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Abstract      

In this research, the concept of right-first-time production of the granules and 

tablets is achieved via a systems-engineering based approach. The research has been 

undertaken via two different but synergising phases. In the first phase, various 

modelling frameworks based on data, process knowledge and laws of physics are 

proposed to represent the most critical operations (i.e. granulation and tabletting) of 

the tablet production line. In the second phase, these modelling paradigms are 

exploited in a reverse-engineering framework in order to identify the optimal 

operating conditions to produce a tablet with predefined properties. Therefore, a new 

approach that embeds constrained multi-objective optimization algorithms is 

presented to facilitate the implementation of the reverse-engineering framework by 

which the concept of right-first-time production is achieved. All the proposed 

modelling and optimization paradigms are successfully validated via real laboratory-

scale experiments, where the granules and tablets are successfully produced right from 

the first time, and also the waste and recycling ratios are significantly minimized.
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Chapter 1 

Introduction      

1.1 The Pharmaceutical Industry: Challenges and Difficulties  

 Recently, the pharmaceutical industry, as most other industries, has 

experienced significant changes in the economic policies and the regulatory 

environments, where global competition has led to a decrease in the competition-free 

lifespan of products and a significant decrease in profit margin (Shah, 2004; Suresh 

and Basu, 2008). Therefore, companies and agencies have adopted the Quality by 

Design (QbD) paradigm instead of the dominant approach, the so-called Quality by 

Testing (QbT) approach. The latter, which is based on the empirical design of the 

manufacturing processes, depends on testing and rejecting the batches that do not meet 

the imposed specifications (Food and Drug Administration (FDA), 2006; Yu, 2008). 

By contrast, the QbD approach involves developing a deep process understanding of 

the effects of the raw materials, the process design and the operating conditions on the 

product quality. Such an understanding can be then utilized to implement and develop 

effective quality control strategies (Basu et al., 2008; FDA, 2006; McKenzie et al., 

2006; Reinhardt, 2001; Yu, 2008). Although many companies and agencies have 

implemented the QbD concept in order to control the process and the variables 
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affecting it, such an implementation was based on experimental studies only (Barrasso 

et al., 2015). Consequently, the manufacturing unit operations of the pharmaceutical 

production line remain relatively ill-defined and inefficient when compared to other 

industries that include different chemical processes (McKenzie et al., 2006; Rogers et 

al., 2013). This can be attributed to the challenges and difficulties associated with the 

process design. In general, such challenges include, but are not limited to, the drug 

development process (e.g. clinical trials) and time, the different physical and chemical 

properties of each active pharmaceutical ingredient (API) and the effects of these 

properties on the final product and on the manufacturing processes (McKenzie et al., 

2006; Reinhardt, 2001). Moreover, one of the greatest challenges is dealing with a fine 

powder in order to improve its flowability, homogeneity and compactibility. 

Therefore, granulation, as a size enlargement process, is more often than not utilized 

to ensure that these properties are obtained and maintained (Abberger et al., 2002; 

Benali et al., 2009; Cavinato et al., 2010; Khayati et al., 2010; Ma et al., 2010; Parikh, 

2010; Wu et al., 2008). In addition to the aforementioned challenges, including the 

granulation process in the tablet production line has added more challenges to the 

pharmaceutical industry. For instance, the complex nature of such a process, which, as 

a single operation, can determine the fate of the final product, makes it difficult to 

anticipate the granulation behaviours, the granules’ properties and, consequently, the 

tablets’ properties, and makes it also difficult to control the production line. 

Furthermore, the scaling-up of the granulation process from a laboratory scale to a 

production one is another challenge that has been faced by the pharmaceutical industry 

(Reinhardt, 2001; Watano et al., 2005). These can be the main reasons behind the high 

recycling ratios, the inefficient operations, and working below the planned capacity in 

the pharmaceutical industry (Barrasso et al., 2015; McKenzie et al., 2006; Rogers et 
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al., 2013; Walker, 2007). For the current development paradigm, 27-30% of the total 

sales of $735 billion in the pharmaceutical industry in 2008 was consumed by the 

manufacturing operations, such a percentage is considered to be a large proportion of 

the revenue for many pharmaceutical companies (Basu et al., 2008; Global 

pharmaceutical market forecast, 2008). Therefore, there is a strong need to 

systematically face these challenges in order to optimise the production line from two 

viewpoints: product quality and process control. 

 Process systems engineering paradigms can play a significant role in facing the 

aforementioned challenges and difficulties. Predictive modelling paradigms, for 

example, can be utilized instead of actual experiments throughout the process 

development (Gao et al., 2012; Jarvinen et al., 2013; Ramachandran et al., 2011; Singh 

et al., 2013, 2012; Troup and Georgakis, 2013). They can also be used to enhance the 

process understanding, explore the design space and define the critical process 

parameters (Akkisetty et al., 2010; Boukouvala et al., 2012; 2010; Gernaey et al., 

2012; Gernaey and Gani, 2010; Schaber et al., 2011). Moreover, modelling approaches 

can pave the way for a systematic process control, and optimization of the final product 

critical quality attributes.  

1.2 Aims and Objectives of the Research  

 The ultimate aim of this research work is to develop models, which can be 

utilized to facilitate the production of granules and tablets right from the first time. 

Achieving such an aim can help companies in the pharmaceutical industry and other 

industries to: 

 Optimize the product critical quality attributes, and also meet any stringent 

regulations, 
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 Minimize the amount of the expensive API used in the process development, 

 Minimize the new drug development time and, consequently, maximize the 

competition-free lifespan, 

 Minimize the waste and the recycling ratios, 

 Maximize the profit, 

 Retain leverage in the domain area.  

Many objectives need to be ascertained in this research work to ensure that the 

ultimate aim is systematically achieved. These objectives are as follows: 

 Developing modelling frameworks that can: 

 Predict the properties of the granules and tablets successfully, 

 Take into account the stochastic phenomena, 

 Deal with limited, defective and sparse data, 

 Provide a good understanding of the processes under study, 

particularly the granulation one. 

 Developing a reverse-engineering framework that can: 

 Identify the optimal operating conditions for the granulation and 

tabletting processes and the optimal granules’ properties in order 

to produce tablets with predefined properties, 

 Minimize the waste and recycling ratios, 

 Consider equipment limitations, 

 Take into account the predictive performance of the modelling 

frameworks.  
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1.3 Thesis Structure  

As we shall see in later chapters, the ultimate aim of this research work has 

been ascertained through different stages. The thesis is organized in such a way that 

each stage is discussed and clarified in a chapter, as illustrated in Figure 1.1. Thus, the 

overall thesis structure can be described as follows: 

Chapter 2 introduces a synopsis of the tablet production line and the 

granulation and tabletting processes. The related research work in pharmaceutics and 

granulation is briefly summarised.  

The experimental work that was conducted at the laboratory scale is described 

in Chapter 3, where the factors that have the significant effects are identified and 

investigated. The collected data are utilized to develop various modelling frameworks. 

Since the already existing data-driven models (e.g. a neural network) were not capable 

of representing the processes under investigation, this being due to the sparse and 

limited amount of data, a new modelling framework, which is therefore called an 

integrated network, is proposed in Chapter 3. Such a model predicts the outputs by 

modelling and training the data in two consecutive phases. Such a structure is 

considered in this research work as it is able to extract relevant information from a 

conservative number of data points, and to capture the complex input/output 

relationships in the original data because of the number of functions and weights 

involved. The efficiency of such a model is then improved by characterizing the 

resulted error using the Gaussian mixture model (GMM) in order to take account of 

any potential bias in the predicted outputs. Since the successful model is the one that 

not only can predict the outputs successfully but also can provide the required 

understanding of a process, particularly if it is ill-defined, fuzzy logic systems (FLSs) 
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are utilized in this research work to provide a simple (‘but not simpler’)1 understanding 

of the processes.  

                                                           
1 Albert Einstein  

 

 

Figure 1.1. Flow diagram of the thesis structure. 
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In Chapter 4, a new systematic modelling framework incorporating FLSs and 

a modified GMM algorithm is proposed. First, FLSs are elicited in order to predict the 

outputs of the granulation and tabletting processes, and also to extract informative rules 

from the collected data, such rules can help user to understand and, consequently, to 

control these processes. It is worth mentioning at this stage that such a choice is 

motivated by the fact that fuzzy logic can deal with uncertainties more naturally and, 

consequently, it can be used to model complex processes using simple and easy to 

understand rules. Second, a modified GMM algorithm is integrated in the fuzzy 

systems in order to characterize the error residuals emanating from these systems. Such 

a model is implemented in such a way that the extracted rules are refined to compensate 

for any potential bias, which may result from unmodelled behaviours. Although, in 

this research work, such a framework provided user with a simple understanding of 

the processes under investigation, the predictive performance has unexpectedly 

decreased. Therefore, there is a strong need to develop a model that can accurately 

predict the outputs and can also provide the required understanding.  

A hybrid model that consists of three components, namely, a computational 

fluid dynamics (CFD) model, a population balance model (PBM) and a radial basis 

function (RBF) network, is proposed in Chapter 5. Such a model is developed not only 

to predict the outputs of the granulation process but also to understand the evolution 

and the flow of the granules inside the mixer. Since the granulation process can 

determine the fate of the final product, accurate predictions of the outputs are usually 

required. Therefore, a new fusion model that integrates a fuzzy logic theory and the 

Dempster-Shafer (DS) theory is also presented in this chapter. The motivation for such 

a new model stems from the fact that integrating predictions from different paradigms 

can lead to a more robust and accurate topology. 
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In Chapter 6, a new approach that integrates a particle swarm optimization 

(PSO) algorithm with a FLS is proposed. Such an approach is utilized to facilitate the 

development of a reverse-engineering framework, by which the concept of right-first-

time production of the granules and the tablets is achieved. Furthermore, such a 

framework minimizes waste and recycling ratios. 

Finally, Chapter 7 draws salient conclusions with respect to the whole research 

work with some pointing vectors to future research in this challenging but exciting 

area of engineering.   

1.4 Thesis Contributions to the Current State of Knowledge   

This thesis presents original and innovative modelling and optimization 

frameworks that significantly contribute to the current state of knowledge in 

granulation and its related industry as well as in systems engineering. The original 

contributions of this research can be summarized as follows: 

 The idea of an integrated network is proposed. Such a network is original in 

that: 

 It can extract meaningful information from a sparse and limited 

amount of data by successfully representing the complex input/output 

relationships, 

 It consists of models with different structures that can play a 

complementary role in modelling the possible patterns of a process, 

 It circumvents one of the major obstacles for developing data based 

models; defining the best structure.  

 A compensated FLS is developed. Such a model that integrates the FLSs and 

the GMM is original in that:  
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 It provides a simple linguistic understanding of the relationships 

between the process inputs and outputs,  

 It characterizes the error residuals in a way that can compensate for the 

assumption that the errors follow a normal distribution, and, more 

importantly, can refine and retain the rules that are extracted by the 

FLSs.      

 The idea of developing a hybrid framework is presented. The hybrid model, 

which integrates physical based models and data-driven ones, is original in 

that: 

 It combines the strengths of the topologies involved, 

 It provides a good understanding of the processes under investigation 

at different levels, 

 It compensates for some of the assumptions that are normally made to 

simplify the computational efforts. 

 A new fusion model is proposed. Such a model is original in that:  

 It provides more accurate predictions, and also it improves the 

reliability of the modelling frameworks, 

 It resolves any conflict(s) that may exist between the different 

paradigms, 

 It shows how different paradigms perform in a space area. 

 A reverse-engineering framework based on a constrained multi-objective 

optimization algorithm is presented. Such a framework is original in that: 

 It inverts complex models in such a way that takes into consideration 

the performance of these models in the feasible space, 
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 It systematically identifies a single optimal solution for a multi-

objective optimization problem (MOP). 

 Right-first-time production of the granules and tablets is ascertained at the 

laboratory scale. Also, recommendations are made to ascertain such a concept 

in the related industry.  
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Chapter 2 

Granulation and Tabletting Processes: 

Background      

2.1 The Tabletting Process 

In the pharmaceutical industry, tablets are the most popular prescribed drug 

forms, this being due to the ease of swallowing, solubility, handling and storing such 

a form of pharmaceuticals (Ennis, 2006). Typically, tablets can be produced by direct 

compression of a powder, which comprises of a mixture of APIs and excipients, which 

can usually include diluents, binders, lubricants and many other ingredients (Berthiaux 

et al., 2008; Bouwman et al., 2005; Parikh, 2010). Despite the simplicity of such a 

process, it can only be used when the powder mixture has good properties in terms of 

flowability, compressibility, and homogeneity, which is not the case for most of the 

pharmaceutical ingredients. To elucidate, cohesive materials usually stick onto the die, 

and also some materials may segregate even after blending process (Wu et al., 2008; 

2005). Therefore, granulation processes, which are size enlargement processes for fine 

particles, are, more often than not, used to obtain and maintain these properties. A 

typical tablet production line that involves a granulation process is presented in Figure 
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2.1. Various processes (e.g. coating) can be included in the production line depending 

on the tablets to be produced. However, the granulation and tabletting processes are 

considered to be the key stages.  

Although good powder properties are usually obtained and maintained, 

including such a process makes it difficult to anticipate the properties of the tablets 

and to control the whole production line leading, as a result, to high recycling ratios 

and inefficient operations (Walker, 2007). Thence, diverse research topics have been 

 

 

 

Figure 2.1. A typical tablet production line that involves a granulation process. 
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covered in pharmaceutics under the umbrella of granulation. The granule properties 

that may affect the properties of the tablets produced have been extensively 

investigated (Alderborn, 1988; Ma et al., 2010; Parikh, 2010; Walker et al., 2005). For 

instance, Ma and co-workers (2010) investigated the effects of the binder viscosity, its 

content (i.e. liquid to solid (L/S) ratio) and the granules size on the strength and the 

disintegration time of the tablets, where it was found that the size of the granules had 

no effect on the strength of the tablets, but the strength increased by increasing the 

binder content. However, it has been demonstrated later that the granule size affects 

the strength of the tablets, but the granule size may not affect the properties of the 

tablet when the compression force is sufficient to break the granules (Sarkar et al., 

2011). Furthermore, other factors (e.g. the compression force and the force rate) that 

may affect the final properties of the tablets have also been examined in the related 

literature (Veen et al., 2000). By examining the effect of these parameters, it has been 

shown that the tablet strength decreases when the force rate increases, and the strength 

of the tablets depends on the properties of the powder used (Marshall et al., 1993; 

Veen et al., 2000).  

In addition, some of the research papers and books have focused on the 

formulation by changing the excipient materials and studying their effects on the 

properties of both the granules and the tablets (Ma et al., 2010; Mangwandi et al., 

2015; Parikh, 2010; Patel et al., 2012). The structure transformation of the APIs that 

may take place during the granulation process has also been investigated (Grunenberg 

et al., 1995; Guo et al., 2011; Morris et al., 2011). Moreover, the effects of using 

various granulation and drying techniques on the tablet quality have been extensively 

studied (Berggren and Alderborn, 2001; Hegedus and Pintye-Hodi, 2007; Huang et 

al., 2010; Murray et al., 2007; Patel et al., 2011). For example, some researchers have 
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investigated the effect of various drying methods, which usually follow wet 

granulation processes, on the strength and the dissolution time of the tablets (Murray 

et al., 2007; Pintye-Hodi, 2007).  

Despite the huge body of research in pharmaceutics, it is relatively thin 

compared to research in granulation, since the latter is considered to be the cornerstone 

that affects the downstream processes not only in this sector but also in other ones such 

as detergent, food, chemical and agricultural (Guo et al., 2011; Ma et al., 2010; 

Mangwandi et al., 2015; Morris et al., 2011; Murray et al., 2007; Parikh, 2010; Pintye-

Hodi, 2007).   

2.2 The Granulation Process 

Research in granulation started more than 5 decades ago, while some of the 

pioneering research started much earlier (Capes and Danckwerts, 1965; Newitt and 

Conway-Jones, 1958). Thenceforth, granulation has attracted a lot of interest, where a 

great number of books and research papers has been devoted to studying different 

types of materials for different industries using different equipment (Abberger et al., 

2002; Benali et al., 2009; Cavinato et al., 2010; Khayati et al., 2010; Knight et al., 

1988; Li et al., 2013; Van den Dries and Vromans; 2004). However, granulation 

remains an art more than a science where the granulation behaviour and the properties 

of the granules cannot be anticipated in advance, or even explained. A wide range of 

topics related to the granulation processes has been covered, these topics include, but 

not limited to, understanding the effects of the granulation parameters, understanding 

the physical and chemical science behind the granulation mechanisms, determining 

the granulation end-point, and modelling of the granulation processes (Alderborn, 

1988; Braumann et al., 2007; Chaudhury et al., 2014; Grunenberg et al., 1995; Huang 
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et al., 2010; Iveson, 2002; Katikaneni et al., 1995; Liu et al., 2013; Morris et al.; 2001; 

Poon et al., 2008; Yu et al., 2017; Yu et al., 2015). In this research work, these topics 

are briefly summarized.  

Generally, granulation processes can be classified into two major categories; 

dry and wet granulation. During dry granulation, such as roller compaction, high 

pressure is applied to the powder mixture to enhance the interparticle bonds without 

the use of a binder. These granulation processes are suitable for the powder that is 

highly sensitive to heat and moisture (Ennis, 2006). Whereas in wet granulation, the 

particles are usually enlarged by adding a sufficient amount of binder to the powder 

mixture, in addition to the agitation that results from an impeller in a shear mixer, an 

applied air in a fluidized bed, or twin screws in a twin-screw granulator. Granulation 

processes can be operated, and so classified, as batch (e.g. high shear) or continuous 

(e.g. roller compaction) processes (Chaudhury et al., 2014; Ennis, 2006; Yu et al., 

2015). 

Among all the granulation processes, wet granulation processes have received 

more attention, especially, shear granulation. In general, shear granulation processes 

can be classified into two types: a low or a high shear one, such a classification is based 

on the speed of the impeller and the applied force (Knight et al., 2001). The latter is 

the most popular type particularly in the pharmaceutical industry (Ennis, 2006; Guo et 

al., 2011; Litster and Ennis; 2004). The reasons behind this relate to the hard, the 

dense, and the spherical granules that can be produced using such a process, and to the 

short production time due to the fast growth and densification processes (Benali et al., 

2009; Osborne et al., 2011; Saito et al., 2011; Vonk et al., 1997). Since the high shear 



16 
 

granulation (HSG) process is extensively used in the pharmaceutical industry, it will 

be discussed in more details in this chapter, and also in subsequent chapters.  

 2.2.1 High Shear Granulation: Granulator Geometry 

High shear granulation (HSG), as a wet batch granulation process, is a complex 

process by which the fine particles are usually enlarged by the addition of a binder 

under the influence of a rotating impeller. Although the high shear granulators have, 

in general, different geometries and designs, which significantly affect the final 

properties of the granules produced (Briens and Logan, 2011; Litster and Ennis, 2004; 

Saito et al., 2011), most of them comprise of a mixing vessel with a top or a bottom 

driven impeller applying high compression and shear forces to the particles or the 

granules (Badawy et al., 2000; Fu et al., 2004; Le et al., 2009; Mangwandi et al., 

2012). 

 

 

 

Figure 2.2. Schematic diagram of the main parts of the high shear granulators: (1) 

granulator vessel, (2) impeller, (3) chopper, (4) scrapper, and (5) nozzle for binder 

addition. 
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Most of the granulators are equipped with a chopper in order to break up large 

agglomerates, and hence enhance a homogeneous distribution of the binder and the 

APIs (Briens and Logan, 2011; Chitu et al., 2011; Kiekens et al., 1999). However, the 

change of the flow pattern that results from the presence of the chopper or the 

granulation process itself may lead to caking2 (Albadarin et al., 2017; Saleh et al., 

2015) during the process, especially, at high impeller speed (Albadarin et al., 2017; 

Briens and Logan, 2011; Rahmanian et al., 2009; Saito et al., 2011; Saleh et al., 2015). 

Thus, a scrapper is usually provided to prevent the granules from sticking in the wall 

of the vessel and, consequently, leading to caking reduction (Danjo et al., 1997; 

Watano et al., 2005). A schematic diagram of the high shear granulator is shown in 

Figure 2.2. 

2.2.2 The Granulation Mechanisms  

The different mechanisms occurring and interacting inside the granulator play 

a significant role in shaping the final properties of the granules (Biggs et al., 2003; 

Iveson et al., 2001; Litster and Ennis, 2004; Salman et al., 2003; Van den Dries et al., 

2003). The three main mechanisms are as follows:  

• Wetting and nucleation, 

• Growth and consolidation, 

• Breakage and attrition. 

