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Abstract

Arbitrage costs and funding constraints are two major frictions that limit arbitrage.
Arbitrage costs, such as learning costs, transaction costs and holding costs, render ar-
bitrageurs unwilling to take on positions, whilst funding constraints, including equity
and leverage constraints, reduce their ability to obtain funding and thus correct mis-
pricings. This thesis contains theoretical studies and empirical applications of these
two frictions, both individually and jointly. First we investigate the combined impact
of arbitrage costs and funding constraints on the arbitrage activity, where we reveal
the nonlinearity of limits to arbitrage: when funding constraint is not binding, arbi-
trage costs serve as the dominating friction, and thus the arbitrage activity increases
with mispricing; however, in extreme situations where funding constraints become
binding and establish dominance over arbitrage costs, the arbitrage activity tends to
decline with larger mispricing. Second we narrow our focus on the time-varying
leverage constraint, and construct a funding liquidity measure via the efficacy of ar-
bitrage. The measure ex ante identifies four periods of binding funding constraint:
the collapse of dot-com bubble, the financial crisis in 2007-2008 and the two debt
ceiling crises in 2011 and 2013, which supports the slow-moving capital hypothesis.
The measure also predicts the market volatility and the volatility risk premia, and the
predictive power is most prominent during the period of binding funding constraint,
which confirms the presence of amplification. Third, we provide further investigation
on the holding costs, i.e. fundamental and sentiment risk, and reveal their distinctive
influences on the arbitrage activity. It offers an unified approach to examine the level
of the respective risk exposure, which is then applied to investigate the value pre-
mium anomaly. We find supporting evidence for the behavioral explanation, such
that higher sentiment risk exposure deters the arbitrage activity and earns a higher
return.
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Chapter 1

Introduction

“Noise makes financial markets possible, but also makes them imperfect.”–Fischer
Black.

“Markets can stay irrational longer than you can stay solvent”–J.M.Keynes.

Modern financial economic theory is built upon the the Efficient Market Hypoth-
esis (EMH), which assumes that agents in the financial market are fully rational.
As stated in Barberis and Thaler (2005, BT hereafter), rationality rests on two ar-
guments. First, after receiving new information, agents update their beliefs correctly
following the Bayes law. Second, given their beliefs, agents make decisions correctly,
in the sense that they are consistent with the expected utility framework. Although
there are irrational agents trading on noises (Black, 1986), noises are either claimed
to be canceled out in the equilibrium (Bagehot, 1972), or immediately offset by the
force of arbitrage (Friedman, 1953). Therefore, EMH posits that rational agents, who
understand the Bayes’ law and have acceptable preference, ensure that asset prices
will be equal to their fundamental value with all available information (Malkiel and
Fama, 1970). Hence, an asset’s fundamental value is the discounted sum of expected
future cash flows.

However, there has been abundant empirical evidence, contradicting to the im-
plications of EMH, prompting an alternative approach to understand the financial
market, which is called “behavioral finance.” In broad terms, behavioral finance
suggests to model and analyse the consequences under weaker assumptions about
investor rationality and the force of arbitrage. More specifically, it has two build-
ing blocks: psychology and limits of arbitrage. First, psychology refers to the form
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of agents’ irrationality, either because of mistaken beliefs or preferences. Mistaken
beliefs arise when agents form their expectations with cognitive biases such as over-
confidence and optimism. Preference stems from the way agents evaluate the risky
opportunity that is contradicted to the expected utility framework. See BT for an
excellent survey on the form of psychology. Second, unlike the argument of Fried-
man (1953), the limits of arbitrage illustrates the impediments that prevent rational
arbitrageurs from driving asset prices towards fundamentals, so that the irrationality
can have significant and long-lived impact on asset prices.

In this thesis, we present three theoretical and empirical studies on (nonlinear)
limits to arbitrage, and attempt to address the following issues: what are the limi-
tations and constraints that deter arbitrage activity; how they prevent rational arbi-
trageurs from bringing prices towards fundamentals; and how to identify their effects
on deterring arbitrage activity.

According to EMH, arbitrage is an investment strategy that offers a free lunch,
i.e. riskless profits at zero cost, whilst behavioral finance argues that it can be costly
and limited, rendering it unattractive to rational agents. Here we distinguish the arbi-
trage frictions into two categories based on their effects on arbitrage: arbitrage costs
and funding constraints. Arbitrage costs occur when arbitrage opportunities are ob-
served, and when arbitrage strategies are implemented. First, the learning cost can be
significant as mispricing opportunities are difficult to be virtually detected; As high-
lighted by Shiller et al. (1984) and Summers (1986), although noise is substantially
large to cause a persistent mispricing, it do not generate the form of predictability
in returns. This is why less sophisticated individual investors do not intervene to
exploit mispricings. The next cost occurs during transaction, such as commissions,
liquidity cost and short-selling cost.1 Finally, the holding costs, that incurred when
the position remains open, are argued to be the most important costs borne by ar-
bitrageurs (Pontiff, 2006). In particular, fundamental risk is the most obvious risk
when arbitrageurs attempt to exploit a mispricing opportunity, such that uncertainty
in future fundamental value can lead to losses in arbitrageurs’ position (Shleifer and
Summers, 1990). Although the majority can be hedged by shorting a substitute as-
set, it cannot remove all fundamental risk as perfect substitute is rarely available.
Another risk is known as the noise trader risk, introduced by De Long et al. (1990).
Noise trader risks stem from the the future noise trader demand shocks, which is

1See Clinton (1988) and D’ Avolio (2002) for studies of transaction costs, Cehn, Stanzl and
Watanabe (2002) for price impact costs, Ofek, Richardson and Whitelaw (2004) for short sales re-
striction, Abreu and Brunnermeier (2002) on synchronization risk.
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unrelated to the asset fundamental. Due to the uncertain noise, mispricing can in-
tensify prior to dividend payoff, leading to substantial losses to arbitrageurs in the
short-term. Moreover, arbitrageurs are subject to periodic evaluation and funding
withdrawal after poor performance. Therefore they tend to have short horizons, and
care about the short-term resale prices before dividends are realized. Overall, higher
arbitrage costs reduce arbitrageurs’ willingness to implement strategies that exploit
mispricing. Given these costs, small mispricings may not be arbitraged away since
arbitrageurs require certain compensations to outweigh the arbitrage costs.

Funding constraints, as another category of arbitrage frictions, tend to deter ar-
bitrageurs’ ability to exploit mispricings even when they are willing to do so. Liter-
ature related to slow-moving capital suggests that arbitrage activity requires capital,
and the amount of capital available to arbitrageurs determines their ability to elim-
inate mispricing and provide the liquidity to other investors.2 Shleifer and Vishny
(1997) suggest that arbitrageurs are sophisticated investors, who are able to identify
mispricing opportunity and attract capital from outside (less sophisticated) investors.
Consider the hedge funds, which are often regarded as the arbitrageurs in the real
world. Their capital structure is composed by the equity capital and leverage capital
(Bunnermeier and Pedersen, 2009; Ang et al., 2011). Equity is the long-term capital
supplied by the outside investors, who can also withdraw their capital. It implies that
equity is not always locked into the firm indefinitely. Shleifer and Vishny (1997)
argue that outside investors withdraw funding early in response to previous poor per-
formance, which may force arbitrageurs to even liquidate their position, especially
when the funding constraint is binding. A loss spiral then arises, such that short-term
losses will trigger funding withdrawal, which forces arbitrageurs to liquidate and
pushes the price further away, leading to even larger losses. Insecure leverage capital
can also be raised on the liability side through the repo markets, prime brokers and
derivatives.3 The leverage capital can be limited since financiers set leverage (mar-
gin) requirements to control their value-at-risk. Bunnermeier and Pedersen (2009,
BP hereafter) show that leverage constraint can give rise to amplification when lever-
age requirement increases with the market illiquidity, e.g. the margin spiral. After
an initial loss, arbitrageurs are less capable to exploit mispricing and provide liq-
uidity. Illiquidity then leads to higher leverage requirement, which further tightens

2See also Mitchell, Pulvino and Pedersen (2007), Brunnermeier and Pedersen (2009), Duffie
(2010) and Mitchell and Pulvino (2012)

3See Bunnermeier and Pedersen (2009), Ang et al. (2011) and Fung and Hsieh (2013) for more
discussion about hedge funds and their operation.
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the capital supplied to arbitrageurs. These two amplification mechanisms (loss and
margin spirals) are essential to understand the sudden market crash that is attributed
to a moderate triggering event (Brunnermeier and Oehmke, 2013).

The limits to arbitrage determines to what extent irrationality can affect the ag-
gregate stock market, the cross-section of average return and corporate finance de-
cisions. This issue has been put on spotlight during the 2007-2009 financial crisis,
as mispricings are substantial and persistent in the global financial markets.4 Un-
derstanding what limits arbitrage is therefore of great importance to investors who
aim to profit from mispricings, and to regulators who intends to improve the market
efficiency.

In Chapter 2 we address this issue and propose to identify the limits to arbitrage
through examining the conflicting impacts of arbitrage costs and funding constraints
on arbitrage activity. In the presence of arbitrage costs, arbitrage activity tends to in-
crease with the size of mispricing as it reflects the higher cost-adjusted return, which
we call the positive capital allocation effect. Consider, on the other hand, the con-
straints on arbitrage capital. Arbitrageurs are forced to be rather passive on larger
mispricing since it leads to worse funding condition, which is denoted as the nega-
tive funding constraint effect. Our theoretical framework extends SV, and describes
the combined consequences of these two categories of arbitrage impediments: when
funding constraint is not binding, arbitrage costs are the dominating friction over
funding constraints, and the positive capital allocation effect appears; when funding
constraint becomes binding, funding constraints exhibit dominance, and thus arbi-
trage activity tend to drop with mispricing; the overall arbitrage activity displays an
inverse U-shape against the size of mispricing error. We then carry out an empiri-
cal investigation by applying a state-dependent, Generalized Error Correction Model
(GECM) to test our theoretical predictions in the S&P 500 index spot and future
markets. The empirical evidence is generally supportive of such nonlinear limits
to arbitrage. Furthermore, our study makes the contributions to the literature on
slow-moving capital by identifying the periods when the negative funding constraint
effect dominates, which are coincide with the market crashes in 1987, 1998, 2000
and 2007-2008 (Mitchell, Pulvino and Pedersen, 2007; Mitchell and Pulvino, 2012).

In Chapter 3 we focus on investigating the time-varying leverage constraints,

4In the credit markets, Garleanu and Pedersen (2011) and Bai and Collin-Dufresne (2013) docu-
ment large CDS-bond basis. In currency markets, Coffey, Hrung and Sarkar (2009) find the violations
to covered interest parity (CIP). In treasury market, Fontaine and Garcia (2012) also document large
price deviation between bonds with identical cash-flow.
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which is also known as funding liquidity, i.e. the ease with which arbitrageurs can
obtain capital. As demonstrated by SV and BP, the binding funding constraint may
lead to loss and margin spirals, in which a small shock could be amplified to large
spillovers across the financial market. Although the implications behind the funding
illiquidity are well-understood,5 one main issue is that they fail to identify the pe-
riods exactly when the funding constraint is binding and amplification mechanisms
are at work. We extend the theoretical framework in Chapter 2 by allowing for an en-
dogenous leverage setting. We define the funding liquidity as the marginal leverage
raised by arbitrageurs and the arbitrage efficacy as the marginal mispricing correction
achieved by arbitrageurs with respect to one more unit of mispricing. We find that
when the funding constraint is not binding, arbitrageurs are able to raise sufficient
capital in order to cope with larger mispricings. In this situation arbitrage is effec-
tive as larger mispricing induces the higher mispricing correction. However, during
the periods when the funding constraint becomes binding, arbitrageurs fail to obtain
sufficient capital, which renders arbitrage ineffective. The model thus posits that
funding liquidity affects the efficacy of arbitrage, the sign of which is able to identify
binding funding constraint. To empirically investigate the validity of this measure,
we suggest to estimate the arbitrage efficacy by regressing the daily difference of
dynamic mispricing correction on the daily variations of mispricing error. Next, we
apply this methodology to the S&P 500 index spot and e-mini future markets over
the period, 1999-2015, and obtain evidence in favour of the theoretical predictions as
follows: First, the funding liquidity measure, proxied by arbitrage efficacy, is closely
related to other popular measures such as TED spread, VIX index of implied volatil-
ity and the dividend yield of S&P 500 index. More importantly, using this measure,
we can successfully identify four periods when the funding constraint is binding,
i.e. the burst of dot-com bubble in 2000, the global financial crisis in 2007-2008,
and the debt ceiling crises in 2011 and 2013. Second, we find that changes in the
funding liquidity measures can predict the market volatility, especially the volatility
risk premia. Furthermore, the predictability is mostly prominent during the periods
when arbitrage is inefficacious, which is consistent with the presence of amplification
effect under the binding funding constraint (SV and BP). As the proposed funding
liquidity measure not only captures the funding condition among arbitrageurs, but
also identifies the period of binding funding constraint, it offers an useful tool for

5See Fontaine and Garcia (2011), Garleanu and Pedersen (2011) Nagel (2012) and Frazzini and
Pedersen (2014).
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regulators to monitor the market and guide the timing of policy making.
In Chapter 4 we aim to redress the ongoing debate on the value premium, known

as one of the anomalies that cannot be explained by the Capital Asset Pricing Model.
Fama and French (1992, 1993, 1996) claim, under the rational point of view, that
the value stocks outperform the growth stocks due to the higher exposure of fun-
damental risk. However, behavioral finance argues that value stocks are those out-
of-favor stocks with a higher sentiment risk. We propose to analyse the level of
fundamental or sentiment risk exposure within an unified model through the distinc-
tive impacts of the respective risk exposures on arbitrage activity. In particular, we
extend the theoretical framework in Chapter 2 and allow for risk averse and hetero-
geneous arbitrageurs. The model suggests that higher fundamental (sentiment) risk
tends to deter the initial mispricing correction and increases (reduces) subsequent
noise momentum. To carry out the empirical investigation, we apply a two-stage
estimation methodology to the daily S&P value and growth spot and future indices
over the period, 1999-2014. In the first stage, we model the joint distribution of
HML returns (portfolios that long in value and short in growth) in spot and future as
a regime-switching process. We can identify the three distinctive regimes as follow:
the regime with value premium corresponds to the crisis period of 2000 and 2008
while the regime with value discount to the bear markets. Finally, the bull markets
do not display any anomaly. In the second stage, the two-period generalized ECM is
applied to each regime and estimate the implied arbitrage activity. We find that the
implied arbitrage activity in value (growth) stocks tend to be limited by higher ex-
posure to sentiment risk under the value premium (discount) regime, which provides
support for the behavioral-based view. The chapter is the first attempt to analyse
the impact of fundamental (sentiment) risk exposure on arbitrage activity, whilst the
empirical methodology and results add further evidence to understand the ongoing
debate on value premium anomaly.

The rest of the thesis is organised as follows. Chapter 2 investigate the two cate-
gories of limits to arbitrage: arbitrage costs and funding constraint, and develops their
combined effects on arbitrage activity. Chapter 3 designs a framework to measure the
time-varying funding liquidity and identify periods under which the markets suffer
from severe funding constraints. In Chapter 4, we reinvestigate the ongoing debate
on the value premium by deriving the impacts of the fundamental and sentiment risk
exposures on arbitrage activity. Chapter 5 summarises the main conclusions of the
thesis, and suggests the possible venues for future research extensions.



Chapter 2

Nonlinear Limits to Arbitrage

2.1 Introduction

Arbitrageurs’ agressive search for arbitrage opportunities ensure that mispricing is
short-lived. However, arbitrage is costly and risky in practice, and the presence of ar-
bitrage frictions prevent arbitrageurs from making full mispricing corrections, lead-
ing to market anomalies and resource misallocations (Gromb and Vayanos 2010).
Therefore, measuring the level of arbitrage activity and, more importantly, under-
standing what limits arbitrage is of great ongoing research interest to both market
participants and regulators. In previous literature, mispricing level is often used as
an important variable in arbitrageur decision making (Dwyer et al. 1996, Balke and
Fomby 1997, Martens et al. 1998, Tse 2001, Tao and Green 2009, Theissen 2011,
Gyntelberg et al. 2016). We study the limits of arbitrage by examining how arbi-
trageurs respond to different levels of mispricing opportunity.

There are two distinct and countervailing views of what limits arbitrage and
causes persistent mispricing: arbitrage costs and funding constraints. On the one
hand, prior literature, such as Roll et al. (2007), Bai and Collin-Dufresne (2013) and
Gyntelberg et al. (2016), suggests that arbitrage costs (e.g., illiquidity, transaction
costs and risk), are responsible for the persistence of mispricing. Arbitrageurs are
willing to exploit the mispricing only when it exceeds a certain threshold that reflects
the cost of conducting the arbitrage trade. Moreover, this suggests that arbitrage
activity will increase with the size of mispricing, since larger mispricing provides
a higher cost/risk-adjusted return. We call this the positive capital allocation effect
with respect to the size of mispricing.

On the other hand, various studies document the importance of funding con-
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straints in limiting arbitrage. They suggest that severe and prolonged mispricing dur-
ing times of market turmoil results from arbitrageur funding constraints (Mitchell,
Pulvino and Pedersen 2007, Oehmke 2009, Acharya et al. 2009, Duffie 2010, Gar-
leanu and Pedersen 2011, Mitchell and Pulvino 2012). Furthermore, the theoretical
work of Brunnermeier and Pedersen (2009) argues that larger mispricing can ex-
aggerate financier expectations of future volatility, which tightens the funding con-
straint. Under this view, larger mispricing tends to make funding constraints more
binding, and further deters mispricing correction by arbitrageurs. We call this the
negative funding constraint effect with respect to the size of mispricing.

The two sources of limits to arbitrage drive opposite conclusions as to how arbi-
trageurs respond to mispricing. While the former view has been evidenced through
threshold models (Martens et al. 1998, Tse 2001, Tao and Green 2009, Gyntelberg
et al. 2016), the combined effect of arbitrage costs and funding constraints on arbi-
trageur response to different magnitudes of mispricing is not well understood in the
literature, theoretically or empirically. Our paper seeks to address this knowledge
deficit.

We extend the seminal work by Shleifer and Vishny (1997; henceforth SV) and
show that a combination of arbitrage cost and funding constraint explanations of the
limits to arbitrage, produces a nonlinear relationship between the size of mispric-
ing and arbitrage activity. When the mispricing error is small, funding constraints
tend to be loose, the positive capital allocation effect dominates and arbitrage activ-
ity intensifies with the size of mispricing. In contrast, extremely large mispricing
makes funding constraints become binding. In this circumstance, the negative fund-
ing constraint effect becomes the dominant driver of the limits to arbitrage, such that
increases in the size of mispricing induce a lower relative level of arbitrage activity.
Intuitively, when funding constraints are binding, arbitrageurs are forced to adopt the
full investment strategy. As the size of mispricing enlarges, arbitrageur capital in
relation to the size of mispricing becomes smaller.

Empirically, to study the nonlinear dynamic, we adopt a Markov switching ex-
tension of the Cai, Faff and Shin (2017; henceforth CFS) generalized error correction
model1. Applying this model to the S&P 500 Index spot and futures markets over

1To capture such multi-period arbitrage activity, CFS develop a generalized error correction model
(GECM) and estimate both the initial mispricing correction and the subsequent noise momentum pa-
rameters, where the latter are designed to measure the persistence of the uncorrected pricing errors.
Applying the model to a wide range of international spot–futures market pairs, CFS document perva-
sive evidence of noise momentum around the world. In this unified theoretical framework, a higher
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the period 1986–2015, we find strong evidence of regime-dependent nonlinear limits
to arbitrage. In particular, we are able to identify three distinct regimes: a normal
market state with a small mispricing error and low volatility, a transition market state
with a medium mispricing error and medium volatility, and an extreme market state
with a large mispricing error and high volatility. We observe a relatively low mispric-
ing correction in the normal state, but a dramatic increase during the transition state.
This suggests that arbitrage activity tends to intensify with the size of mispricing
error when the mispricing level increases from low to medium. By contrast, the mis-
pricing correction is lowest during the extreme state. This suggests that when mis-
pricing increases from a medium to a high level, funding constraints become binding
and arbitrageurs are unable to raise external funds when the arbitrage opportunity is
at its best. Overall, arbitrage activity thus displays an inverse U-shape against the
magnitude of mispricing errors, which is consistent with our model prediction.

To verify that our regime estimation captures variation in funding constraints, we
examine the potential linkages between the three hidden market states and various
observable measures of funding conditions, illiquidity and risk2. Our analyses show
that arbitrage funding constraints increase monotonically from normal to extreme
states. The data also document the flight-to-quality/safety phenomenon such that
fund flows into passive index funds decrease from normal to transition states but
increase from transition to extreme states. Overall, extreme states capture a period
of considerable market stress. From the arbitrageur perspective, the extreme state
presents a ‘cocktail’ of good and bad phenomena. On the positive side, it entails large
mispricing errors and higher valuation uncertainty – thus presenting arbitrageurs with
more profitable opportunities to exploit. On the negative side, however, arbitrageurs
will tend to face a higher cost of capital and higher transaction costs, which lower
net profit.

Our study differs from other studies of the funding constraint effect on the lim-
its of arbitrage and contributes to the literature in several ways. First, it offers
an approach for determining the relationship between funding constraints and ar-
bitrage dynamics. The effect of funding constraints has been studied in the literature
through the proxies of arbitrage activity (Cielinska et al. 2017), the size of arbi-

initial mispricing correction and a lower mispricing persistence induce a faster overall speed of ad-
justment.

2For funding conditions we use hedge and mutual fund flows, growth rate of total financial assets,
financial sector leverage and broker-dealer leverage; for illiquidity we use the Amihud (2002) illiq-
uidity measure of the spot index, Treasury security-based funding illiquidity and TED spread; and for
arbitrage risk we use the idiosyncratic risk of the index constituents.
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trage violations (Fontaine and Garcia 2012, Garleanu and Pedersen 2011, Frazzini
and Pedersen 2014, Akbas et al. 2016) and market liquidity (Nagel 2012, Schus-
ter and Uhrig-Homburg 2015). This paper is the first attempt to study the funding
constraint effect via its impact on arbitrageur error correction with respect to mis-
pricing. Duffie (2010) suggests that price reversal (measured by error correction)
reveals the arbitrage frictions borne by arbitrageurs, which provides insights regard-
ing the level of arbitrage activity. Furthermore, studying funding constraints in an
error correction context enables us to integrate both arbitrage cost and funding con-
straint explanations of the limits to arbitrage in a unified framework and to identify
the time-varying interplay between the two types of limit. Specifically, we show that
whether or not funding constraints are binding generates two different predictions
regarding the marginal change in arbitrageur response to the change in the size of
mispricing. Such modeling unifies our understanding of normal- and extreme-time
arbitrage activity and demonstrates nonlinear limits to arbitrage. In normal market
conditions, what limits arbitrage activity is the trade-offs between risk and return;
in extreme market conditions, scarcity of funding limits arbitrage activity the most,
which is consistent with slow-moving capital. So relatedly, this shows that relying
solely on the (linear) arbitrage cost explanation will likely lead to flawed predictions
about the limits to arbitrage.

Second, extant literature has been devoted to identifying the source of limits to
arbitrage that result in large and persistent mispricing empirically. Gallagher and
Taylor (2001) and Tse (2001) find supporting evidence for the positive capital alloca-
tion hypothesis in index arbitrage using the smooth transition autoregressive (STAR)
model. Coffey, Hrung and Sarkar (2009) and Griffoli and Ranaldo (2011) investi-
gate the time-series linkage between persistent mispricing and measurements of ar-
bitrage risk or funding constraints. Bai and Collin-Dufresne (2013) rely on the cross-
sectional variation in different asset classes, and find that arbitrage cost is the main
explanation of this variation. Tao and Green (2009) and Gyntelberg et al. (2016) ana-
lyze the time-varying width of the no-arbitrage threshold through the threshold error
correction model (ECM) to reveal the arbitrage frictions that deter arbitrage activity.
While we too empirically apply the nonlinear ECM, our paper also advances the lit-
erature by providing theoretical connections to the empirical model. We contribute to
the empirical study of arbitrage by developing an empirical model having a meaning-
ful range of parameters with clear theoretical backing, in describing the arbitrage and
price dynamics. Our study strengthens the interpretation of such a nonlinear model.
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Finally, our study offers a general way of capturing arbitrage activity in the mar-
ket and analyzes the effect of funding constraints through a state-dependent ECM
backed by theoretical analysis. Direct measures of arbitrage activity are difficult to
achieve, as this would require explicit identification of arbitrageur trades and post-
trade transaction-level data, such as trade repository data; such data is not generally
available, other than to regulators. Our estimation of arbitrage activity uses only
publicly available data. In addition, there is a fast-growing literature that documents
the significant impact of fund flow in creating mispricings, such as short-term mo-
mentum and long-term reversal (Frazzini and Lamont 2008, Luo 2012, Akbas et al.
2015). Our empirical results show that, although we study equity index arbitrage,
the regimes identified by our nonlinear model are positively associated with a wide
range of traditional measures of funding constraints. In other words, estimating such
a model provides an insight into the time-series variation of arbitrage funding con-
straints beyond the index arbitrage activity. Identifying the conditions and periods
under which funding constraints are binding is pivotal to enhancing our understand-
ing of limits to arbitrage.

The remainder of our paper is organized as follows. In Section 2 we present the
theoretical framework which builds on an important extension of Shleifer and Vishny
(1997), and develop the main propositions and predictions. In Section 3 we develop
a general empirical framework designed to best capture the various predictions de-
rived from our theoretical framework. In Section 4 we outline a specific empirical
application based on the linkage between S&P 500 Index futures and spot markets,
and we present and discuss our empirical results. In Section 5 we make concluding
remarks. Mathematical proofs are collected in the Appendix.

2.2 Theory and Predictions

2.2.1 The model

We begin with an introduction to a range of basic concepts in line with the SV setup.
There is one asset in unit supply with fundamental value V , and three types of market
participant: noise traders, arbitrageurs and fund investors, trading in three periods,
t = 1, 2, 3. Noise traders arrive in period t with shocks St , which represents the
extent to which noise traders in aggregate under-value the asset price relative to its
fundamental value, V . In particular, S1 is observable to arbitrageurs; S2 is allowed to
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be stochastic, taking a value of 0 (the ’good’ state pertains) with probability 1− q,
or S2 = S∗2 > S1 (the ’bad’ state pertains) with probability q; S3 = 0, such that price
converges to fundamental value in period 3, P3 =V .

After noticing the mispricing opportunity in period 1, arbitrageurs accumulate
funding resources, F1, from fund investors and determine the fraction of funding,
0 ≤ β1 ≤ 1, to invest in the asset. Hence market clearing implies that the price of
the asset in period 1 is given by P1 = V − S1 +D1 with D1 = β1F1. Notice that a
general funding constraint is always imposed in the SV model, such that F1 < S1, so
that arbitrageurs are unable to fully correct the mispricing error in period 1. Funding
resources in period 2, F2, are determined endogenously by past performance, such
that F2 = F1

[
1+αβ1

(
P2
P1
−1
)]

, where P2 = V in the good state, or P2 = P∗
2 = V −

S∗2+F2
3in the bad state; α captures the sensitivity of fund flows to past performance,

which is assumed to follow the stability condition, such that

1 ≤ α < (V −S1 +F1)/(S∗2 −S1 +F1).

It ensures that fund investors are not so overly sensitive that arbitrageurs will lose all
their funding in period 2.

2.2.2 The role of funding constraint

Under this model setup, where arbitrageurs actively choose their investment strategy,
β1, so as to maximize their wealth at period 3, F3, SV obtain the following first order
condition:

(1−q)
(

V
P1

−1
)
+q
(

P∗
2

P1
−1
)

V
P∗

2
≥ 0. (2.1)

To understand the role of funding constraints it is more convenient to rewrite Eq.
(2.1) as

(1−q)(R1)−q(R2 −R1)≥ 0, (2.2)

where R1 =
V
P1
−1, R2 =

V
P∗

2
−1.

Intuitively the LHS of Eq. (2.2) measures the net marginal return, MR, of invest-

3Arbitrageurs make no investment (β2 = 0) when S2 = 0 and P2 =V , but full investment (β2 = 1)
when S2 = S∗2 and P2 = P∗

2 , since price will reliably converge in period 3.
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ing in period 14. When MR is larger than zero, arbitrageurs will adjust their invest-
ments, β1, in period 1 as much as they can5: on the one hand, if there is no funding
constraint, arbitrageurs will continue increasing their investment so that it eventually
drives MR towards zero; as the equality holds, arbitrageurs will stop increasing their
investment in period 1 and save the rest of the funding for future investment. Thus
we observe the partial investment strategy employed by the arbitrageurs6.

On the other hand, in the presence of a binding funding constraint, the inequal-
ity in Eq. (2.1) suggests that arbitrageurs cannot take further action to reduce MR

once they exhaust their available funding. Thus they fail to obtain MR = 0 and the
inequality holds. Under this circumstance, arbitrageurs are known to adopt the full
investment strategy in the SV model. Importantly, we show that they do so because
their funding constraint is binding, since if there were more funds available, arbi-
trageurs would have invested them in the initial error correction. Comparing this
with the partial investment strategy where arbitrageurs limit their initial arbitrage
activity strategically, funding constraints deter their arbitrage activity under the full
investment strategy.

2.2.3 Arbitrage activity

To study arbitrage activity under different strategies, we first define our measure-
ments of arbitrage activity. To this end, CFS introduce the concept of the initial
mispricing correction and the subsequent mispricing persistence (called “noise mo-
mentum”) in the framework of the two-period generalized ECM (GECM). The inclu-

4In particular, R1 measures the marginal return on one dollar of investment in period 1 (the initial
investment) when price recovers in period 2 (the good state pertains, i.e., S2 = 0). R2 −R1 is the
marginal opportunity loss on one dollar of investment in period 1 when mispricing deepens further in
period 2 (the bad state pertains, i.e., S2 = S∗2 > S1). This is the amount that the arbitrageurs have to
give up as they have already invested in period 1, and so that same dollar cannot be invested in period
2 when a better arbitrage opportunity arises because of the further deteriorating price. When taking
into consideration the probability of each market state through the parameter q, the LHS of Eq. (2.2)
measures the net marginal return of investing in period 1.

5Arbitrageurs’ choice of investment would have an impact on the relative cost and benefit of
investing in period 1. Specifically, an increase in D1 would reduce R1 and therefore also the level of
MR.

6Furthermore, it is only when the equality holds that it is a partial-investment equilibrium solution.
Suppose the opportunity gain of investing in period 2 when the bad state pertains is higher than the
gain of investing in period 1 when the good state pertains (MR < 0); then arbitrageurs would save more
money to invest in period 2, which would increase F2 through both the increase in funding allocation
and the reduction in the performance-based funding effect. Therefore, the attractiveness of investing
in period 2 would graduallly reduce until the opportunity gain became equal to the return on investing
in period 1.
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sion of noise momentum provides an advantageous framework for analyzing the asset
pricing dynamics and overall arbitrage process. CFS study 26 index future relation-
ships around the globe and show that the traditional one-period ECM is misleading
in the presence of noise momentum. Following CFS, we characterize arbitrage ac-
tivity by initial mispricing correction and subsequent noise momentum. The initial
mispricing correction is defined as

K =
D1

S1
=

β1F1

S1
, (2.3)

which is designed to capture the proportion of mispricing correction achieved by
arbitrageurs in period 1, while the subsequent noise momentum is defined as

Λ =
V −P2

V −P1
=

V −P2

S1 −D1
, (2.4)

capturing the degree of mispricing error persistence into the next period. In order to
connect these two empirical measures with our theoretical analyses, we express the
two parameters as the expectation with respect to q in period 1, such that

κ = Eq (K) =
β̂1F1

S1
, λ = Eq (Λ) = q

V −P∗
2

V −P1
, (2.5)

where β̂1 is the equilibrium investment strategy informed by the first-order condition
(FOC), Eq. (2.2). Eq.(2.5) implies that both κ and λ are below unity7 when rational
arbitrageurs choose the equilibrium investment strategy to engage in the arbitrage
opportunity.

Notice that the initial mispricing correction, κ , is the product of β̂1 and the ratio
F1/S1. The equilibrium investment strategy β̂1 captures the strategic response of
arbitrageurs to the risky arbitrage opportunity: whether to invest in period 1 or to
avoid the potential loss and invest in period 2. It thus represents the willingness of
arbitrageurs to engage in arbitrage activity, and we refer to it as the capital allocation

7We rewrite the first-order condition, Eq. (2.2) as

V −P1

P1
≥ q

(
V −P∗

2
P∗

2

)
,

so it is easily seen that

λ = q
V −P∗

2
V −P1

≤ P∗
2

P1
< 1.
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effect. The term F1/S1 is the ratio of available funding over mispricing shock, which
captures the arbitrageur’s relative funding condition. Therefore, the initial correction
reflects the two important impediments to arbitrage activity: arbitrage cost/risk and
funding constraints.

While the mispricing correction parameter measures the immediate arbitrage ef-
fect, the noise momentum parameter captures the subsequent price recovery. Eq.
(2.5) shows that the noise momentum, λ , captures both the probability, q, of deep-
ening error in the subsequent period, and the degree of deepening mispricing error
(i.e., V−P∗

2
V−P1

). In the SV model, the probability, q, of deepening error in the subse-
quent period reflects the fact that the arbitrage opportunity is risky. There exists a
threshold point q∗, such that when q < q∗, the probability that the mispricing error
deepens is relatively low, and arbitrageurs will be more likely to fully invest at period
1. Alternatively, when q > q∗ (i.e., the probability of deepening misperceptions is
‘critically’ high), arbitrageurs will defer some of their investment. However, both q

and q∗ are unobservables in practice. Eq. (2.5) shows that λ captures the important
information regarding the probability q, such that higher noise momentum indicates
higher expected misperceptions in the future, which results in higher uncertainty in
the pattern of price recovery.

2.2.4 Mispricing and arbitrage activity

We are most interested in establishing the impacts of initial mispricing error, S1 on
the arbitrage activity parameters: κ and λ , and the main results are summarized in
Proposition 1 (Proofs are provided in the appendix).

Proposition 1. Consider the model setup from Section 2.2.1 and 2.2.3, and the equi-

libria from Eq. (2.2). Under the stability condition, 1 < α < (V − S1 +F1)/(S∗2 −
S1+F1), the impacts of mispricing error on arbitrage activity are derived as follows:

∂κ

∂S1


= 0 for β̂1 = 0
> 0 for 0 < β̂1 < 1
< 0 for β̂1 = 1

 ,
∂λ

∂S1
< 0.

Furthermore, we have:

| ∂λ

∂S1
|0<β̂1<1<| ∂λ

∂S1
|
β̂1=1 .

