
Diophantine approximation: the

twisted, weighted and mixed theories

Stephen George Harrap

PhD

University of York

Mathematics

September 2011



Abstract

This PhD thesis consists of �ve papers dealing with problems in various branches

of Diophantine approximation. The results obtained contribute to the theory of

twisted, weighted, multiplicative and mixed approximation.

In Paper I a twisted analogue of the classical set of badly approximable linear

forms is introduced. We prove that its intersection with any suitably regular fractal

set is of maximal Hausdor� dimension. The linear form systems investigated are nat-

ural extensions of irrational rotations of the circle. Even in the latter one-dimensional

case, the results obtained are new.

The main result of Paper II concerns a weighted version of the classical set of

badly approximable pairs. We establish a new characterization of this set in terms of

vectors that are well approximable in the twisted sense. This naturally generalizes a

classical result of Kurzweil. In Paper II we also study the metrical theory associated

with a weighted variant of the set introduced in Paper I. In particular, we provide a

su�cient condition for this variant to have full Hausdor� dimension. This result is

extended in Paper III to imply the stronger property of `winning'.

Paper IV addresses various problems associated with the Mixed Littlewood Con-

jecture. Firstly, we solve a version of the conjecture for the case of one p-adic value

and one pseudo-absolute value with bounded ratios. Secondly, we deduce the answer

to a related metric question concerning numbers that are well approximable in the

mixed multiplicative sense. This provides a mixed analogue to a classical theorem

of Gallagher.

In Paper V we develop the metric theory associated with the mixed Schmidt

Conjecture. In particular, a Khintchine-type criterion for the `size' of the natural set

of mixed well approximable numbers is established. As a consequence we obtain a

combined mixed and weighted version of the classical Jarník-Besicovich Theorem.
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Chapter 1

Introduction

1.1 Classical Diophantine approximation

We begin with a brief description of the classical results within Diophantine approx-

imation. Diophantus of Alexandria is widely believed to have been the �rst Greek

mathematician to recognize the rationals as numbers. The branch of number theory

that bears his name is the study of approximating irrational numbers with rationals.

The smaller the distance between an irrational and the rational that we approxi-

mate it with, the better the approximation is considered to be. For example, two

commonly used rational approximations for π are 22/7 and 355/113. We calculate

that ∣∣∣∣π − 22

7

∣∣∣∣ > ∣∣∣∣π − 355

113

∣∣∣∣ ;
and so 355

113
is the better of the two approximations. The question of whether a given

rational approximation can always be improved is trivially answered upon recalling

that the rationals form a dense subset of the real numbers. It follows immediately

that for every irrational number x and every positive integer q there exists an integer

p such that ∣∣∣∣x− p

q

∣∣∣∣ ≤ 1

2q
. (1.1)

So, for any positive integer q, every irrational number can be approximated by some

rational with an error of at most 1/(2q). It is in improving this statement that

provides the motivation for more detailed study.
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Chapter 1: Introduction

1.1.1 Dirichlet's theorem and its consequences

No discussion of Diophantine approximation would be complete without initial men-

tion of the following fundamental result. As we will see later it has much wider

consequences than one might at �rst expect.

Theorem 1.1 (Dirichlet 1842). For any real number x and any natural number N

there exist integers p and q such that∣∣∣∣x− p

q

∣∣∣∣ ≤ 1

qN
where 1 ≤ q ≤ N.

The result was proven by Dirichlet [31] using his famous `pigeonhole principle'.

This principle essentially states that if N objects are placed in (N−1) boxes then one

box must contain at least two objects. Dirichlet's theorem shows that statement (1.1)

can be signi�cantly improved upon. Moreover, the following important consequence

tells us about the `rate' at which irrationals can be approximated by rationals (for

more details see �6 of [5]).

Corollary 1.2. For any real number x there exist in�nitely many integers p and q

(with q > 0) such that ∣∣∣∣x− p

q

∣∣∣∣ ≤ 1

q2
. (1.2)

For each real number x it is easy to �nd examples of rationals p/q for which

inequality (1.2) holds. When x is rational the exercise is trivial. On the other hand,

the (simple) continued fraction expansion of any irrational number x is given by

x = a0 +
1

a1 + 1
a2+

1
a3+···

,

where a0, a1, a2, . . . are natural numbers. In abbreviated notation we write x =

[a0; a1, a2, . . .]. The quantity ak is called the kth partial quotient of x and the rational

pk/qk = [a0; a1, . . . , ak] is called the kth convergent of x. The convergents pk/qk of

x satisfy (1.2) are in some sense the `best' rational approximations for x. For more

details, see [60].

It is natural to ask whether the right hand side of inequality (1.2) can in general

be improved. Using the theory of continued fractions it was shown by Hurwitz [51]

that it can. Moreover he found an `optimal' constant associated with this rate of

approximation. Modern proofs can be found in [24, 48].
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Chapter 1: Introduction

Theorem 1.3 (Hurwitz 1891). For any real number x there exist in�nitely many

integers p and q (with q > 0) such that∣∣∣∣x− p

q

∣∣∣∣ ≤ 1√
5 q2

. (1.3)

Furthermore, the constant 1/
√

5 in the above inequality is best possible.

The constant is `best possible' in the sense that when x = (
√

5 + 1)/2 is the

golden ratio then for any ε > 0 we have∣∣∣∣∣
√

5 + 1

2
− p

q

∣∣∣∣∣ > 1

(
√

5 + ε) q2
.

In this way the golden ratio is considered to be `di�cult' to approximate by rationals;

or `badly' approximable. To be precise, we say a real number x is badly approximable

if there exists a constant c(x) > 0 such that for all integers p and q > 0∣∣∣∣x− p

q

∣∣∣∣ > c(x)

q2
.

In view of Hurwitz' theorem we necessarily have that 0 < c(x) ≤ 1/
√

5. Numbers

which are not badly approximable will be referred to as well approximable.

One may notice that the set of badly approximable numbers is invariant under

integer translation. In fact, this will be the case with most sets considered in this

thesis. For that reason we will often restrict our attention to the unit interval [0, 1)

and it should be understood that no generality is lost in doing this. The set of badly

approximable numbers lying in [0, 1) will be denoted by Bad.

A beautiful property enjoyed by the badly approximable numbers is that their

partial quotients are bounded. More precisely, an irrational x = [a0; a1, a2 . . .] is in

Bad if and only if there exists a constant B ≥ 1 such that ak ≤ B for every k ∈ N.
This connection is accentuated by the fact that the golden ratio ϕ has continued

fraction expansion given by ϕ = [1; 1, 1, . . .].

The golden ratio is also an example of a quadratic irrational. All quadratic ir-

rationals are badly approximable due to the fact that they have periodic continued

fraction expansions. This means their partial quotients take on only �nitely many

values and are thus bounded. It is widely believed that the continued fraction ex-

pansion of any irrational algebraic number that is not quadratic contains arbitrarily

large partial quotients; i.e., they are not badly approximable. On the other hand,
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Chapter 1: Introduction

the following remarkable theorem of Roth shows that irrational algebraic numbers

are in general `not too far away' from being badly approximable.

Theorem 1.4 (Roth 1955). For any irrational algebraic number x and any real τ > 1

there exist only �nitely many pairs of integers p and q (with q > 0) such that∣∣∣∣x− p

q

∣∣∣∣ ≤ 1

qτ+1
. (1.4)

In contrast with the idea of badly approximable numbers, we can consider irra-

tionals that are extremely well approximable by rationals. For any τ ≥ 1 let W (τ)

be the set of real numbers x ∈ [0, 1) for which (1.4) holds for in�nitely many integers

p and q (with q > 0). We refer to W (τ) as the set of τ -approximable numbers. Note

that in view of Dirichlet's theorem we have W (1) = [0, 1).

An irrational number x is said to be very well approximable if it is contained

in W (τ) for some τ > 1. We denote by VWA the set of very well approximable

numbers in [0, 1). Thus

VWA =
⋃
τ>1

W (τ).

Given τ > 1, it is relatively straightforward to construct numbers in W (τ). How-

ever, Liouville [73] was the �rst to construct examples of numbers that lie in every

W (τ) and the set of all numbers satisfying this property now bears his name. More

precisely, we say an irrational x is a Liouville number if

x ∈
⋂
τ>1

W (τ).

The sets Bad and VWA provide good points of reference as they represent two

extremes of approximation. In the next subsection we ask the question of how large

the sets Bad and VWA are. Equivalently, we ask how likely it is that a given

real number is contained in one of these sets. It turns out that `most' numbers fall

somewhere in between the two concepts, although as we have seen both Bad and

VWA are certainly non-empty.

1.1.2 Metric Diophantine approximation

As is usual we shall say that almost no points of some set A ⊂ Rk have a certain

property if the points with the property form a subset of k-dimensional Lebesgue

measure zero. Conversely, we say that almost all points have the property if almost
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Chapter 1: Introduction

no points do not have the property. The k-dimensional Lebesgue measure of a set

A ⊂ Rk will be denoted by λk(A) or simply by λ(A) when no confusion can occur.

We say A is a null set if λ(A) = 0 and that A has full measure if it's complement is

null. Lastly, we denote by ‖ . ‖ the distance to the nearest integer; that is,

‖x‖ = min
p∈Z
|x− p |

for any real number x. This notation is useful as it allows us to forgo mention of

the numerator p of any rational approximation p/q. For example, the existence of

integers p, q (with q > 0) such that the inequality∣∣∣∣x− p

q

∣∣∣∣ ≤ C

q2

holds is equivalent to the existence of a natural number q for which

‖qx‖ ≤ C/q. (1.5)

We return to discussion of Hurwitz' theorem. With reference to this result, one

can show that the constant 1/
√

5 can be improved if we are to ignore the golden

ratio and its equivalents. In particular, inequality (1.5) has in�nitely many solutions

for all x not equivalent to the golden ratio if we take C = 1/23/2. Furthermore,

this constant is then optimal. The story does not stop here. If we also remove the

possibility of irrationals equivalent to a solution of the equation x2 + 2x = 1 then

the constant may be reduced further. To be precise, the optimal constant associated

with inequality (1.5) is then given by C = 5/
√

221.

This process of disregarding irrationals equivalent to the roots of certain inte-

ger polynomials can be repeated inde�nitely. The sequence of associated optimal

constants tends to 1/3 (giving rise the the Lagrange spectrum [27]) and cannot be

reduced further via the same method. Therefore, the inequality

‖qx‖ ≤ 1/(3q) (1.6)

has in�nitely many integer solutions q for all but a countable set of irrational x.

In other words, inequality (1.6) has in�nitely many solutions for almost all real

numbers. It is this weakening from requiring that all points enjoy a certain property

to requiring almost all points satisfy it that characterises the so-called metric theory

of Diophantine approximation. To establish what happens when C < 1/3 we require

some more sophisticated theorems.
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Chapter 1: Introduction

We begin by generalising the notion of τ -approximable numbers. Let ψ : N→ R>0

be a non-negative, real-valued arithmetic function. Denote by W (ψ) the set of real

numbers x ∈ [0, 1) that satisfy the inequality

‖qx‖ ≤ ψ(q) (1.7)

for in�nitely many natural numbers q. This notation should not be confused with

that for the set W (τ), which will remain as shorthand for when ψ : q → q−τ .

We refer to W (ψ) as the set of ψ-approximable numbers and the function ψ as an

approximating function. Via inequality (1.7), each approximating function de�nes a

closed neighbourhood, in this case the interval [p/q − ψ(q)/q, p/q + ψ(q)/q], around

any rational p/q. This neighbourhood consists of the set of real numbers x that are

approximable by the rational to within an error of ψ(q)/q. In general we refer to the

neighbourhoods as error domains associated with inequalities of the type (1.7).

The following groundbreaking theorem is fundamental to the metrical theory of

Diophantine approximation. Modern proofs can be found in [24, 49, 94].

Theorem 1.5 (Khintchine 1924). For any approximating function ψ we have

λ (W (ψ)) =



0,
∞∑
r=1

ψ(r) < ∞.

1,
∞∑
r=1

ψ(r) = ∞ and ψ is monotonic.

It follows from Khintchine's theorem that Bad and VWA are of Lebesgue mea-

sure zero. Furthermore, it implies that for any C > 0 inequality (1.5) has in�nitely

many solutions for almost all x. Khintchine's theorem is very delicate. One way of

demonstrating this is the following consequence. For almost every x ∈ R we have

that

inf
q∈N

q(log q)(log log q) ‖qx‖ = 0,

whereas for any ε > 0 and for almost every x ∈ R,

inf
q∈N

q(log q)(log log q)1+ε ‖qx‖ > 0. (1.8)

In�ma type expressions of this form are commonplace in discussions of metric the-

orems. This particular statement should be compared with those later described in

�1.3.1 and �2.4.
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Chapter 1: Introduction

The `convergence' part of Khintchine's theorem is a trivial consequence of the

Borel-Cantelli Lemma from probability theory (see for example �1.2 of [49]). Re-

garding the `divergence' part, in his original paper Khintchine [57] actually required

that qψ(q) be decreasing. It was subsequently shown by others that this condition can

be weakened to the assumption that ψ(q) is decreasing. In their seminal paper [35],

Du�n & Schae�er produced a counterexample showing that this monotonicity as-

sumption is absolutely necessary. More precisely, they constructed a non-monotonic

approximating function ψ for which λ(W (ψ)) = 0 but
∑∞

r=1 ψ(r) diverges.

For any approximating function ψ consider the set

W ′(ψ) := {x ∈ [0, 1) : |qx− p | < ψ(q) for i.m. p ∈ Z and q ∈ N with (p, q) = 1} .

Essentially, the coprimality restriction on p and q here ensures that the rational

approximations p/q to x are in reduced form. It is clear that W ′(ψ) ⊂ W (ψ). A

further consequence of the Borel-Cantelli Lemma is that

λ(W ′(ψ)) = 0 if
∞∑
r=1

ϕ(r)

r
ψ(r) <∞,

where ϕ denotes Euler's totient function. Inspired by this, Du�n & Schae�er sug-

gested an alternative statement to that of Khintchine free of any conditions on the

function ψ.

Conjecture 1.6 (Du�n-Schae�er 1941). For any approximating function ψ we have

λ(W ′(ψ)) = 1 if
∞∑
r=1

ϕ(r)

r
ψ(r) =∞.

The Du�n-Schae�er Conjecture represents one of the most profound unsolved

problems in metric Diophantine approximation and has inspired a great deal of re-

search into related problems. For various partial results see Chapter 2 of [49]. In [35],

Du�n & Schae�er were able to show that their conjecture is true in certain circum-

stances. Their result is utilised in its own right in Paper IV.

Theorem 1.7 (Du�n-Schae�er 1941). Conjecture 1.6 is true if in addition we have

lim sup
N→∞

(
N∑
r=1

ϕ(r)

r
ψ(r)

)(
N∑
r=1

ψ(r)

)−1
> 0. (1.9)

In [26], Catlin provided a possible criterion for the full measure of W (ψ) without
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Chapter 1: Introduction

imposing monotonicity or coprimality.

Conjecture 1.8 (Catlin 1976). For any approximating function ψ we have

λ(W (ψ)) = 1 if
∞∑
r=1

ψ(r) max
t≥1

ψ(rt)

rt
= ∞.

Catlin claimed that his conjecture was equivalent to that of Du�n & Schae�er.

However, a �aw in his proof was uncovered by Vaaler [96]. Whether or not the two

conjectures are actually equivalent remains unknown.

It is no coincidence that in the metric theorems and conjectures described above

the measures of the underlying sets W (ψ) and W ′(ψ) are zero or one. This charac-

teristic is related to the well known `ergodicity' (or `metrically transitive') property

of sets invariant under translation by the rationals. Roughly speaking, if a Lebesgue

measurable set A is invariant under rational translation then either A or its com-

plement is of measure zero. The `zero-one' laws associated with the sets W (ψ) and

W ′(ψ) were originally established by Cassels [22] and Gallagher [44] respectively.

These, and more general zero-one laws, prove to be extremely useful for establishing

the divergent part of Khintchine-type theorems. In particular, showing full measure

is reduced to showing positive measure.

1.1.3 Hausdor� measure and dimension

Consider the sets of τ -approximable numbers for varying values of τ . As the rate

of approximation increases we would intuitively expect the corresponding sets W (τ)

to get smaller in size. For example, we would expect W (3) to be a smaller set than

W (2). However, Lebesgue measure fails to distinguish between the two sets from

a metric point of view. We have no way of di�erentiating between them without

appealing to a �ner method of measuring size. One such method is the concept of

Hausdor� measure and dimension.

In what follows, a dimension function is a continuous and monotonic function

f : R≥0 → R≥0 such that f(0) = 0 and A represents an arbitrary subset of Rk. Let

B = {Bt}t∈N be a countable collection of balls in Rk with diameters dt. For any

ρ > 0, we say B is a ρ-cover for A if dt ≤ ρ for every t ∈ N and A ⊂
⋃
t∈NBt. Let

Hf
ρ(A) := inf

{
∞∑
t=1

f(dt) : B is a ρ-cover for A

}
.
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It is easy to see that Hf
ρ(A) increases as ρ decreases and so it approaches a limit as

ρ→ 0. This limit could be zero or in�nity. The Hausdor� f -measure Hf (A) of A is

de�ned by

Hf (A) := lim
ρ→0
Hf
ρ(A).

In the case that f(r) = rs for some s ≥ 0, then Hf is denoted by Hs and is referred

to as s-dimensional Hausdor� measure. When s is an integer, k say, then Hk(A) is

a rescaling of k-dimensional Lebesgue measure. In particular, it can be shown that

Hk(A) = c−1k λk(A),

where ck is the `volume' of the k-dimensional unit ball in the sense of Lebesgue.

Thus, Hausdor� measure is naturally a re�nement of Lebesgue measure.

For any subset A one can easily verify that there exists a unique critical value

of s at which Hs(A) `jumps' from in�nity to zero. The value taken by s at this

discontinuity is called the Hausdor� dimension of the set A and is denoted dimA.

More formally,

dimA = inf {s > 0: Hs(A) = 0} .

At the critical point s = dimA the quantity Hs(A) can be zero, in�nite or positive

and �nite. We say a set A ⊂ Rk has full dimension if dimA = k.

We now discuss the role of Hausdor� measure and dimension in the theory of

Diophantine approximation. The �rst `dimension' result was due to Jarník [53]

who in 1928 proved that dimBad = 1. Since Bad has Lebesgue measure zero it

immediately follows that

Hs (Bad) =


0, s ≥ 1.

∞, 0 ≤ s < 1.

The set VWA of very well approximable numbers also has full dimension. This

is a consequence of the following classical result obtained by Jarník in [54] and

independently by Besicovitch in [14].

Theorem 1.9 (Jarník-Besicovitch 1929/1934). For any real τ ≥ 1 we have

dimW (τ) =
2

1 + τ
.

This theorem veri�es our intuition regarding the sets W (2) and W (3). The set
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Chapter 1: Introduction

W (2) has dimension 2/3 and the setW (3) has dimension 1/2 and soW (3) is `smaller'

than W (2). Moreover, it follows from the de�nition of Hausdor� dimension that

Hs (W (τ)) =


0, s > 2/(1 + τ).

∞, 0 ≤ s < 2/(1 + τ).

However, we are unable to determine directly from the Jarník-Besicovitch Theorem

the s-dimensional Hausdor� measure of W (τ) at the critical exponent s = 2/(1 + τ).

The following result deals with this issue and is regarded as the natural generalisation

of Khintchine's theorem to Hausdor� measures.

Theorem 1.10 (Jarník 1931). Let ψ be any approximating function and let f be

a dimension function such that r−1f(r) → ∞ as r → 0 and r−1f(r) is decreasing.

Then,

Hf (W (ψ)) =



0,
∞∑
r=1

r f

(
ψ(r)

r

)
< ∞.

∞,
∞∑
r=1

r f

(
ψ(r)

r

)
= ∞ and ψ is monotonic.

It is worth noting that when Hf is equivalent to Lebesgue measure Jarník's result

does not apply. This is because the condition r−1f(r) → ∞ as r → 0 excludes the

possibility that f(r) = r. However, in this case Khintchine's theorem provides the

relevant result. We remark that the monotonicity assumption in Jarník's theorem

once more seems vital. In fact, very little is known when this restriction is not

imposed. Hausdor� measure versions of both the Du�n-Schae�er Conjecture and

the Catlin Conjecture can be found in [7].

Jarník's theorem shows that for any τ > 1 we have

H2/(1+τ)(W (τ)) = ∞.

However, it is much more powerful than this. For example, take the approximating

functions given by

ψ1(r) =
1

r2
and ψ2(r) =

1

r2 log r
. (1.10)
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Then, the Jarník-Besicovich Theorem implies that

dimW (ψ1) = dimW (ψ2) =
2

3
.

But, if f is the dimension function given by

f(r) = r2/3
(
log r−1

)−1
then we have

∞∑
r=1

rf

(
ψ1(r)

r

)
=

∞∑
r=1

(r log(r3))−1 = ∞,

whilst

∞∑
r=1

rf

(
ψ2(r)

r

)
=

∞∑
r=1

(
r log2/3 r log(r3 log r)

)−1
�

∞∑
r=1

(r log5/3 r)−1 < ∞.

It follows from Jarník's theorem that

Hf (W (ψ1)) =∞ whilst Hf (W (ψ2)) = 0.

Thus, we are able to distinguish between sets of the same Hausdor� dimension.

1.1.4 Linear forms approximation

We describe how the classical one-dimensional results of the preceding sections can be

generalised to higher dimensions. Throughout, for any vector x = (x1, . . . , xk) ∈ Rk

we let

‖x‖ := max
1≤j≤k

‖xj‖ and |x| := max
1≤j≤k

|xj| .

For any integers n ≥ 1 and m ≥ 1 let xji (1 ≤ j ≤ n, 1 ≤ i ≤ m) be real numbers.

For any integer vector q = (q1, . . . , qm) ∈ Zm there is a related system (Lj)1≤j≤n of

n homogeneous linear forms in m variables given by

Lj(q) = q1xj1 + · · ·+ qmxjm (1 ≤ j ≤ n).
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This system can be written more concisely as Lq, where the n×m matrix

L := (xji) =


x11 · · · xn1
...

...

x1m · · · xnm


may be regarded as a point in Rnm. The set of n×m real matrices will be denoted

by Matn×m(R). However, as the sets and arguments we shall consider are invariant

under translation by integer vectors these matrices will often be identi�ed with points

in the unit cube [0, 1)nm ⊂ Rnm, which will be denoted by Inm. As a result we may use

the phrases �matrix in Matn×m(I)� and �point in Inm� interchangeably and without

confusion.

In general we shall be concerned with minimising the quantity ‖Lq‖. When

n ≥ 2 and m = 1 this equates to approximating points in In by rational vectors

(p1
q
, . . . , pn

q
). In this case the matrix L takes the form of a vector x ∈ In and we shall

denote it as such. This is the theory of simultaneous Diophantine approximation.

On the other hand, when n = 1 and m ≥ 2 the associated problems are referred to

as dual approximation.

To begin, the following famous result of Minkowski allows us to deduce a multi-

dimensional version of Dirichlet's theorem.

Theorem 1.11 (Minkowski's Linear Forms Theorem 1891). For any square matrix

L ∈ Matn×n(R) there is a non-zero integer vector q ∈ Zn6=0 such that

|L1(q)| ≤ c1 and |Lj(q)| < cj (2 ≤ j ≤ n)

provided that c1 · · · cn ≥ |detL|.

Corollary 1.12. For any point L ∈ Inm and any real N > 1 there exists a non-zero

integer vector q ∈ Zm6=0 such that

‖Lq‖ ≤ N−m/n, |q| ≤ N.

Corollary 1.13. For any point L ∈ Inm there exist in�nitely many non-zero integer

vectors q ∈ Zm6=0 such that

‖Lq‖ ≤ |q|−m/n . (1.11)

Cassel's book [24] contains a short proof of Corollary 1.12 using the Linear Forms

Theorem, but for an independent proof in the same mould as Dirichlet's original
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box-counting arguement see [48, 92]. The exponent `m/n' in inequality (1.11) can

be interpreted as a normalization of the error domains.

For any approximating function ψ let

W (ψ, n,m) =
{
L ∈ Inm : ‖Lq‖ ≤ ψ(|q|) for inf. many q ∈ Zm6=0

}
.

Note that W (ψ, 1, 1) = W (ψ) and so W (ψ, n,m) represents a higher dimensional

analogue of the ψ-approximable numbers. The following theorem, attributed to

Groshev [47], provides a complete multidimensional analogue of Khintchine's clas-

sical result. For obvious reasons it is often referred to as the `Khintchine-Groshev

Theorem'. A modern proof can be found in [94].

Theorem 1.14 (Groshev 1938). For any approximating function ψ we have

λnm (W (ψ, n,m)) =



0,
∞∑
r=1

rm−1ψn(r) < ∞.

1,
∞∑
r=1

rm−1ψn(r) = ∞ and ψ is monotonic.

The one-dimensional counterexample of Du�n & Schae�er ensures that the mono-

tonicity condition imposed on ψ cannot be removed in general. However, Groshev's

theorem can be improved upon when nm > 1. Firstly, it can be deduced from a

theorem of Schmidt [88] (or Sprindzuk [94]) that the monotonicity assumption is un-

necessary when m ≥ 3. Secondly, it is a consequence of the 1962 result of Gallagher

[46] that the same is true when we have n ≥ 2 and m = 1. Suprisingly, it was not

until very recently that the problematic `m = 2' case was resolved, leading to the

following complete statement [12].

Theorem 1.15 (Beresnevich-Velani 2010). When nm > 1 the monotonicity condi-

tion in Groshev's Theorem can be dropped.

We now shift our attention to the notion of badly approximable points. When

nm > 1 there is no known optimal constant corresponding to inequality (1.11) in the

sense of Hurwitz' theorem. That said, various bounds for such constants are known

(see Chapter II of [92] for example). In particular, it does make sense to consider

badly approximable points in higher dimensions. The set of badly approximable linear
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forms is de�ned by

Bad(n,m) =

{
L ∈ Inm : inf

q∈Zm
6=0

|q|m/n ‖Lq‖ > 0

}
.

When m = n = 1 it is readily seen that Bad(n,m) reduces to Bad. An immediate

consequence of Groshev's theorem is that Bad(n,m) is of Lebesgue measure zero.

In 1954, Davenport [28] proved that Bad(2, 1) has continuum many elements.

A year later, Cassels [23] showed the same for the set Bad(n, 1). A simpler proof

of this can be found in Davenport's follow-up paper [29]. The analogous statement

concerning Bad(n,m) was emphatically proven by Schmidt [91] in 1969 when he

established that it has full Hausdor� dimension nm. To do this Schmidt utilised

certain in�nite topological `games' and a `transference' theorem.

1.1.5 Schmidt games and winning sets

The concept of solving mathematical problems by the means of topological games

is often attributed to Mazur in the early 1930s. One such game was described

by Banach in 1935 and this soon became known as the Banach-Mazur game. In

1966, Schmidt [90] introduced a generalization of the Banach-Mazur game for usage

in number theory. As an application he used his game to reprove Jarník's result

that dimBad = 1. It was with these ideas that he was later able to prove the

multidimensional analogue relating to the set Bad(n,m). For completeness, we

include a brief account of Schmidt (α, β) games here.

Let (X, d) be a complete metric space and let S ⊂ X be a given set. For reasons

that will soon become apparent we refer to S as the target set. In what follows B(c, r)

will denote a closed ball with centre c ∈ X and radius r > 0. Suppose that 0 < α < 1

and 0 < β < 1 and consider the following game involving players A and B.

Player B starts the game by choosing a closed ball B0 = B(b0, r) in X for some

b0 ∈ X and some r > 0. Player A must then choose a point a0 ∈ X such that

A0 = B(a0, αr) ⊂ B0. The game progresses with player B specifying a ball B1 =

B(b1, (αβ)r) ⊂ A0 and then player A a ball A1 = B(a1, (α
2β)r) ⊂ B1. Continuing

in this fashion the players pick a nested sequence of non-empty closed balls B0 ⊂
A0 ⊂ B1 ⊂ A1 ⊂ · · · ⊂ Bt ⊂ At ⊂ · · · and the diameters of the balls tend to zero

as t → ∞. As this sequence is in a complete metric space, the intersection of these

balls is a single point x ∈ X. We declare player A the winner if x ∈ S, and player B

the winner otherwise.
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Each player employs a strategy for his/her choices of centres of balls as a conse-

quence of his/her opponent's previous choices. If for certain α and β player A can

choose a strategy to win the game regardless of how player B plays, we say that the

target set S is an (α, β)-winning set (on X). If α is such that S is an (α, β)-winning

set (on X) for every 0 < β < 1, we say that S is an α-winning set (on X). Finally,

we simply say S is winning (on X) if it is α-winning for some α > 0.

We now mention two important properties of winning sets. Firstly, the intersec-

tion of countably many α-winning sets is again α-winning. Secondly, an α-winning

set S on Rnm has full Hausdor� dimension; i.e., dimS = nm. It is these properties

that make the game such a powerful tool, a tool that we utilise in Paper III.

One might have expected that player B could always win the game if we took S

to be the Lebesgue null set Bad(n,m). However, Schmidt was able to show that the

opposite is true using a transference theorem of Mahler; he showed that set of badly

approximable linear forms is winning.

1.1.6 Transference theorems

Statements which allow information about some Diophantine problem relating to

one set of linear forms to be deduced from information concerning another set of

linear forms are known as transference theorems. The �rst theorems of this kind in

Diophantine approximation came to light from the work of Khintchine [58, 59] and

were later extended by Dyson [36] and Jarník [56]. Here, we present an updated

version of a more general transference result of Mahler [75] taken from the Appendix

of [3].

First, recall that L denotes the n×m real matrix corresponding to the n linear

forms in m variables given by

Lj(q) =
m∑
i=1

qixji (1 ≤ j ≤ n).

We will denote byM the m× n real matrix corresponding to the m linear forms in

n variables given by

Mi(u) =
n∑
j=1

ujxji (1 ≤ i ≤ m).

In other words,M = LT ∈ Matm×n(I).
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Theorem 1.16 (Mahler 1939). Suppose there are integers vectors q ∈ Zm6=0 such that

‖Lj(q)‖ ≤ cj, |qi| ≤ Ni,

for some positive constants cj > 0 and Ni > 0 satisfying

max
1≤i≤m

{
di := (`− 1)N−1i d1/(`−1)

}
< 1,

where

d :=
∏

1≤j≤n

cj
∏

1≤i≤m

Ni and ` := n+m.

Then, there are integer vectors u ∈ Zn6=0 such that

‖Mi(u)‖ ≤ di, |uj| ≤ Uj,

where

Uj := (`− 1)c−1j d1/(`−1).

It is readily veri�ed that a consequence of Theorem 1.16 is the following statement

concerning the set of badly approximable linear forms.

Corollary 1.17. For any point L ∈ Inm we have

L ∈ Bad(n,m) ⇐⇒ M ∈ Bad(m,n).

We now turn our attention to well approximable sets. Recently, Beresnevich &

Velani [10] introduced theMass Transference Principle. In short, this principle allows

us to transfer Lebesgue measure theoretic statements for `limsup' sets to Hausdor�

measure theoretic statements.

Recall that the limit superior of a sequence of balls Bt (t ∈ N) in Rk is de�ned

by

lim sup
t→∞

Bt :=
∞⋂
s=1

∞⋃
t=s

Bt.

