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Geometric Feature Distributions for Shape
Representation and Recognition

Summary

One of the fundamental problems in computer vision is the identification of objects from
their shape. The research reported in this thesis is directed toward the development of
a scheme for representing the shape of an object which allows it to be recognised both
quickly and robustly across a wide range of viewing conditions.

Given a shape described by a set of primitive elements, eg. straight line segments,
the proposed scheme involves using a histogram to record the distribution of geometric
features, eg. angle and distance, measured between pairs of primitives. This form
of shape representation has a number advantages over previously proposed schemes.
Foremost among these is the fact that it is able to produce local representations of
shape, based on individual line segments. Recognition based on such representation is
robust to the problems arising in cluttered scenes. Representations produced by the
scheme are also invariant to certain object transformations, they degrade gracefully
as the shape is fragmented and are strong enough to support discrimination between
dissimilar objects.

By treating the histogram recording a geometric feature distribution as a feature vector
it is possible to match shapes using techniques from statistical pattern classification.
This has the advantage that optimal matching accuracy can be achieved using pro-
cessing which is both simple and uniform. The approach is therefore ideally suited to
implementation in dedicated hardware.

A detailed analysis is undertaken of the effect on recognition of changes in the descrip-
tion of a shape caused by fragmentation noise, scene clutter and sensor error. It is
found that the properties of both the representation and matching components of the
system combine to ensure that recognition is, in theory, unaffected by fragmentation
noise, while it is maintained to very high levels of scene clutter. The factors which
determine the effect of sensor error on the performance of the recognition system are
fully analysed.

The ability of the representational scheme to support object recognition is demon-
strated in a number of different domains. The recognition of both 2D and 3D objects
from a fixed viewpoint is demonstrated in conditions of severe fragmentation noise,
occlusion and clutter. The scheme is then shown to extend straightforwardly to the
representation of 3D shape. This is exploited to perform recognition and localisation
of 3D objects from an arbitrary viewpoint, based on the matching of 3D scene and
,model shape descriptions. Finally, the use of the scheme within a multiple view-based
approach to 3D object recognition is demonstrated.
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Chapter 1

MOTIVATION and BACKGROUND

1.1 Motivation for Study

The capacity of a robotic agent to interact intelligently with its environment depends

crucially on its ability to interpret its sensory input. In particular, the ability to recog-

nise which objects are present in the environment, and to determine their position and

orientation, is central in supporting a wide range of intelligent behaviours, with numer-

ous industrial applications. In manufacturing for instance, visual object recognition is

useful in supporting the automated inspection of manufactured objects. The purpose

of this inspection might be to identify objects in order to monitor the throughput of

some process, or it might be applied as part of a quality control system, helping to

detect manufacturing faults that are outside acceptable limits. In both cases it might

also be useful to be able to locate objects so that they can be picked up by a robot and

manipulated or sorted. Object recognition can also play an important part in making

robots more mobile. The ability to identity and locate known objects in the world pro-

vides useful information to an autonomous vehicle engaged in some navigation and/or

positioning task. Thus, vision can be seen as helping to realise the potential of automa-

tion in manufacturing by improving the versatility of robots and thereby increasing the

range of tasks to which they can be applied.

This thesis addresses the problem of developing a computer vision system that is able

to identify and locate arbitrary rigid objects from 2D, grey-level or monochrome images

of the scene. If this system is to be of use in practical applications then it must must

be able to deal robustly with the kinds of problems that are likely to occur in any

real, unconstrained, environment. These may arise from factors such as the partial

occlusion of one object by another, transformations in the position and/or orientation

of the object relative to the viewing camera, the presence of noisy or background

features in the image or from poor lighting of the scene. The effect of such problems

is to cause a change in the appearance of an object, thereby increasing the difficulty

of performing recognition. If the proposed system is to be robust to these factors
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Figure 1-1: A general recognition system.

then it must be capable of associating each of the possible images of an object with a

single, unique entity. There are also a number of practical considerations that must be

taken into account when assessing the applicability of a system in an industrial setting.

Firstly, the system must be both fast and accurate, as determined by requirements of

the particular task. Secondly it should be flexible, both in the types of objects that

can be recognised and in the environments in which they can be encountered. Finally,

it should be capable of dealing with large numbers of objects.

The ability to make sense of ones surroundings implies some form of prior knowledge,

in the form of a stored, internal representation of the objects to be recognised. This

statement is not intended to constrain the nature of this representation. For example,

if one were interested in asking questions such as, "Is there an object in. the scene

that can serve as a chair?", then the representation would be in terms of an object's

functionality. However, the work presented in this thesis falls within a model-based

approach to recognition. This proposes that representation is based upon some fixed

property or characteristic of an object, or of its appearance in an image, that can be

exploited in order to identify the object in a wide range of changed circumstances.

Given a set of object models, the goal of recognition then becomes one of exploiting

the characteristics upon which the models are based in order to interpret elements of

the world in terms of elements of the set of object models. This is achieved through

some form of matching algorithm. A recognition scheme therefore has two compo-

nents; a representational scheme for modeling objects and a matching algorithm. This

situation is summarised in figure 1-1. The practicality of any proposed recognition

system depends to a large extent on the success with which the properties of both

its representational and matching components combine to meet the challenges listed

above. Consequently, research in the field of visual object recognition can be seen as an
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investigation into the nature of object representation, the mechanisms by which they

might be acquired and the processes by which they support recognition.

The work presented in this thesis is based upon the assumption that representation

can be based upon the shape of an object. In particular, a form of representation is

proposed which is based on recording the distribution of geometric features, eg. angle

and distance, measured between primitive elements describing the shape of an object.

This could either be an explicit description of the 3D structure of the object or it could

be the 2D projected shape, as found in a single image. This form of representation has

many advantages in terms of its ability to support distinctions between objects and

in its robustness to changes in shape description caused by image noise or occlusion.

Such representations can also be matched using techniques from statistical pattern

classification. The system based on the matching of these representation is shown

to be capable of recognising and locating both 2D and 3D objects in conditions of

considerable image noise and clutter.

1.2 Background

The purpose of the remainder of this chapter is to provide background to the work

presented in this thesis by reviewing previous approaches to shape representation and

object recognition. This serves both as background for the remainder of the thesis

and as a detailed exposition of the motivation behind the study of geometric feature

distributions, (GFD's), as representations of shape. In order to organise the review

into manageable proportions the first few sections restrict consideration to the issues

involved in, and possible approaches to, 2D object recognition. The final section then

extends the review to the additional problems posed by 3D object recognition. In

particular, the review is divided into the following sections:

1. 2D Object Recognition
This section briefly reviews some of the concepts and issues involved in performing

2D object recognition.

2. Statistical Pattern Classification
The statistical pattern classification approach to object recognition is presented

and the importance of the role of shape representation is discussed. Several pre-

viously proposed representational schemes are reviewed. It is argued that while

the statistical pattern classification approach offers many potential advantages in

terms of simplicity and speed of recognition, the failure of existing shape represen-

tations to overcome the various problems involved in recognition means that this

potential has not been realised. Through this discussion the desirable properties

of an ideal shape encoding are established.
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3. The Role of Geometric Relationships in Recognition
The concept of basing recognition on measurements of the geometric relationship

between local shape primitives is introduced and shown to have many advantages.

Several previous approaches to recognition based upon their use are reviewed. It

is claimed that, while these systems often perform impressively, the fact that

recognition is based upon individual geometric relationships necessitates the use

of complex procedures for implementing global constraints on matching. This

is necessary in order to overcome the the inherent weakness of these local fea-

tures. Previous attempts at representing and matching shape on the basis of the

distribution of multiple geometric relationships within a shape are reviewed, and

shown to possess many of the desirable properties established in the previous

section.

4. 3D Object Recognition
Possible approaches to the problems involved in 3D object recognition are re-

viewed. These include the 3D approach, (in which 3D shape descriptions of

model and scene are matched directly), the alignment approach, (in which 3D

object models are matched to 2D image data through a search of transformation

space), and the multiple view-based approach, (in which 2D image data is matched

to 2D, appearance-based object models).

1.2.1 2D Object Recognition

This section presents a brief review of the issues involved in 2D object recognition.

Problem Description

The term "ED object recognition" is taken here to describe the situation in which the

relationship between an object and the viewing camera is fixed, such that variations in

the appearance of an object arising from changes in viewpoint need not be considered.

However, objects are free to undergo transformations in their position and orientation

within the image plane. Additionally, changes in the apparent size of an object may

occur if the object to camera distance is not fixed. The objects themselves may be

either 2D or 3D, but are assumed to be rigid and from the same mould, ie. there is

no variation in structure between objects of the same class. The aim of recognition

is, minimally, to identify which known objects are present in the scene. In addition

the recognition system may also be required to provide estimates of the position and

orientation, or pose, of each object. Given certain assumptions, together with a suitably

calibrated system, this information can be used to determine the world coordinates of

each object.
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Visual Cues

As with most previous approaches to recognition, consideration is restricted to the

recognition of static objects from their projected shape, as contained in a grey-level

image of the scene. This obviously ignores a number of information sources that could

be usefully exploited in recognition. These include an object's colour, its texture or any

characteristic motions that it may exhibit. Each of these visual cues could be expected

to have considerable disambiguating power. This narrowing of focus is justified on

two grounds. Firstly, the more visual cues that are considered the more complex the

processes involved in recognition become. Secondly, a number of researchers have

argued that for certain objects, crude encodings of their projected boundaries are

sufficient for recognition, [2,8].

Shape Description

Given a grey-level image of a scene, the first stage in recognition is therefore to extract

a description of the projected shape of the objects present in the scene. In cases

where the image describes a complex, natural scene there are numerous advantages

to producing a region-based description of shape, [106]. This involves thresholding

an image intensity histogram to detect spatially continuous areas of the image that

share a common intensity value. This process may be applied locally if the image

histogram is not bimodal, and produces a description of shape in the form of a region

map. However, the proposed representational scheme is to be based upon recording

the distribution of geometric features measured between shape primitives that are

both local and uniform. For this reason we limit discussion to boundary based shape

descriptions. The extraction of such descriptions is based upon the fact that object

contours tend to be projected in the image as intensity gradients. By detecting points

in the image at which such gradients occur, and noting the location and orientation of

the gradient, it is possible to obtain a description of the projected shape of an object in

terms of a set of edge elements, or edgels. These low-level primitives may be grouped,

using some form of approximation process, to form higher level primitives, such as

extended line segments or conics. Marr termed this level of representation a 'primal

sketch', [65].

Variation in Shape Description

The difficulty of the recognition task is determined to a large extent by the degree of

variation that occurs in the description of an object's shape between model acquisition

and recognition. This in turn depends on the context in which objects are to be encoun-

tered. If, as in certain industrial applications, the environment can be engineered such

that objects are viewed in isolation, at a fixed position and under constant, favourable

lighting then the amount of shape variation will be minimal. Under such conditions
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the problem of recognition becomes quite straightforward, and can be performed using

some form of template matching. However, in general such conditions cannot be as-

sumed. The relaxation of the above constraints means that the shape extracted from

an image may vary quite drastically from that used in model acquisition. The major

sources of this variation are now briefly examined.

The fact that edgels are based upon relative, rather than absolute, image intensity

values suggests that they should be relatively stable to changes in the lighting of a

scene. However, the need to place a threshold on the size of an intensity gradient that

is to be regarded as a valid edgel means that the process of edge detection becomes

unstable in poor lighting conditions, leading to fragmentation of the edgel-based shape

description. The presence of multiple, possibly unknown, objects in a scene can cause

two types of problem. Firstly, the possibility that one object may partially obscure

another means that elements of the shape description may be lost through occlusion.

Secondly, the presence of additional objects in the scene means that any shape de-

scription obtained from low-level, bottom-up processing must contain elements due to

more than one object. The shape description may even contain elements due to com-

posite objects, created by several overlapping objects. A number of researchers have

proposed bottom-up strategies for segmenting elements of the shape description that

are most likely to belong to a meaningful object, as opposed to background clutter,

eg. Ullman [103]. However, this approach does not promise a general solution. The

description of an objects' projected shape extracted from an image may therefore be

fragmented, perturbed and augmented by spurious elements.

1.2.2 Statistical Pattern Classification

One of the earliest approaches to object recognition was to regard it as a problem

that could be tackled using techniques from statistical pattern classification. This in-

volves describing each object using a set of features that are adjoined to form a feature

vector, such that each object is represented as a point in a multidimensional feature

space. Where recognition is based on an object's shape, possible features range from

simple measures, such as area or perimeter, to the more complex shape characteris-

tics described below. One of the strengths of the pattern classification approach is

that information from different visual cues, eg. shape, colour or texture, can be eas-

ily integrated, either by combining features to form a single feature vector prior to

classification, or by performing some form of data fusion.

Given an encoding of shape in the form of a feature vector, recognition can be achieved

by applying some form of statistical classification rule, eg. nearest-neighbour, once the

value of a distance metric between the feature vectors representing scene and model

have been computed. Interest in this approach has recently been revived through work

on the use of artificial neural networks, although the techniques used to perform recog-
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nition are directly related to those of standard pattern classification, (see Lippmann [61]

for a review).

The classification approach is based upon the assumption that similarity between shape

representations can be interpreted as similarity between the objects themselves. This

fact, together with the simplicity of the recognition process, means that its success is
largely dependent upon the characteristics of the chosen representational scheme, and

the shape features upon which it is based. Any properties that are required of the

recognition system must be included as part of the representational scheme.

Desirable Properties

It will be useful at this stage to list a number of properties that should ideally be

possessed by any proposed representational scheme.

i) Uniqueness
An encoding is unique if each distinct shape is mapped to a different point in feature

space. Such an encoding is capable, theoretically at least, of supporting discrimination

between all dissimilar shapes. The uniqueness of an encoding scheme is determined by

the strength of the features upon which it is based. For example, the area or perimeter

of a shape, while possibly sufficient for distinguishing between certain objects, are not

strong, since it is possible for different objects to produce the same set of feature values.

ii) Robustness
The representation should be as robust as possible to changes in a shape description

caused by fragmentation noise, occlusion or scene clutter. Obviously, no useful repre-

sentation can be completely unaffected by such changes. However, it is reasonable to

require that the change in the shape encoding be proportional to the degree of shape

variation. This graceful degradation, [65], of the encoding should enable the system to

provide a best estimate of recognition, given the uncertainty caused by the changed

viewing conditions.

iii) Invariance
The representation should be invariant to changes in shape caused by certain object

transformations. This both cuts down on the number of patterns that must be stored

and ensures that the recognition system has the ability to generalise across a wide range

of viewing situations. Ideally, a recognition system would be able to automatically iden-

tify invariant features from a set of patterns representing transformed instances of an

object. However, the problem of extracting non-trivial commonalities between such

patterns has proved very difficult. For this reason it is desirable that any required

invariances are built into the representational scheme. Although much recent inter-

est has centred on discovering shape features that are invariant to general projective

transformations, we restrict consideration here to the Euclidean transform, ie. changes

in the 2D position and orientation of an object.
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These are the main, theoretical, criteria upon which any proposed shape encoding must

be assessed. Further, practical, considerations include the scheme's accessibility - how

easy is it to compute representations from the available image data, and its versatility

- are there any restrictions on the range of objects that can be represented?