The proposition is intuitive. Consider first the capital allocation effect: as the mis-
pricing error S1 becomes higher, arbitrageurs are willing to allocate more resources
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to correct the mispricing (i.e., dβ̂1/dS1 > 0) in the partial investment equilibrium,
which enhances the mispricing correction. Consider second the funding constraint
effect: the deeper mispricing would intensify the general funding constraint, mea-
sured by the arbitrageur funding condition relative to the size of error (i.e., a lower
F1/S1), which would tend to deter the mispricing correction. Proposition 1 shows that
the positive capital allocation effect dominates the negative funding constraint effect
under the partial investment equilibrium (i.e., ∂κ/∂S1 > 0). This is consistent with
the earlier studies showing that larger mispricing errors induce a greater mispricing
correction and faster speed of adjustment8. On the contrary, when the funding con-
straint binds, the initial mispricing correction is determined mainly by the funding
availability, since the change in mispricing will have no effect on the strategy (i.e.,
∂β1/∂S1 = 0). As S1 grows, arbitrageurs are forced to face a relatively deteriorating
funding condition and disengage in arbitrage activity (i.e., ∂κ/∂S1 < 0). This con-
firms that arbitrageurs would be able to strategically allocate their funds in different
periods only if the funding constraint is not binding.

Furthermore, Proposition 1 has additional important implications about the im-
pacts on the noise momentum parameter. First, λ is always negatively related to
S1, such that deeper mispricing reduces the expected noise persistence. Second, the
negative relationship between λ and S1 is not monotonic between the partial and full
investment equilibria. Here, changes in S1 affect λ , mainly on the relative degree
of deepening mispricing, but rather independent from probability q. In the partial
investment equilibrium, as S1 rises, the negative impact of S1 on λ is relatively small
since the increase in S1 renders both P1 and P2 less efficient (both P∗

2 and P1 tend
to drop with deeper mispricing at similar speed). By contrast, in the full investment
equilibrium, λ declines more sharply with S1, since the relative size of deepening
mispricing becomes much smaller (P1 drops faster while P∗

2 starts to increase; thus
the difference P1 −P∗

2 becomes smaller)9.
Proposition 1 also reveals implications for the overall speed of price adjustment.

Note that the speed of adjustment is positively associated with κ , but negatively with
8Empirical evidence is documented under the threshold ECM model (Dwyer et al. 1996),

Martens, Kofman and Vorst 1998) and the smooth transition model (Gallagher and Taylor 2001, Tse
2001).

9In the partial investment equilibrium, higher S1 leads to less efficient pricing in period 1, P1
since arbitrageurs ability to bear against mispricing is limited. Moreover, higher S1 leads to less
efficient pricing in period 2, P∗

2 , since arbitrageurs tend to lose more funding after augmenting their
investment in period 1. However, the latter case differs in the full investment equilibrium. The scarcity
of arbitrage funding deters arbitrageurs initial investment, which also prevents them from losing too
much in period 2. This relatively improves the pricing efficiency in period 2.
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λ . In the partial investment equilibrium, κ rises and λ marginally falls simultane-
ously with S1. Thus, in this regime, the overall speed of adjustment improves with
S1. However, due to the binding funding constraint, κ starts to drop with S1 while λ

keeps falling sharply. In this case, the impact of S1 on the overall speed of adjustment
is uncertain and empirically determined.

Proposition 1 clearly demonstrates that the mispricing correction, κ , does not al-
ways have a positive association with the magnitude of mispricing error, as suggested
by the earlier studies focusing only on arbitrage cost. This highlights the importance
of taking into account the limits to arbitrage related to funding constraints, which
indicate a rather negative association in the full investment equilibrium. We continue
by investigating the link between the size of mispricing and the probability of enter-
ing full investment equilibrium. In particular, we examine the determinants of q∗,
the threshold parameter that drives the arbitrageur’s choice of strategy. (Proofs are
provided in Appendix A).

Proposition 2. Consider the model setup from Section 2.2.1 and 2.2.3, and the equi-

libria from Eq. (2.2). Under the stability condition, 1<α < (V −S1+F1)/(S∗2−S1+

F1), then the higher is the initial noise trader shock, S1, the higher is the threshold

probability q∗ of taking full investment strategy, i.e. ∂q∗
∂S1

> 0.

Proposition 2 extends the SV model and shows how q∗ is affected by mispricing
error. Notice that q∗ is derived at the point where arbitrageurs are indifferent as to
strategy (i.e., D1 =F1 under the partial investment strategy). Thus q∗ can be rewritten
as10

q∗ =
R1

R2
ifD1 = F1,

where R1 = V
P1
− 1, R2 = V

P∗
2
− 1. Intuitively, as S1 increases, the threshold proba-

bility that arbitrageurs adopt the full investment strategy increases11. While q∗ is
determined by the model parameters and known to arbitrageurs, q is an exogenous
variable that is estimated by arbitrageurs. Given a uniform distribution of q, arbi-

10From a modeling perspective, q∗ is determined as a complex function of the parameter set
{V, S1, S∗2, F1, α}. So we have

q∗ =
(S1 −F1)(V +F1 −S∗2 −αF1)

V
(
S∗2 −S1

)
+(S1 −F1)

(
V +F1 −S∗2 −αF1

) .
11As the initial mispricing deepens, the arbitrage return if the good state pertains, R1, increases. In

the meantime, the return if the bad state pertains, R2, decreases relatively, which indicates a smaller
opportunity loss, R2 −R1, for adopting the full investment strategy.
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trageurs are more likely to be fully invested since their threshold probability q∗ is
higher.

When combining the above two propositions, we find an inverse U-shaped rela-
tionship between mispricing error and initial arbitrage activity. We illustrate this non-
linearity by means of a numerical analysis. Figure 2.1 illustrates how arbitrageurs’
initial mispricing correction and subsequent noise momentum innovates with respect
to the mispricing error, following the numerical example in the SV paper. Let V = 1,
S∗2 = 0.4, q = 0.3, α = 1.2 and F1 = 0.2. In the left panel, we show that as S1 in-
creases from 0.2 to 0.4, the impact of this innovation on mispricing correction is
nonlinear, conditional on the partial and full investment equilibria. In particular, the
initial mispricing correction (solid line) displays an inverse U-shaped relation with
respect to mispricing error. In the partial investment equilibrium where the thresh-
old q∗ lies below the probability q, both the capital allocation and funding constraint
effects contribute to the mispricing correction, while only the negative funding con-
straint effect remains in the full investment equilibrium. The right panel plots the
variation in noise momentum (solid line), which is relatively high and remains stable
in the partial investment equilibrium, but drops sharply after the threshold q∗ exceeds
the probability q in the full investment equilibrium.

Overall, the numerical analysis portrayed in Figure 2.1 shows that when the mis-
pricing error is small, funding constraint is less binding and therefore arbitrageurs
adopt the partial investment strategy; conventional arbitrage costs, such as transac-
tion and holding costs, tend to be the dominant factors limiting arbitrage, suggesting
that arbitrageur correction rises mostly with mispricing error during these low to
moderate mispricing periods. As mispricing deepens further, the funding constraint
is likely to be binding due to margin\haircut increases and industry-wide fire sales.
Therefore arbitrageurs’ initial error correction is limited as mispricing deepens dur-
ing the extreme mispricing period.

2.2.5 Empirical predictions

According to our theoretical framework, we consider three regimes with different
magnitude of mispricing error (small, medium and large), and denote the arbitrage
activity κr and λ r with r ∈ (s, m, l)12. We summarize three main predictions derived
from our theoretical propositions as follows:

12We later interpret these states in the context of market condition as normal, transition and extreme
period.
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Figure 2.1: The strategic response effect on mispricing correction and noise momen-
tum
Figure 1 shows the nonlinear impact of mispricing errors on mispricing correction (top) and
noise momentum (bottom). It follows the numerical examples from the SV paper, such that
V = 1, S∗2 = 0.4, q= 0.3, F1 = 0.2, α = 1.2 and initial mispricing S1 increases from 0.1 to 0.4.
The top figure also plots the optimal investment strategy (β̂1) and the threshold probability q∗

of deepening mispricing, while the bottom figure provides additional plots of the threshold
q∗. Both figures highlight the nonlinearity in the arbitrageurs’ activity under two path to
equilibrium.
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Prediction 1: The U-shaped initial arbitrage activity. (i) κm > κs; an initial
mispricing correction rises with the size of mispricing error. (ii) κ l < κm; In the
presence of the binding funding constraint, further rise in mispricing error will induce
the slower mispricing correction.

Prediction 2: The regime-dependent noise momentum. (i) λ s is relatively
large, suggesting that mispricing tends to persist in period 2 as the initial mipricing
error is too small. (ii) λ m ≈ λ s; the difference between λ s and λ m is relatively
negligible under the partial investment strategy. (iii) λ l is significantly smaller than
λ s and λ m.

Prediction 3: The overall speed of adjustment (SOA) tends to be faster with
the larger mispricing error under the partial investment strategy when the funding
constraint is not binding. On the contrary the impact of mispricing error on SOA will
be uncertain when the funding constraint is binding.

2.3 Empirical Applications

2.3.1 The State-Dependent Markov Switching Generalized Error
Correction Model (MS-GECM)

To empirically examine the validity of the main hypotheses regarding the limits of
arbitrage and its nonlinear impacts on the asset pricing dynamics developed in the
previous section, we apply our study to the S&P 500 Index futures market. We first
consider the two-period GECM advanced by CFS:

∆ ft = κzt−1 +λ (1+κ)zt−2 +δ∆ f ∗t + γ∆ ft−1 +u, ut ∼ iid(0, σ
2
µ), (2.6)

where ft is the (observed) market price, f ∗t is the fundamental value for the asset,
zt (= ft − f ∗t ) is the pricing error that is the short-term deviation of price from its
fundamental value, ∆ is the first-difference operator, and ut is the zero-mean id-
iosyncratic error term with zero mean and finite variance σ2

u , whilst κ,λ ,δ ,γ are
the parameters of interest. The distinguishing feature of the GECM is that we can
simultaneously capture the multi-period (complex) arbitrage activity by accommo-
dating both initial mispricing correction through κ , and noise momentum through
λ (1+κ)zt−2, with λ measuring the strength of noise momentum and (1+κ)zt−2

representing the unarbitraged component of the pricing errors from the previous pe-
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riod. Moreover, δ measures the impact of the momentum effect with respect to
the contemporaneous fundamental changes while γ presents the short-run momen-
tum effect. Finally, notice that the overall speed of convergence to equilibrium is
determined jointly by κ and λ , namely κ + λ (1+ κ), implying that the standard
one-period ECM is likely to be biased and misleading in the case where λ ̸= 0.

Our key theoretical predictions suggest that arbitrage activity is fundamentally
nonlinear, crucially depending on the magnitude of mispricing errors, as described
in Section 2. By construction the linear model cannot test our hypotheses because
it imposes (potentially invalid) symmetry restrictions and is thus likely to yield mis-
leading results. Accordingly, in our empirical application, we choose to embed the
GECM within the Markov switching model popularized by Hamilton (1989). In par-
ticular, we consider a three-regime empirical setup, which is compatible with our
theoretical model with two alternative paths to equilibrium:

∆ ft =αR j +κR j ẑt−1+λ
∗
R j

ẑt−2+δR j∆ f ∗t +γR j∆ ft−1+utR j , utR j ∼ iid
(
0, ΣR j

)
, (2.7)

where ft is the natural log of the futures contract price, f ∗t is the natural log of the
fundamental value, and {αR j ,κR j , λ ∗

R j
, δR j , γR j} are regime-dependent parameters,

with ∑R j being the regime-dependent covariance of the residuals. The pricing error,
ẑt , is estimated from the following long-run equation13:

ft = µ +θ f ∗t + zt (2.8)

The regime-specific noise momentum coefficient, λR j can be obtained from λ ∗
R j

=

λR j

(
1+κR j

)
.

We will estimate the MS-GECM with three regimes where R j is a scalar geomet-
ric ergodic Markov chain with a 3-dimensional-regime space, having the following
transition matrix:  P11 P21 P31

P12 P22 P32

P13 P23 P33

 ,
where Pi j = Pr

(
Ri | R j

)
is the transition probability from State j to State i.

13According to the cost-of-carry model, the theoretical value of θ is 1, which is strongly supported
by our empirical analysis.
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Mean Median Minimum Maximum Std Dev AutoCor
∆s 0.028 0.058 -22.833 10.957 1.169 -0.039
∆ f 0.028 0.062 -33.700 17.749 1.262 -0.040

f − s 0.243 0.196 -11.027 2.958 0.541 0.813
f − f ∗ 0.055 0.056 -11.451 2.767 0.294 0.420

r 3.380 3.790 0.000 9.100 2.493 0.999
q 2.275 2.080 1.070 4.100 0.718 0.999

Table 2.1: Basic descriptive statistics
Table 2.1 reports the the descriptive statistics for all variables. The sample used is the daily series of
the S&P 500 index and its futures contract covering the period June 4, 1986 to December 3, 2015.
There are a total of 7,442 observations. ∆s (∆ f ) is the first difference of log spot (futures) price.
f ∗t,T = st +(rt −qt)τt where st is the log spot price of the index, rt is the annualized risk-free (3 month
T-bill) interest rate on an investment for the period , qt is the annualized dividend yield on the index,
and τt is the time to maturity. All numbers are recorded in percentage point terms.

2.3.2 The data

We study the daily S&P 500 Index spot and futures contracts between June 1986
and December 201514. All data are sourced from Datastream. Our proxy for the
risk-free interest rate is the US 3-month Treasury bill (T-bill) rate. Divided yields
on the indices are also collected. A continuous series of the nearest-term futures
contracts is constructed. These series switch to the next nearest contract on the first
day of the expiry month for the nearest term contract. We use a full set of daily price
information for every contract to ensure correct matching of the date to maturity with
the continued futures price series. Table 2.1 reports the descriptive statistics for all
variables (measured in percentage terms).

As expected, the movements of the spot and futures prices closely mimic each
other. The average price changes are of the same magnitude while the volatilities
are higher in the futures contracts. The average basis (the log difference between
futures and spot prices) is 24 basis points. After applying the cost-of-carry model,
the difference between the futures price and the fair estimate ( f − f ∗) is 5.5 basis
points.

14We did not use the early data from the period 1982–1986, since the estimated mispricing errors
are more than double on average during this early period, compared to the period over 1986–2015.
The index futures contracts were first introduced in 1982, where the market had higher transaction
costs and lacked index arbitrage. Thus larger mispricing errors occurred. Errors then became more
stable after 1986, and fluctuated with major market events. See also Figure 3.1 in Appendix B for a
plot of the moving-average mispricing error through time.
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2.3.3 Main empirical results

The MS-GECM estimation results are reported in Table 2.3.3 with three (smoothed)
regime probabilities plotted in Figure 2.2. We first discuss the stylized feature of
three distinct regimes from Figure 2.2, which we call States 1, 2 and 3, respectively.
State 1 is the dominant market state, with the smallest mispricing error (measured
as the absolute value of the deviations: | zt−1 |= 0.103) and volatility (Σ = 0.113) in
Panel A and the highest ergodic probability (53%) in Panel C. It covers three major
bull markets during 1992–1995, 2003–2007 and 2012–2015, and thus we call it the
normal market state. State 2 covers 44% of the sample, with mispricing error (0.207)
and volatility (0.239) at twice the levels seen in State 1. This state corresponds to
the periods 1986–1991, 1996–2002 2009 and 2011, which are mostly the transition
periods between bull and bear markets. We refer to this period as the transition
market state. Finally, State 3 is characterized by extremely large mispricing error
(0.774) and volatility (1.077)15. It covers only 2.4% of the sample, and coincides
mostly with the stressed episodes that are captured in our sample period including the
stock market crash in 1987, the Russian financial crisis in 1998, the market meltdown
in 2001 and the global financial crisis in 2008. We call this the extreme market state.

Moreover, State 1 is most persistent with 98% transition probability, followed by
State 2 with 97% and State 3 with 86% (see Panel C in Table 2.3.3), which suggests
that State 1 (3) is the most (least) ’sticky’. The transition probabilities between States
1 and 3 in either direction are nil, confirming that State 2 is indeed the transition
market state. The three distinct market states identified by the MS-GECM are mostly
consistent with the different historic episodes we have observed during the whole
sample period.

Linking the findings in Table 2.3.3 to our key predictions, we find that the esti-
mated mispricing correction parameters, κR j , are all negative and significantly less
than unity in the absolute sense, in all three regimes. State 2 displays the fastest
initial correction (82%), followed by State 1 (70%) and State 3 (60%). Comparing
the difference between κ coefficients across the three different market conditions, it
appears that arbitrageurs play a bigger role in bringing the price back to its funda-
mental value when switching from States 1 to 2, with the difference (–12%) being
statistically significant. By contrast, the coefficient differential between States 2 and
3 becomes significantly positive (22.4%), suggesting that arbitrage activity is rather

15Notice that the average mispricing error over the whole sample period is 0.161.
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Figure 2.2: The smoothed regime probabilities: the three regime Markov Switching
Generalized Error Correction Model
Figure 2.2 plots the smoothed regime probability of being in State 1, 2 and 3. State 1 consists of the
years 1991-1996, 2003-2007 and 2012-2015, State 2 consists of the years 1986-1991 and 1996-2002,
while State 3 are found in the years of 1987, 1997, 1998 and also 2007-2008.
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Panel A: Estimation Results
State 1 State 2 State 3 State 2-1 State 3-2

Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat
α -0.005*** -2.51 0.016*** 3.34 0.058 0.66 0.022*** 4.15 0.042 0.64

δ 0.991*** 332. 1.024*** 259. 1.142*** 48.3 0.031*** 6.36 0.118*** 4.93

γ -0.004 -1.38 0.015*** 4.18 0.092*** 3.58 0.018*** 4.11 0.078*** 2.98

κ -0.699*** -36.7 -0.819*** -41.5 -0.596*** -6.56 -0.120*** -4.38 0.224** 2.41

λ ∗ 0.113*** 12.8 0.167*** 9.24 0.113 1.29 -0.079*** -3.00 -0.053 -0.59

Σ 0.113*** 59.1 0.239*** 43.2 1.077*** 13.2 0.126*** 21.4 0.838*** 10.2

SOA 0.453*** 19.1 0.652*** 27.6 0.482*** 8.73 -0.199*** -5.98 0.171*** 2.84

| zt−1 | 0.103 0.207 0.774

Panel B. Recovered Coefficients
ω -0.008** -2.67 0.024*** 5.94 0.142*** 5.99 0.032*** 6.35 0.118*** 4.93

π -0.474 -1.24 -0.630*** -3.42 -0.652*** -3.22 -0.156 -0.36 -0.022 -0.09

λ 0.817*** 8.96 0.922*** 5.86 0.279 1.03 0.107 0.58 -0.647*** -4.92

Panel C. Matrix of Markovian Transition Probabilities
State 1t−1 State 2t−1 State 3t−1

State1t 0.980 0.024 0.000
State2t 0.019 0.968 0.143
State3t 0.000 0.008 0.857
Ergodic 0.531 0.443 0.024

Table 2.2: Estimation of the Markov-Switching Generalized Error Correction Model

Table 2.3.3 reports the estimation of the Markov Switching Generalized Error Correction Model. The sample
used is the daily series of the S&P 500 index and its futures contract covering the period June 4, 1986 to
December 3, 2015. There are a total of 7,442 observations, of which 4,070 , 3,222 and 148 fall into State 1,
State 2 and State 3. Specifically, Panel A reports the estimation results for:

∆ ft = αR j +κR j ẑt−1 +λ
∗
R j

ẑt−2 +δR j ∆ f ∗t + γR j ∆ ft−1 +µtR j

where ẑt is estimated from equation 2.8, {αR j , δR j , γR j , κR j , λ ∗
R j

} are state-dependent coefficients with the
covariance of the residuals (ΣR j ) taking different values across the two states. Panel B reports the recovered
coefficients. Specifically, ωR j is recovered by δR j − 1; πR j = −γR j/ωR j and λR j = λ ∗

R j
/(1 + κR j). The

final two columns in Panels A and B report the difference in estimated coefficients and associated t-statistic
between States 1 and 2. For non-linear combinations of the coefficients, a delta method is applied to obtain
the variance of the recovered coefficients and their differences. Panel C reports the transition and ergodic
probabilities. ***, ** and * indicate significance at 1%, 5% and 10% levels, respectively.
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limited even though the mispricing error in State 3 is 3.7 times higher than in State 2.
These findings provide strong support for Prediction 1 that initial arbitrage activity
follows the inverse U-shaped pattern with respect to the size of mispricing errors.

Next, we turn to the noise momentum coefficients, λR j , reported in Panel B.
Notably, we find that mispricing persistence is significant and relatively high dur-
ing normal and transition market states, implying that the unarbitraged error coming
from the previous period is highly persistent, respectively at 82% and 92% in the
current trading period. By contrast, noise momentum is substantially smaller (28%)
during the extreme market state, though the coefficient is not statistically significant.
The difference in λ coefficients between States 2 and 1 is insignificant and negligi-
ble, whilst the difference between States 3 and 2 is significant and negative (–65%).
Overall, this finding provides some support for Prediction 2, on the regime-dependent
differences in mispricing persistence. Especially, it highlights that λ is another im-
portant parameter in characterizing the overall speed of adjustment process.

Combining both mispricing correction and noise momentum coefficients, we find
that overall speeds of adjustment (given by κ +λ (1+κ)) are 45%, 65% and 60%
respectively, for the normal, transition and extreme regimes. The overall speed of
adjustment becomes significantly faster when the market switches from States 1 to 2,
mainly due to κ (i.e., the increment of mispricing correction). The combination of
initial correction and size of mispricing suggests that the capital allocation effect is
the main driver behind the different adjustment speed between these two states. By
contrast, when we move from States 2 to 3, we observe that both κ and λ play a role
in changing the overall speeds of adjustment. This evidence prompts new insights
into the cause(s) of a prolonged error correction process, which in previous litera-
ture is often explained by the presence of transaction costs (Bai and Collin-Dufresne
2013, Gyntelberg et al. 2016, Roll et al. 2007). We show that arbitrageur funding
constraints play an important role in delaying price convergence through their initial
error correction. Contrary to common perception, we find noise momentum is lower
in extreme market conditions. In other words, arbitrageurs expect mispricing to be
reduced rather than enlarged, which is supported by the empirical evidence of signif-
icant negative feedback trading during the period. This finding suggests that funding
constraints are the main driver behind the outcome that overall arbitrage activity is
significantly deterred in State 3.

Furthermore, our finding confirms that arbitrageurs tend to adopt the partial in-
vestment strategy during normal and transition market states, which are characterized
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by relatively high κ and λ values, whereas they are more likely to follow the full
investment strategy during the extreme market state, which is characterized by rela-
tively low κ and λ . In particular, our empirical findings during the extreme state are
consistent with the slow-moving capital hypothesis in the literature (Mitchell, Pul-
vino and Pedersen 2007, Mitchell and Pulvino 2012, Schuster and Uhrig-Homburg
2015).

We also observe a range of notable findings for the other parameters in our model.
First, the intercepts, αR j , in States 1 and 2 are statistically significant. A large posi-
tive intercept is found in State 2, while a negligible intercept is found in State 1 – the
positive sign indicating a regime in which the futures price is more bullish than the
spot price, other things equal. As such, this suggests that the transition state coincides
with periods in which the futures market is more bullish than the spot market. On av-
erage, during this regime, there is a 16 basis-point daily return in the futures market,
regardless of the spot market movement. However, such returns are accompanied by
larger risks, as reflected by the variance of the futures return. Such a pricing dif-
ference between the two markets under different market conditions is not directly
considered in previous theories, and thus adds a new result to the literature. Second,
Table 2 shows that the contemporaneous market reaction coefficient, wR j = δR j −1,
is statistically different from zero, but small and negative in the normal state, while
it is highly significant and positive in the transition and extreme states. In the case
of the latter, it suggests that for a 1 percentage-point change (up or down) in the
fundamental value there will be a 0.024 or 0.142 percentage-point price movement,
respectively, in the futures market in the same direction (i.e., a 2.4 or 14 basis-point
overreaction respectively). Third, Table 2 also shows that while in the normal mar-
ket state there is no feedback trading (i.e., we cannot reject π = 0), there is large,
negative and significant feedback trading in transition and extreme market condi-
tions. Such negative feedback trading is consistent with the high volatility observed
in these market conditions.

2.3.4 Linking the hidden states to observable

The advantage of using a Markov-Switching model is the ability to estimate the like-
lihood of being in a given latent state, which can then be examined for potential
linkages to various observable economic factors. It offers an opportunity to better
understand and characterize what the states are really capturing. Particularly, we are
interested in how well it classify the states according to the funding conditions.
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State 1 State 2 State 3
Variables Mean Median Mean Median Mean Median
Fund Flows
Hedge Fund Flows 10.22 7.92 5.43 4.99 1.83 0.14
Active Fund Flows 130.72 135.69 74.04 78.42 40.40 51.07
Index Fund Flows 9.49 8.66 6.81 6.29 9.13 9.10
Capital Structure
Growth Rate of Total Financial Asset 0.02 0.03 0.05 0.04 -0.01 -0.03
Financial Sector Leverage 7.89 3.60 12.09 5.21 30.94 38.87
Broker-Dealers’ Leverage Factor 43.59 42.21 39.54 39.68 61.81 59.38
Liquidity
Aumihud Illiquidity of SPX 500 28.29 2.76 85.59 14.55 71.26 3.78
Treasury Security-based Funding Illiquidity -0.21 -0.23 0.16 0.25 1.81 1.96
TED Spread 0.00 0.00 0.01 0.01 0.03 0.03
Volatility
VIX 15.95 15.22 24.24 23.30 52.35 55.31
Idiosyncratic risk 0.03 0.02 0.03 0.03 0.05 0.05

Table 2.3: Linking the hidden states with observables
This table reports the mean and median statistics of monthly funding and liquidity measures in the
three States. Definition of the variables are given in Appendix XX. Months are to given States by
finding the which state has large number of days being the dominant state (largest probability). We
have 189, 160 and 6 months of observations for States 1, 2 and 3 respectively.
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Table 2.3 reports the mean and median statistics of monthly funding and liquidity
measures in the three States. Months are assigned to a given States by finding which
state has the largest number of days being the dominant state (the largest probability
among the three States). We have 189, 160 and 6 months of observations for States
1, 2 and 3 respectively. Definition of the variables are given in Appendix 2.B. We
include the variables of aggregated hedge and mutual fund flows, capital structure
and stock, bond market liquidity and volatlity.16

Fund flows statistics suggests that funds available for arbitrageurs (hedge and
active mutual funds) drop as volatility increases from States 1 to 3. The decreasing
funding confirms that funding constraints are more likely to be binding in the extreme
regime when inflows to hedge fund and active funds are at their lowest. By contrast,
passive index received larger inflows during this same extreme period which suggests
that funding constraints are partly due to relocation of funds within equity focused
funds (flight to quality/liquidity). The results of growth rate of the total financial asset
and leverage factors points to a similar story that funding constraint is most binding
in States 3. The financial asset growth is at its lowest (in fact negative) while financial
sector leverage and broker-dealer leverage are at its highest. The differences between
States 1 and 2 are small relative to their differences from State 3, which justifies State
3 to be the most extreme state of the three.

For market liquidity measures, Amihud illiquidity measure suggests that it plays
little role in affecting arbitrageurs’ decision between different states. In general, we
expect that illiquidity of spot market would deter arbitrage. We observe the contrary
considering States 1 and 2. Although the spot market is more illiquid in States 2
we observe larger error correction. Rather market illiquidity is more likely to be
affected by funding constraints (Brunnermeier and Pedersen, 2009), such that more
binding funding constraints in States 2 and 3 exhibit severer market illiquidity. The
bond illiquidity and the TED spread as a measure of funding liquidity risk (Fontaine
and Garcia, 2011) confirm that funding liquidity risk is at its highest in State 3. The
difference between States 2 and 3 is much higher than that between States 1 and 3.

Finally, the VIX index confirms that the volatility increases from States 1 to 3
with State 3 having a value of more than double of the State2. The idiosyncratic risk
of index constituents is also highest in State 3 and indifferent between States 1 and
2. Higher volatility in State 3 (systematic or idiosyncratic), instead of deterring the

16I acknowledge the help from Professor Charlie X. Cai from University of Liverpool for providing
the data in this section.
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initial reaction of arbitrage, tends to make it more difficult for arbitrageurs to raise
funding and thus correct mispricing, as suggested by Brunnermeier and Pedersen
(2009).

Overall, the observables confirm that our regime estimation captures the varia-
tions of funding constraint and therefore supports our hypothesis that funding con-
straint is an important driver of the variations in arbitrage.

2.4 Conclusions

We develop a unified approach to generate our main theoretical predictions regarding
the effects of both capital allocation and funding constraints on the limits to arbitrage.
Building on the seminal work by Shleifer and Vishny (1997; SV above), we analyze
the nonlinear impacts of mispricing on arbitrage activity. To replicate the situation
where arbitrageurs attempt to exploit price inefficiency while simultaneously facing
market frictions and funding constraints, we model arbitrageurs as facing a trade-off
between making investments now and waiting for larger arbitrage opportunities in
the subsequent period. To capture such multi-period arbitrage activity, we follow the
framework advanced by Cai, Faff and Shin (2017; elsewhere CFS) and investigate
the impacts of mispricing on both the initial mispricing correction and the subse-
quent noise momentum, where the latter is designed to measure the persistence of
uncorrected pricing errors.

We investigate these issues under two alternative paths to equilibrium: in the nor-
mal state, where funding constraints are not binding, arbitrageurs are more likely to
adopt the partial investment strategy and thus larger mispricing will induce faster ar-
bitrage activity; and in the extreme state, characterized by extremely large mispricing
error, arbitrageurs are faced with severely binding funding constraints and are more
likely to adopt the full investment strategy and funding constraints becomes the dom-
inant factors of limits to arbitrage, and thus larger mispricing deters the arbitrageurs’
initial mispricing correction. In sum, our theory suggests that overall arbitrage activ-
ity does not rise linearly with mispricing error. Rather, the relationship tends to be
regime-dependent, and overall arbitrage activity displays an inverse U-shape against
the size of mispricing error. Our approach is thus able to indicate whether it is arbi-
trage cost/risk or funding constraint that predominantly limits arbitrage activity.

To test the empirical validity of our theoretical predictions, we extend the general
error correction model by CFS to the state-dependent Markov switching model. Ap-
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plying this model with three regimes to the S&P 500 Index spot and futures markets
over the period 1986–2015, we find strong evidence in favor of regime-dependent
nonlinear limits to arbitrage. Furthermore, we can identify the stress periods of bind-
ing funding constraint as the years 1987, 1998, 2001 and 2008. In particular, our
study provides both theoretical and empirical evidence that is consistent with the
slow-moving capital hypothesis documented in the literature (Mitchell, Pulvino and
Pedersen 2007, Brunnermeier and Pedersen 2009).

The potential applications of this approach go well beyond that developed in the
current paper. For example, our approach could be applied to explore the short-term
dynamics associated with fundamental long-run co-integrating relationships (e.g., the
price-dividend relationship) and the pricing dynamics between segmented markets
for single assets (e.g., cross-listing and commodity contracts in different markets). As
our paper highlights the fruitful results of studying the limits to arbitrage via arbitrage
activity, another important extension would be to analyze the cross-sectional effects
of specific arbitrage impediments to arbitrage activity, such as fundamental risk and
non-fundamental risk. We commend these and other meaningful extensions to the
future research agenda.

Appendix 2.A The Size of The Mispricing Error over
Time

Figure 2.3 plots the moving average of mispricing error in absolute value, covering
the full sample period from 1982 to 2015. It is easily seen that mispricing error is
large and volatile in early period before 1986. It fluctuates above 0.25, and can reach
as high as 2.25 in extreme. At the time when index future contracts are first intro-
duced in 1982, the market is characterized with high transaction costs, low number
of participating arbitrageurs and low level of available arbitrage capital. Therefore
larger mispricing error tend to occurs during the early periods. Over time knowledge
diffused and entry barriers and implementation costs dropped. Mispricing becomes
more stable after 1986, and comoves with major market events. It tend to stay below
0.25 at most of the sample period, while only exceed at a few extreme market events,
such as the 1987 market crash and 2007-2009 global financial crisis.
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Figure 2.3: The plot of the moving-average mispricing error over 1982-2015
The figure plots the moving average of the absolute value of the pricing error, ẑt , estimated
from the long-run equation:

ft = µ +θ f ∗t + zt ,

where ft and f ∗t is the spot price of S&P 500 future contract and the fundamental price
implied by the cost of carry model, respectively. The dotted line plots the one-month moving
average mispricing error, while the solid line plots the six-month moving average mispricing
error.

Appendix 2.B Definitions of the Observable Variable

In this appendix, we introduce a numbers of variables as the funding and market
liquidity measures.

1. Aggregate Hedge fund flows, Aggregate index fund flows, Aggregate mutual
fund flow
Ang, Gorovyy, Inwegen (2011) find that hedge fund leverage decrease prior to
the leverage of financial intermediaries. They also find that funding cost and
fund return volatility can negatively predict fund leverage, while the market
value of hedge funds positively predict fund leverage. Empirically, the ag-
gregate hedge fund flow(past three-month flows) is positively predicting the
gross leverage and long-only leverage. We follow Ang , Gorovyy, Inwegen
(2011) to construct aggregate actively-managed US mutual fund flows , ag-
gregate passively-managed US index fund flows , aggregate US hedge fund
flows . Under the US mutual fund universe of Morningstar Direct, we select
the mutual funds with the indicator ‘index funds’ stating ‘No’ and the indicator
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‘oldest share class’ stating ‘Yes’ to remove identical funds with different share
class, the Global broad category stating “Equity ” or “Allocation”, and remain
5152 funds as our mutual fund sample. We select the index funds with the in-
dicator ‘index funds’ stating ‘No’ and the indicator ‘oldest share class’ stating
‘Yes’ to remove identical funds with different share class, the Global broad
category stating “Equity ” or “Allocation”, and remain 291 funds as our index
fund sample. Under the global hedge fund universe of Morningstar Direct, we
select the indicator ‘Domicile’ stating ‘United States’ and remain 1451 fund as
our hedge funds sample. All the return and total net asset data are download on
a monthly basis from Jan 1976 to June 2016. The monthly mutual fund/index
fund/hedge fund flows are constructed as follow:

f lowi.t =
T NAi,t

T NAi,t−3
− (1+ ri,t−2)(1+ ri,t−1)(1+ ri,t)

Aggre f lowt =
k

∑
i=1

f lowi,t

where T NAi,t is the total net asset of fund i in quarter t, ri,t is the total return
of fund i in quarter t from Morningstar Direct database.

2. Idiosyncratic risk
Ang, Hodrick, Xing, and Zhang (2006) find that stock with high idiosyncratic
risk relative to Fama and French 3 factor model (1993) have low average re-
turn. Neither aggregative volatility risk, size, book-to-market, momentum, and
liquidity can explain this phenomenon. We follow Ang, Hodrick, Xing, and
Zhang (2006), first obtain the daily stock return and the SP500 index return
from CRSP, then obtain the daily risk –free return from the website. Fama and
French Data Library. We calculate the idiosyncratic risk of each stock in each
month and then take the mean of the monthly aggregate idiosyncratic risk of
all US stocks. The idiosyncratic risk is constructed as follow,

Reti,t −Retrisk f ree,t = αt +βt
(
Retspx500,t −Retrisk f ree

)
+ εi,t

idioriski,t = Std
(
εi,t=1,εi,t=2,εi,t=3, . . . . . .εi,t=end dayo f month

)
where Reti,t is the daily return of stock on day i at month t, Retrisk f ree,t is daily
return of the 30-day T Bill return from Fama-French website and εi,t=1 is the
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residual obtained from the regression in day 1.