                                                           
2 Powder caking is a common phenomenon in granulation and/or agglomeration. Caking is the phenomenon of 

transforming the powder into a coherent unflowable mass. Although such a phenomenon is undesired one, it is 

widespread phenomenon in the related industries. Also, such a phenomenon may take place not only during the 

granulation processes but also during transportation and storage of a powder.    
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Once these mechanisms are fully understood in terms of when and how they 

take place and interact inside the granulation vessel, the prediction of the properties of 

the granules and the process control can become easy tasks. In the high shear 

granulators, the granulation process starts when the binder is added to the powder 

particles, where the first interaction between the particles and the binder occurs to form 

the nucleus, as shown in Figure 2.3. 

 

 

 

 

Figure 2.3. Schematic diagram of the granulation mechanisms (adapted from Litster 

and Ennis, 2004). 
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Different types of nucleation regimes may occur (Hapgood et al., 2003; Litster 

and Ennis, 2004; Osborne et al., 2011), and these will be discussed in more details 

later in this chapter. Because of the subsequent collisions among the nuclei themselves 

and between the nuclei and the particles, these nuclei usually grow by different 

mechanisms: layering, where a small particle or granule sticks with a large granule to 

form a larger one, and coalescence, where two similar in size granules agglomerate to 

form a single larger one (Dhanarajan and Bandyopadhyay, 2007; Iveson and Litster, 

1998; Litster and Ennis, 2004; Van den Dries et al., 2003; Wauters et al., 2002). As a 

result of the compression force, which is due to the collisions among the granules 

themselves and between them and the vessel wall, consolidation occurs where the 

porosity usually decreases by squeezing out air (Iveson and Litster, 1998; Wauters et 

al., 2002). Breakage and attrition mechanisms, which also take place because of the 

collisions, are the reverse processes of the coalescence and layering, respectively. To 

elucidate further, in attrition, small particles break out of a larger granule, whereas in 

breakage, the granule breaks into two or more quite similar in size granules 

(Dhanarajan and Bandyopadhyay, 2007; Litster and Ennis, 2004; Liu et al., 2009; 

Reynolds et al., 2005; Van den Dries et al., 2003; Wauters et al., 2002).  

These three main mechanisms are not as simple as they may seem at first 

glance, because it is simply unknown when a collision between two granules happens, 

which of these mechanisms will take place (Braumann et al., 2007; Darelius et al., 

2006; Liu et al., 2000; Poon et al., 2008; Ramachandran and Barton, 2010; Verkoeijen 

et al., 2002). Moreover, the complex nature of the interaction among these three 

mechanisms makes the prediction, or even the explanation, of the granulation 

behaviours and hence the properties difficult tasks, especially, when it is very difficult 
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to monitor such a process on-line (Iveson et al., 2001; Litster and Ennis, 2004; Litster 

and Ennis, 1998). 

2.2.3 The Granulation Parameters  

 The properties of the granules are highly sensitive to a set of input parameters. 

A reasonably good understanding of the process has been achieved by understanding 

the effects of these parameters on the properties of the granules as well as on the 

granulation mechanisms, where changing one of these parameters can make one of the 

granulation mechanisms dominates the other ones leading to different granule 

properties (Benali et al., 2009; Chitu et al., 2011; Mangwandi et al., 2011; 

Rahmanian et al., 2009; Tu et al., 2009;). In general, the input parameters can be 

classified into three types, namely; process, formulation and equipment parameters, as 

listed in Table 2.1 (Faure et al., 2001; Guo et al., 2011; Rahmanian et al., 2009). 

Among all the input parameters, the impeller speed, the binder properties and its 

content, the particle size, the granulation time, and the granulator design are considered 

to be the most crucial variables in the HSG process (Badawy et al., 2000; Huang et al., 

2010; Mangwandi et al., 2015).  

Table 2.1. The three types of the granulation input parameters. 

Process Parameters Formulation Parameters Equipment Parameters 

 Impeller speed 

 Chopper speed 

 Temperature 

 Granulation time 

 Mixing time 

 Bowl load 

 

 Amount of liquid 

 Type of binder 

 Density 

 Particle size distribution 

 Solubility 

 Flow properties 

 Humidity 

 Viscosity   

 Design of the bowl 

 Design of the impeller 

 Design of the chopper 

 The number of impeller 

blade 

 Bevel angle 

 Method of binder addition 
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 Although some of the relationships between the input parameters and the 

properties of the granules seem to be incompatible, for instance the relationship 

between the impeller speed and the granule size, where some researchers proved that 

it is direct (Schaefer et al., 1990), whereas other researchers proved that it is an inverse 

relationship (Knight et al., 1998; Schaefer et al., 1986), significant advances in the 

understanding of the granulation process have been achieved. However, the need for 

further understanding of the evolution of the granules during the granulation process 

is required, as well as having a quantitative representation of such an understanding 

(Bjorn et al., 2005; Bouwman et al., 2006; Darelius et al., 2006; Faure et al., 2001; 

Guo et al., 2011; Ramachandran and Barton, 2010; Saito et al., 2011; Van den Dries 

and Vromans, 2004). 

2.2.4 The Modelling Paradigms 

 A significant amount of research has hitherto focused on the modelling of the 

granulation processes, in order to provide the required understanding of the granulation 

mechanisms, to predict the properties of the granules, and to take a step towards the 

development of control strategies for such a process (Bjorn et al., 2005; Hapgood et 

al., 2009; Liu et al., 2013; Mort, 2005; Ramachandran et al., 2009). Because of the 

lack of associated physical equations that can be used to describe the granulation 

processes, the models that have been proposed in the related literature are either 

empirical or semi mechanistic models such as PBMs and regime maps (Hapgood et 

al., 2003; Iveson et al., 2001; Liu et al., 2000; Ramachandran and Barton; 2010; 

Ramaker et al., 1998).   

A regime map is one of the useful techniques that has been used to describe the 

granules, and also to provide the required understanding of the process at the micro 
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level. For instance, a growth regime map was presented (Iveson and Litster, 1998). 

Figure 2.4 shows such a map, where the granulation behaviours are represented as a 

function of the deformation number, which represents the ratio of the impact kinetic 

energy to the absorbed energy, and the maximum pore saturation. 

It has been observed that different growth behaviours can take place inside the 

granulator: (i) steady growth, as the name indicates, the granules grow steadily with 

time, where the weak granules coalesce by collisions; (ii) induction growth where slow 

growth is usually followed by rapid growth (Iveson and Litster, 1998; Vonk et al., 

1997); (iii) nucleation behaviour where the growth of the nuclei is very limited because 

the amount of the binder is insufficient, (iv) crumb behaviour takes place when the 

contents are too weak to produce granules that are strong enough to resist the applied 

compression force, and (v) over-wetting where slurry is formed because the amount of 

the binder is more than the required amount (Hoornaert et al., 1998; Iveson et al., 2001; 

Ramaker et al., 1998). Regardless of the growth behaviour that may take place inside 

 

 

Figure 2.4. The growth regime map (Iveson and Litster, 1998). 
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the mixer, the maximum size of the granules that can be obtained is limited, this being 

due to the equilibrium between the growth and the breakage rates (Ramaker et al., 

1998; Reynolds et al., 2005). The quantitative boundaries of the regime map were 

defined based on experimental results (Iveson et al., 2001), where it has been reported 

in the open literature that these boundaries depend mainly on the properties of 

materials, the applied force and temperature (Tu et al., 2009). 

Since all the growth behaviours depend on the wetting and nucleation 

mechanisms, a nucleation regime map was previously proposed (Hapgood et al., 

2003). Such a map is a function of the dimensionless spray flux, which is a function 

of the droplet size, the flow rate, and the powder bed in the spray zone, and the 

dimensionless droplet penetration time, which is the ratio of the penetration time to 

the circulation time, which is the time the powder takes to leave and return again to 

the spray zone (Hapgood et al., 2003). At low spry flux and fast penetration time, one 

droplet forms a nucleus and, as a result, the size distributions of both of them are 

correlated, this represents the ideal nucleation conditions, the so-called the drop 

controlled regime. If any of these criteria cannot be met, then the droplets accumulate 

in the powder surface where they are usually broken by the mechanical mixing and 

agitation forces, the so-called the mechanical dispersion regime. In the mechanical 

dispersion regime, the size distributions of the nuclei and the droplets are not 

correlated. Intermediate regime occurs when both of the previously stated regimes play 

a role in the nuclei formation (Iveson et al., 2001). 

In general, the regime maps help to identify the dominant mechanism using 

simple parameters, hence, these maps can be used as scaling-up approaches (Hapgood 

et al., 2003). However, one cannot quantitatively predict the properties of the granules. 
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To elucidate, it is difficult to anticipate the change in the granules’ properties when a 

change in one of the input parameters takes place (Iveson et al., 2001). Moreover, these 

maps consider the change in granule size only and ignore the other properties of the 

granules such as shape, porosity and strength (Iveson and Litster, 1998; Tu et al., 

2009).  

In the related literature, there are many other approaches that have been utilized 

to model and represent the granulation process. The modelling paradigms that have 

been developed and applied are either data-driven (e.g. neural networks) or physical 

based models (e.g. PBMs) (Bjorn et al., 2005; Braumann et al., 2007; Mansa et al., 

2008; Miyamoto et al., 1997; Ramachandran and Barton, 2010; Sanders et al., 2003; 

Watano et al., 1997; Yu et al., 2015). These approaches will be discussed in more 

details in later chapters.  

2.3 Summary  

Granulation, as an enlargement process, has been extensively utilized in 

different industries including, but not limited to, chemical, mineral, agriculture, food, 

and pharmaceutical industries, in order to improve the properties of a powder and 

facilitate the downstream processes. This may be the main reason behind the huge 

body of research that has hitherto been devoted to the understanding and the modelling 

and simulation of such a process. However, granulation remains an art more than a 

science where neither the granulation behaviour nor the associated properties can be 

predicted well in advance, leading, as a result, to inefficient operations and high 

recycling ratios (waste). Among all the granulation processes, HSG has been 

extensively used because of its short processing time due to the fast growth and 

densification processes. 
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In this chapter, several studies that have been presented in the related literature 

were briefly summarized. Some of these studies have been devoted to the 

understanding of the granulation process and its three main mechanisms, and the effect 

of the different input parameters on the final properties of the granules produced. Other 

studies have been directed at the modelling and simulation of such a process. Various 

modelling approaches have been proposed in the open literature, these approaches are 

either data-driven or physical based paradigms. More details about these paradigms 

will be presented in later chapters.  

Various data and physical based models for the granulation and tabletting 

processes will be developed, as we shall see in the subsequent chapters. In the next 

chapter, a new modelling framework called an integrated network will be developed 

to represent both the granulation and the tabletting processes.   
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Chapter 3 

Predictive Modelling of the Granulation 

and Tabletting Processes Using a Systems-

Engineering Approach3      

3.1 Introduction 

As mentioned in the previous chapter, many research studies have focused on 

the understanding of the granulation and the tabletting processes (Benali et al., 2009; 

Bouwman et al., 2006; Chitu et al., 2011; Mangwandi et al., 2011). In the related 

literature, one can notice that the focus was and will always be on the granulation 

process, this being due to the fact that such a process is considered to be the most 

difficult phase of the whole production line. Once the granulation process can be 

successfully modelled and predicted, the development of a modelling framework for 

the tabletting process will become an easy task. Therefore, the main focus in this 

chapter, and in the subsequent chapters, is on the granulation process.  

                                                           
3 The content of this chapter is published in “AlAlaween, W.H., Mahfouf, M., Salman, A.D., 2016. Predictive modelling of 

the granulation process using a systems-engineering approach. Powder Technology. 302, 265-274”.  
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In general, a deeper understanding of the granulation processes either via data, 

expert knowledge and/or laws of physics should pave the way for an effective and 

robust modelling framework to predict the associated behaviours. Several studies have 

been devoted to the modelling of the granulation processes, but because of the lack of 

associated physical equations that should describe these processes, such models are 

normally either empirical or semi mechanistic models (Bjorn et al., 2005). As already 

stated in Chapter 2, a regime map has been used to describe the granulation 

mechanisms, namely; wetting and nucleation, growth and consolidation, and breakage 

and attrition (Hapgood et al., 2003; Iveson and Litster, 1998). Although it was not fully 

able to represent the associated mechanisms and the properties quantitatively, a 

comprehensive understanding of the granulation processes at the micro-level was, 

however, reached (Tu et al., 2009). In addition, PBMs, by which the rate of change in 

the number, mass, or volume of the granules during the process is investigated, have 

been used to predict the properties of the granules and the granulation behaviour 

(Immanuel and Doyle III, 2005; Liu et al., 2013; Poon et al., 2008; Sanders et al., 

2003). Various granules’ properties and granulation mechanisms have hitherto been 

investigated. One of the difficulties in carrying-out the population balance based 

modelling lies in the consideration of all interactions among the granulation 

mechanisms which are fundamental requirements necessary for shaping the properties 

of the granules (Iveson, 2002). To characterize such interactions, an integration 

between a multi-dimensional PBM and a stochastic method (e.g. Monte Carlo) has 

been proposed (Braumann et al., 2007). In addition, the number of the properties that 

can be monitored using such a technique is limited, with up to three properties only 

being examined in most published research papers and books. In fact, finding a 
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solution can even prove to be a difficult exercise when more granules’ properties be 

included (Iveson, 2002).  

With the recent advances in computing power, data based modelling 

approaches have been utilized to model the granulation processes, where the main aim 

is to find a mapping between a set of inputs and outputs instead of deriving the real 

physical equations (Bishop, 1995). Linear regression models have been employed to 

predict the properties of granules and to find the optimal set of input parameters 

(Miyamoto et al., 1997; Westerhuis et al., 1997). Such modelling paradigms are, in 

fact, incapable of accounting for the sophisticated nonlinear relationships or even the 

complex interactions among the input parameters that control the granulation 

processes (Bishop, 1995). Artificial neural networks (ANN) and fuzzy systems have 

been investigated previously to predict the properties of granules and to scale-up the 

granulation processes (Mansa et al., 2008; Murtoniemi et al., 1994; Watano et al., 

1997; Yu et al., 2015). However, because these so-called soft-computing techniques 

represent powerful interpolators, there exist no guarantees that they will perform well 

beyond the training range (Bishop, 1995). Although these techniques have been 

extensively employed in various other equally challenging areas (e.g. industrial, 

academic, and medical) where their effectiveness and efficiency have been 

demonstrated (Chen et al., 2015; Datta et al., 2015; Kim et al., 2008), they have not 

been well exploited to deal with the challenges and uncertainties in the granulation 

processes. The reason for this relates to the availability of meaningful data/information 

needed to derive effective predictive models for granulation. Consequently, these 

techniques and other data-driven approaches can represent a promising development 

in dealing with the problems surrounding the granulation processes if meaningful 

information can be extracted from the available data. 
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In this chapter, a modelling framework which includes the idea of an integrated 

network is proposed in order to extract meaningful information from a conservative 

number of granulation data, which were collected from a series of laboratory 

experiments, where the main motivation behind such a framework is to achieve a 

satisfactory model performance exploiting such a limited amount of real (systematic) 

data. In order to improve the model performance, the network-based error predictions 

are characterized using a GMM to account for any behaviour deemed of a stochastic 

nature.  

3.2 The Experimental Work 

In order to develop the modelling frameworks to describe and simulate the 

HSG and the tabletting processes, a set of laboratory-scale experiments were 

conducted. The experimental work is illustrated in Figure 3.1.  

3.2.1 The Granulation Process 

Calcium Carbonate (CaCO3, D50=0.085mm) was granulated using a high shear 

Eirich mixer (1 Litre vertical axis granulator with a top-driven impeller, 

Maschinenfabrik Gustav Eirich GmbH & Co KG, Hardheim, Germany). Polyethylene 

Glycol (PEG 1000) with a melting point of approximately 40ºC was used as a binder. 

Before the start of the granulation experiment, the binder was melted, and the powder 

was pre-heated to approximately 35oC to make sure that the binder would not solidify 

before the granulation process. The binder was poured-in on the powder bed while 

both the vessel and the impeller were rotating in the same direction (clockwise). For 

all experiments, the binder addition lasted for approximately three minutes.  
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The Eirich granulator is equipped with a scrapper and impellers with different 

shapes. It is worth mentioning at this stage that only two impellers were used in this 

research, as shown in Figure 3.2; the two impellers not being in the centre of the 16cm 

diameter vessel.  

 

 
 

Figure 3.1. Flow diagram of the experimental work. 
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In this research work, the impeller shape is considered as an input variable in 

addition to three other variables, namely; impeller speed, granulation time and liquid 

to solid (L/S) ratio, as listed in Table 3.1. The speed of the vessel was kept constant at 

170 rpm. The levels of each variable were defined by conducting a set of trial 

experiments. Although, there are many parameters that may affect the granulation 

process, the aforementioned ones are the most crucial parameters for the HSG process 

using specific materials (Briens and Logan, 2011; Chitu et al., 2011; Fu et al., 2004; 

Guo et al., 2011; Litster and Ennis, 2004; Rahmanian et al., 2009). 

Statistical correlation analysis was performed between the investigated input 

parameters and the properties of the granules, where the size was represented using the 

three diameters: D10, D50 and D90. Reasonable correlation coefficients among most of 

them are shown in Table 3.2, even though some parameters have different correlation 

values between the two types of the impeller, for example the relationship between the 

 

 

 

Figure 3.2. CAD drawing of the impeller types (a) impeller type I, bin impeller, 

and (b) impeller type II, star impeller (Reproduced with Permission from 

Maschinenfabrik Gustav Eirich GmbH & Co KG., Hardheim, Germany, January 

2017). 
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granulation time and porosity using impeller type I is stronger than the same 

relationship when impeller type II was used. By using the analysis of variance 

(ANOVA), it was found that the impeller type, as an input variable, has an effect on 

the properties of the granules, where the P-value is less than 0.05.  

 

The granulation experiments were carried-out based on a full factorial design 

of experiments resulting in 108 experiments. Once the granulation experiment was 

completed, the granules were left at room-temperature to allow the binder to solidify. 

The size of the granules was then measured using the Retsch Camsizer (Retsch 

Technology GmbH, Haan, Germany).  The porosity and the binder content of the 

granules were measured for different size classes in the size range (180-2000µm) using 

a Pycnometer (Fu et al., 2004) and the method discussed in (Knight et al., 1998), 

respectively. It is worth mentioning at this stage that each measurement was repeated 

three times. Figure 3.3 shows the data (i.e. experiment) distributions using two 

variables at a time. It is noticeable that the collected data are sparse and limited. This 

is considered as one of the difficulties in modelling the granulation process, especially 

for some industrial applications, including the pharmaceutical industry, where the 

acquiring of such data alone can be an expensive enterprise. 

Table 3.1. The inputs and outputs of the granulation process. 

Inputs  Inputs’ levels  Outputs 

Impeller speed  1000, 2000… 6000 (rpm)  Size (µm)  

Granulation time  6, 10, and 15 (min)  Binder content (%)  

L/S ratio (w/w) 13, 14, and 15 (%) Porosity (%)  

Impeller shape  Two different shapes    

 
 



33 
 

 

  

Table 3.2. The correlation coefficients*. 

 Outputs Impeller type I Impeller type II 

 Size Binder 

content** 
Porosity** 

Size Binder 

content** 
Porosity** 

 Inputs D10 D50 D90 D10 D50 D90 

L/S ratio 0.53 0.36 0.14 0.23 -0.21 0.49 0.46 0.37 0.61 0.02 

Granulation time 0.21 0.19 0.09 -0.19 0.32 -0.30 -0.27 0.02 -0.2 -0.12 

Impeller speed  0.04 -0.27 -0.35 0.15 -0.04 -0.07 -0.36 -0.64 0.21 -0.1 
* Pearson correlation coefficient measures the strength and the direction of a linear relationship between two variables.   

** The binder content and porosity values for the size class (500-710µm) are presented. 
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Figure 3.3. The density distributions of the experimental data. 
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3.2.2 The Tabletting Process 

Once the granules produced were classified, the granules in the size ranges 

(500-710μm) and (710-1000μm) were compressed using a 10mm diameter set of die 

and punch to produce tablets. All the operating conditions (e.g. compression force and 

speed) of Instron (3369 dual column, Buckinghamshire, UK) were kept constant. Thus, 

only the effects of the properties of the granules were investigated. Finally, the strength 

of the tablets produced was measured using Zwick/Roell Z0.5 (Zwick/Roell, 

Germany). It is worth emphasising at this stage that five tablets were produced from 

each size class for each experiment, and the average value was used in this research. 