Any set that can be written in this form for some sequence of balls will be referred

to as a limsup set. For example, the set W (ψ, n,m) can be written as

W (ψ, n,m) =
∞⋂
N=1

∞⋃
|q|=N

Bψ(|q|)(q),

where Br(q) = {L ∈ Inm : ‖Lq‖ ≤ r}. Given a dimension function f and a ball
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B = B(c, r) in Rk, de�ne the ball

Bf := B(c, f(r)1/k).

When f(r) = rs for some s > 0 we write Bs in place of Bf .

Theorem 1.18 (Mass Transference Principle 2006). Let {Bt}t∈N be a sequence of

balls in Rk whose radii r(Bt) → 0 as t → ∞. Let f be a dimension function such

that r−kf(r) is monotonic and suppose that for any ball B in Rk we have

Hk

(
B ∩ lim sup

t→∞
Bf
t

)
= Hk(B).

Then, for any ball B in Rk

Hf

(
B ∩ lim sup

t→∞
Bk
t

)
= Hf (B).

One of the most remarkable consequences of this principle is that Khintchine's

theorem implies Jarník's theorem. This suggests that the Lebesgue theory of limsup

sets underpins the Hausdor� theory, which is rather surprising as Hausdor� measure

is a re�nement of Lebesgue measure. The Mass Transference Principle also enables

us to deduce the Jarník-Besicovitch Theorem from Dirichlet's theorem.

A `slicing' technique introduced in [11] allows the Mass Transference Principle

to be generalised. The resulting multidimensional theorem is concerned with limsup

sets arising from neighbourhoods of hyperplanes in Rk rather than simply balls. As a

consequence we can transfer Lebesgue measure statements for systems of linear forms

to Hausdor� measure statements. In particular, a linear forms version of Jarník's

theorem can be deduced directly from Theorems 1.14 & 1.15, reproducing an earlier

result of Dickinson & Velani [30] proven via classical methods.

Theorem 1.19 (Dickinson-Velani 1997). Let nm > 1 and let ψ be a decreasing

approximating function. Then, for any dimension function f such that r−n(m−1)f(r)

is increasing and r−nmf(r) is decreasing we have

Hf (W (ψ, n,m)) =



0,
∞∑
r=1

f

(
ψ(r)

r

)
ψ−n(m−1)(r) rnm+m−1 < ∞.

Hf (Inm),
∞∑
r=1

f

(
ψ(r)

r

)
ψ−n(m−1)(r) rnm+m−1 = ∞.
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This theorem essentially implies the following result of Dodson [32], which is

general multidimensional version of the Jarník-Besicovitch Theorem involving the

lower order of an approximating function ψ. The lower order (at in�nity) λ(g) of a

function g : R>0 → R>0 is de�ned by

λ(g) = lim inf
r→∞

log g(r)

log r
. (1.12)

Note that λ(g) is strictly positive if g is increasing.

Theorem 1.20 (Dodson 1997). Let nm > 1 and for any decreasing approximating

function ψ let λ be the lower order at in�nity of 1/ψ. Then,

dimW (ψ, n,m) =


n(m− 1) + n+m

λ+1
, λ > m

n
.

nm, λ ≤ m
n
.

This result shows that the `size' of W (ψ, n,m) decreases as the speed of approx-

imation governed by ψ increases. Dodson's theorem is often considered to be the

Hausdor� dimension version of Groshev's theorem with the `volume' sum in the lat-

ter replaced by the lower order. These results provide us with a complete picture of

the standard metric theory associated with the sets introduced in previous sections.

1.1.7 Absolutely friendly measures

One can study metric Diophantine approximation with respect to more general mea-

sures than those of Lebesgue and Hausdor�. The problem of approximating by

rationals the points of some compact subset K ⊂ Rk has received much recent atten-

tion. In order to make progress one needs to be very careful in de�ning the measure

supported on K. It turns out that it must be `well behaved' in some sense.

In their 2004 paper [63], Kleinbock, Lindenstrauss & Weiss introduced the notion

of `friendly' measures, a class of measures adhering to certain rigid geometrical con-

ditions. A more restrictive subclass was investigated by Pollington & Velani in [85]

and it is with these `absolutely friendly' measures that this thesis is concerned.

The following properties will be enforced on any locally �nite Borel measure µ

supported on a compact subset K ⊂ Rk. Throughout, B(c, r) will denote the closed

ball in Rk with centre c ∈ K and radius r > 0. Suppose D is a strictly positive real

number. A measure µ is called D-Federer (or D-doubling) if there exists r0 > 0 such
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that for any c ∈ K and any positive r < r0 we have

µ(B(c, 2r)) ≤ Dµ(B(c, r)).

We say that µ is Federer (or doubling) if it is D-Federer for some D > 0.

Next, let S denote a generic (k − 1)-dimensional hyperplane in Rk and for any

ε > 0 let S(ε) denote the ε-neighbourhood of S. To be precise,

S(ε) :=
{
x ∈ Rk : dS(x) < ε

}
,

where dS(x) denotes the Euclidean distance from x ∈ Rk to S. Suppose C, η > 0

are real numbers. Then a measure µ is said to be (C, η)-absolutely decaying if there

exists r0 > 0 such that for any hyperplane S, any ε > 0, any c ∈ K and all positive

r < r0 we have

µ(B(c, r) ∩ S(ε)) ≤ C
( ε
r

)η
µ(B(c, r)).

We say µ is absolutely decaying if it is (C, η)-absolutely decaying for some C, η > 0. If

a measure is Federer and absolutely decaying then it is said to be absolutely friendly

(or absolutely η-friendly if the exponent requires emphasis) as de�ned in [85].

In addition, the measure µ is δ-Ahlfors regular if there exist strictly positive

constants δ and r0 such that for c ∈ K and r < r0

arδ ≤ µ(B(c, r)) ≤ brδ ,

where 0 < a ≤ 1 ≤ b are constants independent of the ball. It is easily veri�ed that

if µ is δ-Ahlfors regular then

dimK = δ. (1.13)

In the one-dimensional situation (i.e., K ⊂ R), one can check that the Ahlfors regular
property implies the absolutely friendly property. However, this is not true in general

for Rk.

We remark that k-dimensional Lebesgue measure on Ik is 2k-Federer, (1, 1)-

absolutely decaying and k-Ahlfors regular. In addition, if (1.13) holds, then the

restriction of δ-dimensional Hausdor� measure to K is absolutely friendly. Further

examples of absolutely friendly measures can be found in [65].

Establishing metric Diophantine results in the context of these general measures is

di�cult in general. Even proving an analogue of the convergence part of Khintchine's

theorem requires new ideas. In [85], Pollington & Velani deduced that if µ is an
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absolutely η-friendly measure supported on a compact subset K of Rn then for any

approximating function ψ we have

µ(W (ψ, n, 1) ∩K) = 0 if
∞∑
r=1

rη
n+1
n
−η−1ψη(r) <∞.

In all likelihood this result is not best possible. Moreover, a divergence type state-

ment for absolutely friendly measures currently seems out of reach.

Whilst general metric results concerning well approximable points seem illusive,

a great deal of progress has been made concerning badly approximable points in

compact sets. The �rst result of this kind can be found in [65], where Kleinbock &

Weiss proved that dim(Bad(n, 1) ∩ K) = dimK whenever K supports an Ahlfors

regular absolutely friendly measure. This result was independently reproduced by

Kristensen, Thorn & Velani [67] whilst developing a very general framework for

establishing dimension statements. The ideas of [67] are applicable to a large class

of badly approximable sets and are utilised in both Papers I & II. The result of

Kleinbock & Weiss was strengthened by Fishman in a recent paper [42].

Theorem 1.21 (Fishman 2009). Let K be a compact subset of Inm supporting an

absolutely friendly �nite Borel measure µ. Then, Bad(n,m) ∩ K is a winning set

on K.

A large class of sets K for which Theorem 1.21 is applicable arise naturally

as attractors of an irreducible �nite family of contracting similarity maps of Rnm

satisfying the open set condition (see [40, 52]). Examples include fractals such as the

middle-third Cantor set, the von Koch curve and the Sierpinski gasket, to name but

a few. It was shown in [41] that for such sets K the winning property implies full

dimension for Bad(n,m) ∩K.

The intersection of the set of very well approximable numbers with compact sets,

including fractals, has also received much recent attention. For example, Weiss [98]

demonstrated in 2001 that almost no points in the middle-third Cantor set C (with

respect to Hausdor� measure on C) are very well approximable. Further discussion

of problems of this type can be found in [64, 71] and the references therein.

1.1.8 Diophantine approximation with weights

Another way of generalising the classical problems of Diophantine approximation is

via the concept of `weighting'. This roughly corresponds to considering `rectangular'
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error domains, rather than `square' ones, in the problems previously discussed. To

some extent the concept is motivated by another consequence of Minkowski's Linear

Forms Theorem.

Corollary 1.22. Fore any real n-tuple k = {k1, . . . , kn} satisfying

kj > 0 (1 ≤ j ≤ n) and
n∑
j=1

kj = 1 (1.14)

and any vector x ∈ Rn there exist in�nitely many natural numbers q such that

max
1≤j≤n

(
‖qxj‖1/kj

)
≤ 1

q
. (1.15)

This result demonstrates that if we attach a `weight' 1/kj to each component

‖qxj‖ we are still able to deduce an analogue of Dirichlet's theorem. For obvious

reasons, the study of problems of this type is called weighted Diophantine approx-

imation (or Diophantine approximation with weights). We remark that in the case

n = 2 it is usual to put k1 = i and k2 = j.

For any approximating function ψ and any n-tuple k de�ne the set of (k, ψ)-

approximable vectors by

W (k, ψ) :=

{
x ∈ In : max

1≤j≤n

(
‖qxj‖1/kj

)
≤ ψ(q) for inf. many q ∈ N

}
.

It is clear that when k1 = · · · = kn = 1/n this set reduces to W (ψ, n, 1). In [59],

Khintchine proved the following weighted version of his classical one-dimensional

theorem.

Theorem 1.23 (Khintchine, 1926). For any n-tuple of reals k satisfying (1.14) and

any approximating function ψ we have

λn (W (k, ψ)) =



0,
∞∑
r=1

ψ(r) < ∞.

1,
∞∑
r=1

ψ(r) = ∞ and ψ is monotonic.

It follows from a result of Harman [49, Theorem 3.8] that the monotonicity as-

sumption on ψ can be removed if n ≥ 2. Other problems relating to the set W (k, ψ)

have received very little attention. Indeed, it was not until the early 1980s that inter-
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est in weighted problems resurfaced through the study of badly approximable points.

Schmidt [93] noticed that the classical methods of Davenport for Bad(1/2, 1/2) can

be transferred to the weighted setting. He showed that for any real pair (i, j) satis-

fying

i, j > 0 and i+ j = 1 (1.16)

the set Bad(i, j) of (i, j)-badly approximable vectors de�ned by

Bad(i, j) =

{
x ∈ I2 : inf

q∈N
q ·max

{
‖qx1‖1/i , ‖qx2‖1/j

}
> 0

}
is uncountable. In the same paper, he made a famous conjecture concerning the

intersection of these sets.

Conjecture 1.24 (Schmidt 1983).

Bad(2/3, 1/3) ∩ Bad(1/3, 2/3) 6= ∅.

Building on Davenport's work, Pollington & Velani [84] showed in 2000 that for

every choice of reals i, j satisfying (1.16) we have

dim (Bad(i, j) ∩Bad(1, 0) ∩Bad(0, 1)) = dim
(
I2
)

= 2. (1.17)

In 2011, Badziahin, Pollington & Velani [3] settled the Schmidt Conjecture em-

phatically.

Theorem 1.25 (Badziahin-Pollington-Velani 2011). Let (it, jt) be a countable num-

ber of pairs of real numbers each satisfying (1.16). Also, suppose that

lim inf
t→∞

min {it, jt} > 0. (1.18)

Then,

dim

(
∞⋂
t=1

Bad(it, jt)

)
= 2.

Note that if the number of pairs (it, jt) is �nite then (1.18) is trivially satis�ed.
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1.2 The inhomogeneous theory

1.2.1 Classical inhomogeneous approximation

We return to the fundamental problem of approximating a real number x by ratio-

nals p/q. The problem of minimising the values taken by ‖qx‖ essentially equates to

the question of how often the quantity qx (mod 1) approaches the origin. However,

the role that the origin plays seems uncertain. Inhomogeneous Diophantine approx-

imation deals with the more general question of how often the sequence qx (mod 1)

approaches some �xed point α in the unit interval.

To begin, the following result of Cassels' shows that an inhomogeneous analogue

of Dirichlet's theorem does not hold in general.

Theorem 1.26 ([24], Chapter III, Theorem III). Let ψ be an approximating function

for which ψ(q)→ 0 as q →∞. Then, there exists a real α and an irrational x such

that the system

‖qx− α‖ ≤ ψ(N), |q| ≤ N

has no solutions q ∈ Z6=0 for in�nitely many N ∈ N.

Corollary 1.27. There exists a real number α and an irrational x such that for

in�nitely many N ∈ N the inequality

‖qx− α‖ ≤ 1

N

has no integer solutions q with |q| ≤ N .

Despite this setback, the following observation was made by Khintchine. For any

irrational x and real α there exist in�nitely many natural numbers q such that

‖qx− α‖ ≤ 1 + ε√
5q
, (1.19)

where ε > 0 is an arbitrary constant. The inequality is `optimal' in the sense that

it cannot be improved upon in the case that α = sx + t for some s, t ∈ Z. The

underlying reason for this is that when α = sx + t the behaviour of the quantity

‖qx− α‖ = ‖(q − s)α‖ is essentially homogeneous. To some extent this explains

the similarity with Hurwitz' theorem. On the other hand, the following `optimal'

statement was deduced by Minkowski [80] when this case is ruled out.

Theorem 1.28 (Minkowski 1901). For any real number α and any irrational x such

that α 6= sx + t for any s, t ∈ Z there exist in�nitely many non-zero integers q such
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that

‖qx− α‖ ≤ 1

4 |q|
.

Furthermore, the constant 1/4 in the above inequality is best possible.

The constant 1/4 is not only best possible, but `tight' in the following sense. For

any ε > 0 there exist an irrational x and a real α not of the form sx+ t such that

|q| ‖qx− α‖ > 1/4− ε

for all non-zero integers q. Moreover, lim inf |q|→∞ |q| ‖qx− α‖ = 1/4.

In terms of well approximable sets associated with inhomogeneous Diophantine

approximation there are two obvious ways to proceed. Firstly, one could think of the

the real number α (or more generally the real vector α ∈ In) as �xed and consider

the set

Wα(ψ, n,m) =
{
L ∈ Inm : ‖Lq−α‖ ≤ ψ(|q|) for inf. many q ∈ Zm6=0

}
.

A very general result of Schmidt [89] gives rise to the following statement.

Theorem 1.29 (Schmidt 1964). Let nm > 1 with m 6= 2. Then for any approxi-

mating function ψ and any real vector α ∈ In we have

λnm (Wα(ψ, n,m)) =



0,
∞∑
r=1

rm−1ψn(r) < ∞.

1,
∞∑
r=1

rm−1ψn(r) = ∞.

The case `n = m = 1' is excluded as the statement would then be false due to

Du�n & Schae�er's counterexample. The point is that no monotonicity condition is

enforced on the function ψ, so when α = 0 the result coincides with Theorem 1.15.

For obvious reasons, Schmidt's theorem is often referred to as a `singly metric' result.

The second scenario one can consider concerns the `doubly metric' problems aris-

ing when the inhomogeneous part α is viewed as a variable in its own right. Consider

the set

W∗(ψ, n,m) =
{

(L,α) ∈ Inm × In : ‖Lq−α‖ ≤ ψ(|q|) for i. m. q ∈ Zm6=0

}
.

An inhomogeneous version of Groshev's theorem concerning W∗(ψ, n,m) is much
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easier to prove than in the singly metric case. The following theorem, originally

proved by Cassels [24], also follows from Schmidt's general statement in [89].

Theorem 1.30 (Cassels 1957). For any approximating function ψ we have

λnm+n (W∗(ψ, n,m)) =



0,
∞∑
r=1

rm−1ψn(r) < ∞.

1,
∞∑
r=1

rm−1ψn(r) = ∞.

Cassels' result is strikingly similar to Theorem 1.29, but is slightly more general

in the sense that the desired Diophantine property holds only for almost all pairs

(L,α). For this reason it is considered a doubly metric statement. Note that even

in the one-dimensional case no monotonicity restriction is enforced on ψ.

Hausdor� dimension results for the setsW∗(ψ, n,m) andWα(ψ, n,m) were estab-

lished by Dodson [33] and Levesley [70] respectively in the late 1990s. They represent

the natural inhomogeneous analogues of Theorem 1.20. Inhomogeneous versions of

Jarník's theorem can be found in Bugeaud's paper [18].

Of great recent interest and of relevance to this thesis is the concept of inhomo-

geneous badly approximable points. In view of the previous discussion, there are two

formulations to be considered. Firstly, the set of badly approximable a�ne forms is

de�ned by

Bad∗(n,m) =

{
(L,α) ∈ Inm × In : inf

q∈Zm
6=0

|q|m/n ‖Lq−α‖ > 0

}
.

And secondly, for any �xed vector α in In one de�nes the set of badly approximable

inhomogeneous forms (with respect to the vector α) by

Badα(n,m) =

{
L ∈ Inm : inf

q∈Zm
6=0

|q|m/n ‖Lq−α‖ > 0

}
.

Both sets are of Lebesgue measure zero due to the theorems of Cassels and Schmidt

respectively.

In the landmark paper [62], Kleinbock used ideas and techniques from the the-

ory of dynamical systems to prove that Bad∗(n,m) is of full Hausdor� dimension.

Essentially, his method is based on a deep connection between badly approximable

systems of linear forms and certain orbits of lattices in Euclidean space. In the same

paper, Kleinbock noted that his method yields that the set of vectors α for which
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Badα(n,m) has full dimension is itself of full dimension. Inspired by this, he con-

jectured that both Bad∗(n,m) and Badα(n,m) are winning sets on Inm. A general

result implying that the latter set is indeed winning was proven by Einsiedler &

Tseng [39] in 2011.

Theorem 1.31 (Einsiedler-Tseng 2011). Let K be a closed subset of Inm support-

ing an absolutely friendly �nite Borel measure µ. Then, for any α ∈ In the set

Badα(n,m) ∩K is a winning set on K.

The related conjecture corresponding to the set Bad∗(n,m) remains open, al-

though Einsiedler & Tseng did outline a possible method for obtaining a proof.

Conjecture 1.32 (Kleinbock 1999). Let K be a closed subset of Inm× In supporting
an absolutely decaying �nite Borel measure µ. Then, the set Bad∗(n,m) ∩ K is a

winning set on K.

1.2.2 Twisted approximation

Consider initially a rotation of the unit circle through an angle x. Identifying the

circle with the unit interval [0, 1) and the base point of the iteration with the origin,

we are considering the numbers 0, x, 2x, . . . modulo one. If x is rational, the rotation

is periodic. On the other hand, a trivial consequence of Minkowski's theorem is that

the sequence {qx}q∈N modulo one is dense in the unit interval for any irrational x.

Furthermore, a celebrated result of Weyl [99] states that the sequence is uniformly

distributed in [0, 1) for any irrational x. In view of Weyl's result, the sequence

{qx}q∈N modulo one must visit any �xed set in [0, 1) of positive measure in�nitely

often for almost every x. The `shrinking target problem' introduced in [50] formulates

the natural question of what happens if the target set � a set of positive measure �

is allowed to shrink with time. For example and more precisely, is there an optimal

`shrinking rate' for which the sequence {qx}q∈N modulo one visits the shrinking target

in�nitely often? In the speci�c case of irrational rotations of the circle, the shrinking

target sets correspond to subintervals of [0, 1) whose lengths decay according to

some speci�ed approximating function ψ. In other words, the problem translates to

considering the set of α ∈ [0, 1) satisfying the familiar inequality

‖qx− α‖ ≤ ψ(q).

In practice, we consider a more general problem than that described above. For
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each point L ∈ Inm de�ne the set

WL(ψ, n,m) : =
{
α ∈ In : ‖Lq−α‖ ≤ ψ(|q|) for inf. many q ∈ Zm6=0

}
.

To avoid the degenerate situation that
{
Lq : q ∈ Zm6=0

}
is restricted to at most a

countable collection of parallel, positively separated, hyperplanes in In we assume

throughout that the associated group G = LTZn + Zm has rank n + m. In one-

dimension this corresponds to the condition that x is irrational and in the simul-

taneous case that 1, x1, . . . , xn are linearly independent over the rationals. For this

reason we say that a point L ∈ Inm is irrational if G has rank n + m and rational

otherwise.

The metrical theory associated with the set WL(ψ, n,m) was investigated in a

groundbreaking paper by Kurzweil [69] in 1955. In what follows we say a decreasing

approximating function ψ is divergent if
∑

r∈N r
m−1ψn(r) =∞.

Theorem 1.33 (Kurzweil 1955). Let ψ be a �xed decreasing approximating function.

Then, for almost all irrational points L ∈ Inm we have

λnm (WL(ψ, n,m)) = 1 if
∞∑
r=1

rm−1ψn(r) = ∞. (1.20)

Furthermore, the points L ∈ Inm for which (1.20) holds for every decreasing approx-

imating function are precisely those in Bad(n,m).

One might have expected that no matter what the choice of irrational L or

decreasing approximating function ψ we would be able to conclude that the set

WL(ψ, n,m) has full measure if ψ is divergent. But, Kurzweil's result demonstrates

that for every point L ∈ Inm \Bad(n,m) there exists a divergent decreasing approx-

imating function ψ for which the full measure conclusion fails to hold. On the other

hand, by once more appealing to the Borel-Cantelli Lemma it is easy to show that

for any irrational L and every approximating function ψ we have

λnm (WL(ψ, n,m)) = 0 if
∞∑
r=1

rm−1ψn(r) < ∞.

This subtle distinction is what makes the metrical theory in the twisted setting more

delicate, and sophisticated, than its standard homogeneous counterpart.

Over the last few years, there has been much activity in investigating problems

of this type. For example, when ψ(q) := q−v for some v > 1, Bugeaud [17] and

independently Schmeling & Trubetskoy [87] obtained the Hausdor� dimension of the
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set WL(ψ, 1, 1). Of particular relevance is a result of Kim [61] stating that for any

irrational x the set of real α for which

lim inf
q→∞

q ‖qx− α‖ = 0 (1.21)

has full Lebesgue measure. Rather surprisingly, Beresnevich, Bernik, Dodson & Ve-

lani [7] were able to use the Mass Transference Principle to show that this result

and indeed the dimension result of Bugeaud and Schmeling & Trubetskoy are con-

sequences of the fact that for any irrational x and any real α the inequality (1.19)

has in�nitely many solutions.

Kim's paper inspired activity concerning the complementary measure zero set

associated with (1.21). In Paper I it is established that the higher dimensional

analogue

BadL(n,m) =

{
α ∈ In : inf

q∈Zm
6=0

|q|m/n ‖Lq−α‖ > 0

}
has full Hausdor� dimension. This is proven as a consequence of a more general result

concerning the intersection of BadL(n,m) with suitably regular compact subsets

of In.

The assertions of Paper I motivated the work of Tseng [95], who showed that

the one dimensional set BadL(1, 1) is winning for every L ∈ I. The analogous

statement for BadL(n,m) was later proven by Moshchevitin [81]. Even these recent

improvements have since been built upon, culminating in a `complete' statement

established by Einsiedler & Tseng [39] in 2011. Their result was independently

obtained by Broderick, Fishman & Kleinbock [16], also in 2011.

Theorem 1.34 ([16, 39], 2011). Let K be a closed subset of Inm supporting an

absolutely decaying locally �nite Borel measure µ. Then, for any L ∈ Inm the set

BadL(n,m) ∩K is a winning set on K.

It is intriguing that for the twisted badly approximable set BadL(n,m) the mea-

sure µ supported on K is only required to be absolutely decaying to conclude the

winning property for BadL(n,m) ∩K. This should be compared with the classical

inhomogeneous setting of Theorem 1.31, where at the moment we must assume the

stronger condition that µ is absolutely friendly to reach the same conclusion for the

set Bad∗(n,m).
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1.3 Multiplicative Diophantine approximation

One of the most important unsolved problems in Diophantine approximation, and

indeed number theory in general, is due to Littlewood [74].

Conjecture 1.35 (Littlewood 1930s). For every x1, x2 ∈ R,

lim inf
q→∞

q ‖qx1‖ ‖qx2‖ = 0. (1.22)

Questions relating to this conjecture have been the subject of much concerted e�ort

in recent years. Loosely speaking, the supremum norm of the classical problems

has been replaced by the geometric mean in this multiplicative setting. The �rst

signi�cant contribution toward Conjecture 1.35 was made by Cassels & Swinnerton-

Dyer [25] who showed that (1.22) holds when x1 and x2 are chosen from the same

cubic �eld.

The Littlewood Conjecture has come to light recently because of its spectacular

connection to `measure rigidity' problems concerning the space of unimodular lat-

tices (see [76], for example). This connection was exploited to devastating e�ect by

Einsiedler, Katok & Lindenstrauss [37] in 2006. They proved that the set of pairs

(x1, x2) ∈ R2 which do not satisfy (1.22) has Hausdor� dimension zero.

We remark that nothing seems to be gained by adding an extra real variable to

the Littlewood Conjecture. The statement that

lim inf
q→∞

q ‖qx1‖ ‖qx2‖ ‖qx3‖ = 0

for all x1, x2, x3 ∈ R is weaker than Conjecture 1.35 since ‖qx3‖ ≤ 1/2. However,

the problem does not seem to be any easier to solve using current methods.

Conjecture 1.35 can be reformulated to read that the set

BadL :=

{
x ∈ I2 : inf

q∈N
q ‖qx1‖ ‖qx2‖ > 0

}
is empty. Whilst BadL would seem to be the natural multiplicative analogue of

Bad, the assertion of the Littlewood Conjecture suggests it might be a `bad' choice.

In [4], the larger sets

Madλ :=

{
x ∈ I2 : inf

q∈N
q logλ q ‖qx1‖ ‖qx2‖ > 0

}
,

for λ ≥ 0, were introduced by Badziahin & Velani. They argued thatMad1 should be
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considered the `true' set of multiplicatively badly approximable numbers. Moreover,

they conjectured the following.

Conjecture 1.36 (Badziahin-Velani 2010).

Madλ = ∅ for any λ < 1.

dimMadλ = 2 for any λ ≥ 1.

Despite the �edgling nature of this conjecture, progress towards solving it has

already been made. In the follow-up paper [1], Badziahin proved a result implying

that the second part of Conjecture 1.36 is true when λ > 1. Knowledge had previously

been limited to a result of Moshchevitin & Bugeaud [21], who showed that the set

Mad2 enjoys full Hausdor� dimension.

On a di�erent note, one can consider vectors that are well approximable in a

multiplicative sense. For any approximating function ψ de�ne the set

M(ψ, n) :=

{
x ∈ In :

n∏
j=1

‖qxj‖ ≤ ψ(q) for inf. many q ∈ N

}
.

When n = 1 this set coincides with W (ψ, 1, 1). The following Khintchine-type result

can be deduced from a much more general theorem of Gallagher [45] and provides

the Lebesgue metric theory associated with M(ψ, n).

Theorem 1.37 (Gallagher 1962). For any approximating function ψ,

λn (M(ψ, n)) =



0,
∞∑
r=1

ψ(r) logn−1 r < ∞.

1,
∞∑
r=1

ψ(r) logn−1 r = ∞ and ψ is monotonic.

A consequence of Gallagher's theorem is that the Lebesgue measure of the set

Madλ is zero if λ ≤ 2 and full otherwise. It is not known whether the monotonicity

condition imposed in the theorem is necessary when n ≥ 2. The fact that we are

able to remove monotonicity in the classical statements relies heavily on the error

domains de�ned by the function ψ being convex. However, when n ≥ 2, the error

domains associated with the set M(ψ, n) are `hyperbolic' in shape. It should be

stressed that the reliance on convexity also extends to classical proofs of zero-one

laws.

36



Chapter 1: Introduction

In [9], Beresnevich, Haynes & Velani introduced a multiplicative version of the

Du�n-Schae�er Conjecture. Despite the di�culties relating to the lack of convexity,

they were able to establish a complete multiplicative analogue of the Du�n-Schae�er

Theorem. In particular, their result provides a su�cient criterion for the full measure

of the set

M ′(ψ, n) :=

{
x ∈ In :

n∏
j=1

|qxj − p | ≤ ψ(q) for i.m. p ∈ Z, q ∈ N with (p, q) = 1

}
.

In addition, a `cross �bering principle' developed in [9] enabled the authors to estab-

lish zero-one laws for the sets M(ψ, n) and M ′(ψ, n).

1.3.1 The `mixed' problems

In 2004, de Mathan and Teulié [79] proposed a problem closely related to the Lit-

tlewood Conjecture. Let D = {nk}k≥0 be an increasing sequence of positive integers

with n0 = 1 and nk|nk+1 for all k. We refer to such a sequence as a pseudo-absolute

value sequence, or more simply as a D-adic sequence. The D-adic pseudo-absolute

value | · |D : N→ {n−1k : k ∈ N} is then de�ned by

|q|D = inf{n−1k : q ∈ nkZ}.

In the case when D = {ak}∞k=0 for some integer a ≥ 2 we write | · |D = | · |a. If p is

a prime then | · |p is the usual p−adic absolute value. Finally, when the quotients of

consecutive elements of the sequence D are bounded we say D has bounded ratios.

That is, D has bounded ratios if there exists a constant M ≥ 2 such that nk/nk−1 ≤
M for every k ∈ N.

The following problem was proposed in [79] and is often referred to as the de

Mathan-Teulié Conjecture.

Conjecture 1.38 (Mixed Littlewood Conjecture 2004). For any pseudo-absolute

value sequence D and for every x ∈ R we have

lim inf
q→∞

q |q|D ‖qx‖ = 0. (1.23)

This conjecture bears more than a super�cial resemblance to the Littlewood Con-

jecture. If D = {nk} is a pseudo-absolute value sequence then the numbers |q|D can

be thought of as an approximation to the values of ‖qx2‖, where x2 ∈ R is the real
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number with simple continued fraction expansion

x2 = [0; n2/n1, n3/n2, . . . ].

In the case that |·|D = |·|a for some integer a ≥ 2 the Mixed Littlewood Conjecture

has a dynamical formulation in terms of the action of a certain diagonal group on a

quotient space of

SL2(R)×
∏
i

SL2(Qpi),

where {pi} is the collection of primes dividing a. By employing `measure rigidity'

results in this setting Einsiedler & Kleinbock [38] proved that when | · |D = | · |a the
set of x ∈ R which do not satisfy (1.23) has Hausdor� dimension zero. Their result

is in direct analogy with that of Einsiedler, Katok & Lindenstrauss concerning the

set of exceptions to the Littlewood Conjecture.