3. Amihud (2002) Illiquidity measure
Amihud finds (2002) that illiquidity positively predicts cross-sectional stock
excess return, especially small-cap stocks. We follow Amihud (2002) to con-
struct the illiquidity factor of stocks as follow:

ILLQi,y =

(
1

Di,y

) Di,y

∑
k=0

| Ri,y,d |
VOLDi,v,y,d

where Di,y is the number of days in year y that are available of stock i, Ri,y,d is
the daily return on day d in year y of stock i, VOLDi,v,y,d is the trading volume
in dollars in day d of stock i.

4. Institutional ownerships
Ali, Hwang and Trombley (2013) argue that large institutional ownership will
reduce the predictive power of B/M ratio on stock return. It implies that large
institution ownerships might increase arbitrage cost.

insowni,t =
n

∑
k=0

inssharesi, j,y

outssaresi,t

where inssharesi, j,y is the shares of stock i held by institution j at month t and
outssaresi,t is outstanding shares of stock i at month t.

5. Financial asset growth
Adrian and Shin (2010) find that the growth of financial asset measures the
increase of aggregate liquidity, the fast growth of asset will increase their "sur-
plus capital", they seek to expand this captial and search for borrowers. Then
Aggregate liquidity comes from urging to people borrow the money, though
they might have no ability to repay. The asset growth is constructed as follow:

assetgrowthi,t =
asseti,t

asseti,t−1
−1

where asseti,t is the total financial asset of industry i at quarter t.

6. Broker-dealer leverage
Ang, Gorovyy and Van Inwegen (2011) argue that hedge fund leverage is
counter-cyclical to the market leverage of listed financial intermediaries. In
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2007 mid, hedge fund leverage decrease prior to start of 2007-mid financial
crisis, when listed investment banks and finance sector continues to increase.
The leverage is constructed as follow:

LeverageBD
t =

Total Financial AssetBD
t

Total Financial AssetBD
t −Total LiabilitiesBD

t

where Total Financial AssetBD
t is the aggregate quarterly total financial of se-

curity broker-dealers and Total LiabilitiesBD
t is the aggregate quarterly total

financial liability of security broker-dealers reported.

7. Treasury security-based funding liquidity
Fontaine and Garcia (2011) document that the liquidity premium also shares
a funding component with risk premia in another market. High liquidity indi-
cates high cost in money supplying. The data is directly obtained from Jean-
Sebastien Fontaine’s website.

8. TED spread
The TED spread is the three-month Eurodollar deposits yield (LIBOR) sub-
tracted by three-month US T-bills. Both LIBOR and T-bills yields are monthly
data downloaded from the FRED data library. The Ted is constructed as follow:

T EDt = YieldEU,t −YieldUS,t

where YieldEU,t is the yield of the three-month Eurodollar deposits yield (LI-
BOR) and YieldUS,t is the yeield of three-month US T-bills.

Appendix 2.C Proofs

In this Appendix we provide the proofs to the main propositions derived in Section
2.2. We first derive the stability condition for sensitivity α to ensure that equity in
period 2 is nonnegative after mispricing deepens in the second period. We denote the
equity in period 2 when mispricing deepens by F∗

2 , which can be written as

F∗
2 = F1

[
1+αβ1

(
P∗

2
P1

−1
)]

(2.9)
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where P∗
2 =V −S∗2 +F∗

2 and P1 =V −S1 +β1F1. We simplify (2.9) as

F∗
2 = F1 +F1

[
aβ1F1 (1−β1)−aβ1 (S∗2 −S1)

V −S1 − (a−1)β1F1

]
. (2.10)

After rearrangement, it is easily seen that the inequality F∗
2 > 0 holds when

α <
V −S1 +β1F1

β1
(
S∗2 −S1 +β1F1

) .
As β1 can take value between 0 and 1, we rearrange the condition in terms of V :

V > (S1 −β1F1)+aβ1 (S∗2 −S1 +β1F1) .

For different value of β1, the maximum of RHS is obtained by either β1 = 0 or β1 = 1.
Thus it is easily rewritten as

V > max{(S1 −F1)+a(S∗2 −S1 +F1) , S1} .

which can be simplified as V > (S1 −F1)+ a(S∗2 −S1 +F1), since we always have
V > S1. Thus the stability condition is

α <
V −S1 +F1

S∗2 −S1 +F1
. (2.11)

We note that the stability condition is not a strong restriction, and it holds in most
general cases. Since the fundamental value is assumed to be a lot larger than the
shocks, i.e. V ≫ S∗2, thus even for the extreme value of α ≫ 1, the stability condition
still holds and guarantee F∗

2 > 0. However, the case with α ≫ 1 rarely happens in
real world, as financiers will not give such award (punishment) to arbitrageurs who
perform well (badly).

Second, we provide two Lemmas, which will be used in the proof of main propo-
sitions.

Lemma 1. Consider the model setup from Section 2.2.1 and 2.2.3, and the equilibria

from Eq. (2.2). Suppose that arbitrageurs adopt the full investment strategy, β1 = 1.

Under the stability condition, 1 < α < (V −S1+F1)/(S∗2−S1+F1), then as S1 rises,

the fund in period 2, F∗
2 increases.
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Proof. From Eq. (2.10), we obtain the partial derivative of F∗
2 with respect to S1:

∂F∗
2

∂S1
= aβ1F1

V −S∗2 +(1−aβ1)F1

(V −S1 − (a−1)β1F1)
2 .

Replacing β1 = 1, we need to verify that whether the numerator V −S∗2 +(1−a)F1

is positive or not. Using the stability condition, V > aS∗2 + (a−1)(F1 −S1) and
subtracting S∗2 from both side of inequality, then we have:

V −S∗2 > (a−1)(S∗2 +F1 −S1)> (a−1)F1, (2.12)

which shows that V −S∗2 +(1−a)F1 > 0. QED

Lemma 2. Consider the model setup from Section 2.2.1 and 2.2.3, and the equilib-

ria from Eq. (2.2). Suppose that arbitrageurs adopt the partial investment strategy(
0 < β̂1 < 1

)
. Under the stability condition, 1 < α < (V −S1 +F1)/(S∗2 −S1 +F1),

then the sign of ∂P1
∂S1

is the same as that of ∂P∗
2

∂S1
.

Proof. We rewrite (2.2) as

P∗
2 =

qV P1

V − (1−q)P1

Taking the first differentiation with respect to S1, then

∂P∗
2

∂S1
= qV

[
θ (V − (1−q)P1)+θ (1−q)P1

(V − (1−q)P1)
2

]
=

θqV 2

(V − (1−q)P1)
2

where θ = ∂P1
∂S1

, which clearly shows that sign of ∂P2∗
∂S1

is the same as that of ∂P1
∂S1

. QED
Now, we provide the proof for Proposition 1:
Proof. First, we consider the partial investment strategy with 0 < β̂1 < 1. Before

we show ∂κ

∂S1
> 0, we reveal the derivations of ∂ β̂1

∂S1
, which contains some tedious

calculation, and reach a number of properties.
The equilibrium strategy β̂1 can be obtained from the first order condition, such

that
(1−q)

(
V
P1

−1
)
+q
(

P2

P1
−1
)

V
P2

= 0 (2.13)

and it is expressed as the follows

β̂1 =
n1 −n3

2a(1−q)F1
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n1 =V +(1−q)(F1 +aS1 −S∗2)

n2 =V +(1−q)(F1 −aS1 −S∗2)

n3 =

√
(n2)

2 +4aV q(1−q)
(
S∗2 −F1

)
The partial derivative of β̂1 with respect to S1 can be expressed as

∂ β̂1

∂S1
=

1
2F1

(
1− n2

n3

)
> 0. (2.14)

The inequality holds since n3 > n2 under the assumption that F1 < S1 < Sb
2. This

confirms the positive capital allocation effect. In addition, the partial derivative of P1

with respect to S1 can be expressed as

∂P1

∂S1
=

1
2

(
1− n2

n3

)
−1 < 0, (2.15)

where the inequality holds since n3 > n2 under the assumption that F1 < S1 < Sb
2.

Now consider the partial differentiation of κ = β̂1F1
S1

with respect to S1 given by

∂κ

∂S1
= F1

 ∂ β̂1
∂S1

S1 − β̂1

S2
1

 ,

and we derive the condition that ensures the numerator ∂ β̂1
∂S1

S1 − β̂1 is positive with
Eq. (2.14):

V > (1−q)

{
(S∗2 −F1)+a

[
(S1 −β1F1)

2

β1F1
+β1F1

]}
(2.16)

The RHS in Eq. (2.16) takes the smallest value when β1 = 1, and the condition
becomes

V > (S∗2 −F1)+a

[
(S1 −F1)

2

F1
+F1

]

= S∗2 −F1 −2α (S1 −F1)+α
S2

1
F1

(2.17)

Given a moderate setting of α that accords with the stability condition and the as-
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sumption that V ≫ S1, S∗2, F1, the condition in Eq. (2.17) can easily hold true,17 and
∂κ

∂S1
> 0.
Furthermore, under the partial investment, we rearrange the FOC in Eq. (2.13),

and express λ as

λ = q
V −P∗

2
V −P1

=
P∗

2
P1

= q+P∗
2

1−q
V

(2.18)

Together with Lemma 2 and Eq. (2.15), we have ∂P∗
2

∂S1
< 0 . Therefore, it is easily

seen from Eq. (2.18) that as S1 rises, λ falls. This proves ∂κ

∂S1
> 0 and ∂Λ

∂S1
< 0 for

partial investment equilibrium.
Next, we consider the full investment, β̂1 = 1, in which case

κ =
β̂1F1

S1
=

F1

S1
.

Then, it is easily seen that ∂κ

∂S1
< 0, given F1. Furthermore, we rewrite Eq. (2.5):

λ = q
V −P∗

2
V −P1

= q
S∗2 −F∗

2
S1 −F1

From Lemma 1, we have ∂F∗
2

∂S1
> 0, which clearly shows that ∂λ

∂S1
< 0. QED

Finally, we provide the proof of our Proposition 2:
Proof. From a modeling perspective, q∗ is determined as a complex function of

the parameter set, {V, S1, S∗2, F1, α}. q∗ is derived at the point where arbitrageurs
are indifferent between taking either strategy, i.e. D1 = F1 under partial investment
strategy. We have

q∗ =
(S1 −F1)(V +F1 −S∗2 −αF1)

V
(
S∗2 −S1

)
+(S1 −F1)

(
V +F1 −S∗2 −αF1

) = 1
m+1

where m =V (S∗2 −S1)/(S1 −F1)(V +F1 −S∗2 −αF1).

17We note that there are extreme cases where Eq. (2.17) can be violated even when the stability
condition holds, especially when sensitivity is extremely large, α ≫ 1. The reason is that model
setup does not have further assumption about the rational range of value of sensitivity α , except for
the stability condition. As we noted in the derivation of stability condition, some α that satisfy the
stability condition can be rather extreme and impossible to occur in real world. Thus it is a rather
weak assumption which cannot provide more rational restriction on sensitivity α .
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First, it can be easily seen that 0 < q∗ < 1, since we have

S1 −F1 > 0, S∗2 −S1 > 0,V −S∗2 +(1−α)F1 > 0 (2.19)

from the model assumption and the implication from stability condition in Eq. (2.12).
Next, taking the partial derivation of m w.r.t S1 and F1 respectively, we have

S_{2}^{*}-F_{1}-2\alpha\left(S_{1}-F_{1}\right)+\alpha\frac{S_{1}^{2}}{F_{1}}

∂m
∂S1

=
V (F1 −S∗2)

(S1 −F1)
2 (V +F1 −S∗2 −αF1

) < 0

∂m
∂F1

=
V (S∗2 −S1)(V −S∗2 +(1−α)F1 +(a−1)(S1 −F1))

(S1 −F1)
2 (V +F1 −S∗2 −αF1

)2 > 0

The inequality holds for Eq. (2.19). Thus, we have∂q∗
∂S1

> 0 and ∂q∗
∂F1

< 0. Q.E.D



Chapter 3

Funding Liquidity and The Efficacy
of Arbitrage

3.1 Introduction

The financial crisis during 2007-2009 and the subsequent great recession have put
spotlight on the financial intermediaries, and the role of their financial health on both
asset pricing and the whole economy. Among other intermediaries, hedge funds are
often recognized as the sophisticated and rational arbitrageurs (called arbs in short
hereafter), as they largely employ quantitative modeling in making investment deci-
sion and heavily use leverage in supporting their daily management. The relatively
high use of leverage can enhance the hedge funds’ ability to capitalize on mispricing
opportunities and reduce pricing anomalies, which is referred to as “smart money”
by Akbas et al. (2015). However, it also expose them to higher funding risks, such
that as the funding problem propagates to the hedge funds, they will find it more
difficult to manage their leverage and react to the transient discrepancy in market
prices.1 Therefore, the arbs’ ability to obtain leverage funding, i.e. funding liquidity,
plays an important role in asset pricing, mispricing correction and market efficiency.

The importance is rather nonlinear, depending on whether the tightening fund-
ing constraint is binding or not. When it is binding, a self-reinforcing process can
occur and induce the amplification mechanism, such that even a modest trigger can
result in large spillovers across the financial system. The most recent global financial
crisis in 2007 provides a notable example, such that it is triggered by the collapse

1See literature on slow-moving capital: Mitchell, Pulvino and Pedersen (2007) Duffie (2010)
Garleanu and Pedersen (2011) and Mitchell and Pulvino (2012).
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of the subprime mortgage market, which constitutes only around 4% of the overall
mortgage market. Shleifer and Vishny (1997) suggest the loss spiral, e.g. the arbs
with poor performance may face funding withdrawal from the lenders and are forced
to liquidate their position when funding constraint is binding, which leads to further
price distortions and losses. Brunnermeier and Pedersen (2009) illustrate the margin
spiral in extreme circumstance, such that losses in capital reduce the traders’ ability
to provide market liquidity, which will raise margin requirement and further jeop-
ardize the traders’ funding condition. Mitchell, Pedersen, and Pulvino (2007) and
Mitchell and Pulvino (2012) provide a number of empirical evidence of extremely
large pricing anomalies caused by slow-moving capital during the extreme periods.

Understanding and identifying when amplification will occur is vital for mar-
ket participants and policy makers during the financial crisis (Brunnermeier and
Oehmke, 2013). Extant literature has successfully measured the funding (il)liquidity
through the available arbitrage capital (Comerton-Forde et al., 2008; Adrian and
Shin, 2010; Akbas et al., 2016) and asset pricing effect (Fontaine and Garcia, 2011;
Garleanu and Pedersen, 2011; Nagel, 2012; Frazzini and Pedersen, 2014). How-
ever, a key question they fail to address is how to identify when funding illiquidity
becomes so severe that the amplification will occur, i.e. how to identify when the
funding constraint becomes binding. Our paper attempts to fill this gap.

To do so, we narrow our focus on the arbitrage activity capitalizing on the mis-
pricing opportunity, following Chapter 2 of this thesis. We have suggested in Chapter
2 that the arb’s efforts to bear against mispricing error, i.e. mispricing correction, re-
veals the arbitrage impediments they face: arbitrage costs and funding constraints. To
further understand the role of funding constraint, we augment the model of Shleifer
and Vishny (1997, SV hereafter) and Stein (2009, Stein hereafter) by allowing the
endogenous leverage constraint set by outside financiers. In our model, mispricings
are generated by noise traders; Arbs enter the market to smooth price fluctuation and
correct the mispricing error in the use of leverage; Leverage debt can be financed
from outside financiers, who set a maximum leverage constraint to protect their own
capital from the arb’s potential insolvency. We derive the competitive equilibrium
of the model where arbs capitalize on mispricings subject to the leverage constraint,
and explore the implications on the arb’s ability to raise leverage capital, i.e. funding
liquidity, and to conduct arbitrage activity, i.e. arbitrage efficacy.

We evaluate the arb’s funding liquidity by the marginal leverage debt raised
by the arbs in order to bear against additional mispricings. Leverage is denoted
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as (de)stabilizing when the marginal leverage is (negative) positive, such that arbs
are able to raise (less) more leverage debt with mispricings. Moreover we consider
the efficacy of arbitrage, which is defined by the marginal percentage of mispric-
ing correction achieved by the arbs against additional mispricings. Arbitrage is
(in)efficacious when the marginal correction is (negative) positive, such that arbs
are able to achieve higher mispricing correction with larger error. While funding
liquidity and arbitrage efficacy are often viewed by the return-based definition in the
literature, such that funding liquidity is defined by the shadow cost of capital (Brun-
nermeier and Pedersen, 2009; Garleanu and Pedersen, 2011) and arbitrage efficacy
by the size of arbitrage violation (Akbas et al. 2016), our paper first captures them
via the arbitrage activity and the follow-up analyses are proved fruitful.

Our model suggests that (i) when leverage constraint is loose, leverage is stabi-
lizing, such that they are able to raise more funding with higher mispricing error.
Sufficient funding enable them to achieve higher mispricing correction, i.e. arbitrage
is efficacious. This is consistent with the existing view of risky arbitrage, such that ar-
bitrage force tend to intensify with larger mispricing which represents a higher cost-
adjusted return. (ii) However, extremely large mispricing makes leverage constraint
binds, where arbs are forced to take the maximum leverage limit set by financiers.
The arbs retain a positive but far lower marginal leverage when financiers are more
informed and willing to offer a higher leverage limit as mispricing increases. How-
ever, destabilizing leverage may occur when financiers become less informed, and
tend to interpret the initial mispricing as higher future uncertainty. This exagger-
ates their estimates of the future mispricings, and renders them unwilling to increase
leverage supply. Instead of correcting mispricing, the arbs are forced to deleverage
and cause more intense mispricing. (iii) Due to the binding leverage constraint, ar-
bitrage becomes inefficacious regardless of the level of informativeness, such that
arbs fail to achieve a higher percentage of correction. (iv) In the presence of stabi-
lizing leverage and efficacious arbitrage, arbs are able to effectively absorb varying
selling pressure and smooth volatile price, which provides liquidity to the market
and prevents the asset trading at distressed price. Therefore, the expected market
illiquidity and price volatility is insensitive to the innovations in mispricing errors.
However, destabilizing leverage and inefficacious arbitrage can result in significant
asset pricing effects, such that small changes in mispricing can trigger large grow in
the expected market illiquidity and price volatility.

Our model thus links the arb’s funding liquidity to the efficacy of arbitrage. More
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importantly, the sign of marginal correction, indicating whether arbitrage is effective
or not, can be viewed as an early signal of the binding leverage constraint. It offers
a great tool for policy makers to not only monitor the funding liquidity condition in
the financial sector, but also guide the timing of public and monetary policy making.

After deriving the predictions arising from the possible equilibrium, we design an
empirical strategy to capture the arbitrage efficacy (marginal correction) by the first-
difference estimator: regressing daily difference of mispricing corrections on daily
difference of mispricing errors, where mispricing correction can be estimated from
the Generalized Error Correction Model.2 We then apply the strategy to the index ar-
bitrage between S&P500 index and E-mini future from September 1997 (the earliest
possible time for E-mini future) to June 2015, and obtain the time-varying implied
arbitrage efficacy, denoted as AE. The index and E-mini future arbitrage offers the
following advantages. First, the index arbitrage can be easily verified with the cost of
carry model; Second, the E-mini S&P500 future contract are one of the most traded
future contracts in US, and contains a large number of hedge funds who aim to capi-
talize on the mispricing opportunity with low transaction costs, high market liquidity
and low short-selling constraint; Third, the sample period over 1997-2015 accords
with the boom of the hedge fund industry and some major liquidity events, such as
the recent financial crisis in 2007.

Figure 3.1 illustrates some key findings in our empirical application, where we
plot the implied arbitrage efficacy (solid line, left axis) along with the VIX index of
implied volatility in S&P 500 index options (dashed line, right axis). We find that
(v) the four major periods when the implied arbitrage efficacy was negative match
the major liquidity turmoils during the sample period: the bust of dot-com bubble
in 2000-2003, the financial crisis in 2007-2009, the debt ceiling and sovereign debt
crisis in 2010-2011 and the debt ceiling crisis in 2013. For example, AE dropped
sharply below zero in June 2007 and stayed negative during the financial crisis in
2007-2009. It rebounded back to zero only after the first round of quantitative eas-
ing was implemented by Federal Reserve. AE stayed positive during some notable
exemptions, like the Flash Crash on May 2010, which was later proved to be a tempo-
rary freeze of liquidity. (vi) The effectiveness of Fed’s monetary policy and lending
facilities on funding liquidity provision was varying. While the first round of Quan-
titative Easing announced by Federal Reserve had significant improvement on the
implied arbitrage efficacy, the second and the third rounds of QE leaded to a declin-

2See Cai, Faff and Shin (2015).
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Figure 3.1: The plot of the implied arbitrage efficacy and VIX index, September 7,
2000 to June 30, 2015
The figure plots the time series of arbitrage efficacy (left axis) implied by the arbitrage relationship
between S&P 500 index and E-mini future, and the VIX index (right axis) of implied volatility in S&P
500 index options. Major financial market events that causes large jump on VIX index are pointed
out in the figure, while the shaded periods mark the three rounds of Quantitative Easing announced
by Federal Reserve.

ing trend in AE due to the worries about budget limit.

To further verify the validity of AE, we document (vii) the significant link be-
tween the implied arbitrage efficacy AE and other broad measures of funding liquid-
ity, e.g. the TED spread, the VIX index of implied volatility and the dividend yield of
S&P 500 index. We also find that TED spread tend to be the driver of innovations in
AE when arbitrage is inefficacious, i.e. funding constraint is binding; VIX index, on
the other hand, becomes the dominating explanatory variable when AE is positive.
This supports the nonlinear limits to arbitrage hypothesis in Chapter 2 that arbitrage
risk (funding constraint) is the dominating arbitrage frictions during the period of the
loose (binding) funding constraint.

We further illustrate the consequence of the implied arbitrage efficacy on asset
pricing. (viii) On aggregate, we find evidence that changes in AE are significant pre-
dictors for daily innovations of the market volatility, measured by the VIX index of
implied volatility in S&P 500 index option, and the volatility risk premia, measured
by the difference between the implied and realized volatility of S&P 500. A drop in
the lagged AE leads to increments in the market volatility and volatility risk premia.
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More importantly, (ix) the predictive power is nonlinear conditional on the sign of
AE. It is most prominent during the period of inefficacious arbitrage, i.e. binding
leverage constraint, while negligible during the period of positive AE. This result
verifies the amplification effect attributed to funding liquidity under binding leverage
constraint, which is consistent with the slow-moving capital literature.

Our theoretical analysis contributes to the growing literature on funding liquidity
as a limit to arbitrage. First, we extend the model of SV and Stein (2009) by allowing
endogenous leverage setting, where financiers tend to use past information to deter-
mine the leverage constraint. SV and Stein study funding/leverage constraint as a
limit to arbitrage and its impact on asset pricing and market efficiency. SV highlight
that financiers tend to withdraw funds from the arbs with poor performance, which
enhances the downward pressure on asset price, while Stein illustrates that lever-
age constraint may associated with fire-sale externalities, which also leads to price
crashes. However, we suggest that less informed financiers may misinterpret past
mispricing as future uncertainty, which renders arbs to deleverage and further inten-
sifies selling pressure. Unlike Brunnermeier and Pedersen (2009), who also model
the financiers’ informational role, we set the informational level of financiers to be
continuous, rather than binary.

Second, we introduce the theoretical definitions of funding liquidity and arbi-
trage efficacy, which are rather vague in current literature. Funding liquidity is often
captured by the shadow cost of capital (Brunnermeier and Pedersen, 2009; Garleanu
and Pedersen, 2011), and arbitrage efficacy by the size of persistent mispricings. For
example, Vayanos and Weill (2006), Garleanu and Pedersen (2011) and Fontaine
and Garcia (2011) link the size of arbitrage violation to arbitrage costs and funding
constraints. Brunnermeier and Pedersen (2009) illustrate the interaction between an
asset’s market liquidity, measured by the price deviation from fundamentals, to the
traders’ funding liquidity, measured by the shadow cost of capital.3 Rather, Duffie
(2010) tend to focus on the association of asset price dynamics and the financial fric-
tions faced by the arbs, such that sufficient arbitrage capital can speed up the mean
reversion and price convergence. Similarly, we propose to define the funding liquid-
ity via the arbs strategy: the marginal leverage with respect to the size of mispricing,
which captures the arb’s ability to raise leverage funding, and the arbitrage efficacy
as the marginal error correction achieved by the arbs, which captures the arb’s ability

3Several other papers, such as He and Krishnamurthy (2012, 2013), Acharya et al. (2009) and
Gromb and Vayanos (2010), provide theoretical evidence of funding constraint as a limit to arbitrage.
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to bear against mispricing.
Our paper also makes the following contributions to the empirical literature on

funding liquidity. First, we introduce a distinct measurement for funding liquid-
ity through the efficacy of arbitrage. Extant literature has divided into two types
of measurements, where the first type is directly based on stated interest rates. The
Treasury-Eurodollar (TED) spread is one of the most used, which captures the differ-
ence between the three-month LIBOR rate and the three-month T-Bill yield, a proxy
for the overall funding costs faced by market intermediaries. Garleanu and Peder-
sen (2011) suggest another measure of a similar kind: the spread between LIBOR
and the repo rate. Drehmann and Nikolaou (2013) measure the funding liquidity by
the bank’s aggressive bidding, which reflects how much a bank would pay to gain
liquidity, at central bank auctions during 2005-2008. However, the state interest rate
measures are often accused for underestimation (Aragon and Strahan, 2012) and sub-
ject to manipulation (Gandhi et al., 2015).

Our measure of the implied arbitrage efficacy is closer related to those indirect
studies of funding liquidity as a friction of arbitrage, liquidity provision or mar-
ket making. Comerton-Forde et al. (2008) and Adrian and Shin (2010) assess the
intermediaries’ funding liquidity by directly investigating the balance sheet data.
Comerton-Forde et al. look into the position of NYSE specialist (the major liquidity
provider in the market), while Adrian and Shin explore the repurchase agreement
(repo) in the balance sheet of the financial intermediaries, which tend to be the pri-
mary tool of short-term borrowing and lending for investment banks and hedge funds.
Akbas et al. (2015, 2016) proxy the available arbitrage capital by the capital flow to
hedge funds who conduct arbitrage.4

While these papers tend to focus on the availability of arbitrage capital, others,
like Garleanu and Pedersen (2011), Fontaine and Garcia (2011), Nagel (2012) and
Frazzini and Pedersen (2014), pay attention to the size of arbitrage violation due to
funding illiquidity. Garleanu and Pedersen argue that funding illiquidity give rise
to the price deviation between securities with identical cash-flow but different mar-
gin requirements. Therefore, they show that the mispricings between credit default
swap and the corresponding corporate bond are associated with funding illiquidity.
Fontaine and Garcia measure the funding liquidity in U.S. treasury market through
the price deviation between bonds with different ages but similar cash flows. Nagel

4Chordia et al. (2005) and Fleckensitein et al. (2014) use the flows into bond, equity funds and
hedge funds as the measure for funding condition in financial intermediaries.
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constructs a proxy for the return of liquidity provision in the equity market (NYSE,
AMEX and Nasdaq stocks) by a reversal strategy that buy (sell) stocks with poor
(good) past performance, and documents significant relationship with funding costs,
funding supply and other broad measures.

Second, the empirical findings of this paper provide complementary evidence for
the asset pricing consequence of funding liquidity. On the aggregate level, funding
liquidity predicts the risk appetite, proxied by VIX index of financial intermediaries
(Adrian and Shin, 2010); It is also predicted by the VIX index (Nagel, 2012), since
higher market volatility enhances the scarcity of capital (Brunnermeier and Pedersen,
2009); Funding liquidity is associated with the return premia in fix-income securities,
i.e. increase in funding liquidity results in lower excess bond returns (Fontaine and
Garcia, 2011). We follow Adrian and Shin (2010) to forecast the VIX index and
volatility risk premia with the implied arbitrage efficacy, but in a higher frequency
(daily).

Third, it sheds lights on the nonlinear (amplification) effect attributed to the liq-
uidity spirals, suggested by Brunnermeier and Pedersen (2009). Studies such as
Comerton-Forde et al. (2008), Schuster and Uhrig-Homburg (2015)5 and Drehmann
and Nikolaou (2013) provide evidence for the nonlinear pricing impact during the pe-
riod of the binding funding constraint. These works document that funding illiquidity
leads to future market illiquidity, and the effect is most sensitive when funding con-
straint is binding. While we are able to ex ante identify the periods of binding funding
constraint by the sign of implied arbitrage efficacy, and find statistically significant
empirical evidence of the nonlinear consequence, Comerton-Forde et al. select the
threshold for binding funding constraint at the 25th percentile of their measurement
exogenously; Schuster and Uhrig-Homburg determine the nonlinear relationship en-
dogenously within a regime-switching model; Drehmann and Nikolaou allocate the
stress regime of binding funding constraint by the ex post events, such as the 2007-
2008 financial crisis.

The paper proceeds as follows. In section 3.2, we extend the theoretical frame-
work of Shleifer and Vishny (1997) and Stein (2009) and derive a number of testable
predictions. In section 3.3, an empirical design is introduced to best capture the arbi-
trage efficacy from the theoretical work, as well as the application on S&P500 index

5Schuster and Uhrig-Homburg (2015), in their empirical analysis, use three measures for funding
liquidity: market volatility, TED spread and dividend yield, which capture the frictions and scarcity
of intermediaries’ capital.
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and E-mini future arbitrage. Section 3.4 summarizes the empirical results, includ-
ing the time-varying implied arbitrage efficacy, the linkage with other measures of
funding liquidity and the nonlinear asset pricing consequence. Finally section 3.5
concludes.

3.2 The Model

3.2.1 Market structure

We consider the market structure similar to Shleifer and Vishny (1997), where an
asset with a fundamental value, V , trades for three periods, t = 1, 2, 3. At period 1,
noise trader arrive with a pessimistic shock of size, s1 pushes the asset price away
from fundamental. Then the arbs attempt to enter the arbitrage trade to correct the
mispricing error, and prevent the asset trading at distressed price. Denoting the arb’s
total (arbitrage) fund in period 1 as f1, we derive the market clearing price by

P1 =V − s1 + f1.

There exist two different market states at period 2. Under a bad state, noise intensifies
such that sb

2 > s1 with a probability, q > 0, in which case the price becomes:

Pb
2 =V − sb

2 + f b
2 ,

where f b
2 is the total funds available in period 2 under bad state. Under a good state

with a probability, 1 − q, noise disappears (i.e. sg
2 = 0), and the asset price thus

converges towards fundamental:
Pg

2 =V.

There is no investment required under good state. Finally, at period 3, price is as-
sumed to recover:

P3 =V

We maintain the assumption that the arbs are risk-neutral. Further, we follow
Stein (2009) and allow the arbs to employ leverage to exploit the mispricing oppor-
tunity as most hedge funds seek arbitrage capital from outside financiers to support
their operation in practice. Specifically, the arbs hold an equity, f e

1 and borrow funds
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through short-term debt,6 f d
1 . Thus, the total arbitrage fund available at period 1

becomes the sum of equity and debt:

f1 = f e
1 + f d

1 .

If the arbs can access to external capital without any friction, they are able to always
eliminate any mispricing and guarantee the law of one price. In practice, however,
they are faced with several funding constraints on equity and leverage debt. To ac-
commodate the financial constraints observed in the real world,7 we introduce the
assumptions of the equity and leverage constraint borne by the arbs.

First, given that the (long-term) equity providers do not withdraw their funds
early (period 2), we assume that the equity is constrained by

f e
1 < sb

2, (3.1)

such that equity supply cannot be guaranteed to cover the potentially deepening noise
shock in the future.8 For a sufficient equity supply, i.e. f e

1 ≥ sb
2, arbs are able to

fully correct the mispricing without leverage and enforce the law of one price by
investing, f1 = s1 at period 1, and f2 = sb

2 at period 2. Therefore, by imposing the
equity constraint, we can focus on the situation where mispricing errors cannot be
corrected with equity funding, and where leverage is adopted to conduct arbitrage.

Next, we allow the arbs to strategically determine the level of short term debt, f d
1 ,

and thus the level of leverage.9 We assume that f d
1 must be repaid in full at period 2.

6Without loss of generality we assume zero interest rate
7Hedge funds’ capital consists of equity capital, and leverage capital. Equity is the long-term

capital supplied by the investors, who can withdraw their capital, so equity is not always locked
into the firm indefinitely. Thus, in order to maintain and to protect funding, hedge funds impose
initial lock-up periods and redemption periods prior to withdrawal. Other arrangements such as side
pocket, gate limits and withdrawal suspensions are also employed. Hedge funds can also raise insecure
leverage capital on liability side. The main source of leverage for hedge funds are (1) collateralized
borrowing financed through repo market; (2) collateralized borrowing financed by the hedge fund’s
prime broker; (3) implicit leverage using derivatives, either exchange traded or over the counter.
Leverage plays a central role in hedge fund management. Hedge funds use leverage to take advantage
of mispricing opportunities by buying the underpriced and shorting the overpriced. Hedge funds also
manipulate leverage to respond to changing investment opportunity set.

8Our setting of equity supply is different from that in Stein (2009). While the equity supply in
Stein’s model can be infinite but with a capital cost per dollar, our model impose a constraint on
the size of equity, but equity is free to arbs. However it derives similar results, such that an equity
constraint or a positive cost of capital will prevent arbs from fully mispricing correction. Under the
equity constraint imposed in our model, arbs are induced to use leverage to exploit mispricings.

9Leverage is often defined as the ratio of total asset to equity:
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This implies that the arbs can only invest their equity (i.e., f2 = f e
2 + f d

2 and f d
2 = 0)

under bad state. We now introduce the upper and lower bounds of f d
1 , denoted DU

and DL such that
DL ≤ f d

1 ≤ DU (3.2)

The lower bound is given as DL =− f d
1 , indicating that the arbs can lend their equity

in full to other arbs. The upper bound DU imposes the leverage constraint above
which arbs are not able to raise the leverage fund. It is often set by the outside
financiers who intend to control their value-at-risk.

