture features and image patch 

classes will be undertaken in future work. 

The incremental development of the automated SRS algorithm presented in this thesis follows a 

traditional computer vision approach to an image analysis problem, in that images are analysed 

for hand-crafted features that are believed to best represent the differences in the classes, before 

training a classifier and testing unseen images with ground truth labels. This approach is being 

overtaken by deep learning practices, which allow the algorithm to automatically generate and 

select features that minimise prediction error. The work in Chapters 4 and 5 specifically aim to 

better model the methods of human analysis by incorporating contextual information into the 

feature vectors, whereas deep learning solutions may model completely different behaviour that 

maximises agreement levels in an unrelated way. This may not be important, as it has been 

observed that deep learning is often seen as a black box, and that as long as the results are 

improved over traditional methods, the technicalities of the methodology does not matter. This 

attitude is more useful when considering ML methods as tools, and the application of the most 

appropriate tool for the task is more important than the methods themselves. This is especially 

important when considering the implementation of automated solutions into routine clinical 

practice. 
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Reiterating the point made regarding accuracy in 8.2.3, the development of automated 

pathological image analysis solutions typically focuses on 100% agreement as the ultimate goal. 

Given that the mean inter-observer agreement observed in Chapter 4 is 0.85 on optimised 

images (0.89 when excluding the rejected images), trying to attain 100% agreement should not 

be the target. Pathological assessment is applied to tissue images so that predictions can be 

made about a specific disease, and how best to treat it. By comparing algorithm performance to 

clinical outcomes, a better benchmark is set for testing the practical use of the algorithm. It is 

this conclusion that drives the research in Chapter 7. 

The implementation of the developed automated SRS system into routine pathological practice 

requires that the analysis of the images is robust, but also that the misclassified images are 

easier to identify and correct than discarding the results and doing the analysis manually. This 

requires extensive research and development of user interface design, grounded in cognitive 

science and heuristics. This is beyond the scope of this research, but it is important to consider 

that automated solutions that do not work with 100% accuracy will need human review and 

intervention. From this perspective, making the results of an automated solution easy to review 

and adjust is much more important than researching into new methods to increase algorithm 

accuracy by a few percent. 

 

8.2.5 Automated QC algorithm 

The automated QC algorithm was developed using a dataset of hand-labelled images which 

were assessed for visual issues, which had been pre-identified as scoring categories after 

analysing cases where pathologist-algorithm agreement was lowest. The study was limited to 

one participant, due to the number of slides required to analyse (2,211), and despite built-in 

breaks during the experiment, results may well have been affected by fatigue. The participant 

was only required to assign one category to each slide, and so slides that exhibited more than 

one issue only had the most prominent issue recorded. In most cases that had more than one 

visual artefact, the most prominent issue was weak staining. This contributed to the imbalance 

of QC class examples in the training data (701 slides in the largest subset, and 4 in the smallest), 

and may have contributed to the subsequent algorithms poor performance on artefacts other than 

staining. Because of this, the QC algorithm was reduced in functionality to identify poor 

staining only. Further development of this algorithm may benefit from object detection, 

especially for bubbles and debris, where general pixel-level features overlap with other classes 

in the feature space. 
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Application of the (stain) QC algorithm to the QUASAR dataset flagged suboptimal slides with 

89% accuracy, and application of the ML algorithm to the optimised subset of slides increased 

accuracy by 3%. However, the approved subset of slides amounted to 32% of the total number 

of slides, and so despite the overall low quality of the dataset, this QC process may not be 

feasible in a routine setting.  

Image quality is clearly an important factor for image analysis algorithms, and results indicate 

that pre-screening slides based on some quality metric would improve analysis overall. 

However, automation of image quality in digital pathology is not widely researched, and 

publications are few. Ameisen et al [236] implement a quality assessment algorithm with a 

focus on blur detection (pun intended), but do not report any levels of accuracy or agreement to 

some form of quality-based ground truth. Avanaki et al [267] simulate blur on a set of H&E 

stained breast tissue images (scanned at Leeds where manual QC is applied by the scanner 

operator to flag and rescan slides with blur), and use Mittal et al’s [268] natural image quality 

evaluator (NIQE) metric to compare perception of quality as assessed by a pathologist, using a 

scale of one to ten. Results showed that the NIQE score was successful at identifying images 

where pathologists identified quality as low. Robust blur detection (of out of focus areas) would 

be a very useful tool for slide scanner operators or to build into slide scanning software to 

minimise the effort involved in the manual QC of scanned slides. The work on image quality in 

this thesis was focused on levels of stain, since it accounted for 43% of the whole QUASAR 

dataset and 63% of all QC issues identified. However, assessing image quality using 

perspectives from other fields of research would benefit future work in this area. 