The subject of the Mixed Littlewood Conjecture with more than one pseudo-

absolute value has also been a topic of recent interest. If D1 and D2 are two pseudo-

absolute value sequences then it is conjectured that for any x ∈ R,

lim inf
q→∞

q|q|D1|q|D2‖qx‖ = 0. (1.24)

We say that any collection of integers a1, . . . , as are multiplicatively independent if

the numbers log a1, . . . , log as are linearly independent over the rationals. It is shown

in [38] that the Furstenberg Orbit Closure Theorem (see Theorem IV.1 of [43]) implies

that (1.24) is true for all x ∈ R whenever D1 = {ak} and D2 = {bk} for two

multiplicatively independent integers a and b. In other words, the Mixed Littlewood

Conjecture with two or more distinct p-adic values is true. This statement was

recently strengthened by Bourgain, Lindenstrauss, Michel & Venkatesh [15] who

proved that there is a constant κ > 0 such that for all x ∈ R,

lim inf
q→∞

q(log log log q)κ|q|a|q|b‖qx‖ = 0. (1.25)

These results provide a contrast to the classical setting of the Littlewood Conjec-

ture, where nothing seems to be gained by adding more real variables. The results

rely on understanding the dynamics of semigroups of toral endomorphisms associated

with the sequences D1 and D2. In simple terms, each of these semigroups Σ takes

the form of a countable set of positive integers. When a and b are multiplicatively

independent the set Σa,b =
{
albk

}
l,k≥0 forms a non-lacunary semigroup. That is,

a semigroup which cannot be generated by one element. Under these conditions,
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the techniques of [38] and [15] are applicable. However, the methods do not readily

extend to the case of lacunary semigroups.

The related metric question of how fast the in�mum in (1.24) tends to zero was

tackled by Bugeaud, Haynes & Velani in [19]. They established a mixed analogue of

Gallagher's theorem. The following improvement is proved in �4.1 of [9].

Theorem 1.39 ([9], 2010). For n ≥ 1 choose any two integers s, t ≥ 0 such that n =

s+t. Let p1, . . . , ps be distinct prime numbers and let ψ be a decreasing approximating

function. Then, for almost every (x1, . . . , xt) ∈ Rt the inequality

|q|p1 · · · |q|ps ‖qx1‖ · · · ‖qxt‖ ≤ ψ(q)

has in�nitely (resp. �nitely) many solutions q ∈ N if the sum

∞∑
r=1

ψ(r) logn−1 r

diverges (resp. converges).

39



Chapter 2

Summary of papers

We now summarize the results and methods used in each of the papers on which this

thesis is based. Complete reproductions of the papers are included as an appendix

to the thesis.

2.1 Paper I

The fundamental motivation for Paper I is the result of Kim described in �1.2.2.

That is, for any irrational x the set of real α for which

lim inf
q→∞

q ‖qx− α‖ = 0 (2.1)

has full Lebesgue measure. In Paper I the complementary measure zero set associated

with (2.1) is considered; namely the set

Badx :=

{
α ∈ I : inf

q∈Z6=0

|q| ‖qx− α‖ > 0

}
.

Essentially, Kim's result comes about upon considering problems associated with a

rotation of the unit circle through an angle x. In the paper we consider more general

actions than circle rotations and, as far as we know, were the �rst to consider the

general twisted badly approximable set

BadL(n,m) =

{
α ∈ In : inf

q∈Zm
6=0

|q|m/n ‖Lq−α‖ > 0

}
.

When there is no need to refer to speci�c values of n and m in Paper I, the set

BadL(n,m) is simply denoted BadL for conciseness.

40



Chapter 2: Summary of papers

The underlying goal of the paper is to show that no matter which point L ∈ Inm

we choose, the set BadL(n,m) is of maximal Hausdor� dimension.

Theorem 2.1. For any L ∈ Matn×m(R),

dimBadL(n,m) = n .

In terms of the more familiar one-dimensional setting, the theorem reads as follows.

Corollary 2.2. For any x ∈ R,

dimBadx = 1 .

Note that if x is rational, the set Badx contains all points in the unit interval

bounded away from a �nite set of rationals. Thus, for rational x not only is Badx
of full dimension but it is of full Lebesgue measure. In higher dimensions, similar

phenomena occur in which the �nite set of points is replaced by a �nite set of a�ne

subspaces. To be precise, when L is rational (in the sense de�ned in �1.2.2) the orbit

{LZm} fails to be dense in In and thus BadL(n,m) is of full Lebesgue measure.

Inspired by the works of Kleinbock & Weiss [65] and Kristensen, Thorn & Ve-

lani [67], Theorem 2.1 is deduced as a consequence of a general statement concerning

the intersection of BadL(n,m) with certain compact subsets of Rn.

Theorem 2.3. Let K ⊆ In be a compact set supporting an absolutely decaying, δ-

Ahlfors regular measure µ and assume that δ > n−1. Then, for any L ∈ Matn×m(R),

dim(BadL(n,m) ∩K) = δ.

Although Theorem 2.3 constitutes the main result of the paper, an `auxiliary'

result is also proven. We include it here for the simple fact that it is new and of

independent interest. In short, it strengthens and generalises a theorem of Polling-

ton [82] and de Mathan [77, 78] that answers a question of Erd®s. A sequence

{yi} :=
{
yi := (y1,i, . . . , yn,i) ∈ Zn6=0

}
is said to be lacunary if there exits a constant

λ > 1 such that

|yi+1| ≥ λ |yi| ∀ i ∈ N .

Given a sequence {yi} in Zn, let

Bad{yi} :=

{
x ∈ In : inf

i∈N
‖yi · x‖ > 0

}
.
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Theorem 2.4. Let {yi} be a lacunary sequence in Zn. Furthermore, let K ⊆ In be

a compact set which supports an absolutely η-decaying, δ-Ahlfors regular measure µ

such that δ > n− 1. Then

dim(Bad{yi} ∩K) = δ.

On setting n = 1,K = I and µ to be one-dimensional Lebesgue measure, Theorem 2.4

corresponds to the result of Pollington and de Mathan referred to above. Note that

Moshchevitin [81, Lemma 1] has since shown that the set Bad{yi} is winning for any

lacunary sequence {yi}. However, the problem of strengthening his statement to the

full generality of Theorem 2.4 is still open at the time of writing.

It is in proving Theorem 2.4 that we use the general framework developed by

Kristensen, Thorn & Velani in [67]. Their machinery was designed for establishing

dimension statements for a large class of badly approximable sets. Essentially, our

proof is an application of the framework and reduces to showing that the conditions

of the main theorem in [67] are satis�ed. A simpli�cation of this main theorem,

geared towards the particular application we have in mind, is presented in �3 of

Paper I. For brevity we refrain from restating it here.

To prove Theorem 2.3 we utilise the existence of `special' sequences which for the

most part are constructed in [20]. In �2 of [20], it is shown that associated with each

irrational matrix L ∈ Matn×m(R) there exists a sequence of integer vectors yi ∈ Zn

satisfying the following properties:

(i) 1 = |y1| < |y2| < |y3| < . . . ,

(ii)
∥∥LTy1

∥∥ > ∥∥LTy2

∥∥ > ∥∥LTy3

∥∥ > . . . ,

(iii) For all non-zero y ∈ Zn with |y| < |yi+1| we have that
∥∥LTy∥∥ ≥ ∥∥LTyi∥∥ .

Such a sequence {yi} is referred to as a sequence of best approximations to L. In the

one-dimensional case (n = m = 1), when L is an irrational number x, the sequence

of best approximations is precisely the sequence of denominators associated with the

convergents of the continued fraction representing x. It is also shown in [20] that

one can �nd a lacunary subsequence of {yi} which is not `too sparse'. Applying

Theorem 2.4 to this subsequence and then using methods similar to those found in

�6 of Chapter V in Cassels' book [24] we obtain a proof of Theorem 2.3.

It is worth noting that since publication Theorem 2.3 has been extended in many

ways. As discussed earlier, improved statements can now be found in [16, 39, 81, 95].
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2.2 Paper II

In short, the intentions of Paper II are to establish versions of both Kurzweil's theo-

rem and Theorem 2.1 within the weighted setting. At the heart of these extensions

is a natural generalization of the set Bad(i, j). For any n-tuple of real numbers

k = {k1, . . . , kn} such that

kj > 0 (1 ≤ j ≤ n) and
n∑
j=1

kj = 1, (2.2)

we de�ne

Bad(k) =

{
x ∈ In : inf

q∈N
q · max

1≤j≤n

(
‖qxj‖1/kj

)
> 0

}
.

We refer to Bad(k) as the set of k-badly approximable vectors. Of particular interest

is the relationship of Bad(k) with the following `well approximable' twisted sets.

For any approximating function ψ, any irrational vector x ∈ In and any n-tuple k

satisfying (2.2) let

Wx(k, ψ) :=

{
α ∈ In : max

1≤j≤n

(
‖qxj − αj‖1/kj

)
≤ ψ(q) for inf. many q ∈ N

}
.

The main result of Paper II relies on an understanding of the metric theory

surrounding Wx(k, ψ). By utilising the Borel-Cantelli Lemma it is easy to show

that for every n-tuple k satisfying (2.2), any irrational vector x ∈ In and every

approximating function ψ we have

λn (Wx(k, ψ)) = 0 if
∞∑
r=1

ψ(r) < ∞.

On the other hand, the set of irrational vectors for which we obtain a set of full

measure is dependent on the choice of approximating function.

Theorem 2.5. Let ψ be a �xed decreasing approximating function. Then, for almost

all irrational vectors x ∈ In

λn (Wx(k, ψ)) = 1 if
∞∑
r=1

ψ(r) = ∞.

This result follows immediately from a more general statement that can be found

in the Appendix of Paper II. E�ectively, Cassels' proof of Theorem 1.30 is merged

with that of Gallagher's general metric result from [45] to provide a more general
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doubly metric theorem. It should also be compared with the results of Schmidt [89]

and Sprindzuk [94].

In what follows, a decreasing approximating function for which the sum
∑∞

r=1 ψ(r)

diverges will be referred to as divergent and the set of all divergent decreasing approx-

imating functions will be denoted D. Recognising the similarities between Theorem

2.5 and Kurzweil's result, the paper asks whether there exist irrational vectors x

such that a set of full measure is obtained regardless of the choice of divergent ap-

proximating function. In other words, consider the set

V (k, ψ) := {x ∈ In : λn (Wx(k, ψ)) = 1} .

Note that Theorem 2.5 is equivalent to the statement �λn (V (k, ψ)) = 1 for every

ψ ∈ D�. Then, we wish to characterise the intersection⋂
ψ∈D

V (k, ψ). (2.3)

It is certainly not obvious that this intersection is non-empty in general. Kurzweil's

theorem is precisely the statement that⋂
ψ∈D

V (n−1, ψ) = Bad(n−1),

where n−1 = (n−1, . . . , n−1) ∈ In. With this in mind, the following result represents

the main theorem of Paper II and generalises Kurzweil's theorem from the classical

to the weighted setting.

Theorem 2.6. For every n-tuple k of real numbers satisfying (2.2) we have⋂
ψ∈D

V (k, ψ) = Bad(k).

With reference to �1.1.8, Theorem 1.23 and the natural generalisation of state-

ment (1.17) now immediately imply that the intersection on the LHS above is of

Lebesgue measure zero and full Hausdor� dimension respectively. We remark that

for ease of notation only the case `n = 2' is proved in the paper. However, the

arguments can easily be extended to a general n.

The proof of Theorem 2.6 owes much to Kurzweil's original techniques and takes

the form of two inclusion lemmas. Firstly, it is shown that if x /∈ Bad(k) then

x /∈
⋂
ψ∈D V (k, ψ). In particular, for every such x a function ψ0 := ψ0(x) ∈ D is
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constructed in such a way that

λn (Wx(k, ψ0)) = 0.

The proof of the second inclusion is much more tricky as it involves proving that for

any x ∈ Bad(k) and every divergent approximating function ψ we have

λn (Wx(k, ψ)) = 1. (2.4)

The hard work is done in showing that the LHS of (2.4) is strictly positive for some re-

�nement of the function ψ. Essentially, this involves transferring Kurzweil's original

methods to the weighted setting. Finally, by constructing other approximating func-

tions from ψ we are able to directly apply a powerful lemma presented in Kurzweil's

paper to show that (2.4) always holds.

Paper II also o�ers a supplementary result concerning the natural weighted ana-

logue of the simultaneous twisted set BadL(n, 1). To the best of our knowledge such

an analogue has not been studied before and is de�ned as follows. For any n-tuple

k of real numbers satisfying (2.2) and any x ∈ In let

Badx(k) =

{
α ∈ In : inf

q∈Z6=0

|q| · max
1≤j≤n

(
‖qxj − αj‖1/kj

)
> 0

}
.

Whilst a complete weighted version of Theorem 2.1 still seems out of reach, Paper II

does make a contribution towards determining the Hausdor� dimension of Badx(k).

Theorem 2.7. For any n-tuple k of real numbers satisfying (2.2) and any vector

x ∈ Bad(k),

dimBadx(k) = n.

The proof of this theorem once again makes use of the general framework devel-

oped by Kristensen, Thorn & Velani. An account of this framework slightly di�erent

to that used in Paper I is given in �5 of Paper II. In all likelihood the above result is

true without the assumption on x and to that end the following conjecture is made.

Conjecture 2.8. For any n-tuple k of real numbers satisfying (2.2) and any irra-

tional vector x ∈ In,
dimBadx(k) = n.

It seems that the ideas of Paper I are not extendible to the full weighted setting

of Conjecture 2.8; a new approach may be required. Note that Theorem 2.7, together

45



Chapter 2: Summary of papers

with (1.17) trivially implies that the conjecture is true for a set of irrational vectors

x of full Hausdor� dimension.

2.3 Paper III

Paper III takes the form of a short note whose intention is to generalise Theorem 2.7.

For any n-tuple k of real numbers satisfying (2.2) let

Bad(k, n,m) =

{
L ∈ Inm : inf

q∈Zm
6=0

|q|m · max
1≤j≤n

(
‖Lj(q)‖1/kj

)
> 0

}
denote the linear forms version of the set Bad(k) discussed above. For completeness,

we mention that Bad(k, n,m) was also shown to be winning by Kleinbock & Weiss

in [66]. For any matrix L ∈ Matn×m(R) let

BadL(k, n,m) =

{
α ∈ In : inf

q∈Zm
6=0

|q|m · max
1≤j≤n

(
‖Lj(q)− αj‖1/kj

)
> 0

}
.

The main result of the Paper III is the following improvement of Theorem 2.7.

Theorem 2.9. For any n-tuple k of real numbers satisfying (2.2) and any point

L ∈ Bad(k, n,m) the set BadL(k, n,m) is winning.

The proof of this statement uses similar ideas to those of Paper I. This time we

construct a weighted varient {wi} of the sequence of best approximations and, using

the properties of Bad(k, n,m), show that one can �nd a suitable subsequence of

{wi} whose supremum norms are lacunary. Once more it seems di�cult to remove

the restriction on the choice of matrix L using current methods. Indeed, the problem

seems to boil down to the fact that the supremum norm | . | on Rn is not equivalent to

the weighted norm | . |k de�ned by |x|k = max1≤j≤n(|xj|1/kj). This lack of equivalence
can be bypassed under the assumption that L ∈ Bad(k, n,m) but in general it poses

too big an obstacle to clear. Certainly we can always construct a subsequence of

{wi} whose weighted norms are lacunary but this does not imply there exists a

subsequence whose supremum norms are lacunary and the former is not a strong

enough property with which to prove winning in the context of the devices we use.

The proof is completed using Moshchevitin's previously mentioned result concerning

Bad{wi} and arguments similar to those used in Chapter V of [24].
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2.4 Paper IV

Paper IV is concerned with problems surrounding the Mixed Littlewood Conjecture.

In particular, the main result makes a contribution towards solving the conjecture

in the case of more than one pseudo-absolute value.

Recall that Einsiedler & Kleinbock [38] have proven that if p1 and p2 are two

distinct primes then for any x ∈ R

lim inf
q→∞

q|q|p1|q|p2‖qx‖ = 0.

It was mentioned in their paper that the dynamical machinery they used does not

readily extend to the case of more general pseudo-absolute values. However, the

main result of Paper IV demonstrates how recent measure rigidity theorems can be

combined with bounds for linear forms in logarithms to obtain more general results.

Theorem 2.10. Suppose that a ≥ 2 is an integer and that D = {nk} is a pseudo-

absolute value sequence all of whose elements are divisible by �nitely many �xed

primes coprime to a. If there is a δ ≥ 0 with

log nk ≤ kδ for all k ≥ 2, (2.5)

then for any x ∈ R we have that

inf
q∈N

q|q|a|q|D‖qx‖ = 0. (2.6)

Our proof is inspired in part by Furstenberg's original proof of his Orbit Clo-

sure Theorem [43], and by the ideas used by Bourgain, Lindenstrauss, Michel &

Venkatesh in [15]. Of huge signi�cance to us is the intrinsic relationship between

entropy and dimension (a thorough account of various forms of entropy complete

with de�nitions is given in �2 of Paper IV). In the proof we combine this relationship

with a consequence of a measure rigidity theorem of Lindenstrauss [72]. This allows

us to reduce the proof to showing that the closure of the set
{
alnkx

}
l,k≥0 is of strictly

positive dimension. Despite the fact that
{
alnk

}
l,k≥0 is not in general a semigroup,

a lower bound for linear forms in logarithms due to Baker & Wüstholz [6] aids us in

accomplishing this goal.

Of particular interest is the case in which consecutive elements of the sequence

D have bounded ratios. Here, Theorem 2.10 gives a quite satisfactory answer to the

problem at hand.
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Corollary 2.11. Suppose that a ≥ 2 is an integer and that D is a pseudo-absolute

value sequence with bounded ratios, all of whose elements are coprime to a. Then for

any x ∈ R we have that

inf
q∈N

q|q|a|q|D‖qx‖ = 0.

After establishing Theorem 2.10 the paper turns to the problem of determining

the almost everywhere behaviour of the quantity q |q|D ‖qx‖. In particular it is shown

that the statement of Theorem 1.39 can be extended to general pseudo-absolute

values | · |D. In short, we prove an analogue of Gallagher's theorem pertaining to

a mixed variant of the set M(ψ, n). The quality of approximation obtained will

necessarily depend on the rate at which the sequence D grows. For this reason,

de�ne the quantity

M(N) = max {k : nk ≤ N} .

Theorem 2.12. Suppose that ψ is a decreasing approximating function and that

D = {nk} is a pseudo-absolute value sequence satisfying

M(N)∑
k=1

ϕ(nk)

nk
�M(N) for all N ∈ N. (2.7)

Then for almost all x ∈ R the inequality

|q|D ‖qx‖ ≤ ψ(q) (2.8)

has in�nitely (resp. �nitely) many solutions q ∈ N if the sum

∞∑
r=1

M(r)ψ(r) (2.9)

diverges (resp. converges).

The proof of this result is a direct application of the Du�n-Schae�er Theorem.

With reference to this theorem, most of the work required to establish Theorem 2.12

is in showing that condition (1.9) holds for some suitably chosen function ψ. We note

that when (2.9) converges the inequality (2.8) always has �nitely many solutions,

regardless of whether or not (2.7) is satis�ed. When | · |D = | · |p for some prime p we

have thatM(N) � logN , and Theorem 2.12 reduces in this case to the previously

mentioned result from [19].

To see what Theorem 2.12 means in terms of the in�ma type expressions that

occur in the Mixed Littlewood Conjecture consider the following. If D satis�es (2.7)
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then for almost every x ∈ R we have that

inf
q∈N

qM(q)(log q)(log log q) |q|D ‖qx‖ = 0,

while on the other hand for any ε > 0 and for almost every x ∈ R,

inf
q∈N

qM(q)(log q)(log log q)1+ε |q|D ‖qx‖ > 0.

This should be compared with statements (1.8) and (1.25).

The hypothesis on D in Theorem 2.12 is not that restrictive in practice. Although

it is possible to choose D so that (2.7) does not hold, any reasonably chosen pseudo-

absolute value sequence should satisfy the condition. In particular if D has bounded

ratios or even if the elements of D are divisible only by some �nite collection of

primes then it is easy to check that (2.7) is satis�ed. For the interested reader it is

indicated in �6 of Paper IV how one can construct a sequence D for which (2.7) fails.

2.5 Paper V

Paper V develops the metric theory associated with a mixed version of the Schmidt

Conjecture. Previous study of mixed problems in the simultaneous setting had been

limited to the paper [2], where Badziahin, Levesley & Velani derived a mixed analogue

to Theorem 1.25. In Paper V a metrical theorem is established concerning the mixed

and weighted simultaneous set

WD(i, j, ψ) :=
{
x ∈ I : max

{
|q|1/iD , ‖qx‖1/j

}
≤ ψ(q) for inf. many q ∈ N

}
,

de�ned for any two real numbers i, j satisfying

i, j > 0 and i+ j = 1. (2.10)

In Paper IV it was demonstrated that when D has bounded ratios the Lebesgue

measure of the setsM(ψ, 2) and its natural mixed counterpart depend on the asymp-

totic behaviour of the same sum. In Paper V we show that the sets W (i, j, ψ) and

WD(i, j, ψ) enjoy a similar property. In doing so, we provide a complete mixed and

weighted analogue of Khintchine's theorem.
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Theorem 2.13. For any pair of reals i, j satisfying (2.10), any decreasing approxi-

mating function ψ and any D-adic sequence with bounded ratios we have

λ (WD(i, j, ψ)) =


0,

∑
r∈N

ψ(r) < ∞.

1,
∑
r∈N

ψ(r) = ∞.

We remark that obtaining an equivalent statement to that of Theorem 2.13 for

pseudo-absolute value sequences with non-bounded ratios, whilst desirable, would

require more than trivial improvements over the techniques presented. In addition, it

is worth emphasising that the degenerate cases `i = 0' and `j = 0' are not considered

here. On employing the convention that x1/y = 0 when y = 0 for all real x, it is easily

veri�ed that in the former case Theorem 2.13 reduces to the classical one-dimensional

result of Khintchine, whilst in the latter case the measure of the corresponding set

WD(1, 0, ψ) trivially ful�ls a `zero-one' law. Indeed,

WD(1, 0, ψ) =

I, ψ(q) > |q|D for in�nitely many q ∈ N.

∅, otherwise.

It is proven in Paper V that the monotonicity assumption imposed on the function

ψ in Theorem 2.13 is absolutely necessary. Furthermore, the `most natural' mixed

analogue of the Du�n-Schae�er Conjecture is shown to be false. To be precise, the

following statement is proven. For notational purposes, let

A := A(D, ψ, i) :=
{
r ∈ N : |r|D < ψi(r)

}
.

Theorem 2.14. For any pair of reals i, j satisfying (2.10) and any bounded D-adic
sequence there exists an approximating function Φ : N→ R≥0 for which

λ(WD(i, j,Φ)) = 0 but
∑
r∈A

ϕ(r)

r
Φj(r) =∞.

For the most part the proof of this result uses ideas akin to the original arguments

of Du�n & Schae�er.

Theorem 2.13 is proven as a consequence of a more general Hausdor� measure

result established in the paper.
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Theorem 2.15. Fix any pair of reals i, j satisfying (2.10), any D-adic sequence

with bounded ratios and any real s ∈ (i, 1]. Then, for any approximating function ψ

for which r1−sψi+js(r) is decreasing we have

Hs (WD(i, j, ψ)) =


0,

∑
r∈N

r1−s ψi+js(r) < ∞.

Hs([0, 1)),
∑
r∈N

r1−s ψi+js(r) =∞ and ψ is monotonic.

It should be mentioned that we do not claim the conditions imposed in Theorem 2.15

are optimum. In fact, we suspect that the assumption that r1−sψi+js(r) is decreasing

may be unnecessary. Our method is based on the notion of `ubiquity', a fundamental

tool for establishing measure theoretic statements.

The concept of ubiquitous systems was �rst introduced by Dodson, Rynne &

Vickers in [34] as a method of determining lower bounds for the Hausdor� dimension

of limsup sets. Recently, this idea was developed by Beresnevich, Dickinson & Velani

in [8] to provide a very general framework for establishing the Hausdor� measure of

a large class of limsup sets. A simpli�ed account of ubiquity, tailored to our needs,

is presented in �4 of the paper.

Another consequence of Theorem 2.15 is the following statement.

Corollary 2.16. Choose any pair of reals i, j satisfying (2.10), any D-adic sequence
with bounded ratios and any decreasing approximating function ψ. Then, if there

exists a real number τ such that

τ = lim
r→∞

− logψ(r)

log r
<

1

i

we have

dim (WD(i, j, ψ)) =
2− iτ
1 + jτ

.

This result provides a complete analogue to the Jarník-Besicovich Theorem, which

corresponds to the case when i = 0 and j = 1. We remark that when ψ(q) = q−1/i

the set WD(i, j, ψ) is empty.
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Papers

This appendix contains full reproductions of the papers on which this thesis is based.

Each paper has self-contained section and equation numbering along with its own

list of references.
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ON SHRINKING TARGETS FOR Zm ACTIONS ON TORI

YANN BUGEAUD, STEPHEN HARRAP, SIMON KRISTENSEN

AND SANJU VELANI

Abstract. Let L be an n ×m matrix with real entries. Consider the set BadL
of α ∈ [0, 1)n for which there exists a constant c(α) > 0 such that for any q ∈ Zm

the distance between α and the point {Lq} is at least c(α) |q|−m/n
. It is shown

that the intersection of BadL with any suitably regular fractal set is of maximal
Hausdor� dimension. The linear form systems investigated in this paper are natural
extensions of irrational rotations of the circle. Even in the latter one-dimensional
case, the results obtained are new.

1. Introduction

Consider initially a rotation of the unit circle through an angle x. Identifying the

circle with the unit interval [0, 1) and the base point of the iteration with the origin,

we are considering the numbers 0, {x}, {2x}, . . . where { . } denotes the fractional

part. If x is rational, the rotation is periodic. On the other hand, it is a classical

result of Weyl [24] that any irrational rotation of the circle is ergodic. In other words,

{qx}q∈N is equidistributed for irrational x.

Almost every orbit of an ergodic transformation visits any �xed set of positive

measure in�nitely often. The `shrinking target problem' introduced in [9] formulates

the natural question of what happens if the target set � the set of positive measure �

is allowed to shrink with time. For example and more precisely, is there an optimal

`shrinking rate' for which almost every orbit visits the shrinking target in�nitely

often? In the speci�c case of irrational rotations of the circle, the shrinking target sets

correspond to subintervals of [0, 1) whose lengths decay according to some speci�ed

function ψ. In other words, the problem translates to considering inequalities of the

type

‖qx− α‖ < ψ(q), (1.1)

where α ∈ [0, 1) and ‖ . ‖ denotes the distance to the nearest integer. The following

statement dates back to Khintchine [10] and gives the `optimal' choice of ψ in the

non-trivial case that x is irrational and α 6= sx + t for any integers s and t. The

inequality

‖qx− α‖ < C(x)

q
(1.2)
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is satis�ed for in�nitely many integers q with C(x) := 1
4

√
1− 4λ(x)2 � the quantity

λ(x) := lim infq→∞ q ‖qx‖ is the Marko� constant of x. Note that λ(x) is strictly

positive whenever x is badly approximable by rationals. Thus, the above statement

strengthens a result of Minkowski [18]; namely that (1.2) has in�nitely many solutions

with C(x) = 1
4
. In the trivial case that x is irrational and α = sx+t for some integers

s and t, the classical theorem of Hurwitz implies that the inequality

‖qx− α‖ < 1 + ε√
5q

(ε > 0) (1.3)

is satis�ed for in�nitely many integers q. Since (1.3) is weaker than (1.2), it follows

that for any irrational x and any α the inequality (1.3) has in�nitely many solutions.

We now describe a metrical statement in which the right hand side of (1.3) and

indeed (1.2) can be signi�cantly improved � at a cost!

Kurzweil [14] showed that, for any non-increasing function ψ : N → R>0 such

that
∑
ψ(r) =∞ and for almost every irrational x, the set of α for which (1.1) has

in�nitely many solutions is of full Lebesgue measure. This cannot be improved upon

in the sense that there exist irrational x and a function ψ for which
∑
ψ(r) = ∞,

but the `full measure' conclusion fails to hold. Hence, the `almost every' aspect

of Kurzweil's result does not extend to all irrationals x without modi�cation � the

divergent sum condition is not enough.

Over the last few years, there has been much activity in investigating the shrinking

target problem associated with irrational rotations of the circle. For example, when

ψ(q) := q−v (v > 1), Bugeaud [3] and independently Schmeling & Trubetskoy [21]

have obtained the Hausdor� dimension of the set of α for which inequality (1.1) has

in�nitely many solutions. Fayad [8], A.-H. Fan & J. Wu [7], Kim [11] and Tseng

[22, 23] have built upon the work of Kurzweil in various directions. In particular,

Kim has proved that for any irrational x, the set of α for which

lim inf
q→∞

q ‖qx− α‖ = 0 (1.4)

has full measure. Rather surprisingly, Beresnevich, Bernik, Dodson & Velani [1] have

shown that this result and indeed the dimension result of Bugeaud and Schmeling

& Trubetskoy are consequences of the fact that for any irrational x and any α the

inequality (1.3) has in�nitely many solutions.

The result of Kim is the underlying motivation for our work. In this paper we

investigate the complementary measure zero set associated with (1.4); namely

Badx :=

{
α ∈ [0, 1) : ∃ c(α) > 0 s.t. ‖qx− α‖ ≥ c(α)

q
∀ q ∈ N

}
. (1.5)
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In fact, we will be concerned with more general actions than rotations of the circle.

Broadly speaking, there are two natural ways to generalise circle rotations. One

option is to increase the dimension of the torus; i.e. to consider the sequence {qx} in
[0, 1)n where x = (x1, . . . , xn)T ∈ Rn. The other option is to increase the dimension

of the group acting on the torus; i.e. to consider the sequence {x · q} where x =

(x1, . . . , xm) ∈ Rm and q = (q1, . . . , qm)T ∈ Zm.

It is possible to consider both the above mentioned options at the same time by

introducing a Zm action on the n-torus by n×m matrices. Indeed, we may consider

the points {Lq} ∈ [0, 1)n where L ∈ Matn×m(R) is �xed and q runs over Zm. In this

case, the natural analogue of Badx is the set

BadL :=

{
α ∈ [0, 1)n : ∃ c(α) > 0 s.t. ‖Lq−α‖ ≥ c(α)

|q|m/n
∀ q ∈ Zm \ {0}

}
.

Here and throughout, for a vector x in Rk we will denote by |x| the maximum

of the absolute values of the coordinates of x; i.e. the in�nity norm of x. Also,

‖x‖ := miny∈Zn |x− y|.

The underlying goal of this paper is to show that no matter which of the Zm

actions de�ned above we choose, the set BadL is of maximal Hausdor� dimension.

Theorem 1.1. For any L ∈ Matn×m(R),

dimBadL = n .

In terms of the more familiar setting of irrational rotations of the circle, the theorem

reads as follows.

Corollary 1.2. For any x ∈ R,

dimBadx = 1 .

Note that if x is rational, the set Badx is easily seen to contain all points in the

unit interval bounded away from a �nite set of points. Thus, for rational x not only

is Badx of full dimension but it is of full Lebesgue measure. In higher dimensions,

similar phenomena occur in which the �nite set of points is replaced by a �nite set

of a�ne subspaces. The reader is referred to [5] and �5 below for further details.