3.3 The Integrated Network 

3.3.1 The Integrated Network: Model Development  

In the last 2 decades or so, the theme of computational intelligence has been 

extensively reflected in several disciplines such as medicine and metallurgy (Nunes et 

al., 2005; Vertyagina and Mahfouf, 2014; Zhang et al., 2015), where the observed data 

are utilized to establish data-driven models that can replace or complement physical 

based models where they simply do not exist or they may be too complex to elicit. 

Therefore, the core of such type of modelling rests with process data (Yang et al., 

2011). In the case of the granulation process, the difficulty stems from the lack of 

representative information. In addition, the complex input/output relationships may 

not be captured by the available amount of sparse data. As stated previously, an 

integrated network as a data-driven model is proposed in this chapter. Developing such 

a structure does not only consist of mapping the inputs to the outputs, but also 

discovering knowledge that may not be easy to extract by the already available 

approaches.  
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The idea of the so-called ‘network’ relies on having a number of models with 

different structures, thus, (i) complex input/output relationships could be captured 

because of the number of functions and weights included (Opitz and Maclin, 1999), 

(ii) models with different structures could play a complementary role in modelling the 

possible patterns of the process, and (iii) training the data through two stages could 

help to extract the associated knowledge required for accurate property predictions 

(Gaffour et al., 2010).  

Figure 3.4 depicts the integrated network architecture for multi-input single-

output (MISO). The network relies on predicting the final output using two modelling 

phases. In phase I, the N inputs (xn) and the target output (yT) are used to train M models 

with different structures. These models can be neural networks or neuro-fuzzy models. 

The predicted outputs from each model (yP1, yP2… yPM) and the target output (yT) are 

 

 

 

Figure 3.4. The architecture of the integrated network. 
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then utilized to train another model in phase II to lead to the final predicted output          

( Py ), where this model should be capable of modelling linear and non-linear 

relationships to extract the hidden information and to capture the complex 

relationships in the original data. The efficiency of the RBF network has been proved 

via several application areas (Bishop, 1995; De Alejandro Montalvo et al., 2015; 

Ebtehaj et al., 2016; Gaffour et al., 2010), hence, it is employed in this research work 

to model the HSG and tabletting processes. 

Generally, an RBF network consists of three layers, namely; an input layer, 

basis functions acting as a hidden layer, and an output layer. Each basis function is a 

function of the radial distance from a defined centre. These functions are usually used 

to map an input vector to its corresponding target. Thus, the predicted output is 

presented as follows (Bishop, 1995): 

0

1

( ) ( )
I

P i i

i

y x w x w


                                                                                                         (3.1) 

where wi and w0 are the coefficient connecting the ith basis function to the output 

neuron and the bias, respectively, and 
i  is the basis function. A popular selection of 

such a function is Gaussian, this being due to its ability to approximate any function 

with a reasonable accuracy using a sufficient number of Gaussian components 

(Bishop, 1995). The RBF network is also used in phase II. Analytically, the two phases 

of the integrated network are simply a combination of composition and superposition 

of the basis functions. To prove the capabilities of the presented structure and by using 

a single RBF model in the two phases, the final predicted output can then be written 

in the form: 
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                                                                              (3.2) 

the parameters in (3.2) are as defined previously, where the superscript number is used 

to distinguish the parameters of the second phase from the ones used in the first phase. 

Assuming that all models are optimized in terms of the number of basis functions and 

the connecting coefficients, the composite function presented in (3.2) is able to 

minimize the error that is the difference between the predicted output and the target. It 

has been proved that the composite function is dense in a convex data space (Cybenko, 

1988; Mateljevic and Pavlovic, 1995), which means that the difference between the 

predicted and the target values would be smaller.  

Although, the number of models in the first phase has been neglected in the 

discussion above, it however plays a crucial role in the proposed structure. By 

including the M models, the inner function of (3.2) could be written as a superposition 

of the basis function. In a similar way, the theorem that has been presented in 

(Cybenko, 1989; Mhaskar and Micchelli, 1992) demonstrates that the approximated 

function is also dense in the data space. Thus, the combination of the superposition 

and composition of the basis functions could considerably improve the model 

performance. 

The scaled conjugate gradient (SCG) algorithm is utilized with the 

backpropagation network to determine the network parameters for both phases 

(Bishop, 2006; Bishop, 1995). The root mean square error (RMSE) is usually 

employed to select the best network structure (i.e. the number of basis functions) that 

achieves a trade-off between a good training and generalization capability (Bishop, 
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2006; Bishop, 1995; Gaffour et al., 2010; Yang et al., 2003). These steps are shown in 

Figure 3.5. 

 
 

 

 

Figure 3.5. Flow chart of the integrated network. 
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3.3.2 The Integrated Network: Results and Discussion  

A. The Granulation Process 

A single RBF network was developed here to model the HSG process using a 

program written using Matlab software by the author of this thesis. The data were 

divided into two sets: training and testing. In general, the training data set allows the 

model to learn the relationships among the granulation inputs and the outputs, while 

the testing data set assesses its generalization performance. The division of the data 

into these sets has a significant influence on the performance of the model; by the 

division of the data one means not only the number of data points in each set but also 

their distribution in the space under study. Different division methods have hitherto 

been investigated, including the 10-fold cross-validation technique, but it has been 

found that dividing the data randomly into a training set (5/6) and a testing set (1/6) 

was the best methodology in order to develop a meaningful model with a reliable 

performance (Bishop, 2006). The number of RBFs that was selected corresponds to 

the minimum error evaluated via the RMSE. The SCG optimization algorithm was 

employed for training.  

For a single size class (710-1000µm) and using 8 RBFs, the performance of the 

RBF network for the binder content is shown in Figure 3.6, with a RMSE (training, 

testing) = [0.916, 0.958]. The coefficient of determination value is R2 (training, testing) 

= [0.54, 0.31]. These performance measures indicate that the RBF-based model on its 

own was not able to capture the complex input/output relationships and to achieve 

adequate generalization capability. In a similar manner, the results obtained for the 

other variables are summarized in Table 3.3, where the size is represented by its three 

diameters: D10, D50, and D90.  
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To improve the prediction performance of the RBF network, an ensemble 

model was implemented (Opitz and Maclin, 1999), where the outputs of multiple 

networks are combined, commonly, by a simple averaging method (Zhao and Zhang, 

2011).  Ten RBF networks were initialized using a different number of basis functions 

each time, as listed in Table 3.3, and different values for the connecting coefficients.  

 

 

 

 

Figure 3.6. The RBF model for the binder content: 

(a) training, (b) testing (with 10% bands). 
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Table 3.3. The performances of the models represented by RMSE and R2. 

Output Binder content 

(710-1000µm) 

Porosity 

(710-1000µm) 

Size (mm) 

  D10 D50 D90 

Models   Train Test Train Test Train Test Train Test Train Test 

RBF 

R2 0.54 0.31 0.44 0.27 0.53 0.31 0.64 0.33 0.58 0.41 

RMSE 0.92 0.96 1.83 2.82 0.15 0.21 0.26 0.72 1.12 1.01 

No. BFs 8 4 6 9 8 

RBF with bias 

compensation 

R2 0.64 0.55 0.54 0.15 0.68 0.34 0.72 0.34 0.65 0.37 

RMSE 0.81 0.82 1.67 3.05 0.12 0.19 0.23 0.72 1.03 1.07 

No. GCs 9 8 5 8 9 

Ensemble 

R2 0.59 0.45 0.63 0.43 0.73 0.72 0.77 0.77 0.84 0.78 

RMSE 0.99 0.67 1.71 1.82 0.12 0.08  0.31 0.2  0.81  0.73 

No. BFs 
(10, 5, 1, 4, 1, 3, 

7, 9, 5 and 6) 

(6, 4, 5, 15, 11, 7, 

13, 4, 3 and 6) 

(4, 11, 7, 4, 5, 10, 

9, 13, 3 and 3) 

(15, 13, 10, 15, 7, 

6, 3, 4, 7 and 11) 

(12, 11, 14, 6, 9, 

15, 4, 2, 9 and 3) 

Ensemble with 

bias 

compensation 

R2 0.63 0.61 0.67 0.29 0.79  0.62 0.76 0.8 0.86 0.79 

RMSE 0.87 0.57 1.57 1.99  0.11  0.11  0.28 0.18  0.68  0.69 

No. GCs 9 8 9 9 5 

Integrated 

network 

R2 0.75 0.74 0.74 0.74 0.86 0.9 0.83 0.87 0.92 0.89 

RMSE 0.62 0.9 1.31 1.91 0.08 0.04 0.23 0.14 0.45 0.67 

No. BFs (2) 10 8 6 6 8 

Integrated 

network with bias 

compensation 

R2 0.82 0.74 0.76 0.74 0.87 0.92 0.86 0.84 0.93 0.89 

RMSE 0.52 0.86 1.26 1.86 0.08 0.04 0.21 0.18 0.41 0.66 

No. GCs 10 6 6 7 8 

1. ‘No. BFs’ stands for the number of basis functions. 

2. ‘No. GCs’ stands for the number of Gaussian Components. 

3. ‘No. BFs (2)’ represents the number of basis function in the second phase of the integrated network where the 10 models in the first phase have the same structure as the 

ones in the ensemble model. 
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The prediction performance for the ensemble model is superior to that of the 

single network above, with an improvement of 28% in RMSE for the testing data set. 

Furthermore, the new integrated network structure based on the 10 RBF models in the 

first phase, having the same structure as that of the ensemble model, and a single RBF 

model in the second phase was established. The integrated network performance for 

the binder content (710-1000µm) is R2 (training, testing) = [0.75, 0.74], as shown in 

 

 

 

Figure 3.7. The integrated network based on 10 RBF models for the 

binder content: (a) training, (b) testing (with 10% bands). 

 

 

 



44 
 

Figure 3.7, while examples of the predicted and the experimental distributions for all 

the investigated properties are presented in Figure 3.8. 

 

 

 

Figure 3.8. The integrated network: the predicted (o) and the experimental (*) distributions 

for the size, binder content and porosity (a) using impeller type II, speed=2000rpm, L/S ratio 

(w/w)=14% and granulation time=10min; (b) using impeller type II, speed=6000rpm, L/S 

ratio (w/w)=15% and granulation time=15min; (c) using impeller type I, speed=4000rpm, 

L/S ratio (w/w)=13% and granulation time=6min. 
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The obtained results prove the ability of the integrated network in dealing with 

the difficulties and complexity of the granulation behaviour. The R2 value for the 

integrated network is approximately twice the value for the single RBF network, 

whereas the overall improvement over the ensemble model is approximately 34%. 

B. The Tabletting Process 

The integrated network was also utilized to represent the tabletting process. An 

integrated network based on 10 RBF models, which have different structure (i.e. 

number of basis functions), in the first phase and a single RBF model in the second 

phase was established. The properties of the granules and the strength of the tablets 

were used as the inputs and the output of the integrated network, respectively.  

The model performance for the tablet strength is presented in Figure 3.9, with 

a R2 (training, testing) = [0.75, 0.74]. The predictive performance for the strength was 

actually worse than the overall performance for the granule size, but better than the 

overall performances for the binder content and porosity, as listed in Table 3.3. Such 

a relatively low performance was actually expected because of the uncertainties in both 

the inputs and the output of the model that was developed for the tabletting process. 

To elucidate further, the heterogeneous distributions of the binder content and air (i.e. 

porosity) of the granules seemed to affect only the outputs of the model that represents 

the granulation process, and both the inputs and the output of the model that represents 

the tabletting process. It is also worth mentioning at this stage that the performance of 

the integrated network measured by the R2 value was approximately four times and 

twice the performances of the single RBF model and the ensemble one, which was 

developed using 10 RBF networks, respectively.  Thus, these models were not utilized 

to model the tabletting process. 
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3.4 Error Modelling Using the Gaussian Mixture Model  

3.4.1 Error Modelling Using the Gaussian Mixture Model: Model 

Development 

Occasionally, the error can play a significant role in refining the model by 

eliciting the information that may be hidden because of the implicit assumption that 

 

 

 

Figure 3.9. The integrated network for the tablet strength: 

(a) training and (b) testing (with 10% bands). 
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the error is normally distributed. Different error models have already been proposed 

previously (Mauricio, 2008; Oliveira and Pedrycz, 2007; Yang et al., 2012). The 

model that depends on the GMM has been demonstrated to be an efficient model when 

it comes to the error characterization. Due to the inherent complexity of the granulation 

and tabletting processes with highly nonlinear behaviours and measurement 

uncertainties, the GMM is selected, in this research work, to provide a deeper insight 

into the probability density function. Moreover, such a model has the ability to 

approximate any probability density function with a reasonable accuracy using a 

sufficient number of Gaussian components, which can lead to the optimal model 

refinement (Bishop, 2006; Yang et al., 2012). For the granulation process, Figure 3.10 

presents a schematic representation of the incorporation of the integrated network and 

the error characterization using the GMM. 

 

 

Figure 3.10. The incorporation of the integrated network and the error 

characterization framework. 
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The GMM, in general, is a stochastic model that can be represented as a linear 

combination of Gaussian components, where each component has its own mean and 

covariance. For a predefined number of Gaussian components (J), the GMM can 

simply be described as follows (McLachlan, 1988): 

   
1

| ,
J

e e e e

j j j

j

p x x 


  
                                                                                (3.3) 

where xe is the error data which contain the selected inputs and the error vector. The 

number of inputs that will be included in the error characterisation should be small 

(Yang et al., 2012), since the main effect of the inputs was considered in the integrated 

network. The parameters 
e

j , 
e

j , j  are the mean, the covariance, and the mixing 

coefficient of the jth Gaussian component, respectively. The superscript e is used to 

distinguish the parameters that are defined in the error characterisation model. To 

define the optimal values of these parameters, the log likelihood function should be 

maximized (Bishop, 2006). Therefore, the optimal parameters are given by the 

following set of equations: 
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where ( )djz  is the probability that the dth data point belongs to the jth Gaussian 

component, and zdj is a J-dimensional latent variable, which is equal to 1 when the dth 

data point is covered by the jth component where the other elements are zero. Deriving 

the analytical solution for these equations is a rather ‘tricky’ exercise but suffice to say 

that one of the most common methods for finding a solution for such a set of equations 

is the Expectation Maximization (EM) algorithm (McLachlan and Krishnan, 2008). 

Starting by carefully initializing the parameters using K-means clustering, ( )djz  value 

can be estimated using the initialized parameters, the so called E-step. Accordingly in 

the M-step, the ( )djz value is utilized to re-evaluate the parameters. The revised 

parameters are then utilized to update the ( )djz  value. Such a procedure is reiterated 

until the algorithm converges, or alternatively the maximum number of iterations is 

reached (McLachlan and Krishnan, 2008).   

However, the number of Gaussian components (J) has to be defined. The 

Bayesian information criterion (BIC) is adopted in this paper as a performance 

criterion for selecting the best number of components (Simon and Girolami, 2012). 

Such a choice is motivated by the fact that such a criterion can lead to a better structure 

(Yang et al., 2012).  Finally, the conditional error mean, which is an indication of the 

bias and its value, and the conditional standard deviation are calculated using 

numerical methods (Yang et al., 2012). Generally, these methods are considered to be 

computationally taxing, however, it seems not to be the case in this research work, 

particularly with a small data set (Leader, 2004). Adding the conditional mean to the 

predicted output is a compensation for the bias, which can improve the prediction 

performance, whereas the conditional standard deviation is used to set the confidence 
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level (Yang et al., 2012). Figure 3.11 summarizes the steps of the error characterization 

model. 

 

 

 

Figure 3.11. Flowchart of the error characterisation model. 
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3.4.2 Error Modelling Using the Gaussian Mixture Model: Results and 

Discussion  

A. The Granulation Process 

In order to improve the performance of the model by characterising the error 

employing the GMM, two granulation input variables out of a total of four were 

included. The combination that gave the maximum error compensation (i.e. the 

minimum RMSE) was finally chosen. Following the steps that were summarized in 

Figure 3.11 and using a program the author wrote using Matlab software, the impeller 

speed and the granulation time were utilized in addition to the error vector that resulted 

from the integrated network to develop the error model for the binder content. The 

selection of these parameters was expected, since the effects of these parameters 

appear to be incompatible as reported by previous research (Keary and Sheskey, 2004; 

Schaefer et al., 1990). This may perhaps relate to the interaction among the parameters 

which may result in the unpredictable behaviour of the granulation process (Knight et 

al., 1998; Schaefer et al., 1990; Schaefer et al., 1986). The training data were 

employed to train the GMM whereas the testing data were kept hidden. The best 

number of Gaussian components for the binder content was 10. Figure 3.12 shows the 

prediction results after bias compensation for the binder content (710-1000µm) with a 

95% confidence interval. Examples of the predicted and the experimental distributions 

for all the investigated properties are presented in Figure 3.13.  

The output predictions with bias compensation presented in Figure 3.12 

elucidate a satisfactory performance, where most of the predictions (96%) are laying 

within the 95% confidence interval. The overall improvement that was gained by 

employing the GMM was of approximately 14% in the RMSE which is due to the 
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ability of the GMM to capture the inherent undetected stochastic behaviour of the 

granulation process. Furthermore and similarly to the examples presented in Figure 

3.13, the predictive performances for all experiments demonstrate the ability of the 

integrated network followed by the GMM to predict the properties successfully and to 

implicitly compensate for the assumptions that were made about the granulation 

process. The GMM was also adopted to improve the performance of the single RBF 

network and the ensemble model, resulting in a significant improvement for each 

model, as summarized in Tables 3.3 and 3.4, which summarize the overall 

performances for the three properties. However, it is evident that the proposed 

integrated network outperforms these models, even without bias compensation. 

 

 

 

Figure 3.12. The prediction performance using the integrated network for the binder 

content after bias compensation (with a 95% confidence interval). 
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Figure 3.13. The integrated network after bias compensation using the GMM: the predicted 

(o) and the experimental (*) distributions for the size, binder content and porosity (a) using 

impeller type II, speed=2000rpm, L/S ratio (w/w)=14% and granulation time=10min; (b) 

using impeller type II, speed=6000rpm, L/S ratio (w/w)=15% and granulation time=15min; 

(c) using impeller type I, speed=4000rpm, L/S ratio (w/w)=13% and granulation time=6min. 
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Table 3.4. The overall performances of the models represented by R2 and RMSE. 

Model RBF 
RBF with bias 

compensation 
Ensemble 

Ensemble with 

bias compensation 

Integrated 

Network 

Integrated network 

with bias 

compensation 

Output R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

Size 0.5365 0.0098 0.6223 0.0083 0.7077 0.0079 0.7301 0.0073 0.7962 0.0063 0.8783 0.0055 

Binder 

content 
0.4680 1.2792 0.5358 1.2089 0.5235 1.159 0.6182 1.1086 0.7208 1.0618 0.7404 0.9352 

Porosity 0.3699 1.6457 0.4781 1.4253 0.5327 1.2876 0.5586 1.2192 0.7194 1.1802 0.7402 1.0879 
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Table 3.4 lists the results of the models for all the investigated outputs. It shows 

that the overall performances for the binder content and porosity are generally worse 

than the one for the size. The heterogeneity of the granules from the same batch but 

different size classes has been demonstrated in the previous research (Reynolds et al., 

2004; Scott et al., 2000). It has also been shown that the same size granules have 

different values for these properties, such differences may be due to the uncertainties 

in the measurements, the heterogeneity of the same size granules or both (Osborne et 

al., 2011). Such uncertainties and heterogeneity may be the reasons behind the 

relatively lower prediction performances for these properties. Further investigations 

have to be performed to clarify this issue and to consider it in the developed model. 

 

 

 

Figure 3.14. The performance for the binder content for the validation data using the 

integrated network: (a) predicted versus target, (b) with a 95% confidence interval. 
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To prove the effectiveness and efficiency of the proposed integrated network 

in dealing with the challenges and difficulties surrounding the granulation process, the 

network was used to predict the outputs for new granulation data. Thus, 10 new 

experiments were conducted using different input settings, but within the examined 

ranges. The predicted outputs from the integrated network with error correction were 

compared with the measured ones. For the binder content (710-1000µm), Figure 3.14 

(a) shows the performance of the integrated network for the validation data, where the 

R2 (=0.76) is comparable to the one for the testing set for the same property. Most of 

the predictions for the validation data fit properly within a 95% confidence interval, as 

shown in Figure 3.14 (b). Similarly for all the outputs, the performance for the 

validation data is close to the one for the testing data set. Figure 3.15 shows an example 

of the predicted and the experimental distributions for all the investigated properties 

for one of the new experiments, where it is noticeable that the proposed model 

successfully predicted the properties of the granules. 