Previous Approaches 

A number of shape encodings that have been widely used in the recognition literature

are now reviewed, (for a complete review of such techniques see Marshall [66].) These

encodings are intrinsically global in nature, in that they exploit characteristics which

are sensitive to the presence of the complete shape. The matching of such global shape

representations is commonly termed non-correspondence recognition.

Moment Invariants
A shape characteristic that has commonly been used for the recognition of unoccluded,

rigid objects is the set of moment invariants, Hu [47]. An excellent review of moment-

based techniques is presented in Prokop & Reeves [81]. Moments are typically com-

puted from a region-based description of shape, although they can also be applied to
boundary-based descriptions. Given a segmented description of the image, described

by the characteristic function g(x, y), where

1, if point (x,y) is part of the object
.g ( x ,Y) = 0, otherwise

the general moment Mpg, said to be of order p + q, is then given by

mpq . E E xv y q g(x, y)
x y

Thus, the zeroth order moment defines the area of a shape,

M00 = E E g(x, Y)
s y

while the normalised 1st order moments give its centroid,

M1 0	 MO 1 
Cs = A ,'	

Cy 
= A 4.'

ivi0,0 	 /v10,0

Higher order moments correspond to such characteristics as the principle axes, radii

of gyration and skewness of a shape, [81]. The values of individual moments, or com-

binations of moments, are not sufficiently strong to support useful recognition and so

are adjoined to form a feature vector. Hu demonstrated that by combining the values

of individual moments, shape encodings with the desired invariance properties could
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be produced. The main advantages of moment-based shape encodings are their invari-
ance, their accessibility and their versatility, (they can be applied to arbitrary shapes,
even those containing internal structure.) Their main disadvantage is their weakness;
unless a large number of moments are considered, representations are unlikely to be
unique. The fact that higher order moments become increasingly less intuitive is also
considered a disadvantage, [81].

Fourier Transform
Given a shape described by a set of boundary points it is possible to characterise the
shape using the coefficients of a Fourier transform, [111,74,60,39]. The 2-D boundary
curve is first transformed into a 1-D boundary profile, (an arc length-turning angle

graph can be used), which is then normalised to the interval [0, 2r] to produce a
rotation, translation and scale invariant representation of shape. This is then used as
the basis for a Fourier expansion, given by:

1 N
X,= — E 0(s)e

N .
—j2rns

The coefficients of the Fourier series are combined to form a feature vector. The main
advantage of Fourier methods is in their strength; in the limit, the infinite series of
Fourier coefficients provide a unique representation. In practice the minimum number
of terms are used to characterise the shapes to the required level of discrimination.

Log Polar Mapping
A log-polar mapping can be used to transform points in image space into points in
log-polar parameter space. If the mapping is centred at some point in the image then
each image point z=x+yj is transformed to a point w in log-polar parameter space,
such that

w = ln(z) = 'n(Izi) -I- jOz

The act of positioning the centre of the mapping at some fixed point on the object
effectively provides invariance to object translation. The property of this mapping
which makes it useful for recognition is that transformations in the orientation and
scale of an object in image space are converted into translations along orthogonal
axes in log-polar parameter space. Various techniques can then be used to provide
invariance to this translation, eg. the Fourier transform, [109,91,82,84]. The difficulty
in this approach is in ensuring that the mapping is centred on a consistent point within
each object. A point commonly chosen is the centroid of the object, which obviously
makes the approach sensitive to scene clutter and occlusion.

Assessment

The main advantage of treating object recognition as a pattern classification problem is
in the simplicity of model acquisition and matching. The training phase, in which the
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system acquires models of the objects to be recognised, involves simply computing the

values of the chosen shape characteristic from an image of the object. Optimal matching

accuracy can then be achieved by simply applying a classification rule, once the value

of a distance metric has been computed between model and image feature vectors.

This process can be performed either in parallel or sequentially using a decision tree,

and is obviously well suited to implementation in parallel hardware. Systems based on

pattern classification therefore have the potential to deliver fast recognition.

However, to date the application of the pattern classification approach has been lim-

ited, primarily by its reliance on the global shape representations described above,

to the recognition of unoccluded objects. The Fourier coefficients or moment invari-

ants computed for an occluded or composite shape bear an arbitrary relation to those

computed for the original shape. Given the stated difficulty in performing bottom-up

segmentation prior to representation, it seems clear that recognition based on global

shape characteristics faces severe problems in cases where multiple objects may be

encountered.

The Need to Make Local Shape Measurements

The above discussion implies that recognition in cluttered scenes should be based upon

the matching of local shape elements. These could be individual shape primitives, such

as edgels or extended line segments, or they could be spatially restricted regions of the

shape, commonly termed "parts" Hoffman 8.6 Richards, [46]. The obvious advantage

of such recognition is that the effect of losing some region of a shape, either through

fragmentation noise or occlusion, does not prove fatal, since correspondence should be

preserved in the remaining areas.

For this reason a number of researchers have attempted to adapt the global representa-

tional schemes mentioned above to deal with the representation of local shape. Gorman

et al. [38] have proposed restricting the computation of Fourier coefficients to partial

shapes formed by triples of consecutive line segments, a feature vector being associated

with the middle line segment. By considering all such triples a shape representation

is formed which is composed of n feature vectors, where the shape is composed of n

line segments. Taubin [100] has investigated the application of moment invariants to

local regions of a shape, each region being defined by a circle. In each case, correspon-

dences between local shape elements are established using standard nearest-neighbour

classification techniques.

These approaches are noteworthy in that they attempt to retain the advantages of treat-

ing recognition as a pattern classification problem while acknowledging that matching

must take place between local shape elements. However, both systems suffer due to the

fact that the chosen representational schemes, Fourier coefficients or moment invari-

ants, are sensitive to the loss and/or addition of shape elements. This sensitivity can

only be overcome by restricting the region of shape to which representation is limited
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to such a degree that local feature vectors become weak, since they are based upon

insufficient shape information. Matching based upon such representations therefore

tends to be ambiguous.

Conclusion

The conclusions drawn from this section are, firstly, that recognition based on matching

local shape elements is essential if the problems arising from scene clutter are to be

dealt with successfully. Secondly, performing local shape matching using standard

pattern classification techniques has advantages in terms of simplicity, speed, and ease

of model acquisition. It has been argued that attempts to adapt what are essentially

global shape representations to support such matching do not provide an acceptable

solution. The primary motivation behind the present study is therefore to develop a

form of local shape representation that can be matched using pattern classification

techniques and which is robust to the kinds of shape variation that typically occur in

real imaging situations.

The proposed solution is based upon recording the distribution of geometric features,

eg. angle and distance, computed between pairs of shape primitives. The next sec-

tion briefly introduces the concept of pairwise geometric relationships before reviewing

previous approaches based upon their use.

1.2.3 The Role of Geometric Relationships in Recognition

Any worthwhile measure of shape should be based, at some level, on its geometric

structure. Given a shape described as a collection of primitive elements, the local

geometry of the shape can be made explicit by computing the value of geometric

features, eg. angle and distance, between pairs of primitives, figure 1-2. The concept

of a geometric feature is described in more detail in Chapter 2, for the moment it is

sufficient to state that the purpose of a geometric feature is to capture some aspect of

the geometric relationship between the two shape primitives. The obvious advantage

of such measures is that they depend only upon the presence of the pair of shape

primitives between which they are defined. This suggests that recognition systems

based on matching the values of pairwise geometric features have the potential to deal

robustly with the loss of shape information. Whether this potential is realised depends

on the mechanism used to perform matching.

In addition to being local, geometric features have a number of further advantages:

i) Invariance

Geometric features, being relative measures, are invariant to certain rigid transforma-

tions of an object. In the case of 2D shape this covers rotation and translation of an
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Figure 1-2: Pairwise geometric relationships between line segments.

object within the image plane. The effect of scale changes is less clear and depends on

the particular geometric features used.

ii) Robustness
Errors, due both to the sensor and to the feature extraction process, can result in

variations in the exact measured position and orientation of a shape primitive from

one viewing instance to another. The likely effect of such variations on the expected

value of geometric features can be predicted using an appropriate model and accounted

for in the representation and matching process, eg. by simply storing bounds on the

range of geometric feature values that are accepted as a match, [40].

iii) Flexibility
Although geometric relationships have been introduced using pairs of extended line

segments, the concept is a general one. Geometric relationships can, in general, be

defined between any number or type of shape primitive. This allows shapes to be

described using the most appropriate set of primitives, without affecting the applica-

bility of the characteristic upon which representation and matching is based. This has

favourable consequences for the versatility of systems which exploit geometric features

for recognition.

Pairwise geometric features therefore provide a robust, invariant measure of local shape

that are versatile in their application. Not surprisingly, therefore, many previous ap-

proaches to object recognition have been based on the geometric relationships between

shape primitives. These schemes are now reviewed.
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Geometric Model-Matching Schemes

Previous recognition schemes based on geometric relationships can be viewed as giving

increased weight to the role of matching in recognition. Shape representations are often

simply records of the pairwise geometric relationships within a shape. Recognition

then typically requires a relatively complex mechanism to establish correspondences,

eg. tree-search, graph-analysis, or clustering. This is in obvious contrast to the pattern

classification approach discussed in Section 1.2.2.

This increased complexity in matching is necessitated by the fact that recognition in

these systems is typically based on the values of individual pairwise geometric relation-

ships. While these measures have the advantage of being local, they are, consequently,

quite weak, since a particular geometric relationship may be common to many pairs of

shape primitives, both within and between objects. The matching of shape on the basis

of such measures is therefore likely to produce a set of candidate matches. Considerable

effort must then be expended in order to apply a global constraint on matching, so that

this ambiguity can be resolved. The mechanism used to apply this global constraint

differs between approaches.

Interpretation-Tree Search
If each model primitive is considered as a match for every image primitive then the

problem of finding a consistent set of matches can be phrased in terms of a search of

the resulting interpretation tree. Each leaf node in this tree represents a possible inter-

pretation of the image data that must be evaluated for global consistency. The obvious

problem with this simple approach is that the number of possible interpretations grows

exponentially with the number of scene and model primitives. 1 For all but the simplest

of problems this proves intractable.

A possible solution is to build the interpretation tree dynamically, checking at each

branch point whether the matches hypothesised to that point correspond to a consistent

transformation of the object in the image. If not then the tree can be pruned at that

point. While this drastically reduces the the size of the interpretation tree, the overhead

of checking for global consistency at each branch point proves prohibitive.

The solution proposed by Grimson & Lozano-Perez [40,42,41] is to attempt to prune

the interpretation tree by exploiting local geometric constraints. This involves checking

at each point in the interpretation tree that the hypothesised match observes pairwise

geometric consistency with all previous matches. If not then the hypothesised match

cannot be part of a consistent transformation and the interpretation tree can be pruned

at this point. The force of this constraint increases with the depth of the search,

which means that branches of the interpretation tree in which incorrect associations

'For S scene primitives and M model primitives there are Ms possible interpretations.



Chapter I. MOTIVATION and BACKGROUND 	 14

are established, due either to the ambiguity of geometric features or to the presence

of spurious shape elements, are quickly pruned. This guarantees that interpretations

of the image data derived through tree search are consistent within local geometric
constraints, [15]. A model test must be performed to confirm globally consistency. A

degree of robustness to shape variation can be provided by placing bounds on the values

of geometric features considered as being consistent. The advantage of this approach

is that the pruning constraint can be computed locally. Furthermore, the values of

pairwise geometric features between model primitives can be pre-computed and stored

in a look-up table to further speed the search process. Pruning on the basis of local

geometric constraints proves sufficiently quick to make search tractable.

The efficiency of this basic scheme can be improved by attempting to direct search to

promising areas of correspondence space. This is achieved by using various heuristics

to order shape primitives, such that those likely to provide more information are con-

sidered first. Ayache Sz Faugeras [3] propose several heuristics. The proximity heuristic

dictates that the current interpretation should be extended by giving priority to nearby

primitives, on the assumption that these are more likely to belong to the same object.
The concept of saliency is exploited by initially restricting consideration to the 10

longest line segments within a shape. McAndrew Si Wallace [67] have extended the

notion of saliency by ranking primitives on the basis of the uniqueness of geometric

relationships measured between them, both between and within objects. A further

strategy for speeding up recognition is to terminate search once a "good enough" fit to

the image data has been found, [40,3]. This requires that a certain percentage of the

shape boundary is matched. The directed nature of the search means that a termina-

tion point is typically reached well before full correspondences are established, with a

resulting increase in the speed of recognition.

The major weakness of the search approach is in its sensitivity to missing data; the

loss of even a single shape primitive means that valid branches of the interpretation

tree cannot be extended. While this can be overcome by allowing model primitives to

be matched to the null character, it does so at the cost of a considerable increase in
computational load.

Graph Analysis

The problem of establishing correspondences between model and image shape prim-

itives can be framed in terms of graph analysis. This involves constructing a graph

in which each node represents an hypothesised match between a model and image

primitive and an arc between two nodes denotes that the hypothesised matches have

pairwise geometric consistency. Given such a graph, recognition can be achieved by
performing Maximal Clique Analysis [1,12]. A clique denotes a subgraph which is

completely connected. Thus, within a clique, each hypothesised match possesses pair-

wise geometric consistency with all other matches. A clique is maximal if it cannot be

extended. Therefore, the largest maximal clique within a graph represents the most
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likely interpretation of the image data. A model test must again carried out to check

for global consistency. If this fails then further maximal cliques are evaluated.

The limiting factor of this approach is obviously in the size of the graph. Bolles &

Cain [12,13] have demonstrated, through the focus-feature method, that by exploiting

a notion of saliency the number of possible matches, and therefore the size of the

graph, can be reduced to manageable proportions. A subset of the model primitives

are automatically selected to serve as focus features. Recognition involves selecting,

for each focus feature, possible matching image primitives. This process is based on an

evaluation of unary constraints, both on the type of primitive, eg. circle or line, and on

specific parameters. Matched focus features are then used to predict further matches

with image primitives. In the local-feature-focus method, consideration of possible

matching image primitives is restricted to a circular region, centred on the focus feature,

whose radius is determined by the maximum distance between two model primitives.

This procedure enables the set of potential matches within certain objects, ie. those

containing distinct features such as holes and corners, to be reduced to practical levels.