The use of automated QC in a practical routine environment requires thorough consideration in 

terms of where to implement the point of use, such as on the scanner side, or prior to image 

viewing, or prior to image analysis. The implications of discarding slides based on a quality 

metric mean that slides may need to be re-scanned, re-stained or re-cut, and all of these options 

involve extra workload, which may have been suboptimal, yet acceptable to human visual 

inspection. This suggests that since image quality affects image analysis algorithms the most, 

the quality issues should be handled at that point of use. Rather than use the QC algorithm as a 

tool to simply discard slides and data based on visual appearance, application of such a QC 

metric may be more suited to discarding training images if they do not meet the quality criteria, 

or flagging up slides which are likely to affect image analysis due to their quality issues. This 

would allow users of automated solutions to review analyses of cases that do not meet quality 

criteria with more scrutiny, knowing that suboptimal images would likely result in suboptimal 

analyses. 
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8.2.6 Validation of the algorithm on survival data 

Algorithm H was applied to the CR07 dataset and showed significant improvement over all 

previous algorithms, yielding 86% accuracy, and a kappa value of 0.71 on a set of cases that had 

not been through any QC process. The automatic (stain) QC algorithm was applied to the 

dataset and rejected 23% of the cases. Since the CR07 dataset was not manually analysed for 

QC issues, there was no ground truth to evaluate the accuracy of the QC process. Removing the 

QC-rejected slides increased the accuracy of the algorithm by less than 1%, (without statistical 

significance).  

The improved performance of the algorithm on the CR07 dataset indicated that the dataset was 

of better quality than the QUASR one. In general, the cases appeared of higher and more 

consistent quality staining, with more visual contrast between tissue components. However, 

there may be other factors contributing to the accuracy gains, such as more accurate ground 

truth labels, or more appropriate sampling methods. The sampling areas in the new dataset used 

freehand ROIs of the whole tumour, compared to the 3x3mm box annotations of the QUASAR 

dataset. The box annotations were placed over the area with the highest TCD, which means 

tumour epithelium is denser, and more likely to be squashed together, distorting the appearance 

of the tissue. This is an observation that may not be pathologically accurate, however, it is 

important to note that there may be multiple contributing factors to the increase in accuracy on 

the CR07 dataset besides image quality. 

Using the pre-published method for stratifying patient groups for survival analysis, the cut-off 

values generated by the human and machine TSRs were lower than other published studies for 

patients with preoperative SCRT, but were the same when analysing patients with selective 

postoperative CRT. This is because previously published studies did not report survival (or 

subsequent cut-offs) on patients with preoperative SCRT, because their findings were not 

prognostic. The algorithm-generated TSRs were prognostic on patients with preoperative 

SCRT. This may be due to the tissue being broken up by radiation therapy, and the subsequent 

mix of tumour epithelium and necrotic tissue is very difficult to manually analyse. The 

pathological interpretation of the performance difference is beyond the scope of this work. 

The algorithm-generated survival curves showed that the algorithm outperformed manual 

analysis for both caner and overall survival when analysing patients with preoperative SCRT, 

generating statistically significant differences between patient groups (using the log-rank test), 

where the manual analysis did not. For patients with selective postoperative CRT, algorithm 

performance exhibited higher significance values than groups stratified by pathologist-generated 

TSRs, but were still statistically different using the log-rank test. However, for cancer survival, 
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the smaller and more imbalanced group sizes may have contributed to the larger ranging 

confidence intervals when analysing hazard ratios (stratification of groups was still statistically 

significant), which may require further investigation in future work.  

The issue of generating cut-off values to stratify patient groups based on the modified ROC 

curve is contentious. Previous publications used two, four, five or ten categories to visually 

estimate TSR, and so creating a cut-off at 50% was convenient for the methodology used. The 

statistical method for generating the cut-off yielded a consistent cut-off of 47% across multiple 

publications. This number was also replicated by the algorithm-generated TSRs for patients that 

did not have preoperative SCRT. The contentious issue surrounds generating cut-offs optimised 

for a specific set of cases. The cut-offs for trial arm 1 patients were different for both human and 

machine-generated TSRs. This is unsurprising, given that patients that have had radiation 

therapy will have less tumour, and so their TSRs will be lower, but the characteristics of their 

cancer may not have changed. Again, it is beyond the scope of this work to pathologically 

interpret these results, but over-engineering the cut-off to the dataset should be avoided where 

possible. Using a fixed cut-off of 0.47 on the trail arm 1 cases would make the resulting 

stratification not significant, which is why analysis on these cases is unreported in the literature. 

Analysis of survival data is very difficult. The data is of significant clinical value and is often 

protected by statisticians that work solely with the clinical trials units. This prevents researchers 

from over-engineering solutions to the data. Due to the difficulty of this task, very few 

publications use survival data to validate their algorithms, and the ones that do are more focused 

on the clinical methods, and use commercial algorithms as tools to generate the statistics to try 

to identify new prognostic markers, rather than focus on algorithm validation. 