 

 

 

 

Figure 3.15. The proposed framework: the predicted and the experimental distributions for 

the size, binder content and porosity (using impeller type I, speed=4400rpm, L/S ratio 

(w/w)=13.6% and granulation time=12min). 
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B. The Tabletting Process 

The GMM was also utilized to improve the performance of the integrated 

network that was established to represent the tabletting process. In addition to the error 

residuals, the binder content and porosity were included in the development of such a 

model. Because of the heterogeneous distributions of these two properties, the 

selection of them by the GMM algorithm was expected. The best number of Gaussian 

components was 9.  

 

 

 

Figure 3.16. The incorporated model for the tablet strength: 

(a) training and (b) testing (with 10% bands). 
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The model performance for the strength is R2 (training, testing) = [0.84, 0.82], 

as shown in Figure 3.16. It is worth noting that most of the predictions (85%) lie within 

a 90% confidence interval. By employing the GMM, the overall improvement that was 

gained is of approximately 11% in R2. 

The proposed framework; the integrated network followed by the GMM, was 

also validated for the tabletting process. Tablets were produced from the 10 new 

granulation experiments following the same procedure that was described in Section 

3.2. The integrated network followed by the GMM was utilized to predict the strength 

of these tablets. Then, the strength of the tablets produced was measured using 

Zwick/Roell Z0.5 (Zwick/Roell, Germany). By comparing the predicted strength 

values with the measured ones, it was found that the R2 value is approximately 0.81, 

which is comparable to the one presented above. Thus, such a framework can be used 

to successfully predict the strength of the tablets.  

3.5 Summary 

Modelling the granulation process is not a trivial task because of the complex 

nature of such a process and the lack of physical representation of its behaviour, where 

the modelling approaches of the granulation process that have received the most 

attention have hitherto focused on analytical and numerical based techniques in the 

form of empirical and semi-mechanistic models. Moreover, the limited amount of data 

and its sparsity are considered as compounding difficulties in modelling the 

granulation process using data-driven models, especially for some industrial 

applications, including the pharmaceutical industry, where the acquiring of such data 

alone can be an expensive enterprise. 
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In this chapter, a new integrated network was developed to predict the 

properties of the granules produced by the HSG process and the strength of the tablets. 

The integrated network predicted the outputs by modelling and training the data in two 

consecutive phases. Such a structure was able to extract relevant information from a 

conservative number of data points, it was also able to capture the complex 

input/output relationships in the original data because of the number of basis functions 

and weights involved. Moreover, one of the major obstacles for developing data-driven 

models; defining the best structure, was overcome by using different modelling 

structures in the first phase of the network. The efficiency of the new network was 

demonstrated and validated by accurately predicting the properties of the granules, 

namely; size, binder content, and porosity, and the strength of the tablets. 

Characterizing the resulted error using the GMM was then integrated in the original 

model structure in order to deal with any potential bias in the predicted outputs. Such 

a model was able to reveal the stochastic behaviour which was utilised for further 

model refinement. It was shown that most of the output predictions for all the 

properties of the granules fit adequately within a 95% confidence interval. It was also 

shown that most of the predictions for the strength of the tablets lie within a 90% 

confidence interval.  

The framework efficiency, which is believed to emanate from the integration 

of deterministic and stochastic modelling, was successfully demonstrated in this 

research work. When compared to the computationally expensive models that were 

mentioned previously, for example PBMs that have been developed for the granulation 

process, this modelling framework accurately predicted the properties of the granules 

within a reasonable time.  However, there is a strong demand for improving the 

interpretability of the processes under study, particularly, the granulation one. In 
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addition, there is a strong need to develop a model that can deal with uncertainties in 

both the granulation and the tabletting processes. In the future, it would also be worth 

incorporating the proposed framework with other models such as a FLS, where the 

system is described linguistically in a transparent way that can be easily understood by 

users and therefore ‘owned’. In addition, these models are capable of dealing with 

uncertainties more effectively; by uncertainty here one means not only uncertainties 

in the measurements but also uncertainties which result from the heterogonous 

distributions of the binder content and porosity during the granulation process and, 

consequently, the tabletting one. Moreover, the integration between the data-driven 

models and other physical based ones (e.g. PBMs and CFD) will be advantageous, 

particularly for the ill-defined granulation process, where the former can circumvent 

the limitations of such models (e.g. the number of outputs and the execution time).  In 

contrast to data-driven models, physical based ones can compensate for the limited 

number of data points. Furthermore, incorporating these models would be very 

beneficial for scaling-up processes.  

In the next chapter, a systematic modelling framework incorporating FLSs and 

a modified GMM algorithm will be presented to predict the outputs and also to provide 

a simple understanding of the processes under investigation. 
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Chapter 4 

Transparent Fuzzy Logic based Predictive 

Modelling of the Granulation and 

Tabletting Processes4       

4.1 Introduction 

Generally, the modelling of a wet granulation process has received a 

considerable attention, where the main aim is not only to predict the properties of the 

granules but also to understand the process and its mechanisms. As stated previously, 

the modelling approaches that have been developed to represent the granulation 

process can be classified as either physical based or data based models. One commonly 

used approach is a PBM. In general, PBMs have been implemented to follow the 

evolution of the granules with time (Sanders et al., 2003; Ramkrishna, 2000). A one-

dimensional PBM was typically used to study the granule size (Iveson, 2002). 

                                                           
4 The content of this chapter is published in “AlAlaween, W.H., Khorsheed, B., Mahfouf, M., Gabbott, I., Reynolds, G.K., 

Salman, A.D, 2018. Transparent Predictive Modelling of the Twin Screw Granulation Process using a Compensated Interval 
Type-2 Fuzzy System. European Journal of Pharmaceutics and Biopharmaceutics. 124, 138-146”, “AlAlaween, W.H., Mahfouf, 

M., Salman, A.D., 2017. Development of a predictive framework for a high shear granulation process. AIChE Annual meeting. 

Minneapolis, USA”, and “AlAlaween, W.H., Mahfouf, M., Salman, A.D., 2016. Data-Driven Deterministic and Stochastic 
modelling of the Wet Granulation Process. Joint IFPRI Robert Pfeffer symposium & UK Particle Technology Forum. Guilford, 

UK”. 



62 
 

However, the consideration of the other granule properties is really crucial, where 

these properties can significantly affect the critical quality attributes of the tablets 

produced (e.g. porosity) (Barrasso et al., 2015). Therefore, multi-dimensional PBMs 

have been extensively employed (Paavola et al., 2013; Pinto et al., 2007; Poon et al., 

2008; Sanders et al., 2003). Although the PBMs have provided a deeper insight into 

the granulation process at the micro-level, all the possible interactions among the 

process mechanisms have not been fully considered (Iveson, 2002). Therefore, these 

models have been integrated with various modelling approaches such as Monte Carlo, 

in order to model a greater number of particle properties, and the discrete element 

method (Braumann, 2010; Oullion et al., 2009), in order to model the effect of 

equipment dynamics (Barrasso et al., 2014; Braumann et al., 2007; Shirazian et al., 

2017). Recently, various compartmental models that integrate a PBM and CFD have 

been developed (Chaturbedi et al., 2017; Lee et al., 2015; Mansa et al., 2008; 

Murtoniemi et al., 1994; Watano et al., 1997; Yu et al., 2017; 2015).  

 Intelligent systems associated with data based models, which are simply based 

on intensive computations, have also been implemented to model the granulation 

process (Mansa et al., 2008). Many paradigms such as ANNs with different structures 

and topologies have been utilized to predict the properties of the granules produced 

using different granulation equipment and materials (Mansa et al., 2008; Murtoniemi 

et al., 1994; Watano et al., 1997; Yu et al., 2015). 

 Generally, these modelling paradigms have their own strengths and limitations. 

On the one hand, data-driven models, as powerful interpolators, can simply interpret 

the input/output relationships in a simple way that can easily be implemented. 

Moreover, they can be utilized to monitor more than three granule properties, which is 
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considered to be computationally taxing task for the physical based models (Iveson, 

2002). On the other hand, the physical based models can be utilized on a larger scale 

by using the scaling-up techniques that have been proposed in the related literature (Li 

et al., 2013; Watano et al., 2005). However, none of the presented models can 

systematically deal with the uncertainties present in both the granulation inputs and 

outputs. Moreover, the majority of the presented models assume that the error residuals 

are normally distributed (Mauricio, 2008; Oliveira and Pedrycz, 2007; Yang et al., 

2012). Such an assumption, which is not usually valid, may lead to an unmodelled 

behaviour, which may consequently result in performance deterioration (Yang et al., 

2012). 

The main aim of the research in this chapter is to develop a fast, transparent, 

more accurate and cost-effective predictive modelling framework for the HSG and the 

tabletting processes. For this purpose, modelling frameworks that integrate FLSs, 

namely; type-1 and interval type-2, and a GMM are considered. 

4.2 The Type-1 Fuzzy Logic System 

4.2.1 The Type-1 Fuzzy Logic System: Model Development  

With recent advances in computing power, data-driven models, which include, 

but not limited to, ANNs, fuzzy systems and evolutionary genetic algorithms (Bishop, 

2006; Mendel, 2001; Vose, 1999), have become the type of models that one seeks to 

represent complex processes (Karnik and Mendel, 2001; Mahfouf et al., 2003; Nunes 

et al., 2005; Zhang and Mahfouf, 2011), in particular, those processes where the 

physical model does not exist or it is simply too complex to derive. In spite of the 

powerful algorithms behind these, some of the data-driven approaches such as neural 

networks are referred to as black-box approaches (Bishop, 2006). This is because the 
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mechanism that maps the process inputs into its outputs does not provide users with 

the necessary information to understand the process under investigation. Therefore, a 

FLS has been extensively applied in many research areas such as those associated with 

medical, industrial and academic applications to develop a simple and transparent 

model (Nunes et al., 2005; Salomao et al., 2017; Wang and Mahfouf, 2012; Yang et 

al., 2011; Zhang and Mahfouf, 2011). Moreover, this system, as it is well-known, can 

typically handle uncertainties more efficiently (Mendel, 2001). Generally, the FLS is 

represented by fuzzy sets, which are usually described by membership functions. The 

most common types of the fuzzy sets are type-1 and type-2. A type-1 fuzzy logic 

system (T1FLS) is the one whose rules’ antecedents and consequent are completely 

described by type-1 fuzzy sets. Figure 4.1 depicts the structure of the T1FLS. 

As shown in Figure 4.1, the structure of the T1FLS consists of four 

components, namely; fuzzification, inference, rules and defuzzification. First, a 

fuzzification step represents the process of mapping the crisp inputs (x1, x2 …xn) to the 

 

 

 

Figure 4.1. The structure of the T1FLS. 
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fuzzy input sets (
i

jA ), where 
i

jA  is the ith fuzzy set for the jth variable. The fuzzy sets 

are usually defined by membership functions. The most commonly used membership 

function is the Gaussian one, this being due to the continuity and smoothness of the 

Gaussian function which allow users to use the FLSs as a ‘universal approximator’ 

(Wang and Mahfouf, 2012). Such a membership function can be expressed as follows 

(Mendel, 2001): 

1
( ) exp

2

i

ji

j j i

x m
x



  
    

   

                                                                              (4.1) 

where im and i  are the mean and the standard deviation of the ith set, respectively. In 

general, the inference process combines the defined rules to map the input fuzzy sets 

to the output fuzzy sets. These rules can be provided by experts or can be extracted 

from a collected data set. Both types can be presented as a collection of IF-THEN 

statements, as follows: 

Rulei: IF x1 is 1

iA  … and xn is 
i

nA , THEN y is iB . 

where iB  represents the ith output fuzzy set, when a Mamdani fuzzy system is 

considered (Mendel, 2001). Finally, the output fuzzy set is defuzzified to get a crisp 

one (Mendel, 2001). 

4.2.2 The Type-1 Fuzzy Logic System: Results and Discussion 

A. The Granulation Process 

A T1FLS was utilized to model the HSG process. The collected data were 

divided randomly into two data sets: training (90) and testing (18). The training data 

set, as the name implies, allows the model to learn the relationships between the inputs 
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and the output by extracting informative rules, whereas the testing data set is used to 

validate the model by assessing its generalization capabilities. In order to model the 

HSG process successfully, one should understand the nature of the process input 

variables (i.e. continuous or discrete). In this research work, all the input variables are 

continuous except the impeller shape variable, which is considered as a crisp variable. 

The number of rules that was selected corresponds to the minimum error between the 

predicted and the experimental output evaluated by the RMSE.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. The T1FLS for D50: (a) training, (b) testing 

(with 10% bands). 
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For a predefined number of rules and by using a program the author wrote 

using Matlab software, the model parameters were carefully initialized using the 

hierarchical clustering algorithm (Zhang and Mahfouf, 2011). The model parameters 

were then optimized by employing the steepest descent algorithm with an adaptive 

back-propagation network (Mendel, 2001). 

Using 6 rules, Figure 4.2 shows the model performance for D50. The RMSE 

values for the training and testing sets are 0.31mm and 0.25mm, respectively. It is 

noticeable that the RMSE value for the training set is worse than that for the testing 

set, this can be an indication of a training problem. However, it seems not to be the 

case in this work, where such a difference is due to the D50 values; most of the values 

in the testing set are less than 2mm, whereas, in the training set, some of the values are 

greater than 2mm, thus, the RMSE value for the training set was expected to be 

relatively greater than the one for the testing set. This can be clearly evidenced by 

looking at the values of R2 (training, testing) = [0.69 0.70], where these values are 

comparable. 

Two sample rules out of a total of six are illustrated in Figure 4.3, and their 

corresponding linguistic forms read as follows: 

Rule 1: IF the impeller type is Type I and impeller speed is small and granulation time 

is small and the L/S ratio is small, THEN D50 is small.         

Rule 2: IF the impeller type is Type II and impeller speed is large and granulation 

time is large and the L/S ratio is medium, THEN the D50 is medium.    
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Figure 4.3. The rule base of the T1FLS for D50. 
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Figure 4.4. The T1FLS: the predicted (o) and the experimental (*) 

distributions for the size (a) using impeller type II, speed=2000rpm, L/S ratio 

(w/w)=14% and granulation time=10min, (b) using impeller type II, 

speed=6000rpm, L/S ratio (w/w)=15% and granulation time=15min. 
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In a similar manner, the model was used to predict the whole size distribution 

of the granules. Figure 4.4 shows examples of the predicted and the experimental size 

distributions for three experiments, which were carried-out under varying operating 

conditions. Similarly, the T1FLS was used to predict the binder content and porosity 

values. The performance measures for all the investigated properties are summarized 

in Table 4.1. It is noticeable that the overall modelling performances for both the 

binder content and porosity are worse than the overall performance for the size. These 

performance measures indicate that the T1FLS on its own was not able to successfully 

predict the properties of the granules, in particular the binder content and porosity, and 

also it was not able to capture the complex input/output relationships and to deal with 

the uncertainties in a way that can lead to a good predictive performance. Thus, such 

a model by its own cannot be used to represent the granulation process. Therefore, 

these results reinforce the need to develop a model (e.g. a type-2 FLS (T2FLS)) that 

can tackle uncertainties more efficiently as compared to the T1FLS. 

B. The Tabletting Process 

A T1FLS was also developed to model the tabletting process and to predict the 

strength of the tablets. The collected data were divided randomly into two data sets: 

training (180) and testing (36). The granules’ properties, namely; size, binder content 

Table 4.1. The overall performances of the fuzzy logic based models represented by R2 and 

RMSE. 

Model T1FLS 
T1FLS with bias 

compensation 
IT2FLS 

IT2FLS with bias 

compensation 

Output R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

Size 0.69 0.0081 0.73 0.0073 0.74 0.0071 0.79 0.0067 

Binder content 0.44 1.2243 0.50 1.2009 0.48 1.1593 0.54 1.1017 

Porosity 0.42 1.4547 0.47 1.3513 0.47 1.3086 0.56 1.2201 
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and porosity, and the strength of the tablets produced were used as the inputs and the 

output of the T1FLS, respectively, where all the inputs were dealt with as continuous 

variables. As mentioned above, the number of rules that was chosen corresponds to 

the minimum error between the predicted and the experimental output evaluated by 

the RMSE. The parameters of the T1FLS were initialized using the hierarchical 

clustering algorithm (Zhang and Mahfouf, 2011), followed by optimizing these 

parameters by employing the steepest descent algorithm with an adaptive back-

propagation network (Mendel, 2001).  

  

 

 

 

Figure 4.5. The T1FLS for the strength of the tablets: 

(a) training, (b) testing (with 10% bands). 
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Figure 4.6. The rule base of the T1FLS for the strength of the tablets. 
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Figure 4.5 shows the modelling performance of the T1FLS for the strength of 

the tablets. The performance measures for the model presented by the RMSE (training, 

testing) and the R2 (training, testing) values are [0.103 0.110] MPa and [0.41 0.39], 

respectively. Two sample rules out of a total of eight are presented in Figure 4.6, and 

their corresponding linguistic forms can be read as follows: 

Rule 1: IF the size is in the range of 500µm to 710µm and the binder content is small 

and the porosity is medium, THEN the strength is small.         

Rule 2: IF the size is in the range of 710 µm to 1000µm and the binder content is 

medium and the porosity is medium, THEN the strength is large.    

The predictive performance for the strength of the tablets is much worse than 

the predictive performance for the size, and it is even worse than the ones for the binder 

content and porosity. Therefore, such a model cannot be utilized to accurately predict 

the strength of the tablets, and also the rules extracted may not reflect the tabletting 

process. Consequently, a T2FLS is utilized in this research work to predict the 

properties of the granules and the strength of the tablets. Such a choice was motivated 

by the fact that a T2FLS can deal with uncertainties more efficiently compared to its 

counterpart T1FLS. 

4.3 The Interval Type-2 Fuzzy Logic System 

4.3.1 The Interval Type-2 Fuzzy Logic System: Model Development   

As mentioned previously, the most common types of the fuzzy sets are type-1 

and type-2. A T1FLS, as described in details in Section 4.2, is the one whose rules’ 

antecedents and consequent are completely described by type-1 fuzzy sets, whereas 

the system where at least one of its rules’ antecedents or consequent is described by 



74 
 

type-2 fuzzy sets is called a T2FLS. In such a system, the membership functions are 

themselves fuzzy. Because of the extra degree of freedom, the T2FLS can typically 

tackle uncertainties more efficiently compared to its counterpart T1FLS. However, 

implementing such a paradigm is computationally expensive. Therefore, an interval 

type-2 FLS (IT2FLS) has been applied throughout instead (Mendel, 2001). Since the 

modelling results that were obtained by using the T1FLS indicated that such a model 

was not able to predict the properties of the granules and the strength of the tablets 

accurately, an IT2FLS is utilized in this research work to model both the granulation 

and the tabletting processes. 

An interval type-2 fuzzy set can usually be given as follows (Mendel, 2001): 

 
[0,1]

1/ ,

xx X u J

A x u
  

  
                                                                                       (4.2) 

where x, X and Jx stand for the primary variable, its measurement domain and its 

primary membership degree, respectively. The parameter u represents the secondary 

variable; u ∈ Jx at each x ∈ X.  

The IT2FLS structure is depicted in Figure 4.7. Although, it is quite different, 

such a structure seems to be similar to the structure of the T1FLS described in Figure 

4.1. In the IT2FLS, the crisp inputs (x1, x2 …xn) are usually fuzzified into input type-2 

fuzzy sets (
i

jA ) to determine the upper and lower membership functions ,i i
j jA A

  
 

, 

where 
i

jA  is the ith fuzzy set for the jth variable and the Macron (diacritic) sign is used 

to distinguish some of the parameters that are used in the IT2FLS from the ones used 

in the T1FLS. The most commonly used membership function is the Gaussian one 
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with uncertain mean, this membership function can be expressed as follows (Mendel, 

2001): 

1 2

1
( ) exp , ,

2

i

j ji i i i

j j j j ji

j

x m
x m m m



  
        

   

                                               (4.3) 

the parameters are as defined previously. It is worth mentioning that the lower ( 1

i

jm ) 

and upper ( 2

i

jm ) mean values are used to estimate the values of i
jA

 and i
jA

 , 

respectively. The union of the membership functions that lie between the lower and 

upper ones is called the footprint of uncertainty.  