However, its ability to deal with objects described using homogeneous sets of shape

primitives, eg. line segments, is less clear.

Relaxation Labelling

An alternative method for extracting the maximal set of consistent feature matches

from a graph is Relaxation Labelling, Davis [24], Bhanu 86 Faugeras [10]. This involves

constructing a graph similar to that used in maximal clique analysis. The major

difference is that connections between nodes are now weighted with a measure related
to the degree of pairwise geometric consistency between the hypothesised matches.

Connections that are below a certain threshold are discarded. An iterative process

is then applied which updates the strength of each node according to the degree of

support it receives from all other connected nodes. Nodes are removed from the graph

if their support falls below a certain threshold. Eventually, this process converges to

produce a stable sub-graph that represents the most likely interpretation of the image

data.

These three approaches, interpretation-tree search, graph analysis and relaxation la-

belling all rely on essentially the same mechanism for overcoming the weakness of

pairwise geometric features. The strategy employed is the formation of multiple sym-

bolic relationships between matches. This ensures that the set of matches produced

are consistent within local geometric constraints. While this does not guarantee global

consistency it is often sufficient to rule out all incorrect data associations. The three

approaches differ primarily in the mechanism used to establish these relationships.

The following approach offers an alternative to the formation of symbolic links which

is based on correspondence clustering.

Correspondence Clustering

Bray [15] has proposed using local geometric constraints to support the clustering of
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evidence for matches between pairs of model and image primitives. The approach in-

volves the use of several structures; a Binary constraint array is used to store the values

of geometric features computed between pairs of shape primitives, while a correspon-

dence array is used to accumulate evidence for matches between individual model and

image primitives. Recognition is achieved by checking for pairwise geometric consis-

tency between pairs of image and model primitives, using the information stored in

binary constraint arrays. Those associations that are found to be consistent cause a

vote to be cast in the correspondence array. Once all pairings have been considered

the value in element (u, v) of the correspondence array provides an indication of the

support, based on accumulated evidence, for the hypothesis that image primitive it,

matches model primitive m v . A competition between model primitives is performed to

guarantee that an image primitive matches only a single model primitive. Bray notes

that matches established in this way are not guaranteed to be consistent within local

geometric constraints; the maximal clique algorithm is applied to ensure this. Finally,
a model test is performed to validate the global consistency of the matches.

Bray's system overcomes the ambiguity of pairwise geometric features through clus-

tering; valid associations vote consistently for the same element in the correspondence

array, whereas votes resulting from false associations, caused by the weakness of geo-

metric features or the presence of spurious shape elements, will tend to be distributed

evenly throughout the array. The loss of shape information is also handled naturally

within this approach. The computational requirements of this approach are obviously

quite large. However, the processing is both local and uniform and so is ideally suited

to hardware implementation.

The primary aim in the above systems is to establish valid matches between model

and image primitives by carrying out search in the space of possible correspondences.

Our discussion now turns to a class of approaches in which matches are hypothesised

merely in order to enable a search of the space of possible object transformations.

The Generalised Hough Transform
The Hough transform is a method for extracting parameterised, low-level shape fea-

tures, such as lines and circles, from, noisy, cluttered image data, (see Leavers [59] for

an in depth discussion). Ballard has extended this method, by means of the generalised

Hough transform, (GHT), to deal with the problem of locating arbitrary shapes through

pose clustering, [4]. Shape is represented in the GHT by means of an "R-Table"; a

structure in which the position and orientation of each shape feature, relative to some

fixed origin, is stored. Recognition is performed by considering each image primitive

as a potential match for every model primitive. For each hypothesised match a set

of transformation parameters are computed, using the information stored in the "R-

table", that would bring the model into register with the image. These parameters are

then used to cast a vote in a quantised representation of transformation space. The

mechanism exploited in this scheme is that each valid association between an image

and model feature should vote for the same transformation, while votes resulting from
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spurious associations will tend to be evenly distributed throughout the space. By de-

tecting peaks in the Hough space, probable object transformations can be obtained.

These are then evaluated using a model test.

Hashing Techniques

One of the drawbacks of the standard GHT approach is that each model primitive

must be considered as a potential match for every image primitive. This involves a

large amount of computation and typically generates a cluttered transformation space,

which makes peak detection difficult, especially from noisy scenes. One way of cutting

down on the number of matches that need be considered is to apply unary geometric

constraints, eg. on line length. Another possibility is to extend matching to multiple

shape primitives based on the value of local geometric features computed between them.

That is, for a particular set of image primitives, only make votes for transformations

computed from model primitives that have the same geometric relationship to one

another. A favoured method for indexing sets of model primitives that have a particular

geometric relationship is hashing. Systems based on this approach include Geometric

Hashing, Lambdan & Wolfson [57,58,110], Structural Indexing, Stein & Medioni [96,97]

and Multidimensional Indexing, Califano .8z Mohan [21]. In these approaches the values

of geometric features computed between sets of model primitives are used to compute

the value of a hash key. This indexes a position in a hash table in which information

concerning the identity and relative position of the model primitives is stored. During

recognition, the values of geometric features computed between sets of image primitives

are used to index this information, from which possible transformation parameters can

be computed. The above approaches differ primarily in the number and type of shape

primitives considered and in the geometric features chosen to define the relationship

between them.

It should be pointed out that hashing techniques do not rely exclusively on explicit

measurements of a shape's geometry. For example, Kalvin et al. [52] propose a method

of indexing based on the idea of a footprint. Each footprint is a representation, (given

by the Fourier coefficients of an arc length-turning angle graph), of a segment of the

boundary of an object. Segments are obtained by breaking the shape description at

concavities. The values of footprints are then used as an index to a hash table.

The Alignment Approach
In the above systems the model test serves to validate hypothesised object transfor-

mations obtained by performing a search of correspondence or transformation space.

In either case, extensive computation is required in order to derive possible object

transformations. Huttenlocher Sz Ullman [50] have proposed an alternative form of

recognition which forgos the need for extensive prior computation by placing increased

emphasis on the role of the model test. Likely matches between small numbers of

model and image primitives are formed on the basis of unary and binary geometric

constraints. These are then used to derive possible object transformations that can

be evaluated directly using a model test. Competing hypotheses are ranked on the
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Figure 1-3: Summary of recognition schemes based on individual pairwise geometric

relationships

basis of the amount of supporting evidence. Highly ranked hypotheses can either be

accepted as valid interpretations, as in [50], or used to direct further search in a

hypothesis-validation cycle, as in (3].

The alignment approach overcomes the weakness of geometric features by direct ap-

plication of the model test. False associations arising from the ambiguity of features

are unlikely to generate hypotheses that receive significant image support. Given the

computational expense of performing model tests, the practicality of this approach

depends on the success with which correct associations can be formed.

Summary

This section has reviewed a number of previous approaches to recognition which base

matching on the values of individual geometric features computed between small num-

bers of shape primitives. The ambiguity arising from the weakness of these local shape

measurements is overcome in these approaches by applying some form of global con-

straint on matching. The mechanisms employed to apply this global constraint include

the formation of multiple symbolic links between pairs of matched primitives, estab-

lished through tree search, graph analysis or relaxation labelling, clustering, performed

either in correspondence or transformation space, and alignment. This situation is

summarised in figure 1-3.

The conclusion drawn from this review is that if matching is to be based upon the values

of individual geometric features then considerable processing is required to overcome
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Figure 1-4: A chord defined between two boundary points.

their inherent weakness. The next section discusses an alternative use of local geomet-

ric measurements in which matching is based upon multiple, rather than individual,

geometric features.

Recording Geometric Feature Distributions

The idea of representing shapes by recording the distribution of geometric features

computed between their primitive elements has received relatively little attention in

the recognition literature. However, Minsky & Papert [68] suggested as early as 1969

that a shape described by a collection of points could be represented by recording the

frequency with which points at particular distances occurred, a form of representation

they termed a distance spectra. The first serious application of this idea to the problem

of object recognition was presented by Moore & Parker [69]. In addressing the problem

of extracting features of a pattern suitable for classification, they suggested that a

suitable characteristic would be the

LC ... non-random distribution of points defining the pattern."

Indeed, they went on to claim that it was the non-random, statistical distribution of

features within a pattern which determined its structure. Moore & Parker considered

shapes represented as a collection of boundary points and invoked the notion of a chord,

essentially a vector joining any two points on this boundary, figure 1-4. They claimed

that the distribution of simple geometric features, such as length and angle, computed

for all chords within a shape could be utilised as an encoding of the shape. Given a

binary contour image b(x, y), where
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1 if (x,y) is a point on the boundary
=b(x, y) 

0 otherwise

the chord distribution h(r, 0), in polar coordinates, is given by

h(r, 0) = fy fx. b(x , y)b(x + r . cos 0, y + r. sin 0) dxdy

The use of the chord to define the pairwise geometric relationship between two points

means that this representation is invariant only to translation of a shape within the

image. Representations with invariance to either rotation or scale can be derived by

integrating the distribution over (/) or r respectively, although these added invariances

are bought at the cost of a decrease in the uniqueness of the representations.

h(r) = f7ro h(r, 0) d0

R
h(0) = fo h(r , 0) dr

Distributions are normalised to provide invariance to the exact number of contour

points sampled. The matching of chord distributions is achieved by computing scalar

measures that describe the structure of both angular and radial chord distributions.

The measure used in [69] depends simply on the position of peaks within each distribu-

tion. The scalar measures for each distribution are combined to form a two dimensional

feature vector upon which classification is based. The performance of the scheme was

demonstrated on the classification of handwritten numerals.

Smith & Jain, [95] also make use of chord distributions in deriving a test for the

"circularity" of a shape, based on comparing the chord distribution of the target shape

with that of a circle. In this case distributions are compared directly, the "goodness-

of-fit" between two distributions being given by a Kolmogorov-Smirnov test. The use

of this scheme for the classification of arbitrary shapes is also investigated.

Burgess et al. [17,18] have recently applied radial chord distributions to the problem of

representing 3D shape descriptions obtained through stereo matching. This approach

is interesting in that it treats the histogram recording the radial chord distribution for

a shape as a feature vector that can be classified using an artificial neural network.

The chord distributions used in these approaches are essentially global representations

of shape, similar to Fourier coefficients or moment invariants described in Section 1.2.2,

and therefore support non-correspondence matching. There is, however, an important

difference; representations in the form of chord distributions are constructed from mul-

tiple local shape measurements. They can therefore be expected to degrade gracefully
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Figure 1-5: Recognition based on geometric feature distributions.

as individual shape primitives are lost through image noise or occlusion. However, they

cannot be expected to deal with the presence of spurious shape elements due to scene

clutter. As described in Section 1.2.2, this requires that matching be based upon local

shape information.

Noll et al. [71] have recently generalised the chord distribution scheme to the problem of

representing local elements of shape. This involves recording the distribution of chords

defined between a particular shape primitive S i , in this case a corner feature, and all

other primitives within the shape. The histogram recording this distribution is then

associated with the shape element Si . Local chord distributions are computed for all

model and image primitives which are then matched using a context similarity measure,

where this is based on the proportion of intersecting non-zero bins in each distribution.

This context similarity measure is combined with a unary similarity measure to weight

votes in Hough space. This is shown to have significant advantages over the use of the

unary similarity measure alone.

Discussion

Representing shape by recording the distribution of geometric features computed be-

tween its primitive elements has a number of advantages. Firstly, the integration of

multiple local shape measurements provides a strong form of representation. Conse-

quently, matching based on such representations should be much less ambiguous than

that based on individual pairwise geometric relationships. Furthermore, the matching

of geometric feature distributions can be performed using simple pattern classification

techniques, as opposed to the complex procedures described in Section 1.2.3. Geomet-

ric feature distributions can be seen as meeting many of the requirements of an ideal

shape representation; they are invariant, robust, strong, can be computed easily from
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image data and are versatile in their application. Schemes based on matching geometric
feature distributions can be seen as integrating information from local shape measure-
ments prior to matching, figure 1-5, whereas the schemes described in Section 1.2.3
perform integration after matching.

The present study can be seen as an extension of previous approaches based on record-
ing chord distributions, and builds upon ideas originally presented in Thacker & May-.
hew, [102]. Improvements are made in the following areas:

1) A more sophisticated definition of the geometric relationship between a pair of
shape primitives than that represented by the chord is proposed. This involves using
geometric features previously proposed in search-based techniques where their values
are used as a direct constraints on matching. This has benefits both in terms of the
range of object transformations over which representations are invariant and in the
strength of the representations.

ii) The matching of geometric feature distributions is performed using techniques from
statistical pattern classification. This is more robust than previously proposed meth-
ods, eg. [71].

iii) Particular attention has been paid to ensuring that the method by which geo-
metric feature distributions are recorded and matched is robust to variations in shape
description caused by fragmentation noise, occlusion and scene clutter.

1.2.4 3D Object Recognition

The problem in 3D object recognition is to associate the wide range of possible views
of an object with a single entity, an ability termed object constancy, [49]. The variation
in the appearance of an object comes about through changes in the spatial relationship
between the object and the viewing camera. This variation is in addition to that caused
by image noise, occlusion and scene clutter. Approaches to 3D object recognition differ
both in the dimensionality of the models used to represent objects and in the dimen-
sionality of the scene descriptions to which they are matched. Three approaches will be
considered: systems within the 3D Approach are concerned with matching 3D models
to 3D scene descriptions, those within the Alignment Approach relax the need for 3D
scene data but still make use of 3D object models, Multiple View-based Approaches

propose strategies for recognition based on 2D image data and 2D, appearance-based
models. These three approaches are now reviewed.

The 3D Approach 

The difficulty in performing 3D object recognition comes from the fact that objects
exist in a 3D world, while the image descriptions to which they must be matched are 2D,
and so view-dependent. Therefore, in performing 3D object recognition, some method
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must be found for overcoming this loss of dimensionality caused by the projection of a

3D world onto a 2D image plane. A possible solution to this problem, and one which

dominated early approaches to 3D object recognition, is to attempt to exploit some

form of depth cue present in an image, or images, in order construct a depth map, a

3D, view-independent description of the contours or surfaces in the scene. Of course,

such a description is view-independent only in the sense that it describes the true 3D

structure between the set of visible object features; the features contained in this set

are still determined by viewpoint. However, the availability of a 3D scene description,

together with a similarly described set of object models, means that the 3D recognition

problem becomes a relatively straightforward extension of the 2D matching problem.