3.2.2 Optimization problems

Hedge fund managers make optimal leverage decisions as a function of the invest-
ment strategies, the risk-return trade-offs and the cost of leverage, all subject to the
leverage constraint imposed by external investors. Similarly, the arbs in our model ex
ante manipulate their leverage in response to the risky arbitrage opportunity subject
to the equity and leverage constraint. They face a simple trade-off: arbs are induced
to raise as much short-term debt as they can to invest in period 1, and thus to exploit
the positive return when price converge towards fundamental value. On the other
hand, arbs may take a cautious leverage position in order to capitalize on a better
opportunity in period 2 if bad state occurs. The arbs maximize their expected total
wealth at the end of the period under perfect competition, which is given by

E ( f e
3 ) = (1−q) f g

2 +q
V
Pb

2
f b
2 . (3.3)

where the equity available in period 2 under good and bad states, denoted f g
2 and f b

2 ,
can be expressed as

f g
2 = f e

1 + f1

(
V
P1

−1
)

and f b
2 = f e

1 + f1

(
Pb

2
P1

−1
)
. (3.4)

L =
Total Asset

Equity
=

{
1+ f d

1
f e
1

for f d
1 ≥ 0

1 for f d
1 < 0

}
,

which is determined by the size of the short-term debt, f d
1 .
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Maximizing the expected total wealth in period 3 given by Eq.(3.3) subject to the
leverage constraint, (3.2), we derive the optimal strategy of the short-term debt, f d

1

by the first order conditions:
f d
1 = DL for R1 < R2

DL ≤ f d
1 < DU for R1 = R2

f d
1 = DU for R1 > R2

 (3.5)

where R1 = V
P1
−1 is the return of investing in period 1 and holding to price conver-

gence, and R2 = q
(

V
Pb

2
−1
)

represents the expected return of investing in period 2.
It is clear from Eq.(3.5) that the arbs can select one of the three equilibrium leverage
strategies (see also Stein, 2009). For R1 < R2, the optimal decision is not to enter
the market at period 1 (the waiting strategy with f1 = 0), since waiting for the future
opportunity provides a higher expected return. For R1 > R2, the arbs opt to borrow
as much as they can to exploit the return of investing in period 1 (the max-leverage
strategy with f d

1 = DU ), but subject to the binding funding constraint. Only when the
two returns are indifferent, R1 = R2, the cautious investment strategy becomes opti-
mal with DL ≤ f d

1 < DU . The cautious strategy contains two sub-strategies: the dry
powder strategy and the partial-leverage strategy. Arbs with the dry powder strategy
are unlevered and invest only a part of their equity, i.e. DL ≤ f d

1 < 0, while arbs with
the partial-leverage strategy are willing to be partially levered with 0 ≤ f d

1 < DU .

As leverage is not actively used under the waiting and dry powder strategy, our
further investigation, without loss of generality, will focus on the partial- and max-
leverage strategy. While the optimal leverage decision for the partial-leverage strat-
egy can be easily found under first order condition by R1 = R2, that for the max-
leverage strategy is strongly determined by the upper leverage limit, DU , as we will
discuss next.

3.2.3 Leverage setting

It is important to understand how the financiers set the upper leverage limit, DU , as
arbs will raise the short-term leverage up to DU to exploit the arbitrage opportunity
under max-leverage strategy. In practice, such leverage setting depends critically on
the financiers own predictions about future price movements. Brunnermeier and Ped-
ersen (2009) assume that the estimated future price volatility consists of fundamental
and liquidity volatility; Informed financiers are able to distinguish the two different
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types of volatility and obtain the correct estimation of the fundamental volatility,
while uninformed financiers only acknowledge the total price volatility and thus ex-
aggerate the future estimation of volatility.

In our model future price movement is associated with the adverse noise shock
under bad state at period 2, sb

2. We first assume that outside financiers acknowledge
the arbitrage strategy at period 1, but may be less informed than the arbs about the
future, such that they have to predict sb

2 conditional on the available information.10

Denoting the financier’s estimate as s̃b
2, financiers are able to predict the future dis-

tressed price P̃b
2 and the arbitrage equity f̃ b

2 in bad state, such that

P̃b
2 =V − s̃b

2 + f̃ b
2 (3.6)

f̃ b
2 = f e

1 −
(

f e
1 + f d

1

)( P̃b
2

P1
−1
)

(3.7)

Secondly, in order to determine the level of leverage constraint, we assume that
competitive financiers set the rate of return as the riskless rate (zero in our model). In
other words, financiers must ensure that the potential loss under a bad state must be
covered by the arb’s equity. This no-default condition at period 2 can be presented
as: f̃ b

2 ≥ 0, such that financiers set limits on leverage debt DU to protect themselves
against the adverse future price movements.11 Therefore the upper leverage limit DU

10In Shleifer and Vishny (1997), outside investors are assumed to be blank about the arbitrage
strategy due to the required specialized knowledge and the opacity within hedge funds. Thus investors
update their belief from the arbs’ past performance. In our model, however, financiers acknowledge
the arbitrage strategy in period 1, i.e. long the under-priced asset. This is because short-term leverage
debt are mostly financed through repo market, where arbitrageurs can be financiers, or the other way
around. It is also captured in our model when arbitrageurs adopt the waiting or dry-powder strategy.
Thus it is plausible that financiers have the information about the arbitrage strategies.

11The leverage setting in our model is similar to the margin setting in other theoretical paper, such
as Brunnermeier and Pedersen (2009) and Gromb and Vayanos (2010). Margin or haircut is defined
as the difference between the asset price and the collateral value, which must be financed through
arbitrageur’s own capital. Leverage, on the other hand, captures the ratio of the total asset to equity,
that is, asset price over margin. Thus higher leverage limit implies lower margin requirement, and
thus more capital offering to arbs.

Let’s consider an example in the real world. To trade derivatives like futures and options, a hedge
fund trades through a clearing broker. The exchange requires margins from the broker, and the margin
is set to make the exchange almost immune to losses. Hence riskier contracts have larger margins.
The broker, in turn, typically passes the margin requirement on to the hedge fund. The estimation
about risk from the exchange or the broker will reflects on the margin requirement on the hedge fund.
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is derived by the solution to

f̃ b
2 = f e

1 − ( f e
1 +DU)

(
V − s̃b

2
P1

−1
)
= 0. (3.8)

It implies that the upper leverage limit DU is determined by financiers estimates about
future shock, s̃b

2, and the arbs equity capital, f e
1 .

The key question is how financiers gather their predictions about the future mis-
pricings. Thus thirdly we represent the misperception as the difference between s̃b

2

and sb
2, and assume:

s̃b
2 − sb

2 = G(s1)> 0. (3.9)

Intuitively, financiers tend to exaggerate the future shock so as to protect their fund-
ing,12 and estimate the future shock based on the past information, i.e. the initial
mispricing error s1.13 On one hand, a higher initial error s1 implies that a potentially
higher arbitrage return will be realized when the price converges to fundamental. On
the other hand, initial error may be misinterpreted as a higher uncertainty about the
future, such that it exaggerates the estimation about future shock. The G function
specifically captures the magnitude of the misinterpretation about s1.

As the subsequent analysis does not depend on the convexity of the function G,
we focus on a linear one:

G(s1) = τs1. (3.10)

The parameter τ measures the level of informativeness among financiers, which is
assumed to satisfy (see Appendix for proof):

0 ≤ τ ≤
V − sb

2
s1

. (3.11)

In one extreme, τ = 0 means that all financiers are fully informed such that they are
free from any misinterpretation of s1. As τ grows, financiers is described as less
informed as they find it difficult to gather information about the market, which is
likely to occur during the market turmoil. They tend to suffer from severe misinter-

12For those whose estimate is lower than sb
2, they keep losing their short-term loans to insolvent

arbs in the bad state.
13Misinterpretation among less informed financiers are common when adopting estimation from

past data. See also Brunnermeier and Pedersen (2009) and Ang et al. (2011) for more detail about
leverage setting and funding constraint in the real world.
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pretation about s1, which exaggerate their fear about the future uncertainty. In the
extreme when all financiers become completely uninformed, τ =

V−sb
2

s1
, they ban any

short-term lending to arbs,14 i.e. DU = 0. While Brunnermeier and Pedersen (2009)
consider only two types of financiers, informed and uninformed, to set their margin
requirements, we allow the level of informativeness to be measured continuously by
τ and derive more implications about the financiers informational role. We summa-
rize the properties about the leverage constraint DU as follows (see Appendix for
proof).

Proposition 3. Consider the model with market structure in Section 3.2.1 and the

leverage setting in Section 3.2.3. The upper leverage constraint, DU is positively re-

lated to the arbitrageurs’ equity holding, f e
1 , and negatively related to the financiers’

informational level, τ .

The proposition implies that 1. arbs with higher equity holding are offered with
a higher leverage constraint and thus able to borrow more short-term debts without
reaching the upper bound; 2. more informed financiers with a lower misperception
about future mispricing shock will provide a higher leverage constraint. Thus fully
informed financiers with τ = 0 will set the upper leverage limit, DU as the highest.

3.2.4 Funding liquidity and arbitrage efficacy

3.2.4.1 Definitions

After setting up the model, we start to explore the arb’s funding liquidity and the
arbitrage efficacy, and the linkage between them. Unlike existing studies,15 we allow
the arbs to adjust their leverage position with respect to the prevailing circumstances,
e.g. various size of mispricing caused by noise traders, and therefore define the
funding liquidity as the arb’s ability to raise leverage debt in order to bear against

14For any τ >
V−sb

2
s1

, the leverage constraint DU becomes negative, which attracts no arbitrageurs.
15The funding liquidity is loosely defined in the literature. Brunnermeier and Pedersen (2009) and

Garleanu and Pedersen (2011) suggest to measure it by the marginal value of an extra dollar used, i.e.
the shadow cost of capital. In Brunnermeier and Pedersen (2009), the shadow cost of capital is nil
when leverage constraint is loose, since there is no arbitrage return as price recovers to fundamental.
But, it becomes positive when the leverage constraint becomes binding. Chapter 2 define funding
liquidity by the ratio of available funding to arbitrage return, which reflects the funding condition
with respect to the size of potential investment opportunity. However, the capital of the intermediaries
is exogenously given in these studies.
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mispricing error:

ℓ=
∂ f d

1
∂ s1

≤ 1. (3.12)

Specifically, ℓ measures the marginal funds financed by the arbs to bear against one
more unit of mispricing error. When ℓ is positive, arbs can lever up to exploit a larger
mispricing and thus smooth the price fluctuation. We call this case “the stabilizing
leverage”. On the other hand, when arbs are faced with the binding leverage con-
straints, i.e. f d

1 = DU , they might have to deleverage their position, leading to the
situation where ℓ becomes even negative. We call this “the destabilizing leverage”.
The concept of (de)stabilizing leverage is consistent with the (de)stabilizing margin
in Brunnermeier and Pedersen (2009).16

We also follow Cai et al. (2015) and define the initial mispricing correction as κ:

κ =
f1

s1
=

f e
1 + f d

1
s1

. (3.13)

κ captures the percentage of mispricing correction achieved by arbs at period 1,
which depends upon arbs’ capital, f e

1 and f d
1 , and the size of mispricing, s1. In

one extreme, κ = 0, suggesting that arbs decide to select the waiting strategy, f d
1 =

− f e
1 and f1 = 0. In another extreme κ = 1,17 implying that arbs can raise sufficient

funding to achieve full correction, such that f e
1 + f d

1 = s1.
To this end, we define the arbitrage efficacy as the arb’s ability to eliminate mis-

pricing errors:

α =
∂κ

∂ s1
(3.14)

α measures the marginal mispricing correction by the arbs against one more unit of
mispricing error. Its sign dictates whether arbitrage is effective or limited. For α > 0,
arbitrage is efficacious, implying that the arbs can achieve higher mispricing correc-
tions with larger mispricing. By contrast arbitrage can be inefficacious, suggesting
that larger mispricing error is followed rather by a lower mispricing correction.

Finally, to investigate the impact of funding liquidity on market liquidity and
volatility, we define two other parameters: the market illiquidity (or mispricing er-
rors that persists after arbitrage activity in period 1) by φ = E1 (P3 −P1) = s1 −

16Stabilising margins imply that reduced margins can be followed by the higher market illiquidity.
In this case, arbs can raise more funds to exploit the potentially larger returns.

17In practice, mispricing correction can be captured by the Generalized Error Correction model,
as in Cai et al. (2015). However, it is almost rare to observe the full error correction in empirical
applications due to the existence of arbitrage frictions.
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f1 > 0, and the price volatility, following Hombert and Thesmar (2014), as σ =

E1

(
| P2−P1

P1
|+ | P3−P2

P2
|
)

. We will investigate how sensitive are these two market-

level parameters with respect to noise trader shock s1, i.e. ∂φ

∂ s1
and ∂σ

∂ s1
, under different

level of funding liquidity.

3.2.4.2 Linkages

Let ℓ j, α j, φ j and σ j be the funding liquidity, arbitrage efficacy, market illiquidity
and price volatility associated with different leverage strategies, j ∈ (p, m), where the
superscripts p and m indicate the partial-leverage strategy and the max-leverage strat-
egy, respectively. As the parameters do not have a simple expressions, we provide
the link among the short-term leverage f d

1 , the funding liquidity ℓ j and the arbitrage
efficacy α j as follows (see Appendix for proof and detailed derivations of f d

1 , ℓ j and
α j ):

Proposition 4. Consider the model with market structure in Section 3.2.1 and the

leverage setting in Section 3.2.3.

(i) (Stabilizing leverage and efficacious arbitrage) Under the partial-leverage

strategy with DL ≤ f d
1 < DU , we have: 0 < ℓp < 1 and α p > 0. As a result, higher

mispricing slightly raises the market illiquidity ∂φ p

∂ s1
> 0 and price volatility ∂σ p

∂ s1
> 0.

(ii) (Stabilizing leverage but inefficacious arbitrage) There exist a informational

threshold 0 < τ∗ < 1, such that under the max-leverage strategy with f d
1 = DU and

0 ≤ τ− ≤ τ∗, we have: 0 ≤ ℓm,τ− < ℓp, and αm,τ− < 0. Arbitrage fails, and larger

mispricing leads to massive grow in the market illiquidity, ∂φ m,τ−

∂ s1
> ∂φ p

∂ s1
, and price

volatility, ∂σm,τ−

∂ s1
> ∂σ p

∂ s1
.

(iii) (Destabilizing leverage and inefficacious arbitrage) Under the max-leverage

strategy with f d
1 = DU and τ+ > τ∗, we have: ℓm,τ+ < 0 and αm,τ+ < αm,τ− . The

amplification is more intense, such that ∂φ m,τ+

∂ s1
> ∂φ m,τ−

∂ s1
, and ∂σm,τ+

∂ s1
> ∂σm,τ−

∂ s1
.

The proposition is intuitive. Arbs with partial-leverage strategy will actively ad-
just their leverage in response to mispricings. As s1 rises, the expected return of
investing in period 1 is relatively higher, and arbs are able to borrow sufficiently
more leverage capital from outside financiers and achieve higher mispricing correc-
tions. We call this the stabilizing leverage and efficacious arbitrage. The increment
in mispricing can be absorbed by the arbs with more leverage debt, which smooths
the price fluctuation, thus the market illiquidity and price volatility is insensitive to
changes in mispricing.
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Proposition 4 further reveals the complex situations under the binding leverage
constraint. When the max-leverage strategy is adopted, the arbs’ funding liquidity
is associated with the leverage constraint, which is crucially dependent on the in-
formational level τ . The informational threshold18 that differentiate stabilizing and
destabilizing leverage is derived as (see Appendix for proof):

τ
∗ =

V − sb
2 +V −

√(
sb

2
)2

+4
(
V − sb

2
)

f e
1

2
(
V − f e

1
) . (3.15)

In particular, informed financiers with τ ≤ τ∗ are still willing to lend more capi-
tal to the arbs because they realize that expected arbitrage return is relatively higher
with mispricings. Thus, leverage still rises with mispricing errors (stabilizing lever-
age). Even through leverage is stabilizing, the arb’s funding liquidity is deteriorated,
namely ℓm,τ− < ℓp, implying that they can raise less marginal funding against addi-
tional mispricing error. More importantly, arbitrage becomes inefficacious even with
informed financiers, because the arbs fail to raise sufficient leverage fund and achieve
higher mispricing correction, i.e. αm,τ− < 0. Due to the failure of arbitrage, addi-
tional mispricing can induce sharp rises in the market illiquidity and price volatility.

During the periods of market turmoil, financiers may find it more difficult to ob-
tain information about the market, i.e. τ+ > τ∗, and tend to heavily misinterpret
the higher mispricing error as the higher volatility in the future. As a result, lever-
age shrinks even as mispricing rises, i.e. ℓm,τ+ < 0 (destabilizing leverage), which
further dampen the efficacy of arbitrage, αm,τ+ < αm,τ− . These results are broadly
consistent with the theoretical prediction by Brunnermeier and Pedersen (2009) and
the empirical evidence in favor of the pro-cyclical leverage documented in Adrian
and Shin (2010) and Gorton and Metrick (2012). Moreover, as the arbs are forced
to deleverage, which pushes price further away from the fundamental, they do not
correct mispricing anomalies but instead enlarge them. It consists with literature on
the limits of arbitrage that emphasizes the role of financial institutions and agency
frictions on asset prices (Shleifer and Vishny, 1997; Gromb and Vayanos, 2010).

Proposition 4 also reveals some important implications from the model. First,
the arbs’ funding liquidity ℓ reflects the arbitrage frictions borne by them: the risk
exposure and the leverage constraint. Notice that the arbs’ funding liquidity is at its

18τ∗ lies between 0 and 1, and τ∗ increase in f e
1 and decrease in sb

2. Intuitively, the more equity
capital in the arbs or the less noise shock in the future, the more likely financiers are able to impose
stabilizing leverage.
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highest, ℓ = 1, under the special case where arbitrage is riskless even in a short run
(q = 0, 1) and leverage is not constrained (DU → ∞).19 However, under the presence
of risky arbitrage, e.g. 0 < q < 1, funding liquidity is deteriorated, ℓp < 1 ((i) in
Proposition 4), as the arbs become more cautious in the use of leverage. Furthermore,
when leverage constraint becomes binding, f d

1 = DU , funding liquidity is determined
by the leverage constraint set by financiers, which is further tightened, ℓm < ℓp ((ii)
and (iii) in Proposition 4). Therefore, the model posits that the risk exposure of the
underlying arbitrage strategy (leverage constraint) tend to be the driving force of the
arb’s funding liquidity ℓ, under partial-leverage (max-leverage) strategy.

Second, it highlights the importance of leverage constraint on the efficacy of ar-
bitrage. Without the restriction on leverage, we always have stabilizing leverage and
efficacious arbitrage as shown in (i) of Proposition 4. This implication has intensively
studied by the extent literature, which tend to focus on various arbitrage cost that de-
ter the arbitrage activity. In particular, it is empirically captured by the threshold
effect within the error correction model, such that arbitrage force tends to strengthen
as the mispricing error exceeds a certain threshold, which reflects the costs borne by
the arbs (Tse, 2001; Gyntelberg et al., 2016). However, the model suggests that the
positive relation between arbitrage activity and the size of error can reverse when the
leverage constraint binds. It provides further support to the work in Chapter 2, which
point out the possible negative relation under the binding funding constraint.

Third, it is a nontrivial and challenging issue to identify when the leverage con-
straint binds. Adrian and Shin (2010) and Ang et al. (2011) propose to directly
gather the information about changes in leverage position out of an analysis of bal-
ance sheets of financial intermediaries. However, this is based on the quarterly (or
even longer) reports of the major hedge funds and investment banks, in which data is
difficult to collect and poor in quality due to the opaqueness of the industry. The
return-based measures, like Fontaine and Garcia (2011) and others, successively
capture the innovation in funding liquidity, but cannot identify when the leverage
constraint becomes binding. By introducing the analysis of arbitrage efficacy, we
find that the arbitrage efficacy not only links to the funding liquidity, inefficacious
arbitrage also identifies the binding leverage constraint, even when financiers are in-

19In the special case of riskless arbitrage (q = 1) and unlimited leverage (DU → ∞), the bad state
must occur in period 2. Then we must have P1 = Pb

2 from the first order condition (Eq. (3.5)), and thus
the optimal leverage is f d

1 = s1 − sb
2. For another case of riskless arbitrage (q = 0), where only good

state occurs in period 2, we have P1 = V from the first order condition, and thus the optimal funding
is f d

1 = s1 − f e
1 . Under these two special cases, it is easily seen that arbs achieve the highest funding

liquidity, ℓ= 1. See Appendix for proof.
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formed. Proposition 4 thus illustrates the most crucial feature the arbitrage efficacy
can offer, while existing measurements such as the size of arbitrage violation and the
state interest rate fail to draw.

3.2.5 A numerical example

We use a numerical example to illustrate the arb’s funding liquidity, arbitrage efficacy
and their link. Let the fundamental value of the asset be, V = 1, probability of bad
state to occur be, q = 0.1, the deepening noise shock in bad state be, sb

2 = 0.4 .
Arbs have a size of equity holding, f e

1 = 0.1, and we allow the initial noise shock s1

varying from 0 to0.35. We consider two cases with different level of informativeness.
The benchmark case is plotted on the top panel of Figure 3.2.5, with the level of
informativeness, τ = 0. It illustrates the arbs’ choice of short-term leverage debt
f d
1 and mispricing correction κ1 achieved after period 1 with different size of initial

shocks, s1, the slopes of which reflects their funding liquidity and arbitrage efficacy.
The waiting strategy is shown in the first block on the left, where arbs make a full
short-term loan. Arbs enter the market from the dry powder strategy, where they are
unlevered and safe some equity for future investment. Leverage is used by arbs in
both partial- and max-leverage strategy. The arbs’ funding liquidity and arbitrage
efficacy (the slopes of the leverage debt and mispricing correction) is clearly positive
and higher under the dry powder and partial-leverage strategy, as suggested in (i) of
Proposition 4. Notice that without the assumption on the upper leverage constraint
set by financiers, we will always be in the dry-powder or partial-leverage strategy,
where leverage is stabilizing and arbitrage is effective. However, as shown in the
top plot where arbs adopt the max-leverage strategy, they are forced to follow the
upper leverage constraint (dash line). As a result, funding liquidity is dampened
but remain positive (stabilizing leverage) while arbitrage efficacy becomes negative
(inefficacious arbitrage). This is captured in (ii) of Proposition 4.

The middle panel on Figure 3.2.5 shows the arbs’ leverage debt and mispricing
correction with a informational level, τ = 1. Arbs are under a similar situation as
the former case when adopting partial-leverage strategy. As they enter max-leverage
strategy, leverage becomes destabilizing such that arbs have to deleverage with mis-
pricings. Comparing with top panel, arbitrage efficacy also exhibits a sharper decline.
The results reflect on (iii) of Proposition 4. The bottom plot in Figure 3.2.5 illustrates
market illiquidity and price volatility when the leverage constraint binds. Under the
partial-leverage strategy, arbitrage is effective and able to smooth price fluctuation,
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Figure 3.2: Leverage debt, leverage constraint and mispricing correction
The top and middle figures show the leverage funding financed (bottom solid line), mispricing correc-
tion conducted by the arbs (top solid line) and the leverage setting implemented by financiers (dashed
line) against varying shocks, while the bottom figure plots the expected market illiquidity (bottom
solid/dashed line) and price volatility (top solid/dashed line) against increasing mispricing error, s1,
under different leverage strategy. The asset has a fundamental value of V = 1, probability of bad
state be, q = 0.1, the size of equity be, f e

1 = 0.05, deepening liquidity shock in bad state be, sb
2 = 0.4

, and the initial liquidity shock s1 varying from 0 to 0.35. In the top left plot, financiers are fully
informed, such that the level of informativeness, τ = 0, while the top right plot has a positive level of
informativeness, τ = 1. In all plots, the arb’s leverage strategy are classified as waiting, dry powder,
partial-leverage and max-leverage strategy.
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therefore market illiquidity and price volatility are insensitive to mispricing shock.
However, as arbitrage becomes inefficacious, both parameters rise sharply with mis-
pricing, and the effect is most prominent with less informed financiers (solid line
with higher τ).

3.3 The Empirical Design

It would be ideal to empirically capture the arbs’ funding liquidity defined in our
model. However to identify the innovation in leverage position with respect to the
arbitrage opportunity is always challenging. After establishing the link between the
arbs’ funding liquidity and the arbitrage efficacy, we propose an empirical design to
capture arbitrage efficacy in practice. In this section, we first introduce the strategy
to capture an asset’s mispricing error and the arbs’ mispricing correction. Second,
we illustrate the design to capture the arbitrage efficacy as a measure of funding
liquidity. Finally, we describe the underlying data that are applied to the strategy for
our empirical tests.

3.3.1 Measuring errors and corrections

In order to capture the arbitrage efficacy defined in our theoretical framework, we
first introduce the empirical strategy to capture the mispricing errors and the arbs’
mispricing correction. Estimating the mispricing error of an asset requires the value
of both its spot and fundamental value. Suppose pt and p∗t is the natural log of the
asset’s spot and fundamental price at time t, then zt , the mispricing error, can be
estimated from the long-run equation:

pt = µ +θ p∗t + zt . (3.16)

Under the assumption of frictionless arbitrage, there is no price deviation from the
no-arbitrage relation. Even when asset price is drifted away from the fundamental
value, the arbs will take place and correct the mispricing error in no time. In practice,
however, one tends to observe persistent price deviation from the fundamental value,
which indicates that the market is far from frictionless and arbitrage is limited.

In order to capture the arbitrage activity, Cai et al. (2015) introduce a two-period
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GECM to capture the mispricing correction achieved by arbs, such that:

∆pt = κzt−1 +λ
∗zt−2 +δ∆p∗t + γ∆pt−1 +µt , µt ∼ iid(0, σ

2
µ) (3.17)

where pt and p∗t is the natural log of the asset spot and fundamental price at time t.
The lagged one error correction term, κ then captures the initial mispricing correc-
tion achieved by arbs during the sample period, while λ ∗ = λ (1+κ) represents the
percentage of unarbitraged error persisting to the next period. The interpretation of
the error correction term as the force of arbitrage has been widely documented in the
literature (Dwyer et al., 1996; Martens, Kofman and Vorst, 1998; Tse, 2001). Chap-
ter 2 further consider the combined effect of arbitrage cost and funding constraint as
the limits to arbitrage, and suggest that the mean reversion process can be nonlin-
ear. Therefore the arbs’ mispricing correction is time variant, such that it changes
accordingly with the market circumstances and mispricing errors.

3.3.2 Measuring the arbitrage efficacy

Notice that the mispricing correction κ estimated in Eq. (3.17) is a static measure,
which only looks at the average correction within a period of time, while the dy-
namic mispricing error zt changes in a daily basis. To obtain the dynamic measure
of mispricing correction κt , we apply a rolling-window time-series regression of Eq.
(3.17) and assign the estimated κt to the ending date of the window. Specifically,
we apply for a fixed window of 500 days. Therefore each dynamic κt for date t is
estimated over the past 500 day window, correcting a series of mispricing errors zi,
i= t−500, . . . t−1. Before we continue to estimate the arbitrage efficacy, the empiri-
cal data requires some adjustments as outilers are eliminated, i.e. when the estimated
∆κt or ∆zt−1 is at the highest or lowest 1% tails of the distribution.

We aim to capture the arbitrage efficacy as the marginal correction: the ratio of
changes in daily mispricing correction, ∆κt = κt −κt−1 to the changes in mispricing
errors ∆zt . By definition, the daily difference ∆κt is affected by a series of daily
difference of mispricing errors, ∆zi = zi − zi−1 for i = t − 500, . . . t − 1. Instead of
taking the whole series of daily difference of mispricing error into account, we focus
on the impact of daily changes of error at the nearest time, ∆zt−1 = zt−1 − zt−2.

We estimate the arbitrage efficacy, denoted as AE by the first-difference estima-
tor: regressing the daily difference of dynamic mispricing correction on the daily
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variations of mispricing error they observed at the nearest time,20 such that

κt −κt−1 = AEt−n,t (zt−1 − zt−2)+ εt , εt ∼ iid(0, σ
2
ε ) (3.18)

and

AEt−n,t =
t

∑
t−n

(κt −κt−1)(zt−1 − zt−2)/
t

∑
t−n

(zt−1 − zt−2)
2

=
t

∑
t−n

∆κt∆zt−1/
t

∑
t−n

∆z2
t−1 (3.19)

where n represents the size of sample period, ∆κt and ∆zt represents the daily changes
in mispricing correction and mispricing error, respectively. The slope coefficient
AEt−n,t , captures the average arbitrage efficacy over the period from t − n to t. It
is a symmetric measure, such that it can be negative if ∆κt and ∆zt−1 has different
sign. It indicates that funding liquidity is tight and capital constraint is binding during
the sample period. The methodology has three merits. First, arbitrage efficacy may
also depend on other arbitrage costs, such as transaction costs, which tend to be
less time-variate. The first-difference estimator mitigates the noise of these omitted
time invariant variables; Second, by taking the first-difference estimator with a large
n, the estimator is more likely to wipes out the temporary variation and reflect the
fundamental of the funding liquidity with more accuracy. Third, the methodology,
with a recognizable arbitrage relationship, can be applied to various assets, sectors,
and countries, to evaluate funding liquidity in broader scope.

For the purpose of tracking the financial market in response to the funding liquid-
ity, data with a higher frequency is more in favor. In contrast to the static approach to
estimate AEt−n,t , the dynamic version can be obtained on a rolling window basis. In
particular, we take a large window n = 250,21 and the dynamic arbitrage efficacy is
assigned to the ending date of the window as AEt , representing the implied arbitrage
efficacy during the past 250 days.22

20We get similar results if we include a constant term.
21The choice of window is considered to be large enough to reduce the noise of daily fluctuation,

but also small enough to retain the important information about the fundamental in daily innovation.
While the size of the window can affect the estimation results, robustness check has been done using
a window of 120 and 500 days to estimate both the daily series of κt and AEt , where the results are
mostly similar and significant. Due to the scale of this paper, the results available upon request from
the authors.

22We summarize the process of the empirical design to capture the arbitrage efficacy in the Ap-
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Mean Median Minimum Maximum Std Dev
∆s 0.016 0.056 -9.469 10.957 1.263
∆p 0.017 0.065 -10.399 13.197 1.288

p− s 0.115 0.001 -1.689 2.030 0.516
p− p∗ 0.074 0.058 -2.201 1.792 0.213

r 2.01 1.42 -0.02 6.24 2.077
q 1.83 1.86 1.07 3.37 0.387

Table 3.1: Basic descriptive statistic
The table reports the the descriptive statistics for all variables. The sample used is the daily series
of the S&P 500 index and its E-mini futures contract covering the period September 4, 1997 to June
30, 2015. ∆s (∆p ) is the first difference of log spot (futures) price. The log fundamental value is
computed as p∗t,T = st +(rt −qt)τt where rt is the annualized risk-free (3 month T-bill) interest rate
on an investment for the period , and qt is the annualized dividend yield on the index. All numbers
are recorded in percentage point terms.

3.3.3 The data

Our empirical study applies to the arbitrage relation between S&P 500 index and
E-mini S&P 500 future. It provides several advantages. First, the index-future rela-
tionship provides a way to estimate the fundamental value of the future contract, and
thus the mispricing errors observed by the arbs. Specifically, we infer the fundamen-
tal value of the E-mini contract from the cost of carry model, which is indicated in
the following relationship to hold in equilibrium:

p∗t,T = st +(rt −qt)τt , (3.20)

where p∗t,T is the natural log of the fundamental price of E-mini future contract with
a maturity date T implied from cost of carry model; st is the log spot price of the
S&P 500 index; rt and qt is the risk-free interest rate and dividend yield of the as-
set, respectively; τt = T − t is the time to maturity. Then, the mispricing error and
mispricing correction in Eq. (3.16) and (3.17) can be estimated with the log spot
price pt,T and fundamental price p∗t,T of the E-mini future contract. For complete-
ness, we collect our proxies for risk-free interest rate: the US three-month T-bill rate,
and dividend yields on the S&P 500 index. All data are sourced from DataStream.
We provide the summary statistics of the daily S&P 500 index and E-mini S&P 500
future data in Table 3.1.

Second, the E-mini future is one of the most traded future contracts, which con-
tains large numbers of financial intermediaries, such as hedge fund and investment

pendix.
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banks, that will exploit any arbitrage opportunity in the market. In particular, the
E-mini S&P 500 future is traded on Chicago Mercantile Exchange (CME) electronic
platform, which is accessible to off-floor traders. Domowitz and Steil (1999) ar-
gue that electronic markets tend to offer liquidity at lower cost than the floor-traded
standard one. E-mini future also offers a smaller size of contract and a longer trad-
ing hours, which attracts traders with modest capital, such as high frequency traders
and market makers. Hasbrouck (2003) and Kurov and Lasser (2004) suggest that
E-mini contracts with small denomination have a higher efficacy in the price discov-
ery process for the S&P 500 index, than the standard contracts. Thus the arbitrage
relationship between S&P 500 index and E-mini future is more likely to reflect the
broad arbitrage efficacy in the US stock market.

Third, the E-mini future has been trading since September 16, 1997, which in-
clude the periods of rapid growth in hedge fund industry23 and some noticeable mar-
ket events, like the burst of dot-com bubble, the recent financial crisis 2007-2008, the
European sovereign debt crisis and the Flash Crash in 2010. It helps to verify the va-
lidity of the funding liquidity measure in different market circumstances, especially
the extreme ones.

Overall, we end up with 3654 observations of AEt , from September 7, 2000 to
June 30, 2015, and the main results and the tests of theoretical hypotheses are pre-
sented in the next section in detail.

3.4 Main Results

3.4.1 The implied arbitrage efficacy

Figure 3.3 shows the arbitrage efficacy (solid line) implied by the arbitrage relation-
ship between S&P 500 index and E-mini future in a 250-day window. At first glance,
we see that the implied arbitrage efficacy AE varies through time; the daily series
of AE fluctuates gently in the early stage of the sample period from 2000 to 2003,
varying between ±0.1; It then displays a noticeably constant increasing trend until
reaching its all time peak at early 2007. It is after early 2007 that the variation in AE

began to be remarkably volatile, and even drop to its bottom, at around −0.75, during

23According to the data of Fung and Hsieh (2013) gathering from BarclayHedge, HFR, Lipper-
Tass and Hedgefund.net, the hedge fund industry starts to grow dramatically after 2000. The number
of funds and the asset under management (AUM) are more than five times larger in 2010 than that in
2000.
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Figure 3.3: The plot of the implied arbitrage efficacy, the average mispricing error
and the average covariance, September 7, 2000 to June 30, 2015
The figure shows the implied arbitrage efficacy (solid line), the average mispricing errors in absolute
value (top dashed line) and the average covariance between ∆κt and ∆zt−1 (bottom dashed line), im-
plied by the arbitrage relationship between S&P 500 index and E-mini future, and computed through
a 250-days rolling window. The implied arbitrage efficacy is calculated by regressing the difference in
mispricing corrections on the variation in mispricings; Mispricing error is calculated as the absolute
value of the error term in the long run relationship in Eq. (3.16); The average mispricing error in
absolute value reflects the denominator of AE, while the average covariance represents the numerator
of AE. The periods of the three round of QE are shaded on the top, while the periods of inefficacious
arbitrage are shaded in the bottom. Some major financial market events are pointed out in the figure.
The data sample is from September 7, 2000 to June 30, 2015 at a daily frequency.
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the collapse of Lehman Brother. After the Global financial crisis in 2007-2008, AE

again shows a constant increasing trend till the end of our sample period, despite two
noticeable declines in 2011 and 2013 due to the debt ceiling crisis. Moreover, there
are four significant periods of time where the sign of AE is negative, i.e. arbitrage
is inefficacious, which are coincide with most of the market crashes and turmoils
during our sample periods. The major events include: the market downturn in 2000-
2003, the Global Financial Crisis in 2007-2008, the Debt Ceiling crisis in 2011 and
the Debt Ceiling crisis in 2013.