As is the case in the T1FLS, the inference process combines the rules to map 

the input fuzzy sets to the output fuzzy sets. These rules have a similar form as that for 

T1FLS, the only distinction is associated with the nature of the membership functions, 

which is a type-2 fuzzy set in this case (Mendel, 2001). Finally, the type-2 output fuzzy 

 

 

Figure 4.7. The structure of the IT2FLS. 
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set is processed by two operations. The first operation is to reduce the type-2 fuzzy 

system into a type-1 one. Most of the computational effort of the IT2FLS is incurred 

by this step, where the left and right points of the interval are found using the Karnik-

Mendel (KM) algorithm (Karnik and Mendel, 2001; Mendel, 2001). Such a step is 

usually followed by a defuzzification process of the output to get a crisp one, this 

operation can be simply performed by computing the average value (Obajemu et al., 

2014; Mendel, 2001; Salomao et al., 2016). 

4.3.2 The Interval Type-2 Fuzzy Logic System: Results and Discussion 

A. The Granulation Process 

 To develop an IT2FLS for the HSG process, the collected data were divided 

into two sets; training (90) and testing (18). As mentioned previously, all the input 

parameters were considered as continuous except the impeller shape variable, which 

was dealt with as a crisp variable. The number of rules that corresponds to the 

minimum error value was selected. The steepest descent algorithm was utilized with 

an adaptive back-propagation network to tune the parameters of such a model. Such a 

model was written using Matlab software.   

For D50, two sample rules out of a total of five are illustrated in Figure 4.8, 

where the shaded area represents the footprint of uncertainty. The corresponding 

linguistic forms for these rules would read as follows: 

Rule 1: IF the impeller type is Type II and impeller speed is medium and granulation 

time is small and the L/S ratio is small, THEN D50 is small. 

Rule 2: IF the impeller type is Type I and impeller speed is medium and granulation 

time is small and the L/S ratio is medium, THEN D50 is medium.      
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Figure 4.8. The rule base of the IT2FLS for D50. 
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The model performance for D50 is shown in Figure 4.9, the R2 values for the 

training and testing data sets are 0.76 and 0.74, respectively. It can be seen that most 

of the predictions fall within a 90% confidence interval. Similarly, the IT2FLS was 

utilized to predict the whole size distribution of the granules. Figure 4.10 shows 

examples of the predicted and the experimental size distributions for three 

experiments. Also, the overall modelling performance for the size is listed in Table 

4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.9. The IT2FLS model for D50: (a) training 

and (b) testing (with 10% bands). 
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Figure 4.10. The IT2FLS model: the predicted (o) and the experimental (*) 

distributions for the size (a) using impeller type II, speed=2000rpm, L/S ratio 

(w/w)=14% and granulation time=10min, (b) using impeller type II, 

speed=6000rpm, L/S ratio (w/w)=15% and granulation time=15min. 
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As the IT2FLS is considered to be more computationally taxing as compared 

to the T1FLS, this raises the question as to whether it is this complexity that led to a 

superior model for the HSG process. For the size, the overall performance for the 

IT2FLS is R2 = 0.74. This demonstrates that the prediction performance of the IT2FLS 

is superior to that of the T1FLS, with an overall improvement of approximately 7% in 

R2. This indicates that the IT2FLS can handle the uncertainties more efficiently 

compared to it is counterpart T1FLS.  

In a similar manner, the IT2FLS was utilized to predict the binder content and 

the porosity. The overall performances represented by the R2 values for these 

properties are 0.48 and 0.47, respectively, as summarized in Table 4.1, where the 

RMSE for all the investigated properties are also presented. Although such 

performance measures are better than the ones obtained by implementing the T1FLS, 

they nevertheless demonstrate that such a model cannot be used to represent the 

granulation process. Therefore, there is a need to improve the performance of such a 

model further. 

B. The Tabletting Process 

 An IT2FLS was developed for the tabletting process, the collected data were 

divided into two sets, as described above in Section 4.2.2 (B). As is the case in the 

T1FLS, the granules properties and the strength of the tablets were used as the inputs 

and the output of such a model, respectively. It is worth mentioning at this stage that 

all the inputs were considered as continuous variables.  

By using 6 rules, the predictive performance of the IT2FLS for the strength of 

the tablets is shown in Figure 4.11, with a RMSE (training, testing) = [0.1038, 0.1099] 
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MPa. Two sample rules are presented in Figure 4.12, and their corresponding linguistic 

forms can be read as follows: 

Rule 1: IF the size is in the range of 500µm to 710µm and the binder content is small 

and the porosity is medium, THEN the strength is medium.         

Rule 2: IF the size is in the range of 710µm to 1000µm and the binder content is 

medium and the porosity is medium, THEN the strength is large.    

 

 

 

 

 

 
Figure 4.11. The IT2FLS for the strength of the tablets: 

(a) training, (b) testing (with 10% bands). 
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Figure 4.12. The rule base of IT2FLS for the strength of the tablets. 
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The predictive performance of the IT2FLS is superior to that of the T1FLS. 

However, such a performance indicates that the model cannot be utilized to represent 

the tabletting process. Consequently, the rules extracted may not reflect such a process. 

Therefore, in this research work, such a model will be improved by the incorporation 

of a modified GMM algorithm in the original modelling architecture for both T1FLS 

and IT2FLS. 

4.4 The Gaussian Mixture Model 

4.4.1 The Gaussian Mixture Model: Model Development 

 In general, the majority of the predictive modelling paradigms including fuzzy 

logic systems implicitly assume that the modelling error residuals follow a normal 

distribution (Yang et al., 2012), as stated previously in Chapter 3. In reality, such an 

assumption may not be valid, in particular, when the process to be modelled is complex 

and with measurable but noisy or non-measurable factors. In such a case, the normality 

assumption may result in losing useful information and, consequently, lead to a model 

with sub-optimal parameters (Yang et al., 2012). Hence, various modelling strategies 

have been presented to refine these models by extracting the information that may be 

hidden behind the error (Mauricio, 2008; Oliveira and Pedrycz, 2007; Yang et al., 

2012). In Chapter 3, the GMM was utilized to refine the models presented by 

considering any potential bias in the predicted outputs. Such a choice was motivated 

by the fact that the GMM is able to provide a deeper insight into the density function, 

and it is also able to accurately approximate any density function using the optimal 

number of Gaussian components (Bishop, 2006). Therefore, such an algorithm can 

lead to the best model refinement (Yang et al., 2012). However, in fuzzy logic systems, 

using these paradigms, including the GMM, will change the rules extracted from the 
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process data, in other words, the rules cannot be accurately used to represent the 

process. Therefore, in this chapter, the GMM algorithm is modified to refine the rules 

of the fuzzy systems instead of the data points.  

Some of the steps presented in this chapter are quite similar to the steps that 

were previously explained in Chapter 3. To illustrate, the GMM parameters (e.g. the 

mean and the covariance of each Gaussian component) are optimized by maximizing 

the log likelihood function, where the optimization problem is solved using the 

Expectation Maximization (EM) algorithm (McLachlan and Krishnan, 2008). In 

addition, BIC is adopted as a performance measure for choosing the optimal number 

of components (Simon and Girolami, 2012). Once the optimal parameters are defined, 

the calculated conditional mean is added to the consequent mean of the corresponding 

cluster; in order to compensate for the bias. This step is followed by defuzzifying and 

estimating the output. The steps of the modified error characterization algorithm are 

outlined in Figure 4.13. 

4.4.2 The Gaussian Mixture Model: Results and Discussion 

A. The Granulation Process 

To improve the modelling performances of the FLSs, the error residuals were 

characterized using the modified GMM algorithm presented above. Since both the 

T1FLS and the IT2FLS considered the main effects of the investigated variables, two 

input variables out of four were included in the GMM. The combination of these 

variables that corresponds to the maximum error compensation was selected. Since the 

performance of the IT2FLS was superior to that of the T1FLS, the results of the former 

will be discussed in details, whereas the results of the latter will be briefly summarized 

in this chapter.  
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Figure 4.13. Flowchart of the modified error characterisation 

model (The parameters are as defined previously in Chapter 3). 
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The IT2FLS performance was refined by implementing the modified GMM 

algorithm illustrated in Figure 4.13. The combination of the input variables that was 

selected is the one that led to the minimum RMSE value (i.e. the maximum error 

compensation). Consequently, the impeller speed, the granulation time and the error 

residuals were utilized to develop the error characterization model. The GMM was 

trained using the training data set. By using 8 Gaussian components, Figure 4.14 shows 

the model performance for D50 after bias compensation, with a RMSE (training, 

testing) = [0.23, 0.24] mm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.14. The prediction performance of the IT2FLS 

for D50 after bias compensation (with 10% bands). 
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For the granule size, the overall improvement achieved by applying the 

modified GMM algorithm is of approximately 6% in R2. This demonstrates the ability 

of such an algorithm to compensate for bias by detecting the unmodelled (stochastic) 

behaviour. The rules after bias compensation are illustrated in Figure 4.15, where one 

can notice that the antecedents are similar to the ones presented in Figure 4.8 but the 

consequent is slightly different. The consequent mean values for Rules 1 and 2 were 

refined by approximately 0.24mm (to the left) and 0.32mm (to the right), respectively. 

Such slight changes in the mean values did not actually change the linguistic forms of 

these rules. It is worth mentioning at this stage that the prediction performance of the 

modified GMM algorithm is superior to that of the traditional GMM algorithm 

presented in (Yang et al., 2012), with an overall improvement of approximately 2% in 

R2. Moreover, as stated previously, the rules extracted can be retained by such a 

modified algorithm.  

The predicted and the experimental size distributions for the same three 

experiments presented above after bias compensation are shown in Figure 4.16. 

Different numbers of Gaussian components were assigned to the various size classes, 

these numbers were in the range of 4 to 9. Such a figure shows the ability of the 

proposed framework; the IT2FLS followed by the modified GMM algorithm, to 

satisfactorily predict the size distribution of the granules produced by the HSG process. 

Moreover, the IT2FLS provided users with a simple understanding of the process, such 

an understanding was retained during the error characterization model. 
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Figure 4.15. The rule base of the IT2FLS for D50 after bias compensation. 
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Figure 4.16. The IT2FLS after bias compensation: the predicted (o) and 

the experimental (*) distributions for the size (a) using impeller type II, 

speed=2000rpm, L/S ratio (w/w)=14% and granulation time=10min, (b) 

using impeller type II, speed=6000rpm, L/S ratio (w/w)=15% and 

granulation time=15min. 
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In a similar manner, the modified GMM algorithm was utilized to modify the 

IT2FLSs that were developed to predict the values of the binder content and the 

porosity of the granules. The performance measures for these properties are listed in 

Table 4.1. It is worth mentioning at this stage that different values for the number of 

Gaussian components were used. Although, the overall improvements that were 

gained by the modified GMM algorithm for the binder content and the porosity are 

13% and 17% in R2, respectively, the frameworks are still considered unable to predict 

these properties successfully. Consequently, these modelling frameworks cannot be 

used for the development of a reverse-engineering framework for the granulation 

process.     

For comparison purposes, the modified GMM algorithm was adopted to refine 

the T1FLS, leading to a significant improvement, as summarized in Table 4.1. 

However, it is apparent that the model incorporating the IT2FLS and the modified 

GMM algorithm outperforms the one incorporating the T1FLS and the modified GMM 

algorithm for all the investigated properties. Therefore, such a framework cannot be 

utilized to successfully predict the properties of the granules and, consequently, it 

cannot be used for the development of a reverse-engineering framework for the 

granulation process.  

B. The Tabletting Process 

The modified GMM algorithm was also utilized to improve the performance 

of the IT2FLS that was developed to represent the tabletting process. The binder 

content, the porosity and the error residuals were used to implement such an algorithm. 

The selection of these two properties was expected since, as reported in literature and 

as it is well-known, they are heterogeneously distributed (Osborne et al., 2011; 
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Reynolds et al., 2004; Scott et al., 2000). The best number of Gaussian components is 

9. The model performance for the strength is R2 (training, testing) = [0.50, 0.50], as 

shown in Figure 4.17. The antecedents of the rules presented in Section 4.3.2 (B) are 

still the same but the consequents are slightly different. The consequent mean values 

for Rules 1 and 2 were refined by approximately 0.09 MPa (to the right) and 0.11 MPa 

(to the right), respectively. The overall improvement that was gained is of 

approximately 12% in R2.  

 

 
Figure 4.17. The model incorporating the IT2FLS and the GMM for 

the tablet strength: (a) training and (b) testing (with 10% bands). 
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For comparison purposes, the modified GMM was also adopted to refine the 

T1FLS that was developed for the tabletting process, leading to a significant 

improvement of approximately 8% in R2. However, it is apparent that the model 

incorporating the IT2FLS and the modified GMM algorithm outperforms the one 

incorporating the T1FLS and the modified GMM algorithm. The traditional GMM 

algorithm was also utilized to refine both the IT2FLS and the T1FLS, the overall 

performances of the model that is based on the former and the one that is based on the 

latter are R2 (training, testing) = [0.48, 0.49] and R2 (training, testing) = [0.44, 0.44], 

respectively. Such performance measures demonstrate that the modified GMM 

algorithm is superior to that of the traditional one presented in (Yang et al., 2012).  

4.5 Summary  

In addition to successfully predicting the properties of the granules, providing 

a simple understanding of the granulation process is one of the objectives that 

researchers strive to achieve. However, such a process is surrounded by uncertainties 

that may limit the performance of some models such as an ANN. Furthermore, most 

of the modelling approaches presented previously assume that the error residuals 

follow a normal distribution, such an assumption may lead to a degradation in the 

performance of these approaches because of the presence of other non-deterministic 

behaviour. Therefore, in this chapter, FLSs, namely; type-1 and interval type-2, were 

utilized to model the HSG and tabletting processes. For the HSG process, these models 

mapped the input variables to the properties of the granules by extracting linguistic 

rules from the collected data set, whereas the granule properties and the strength of the 

tablets were used as the inputs and the output of the models that were developed for 

the tabletting process, respectively. The error residuals were then characterized using 



93 
 

the modified GMM algorithm, such an algorithm was implemented in such a way that 

extracted rules were refined in order to compensate for any potential bias, which would 

result from any unmodelled behaviour.  

In this research work, the modelling performance of the IT2FLS was superior 

to that of the T1FLS, and, consequently, the model incorporating the IT2FLS and the 

modified GMM algorithm was also superior to the one incorporating the T1FLS and 

the modified GMM algorithm. However, significant improvements for both of them 

were gained by implementing the modified algorithm. It is worth mentioning at this 

stage that the performances for the binder content and porosity, which were not as 

good as expected, were generally worse than the ones for the size, and also the 

performance for the strength of the tablets was not satisfactory. Consequently, such 

models cannot be used to develop a right-first-time framework for the granulation and 

the tabletting processes. Therefore, there is a need to develop a model that can 

successfully predict the main properties of the granules, provide the required 

understanding of the process and its mechanisms at the micro-level, and be used 

efficiently by the pharmaceutical and other related industries. Thus, a modelling 

framework that integrates data-driven models and physical based ones will be 

presented in the next chapter.  
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Chapter 5 

Integrating the Physics with Data Analytics 

for the Hybrid Modelling of the Granulation 

Process5       

5.1 Introduction 

In general, granulation is recognised as being a complex process with three 

distinct mechanisms taking place inside the granulator, namely; wetting and 

nucleation, growth and consolidation, and breakage and attrition (Benali et al., 2009; 

Litster, 2004). Various issues of the granulation process have been addressed in the 

related literature (Bjorn et al., 2005; Braumann et al., 2007; Darelius et al., 2010; 

Frikha and Moalla 2015; Litster, 2004; Liu et al., 2013; Mansa et al., 2008; Nguyen et 

al., 2014; Pinto et al., 2007; Ramkrishna, 2000; Sen et al., 2014). However, such a 

process remains a subject of active research. The reason behind this, as already stated 

in Chapters 3 and 4, can be attributed to the inherent complexity of such a process 

which results in the poor understanding of the process and its mechanisms and, 

                                                           
5 The content of this chapter is published in “AlAlaween, W.H., Mahfouf, M., Salman, A.D., 2017. Integrating physics with 

data analytics for the hybrid modelling of the granulation process. AIChE. 63, 4761-4773”.  
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consequently, leading to a high recycling ratio and significant wastes in the related 

industries (Walker, 2007). Consequently, recent studies have focused on the 

understanding, the modelling and the simulation of the granulation process. The 

various modelling paradigms that have been developed and applied are either data-

driven (e.g. an ANN) or physical based models (e.g. a PBM) (Bjorn et al., 2005; 

Braumann et al., 2007; Mansa et al., 2008; Miyamoto et al., 1997; Westerhuis et al., 

1997).  

As discussed previously, these models have their own strengths and 

limitations. For instance, modelling the granulation process using the PBMs has 

hitherto provided a good understanding of the process at the micro-level (Poon et al., 

2008). These models depend mainly on the impact velocity which is a function of the 

granule position from the impeller. They also depend on the overall flow pattern of the 

granules inside the mixer. However, such parameters cannot be extracted from these 

models (Yu et al., 2017). Moreover, one of the main difficulties that has been 

addressed is the representation of the interactions among the mechanisms which play 

a crucial role in shaping the properties of the granules (Litster, 2004). Thus, various 

stochastic and mechanistic models have been utilized to provide the necessary 

understanding of the flow pattern and the impact velocity of the granules (Sen et al., 

2014; Yu et al., 2017). The discrete element method tracks every single particle in the 

mixer. In practice, such a method may however be computationally taxing since more 

than a billion particles have to be considered, which is the case for the HSG mixer (Sen 

et al., 2014). Recently, a CFD model has been utilized to model a multiphase flow (Yu 

et al., 2017), in particular, the so-called Eulerian multiphase model has been widely 

employed to simulate flow with both dispersed and continuous phases, and also to take 

account of the interactions between these phases (Darelius et al., 2010). In this model, 
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the mean diameter is used to represent the size distribution of the dispersed phase. 

Such an assumption may lead to inaccurate modelling results when the size distribution 

is multimodal or wide. Therefore, incorporating the CFD model with the PBM may 

circumvent the limitations of employing each model separately (Yu et al., 2017).  

In the granulation process, the successful model is one that (i) can accurately 

predict the properties of the granules, (ii) can provide the required understanding of 

the process and its mechanisms, and (iii) can be used reliably and efficiently by the 

relevant industries. In fact, all of the above objectives may not be achievable by using 

one single data based or physical based model, this was demonstrated in earlier 

chapters. Therefore, in this research, a hybrid model integrating both data and physical 

based models is developed. Such a model integrates three separate but synergetic 

models through an iterative procedure. The hybrid model consists of three models, 

namely; a CFD model, the three-dimensional PBM and an RBF model. These models 

are integrated in such a way that the outputs from one of these models are used as 

inputs to the other model. In order to improve the modelling performance of the hybrid 

model, a new fusion model based on fuzzy logic theory and the DS theory is also 

proposed. The main idea behind this model is to combine the predicted outputs from 

different models to obtain more accurate predictions, which may not be obtainable 

using a single model. Thus, the predicted outputs from the hybrid model are combined 

with the ones from the model incorporating the integrated network and the GMM. As 

stated previously, this model will be from now on referred to as the incorporated 

model.  
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5.2 The Hybrid Model 

5.2.1 The Hybrid Model: Model Development    

Granulation is a complex process due to the different interactive mechanisms 

occurring inside the granulator. Such a process is also influenced by many controllable 

and uncontrollable factors which may possibly have conflicting effects. In addition to 

the ones mentioned in Chapter 3, these are some of the difficulties that may limit the 

performance of a single model. In this research work, a hybrid model consisting of 

both data and physical based models has been developed. Figure 5.1 illustrates the 

simple iterative scheme of the hybrid model. Based on the granulation input variables 

and the mixer geometry, a CFD model is developed to analyse the overall flow pattern 

of the granules, their distribution and the velocity inside the mixer. The output 

parameters from this model (e.g. impact velocity) are crucial to predict the main 

properties of the granules using a PBM such as the granule size. It is well-known that 

some empirical parameters are required to implement the PBM (Sanders et al., 2003). 