Various "Shape from X" algorithms have been developed for the purpose of construct-

ing 3D scene descriptions, each exploiting a different aspect of the depth information

available in an image, or series of images, of the scene. These include Shape from

Stereo, Shape from Shading, Shape from Texture, Shape from Contour and Shape from

Motion. Alternatively, depth information can be obtained through laser range find-

ing or tactile methods. The problem of matching 3D scene descriptions to explicit

3D models has been addressed using many of the schemes previously reviewed in the

context of 2D shape matching. Indeed, many of these schemes were first proposed for

this purpose. Representative examples include interpretation tree-search, [41,34,70],

graph analysis, [14,77], relaxation labelling, [9], the generalised Hough transform, [6],

and hashing techniques, [97]. These approaches are all, at some level, based on the

matching of local shape primitives, and so are robust to the loss of shape information

caused by self-occlusion. Systems based on these approaches are often able to perform

impressive recognition and localisation in cluttered scenes. In certain cases the the

accuracy of localisation is sufficient to guide a robotic arm to perform pick and place

tasks, eg. [78] .

To date, very few attempts have been made to apply pattern classification techniques

to the problem of 3D shape matching. This is due, primarily, to the fact that pre-

viously proposed global representational schemes, eg Fourier coefficients or moment

invariants, are not capable of dealing with the loss of shape information arising from

self-occlusion. The application of geometric feature distributions to the task of repre-

senting and matching descriptions of local 3D shape is presented in Chapter 5.

The Alignment Approach 

The difficulty in. obtaining 3D scene descriptions, together with certain results from

psychophysical studies which seemed to indicate that humans do not require such in-

put, led a number of researchers to investigate strategies for performing 3D object

recognition based on the 2D shape information present in a single image of the scene.

Explicit 3D models were, however, retained. So called alignment or hypothesise and

test methods rely on searching both correspondence and transformation space, and are
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typified by the work of Lowe [63,62] and Huttenlocher 8/ Ullman [50]. Initial hypothe-

ses regarding the pose of an object are derived from possible matches between model

and image primitives, established using some measure of saliency. For example, Lowe

proposed using perceptual groupings, sets of object primitives whose relationship to one

another is preserved over projection, eg. lines that are parallel or which meet at at

point. Such qualitatively invariant object features can be used to derive a set of pos-

sible matches. The availability of the 3D model allows pose hypotheses obtained from

these matches to be evaluated by comparing the appearance of the object from the

hypothesised pose with the shape found in the image. Hypotheses which receive sig-

nificant support are retained and used to direct the search for further matches. In this

way hypothesised poses are refined until they satisfy some pre-determined threshold.

As with the 3D approach, alignment methods often perform impressively at recognising

and locating objects in cluttered scenes. However, the fact that they require detailed

descriptions of the 3D structure of an object means that their use is often restricted.

Many classes of natural objects are not composed of planar surfaces or straight contours

and are therefore difficult to describe using present modeling techniques. Even in the

ideal case where objects are polyhedral, the process of obtaining models, often through

hand coding, is time consuming.

This leads us to a discussion of multiple view-based approaches, which forgo the need

for both 3D scene data and explicit 3D models.

The Multiple View-based Approach 

Multiple view-based systems are characterised by the use of object models that are

view-dependent , in that they are composed of a relatively small number of examples

of the 2D appearance of an object from differing viewpoints. Recognition is achieved

in such systems by proposing some form of generalisation mechanism for extending

recognition from these example views to all possible views of an object. One of the

advantages of this approach is its potential for easy model acquisition, since there is

no longer the need to specify explicitly the 3D structure of an object. If realised then

this would both increase the range of objects that could be represented and introduce

the possibility that object models could be learned through the normal operation of

the recognition system. Before reviewing previous view-based systems it will be useful

to introduce a number of important concepts, together with supporting evidence from

psychological and neurophysiological studies.

Characteristic Views & the View-Sphere

One of the major questions in the view-based approach is the basis upon which the

possible views of an object are to be grouped. The idea of grouping or clustering

views of an object was first given a mathematical foundation by Koenderink 8./ van

Doom [55]. They noted that as an object undergoes various transformations, eg.

rotation in depth, the set of visible object features is often quantitatively unchanging.
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Of course, at certain points in the transformation changes in the number of visible

features will occur. Such points are commonly termed catastrophic or visual events,

and are characterised by the emergence or occlusion of one or more object features.

However, between such points the set of visible object features is stable, giving rise to

the notion of a "characteristic view". Koenderink Sz van Doom n proposed that this fact

could be used as a basis upon which to cluster views of an object. Objects could then

be represented by a relatively small number of characteristic views.

If one considers a sphere whose centre lies at the origin of an object then each point on

the surface of this sphere, termed a view sphere, can be thought of as corresponding

to a particular view of the object. The surface of this sphere can then be divided

into regions, commonly termed aspects, which represent sets of stable views. Any

point within an aspect can be therefore be regarded as a "characteristic" view for

that aspect, although points towards the "centre" of the aspect will obviously be more

characteristic. Points on the surface of the view sphere where two or more aspects

meet are often termed "degenerate" [53,54], since they may well represent a minima in

the number of visible features. As such they often pose problems for 3D recognition

systems.

The uniqueness of the view-based representation can be improved by encoding tempo-

ral links between aspects. This involves constructing an aspect graph, in which nodes

represent aspects and an arc between two nodes represents the fact that views within

each aspect are temporally adjacent. This structure allows the allowable transitions be-

tween successive views of an object to be encoded and exploited in resolving ambiguity

in recognition.

Support from Psychology
Biological vision systems, and the human visual system in particular, provide a valuable

existence proof of a reliable 3D object recognition system. Their study should therefore

provide useful insights for the designers of artificial vision systems. There is a growing

body of psychophysical evidence which suggests that the human visual system makes

use, at least in certain instances, of view-dependent object representations. A number

of studies have found that the recognition performance of human subjects, as measured

by error rate and/or response time, is better for views of an object that are familiar

than it is for previously unseen, or novel, views, [86,99,48,11]. This is not the behaviour

one would expect if recognition were based on 3D models, since performance should

then be uniform across all views.

Support from Neurobiology
Further evidence for the use of view-dependent object representations in biological

vision systems is provided by a series of neurophysiological studies on the visual cortex

of monkeys, [73,72]. These appear to show evidence for the presence of cortical cells

which respond selectively to particular views of a head. Furthermore, it is claimed that

evidence has been found for cells that are responsive to transitions between these views.
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Whether these results generalise to less familiar classes of object is not clear. If true

then such studies provide considerable support for systems that propose a view-based

approach, since the notion of a "grandmother" cell often plays a central role in such
systems.

Issues in Multiple View-Based Recognition
Before examining previous multiple view-based systems it will be useful to list a number

of issues that can be used in assessing their performance.

i) Model Acquisition Is the potential for automatic model acquisition realised, ie.

can object models be constructed from the information available in example 2D
images of the object?

ii) View Representation How is the collection of 2D shape features produced by

the projection of an object from a particular viewpoint represented?

iii) Grouping Strategy Upon what basis are the views of an object grouped? How

does this conform to Koenderink & van Doom's notion of a characteristic view?

iv) Mechanism of Generalisation What is the proposed mechanism for generalis-

ing recognition from the set of stored views to all possible views of an object?

v) Number of Views How many views need to be stored for each object? This is

obviously related to the power of the proposed generalisation mechanism and is

important in that it determines the practicality of the system.

vi) View Transitions Are the allowable transitions between the views of an object
exploited for recognition?

vii) Recognition Information Does the recognition system simply provide identity

information or does it also attempt to provide an estimate of object pose?

Previous view-based approaches to 3D object recognition are now reviewed.

Projective Invariants
One approach to view-based recognition that has received considerable interest in recent

years is that based on projective invariants. This involves discovering some property

of the relationship between the projected features of an object that is invariant over

projection. As Burns [19,20] points out, to be of use in recognition the invariant
property must be non-trivial, in the sense that it generates the same value for all views

of an object, or those within an aspect, while generating distinct values for different

objects. For example, Rothwell et al. [87] identify a number of relationships between the

line segments of planar objects that are invariant to full perspective transformations.

Alternatively, a set of object features can be used to define a canonical frame, in which
all views of the object are mapped to a common curve. Shape measurements computed
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in this frame are then invariant to object transformation, eg. Zisserman et al. [112]

and Lambdan & Wolfson [57].

This approach has considerable advantages in terms of ease of model acquisition and

matching. Model acquisition is achieved by simply computing the value of projective

invariants from a single view of the object. Objects can then be identified from the

full range of potential viewpoints by simple, direct matching. Furthermore, only one

view per aspect need be stored, since the generalisation mechanism is very powerful.

Systems based on invariants are also able to provide pose information and can operate

in limited amounts of scene clutter.

The major difficulty with the approach is in discovering projective invariants. Previous

successes have been limited to finding invariants for 2D, planar objects. Indeed, Burns

et al. [19,20], have recently proved that for arbitrary 3D objects, general projective

invariants do not exist. If certain assumptions are made about the structure of the

objects, eg. if they are polyhedral or symmetric, then invariants can be found. However,

the potential of this approach to provide a general solution to the problem of 3D object

recognition seems limited. For this reason, the approach adopted in this thesis is to

base recognition on properties of projected shape that do vary with viewpoint, and to

propose mechanisms for dealing with this variation.

Recognition from Hypersurfaces
If the appearance of an object from a particular viewpoint is encoded as a feature vector,
which exists in some- multi-dimensional space, then the mapping of all possible views of

an object into this space produces a collection of points that can be thought of as lying

on a hypersurface. The behaviour of such hypersurfaces is determined by many factors,

including the characteristics of the representational scheme, the type of projection and

the properties of the object itself, eg. whether or not it contains symmetries. The

characteristics of the hypersurfaces generated by a particular set of circumstances are

crucial in determining the ease with which view-based recognition can be performed.

The issue of hypersurface generation is discussed in detail in Chapter 5.

A number of mechanisms have been proposed for achieving recognition based on such

hypersurfaces. These often make certain assumptions about the nature of the hyper-

surfaces, eg. smoothness, which places restrictions on the type of objects that can be

recognised and the range of conditions under which they can be viewed. The following

sections examine four such approaches; nearest-neighbour classification, learning vector
quantisation, linear combinations and view interpolation.

i) Nearest-Neighbour Classification
One of the simplest methods of performing view-based recognition is to extend the

nearest-neighbour classification technique previously described in Section 1.2.2. How-

ever, recognition now involves determining the identity of the object whose hypersurface
is closest to the current input feature vector. This involves storing, for each object, a

collection of views, each corresponding to a point on the hypersurface of the object.
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Recognition is then achieved by performing standard nearest-neighbour classification

between these stored views and the current input. A rough estimate as to the view

direction can also be obtained in this way. Representative examples of this approach

include Richard & Hemani [85], Wallace & Wintz [108], both of whom represent views

using Fourier coefficients, and Dudani et al. [25], Reeves [83] who both use moment

invariants. Their reliance on global shape encodings means that these systems are

not able to perform recognition in cluttered scenes, although Wallace et al. [107] have

attempted to extend the approach to perform matching of local sections of shape rep-

resented as chain codes.

The generalisation mechanism used in this approach is obviously very simple, and

assumes that a stored view representing the correct object will be closer to the current

view than a view of any other object. If the hypersurfaces of each object are well

separated then this assumption should be valid. However, if the hypersurfaces of

two or more objects approach one another, or even intersect, then misclassifications

can result. The possibility of this occurring is obviously lessened by increasing the

number of views that are stored for each object. Consequently, systems which adopt

this approach typically have to store as many as 1200 views of each object before

satisfactory performance is achieved, [25,85].

The set of views stored for an object are obtained from a fixed tessellation of the

view sphere. This is usually achieved using sets of equally spaced points, although

Fekete & Davis [33] later proposed a more appropriate tessellation using points from an

icosahedron, the views being stored in a structure termed a property sphere. However,

storing views from a fixed tessellation is naive, since it does not take into account the

differential rate at which the appearance of an object varies. Areas of the view sphere

in which an object's appearance changes rapidly are represented at the same resolution

as are regions in which its appearance is relatively stable. The resolution at which

views from an area of the view sphere are stored should be determined by the rate at

which the appearance of an object is changing, as evidenced by the behaviour of the

hypersurface. The desire to cut down on the number of views that must be stored by

taking into account the differential nature of shape variation is one of the motivations

behind the following approach.

ii) Learning Vector Quantisation
Edelman & Weinshall [28] have proposed using a self-organising artificial neural net-

work to cluster views of an object. The processing of the network is based upon a

a winner-takes-all competition between nodes, each of which represents a particular

view of an object. The networks is trained by presenting a series of example views

of each object. During training the node closest to the current input, ie. the nearest

view, is updated by moving it closer to the input. The result of training is that nodes

distribute themselves throughout the feature space so as to optimally represent the

hypersurfaces, as sampled by the training views. The main advantage of this approach

over simply storing views from a fixed tessellation of the view sphere is that views are



Chapter 1. MOTIVATION and BACKGROUND	 29

stored at a resolution determined by their distribution in feature space, rather than in

pose space. Recognition is essentially the same however, again being based on nearest

neighbour classification. Views are represented in [28] as simple coarse codings of the

image, and so possess no invariance to object transformations.

Seibert & Waxman [92,91,90] have also proposed using a self-organising ART network

to cluster views of an object. Views are represented by a coarse coding of a centred log-

polar mapping, and so have full invariance to 2D transformations. Rak & Kolodzy. [82]

make use of a similar form of shape encoding. The novelty of Seibert 8,z Waxman's

approach comes through the use of a node generation scheme. The value of a vigilance

parameter controls the maximum allowable variation in shape between the current

view and any stored view before a new node is generated. By varying the value of

this parameter the number of aspects into which the views of an object are grouped

can be varied. However, while views are grouped on the basis of similarity, the criteria

upon which grouping takes place is based not on the notion of a characteristic view,

but rather on some distance threshold in feature space.

Seibert & Waxman's system is also of interest in that it places a great deal of emphasis

on the role of temporal information in performing recognition. Objects are represented

using a structure called an aspect network. This, it is claimed, constitutes a realisa-

tion, using a neural network, of the concept of an aspect graph, and so enables the

characteristic transitions between views of an object to be encoded. In the situation

where the current, static input view is common to more than one object the system

uses differential equations to exploit this temporal information in order to resolve the

ambiguity. This use of temporal information means that the system is able to overcome

the inherent weakness of its coarse shape encoding.

iii) Linear Combinations
Basri Si Ullman, [104,7] have demonstrated that, given certain restrictions, the hyper-

surface generated by an object exists in a linear subspace. Any view of an object can

therefore be expressed as a linear combination of a small number of other views. This

led Basri & Ullman to claim that having enough 2D views of an object is equivalent to

having its 3D structure specified. Given this finding, an object specific linear operator

can be derived which maps any view of the object into a standard or characteristic

view. Recognition can then be performed by applying the operator of each object to

the unknown view and comparing the transformed view with the set of characteristic

views for each object. Obviously, an operator will be specific to views within an aspect,

and so for a solid object a number of operators have to be used. There are, however, a
number of important limitations to this approach which rule it out for use in a practical

recognition system. Firstly, the subspace occupied by a hypersurface is only strictly

linear if objects are viewed under orthographic, or parallel, projection. Secondly, and

more importantly, linearity relies on the use of a shape encoding that requires full

feature correspondences to be known. Such encodings cannot be computed from the

information available in an image.
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iv) View Interpolation

Edelman 8.6 Poggio [75,26] have attempted to generalise the linear combinations ap-

proach by characterising the problem of view-based recognition as one of approximating

the multivariate function mapping the appearance of an object to its identity, where

the value of the function if known only at a small set of points corresponding to the ex-

ample views. Edelman & Poggio showed that such approximations can be synthesised

using a radial-basis-function neural network. Recognition is then achieved by applying

the function approximation represented by each network to the unknown view and

comparing the result with the characteristic views of each object. While this approach

is able to deal with full perspective projection, its success has only been seriously

demonstrated as applied to the impractical shape encoding previously proposed by

Basri & Ullman. It is unclear whether its performance generalises to more practical

shape encodings.