Inspired by the works of Kleinbock & Weiss [12] and Kristensen, Thorn & Velani

[13], we shall deduce Theorem 1.1 as a simple consequence of a general statement

concerning the intersection of BadL with compact subsets of Rn. The latter includes

exotic fractal sets such as the Sierpinski gasket and the van Koch curve.
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2. The setup and main result

Let (X, d) be a metric space and (Ω, d) be a compact subspace of X which supports

a non-atomic �nite measure µ. Throughout, B(c, r) will denote a closed ball in X

with centre c and radius r. The measure µ is said to be δ-Ahlfors regular if there

exist strictly positive constants δ and r0 such that for c ∈ Ω and r < r0

arδ ≤ µ(B(c, r)) ≤ brδ ,

where 0 < a ≤ 1 ≤ b are constants independent of the ball. It is easily veri�ed that

if µ is δ-Ahlfors regular then the Hausdor� dimension of Ω is δ; i.e.

dim Ω = δ . (2.1)

For further details including the de�nition of Hausdor� dimension the reader is re-

ferred to [17].

In the above, take X = Rn and let S denote a generic (n− 1)-dimensional hyper-

plane. For ε > 0, let S(ε) denote the ε-neighbourhood of S. The measure µ is said

to be absolutely η-decaying if there exist strictly positive constants C, η and r0 such

that for any hyperplane S, any ε > 0, any c ∈ Ω and any r < r0,

µ(B(c, r) ∩ S(ε)) ≤ C
( ε
r

)η
µ(B(c, r)).

It is worth mentioning that if µ is δ-Ahlfors regular and absolutely η-decaying, then

µ is an absolutely friendly measure as de�ned in [20].

Armed with the notions of Ahlfors regular and absolutely decaying, we are in the

position to state our main result.

Theorem 2.1. Let K ⊆ [0, 1]n be a compact set which supports an absolutely η-

decaying, δ-Ahlfors regular measure µ such that δ > n − 1. Then, for any L ∈
Matn×m(R),

dim(BadL ∩K) = δ.

In view of (2.1), the theorem can be interpreted as stating that within K the set

BadL is of maximal dimension. It is easily seen that Theorem 1.1 is a consequence of

Theorem 2.1 � simply take K = [0, 1]n and µ to be n-dimensional Lebesgue measure.

Trivially, n-dimensional Lebesgue measure is n-Ahlfors regular and absolutely 1-

decaying. More exotically, the natural measures associated with self-similar sets in

Rn satisfying the open set condition are absolutely η-decaying and δ-Ahlfors regular
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� see [12, 20]. Thus, Theorem 2.1 is applicable to these sets which in general are of

fractal nature.

Although Theorem 2.1 constitutes our main result, we state an `auxiliary' result in

this section for the simple fact that it is new and of independent interest. In short, it

strengthens and generalises a theorem of Pollington [19] and de Mathan [15, 16] that

answers a question of Erd®s. A sequence {yi} :=
{
yi := (y1,i, . . . , yn,i)

T ∈ Zn \ {0}
}

is said to be lacunary if there exits a constant λ > 1 such that

|yi+1| ≥ λ |yi| ∀ i ∈ N .

Given a sequence {yi} in Zn, let

Bad{yi} := {x ∈ [0, 1]n : ∃ c(x) > 0 s.t. ‖yi · x‖ ≥ c(x) ∀ i ∈ N} .

Theorem 2.2. Let {yi} be a lacunary sequence in Zn. Furthermore, let K ⊆ [0, 1]n

be a compact set which supports an absolutely η-decaying, δ-Ahlfors regular measure

µ such that δ > n− 1. Then

dim(Bad{yi} ∩K) = δ.

On setting n = 1, K = [0, 1] and µ to be one-dimensional Lebesgue measure, Theo-

rem 2.2 corresponds to the theorem of Pollington and de Mathan referred to above.

3. Preliminaries for Theorem 2.2

The proof of Theorem 2.2 makes use of the general framework developed in [13]

for establishing dimension statements for a large class of badly approximable sets. In

this section we provide a simpli�cation of the framework that is geared towards the

particular application we have in mind. In turn, this will avoid excessive referencing

to the conditions imposed in [13] and thereby improve the clarity of our exposition.

As in �2, let (X, d) be a metric space and (Ω, d) be a compact subspace of X which

supports a non-atomic �nite measure µ. Let R := {Ra ∈ X : a ∈ J} be a family of

subsets Ra of X indexed by an in�nite countable set J . The sets Ra will be referred

to as the resonant sets. Next, let β : J → R>0 : a 7→ βa be a positive function on

J such that the number of a ∈ J with βa bounded above is �nite. Thus, βa tends

to in�nity as a runs through J . We are now in the position to de�ne the badly

approximable set

Bad(R, β) :=

{
x ∈ Ω : ∃ c(x) > 0 s.t. d(x,Ra) ≥

c(x)

βa
∀ a ∈ J

}
,
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where d(x,Ra) := infr∈Ra d(x, r). Loosely speaking, Bad(R, β) consists of points in

Ω that `stay clear' of the family R of resonant sets by a factor governed by β.

The goal is to determine conditions under which dimBad(R, β) = dim Ω; that is

to say that the set of badly approximable points in Ω is of maximal dimension. With

this in mind, we begin with some useful notation. For any �xed integer k > 1 and any

integer t ≥ 1, let Bt := {x ∈ Ω : d(c, x) ≤ 1/kt} denote a generic closed ball in Ω of

radius 1/kt with centre c in Ω. For any θ ∈ R>0, let θBt := {x ∈ Ω : d(c, x) ≤ θ/kt}
denote the ball Bt scaled by θ. Finally, let J(t) := {a ∈ J : kt−1 ≤ βa < kt}. The

following statement is a simple consequence of combining Theorem 1 and Lemma 7

of [13] and realises the above mentioned goal.

Theorem KTV. Let (X, d) be a metric space and (Ω, d) be a compact subspace of

X which supports of a δ-Ahlfors regular measure µ. Let k be su�ciently large. Then

for any θ ∈ R>0, any t ≥ 1 and any ball Bt there exists a collection C(θBt) of disjoint

balls 2θBt+1 contained within θBt such that #C(θBt) ≥ κ1 k
δ . In addition, suppose

for some θ ∈ R>0 we also have that

#

{
2θBt+1 ⊂ C(θBt) : min

a∈J(t+1)
d(c, Ra) ≤ 2θk−(t+1)

}
≤ κ2k

δ , (3.1)

where 0 < κ2 < κ1 are absolutely constants independent of k and t. Furthermore,

suppose

dim (∪a∈JRa) < δ . (3.2)

Then

dimBad(R, β) = δ .

Note that the theorem together with (2.1) implies that dimBad(R, β) = dim Ω.

4. Proof of Theorem 2.2

We are given a lacunary sequence {yi}. For each index i ∈ N and any integer

p, consider the hyperplane Sp,i := {x ∈ Rn : yi · x = p} . It is easily veri�ed that

Bad{yi} ∩ K is equivalent to the set of x in K for which there exists a constant

c(x) > 0 such that x avoids the c(x)/ |yi|2�neighbourhood of Sp,i for every choice of

i and p; that is

Bad{yi} ∩K =

{
x ∈ K : ∃ c(x) > 0 s.t. min

y∈Sp,i
|x− y|2 ≥

c(x)

|yi|2
∀ (p, i) ∈ Z× N

}
.
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Here | . |2 is the standard Euclidean norm in Rn. With reference to �3, set

X := Rn , Ω := K , d := | . |2 , J := {(p, i) ∈ Z× N} ,

a := (p, i) ∈ J , Ra := Sp,i and βa := |yi|2 .

It follows that

Bad(R, β) = Bad{yi} ∩K .

The upshot of this is that the proof of Theorem 2.2 is reduced to showing that the

conditions of Theorem KTV are satis�ed.

For k > 1 and t ≥ 1, let Bt be a generic closed ball of radius k−t and centre in K.

For k su�ciently large and any θ ∈ R>0, Theorem KTV guarantees the existence of

a collection C(θBt) of disjoint balls 2θBt+1 contained within θBt such that

#C(θBt) ≥ κ1 k
δ .

The positive constant κ1 is independent of k and t. We now endeavor to show that

the additional condition (3.1) on the collection C(θBt) is satis�ed. To this end, set

θ := (2k)−1 and proceed as follows. Fix t ≥ 1 and assume that there exists an index

i such that

kt ≤ |yi|2 < kt+1 . (4.1)

If this is not the case, the left hand side of (3.1) is zero and the additional con-

dition is trivially satis�ed. Associated with the index i is the family of hyper-

planes {Sp,i : p ∈ Z}. The distance between any two such hyperplanes is at least

|yi|−12 > k−(t+1). The diameter of the ball θBt is k
−(t+1). Thus, for any element of

the sequence {yi} satisfying (4.1) there is at most one hyperplane passing through

θBt. Assume, the hyperplane Sp,i passes through θBt and consider the counting

function

ω(t, p, i) := # {2θBt+1 ⊂ C(θBt) : 2θBt+1 ∩ Sp,i 6= ∅} .

The balls 2θBt+1 are disjoint and each is of diameter 4θk−(t+1). Thus, on setting

ε := 8θk−(t+1) it follows that

ω(t, p, i) ≤ #
{

2θBt+1 ⊂ C(θBt) : 2θBt+1 ⊂ S(ε)
p,i

}
≤

µ(θBt ∩ S(ε)
p,i )

µ(2θBt+1)
.

On making use of the fact that µ is absolutely η-decaying and δ-Ahlfors regular, it

is readily veri�ed that

ω(t, p, i) ≤ κ kδ−η .
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The absolute constant κ is dependent only on η and δ. Next, let υ(t, {yi}) denote

the number of elements of the sequence {yi} satisfying (4.1). Since {yi} is lacunary,
we �nd that for k su�ciently large

υ(t, {yi}) ≤ 1 + log(
√
n k)/ log λ <

κ1
2κ

kη .

Here, λ > 1 is the lacunarity constant and we have used the fact that |y| ≤ |y|2 ≤√
n |y| for y ∈ Zn. On combining the above upper bound estimates, we have that

l.h.s. of (3.1) < υ(t, {yi}) × ω(t, p, i)

≤ κ1
2κ
kη × κkδ−η = 1

2
κ1k

δ .

Thus, with θ := (2k)−1 the collection C(θBt) satis�es (3.1). Finally, note that the

collection {Sp,i : (p, i) ∈ Z× N} of hyperplanes (resonant sets) is countable and so

dim (∪Sp,i) = n− 1 .

We are given that δ > n − 1 and so (3.2) is trivially satis�ed. Thus, the conditions

of Theorem KTV are satis�ed and Theorem 2.2 follows.

5. Preliminaries for Theorem 2.1

The proof of Theorem 2.1 makes use of the existence of `special' sequences which

for the most part are constructed in [5]. Throughout, Mat∗n×m(R) will denote the

collection of matrices L ∈ Matn×m(R) for which the associated groupG := LTZn+Zm

has rank n+m. In Section 2 of [5], it is shown that associated with each matrix L ∈
Mat∗n×m(R) there exists a sequence {yi} of integer vectors yi = (y1,i, . . . , yn,i)

T ∈ Zn

satisfying the following properties:

(i) 1 = |y1| < |y2| < |y3| < . . . ,

(ii)
∥∥LTy1

∥∥ > ∥∥LTy2

∥∥ > ∥∥LTy3

∥∥ > . . . ,

(iii) For all non-zero y ∈ Zn with |y| < |yi+1| we have that
∥∥LTy∥∥ ≥ ∥∥LTyi∥∥ .

Such a sequence {yi} is referred to as a sequence of best approximations to L. In the

one-dimensional case (n = m = 1), when L is an irrational number x, the sequence

of best approximations is precisely the sequence of denominators associated with the

convergents of the continued fraction representing x.

Let {yi} be a sequence of best approximations to a matrix L ∈ Mat∗n×m(R). A

further property enjoyed by {yi}, is that∥∥LTyi∥∥ ≤ |yi+1|−m/n ∀ i ∈ N. (5.1)
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This property is easily deduced via Dirichlet's box principle � see Section 2 of [5] for

the details.

The following result, which is taken from Section 4 of [5], enables us to extract a

lacunary subsequence from a given sequence of best approximations. This will allow

us to utilise Theorem 2.2 in the course of establishing Theorem 2.1.

Lemma BL. Let L ∈ Mat∗n×m(R) and let {yi} be a sequence of best approximations

to L. Then, there exists an increasing function φ : N → N such that φ(1) = 1 and

for i ≥ 2 ∣∣yφ(i)∣∣ ≥ √9n
∣∣yφ(i−1)∣∣ and

∣∣yφ(i−1)+1

∣∣ ≥ ∣∣yφ(i)∣∣
9n

. (5.2)

It is clear that the sequence
{
yφ(i)

}
is lacunary and that it also satis�es (5.1); i.e.∥∥LTyφ(i)∥∥ ≤ ∣∣yφ(i)+1

∣∣−m/n ∀ i ∈ N. (5.3)

The next inequality follows directly from the de�nition of the norms involved. For

any x and y in Rk, we have that

‖x · y‖ < k |x| ‖y‖ . (5.4)

We end this section with a short discussion that allows us to assume that L ∈
Mat∗n×m(R) when proving Theorem 2.1. With this in mind, suppose L ∈ Matn×m(R)

and that the rank of the associated group G := LTZn + Zm is strictly less than

n + m. Then, it is easily veri�ed that {Lq : q ∈ Zm} is restricted to at most a

countable family of positively separated, parallel hyperplanes in Rn. Let S denote

the set of these hyperplanes. Then,

K \ S = BadL ∩K .

We are given that δ > n− 1 which together with (2.1) implies that dimK is strictly

greater than dimS. Thus, dim(K \ S) = dimK and the statement of Theorem 2.1

follows for any L /∈ Mat∗n×m(R).

6. Proof of Theorem 2.1

Without loss of generality, assume that L ∈ Mat∗n×m(R) and let {yi} be a se-

quence of best approximations to L. In view of Lemma BL, there exists a lacunary

subsequence
{
yφ(i)

}
of the sequence of best approximations. For any c > 0, let

B{yφ(i)}(c) :=
{
α ∈ K :

∥∥yφ(i) ·α∥∥ ≥ c ∀ i ∈ N
}
.
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It is readily veri�ed that Bad{yφ(i)} ∩K =
⋃
c>0B{yφ(i)}(c) and that

dimB{yφ(i)}(c) → dim (Bad{yφ(i)} ∩K) as c→ 0 .

For c su�ciently small, suppose for the moment that

B{yφ(i)}(c) ⊆ BadL ∩K . (6.1)

On utilising Theorem 2.2, it follows that

dim (BadL ∩K) ≥ dimB{yφ(i)}(c) → δ as c→ 0 .

The upshot of this is that dim (BadL ∩ K) ≥ δ. For the complementary upper

bound statement, trivially

dim (BadL ∩K) ≤ dim K
(2.1)
= δ .

This completes the proof of Theorem 2.1 modulo the inclusion (6.1).

To establish (6.1), �x a point α in B{yφ(i)}(c) and let q be any non-zero integer

vector. For c su�ciently small, there exists an index i ∈ N such that∣∣yφ(i)∣∣ ≤ 9n

(
2m

c

)m/n
|q|m/n <

∣∣yφ(i+1)

∣∣ . (6.2)

The existence of such an index is guaranteed by the �rst of the inequalities in (5.2) as

long as c is su�ciently small. By the de�nition of B{yφ(i)}(c) and the trivial equality

yφ(i) ·α = q · LTyφ(i) − yφ(i) · (Lq−α),

we immediately have that

0 < c ≤
∥∥yφ(i) ·α∥∥ =

∥∥q · LTyφ(i) − yφ(i) · (Lq−α)
∥∥ . (6.3)

On applying the triangle inequality and making use of (5.4), it follows that

c ≤ m |q|
∥∥LTyφ(i)∥∥+ n

∣∣yφ(i)∣∣ ‖Lq−α‖ . (6.4)

However,

m |q|
∥∥LTyφ(i)∥∥ (5.3)

≤ m |q|
∣∣yφ(i)+1

∣∣−n/m (6.2)

≤ m

(9n)n/m 2m
c

(∣∣yφ(i+1)

∣∣∣∣yφ(i)+1

∣∣
)n/m

(5.2)

≤ c

2

and

n
∣∣yφ(i)∣∣ ‖Lq−α‖

(6.2)

≤ 9n2

(
2m

c

)m/n
|q|m/n ‖Lq−α‖ ,
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which together with (6.4) yields that

‖Lq−α‖ > cm/n+1

9n2(2m)m/n
|q|−m/n .

In other words, for any c su�ciently small

B{yφ(i)}(c) ⊆

{
α ∈ K : ∃ c(α) > 0 s.t. ‖Lq−α‖ ≥ c(α)

|q|m/n
∀ q ∈ Zm \ {0}

}
.

The right hand side is BadL ∩K and this establishes (6.1) which in turn completes

the proof of Theorem 2.1.
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TWISTED INHOMOGENEOUS DIOPHANTINE APPROXIMATION
AND BADLY APPROXIMABLE SETS

STEPHEN HARRAP

Abstract. For any real pair i, j ≥ 0 with i + j = 1 let Bad(i, j) denote the set
of (i, j)-badly approximable pairs. That is, Bad(i, j) consists of irrational vectors
x := (x1, x2) ∈ R2 for which there exists a positive constant c(x) such that

max
{
‖qx1‖1/i , ‖qx2‖1/j

}
> c(x)/q ∀ q ∈ N.

A new characterization of Bad(i, j) in terms of `well-approximable' vectors in the
area of `twisted' inhomogeneous Diophantine approximation is established. In
addition, it is shown that Badx(i, j), the `twisted' inhomogeneous analogue of
Bad(i, j), has full Hausdor� dimension 2 when x is chosen from Bad(i, j). The
main results naturally generalise the i = j = 1/2 work of Kurzweil.

1. Introduction

1.1. Background � the homogeneous theory. A classical result of Dirichlet

states that for any real number x there exist in�nitely many natural numbers q

such that

‖qx‖ ≤ 1

q
, (1.1)

where ‖·‖ denotes the distance to the nearest integer. This result can easily be

generalised to higher dimensions. In particular, the following `weighted' simultaneous

version is valid. Choose any positive real numbers i and j satisfying

i, j ≥ 0 and i+ j = 1. (1.2)

Then, for any vector x ∈ R2 there exist in�nitely many natural numbers q such that

max
{
‖qx1‖1/i , ‖qx2‖1/j

}
≤ 1

q
. (1.3)

Without loss of generality, if i = 0 we employ the convention that ‖x‖1/i = 0 and

so the above statement reduces to Dirichlet's original result. It is natural to ask

whether the right hand side of inequality (1.3) can in general be tightened. That is,

can 1/q be replaced by c/q for some absolute constant c ∈ (0, 1) whilst still allowing

(1.3) to hold in�nitely often for all real vectors x? It is still an open problem as

to whether there exists an `optimal' constant in this sense. On the other hand, in
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the one-dimensional setting of statement (1.1) such an `optimal' constant (namely

1/
√
5) was found by Hurwitz [12].

The above discussion motivates the study of real vectors x for which the right hand

side of (1.3) cannot be improved by an arbitrary positive constant. Throughout, we

will impose the following natural restriction on these vectors. We say x := (x1, x2)

is irrational (abbreviated irr.) if its components xi together with 1 are linearly

independent over the rationals.

De�nition 1.1. An irrational vector x is (i, j)-badly approximable if there exists a

constant c(x) > 0 such that

max
{
‖qx1‖1/i , ‖qx2‖1/j

}
>

c(x)

q
∀ q ∈ N.

The set of all such vectors will be denoted Bad(i, j).

We remark that the results of this paper (for i, j > 0) remain true when x is not

assumed to be irrational in the above and later de�nitions. However, we choose to

avoid this degenerate case to simplify our arguments.

One may notice that the set Bad(i, j) is invariant under translation by integer

vectors. In fact, this will be the case with most sets considered in this paper. For

that reason we will often restrict our attention to the unit square [0, 1)2 (or the unit

n-cube when in higher dimensions) and it should be understood that no generality

is lost in doing this. For example, if i = 0 the set Bad(0, 1) will be identi�ed with

[0, 1)×Bad, where Bad is the standard one dimensional set of badly approximable

numbers. In other words, Bad(0, 1) consists of vectors x with x1 ∈ [0, 1) and

x2 ∈ Bad :=

{
x ∈ [0, 1) : ∃ c(x) > 0 s.t. ‖qx‖ > c(x)

q
∀ q ∈ N

}
.

De�nition 1.2. A mapping ψ : N→ R is an approximating function if ψ is strictly

positive.

De�nition 1.3. For any approximating function ψ, de�ne W (i, j, ψ) to be the set

of vectors x ∈ [0, 1)2 such that the inequality

max
{
‖qx1‖1/i , ‖qx2‖1/j

}
≤ ψ(q)

holds for in�nitely many natural numbers q.

Application of the following classical theorem of Khintchine [15] yields that for

every pair of reals i, j satisfying (1.2) the setBad(i, j) is of two-dimensional Lebesgue

measure zero. Throughout, Lebesgue measure will be denoted λ.
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Khintchine's Theorem (1926). For any pair of reals i, j satisfying (1.2) and any

approximating function ψ we have

λ (W (i, j, ψ)) =



0,
∞∑
r=1

ψ(r) < ∞.

1,
∞∑
r=1

ψ(r) = ∞ and ψ is monotonic.

We remark that the monotonicity restriction imposed on the function ψ can be

relaxed due to a result of Harman (see Theorem 3.8 of [11]).

The question of whether each null set Bad(i, j) is non-empty was formally1 an-

swered by Pollington & Velani [20] who showed that for every choice of reals i, j

satisfying (1.2) we have

dim (Bad(i, j) ∩Bad(1, 0) ∩Bad(0, 1)) = dim
(
[0, 1)2

)
= 2. (1.4)

Here, and throughout, `dim' denotes standard Hausdor� dimension. With this result

in mind, the aim of this paper is to obtain an expression for Bad(i, j) in terms

of `well-approximable' vectors in the area of `twisted' inhomogeneous Diophantine

approximation.

1.2. Background � the `twisted' theory. Another result of Khintchine states

that for any irrational x and any real α there exist in�nitely many natural numbers

q such that

‖qx− α‖ ≤ 1 + ε√
5q
, (1.5)

where ε > 0 is an arbitrary constant. The inequality is `optimal' and di�ers from

Hurwitz's homogeneous `α = 0' theorem by only the constant ε. When certain

restrictions are placed on the choice of α, a tighter `optimal' inequality was found to

hold by Minkowski [21]. The right hand side of (1.5) can be replaced with 1/(4q) if

it is assumed that α is not of the form α = sx + t for some integers s and t. Both

of these statements imply that the sequence {qx}q∈N modulo one is dense in the

unit interval for any irrational x. Moreover, Kronecker's Theorem (see [17]) implies

that the sequence {qx}q∈Z modulo one is dense in [0, 1)2 for any irrational vector x.

Further still, a celebrated result of Weyl [29] states that the sequence is uniformly

distributed in [0, 1)2 for any irrational vector x.

1The arguments used by Davenport in [7] to show that Bad(1/2, 1/2) is uncountable can easily be
adapted to show that Bad(i, j) is uncountable for every choice of reals i, j satisfying (1.2).
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Naturally, this leads to the concept of approximating real vectors α in [0, 1)2 by

the sequence {qx}q∈N modulo one with a prescribed rate of accuracy. For obvious

reasons we call this approach `twisted' Diophantine approximation.

De�nition 1.4. Fix an approximating function ψ, any irrational vector x and a

pair or reals (i, j) satisfying (1.2). Then Wx(i, j, ψ) will denote the set of vectors

α := (α1, α2) ∈ [0, 1)2 such that the inequality

max
{
‖qx1 − α1‖1/i , ‖qx2 − α2‖1/j

}
≤ ψ(|q|)

holds for in�nitely many non-zero integers q.

Establishing a Khintchine-type result for the Lebesgue measure of Wx(i, j, ψ) is

more di�cult than in the homogeneous case. That said, by utilising the Borel-

Cantelli lemma from probability theory it is easy to show that for every i, j satisfying

(1.2), any irrational x and every approximating function ψ we have

λ (Wx(i, j, ψ)) = 0 if
∞∑
r=1

ψ(r) < ∞.

One might therefore expect that no matter what the choice of reals i, j, irrational x

or approximating function ψ we should be able to conclude that λ (Wx(i, j, ψ)) = 1

if the above sum diverges. However, the following statement suggests that once the

reals i, j have been �xed the set of irrational vectors for which we do obtain a set

of full measure is dependent on the choice of approximating function. This subtle

distinction makes the metrical theory in the `twisted' setting more delicate, and

sophisticated, than its standard homogeneous counterpart.

Theorem 1.5 (Twisted Khintchine-type Theorem). Let ψ be a �xed monotonic ap-

proximating function. Then, for λ-almost all irrational vectors x ∈ [0, 1)2

λ (Wx(i, j, ψ)) = 1 if
∞∑
r=1

ψ(r) = ∞.

This result is a consequence of a more general result that can be found in the

Appendix. In what follows we say a function ψ is divergent if
∑∞

r=1 ψ(r) =∞. The

set of all divergent approximating functions will be denoted by D.

De�nition 1.6. Fix a pair of reals i, j satisfying (1.2). Then, for each ψ ∈ D let

V (i, j, ψ) := {irr. x : λ (Wx(i, j, ψ)) = 1} .

Note that Theorem 1.5 is equivalent to the statement �λ (V (i, j, ψ)) = 1 for each

ψ ∈ D�. In view of Theorem 1.5 we ask whether there exist irrational vectors
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x such that a set of full measure is obtained regardless of the choice of divergent

approximating function. In other words, we wish to characterise the set⋂
ψ∈D

V (i, j, ψ).

It is certainly not obvious as to whether the intersection is non-empty. Previous

activity has been restricted to the classical i = j = 1/2 case where elements of

Bad (1/2, 1/2) are commonly referred to as simultaneously badly approximable pairs.

The most notable breakthrough was made by Kurzweil [18], who proved the following

remarkable result.

Kurzweil's Theorem (1955).⋂
ψ∈D

V (1/2, 1/2, ψ) = Bad(1/2, 1/2).

The work of Kim [14] in a similar vein inspired activity concerning real vectors

that are badly approximable in the twisted sense.

De�nition 1.7. Fix an irrational vector x ∈ [0, 1)2 and two real numbers i and j

satisfying (1.2). De�ne Badx(i, j) as the set of vectors α ∈ [0, 1)2 for which there

exists a constant c(α) > 0 such that

max
{
‖qx1 − α1‖1/i , ‖qx2 − α2‖1/j

}
>
c(α)

|q|
for all q ∈ Z6=0.

The set Badx(i, j) represents the natural twisted analogue of Bad(i, j). Previous

results are once again limited to the classical i = j = 1/2 setting. In particular,

Bugeaud et al [4] proved the following result (see also [22, 28]).

Theorem BHKV (2010). For any irrational x ∈ [0, 1)2,

dim

(
Badx

(
1

2
,
1

2

))
= 2.

At the time of writing there were no known results concerning the Hausdor� di-

mension of Badx(i, j) for a general pair i and j.

2. The main results

2.1. Statements of results. The following statement represents our main theorem

and generalises Kurzweil's theorem from the classical `1/2�1/2' to the full weighted

setting.
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Theorem 2.1. For every pair of reals i and j satisfying (1.2),⋂
ψ∈D

V (i, j, ψ) = Bad(i, j).

In view of Khintchine's theorem and statement (1.4), Theorem 2.1 immediately im-

plies that the intersection on the LHS above is of two-dimensional Lebesgue measure

zero and of maximal Hausdor� dimension.

Our next result makes a contribution towards determining the Hausdor� dimension

of Badx(i, j).

Theorem 2.2. For any real i and j satisfying (1.2) and any x ∈ Bad(i, j),

dim (Badx(i, j)) = 2.

The proof of this theorem makes use of a general framework developed by Kris-

tensen, Thorn & Velani [16]. This framework was designed for establishing dimension

results for large classes of badly approximable sets and the above statement consti-

tutes one further application. In all likelihood Theorem 2.2 is true without the

assumption on x.

Conjecture 2.3. For any real i and j satisfying (1.2) and any irrational vector

x ∈ [0, 1)2,

dim (Badx(i, j)) = 2.

It seems that the ideas of [4], which also make use of the framework in [16], cannot

be extended to the full weighted setting of Conjecture 2.3; a new approach may be

required. We remark that Theorem 2.2, together with (1.4), trivially implies that

the conjecture is true for a set of irrational vectors x of full dimension.

2.2. Higher dimensions. We describe the n-dimensional generalisation of the sets

Bad(i, j) and V (i, j, ψ) along with the higher dimensional analogue of the statements

in �2.1. Throughout, λn will denote standard n-dimensional Lebesgue measure.

Fix any n-tuple of reals k := k1, . . . , kn ≥ 0 such that
∑n

j=1 kj = 1. We naturally

de�ne Bad(k) to be the set of vectors x := (x1, . . . , xn) ∈ [0, 1)n for which there

exists a constant c(x) > 0 such that

max
{
‖qx1‖1/k1 , . . . , ‖qxn‖1/kn

}
>
c(x)

q
∀ q ∈ N.
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For any approximating function ψ and any irrational vector x ∈ [0, 1)n, we denote

by Wx(i, j, ψ) the set of vectors α := (α1, . . . , αn) ∈ [0, 1)n such that

max
{
‖qx1 − α1‖1/k1 , . . . , ‖qxn − αn‖1/kn

}
≤ ψ(|q|)

for in�nitely many non-zero integers q. Also, let

V (k, ψ) := {x ∈ [0, 1)n : λn (Wx(k, ψ)) = 1} .

The proof of Theorem 2.1 can be extended in the obvious way, with no new ideas or

di�culties, allowing us to establish the following statement. For every real n-tuple

k such that k1, . . . , kn ≥ 0 and
∑n

j=1 kj = 1 we have⋂
ψ∈D

V (k, ψ) = Bad(k). (2.1)

Khintchine's theorem and statement (1.4) can also be generalised and yield that the

above intersection is of n-dimensional Lebesgue measure zero and of full Hausdor�

dimension n. In proving statement (2.1) the notation gets rather awkward and so

for the sake of clarity we will prove the `n = 2' case only.

3. Multiplicative Diophantine Approximation

This section comprises of a brief discussion of related problems in the area of

multiplicative Diophantine approximation, where loosely speaking the supremum

norm is replaced by the geometric mean. For example, one could consider the set of

vectors that are `well approximable' in a multiplicative sense.

De�nition 3.1. Let ψ be any approximating function. Then, de�ne

M(ψ) :=
{
x ∈ [0, 1)2 : ‖qx1‖ ‖qx2‖ ≤ ψ(q) for inf. many q ∈ N

}
.

The relevant measure-theoretic result concerning M(ψ) was found by Gallagher [10]

who proved a theorem implying the following.

Gallagher's Theorem (1962). For any approximating function ψ,

λ (M(ψ)) =



0,
∞∑
r=1

ψ(r) log(r) < ∞.

1,
∞∑
r=1

ψ(r) log(r) = ∞ and ψ is monotonic.

It is natural to develop a twisted theory for the multiplicative setup.
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De�nition 3.2. Fix any approximating function ψ and any irrational vector x in

[0, 1)2. Then, de�ne

Mx(ψ) :=
{
α ∈ [0, 1)2 : ‖qx1 − α1‖ ‖qx2 − α1‖ ≤ ψ(|q|) for inf. q ∈ Z6=0

}
.

The following statement is a consequence of Theorem 6.1 (see the Appendix).

Theorem 3.3. Fix any approximating function ψ. Then for λ-almost all irrational

vectors x ∈ [0, 1)2 we have

λ (Mx(ψ)) =



0,
∞∑
r=1

ψ(r) log(r) < ∞.