Using an automated solution to generate TSRs and predict survival carries very serious 

implications. In order to implement such a system into routine clinical practice, it must be 

considered that if results are accepted without some form of review, the algorithm may 

incorrectly score a patient’s cancer, resulting in an incorrect prediction of response to therapy, 

and therefore advise an inappropriate treatment. Algorithms need to be approved by regulatory 

bodies such as the US Food and Drug Administration (FDA) or the European Commission’s 

European Conformity (CE) mark to be used in clinical settings, which require proof of extensive 

validation to be accepted. Research into automated analysis of tissue typically focuses on very 

specific problems, such as the TSR in CRC, and often these algorithms are too specific to be of 

widespread use. Incorporating multiple image analysis tools into a software suite or an 

automated pathology workflow would be much more likely to be of widespread clinical value, 

and therefore would have more chance of being approved for primary diagnosis. 
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8.3 Conclusions and future work 

The work presented in this thesis uses two clinical datasets to address the automatic generation 

of one prognostic marker in CRC. When considering the variation between observers, the 

results exhibited by the algorithm indicate that the produced solution is an adequate surrogate 

for manual scoring.  

The manual scoring experiments presented in this thesis demonstrate pathologist inter-scorer 

variability, and highlight the subjective and laborious nature of scoring large histopathological 

images. With that consideration in mind, it is perhaps not the maximisation of (ultimately 

flawed) pathologist agreement that the algorithms should look to achieve, rather the consistent 

and accurate prediction of prognostic features. However, the algorithm development process is 

made more robust when validated against a reasonable benchmark, before validating it on 

patient survival data. 

Survival analysis is performed on a dataset generated by a sampling method that is less well 

correlated with survival, and still shows significance when stratifying patient groups into high 

and low TSR groups. Both human and machine methods did not show significance between 

groups when analysing progression, and the dataset analysed did not include data on stage or 

recurrence. There is still a large amount of image data and clinical trials in the RandomSpotDB 

dataset that has not been analysed, and so applying the algorithm to optimally sampled survival 

data, with more clinical details will be part of future work to evaluate the capabilities of the 

algorithm further. 

Deep Learning (specifically CNNs) is a promising technique for analysing images without 

introducing human biases in feature selection and learning the composition of objects in a 

hierarchical method - from simple lines and edges, up to shapes and complex structures. The 

timescale of this work meant that the popularity of the Deep Learning technologies emerged 

towards the end of the project, and will be explored in future work. 

There are other prognostic markers that the developed solution may be able to generate (such as 

the density of tumour infiltrating lymphocytes), and the data generated by the algorithms may 

also be useful for identifying new prognostics markers (such as distribution of tissue within 

tumours). These are interesting research questions that the author intends to address after this 

project concludes. 
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Appendix C - Awards arising from thesis work 
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2012  

Public Engagement “Twitter Thesis” Competition (1st Place) “Automatically Improving Patient 

Selection for Chemotherapy”. University of Leeds 3rd Annual Postgraduate Research 

Conference, Showcase, December 2012, University of Leeds, UK. 
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Appendix D - Algorithm results figures 

D.1 - Algorithm A: Fixed patch size (64x64 pixels) algorithm 

 

Confusion matrices showing pathologist – Fixed-Patch algorithm agreement 

Left: Confusion matrix of all 8 tissue subtypes from dataset. Accuracy = 70.06%, sensitivity (true positive 

rate / recall) = 0.70, kappa = 0.51 (moderate agreement) 

Right: Confusion matrix of subtypes grouped into Tumour and Stroma parent classes. Accuracy = 

77.66%, sensitivity (true positive rate / recall) = 0.82, specificity (true negative rate) = 0.69, kappa = 

0.51 (moderate agreement) 
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ROC Curves for all 8 tissue subtypes, classified by Algorithm A 

The graph shows Area Under the Curve for each tissue subtype: 

Tumour parent class: Tumour (0.86), Lumen (0.92), Mucin (0.84), Necrosis (0.81) 

Stroma parent class: Stroma (0.84), Vessels (0.76), Muscle (0.84), Inflammation (0.74) 

 

Comparison boxplots for pathologist-pathologist agreement and pathologist-algorithm agreement 

Left: Pathologist - pathologist agreement (mean = 0.85, median = 0.88., SD = 0.10, IQR = 0.10) 

Right: Pathologist -algorithm agreement (mean = 0.77, median = 0.77., SD = 0.01, IQR = 0.01) 

Two sample T-Test P = 0.03 

Human agreement is generated from six participants scoring 40 images 1024x1024 pixels in size, using 

the Prospector system (section 4.3).  



Automated analysis of colorectal cancer  Appendices 

  

 319 

 

Comparison plots of pathologist scores to Algorithm A 

Left: Histogram of ratio differences generated by human and regular segment algorithm. Distribution has 

a mean bias of 0 (median 0), and standard deviation of 0.19. 

Right: Heatmap Correlation plot of the distribution of the ratios. Correlation has R2 coefficient of 0.27. 