The trajectory of AE also reflects the effectiveness of the monetary policy an-
nounced by Federal Reserve for liquidity expansion, which may help improve fund-
ing liquidity condition and the efficacy of arbitrage. In particular, it is after November
2008 that AE witnessed a constantly rapid increment due to the introduction of the
first round of quantitative easing (QE). However, as Fed continued to implement the
second of QE (QE2) in November 2010 and the third round of QE (QE3) in Septem-
ber 2012, the impact and effectiveness of QE2 and QE3 seem to diverge. While
the implied arbitrage efficacy continues to drop after the announcement of QE2, it
witnesses a sharp increment and stay positive after QE3.

The average mispricing errors (top dashed line) and the average covariances be-
tween correction and error (bottom dashed line) observed in a 250-day window are
plotted along side with arbitrage efficacy in Figure 3.3. We notice that the sharp
decline in arbitrage efficacy, such as Global Financial Crisis in 2007-2008, is due
to both a rapid growth in the size of mispricings and fall in the covariance between
the mispricing correction and the mispricing error. It also shows that innovation in
the size of mispricing errors are negatively associated with the arbitrage efficacy;
In particular, mispricing error continues to decline from 2000 to early 2007, whilst
the arbitrage efficacy are increasing and the efficacious arbitrage are dominating.
However, during the 2007-08 financial crisis, the size of mispricing error displays
an apparent grow, where the arbitrage efficacy witnesses a sharp drop and becomes
inefficacious.

3.4.2 Linkage to other funding liquidity measures

To further verify the link between the funding liquidity and the implied arbitrage
efficacy AE , we test the linkage of AE with three other variables that have been
applied in the literature to measure the funding liquidity. One typical measure is
the TED spread, e.g. the spread between the three-month risky LIBOR rate and the
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three-month risk free T-Bill yield. It measures the cost of funding among the financial
intermediaries. The VIX index of implied volatility in S&P 500 index options is
also applied as a measure of funding liquidity in Ang et al. (2011) and Schuster
and Uhrig-Homburg (2015). The VIX index is calculated from the S&P 500 index
options, as one of the factor to determine the option price.24 It reflects the market
forecast of the aggregate financial market volatility, i.e. higher VIX means traders are
expecting that the market is more likely to fluctuate sharply in the near future. Hence
the VIX index are often used in forecasting the market volatility, and the impact
of major financial market events reflects on the spikes of VIX index. The dividend
yield of S&P 500 index, regarded as a measure of required returns, is also proxying
for funding illiquidity (Garleanu and Pedersen, 2011), such that a high dividend yield
relates to a poor state of economy where the funding condition is worse. In figure 3.4,
we plot the time series of the arbitrage efficacy, TED spread, VIX index and dividend
yield of S&P 500 index, respectively. At first glance, the three broad variables of
funding illiquidity are negatively associated with the implied arbitrage efficacy, such
that lower arbitrage efficacy, especially during the period of inefficacious arbitrage,
coincides with higher TED spread, VIX index and dividend yield.

We test the correlation more formally in Panel A of Table 3.2, where we report the
time-series regressions of the implied arbitrage efficacy (AE) on the TED spread, the
VIX index and the dividend yield of S&P 500 index, both individually and jointly.
For the full sample period from 2000 to 2015, the implied arbitrage efficacy loads
significantly on all three measures of funding illiquidity. The slope coefficients are
significantly negative, which supports our model predictions that arbitrage efficacy
captures the information of funding liquidity. Both the TED spread and the VIX
index have the highest R2, just over 30%, while that for the dividend yield of S&P
500 index is only 6%. The TED spread jointly with the VIX index explains over
40% of the variation in AE with significant negative sign while the dividend yield as
another explanatory variable does not improve the explanatory power. Therefore, on
aggregate, the arbitrage efficacy is closely linked to the cost of funding and the stock
market risk.

We also run the regression conditional on (in)efficacious arbitrage (the sign of
the implied arbitrage efficacy). Column 1 to 4 in Panel B of Table 3.2 report the
conditional results on the period of efficacious arbitrage. We notice that only the
coefficient of the VIX index remains significantly negative, while that of the TED

24See CBOE for more detail of construction of the index.
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Figure 3.4: The plot of the implied arbitrage efficacy, VIX index, TED spread and
dividend yield, September 7, 2000 to June 30, 2015
The figure plots the time series of arbitrage efficacy, VIX index (proxying for market risk), TED
spread (proxying for funding cost) and Dividend yield (proxying for risk premia) of of S&P 500. The
periods with inefficacious arbitrage are shaded. Daily series of VIX index, TED spread and Dividend
yield of S&P 500 index are collected from Datastream.
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spread becomes positive and that of the dividend yield is no longer significant. The
VIX index tend to be the dominating determinants among the three variables, as it has
the highest R2 of 23%, while that of the TED spread drops to only 13%. On the other
hand, the conditional results on the periods of inefficacious arbitrage are shown in
the last four column of Panel B, which changes completely. We see that coefficients
of all three variables are significantly negative. The R2 for the TED spread becomes
the highest, around 47%, which tend to be the dominating explanatory variable for
AE. But the R2 for the VIX index declines to only 4%. Notice that conditional on
inefficacious arbitrage, the dividend yield of S&P 500 index gathers a high degree of
explanatory power, comparing to the results from the full sample and the sub-period
of efficacious arbitrage.

The results show that the implied arbitrage efficacy are mainly explained by the
VIX index during the period of efficacious arbitrage, but by the TED spread during
the period of inefficacious arbitrage, which is consistent with the nonlinear limits to
arbitrage predictions in Chapter 2 and our modified model. Therefore, the overall
market risk tend to be the first concern for the arbs to obtain funding during the good
times, while the extremely high funding cost becomes the dominating factor during
the bad time.25

3.4.3 Forecasting the market risk

Our model predicts that the arbitrage efficacy forecasts the future market volatility,
such that lack of funding liquidity reduces the arbs’ ability to bear against larger
exogenous shocks, which induces higher price volatility. The relation tend to be
more prominent during the periods where the leverage constraint is binding (ineffi-
cacious arbitrage) due to the amplification effect. To examine these predictions, we
test whether the past arbitrage efficacy is able to predict the future market volatility.
We have the VIX index as the ex ante risk-neutral expectation of the future mar-
ket volatility, which is forward-looking over the next 30 days. In order to further

25Also notice that the TED spread becomes positively associated with arbitrage efficacy when
arbitrage is efficacious, which seems to be counter-intuitive. For instance, from 2004 to early 2007
where arbitrage is efficacious and market liquidity tend to be ample, the TED spread, although at its
historically low level, displays a slightly increasing trend. It also appears on the periods of 2012-2015,
where the market seems to be liquid. Therefore, simply focusing on the trend of the TED spread might
be misleading. Although a sufficiently high magnitude of increment in the size and volatility of the
TED spread could indicate the funding problem, such as the spikes during the financial crisis, how to
ex ante distinguish those from the normal time innovations of the TED spread or other return-based
measures is proved to be challenging.
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understanding the forecasting mechanism, we follow Bollerslev, Tauchen and Zhou
(2009), and decompose the VIX index of implied volatility into two components: the
realized volatility of S&P 500 index and the price of risk of market volatility (the
volatility risk premia). We first compute the ex post realized volatility for S&P 500
index over the past one month,26 assuming a zero mean, such that

RVt =

√√√√252∗∑
N−1
i=0

(
Pt−i

Pt−i−1
−1
)2

N
∗100 (3.21)

where RVt is the realized volatility level at time t, Pt is the price return index level
of S&P 500 index on day t, and N is the look back period, which is 21 days for our
case. Then the volatility risk premia is computed as the difference between the ex
ante VIX index of implied volatility over the next one month and the ex post realized
volatility of S&P 500 index over the past one month, i.e.

V RPt =V IXt −RVt . (3.22)

Bollerslev, Tauchen and Zhou (2009) document that volatility risk premia are the
dominating predictor of the excess return of S&P 500, among other predictors, such
as P/E ratio, default spread and consumption-wealth ratio.

Figure 3.5 plots the daily time series of the VIX index of implied volatility, the
realized volatility of S&P 500 index and their difference as the volatility risk premia.
We see that the VIX index and the realized volatility of S&P 500 co-move, and the
volatility risk premia is mostly positive through the sample period.

26In Bolloerslev, Tauchen and Zhou (2009), the realized volatility is constructed from high-
frequency intraday data, while in our paper and the work of Adrian and Shin (2010), it is computed
on a daily basis.
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VIX index 
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Figure 3.5: The plot of VIX index, realized volatility of S&P 500 index and the
volatility risk premia, September 7, 2000 to June 30, 2015
The figure plots the time series of VIX index, Realized volatility of S&P 500 index and the volatility
risk premia, covering the period from September 7, 2000 to June 30, 2015. The periods of ineffica-
cious arbitrage are shaded.
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Table 3.3 reports the forecasting regression for changes in VIX on the lagged
predictor variables: the VIX index itself and the implied arbitrage efficacy, in the full
sample period (September 7, 2000 to June 30, 2015), the sub-period of efficacious
arbitrage and the sub-period of inefficacious arbitrage. Since we use daily data, it
is not obvious how quickly shocks to the implied arbitrage efficacy will transfer to
market volatility. Therefore we allow for a choice of lag order up to five, and choose
the preferred lag order based on the Akaike (AIC) and Schwartz (SIC) information
criteria. On aggregate, the forecasting results are negative and significant at the 5%
level, and the forecasting R2 increases from 3.27% with only the lagged VIX in-
dex, to 4.41% with both the lagged VIX index and the implied arbitrage efficacy. It
means that reduction in arbitrage efficacy is associated with an increasing financial
market volatility in the future. In the conditional forecasting regressions, depending
on (in)efficacious arbitrage, we can see in column (3) to (6) of Table 3.3 that the
the degree of predictability is mostly prominent when arbitrage is inefficacious, e.g.
binding leverage constraint, with the largest t-statistic and maximum R2 of 6.36%.
We continue by running the forecasting regression for both the realized volatility of
S&P 500 and the volatility risk premia on the lagged predictor variables. We see that
in Table 3.4, the volatility risk premia is being predicted by the implied arbitrage ca-
pacity with higher R2, rather than the realized volatility of S&P 500, and the degree
of predictability is much higher during the time of inefficacious arbitrage. Therefore,
innovation in the arbitrage efficacy predicts the price of volatility risk, instead of the
actual realized volatility itself.

These results accord with our model predictions: the efficacy of arbitrage predicts
the future market volatility, and more importantly, the nonlinear effect of arbitrage
efficacy on market volatility verifies the amplification effect during the period of
the binding leverage constraint, which is consistent with Brunnermeier and Pedersen
(2009). Also arbitrage efficacy predicts the price of volatility risk, which is an impor-
tant risk factor in predicting stock market returns. The result therefore highlights the
asset pricing consequence of funding liquidity, especially when funding constraint
becomes binding.

3.5 Conclusion

In this paper we study the arbs’ funding liquidity and the efficacy of arbitrage, and
their linkage. We narrow our focus on how arbs exploit the mispricings caused by
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noise traders, when subjecting to leverage constraint. We define the arb’s funding
liquidity as their ability to raise leverage debt, which is captured by the marginal
leverage with respect to mispricing, and the arbitrage efficacy as their ability to bear
against mispricing, which is captured by the marginal correction achieved by the
arbs. The model implies that the arbs’ funding liquidity affects the efficacy of ar-
bitrage, and more importantly the binding leverage constraint leads to inefficacious
arbitrage and the amplification effect, such that market illiquidity and price volatility
are extremely sensitive to noise shocks. Overall, we propose to capture the fund-
ing liquidity by the arbitrage efficacy, the sign of which identifies whether leverage
constraint is binding or not.

We empirically estimate the implied arbitrage efficacy from the index arbitrage
relationship between S&P 500 index and E-mini future, and find statistically signif-
icant evidence that the implied arbitrage efficacy is related to other broad measure
of funding liquidity and significantly predicts the future market volatility and the
volatility risk premia. More importantly, the sign of the implied arbitrage efficacy
identifies the binding leverage constraint, such that the periods of inefficacious arbi-
trage exhibit strong amplification effects and coincide with the episodes of liquidity
crises within the sample period. The measure of implied arbitrage efficacy thus pro-
vides vital and helpful tool for policy maker and regulators to evaluate the funding
condition among the financial intermediaries and the potential existence of amplifi-
cation due to the binding funding constraint.

Our work provides a number of direction that future researches might address.
First, since the implied arbitrage efficacy can be estimated in various arbitrage rela-
tionship across different markets or countries, it would be interesting to extend the
measure to several markets or countries. In doing so, one might be able to address
the spillover and contagion effect in funding liquidity especially during the crisis
period. Second, Brunnermeier and Pedersen (2009) suggest that funding illiquidity
among arbitrageurs leads to the phenomenon of flight to liquidity, flight to quality,
and commonality in liquidity. Hence, the implied arbitrage efficacy can be a good
tool to distinguish the sample into two regimes: the period of loose and binding
funding constraint, and empirically examine these hypotheses. Third, our paper only
focuses on the initial mispricing correction, while the pattern of subsequent price re-
covery also reflects the impediments faced by arbs, as suggested by Duffie (2010).
Combining both immediate and subsequent pricing dynamics might generate more
fruitful results. Fourth, the amplification effect under binding funding constraint can
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lead to long-lasting consequences, which has been explored in the macroeconomics
literature. It would be interesting to empirically verify the impact of funding liq-
uidity in the financial sector on overall economics, especially during the period of
inefficacious arbitrage.

Appendix 3.A The Empirical Design

Let spt be natural log of the spot price of the S&P 500 index; pt and p∗t be the natural
log of the spot and fundamental price of the E-mini future contract respectively;
rt and qt be the risk-free interest rate and dividend yield of the asset, respectively;
τt = T − t be the time to maturity.

1. The fundamental value of the E-mini future contract can be implied by the cost
of carry model:

p∗t = spt +(rt −qt)τt ,

2. The dynamic mispricing error, zt is then computed from the long-run equilib-
rium:

pt = µ +θ p∗t + zt ,

which is later used in the Error Correction model for computing mispricing correc-
tion.

3. The dynamic mispricing correction, κt is calculated by the Error Correction
model in a rolling window basis, such that in a rolling window of 500 days, we run
the regression:

∆pt = κzt−1 +λ
∗zt−2 +δ∆p∗t + γ∆pt−1 +µt , µt ∼ iid(0, σ

2
µ).

where ∆ is the difference operator. After assign each κt to the ending date of the
window, we have the dynamic version of mispricing correction, κt .

4. The data of daily difference in mispricing correction and error, ∆κt and ∆zt−1

is applied to compute funding liquidity measure. We first eliminate the outilers, i.e.
time t when the estimated ∆κt or ∆zt−1 is at the highest or lowest 1% tails of the
distribution.

5. Funding liquidity measure is then computed by regressing the daily difference
in mispricing correction on the changes in mispricing error. Similarly, the dynamic
version of funding liquidity measure is computed in a rolling window of 250 days,



80 CHAPTER 3. FUNDING LIQUIDITY AND ARBITRAGE EFFICACY

such that

AEt =
t

∑
t−250

∆κt∆zt−1/
t

∑
t−250

∆z2
t−1.

Finally, we assign each AEt to the ending date of window, i.e. time t, and results in
the dynamic funding liquidity measure.

Appendix 3.B The Implied Arbitrage Efficacy and
The Real World Events

We highlight the five market events during the sample periods, and associate them
with the innovations in the implied arbitrage efficacy.

First, the market downturn in 2000-2003. The bear market began in 2000 after
the burst of Dot-com bubble and finally reached the bottom in later 2002. AE, during
bear market, fluctuated around zero, which provided a weak signal of financial insta-
bility. The 911 attack affected the market heavily as the occurrence of high volatility,
but it did not seem to affect the funding liquidity on average.

Second, the Global Financial Crisis in 2007-2008. Prior to the crisis, the implied
arbitrage efficacy, AE reached its peak on February 2007 at around 0.4 and started
to drop ever since. AE experienced a sharp decline and sent the warning sign of
a possible liquidity problem on June 2007. On exactly 27th of June, AE became
negative whilst on the very next day, the Federal Open Market Committee (FOMC)
voted to maintain the federal funds rate. Soon after then, the market began to be
hit by news of liquidation, such as Bear Sterns was forced to liquidate two hedge
funds that invested in mortgage-backed securities in July, and news of bankruptcy,
such as the American Home Mortgage Investment Corporation in August and the
Northern Rock in September. AE continued to drop, despite a number of liquidity
expansion policy announced by Federal Reserve, until March 2008. There existed
a sharp decline after the Lehman bankruptcy, since hedge funds using Lehman as
a prime broker found it difficult to obtain capital and face a decline in the funding
liquidity.

Third, the Flash Crash in 2010. The Flash Crash is one of the two market crash
captured in the sample period along with a positive AE, around 0.1. The Flash Crash
occurred on May 6, 2010, which started at 2:30 p.m., market indices collapsed and
bottomed at 2:45 p.m. with up to 9% decline, and soon rebounded rapidly before 3:00
p.m.. After the Flash Crash, the implied arbitrage efficacy remained stable at round
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0.1, and does not affected by the event. Overall, the result shows that the market is
able to cope with a large unexpected shock when arbitrage capital is sufficient.

Fourth, the Debt Ceiling crisis and The Black Monday in 2011. The Debt ceiling
crisis referred to the debate regarding the maximum borrowing that the US govern-
ment is allowed to undertake. The contention was resolved before exhaustion by the
Budget Control Act of 2011. The very next week on August 8, 2011 witnessed a
large U.S. and global stock markets slide due to the credit rating downgrade of U.S.
sovereign debt by Standard and Poor. The negative sign of AE warns the fragile fi-
nancial condition more than 8 months ago. After a short reverse in May, it continued
to drop till September 2011 and bounced back to zero after only two months. With
sufficient liquidity supply, the S&P 500 index soon recovered its losses in the crash
at the end of 2011.

Fifth, the Debt Ceiling crisis in 2013. The crisis began in January 2013 where the
US government had reached the debt ceiling set in 2011, and ended in October after
the enact of the Continuing Appropriations Act 2014. The trajectory of AE reflected
the worries of the market participants. It was close to zero at the beginning of 2013,
and became significantly negative after April. Soon after the crisis was resolved, AE

rebounded in November 2011.

The trajectory of AE also reflects the effectiveness of the monetary policy an-
nounced by Federal Reserve in terms of liquidity expansion, which may help improve
the efficacy of arbitrage. In reaction to the major market crashes since the market
crash in 1987, Federal Reserve undertook a number of monetary policy to influence
the liquidity condition in the market. Conventional tools include: open-market oper-
ations, setting the federal funds rate and reserve requirements. In general, AE tend
to recover above zero after market turmoils, and we summarize the major recoveries
in the arbitrage efficacy as follows.

At the start of the liquidity crisis in August 2007, Federal Reserve seek to ease
liquidity constraints by providing short-term funding liquidity to banks and lowering
the federal funds rate and primary credit rate. However, the traditional central bank
tools did not appear to sound, as suggested by the innovation in AE. After the in-
tervention of Federal Reserve since August, the rate of decline in AE became more
gentle, comparing to the sharpness before August. However, it did not stop declining
until May, 2008. After realizing the failure of the traditional moves, Federal Reserve
carried out a number of new lending creations, such as the Term Auction Facility
(TAF) in December 2007, and the Primary Dealer Credit Facility (PDCF) and Term



82 CHAPTER 3. FUNDING LIQUIDITY AND ARBITRAGE EFFICACY

Securities Lending Facility (TSLF) March 2008. Despite the slightly rebound in AE

since May, 2008, it was after November 2008 that AE witnessed a constantly rapid in-
crement due to the introduction of the first round of QE (quantitative easing). Within
the procedure of QE1, AE turned positive in November 2009, showing a massive
improvement in funding liquidity.

Fed continued to implement the second of QE (QE2) in November 2010 and the
third round of QE (QE3) in September 2012. According to the trajectories of AE, the
impact and effectiveness of QE2 and QE3 seemed to diverge due to the worries of
Debt Ceiling crisis. While the implied arbitrage efficacy continued to drop after the
announcement of QE2, it witnessed a sharp increment and stayed positive after QE3.

Appendix 3.C Proofs

The derivation of main parameters, f d
1 and DU , is straightforward but complicated.

Thus, in this appendix, we provide the main analytic results derived using MAT-
LAB12. We first provide the derivations for Proposition 3.

Proof. To derive the upper leverage limit DU , we impose the following condition
that the arbitrageurs’ equity in period 2 evaluated at s̃b

2 (financiers’ estimate of sb
2) is

equal to 0, namely

f̃ b
2 = f e

1 +( f e
1 +DU)

(
P̃b

2
P1

−1
)
= 0 (3.23)

where
P1 =V − s1 + f e

1 + f d
1 , P̃b

2 =V − s̃b
2 + f̃ b

2 , s̃b
2 = τs1 + sb

2, (3.24)

Using Eq.(3.23) and (3.24), we find that financiers set DU by

DU =
1
2
(m1 −m0)

where

m0 =
(

f e
1 + sb

2 − (1− τ)s1

)
m1 =

√
(m0)

2 +4 f e
1
(
V − s1τ − sb

2
)
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Under the condition that
(
V − s1τ − sb

2
)
≥ 0, DU is nonegative. Therefore, we obtain

the restriction on τ in Eq. (3.11):

0 ≤ τ ≤
V − sb

2
s1

. (3.25)

To derive the relation between DU , f e
1 and τ , we first write the partial derivative of

DU w.r.t f e
1 as

∂DU

∂ f e
1

=
1
2

(
m2

m1
−1
)

where
m2 = 2V −

(
s1 + s1τ + sb

2 − f e
1

)
.

Under the restriction of τ in Eq. (3.25), we find that m2 ≥ m1, since

(m2)
2 − (m1)

2 = 4(V − s1)
(

V − s1τ − sb
2

)
≥ 0.

Therefore, we have ∂DU
∂ f e

1
≥ 0. The equality holds when DU = 0.

Next, we consider the partial derivative of DU w.r.t τ given by

∂DU

∂τ
=−1

2

(
s1 +

(1− τ)s2
1 + s1

(
f e
1 − sb

2
)

m1

)

=−1
2

(
s1
(
2 f e

1 +m1 −m0
)

m1

)
< 0

The inequality holds since the numerator is always positive because f e
1 > 0 and under

Eq.(3.25), we must have m1 −m0 > 0. Therefore we have ∂DU
∂τ

< 0. Q.E.D.

Now we provide the proofs for Proposition 4.

Proof. We consider all possible strategies: the waiting strategy, the cautious
strategy (we focus on the partial-leverage strategy) and the max-leverage strategy.
Under the waiting strategy, the results in follow trivially for f d

1 = DL =− f e
1 , ℓw = 0

and αw = 0.

Under the partial-leverage strategy described in Proposition 4 (i), we can derive
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an optimal f d
1 by solving the first order condition in Eq.(3.5):

V
P1

−1 = q
(

V
Pb

2
−1
)

where
P1 =V − s1 + f1, Pb

2 =V − sb
2 + f2.

For the special case of riskless arbitrage, q = 1, where the bad state must occur
in period 2, then we must have P1 = Pb

2 from the first order condition, and thus the
optimal funding is f d

1 = s1 − sb
2. For another extreme, q = 0, where only good state

occurs in period 2, we have P1 =V from the first order condition, and thus the optimal
funding is f d

1 = s1 − f e
1 . In both cases, it is easily seen that the funding liquidity is at

its highest: ℓp = 1.

For 0 < q < 1, the optimal leverage fund is given by:

f d
1 =

n0 −n2

2(1−q)
(3.26)

where

n0 =V − (1−q)
(

f e
1 + sb

2 − s1

)
n1 =V − (1−q)

(
s1 + sb

2 − f e
1

)
n2 =

√
(n1)

2 +4V q(1−q)
(
sb

2 − f e
1
)

We use Eq.(3.12) and evaluate the funding liquidity ℓp under the partial-investment
strategy by

ℓp =
∂ f d

1
∂ s1

=
(1−q)− (1−q)n1/n2

2(1−q)
=

1
2

(
1− n1

n2

)
(3.27)

Since n2 >| n1 |and −1 <| n1
n2

|< 1, we have 0 < ℓp < 1. Therefore, risky arbitrage
with 0 < q < 1 dampens the arbs’ willingness to raise capital.

Next, we use Eq.(3.14) and (3.26), and write the arbitrage efficacy under the
partial-investment strategy as

α
p =

∂κ1

∂ s1
=

ℓp −κ1

s1
=

ℓp

s1
− 1

s2
1

(
n3 −n2

2(1−q)

)
(3.28)
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where
n3 =V − (1−q)

(
sb

2 − s1 − f e
1

)
.

To show that α p > 0, we consider the worse case possible: the lowest α p with the
initial shock as large as sb

2, i.e. s1 → sb
2. Then α p can be expressed as,

lim
s1→sb

2

α
p =

sb
2 (1−q)

(
n4
n5
−1
)
+n5 −n4

2(1−q)
(
sb

2
)2

=
n5 −n4

2(1−q)
(
sb

2
)2

(
1−

sb
2 (1−q)

n5

)

where

n4 =V − (1−q)
(

2sb
2 − f e

1

)
n5 =

√
(n4)

2 +4q(1−q)V
(
sb

2 − f e
1
)

Therefore to ensure that lim
s1→sb

2

α p > 0, we must have

n5 > sb
2 (1−q) (3.29)

The right hand side in Eq. (3.29) reach its largest when q → 0, i.e. RHS = sb
2, while

the left hand side is at its lowest when q → 0, i.e. LHS = V − 2sb
2 + f e

1 . Thus the
inequality in Eq. (3.29) holds conditional on

V > 3sb
2 − f e

1 .

Since V ≫ sb
2, f e

1 , the condition can be generally satisfied. Thus the inequality
lim

s1→sb
2

α p > 0 holds, and we have α p > 0.

Now we prove the results under max-leverage strategy described in Proposition
4 (ii) and (iii). We first notice that f d

1 =DU under the max-leverage strategy. Hence,
the funding liquidity is different from that under partial-leverage strategy, and is now
given by

ℓm =
∂DU

∂ s1
=

1
2

(
(1− τ)m1 −m3

m1

)
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where

m0 =
(

f e
1 + sb

2 − (1− τ)s1

)
m1 =

√
(m0)

2 +4 f e
1
(
V − s1τ − sb

2
)

m3 = f e
1 (1+ τ)+(1− τ)

(
sb

2 + s1τ − s1

)
.

For ℓm to be positive, we must have (1− τ)m1 −m3 > 0, and thus following should
hold:

m4 = (1− τ)2 (m1)
2 − (m3)

2 =V (τ −1)2 +
(

sb
2 − f e

1

)
(τ −1)− f e

1 > 0

m4 is a quadratic equation with τ − 1. It is easily seen that when τ = 0, we have
m4 = V − sb

2 > 0 and ℓm > 0. For τ = 1, then we have m4 = − f e
1 < 0 and ℓm < 0.

This shows that the threshold τ∗ that determines the sign of ℓm must lie between 0
and 1, which is derived by setting m4 = 0, such that

τ
∗ =

V − sb
2 +V −

√(
sb

2
)2

+4
(
V − sb

2
)

f e
1

2
(
V − f e

1
) .

Therefore, the result implies that ℓm is negatively correlated to the level of infor-
mativeness, τ , e.g. higher τ leads to lower ℓm; the sign of ℓm is determined by τ , such
that ℓm > 0 for 0 < τ < τ∗ and ℓm < 0 for τ > τ∗.

Second, we compare between ℓm,τ=0 (consider the highest ℓm with τ = 0) and
ℓp. Showing ℓm,τ=0 − ℓp directly require some tedious mathematics, we thus apply
an alternative method by comparing the value of Dτ=0

U and f d
1 in two extreme cases

where s1 = 0 and s1 = sb
2. For s1 = 0, we have

Dτ=0
U =

1
2

(√(
f e
1 + sb

2
)2

+4 f e
1
(
V − sb

2
)
−
(

f e
1 + sb

2

))
> 0

and

f d
1 =

1
2(1−q)

((
V − (1−q)

(
f e
1 + sb

2

))
−
√[

V − (1−q)
(
sb

2 − f e
1
)]2

+4V q(1−q)
(
sb

2 − f e
1
))

.
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We find that f d
1 < 0 after we compare the terms in the bracket, such that

(
V − (1−q)

(
f e
1 + sb

2

))2
−
[
V − (1−q)

(
sb

2 − f e
1

)]2
−4V q(1−q)

(
sb

2 − f e
1

)
=−4(1−q) f e

1

(
V − sb

2 +qsb
2

)
−4V q(1−q)

(
sb

2 − f e
1

)
<0.

Thus, we have Dτ=0
U > f d

1 under s1 = 0. For another extreme s1 = sb
2, we also compare

Dτ=0
U =

1
2

(√(
f e
1
)2

+4 f e
1
(
V − sb

2
)
− f e

1

)
where in the bracket we take the square of each term and obtain the following after
rearrangement:

( f e
1 )

2 +4 f e
1

(
V − sb

2

)
− ( f e

1 )
2 = 4 f e

1

(
V − sb

2

)
(3.30)

The equilibrium funding f d
1 can be written as

f d
1 =

1
2

(V − (1−q) f e
1
)
−
√[

V − (1−q)
(
2sb

2 − f e
1
)]2

+4V q(1−q)
(
sb

2 − f e
1
)

(1−q)


After we take the square of each term in the bracket, we have:

(
V − (1−q) f e

1
(1−q)

)2

−
[
V − (1−q)

(
2sb

2 − f e
1
)]2 −4V q(1−q)

(
sb

2 − f e
1
)

(1−q)2

=
4(1−q)

(
sb

2 − f e
1
)(

V − sb
2 +qsb

2
)
−4V q(1−q)

(
sb

2 − f e
1
)

(1−q)2

=4
(

sb
2 − f e

1

)(
V − sb

2

)
(3.31)

After we compare the results in the bracket, i.e. Eq. (3.30) and (3.31), it is easily
seen that when f e

1 > 1
2sb

2 (approximated), we have f d
1 > Dτ=0

U under s1 = sb
2. The

result indicates that f d
1 and Dτ=0

U will interact at 0 < s1 < sb
2, which means the slope

of Dτ=0
U and f d

1 must satisfy ℓm < ℓp. On the other hand, for a higher f e
1 ? 1

2sb
2, we

always have f d
1 < Dτ=0

U , which means f d
1 and Dτ=0

U will not interact. Intuitively, arbs
will never face the binding leverage constraint when their equity is large enough.
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Third, we write the arbitrage efficacy under the max-leverage strategy by

α
m =

ℓm −κ1

s1

and consider the case with τ = 0 where funding liquidity ℓm is the highest. Then, we
have

α
m,τ=0 =

1
2s2

1

(
f e
1 − s1 + sb

2 +m5

)
− 1

2s1

(
f e
1 − s1 + sb

2
m5

−1
)

where
m5 =

√(
f e
1 − s1 + sb

2
)2

+4 f e
1
(
V − sb

2
)
.

For αm,τ=0 to be negative, we must have the following condition after rearrangement:

s1 <
1
sb

2

(
V
(

sb
2 + f e

1

)
−
√

V
(
V − sb

2
)(

sb
2 − f e

1

))
<

2V f e
1

sb
2

.

It can be simplified as
V >

s1

2 f e
1

sb
2,

It is easily satisfied in most cases since V ≫ s1, sb
2. Therefore, we always have αm < 0

for τ = 0. Q.E.D.

Appendix 3.D Robustness Check

In this section, we provide the robustness check with arbitrage efficacy estimated
using different rolling windows. In particular, we estimate the implied arbitrage
efficacy in Eq. (3.19) using 120-day and 500-day rolling windows. Figure 3.6 plots
the daily series of the implied arbitrage efficacy obtained with 120-, 250- and 500-day
rolling window. Table 3.5, 3.6 and 3.7 report the forecasting results of the market risk
variables on the lagged arbitrage efficacy estimated using 120- and 500-day rolling
window, where the predictability and the nonlinear consequence conditional on the
sign of arbitrage efficacy are documented. The overall results are in line with that
documented in Section 3.4.2, which are regressed by arbitrage efficacy using 250-
day rolling window.
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Figure 3.6: The plot of implied arbitrage efficacy estimated using different rolling
windows, September 7, 2000 to June 30, 2015
The figure shows the implied arbitrage efficacy estimated using 120-day rolling window (dotted line),
250-day rolling window (solid line) and 500-day rolling window (dashed line). Data for arbitrage
efficacy that estimated using 120- and 250-day rolling windows are daily from September 7, 2000 to
June 30, 2015, while that estimated using 500-day rolling window are daily from September 18, 2001
to June 30, 2015.
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VIX (change)

Forecast by
Agg AE > 0 AE < 0 Agg AE > 0 AE < 0
(1) (2) (3) (4) (5) (6)

Lagged VIX (change) ...
Lag 1 AE (change) Coef -2.335* -0.853 -3.689* -9.764* -0.497 -13.380**

t-stat -1.73 -0.88 -1.65 -1.91 -0.17 -2.14
Lag 2 AE (change) Coef -2.111 -0.245 -3.817 -6.961 2.516 -11.684

t-stat -1.34 -0.31 -1.35 -1.15 0.86 -1.53
Lag 3 AE (change) Coef -1.829 -0.367 -3.389* -8.075* -1.634 -11.087*

t-stat -1.32 -0.45 -1.39 -1.76 -0.58 -1.94
Constant Coef 0.000 -0.011 0.004 -0.007 0.015 -0.033

t-stat 0.00 -0.78 0.22 -0.28 0.14 -1.40
R-square 0.0392 0.0172 0.0592 0.0487 0.0126 0.0613

Table 3.5: The Granger causality test of VIX index on lagged value of arbitrage
efficacy (120-day and 500-day rolling window)
The table reports the forecasting regressions of the daily difference of VIX index on the lagged VIX
index and the lagged arbitrage efficacy that estimated using a 120-day (Column 1 to 3) and 500-
day rolling window (Column 4 to 6). The results are documented in the full sample period and
conditionally on the sign of arbitrage efficacy. We consider the choice of lag-order up to five (a week),
and the Akaike (AIC) and Schwartz (SIC) information criteria are applied to select the preferred
specifications. Data for arbitrage efficacy that estimated using 120-day rolling window are daily from
September 7, 2000 to June 30, 2015, while that estimated using 500-day rolling window are daily
from September 18, 2001 to June 30, 2015. All t-statistic are computed with Newey-West standard
errors. ***, ** and * indicate significance at 1%, 5% and 10% levels, respectively.
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Forecast by
Aggregate AE > 0 AE < 0

RV VRP RV VRP RV VRP
(1) (2) (3) (4) (5) (6)

Lagged VIX (change) ...
Lag 1 AE (change) Coef 0.479 -2.815* -0.660* -0.193 1.927** -5.617**

t-stat 0.73 -1.72 -1.91 -0.18 2.28 -2.03
Lag 2 AE (change) Coef -0.914 -1.196 0.235 -0.481 -2.055 -1.761

t-stat -1.11 -1.22 0.70 0.62 -1.47 -0.99
Lag 3 AE (change) Coef 0.348 -2.178 -0.167 -0.199 0.777 -4.167

t-stat 0.59 -1.23 -0.52 -0.25 0.71 -1.30
Constant Coef 0.000 -0.000 -0.005 -0.006 0.006 -0.001

t-stat 0.00 -0.00 -0.57 -0.40 0.44 -0.05
R-square 0.0248 0.0627 0.0132 0.0291 0.0356 0.0853

Table 3.6: The Granger causality test of Realized Volatility index and Volatility Risk
Premium on lagged value of VIX index and Arbitrage efficacy (120-day rolling win-
dow)
The table reports the forecasting regressions of the daily difference of realized volatility (RV) of S&P
500, and that of the volatility risk premia (VRP), on the predictor variables: the VIX index and the
implied arbitrage efficacy (estimated using 120-day rolling window), respectively, in the full sample
period and conditionally on the sign of arbitrage efficacy. Data are daily from September 7, 2000 to
June 30, 2015. All t-statistic are computed with Newey-West standard errors. ***, ** and * indicate
significance at 1%, 5% and 10% levels, respectively.
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Forecast by 500
Aggregate AE > 0 AE < 0

RV VRP RV VRP RV VRP
(1) (2) (3) (4) (5) (6)

Lagged VIX (change) ...
Lag 1 AE (change) Coef 2.848 -12.612** -0.415 -0.082 3.495 -16.876**

t-stat 1.45 -1.96 -0.41 -0.02 1.36 -2.14
Lag 2 AE (change) Coef -5.689** -1.271 -1.651 4.167 -7.188** -4.495

t-stat -2.20 -0.32 -1.11 1.27 -2.02 -0.98
Lag 3 AE (change) Coef 1.599 -9.674* -0.112 -1.522 1.702 -12.790*

t-stat 0.71 -1.64 -0.05 -0.49 0.57 1.65
Constant Coef -0.003 -0.004 0.000 0.014 -0.003 -0.030

t-stat -0.20 -0.14 0.08 1.23 -0.20 -1.15
R-square 0.0336 0.0735 0.0152 0.0276 0.0400 0.0854

Table 3.7: The Granger causality test of Realized Volatility index and Volatility Risk
Premium on lagged value of VIX index and Arbitrage efficacy (500-day rolling win-
dow)
The table reports the forecasting regressions of the daily difference of realized volatility (RV) of S&P
500, and that of the volatility risk premia (VRP), on the predictor variables: the VIX index and the
implied arbitrage efficacy (estimated using 500-day rolling window), respectively, in the full sample
period and conditionally on the sign of arbitrage efficacy. Data are daily from September 18, 2001 to
June 30, 2015. All t-statistic are computed with Newey-West standard errors. ***, ** and * indicate
significance at 1%, 5% and 10% levels, respectively.