1,
∞∑
r=1

ψ(r) log(r) = ∞ and ψ is monotonic.

Once more one could ask whether there exist irrational vectors x such that a set of

full measure is obtained irrespective of the choice of approximating function. Accord-

ingly, let DM denote the set of approximating functions for which
∑∞

r=1 ψ(r) log(r)

diverges and de�ne

VM(ψ) := {irr. x : λ (Mx(ψ)) = 1} .

Consider the intersection ⋂
ψ∈DM

VM(ψ). (3.1)

In view of Theorem 2.1, one might expect that (3.1) is equivalent to a multiplicative

analogue of the set of badly approximable pairs. However, quite how such an analogue

should be de�ned is up for debate.

One could argue that a valid choice for a set of multiplicatively badly approximable

numbers might be

BadL :=

{
x ∈ [0, 1)2 : ∃ c(x) > 0 s.t. ‖qx1‖ ‖qx2‖ >

c(x)

q
∀ q ∈ N

}
.

The famous Littlewood conjecture states that the set BadL is empty. For recent

developments and background concerning the Littlewood conjecture see [9], [19] and

the references therein.

Another candidate for the multiplicatively badly approximable numbers is the

larger set

Mad1 :=

{
x ∈ [0, 1)2 : ∃ c(x) > 0 s.t. ‖qx1‖ ‖qx2‖ >

c(x)

q log q
∀ q ∈ N

}
,
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recently introduced in [1]. Hence, the following question arises:

Can
⋂

ψ∈DM

VM(ψ) be characterized as BadL or Mad1?

Even establishing that BadL ⊆
⋂
ψ∈DM

VM(ψ) seems non-trivial.

4. Proof of Theorem 2.1

4.1. Proof of Theorem 2.1 (Part 1). If either i = 0 or j = 0 the theorem simpli�es

to the classical one-dimensional version of Kurzweil's theorem corresponding to the

set Bad. Therefore, we can and will assume hereafter that i, j > 0. The proof of

Theorem 2.1 takes the form of two inclusion propositions, the �rst of which is proved

in this section.

Proposition 4.1. For every real i, j > 0 such that i+ j = 1,⋂
ψ∈D

V (i, j, ψ) ⊆ Bad(i, j).

Proof. We will show that if x /∈ Bad(i, j) then x /∈
⋂
ψ∈D V (i, j, ψ). In particular,

we will prove that for every such x there exists an approximating function ψ0 ∈ D
for which

λ (Wx(i, j, ψ0)) = 0. (4.1)

That is, the set of points α := (α1, α2) ∈ [0, 1)2 that satisfy the inequality

max
{
‖qx1 − α1‖1/i , ‖qx2 − α2‖1/j

}
≤ ψ0(|q|)

for in�nitely many non-zero integers q has Lebesgue measure zero.

If x /∈ Bad(i, j) then by de�nition there exists a sequence {qk}k∈N of non-zero

integers such that

max
{
‖qkx1‖1/i , ‖qkx2‖1/j

}
<

ck
|qk|

, |qk| < |qk+1| ∀ k ∈ N, (4.2)

where ck > 0 and ck → 0 as k →∞. We may assume that

1 > ck > 23/(2min{i,j})ck+1 ∀ k ∈ N. (4.3)

If this were not the case then we could simply work with a suitable subsequence of

{qk}. It may also be assumed that the values (ck)
−1/3 are positive integers for every

natural number k. These assumptions guarantee that for every k ∈ N

(ck)
− 1

3 ≥ 2. (4.4)
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For each k ≥ 1, let nk := |qk| (ck)−1/3 and let n0 := 0. In view of (4.4), the

sequence {nk}k∈N is strictly increasing and takes positive integers values. Next, for

each natural number r de�ne

ψ0(r) :=

1, r ≤ n1.

|qk+1|−1 (ck+1)
1
3 , nk < r ≤ nk+1 for every k ≥ 1.

It is clear that ψ0 is an approximating function. To show ψ0 ∈ D, note that

∞∑
r=1

ψ0(r) >
∞∑
k=1

nk+1∑
r=nk+1

ψ0(r)

=
∞∑
k=1

(nk+1 − (nk + 1) + 1)ψ0(nk+1)

=
∞∑
k=1

(
|qk+1| (ck+1)

− 1
3 − |qk| (ck)−

1
3

)
|qk+1|−1 (ck+1)

1
3

=
∞∑
k=1

(
1− |qk|
|qk+1|

(
ck+1

ck

) 1
3

)

>
∞∑
k=1

(
1−

(
ck+1

ck

) 1
3

)
(since |qk| < |qk+1| )

(4.3)
>

∞∑
k=1

(
1− 2−1/(2min{i,j}))

≥
∞∑
k=1

1

2
= ∞,

as required.

Finally, we endeavour to show (4.1) holds for ψ0. To that end, for each non-zero

integer q let

Rψo(q) :=
{
α ∈ [0, 1)2 : max

{
‖qx1 − α1‖1/i , ‖qx2 − α2‖1/j

}
≤ ψ0(|q|)

}
denote the closed rectangular region in the plane centred at the point qx (mod 1) of

side lengths 2ψi0(|q|) and 2ψj0(|q|) respectively. All closed rectangular regions of this

type will be simply referred to as `rectangles' and all points within any rectangle will

tacitly be considered modulo one. It is clear that

Wx(i, j, ψ0) =
{
α ∈ [0, 1)2 : α ∈ Rψo(q) for inf. many q ∈ Z6=0

}
= { α ∈ [0, 1)2 : α ∈

nk⋃
|q|=nk−1+1

Rψo(q) for inf. many k ∈ N } .(4.5)
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In view of the Borel-Cantelli lemma, to show that equation (4.1) holds it is enough

to show that
∞∑
k=1

λ

 nk⋃
|q|=nk−1+1

Rψo(q)

 < ∞. (4.6)

We estimate the LHS of (4.6) by estimating the measure of each union of rectangles

of the form

R∗ψo
(k) : =

nk⋃
|q|=nk−1+1

Rψo(q), for k ∈ N.

We refer to a union of rectangles of this type as a `collection'. For each k, the

collection R∗ψo
(k) consists of 2(nk − nk−1) rectangles in [0, 1)2 each centred at some

point qx for which nk−1 < |q| ≤ nk. By de�nition, every rectangle in a collection has

the same area.

To estimate the measure of R∗ψo
(k) we will cover it with a collection of larger

rectangles whose areas will in some sense increase at a `controllable' rate. For each

k ∈ N let

S∗ψo
(k) : =

|qk|⋃
|q|=1

{
α ∈ [0, 1)2 : ‖qx1 − α1‖ ≤

nk
|qk|

(
ck
|qk|

)i
+ ψi0(nk)

and ‖qx2 − α2‖ ≤
nk
|qk|

(
ck
|qk|

)j
+ ψj0(nk)

}
.

To clarify, each collection S∗ψo
(k) consists of 2 |qk| rectangles in [0, 1)2, one centred at

each point qx with 1 ≤ |q| < |qk|. The side lengths of each of these rectangles are

2

(
nk
|qk|

(
ck
|qk|

)i
+ ψi0(nk)

)
and 2

(
nk
|qk|

(
ck
|qk|

)j
+ ψj0(nk)

)
respectively. An upper bound for the Lebesgue measure of S∗ψo

(k) can be easily

deduced. We have

λ
(
S∗ψo

(k)
)
≤ 23 |qk|

(
nk
|qk|

(
ck
|qk|

)i
+ ψi0(nk)

)(
nk
|qk|

(
ck
|qk|

)j
+ ψj0(nk)

)
(4.7)

for every k ≥ 1.

We wish to show that S∗ψo
(k) covers R∗ψo

(k). Since the rectangles of S∗ψo
(k) are

larger than those of R∗ψo
(k), any rectangle of R∗ψo

(k) centred at a point q′x with

nk−1 < |q′| ≤ |qk| will automatically be contained in the corresponding rectangle

of S∗ψo
(k). Therefore, it will su�ce to check that any rectangle of R∗ψo

(k) centred

at a point q′x with |qk| < |q′| ≤ nk is covered by some rectangle of S∗ψo
(k). By
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construction, we have |qk| < nk and so rectangles of this type are present in every

collection R∗ψo
(k).

For each of the integers q′ with |qk| < |q′| ≤ nk we can �nd a natural number m

such that |q′ −mqk| ≤ |qk|. This implies there must exist a rectangle in S∗ψo
(k) that

is centred at the point (q′−mqk)x. Now, m can always be chosen in a way such that

|mqk| < |q′|. It follows that

|m| < |q
′|
|qk|
≤ nk
|qk|

. (4.8)

Consider the distance between the points q′x and (q′ −mqk)x. We have

‖q′x1 − (q′ −mqk)x1‖ = ‖−mqkx1‖ ≤ |m| ‖qkx1‖
(4.2)
< |m|

(
ck
|qk|

)i
(4.8)
<

nk
|qk|

(
ck
|qk|

)i
.

Similarly,

‖q′x2 − (q′ −mqk)x2‖ <
nk
|qk|

(
ck
|qk|

)j
.

Combining these two inequalities yields that any rectangle of R∗ψo
(k) centred at a

point q′x with |qk| < |q′| ≤ nk is contained in a rectangle in S∗ψo
(k) centred at

(q′ −mqk)x. This shows that S∗ψo
(k) is a cover for R∗ψo

(k) and so

∞∑
k=1

λ
(
R∗ψo

(k)
)
≤

∞∑
k=1

λ
(
S∗ψo

(k)
)
.

Estimate (4.7) yields that the RHS is bounded above by

∞∑
k=1

8 |qk|

(
nk
|qk|

(
ck
|qk|

)i
+ ψi0(nk)

)(
nk
|qk|

(
ck
|qk|

)j
+ ψj0(nk)

)

=
∞∑
k=1

8 |qk|
(
(ck)

− 1
3 (ck)

i |qk|−i + |qk|−i (ck)
i
3

)
×
(
(ck)

− 1
3 (ck)

j |qk|−j + |qk|−j (ck)
j
3

)
= 8

∞∑
k=1

|qk| |qk|−i−j
(
(ck)

i− 1
3 + (ck)

i
3

)(
(ck)

j− 1
3 + (ck)

j
3

)
.
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However, we have that i+ j = 1 and so this reduces to

8
∞∑
k=1

(
(ck)

i+j− 2
3 + (ck)

i+j
3 + (ck)

i
3
+j− 1

3 + (ck)
i+ j

3
− 1

3

)
= 8

∞∑
k=1

(
2 (ck)

1
3 + (ck)

2i
3 + (ck)

2j
3

)
≤ 8

∞∑
k=1

4 (ck)
2min{i,j}/3 .

By assumption (4.3) this is strictly less that

32
∞∑
k=1

(c1)
2min{i,j}/3 2−(k−1) = 64 (c1)

2min{i,j}/3 < ∞,

as required. �

4.2. Proof of Theorem 2.1 (Part 2). In this section we prove the complementary

inclusion to that of Proposition 4.1.

Proposition 4.2. For every real i, j > 0 such that i+ j = 1,

Bad(i, j) ⊆
⋂
ψ∈D

V (i, j, ψ).

Proof. We are required to show that if x ∈ Bad(i, j) then for every divergent ap-

proximating function ψ we have that

λ (Wx(i, j, ψ)) = 1.

To do this we �rst prove the intermediary result that for every x ∈ Bad(i, j) we have

λ (Wx(i, j, ψ)) > 0 (4.9)

for every ψ ∈ D.

Fix x ∈ Bad(i, j). By de�nition there exists a constant c(x) > 0 such that for all

natural numbers q

max
{
‖qx1‖1/i , ‖qx2‖1/j

}
>
c(x)

q
.

Choose any function ψ ∈ D. To ensure that certain technical conditions required

later in the proof are met we will work with a re�nement of ψ. Let

a∗ := 2−1/max{i,j} and a∗ := 2−1/min{i,j},
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then for each r ∈ N let

ψ1(r) := min

{
ψ(r),

a∗

2
,

a∗ c(x)

2 |r|

}
.

Choose any integer k such that

k > 4, (4.10)

and for each natural number r de�ne

ψ2(r) :=

ψ1(k), r ≤ k.

ψ1(k
t+1), kt < r ≤ kt+1 for each t ∈ N.

It is easy to see that for each r ∈ N

ψ2(r) ≤ ψ1(r) ≤ ψ(r) (4.11)

and that ψ1 ∈ D. It is also clear that ψ2 is decreasing and strictly positive. Further-

more,

∞∑
r=1

ψ2(r) ≥
∞∑
t=1

kt+1∑
r=kt+1

ψ2(r)

=
∞∑
t=1

(
kt+1 − kt

)
ψ2(k

t+1)

=
1

k

∞∑
t=1

(
kt+2 − kt+1

)
ψ1(k

t+1)

≥ 1

k

∞∑
t=1

kt+2∑
r=kt+1+1

ψ1(r)

=
1

k

∞∑
r=k2+1

ψ1(r) = ∞,

and so ψ2 too is a divergent approximating function.

Inequality (4.11) and the characterisation of Wx(i, j, ψ) given by (4.5) guarantee

that the following statement is su�cient to prove that (4.9) holds for every approxi-

mating function ψ. For every integer r ≥ 1 we have

λ

 ∞⋃
|q|=r+1

Rψ2(q)

 ≥ a∗ c(x)/8. (4.12)

To prove this statement we show that there cannot exist a natural number t0 such

that (4.12) fails to hold when r = kt0 . Assume that such a t0 exists and consider the
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collection of rectangles given by

Rt := R (ψ2, t) :=
kt⋃

|q|=kto+1

Rψ2(q) for t = t0 + 1, t0 + 2, . . . .

We will demonstrate that the measure of the collectionRt is unbounded as t increases.

This is a contradiction as each collection Rt is contained in [0, 1)2.

By construction each collection Rt+1 is obtained from Rt by adding 2(kt+1 − kt)
new rectangles. These new rectangles are centred at the points qx for which kt <

|q| ≤ kt+1. Therefore, we may estimate λ (Rt+1 \Rt) by �nding an upper bound

for the number of the new rectangles that intersect any existing rectangle of Rt. In

practice, we �nd an upper bound to the cardinality of the set Jt+1∩2Rt, where Jt+1

denotes the set of points qx for which kt < |q| ≤ kt+1 and

2Rt :=
kt⋃

|q|=kto+1

R2ψ2(q) for t = t0 + 1, t0 + 2, . . . .

This will su�ce as ψ2 is non-increasing. Before proceeding we �rst notice that, since

the vector x was chosen from Bad(i, j), if qx and q′x are members of Jt+1 then

max
{
‖qx1 − q′x1‖1/i , ‖qx2 − q′x2‖1/j

}
≥ c(x)

|q − q′|
≥ c(x)

2kt+1
, (4.13)

providing that the integers q and q′ are distinct.

The collection 2Rt can be partitioned into two exhaustive subcollections (which

we will assume without loss of generality are non-empty). Recalling that a∗ :=

2−1/min{i,j}, de�ne

2R
(1)
t :=

⋃
R2ψ2(q),

where the union runs over all non-zero q with kt0 < |q| ≤ kt such that

2ψ2(|q|) <
a∗ c(x)

2kt+1
.

In turn, let

2R
(2)
t :=

⋃
R2ψ2(q),

where this time the union runs over q with kt0 < |q| ≤ kt such that

2ψ2(|q|) ≥
a∗ c(x)

2kt+1
.

The intersections Jt+1 ∩ 2R(1)
t and Jt+1 ∩ 2R(2)

t will be dealt with independently.

The subcollection 2R
(1)
t consists of rectangles of side lengths

2(2ψ2(|q|))i and 2(2ψ2(|q|))j
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respectively and we have

2 (2ψ2(|q|))i <
(
c(x)

2kt+1

)i
and 2 (2ψ2(|q|))j <

(
c(x)

2kt+1

)j
.

This follows upon noticing that max {ai∗, aj∗} = 1/2. Thus, statement (4.13) implies

at most one element of Jt+1 can lie in each rectangle of 2R
(1)
t and so Jt+1 ∩ 2R(1)

t

contains at most 2(kt − kt0) < 2kt elements.

Estimating the cardinality of Jt+1 ∩ 2R(2)
t requires more work and we argue as

follows. If a point α0 lies in the subcollection 2R
(2)
t then it must lie in a rectangle of

the form R2ψ2(q0) ⊆ 2R
(2)
t for some integer q0 with kt0 < |q0| ≤ kt. This rectangle

has respective side lengths 2(2ψ2(|q0|))i and 2(2ψ2(|q0|))j and by de�nition we have

2 (2ψ2(|q0|))i ≥ 2

(
a∗ c(x)

2kt+1

)i
and 2 (2ψ2(|q0|))j ≥ 2

(
a∗ c(x)

2kt+1

)j
.

Hence, there must exist a point y(α0) ∈ R2ψ2(q0) such that α0 is contained in

a subrectangle of R2ψ2(q0) centred at y(α0). Call this subrectangle S(α0). By

de�nition, S(α0) has side lengths (a∗ c(x)/2k
t+1)

i
and (a∗ c(x)/2k

t+1)
j
. The fact

that max {ai∗, aj∗} = 1/2, twinned with equation (4.13), once more guarantees that

only one point of Jt+1 may lie in any subrectangle of this type. Moreover, any two

such subrectangles containing respective points qx and q′x, both in Jt+1, must be

disjoint. Thus, the cardinality of Jt+1∩2R(2)
t cannot exceed λ(2R

(2)
t )/λ (S(α0)). We

estimate the size of λ(2R
(2)
t ) by utilising the following lemma.

Lemma 4.3. For every t = t0 + 1, t0 + 2, . . .,

λ (2Rt) ≤ 2λ (Rt) .

Proof of Lemma 4.3. For s ∈ N, let

Rs :=
kt0+s⋃
|q|=kt0+1

Rψ2(q) and 2Rs :=
kt0+s⋃
|q|=kt0+1

R2ψ2(q).

To prove Lemma 4.3 it su�ces to show that λ (2Rs) ≤ 2λ (Rs) for all s. We proceed

by induction. If s = 1, then

λ(R1) = 2ψi2(k
t0 + 1) · 2ψj2(kt0 + 1) = 4ψ2(k

t0 + 1).

Further,

λ(2R1) = 2(2ψ2(k
t0 + 1))i · 2(2ψ2(k

t0 + 1))j = 2 · 4ψ2(k
t0 + 1) = 2λ(R1)

and the statement holds.
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Next, assume the hypothesis holds when s = s′ and de�ne a transformation T on

the torus [0, 1)2 by

T (α) :=
(
2iα1, 2

jα2

)
∀ α ∈ [0, 1)2.

For any subset A ⊆ [0, 1)2, we denote by T (A) the set of points T (α) for which

α ∈ A. Let As′+1 := Rs′+1 \Rs′ , then, since ψ2 does not exceed a
∗(i, j)/2, we have

λ(T (As
′+1)) = 2i · 2j · λ(As′+1) = 2λ(As

′+1). (4.14)

It is also clear that

2Rs′+1 = 2Rs′ ∪ T (As′+1),

from which it follows that

λ(2Rs′+1) = λ(2Rs′ ∪ T (As′+1))

≤ λ(2Rs′) + λ(T (As
′+1))

≤ 2λ(Rs′) + 2λ(As
′+1) (by assumption and (4.14) resp.)

= 2λ(Rs′ ∪ As′+1) (since Rs′ and As
′+1 are disjoint)

= 2λ(Rs′+1).

�

We return to our calculation. The assumption that statement (4.12) is false now

implies that

λ(2R
(2)
t ) ≤ λ(2Rt) ≤ 2λ(Rt) < a∗ c(x)/4.

Thus,

#(Jt+1 ∩ 2R(2)
t ) ≤ λ(2R

(2)
t )

λ(S(α0))
<

a∗ c(x)

4 (a∗ c(x)/2kt+1)i+j
=

kt+1

2

and we have found our second upper bound.

Recalling our intention to estimate λ (Rt+1 \Rt), we can now write an upper

bound for the number of rectangles added to Rt to make Rt+1 that intersect existing

rectangles of Rt. Indeed,

#(Jt+1 ∩ 2Rt) ≤ 2kt + kt+1/2. (4.15)

This follows upon noticing that

Jt+1 ∩ 2Rt = (Jt+1 ∩ 2R(1)
t ) ∪ (Jt+1 ∩ 2R(2)

t ).
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To complete our argument we require one �nal piece of notation. Let

Lt+1 := {q ∈ Z6=0 : qx ∈ Jt+1, qx /∈ 2Rt} .

The integers q ∈ Lt+1 each correspond to a rectangle of Rt+1 that does not intersect

any rectangle of Rt. So, by (4.15)

#(Lt+1) ≥ 2(kt+1 − kt)− (2kt + kt+1/2)

= (2− 4/k − 1/2)kt+1

(4.10)
> (2− 1− 1/2)kt+1

= kt+1/2. (4.16)

We now estimate λ (Rt+1 \Rt) by considering the inclusion

Rt+1 \Rt ⊃
⋃

q∈Lt+1

Rψ2(q). (4.17)

The rectangles Rψ2(q) in the above union have side lengths 2ψi2(|q|) and 2ψj2(|q|)
respectively. Further, if q, q′ ∈ Lt+1 then k

t < |q| , |q′| ≤ kt+1 and so

max
{
‖qx1 − q′x1‖1/i , ‖qx2 − q′x2‖1/j

} (4.13)

≥ c(x)

2kt+1
. (4.18)

Recall that by de�nition ψ2 is constant on each Lt+1, taking the value ψ2(k
t+1). Also,

recall that

ψ2(r) ≤
a∗ c(x)

2 |r|
.

Therefore, we have

2ψi2(|q|) = 2ψi2(k
t+1) <

(
c(x)

2kt+1

)i
and

2ψj2(|q|) = 2ψj2(k
t+1) <

(
c(x)

2kt+1

)j
.

Combining these inequalities with statement (4.18) yields that the rectangles Rψ2(q)

on the RHS of (4.17) are disjoint. Hence,

λ (Rt+1 \Rt) ≥
∑
q∈Lt+1

λ (Rψ2(q)) = 22
∑
q∈Lt+1

ψ2(|q|) > 2kt+1ψ2(k
t+1)

by estimate (4.16). Moreover, this quantity clearly exceeds

2(kt+1 − kt)ψ1(k
t+1) =

kt+1∑
|q|=kt+1

ψ1(k
t+1) =

kt+1∑
|q|=kt+1

ψ1(|q|).
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Finally, ψ1 is divergent, whence
∑

t>t0
λ (Rt+1 \Rt) = ∞. Since Rt ⊆ Rt+1 for any

t > t0, this implies that λ(Rt) → ∞ as t → ∞. However, each set Rt is contained

in [0, 1)2 and so a contradiction is reached. This means the assumption that (4.12)

fails for some r = kt0 is indeed false, and consequently

λ (Wx(i, j, ψ)) > 0

for every ψ ∈ D as desired.

To complete the proof of Proposition 4.2 we must now show if x ∈ Bad(i, j) then

λ (Wx(i, j, ψ)) = 1

for every ψ ∈ D. Our method will be through the application of two lemmas, the

�rst of which is due to Kurzweil ([18, Lemma 13]).

Lemma 4.4 (Kurzweil). Let U and V be subsets of [0, 1)2. If λ(U) > 0 and V is

dense in [0, 1)2 then λ(U ⊕V ) = 1, where U ⊕V := {u+ v (mod 1) : u ∈ U, v ∈ V }.

Lemma 4.5. For every ψ ∈ D and for every natural number s we have

∞∑
r=1

ψ(sr) =∞.

Proof of Lemma 4.5. Suppose s ≥ 1 and for ease of notation set ψ(0) := ψ(1).

Consider the s-subseries
∑∞

r=0 ψ(sr+ k) for each k = 0, . . . , s− 1. Every term ψ(r′),

r′ ∈ N, appears exactly once in exactly one s-subseries. If every s-subseries had a

�nite sum then the original series
∑∞

r=1 ψ(r) would also have a �nite sum (precisely

equal to the sum of the sums of the s-subseries). Since the original series does not

have a �nite sum, at least one of the s-subseries must diverge, say
∑∞

r=0 ψ(sr+k0) =

∞. Since ψ is decreasing ψ(sr) ≥ ψ(sr + k0) and so
∑∞

r=0 ψ(sr) =∞. �

Returning to the proof of Proposition 4.2, �x a divergent approximating function ψ

and a vector x ∈ Bad(i, j). Once again, we will re�ne ψ before proceeding. Firstly,

we will construct a function ψ3 ∈ D such that

lim
r→∞

(
ψ3(r)

ψ(r)

)
= 0. (4.19)

Let r0 = 0 and choose r1 ≥ 1 such that the inequality
∑r1

r=1 ψ(r) ≥ 1 holds. Then

in general construct inductively a strictly increasing sequence {rk}∞k=0 such that for

each k
rk∑

r=rk−1+1

ψ(r) ≥ k. (4.20)
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This is always possible since
∑∞

r=1 ψ(r) diverges, so the partial sums from any starting

point must tend to in�nity. Next, de�ne cr := 1/
√
k if rk−1 < r ≤ rk and ψ3(r) :=

crψ(r). Equation (4.19) therefore holds as ψ3(r)/ψ(r) = cr tends to zero. Both ψ and

{cr} are strictly positive and decreasing, hence ψ3 is strictly positive and decreasing.

Also, by construction, inequality (4.20) guarantees that

rk∑
r=rk−1+1

ψ3(r) =
1

k

rk∑
r=rk−1+1

ψ(r) ≥ 1,

and so
rk∑
r=1

ψ3(r) ≥ k.

This shows that the sum of ψ3 diverges and we have veri�ed that ψ3 ∈ D.

By Lemma 4.5,
∞∑
r=1

ψ3(sr) =∞,

for every natural number s. Consequently, there must exist a strictly increasing

sequence of natural numbers {sr}r∈N with sr →∞ as r →∞ such that

∞∑
r=1

ψ3(sr · r) =∞.

Accordingly, we de�ne ψ4(r) := ψ3(sr · r). For any �xed non-zero integer q′ we have

that

lim
|q|→∞

(
ψ4(|q|)

ψ(|q + q′|)

)
= 0. (4.21)

It is also clear that ψ4 is a divergent approximating function and therefore we know

by the intermediary result (4.9) that

λ (Wx(i, j, ψ4)) > 0. (4.22)

In addition, if we choose some vector y such that

y ∈ Wx(i, j, ψ4)
(4.5)
=

∞⋂
k=1

∞⋃
|q|=k

Rψ4(q),

then for every natural number k there are in�nitely many integers q with |q| ≥ k

such that y ∈ Rψ4(q). It follows that y + q′x is a member of the set of α ∈ [0, 1)2

for which

max
{
‖(q + q′)x1 − α1‖1/i , ‖(q + q′)x2 − α2‖1/j

}
≤ ψ4(|q|)
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for in�nitely many integers q satisfying |q| ≥ k. For large enough k, equation (4.21)

implies that for each q with |q| ≥ k the set of α de�ned above is contained in the

rectangle Rψ(q+q
′). It follows that y+q′x is contained in in�nitely many rectangles

of the form Rψ(q); i.e.,

y + q′x ∈
∞⋂
k=1

∞⋃
|q|=k

Rψ(q) = Wx(i, j, ψ) (4.23)

for every natural number q′.

With reference to Lemma 4.4, set

U := Wx(i, j, ψ4) and V := {qx : q ∈ Z6=0} .

By equation (4.22) we have λ(U) > 0 and, as mentioned in �1.2, Kronecker's Theorem

implies that V is dense in [0, 1)2 if x is irrational. Hence, Lemma 4.4 implies that

λ(U ⊕ V ) = 1, from which equation (4.23) gives

λ (Wx(i, j, ψ)) = 1

and the proof of Proposition 4.2, and indeed that of Theorem 2.1, is complete. �

5. Proof of Theorem 2.2

The proof of Theorem 2.2 makes use of the framework developed in [16]. This

framework was speci�cally designed to provide dimension results for a broad range

of badly approximable sets. In this section we show that Badx(i, j) falls into this

category when x is chosen from Bad(i, j). First, we provide a simpli�cation of the

framework tailored to our needs.

Let R := {Ra ⊂ R2 : a ∈ J} be a family of subsets Ra of R2 indexed by an in�nite

countable set J . We will refer to the sets Ra as resonant sets. Furthermore, it will

be assumed that each resonant set takes the form of a Cartesian product; i.e., that

each set Ra can be split into the images Ra,s ⊂ R, s = 1, 2, of its two projection

maps along the two coordinate axis. Next, let β : J → R>0 : a 7→ βa be a positive

function on J such that the number of a ∈ J with βa bounded above is �nite.

Thus, as a runs through J the function βa tends to in�nity. Also, for s = 1, 2, let

ρs : R>0 → R>0 : r 7→ ρs(r) be any real, positive, decreasing function such that

ρs(r) → 0 as r → ∞. We assume that either ρ1(r) ≥ ρ2(r) or ρ2(r) ≥ ρ1(r) for

large enough r. Finally, for each resonant set Ra de�ne a rectangular neighbourhood

Fa(ρ1, ρ2) by

Fa(ρ1, ρ2) :=
{
x ∈ R2 : |xs −Ra,s| ≤ ρs (βa) for s = 1, 2

}
,
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where |xs −Ra,s| := infa∈Ra,s |xs − a|.

We now introduce the general badly approximable set to which the results of [16]

relate. De�ne Bad(R, β, ρ1, ρ2) to be the set of x ∈ [0, 1)2 for which there exists a

constant c(x) > 0 such that

x /∈ c(x)Fa(ρ1, ρ2) ∀ a ∈ J.

That is, x ∈ Bad(R, β, ρ1, ρ2) if there exists a constant c(x) > 0 such that for all

a ∈ J
|xs −Ra,s| ≥ c(x)ρs (βa) (s = 1, 2).

The aim of the framework is to determine conditions under which the general set

Bad(R, β, ρ1, ρ2) has full Hausdor� dimension. With this in mind, we begin with

some useful notation. For any �xed integers k > 1 and t ≥ 1, de�ne

Ft :=
{
x ∈ [0, 1)2 : |xs − cs| ≤ ρt(k

t) for each s = 1, 2
}

to be the generic closed rectangle in [0, 1)2 with centre c := (c1, c2) and of side lengths

given by 2ρ1(k
t) and 2ρ2(k

t) respectively. Next, for any θ ∈ R>0, let

θFt :=
{
x ∈ [0, 1)2 : |xs − cs| ≤ θρs(k

t) for each s = 1, 2
}

denote the rectangle Ft scaled by θ. Finally, let

J(t) :=
{
a ∈ J : kt−1 ≤ βa < kt

}
.

The following statement is a simpli�cation of Theorem 2 of [16], made possible by

the properties of two-dimensional Lebesgue measure λ.

Theorem KTV (2006). Let k be su�ciently large. Suppose there exists some

θ ∈ R>0 such that for any t ≥ 1 and any rectangle Ft there exists a collection C(θFt)
of disjoint rectangles 2θFt+1 contained within θFt such that

#C(θFt) ≥ κ1
λ (θFt)

λ (θFt+1)
(5.1)

and

# {2θFt+1 ⊂ C(θFt) : Ra ∩ 2θFt+1 6= ∅ for some a ∈ J(t+ 1)}

≤ κ2
λ (θFt)

λ (θFt+1)
, (5.2)

where 0 < κ2 < κ1 are absolute constants independent of k and t. Suppose that

dim (∪a∈JRa) < 2, (5.3)
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then

dim (Bad(R, β, ρ1, ρ2)) = 2.