 

Bland-Altman plot of pathologist and Algorithm A-generated TSRs per case 

Distribution has a mean bias of 0, with upper and lower limits of agreement of 0.37 and -0.36 

respectively (±0.37). 
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D.2 - Algorithm B: Fixed patch size (256x256 pixels) results 

 

Confusion matrices showing pathologist – Algorithm B agreement 

Left: Confusion matrix of all 8 tissue subtypes from dataset. Accuracy = 63.99%, sensitivity (true positive 

rate / recall) = 0.64, kappa = 0.39 

Right: Confusion matrix of subtypes grouped into Tumour and Stroma parent classes. Accuracy = 

76.05%, sensitivity (true positive rate / recall) = 0.84, specificity (true negative rate) = 0.60,  

kappa = 0.46  

 

ROC Curves for all 8 tissue subtypes, classified by Algorithm B 

The graph shows Area Under the Curve for each tissue subtype: 

Tumour parent class: Tumour (0.78), Lumen (0.83), Mucin (0.85), Necrosis (0.75) 

Stroma parent class: Stroma (0.80), Vessels (0.70), Muscle (0.88), Inflammation (0.88) 
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Comparison boxplots for pathologist - pathologist agreement and pathologist - algorithm agreement 

Left: Pathologist - pathologist agreement (mean = 0.85, median = 0.88., SD = 0.10, IQR = 0.10) 

Right: Pathologist -algorithm agreement (mean = 0.75, median = 0.75., SD = 0.01, IQR = 0.01) 

Two sample T-Test P = 0.01 

Human agreement is generated from six participants scoring 40 images 1024x1024 pixels in size, using 

the Prospector system (section 4.3).  

 

Comparison plots of pathologist scores to Algorithm B 

Left: Histogram of ratio differences generated by human and regular segment algorithm. Distribution has 

a mean bias of -0.03 (median -0.06), and standard deviation of 0.20. 

Right: Heatmap Correlation plot of the distribution of the ratios. Correlation has R2 coefficient of 0.28. 
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Bland-Altman plot of pathologist and Algorithm B-generated TSRs per case 

Distribution has a mean bias of -0.03, with upper and lower limits of agreement of 0.36 and -0.42 

respectively (±0.39). 
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D.3 - Algorithm C: Fixed partition (with predictions) results 

 

Confusion matrices showing pathologist – Algorithm C agreement 

Left: Confusion matrix of all 8 tissue subtypes from dataset. Accuracy = 70.32%, sensitivity (true positive 

rate / recall) = 0.70, kappa = 0.51 (moderate agreement) 

Right: Confusion matrix of subtypes grouped into Tumour and Stroma parent classes. Accuracy = 

79.72%, sensitivity (true positive rate / recall) = 0.87, specificity (true negative rate) = 0.66, kappa = 

0.55 (moderate agreement) 
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D.4 - Algorithm D: Fixed partition (with votes) results 

 

Confusion matrices showing pathologist – Algorithm D agreement 

Left: Confusion matrix of all 8 tissue subtypes from dataset. Accuracy = 70.37%, sensitivity (true positive 

rate / recall) = 0.70, kappa = 0.51 (moderate agreement) 

Right: Confusion matrix of subtypes grouped into Tumour and Stroma parent classes. Accuracy = 

79.88%, sensitivity (true positive rate / recall) = 0.88, specificity (true negative rate) = 0.66, kappa = 

0.55 (moderate agreement) 

 

ROC Curves for all 8 tissue subtypes, classified by Algorithm D 

The graph shows Area Under the Curve for each tissue subtype: 

Tumour parent class: Tumour (0.86), Lumen (0.91), Mucin (0.90), Necrosis (0.81) 

Stroma parent class: Stroma (0.85), Vessels (0.77), Muscle (0.89), Inflammation (0.91) 
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Comparison boxplots for pathologist - pathologist agreement and pathologist - algorithm agreement 

Left: Pathologist - pathologist agreement (mean = 0.85, median = 0.88., SD = 0.10, IQR = 0.10) 

Right: Pathologist - algorithm agreement (mean = 0.80, median = 0.80., SD = 0.01, IQR = 0.01) 

Two sample T-Test P = 0.16 

Human agreement is generated from six participants scoring 40 images 1024x1024 pixels in size, using 

the Prospector system (section 4.3).  

 

Histogram and Heatmap Correlation Plots for Algorithm D 

Left: Histogram of ratio differences generated by human and regular segment algorithm. Distribution has 

a mean bias of -0.04 (median 0.06), and standard deviation of 0.15. 