Chapter 4

Revisiting the Value Premium
Anomaly: Fundamental or Sentiment
Risk?

4.1 Introduction

Value stocks tend to outperform growth stocks. Such value premium has been inves-
tigated extensively by two main approaches: the fundamental-based and sentiment-
based theories. On one hand, Fama and French (1992, 1993, 1996) claim that both
stocks are correctly priced, and value stocks are fundamentally riskier. As value
stocks tend to be those companies under financial distress and potential bankruptcy,
their higher average returns represent the compensations for the higher fundamental
cash-flow risk. On the other hand, Lakonishok, Shleifer and Vishny (LSV 1994) sug-
gest that value stocks are mispriced and relatively cheaper due to investor sentiment.
In particular, irrational investors tend to be overly optimistic about the future growth
prospect of growth stocks due to their past good earnings, but excessively pessimistic
about value stocks. Barberis and Shleifer (2003) and Barberis, Shleifer and Wurgler
(2005) suggest alternatively that due to systematic preference, value stocks are ac-
tually those out-of-favor stocks, while growth stocks are glamour stocks that are in
favor by investors. Due to the limits of arbitrage (Shleifer and Vishny, 1997; Gromb
and Vayanos, 2010), the correlated trading of irrational investors cannot be offset by
the rational arbitrageurs, and thus results in a systematic price impact. Therefore,
value stocks are more likely to have higher sentiment risk exposure, which is not
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priced in classical asset pricing theory.1

A substantial body of empirical studies have attempted to examine which view,
the fundamental- or the sentiment-based one, provides a more appropriate expla-
nation behind the debate on the value premium anomaly, though most empirical
studies have been conducted under quite different frameworks. This is mainly be-
cause that the two views are implied by two potentially conflicting frameworks:
the fundamental-based view follows the efficient market hypothesis whereas the
sentiment-based one accords with the behavioral finance framework. In this regard,
Campbell and Vuolteenaho (2004) have carefully addressed this issue by decompos-
ing the CAPM beta into two components: the one related to cash-flow fundamental
(fundamental risk) and the other related to the market discount rates (sentiment risk).
They find that value stocks tend to have the higher fundamental-related betas, provid-
ing the support for the fundamental-based view on the value premium. However, the
validity and the robustness of this approach depend crucially on the identification of
the level of fundamental or sentiment risk exposures across value and growth stocks,
which is often criticized in the literature (Daniel and Titmen, 2005; Lewellen et al.,
2006; Phalippou, 2007).

To the best of our knowledge, however, there are no rigorous studies that have
successfully tested the validity of the fundamental-based view against the sentiment-
based one on the value anomaly under a common empirical framework. In this paper
we aim to fill this gap by examining the distinct impacts of the fundamental and
sentiment risk on arbitrage activity. Literature in limits to arbitrage suggests that
fundamental risk and sentiment risk are two sources of arbitrage frictions that pre-
vent arbitrage force from bringing price towards fundamental. Fundamental risk
matters as reasonable and close substitutes for the underlying asset and short-selling
opportunity are rarely available. Thus risk averse arbitrageurs who take on the arbi-
trage trade will be exposed to the unhedged fundamental risk, such that the realiza-

1Baker and Wurgler (2006) argue that classical asset pricing theory does not price investor sen-
timent. In particular, competitive and rational investors, who diversify to optimize returns in their
portfolio, induce an equilibrium in which the asset price is informed by the present value of the ex-
pected future cash flows and the expected returns depends only on the systematic risk exposure. Even
if irrational investors might misprice an asset, it will be offset by the force of arbitrage and thus have
impact on asset price. However, arbitrage is far from costless and riskless in practice. Stocks that are
costly and risky to arbitrage thus are more sensitive to the shifts in investor sentiment, which results
in persistent mispricing and excessive price volatility. As noted in Lee, Shleifer and Thaler (1991)
“like fundamental risk, noise trader risk arising from the stochastic investor sentiment will be priced
in equilibrium. As a result, assets subject to noise trader risk will earn a higher expected return than
assets not subject to such risk. Relative to their fundamental value, these assets will be underpriced”.
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tion of dividends may be better (worse) than expected. Sentiment risk stems from
the future noise trader demand shocks, which may push price further away from
fundamental and induce potential losses to arbitrageurs in a short run. Moreover,
arbitrageurs are constrained by the agency frictions, e.g. periodic evaluations and
funding withdrawal after poor performance, which shorten their investment horizons
and expose them to the sentiment risk. Therefore higher fundamental or sentiment
risk deters arbitrageurs willingness to conduct mispricing correction (De Long et al.,
1990; Shleifer and Summers, 1990; Shleifer and Vishny, 1997; Mitchell, Pulvino and
Stafford, 2002; Gromb and Vayanos, 2010).

Clearly, fundamental risk comes from the uncertainty of the future dividends
when they are realized, while sentiment risk arises due to the unpredictability of
interim resale price prior to the dividend realization. An open question is how they
affect the arbitrage activity that corrects mispricing, similarly or differently. In or-
der to address, we extend the work of Shleifer and Vishny (1997, SV hereafter) and
Gromb and Vayanos (2010, GV hereafter), and develop the integrated model in which
an asset is traded in a market with noise traders and fully rational risk-averse arbi-
trageurs. The asset is mispriced by noise traders in the short run, but will recover to
fundamental value in the long-term. Rational arbitrageurs attempt to exploit the mis-
pricing subject to both fundamental and sentiment risk. Arbitrageurs in our model
are far from homogeneous, as we follow Bushee (1998, 2001)2 and allow two hetero-
geneous arbitrageurs, denoted by the transient and dedicated arbitrageurs. Transient
arbitrageurs are investors with the short investment horizon, high portfolio turnover
and high trading frequency, and they tend to be concerned about the short-term sen-
timent risk exposure, which limits their willingness to bet against the noise traders.
Dedicated arbitrageurs are those who have the long holding period, less diversified
portfolio and low turnover, and therefore they are affected by the fundamental risk
rather by the short-term sentiment risk.3

2Arbitrage is often performed by specialized but heterogeneous institutional investors. Bushee
(2001) classify institutional investors into three groups: transient, quasi-indexer and dedicated, based
on their portfolio turnover, diversification, and momentum trading.

3Barberis and Thaler (2005) conclude the conditions that make arbitrage costly and risky. When
a mispriced asset does not have a perfect substitute, arbitrage is deterred by fundamental risk if (i)
arbitrageurs are risk averse and (ii) fundamental risk is systematic. Even if a perfect substitute exists,
sentiment risk remains a concern to arbitrageurs if (i) arbitrageurs are risk averse and have short
horizons and (ii) the sentiment risk is systematic. Condition (i) guarantees that mispricing is not
wiped out by a single large arbitrageur, and condition (ii) ensures that it is not wiped out by large
number of small arbitrageurs. In the presence of learning costs and transaction costs, condition (ii)
may not be necessary, as it is too costly for small investors.
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Our theoretical framework suggests that the expected arbitrage return is jointly
determined by the investors sentiment that induces the initial mispricing, the funding
constraint faced by the transient arbitrageurs, the fundamental risk component that
arises from asset payoffs and the sentiment risk component that stems from the future
investors sentiment. More importantly, the impacts of fundamental and sentiment
risk on arbitrage return are channeled through the arbitrage activity towards those
risks. To this end, we follow the recent paper of Cai et al. (2015, CFS hereafter)4

to capture the arbitrage activity by the initial mispricing correction and the subse-
quent noise momentum coefficients. The initial mispricing correction measures the
proportion of mispricing corrected by arbitrageurs in the initial period while noise
momentum captures the degree of persistence of unarbitraged errors in the subse-
quent period.

We derive a number of theoretical predictions on the arbitrage activity, the va-
lidity of which can be tested in the subsequent empirical application. The first pre-
diction obtained under higher fundamental risk is that dedicated arbitrageurs tend to
reduce their initial and subsequent investments in exploiting the mispricing. Arbi-
trage activity is thus limited, representing as a lower initial mispricing correction, a
higher noise momentum and a slower speed of price adjustment. The second pre-
diction is achieved under higher sentiment risk, where transient arbitrageurs refuse
to bet against noise trader risks initially, but save funding for the next period when
noise shock intensifies. As a result, the initial mispricing correction is deterred, but
subsequent noise momentum is also reduced since transient arbitrageurs have more
funding to deal with the future mispricing; the combined impact on speed of adjust-
ment is rather uncertain. Overall, higher fundamental and sentiment risk tend to deter
the initial mispricing correction, but have opposite impacts on the subsequent noise
momentum.

In the empirical application, we consider a value and a growth portfolio, i.e. the
S&P 500 value and growth index. The S&P 500 value (growth) index is a market-
capitalization-weighted index, consisting of those stocks within the S&P 500 index

4To capture such multi-period arbitrage activity, CFS develop a generalized error correction model
(GECM) and estimate both the initial mispricing correction and the subsequent noise momentum pa-
rameters where the latter is designed to measure persistence of the uncorrected pricing errors. Apply-
ing it to a wide range of international spot-futures market pairs, CFS documents pervasive evidence of
noise momentum around the world. In this unified theoretical framework, a higher initial mispricing
correction and a lower mispricing persistence induce a faster overall speed of adjustment. Further,
Chapter 2 investigate the relation between arbitrage activity and the size of mispricing error in the
time series, which have strong implication on the nonlinearity of limits to arbitrage.
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and NASDAQ that have strong value (growth) characteristics. Across the value and
growth index, we attempt to analyze the arbitrage activity implied by the index-future
arbitrage relation. The fundamental of index future can be inferred by the spot price
and the cost of carry, consisting the dividend yield on the index and a risk-free in-
terest rate. Text book arbitrage implies that rational investors actively exploit the
mispricing between the implied fundamental and the future spot, and guarantee the
law of one price. However, the spot-future arbitrage is far from costless and risk-
less in practice. First, in order to exploit the spot-future mispricing, arbitrageurs are
challenged to replicate all the component stocks in S&P value and growth index with
appropriate weights. The difficulty in obtaining the perfect substitute imposes the
fundamental risk on arbitrageurs, since it cannot be fully hedged.5 Second, hedge
funds, as commonly believed to be rational arbitrageurs, tend to use leverage to sup-
port their operation, and thus face potential funding constraints and agency frictions
(SV and Fung and Hsieh, 2013). These impediments force hedge funds to concern
about the short-term sentiment risk before price convergence. As documented in
Chen, Han and Pan (2014), hedge fund returns are associated with their exposure to
sentiment risk. As a result, sentiment risk is also a major concern for the arbitrageurs
who exploiting the spot-future arbitrage relation.

To examine which prediction is valid empirically, we employ the two-stage method-
ology as follows. First, to uncover the time variation of the value effect, we follow
Guidolin and Timmermann (2008) and apply the regime-switching VAR models to
the HML returns obtained from the value and growth index and futures. This pro-
duces three regimes with distinctive and significant HML returns as follows: the
value premium, the value discount, and the no-anomaly. The regime without anomaly
has a HML returns close to zero, corresponds to the highly persistent bull markets
with low volatility over 2004-2008 and 2010-2014. Value premium regime appears
in the market turmoils with the highest volatility, e.g. the market downturn in 2000,
2002 and 2008. Finally, a regime with significant value discount is likely to be the
persistent bear market over 2000-2003 and 2008-2010, which is also quite volatile.

Once we identify the three regimes by the HML returns, we apply the two-period
generalized Error Correction Model6 to each regime and evaluate the arbitrage ac-

5Richie, Daigler and Gleason (2008) and Marshall, Nguyen and Visaltanachoti (2013) argue that
trading S&P 500 future against the replicated S&P 500 index is costly. First, it involves large transac-
tion cost to replicate the index, and liquidity risk to implement arbitrage strategy; Second, as stocks
in the index do not trade at the same time, the replicated index price is often stale;

6The methodology is introduced in CFS.
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tivity across value and growth. We find that the arbitrage activity implied by the
value (growth) stocks tend to limited by higher exposure to sentiment risk, since
we observe lower mispricing correction and noise momentum under the value pre-
mium (discount) regime whilst the arbitrage activity is similar under the no-anomaly
regime. Moreover, the overall speed of adjustment, determined jointly by the mis-
pricing correction and the noise momentum coefficients, are more or less similar
across value and growth in each regime, indicating that the impacts of sentiment risk
on overall speed of adjustment are generally unimportant. Overall, these empirical
evidence suggests that the period of value premium (discount) is characterized with
higher sentiment risk within value (growth), which provides strong support for the
sentiment-based view on the value premium anomaly.

To this end, our paper contributes to the literature by providing the first theoretical
framework to reveal the distinctive impact of fundamental and sentiment risk on
the arbitrage activity. In addition, the empirical evidence from the S&P 500 value
and growth index have important implications behind the ongoing debate of value
premium anomaly, suggesting that the value premium or discount associated with
the large-cap stocks is mainly driven by the investor sentiment. Nevertheless, our
empirical study is based not on the stock portfolios that are sorted by book-to-market
ratio, but rather on the large-cap S&P500 value and growth indices. The arbitrage
activity is not implied by the entire stock market, but rather by the index spot-future
arbitrage. These important limitations require some cautious interpretations of our
results. In additional, further studies will be warranted to investigate the possibility
that both the fundamental- and sentiment-based theories will jointly explain the value
premium anomaly.

The rest of this chapter is organized as follows. Section 4.2 reviews the related
literature, while an integrated model of limits to arbitrage is introduced in Section 4.3.
Section 4.4 develops the main theoretical predictions under the fundamental/sentiment-
based view. Section 4.5 shows the two-stage methodology for empirical application
and presents the main results. Section 4.6 concludes. All the proofs are relegated in
the Mathematical Appendix.
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4.2 Literature Review

4.2.1 Tests of the fundamental-based View

The fundamental-based explanation is derived under the Efficient Market Hypothe-
sis. In an efficient market without fractions, economists have long evaluated the risk
of a given stock by its beta, i.e. the sensitivity of a stock’s return to the return on the
market as a whole. Thus fundamental-based explanation predicts that value stocks
with higher expected returns should have higher betas. However, the empirical re-
sults are mixed. Fama and French (1992) and others show that the CAPM of Shape
(1964) and Lintner (1965) cannot account for the value premium, i.e. value stocks
with higher expected returns yet do not have higher betas. LSV report that supe-
rior return in value stocks are not accompanied by notable risks, measured by beta
and volatility. Rather, Fama and French (1996) find that value betas are higher than
growth betas from 1926 to 1963, but fail to reach the same conclusion from 1963
to 2004. Moreover, they argue that the book-to-market ratio is proxy for the firm’s
financial distress risk that is not captured by the single beta. The anomaly tend to
disappear when adding size and value factors, i.e. the SMB and HML factors in the
CAPM model.

Another implication from the fundamental-based view is further investigated by
Zhang (2005), who suggest that due to the counter-cyclical price of risk, the return of
value-minus-growth strategies is high (low) in bad (good) times when the expected
premium for risk is high (low). Early studies by LSV find that performance in value
are higher than that in growth during both good times and bad times. Debondt and
Thaler (1987) and Chopra et al. (1992) also find the similar evidence that cannot be
explained by fundamental-view alone. Rather, Petkova and Zhang (2005) revisit this
issue and find that value-minus-growth betas tend to co-move positively with the ex-
pected market risk premium, which supports the fundamental view. Choi (2013) also
shows that the beta and leverage condition of value companies are more sensitive to
economic conditions than growth companies; thus the beta in value sharply increases
during market downturns, which is consistent with the fundamental-based view.

4.2.2 Tests of the sentiment-based View

Researchers in behavioral finance introduce an alternative explanation for the value
premium anomaly: the sentiment-based explanation, which rests on two necessary
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conditions. First, stocks are mispriced due to correlated sentiments. The aggre-
gate trading of noise traders, instead of canceling each other, generates the non-
fundamental demand shock to push asset price away from fundamental. Second,
there must be limits to the ability and willingness of rational arbitrageurs to offset
the mispricings, the mispricings thus persist. There are a large number of theoretical
and empirical literature in behavioral finance attempting to verify these conditions
and the relation with the value premium anomaly.

For the theoretical base of the first condition, LSV introduce the extrapolation
view, such that investors tend to be overly optimistic about firms with good past per-
formance, while overly pessimistic to those with poor past performance. Barberis
and Shleifer (2003) introduce the category view, such that investors tend to group
assets into categories such as small-cap stocks, value stocks, etc. Noise traders might
allocate more funds in growth stocks, whilst withdrawing from value stocks. As a re-
sult, value (growth) stocks co-move even regardless of their cash flow fundamentals.
Empirical studies have provided supportive evidence. Barberis, Shleifer and Wurgler
(2005) test the category view in explaining the index effect, i.e. index inclusion or
exclusion, and find positive results that verifies the sentiment-based explanation. Ku-
mar (2009) also provides empirical evidence for the category view, such that individ-
ual investors tend to systematically shift their preferences across certain portfolios,
like value versus growth, and such behaviors are not induced by the changes in future
cash flow or macroeconomic variables. Empirical evidence also documents that sen-
timent risk is priced in the equilibrium. Baker and Wurgler (2006, 2007) show that
sentiment risk is systemic, and sentiment is more likely to be priced among stocks
that suffer from severe arbitrage difficulty, such as small stocks, high volatility shocks
and distressed stocks. Barber, Odean and Zhu (2009) find that tradings in individual
investors are correlated and persistent, and have significant systematic pricing im-
pact. Beer, Watfa and Zouaoui (2011) also document the systematic sentiment risk
premium in the financial market, such that portfolio returns are associated with its
exposure to sentiment risk.

Much more work on sentiment-based explanations has been done to examine the
limits to arbitrage, such that arbitrageurs require higher premium in exploiting the
arbitrage opportunity with larger frictions, which results in larger value premium. In
this regard, a number of literature tests the relation between the limits of arbitrage
and the magnitude of value premium. Ali et al. (2003) find that value premium is
greater for stocks with higher idiosyncratic return volatility, higher transaction costs
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and lower investor sophistication. Griffin and Lemmon (2002) find that stocks with
low analyst coverage exhibit value premium. Phalippou (2004) uses institutional
ownership as a indicator of the level of arbitrage cost, and shows that stocks that held
by institutional investors do not exhibit any significant value premium. Nagel (2005)
claims that value premium is most prominent among stocks with low institutional
ownership, where short-selling constraints tend to bind. Agarwal and Wang (2007)
find that value premium disappear after controlling for transaction costs.

4.2.3 Joint tests

Instead of testing the explanations of value premium individually, our extension on
the study of arbitrage activity allows us to identify the specific risk exposure cross
value and growth stocks, thus test the fundamental-based view against the sentiment-
based one. A substantial body of theoretical and empirical work have also attempted
to do so. Theoretically, it is difficult to test one view against the other in absence
of an integrated framework. The work of Daniel, Hirshleifer and Subrahmanyam
(2001a) first offer an explicit theoretical model in which asset returns are jointly pre-
dicted by the CAPM beta and the current mispricing. In their model, investors receive
information about the asset’s systematic and firm-specific idiosyncratic factors. Mis-
pricing arises due to the overconfident investors about the factors, and rational and
risk-averse investors then enter the market to exploit the pricing error. However, as
mispricing is induced by information signal possessed by traders, it is unobservable
in reality.

Empirical methodologies and evidence are mixed. Daniel and Titman (1997)
deny the fundamental-based view by showing that return of value/growth stocks
does not associated with the factor model. Rather they find that value stocks tend
to have similar characteristics and co-vary with one another despite of being dis-
tressed or not. Daniel et al. (2001b) extend the former work to the Japanese stock
market, which again rejects the fundamental-based explanation. Chui et al. (2012)
test the two explanations jointly on a country level, i.e. the relation between value
premium and investors risk aversion (fundamental-based) or stock market develop-
ment (sentiment-based). They find that value premium is higher in countries where
investors tend to be more risk averse, but fail to find any relation with market devel-
opment. These results support the fundamental-based explanation. The beta decom-
position of Campbell and Vuolteenaho (2004) provides a direct method that are able
to determine whether the factors that predict future returns are related to fundamen-
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tals or investors sentiment. Specifically, they extend the Sharpe-Lintner CAPM, and
decompose the single beta into two components: a cash-flow beta and a discount-
rate beta. They find that value stocks tend to have higher beta that related to cash-
flow fundamentals than growth stocks. Moreover, Campbell, Plok and Vuolteenaho
(2009) further construct the proxies for news about cash-flow fundamentals and sen-
timent, and show that the systematic risk of value and growth stocks are mainly de-
termined by cash-flow fundamentals, which further verifies fundamental-based view.
Santos and Veronesi (2005) also find that dividends in value tend to comove more
with the macro-economy than those of growth, and thus value stocks are exposed to
higher cash flow risk rather than sentiment risk.

However, the various adaptations of the CAPM, such as the Fama and French
(1993) three factor model and beta decomposition in Campbell and Vuolteenaho
(2004), are often questioned by its validity and robustness. Daniel and Titmen (2005)
argue that the reason why the statistical tests fail to reject the models is because the
tests have lack of power to reject the models. Lewellen et al. (2006) also accuse for
the statistical tests, such that high R2 or low pricing error is not sufficiently good in-
dicators to evaluate the models. Phalippou (2007) tests the validity of various adap-
tations of the CAPM by reassessing the robustness of the results on different time
periods and sets of data. The author finds significantly large pricing errors after sort-
ing stocks on book-to-market ratio and institutional ownership, and thus questions
the validity of these asset pricing model. Our paper attempts to avoid this problem
by applying an alternative but unified approach to distinguish fundamental and sen-
timent risk via their distinctive impacts on the arbitrage activity.

4.3 The Model

4.3.1 Market structure

Our analysis builds on an extended model of SV and GV. We consider a risky asset in
the market, trading in period t = 1, 2 and pays off in period t = 3. The riskless rate is
exogenous and set to zero. For tractability, payoffs in period 3, d3 are assumed to be
normal with mean, d̄, and standard deviation, δd . The fundamental risk δd thus stems
from the uncertainty of future payoffs. There are two types of agents in the market,
noise traders and rational arbitrageurs. The noise traders tend to push the asset price
away from its fundamental, while rational arbitrageurs observe the price discrepancy
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and enter the market to offset the mispricing.

4.3.1.1 Noise traders

Noise traders do not know the expected pay off value d̄ in period 3. Suppose that
(i) noise traders experience pessimistic shocks, St ,7 before final payoffs are realized.
In period 1, S1 is known to arbitrageurs, while S2 is a normally distributed random
variable with mean, S̄2, and standard deviation, δn. The expected noise shocks in
period 2 is assumed to intensify, such that S̄2 > S1. (ii) In period 3, shocks become
zero, i.e. S3 = 0, as the asset pays off dividends (iii) St are independent of asset
payoffs, d3. To this end, the sentiment risk, δn, in our model arises due to the noise
trader shock that might affect asset price in period 2, which is independent from the
fundamental. In absence of sentiment, the price at period 1 and 2 equal to the asset’s
fundamental, i.e. the expected payoff d̄.

4.3.1.2 Arbitrageurs

Rational arbitrageurs enter the market to exploit the price discrepancies at different
trading period, or in other words, intertemporal arbitrage. Unlike SV and GV, arbi-
trageurs in our model are far from homogeneous, as we distinguish between the tran-
sient and dedicated arbitrageurs (denoted with arbitrageur types j ∈ (T, D)). Both
types of arbitrageurs are risk averse, and maximize the expected CARA utility with
risk tolerance, γ j:
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where F j
t is the price information available to arbitrageurs j in period t and f j

t is
the funding accumulated by type j arbitrageurs from external investors in period t

in order to conduct the arbitrage trade. The initial funding f j
1 is exogenously given

while f j
2 and f j

3 are endogenously determined, such that the funding in period t +1

7Results are symmetric under optimistic noise shocks.
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can be expressed by:8
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where Pt is the price at period t and β
j

t is the optimal position for type j arbitrageurs.
We allow both types of arbitrageurs to long or short the asset, but they have to fully
collateralize their position, i.e. −1≤ β

j
t ≤ 1. The market clearing condition in period

t is that demand for the asset must equal to the unit supply, from which the asset price
can be derived as:
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The arbitrageurs are further distinguished as follows. First, transient arbitrageurs
do not have long-term access to capital, i.e. they must close their position in pe-
riod t + 1 after they enter the market in period t, and re-raise the capital in period
t + 1. Theoretically, there is no guarantee that transient arbitrageurs will be able to
fully re-raise the amount of f T

2 implied by Eq. (4.2). But without loss of generality,
we consider only the case where they fully re-raise the amount of f T

2 . Due to the
short-term access to capital, transient arbitrageurs has short investment horizon and
are exposed to sentiment risk. Second, transient arbitrageurs tend to overlook the
long-term fundamental risk since they must close their position in a short run. As
a result, their strategy in period 2 when mispricing is not fully corrected is making
the full investment, i.e. β T

2 = 1. Third, transient arbitrageurs are assumed to face
funding constraint, S̄2 > f T

1 .9 In contrast, dedicated arbitrageurs are endowed with

8In SV, the performance-based arbitrage (PBA) is introduced, such that outside investors might
augment or withdraw funding from arbitrageurs based on the previous performance. It is represented
by the PBA sensitivity, α , such that the funding in period t +1 can be expressed by

f j
t+1 = f j

t +αβ
j

t f j
t

(
Pt+1

Pt
−1
)
,

where α is normally greater than 1, indicating that if arbitrageurs had a bad track record, i.e. Pt+1 <Pt ,
outside investors will withdraw funding. With a larger PBA sensitivity, arbitrageurs tend to reduce
their initial investment. The risk aversion assumption on arbitrageurs in our model will act the same
as they face a larger α; they would require higher premium to bear risk. For simplicity, we set α = 1
to avoid some tedious calculations in what follows.

9Notice that we impose the assumption on the transient arbitrageurs’ funding, while there is no
restriction on that of the dedicated arbitrageurs. Since dedicated arbitrageurs are risk averse and
require a certain compensation for bearing the risk, thus cannot fully correct the mispricing in period
1. Transient arbitrageurs, although are also risk averse, but tend to overlook the fundamental risk in
period 3, thus are expected to fully correct mispricing in period 1 if they do not face this funding
constraints. However, as we are interested in the cases where mispricing persists in a short run.
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sufficient long-term finance, thus they are able to hold the position and realize the
arbitrage return when price finally converges. Therefore dedicated arbitrageurs make
investment decision in period 1 with unrestricted funding, f D

1 , and hold to the final
period 3, which expose them to fundamental risk. Finally, we assume that the invest-
ment of transient arbitrageurs in period 1 can be observed by dedicated arbitrageurs,
and vice versa.

The price information received by the two types of arbitrageurs can thus be sum-
marized as follows. The information set for dedicated arbitrageurs in period 1, F D

1

can be described as
{

d̄, S1, γD, δd, β T
t f T

t , P1
}

, while that for transient arbitrageurs
in period 1, F T

1 can be described as
{

d̄, S1, γT , β D
t f D

t , S̄2, δn, P1
}

.

4.3.2 Optimization problems

We first derive the optimal strategy for dedicated arbitrageurs. Since dedicated ar-
bitrageurs determine their overall investment strategy in period 1 and liquidate only
when price converges in period 3, and by the use of normality distribution in d3, they
will maximize (See Appendix for proof):

E
(

f D
3 | F D

1
)
− 1

2
γ

DVar
(

f D
3 | F D

1
)
,

subject to the restriction on collateralization, i.e. −1 ≤ β D
1 ≤ 1. We can derive the

solution for β D
1 as (See Appendix for proof):

β
D
1 =

P1
(
d̄ −P1

)
f D
1 γDδ 2

d
≈

d̄
(
S1 −β T

1 f T
1
)

f D
1
(
d̄ + γDδ 2

d

) < 1, otherwiseβ
D
1 = 1 (4.4)

The result is intuitive. First β D
1 is always non-negative since d̄ −P1 ≥ 0, thus ded-

icated arbitrageurs will not short the asset. Second β D
1 = 0 when d̄ −P1 = 0, i.e.

dedicated arbitrageurs stop investing when price is equal to fundamental. Third,
dedicated arbitrageur’s position are affected by the initial shock, S1, the position of
transient arbitrageurs, β T

1 f T
1 , the funding in hand, f D

1 , the fundamental risk, δd and
their risk tolerance, γL. Fourth, the total investment β D

1 f D
1 is independent from fund-

ing f D
1 when β D

1 < 1, which means that the dedicated arbitrageur’s ability to raise
funding does not affect their investment unless they are fully invested, β D

1 = 1. Full
investment is more likely to occur when f D

1 is relatively small, such that long-term

Imposing this simple assumption assures that in period 2 transient arbitrageurs cannot fully correct
the mispricing.
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funding is scarce for dedicated arbitrageurs, and the ability to raise funding will di-
rectly affect arbitrageurs’ investment.

Second, we derive the optimal strategy for transient arbitrageurs. Transient ar-
bitrageurs care about the resale price in period 2 since they have to close their po-
sition in this period. Therefore, they aim to maximize the utility in period 2, i.e.
E
(
U
(

f T
2
)
| F T

1
)
, subject to the funding constraint, S̄2 > f T

1 , and the restriction on
collateralization, i.e. −1 ≤ β T

1 ≤ 1, from which we obtain the following result (See
Appendix for proof):

β
T
1 =

(
d̄ −S1

)(
f T
1 +S1 − S̄2

)
f T
1
(
d̄ −S1 + γT δ 2

n
) >−1, otherwiseβ

T
1 =−1. (4.5)

We describe a few implications. First, β T
1 < 1, such that, transient arbitrageurs never

make full investment to long the asset due to the expectation that noise shock will
intensify in period 2, S̄2 > S1. Second, the equilibrium position is determined by the
initial noise trader shock, S1, the expectation of future shock, S̄2, the sentiment risk,
δn, their own risk tolerance γT and the funding in hand f T

1 . Notice that the position
of transient arbitrageurs is determined independently from dedicated arbitrageurs,
because dedicated arbitrageurs do not withdraw or augment their investment in pe-
riod 2 when transient arbitrageurs close their position. Third, transient arbitrageurs
might short the asset. β T

1 is positive (long) when S̄2 < f T
1 +S1, i.e. the future noise

is relatively small, and is negative (short) when S̄2 > f T
1 + S1, such that expected

future noise is too large. When −1 < β T
1 < 0, price deviation is rather amplified by

transient arbitrageurs, and dedicated arbitrageurs become the only rational agents to
exploit the price discrepancy.

4.3.3 The expected arbitrage return

After deriving the optimal strategy in Eq. (4.4) and (4.5), we obtain the expected
arbitrage return over the whole period as the expected payoff minus the equilibrium
price,

E (R) = d̄ −P1 = S1 −
(
β

T
1 f T

1 +β
D
1 f D

1
)

(4.6)

where β D
1 and β T

1 satisfy Eq. (4.4) and (4.5).
Consider first the special case with partially-invested transient arbitrageurs only.10

10Transient arbitrageurs only make full investment when they short asset, i.e. β T
1 = −1. Under

this case, the expected return is obtained as E (R) = S1+ f T
1 , which is independent from the sentiment

risk, δn.
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Then the expected arbitrage return can be written as (See proof in Appendix):

ET (R) = S1 −β
T
1 f T

1 ≈
(
S1 + f T

1 − S̄2
)

Rn +
(
S̄2 − f T

1
)

(4.7)

Eq. (4.7) shows that the expected return contains three components: the initial shock,
S1, the funding constraint, S̄2 − f T

1 , and the sentiment risk premium,

Rn =
γT δ 2

n

d̄ + γT δ 2
n
.

The sentiment risk premium lies between 0 and 1. It is zero when there is no sen-
timent risk, δn = 0, thus arbitrageurs would not require any premium. It becomes
one when arbitrageurs are extremely risk averse, γT → ∞, and ask for the greatest
compensation for bearing the risk. In absence of the sentiment risk, i.e. Rn = 0,
the arbitrage return equals to the funding constraint, S̄2 − f T

1 .11 In absence of the
transient arbitrageurs (equivalent to extreme risk aversion, i.e. Rn = 1), the asset re-
turn becomes S1, which means no mispricing has been corrected by the arbitrageurs.
Overall, the arbitrage return is higher when there is larger noise trader demand shocks
(larger S1); when the trade is exposed to higher sentiment risk (larger δn); when tran-
sient arbitrageurs are more risk averse (higher γT ) and more limited in obtaining
capital (larger S̄2 − f T

1 ).
Next consider another special case with partially-invested dedicated arbitrageurs

only.12 According to Eq. (4.4), we rewrite the expected return as (See proof in
Appendix):

ED (R) = S1 −β
D
1 f D

1 = S1Rd (4.8)

The arbitrage return compose of two components, the initial noise trader demand
shock, S1, and fundamental risk premium required by dedicated arbitrageurs,

Rd =
γDδ 2

d

d̄ + γDδ 2
d
.