Therefore, an RBF model is included to estimate these parameters by mapping them 

directly to the granulation input variables. Such a model can implicitly compensate for 

the assumptions that have been made to simplify the computational efforts required by 

the physical models, for instance, the homogeneous mixing features of the overall flow 

of the granules. In addition, this model is used to express these parameters as a function 

of the input variables, therefore, a better knowledge relating the effects of the input 

variables on these parameters and on the final properties of the granules is gained. The 

size of the granules predicted by the PBM is then used to re-evaluate the parameters 

obtained from the CFD model, followed by re-estimating the outputs of the PBM and 

RBF model. The steps above are repeated until a satisfactory performance is reached, 
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or alternatively the difference between the predictions for two consecutive steps 

becomes asymptotically small. It is worth emphasising at this stage that the 

performance of the hybrid model depends on the performances of the models included.  

The mathematics behind the single models presented have already been well-

publicised. Readers may refer to various research papers and books for further 

readings, in particular references (Bishop, 1995; Bjorn et al., 2005; Braumann et al., 

2007; Darelius et al., 2008; 2006; Frikha and Moalla 2015; Gidaspow, 1994; 

Immanuel and Doyle III, 2005; Immanuel et al., 2005; Iveson, 2002; Litster, 2004; Liu 

et al., 2013; Nguyen et al., 2014; Pinto et al., 2007; Poon et al., 2008; Ramkrishna, 

2000; Sanders et al., 2003; Sen et al., 2014; Tu and Fletcher, 1995; Walker, 2007; Wen 

and Yu, 1966; Yu et al., 2017). In this chapter, only what are considered to be the key 

developments are included to in order to help the reader get to grips with the various 

algorithms used.  

 

 
Figure 5.1. The hybrid model for the HSG process. 
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A. The Population Balance Model 

As already stated, a three-dimensional PBM provides a deeper insight into the 

granulation process by representing its three main mechanisms. This is because it 

follows the evolution of the granules with time by virtue of the granule size, the binder 

content and the porosity. The three-dimensional population balance equation is usually 

written as follows (Ramkrishna, 2000): 

( , , , ) ( , , , ) ( , , , )

( , , , ) Nucleation Aggregation Breakage

ds dl
F s l g t F s l g t F s l g t

t s dt l dt

dg
F s l g t

g dt

     
     

     

  
    

  

                                  (5.1) 

where F(s, l, g, t) represents the density function such that F(s, l, g, t)ds dl dg is the 

mass of granules when solid (s), liquid (l) and gas (g) are in the ranges (s, s+ds), (l, 

l+dl) and (g, g+dg), respectively. The evolution of the mass is followed with time (t). 

The partial derivatives with respect to s, l and g account for layering, drying and re-

wetting, and consolidation, respectively. The terms in the right hand-side of (5.1) stand 

for the rates of nucleation, aggregation and breakage. Various nucleation rates have 

been developed, however, the majority of these assume that one droplet forms a 

nucleus. However, the latter assumption is not always valid (Poon et al., 2008). Since 

the breakage of nuclei plays a significant role in the nucleation mechanism (Liu et al., 

2013), an empirical nucleation rate was used in this study. The aggregation rate 

consists of two terms, formation and depletion, which can be written as follows (Poon 

et al., 2008): 
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              (5.2) 

where nucs  is the volume of the nucleus, and ( ', ', ', ', ', ')s s s l l l g g g     is the 

aggregation kernel which governs the rate at which two granules with internal 

coordinates ( ', ', ')s l g  and ( ', ', ')s s l l g g    agglomerate. In fact, the coalescence of 

two granules depends on the granules size and the availability of the binder on their 

surfaces. The semi-mechanistic aggregation kernel that describes these two factors and 

the coalescence types has been already presented in (Immanuel and Doyle III, 2005). 

Such a kernel can be expressed as follows (Immanuel and Doyle III, 2005): 
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 (5.3) 

where Ri is the radius of the ith particle, u0 and W are the initial velocity of the particle 

and the Fuch stability ratio, respectively. For simplicity, the parameter β is presented 

as a single variable in (5.3).  The parameters k and T represent the Boltzmann constant 

and the temperature, respectively. The parameter   refers to the net attractive 

potential for coalescence, and   is a tuneable parameter.     
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The consolidation mechanism takes into account the compaction process that 

increases the binder on the surface of granules and leads to a decrease in the porosity. 

The consolidation process has been empirically expressed by the following set of 

equations (Pinto et al., 2007; Sanders et al., 2003): 

min

min

min min

( )

(1 ) 1

l g

s l g

d
c

dt

sdg s l g
c l g

dt s




 



 




 

  

  
    

  

                                                                        (5.4) 

 where   and min  are the porosity and its minimum value, respectively. The constant 

c is the compaction rate constant. The breakage rate was stochastically estimated based 

on the algorithm developed in (Pinto et al., 2007). Such an algorithm is based on 

determining the likelihood that a granule in a specific size class breaks to form a 

number of granules in smaller size classes.  

B. Computational Fluid Dynamics 

Generally, numerical simulation techniques of a system can be divided into 

two types; continuum and discrete. As the names indicate, the former views the system 

as a continuous flow (i.e. fluid), while the latter deals with an individual particle. An 

Eulerian multiphase model is used to simulate the particulate phase as a continuous 

flow (Nguyen et al., 2014). Two phases; solid and gas, are considered. The mass and 

momentum of these two phases are governed by the following set of equations 

(Darelius et al., 2008): 
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where  ,   and u are the volume fraction, density and velocity, respectively. The 

subscripts are used to distinguish the parameters of the gas (g) phase from the ones of 

the solid (s) phase. The volume fractions must sum to unity. The parameters P and F 

represent the pressure and all the forces acting on the system under investigation, 

respectively. The interphase momentum exchange coefficient ( ) is calculated using 

the equation presented in (Wen and Yu, 1966). The viscous stress tensor ( ) can 

simply be written as follows (Darelius et al., 2008): 

 
2

. 2
3

k k k k k ku I S   
 

    
 

                                                                            (5.6) 

where   and  represent the bulk and dynamic viscosity of the kth phase, respectively. 

The parameter S represents the strain rate tensor derived in (Darelius et al., 2008), and 

I is the second invariant of the strain rate tensor.  

By virtue of the extension of the kinetic theory of dense gas, one would develop 

the kinetic theory of the granular flow (KTGF) model. Such a theory depends on 

statistical mechanics to describe the velocity of a granular flow. As already outlined in 

(Gidaspow, 1994), the KTGF model assumes that particles interaction is binary as well 

as instantaneous. At a high solid fraction, this may result in high particles/granules 

stresses. Therefore, the frictional term, or the so-called frictional stress model, should 
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be taken into account when the pressure and the dynamic viscosity of the solid phase 

are evaluated: the model is further detailed in (Darelius et al., 2008). It is worth 

mentioning at this stage that, in this study, the angle of internal friction was 44o. 

Various boundary conditions have been used in the open literature (Darelius et 

al., 2008). In this research work, the ‘no slip’ boundary condition at the vessel, 

impeller and scraper wall was used for the gas phase. For the solid phase, the ‘partial 

slip’ model proposed in (Tu and Fletcher, 1995) was utilized. The coefficient of 

restitution was chosen to be 0.5. Such a model is a combination of both ‘no slip’ and 

‘free slip’ conditions.     

 C. The Radial Basis Function Model 

An RBF model usually maps a set of inputs to an output. Since the RBF model 

was discussed in Chapter 3, it will be briefly described in this section. In general, an 

RBF network consists of three layers: an input, hidden including basis functions, and 

an output layer. Such a mapping can be generally given as follows (Bishop, 1995): 

0

1

( ) ( )
I

i i

i

y x w x w


                                                                                           (5.7) 

where wi and w0 denote the weights and bias, respectively. The parameter x is the input 

vector and y is the predicted output which is expressed as a linear combination of the 

basis functions. The RBF is a function of the radial distance from a centre. Because of 

its ability to approximate any function with a reasonable accuracy using a sufficient 

number of components, the Gaussian form is a popular choice for such a function 

(Bishop, 1995). The predicted outputs in this chapter are the empirical parameters that 

are required to implement the PBM. Typically, the available data are divided into 
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training and testing data sets. The training data are used for identifying the 

relationships between the inputs and the outputs, while the testing data are used to test 

good generalization capabilities measured via the RMSE. The model parameters (e.g. 

mean) were optimized using the SCG algorithm (Bishop, 1995). The best network 

structure (i.e. the number of basis functions) is the one that corresponds to the 

minimum RMSE, for instance.  

5.2.2 The Hybrid Model: Results and Discussion 

In order to study the flow of the granules inside the granulation vessel, two 

CFD models were developed using ANSYS software (ANSYS Inc., US, Release 16.1) 

for the simulation of the Eirich mixer with two impellers differing in shape, as shown 

in Figure 3.2. Accordingly, two fine-meshing schemes which differ in the number of 

cells were generated. For each model, three different meshing schemes were initially 

tested, the ones presented in this study are the schemes that led to acceptable solutions.  

In each model, the gas-solid flow was analysed using a two-fluid model 

inspired from the KTGF model. The material properties were selected so as to 

reproduce as closely as possible the properties of air and the properties of the granules 

produced using 500gm of CaCO3 and different mass values of PEG (1000). The vessel 

speed was kept constant during the simulation of all experiments (at 170rpm 

clockwise), while the values of the impeller speed were assigned corresponding to the 

operating conditions. The granules were assumed to have initially settled at the bottom 

of the granulation vessel. A second-order upwind scheme was utilized to solve all the 

partial differential equations, while the volume fraction equation was solved using a 

first-order scheme. The simulation was stopped once it converged, or alternatively a 

stable flow was observed. 
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Figure 5.2. ANSYS based profiles: the velocity profiles of the granules (a) using impeller type II, speed=2000rpm, L/S ratio (w/w)=14%; 

(b) using impeller type II, speed=6000rpm, L/S ratio (w/w)=15%; (c) using impeller type I, speed=4000rpm, L/S ratio (w/w)=13%. 
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Figure 5.2 shows the velocity profiles of the granules for three different 

experiments. Although the vessel itself was rotating during the experiments, the 

highest velocities (i.e. radial and tangential velocities) and their gradients can be 

observed around the impeller area, specifically when the granules are close to both the 

impeller and the vessel, this being due to the values of the tip speed and also to the fact 

that both of them rotate in the same direction. Such a phenomenon was observed 

during experiments where the velocity of the impeller is high. 

It was also observed that the velocity of the granules is still highly dependent 

on the spatial position of the granules from the impeller, similarly to what was 

previously reported in (Yu et al., 2017). Thus, different areas have different velocity 

values, as shown in Figure 5.2 (b) and (c). However, such a behaviour cannot be 

observed when the impeller speed is low, which can probably lead to relatively 

homogeneous mixing features (Yu et al., 2017), as presented in Figure 5.2 (a). It is 

worth noting that the velocity scale shown in Figure 5.2 (a) is wider compared to 

Figure 5.2 (b) and (c), however, the granule velocity value in (a) is smaller and it 

reflects the impeller and the vessel speed value (i.e. tip speed). Under the same 

operating conditions, the range of the velocity values for impeller type II model is 

wider than the one for impeller type I, which may be due to the difference in the 

geometry and contact area.  

The concentration of the granules (volume fraction) inside the mixer is shown 

in Figure 5.3. The flow regime of the granules shows that the bed surface undulates as 

the granules are closer to the impeller. A similar behaviour was observed around the 

scrapper but the bed height is lower. A maximum bed height occurs when the impeller 

speed is high (at 6000rpm). Spikes in the concentration of the granules were observed 
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during the experiments, which were carried-out using impeller type I, as shown in 

Figure 5.3 (c). This may be due to the presence of pins on the upper surface of the 

impeller. As expected, a heterogeneous distribution of the granules is shown in the 

figure. It is worth noting at this stage that the concentration of the granules is relatively 

high around the scrapper area in some experiments, which can be explained if one 

considers the scrapper as a hindrance, especially, at low impeller speed.   

A low concentration of the granules appears around the impeller; this is the 

result of the force that is applied by the impeller driving the granules towards the vessel 

wall. In addition, low concentration of the granules can also be observed in the upper 

volume of the vessel, where the gas phase dominates. Such a behaviour is noticeable 

when the impeller speed is relatively low. Moreover, such a low concentration appears 

around the centre of the vessel in some experiments as a result of the centrifugal force. 

In fact, this should be in the centre of the vessel, however, the presence of the impeller, 

which is not in the centre, and the scrapper may have shifted the force effect. 

The initial results obtained from running the CFD model prove that the velocity 

and the concentration of the granules and, accordingly, the granulation rates (e.g. 

growth and breakage) are indeed dependent on the spatial position of the granules 

themselves, as also previously reported in the literature (Yu et al., 2017). A 

compartmental model has already been developed for similar cases in the literature. 

This model can lead to better results if a sufficient number of compartments is used. 

However, it is considered to be a computationally-taxing model (Yu et al., 2017). 

Therefore, the average velocity was instead used to evaluate the parameters of the 

PBM in this study. In fact, such an assumption may have a negative effect on the final 

predictions of the granule properties if the empirical parameters were not 
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systematically estimated. However, in this research work, this did not seem to have a 

significant effect since the RBF-based model will internally compensate for this. 

A three-dimensional PBM was also developed, as discussed in Section 5.2.1 

(A). In order to solve the integro-differential equations, a hierarchical algorithm 

presented in (Immanuel and Doyle III, 2005) was employed in this research work. This 

algorithm is based on discretising the three-dimensional population into a number of 

bins represented as finite volumes. This hierarchical framework enables the user to 

pre-calculate the time-independent terms of the kernels. As stated previously, 

estimating the kernels (e.g. aggregation kernel) depends on empirical parameters. 

These parameters were evaluated to match the experimental results, followed by 

mapping the parameters to the granulation input variables by using the RBF model.  

A single RBF model was developed to represent the relationships among all 

the input variables (i.e. operating conditions) and the empirical parameters of the PBM. 

For the empirical parameter ( ) that is used to estimate the size dependent 

aggregation kernel presented in (5.3), 8 RBFs, which correspond to the minimum error 

calculated using the RMSE, were selected. The prediction performance is presented in 

Figure 5.4. The RMSE values (training=0.055, testing=0.035) indicate that the model 

can be used successfully to predict this parameter. Similarly, the model led to a good 

performance for all the empirical parameters considered. Using the estimated 

empirical parameters, the properties of the granules were predicted. Since the granule 

size has a significant effect on the granule velocity and its distribution, the predicted 

size was then used to update the parameters of the CFD model. These steps were 

repeated until the difference between the predictions for two consecutive steps became 

very small. 
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Figure 5.3. ANSYS based profiles: the concentration of the granules: top (at 

approximately 3cm from the base) and side view (a) using impeller type II, 

speed=2000rpm, L/S ratio (w/w)=14%; (b) using impeller type II, speed=6000rpm, 

L/S ratio (w/w)=15%; (c) using impeller type I, speed=4000rpm, L/S ratio 

(w/w)=13%. 
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Figure 5.5 shows the prediction results for the three experiments which were 

carried-out under varying operating conditions. In a similar manner, the properties of 

the granules were predicted for all experiments. The number of iterations for the 

experiments varied, and generally this number was in the range of 6 to 10. The 

predictive performances for all experiments demonstrate the ability of the hybrid 

model to predict the properties successfully and to implicitly compensate for the 

 

 
Figure 5.4. The RBF model for the empirical parameter that is used to 

estimate the aggregation kernel (normalized): (a) training, (b) testing (with 

10% bands) (RBF Network Weights= [1 0.5 0.4 1.5 0.8 1.3 1.3 0.9], and 

Bias=0.58). 
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assumptions that have been made about the granulation process. Moreover, the 

presented model outperformed the three-dimensional PBM. Figure 5.6 shows an 

example of the predictive performance of the PBM. The PBM performances for the 

binder content and porosity are not as good as the hybrid model ones, and it is apparent 

that these performances are worse than the ones for size. 

Although, the hybrid model satisfactorily modelled the granulation process, it 

can be further improved. This model initiated the simulation process using the nuclei 

instead of the particles, this being due to the difficulty in taking account of three phases 

in the CFD model. Therefore, the hybrid model can be implemented in two stages; the 

first stage considers the binder and the particles, whereas the second stage considers 

the granules and gas, followed by integrating the two stages together. Moreover, 

further investigations will need to be performed to explore the advantages and the 

limitations of developing such a complex model.  

5.3 Fusion Model  

5.3.1 Fusion Model: The Basic Idea  

One of the basic concepts of cognitive process used by human is information 

fusion. In simple terms, fusion is integrating information from various sources to 

realise effective inferences and generate optimal decisions (Frikha and Moalla, 2015). 

The motivation for this process lies in the fact that the information provided from one 

source are, more often than not, limited and with limited accuracy (Frikha and Moalla, 

2015). Therefore, information fusion has been extensively applied in many areas, 

including marine technology, manufacturing as well as health care, to ultimately 

improve the reliability of information (Boudraa et al., 2004).  
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Figure 5.5. The hybrid model: the predicted (o) and the experimental (*) distributions for the 

size, binder content and porosity (a) using impeller type II, speed=2000rpm, L/S ratio 

(w/w)=14% and granulation time=10min; (b) using impeller type II, speed=6000rpm, L/S 

ratio (w/w)=15% and granulation time=15min; (c) using impeller type I, speed=4000rpm, 

L/S ratio (w/w)=13% and granulation time=6min. 
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Various approaches have been developed and used such as Bayesian inference, 

neuro-fuzzy and the DS theory (Dempster, 1967; Maseleno et al., 2015). The latter 

approach has attracted a lot of interest; this being due to its ability to explicitly estimate 

imprecision and conflict that may exist between two or more sources of information. 

However, in order to develop a more reliable fusion model, one should consider three 

types of uncertainties; uncertainty due to probabilities, uncertainty due to lack of 

specification and uncertainty due to fuzziness (Boudraa et al., 2004). The first two 

types can usually be tackled via the DS theory, while the third type can be successfully 

handled using fuzzy logic. Therefore, a new approach that integrates both the DS 

theory and fuzzy logic has been presented in this research work. The motivation for 

such an algorithm stems from the strong need to improve the output predictions of the 

granulation process which is considered to be one of the complex processes to be 

modelled and predicted. The proposed algorithm integrates the predicted outputs from 

both the hybrid model and the incorporated model. The fusion model was developed 

not only to obtain more accurate predictions, which may not be obtainable by using a 

 

 

Figure 5.6. The PBM: the predicted (o) and the experimental (*) distributions for the size, 

binder content and porosity using impeller type II, speed=2000rpm, L/S ratio (w/w)=14% 

and granulation time=10min. 
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single model, but also to resolve any conflict that may exist between the two models. 

Figure 5.7 summarises the main steps of the proposed model. 

 

 
Figure 5.7. Flow chart of the fusion model. 
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First of all, the number of clusters is defined. Generally, clustering is an 

unsupervised learning process that aims to discover groups of similar data points 

within the data set. The optimal number of clusters is subjective, in other words, it 

depends on the application. In this study, the best number of clusters is the one that 

corresponds to the maximum improvement in the predictive performance (i.e. the 

minimum RMSE). This step is followed by clustering the input variables and the error 

residuals that result from both the hybrid model and the incorporated model. The 

membership function value is defined for each data point as follows (Mendel, 2001): 
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                                                                                     (5.9) 

where e

i  is the membership function of the ith data point. The parameters eM  and 

e  represent the mean and the standard deviation of a cluster, respectively, and 
e

ix  is 

the residual error. The superscript letter (e) is used to distinguish the parameters of the 

fusion model from the ones used previously in Chapter 4.   

In order to combine the predicted outputs of the hybrid model with the ones of 

the incorporated model, the DS theory is utilized. One of the main challenges in 

implementing the DS theory is assigning the mass function for all the examined 

hypotheses. In fact, the mass function can be derived using different algorithms such 

as probabilities or distance from the centre of a cluster (Bloch, 1996). In this research, 

the mass function is evaluated using the fuzzy membership function, which is 

calculated in (5.9). The mass function is generally governed by the following set of 

equations (Boudraa et al., 2004): 
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where f

tm  is the mass function for the tth hypothesis, and   is the maximum 

membership function. If the number of clusters is less than or equal to three, then 

special cases are considered (Boudraa et al., 2004). The hypotheses are merged using 

the Dempster’s rule of combination as follows (Dempster, 1967): 
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where the mass functions for the hypotheses of the fusion, hybrid and incorporated 

models are distinguished by the subscripts FM, HM and IM, respectively. The 

parameter K measures the conflict between two sources, and it is also used to estimate 

the normalization factor, which is equal to (1-K). A hypothesis of the hybrid model is 

usually combined with the hypotheses of the incorporated model that have the same or 

better degree of accuracy, and vice versa. To elucidate, assume that the number of 

clusters for both models is three (i.e. good, satisfactory and bad), as presented in Figure 

5.8. To estimate the mass function for the ‘satisfactory’ hypothesis of the fusion model, 

the ‘satisfactory’ hypothesis of the incorporated model should be combined with the 

‘good’ and ‘satisfactory’ hypotheses of the hybrid model, and the ‘satisfactory’ 

hypothesis of the hybrid model should be combined with the ‘good’ one of the 

incorporated model, note that the combination of the ‘satisfactory’ hypotheses has 

already been considered. A high degree of conflict between a hypothesis and another 
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less accurate one is assumed, thus, the fusion model can lead to a better performance 

compared to both the hybrid model and the incorporated model. 