View Clustering
A number of researchers have attempted to provide accounts of view-based recognition

that include mechanisms for clustering views into sets that are in some sense character-

istic. This involves discovering properties of the projected shape of an object that are

stable within an aspect. Underwood, [105], proposed a mechanism for automatically

grouping views by exploiting the stability of the relationship between the number of

bounding edgels describing the projection of connected planar surfaces of an object.

Chakravarty 86 Freeman [23,35] clustered views on the basis of the number of visible

junctions of a particular type, such that a range of views could be represented by a

single junction-type histogram. This form of shape encoding is potentially quite am-

biguous, and so Chakravarty & Freeman exploit the allowable transformations between

views of an objects in order to provide resolution of ambiguous views.

Both of these approaches are restricted to relatively simple, polyhedral objects, com-

posed of planar surfaces, whose intersections project in the image as classifiable junc-

tions. Intrator et.al [51] have recently attempted to automatically extract, using an

unsupervised neural network, general object features that are stable across many views.

This approach is promising in that it provides the potential for clustering views of ar-

bitrary objects.

Geometric Methods

The above methods are, in an important sense, global, since recognition is based on

computing the distance between a set of features representing the current view with

those representing views of each object. Another approach is to attempt to extend the

geometry-based strategies, previously introduced for 2D matching, to perform matching

of local shape elements. Again systems can be divided into those that attempt to search

correspondence space and those that merely hypothesise matches in order to perform

a search of transformation space.
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Correspondence Search

Goad [36,37] has extended the interpretation tree search approach, originally proposed

for 2D and 3D shape matching, to the problem of recognising 3D objects from 2D im-

age data using view-based object models. This involves storing views from 218 points

on the view sphere. The positions of the points are obtained by radially projecting

a regular grid on the sides of a cube. Each view is represented by a look-up table

recording the geometric relationships between all pairs of object features that are visi-

ble from that view direction. This information must be computed from a 3D model of

the object, since feature correspondences across views are required to derive the visi-

bility constraints. Recognition is performed by carrying out standard tree search using

geometric constraints, together with constraints derived from visibility conditions, to

prune invalid interpretations. Bray [15] uses a similar approach although matching is

performed using correspondence clustering.

The major difficulty in basing recognition on the values of geometric features computed

between projected object features is that such measures are view-dependent. The

solution adopted in the above systems is to increase the bounds on the geometric

constraints. While this obviously increases the level of ambiguity, the mechanisms for

applying global constraints on matches, ie. the formation of symbolic relationships or

clustering, effectively overcome this problem.

Transformation Search

Silberberg et al. [93,94] have proposed using the GHT to perform iterative, view-based

recognition by means of a coarse-to-fine strategy. Initially the view sphere is tessellated

quite coarsely using 80 points obtained from an icosahedron. Hypothesised matches

between model and image line segments are then used to compute transformation

parameters in the standard way. The Hough space used to accumulate votes is initially

binned quite coarsely, such that promising areas of parameter space can be identified.

These areas are further investigated by repeating the process using a finer resolution

of the view sphere, generated by recursively subdividing the icosahedron. The system

eventually converges to a solution of the required accuracy. Lambdan & Wolfson [57]

have extended the Geometric Hashing scheme to deal with view based recognition.

1.2.5 Summary

This section has presented a review of previous approaches to shape representation and

object recognition. The conclusion drawn from this review are now summarised and

used to motivate the specific aims of the research carried out in this thesis.

• It was argued that there are certain advantages in treating recognition as a pat-

tern classification problem, but that previously proposed representation schemes

have not been able to overcome the problems posed by recognition in cluttered

scenes.
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Thus, one of the main aims of this thesis is to develop a representational scheme

which is robust, invariant, discriminant, which can be used to represent local

elements of shape and which can be matched using techniques from statistical

pattern classification.

• Previous approaches to recognition that base matching on individual geometric

relationships between small numbers of shape primitives were reviewed. It was

argued that while these approaches often perform impressively, the local nature

of the shape measurements means that relatively complex processing must be

performed in order to apply global constraints on matching.

• An alternative use of geometric relationships was reviewed in which shape is

represented by recording the distribution of multiple geometric features. It was

argued that this form of shape encoding has the potential to meet many of the

requirements of an ideal representational scheme to be used within a pattern

classification approach to recognition.

Thus, the aim of developing a robust representational scheme is to be achieved

by investigating the use of geometric feature distributions. Once developed, the

performance of the scheme is to be tested by applying it to both 2D and 3D

object recognition.

1.3 Organisation of Thesis

The remainder of this thesis is organised in the following way:

Chapter 2 provides a detailed description of a scheme for representing shape by

recording the distribution of geometric feature values measured between its primitive

elements. This includes discussions on the appropriate form of the shape primitives,

constraints on the geometric features that may be used, the structure of the histogram

used to record their distribution and the levels of representation that are possible within

the scheme. Finally an assessment of the potential uniqueness of GFD representations

is presented.

Chapter 3 describes the use of geometric feature distributions in support of 2D object

recognition. The method by which GFD representations may be matched using sim-

ple statistical classification techniques to provide correspondences between image and

model shape features is presented. This chapter also contains a detailed assessment of

the performance of the GFD scheme under various forms of shape variation, including

the loss of shape primitives through fragmentation, the addition of primitives resulting

from scene clutter and the perturbation in the position and orientation of primitives

arising from sensor error. The use of the generalised Hough transform, (GHT) to
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determine, on the basis of established correspondences, the position and orientation of

an object is discussed.

Chapter 4 provides a demonstration of the ability of the combined GFD and GHT

schemes to recognise and locate multiple objects in cluttered scenes under conditions
of severe image noise and occlusion.

Chapter 5 presents the application of the GFD scheme to the problem of 3D object

recognition. Two approaches are considered. The first involves extending the GFD

scheme to the problem of representing 3D shape. The problem of 3D object recognition

then becomes a a relatively straightforward extension of the 2D matching problem.

The second approach investigates the use of GFD representations of 2D shape within

a probabilistic, multiple view-based strategy.

Chapter 6 summarises the work presented in the thesis and discusses its contribu-

tion to the field of visual object recognition. Possible directions for further study are
identified.



Chapter 2

RECORDING GEOMETRIC

FEATURE DISTRIBUTIONS

2.1 Introduction

This chapter describes a method of representing shape which is based upon recording

the distribution of geometric features computed between local shape primitives. Much

of this chapter is based upon work presented in Evans et al. [30,32,29]. The chapter is

organised into the following sections:

1. Shape Description

The process of extracting a line-based description of shape from an image is

described and the advantages of basing representation on such descriptions are

discussed.

2. Geometric Features

The idea of using geometric features to define the relationship between shape

primitives is introduced. A formal definition of a geometric feature is provided

along with a list of desirable properties. The chosen geometric features, defined

between pairs of line segments, are introduced. These are shown to provide useful

measures of shape while possessing the required invariance properties.

3. Recording Geometric Feature Distributions

A histogram is used to record the distribution of geometric features within a

shape. The structure of the histogram is presented and the advantages of this

approach are discussed. The method of recording the relationship between pairs

of line segments is explained and shown to approximate the entry due to an

edgel-based description, thereby ensuring that line-based representations degrade

gracefully under fragmentation. A flexible method for encoding allowable shape

variation is presented.
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4. Levels of Representation
The flexibility of the histogramming scheme is demonstrated by considering the

different levels at which shape information can be represented in order to sup-

port different forms of recognition. Possible extensions of the basic scheme are

considered, including the definition of a local region of shape and the use of a

measure of saliency.

5. Uniqueness
The factors affecting the uniqueness of the proposed representational scheme

are discussed. It is argued that the scale at which shape is represented can be

determined simply by varying the parameters of the histogram used to record

geometric feature distributions.

6. Discussion and Summary
The properties of the proposed representational scheme are discussed and the

content of the chapter is summarised.

2.2 Shape Description

The proposed representational scheme is based upon recording the distribution of geo-

metric relationships between local elements of a shape. The first stage in constructing

such representations is therefore to process the image(s) of the scene containing the

object in order to extract a description of its shape in terms of a set of primitives.

Depending on the nature of the recognition task these primitives may be 2D or 3D.

For ease of explanation the proposed representational scheme is introduced using 2D

shape primitives; the extension of the scheme to deal with 3D shape representation is

presented Chapter 5.

2.2.1 The Need for High-Level Primitives

Various algorithms have been developed for performing edge detection. The current

system is based upon the use of the Canny edge detector, Canny [22], applied at a

single spatial resolution. EdgeIs are grouped on the basis of eight-connectivity to form

edgel strings. A typical edge map of a scene is composed of many such edgel strings,

figure 2-1.

The set of edgel strings produced by the Canny operator provide valuable information

on the sub-pixel position and orientation of projected object contours. However, the rel-

ative simplicity of edgels means that they provide a less than parsimonious description

of shape; even quite simple scenes require large numbers of edgels. If one considers that

constructing shape representations in the proposed scheme involves making n 2 compu-
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Figure 2-1: An image (a) and (b) the edgels extracted using Canny.

tations, where a shape is described using n primitives, then it is obviously desirable to

produce a more compact shape description. This can be achieved by replacing groups

of edgels by single, high-level primitives that provide an equally good description of

underlying shape but which have the advantage of being more compact. For example,

linear segments of an edgel string can be described, without loss of any significant

information, by a single extended edge or line segment. The following distinctions can

be drawn between low and high level shape primitives:

Low-Level Primitives
These are obtained directly from image data, are typically of low complexity and

can usually be described using a small number of parameters. Examples are the

edgels described above and corner points.

High-Level Primitives
These are obtained by some form of grouping or approximation process applied

to sets of low-level primitives. They are typically more complex than low-level

features and require more descriptive parameters. Examples are the line segments

mentioned above and conics [80].

There are a number of advantages to describing shape using sets of high-level prim-

itives. Foremost is the reduction in the number of shape primitives that need to be

considered, with corresponding reductions in memory requirements and increase in the
speed of recognition. The increased complexity of high-level primitives means that

each geometric relationship has the potential to provide greater shape information.
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The added complexity of high-level primitives also means that they are more amenable

to some form of saliency measure that can be used to rank primitives. This enables at-

tention to be focussed on a reduced set of primitives, thus providing a further increase

in the speed of recognition. Finally, while low-level primitives are, in general, quite

stable, their proximity to image data means that certain aspects of their description

may have relatively large error tolerances. If the grouping or approximation process

is based on the more stable aspects of the low-level primitives then the measurement

error of the resulting high-level primitives is reduced. For example, while the detected

position of an edgel is relatively stable across images, its orientation is quite sensitive

to measurement error. Basing straight line approximation solely on the position of

edgels generates a more robust shape descriptor.

2.2.2 Linear Approximation

Having established the advantages of describing shape using high-level primitives we

now address the question of which type of shape primitive to use, eg. lines, circular

arcs, elliptical arcs, or whether it is preferable to use a combinations of these? If

the latter approach is adopted then the set of edgel strings must be segmented into

sections that are best described by each class of primitive. While this approach has

the advantage of enabling shapes to be described using the most appropriate set of

primitives, it is discounted here for two reasons. Firstly, the need to make decisions as

to where and how to segment the edgel strings introduces a source of instability into

the process of obtaining shape descriptions. Secondly, there are certain advantages, in

terms of computational complexity, in being able to compute representations from a

uniform class of shape primitives. Shapes are therefore described using a single class

of high-level primitive.

As with many approaches based on computing geometric relationships, we choose to

use line segments, obtained by performing a linear approximation of the low-level

edgel strings. There are a number of algorithms that can be used to perform this

approximation. The present system makes use of the recursive-split algorithm described

in Ballard & Brown [5]. If shapes are polygonal then a description in terms of line

segments is entirely appropriate. Shapes containing curved sections can be described

to an arbitrary degree of accuracy by splitting lines until their deviation from the

curve is below some pre-determined threshold, figure 2-2. Examples of the kind of

line description produced by applying the algorithm at differing levels of accuracy are

shown in figure 2-3.

Line segments are a good choice of primitive for a number of reasons. Firstly, provided

the level of approximation accuracy matches the degree of curvature in a shape then

line segments provide an adequate description of the underlying shape of an object.

Secondly, the process of performing linear approximation of the edgel strings is quite

straightforward and produces a relatively stable set of primitives. Thirdly the likely
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Figure 2-2: The recursive-split approximation algorithm

effect of fragmentation noise and measurement error on the line description can be

modelled and accounted for in the construction of the shape representation. Also,

despite the fact that line segments are produced by grouping many edgels, they remain

quite local. In addition, line segments have the advantage of being suitable for both 2D

and 3D shape description. These factors combine to ensure that measurements based

on line segments are quite robust, as evidenced by their use in a number of successful

object recognition and stereo systems.

Figure 2-3: Line maps obtained at different levels of approximation accuracy.
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2.3 Geometric Features

This section formalises what is meant by a geometric relationship and describes the

way in which it can be measured.

2.3.1 Geometric Features

The geometric relationship between a set of shape primitives can be defined to an

arbitrary degree of uniqueness by the use of geometric features. The purpose of each

feature is to capture some aspect of the geometry between the primitives. Thus the

angle and distance between a pair of line segments are both examples of a geometric

feature. In general, geometric features may be defined between any number of primi-

tives. However, in practice there are two conflicting factors regarding the number that

should be considered. If geometric features are defined between too few primitives then

there is a risk that they will be too local, in the sense that they do not provide sufficient

shape information to be discriminatory. However, features defined between too many

primitives have a higher chance of being affected by loss of shape primitives through

noise or occlusion. Obviously the complexity of the primitives being used should be

taken into account when resolving this decision. The simpler the primitive the greater

the number needed to obtain a useful measure of shape. With points, for example,

three or four may need to be considered before useful shape information is provided.

In the case of line segments an acceptable balance is struck by restricting consideration

to binary features defined between pairs of line segments.