Right: Heatmap Correlation plot of the distribution of the ratios. Correlation has R2 coefficient of 0.45. 
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Bland-Altman plot of Pathologist and Regular Segmentation algorithm-generated TSRs per case 

Distribution has a mean bias of – 0.04, with upper and lower limits of agreement of 0.26 and -0.34 

respectively (±0.30). 
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D.5 - Algorithm E: Unsupervised segmentation results 

 

Confusion matrices showing pathologist – Algorithm E agreement 

Left: Confusion matrix of all 8 tissue subtypes from dataset. Accuracy = 69.16%, sensitivity (true positive 

rate / recall) = 0.69, kappa = 0.50 (moderate agreement) 

Right: Confusion matrix of subtypes grouped into Tumour and Stroma parent classes. Accuracy = 

76.47%, sensitivity (true positive rate / recall) = 0.81, specificity (true negative rate) = 0.68, kappa = 

0.49 (moderate agreement) 

 

ROC Curves for all 8 tissue subtypes, classified by Algorithm E 

The graph shows Area Under the Curve for each tissue subtype: 

Tumour parent class: Tumour (0.86), Lumen (0.94), Mucin (0.89), Necrosis (0.77) 

Stroma parent class: Stroma (0.83), Vessels (0.76), Muscle (0.82), Inflammation (0.91) 



Automated analysis of colorectal cancer  Appendices 

  

 328 

 

Comparison boxplots for pathologist - pathologist agreement and pathologist - algorithm agreement 

Left: Pathologist - pathologist agreement (mean = 0.85, median = 0.88., SD = 0.10, IQR = 0.10) 

Right: Pathologist - algorithm agreement (mean = 0.77, median = 0.77., SD = 0.01, IQR = 0.01) 

Two sample T-Test P = 0.02 

Human agreement is generated from six participants scoring 40 images 1024x1024 pixels in size, using 

the Prospector system (section 4.3).  

 

Histogram and Heatmap Correlation Plots for Algorithm E 

Left: Histogram of ratio differences generated by human and regular segment algorithm. Distribution has 

a mean bias of 0.01 (median 0.00), and standard deviation of 0.17. 

Right: Heatmap Correlation plot of the distribution of the ratios. Correlation has R2 coefficient of 0.29. 
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Bland-Altman plot of Pathologist and Algorithm E-generated TSRs per case 

Distribution has a mean bias of 0.01, with upper and lower limits of agreement of 0.34 and -0.32 

respectively (±0.33). 
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D.6 - Algorithm F: Local context results 

 

Confusion matrices showing pathologist - Algorithm F agreement 

Left: Confusion matrix of all 8 tissue subtypes from dataset. Accuracy = 71.72%, sensitivity (true positive 

rate / recall) = 0.72, kappa = 0.54 (moderate agreement) 

Right: Confusion matrix of subtypes grouped into Tumour and Stroma parent classes. Accuracy = 

79.36%, sensitivity (true positive rate / recall) = 0.85, specificity (true negative rate) = 0.70, kappa = 

0.55 (moderate agreement) 

 

ROC Curves for all 8 tissue subtypes, classified by Algorithm F 

The graph shows Area Under the Curve for each tissue subtype: 

Tumour parent class: Tumour (0.88), Lumen (0.95), Mucin (0.93), Necrosis (0.82) 

Stroma parent class: Stroma (0.86), Vessels (0.80), Muscle (0.89), Inflammation (0.94) 
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Comparison boxplots for pathologist - pathologist agreement and pathologist - algorithm agreement 

Left: Pathologist - pathologist agreement (mean = 0.85, median = 0.88., SD = 0.10, IQR = 0.10) 

Right: Pathologist - algorithm agreement (mean = 0.79, median = 0.80., SD = 0.01, IQR = 0.01) 

Two sample T-Test P = 0.11 

Human agreement is generated from six participants scoring 40 images 1024x1024 pixels in size, using 

the Prospector system (section 4.3).  

 

Histogram and Heatmap Correlation Plots for Algorithm F 

Left: Histogram of ratio differences generated by human and regular segment algorithm. Distribution has 

a mean bias of -0.01 (median -0.02), and standard deviation of 0.16. 

Right: Heatmap Correlation plot of the distribution of the ratios. Correlation has R2 coefficient of 0.37. 

 



Automated analysis of colorectal cancer  Appendices 

  

 332 

 

 

Bland-Altman plot of Pathologist and Algorithm F-generated TSRs per case 

Distribution has a mean bias of – 0.01, with upper and lower limits of agreement of 0.31 and -0.32 

respectively (±0.31). 
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D.7 - Algorithm G: Global context results 

 

Confusion matrices showing pathologist – Algorithm G agreement 

Left: Confusion matrix of all 8 tissue subtypes from dataset. Accuracy = 71.15%, sensitivity (true positive 

rate / recall) = 0.71, kappa = 0.53 (moderate agreement) 

Right: Confusion matrix of subtypes grouped into Tumour and Stroma parent classes. Accuracy = 

77.73%, sensitivity (true positive rate / recall) = 0.82, specificity (true negative rate) = 0.70, kappa = 

0.52 (moderate agreement) 

 

ROC Curves for all 8 tissue subtypes, classified by Algorithm G 

The graph shows Area Under the Curve for each tissue subtype: 

Tumour parent class: Tumour (0.88), Lumen (0.93), Mucin (0.90), Necrosis (0.81) 

Stroma parent class: Stroma (0.84), Vessels (0.79), Muscle (0.89), Inflammation (0.89) 
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Comparison boxplots for pathologist - pathologist agreement and pathologist - algorithm agreement 

Left: Pathologist - pathologist agreement (mean = 0.85, median = 0.88., SD = 0.10, IQR = 0.10) 

Right: Pathologist - algorithm agreement (mean = 0.77, median = 0.77., SD = 0.01, IQR = 0.01) 

Two sample T-Test P = 0.02 

Human agreement is generated from six participants scoring 40 images 1024x1024 pixels in size, using 

the Prospector system (section 4.3).  