 

 

 

 

Once the mass functions of the fusion model are estimated, the membership 

functions can be calculated by solving the set of equations in (5.10), which is reversed 

to calculate the membership functions, which need to be weighted and normalized 

(Boudraa et al., 2004). Finally, the height defuzzifier is utilized to evaluate the outputs 

of the fusion model (Mendel, 2001). 

5.3.2 Fusion Model: Results and Discussion 

 The algorithm relating to the fusion model was implemented to improve the 

performance of the two models; the hybrid model and the incorporated model, 

especially, in those areas where the performance of one of the models or both was not 

as close to the target as desired. Thus, the granulation input variables and the error 

residuals were used to identify these areas. For instance, Figure 5.9 shows how the 

hybrid model performs in one of the space areas (i.e. clusters) of the binder content. 

Such a figure indicates that the hybrid model performance measured via the error 

residuals is satisfactory when the impeller is of type I, the impeller speed is medium, 

the granulation time is small and the L/S ratio is medium. 

 

 
 

Figure 5.8. Example of combining the clusters. 
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Figure 5.9. An example of the hybrid model performance in the space area of the binder content. 
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Figure 5.10. The fusion model: the predicted (o) and the experimental (*) distributions for the 

size, binder content and porosity (a) using impeller type II, speed=2000rpm, L/S ratio 

(w/w)=14% and granulation time=10min; (b) using impeller type II, speed=6000rpm, L/S 

ratio (w/w)=15% and granulation time=15min; (c) using impeller type I, speed=4000rpm, L/S 

ratio (w/w)=13% and granulation time=6min. 
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As summarised in Figure 5.7, the estimated membership functions were used 

to assign the mass functions for the hypotheses of both models. Next, the mass 

functions were combined using the set of equations in (5.11). This led to the mass 

functions for the hypotheses of the fusion model. To estimate the membership 

functions of the fusion model clusters, the set of equations in (5.10) were solved 

numerically, since the analytical solution (i.e. closed form solution) may be 

computationally taxing, in particular, when the number of clusters is large. After the 

defuzzification step, the outputs from the fusion model for three experiments are 

shown in Figure 5.10, where different numbers of clusters were assigned to the various 

size classes, these numbers laying in the range of 5 to 9. 

The predictive performance of the fusion model for all experiments is similar 

to the one presented in Figure 5.10, which shows a good performance. In the size class 

(1180µm), the predictive performance is not as good as the one for the other size 

classes, because the performance of the incorporated model was slightly lower for this 

size class. However, the overall improvement is noticeable.  

Table 5.1 includes the average R2 and the RMSE performance values of the 

RBF model (standalone model), which was used here to predict the properties of the 

granules, as explained previously in Chapter 3, the PBM (standalone model), the 

previous model presented in Chapter 3, referred to in the table as ‘the incorporated 

model’, the hybrid model presented in Section 5.2, and the fusion model described in 

Section 5.3.  

 

 



121 
 

  

Table 5.1. The performances of the models represented by R2 and RMSE. 

Model RBF1 PBM2 Incorporated Model3 Hybrid Model4 Fusion Model5 

Output R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

Size 53.65 0.0098 75.84 0.0076 87.83 0.0055 88.49 0.0017 91.28 0.0008 

Binder Content 46.80 1.2792 67.53 1.0252 74.04 0.9352 76.06 0.6316 80.30 0.5577 

Porosity 36.99 1.6457 65.49 1.23 74.02 1.0879 75.67 0.9208 79.54 0.5508 

1. The RBF standalone model was utilized to predict the granule properties using different number of basis functions. 

2. The PBM was used as a stand-alone model. 

3. The incorporated model includes the integrated network and the Gaussian mixture model as presented in Chapter 3. 

4. The hybrid model as presented in Section 5.2. 

5. The fusion model as described in Section 5.3.   
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As shown in this table, the fusion model outperformed both the incorporated 

and the hybrid models. Furthermore, this table shows that the predictive performance 

for the size was better than that for the binder content and porosity. This may be due 

to the heterogeneity and the high uncertainties in the measurements of these properties. 

However, most of the predictions from the incorporated, hybrid and fusion models lay 

within the 95% confidence interval. 

Assessing the generalization capabilities of the developed models is an 

important step to prove their effectiveness and efficiency. Thus, the hybrid model has 

been utilized to predict the properties of the granules produced using different 

operating conditions but within the investigated ranges. Figure 5.11 (a) shows the 

predicted outputs for a new experiment. The predictive performance values for the 

three properties are comparable to the ones that obtained using the training data. 

Similarly, the fusion model has been validated using the operating conditions of the 

new experiment and the predictions from both the hybrid and the incorporated models. 

The predicted outputs obtained by the fusion model are presented in Figure 5.11 (b). 

The predictive performance and the generalization capabilities prove the abilities of 

the hybrid and the fusion models to be used successfully to understand the granulation 

process and to accurately predict the properties of the granules produced by the HSG 

process. 

The proposed modelling framework, i.e. the hybrid model followed by the 

fusion model architecture, successfully modelled the granulation process. This has 

been achieved by providing good predictions for the properties of the granules and an 

understanding of the process and its mechanisms. Generally, one develops models 

either to predict properties/behaviours or to control a process. The former, which is 
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one of the main aims of this research, paves the way for the latter. In the future, the 

developed framework will be exploited in a reverse-engineering framework to identify 

the optimal operating conditions for granules with predefined properties. This can be 

achieved by, for instance, embedding the multi-objective optimization paradigms to 

ensure the right-first-time production.  

5.4 Summary  

In this chapter, a hybrid model based on both physical and data based models 

was presented to model the high shear granulation process only. The model consisted 

 

 

Figure 5.11. The validation experiment: the predicted (o) and the experimental (*) distributions 

for the size, binder content and porosity using impeller type I, speed=4400rpm, L/S ratio 

(w/w)=13.6% and granulation time=12min (a) the hybrid model and (b) the fusion model. 
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of three components, namely, a CFD model, a PBM and an RBF model. These models 

were integrated through an iterative procedure, where the outputs from one of these 

models are used as inputs to the model architecture. The hybrid model combined the 

strengths of the single models involved in a way that any potential limitations may be 

circumvented. Consequently, this model was able to provide a deeper insight into the 

granulation process and its mechanisms, and also the flow of the granules. It was also 

capable of interpreting the relationships between the inputs and the outputs, hence it 

can be used to predict the properties of the granules with a good degree of accuracy. 

In addition, the model was able to implicitly compensate for some of the basic 

assumptions normally used in physical based models, which were previously reported 

in the literature. Furthermore, the new model expressed the empirical parameters as a 

function of the granulation input variables. Although, the RBF model cannot 

physically interpret the relationship between the inputs and the outputs, these 

parameters can easily be predicted if one knows the operating conditions of the 

experiment. The effectiveness and efficiency of the hybrid model was demonstrated 

and validated by predicting the properties for the training experimental data and 

subsequently newly acquired data successfully. By utilizing the scaling-up methods 

presented in the related literature (Watano et al., 2005) and by training the RBF 

network, the hybrid model can be exploited on a relatively larger scale. However, 

many aspects need to be considered (e.g. mixer geometry) to ensure that it will be 

implemented correctly.  

Accurate predictions of the properties of the granules are more often than not 

required. Accordingly, a new fusion model based on integrating fuzzy logic theory and 

DS theory was developed. This model combined the predicted outputs from the hybrid 

model with the corresponding ones from the model incorporating the integrated 
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network and the GMM; such a model is a data-based model that had been developed 

previously in Chapter 3. The main motivation behind such a model was, in addition to 

accurate predictions, to resolve any conflict(s) that may exist between the various 

model formalisms. Significant improvements were achieved by using this new 

approach over the hybrid and the incorporated models.  

In summary, a good modelling performance was achieved by the hybrid model, 

followed by the fusion model. Such a framework is considered to be a promising 

development in those industries where the granulation process is considered to be one 

of the most crucial unit operations that determine the quality of the final product. Since 

a good modelling performance was already achieved, the modelling paradigms 

presented in Chapters 3 and 5 can now be inverted to identify the optimal operating 

conditions and the optimal granules’ properties to produce a tablet with predefined 

properties. Therefore, a reverse-engineering framework will be proposed in Chapter 6 

in order to achieve the concept of right-first-time production of the granules and the 

tablets.
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Chapter 6 

When Swarm Meets Fuzzy Logic: Right-

First-Time Production of Pharmaceuticals 

Using Multi-Objective Optimisation6       

6.1 Introduction  

In the pharmaceutical industry, the granulation process is used as a unit 

operation in the tablet production line. Although good powder properties (e.g. 

flowability and homogeneity) are usually obtained and maintained, the inclusion of 

such a process, which, as a single operation, can ultimately determine the outcome for 

the final tablets produced, makes it difficult to control the production line, leading, as 

a result, to high recycling ratios and inefficient operations (Walker, 2007). Recently, 

as mentioned in the previous chapters, a good number of books and research papers 

has been devoted to modelling and control the granulation process (Barrasso et al., 

2015; Benali et al., 2009; Braumann et al., 2007; Darelius et al., 2006; Frikha and 

Moalla 2015; Immanuel et al., 2005; Iveson, 2002; Liu et al., 2013; Nguyen et al., 

                                                           
6 The content of this chapter is to be submitted to “AlAlaween, W.H., Mahfouf, M., Salman, A.D. When swarm meets fuzzy 

logic: right-first-time production of pharmaceuticals using multi-objective optimization. Applied Soft Computing”. 
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2014; Sen et al., 2014; Yu et al., 2017). For instance, the Quality by Design (QbD) 

concept has been implemented in order to control the process and the variables 

affecting it. However, such an implementation was based on experimental studies 

(Barrasso et al., 2015). Therefore, as discussed in earlier chapters, developing a model 

that provides a better understanding of the granulation process and its mechanisms, 

and predicts the granule properties accurately is necessary to systematically control 

such a process.  

Various modelling approaches have been developed to model the granulation 

processes. These paradigms are either physical based models, data-driven models or 

models that integrate both topologies; such as the one that was developed in Chapter 

5 (Frikha and Moalla 2015; Iveson, 2002; Liu et al., 2013; Mansa et al., 2008; Nguyen 

et al., 2014; Sanders et al., 2003; Yu et al., 2017; 2015). These modelling paradigms 

have successfully modelled the granulation process and provided a good 

understanding of the process at different levels. However, to the best of the knowledge 

of this thesis author, none of these modelling paradigms was exploited in a right-first-

time (i.e. reverse-engineering) framework to systematically control the granulation 

process, or to achieve right-first-time production in those industries where such a 

process is considered to be a unit operation in their production cycle. The reason for 

this may be due to the fact that it is not necessarily straightforward to invert nonlinear 

high dimensional models to obtain a unique solution. In this chapter, the modelling 

paradigms; the model presented in Chapter 3, which will be referred to as the 

incorporated model, the hybrid model presented in Chapter 5, and the fusion model, 

which integrates the predictions from the incorporated model with the ones from the 

hybrid model, as described in Chapter 5, are exploited within a right-first-time 

framework to determine the optimal operating conditions for both the granulation and 
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the tableting processes as well as the optimal granule properties to produce a tablet 

with the desired properties. Since inverting these models may lead to more than one 

possible set of operating conditions (Mahfouf et al., 2008), especially when multiple 

conflicting objective functions need to be taken into consideration, powerful 

optimization algorithms are commonly utilized to define such an optimal set of 

operating conditions (Mahfouf et al., 2008).  

Various multi-objective optimization algorithms, including but not limited to 

evolutionary and genetic algorithms, have hitherto been developed and applied to 

define a set of optimal points, the so-called Pareto optimal set, which may also be 

called non-inferior or non-dominated set (Kennedy et al., 2001). In particular, PSO, as 

a stochastic population based approach, has been successfully and extensively 

implemented in many research areas, such as those associated with industrial, 

academic and medical applications (Shanmugavadivu and Balasubramanian, 2014; 

Unler and Murat, 2010), this being due to its computational simplicity and efficiency 

(Kennedy et al., 2001). Despite the huge body of research that addresses different 

issues of the multi-objective optimization, it remains a subject of active research. The 

reason behind this is that there are still many open questions that need to be addressed. 

One of these issues is the definition of the single optimal solution. Various algorithms 

have been proposed in the open literature (e.g. the weighted sum method) (Vu et al., 

2017), however, there is hitherto no universally accepted algorithm that can be used to 

define a single optimal solution for the MOPs, instead the concept of Pareto optimal 

is used to propose a set of non-dominated solutions which the user normally select one 

or more pragmatic alternative solutions.   
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In this research work, a new approach that integrates a multi-objective PSO 

(MOPSO) algorithm with a FLS is proposed. First, a MOPSO algorithm is 

implemented to find the Pareto optimal set. A FLS is then utilized to determine the 

membership function values for each solution in the set, the estimation of these values 

being based on user-defined criteria. The predictive performance of a forward model 

is considered to be a good criterion for the development of the right-first-time 

modelling framework. This choice is motivated by the fact that the proposed right-

first-time framework will be accurate and reliable only when the predictive 

performances of the forward modelling frameworks are acceptable. Such a step is 

followed by applying the set of fuzzy logic operations to define the single optimal 

solution, which corresponds to the maximum membership function value.  

6.2 Right-First-Time Framework  

6.2.1 Right-First-Time Framework: Model Development  

Recently, nature-inspired optimization algorithms have attracted a great deal 

of interest (Kennedy et al., 2001; Mahfouf et al., 2008; Shanmugavadivu and 

Balasubramanian, 2014). Several algorithms, such as Genetic and Evolutionary 

Algorithms, have been proposed and applied to tackle nonlinear, multimodal and 

discontinuous real-world problems (Shanmugavadivu and Balasubramanian, 2014; 

Unler and Murat, 2010; Vu et al., 2017). In particular, PSO algorithms, which mimic 

the competitive and cooperative behaviours of fish schooling and bird flocking, have 

been widely used, this being due to their computational efficiency (i.e. fast 

convergence speed) and, more often than not, their effectiveness in locating the global 

optima (Kennedy et al., 2001). Various PSO algorithms have been presented in the 

related literature to solve single optimization problems (SOPs) (Kennedy et al., 2001). 
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The promising results that were obtained via such algorithms were the main motivation 

behind extending the PSO to deal with MOPs (Unler and Murat, 2010; Vu et al., 2017).  

Unlike SOPs, solving MOPs leads to a set of alternative solutions. Such a set 

is optimal, in the wider sense, no other set of solutions is superior to it when all the 

objective functions are taken into consideration (Mahfouf et al., 2008). Many 

algorithms, such as ranking objective functions and weighted sum methods, have been 

utilized to identify a single optimal solution for the MOPs (Kennedy et al., 2001; Vu 

et al., 2017). In this research work, a new algorithm that integrates the PSO with a FLS 

is proposed to solve MOPs.  

Generally, a continuous and unconstrained MOP can simply be written as 

follows (Kennedy et al., 2001): 

 1 2( ) ( ), ( ),... ( )N
x

Min F x f x f x f x


                                                                                        (6.1) 

where x is a k-dimensional vector of decision variables, which are usually bounded by 

the decision space ( ). In many cases, the decision vector must satisfy a set of 

equality and inequality constraints (Mahfouf et al., 2008; Vu et al., 2017). 

To identify the set of Pareto optimal solutions, a PSO algorithm is utilized. In 

the PSO, particles are randomly initialized within the feasible (i.e. search) space. Each 

particle represents a potential solution. A particle i is usually described by its position, 

xi=( xi1, xi2, …, xik), and velocity, vi=( vi1, vi2, …, vik). During the search, the position 

and the velocity of each particle are updated according to the particle’s experience and 

the experience of the neighbour particles. For the ith particle, these parameters can be 

updated using the following set of equations (Unler and Murat, 2010): 
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                                                               (6.2) 

where r1 and r2 are random numbers generated uniformly in the range of 0 to 1. The 

parameter t stands for the iteration number. The parameters c1 and c2, the so-called 

learning factors, represent the degree of influence of the local and global best solutions, 

respectively. The velocity value is usually bounded within a predefined range of vmin 

to vmax to prevent the particles from flying out of the feasible space (Kennedy et al., 

2001).        

The set of equations in (6.2) is only applicable when the decision variables are 

continuous. For discrete variables, the velocity vector is first transformed into a 

probability one through the sigmoid function as follows (Unler and Murat, 2010): 
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                                                                                                        (6.3) 

where 
t

ij  represents the probability that the value of the jth element of the position 

vector is 1. Hence, the position of the discrete particle can be updated as follows (Unler 

and Murat, 2010): 
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                                                                                                                (6.4)  

where RN is a uniform random number in the range of 0 to 1.  

Once the Pareto optimal set is defined, the single optimal solution can be found 

using the fuzzy logic. First of all, and based on predefined criteria (e.g. the predictive 

performance of a model), a number of clusters can be defined in the feasible space.  
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Figure 6.1. Flow chart of the optimization algorithm. 
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The membership function values for each point in the set can then be estimated using 

the equation presented previously, such an equation is presented here in order to help 

the reader get to grips with the algorithm presented (Mendel, 2001): 
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P M




  
   

 

                                                                                         (6.5) 

where the parameters are as defined previously. The parameter 
ixP  represents the 

performance of the ith solution estimated using the predefined criteria. It is worth 

noting at this stage that the number of criteria may not necessarily be equal to the 

number of the objective functions considered.  

  Once the membership function values are calculated, they can be combined 

for each solution using the set of fuzzy logic operations. Various operations, such as 

minimum and product, can be used for this purpose. Selecting the appropriate set of 

operations depends on the problem under investigation. The main steps of the 

optimization algorithm are summarised in Figure 6.1.  

 6.2.2 Right-First-Time Framework: Model Implementation and Results  

 The models, which were introduced previously in Chapters 3 and 5, were 

exploited within a right-first-time framework that was used to facilitate the 

implementation of the proposed optimization algorithm. Figure 6.2 illustrates the 

development of the right-first-time framework for the granulation and tabletting 

processes. As shown in Figure 6.2, the right-first-time framework was implemented in 

two stages. In the first stage, the target properties of the tablets were used to define the 

best granule properties, which were utilized to identify the optimal operating 

conditions of the HSG process in the second stage of the framework.  
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Figure 6.2. Modelling and optimization frameworks for right-first-time production of the granules and tablets. 
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Since the main property of the tablet that was considered in this research work 

is the strength, the input parameters for the tabletting process (i.e. the properties of the 

granules produced) were identified using a single objective PSO (SOPSO) method. 

The optimization problem for the tabletting process can be written as follows: 

min max

1

:

P
Tablet

T

ij ij ij

S
Minimize J

S

Subject to

x x x j

 

  

                                                                                          (6.6) 

where S represents the strength of the tablet, and xij represents the jth element of the 

position vector of the ith particle. These subscripts are used to distinguish the predicted 

strength value (P) from the target (i.e. desired) one (T). The inclusion of constraints 

ensures that all the granule properties, namely, size (500-1000µm), binder content (8-

17%) and porosity (4-20%), are located between their minimum and maximum values. 

To elucidate, suppose that the target strength value of the tablet is 0.75 MPa. The 

optimization problem in (6.6) was solved using a SOPSO algorithm, where 300 

particle solutions were randomly initialized. The optimal granule properties are: the 

granule size is in the range of 710 to 1000µm, the binder content is 11.75% and the 

porosity is 10.53%. Such properties were used as target properties that need to be 

obtained from the granulation process.  