Following Bray [16], a binary geometric feature is defined as a function which maps

a pair of shape primitives to the set of real numbers. If S is a set of line segments,

S	 {A, .5-2 . . . .9-,, } , then the set 82 is given by

S2 = {,s1 : ;2 = (4, s-q ) where s-2„ s; E S,p q}

We can now define a binary function such that:

Binary Feature	 g2 : s-2 1— lim

Where m denotes the number of values returned by the feature.

2.3.2 Feature Properties

It will be useful to list a number of desirable properties upon which the proposed

geometric features can be assessed.
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Robustness

One of the most important properties of a geometric feature is its robustness to changes

in a shape description caused by image noise. The behaviour required of a feature

depends to a large extent on the role which its values play in recognition. Consequently,

discussion of this property is delayed until details of the representational scheme have

been introduced.

Invariance
One of the stated advantages of basing shape representation on the geometric relation-

ships between shape primitives is their invariance to certain object transformations.

The range and complexity of the type of transformation over which representations

are invariant depends on the way in which geometric relationships are defined, as de-

termined by the chosen geometric features. For the present the required invariance is

restricted to the effects of a similarity transforms, ie. changes in the position, orienta-

tion and scale of the shape.

Strength
The strength of a feature determines the degree to which it characterises the geometric

relationship between the shape primitives over which it is defined. A strong feature

is therefore one whose values, together with details of one shape primitive, uniquely

determines the parameters of the second. However, the vast majority of geometric fea-

tures are weak, since they leave certain aspects of the geometric relationship undefined.

This can be overcome by combining several weak features to form a feature set. One

can then talk of the completeness of a feature set, ie. the degree to which the values of

the features within a set combine to uniquely define a geometric relationship.

Independence
A set of features is independent if the value of any one feature gives no information

on the expected value of any other feature in the set. The independence of a feature

set guarantees that maximum shape information is obtained from each set of measure-

ments.

2.3.3 The Geometric Feature Set

This section introduces the set of geometric features used in the present scheme.

Relative Angle 
The relative angle feature is defined simply as the angle, 0, between the direction
vectors of the two line segments, figure 2-4.

go : 8-2 1-4 Rl

Opq = Angle(dp , dq)
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Figure 2-4: The relative angle feature

This definition assumes that the sign of a line's direction vector can be consistently

recovered from image data. However, while the process of recovering a line's orientation

is quite stable, assigning it the correct direction vector is less so. Two solutions to this

problem are proposed. If the shape to be represented is due to a 2D, planar object, then

the direction of the intensity gradient upon which the detection of the line segment

is based can be exploited. However, if the shape is the result of the 2D projection of

a 3D object then changes in lighting may result in local changes in the direction of

an intensity gradient. In this case the sign of the direction vectors can be ignored by

reducing the range of the angle feature from [0 271-] to [0 7:1. The value of the

relative angle feature, 0, is then related to the measured angle 0' by the rule

{ 0' — Ir if 0' >
0 =

0'	 otherwise

This obviously reduces the discriminability of the feature, but has the advantage that

it can be robustly computed from image data. The remainder of this chapter assumes

that line segments are directed.

The relative angle between two line segments is a very intuitive geometric feature, and

one which possesses the required invariance properties. It therefore provides a useful

feature upon which to base representation. It is, however, quite a weak feature, which

suggests that representations constructed using its values are liable to be ambiguous.

This is demonstrated by the two shapes shown in figure 2-5. Although these shapes are

perceptually quite different, the set of angles within the shapes are identical. Therefore,

any representation based on recording these angles could not support discrimination.

While this is obviously a severe example, (such symmetries are unlikely to occur in

non-geometric shapes), the possibility of ambiguity arising out of the weakness of the

relative angle feature remains a problem. For this reason an additional feature is used,

based on the distance between a pair of line segments.
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Figure 2-5: The pentagon star ambiguity

Figure 2-6: The perpendicular distance feature

Perpendicular Distance
Most approaches based on geometric relationships make use of a geometric feature

based on some notion of the distance between two line segments. The chosen feature

is based on the range of perpendicular distances between the two line segments. Given

the two line segments ti and L, shown in figure 2-6, the perpendicular distance feature

is defined as the range of components of a vector from L to i j in the direction of

normal.

Following Crimson [44 this is expressed algebraically as
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gd	(pi —p, ri%) aj (aj , ri i) aj E [0,1]

where pi and pi are endpoints on lines L and Li respectively, d is the unit direction

vector of L and Ili is the normal to ti . We are interested in the extrema of this expres-

sion, where aj = 0 , i tii• In practical terms this denotes the perpendicular distances

from the endpoints of Li to the extension of L, represented by dmin, and dmax . This

feature can obviously be applied in either direction. If the direction vectors of the line

segments are preserved, eg. by the method explained above, then distances may be

measured as being +y e or —ye. If signs are ignored then all distances are treated as

being +ye.

While this feature retains invariance to rotations and translation, the fact that it

returns absolute distances means that it is sensitive to scale. A popular solution to

this problem has been to normalise distance measurements using the lengths of the two

line segments. For example, Bray [16] defines the distance between the mid-points of

two line segments as

gd = 	
141 x

This approach is discounted on the grounds that it makes the feature value overly

sensitive to line fragmentation. However, if a reliable measure of scale is available,

eg. from crude stereo or range data, then this can be used to normalise the distances

returned by the feature.

2.4 Recording Geometric Feature Distributions

This section describes the details of recording geometric feature distributions.

2.4.1 The Histogram

A histogram is used to record the distribution of geometric feature values within a

shape. This is a sensible approach since it enables measurements of local shape to be

recorded in an orderless manner. This means that the representation can be readily

computed from the available image data. It also enables local shape information to be

combined in an additive fashion, with favourable consequences for both the strength

and robustness of the resulting shape representation.
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Figure 2-7: The histogram used to record feature distributions

The chosen geometric features have two identifiable parameters: angles, measured in

degrees, and distances, measured in pixels.'. The histogram therefore has two axes: an

angle axis that ranges from [0 —> 27r], and a distance axis that ranges from negative

to positive D, where D is the maximum possible distance between two line segments,

figure 2-7. This is nominally set to the length of the diagonal distance within the

image, although it can be reduced to produce a local form of shape representation, (see

Section 2.5.1). The angle and distance axes are divided into no and nd bins respectively.

In making the quantisation of the axes uniform it is assumed that geometric features

are not biased towards any particular range of values. If this is not the case, for

example due to some characteristic of the class of shapes being represented, then the

distribution of bins can be varied accordingly.

2.4.2 Ensuring the Validity of Line Approximation

The basic operation in recording geometric feature distributions is to make an entry in

the histogram at a position determined by the values of the chosen geometric features

computed between a pair of line segments. Constructing the full shape representation

involves making many such entries. It was argued in Section 2.2.1 that there a signifi-

cant advantages to describing shape using high-level primitives, such as line segments,

rather than low-level edgels. However, there are important differences to recording

1 0r physical distances if the shape is 3D
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the distribution of geometric features computed between high and low level primitives

which can potentially cause problems.

Representing shapes described using low-level primitives, such as edgels, involves mak-

ing many entries in the histogram. The importance of each edgel in determining the

overall representation is therefore small. If an individual edgel is lost through image

noise or occlusion then the change in the representation is proportional to the amount

of lost data. This ensures that representations constructed from edgel-based shape de-

scriptions should degrade gracefully in noisy conditions. Constructing representations

from high-level primitives on the other hand typically involves making far fewer entries

in the histogram. Each primitive therefore has a much greater effect on the overall

shape representation. This in itself does not cause a problem; the difficulty comes from

the effect that shape fragmentation has, both directly on line segments, and indirectly

on the value of geometric features.

Figure 2-8: (a) The effect of losing an individual edgel, and (b) the effect of an

increase in linear approximation accuracy.

The fact that line segments are obtained by grouping many low-level edgels means

that the chances of them being affected by image noise or occlusion are increased. The

effect of noise or occlusion is, typically, to corrupt the description of the line segment.

For example, the loss of a single edgel can cause the fragmentation of a line segment,

figure 2-8(a). A similar change can occur if the accuracy of linear approximation is

increased, figure 2-8(b). If the chosen geometric features are adversely affected by such

changes then this has serious consequences for the stability of the shape representation

based upon the distribution of their values. The reason for this can be summarised

as follows; the values of geometric features determine the position at which entries are

made in the histogram, each entry has a relatively large effect on the overa. 11 shape

representation, therefore, a small change in the shape description, eg. the loss of a
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single edgel, results in a large change in the shape representation. The conclusion from

this is that if care is not taken in recording the distribution of high-level primitives

then the resulting shape representation will not degrade gracefully.

One solution to this problem is to ensure that the entry made in the histogram recording

the relationship between a pair of line segments approximates as closely as possible the

entry that would have resulted from considering individual edgels. The next section

examines the net effect of recording the distribution of the proposed geometric features

computed between two edgel strings. This will used to determine the appropriate form

of the entry to be made for the relationship between a pair of line segments.

Figure 2-9: Considering edgels.

2.4.3 The Net Effect of Considering Edgels

Consider the two linear edgel strings represented by the sets P and Q respectively, fig-

ure 2-9. We now define the set of geometric features, G, computed between individual

edgels in P and Q,

G {gii : gii = g (pi , qi) Vpi E P, V qj E Q}

where g is some geometric feature. We now consider the distribution of values in the

sets Go and Gd, representing the relative angle and perpendicular distance features

respectively.
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Relative Angle

If we make the simplifying assumption that all edgels within a string have the same

direction vector, equal to the mean tangent of the edgel string, 2 then all elements of

Go have the same value, 0.

Perpendicular Distance 
We now consider the perpendicular distance feature, gd , applied in the direction from

Q to P. Since gd depends upon the direction, but not the position, of the first primitive,

it must return the same value for all edgels in P. Since an edgel is essentially a point

element, gd computed between two edgels returns a single value. It should therefore

be clear that the values in G must be evenly ditributed between dmin and dmax , the

perpendicular distances from an edgel in P to to the extreme edgels in Q.

If we now consider recording the distribution of the values in the set God then all

entries are made at the same position, 0, on the angle axis, and are evenly distributed

between dmin and dmar on the distance axis. The total number of entries made in the

histogram is equal to i X j, where P and Q contain i and j edgels respectively.

2.4.4 Recording the Relationship Between Line Segments

We now consider how this explanation affects the way in which entries should be made

for the relationship between the two line segments fp and tq that approximate P and Q

respectively. If the linear approximation is performed to a sufficient degree of accuracy

then the direction vectors of these lines should be roughly equal to the mean tangent

of each edgel string. The value of go between the two line segments, 0, will therefore

be same as that for the individual edgels. Again, if the deviation of the approximating

line segments from the edgel strings is sufficiently small then the endpoints of each

line should be roughly equal to the position of the extremal edgels in each string. In

this case the values returned by gd for the two line segments will be dmin, and dmas.

Thus, if entries are made in the histogram at cb on the angle axis and from dmin to

dmax on the distance axis then as far as the position of the entry is concerned the goal

of approximating the net effect of entries due to individual edgels has been achieved,

figure 2-10. As regards the size of the entry, this is handled by distributing entries in

the bins such that the total size of the entry is equal to 141 x lig '. This is justified on

the grounds that, if approximation accuracy is high enough, then the length of each

line segment is approximately equal to the number of edgels it replaces, ie. 141 i. In

practical terms, this final step can also be thought of as ensuring that the importance

of each line segment in defining the shape is taken into account in the representation.

21n practice this should be approximately true.
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Figure 2-10: (a) the pair of line segments and (b) the position of the entry in the

histogram.

This section has demonstrated that, by recording the distribution of appropriate geo-

metric features computed between high-level primitives in the correct way, it is possible

to approximate the net effect of considering the distribution between multiple low-level

edgels. This enables the representational scheme to exploit the advantages of working

with high-level primitives while retaining the robustness of representations based on

low-level primitives. In particular, it should ensure that representations based on high-

level primitives will degrade gracefully as they become corrupted by fragmentation

noise, or vary with the accuracy of linear approximation. These issues are investigated

empirically in Chapter 3.

2.4.5 Encoding Allowable Shape Variation

The purpose of any representational scheme is to enable a set of models to be compared

with the shape of an object extracted from an image. An overly restrictive form of

matching would require that for an object to be accepted as a match for a particular

model then their shapes must match exactly. However, in certain circumstances it

is desirable to weaken this strict form of matching, eg. where changes in the shape

description occur through image noise or object transformation. In either case, both
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the position and orientation of line segments may vary, causing a change in the values

of the geometric features computed between them. If the representational scheme is to

be robust to such changes then some way must be found of encoding these allowable

variations in shape.

In the present scheme this involves representing the range of geometric feature values

that are to be expected. Many schemes achieve this by simply storing bounds along

with the value of the geometric features, eg. [40,16], while others attempt to provide

a degree of tolerance by quantising feature values prior to matching, [57]. This latter

strategy is obviously central to the present scheme, since the binning of feature val-

ues provides a degree of invariance to small variations. However, simply binning or

quantising values does not provide a principled solution. The value of geometric fea-

tures computed between elements of a smoothly varying shape will themselves change

smoothly. However, the quantising effect of the binning process means that this smooth

change is not translated into the shape representation. This can be overcome by blur-

ring entries in the histogram over several bins. This has the effect of encoding both

the sub-bin position of the entry and its accepted variation.

Blurring
In blurring the entry recording the relationship between a pair of line segments it is

again important that the effect of the blur approximates the entries that would have

occurred had multiple edgels been considered. The problems of blurring entries along

both axes are now considered.

Relative Angle
The nature of the distribution of the values of the relative angle feature is not obvious,

and will probably depend on the source of the shape variation. For the moment it

is assumed to be Gaussian, of width a-0 , figure 2-11. Again considering the entries

made for multiple edgels, it should be clear that, since all entries are centred on the

same value 0, and since Gaussians add in quadrature, the net effect of entries is itself

a Gaussian. Thus, blurring the entry for a pair of line segments using a Gaussian of

width cro, centred on 0 reproduces the effect of blurring entries for multiple edgels.

A potential problem arises if, as a result of blurring, entries extend beyond the range

of the histogram. This can be handled in a principled way by "wrap around"; blurred

entries which extend beyond the limits of the angle axis are moved to the opposite

end of the axis. The angle used to determine the position in the histogram, 0', is then

related to the blurred angle by the rule

27r+0 if 0 < 0

0' = 1 0 — 27r if 0 > 2r

0	 otherwise



a
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Figure 2-11: The Gaussian blurring function used on the angle axis.

Perpendicular Distance
Determining the distribution of perpendicular distance values is again problematic. For

convenience, a rectangular blurring function of width ad , is used, figure 2-12.

Figure 2-12: The rectangular blurring function used on the distance axis.