 

Histogram and Heatmap Correlation Plots for Algorithm G 

Left: Histogram of ratio differences generated by human and regular segment algorithm. Distribution has 

a mean bias of 0.01 (median 0), and standard deviation of 0.17. 

Right: Heatmap Correlation plot of the distribution of the ratios. Correlation has R2 coefficient of 0.27. 
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Bland-Altman plot of Pathologist and Algorithm G-generated TSRs per case 

Distribution has a mean bias of 0.01, with upper and lower limits of agreement of 0.33 and -0.32 

respectively (±0.33). 
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D.8 - Algorithm H: Combined context results 

 

Confusion matrices showing pathologist – Algorithm H agreement 

Left: Confusion matrix of all 8 tissue subtypes from dataset. Accuracy = 72.85%, sensitivity (true positive 

rate / recall) = 0.73, kappa = 0.56 (moderate agreement) 

Right: Confusion matrix of subtypes grouped into Tumour and Stroma parent classes. Accuracy = 

80.50%, sensitivity (true positive rate / recall) = 0.85, specificity (true negative rate) = 0.72, kappa = 

0.57 (moderate agreement) 

 

ROC Curves for all 8 tissue subtypes, classified by Algorithm H 

The graph shows Area Under the Curve for each tissue subtype: 

Tumour parent class: Tumour (0.89), Lumen (0.94), Mucin (0.92), Necrosis (0.83) 

Stroma parent class: Stroma (0.87), Vessels (0.81), Muscle (0.90), Inflammation (0.95) 
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Comparison boxplots for pathologist - pathologist agreement and pathologist - algorithm agreement 

Left: Pathologist - pathologist agreement (mean = 0.85, median = 0.88., SD = 0.10, IQR = 0.10) 

Right: Pathologist - algorithm agreement (mean = 0.80, median = 0.80., SD <0.01, IQR <0.01) 

Two sample T-Test P = 0.19 

Human agreement is generated from six participants scoring 40 images 1024x1024 pixels in size, using 

the Prospector system (section 4.3).  

 

Histogram and Heatmap Correlation Plots for Algorithm H 

Left: Histogram of ratio differences generated by human and regular segment algorithm. Distribution has 

a mean bias of 0.00 (median -0.02), and standard deviation of 0.15. 

Right: Heatmap Correlation plot of the distribution of the ratios. Correlation has R2 coefficient of 0.40. 
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Bland-Altman plot of Pathologist and Algorithm H-generated TSRs per case 

Distribution has a mean bias of 0, with upper and lower limits of agreement of 0.29 and -0.29 

respectively (±0.29).  

 

  



Automated analysis of colorectal cancer  Appendices 

  

 339 

D.9 – Algorithm I: Combined context results – with QC 

 

Confusion matrices showing pathologist – Algorithm I agreement 

Left: Confusion matrix of all 8 tissue subtypes from dataset. Accuracy = 75.45%, sensitivity (true positive 

rate / recall) = 0.75, kappa = 0.60 (substantial agreement). 

Right: Confusion matrix of subtypes grouped into Tumour and Stroma parent classes. Accuracy = 

83.18%, sensitivity (true positive rate / recall) = 0.86, specificity (true negative rate) = 0.77, kappa = 

0.64 (substantial agreement). 

 

ROC Curves for all 8 tissue subtypes, classified by Algorithm I 

The graph shows Area Under the Curve for each tissue subtype: 

Tumour parent class: Tumour (0.91), Lumen (0.96), Mucin (0.92), Necrosis (0.82) 

Stroma parent class: Stroma (0.89), Vessels (0.82), Muscle (0.91), Inflammation (0.98) 
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Comparison boxplots for pathologist - pathologist agreement and pathologist - algorithm agreement 

Left: Pathologist - pathologist agreement (mean = 0.85, median = 0.88., SD = 0.10, IQR = 0.10) 

Right: Pathologist - algorithm agreement (mean = 0.83, median = 0.83., SD = 0.01, IQR = 0.01) 

Two sample T-Test P = 0.62 

Human agreement is generated from six participants scoring 40 images 1024x1024 pixels in size, using 

the Prospector system (section 4.3).  
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Histogram and Heatmap Correlation Plots for Algorithm I 

Left: Histogram of ratio differences generated by human and regular segment algorithm. Distribution has 

a mean bias of 0 (median 0), and standard deviation of 0.11. 