 For the granulation process, two objective functions should be considered; 

minimizing the difference between the target and the predicted values for both the 

binder content and the porosity, and maximizing the amount of the granules in the 

desired size range, in other words, minimizing the waste and the recycling ratio. The 

optimization problem for such a process can be mathematically described as follows: 
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                                                                           (6.7) 

where γi represents the ith property of the granules, and xij represents the jth element of 

the position vector of the ith particle. Similarly to above, such subscripts should 

distinguish the predicted (P) from the target (T). The parameter T represents the 

volume fraction of the granules that are in the required size range. The first set of 

constraints ensures that all the input variables of the granulation process are within the 

investigated ranges, as listed in Section 2.3.1, whereas the second constraint ensures 

that the impeller type is considered as a discrete or binary variable. Figure 6.3 and 6.4 

show the behaviour of the two objective functions in the search area of the three 

continuous parameters, namely, impeller speed, granulation time and L/S ratio. It is 

noticeable that the two objectives are in conflict, in other words, any improvement in 

one of the objectives leads to a deterioration in the other one. For instance, when both 

the impeller speed and the granulation time are medium, the first objective function is 

increasing while the second one is decreasing.  

 The optimization approach presented in this chapter was implemented to find 

the single optimal solution. First, the MOPSO algorithm was applied to find the Pareto 

optimal set for the model presented in (6.7). The MOPSO process was run using 300 

particles, which were initialized randomly, for 300 iterations.  
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Figure 6.3. The 3D surfaces relating to the objective function: Minimizing the 

waste and recycling ratio (the arrows show the location of the optimal solution 

for a tablet with a 0.75 strength value). 
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Figure 6.4. The 3D surfaces relating to the objective function: Obtaining the 

pre-defined properties (the arrows show the location of the optimal solution for 

a tablet with a 0.75 strength value). 
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It is worth mentioning at this stage that the incorporated model was used to 

estimate the objective function values for the 300 iterations, whereas the hybrid and 

the fusion models were used on the last iteration only, this being due to the 

computational effort that is required by the hybrid model, as mentioned previously in 

Chapter 5. Since the size of the Pareto optimal set can be potentially large, the results 

are rather displayed on a Cartesian plot, such a set being shown in Figure 6.5. This 

figure proves that the two objectives are indeed conflicting.  

 Defining the Pareto set was followed by selecting the single optimal solution. 

Various criteria can be selected based on the designer’s priorities and preferences. 

However, in the right-first-time modelling framework, one may consider the 

 

 
Figure 6.5. The normalized best performance obtained by the MOPSO algorithm 

(Tablet strength is 0.75 MPa, the single optimal solution is highlighted (o)). 
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performance of the predictive models and their behaviours at different areas in the 

feasible space. In this research work, the predictive performances of the fusion model 

for the three granule properties were chosen as criteria. Therefore, the granulation 

input variables and the error residuals that resulted from the fusion model were utilized 

to determine the predictive performance of such a model in the optimization feasible 

space. For example, and based on the number of clusters that was defined previously 

in Chapter 5, Figure 6.6 illustrates how the fusion model performed in one of the space 

areas of the binder content. Such a figure shows that the performance of the fusion 

model is good when the impeller is of type I, the impeller speed is medium, the 

granulation time is small and the L/S ratio is medium. 

 The membership function values for each point in the Pareto optimal set were 

estimated. For each cluster, each solution had membership function values for the size, 

binder content and porosity. These values were combined using the set of fuzzy logic 

operations. The minimum operation was used to combine the binder content and 

porosity. The product operation was then utilized to combine the minimum value with 

the membership function value for the size. The solution that corresponds to the 

maximum membership function value was selected. The best set of the operating 

conditions for the granulation process is: impeller type is of type I, impeller speed is 

3879 rpm, granulation time is 6 minutes and L/S ratio is 13.74%. The single optimal 

point is highlighted in Figure 6.5. The location of this point is also highlighted by 

arrows in Figures 6.3 and 6.4, where it can be seen that any shift of this point may lead 

to a significant degradation of one of the objective functions.  
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Figure 6.6. An example of the fusion model performance in the space area of the binder content. 
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Table 6.1. The target and the predicted values of the granule and tablet properties. 

  
Target tablet strength (MPa) 

0.45 0.6 0.75 
 PSO and FLS  PSO PSO and FLS  PSO PSO and FLS  PSO 

Operating 

conditions  

Impeller shape Type I Type I Type II Type I Type I Type II 

Impeller speed (rpm) 5978.88 3363.57 1878.15 5237.32 3879.45 5832.24 

Granulation time (min) 6.06 15 12.69 6.17 6 6.02 

L/S ratio (%) 14.03 13.84 14.8 14.65 13.74 13.27 

Granule 

properties  

Binder 

content (%) 

Target  13.71 8.75 11.75 

Experimental  12.86±0.53 11.81±0.42 9.72±0.95 10.44±0.48 11.63±0.37 12.88±0.34 

Porosity (%)  
Target  8.58 10.94 10.53 

Experimental  9.24±0.91 9.44±0.95 10.04±0.63 13.02±0.43 9.72±0.66 11.80±0.71 

Experimental Tablet 

strength (MPa) 
Experimental  0.412 ±0.03 0.407±0.03 0.533±0.07 0.68±0.04 0.814±0.05 0.858±0.03 
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An actual granulation experiment was conducted, where the input variables 

were assigned to be as close as possible to the optimal set of the operating conditions. 

The granules produced were characterized in terms of size, binder content and 

porosity. This was followed by producing tablets from the granules in the size range 

of 710 to 1000µm, and measuring the strength of these tablets. The target and the 

experimental properties of the granules and the tablets are summarized in Table 6.1. It 

is noticeable that the experimental values of these properties are close to the target 

values.  

To prove the efficiency and the effectiveness of the proposed algorithm at 

different areas of the feasible space, two strength values; 0.45 MPa and 0.6 MPa, were 

also used to test the right-first-time framework. Following the same algorithm which 

 

 
Figure 6.7. The normalized best performance obtained by the MOPSO algorithm 

(Tablet strength is 0.45 MPa, the single optimal solution is highlighted (o)). 
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was discussed in Section 6.2.1, the Pareto optimal sets for the MOPSO are shown in 

Figures 6.7 and 6.8. The single optimal solution for each model is highlighted in the 

corresponding figure. The experimental and the target values of the properties are 

listed in Table 6.1.  

 It is worth noting that there is a difference between the target and the predicted 

values for all the investigated properties. Such a difference is relatively high for the 

strength of the tablet (approximately 10%) when compared to the differences for the 

granule properties. The reasons behind this can be attributed to one or more of the 

following reasons: 

 

 
Figure 6.8. The normalized best performance obtained by the MOPSO algorithm 

(Tablet strength is 0.6 MPa, the single optimal solution is highlighted (o)). 
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 The heterogeneity of the granules: It has been demonstrated in the open 

literature that the granules from the same batch but different size classes are 

heterogeneous (Reynolds et al., 2004; Scott et al., 2000). In addition, the 

granules from the same size class may not be homogeneous, particularly when 

the size class is wide.  

 Measurement uncertainties: Laboratory apparatus and techniques, which were 

used to characterize the granules and the tablets, involved uncertainties. 

Although each measurement was repeated a number of times, such 

uncertainties could not be eliminated. Moreover, the propagation of 

uncertainties might affect the developed models, in particular, the model that 

was developed for the tabletting process.      

 Simplifying the optimization model: As mentioned previously, only the 

incorporated model was used to estimate the objective function values for the 

300 iterations, whereas the hybrid and the fusion models were used on the last 

iteration only. Since the predictive performances of the incorporated model for 

the binder content and porosity were not as good as the ones for the hybrid and 

the fusion models, this assumption might negatively affect the performance of 

the right-first-time framework.  

For comparison purposes and in order to prove the effectiveness and efficiency 

of the proposed algorithm, the well-known standard PSO algorithm was utilized to 

identify the optimal granules’ properties and the optimal operating conditions for the 

granulation process to produce tablets with the same predefined strength values. Then, 

actual granulation and tabletting experiments were carried-out, and the granules’ 

properties and the strength of the tablets were measured. The target and the 

experimental results are summarized in Table 6.1, where it is obvious that the proposed 
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algorithm outperforms the PSO one, this is being due to its ability to take account of 

the predictive performance of the modelling framework. 

In summary, the MOPSO algorithm and the FLS play complementary roles in 

the optimization process, where the former was utilized to define the set of Pareto 

optimal solutions and the latter was used to identify the single optimal solution by 

considering the predictive modelling performances of the forward models. It is worth 

mentioning at this stage that the FLS alone cannot be used to identify the Pareto 

optimal solutions for an MOP. On the other hand, the PSO algorithm was not able to 

consider the predictive performances of the forward models. Therefore, integrating 

these two approaches has combined their respective strengths in a way that the single 

optimal solution can be successfully identified. The proposed approach was 

successfully implemented to produce granules and tablets right from the first time. 

Such an approach can be further improved to be more robust to the uncertainties and 

the propagation of uncertainties. A type-2 fuzzy set can be integrated with the PSO 

algorithm. The choice of such a set is motivated by the fact that the type-2 fuzzy set 

can deal with uncertainties more efficiently compared to its counterpart type-1 fuzzy 

set. However, it is well known that a type-2 fuzzy system is computationally 

demanding when compared to type-1. Therefore, further investigation should be 

performed to explore the advantages and the potential limitations of integrating such a 

more complex topology.    

6.3 Summary   

In the pharmaceutical industry, producing granules and tablets right from the 

first time is a tricky target that researchers in both academia and industry strive to 

ascertain. Indeed, achieving such a target is not a trivial task, this being due to the 
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complex nature of the many processes involved, namely, granulation and tabletting 

processes, which are key to the production line of these pharmaceutical tablets, and 

also due to the uncertainties and challenges that surround these processes, including 

access to measurement points. Therefore, in this research work, a new approach that 

integrated a PSO algorithm with a FLS was proposed. The ultimate aim of this new 

approach was to facilitate the development of the reverse-engineering framework by 

which the concept of right-first-time production was ascertained. This framework was 

employed to invert the models that were previously introduced in Chapters 3 and 5 to 

represent the HSG and the tabletting processes. By implementing such a framework, 

the optimal granule properties and the optimal operating conditions to produce a tablet 

with predefined properties (e.g. strength) were successfully defined. Moreover, waste 

and recycling ratios were significantly minimized. This right-first-time optimization 

framework is original in that: (i) It circumvented the direct mathematical inversion of 

the complex models (via multi-objective optimization) which, more often than not, is 

not possible due to the fact that such inverse does not exist or simply is not unique; (ii) 

It considered more than one objective function which made the definition of optimality 

not so straightforward and instead the concept of Pareto-optimality was relied upon 

whereby a set of non-dominated solutions was obtained. The user usually selects from 

this ‘golden’ set what is thought to be a pragmatic outcome for the product/process 

under investigation. It is perhaps worth noting at this stage that multi-objective 

optimisation is usually the preferred option to the single aggregated objective 

optimisation which ‘lumps’ all objectives into one and by adding weighting factors 

that play surrogates to the Pareto definition for specifying the priority of one objective 

on the other, in other words Pareto-optimality by the back-door. Irrespective of which 

method one uses though, it is widely recognised that the multi-objective optimization 
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exercise becomes meaningless when too many objectives are specified and the Pareto 

concept loses the very essence it was introduced for. Even the human brain is incapable 

of building a useful synthesis for effective decision-making when too many degrees of 

freedom are involved regardless of any candidate solutions ranking. In our case study 

it was possible to only include two objectives without loss of interpretability or 

accuracy but even if more objectives need to be incorporated in the future, such as 

those associated with the environment for instance then these can be taken into account 

within a hierarchical framework without compromising on the concept of Pareto-

optimality.   

In summary, the results achieved in this research were truly promising and 

showed that right-first-time production of the granules and tablets is achievable. By 

considering some aspects (e.g. scaling-up methods), the modelling frameworks can be 

implemented correctly in the pharmaceutical industry (i.e. on a relatively large scale). 

The advantages of such an implantation may include, but not limited to, developing a 

cost-effective product, meeting the stringent regulations imposed on the 

pharmaceutical industry and minimizing new product development time. 
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Chapter 7 

Conclusions and Future Work      

7.1 Conclusions 

Taking a revolutionary step towards moving beyond where the pharmaceutical 

industry is today is indeed the main motivation behind this research work. Therefore, 

a right-first-time framework was presented in this research to (i) enhance the 

knowledge of the processes included in the pharmaceuticals production line, (ii) design 

the final product quality throughout the manufacturing unit operations, (iii) enhance 

the competitiveness of a company in the market, (iv) improve the supply chain 

management, and (v) minimize new drug development time. In this research, such a 

framework was developed and implemented via two phases: in the first phase various 

modelling paradigms that are based on data, process knowledge and laws of physics 

were developed to represent the key unit operations, whereas in the second phase these 

modelling paradigms were exploited in a reverse-engineering fashion via the 

embedding of constrained multi-objective optimization algorithms for right-first-time 

production.  

Since the HSG and tabletting processes are considered to be the key unit 

operations of the pharmaceuticals production cycle, this research focused specifically 
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on these processes. Understanding such processes was followed by identifying the 

critical quality attributes of the granules and tablets. The design space (i.e. the 

parameters and their levels that significantly affect the critical quality attributes) was 

defined by conducting a set of trial experiments. The experimental data were then 

collected via a full factorial design of experiments. 

The data hence obtained were utilized to implement some of the already 

exisiting data based modelling paradigms (e.g. an ANN and an RBF network). 

However, these models failed to capture the complex relationships between the inputs 

and the outputs of both the granulation and tabletting processes. Therefore, a new 

model called the integrated network was proposed in this research work. In such a 

model, the outputs were predicted by training the data in two consecutive phases. The 

first phase consists of a number of models, whereas the second phase consists of a 

single model. The models in both phases should be capable of capturing linear and/or 

nonlinear relationships. Although such a network is computationally demanding 

compared to the ANN and the ensample model, it predicted the properties of the 

granules and tablets successfully, and it also outperformed these modelling paradigms. 

However, such a network, similarly to the majority of the modelling paradigms do, 

assumes that the error is normally distributed. Such an assumption may not be valid 

and it may indeed lead to an unmodelled behaviour and bias. Therefore, the GMM 

algorithm was then incorporated in the modelling structure to refine the predictions by 

taking into account any of such potential bias. In this research work, the incorporated 

model was shown to be able to predict the properties of the granules and tablets 

accurately. However, such a model, which consists of RBF networks, is referred to as 

a black-box model, in the sense that it does not provide satisfactory explanations of 
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the process behaviours. Thus, there was a need to improve the interpretability of the 

processes involved, particularly the granulation one. 

Modelling paradigms based on FLSs were introduced to model the processes 

under investigation, and also to linguistically describe the relationships between the 

process inputs and outputs in a way that one can easily understand and perhaps utilize 

to control the process. Although FLSs can deal with uncertainties more intrinsically, 

the predictive performances were worse compared to the incorporated model. Such a 

performance degradation may be due to the invalid assumption that the error residuals 

followed a normal distribution. In such a case, using the modelling approaches that 

can extract the hidden information by characterizing the error residuals is a common 

practice. However, using these approaches may change the linguistic rules extracted 

by the FLSs. Therefore, in this research work, the GMM algorithm was implemented 

in such a way that the fuzzy rules, which were used to update the predicted outputs, 

can be refined to compensate for any potential bias. The integration between the FLSs 

and the modified GMM algorithm significantly improved the predictive performance. 

Moreover, the process understanding was retained during the error characterization 

model. However, the predictive performances were not satisfactory, especially for the 

binder content and the porosity of the granules, and the strength of the tablets. 

Therefore, there was a strong need to develop a modelling framework that can not only 

predict the outputs but can also provide a good understanding, particularly for the 

granulation process. 

A hybrid model based on physical and data interpretations was then proposed. 

Such a model consisted of three paradigms, namely, a CFD model, a PBM and an RBF 

network. These three models were integrated in such a way that the outputs from one 



152 
 

model were used as inputs to another model. The proposed hybrid model combined 

the strengths of the single models involved in a way that any potential limitations 

would be circumvented. Therefore, this model was able to (i) provide the required 

understanding of the granulation process and its mechanisms at the micro-level, (ii) 

describe the flow of the granules inside the granulation vessel, (iii) implicitly 

compensate for some of the assumptions that were made to simplify the physical based 

models, and (iv) represent the empirical parameters as a function of the granulation 

input variables. Furthermore, it was also able to predict the properties of the granules 

successfully and more accurately. However, more accurate predictions of the 

properties of the granules are, more often than not, required, especially in the 

pharmaceutical industry, where the final product should meet the stringent regulations 

being imposed in such an industry.   

In order to improve the predictive modelling performances, a new fusion model 

based on fuzzy logic theory and the DS theory was proposed. The basic idea of such a 

model stemmed from the fact that integrating predictions from different topologies can 

usually lead to more accurate and robust predictions. Also, the predictive performance 

as a value does not usually show the user how a model performs in the design space. 

Thus, the fusion model combined the predicted outputs from both the hybrid and the 

incorporated models in a way that improved the predictive performances, particularly, 

in those areas where the performance of one of the models or perhaps both was not as 

good as desired, and also resolved any conflicts that may exist between the models 

included. The results obtained by the proposed fusion model proved the efficiency of 

such a model in improving the modelling performances and in resolving conflicts. 
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In general, the main aim of developing a modelling framework is either to 

predict process outputs or behaviours, or to control a process. The main aim of all the 

models that were proposed in Chapters 3, 4 and 5 was to accurately predict the 

properties of the granules and tablets. Since a good modelling performance was 

obtained by the models presented in Chapters 3 and 5, these models can be exploited 

further to develop a reverse-engineering framework that can control the processes 

under investigation by identifying the optimal granule properties and the optimal 

operating conditions of the granulation process; in order to produce granules having 

the optimal properties and tablets with predefined properties. This can be achieved by, 

for instance, embedding the multi-objective optimization paradigms to ensure the 

right-first-time production.  

The right-first-time framework was implemented in two phases. In the first 

phase, the model that was developed to represent the tabletting process was inverted 

using a SOPSO algorithm to define the optimal granule properties to produce a tablet 

with predefined properties. In the second phase, the models that were developed to 

represent the granulation process were inverted using a new approach to identify the 

optimal operating conditions that should lead to the desired optimal properties. The 

new approach integrated a MOPSO algorithm with a FLS in order to systematically 

define a single optimal solution for the MOP. The proposed approach successfully 

identified the optimal operating conditions of the granulation process, and also it 

significantly minimized waste and recycling ratios.  

In summary, the concept of right-first-time production does not need to remain 

a myth (Mahfouf et al., 2009), where it was demonstrated in this research work that 

achieving such a concept is real, even though it was a tricky task. Consequently, by 
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considering some aspects (e.g. scaling-up methods), developing a cost-effective 

product that meets the stringent regulations and minimizing new product development 

time can be indeed achievable targets in the pharmaceutical industry as well as in other 

industrial activities. 

7.2 Future Work 

As an extension of the research work presented in this thesis, the following 

research recommendations can be made:  

 Improving the presented modelling frameworks: Recommendations to 

improve the proposed modelling frameworks were suggested in the 

previous chapters. These recommendations can be summarized as 

follows: 

 Developing an integrated network structure based on FLSs: In 

order to improve the interpretability of the integrated network, 

type-1 or type-2 FLSs can be used in the first and second 

phases of the network structure. In such a case, one needs to 

consider defining and retaining the extracted rules that can 

accurately represent the process under investigation. 

 Improving the hybrid model: The hybrid model can be 

implemented in two stages in order to take into account the 

three phases; the first stage should consider the binder and the 

particles, whereas the second stage should consider the 

granules and gas, followed by integrating the two stages 

together. 
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 Developing a fusion model based on a type-2 fuzzy set: Since 

a type-2 fuzzy set can handle uncertainties more efficiently 

compared to its counterpart type-1, defining the mass function 

using a type-2 fuzzy set can lead to a significant improvement 

in the predictive performance.  

 Integrating a type-2 fuzzy set with the PSO algorithm to define 

the single optimal solution for a MOP: Once the approach can 

deal with uncertainties more efficiently, one can easily 

consider more than two objective functions.  

 Scaling-up process: It is worth integrating the proposed frameworks 

with the scaling-up approaches presented in the related literature to 

facilitate the successful implementation of these frameworks on a 

relatively large scale.  

 On-line control system: In the pharmaceutical industry, tablets 

production cycle has been operated in a batch mode. Recently, moving 

towards a continuous one has been considered, this is due to its 

potential advantages in time, recyclability, costs, scalability and 

controllability (Rogers et al., 2013). Therefore, in the future, the 

modelling and control paradigms should be adapted to model and 

control a continuous production line in real time. 
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