The net effect of making multiple blurred entries for pairs of edgels is shown in figure 2-

13. In general the entry has the form of a rectangle, of width dniax - dniiii - 2o-d , with

a linear ramp at either end of width o-d , although for parallel lines, where d,„ a r dmin,
the entry is simply a rectangle. As with the blurring on the angle axis, this effect can

be reproduced when making an entry for the pair of approximating line segments.



dmin	 dmax

Blurring Each Entry With a Rectangular Function

a,	 dmax

The Net of Effect of Multiple Blurred Entries
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Figure 2-13: The net effect of blurring multiple entries on the distance axis

Again, cases where entries are blurred outside of the range of the distance axis must

be considered. Such entries are simply accumulated in the final bin in the histogram,

such that the value used to make entries in the histogram, d' is related to the blurred

distance d by the rule,

+D if d > D
d' = 1 —D if d <-D

d	 otherwise

where D is the maximum possible perpendicular distance between two line segments.
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Number of Bins 

The resolution of the histogram, as determined by the number of bins used on each axis,

should obviously be related to the degree of expected shape variation. This effectively

places an upper bound on the number of bins that should be used. For example, the

maximum number of bins that should be used on the angle axis is given by

271-
N9 <-

where a is some measure of the expected variation in the relative angle feature. Clearly,

the width of blur, a and resolution, r, used in the histogram should be related to one

another; if a, is much greater than r, then entries are blurred over too many bins, while

in the reverse situation blurring becomes redundant. However, the optimal relationship

between the values of a and r is not immediately obvious, although a = r provides a

good starting point. This relationship can be varied depending on the circumstances

of a particular application.

2.5 Levels of Representation

The previous section has described the method for recording evidence for an individual

geometric relationship. However, the proposed representational scheme is based upon

recording the distribution of multiple relationships within a shape. Exactly which set

of geometric relationships should be considered is determined by the type of object

recognition that is to be supported. If the goal is to establish correspondences between

individual line segments then local geometric feature distributions are the appropriate

level of representation. Alternatively, if the aim is to match whole shapes then global

geometric feature distributions should be used. Both levels of representation are now

presented.

2.5.1 Local Geometric Feature Distributions

The goal in correspondence recognition is to establish matches between the set of image
7. 7.

primitives I	 {z i , i 2 , ...z} and the set of model primitives M	 {rñ, r72,...rri}. This

can be achieved by comparing the distribution of values in the two sets Gp , and Gq:

7' 7'
GP	 {gPi gPi = g(ZP)ii) Vi3 EI}

G q {gqj : gqi = g(rliq ,rrij) VnZ E M}

where g is some geometric feature. If the distribution of feature values in G p matches

that in G q then there is a high probability that image primitive ip matches model

primitive mq.
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Computing the values in Gp involves defining a local coordinate frame in which the

x-axis is aligned with the direction vector of the line (termed the base line), and

the positive y-axis is placed 90 0 anti-clockwise from the x-axis, figure 2-14(a). Entries

for the geometric relationship between the base line and all other lines in the shape,

measured in this coordinate frame, are made in a a histogram, H p , associated with tp,

figure 2-14(b). The total value of entries in Hp is therefore equal to ltp l.L, where L is

the total length of lines in the shape.

Figure 2-14: (a) the local coordinate frame defined for the base line and (b) the

associated histogram.
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Figure 2-15 shows the histograms recording the local geometric feature distributions for

two particular lines within a shape. Each histogram can be thought of as a template

for the line. Given the way in which individual entries are made in the histogram,

the value of each bin records the relative frequency with which edgels at a particular

geometric relationship to the base line occurred within the shape. If the histogram is

normalised then bin valies can be taken to indicate the probability of such an event,

for the particular line and shape being represented. This is important, since it means

that the representation is well suited for use within a statistical pattern classification

approach to matching.

Figure 2-15: The histograms for two lines within a shape.



X
2.

Individual Local Line Histograms
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Figure 2-16 shows the histogram recording the geometric feature distribution for a line

within a circle. It can be seen that the smoothness of the circle's shape is captured in

the representation. It will be appreciated that the local geometric feature distributions

of lines within completely symmetric shapes, such as the circle, will be identical.

Figure 2-16: The histogram for a line within a circle.

The full shape representation is constructed by recording the local geometric feature

distribution for each line within a shape. The full shape representation is therefore

composed of n histograms, where there are n lines in the shape, figure 2-17.

Figure 2-17: Complete shape representation
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2.5.2 Global Shape Matching

Non-correspondence recognition is based upon matching global representations of shape.

Such representations can be obtained in the present scheme by recording the distribu-

tion of geometric features within the set G, where

G {gpq : gpq = g(nip , nig) V1-14, Tr; E M}

The histogram, H, recording the distribution of features values within G can be treated

as a representation of the complete shape. In practical terms, this global form of

shape representation is obtained by summing the individual histograms recording local

geometric feature distributions, figure 2-18. The total value of entries in the histogram,

once all relationships have been recorded, is equal to L 2 , where L denotes the sum of the

lengths of all lines within the shape. The value in each bin of the histogram records

the relative frequency with which two edgels at a particular geometric relationship

occurred within the shape. If H is normalised then bin values can be taken to indicate

the probability of such an event, for the particular shape being represented.

Figure 2-18: The construction of global geometric feature distributions.

The histogram recording the global geometric feature distribution for a particular shape

is shown in figure 2-19. No blurring was used. It can be seen that the histogram is

symmetric about r on the angle axis, due to the symmetry within the shape.

This form of representation is capable of supporting the matching of whole shapes.

However, there is a fundamental difference between this form of global representa-

tion and that provided by such measures as Fourier coefficients or moment invariants.

Whereas the latter are based on a single, global shape characteristic, and are therefore
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Figure 2-19: The global geometric feature distribution for a shape.

sensitive to data loss, global geometric feature distributions are constructed from mul-

tiple local measurements, and should therefore degrade gracefully as shape primitives

are lost through fragmentation noise.

2.5.3 Extensions

This basic representational scheme can obviously be extended in a number of ways.

Two strategies are considered; one based on exploiting a measure of saliency and the

other based on restricting the range over which geometric relationships are defined.

Local Shape Representation
The above scheme is based upon recording the the distribution of geometric features

computed between a base line and all other lines in the shape. This means that

if a shape description is corrupted, either through fragmentation noise or occlusion,

or if there are lines due to spurious elements in the scene, then the representation

will be affected. While the proposed representational scheme is quite robust to such

changes, as demonstrated in Chapter 3, it is obviously preferable if the likelihood of

the representation being affected can be reduced. This can be achieved by restricting

the range over which the geometric relationships included in the representation are

measured. This involves using a function f to define a local region around the base

line. The definition of the set G q then becomes:

Gq fgqi : gqi = g(n7q ,rri,j ) Vn j E M AND f(mq ,m,j ) = TRUE}

The function f can obviously take a number of forms. One of the simplest is to define

a circle, of radius D, centred on the mid-point of the base line. Measurements are
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Figure 2-20: A circular local region defined around the base line.

made with all other shape lines whose mid-points lie within this circle, figure 2-20.

While this effectively restricts the range over which measurements are made it does,

however, impose a hard cut-off. As a consequence, the representation of smoothly

deforming shapes may suffer. Also, its reliance on the mid-points of lines, which are

not robust characteristics, means that it is liable to be badly affected by image noise.

Another method would be to use a Gaussian weighting function, again centred on the

base line, which accepted all other lines but which weighted their entry with the value of

a Gaussian computed at their mid-point. Alternatively, a more sophisticated definition

could be used, based on some notion of an object "part" [46]. For example, Kalvin et

al. [52] have proposed splitting shapes at concavities and treating the sections between

them separately. However, despite the potential problems listed above, it was found

that the simple circular function performed adequately.

Conflicting factors must be taken into account when determining the optimal size of

the local region. While reducing the size of the region lessens the likelihood of the

representation being affected by shape variation, it does so at the cost of a decrease in

its strength. The optimal region size is therefore a trade-off between the strength and

robustness of the representation. As such it should be determined by the difficulty of

the recognition task and the likelihood of scene clutter. The size of the region should

also be related to the scale of the shapes to be represented. Assuming that this scale is

fixed, and that objects are of a similar size, the size of the region can be expressed as

some fraction of the maximum distance between any two lines within a shape, (cf. [13]).
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Figure 2-21:

Saliency
Despite the use of high-level primitives, complex shapes may still require a large number

of histograms to be stored, placing strains both on the amount of memory needed to

store object models and on the speed of recognition. One solution to this problem

would be to rank primitives on the basis of some measure of saliency. Consideration
could then be restricted to a subset of the most salient primitives, (cf. [13]). This would

serve to reduce both the number of histograms that need be stored and the amount of

computation involved in performing recognition.

The exact meaning of saliency is not clear, and obviously depends on the nature of the

primitives being used. Most definitions of saliency attempt to capture the importance

or distinctiveness of a primitive within a shape. However, the overriding constraint is

that it should provide a reliable ordering of primitives, otherwise the subset of primi-

tives considered may vary between images, leading to instability in recognition.

In the case of line segments, a possible measure of saliency that has been proposed

is their length, [3]. This solution is discounted on two counts. Firstly, the ordering

of lines based on their length is liable to break down in noisy conditions where lines

become fragmented. Secondly, the spatial distribution of long lines within a shape

may be uneven. For example, in the line description of the shape shown in figure 2-21

long lines are restricted to a particular region of the shape, since the description of the

curved section requires many short lines. The obvious danger in this situation is that

occlusion of this area of the shape will cause a break down in recognition.
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2.6 Uniqueness

This section discusses the factors affecting the uniqueness of representations of shape

in the form of geometric feature distributions.

A representation can be said to be unique if the set of possible shapes that could
have produced it differ only by the allowable object transformations, as determined

by the invariance characteristics of the representational scheme. Within the statistical

pattern classification approach to recognition, the uniqueness of a representational

scheme ensures that the recognition system will be able to distinguish between all

dissimilar shapes. The factors affecting the uniqueness of the proposed representational

scheme are now discussed.

Feature Set Completeness

The uniqueness of the present representational scheme is determined primarily by the

completeness of the set of geometric features used to define the relationship between

two primitives. As stated above, the completeness of a feature set describes the degree

to which its values combine to characterise the geometric relationship between a pair

of shape primitives. The values of a complete feature set are therefore sufficient, given

details of one primitive, to unambiguously recreate the second. It seems clear that the

distribution of the values from a complete feature set provides a unique representation

of shape, (although non-complete feature sets may also generate unique representations

in certain circumstances). Since a minimum of 5 geometric feature values are needed

to uniquely define a geometric relationship, [16], in practice it is often the case that

the chosen feature set will be incomplete. The proposed feature set, since it returns

only 3 values, represents just such a set. In this situation there is the possibility that

representations may not be unique. It is therefore important to gain an understanding

of the range of shapes which generate a common set of feature values.

If the direction vectors of line segments are available then, given the values of the rela-

tive angle and perpendicular distance features, 0 and d min , dmax respectively, together
with the position of the first line, possible positions of the second line are as shown in

figure 2-22. It can be seen that all lines which differ only by a translation in a direc-

tion parallel to the base line produce the same set of feature values. Also, all collinear

lines produce the same set of values. This latter feature actually proves very useful,

since it ensures that all fragments of a line have the same representation as the original

line, modulo a scaling factor determined by the proportion of lost data. This provides

considerable advantages when attempting to match line fragments, (see Section 3.3.1).

Moreover, the use of the local region to restrict the range over which relationships

are measured means that the representation of collinear lines that are far apart, eg.

because they belong to different objects, are not identical. This is demonstrated by
the two lines, ti. and £2 , shown in figure 2-23.
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Figure 2-22: Possible interpretations of the geometric feature values.

Figure 2-23: Collinear lines with differing representations.

Figure 2-24: A complete feature set.



Chapter 2. RECORDING GEOMETRIC FEATURE DISTRIBUTIONS 	 62

It is possible to apply the perpendicular distance feature in both directions, to provide

5 feature values. These are sufficient to uniquely describe the geometric relationship

between the line segments, as demonstrated in figure 2-24. Recording the distribution

of these feature values would require the use of a histogram with 3 axes, which can be

expected to require a large amount of memory.

Binning St Blurring

The process of binning and blurring the values of the geometric features obviously

results in the loss of exact geometric information. Therefore, in practice, even in the

case where a complete geometric feature set is used, representations are not unique.

However, the set of shapes generating a common representation differ only by a prede-

fined limit based on the acceptable variation between shapes. Indeed, these factors can

be used to determine the scale at which shapes are represented in the histogram. For

example, the use of a small blur, with a correspondingly large number of bins, produces

representations that are able to support fine scale discrimination between shapes, while

the use of a large blur and a small number of bins provides stable representations which

capture the large scale similarities between shapes. Thus, varying both the width of

blur and, correspondingly, the number of bins used in the histogram provides a flexible

way in which the acceptable difference between two shapes can be controlled.

2.7 Discussion and Summary

This chapter has described a scheme for representing shape which is based upon record-

ing the distribution of geometric features between its primitive elements.

It was argued that there are significant advantages in basing representation on a line-

based description of shape. Firstly, line segments can be obtained straightforwardly

from a linear approximation of the edgel strings extracted by a Canny edge detector,

with favourable consequences for the accessibility of the representational scheme. Sec-

ondly, the fact that any shape can be described to an arbitrary degree of accuracy

using a sufficient number of straight line segments means that the scheme is versatile

in its application. Finally, since line segments can be either 2D or 3D, their use places

no restrictions on the dimensionality of the shape that can be represented.

The set of geometric features used to measure the relationship between pairs of line

segments was introduced. These features provide an acceptable balance between the

conflicting aims of providing a strong measurement of local shape while ensuring that

representations based upon their values are not critically affected by line fragmentation.

The chosen features also possess the required invariance to transformations in the 2D

position and orientation of an object in the scene.

The structure of the histogram used to record the distribution of geometric feature

values was presented, along with the method of recording individual geometric rela-
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tionships. The flexibility of the scheme was highlighted by examining the different

levels at which shape could be represented. It was shown that by simply varying the

set of pairwise geometric relationships recorded within a single histogram it is possible

to produce either local or global representations of shape. These can be used to match

individual shape primitives or whole shapes respectively.

The strategy of blurring entries in the histogram was shown to provide a flexible method

for encoding in the representation the allowable differences between shapes. This can

be used to provide a certain degree of robustness to small variations in the position

and orientation of line segments within a shape arising from image noise or object

transformation. It was argued that by varying both the resolution and width of blur

used in the histogram it is possible to alter, in a flexible way, the scale at which shape

is represented.