In absence of the fundamental risk, i.e. δd = 0 and Rd = 0, the expected return
becomes zero, since dedicated arbitrageurs with sufficient funding supply that can

11This is mainly due to the assumption of funding constraint, f T
1 < S̄2, on transient arbitrageurs,

which makes sure that mispricing is not fully corrected in period 1. Without this restriction, there
exist a f T

1 > S̄2 that ensures ET (R) = 0 and P1 = d̄.
12For the case with fully-invested dedicated arbitrageurs, the arbitrage return can be easily written

as ED (R) = S1 − f D
1 , which is independent from the fundamental risk, δd .
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fully eliminate the mispricing in the initial period and ensure P1 = d̄. In absence
of the dedicated arbitrageurs, Rd = 1, the asset return becomes S1. Intuitively, the
expected return is higher with larger noise shock, more uncertainty in payoffs (larger
δd) and more risk aversion among the dedicated arbitrageurs (higher γD).

Consider the final case with a mixture of transient and dedicated arbitrageurs, the
expected arbitrage return can be written as (See proof in Appendix):

ED,T (R) =
[(

S1 + f T
1 − S̄2

)
Rn +

(
S̄2 − f T

1
)]

Rd (4.9)

In general, the expected arbitrage return is determined by the fundamental and sen-
timent risk premia, the noise trader sentiment and the funding constraint among ar-
bitrageurs. More importantly, the impacts of fundamental and sentiment risk are
channeled through the arbitrageurs’ strategies, β T

1 and β D
1 , or in other words, the

arbitrage activity, which we will further demonstrate in the next section.

4.4 The Impact of Fundamental and Sentiment Risk

4.4.1 Defining the arbitrage activity

We first define the measurements for the arbitrage activity, as the strategies, β T
1 and

β D
1 are unobservable in practice. The recent work of CFS extends the SV model and

introduce two measures to capture the arbitrage activity. We follow CFS and define
the mispricing correction, K and the noise momentum, Λ as

K =
β T

t f T
t +β D

t f D
t

S1
, Λ =

d̄ −P2

d̄ −P1
, (4.10)

where K captures the proportion of initial mispricing correction achieved by both
group of arbitrageurs in period 1 and Λ captures the persistence of the unarbitraged
errors to the next period. In order to better connecting these two empirical measures
with our theoretical analyses, we express these two parameters as the expectation
with respect to the information F T

1 , F D
1 in period 1, such that

κ =E
(
K | F T

1 , F D
1
)
=

β T
t f T

t +β D
t f D

t
S1

, λ =E1
(
Λ | F T

1 , F D
1
)
=

d̄ −E
(
P2 | F T

1 , F D
1
)

d̄ −P1
,

(4.11)
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In particular, the noise momentum parameter is able to capture the information whether
the transient arbitrageurs long or short the asset in the equilibrium. To provide a bet-
ter understanding, we note that transient arbitrageurs make the long/short decisions
based on the expected price in period 2 as follows (See Appendix for proof):{

E
(
P2 | F T

1
)
< P1, for −1 < β T

1 < 0
E
(
P2 | F T

1
)
> P1, for 0 < β T

1 < 1

}
. (4.12)

It indicates that transient arbitrageurs short the asset only when expected price in
period 2 is lower than that in period 1. Eq. (4.12) can be rewritten in terms of λ ,
such that {

λ > 1, for −1 < β T
1 < 0

0 < λ < 1, for 0 < β T
1 < 1

}
(4.13)

However, empirical evidence never observe λ > 1 on average, according to CFS
who focus on international data and the Chapter 2 which bases on different market
circumstance in S&P 500 index.13 Even in the extreme circumstances allocated in
Chapter 2, we find that λ is below unity. Our empirical study later applied to the
Value and Growth index and future also fails to observe that λ > 1 in all cases, which
indicates that transient arbitrageurs are mostly rational and exploiting the mispricing
opportunity, i.e. β T

1 > 0. As a result, we continue in further discussions under the
assumption that

S̄2 < f T
1 +S1 (4.14)

to ensure β T
1 > 0, while the implications of β T

1 < 0 will be included in the Appendix.
Notice that together with the assumption on funding constraint, the restriction on
f T
1 can be summed up as

S̄2 −S1 < f T
1 < S̄2. (4.15)

Overall, these two measures allow us to study the impact of fundamental and sen-
timent risk on the arbitrage activity and generate several testable predictions under
fundamental- or sentiment-based view of the value premium anomaly in the follow-
ing analysis.

13In Chapter 2, we conclude that λ tend to be less than unity on average, while our model is able
to capture λ > 1. The difference is resulted from the model setting. In Chapter 2, period 2 noise
shock is rather binary, e.g. it becomes either zero with probability q or S2 > S1 with probability 1−q.
Thus it does not give the arbitrageurs incentive to short sell in period 1, and thus λ < 1. However, in
our model period 2 noise shock is stochastic with mean S̄2. For a large S̄2, it’s possible for transient
arbitrageurs to adopt short-selling in period 1, which is indicated by λ > 1.
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4.4.2 The impact of sentiment risk

We conclude the impact of sentiment risk in the following proposition (See proof in
Appendix).

Proposition 5. Consider the 3-period model setup from section 4.3.1 and 4.3.2. Un-

der the assumption that S̄2−S1 < f T
1 < S̄2, we find that (i) ∂β T

1
∂δn

< 0 and ∂β D
1

∂δn
> 0; (ii)

∂κ

∂δn
< 0 and ∂λ

∂δn
< 0.

Proposition 5 shows the direct effect of sentiment risk on transient arbitrageurs
and the indirect effect on dedicated arbitrageurs. As the higher sentiment risk reduces
the demand of transient arbitrageur, it causes a decline in the asset price and the initial
mispricing correction, which means that return for dedicated arbitrage is potentially
higher. As a result, dedicated arbitrageurs are tempted to augment their initial in-
vestment, which on the other hand, improves the initial pricing efficiency and the
mispricing correction. Since the former effect is always stronger in aggregate, senti-
ment risk tends to deter the initial correction achieved by the arbitrageurs, ∂κ

∂δn
< 0.

The impact on noise momentum is also dominated by the transient arbitrageurs. As
they reduce their position in the first period, they are saving more funding in order
to invest in the next period, which relatively improves the pricing efficiency. Thus
sentiment risk reduces future noise persistence, ∂λ

∂δn
< 0.

CFS show that the overall speed of adjustment is positively associated with the
initial mispricing correction κ , but negatively with the subsequent noise momentum
λ . According to Proposition 5, the overall impact of sentiment risk is rather uncertain
on the overall speed of adjustment, since higher sentiment risk tend to impedes initial
mispricing correction κ and also reduces further noise momentum λ .

4.4.3 The impact of fundamental risk

We turn our focus on the impact of fundamental risk, which can be summarized as
follows (See proof in Appendix).

Proposition 6. Consider the 3-period model setup from section 4.3.1 and 4.3.2. Un-

der the assumption that S̄2−S1 < f T
1 < S̄2, we find that (i) ∂β T

1
∂δd

= 0 and ∂β D
1

∂δd
< 0; (ii)

∂κ

∂δd
< 0 and ∂λ

∂δd
> 0.

The impact on the mispricing correction is not surprising, since dedicated arbi-
trageurs will reduce their demand on the asset, which results in a lower initial mis-
pricing correction. The impact on noise momentum is rather positive, comparing to
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that of sentiment risk. The reason is that: as dedicated arbitrageurs reduce their posi-
tion in the first period due to higher fundamental risk, their position in period 2 is also
reduced proportionally since they do not alter their strategy unless price converges.
As a result, the pricing efficiency in period 2 is not improved, but further damp-
ened, which leads to the higher noise momentum. According to Proposition 6, the
impact of fundamental risk decelerate the overall speed of adjustment, since higher
fundamental risk not only deters the initial mispricing correction, but also intensifies
the future noise momentum. For complement, we further illustrate the results by a
numerical analysis in the appendix.

4.4.4 Testable predictions

For the purpose of our empirical application on the value premium anomaly, we con-
sider two sections of stocks, value and growth (denoted as V and G), that only vary
in the level of fundamental/sentiment risk exposure, and summarize the theoretical
predictions of the fundamental- and the sentiment-based view on the value premium
anomaly under three possible scenarios, namely the no-anomaly, the value premium
and the value discount.

First of all, according to the funding constraint assumptions on transient arbi-
trageurs , i.e. S̄2 > f T

1 > S̄2 −S1, we obtain the first prediction on the noise momen-
tum parameter.

Prediction 1. The noise momentum satisfies: 0 < λV , λ G < 1.
Next, we consider the value premium regime. On one hand, the sentiment-based

explanation implies that value stocks are exposed to higher sentiment risk, δV
n > δ G

n ,
which makes them more difficult to arbitrage. On the other hand, the fundamental-
based explanation implies that value are fundamental riskier, δV

d > δ G
d , and thus

arbitrageurs require higher risk premium for bearing the risk. Thus Proposition 5
and 6 predicts the follows:

Prediction 2 under the value premium regime: (i) Under the sentiment-based
assumption that sentiment risk associated with the value stocks is higher than that
with the growth stocks, i.e. δV

n > δ G
n , our model predicts that κV < κG and λV <

λ G, suggesting that higher sentiment risk in value stocks will induce lower initial
mispricing correction and subsequent noise momentum. (ii) Under the fundamental-
based assumption that the fundamental risk associated with the value stocks is higher
than that with the growth stocks, i.e. δV

d > δ G
d , our prediction is that κV < κG and

λV > λ G, suggesting that higher fundamental risk in value stocks will deter initial
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mispricing correction and raise subsequent noise momentum.

We also consider the scenario of value discount in which case it is easily seen
that we obtain the opposite predictions on the arbitrage activity as follows:

Prediction 3 under the value discount regime: (i) Under the sentiment-based
assumption that sentiment risk associated with the growth stocks is higher than that
with the value stocks, i.e. δV

n < δ G
n , we obtain the prediction that κV > κG andλV >

λ G. (ii) Under the fundamental-based assumption that the fundamental risk associ-
ated with the growth stocks is higher than that with the value stocks, i.e. δV

d < δ G
d ,

our prediction is that κV > κG, λV < λ G.

For complement the implication on the equivalency regime is obtained:

Prediction 4 under the no-anomaly regime: Under both the sentiment-based
and the fundamental-based view, the sentiment and fundamental risks associated with
value and growth stocks are the same, i.e. δV

n = δ G
n (δV

d = δ G
d ). Our prediction is that

both the initial mispricing correction and the subsequent noise persistence parameters
are equivalent for value and growth stocks, i.e. κV = κG, λV = λ G.

Finally we combine the above and yield the last prediction on the overall speed
of adjustment:

Prediction 5 on the overall speed of adjustment: (i) Under the value premium
regime, the sentiment-based view on the overall speed of adjustments of value and
growth stocks is generally uncertain while the fundamental-based view suggests that
the overall speed of adjustment of value stocks is slower than that of growth asset.
(ii) Under the value discount regime, the sentiment-based view on the overall speed
of adjustments of value and growth stocks is still uncertain while the fundamental-
based view suggests that the overall speed of adjustment of value stocks is faster
than that of growth stocks. (iii) Under the no-anomaly regime, the overall speed of
adjustments of both value and growth stocks are predicted to be the same.

4.5 An Empirical Application

To investigate the arbitrage activity among the value and growth stocks, we consider
the arbitrage relationship between the value (growth) index spot and future prices.
According to the law of one price, the price of future contract should be equal to the
fundamental value that accounts for the cost of carry. In practice, however, the price
deviations from this no-arbitrage relation are not arbitraged away immediately due to
transaction cost, arbitrage risk, liquidity, short sale restriction and funding constraint
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(Richie et al., 2008; Bertone, Paeglis and Ravi, 2015). While the transaction costs to
implement the arbitrage strategy and the funding constraints of the arbitrageurs tend
to be indifferent across value and growth, we give prominence to the arbitrage risk:
the fundamental and sentiment risk.

In order to perform the risk-free index arbitrage, one must replicate the portfolio
of the index component stocks with appropriate weights, which is costly and chal-
lenging to execute. Even after the introduction of Exchange-Traded Fund (ETF),14

Richie et al. (2008) find that mispricing still exists and highly associated with volatil-
ity. Bertone, Paeglis and Ravi (2015) also find that volatility in the index constituents
and ETF is associated with price deviation between DJIA index portfolio and the
ETF, and the impact of volatility shocks on the deviation will last for several hours.
Therefore fundamental risk cannot be fully hedged. Moreover, classical index spot-
future arbitrage assumes that the position is held until expiration, which takes at least
three months. During the holding period, price deviation may intensify due to in-
vestor sentiment and cause net losses, even insolvency in extreme circumstance, to
arbitrageurs. A notable example is the collapse of Long-Term Capital Management,
which fails to bet against the mispricings in bonds and derivatives as mispricings,
instead of narrow down, widen. Sentiment risk thus is imposed to arbitrageurs (De
Long et al., 1990; SV). Therefore, arbitrageurs, who attempt to implement the index
arbitrage in practice, face both the fundamental risk stems from the index constituents
and the sentiment risk arises from investor sentiment.

4.5.1 The data

Our datatset covers the period from 7 April 1999 to 5 December 2014 (a total of
4093 observations) for the S&P 500 value and growth indices and the S&P 500 value
and growth future indices, which are collected from DataStream. The S&P 500 value
(growth) index is a market-capitalization-weighted index, mainly composing of those
stocks within the S&P 500 index and NASDAQ15 that have a strong value (growth)
characteristic. Thus, the indices capture mainly large capitalization value and growth

14Index ETF replicates the index portfolio as closely as possible, can be bought and sold daily with
low transaction cost and can be traded by smaller investors. Therefore, ETF is a less expensive way to
implement index arbitrage, which reduces the potential risk exposure, liquidity problems, short-selling
costs and transaction costs.

15For example, on January 30 2015, the S&P 500 value index consists of 55 stocks from NASDAQ
and 308 stocks from NYSE whereas S&P 500 growth index includes 93 from NASDAQ and 229 from
NYSE.
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stocks. In particular, value index is constructed by stocks with significant value fac-
tors: book to market ratio, earning to market ratio and sales to market ratio, whilst
growth index consists those with strong growth factors: three-year earnings (sales)
per share growth rate and three-year internal growth rate, and momentum. The in-
dices will be rebalanced once a year in December.16

Denote st and ft as the logged spot and future prices. We construct the funda-
mental, f ∗t using the cost-of-carry formula,

f ∗t = st +(πt −qt)τt , (4.16)

where qt is the annualized dividend yield (proxy by the S&P 500 dividend yield)
and πt is the risk-free interest rate (proxy by the US three month T-bill rate) and τt

is the time to maturity. Table 4.1 presents the descriptive statistics. Notice that the
differences between logged futures and spot prices are on average -0.008 and 0.141
for value and growth indices, while the differences between the futures price and the
fundamental drop to -0.015 and 0.122 after accounting for the cost of carry. Clearly,
the value future tend to be undervalued compare to the spot price while the growth
future is more bullish on average.

To construct the HML return that captures the value effect, we compute the return
associated with the long-short portfolio, i.e. long in the value index (future) and short
in the growth index (future). Denote HML f and HMLs as the daily HML return of
the future and spot index,17 which are constructed as

HML f =
(

fV
t − fV

t−1
)
−
(

f G
t − f G

t−1

)
and HMLs =

(
sV
t − sV

t−1
)
−
(

sG
t − sG

t−1

)
where fV

t
(

f G
t
)

is the logged value (growth) index future price and sV
t
(
sG
t
)

is the
logged value (growth) index spot price. Both HML f and HMLs are zero-investment
portfolios.

Over the full sample period, the HML returns of index and index future are
slightly positive at 0.0019 and 0.0019 percent per day (around 0.04% per month),
but both returns are not statistically significant with t-statistics, 0.181 and 0.206, re-
spectively. This finding is generally consistent with the extant literature that value

16Please refer to the S&P Dow Jones Indices website for more information about index construc-
tion.

17For complement, we also consider the monthly HML portfolios in future and spot index. Details
of the robustness are reported in the appendix.
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Mean Median Minimum Maximum Std Dev
Panel A: Value index

∆ ft 0.012 0 -11.01 10.60 1.25
∆st 0.012 0.018 -10.28 10.56 1.30
∆ f ∗t 0.012 0.020 -10.27 10.56 1.30

ft − st -0.008 -0.079 -3.08 5.95 0.55
ft − f ∗t -0.019 -0.053 -3.67 5.52 0.42

Panel B: Growth index
∆ ft 0.011 0 -11.53 10.24 1.22
∆st 0.010 0.029 -10.02 12.06 1.27
∆ f ∗t 0.011 0.033 -10.03 12.08 1.28

ft − st 0.141 0.025 -4.77 5.13 0.57
ft − f ∗t 0.122 0.059 -5.67 4.58 0.44

Panel C: Value minus Growth
HML f 0.001 0 -6.15 6.89 0.67
HMLs 0.001 0 -4.81 4.36 0.59

Panel D: Market
qt 1.82 1.80 1.11 3.60 0.43
πt 1.96 1.21 0 6.24 2.00

Table 4.1: Basic descriptive statistics
Table 4.1 reports the descriptive statistics. First two panels include the results of value and growth
stocks. st is the daily log index spot price, ∆ ft (∆ f ∗t ) is the difference of log future (fundamental)
price and ft − f ∗t is the difference between future and fundamental. Panel C captures the return of
long value and short growth in both index and index future market, while panel D captures the market
statistics. qt and πt are the annualized dividend yield and risk-free interest rate. HML f and HMLs are
daily HML return of future and spot index, which are constructed as

HML f =
(

f V
t − f V

t−1
)
−
(

f G
t − f G

t−1
)

and HMLs =
(
sV

t − sV
t−1
)
−
(
sG

t − sG
t−1
)

where f V
t
(

f G
t
)

is the logged value (growth) index future price and sV
t
(
sG

t
)

is the logged value (growth)
index spot price. All numbers are recorded in percentage point terms.
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premium tend to vanish in large-cap stocks. Chan, Karceski and Lakonishok (2002)
find that value stocks in Russell 1000 index (large cap) does not significantly out-
perform growth stocks. Loughran (1997) claims that the value premium has been
mainly observed for small stocks, though he also documented evidence for a weak
value premium among large US firms from 1963 to 1995. Fama and French (2012)
report no evidence in favor of the value premium (with mean, 0.10% per month and
t statistic, 0.49) in large stocks in the North America region.

4.5.2 Methodology

In order to track the time-variations in the HML returns with possible regimes, we
first model the joint distribution of the HML returns in spot and future as a regime-
switching process. In particular, we follow Guidolin and Timmermann (2008), and
apply the Markov-Switching Vector Autoregression (MS-VAR) model to the vector
of HML returns:

rt = µSt +
q

∑
j=1

A j,St rt− j + εt , εt ∼ iid (0, ΩSt ) . (4.17)

Here q is the lag-order, rt = (r1t , r2t , . . . ,rnt)
′

is an n×1 vector of returns, St are the
regime variables, µSt = (µ1St , . . . ,µnSt ) is an n× 1 vector of mean returns in regime
St , A j,St is an n × n matrix of the autoregressive terms at lag j in regime St and
εt = (ε1t . . .εnt) is the vector of return innovations that are assumed to be normally
distributed with zero mean and state-specific covariance matrix ΩSt . The return series
rt comprise future HML and index HML returns, i.e. HML f and HMLs, and thus
n = 2. The unobserved regime-switching variable, St , are assumed to be governed by
the m×m transition probability matrix P with element p ji defined as

p ji = Pr(St = i | St−1 = j) , i, j = 1, . . . , m (4.18)

p ji is the transition probability from state j to i. Each regime is the realization of
a first order Markov chain with constant transition probabilities. The model thus
allows the HML returns to vary across regimes, which induces various implications
in the cross section of return and systematic risk borne by the investors. For example,
knowing that the current state is characterized as value premium, value stocks tend
to be exposed to either higher fundamental or sentiment risk, which will deter the
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arbitrage activity in value stocks.
Second, we assign the specific regime to each day by the largest smoothed state

probability among all. In each regime, we aim to capture the implied arbitrage ac-
tivity across value and growth that exploits the price discrepancy between index spot
and future. Specifically, we follow CFS to capture the arbitrage activity: the mispric-
ing correction and the noise momentum, by applying the two period GECM, which
is given as:

∆ ft = α +κ ˆzt−1 +λ
∗ ˆzt−2 +δ∆ f ∗t + γ∆ ft−1 +µt , µt ∼ iid

(
0, σ

2
µ

)
(4.19)

where ∆ is the first difference operator, ft is the natural log of the future contract
price, f ∗t is the natural log of fundamental price implied by the cost of carry model
in Eq. (4.16) and ẑt is the long-run mispricing error. The pricing error ẑt is estimated
by the long-run equation:

ft = µ +θ f ∗t + zt . (4.20)

In particular, we can simultaneously capture the arbitrage activity by accommodat-
ing both ‘the mispricing correction’ through κ , and ‘the noise momentum’ through
λ (1+κ)zt−2 , in which λ measures the strength of noise momentum and (1+κ)zt−2

represents the unarbitraged component of the pricing errors from the previous pe-
riod.18

4.5.3 Empirical results

4.5.3.1 The time variation in value effect

In order to avoid mis-specification in the MS-VAR model, the work of Guidolin
and Timmermann (2008) offers guidance to determine the number of regimes and
lag-orders for the process. We conduct the specification analysis as follows. First,
we consider a range of reasonable value for the number of regimes up to six, m =

1, 2, 3, 4, 6 and the lag-order up to three, q = 0, 1, 2, 3. Second, the Akaike (AIC)
and Schwartz (SIC) information criteria are applied to select among the regime
specifications. The preferred specification for the MS-VAR model has three-regime

18The model in (4.19) also accommodates the dynamics of price overreaction or underreaction
with respect to fundamental changes through the contemporaneous reaction coefficient, δ , as well as
the short-run momentum effects through the coefficient, γ .
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Figure 4.1: The smoothed regime probabilities: the three-regime Markov Switching
VAR model for return of HML f and HMLs
The figure plots the smoothed regime probability of regime 1-3 from the regression of three-regime
Markov-switching VAR in Eq. (4.17) for returns on series HML f and HMLs, along with the figure of
the market performance of S&P 500 at the same time. The sample period is 07/04/1999 - 05/12/2014.

(m = 3)19 but no autoregressive terms (q = 0), and we present the estimation results
in Table 4.2 and Figure 4.1. The zero lag-order (no autoregressive terms) is a result
of lack of serial correlation in the daily return series.

Regime 1 represents the period with no-anomaly as HML f and HMLs returns are
indifferent from zero. This regime has a duration of over 22 days and consists half of
the observations. Figure 4.1 shows that regime 1 mainly captures two persistent bull
markets, 2004-2008 and 2010-2014. The market return in regime 1 is the highest
(0.060) while the volatility is the lowest compare to other regimes. Overall regime
1 is characterized as the highly persistent, low-volatility bull state with no value
premium anomaly.

Regime 2 is a moderately persistent state with significant value discount, where
both HML f and HMLs are significantly negative (-0.037 and -0.034 respectively). It
contains 34% of the observation and has a duration of 11 days. The market return

19Both criteria suggest the preferred specification is four regimes, m = 4. However, the results
capture two regimes with no anomaly, i.e. the bull market in 2004-2008 and 2010-2014. In both
regimes without anomaly, the HML returns and volatilities are rather indifferent. Note that there
is a trade off between over-parameterization and the economic interpretation. Since Guidolin and
Timmermann (2008) suggest that AIC tends to suffer from over-parameterization, we select the second
best, i.e. three regime, m = 3, with a clear economic intuition behind the results.
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Regime 1 Regime 2 Regime 3
Panel A: The three-regime model
1. the HML returns
Mean T-value Mean T-value Mean T-value

HML f -0.000 -0.06 -0.037** -2.11 0.122* 1.70
HMLs -0.001 -0.23 -0.034** -2.04 0.120** 1.99
obs 2216 1389 487
Dur 21.48 10.29 13.81

2. the variance matrices
HML f HMLs HML f HMLs HML f HMLs

HML f 0.058 0.362 2.456
HMLs 0.050 0.057 0.313 0.337 1.597 1.698

3. linkage to market conditions
rsp 0.060 -0.053 -0.025
Stdev 0.820 1.364 2.196
TED 0.346 0.558 0.865
VIX 17.03 24.76 28.91

Panel B: Transition Probability
Regime 1 0.9435 0.0861 0.0036
Regime 2 0.0553 0.8862 0.0799
Regime 3 0.0011 0.0275 0.9164
Ergodic 0.5341 0.3450 0.1210

Table 4.2: Estimation of the three-regime Markov-Switching VAR with no autore-
gressive term
This table reports the estimation of the vector Markov switching model. The sample period is
01/04/1999 - 05/12/2014, a total 4093 observations. First table in Panel A reports the estimated
results of three-regime switching VAR model in (4.17) with no autoregression terms for returns of
HML future and HML index returns:

rt = µSt + εt , εt ∼ iid (0, ΩSt )

where the return series rt = (r1t , r2t)
′

is an 2× 1 vector of returns, r1t = HML f ,t and r2t = HMLs,t
are the daily return of long value index (future) and short growth index (future), St are the regime
variables, µSt = (µ1St ,µ2St ) is an 2× 1 vector of mean returns in regime St and εt = (ε1t ,ε2t) is the
vector of return innovations that are assumed to be normally distributed with zero mean and state-
specific covariance matrix ΩSt . Obs and Dur report the number of observation and duration in each
regime. The second table in Panel A reports the diagonals of the variance matrices, while the third
table shows the average level of market return in excess of risk-free rate, return volatility, TED spread
and VIX index in each regimes. Panel B reports the transition and ergodic probabilites. ***, ** and *
indicate significance at 1%, 5% and 10% levels, respectively.
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in regime 2 (-0.053) is the lowest, but has relatively high volatility. Together with
Figure 4.1, regime 2 is regarded as the bear state, capturing the market downturn
over 2001-2003 and the global financial crisis over 2007-2009, and the recovering
state, i.e. the transition period between bull and bear markets, such as the year of
2004 and 2010. Thus regime 2 represents a moderately volatile bear market with
significant value discount.

Finally regime 3 is a moderately persistent state, which emerges significantly
high value premium. The HML returns, HML f and HMLs, are significantly positive
(0.122 and 0.120 respectively) with the highest volatility. Although it consist only
10% of the observations, it has a longer duration (14 days) than regime 2, as it is
more sticky with a higher transition probability (91.6%). Regime 3 mainly captures
the market crashes in the sample period, such as the collapse of internet bubble in
2000, the financial crisis in 2008, the Russian crisis in the end of 2014. According
to Panel B in table 4.2, the transition probability between regime 1 and 3 are rather
low and close to zero, which implies that the market cannot switch from bull states to
market crash in direct. Overall the result illustrates a highly volatile crash state with
value premium in regime 3.

Some of our results in Table 4.2 are contradicted to GT, who study the monthly
HML return, controlled for size effect, from 1927 to 2001. GT document a no-
anomaly (value premium) state in the persistent bear (bull) market, while our study
reports value discount (no-anomaly). It seems that results emerging from our data
tend to document relatively smaller value effect than GT’s, and the results are robust
after we apply the monthly return of HML portfolio (See appendix for the robustness
check). The outcomes are likely to result from the size effect, as our data only covers
the large-cap HML portfolios, while GT have controlled for the size effect by includ-
ing both small- and large-cap stocks. Value premium tend to be significantly higher
in small-cap stocks, as Fama and French (2012) report a significant 0.56% monthly
small-cap HML return and an insignificant 0.10% monthly large-cap HML return.
Therefore, HML returns emerged from our data are smaller than those in GT. What’s
worth noticing is that both GT and our paper capture the large value premium state
in the extreme circumstance, such as the Great Depression in the 30s, the burst of
dot-com bubble in 1999-2001 and the global financial crisis in 2008.

Although GT does not further investigate the reason of such time variation in
value effect, it is natural to ask whether the results in table 4.2 accords with the
fundamental-based or the sentiment-based view. On one hand, LSV argue that under
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the fundamental-based view, value stocks tend to underperform during bad times
where marginal utility of wealth is high. However, Zhang (2005) find that due to
the counter-cyclical price of risk, value stocks tend to outperform relative to growth
stocks during the bear state when the expected premium for risk is high. Petkova and
Zhang (2005) measure the economic condition by the expected market risk premium,
and find that value tend to have relatively higher (lower) beta than growth during the
period of higher (lower) expected risk premium, which verifies the fundamental-
based view. The results in table 4.2 partly verify the argument, since HML returns
tend to be lower in the bear market than that in the bull market. But the fundamental-
based view cannot explain why value stocks largely outperform during the market
crashes. The sentiment-based view, on the other hand, suggests that the time variation
in limits to arbitrage may be responsible for results. As document in table 4.2, the
bull market is characterized with low volatility and ample liquidity, proxy by the
VIX index and the TED spread,20 arbitrage is thus more effective. Any irrational
biased can be eliminated immediately, and thus no anomaly appears. As arbitrage
becomes less effective during the bear and crash state (relatively high TED spread
and VIX index), anomalies occur and are statistically significant. However, there
is lack of theoretical argument showing why irrational investors tend to in favor of
value (growth) stock during the bear (crash) state.

4.5.3.2 Value effect and the arbitrage activity

We next study the implied arbitrage activity across the value and growth stocks in
the three regimes. Panel A and C in Table 4.3 report the result of the two-period
GECM of value and growth index respectively, while Table 4.4 report the results of
coefficient differences between value and growth. In general, the results reveal the
following findings across three regimes. First, the regime 1 with no anomaly has the
lowest volatility σ among all in both value and growth index, while the regime with
value premium has the highest. Second, the absolute value of pricing errors | zt−1 |
are lowest in the regime with no anomaly, and slightly higher in the value discount
regime. Pricing error in the value premium regime are almost twice of that in Regime
1 and 2. Third, the estimated mispricing correction κ are negative and the noise

20TED spread , e.g. the spread between the three-month risky LIBOR rate and the three-month
risk free T-Bill yield, measures the cost of funding for arbitrageurs. VIX index of implied volatility
in S&P 500 index options reflects the market forecast of the aggregate financial market volatility, i.e.
higher VIX means traders are expecting that the market is more likely to fluctuate sharply in the near
future.
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momentum λ are positive, and both are less than unity, which is consistent with the
predictions of CFS and Chapter 2. More importantly, λ < 1 indicates that transient
arbitrageurs are on average exploiting the mispricing opportunity, i.e. 0 < β T

1 < 1,
which confirms our Prediction 1. Fourth, as the volatility and the initial pricing
errors | zt−1 | increase from regime 1 to 3, the mispricing correction κ rises. This
is consistent with the risky and costly arbitrage hypothesis, which predicts that the
arbitrage force tend to increase with the degree of mispricing (Gallagher and Taylor,
2001).

Our primary focus is on the comparison of the implied arbitrage activity (in abso-
lute level) between the value and growth index. In regime 1, the no-anomaly regime,
value index has a slightly greater κ than growth index (0.386 and 0.366 respectively)
with a difference of 2%, but the difference is not significant (we cannot reject the
difference is equal to zero, as shown in table 4.4). Similarly, the noise momentum in
both value and growth are indifferent (0.295 and 0.291 respectively). Consistent with
our theoretical prediction, both fundamental- and sentiment-based explanations pre-
dict that value and growth tend to display similar κ and λ when they have the same
returns (Prediction 4.). It indicates that arbitrageurs who trade value and growth face
indifferent cash-flow fundamentals and sentiment risk as reflected by their activities.

Comparing κ and λ across value and growth in regime 2 where the value discount
arises, we find that they are both higher in value than in growth. In particular, the
mispricing correction κ is 56.9% in value but only 53.0% in growth, while the noise
momentum λ is 58.0% in value but only 49.3% in growth. The differences in κ and
λ between value and growth are 3.8% and 8.7%, respectively, which are significantly
larger than those in regime 1 and are statistically significant. This finding strongly
coincides with the prediction under sentiment-based explanation (Prediction 3. (i))
that due to higher sentiment risk in growth index, arbitrageurs, who attempt to exploit
the price discrepancy between growth index and future, are rather limited in the initial
correction, a lower κ , but are able to reduce the subsequent noise momentum, a lower
λ .

Regime 3 is the state with the significant value premium, where value tend to
experience a lower mispricing correction and noise momentum. The differences be-
tween mispricing correction and noise momentum across value and growth are the
largest among the three regimes, 3.9% and 33.3% respectively, and are both signif-
icant statistically. The implied arbitrage activity also accords with the sentiment-
based view in Prediction 2. (i), which implies the arbitrage activity is mainly ex-
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Regime 1 Regime 2 Regime 3
Mean T-stat Mean T-stat Mean T-stat

Panel A: Value index
α -0.005 *** -2.69 0.002 0.84 0.014 *** 3.55
κ -0.386 *** -28.4 -0.569 *** -40.0 -0.638 *** -42.4
λ ∗ 0.181 *** 17.2 0.250 *** 18.0 0.143 *** 9.10
δ 0.893 *** 286. 0.937 *** 317. 0.910 *** 177.
γ 0.038 *** 10.6 0.011 *** 3.69 0.012 ** 2.36
σ 0.128 0.158 0.253

Panel B: Recoverd Coefficients
λ 0.295 *** 11.1 0.580 *** 12.8 0.397 *** 7.26
w -0.106 *** -33.1 -0.062 *** -21.2 -0.089 *** -17.4
π 0.365 *** 10.3 0.180 *** 3.59 0.144 ** 2.39

SOA 0.205 *** 19.7 0.318 *** 23.1 0.494 *** 21.1
| zt−1 | 0.207 0.243 0.592

Panel C: Growth index
α -0.006 *** -3.11 0.004 * 1.65 0.012 *** 3.03
κ -0.366 *** -27.9 -0.530 *** -37.1 -0.677 *** -46.6
λ ∗ 0.184 *** 14.5 0.231 *** 16.6 0.235 *** 15.5
δ 0.890 *** 278. 0.919 *** 287. 0.891 *** 171.
γ 0.044 *** 12.3 0.010 *** 3.03 0.030 *** 5.53
σ 0.122 0.158 0.271

Panel D: Recoverd Coefficients
λ 0.291 *** 17.9 0.493 *** 19.9 0.730 *** 16.5
w -0.109 *** -34.2 -0.080 *** -25.1 -0.108 *** -20.7
π 0.402 *** 11.5 0.127 *** 2.98 0.286 *** 5.26

SOA 0.181 *** 18.9 0.298 *** 22.4 0.442 *** 27.9
| zt−1 | 0.219 0.255 0.615

Table 4.3: Estimation of the two-period Generalized Error Correction Model on
value/growth Index and index future across three regimes
This table reports the two-period GECM for value and growth index in the three regimes that identified
in table 4.2. Regimes in each day are identified by the largest smoothed probability among the three
regimes. Panel A and C reports the results of the two-period GECM in (4.19) in each regime across
value and growth index, such that

∆ ft = α +κ ˆzt−1 +λ
∗ ˆzt−2 +δ∆ f ∗t + γ∆ ft−1 +µt

where κ measure the initial mispricing correction, λ = λ ∗/(1+κ) captures noise momentum, ft and
f ∗t are spot and fundamental price for the future contract, ẑt is the mispricing error estimated from
equation (4.20), µt is the zero-mean idiosyncratic error term with zero mean and finite variance, σ2

u .
Panel B and D reports the recovered coefficient in the model, where SOA represents the overall speed
of adjustment, κ +λ (1+κ); w is recovered by δ −1 and π =−γ/w; | zt−1 | is the absolute value of
ẑt , constructed as the measure of mispricing error. Notice that To obtain the variance of the recovered
coefficients, a delta method is applied. ***, **, * indicate significance at 1%, 5% and 10% levels,
respectively.
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Regime 1 Regime 2 Regime 3
Mean T-stat Mean T-stat Mean T-stat

Value minus Growth
α 0.000 0.20 -0.002 -0.57 -0.011 * -1.97
κ -0.020 -1.05 -0.038 * -1.92 0.039 * 1.88
λ ∗ -0.003 -0.19 0.018 0.95 -0.091 *** -4.19
λ 0.003 0.15 0.087 ** 2.37 -0.333 *** -4.73
δ 0.003 0.68 0.017 *** 4.10 0.018 *** 2.54
γ -0.005 -1.02 0.001 0.23 -0.018 ** -2.31
π -0.037 -0.74 0.053 0.80 -0.142 * -1.75

SOA 0.023 * 1.67 0.019 1.04 0.052 * 1.85

Table 4.4: The differences in coefficients between value and growth across three
regimes
This table reports the difference in coefficients between value and growth in three regimes identified
in table 4.3. A delta method is applied to obtain the variance of the differences. ***, **, * indicate
significance at 1%, 5% and 10% levels, respectively.

plained by the higher sentiment risk exposure in value stocks.