Right: Heatmap Correlation plot of the distribution of the ratios. Correlation has R2 coefficient of 0.58. 

 

Bland-Altman plot of Pathologist and Algorithm I-generated TSRs per case 

Distribution has a mean bias of 0, with upper and lower limits of agreement of 0.23 and -0.22 

respectively (±0.22). 
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Boxplot showing between-pathologist agreement and the Combined Context algorithm, with and without 

QC 

Mean agreement for pathologist = 0.88, Combined Context without QC = 0.81, Combined Context with 

QC = 0.83 

Note that pathologist agreement was calculated from the image size experiment, in section 4.3. The 

results from the Combined Context algorithm were when trained and tested on either the full dataset or 

the QCed subset of slides 
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D.10 - Algorithm J: Combined context results CR07 dataset 

 

Confusion matrices showing pathologist – Algorithm J agreement 

Left: Confusion matrix of all 8 tissue subtypes from dataset. Accuracy = 79.17%, sensitivity (true positive 

rate / recall) = 0.79, kappa = 0.66 (substantial agreement) 

Right: Confusion matrix of subtypes grouped into Tumour and Stroma parent classes. Accuracy = 

85.72%, sensitivity (true positive rate / recall) = 0.82, specificity (true negative rate) = 0.89, kappa = 

0.71 (substantial agreement) 

 

ROC Curves for all 8 tissue subtypes of the CR07 dataset, classified by Algorithm J 

The graph shows Area Under the Curve for each tissue subtype: 

Tumour parent class: Tumour (0.94), Lumen (0.97), Mucin (0.98), Necrosis (0.90) 

Stroma parent class: Stroma (0.92), Vessels (0.86), Muscle (0.97), Inflammation (0.96) 
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Comparison boxplots for pathologist - pathologist agreement and pathologist - algorithm agreement 

Left: Pathologist - pathologist agreement (mean = 0.85, median = 0.88., SD = 0.10, IQR = 0.10) 

Right: Pathologist - pathologist agreement (mean = 0.85, median = 0.85., SD = 0.01, IQR = 0.01) 

Two sample T-Test P = 0.87 

Human agreement is generated from six participants, each scoring 40 images 1024x1024 pixels in size, 

using the Prospector system (section 4.3).  

 

Histogram and Heatmap Correlation Plots for Algorithm J 

Left: Histogram of ratio differences generated by human and regular segment algorithm. Distribution has 

a mean bias of 0 (median 0), and standard deviation of 0.09. 

Right: Heatmap Correlation plot of the distribution of the ratios. Correlation has R2 coefficient of 0.61. 
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Bland-Altman plot of Pathologist and Algorithm J generated TSRs per case 

Distribution has a mean bias of 0, with upper and lower limits of agreement of 0.18 and -0.18 

respectively (±0.18). 
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D.11 - Algorithm K: Combined context results CR07 dataset with QC 

 

Confusion matrices showing pathologist – Algorithm K agreement  

Left: Confusion matrix of all 8 tissue subtypes from dataset. Accuracy = 79.56%, sensitivity (true positive 

rate / recall) = 0.84, kappa = 0.67 (substantial agreement) 

Right: Confusion matrix of subtypes grouped into Tumour and Stroma parent classes. Accuracy = 

86.08%, sensitivity (true positive rate / recall) = 0.83, specificity (true negative rate) = 0.89, kappa = 

0.72 (substantial agreement) 

 

ROC Curves for all 8 tissue subtypes of the CR07 dataset, classified by Algorithm K 

The graph shows Area Under the Curve for each tissue subtype: 

Tumour parent class: Tumour (0.94), Lumen (0.97), Mucin (0.97), Necrosis (0.90) 

Stroma parent class: Stroma (0.92), Vessels (0.86), Muscle (0.96), Inflammation (0.99) 

Mean 0.94 
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Comparison boxplots for pathologist - pathologist agreement and pathologist - algorithm agreement 

Left: Pathologist - pathologist agreement (mean = 0.85, median = 0.88., SD = 0.10, IQR = 0.10) 

Right: Pathologist - algorithm agreement (mean = 0.85, median = 0.86., SD = 0.01, IQR = 0.01) 

Two sample T-Test P = 0.77 

Human agreement is generated from six participants scoring 40 images 1024x1024 pixels in size, using 

the Prospector system (section 4.3).  

 

Histogram and Heatmap Correlation Plots for Algorithm K 

Left: Histogram of ratio differences generated by human and regular segment algorithm. Distribution has 

a mean bias of 0 (median 0), and standard deviation of 0.08. 

Right: Heatmap Correlation plot of the distribution of the ratios. Correlation has R2 coefficient of 0.61. 
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Bland-Altman plot of Pathologist and Algorithm K-generated TSRs per case, using the CR07 dataset 

Distribution has a mean bias of 0, with upper and lower limits of agreement of 0.16 and -0.17 

respectively (±0.16). 