We can now prove Theorem 2.2.

Proof of Theorem 2.2. Fix two positive reals i, j with i + j = 1 and some x ∈
Bad(i, j). It is once more assumed that i, j > 0, for in this case the theorem would

otherwise follow immediately from Corollary 1 of [4]. With reference to the above

framework, set

J := {q ∈ Z6=0} , a := q ∈ J, Ra := Rq =
{
qx+ p : p ∈ Z2

}
βa := βq = |q| , ρ1(r) := 1/ri and ρ2(r) := 1/rj.

By design we then have

Bad(R, β, ρ1, ρ2) = Badx(i, j)

and so the proof is reduced to showing that the conditions of Theorem KTV are

satis�ed.

For k > 1 and t ≥ 1, let Ft be a generic closed rectangle with centre in [0, 1)2 and

of side lengths 2k−ti and 2k−tj respectively . For k su�ciently large and any θ ∈ R>0

it is clear that there exists a collection C(θBt) of closed rectangles 2θFt+1 within θFt

each of side lengths 4θk−(t+1)i and 4θk−(t+1)j respectively. Moreover, the number of

rectangles in this collection exceeds⌊
2θk−ti

4θk−(t+1)i

⌋
×
⌊

2θk−tj

4θk−(t+1)j

⌋
.

Here, the notation b . c denotes the integer part. For large enough k the above is

strictly positive and is bounded below by

1

2

(
2θk−ti

4θk−(t+1)i

)
× 1

2

(
2θk−tj

4θk−(t+1)j

)
=

1

16

(
4θ2k−t(i+j)

4θ2k−(t+1)(i+j)

)
=

1

16

λ(θFt)

λ(θFt+1)
.

Hence, inequality (5.1) holds with κ1 := 1/16.

We endeavour to show that the additional condition (5.2) on the collection C(θFt)
is satis�ed. To this end, we �x t ≥ 1 and proceed as follows. Choose two members

of distinct moduli from the set J(t+ 1); i.e., choose two integers q and q′ such that

kt ≤ |q′| < |q| < kt+1. (5.4)
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Associated with the integers q and q′ are the resonant sets Rq and Rq′ , whose elements

take the form qx + p and q′x + p′ respectively (for some p,p′ ∈ Z2). Consider the

minimum distance between a point in Rq and one in Rq′ . For s = 1, 2,

|(qxs + ps)− (q′xs + p′s)| = |(q − q′)xs + ps − p′s|

≥ ‖(q − q′)xs‖ .

Since x ∈ Bad(i, j) either

‖(q − q′)x1‖ ≥
(

c(x)

|q − q′|

)i
(5.4)
>

(
c(x)

2kt+1

)i
or

‖(q − q′)x2‖ ≥
(

c(x)

|q − q′|

)j
(5.4)
>

(
c(x)

2kt+1

)j
.

Therefore, if we set

θ :=
1

2
min

{(
c(x)

2k

)i
,

(
c(x)

2k

)j}
then the rectangle θFt has respective side lengths

2θk−ti = min

{(
c(x)

2k

)i
,

(
c(x)

2k

)j}
k−ti ≤

(
c(x)

2kt+1

)i
and

2θk−tj = min

{(
c(x)

2k

)i
,

(
c(x)

2k

)j}
k−tj ≤

(
c(x)

2kt+1

)j
.

So, for any two integers q, q′ of distinct moduli in J(t + 1), if a member of Rq lies

in θFt then no members of Rq′ may lie in θFt. Only one point of Rq may lie in θFt

(since λ(θFt) < 1) and so only two points over all possible resident sets may lie in

any rectangle θFt; those corresponding to q and −q. Hence,

# {2θFt+1 ⊂ C(θFt) : Rq ∩ 2θFt+1 6= ∅ for some q ∈ J(t+ 1)} ≤ 2,

which for large enough k is certainly less than

k

32
=

1

32

λ (θFt)

λ (θFt+1)
.

So, with θ as de�ned above and with κ2 := 1/32 < κ1, the collection C(θFt) satis�es
inequality (5.2).

Finally, note that the family R of resonant sets takes the form of a countable

number of countable sets and so

dim (∪q∈J Rq) = 0
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and inequality (5.3) trivially holds. Thus, the conditions of Theorem KTV are sat-

is�ed and the theorem follows. �

6. Appendix

We conclude the paper by proving a general result implying Theorems 1.5 & 3.3

as stated in the main body of the paper. The result is an extension of Cassels'

inhomogeneous Khintchine-type theorem [6, Chapter VII, Theorem II]. The proof is

a modi�cation of Cassels' original argument and also borrows ideas from the work of

Gallagher. It should also be compared with result of Schmidt [24] and Sprindzuk [27].

Theorem 6.1. For any sequence {Aq}q∈N of measurable subsets of [0, 1)n let A denote

the set of all pairs (x,α) ∈ [0, 1)n×[0, 1)n for which there exists in�nitely many q ∈ N
and p ∈ Zn such that

qx−α− p ∈ Aq. (6.1)

Then,

λ2n(A) :=


0,

∞∑
r=1

λn(Ar) < ∞.

1,
∞∑
r=1

λn(Ar) = ∞.

Proof. We begin by considering the case in which the sum
∑∞

r=1 λn(Ar) converges.

Fix α ∈ [0, 1)n. For each natural number q a vector x satisfying (6.1) uniquely

determines the integral vector p in such a way that |p| < q. Therefore, the measure

of the set of all x ∈ [0, 1)n that satisfy (6.1) for each q is given by

λn

 ⋃
p∈[0, q)n

(Aq ⊕α)⊕ p

q

 =
∑

p∈[0, q)n
λn

(
(Aq ⊕α)⊕ p

q

)
,

since the union is disjoint. The dilation property of λn yields that this is equivalent

to

q−n
∑

p∈[0, q)n
λn ((Aq ⊕α)⊕ p) = q−nqn · λn (Aq ⊕α) = λn (Aq) ,

by the translational invariance of λn. Now, if
∑∞

r=1 λn(Ar) <∞, then for any ε > 0

the set of vectors satisfying (6.1) for any q ≥ Q has measure at most
∑

q≥Q λn(Aq) < ε

for large enough Q. In particular, the set of x with in�nitely many solutions to (6.1)

has measure at most ε. This completes the proof of the convergence case.
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Let us now assume that the sum
∑∞

r=1 λn(Ar) diverges. De�ne the function aq :

Rn → R for each natural number q as follows. Let

aq(x) : =

1, ∃p ∈ Zn s.t. x− p ∈ Aq.

0, otherwise.

It is clear that each aq is measurable since it is equivalent to the characteristic function

of a countable union of measurable sets in Rn. Next, for every natural number Q

de�ne the function AQ : [0, 1)n × [0, 1)n → R by

AQ(x,α) : =
∑
q≤Q

aq(qx−α).

We wish to verify that AQ is measurable. To that end, we introduce the following

lemma, which is a generalisation of a well known result in measure theory and fol-

lows via simple modi�cation of the classical proof (see for example [26, Chapter 2,

Proposition 3.9]).

Lemma 6.2. If f is a measurable function on Rn then it follows that the function

Fq(x,α) := f(qx−α) is measurable on Rn × Rn for every natural number q.

Since aq is �nite valued (and �nite sums of �nite valued measurable functions are

measurable functions) Lemma 6.2 implies that AQ is indeed measurable on [0, 1)n×
[0, 1)n. Furthermore, by construction, it is apparent that AQ(x,α) is simply the

number of natural q with q ≤ Q such that

qx−α− p ∈ Aq for some p ∈ Zn.

Hence, to complete the proof of Theorem 6.1 it su�ces to show AQ(x,α) → ∞
almost everywhere as Q→∞. We will hereafter consider AQ as a random variable

in a probability space with probability measure λn.

For any positive measurable function f : [0, 1)n × [0, 1)n → Rn
≥0 we denote the

expectation of f by

E(f) :=

∫
[0,1)n

∫
[0,1)n

f(x,α) dx dα.

If the variance V (f) := E(f 2)−E(f)2 of f is �nite then the famous Paley-Zygmund

inequality (see for example [13, Ineq. II, p.8]) states that

λn ({(x,α) : f(x,α) ≥ εE(f)}) ≥ (1− ε)2 (E(f))
2

E(f 2)
,

for any su�ciently small ε > 0. We will use this inequality to reach our desired

conclusion.
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Before applying the Paley-Zygmund inequality to AQ we must show that V (AQ)
is �nite. It su�ces to show that both E(AQ) and E((AQ)2) are �nite. To do this we

require the following lemma [6, Chapter VII, Lemma 3].

Lemma 6.3 (Cassels). Let a be a measurable function of period one of the variable

x ∈ Rn. Then, ∫
[0,1)n

a(qx+α) dx =

∫
[0,1)n

a(x) dx,

for any vector α ∈ Rn and any integer q 6= 0.

We note that aq is of period one and so

E(AQ) =

∫
[0,1)n

∫
[0,1)n

AQ(x,α) dx dα

=
∑
q≤Q

∫
[0,1)n

∫
[0,1)n

aq(qx−α) dx dα

Lem. 6.3
=

∑
q≤Q

∫
[0,1)n

∫
[0,1)n

aq(x) dx dα

=
∑
q≤Q

∫
[0,1)n

∫
[0,1)n

χAq(x) dx dα

=
∑
q≤Q

λn(Aq), (6.2)

which is indeed �nite. Further,

E((AQ)2) =

∫
[0,1)n

∫
[0,1)n

(AQ(x,α))2 dx dα

=
∑
q,r≤Q

∫
[0,1)n

∫
[0,1)n

aq(qx−α)ar(rx−α) dx dα

=
∑
q,r≤Q

∫
[0,1)n

∫
[0,1)n

ar−s(−α′)ar(sx′ −α′) dx′ dα′,

via the change of variables x′ := x, α′ := α− qx and s := r − q. Here, the range of
x′ and α′ can both be taken as [0, 1)n since the function aq is periodic. Let

A(r,s)(x′,α′) : =

∫
[0,1)n

∫
[0,1)n

ar−s(−α′)ar(sx′ −α′) dx′ dα′.
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Then, if r = q then s = 0 and we have

A(r,s)(x′,α′) =

∫
[0,1)n

∫
[0,1)n

(aq(−α′))2 dx′ dα′

=

∫
[0,1)n

∫
[0,1)n

aq(−α′) dx′ dα′

= λn(Aq).

However, if r 6= q then s 6= 0 and we get

A(r,s)(x′,α′) =

∫
[0,1)n

ar−s(−α′)dx′
∫
[0,1)n

∫
[0,1)n

ar(sx
′ −α′) dx′ dα′

Lem. 6.3
= λn(Ar−s)

∫
[0,1)n

∫
[0,1)n

ar(x
′) dx′ dα′

= λn(Aq)λn(Ar).

These equivalences yield that

E((AQ)2) =
∑
q,r≤Q

A(r,s)(x′,α′)

=
∑
q≤Q

λn(Aq) +
∑
q,r≤Q:

q 6=r

λn(Aq)λn(Ar)

≤
∑
q≤Q

λn(Aq) +

(∑
q≤Q

λn(Aq)

)2

≤ (1− ε)−2
(∑
q≤Q

λn(Aq)

)2

= (1− ε)−2 (E(AQ))2 ,

for any su�ciently small ε > 0 and large enough Q (because
∑

q≤Q λn(Aq) → ∞ as

Q→∞ by assumption). Note that the �nal bound is �nite as required.

In view of the Paley-Zygmund inequality we have that

λn

({
(x,α) : AQ(x,α) ≥ ε

∑
q≤Q

λn(Aq)

})
≥ (1− ε)4 ≥ 1− 4ε.

Finally, since AQ increases monotonically with Q, we have that AQ(x,α) → ∞ in

[0, 1)n × [0, 1)n except on a set of measure at most 4ε. This completes the proof as

the choice of ε is arbitrary. �
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A NOTE ON WEIGHTED BADLY APPROXIMABLE LINEAR
FORMS

STEPHEN HARRAP AND NIKOLAY MOSHCHEVITIN

Abstract. We prove a result in the area of twisted Diophantine approximation
related to the theory of Schmidt games.

1. Introduction

In 2007, Kim [9] proved that for any irrational x the set of real α ∈ [0, 1) for which

lim inf
q→∞

q ‖qx− α‖ = 0 (1.1)

has full Lebesgue measure. Here and throughout, ‖ . ‖ denotes the distance to the

nearest integer. This inspired investigation into the complementary null set

Badx =

{
α ∈ [0, 1) : inf

q∈N
q ‖qx− α‖ > 0

}
,

often referred to as the set of twisted badly approximable numbers. In 2010 it was

shown by Bugeaud, the �rst author, Kristensen & Velani [2] that this set, and in-

deed its natural generalisation to n linear forms in m variables, is of full Hausdor�

dimension. Moreover, Tseng [19] proved shortly after that Badx enjoys the stronger

property of being winning (in the sense of Schmidt1) for all real numbers x.

In this note we consider the following generalisation of the set Badx, which in-

corporates the idea of `weighting' each component of approximation. This roughly

corresponds to badly approximable points avoiding `rectangular' neighbourhoods of

rational vectors rather than avoiding `square' ones. Let xji (1 ≤ i ≤ m, 1 ≤ j ≤ n)

be real numbers and let

Lj(q) =
m∑
i=1

qixji (1 ≤ j ≤ n)

be the related system of n homogeneous linear forms in the variables q1, . . . , qm.

Denote by L the n × m real matrix corresponding to the real numbers xji and by

Matn×m(R) the set of all such matrices. Then, for any n-tuple of real numbers

1We refer the reader to [16] and [17] for all necessary de�nitions and results on winning sets.
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k = {k1, . . . , kn} such that

kj > 0 (1 ≤ j ≤ n) and
n∑

j=1

kj = 1, (1.2)

we consider the set

BadL(k, n,m) =

{
α ∈ [0, 1)n : inf

q∈Zm
6=0

max
1≤j≤n

(
|q|mkj ‖Lj(q)− αj‖

)
> 0

}
.

Here, |x| denotes the maximum of the absolute values |xj| for any x ∈ Rk. For

brevity, we will simply write BadL(n,m) in the classical case `k1 = · · · = kn = 1/n'.

Recently, Einsiedler & Tseng [6] extended the results of [2] and [19] to show,

amongst other related results, that the set BadL(n,m) is winning for any matrix

L ∈ Matn×m(R) (see also [10] and [14]). However, their result does not extend to

the weighted setting.

Schmidt was the �rst to consider a weighted version of the badly approximable

numbers. In [18], he introduced sets of the form

Bad(i, j) =

{
(x1, x2) ∈ [0, 1)2 : inf

q∈Z6=0

max
{
|q|i ‖qx1‖ , |q|j ‖qx2‖

}
> 0

}
,

for real numbers i, j > 0 satisfying i + j = 1. Whilst a metric theorem of Khint-

chine [8] implies that these sets are of Lebesgue measure zero, Schmidt noted that

each set is certainly non-empty. Much later, building on the earlier work of Daven-

port [5], it was proven by Pollington & Velani [15] that the sets Bad(i, j) are always

of full Hausdor� dimension. Subsequently, Badziahin, Pollington & Velani [1] have

solved a famous conjecture made by Schmidt in [18] concerning the intersection of

any two of the sets.

Inspired by these developments, and those of [2], the following statement was

proven in [7].

Theorem A (2011). For any real i, j > 0 satisfying i+j = 1 and any x ∈ Bad(i, j),

the twisted inhomogeneous set

Badx(i, j) =

{
(α1, α2) ∈ [0, 1)2 : inf

q∈Z 6=0

max
{
|q|i ‖qx1 − α1‖ , |q|j ‖qx2 − α2‖

}
> 0

}
is of full Hausdor� dimension.

The conclusion is non-trivial as the sets Badx(i, j) are also of Lebesgue measure

zero. The purpose of this note is to extend this result to the full linear forms setting

and to strengthen the statement from full Hausdor� dimension to winning. To do this

we are required to de�ne one �nal badly approximable set, the natural generalisation
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of Bad(i, j). For any n-tuple of real numbers k satisfying (1.2) let

Bad(k, n,m) =

{
L ∈ Matn×m(R) : inf

q∈Zm
6=0

max
1≤j≤n

(
|q|mkj ‖Lj(q)‖

)
> 0

}
.

This set is also known to have zero Lebesgue measure and full Hausdor� dimen-

sion [11].

1.1. Statement of Results. In this note we prove the following strengthening of

Theorem A.

Theorem 1.1. For any n-tuple k satisfying (1.2) and any matrix L ∈ Bad(k, n,m)

the set BadL(k, n,m) is 1/2 winning.

We prove Theorem 1.1 by adapting the proof of Theorem X (Chapter 5) of Cassels'

book [4]. In short, his theorem implies that the set BadL(n,m) is non-empty. We

note that removing the assumption that L ∈ Bad(k, n,m), whilst desirable, does

not seem possible using the methods presented here. Indeed, a complete weighted

analogue to the main theorem of [2] currently seems out of reach. For completion,

we mention the following trivial consequence of Theorem 1.1 in the more familiar

two dimensional setting.

Corollary 1.2. For any real numbers i, j > 0 satisfying i + j = 1 and any vector

x ∈ Bad(i, j) the set Badx(i, j) is 1/2 winning.

2. Proof of Theorem 1.1

For simplicity we will assume throughout that the group G = LTZn +Zm has rank

n + m. This is because Kronecker's Theorem (see [12]) then asserts that the dual

subgroup Γ = LZm + Zn is dense in Rn. In the degenerate case when the rank of G

is strictly less than n+m it is easily veri�ed that {Lq : q ∈ Zm} is restricted to at

most a countable collection H of parallel, positively separated, hyperplanes in Rn.

We therefore have Rn \ H = BadL(k, n,m), from which it is easily deduced that

BadL(k, n,m) is winning.

In what follows

Mi(u) =
n∑

j=1

ujxji (1 ≤ i ≤ m)

denotes the transposed set of m homogeneous linear forms in the variables u1, . . . , un

corresponding to the matrixM = LT (the dual forms to Lj). Choose a matrix L ∈
Bad(k, n,m) and assume without loss of generality that we have k1 = max 1≤j≤n kj.
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We begin by utilising the following lemma, which allows us to switch between the

matrices in Bad(k, n,m) and the related `dual' set. The lemma is a consequence of a

general transference theorem which can be found in Chapter V of Cassels' book [4].

Lemma 2.1. Let Bad∗(k,m, n) be the set of matricesM∈ Matm×n(R) such that

inf
u∈Zn

6=0

max
1≤i≤m

(
max
1≤j≤n

(
|αi|1/(mkj)

)
‖Mi(u)‖

)
> 0.

Then,

L ∈ Bad(k, n,m) ⇐⇒ M ∈ Bad∗(k,m, n).

For any T ≥ 1 and any (n+ 1) strictly positive real numbers β1, . . . , βn+1 let

ΠT (β1, . . . , βn+1) =
{

(u,v) ∈ Rn × Rm : |uj| ≤ βj T
mkj (1 ≤ j ≤ n)

and max
1≤i≤m

|Mi(u)− vi| ≤ βn+1T
−1
}
.

For ease of notation we will hereafter consider sets of this type as genuine subsets

of Rn+m, the origin of which will be denoted 0. Now, since L ∈ Bad(k, n,m),

Lemma 2.1 immediately implies there exists a constant γ = γ(L) ∈ (0, 1) such that

ΠT (1, . . . , 1, γ) ∩ Zn+m = {0} .

However, the set ΠT (γ−m, 1 . . . , 1, γ) is a convex, symmetric, closed, bounded region

in space whose volume is given by

2γ−mT mk1 ·
n∏

j=2

2T mkj · 2mγmT−1 = 2n+m.

Therefore, by Minkowski's Convex Body Theorem (see Appendix B of [4]) we have

that

ΠT (γ−m, 1 . . . , 1, γ) ∩ Zn+m 6= {0} .

This means for any T ≥ 1 there exists at least one integer vector z = (u,v) ∈ Zn+m

such that

z ∈ ΠT (γ−m, 1 . . . , 1, γ) \ ΠT (1, . . . , 1, γ).

Choose such an integer vector with the smallest possible �rst coordinate u1 ≥ 1 for

which max 1≤i≤m |Mi(u)− vi| attains its minimal value. Denote this vector

z(T ) = (u(T ),v(T )) = (u1(T ), . . . un(T ), v1(T ), . . . , vm(T )),

and by

φ(T ) = max
1≤i≤m

‖Mi(u(T ))‖ = max
1≤i≤m

|Mi(u(T ))− vi(T )|
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the minimal value taken. Note that the rank assumption imposed on L ensures that

z(T ) always exists and is unique up to sign change (for similar constructions, see [13]

or Section 2 of [3]).

The following set of inequalities will be useful. Since z(T ) ∈ ΠT (γ−m, 1 . . . , 1, γ)

we have

|u1(T )| ≤ γ−m T mk1 , |uj(T )| ≤ T mkj (2 ≤ j ≤ n) (2.1)

and also

φ(T ) ≤ γ T−1. (2.2)

Morover, since z(T ) /∈ ΠT (1, . . . , 1, γ) we know

|u1(T )| > T mk1 and so max
1≤j≤n

(
|uj(T )|1/(mkj)

)
= |u1(T )|1/(mk1) . (2.3)

Recalling thatM∈ Bad∗(k,m, n), we therefore have

φ(T ) ≥ γ

(
max
1≤j≤n

(
|uj(T )|1/(mkj)

))−1
= γ |u1(T )|−1/(mk1) ≥ γ1+1/k1 T −1. (2.4)

Next, we prove a lemma regarding the rate of growth of a suitable sequence of

the Euclidean norms of the integer vectors u(T ) (c.f. [13, Theorem 1.2]). Put R :=⌈
γ−1/k1

⌉
+ 1 and de�ne Tr = Rr (for r = 0, 1, . . .). For notational convenience let

zr = (ur,vr) = z(Tr) and φr = φ(Tr). Inequality (2.4) yields that φr is strictly

decreasing as

φr ≥ γ1+1/k1 T −1r = γ1+1/k1 RT −1r+1 ≥ γ1+1/k1
(
γ−1/k1 + 1

)
T −1r+1

> γ T −1r+1

≥ φr+1.

The �nal inequality follows from (2.2), which also implies

φr ≤ γ RT −1r+1. (2.5)

This will be utilised later, as will the observation that φr → 0 as r →∞.

Lemma 2.2. The sequence of vectors {ur}∞r=0 can be partitioned into �nitely many

subsequences in such a way that the Euclidean norms of the vectors of each subse-

quence form a lacunary sequence.
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Proof. Consider the Euclidean norm | . |e of each integer vector ur. From (2.3) we

have

T 2mk1
r < |u1(Tr)|2 ≤ |ur|2e (2.6)

(2.1)

≤ γ−2m T 2mk1
r +

n∑
j=2

T 2mkj
r

< γ−2m
n∑

j=1

T 2mkj
r

≤ γ−2mnT 2mk1
r , (2.7)

since we are assuming k1 = max 1≤j≤n kj. Now, choose any natural number t such

that Rtmk1 ≥ 2n1/2γ−m. Then,

|ur+t|e
(2.6)
> T mk1

r+t = Rtmk1 T mk1
r ≥ 2n1/2γ−m T mk1

r

(2.7)
> 2 |ur|e .

So, the sequence {ur}∞r=0 can be partitioned into a �nite collection of subsequences

{ut0+tr}∞r=0 such that each subsequence is 2-lacunary; that is∣∣ut0+t(r+1)

∣∣
e
≥ 2 |ut0+tr|e ∀ r.

�

This lemma allows us to use the following powerful result, which is taken from [14].

Lemma 2.3. If a sequence {wr}∞r=0 of non-zero integral vectors is such that the

corresponding sequence of Euclidean norms is lacunary then the set{
α ∈ [0, 1)n : inf

r
‖wr ·α‖ > 0

}
is 1/2 winning.

Corollary 2.4. The set

Bad{ur} =
{
α ∈ [0, 1)n : inf

r
‖ur ·α‖ > 0

}
is 1/2 winning.

We remark that the set Bad{ur} was shown in [2] to have full Hausdor� dimension

for any sequence {ur}∞r=0 of non-zero integral vectors whose Euclidean norms form a

lacunary sequence. Corollary 2.4 follows from a result of Schmidt [16] stating that

countable intersections of α-winning sets are also α-winning and the observation that

Bad{ur} =
t−1⋂
t0=0

{
α ∈ Rn : inf

r
‖ut0+tr ·α‖ > 0

}
.
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We are now ready to prove Theorem 1.1. Choose α ∈ Bad{ur} and assume

inf
r
‖ur ·α‖ ≥ ε > 0.

For any q ∈ Zm
6=0, the trivial equality

ur ·α =
m∑
i=1

qiMi(ur) −
n∑

j=1

(Lj(q)− αj)uj(Tr),

in conjunction with the triangle inequality yields that

0 < ε < ‖ur ·α‖ ≤ m max
1≤i≤m

(‖Mi(ur)‖ |qi|) + n max
1≤j≤n

(‖(Lj(q)− αj)‖ |uj(Tr)|)

≤ mφr |q| + n max
1≤j≤n

(‖(Lj(q)− αj)‖ |uj(Tr)|) . (2.8)

Here, we have employed the fact that ‖az‖ ≤ |a| ‖z‖ for all a ∈ R and all z ∈ Rk.

Since φr is strictly decreasing and φr → 0 as r → ∞ we are free to choose r in

such a way that

φr <
ε

2m |q|
≤ φr−1, (2.9)

whereby inequality (2.8) yields

max
1≤j≤n

(‖(Lj(q)− αj)‖ |uj(Tr)|) ≥ ε/2n.

Finally, notice that combining (2.5) with (2.9) implies

Tr ≤ 2mε−1γR |q| ,

and so we have

|u1(Tr)|
(2.1)

≤ γ−m T mk1
r ≤ (2mR)mk1γm(k1−1)ε−mk1 |q| ,

and similarly (for 2 ≤ j ≤ n)

|uj(Tr)| ≤ (2mRγ)mk1ε−mk1 |q| .

Therefore,

max
1≤j≤n

(
‖Lj(q)− αj‖ |q|mkj

)
≥ κ,

for some constant κ > 0. Since the choice of vector q was arbitrary we have shown

that α ∈ BadL(k, n,m), and in particular that Bad{ur} ⊆ BadL(k, n,m). In view

of Corollary 2.4, the desired conclusion easily follows.
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THE MIXED LITTLEWOOD CONJECTURE FOR

PSEUDO-ABSOLUTE VALUES

STEPHEN HARRAP AND ALAN HAYNES

Abstract. In this paper we study the Mixed Littlewood Conjecture with pseudo-
absolute values. We show that if p is a prime and D is a pseudo-absolute value
sequence satisfying mild conditions then

inf
q∈N

q|q|p|q|D‖qx‖ = 0 for all x ∈ R.

Our proof relies on a measure rigidity theorem due to Lindenstrauss and lower
bounds for linear forms in logarithms due to Baker and Wüstholz. We also deduce
the answer to the related metric question of how fast the in�mum above tends to
zero, for almost every x.

1. Introduction

For x ∈ R let ‖x‖ denote the distance from x to the nearest integer. The Littlewood

Conjecture is the assertion that for every x1, x2 ∈ R,

inf
q∈N

q ‖qx1‖ ‖qx2‖ = 0. (1.1)

This conjecture has come to light recently because of its connection to measure

rigidity problems for diagonal actions on the space of unimodular lattices. This

connection was exploited by Einsiedler, Katok, and Lindenstrauss [10] to show that

the set of pairs (x1, x2) ∈ R2 which do not satisfy (1.1) has Hausdor� dimension zero.

More recently de Mathan and Teulié [17] have proposed a problem which is closely

related to the Littlewood Conjecture. Let D = {nk}k≥0 be an increasing sequence

of positive integers with n0 = 1 and nk|nk+1 for all k. We refer to such a sequence

as a pseudo-absolute value sequence, and we de�ne the D-adic pseudo-absolute value

| · |D : N→ {n−1k : k ≥ 0} by

|q|D = min{n−1k : q ∈ nkZ}.

In the case when D = {ak}∞k=0 for some integer a ≥ 2 we also write | · |D = | · |a. If p
is a prime then | · |p is the usual p−adic absolute value.

The de Mathan and Teulié Conjecture, which we will refer to as the Mixed Lit-

tlewood Conjecture, is the assertion that for any pseudo-absolute value | · |D and for
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every x ∈ R,
inf
q∈N

q |q|D ‖qx‖ = 0. (1.2)

The distribution of values of the quantities |q|D mimics the distribution of values of

‖qx2‖, for suitably chosen x2. In the case when D = | · |a for some integer a ≥ 2

the Mixed Littlewood Conjecture also has a dynamical formulation in terms of the

action of a certain diagonal group on a quotient space of

SL2(R)×
∏
i

SL2(Qpi),

where {pi} is the collection of primes dividing a. By employing measure rigidity

results in this setting Einsiedler and Kleinbock [11] proved that when | · |D = | · |a
the set of x ∈ R which do not satisfy (1.2) has Hausdor� dimension zero.

The case of the Mixed Littlewood Conjecture with more than one p−adic or

pseudo-absolute value has also been a topic of recent interest. If D1 and D2 are

two pseudo-absolute value sequences then it is reasonable to conjecture that for any

x ∈ R,
inf
q∈N

q|q|D1|q|D2‖qx‖ = 0. (1.3)

It is shown in [11] that the Furstenberg Orbit Closure Theorem [12, Theorem IV.1]

implies that (1.3) is true whenever D1 = {ak} and D2 = {bk} for two multiplicatively
independent integers a and b. This result was strengthened by Bourgain, Linden-

strauss, Michel, and Venkatesh [5] who proved a result which implies (see [7, Section

4.6]) that there is a constant κ > 0 such that for all x ∈ R,

inf
q∈N

q(log log log q)κ|q|a|q|b‖qx‖ = 0.

These results rely on understanding the dynamics of semigroups of toral endomor-

phisms. They provide a contrast to the situation of the original Littlewood Conjec-

ture, where nothing seems to be gained by adding more real variables.

It was pointed out by Einsiedler and Kleinbock in [11] that the dynamical machin-

ery used to study these problems does not readily extend to the case of more general

pseudo-absolute values. Our �rst result in this paper demonstrates how recent mea-

sure rigidity theorems can be combined with bounds for linear forms in logarithms

to obtain more general results.

Theorem 1.1. Suppose that a ≥ 2 is an integer and that D = {nk} is a pseudo-

absolute value sequence all of whose elements are divisible by �nitely many �xed

primes coprime to a. If there is a δ ≥ 0 with

log nk ≤ kδ for all k ≥ 2, (1.4)
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then for any x ∈ R we have that

inf
q∈N

q|q|a|q|D‖qx‖ = 0. (1.5)

Our proof of this theorem is inspired in part by Furstenberg's original proof of

his Orbit Closure Theorem [12], and by the ideas used by Bourgain, Lindenstrauss,

Michel, and Venkatesh in [5]. Of particular interest is the case when consecutive

elements of the sequence D have bounded ratios (cf. [1, 6, 11, 16, 17]), and we will

say that D and | · |D have bounded ratios in this case. This roughly corresponds in

the original Littlewood Conjecture to having

inf
q∈N

q‖qx2‖ > 0,

which is indeed the only interesting case of that conjecture anyway. For the bounded

ratios case our theorem gives a quite satisfactory answer to the problem at hand.