The overall speed of adjustment, characterizing by κ + λ (1+κ) are slightly
faster in value than in growth among all three regimes: 20.5% and 18.1% in Regime
1; 31.8% and 29.8% in Regime 2; 49.4% and 44.2% in Regime 3, respectively. How-
ever, the differences are small, 2.3%, 1.9% and 5.2%, and insignificant. The result
is consistent with the sentiment-based explanation in Prediction 5., since sentiment
risk induces two competing effect on speed of adjustment and the aggregate effect
might be canceled out.

To this end, the implied arbitrage activity reported in our paper accords with the
sentiment-based view in all three regimes, and suggest that the higher exposure to
sentiment risk in large-cap value (growth) stocks deter the arbitrage activity toward
mispricing, and earns a higher expected return as known as the value (growth) pre-
mium.

4.6 Conclusion

This paper studies the distinctive impact of fundamental and sentiment risk on the
arbitrage activity, and distinguishes the two explanations behind the value premium
anomaly: the fundamental-based view, which attributes it to cash-flow fundamental
risk, and the sentiment-based view, which suggests that stocks are priced by investors
sentiment. We first design an integrated model in which heterogeneous arbitrageurs
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exploit the price discrepancies at multiple trading periods subject to both fundamen-
tal and sentiment risk. The model highlights the distinctive arbitrage activity in re-
sponse to fundamental and sentiment risk. We refer to the work of CFS for two
measures of the arbitrage activity, i.e. initial mispricing correction and subsequent
noise momentum. The model predicts that: 1, higher fundamental risk deters initial
mispricing correction and enlarges subsequent noise momentum; 2, higher sentiment
risk also deters initial mispricing correction but reduces subsequent noise momen-
tum.

For the purpose of our empirical work, we apply a two-stage methodology on the
S&P 500 value and growth index and index future. First, we identify three regimes
with distinctive HML returns, using a Markov-Switching VAR model. Value pre-
mium tends to occur during the extreme period of market crashes, while value dis-
count is likely to appear in the persistent bear market. The persistent bull market,
during 2004-2008 and 2010-2014, captures most of the regime with no anomaly.
In the second stage, we apply the two-period generalized ECM to each regime and
capture the arbitrage activity that conducts the value and growth index-arbitrage. The
results show that the arbitrage activity in value tend to display a lower mispricing cor-
rection and noise momentum when it outperforms, which accords with predictions
under higher sentiment risk.

Our theoretical and empirical results produce the following implications. First,
our results indicate that sentiment risk is the main determinant of large-cap value
premium anomaly, such that the supreme return in value stocks are attributed to the
relatively higher exposure to sentiment risk. However, like Lakonishok et al. (1994)
and Daniel et al. (2001a), our theory and empirical results do not dispute the pos-
sibility that both fundamental- and sentiment-based theories will jointly explain the
value premium anomaly. Fundamental risk can explain the total asset return, and
might be able to explain some of the value anomaly as well. Second, we highlight
the analysis via the arbitrage activity. Arbitrageurs strategically adjust their invest-
ment in response to different types and level of arbitrage risk, which ensures that an
arbitrage opportunity with higher risk exposure earns higher returns. The implied
arbitrage activity can help understand and identify the level of fundamental and sen-
timent risk exposure. Future studies can be extended to test several other pricing
anomalies, such as the small-cap and momentum effect, and other cross-sectional
mispricings. It would also be interesting to extend our approach to the model of
Daniel et al. (2001a), which include more discussion about asset pricing with the
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traditional CAPM beta and the price-related misvaluation. Third, our paper strongly
supports the work of CFS for the importance of the noise momentum in the market.
Although the initial impacts of fundamental and sentiment risk (impact on κ) are
similar, but their impacts on the subsequent noise momentum show significant dif-
ferences. It reveals important information of how arbitrageurs’ effort on exploiting
mispricing can affect the subsequent price convergence.

Appendix 4.A The Role of Initial Mispricing

We first provide the determinants of asset price for complementary (See Proofs in the
appendix).

Proposition 7. Consider the 3-period model setup from section 4.3.1 and 4.3.2. Un-

der the assumption that S̄2 −S1 < f T
1 < S̄2, we find that ∂P1

∂S1
< 0, ∂P1

∂ f T
1
> 0, ∂P1

∂ f L
1
≥ 0,

∂P1
∂δd

< 0 and ∂P1
∂δn

< 0.

Proposition 7 highlights a number of properties on the equilibrium price. First,
larger noise trader demand shocks have larger price impact, which is consistent with
the original SV model. Second, given a noise trader shock S1, it is straightforward
that the equilibrium price is more efficient when arbitrageurs receive more funding
( f T

1 and f L
1 ). Third, the price impact is also larger when arbitrageurs have higher risk

tolerance (r j) and when the asset has higher fundamental (δd) or sentiment (δn) risk
because arbitrageurs require more compensations to bear the risks.

Notice that the initial noise trader shock, determine the initial price displacement,
is one of the important information for transient and dedicated arbitrageurs. CFS
and Chapter 2 extend the SV model and derive several implications on the arbitrage
activity in varying mispricings. We follow these two works and reveal a similar role
of initial mispricing in our extended model, which is concluded more formally in the
following proposition (See Proofs in the appendix).

Proposition 8. Consider the 3-period model setup from section 4.3.1 and 4.3.2. Un-

der the assumption that S̄2 > f T
1 > S̄2 − S1, we find that (i) ∂β T

1
∂S1

> 0, ∂β D
1

∂S1
> 0; (ii)

∂κ

∂S1
> 0 and ∂λ

∂S1
< 0.

Intuitively, both groups of arbitrageurs will invest more when S1 rises. Because
of the independent distributed noise trader shocks, a higher S1 indicates a larger
price deviation and thus a larger expected long-term profit when price converges to
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fundamental, which induces arbitrageurs to invest more. Together with Proposition
7, we find that although arbitrageurs react positively to the noise trader shocks, but
fail to improve the pricing efficiency. This indicates the limited ability of arbitrageurs
to bear against a non-fundamental demand shock.

We highlight that the equilibrium holding of dedicated arbitrageurs is influenced
not only by the initial noise S1 directly, but also by the indirect effect of transient
arbitrageurs β T

1 f T
1 . On one hand, dedicated arbitrageurs will enhance their invest-

ment with S1 as imposed in Eq. (4.4). On the other hand, higher S1 indicates a
higher investment of transient arbitrageurs, which reduces the price deviation and
the willingness of dedicated arbitrageurs to invest. These two effects are canceling
each other, but the former is always higher. Thus in aggregate, dedicated arbitrageurs
are still positively reacting to initial noise. Compare to the sensitivity of the transient
arbitrageurs, we always find that

∂β T
1

∂S1
>

∂β D
1

∂S1
. (4.21)

It indicates that transient arbitrageurs are more sensitive to changes in current market
circumstances.

Appendix 4.B A Numerical Example

In this section we provide a numerical example to illustrate the main propositions
in this chapter. We let the expected payoff of the asset be, d̄ = 1, the risk tolerance
of transient and dedicated arbitrageurs be, γT = 4 and γD = 4, the arbitrage capital
raised by transient and dedicated arbitrageurs in period 1 be, f T

1 = 0.2 and f D
1 = 0.2,

the initial noise trader shock be, S1 = 0.3, and the expected noise trader shock in
period 2 be, S̄2 = 0.4. We allow the fundamental risk δd varies from 0.35 to 0.8,
while the sentiment risk δn ranges from 0.2 to 0.6. The top two panels in Figure
4.2 describe the impacts of sentiment risk, δn, on the strategies of the arbitrageurs
and the arbitrage activity captured by the mispricing correction and the noise mo-
mentum. It is easily seen that higher sentiment risk reduce the holding of transient
arbitrageurs, while dedicated arbitrageurs who aim at the long-term return tend to
step in. The overall impact results in a lower mispricing correction and a declining
noise persistence in the future. The bottom two panels in Figure 4.2 display, on the
other hand, the impacts of fundamental risk, δd , on the strategies and the activities
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of the arbitrageurs. In contrast, higher fundamental risk only brings down the po-
sition of dedicated arbitrageurs, but independent from that of transient arbitrageurs.
The combined effect shows that initial mispricing correction tend to drop while noise
momentum is increasing with fundamental risk.

Appendix 4.C Robustness Check

We turn our focus on the monthly HML return for a robustness check, since most
HML portfolios are created to hold for a month, a year, and even 5 years. Denote
HML f m and HMLsm as the monthly HML return of future and spot index,21 which
are constructed as

HML f m =
(

fV
t − fV

t−22
)
−
(

f G
t − f G

t−22

)
and HMLsm =

(
sV
t − sV

t−22
)
−
(

sG
t − sG

t−22

)
where fV

t
(

f G
t
)

is the logged value (growth) index future price and sV
t
(
sG
t
)

is the
logged value (growth) index spot price, 22 days is the approximated trading days in
a month.

Table 4.5 reports the three-regime Markov-Switching VAR for the joint distri-
bution of monthly return series, HML f m and HMLsm, Figure 4.3 plots the regime
probabilities for the MS-VAR and Table 4.6 reports the implied arbitrage activity in
each regime across value and growth index. In particular, regime 1 is the no-anomaly
regime with insignificant HML returns. The arbitrage activity in this regime across
value and growth are indifferent. Regime 2 is characterized as the bear market state
with significant value discount. During this period of time, the arbitrage activity in
growth stocks tend to be affected by higher exposure to sentiment risk, since the mis-
pricing correction is 44% (51%) and the noise momentum is 36% (52%) in growth
(value). Regime 3 is the crash state, which has the significant value premium, 3.1%
per month on average. The arbitrage activity cross value and growth is again ex-
plained by the sentiment-based predictions, such that both mispricing correction and
noise momentum are much lower in value stocks. The results are mostly consis-
tent with our early results that generated from the daily return series, which provides
further support to the sentiment-based explanation of the value premium anomaly.

21We also consider the portfolio holding for a month and generate a month HML returns in future
and spot index. Detail of the robustness check are reported in the appendix.
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Figure 4.2: Arbitrageurs strategies, mispricing correction and noise momentum with
respect to sentiment and fundamental risk
The figure plots the impact of sentiment and fundamental risk on the strategies of
transient and dedicated arbitrageurs, and the arbitrage activity captured by initial
mispricing correction and subsequent noise momentum. We consider an asset with
expected payoff d̄ = 1; transient and dedicated arbitrageurs with risk tolerance, γT =
4 and γD = 4, and available arbitrage capital in period 1, f T

1 = 0.2 and f D
1 = 0.2; noise

traders with initial shock, S1 = 0.3, and the expected shock in period 2, S̄2 = 0.4. We
allow fundamental risk δd varies from 0.35 to 0.8, while sentiment risk δn ranges
from 0.2 to 0.6. The top two panels plot the impact of sentiment risk while the
bottom two display that of fundamental risk.
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Regime 1 Regime 2 Regime 3
Panel A: The three-regime model
1. the HML returns
Mean T-value Mean T-value Mean T-value

HML f m 0.015 0.03 -3.169*** -36.8 3.169*** 25.1
HMLsm 0.018 0.56 -3.290*** -37.3 3.132*** 26.5
obs 2273 861 936

2. the variance matrices
HML f m HMLsm HML f m HMLsm HML f m HMLsm

HML f m 0.812 4.202 7.818
HMLsm 0.770 0.774 4.032 4.046 7.260 7.295

Panel B: Transition Probability
Regime 1 0.9652 0.0432 0.0450
Regime 2 0.0167 0.9479 0.0078
Regime 3 0.0180 0.0088 0.9470
Ergodic 0.5585 0.2115 0.2300

Table 4.5: Estimation of the three-regime Markov-Switching VAR with no autore-
gressive term (monthly)
This table reports the estimation of the Markov switching vector autoregressive model. The sample
period is 03/05/1999 - 05/12/2014. First table in Panel A reports the estimated results of three-regime
switching VAR model in (4.17) with no autoregression terms for returns of HML future and HML
index returns:

rt = µSt + εt , εt ∼ iid (0, ΩSt )

where the return series rt = (r1t , r2t)
′

is an 2×1 vector of returns, r1t = HML f m,t and r2t = HMLsm,t
are the monthly return of long value index (future) and short growth index (future), St are the regime
variables, µSt = (µ1St ,µ2St ) is an 2× 1 vector of mean returns in regime St and εt = (ε1t ,ε2t) is the
vector of return innovations that are assumed to be normally distributed with zero mean and state-
specific covariance matrix ΩSt . The second table in Panel A reports the diagonals of the variance
matrices. Panel B reports the transition and ergodic probabilites. ***, ** and * indicate significance
at 1%, 5% and 10% levels, respectively.
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Regime 1 Regime 2 Regime 3
Mean T-stat Mean T-stat Mean T-stat

Panel A: Value index
α -0.005 ** -1.90 0.000 0.17 0.014 *** 3.55
κ -0.475 *** -34.4 -0.505 *** -34.2 -0.664 *** -45.0
λ ∗ 0.232 *** 17.2 0.256 *** 17.5 0.103 *** 6.82
λ 0.442 *** 12.7 0.519 *** 12.4 0.307 *** 5.99
δ 0.907 *** 264. 0.954 *** 344. 0.881 *** 166.
γ 0.021 *** 5.85 0.021 *** 7.30 0.006 1.20
σ 0.149 0.148 0.243

Panel B: Recoverd Coefficients
SOA 0.243 *** 21.5 0.248 *** 20.9 0.561 *** 32.8
| zt−1 | 0.220 0.305 0.340

Panel C: Growth index
α -0.004 ** -1.85 0.002 1.00 0.008 *** 2.14
κ -0.434 *** -31.2 -0.440 *** -30.1 -0.717 *** -49.9
λ ∗ 0.222 *** 16.2 0.202 *** 14.0 0.210 *** 14.2
λ 0.393 *** 12.4 0.360 *** 10.9 0.746 *** 10.0
δ 0.902 *** 259. 0.927 *** 306. 0.869 *** 161.
γ 0.029 *** 7.90 0.016 *** 4.89 0.026 *** 4.70
σ 0.146 0.148 0.261

Panel D: Recoverd Coefficients
SOA 0.211 *** 20.0 0.238 *** 20.8 0.507 *** 30.2
| zt−1 | 0.231 0.316 0.364

Table 4.6: Estimation of the two-period Generalized Error Correction Model on
value/growth Index and index future across three regimes (monthly)
This table reports the two-period GECM for value and growth index in the three regimes that identified
in table 4.5. Regimes in each day are identified by the largest smoothed probability among the three
regimes computed from the month return series. Panel A and C reports the results of the two-period
GECM in (4.19) in each regime across value and growth index, such that

∆ ft = α +κ ˆzt−1 +λ
∗ ˆzt−2 +δ∆ f ∗t + γ∆ ft−1 +µt

where κ measure the initial mispricing correction, λ = λ ∗/(1+ κ) captures noise momentum, ft
and f ∗t are spot and fundamental price for the future contract, ẑt is the mispricing error estimated
from equation (3.16), µt is the zero-mean idiosyncratic error term with zero mean and finite variance,
σ2

u . Panel B and D reports the recovered coefficient in the model, where SOA represents the overall
speed of adjustment, κ +λ (1+κ); | zt−1 | is the absolute value of ẑt , constructed as the measure of
mispricing error. Notice that To obtain the variance of the recovered coefficients, a delta method is
applied. ***, **, * indicate significance at 1%, 5% and 10% levels, respectively.
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Figure 4.3: The smoothed regime probabilities: the three-regime Markov Switching
VAR model for return of HML f and HMLs (monthly)
The figure plots the smoothed regime probability of regime 1-3 from the regression of three-regime
Markov-switching VAR in Eq. (4.17) for monthly returns on series HML f m and HMLsm. The sample
period is 03/05/1999 - 05/12/2014.

Appendix 4.D Proofs

4.D.1 Optimal position for dedicated arbitrageurs

We known that dedicated arbitrageurs does not alter their holdings in period 2:

β
D
2 f D

2 = β
D
1 f D

1
P2

P1
, (4.22)

It means that the number of share dedicated arbitrageurs hold is unchanged, i.e.
β D

2 f D
2

P2
=

β D
1 f D

1
P1

. The total funding in period 3 for dedicated arbitrageurs can be ex-
pressed as

f D
3 = f D

1 +β
D
1 f D

1

(
d3

P1
−1
)
.

Since the fundamental d3 is normally distributed, maximizing the value of E
(
U
(

f D
3
)
| F D

1
)

is equivalent to maximizing the mean-variance objective: E
(

f D
3 | F D

1
)
− 1

2γaVar
(

f D
3 | F D

1
)
.

Using the normally distributed asset payoffs, d3 ∼N
(
d̄, δd

)
, then the expectation and
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variance of funding in period 3 can be expressed as

E
(

f D
3 | F D

1
)
= f D

1 +β
D
1 f D

1

(
d̄
P1

−1
)

Var
(

f D
3 | F D

1
)
=

(
β D

1 f D
1 δd

P1

)2

Finally, the first order condition in terms of β D
1 leads to the optimal position:

β
D
1 =

P1
(
d̄ −P1

)
f D
1 γDδ 2

d
.

After substituting P1 = d̄ −S1 +β T
1 f T

1 +β D
1 f D

1 into the optimal position, we have

β
D
1 =

2
(
S1 −β T

1 f T
1
)
−
(
d̄ + γDδ 2

d

)
+

√(
d̄ + γDδ 2

d

)2 −4
(
S1 −β T

1 f T
1
)

γDδ 2
d

2 f D
1

To provide better understanding of the optimal position, we approximate the square
root term in terms of S1 −β T

1 f T
1 (The persistent mispricing error is rather small after

the arbitrage trade, thus we treat the second moment
(
S1 −β T

1 f T
1
)2 as 0). The square

root term can be represented as the sum of the first two terms of its Taylor series:

(
d̄ + γ

D
δ

2
d
)
−
(
S1 −β

T
1 f T

1
) 2γDδ 2

d

d̄ + γDδ 2
d

and the optimal position becomes

β
D
1 ≈

d̄
(
S1 −β T

1 f T
1
)

f D
1
(
d̄ + γDδ 2

d

) . (4.23)

4.D.2 Optimal position for transient arbitrageurs

For transient arbitrageurs, the price in period 2 is expressed as:

P2 = d̄ −S2 + f T
2 +β

D
2 f D

2 ,

since transient arbitrageurs expect that they are fully invested in period 2 and they
tend to ignore the long run fundamental risk in period 1. Then together with Eq.
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(4.22), it can be rewrite as

P2 =
(
d̄ −S2 + f T

2
) P1

P1 −β D
1 f D

1
(4.24)

From Eq. (4.2), one can rewrite f T
2 as

f T
2 = f T

1 +β
T
1 f T

1

(
P2

P1
−1
)
. (4.25)

After combining Eq. (4.24) and (4.25) above we can rearrange and have:

P2 =

(
d̄ −S2 + f T

1 −β T
1 f T

1
)

P1

P1 −β D
1 f D

1 −β T
1 f T

1
, (4.26)

Using the normality assumption on S2, we can write the expected mean and vari-
ance of f T

2 conditional on F T
1 as

E
(

f T
2 | F T

1
)
= f T

1 +β
T
1 f T

1

(
d̄ −P1 − S̄2 + f T

1 +β D
1 f D

1
P1 −β D

1 f D
1 −β T

1 f T
1

)
and

Var
(

f T
2 | F T

1
)
=

(
β T

1 f T
1 δn

P1 −β D
1 f D

1 −β T
1 f T

1

)2

With a similar technique, the optimal position in period 1 for transient arbitrageurs
is derived after maximize the expected utility E

(
U
(

f T
2
)
| F T

1
)

in period 2, which
leads to:

β̄ T
1 =

(
P1 −β T

1 f T
1
)(

P1 −β T
1 f T

1 −
(
d̄ −S+ f T

1
))

f T
1
(
P1 −β T

1 f T
1 −

(
d̄ − S̄2 + f T

1
)
− γT δ 2

n
) .

As P1 is informed by Eq. (4.3), one can rearrange and simplify the optimal position
of transient arbitrageurs:

β
T
1 =

(
d̄ −S1

)(
d̄ −S1 + γT δ 2

n
) ( f T

1 +S1 − S̄2
)

f T
1

. (4.27)
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4.D.3 The expected arbitrage return

The expected return with partially-invested dedicated arbitrageurs can be expressed
with β D

1 satisfying Eq. (4.23) and f T
1 = 0:

ED (R) = S1 −β
D
1 f D

1

= S1 −S1
d̄(

d̄ + γDδ 2
d

)
= S1

γDδ 2
d

d̄ + γDδ 2
d
.

The expected return with partially-invested transient arbitrageurs is expressed with
β T

1 satisfying Eq. (4.27) and f D
1 = 0:

ET (R) = S1 −β
T
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1
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n
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)
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)
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≈
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S̄2 − f T

1
)
+
(
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) γT δ 2

n

d̄ + γT δ 2
n
. (4.28)

The expected return with both partially-invested dedicated and transient arbitrageurs
can be expressed as:

ED,T (R) = S1 −β
T
1 f T

1 −β
D
1 f D

1

= S1 −β
T
1 f T

1 −
d̄
(
S1 −β T

1 f T
1
)(

d̄ +αγDδ 2
d

)
=
(
S1 −β

T
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d

d̄ + γDδ 2
d

=

[(
S̄2 − f T

1
)
+
(
S1 + f T

1 − S̄2
) γT δ 2

n

d̄ + γT δ 2
n

]
γDδ 2

d

d̄ + γDδ 2
d

(4.29)

The equilibrium price in period 1 can be written as P1 = d̄−E (R), where E (R) takes
the value at Eq. (4.29). Then, results in Proposition 7 can be easily obtained under
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the assumption that S1 + f T
1 − S̄2 > 0.

4.D.4 The role of initial mispricings

We now provide the proof for Proposition 8, i.e. the role of initial mispricing.

Proof. To see ∂β T
1

∂S1
> 0, we write the partial derivative of β T

1 on S1 as

∂β T
1

∂S1
=

1
f T
1
−

γT δ 2
n
(
d̄ + γT δ 2

n − S̄2 + f T
1
)

f T
1
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d̄ −S1 + γT δ 2

n
)2

=
2γT δ 2

n
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d̄ −S1

)
+ γT δ 2

n
(
d̄ − S̄2

)
+ f T

1 γT δ 2
n +2

(
γT δ 2

n
)2

+
(
d̄ −S1

)2

f T
1
(
d̄ −S1 + γT δ 2

n
)2

> 0.

The inequality holds since the numerator is positive with d̄ −S1 > 0 and d̄ − S̄2 > 0.

Similarly, to see ∂β D
1

∂S1
> 0, we write the partial derivative of β D

1 on S1 as

∂β D
1

∂S1
=

d̄
f D
1
(
d̄ +αγDδ 2

d

) γT δ 2
n
(
d̄ − S̄2 + γT δ 2

n + f T
1
)(

d̄ −S1 + γT δ 2
n
)2

> 0.

The inequality holds since d̄ − S̄2 > 0.

The mispricing correction K can be simplified using Eq. (4.29) with partially
invested arbitrageurs (β T

t , β D
t < 1), such that:

κ =
β T

t f T
t +β D

t f D
t

S1

= 1−

[(
S̄2 − f T

1
)

S1
+

(
S1 + f T

1 − S̄2
)

S1
Rn

]
Rd

= 1−

[
Rn +(1−Rn)

(
S̄2 − f T

1
)

S1

]
Rd (4.30)

It can be easily seen that κ increases with S1.

We rewrite the noise momentum λ as

λ =
d̄ −E

(
P2 | F T

1 , F D
1
)

d̄ −P1
(4.31)
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Using Eq. (4.26) and (4.28), we can simplify the expected price in period 2:

E
(
P2 | F T

1 , F D
1
)
=

(
d̄ − S̄2 + f T

1 −β T
1 f T

1
)

P1

d̄ −S1

=

(
1+

(
f T
1 +S1 − S̄2

)
d̄ −S1

Rn

)
P1. (4.32)

Using Eq. (4.29), we can write

P1 = d̄ −
[(

S̄2 − f T
1
)
+
(
S1 + f T

1 − S̄2
)

Rn]Rd. (4.33)

Since ( f T
1 +S1−S̄2)

d̄−S1
is increasing with S1 whilst P1 is decreasing with S1 (Proposition

7), the numerator in Eq. (4.31) will increase slower than the denominator in response
to increment in S1. Thus Λ is decreasing with S1, i.e. ∂Λ

∂S1
< 0. QED

4.D.5 The impact of fundamental and sentiment risk

First, we derive the proof for Proposition 5, i.e. the impact of sentiment risk.

Proof. In Proposition 5, ∂β T
1

∂δn
< 0 and ∂β D

1
∂δn

> 0 can be easily seen from the ex-
pression of β T

1 and β D
1 in Eq. (4.27) and (4.23). Consider the partially-invested

arbitrageurs only, β T
t , β D

t < 1, κ can be written using Eq. (4.30):

κ = 1−

[(
S̄2 − f T

1
)

S1
+

(
S1 + f T

1 − S̄2

S1

)
Rn

]
Rd (4.34)

and under the assumption that S1 + f T
1 − S̄2 > 0, we can easily find that ∂K

∂δn
< 0.

Using Eq. (4.32), E
(
P2 | F T

1 , F D
1
)

can be further simplified as

E
(
P2 | F T

1 , F D
1
)
= (1+G(δn))P1

where the G function: G(δn) =
( f T

1 +S1−S̄2)
d̄−S1

Rn, is positive and increasing with δn.
Thus we can write the noise momentum parameter as

λ =
d̄ − (1+G(δn))P1

d̄ −P1
. (4.35)

Notice that as δn increases, P1 will drop (Proposition 7). The numerator will increase
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slower than the denominator in response to increment in δn, since
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>
∂P1

∂δn

Notice that ∂P1
∂δn

< 0. The inequality holds since we have d̄ > f T
1 , S1 < S̄2 and f T

1 +

S1 − S̄2 > 0. As a result, we have ∂λ

∂δn
< 0. QED

Next, we show the prove of Proposition 6 and 6, i.e. the impact of fundamental
risk.

Proof. In Proposition 6, ∂β T
1

∂δd
= 0 and ∂β D

1
∂δd

< 0 can be easily seen from the expres-
sion of β T

1 and β D
1 in Eq. (4.27) and (4.23). Moreover, the result of ∂κ

∂δd
< 0 can be

easily derived under Eq. (4.34). Hence, we focus on the derivation of ∂λ

∂δd
. Consider

Eq. (4.35) again. As δd increases, P1 will drop (Proposition 7). The numerator in Eq.
(4.35) will increase faster than the denominator in response to increment in δd since
G(δn)> 0, i.e.

∂ (1+G(δn))P1

∂δd
<

∂P1

∂δd
.

Notice that ∂P1
∂δd

< 0. As a result, we have ∂λ

∂δd
> 0. QED

Finally we make two important remarks. First, together with the proof of Propo-
sition 5 and 6, we can find that for higher sentiment risk, transient arbitrageurs tend
to reduce their initial investment, which allow them to allocate more funding in the
second period. As a result, the pricing efficiency is relatively improving in period
2, such that the expected price in period 2 E

(
P2 | F T

1 , F D
1
)
= (1+G(δn))P1 is

decreasing slower than the price in period 1 P1 with higher sentiment risk, since
G(δn) is increasing with δn. Therefore, the noise momentum decreases with non-
fundamental risk. In contrast, higher fundamental risk will force dedicated arbitrage
to reduce their position, which means they are endowed with relatively less funding
in period 2. As a result, the pricing efficiency is dampened in period 2, such that the
expected price in period 2 E

(
P2 | F T

1 , F D
1
)
= (1+G(δn))P1 is decreasing faster

than the price in period 1 P1 with higher fundamental risk, since 1+G(δn) is inde-
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pendent of δd and is larger than 1. Hence, the noise momentum will grow with larger
fundamental risk.

Second, we obtain the above results under the assumption that S1 + f T
1 − S̄2 > 0.

In contrast, we will obtain the following results if S1 + f T
1 − S̄2 < 0 holds, such that

transient arbitrageurs become noise traders and push price further away from the
fundamental. First consider the impact of sentiment and fundamental risk on κ . It is
easily seen from Eq. (4.34) that ∂κ

∂δn
> 0 and ∂κ

∂δd
< 0 since S1+ f T

1 − S̄2 < 0. Second,
the impacts on λ are changed, such that ∂λ

∂δn
> 0 and ∂λ

∂δd
< 0, as indicated by Eq.

(4.36) and G(δn)< 0. This is mainly due to the fact that when transient arbitrageurs
are shorting the asset, such that β T

1 < 0 and ∂β T
1

∂δn
> 0. For a higher sentiment risk,

there will be less shorting from transient arbitrageurs, which thus improves the initial
mispricing correction.





Chapter 5

Concluding Remarks

Behavioral finance suggests a more plausible understanding to the financial market
in which mispricing is long-lived and arbitrage is limited, such that rational arbi-
trageurs fail to drive asset prices to the fundamental values implied by the traditional
asset pricing model. In Chapter 2, we propose to distinguish the two types of fric-
tions faced by the arbitrageurs: the arbitrage costs/risks that render them unwilling
to undertake arbitrage position, and the funding constraints that make them unable to
conduct arbitrage activity even when they are willing to. In particular, we study the
process of arbitrage using a model in which arbitrageurs face with both risk and fund-
ing constraint, and find that the arbitrage activity towards mispricings are rather non-
linear depending on the dominance of the arbitrage impediments: arbitrage activity
tend to increase (decrease) with mispricings when arbitrage cost (funding constraint)
establishes dominance. The model thus posits that the overall arbitrage activity dis-
plays an inverse U-shape against the size of mispricing errors. To test the theoretical
predictions, we provide an empirical application on the S&P 500 index arbitrage by
extending the general error-correction model of CFS to the State-dependent Markov-
Switching model. We document strong evidence of such nonlinear limits to arbitrage,
and capture the periods when the funding constraint is the dominating force as the
years of 1987, 1998, 2000 and 2007-08. This chapter adds further evidence on the
slow-moving capital literature both theoretically and empirically.

This chapter raises some questions that required further researches in the future.
First, the empirical methodology that captures the arbitrage activity is based on the
estimation of an asset’s fundamental value. This value is often computed as the net
present value of the future cash flows at an appropriate discounted rate. While we
take advantage of the spot-future relationship to compute the fundamental value us-
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ing the cost of carry model, yet it is challenging to estimate for an individual asset.
Thus the methodology cannot be extended to those assets where their fundamental
values are not available or difficult to estimate. Second, the identification of the
binding funding constraint is rather ex post, which cannot be detected by investors or
regulators in an ex ante point of view. In order to address this issue, we further con-
struct a measure for funding liquidity in Chapter 3 that ex ante identifies the period
of the binding funding constraint. Third, this chapter shows that arbitrage frictions
can be better understood via their impacts on the arbitrage activity. While we only
study the general impact of arbitrage costs and funding constraints so far, more spe-
cific analyses can be done: how different types of holding costs, i.e. fundamental and
non-fundamental risk, can affect the arbitrage activity; how different types of fund-
ing constraints, i.e. equity and leverage constraint, can affect the arbitrage activity.
In Chapter 4, we study the former issue to distinguish the impact of fundamental and
sentiment (non-fundamental) risk on the arbitrage activity.

In Chapter 3 we study funding liquidity in the time series via the efficacy of
arbitrage. In a more general model where the arbitrageurs’ funding liquidity is deter-
mined by the endogenous leverage constraint set by financiers, we show how funding
liquidity affects arbitrage efficacy under two paths to equilibrium, i.e. the loose and
binding funding constraint. To capture the essence of the arbitrage efficacy defined
in the model, we design an empirical methodology and estimate the implied arbitrage
efficacy in the US stock market. Our measure relates to other funding liquidity mea-
sures, and more importantly, it identifies the periods of the binding funding constraint
and the amplification effect attributed to funding liquidity.

This new measurement provides a number of direction that future researches
might carry on. First, the measure can be estimated by the arbitrage relationship
across different markets or countries, for example, the covered interest parity in the
currency market and the CDS-bond relationship in the credit market. By extending
to multiple markets or countries, one might be able to analyze the spillover and con-
tagion effect in funding liquidity, especially during the crises period. Second, Brun-
nermeier and Pedersen (2009) suggest that the phenomenon of flight to liquidity,
flight to quality, and commonality in liquidity are attributed to the funding illiquidity
among arbitrageurs, especially when the funding constraint is binding. Empirical
tests of these hypotheses can thus be adopted with the arbitrage efficacy measure.
Third, literature on macroeconomics has long explored the long-lasting effects of the
amplification mechanisms. Bernanke and Gertler (1989) argue that leveraged en-
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trepreneurs are sensitive to the funding condition, and low funding liquidity renders
higher probability of default, lower overall economic activity and profits. It would be
interesting to empirically verify the impact of funding liquidity in the financial sector
on overall economy, especially during the periods of inefficacious arbitrage.

Last, we discuss the specific impact of fundamental and sentiment risk exposure
on the arbitrage activity with an application on the value premium anomaly. We
first modify the model in Chapter 2 by allowing risk averse and heterogeneous ar-
bitrageurs, who concern about the fundamental and sentiment risk. We then show
that fundamental and sentiment risk have different effects on the arbitrage activity,
captured by the initial mispricing correction and the subsequent noise momentum,
which allows us to empirically identify the level of the respective risk exposure. Our
empirical evidence from S&P 500 value and growth index reveals that arbitrage in
value tend to be limited by higher sentiment risk during the periods of value pre-
mium, which strongly supports the behavioral point of view. However, our theory
and empirical results do not dispute the possibility that both the fundamental- and
sentiment-based theories will jointly explain the value premium anomaly. The poten-
tial applications of this approach can go well beyond in testing other cross-sectional
anomalies, such as the small-cap effect, short-run momentum effect and long-run
reversal effect.
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