  



Automated analysis of colorectal cancer  Appendices 

  

 349 

 

Appendix E – Comparison plots for all algorithms 

 

Boxplots of pathologist - pathologist (P) and human-algorithm agreement (A-K) for all algorithms 

Note that algorithm agreement is calculated for all eight tissue subclasses, and human agreement is 

based on the binary tumour-stroma analysis presented in Chapter 4. 

 

Boxplots of pathologist - pathologist (P) and human-algorithm agreement (A-K) for all algorithms 

Note that both algorithm and human agreement is for binary tumour-stroma analysis 
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Reduced confusion matrices for Mann-Whitney tests between algorithm agreement statistics for per-patch 

(left) and grouped (right) agreement 

Note that a value greater than 0.0045 indicates the distributions are similar (the compared mean 

differences are not significantly different from zero), due to Bonferroni correction 
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Appendix F – Survival analysis on CR07 dataset 

F.1 – Arm 1: patients with preoperative radiotherapy 

 

KM survival curves for arm 1 cases stratified into equally sized groups using ordered TSR generated by 

Algorithm J 

Cases were ordered by ascending TSR, and grouped into equal sized groups. The legends on the graphs 

show the upper cut-offs for each group.  

Top: Curves for 3-group cancer specific survival (left) and overall survival (right)  

Bottom: Curves for 5-group cancer specific survival (left) and overall survival (right) 
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Cropped confusion matrices for arm 1, comparing log-rank p-values between three and five patient 

groups 

The confusion matrices display log-rank p values for three (top) and five (bottom) pairwise group 

comparisons. The matrices are cropped along the diagonal to avoid repetition. 

Left: Significance values for cancer specific survival 

Right Significance values for overall survival 
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Modified ROC curves and KM survival curves for cancer specific survival using pathologist and machine 

generated TSRs 

Top Left: Modified ROC curve for pathologist-generated ratios (peak value at TSR = 0.26) 

Top Right: KM survival curves for pathologist-generated ratios 

 

Bottom Left: Modified ROC curve for algorithm-generated ratios (peak value at TSR = 0.32) 

Bottom Right: KM survival curves for algorithm-generated ratios 

P = 0.17   HR = 2.17 (C.I. 0.71 – 6.65) 

P = 0.04   HR = 4.15 (C.I. 0.95 – 18.14) 
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Modified ROC curves and KM survival curves for overall survival using pathologist and machine 

generated TSRs 

Top Left: Modified ROC curve for pathologist-generated ratios (peak value at TSR = 0.20) 

Top Right: KM survival curves for pathologist-generated ratios 

 

Bottom Left: Modified ROC curve for algorithm-generated ratios (peak value at TSR = 0.32) 

Bottom Right: KM survival curves for algorithm-generated ratios  

  

P = 0.22   HR = 1.39 (C.I. 0.82 – 2.35) 

P = 0.01   HR = 2.44 (C.I. 1.19 – 4.97) 
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F.2 – Arm 2: patients with postoperative radiotherapy 

 

KM survival curves for arm 2 cases stratified into equally sized groups using ordered TSR generated by 

Algorithm J 

Cases were ordered by ascending TSR, and grouped into equal sized groups. The legends on the graphs 

show the upper cut-offs for each group.  

Top: Curves for 3-group cancer specific survival (left) and overall survival (right)  

Bottom: Curves for 5-group cancer specific survival (left) and overall survival (right) 
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Cropped confusion matrices for arm 2, comparing log-rank p-values between three and five patient 

groups 

The confusion matrices display log-rank p values for three (top) and five (bottom) pairwise group 

comparisons. The matrices are cropped along the diagonal to avoid repetition. 

Left: Significance values for cancer specific survival 

Right Significance values for overall survival 
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Modified ROC curves and KM survival curves for arm 2 cancer specific survival using pathologist and 

machine generated TSRs 

Top Left: Modified ROC curve for pathologist-generated ratios (peak value at TSR = 0.47) 

Top Right: KM survival curves for pathologist-generated ratios 

 

Bottom Left: Modified ROC curve for algorithm-generated ratios (peak value at TSR = 0.47) 

Bottom Right: KM survival curves for algorithm-generated ratios 

  

P = 0.02   HR = 7.81 (C.I. 1.06 – 57.36) 

P = 0.04   HR = 6.12 (C.I. 0.83 – 44.93) 
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Modified ROC curves and KM survival curves for overall survival using pathologist and machine 

generated TSRs 

Top Left: Modified ROC curve for pathologist-generated ratios (peak value at TSR = 0.47) 

Top Right: KM survival curves for pathologist-generated ratios 

 

Bottom Left: Modified ROC curve for algorithm-generated ratios (peak value at TSR = 0.43) 

Bottom Right: KM survival curves for algorithm-generated ratios  

 

 

P < 0.01   HR = 4.13 (C.I. 1.51 – 11.33) 

P = 0.04   HR = 1.83 (C.I. 1.01 – 3.33) 