Corollary 1.1. Suppose that a ≥ 2 is an integer and that D is a pseudo-absolute

value sequence with bounded ratios, all of whose elements are coprime to a. Then for

any x ∈ R we have that

inf
q∈N

q|q|a|q|D‖qx‖ = 0.

After establishing Theorem 1.1 we will turn to the problem of determining the

almost everywhere behaviour of the quantities on the left hand side of (1.2). The

analogue of this problem for the Littlewood Conjecture was established by Gal-

lagher [13] in the 1960's. He proved that if ψ : N→ R is any non-negative decreasing

function for which ∑
r∈N

log(r)ψ(r) =∞ (1.6)

then for almost every (x1, x2) ∈ R2

‖qx1‖ ‖qx2‖ ≤ ψ(q) for in�nitely many q ∈ N. (1.7)

For example this shows that for almost every (x1, x2) ∈ R2 we can improve (1.1) to

inf
q∈N

q(log q)2(log log q) ‖qx1‖ ‖qx2‖ = 0.

Although Gallagher's method does not readily apply to the mixed problems that we

are considering, it has recently been shown using other techniques [7] that if p is a

prime, if ψ is as above, and if (1.6) holds then for almost every x ∈ R,

|q|p ‖qx‖ ≤ ψ(q) for in�nitely many q ∈ N.

109



Appendix: Paper IV

Here we will show how this result can be extended to non p−adic pseudo-absolute

values | · |D. The quality of approximation that we obtain will necessarily depend on

the rate at which the sequence D grows. For this reason, given a pseudo-absolute

value sequence D we de�neM : N→ N ∪ {0} by

M(N) = max {k : nk ≤ N} .

Theorem 1.2. Suppose that ψ : N → R is non-negative and decreasing and that

D = {nk} is a pseudo-absolute value sequence satisfying

M(N)∑
k=1

ϕ(nk)

nk
�M(N) for all N ∈ N, (1.8)

where ϕ denotes the Euler phi function. Then for almost all x ∈ R the inequality

|q|D ‖qx‖ ≤ ψ(q) (1.9)

has in�nitely (resp. �nitely) many solutions q ∈ N if the sum

∞∑
r=1

M(r)ψ(r) (1.10)

diverges (resp. converges).

We also note that when (1.10) converges the inequality (1.9) always has �nitely

many solutions, regardless of whether or not (1.8) is satis�ed.

When | · |D = | · |p for some prime p we have that M(N) � logN , and Theo-

rem 1.2 reduces in this case to the previously mentioned result from [7]. To see what

Theorem 1.2 means in terms of the in�ma type expressions that occur in the Mixed

Littlewood Conjecture, if D satis�es (1.8) then for almost every x ∈ R we have that

inf
q→∞

qM(q)(log q)(log log q) |q|D ‖qx‖ = 0,

while on the other hand for any ε > 0 and for almost every x ∈ R,

inf
q→∞

qM(q)(log q)(log log q)1+ε |q|D ‖qx‖ > 0.

Furthermore the hypothesis on D in Theorem 1.2 is not that restrictive in practice.

Although it is possible to choose D so that (1.8) does not hold, any reasonably chosen

pseudo-absolute value sequence should satisfy the condition. In particular if D has

bounded ratios or even if the elements of D are divisible only by some �nite collection

of primes then it is easy to check that (1.8) is satis�ed. For the interested reader we

will indicate in Section 6 how one can construct a sequence D for which (1.8) fails.
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2. Preliminaries for the proof of Theorem 1.1

2.1. Invariant measures for continuous transformations. Suppose X is a com-

pact metric space and let B denote the σ-algebra of Borel subsets of X. Let

M = M(X) be the set of all probability measures on (X,B), and if T : X → X

is a continuous map let MT = MT (X) be the subset of T−invariant measures in M.

In other words

MT = {µ ∈M : µ(B) = µ(T−1B) for all B ∈ B}.

The set M has a natural topology coming from the Riesz Representation Theorem,

and we refer to this as the weak∗ topology on M. The following basic lemma sum-

marizes some of the important properties of this topology (see [19, Theorems 6.4,

6.5, 6.10] for proofs).

Lemma 2.1. If X is a compact metric space then we have that:

(i) The space M is compact and metrizable in the weak∗ topology,

(ii) The set MT is a non-empty, closed, convex subset of M, and

(iii) The extreme points of MT are exactly the measures µ ∈M for which T is an

ergodic measure preserving transformation of (X,µ).

Let ET = ET (X) be the subset of extreme points of MT (X). Since M is metriz-

able and MT is compact and convex, by the Choquet Representation Theorem [18,

Chapter 3] for any µ ∈ MT there is a probability measure λ supported on ET with

the property that

µ =

∫
ET

m dλ(m). (2.1)

This is the ergodic decomposition of µ ∈MT .

2.2. Entropy and dimension. Suppose that X is a compact metric space with

metric d and that T : X → X is continuous. For n ∈ N and ε > 0 we say that a

subset A ⊆ X is (n, ε)-separated with respect to T if for any α, β ∈ A,α 6= β, we have

that

max
0≤i≤n−1

d(T iα, T iβ) ≥ ε.

Let sn(T, ε) be the largest cardinality of an (n, ε)−separated subset of X with respect

to T . The topological entropy of T is de�ned as

htop(T ) = lim
ε→0

lim sup
n→∞

log sn(T, ε)

n
.
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Next if µ ∈MT and P ⊆ B is a �nite partition of X we set

Hµ(P) = −
∑
P∈P

µ(P ) log µ(P ),

and we let

hµ(T,P) = lim
n→∞

1

n
Hµ

(
n−1∨
i=0

T−iP

)
,

where
n−1∨
i=0

T−iP =

{
n−1⋂
i=0

T−iPi : P0, . . . , Pn−1 ∈ P

}
.

The metric entropy of T with respect to µ is de�ned as

hµ(T ) = sup
P
hµ(T,P),

where the supremum is taken over all �nite partitions P ⊆ B. When there is no

confusion we may also refer to hµ(T ) as the entropy of µ.

The map from MT to [0,∞) which sends µ to hµ is a�ne [19, Theorem 8.1]. Also

the topological and metric entropies associated to a continuous transformation are

connected by the formula

htop(T ) = sup{hµ(T ) : µ ∈MT}, (2.2)

which is known as the variational principle [19, Theorem 8.6].

A concept which is somewhat related to topological entropy is the notion of the

upper box dimension of a subset A ⊆ X. For ε > 0 we say that B ⊆ A is ε−separated
if for any α, β ∈ B,α 6= β, we have that d(α, β) ≥ ε. Let s(A, ε) be the largest

cardinality of an ε−separated subset of A. The upper box dimension of A is de�ned

as

dim(A) = lim sup
ε→0

log s(A, ε)

log(1/ε)
.

First we establish an elementary fact. Here and in what follows we are working in

the metric space (R/Z, ‖ · ‖).

Lemma 2.2. For any A ⊆ R/Z and ε > 0 we have that

s(A− A, ε) ≤ 2s(A, ε)2,

where A− A = {α− β : α, β ∈ A}.
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Proof. Given ε > 0 let {α1, . . . , αk} be an ε−separated subset of A with maximum

cardinality. Then we have that

A ⊆
⋃

1≤i≤k

B(αi, ε),

where B(αi, ε) denotes the open ball of radius ε centred at αi. This gives that

A− A ⊆
⋃

1≤i,j≤k

(B(αi, ε)−B(αj, ε)) =
⋃

1≤i,j≤k

B(αi − αj, 2ε),

and therefore

s(A− A, ε) ≤
∑

1≤i,j≤k

s(B(αi − αj, 2ε), ε) = 2s(A, ε)2.

�

In our proof of Theorem 1.1 we will link upper box dimension and entropy using

following lemma.

Lemma 2.3. Suppose that a ∈ N, a ≥ 2, and let Ta : R/Z → R/Z be the map

Ta(α) = aα. If A ⊆ R/Z is a closed set satisfying Ta(A) ⊆ A then for any ε > 0

there exists a measure µ ∈MTa(A) with

hµ(Ta) ≥ dim(A) · log a− ε.

In particular if dim(A) > 0 then there is a measure µ ∈ ETa(A) with positive entropy.

Proof. Let d = dim(A) and assume without loss of generality that d > 0. Choose

{εm} ⊆ R, decreasing to 0, with

d = lim
m→∞

log s(A, εm)

log(1/εm)
.

Then for any 0 < δ < d there is an integer m0 with

s(A, εm) ≥ (1/εm)d−δ for all m ≥ m0.

Now for the moment �x a δ and an m ≥ m0 and let n be the integer which satis�es

a−n ≤ εm < a−n+1. Then if {α1, . . . , αk} is an εm-separated subset of A of maximum

cardinality we have that k ≥ a(n−1)(d−δ) and that

‖αi − αj‖ ≥ a−n for all 1 ≤ i < j ≤ k.

It is not di�cult to check that the latter condition implies that for any i 6= j we can

�nd an integer 0 ≤ ` < n with

‖a`αi − a`αj‖ ≥ 1/2a.
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In other words the set {α1, . . . , αk} is (n, 1/2a)−separated with respect to Ta. This

gives that
log sn(Ta|A, 1/2a)

n
≥ (d− δ) log a− (d− δ) log a

n
.

Now our choice for n must tend to in�nity with m and this gives that

lim sup
n→∞

log sn(Ta|A, 1/2a)

n
≥ (d− δ) log a.

Finally by letting δ tend to zero we obtain that

htop(Ta|A) ≥ dim(A) · log a.

The �rst claim of the lemma then follows from the variational principle (2.2). For

the second claim let µ be any measure in MTa(A) with positive entropy. Using the

ergodic decomposition (2.1) and the fact that entropy is a�ne we have that

hµ(Ta) =

∫
ETa

hm(Ta)dλ(m).

Since this integral is positive there must be a collection of ergodic measures, of

positive measure with respect to λ, which have positive entropy. This �nishes the

proof of the lemma. �

2.3. Diophantine approximation. For each c > 0 we de�ne Bad(c) ⊆ R to be the

collection of real numbers x which satisfy

inf
q∈N

q‖qx‖ ≥ c.

We say that a real number x is badly approximable if x ∈ ∪c>0Bad(c), and we say

that x is well approximable otherwise. The sets Bad(c) are invariant under integer

translation and so we also think of them, as well as the sets of badly and well

approximable numbers, as subsets of R/Z.

From the classical theory of continued fractions it has long been known that almost

every x, with respect to Lebesgue measure, is well approximable [3, 4]. Recently Ein-

siedler, Fishman, and Shapira, using a measure rigidity theorem due to Lindenstrauss

[15], have shown that we may draw the same conclusion with Lebesgue measure re-

placed by any times-a invariant measure with positive entropy.

Theorem 2.1. [9, Theorem 1.4] Suppose a ∈ N and let Ta : R/Z→ R/Z be the map

Ta(α) = aα. If µ ∈ ETa has positive entropy then µ−almost every x ∈ R/Z is well

approximable.
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Finally we say that a1, . . . , as ∈ N are multiplicatively independent if the real

numbers log a1, . . . , log as are linearly independent over Q. We will use the following

deep theorem of Baker and Wüstholz on lower bounds for linear forms in logarithms.

Theorem 2.2. [2] Suppose that a1, . . . , as ∈ N are multiplicatively independent.

Then there exists a constant κ > 0, which depends only on a1, . . . , as, such that

for any b1, . . . , bs ∈ Z, not all 0, we have that∣∣∣∣∣
s∑
r=1

br log ar

∣∣∣∣∣ ≥
(

3 · max
1≤r≤s

|br|
)−κ

.

3. Proof of Theorem 1.1

Let Σa = {a`}`≥0 and let ΣaD = {a`nk}`,k≥0. For α ∈ R let A(x) ⊆ R/Z denote

the closure of the set (ΣaD)x = {a`nkx}`,k≥0 ⊆ R/Z. If x ∈ Q then (1.5) is trivially

satis�ed, so for the remainder of the proof we will assume that x 6∈ Q.

Now suppose that for some x ∈ R there were a constant c > 0 such that

inf
q∈N

q|q|a|q|D‖qx‖ > c.

Then for any `, k ≥ 0 we would have that

inf
q∈N

q
∥∥q(a`nkx)

∥∥ ≥ inf
q∈N

(
a`nkq

) ∣∣a`nkq∣∣a ∣∣a`nkq∣∣D ∥∥a`nkqx∥∥ > c.

In other words we would have that (ΣaD)x ⊆ Bad(c), which would then imply that

the set A(x) does not contain any well approximable points. Therefore in order to

prove Theorem 1.1 we just have to show that for any x ∈ R\Q the set A(x) contains

a well approximable point.

First we will show that we can always �nd long sequences of integers in ΣaD with

ratios close to 1 (see equation (3.5) below). Let {p1 < · · · < ps} be the collection of

prime numbers which divide the elements of D, and for each k ≥ 0 write

nk = p
b
(1)
k
1 · · · pb

(s)
k
s .

Hypothesis (1.4) guarantees that for any k ≥ 2,

max
1≤r≤s

b
(r)
k ≤ 2kδ. (3.1)

Now for each ` ∈ N let σ` ∈ Z and τ` ∈ [0, 1) be selected so that σ` ≥ 0 and

s∑
r=1

b
(r)
`

log pr
log a

= σ` + τ`.
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Note that this is the same as writing n` in the form aσ`+τ` , and doing this makes it

technically easier to compare the ratios of these numbers. Let M be the smallest

integer greater than 2 log a. Then given k ≥ 2, one of the intervals [m/M, (m +

1)/M), 0 ≤ m < M, contains at least k/M of the numbers {τ`}1≤`≤k. Label the

numbers which fall in this interval as τ`1 < · · · < τ`k′ .

Next set σ′ = max1≤i≤k′ σ`i and for each 1 ≤ i ≤ k′ let

ti = aσ
′−σ`in`i ∈ ΣaD.

Then for any 1 ≤ i < j ≤ k′ we have that

log

(
tj
ti

)
=

s∑
r=1

(
b
(r)
`j
− b(r)`i

)
log pr +

(
σ`i − σ`j

)
log a (3.2)

= log a
(
τ`j − τ`i

)
,

and this shows that

0 < log

(
tj
ti

)
<

log a

M
. (3.3)

Next using (3.1) we have that

|σ`j − σ`i | ≤
s log ps
log a

· max
1≤r≤s

(
1 +

∣∣∣b(r)`j − b(r)`i ∣∣∣) ≤ (4s log ps
log a

)
kδ,

and so by applying Theorem 2.2 to (3.2) we deduce that there are constants C, κ > 0,

which depend only on p1, . . . , ps, and a, such that

log

(
tj
ti

)
≥ C

kδκ
. (3.4)

To avoid technicalities from here on we will assume that k ≥ max{2M, 2C1/(δκ)}.
Combining (3.3) and (3.4) with the inequalities

1 + α ≤ eα ≤ 1 + 2α, 0 ≤ α ≤ 1,

we have that

1 +
C

kδκ
≤ tj

ti
< 1 +

2 log a

M
, for all 1 ≤ i < j ≤ k′. (3.5)

Next we claim that we can always �nd a number γ ∈ [0, 1) satisfying

γ ∈
[

1

t1a2
,

1

t1a

)
∩ (Σa − Σa)x.

To see why this is true notice that since x 6∈ Q the point 0 is an accumulation point of

(Σa−Σa)x = Σax−Σax. Also this set is symmetric about 0, so it contains in�nitely

many points which lie in the interval (0, 1/t1a
2). If β is one of these points then we
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can �nd an integer b ∈ N with abβ ∈ [1/t1a
2, 1/t1a), and our claim is veri�ed by

taking γ = abβ.

With γ as above, for any q ∈ N and for any 1 ≤ i ≤ k′ we have from (3.5) that

1

a2
≤ tiγ ≤ t1γ

(
1 +

2 log a

M

)
<

2

a
≤ 1.

Furthermore if i < k′ then from the lower bound in (3.5) we obtain

ti+1γ − tiγ ≥
tiγC

kδκ
≥ C

a2kδκ
.

Thus for each q ∈ N we have that

s

(
A(x)− A(x),

C

a2kδκ

)
≥ k′ ≥ k

M
.

Then by Lemma 2.2 we have

s

(
A(x),

C

a2kδκ

)
≥
(

k

2M

)1/2

, (3.6)

and this gives that

dim(A(x)) ≥ lim sup
k→∞

log
((

k
2M

)1/2)
log
(

2a2kδκ

C

) =
1

2δκ
> 0.

Finally Lemma 2.3 ensures that there is an ergodic times-a invariant measure µ, sup-

ported on A(x), which has positive entropy. By Theorem 2.1 we have that µ−almost

every point is well approximable, but since µ(R/Z\A(x)) = 0 this implies that A(x)

contains a well-approximable point. This �nishes the proof of the theorem.

4. Preliminaries for the proof of Theorem 1.2

Let Ψ : N → R be any non-negative function and for each q ∈ N de�ne Aq =

Aq(Ψ) ⊆ R/Z by

Aq(Ψ) = {x ∈ R/Z : ‖qx‖ ≤ Ψ(q)}.

Then de�ne A(Ψ) ⊆ R/Z by

A(Ψ) = lim sup
q→∞

Aq(Ψ) = {x ∈ R/Z : x ∈ Aq for in�nitely many q}.

In our problem we are interested in the case when Ψ(q) = |q|−1D ψ(q), for a pseudo-

absolute value | · |D and a non-negative monotonic function ψ : N→ R. If λ denotes

Lebesgue measure on R/Z then we would like to show for this choice of Ψ that

λ(A(Ψ)) = 1 depending on whether or not the sum (1.10) diverges. First of all we

demonstrate that the divergence or convergence of the sum in question is equivalent
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to the divergence or convergence of the measures of the corresponding sets Aq. Here

and in what follows we write dk = nk/nk−1 for each nk ∈ D, k ≥ 1.

Lemma 4.1. If D is any pseudo-absolute value sequence then for N ∈ N we have

that
N∑
r=1

1

|r|D

(i)
� NM(N)

(ii)
�

N∑
r=1

M(r).

Consequently if ψ : N→ R is any non-negative decreasing function then

∞∑
r=1

λ

(
Ar

(
ψ

| · |D

))
= ∞ ⇐⇒

∞∑
r=1

M(r)ψ(r) = ∞. (4.1)

Proof. For the proof of (i) we have that

N∑
r=1

1

|r|D
=

M(N)∑
k=0

nk

N∑
r=1

nk|r, nk+1-r

1

=

M(N)∑
k=0

nk
∑

n≤N/nk
dk+1-n

1

=

M(N)∑
k=0

nk

((
1− 1

dk+1

)
N

nk
+O(1)

)

= N

M(N)∑
k=0

(
1− 1

dk+1

)
+O

M(N)∑
k=0

nk

 . (4.2)

Now notice that 1/2 ≤ (1− 1/dk+1) < 1 for all k and that

M(N)∑
k=0

nk ≤
M(N)∑
k=0

nM(N)

2M(N)−k ≤ 2nM(N) ≤ 2N. (4.3)

As claimed this shows that (4.2) is bounded above and below by universal constants

times NM(N).

For (ii) we have that

N∑
r=1

M(r) =

M(N)−1∑
k=0

k(nk+1 − nk) +M(N)(N − nM(N) + 1)

= (N + 1)M(N)−
M(N)∑
k=0

nk

The latter quantity is clearly less than 2NM(N), and by (4.3) it is also greater than

a constant times NM(N).
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Finally for the proof of (4.1), �rst of all suppose that ψ(mi)/|mi|D ≥ 1/2 for

some in�nite increasing sequence of integers {mi}i∈N. Then for each i we have that

Ami = R/Z so that the left hand side of (4.1) surely diverges. On the other hand

using (ii) we have that

mi∑
r=1

M(r)ψ(r) ≥ ψ(mi)

mi∑
r=1

M(r)� |mi|D (miM(mi)) ≥M(mi),

and this tends to in�nity with i.

Now for the other case assume that there is an r0 ∈ N such that ψ(r)/|r|D < 1/2

for all r ≥ r0. In this case we have that

λ

(
Ar

(
ψ

| · |D

))
=

2ψ(r)

|r|D
for all r ≥ r0. (4.4)

Now by the monotonicity of ψ together with (i) and (ii) we obtain

N∑
r=r0

ψ(r)

|r|D
=

N∑
r=r0

(ψ(r)− ψ(r + 1))
r∑

m=r0

1

|m|D
+ ψ(N + 1)

N∑
m=r0

1

|m|D

�
N∑
r=r0

(ψ(r)− ψ(r + 1))
r∑

m=r0

M(m) + ψ(N + 1)
N∑

m=r0

M(m)

=
N∑
r=r0

M(r)ψ(r),

and this together with (4.4) �nishes the proof of the lemma. �

For any Ψ as above if ∑
r∈N

λ(Ar(Ψ)) <∞

then by the Borel-Cantelli Lemma we have that λ(A(Ψ)) = 0. One half of Theo-

rem 1.2 follows from this observation together with (4.1). Unfortunately the converse

of the Borel-Cantelli Lemma is not true in general for the sets Ar(Ψ). In other words

there are examples of functions Ψ for which∑
r∈N

λ(Ar(Ψ)) =∞

and yet λ(A(Ψ)) = 0. Du�n and Schae�er observed this in [8] and they also showed

in the same paper that under certain conditions this type of anomalous behaviour

can be avoided.

119



Appendix: Paper IV

Theorem 4.1. [8] If Ψ : N→ R is a non-negative function which satis�es∑
r∈N

Ψ(r) =∞ (4.5)

and

lim sup
N→∞

(
N∑
r=1

ϕ(r)Ψ(r)

r

)(
N∑
r=1

Ψ(r)

)−1
> 0 (4.6)

then λ(A(Ψ)) = 1.

5. Proof of Theorem 1.2

If (1.10) converges then as previously remarked the result of Theorem 1.2 follows

from the Borel-Cantelli Lemma. Therefore we assume that (1.10) diverges. We set

Ψ(q) = ψ(q)/|q|D and we assume without loss of generality that Ψ(q) < 1/2 for all

but �nitely many q (otherwise the conclusion of the theorem is trivial). Then by

(4.1) and (4.4) we know that (4.5) is satis�ed, so in order to prove Theorem 1.2 it is

su�cient to show that (4.6) also holds.

First of all we show that there is a universal constant C > 0 such that

N∑
r=1
d-r

ϕ(r)

r
≥ CN for any d,N ∈ N with d ≥ 2. (5.1)

To verify this we have that

N∑
r=1
d-r

ϕ(r)

r
=

N∑
r=1

ϕ(r)

r
−

N∑
r=1
d|r

ϕ(r)

r

=
N∑
d=1

µ(d)

d

∑
1≤r≤N/d

1−
N∑
r=1
d|r

ϕ(r)

r
,

where µ : N → {±1, 0} is the Möbius function. For the �rst sum in this expression

we use the fact that

N∑
d=1

µ(d)

d

∑
1≤r≤N/d

1 = N

N∑
d=1

µ(d)

d2
−

N∑
d=1

{
N

d

}
µ(d)

d

=
6N

π2
−N

∞∑
d=N+1

µ(d)

d2
−

N∑
d=1

{
N

d

}
µ(d)

d

≥ 6N

π2
− C1 log(N + 1),
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for some universal constant C1 > 0. For the second sum we simply use the inequality

N∑
r=1
d|r

ϕ(r)

r
≤ N

d
.

Together these estimates give

N∑
r=1
d-r

ϕ(r)

r
≥
(

6

π2
− 1

d

)
N − C1 log(N + 1).

Now since d ≥ 2 we have 6/π2 − 1/d > 0 and therefore there exists an N0 ∈ N such

that (
6

π2
− 1

d

)
N ≥ 2C1 log(N + 1) for all N ≥ N0,

which means that

N∑
r=1
d-r

ϕ(r)

r
≥ 1

2

(
6

π2
− 1

2

)
N for all N ≥ N0.

To take care of the smaller values of N we choose C2 > 0 so that

N∑
r=1
d-r

ϕ(r)

r
≥ C2N for all N < N0, d ≤ N0. (5.2)

This is clearly possible since the summand is always positive and the range of values

for both N and d is �nite. However if (5.2) holds for all d ≤ N0 then it also holds

for all d > N0, since the left hand side only depends on N < N0 in those cases. This

establishes (5.1) with

C = min

{
C2,

1

2

(
6

π2
− 1

2

)}
.

For the �nal part of the proof we have that

N∑
r=1

ϕ(r)ψ(r)

r |r|D
=

N∑
r=1

(ψ(r)− ψ(r + 1))
r∑

m=1

ϕ(m)

m |m|D
+ ψ(N + 1)

N∑
m=1

ϕ(m)

m |m|D
. (5.3)
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We estimate the inner sums here by

r∑
m=1

ϕ(m)

m |m|D
=

M(r)∑
k=1

r∑
m=1

nk|m, nk+1-m

ϕ(m)

m |m|D

=

M(r)∑
k=1

∑
1≤m≤r/nk
dk+1-m

ϕ(nkm)

m

≥
M(r)∑
k=1

ϕ(nk)
∑

1≤m≤r/nk
dk+1-m

ϕ(m)

m

≥ Cr

2

M(r)∑
k=1

ϕ(nk)

nk
.

By hypothesis (1.8) the last sum here is � M(r) and so by inequality (i) in

Lemma 4.1 we have that
r∑

m=1

ϕ(m)

m |m|D
�

r∑
m=1

1

|m|D
.

This together with (5.3) and the monotonicity of ψ gives

N∑
r=1

ϕ(r)ψ(r)

r |r|D
�

N∑
r=1

(ψ(r)− ψ(r + 1))
r∑

m=1

1

|m|D
+ ψ(N + 1)

N∑
m=1

1

|m|D

=
N∑
r=1

ψ(r)

|r|D
.

This shows that (4.6) is satis�ed and we conclude our proof by applying Theorem 4.1.

6. Concluding remarks

We mentioned in the introduction that hypothesis (1.8) in Theorem 1.2 is not

particularly restrictive. However there are sequences D for which it fails to hold. To

see how one might construct such a sequence, for each k ≥ 0 let Ak = 2k
2
and set

nk =
∏
p≤Ak

p,

where the product is over prime numbers. Then by one of Mertens' Theorems [14,

�22.7] we have that

ϕ(nk)

nk
=
∏
p≤Ak

(
1− 1

p

)
� 1

logAk
,
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and this implies that
∞∑
k=1

ϕ(nk)

nk
<∞.

It is clear in this example that if D = {nk} then (1.8) is not satis�ed.

It would be interesting to determine whether or not hypothesis (1.8) can be re-

moved from the proof of Theorem 1.2. Indeed another interesting question is to

determine whether hypothesis (1.4) can be removed from the proof of Theorem 1.1.

Both of these problems seem to require more than trivial improvements over the

techniques which we have presented.

Finally we remark that the ideas in our proof of Theorem 1.2 can be extended to

prove metric results about approximations involving more than one pseudo-absolute

value. In particular given two pseudo-absolute value sequences D1 and D2 and a

monotonic function ψ : N → R we could give conditions on D1,D2, and ψ which

would guarantee that the inequality

|q|D1|q|D2‖qx‖ ≤ ψ(q) (6.1)

has in�nitely many solutions q ∈ N for almost every x ∈ R. However the conditions
would depend very much on how the sequences D1 and D2 intersect. For example

if D1 = {2k} and D2 = {3k} then by [7, Theorem 1], inequality (6.1) has in�nitely

many solutions for almost every x if and only if∑
r∈N

(log r)2ψ(r) =∞.

However if D1 = D2 = {2k} then by [7, Theorem 2], the inequality has in�nitely

many solutions for almost every α if and only if∑
r∈N

rψ(r) =∞.

This shows that there are two extremes of the problem, and most sequences behave

in a way that falls between these two extremes. It doesn't seem readily obvious how

to �nd a nice, tractable divergence condition which will apply in the most general

case of metric problems involving more than one pseudo-absolute value. In the case

of two pseudo-absolute values this might not be too di�cult, but for more than two

the problem seems to get complicated quickly.
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ON A MIXED KHINTCHINE PROBLEM IN DIOPHANTINE
APPROXIMATION

STEPHEN HARRAP AND TATIANA YUSUPOVA

Abstract. Let D = {nk}∞k=0 be a strictly increasing sequence of natural numbers
such that the ratio of any two consecutive elements is bounded and let (i, j) be a
pair of strictly positive real numbers with i+j = 1. For any decreasing non-negative
arithmetic function ψ consider the set of x ∈ [0, 1) such that

max
{
|q|1/iD , ‖qx‖1/j

}
≤ ψ(q)

for in�nitely many q ∈ N. We prove that the Lebesgue measure of this set is zero or
one depending on whether the sum

∑∞
r=1 ψ(r) converges or diverges respectively.

This provides a complete mixed analogue of a classical theorem of Khintchine. In
turn, we �nd the Hausdor� dimension of this set in the case that ψ(q) = q−τ for
some τ ≥ 1. This extends the classical Jarník-Besicovich theorem to the mixed
and weighted setting.

1. Introduction

Choose any positive real numbers i and j satisfying

i, j > 0 and i+ j = 1 (1.1)

and let ψ : N → R≥0 be any non-negative arithmetic function. For reasons that

will become apparent, we refer to ψ as an approximating function. Consider the set

W (i, j, ψ) of real vectors x = (x1, x2) ∈ [0, 1)2 for which the system of inequalities∣∣∣∣x1 −
p1

q

∣∣∣∣ ≤ ψi(q)

q
,

∣∣∣∣x2 −
p2

q

∣∣∣∣ ≤ ψj(q)

q
(1.2)

is satis�ed by in�nitely many p1, p2 ∈ Z and q ∈ N. Clearly, this set depends

heavily on the choice of function ψ. Essentially, if x ∈ W (i, j, ψ) we are saying that

x can be approximated by rational points (p1/q, p2/q) at a `rate' described by the

approximating function ψ. The exponents i and j act as `weights', perturbing this

rate of approximation across each component of x.

Throughout, n-dimensional Lebesgue measure will be denoted λn. In 1926, Khint-

chine [15] proved the following remarkable statement concerning the two-dimensional

Lebesgue measure of the set W (i, j, ψ). For any pair of reals i, j satisfying (1.1) and
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any approximating function ψ we have

λ2 (W (i, j, ψ)) =



0,
∞∑
r=1

ψ(r) < ∞.

1,
∞∑
r=1

ψ(r) = ∞ and ψ is monotonic.

In fact, the monotonicity restriction imposed on ψ in the `divergent' part of Khint-

chine's theorem can be relaxed. This follows from a result of Harman (see Theorem

3.8 of [16]).

One can consider the following multiplicative variant of the set W (i, j, ψ). Let

M(ψ) :=
{
x ∈ [0, 1)2 : ‖qx1‖ ‖qx2‖ ≤ ψ(q) for inf. many q ∈ N

}
,

where ‖ . ‖ denotes the distance to the nearest integer. A measure theoretic statement

concerning the setM(ψ) was found by Gallagher [13] in 1962. For any approximating

function ψ

λ2 (M(ψ)) =



0,
∞∑
r=1

ψ(r) log(r) < ∞.

1,
∞∑
r=1

ψ(r) log(r) = ∞ and ψ is monotonic.

It is an open question as to whether the monotonicity assumption on ψ can be safely

removed in this setting. For recent progress, see [4].

In 2004, de Mathan & Teulié [20] introduced a related setup realised by retain-

ing the condition that ‖qx1‖ is small but replacing the condition on ‖qx2‖ with

a condition of divisibility. To elaborate we require some notation. A sequence

D := {nk}∞k=0 of positive integers is said to be a pseudo-absolute value sequence,

or simply a D-adic sequence, if it is strictly increasing with n0 = 1 and nk|nk+1 for

all k. We say a pseudo-absolute value sequence has bounded ratios if the quotients

nk+1/nk do not exceed some universal constant. The D-adic pseudo-absolute value

| . |D : N→ {1/nk : k ∈ N} is then de�ned by

|q|D := 1/nωD(q) = inf{1/nm : q ∈ nmZ}.

When {nk+1/nk}∞k=0 is the constant sequence equal to a prime number p, the pseudo

absolute value | · |D is the usual p-adic absolute value | · |p.
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Within this setup, one can de�ne a `mixed' version of the set M(ψ). Let

MD(ψ) := {x ∈ [0, 1) : |q|D ‖qx‖ ≤ ψ(q) for inf. many q ∈ N} .

Recently, in [17], the following analogue of Gallagher's theorem was established con-

cerning the set MD(ψ). For any approximating function ψ and any D-adic sequence
with bounded ratios we have

λ1 (MD(ψ)) =



0,
∞∑
r=1

ψ(r) log(r) < ∞.

1,
∞∑
r=1

ψ(r) log(r) = ∞ and ψ is monotonic.

Again, it is currently unknown whether the monotonicity assumption is necessary.

Somewhat surprisingly the metric theory relating to a mixed analogue ofW (i, j, ψ)

has not yet been explored. The intentions of this paper are to do exactly that. In

particular, a metric theorem is established concerning the one-dimensional set

WD(i, j, ψ) :=
{
x ∈ [0, 1) : max

{
|q|1/iD , ‖qx‖1/j

}
≤ ψ(q) for inf. many q ∈ N

}
.

As we have seen, for each approximating function ψ the Lebesgue measure of the sets

M(ψ) and MD(ψ) depend on the asymptotic behaviour of the same sum (assuming

that D has bounded ratios). We show that the sets W (i, j, ψ) and WD(i, j, ψ) enjoy

a similar property.

For the case when ψ(q) = 1/q and D has bounded ratios, the `badly approximable'

complement of the set WD(i, j, ψ) was studied in [1]. This seems to constitute all

previous knowledge of mixed problems in Diophantine approximation outside the

multiplicative setting.

2. Statement of Results

For notational purposes, let A := A(D, ψ, i) := {r ∈ N : |r|D < ψi(r)}. The main

result of this paper is the following analogue to Khintchine's theorem.
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Theorem 2.1. For any pair of reals i, j satisfying (1.1), any decreasing approxi-

mating function ψ and any D-adic sequence with bounded ratios we have

λ1 (WD(i, j, ψ)) =


0,

∑
r∈N

ψ(r) < ∞.

1,
∑
r∈N

ψ(r) = ∞.

We remark that one is free replace the volume sum
∑

r∈N ψ(r) with the sum∑
r∈A ψ

j(r) in the statement of Theorem 2.1. This might be expected as the problem

can be restated as one of Diophantine approximation with restricted denominator;

namely, we can write

WD(i, j, ψ) =
{
x ∈ [0, 1) : ‖qx‖ < ψj(q) for inf. many q ∈ A

}
.

The two sums in question are equivalent under the assumption that ψ is monotonic.

However, the sum
∑

r∈A ψ
j(r) is in many ways the `genuine' volume sum. Indeed,

the monotonicity assumption can be dropped in the convergence case of Theorem 2.1

when this sum is considered. That said, to bring the similarity between Theorem 2.1

and Khintchine's theorem to the forefront we present the statement as above.

In section �3 we demonstrate that the monotonicity assumption imposed on the

function ψ is indeed necessary, and further that the natural mixed analogue of the

Du�n-Schae�er Conjecture (see �3.2) does not hold in the mixed setting.

It is worth emphasising that the degenerate cases `i = 0' and `j = 0' are not

considered in this paper. On employing the convention that x1/y = 0 when y = 0

for all real x, it is easily veri�ed that in the former case Theorem 2.1 reduces to a

classical one-dimensional result of Khintchine (see �3.1), whilst in the latter case the

measure of the corresponding setWD(1, 0, ψ) trivially ful�ls a `zero-one' law. Indeed,

WD(1, 0, ψ) =

[0, 1), ψ(q) > |q|D for in�nitely many q ∈ N.

∅, otherwise.

Finally, we remark that obtaining an equivalent statement to that of Theorem 2.1

for pseudo-absolute value sequences with non-bounded ratios, whilst desirable, would

require more than trivial improvements over the techniques which we have presented.

Theorem 2.1 is a consequence of the following more general Hausdor� measure re-

sult. Throughout, Hs denotes standard s-dimensional Hausdor� measure and `dim'

represents Hausdor� dimension. Recall that when s = 1 Hausdor� measure is com-

parable with one-dimensional Lebesgue measure.
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Theorem 2.2. Fix any pair of reals i, j satisfying (1.1), any D-adic sequence with

bounded ratios and any real s ∈ (i, 1]. Then, for any approximating function ψ for

which r1−sψi+js(r) is decreasing we have

Hs (WD(i, j, ψ)) =


0,

∑
r∈N

r1−s ψi+js(r) < ∞.

Hs([0, 1)),
∑
r∈N

r1−s ψi+js(r) =∞ and ψ is monotonic.

It should be mentioned that we do not claim the conditions imposed in Theo-

rem 2.2 are optimal. In fact, we suspect that the assumption that r1−sψi+js(r) is

decreasing may be unnecessary. A further consequence of Theorem 2.2 is the follow-

ing statement.

Corollary 2.3. Choose any pair of reals i, j satisfying (1.1), any D-adic sequence

with bounded ratios and any decreasing approximating function ψ. Then, if there

exists a real number τ such that

τ = lim
− logψ(r)

log r
<

1

i

we have

dim (WD(i, j, ψ)) =
2− iτ
1 + jτ

.

This generalises a classical theorem of Jarník [19] and Besicovich [8], which corre-

sponds to the case when i = 0 and j = 1. We remark that when ψ(q) = q−1/i the set

WD(i, j, ψ) is empty.

3. Removing monotonicity

3.1. The work of Du�n and Schae�er. For any approximating function ψ let

W (ψ) := {x ∈ [0, 1) : ‖qx‖ < ψ(q) for in�nitely many q ∈ N}

denote the standard set of ψ-approximable numbers. A one-dimensional version

of Khintchine's theorem states that the Lebesgue measure of W (ψ) is zero or one

depending upon whether the sum
∑∞

r=1 ψ(r) converges or diverges respectively. Once

more, a monotonicity assumption is imposed on ψ in the divergent case.

In their seminal paper [12], Du�n & Schae�er produced a counterexample show-

ing that the monotonicity assumption is absolutely necessary. In particular, they

constructed a general approximating function φ for which λ1(W (φ)) = 0 but the

sum
∑∞

r=1 φ(r) diverges. However, they did conjecture that under certain stronger
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conditions the assumption can be dropped. For any approximating function ψ de�ne

the set W ′(ψ) by

W ′(ψ) := {x ∈ [0, 1) : |qx− p| < ψ(q) for inf. many (p, q) ∈ N× N with (p, q) = 1} .

The set di�ers from W (ψ) by only the coprimality restriction on p and q. This

restriction ensures that the rational approximations p/q to x are in reduced form.

Du�n-Schae�er Conjecture (1941). For any approximating function ψ we have

λ1(W ′(ψ)) = 1 if
∞∑
r=1

ϕ(r)

r
ψ(r) =∞,

where ϕ denotes Euler's totient function.

It is clear that W ′(ψ) ⊂ W (ψ), which, in view of Khintchine's theorem, implies

that the complementary statement

λ1(W ′(ψ)) = 0 if
∞∑
r=1

ϕ(r)

r
ψ(r) <∞

holds for every approximating function ψ. The Du�n-Schae�er Conjecture repre-

sents one of the most profound unsolved problems in metric Diophantine approx-

imation. For a thorough account including recent progress made concerning the

conjecture see �2 of [16].

3.2. The mixed setting. One might hope to prove similar results to those of Du�n

and Schae�er within the mixed simultaneous setting. Indeed, in �3.3 we demonstrate

that the monotonicity assumption in Theorem 2.1 is also absolutely necessary by

constructing a counterexample of our own. More to the point, our example will show

that the `natural' mixed analogue of the Du�n-Schae�er Conjecture does not hold.

First, let us discuss what a mixed analogue of the Du�n-Schae�er Conjecture

might be. Let W ′
D(i, j, ψ) denote the set of points x ∈ [0, 1) for which the conditions

max
{
|q|1/iD , |qx− p|1/j

}
≤ ψ(q), (p, q) = 1,

hold for in�nitely many natural numbers q. One might naively propose that the

analogue would read � for any pair of reals i, j satisfying (1.1), any approximating

function ψ and any D-adic sequence with bounded ratios we have

λ1(W ′
D(i, j, ψ)) = 1 if

∞∑
r=1

ϕ(r)

r
ψ(r) =∞.�
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However, it is not di�cult to see this is false; for example, take

φ(q) =


1/2, (nk, q) = 1 for all k ∈ N,

0, otherwise,

and we have that W ′
D(i, j, φ) is empty but the corresponding volume sum diverges.

A more astute, and natural, proposal for a mixed Du�n-Schae�er Conjecture is

that we have

λ1(W ′
D(i, j, ψ)) = 1 if

∑
r∈A

ϕ(r)

r
ψj(r) =∞.

The example given above certainly does not contradict this statement as the set A(φ)

is empty. That said, we will prove that this natural proposal is also false. To be

precise, we prove the following.

Theorem 3.1. For any pair of reals i, j satisfying (1.1) and any D-adic sequence

there exists an approximating function Φ : N→ R≥0 for which

λ1(WD(i, j,Φ)) = 0 but
∑
r∈A

ϕ(r)

r
Φj(r) =∞.

Note that since

W ′
D(i, j,Φ) ⊂ WD(i, j,Φ) and

∑
r∈A

ϕ(r)

r
Φj(r) ≤

∑
r∈A

Φj(r),

the example constructed in Theorem 3.1 both proves the necessity of the mono-

tonicity assumption in Theorem 2.1 and disproves our natural proposal for a mixed

Du�n-Schae�er Conjecture.

3.3. Proof of Theorem 3.1. First we show for large R and small ε > 0 that there

exists an approximating function φ such that∑
r∈A(φ)

ϕ(r)

r
φj(r) > 1, φ(r) = 0 when r ≤ R,

but the set of x ∈ (0, 1) such that

‖qx‖ < φj(q) for some q ∈ A(φ), (3.1)

has Lebesgue measure strictly less than ε.

Let α be a positive number strictly smaller than both (ε/2)1/j and (1/2)1/i and

choose primes p1, p2, . . . , ps with pt > R (t = 1, . . . , s) for some natural number s to

be speci�ed later. Since D has bounded ratios we can choose the primes pt in such

132



Appendix: Paper V

a way that each is coprime to every integer nk. Next, let

K := K(s, α) = min {k ∈ N : nk ≥ p1 · · · ps/α} .

Finally, upon setting

N := nKp1 · · · ps
de�ne

φ(q) : =


qα/N, nK | q, q |N, q 6= nK .

0, otherwise.

We claim that φ satis�es the desired properties. Let Aq denote the set in (0, 1)

consisting of the q− 1 open intervals of length 2φj(q)/q with centres at the rationals

p/q (p = 1, . . . , q − 1) and the open intervals (0, φj(q)/q) and (1 − φj(q)/q, 1). The

upper bound for α guarantees that these intervals are disjoint and so the Lebesgue

measure of Aq is given by 2φj(q) = 2qjαj/N j. Furthermore, we have

AN =
⋃
q |N :
nK | q
q 6=nK

Aq

and for all q in this union

|q|D ≤
1

nK
=

p1 · · · ps
N

≤ nKα

N
<

qα

N
= φ(q) < φi(q);

i.e., q ∈ A(φ). Hence, property (3.1) will be satis�ed by irrational x ∈ (0, 1) if and

only if x ∈ AN . However, λ1(AN) = 2αj < ε.

All that remains is to show∑
r∈A(φ)

ϕ(r)

r
φj(r) > 1.

Via the change of variables ` := rn−1
K ,M := Nn−1

K we have∑
r∈A(φ)

ϕ(r)

r
φj(r) =

αj

N j

∑
q |N :
nK | q
q 6=nK

ϕ(q)

q1−j =
αj

M j

ϕ(nK)

nK

∑
`> 1:
r |M

ϕ(`)

`1−j ,

since nK and all divisors of M are pairwise coprime. It is readily veri�ed that the

function

f(n) :=
∑
d |n

ϕ(d)

d1−j

133



Appendix: Paper V

is multiplicative. Therefore,

f(n) =
m∏
t=1

(
1 +

ϕ(qt)

q1−j
t

+
ϕ(q2

t )

q
2(1−j)
t

+ · · ·+ ϕ(qαt
t )

q
αt(1−j)
t

)
,

where n = qα1
1 · · · qαm

m is the unique prime factorization of n (see [18] for example).

Also, it follows from the assumption that D has bounded ratios that the quantity

ϕ(nK)/nK is bounded below by some positive constant, κ > 0 say, which depends

only upon D. Now, choose s large enough so that

s∏
t=1

(
1 + 1/pjt − 1/pt

)
> 1 + 1/αjκ. (3.2)

This is always possible because 0 < j < 1 and so the above product diverges when

extended over all primes. Then, since M = p1 · · · ps we have∑
r∈A(φ)

ϕ(r)

r
φj(r) =

αj

M j

ϕ(nK)

nK

(
s∏
t=1

(
1 + ϕ(pt)/p

1−j
t

)
− 1

)

≥ αjκ

M j

(
s∏
t=1

(
1 + (pt − 1)/p1−j

t

)
− 1

)

> αjκ

(
s∏
t=1

(
1 + 1/pjt − 1/pt

)
− 1

)
(3.2)
> 1,

as required. Note that this argument is not applicable to the Du�n-Schae�er Con-

jecture itself. This is because when `j = 1' we cannot choose s in such a way that

(3.2) holds since then the product on the LHS of (3.2) reduces to the trivial one.

We are now in a position to construct our counterexample. Let φ1 satisfy the

above properties with R = R1 := 1 and ε = ε1 = 2−2. Then for some R2 we have

φ1(q) = 0 for all q ≥ R2. Let φ2 satisfy the above properties with R = R2 and

ε = ε2 = 2−2. Continue to choose numbers Rt and construct functions ψt satisfying

the above properties with R = Rt and ε = εt = 2−t. Then, de�ne

Φ(q) : =


φ1(q), q < R2.

φt(q), Rt ≤ q < Rt+1, t ∈ N.

Then, it is clear that ∑
r∈A(Φ)

ϕ(r)

r
Φj(r) = ∞,
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but for x ∈ (0, 1) the system

‖qx‖ < Φj(q), q ∈ A(Φ), q > Rt

can be satis�ed only if x belongs to a set of measure at most

∞∑
r=t

2−r = 2−t+1,

as required.

4. Ubiquitous Systems

Ubiquity is a fundamental tool for establishing measure theoretic statements. We

will utilise this notion in proving Theorem 2.2. This section comprises of a brief

description of a restricted form of ubiquity tailored to our needs.

The concept of ubiquitous systems was �rst introduced by Dodson, Rynne &

Vickers in [11] as a method of determining lower bounds for the Hausdor� dimension

of limsup sets. Recently, this idea was developed by Beresnevich, Dickinson & Velani

in [2] to provide a very general framework for establishing the Hausdor� measure of

a large class of limsup sets. A simpli�ed account of ubiquity is presented in [7].

4.1. The ubiquity setup. Let (Ω, d) be a compact metric space endowed with

a non-atomic probability measure µ and assume that any open subset of Ω is µ-

measurable. Throughout, B(c, r) will denote a ball in Ω centred at a point c and of

radius r > 0. The following regularity condition will be imposed on the measure of

balls: There exist positive constants a, b, δ and r0 such that for any c ∈ Ω and r ≤ r0

arδ ≤ µ(B(c, r)) ≤ brδ.

If this power law holds then µ is referred to as δ-Ahlfors regular. It is easy to see that

if µ is δ-Ahlfors regular then dim Ω = δ and that µ is comparable to δ-dimensional

Hausdor� measure Hδ.

Let R = {Ra ∈ Ω : a ∈ J} be a collection of points Ra in Ω indexed by some

in�nite, countable set J . The points Ra are referred to as the resonant points. Next,

let β : J → R>0 : a 7→ βa be a positive function de�ned on J for which the number

of a ∈ J with βa bounded above is always �nite. Finally, given an approximating

function Ψ de�ne

Λ(Ψ) := {x ∈ Ω : x ∈ B(Ra,Ψ(βa)) for in�nitely many a ∈ J} .

It is the measure of this set in which we are interested.
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To demonstrate the `limsup' nature of Λ(Ψ) �rst choose any two positive increasing

sequences l := {lk} and u := {uk} such that lk < uk and limk→∞ lk = ∞. These

sequences will be referred to as the lower and upper sequences respectively. For

k ∈ N let

Λu
l (Ψ, k) :=

⋃
a∈Ju

l (k)

B(Ra,Ψ(βa)),

where Jul (k) := {a ∈ J : lk < βa ≤ uk}. Then, it is easily seen that

Λ(Ψ) =
∞⋂
m=1

∞⋃
k=m

Λu
l (Ψ, k).

We can now de�ne what it means to be a ubiquitous system. Let ρ : R>0 → R>0

be any function with ρ(r)→ 0 as r →∞ and let

∆u
l (ρ, k) :=

⋃
a∈Ju

l (k)

B(Ra, ρ(uk)).

De�nition (Local m-ubiquity) Let B = B(c, r) be an arbitrary ball in Ω of radius

r ≤ r0. Suppose there exists a function ρ, sequences l and u and an absolute constant

κ > 0 such that

µ(B ∩∆u
l (ρ, k)) ≥ κµ(B) ∀ k ≥ k0(B). (4.1)

Then the pair (R, β) is said to be a local µ-ubiquitous system relative to (ρ, l, u).

The function ρ will be referred to as the ubiquitous function. Also, as is noted

in [2], the appearance of the lower sequence l is in the above de�nition is irrelevant.

Indeed, to establish inequality (4.1) it su�ces to show

µ
(
B ∩

⋃
a∈Ju(k) B(Ra, ρ(uk))

)
≥ κµ(B) ∀ k ≥ k0(B), (4.2)

where Ju(k) := {a ∈ J : βa ≤ uk}.

Finally, we will say a function h is u-regular if there exists a strictly positive

constant λ < 1, which may depend on u, such that for k su�ciently large

h(uk+1) ≤ λh(uk).

We now present the main results associated with ubiquitous systems tailored to

our needs. The �rst theorem (see [2, Corollary 2]) concerns the µ-measure of the

limsup set Λ(Ψ) and corresponds to the ‘s = 1′ case of Theorem 2.1. The second

(see [3, Theorem 10]) deals with the s-dimensional Hausdor� measure Hs of Λ(Ψ)

for 0 < s < 1. Due to the nature of the framework it is necessary to deal with the

two scenarios separately.
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Theorem BDV1 (2006). Let (Ω, d) be a compact metric space equipped with a δ-

Ahlfors regular measure µ. Suppose that (R, β) is a local µ-ubiquitous system relative

to (ρ, l, u) and that Ψ is an approximation function. Furthermore, suppose that either

Ψ or ρ is u-regular and that

∞∑
k=1

(
Ψ(uk)

ρ(uk)

)δ
= ∞.

Then,

µ (Λ(Ψ)) = 1.

Theorem BDV2 (2006). Let (Ω, d) be a compact metric space equipped with a δ-

Ahlfors regular measure µ. Suppose that (R, β) is a local µ-ubiquitous system relative

to (ρ, l, u) and that Ψ is an approximation function. Furthermore, suppose that

0 < s < δ. Let g be the positive function given by g(r) := Ψsρ−δ and let G :=

lim supk→∞ g(uk).

(i) Suppose that G = 0 and Ψ is u-regular. Then,

Hs(Λ(Ψ)) =∞ if
∞∑
k=1

g(uk) =∞.

(ii) Suppose that 0 < G <∞. Then, Hs(Λ(Ψ)) =∞.

Before proceeding, we mention a generalisation of the Cauchy condensation test,

attributed to Oscar Schlömilch, which can be found in [9, Theorem 2.4]. We will

appeal to this result multiple times in our proofs.

Schlömilch's Theorem (Late 19th Century). Let
∑∞

r=0 ar be an in�nite real

series whose terms are positive and decreasing and let m0 < m1 < · · · be a strictly

increasing sequence of positive integers for which there exists a constant M > 0 such

that
mk+1 −mk

mk −mk−1

≤ M for every k ∈ N. (4.3)

Then the series
∑∞

r=0 ar converges if and only if the series
∑∞

k=0(mk+1 − mk)amk

converges.

Note that when mk = nk, condition (4.3) is satis�ed for some M > 0 if and only

if the sequence D has bounded ratios.
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5. Proof of Theorem 2.2

For the divergence part of Theorem 2.2 we will appeal to the ubiquity framework

described in the previous section. The convergence part follows by well-known ar-

guments stemming from the Borel-Cantelli Lemma. For completeness we include a

short proof here. For each s with i < s ≤ 1 let Hs denote s-dimensional Hausdor�

measure and assume that the sum
∑

r∈N r
1−s ψi+js(r) converges. The case `s = 1' cor-

responds to the setting of Theorem 2.1, where H1 is comparable to one-dimensional

Lebesgue measure. De�ne the quantity m := m(k) for each k ∈ N as the unique

natural number for which

1

nm
< ψi(nk) ≤ 1

nm−1

. (5.1)

This is always possible since ψ is decreasing and the elements of D are increasing.

Since the pseudo absolute value is discrete, for each k ∈ N we have

#
{
nk < q ≤ nk+1 : |q|D < ψi(q)

}
≤ #

{
nk < q ≤ nk+1 : |q|D < ψi(nk)

}
= #

{
nk < q ≤ nk+1 : |q|D ≤

1

nm

}
= # {nk < q ≤ nk+1 : nm| q}

=
nk+1 − nk

nm
(5.1)
< (nk+1 − nk)ψi(nk) (5.2)

Next, choose any natural number q for which |q|D < ψi(q). Then the set of real

numbers x ∈ (0, 1) satisfying

max
{
|q|1/iD , ‖qx‖1/j

}
< ψ(q) (5.3)

is covered by the q−1 open intervals of length 2ψj(q)/q with centres at the rationals

p/q (p = 1, . . . , q− 1) and the open intervals (0, ψj(q)/q) and (1−ψj(q)/q, 1). Thus,

the Hausdor� measure Hs of this set is at most 2sq1−sψjs(q).

For any ε > 0 and any su�ciently large integer k0, the set of x ∈ (0, 1) satisfying

inequality (5.3) for some q > nk0 has Hausdor� measure at most

2s
∑

q >nk0
:

|q|D<ψi(q)

q1−sψjs(q) ≤ 2sM1−s
∞∑

k=k0

∑
nk <q≤nk+1:

|q|D<ψi(q)

n1−s
k ψjs(nk)

(5.2)
< 2sM1−s

∞∑
k=k0

(nk+1 − nk)n1−s
k ψi+js(nk).
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However, the function r1−sψi+js(r) is assumed decreasing and D is assumed to have

bounded ratios and so we may apply Schlömilch's theorem. This allows us to make

the �nal sum as small as we like, smaller than some ε > 0 say. In particular, the set

of x satisfying inequality (5.3) for in�nitely many q has Hausdor� measure measure

at most ε and our proof is complete.

We now demonstrate how the ubiquity framework can be applied to the set

WD(i, j, ψ). Firstly, choose a natural number c. It is then easy to see thatWD(i, j, ψ)

can be expressed in the form Λ(Ψ) with

Ω := [0, 1], Ψ(r) := ψj(r)/r, J :=
{

(p, q) ∈ N× N : 0 ≤ p ≤ q, |q|D < ψi(q)
}
,

a := (p, q) ∈ J, βa := q, Ra := p/q, uk := lk+1 := nck, µ := λ1, δ := 1,

Jul (k) :=
{

(p, q) ∈ J : nc(k−1) < q ≤ nck
}
, Λu

l (Ψ, k) :=
⋃

(p,q)∈Ju
l (k)

B(p/q, ψj(q)/q),

so that

WD(i, j, ψ) = lim sup
k→∞

Λu
l (Ψ, k).

It is clear that λ1 is δ-Ahlfors regular and that the metric d is in this case simply

the standard Euclidean metric d(x, y) := |x− y|. The reason for the presence of the

constant c will be described later.

We would like to show that this system is locally λ1-ubiquitous relative to (ρ, l, u),

for l and u as chosen above and some real positive function ρ satisfying with ρ(r)→ 0

as r → ∞. After some thought it becomes apparent that an appropriate choice of

ubiquitous function might be ρ(q) := γ/q2ψi(q) for some constant γ > 0. For then,

the sum
∞∑
k=1

(
Ψ(uk)

ρ(uk)

)δ
=

∞∑
k=1

n2
ckψ

i(nck)ψ
j(nck)

γ nck
=

1

γ

∞∑
k=1

nckψ(nck),

diverges if and only if the sum
∑∞

r=1 ψ(r) diverges by the result of Schlömilch.

Next, we point out an important observation. When
∑

r∈N r
1−sψi+js(r) =∞ and

s ∈ (i, 1] we may assume that

ψi(r) > 1/r for all r ∈ N. (5.4)

To see this, let {rk} be the increasing sequence of integers for which ψi(rk) ≤ 1/rk.

Then, for s ∈ (i, 1] we have∑
k∈N

r1−s
k ψi+js(rk) ≤

∑
k∈N

r
−(1+j/i)s
k <∞ and

∑
r∈N\{rk}

r1−sψi+js(r) =∞.
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But, for each k ∈ N we have

ψi(rk) ≤
1

rk
≤ |rk|D

and so rk /∈ A. The upshot is that we may choose J ⊂ N× (N\{rk}) in the ubiquity

setup and neither the set WD(i, j, ψ) nor the divergence of the corresponding volume

sum is a�ected by the removal of the integers rk.

Note that the above observation implies that ρ(r) → 0 as r → ∞. Furthermore,

assume that the ratios of consecutive elements of D are bounded by M ≥ 2; i.e.,

nk+1/nk ≤M for all k ∈ N. Then the monotonicity of ψ immediately implies that

ψj(nc(k+1))

nc(k+1)

≤ ψj(nck)

nc(k+1)

≤ ψj(nck)

M cnck

and so Ψ is trivially u-regular. Therefore, to prove the divergent part of Theorem 2.2

it su�ces to show the following holds.

Proposition 5.1. Let ρ(q) := γ/q2ψi(q). Then, the system de�ned above is a locally

λ1-ubiquitous relative to the triple (ρ, nc(k−1), nck) for some c ∈ N and some γ > 0 to

be speci�ed later.

We begin by generalising the sequence speci�ed in (5.1). Fix k ∈ N, then for every

natural number c de�ne mk := mk(c) as the unique natural number for which

1

ncmk

< ψi(nck) ≤ 1

nc(mk−1)

. (5.5)

Again, this is always possible since ψ is decreasing and the elements of D are increas-

ing. To prove Proposition 5.1 we will require the following consequence of a classical

theorem of Dirichlet.

Proposition 5.2. Fix c ∈ N. Then, for every x ∈ R and every k ∈ N there exists

p/q ∈ Q with ncmk
≤ q ≤ nck such that∣∣∣∣x− p

q

∣∣∣∣ <
ncmk

qnck
and |q|D <

1

ncmk

. (5.6)

Proof of Proposition 5.2. Dirichlet's theorem states that for all x′ ∈ R and for all

N ∈ N there exists p/q′ ∈ Q with q′ ≤ N such that

|x′ − p/q′| < 1/q′N.
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Let N := nck/ncmk
. Observation (5.4) guarantees that N ≥ 1. Next, set x := x′ncmk

and q = ncmk
q′. Then, for all x ∈ R we have∣∣∣∣xncmk

− pncmk

q

∣∣∣∣ <
n2
cmk

qnck

whereby upon division by ncmk
the desired inequality is reached. Furthermore,

ncmk
≤ q ≤ ncmk

nck/ncmk
= nck and |q|D ≤ 1/ncmk

as required. �

In what follows K(c, k) will denote the set of integers q with q ≤ nck for which

|q|D < 1/ncmk
, whereas K∗(c, k) will denote those integers q with nc(k−1) < q ≤ nck

for which |q|D < 1/ncmk
. Finally, as proposed, set ρ(r) := γ/r2ψi(q) for some γ > 0.

In view of statement (4.2), to prove Proposition 5.1 we now need only show there

exists an absolute constant κ > 0 such that

λ1

I ∩ ⋃
q≤nck:
|q|D <ψi(q)

q−1⋂
p=0

B

(
p

q
, ρ(nck)

) ≥ κλ1(I) (5.7)

for all every interval I = [a, b] ⊂ [0, 1) and for all k su�ciently large.

Assumption the ratios of consecutive elements of D are bounded above by some

integer M . Upon setting γ := M2c, it is easily veri�ed that the LHS of (5.7) is

bounded below by

λ1

I ∩ ⋃
K∗(c,k)

q−1⋂
p=0

B

(
p

q
,
ncmk

q nck

) . (5.8)

To see this simply note that for nc(k−1) < q ≤ nck we have

nck < q
ck∏

t=c(k−1)+1

nt
nt−1

≤ qM ck−(c(k−1)+1)+1 = qM c

and by de�nition

ncmk
= nc(mk−1)

cmk∏
s=c(mk−1)+1

ns
ns−1

≤ nc(mk−1)M
c < ψ−i(nck)M

c.

Proposition 5.2 now implies that (5.8) = λ1(I)− λ1(J ) where

J :=
⋃

K(c,k−1)

q−1⋂
p=0

B

(
p

q
,
ncmk

q nck

)
.
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However, for each q with nc(k−1) < q ≤ nck there are at most λ1(I)q + 3 possible

choices for p and so

λ1(J ) ≤ 2
∑

K(c,k−1)

ncmk

qnck
(λ1(I)q + 3)

= 2λ1(I)
ncmk

nck

∑
K(c,k−1)

1 +
6ncmk

nck

∑
K(c,k−1)

1

q
.

Notice that #(K(c, k)) = nck/ncmk
and similarly #(K∗(c, k)) = (nck−nc(k−1))/ncmk

.

Therefore,

6ncmk

nck

∑
K(c,k−1)

1

q
≤ 6ncmk

nck

k−1∑
t=1

∑
K∗(c,t)

1

q

≤ 6ncmk

nck

k−1∑
t=1

(nct − nc(t−1))

nctncmk

<
6(M − 1)(k − 1)

nck

<
λ1(I)

4
,

for large enough k. Moreover,

2λ1(I)
ncmk

nck

∑
K(c,k−1)

1 ≤ 2λ1(I)
nc(k−1)

nck

≤ 2λ1(I)

 ck∏
t=c(k−1)+1

nt
nt−1

−1

≤ 2λ1(I)2−ck−(c(k−1)+1)+1

= 21−cλ1(I).

It follows that for c ≥ 2 and for k large enough we have λ1(J ) ≤ 3λ1(I)/4, and

inequality (5.7) indeed holds with κ := 1/4.
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