One of the most important properties of the proposed representational scheme is its

robustness to changes in the shape description extracted from an image caused by

fragmentation noise or occlusion. In fact, the representation is robust in a number of

ways. Firstly, the fact that recording geometric feature distributions involves making

multiple local measurements of shape suggests that the representation should degrade

gracefully as the shape is degraded. Particular care was taken to ensure that represen-

tations constructed from a line-based shape description retained this property. This

is important since it means that the practical advantages of basing representation on

line segments are combined with the robustness that comes from considering low level

edgels. Secondly, the robustness of the scheme was improved by restricting the range

over which geometric relationships are measured, thereby reducing the likelihood of

the representation being affected by shape variation. Finally, the fact that local shape

representations are composed of multiple histograms, one for each shape primitive,

means that recognition based on the representation will be robust to the loss of data

through fragmentation noise or occlusion.



Chapter 3

2D OBJECT RECOGNITION

3.1 Introduction

This chapter presents the application of the representational scheme based on geometric

feature distributions, (GFD's) to the the problem of 2D object recognition. The chapter

is organised into the following sections:

1. Matching geometric feature distributions
The method of matching geometric feature distributions is presented. This in-

cludes a discussion on the appropriate form of similarity metric to be used within

a matching scheme based on nearest-neighbour classification. The ability of this

scheme to establish valid matches between local shape primitives is briefly demon-

strated and the factors affecting the uniqueness of the representation are assessed.

2. Dealing with variable line description
The performance of the proposed scheme is examined under measurable condi-

tions of shape variation, including fragmentation noise, scene clutter and sensor

error. The scheme is shown, both theoretically and empirically, to possess con-

siderable robustness to these forms of variation.

3. Determining object pose
The use of the generalised Hough transform to determine object pose, based on

matches established using the GFD scheme, is presented.

4. Shape matching -
The ability of the GFD scheme to support the recognition of complete shapes

through the matching of global shape representations is demonstrated.
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3.2 Matching Geometric Feature Distributions.

The basic element in performing 2D object recognition is the ability to match the

description of shape extracted from an image to that of the set of object models. One

of the primary motivations behind the study of geometric feature distributions was to

develop a strong, robust and invariant form of shape representation with properties

such that this matching could be performed using techniques from statistical pattern

classification. This section describes the appropriate form of similarity metric to be

used within a matching scheme based on nearest-neighbour classification.

3.2.1 Computing A Similarity Metric

Essential to the pattern classification approach is the availability of some form of sim-

ilarity metric, D, that can be used to provide a quantitative measure of the degree

of similarity between two shape representations. In the present scheme this involves

treating values in the histogram recording the distribution of geometric features within

a shape as the components of a feature vector. The chosen metric should ideally meet

the following requirements:

• It should provide a measure of the similarity between two shapes, based on the

information available in their representations.

• It should be robust to changes in the representations caused by variations in

shape description, eg. through fragmentation noise, sensor error or scene clutter.

The physical interpretation of this metric depends on the level of representation adopted;

if histograms are a record of global feature distributions then D indicates the degree

of similarity between whole shapes, while for local feature distributions, D provides a

measure of similarity between individual shape primitives. One of the advantages of

the proposed recognition scheme is that both levels of representation can be matched

using a common metric.

We require a metric, D, that can be applied to histograms representing the two shape

primitives qi and raj , where qi is drawn from the set of image primitives, I and mi

is drawn from the set of model primitives, M. The chosen similarity measure is the

Bhattacharrya distance, (for a detailed discussion of the advantages of this metric

see Mardia et al. [64], page 378). It is interesting to note that this metric can be

related to the standard x 2 statistic used in determining the "goodness-of-fit" between

two frequency distributions, (see Appendix). For the two histograms, Hq, and

representing qi amd mi respectively, the value of D is given by
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no nd 	

D(qi ,mi) = EE
X	 11

Where no and nd represent the number of bins used along the relative angle and perpen-
dicular distance axes respectively. In order to guarantee that this metric is independent
of the "length" of the histograms, which is related to the length of ra j and the total
length of lines within the shape, it is necessary to perform some form of normalisation.
The chosen form of normalisation is to ensure that

no 12 d

.(x, y) 2 = 1

where

11 j (x,y) =

Thus, the value, H" used in computing the metric D, is given by

H (x,y)
H„," (x,y) = 	 3 

where

If Hq, is similarly normalised then D is given by,

no nd

D(qi ,mi) = EH"(x y).H" i (x y)
qi	 M

X y

A consequence of the normalisation step is that the histograms representing each prim-
itive are constrained to lie on the unit hypersphere in m x n-dimensional space. The
value returned by D therefore has a straightforward geometric interpretation, in that it
gives the cosine of the angle, p, between the feature vectors describing each primitive,
figure 3-1.

Thus, in the case where the model and image primitives match exactly, D equals unity.
The proposed metric therefore meets the first of the conditions listed above, in that it
returns a principled measure of the similarity between the two representations.

However, in situations where the shape description extracted from the image is depleted
by fragmentation noise or augmented by spurious elements, the behaviour of the metric

'1
L=	

nd

L = EEHm,(x,y)
X V
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Figure 3-1: Geometric interpretation of D

becomes more intuitive if the histogram representing qi is not normalised. Obviously,
this also has benefits in terms of the amount of computation required in computing D.

If Hqi i is not normalised then D is given by,

nO nd

D(qi ,ma) = E E H' (x y)H" (x y)qi	 7	 rnj	 7
X y

In the case where the two primitives match, ie. Hq,(x, y) =	 y), we have that

no nd

D(qi, 771j) = E E Hq, (x, y)
X y

From Chapter 2 we have that

O71E1 Hqi (x, y)
Y

Therefore, in the case where two primitives match exactly, D returns a value related to
the product of the length of qi and the total length of lines within the shape. In general,
D returns a value related to the proportion of lines within each shape description which
match, based on the distribution of geometric features computed between these lines.
The suitability of this revised metric for use within a nearest-neighbour classification
system is established in the following section, while its robustness in conditions where
the image shape description is affected by various forms of image noise is assessed in
Section 3.3.
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Figure 3-2: A Voronoi cone in 3D space.

3.2.2 Nearest-Neighbour Classification

If Ma_-- {m1 , m2 , ...mn } is the set of model primitives and m* E M is the model prim-

itive whose histogram representation is nearest to that of a particular image primitive

qi , then the nearest-neighbour classification rule dictates that qi should be matched to

m*. Determining the identity of in* involves finding the maximum in the set C, where

C {Dij : Dij = D(qi ,mi) m,i E M}

This explanation will be aided by considering a geometric interpretation of the classifi-

cation process. A consequence of the normalisation is that the feature vectors represent-

ing the set of model primitives each lie on the unit hypersphere in in X n-dimensional

space. The value of D computed between the feature vector representing a model

primitive mi and that representing an image primitive q i is therefore a measure of the

projection of qi in the direction of mi. A result of the nearest-neighbour classifica-

tion based on the value of D is that the feature vectors representing the set of model

primitives tessellate the feature space into a series of Voronoi cones. The Voronoi

cone associated with the model primitive, mi , defines a volume of the feature space in

which the projection of qi in the direction of mi is greater than for any other in E M.

The feature vector representing mj will lie somewhere in the cone, while the sides of

the cone represent decision planes with nearby model primitives. Therefore, an image

primitive whose feature vector lies within the Voronoi cone associated with a particular

model primitive is matched to that primitive. A Voronoi cone in 3D space is shown in

figure 3-2, while multiple cones in 2D space are shown in figure 3-3. The intersection
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Figure 3-3: A series of Voronoi Cones in 2D space.

Figure 3-4: A Voronoi tessellation.

of these cones with any centred hypersphere in the feature space produces a Voronoi

tessellation of its surface, figure 3-4.

In terms of matching local shape primitives, nearest-neighbour classification can be

seen as implementing the constraint that an image primitive may only match a single

model primitive. This is entirely appropriate, since it is only in a very small number of
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Figure 3-5: A practical scheme for performing recognition.

situations that an image primitive may legitimately match multiple model primitives.1
Another property of the proposed scheme is that a model line may be matched to
more than one image line. This is important in handling the recognition of multiple
instances of an object in a scene and in the matching of multiple fragments of a line
segment. Furthermore, not all model lines must be matched. This is important if the
system is to be robust to missing data caused by shape fragmentation or occlusion,
and is a problem that has to be explicitly catered for in certain recognition systems,
eg. tree-search [40].

The classification process is performed for all q E I, such that each primitive is matched
to a single model primitive. The structure of a practical scheme for performing this
matching is shown in figure 3-5. Assuming no saliency measure is used to pre-select
shape primitives, the number of computations involved in this scheme is given by,

Number of Computations = I x M x ne x rid

where I and M denote the number of image and model line segments respectively. This
obviously represents a lot of computation, and on conventional serial processors recog-

1 A possible instance is where the model is described by multiple noisy line fragments or
where there is a decrease in linear approximation accuracy between the acquisition of model
and image shape descriptions.
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nition will be relatively slow. However, processing is uniform, local and involves only

simple array multiplication. This suggests that it should lend itself straightforwardly

to implementation in parallel hardware. Indeed, further research has recently begun

on developing methods for achieving this, [101].

3.2.3 Demonstration of Matching

The ability of the proposed scheme to correctly match line segments is demonstrated

using the shape shown in figure 3-6. The elements of the set C for each image primitive

can be conveniently expressed as a correspondence array, (cf. [15]), in which rows
represent model primitives and columns represent image primitives. Element i,j of
this array represents the value of D computed between model primitive mi and image
primitive qi.

Figure 3-6: The shape, AO, used to demonstrate matching.

The correspondence array for the line segments describing the above shape matched

against themselves is shown in table 3-1. The parameters of the histogram used were
no = 40, nd = 30, at? = crd = 1.0. No local region was used. In order to make
the outcome of recognition clearer, the values of D within a column are normalised
relative to D*, the value of D for the nearest model primitive m*. It can be seen that
peak values do indeed lie along the diagonal, indicating that each line segment has

been correctly matched with itself. Moreover, it can be seen that there is a significant
separation between the values of D for correct and incorrect associations.

This can be further appreciated by examining a correspondence image, in which the
intensity of a pixel is proportional to its value in the correspondence array, figure 3-7.
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11.001 0.20 0.13 0.11 0.14 0.09 0.29 0.22 0.11 0.15 0.04 0.07 0.15 0.12 0.06 0.18 0.19

0.20 11.001 0.11 0.16 0.24 0.36 0.18 0.29 0.30 0.13 0.09 0.21 0.28 0.17 0.08 0.20 0.14

0.13 0.11 11.001 0.17 0.16 0.11 0.36 0.09 0.10 0.14 0.09 0.14 0.19 0.20 0.11 0.09 0.28

0.11 0.16 0.17 11.001 0.38 0.17 0.23 0.13 0.08 0.16 0.12 0.13 0.11 0.12 0.08 0.21 0.12

0.14 0.24 0.16 0.38 11.001 0.16 0.15 0.11 0.13 0.22 0.08 0.09 0.10 0.15 0.14 0.17 0.08

0.09 0.36 0.11 0.17 0.16 11.001 0.11 0.14 0.27 0.09 0.12 0.26 0.18 0.14 0.09 0.12 0.11

0.29 0.18 0.36 0.23 0.15 0.11 11.001 0.18 0.15 0.19 0.09 0.17 0.29 0.21 0.11 0.14 0.30

0.22 0.29 0.09 0.13 0.11 0.14 0.18 11.001 0.19 0.18 0.08 0.13 0.16 0.06 0.06 0.16 0.11

0.11 0.30 0.10 0.08 0.13 0.27 0.15 0.19 11.001 0.14 0.07 0.18 0.14 0.20 0.13 0.16 0.26

0.15 0.13 0.14 0.16 0.22 0.09 0.19 0.18 0.14 11.001 0.11 0.06 0.16 0.06 0.14 0.42 0.16

0.04 0.09 0.09 0.12 0.08 0.12 0.09 0.08 0.07 0.11 11.001 0.06 0.10 0.08 0.24 0.14 0.14

0.07 0.21 0.14 0.13 0.09 0.26 0.17 0.13 0.18 0.06 0.06 11.001 0.21 0.17 0.07 0.06 0.20

0.15 0.28 0.19 0.11 0.10 0.18 0.29 0.16 0.14 0.16 0.10 0.21 11.001 0.18 0.10 0.15 0.15

0.12 0.17 0.20 0.12 0.15 0.14 0.21 0.06 0.20 0.06 0.08 0.17 0.18 11.001 0.05 0.06 0.19

0.06 0.08 0.11 0.08 0.14 0.09 0.11 0.06 0.13 0.14 0.24 0.07 0.10 0.05 11.001 0.11 0.08

0.18 0.20 0.09 0.21 0.17 0.12 0.14 0.16 0.16 0.42 0.14 0.06 0.15 0.06 0.11 11.001 0.13

0.19 0.14 0.28 0.12 0.08 0.11 0.30 0.11 0.26 0.16 0.14 0.20 0.15 0.19 0.08 0.13 11.001

Table 3-1: The correspondence array for AO.

Figure 3-7: The correspondence image for AO

The correspondence array and correspondence image will prove useful in assessing the

performance of the recognition scheme as the image shape description is varied. As a

preliminary example, the invariance of geometric feature distributions to 2D rotation

is demonstrated. Figure 3-8 shows the lines extracted from of an image of AO after
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Figure 3-8: The shape, AO, rotated through 900.

it has been rotated through 900 . Table 3-2 and figure 3-9 show, respectively, the

correspondence array and correspondence image computed for the lines in this shape.

0.11 0.17 0.05 0.07 0.15 0.12 0.08 0.18 0.20 11.001 0.20 0.14 0.11 0.14 0.09 0.29 0.22

0.30 0.15 0.09 0.23 0.28 0.17 0.08 0.20 0.15 0.19 11.001 0.11 0.16 0.25 0.37 0.18 0.30

0.10 0.14 0.10 0.13 0.19 0.19 0.13 0.09 0.29 0.13 0.12 11.001 0.18 0.19 0.11 0.35 0.09

0.08 0.16 0.12 0.12 0.10 0.12 0.11 0.21 0.12 0.11 0.15 0.16 11.001 0.41 0.18 0.23 0.14

0.13 0.25 0.07 0.08 0.12 0.15 0.13 0.16 0.08 0.15 0.24 0.16 0.40 11.001 0.17 0.15 0.10

0.28 0.09 0.12 0.31 0.17 0.14 0.10 0.12 0.11 0.09 0.38 0.11 0.17 0.17 11.001 0.11 0.14

0.15 0.22 0.09 0.17 0.29 0.20 0.10 0.15 0.31 0.29 0.18 0.38 0.25 0.16 0.11 11.001 0.21

0.19 0.18 0.08 0.13 0.16 0.07 0.05 0.16 0.11 0.22 0.30 0.09 0.15 0.12 0.14 0.18 11.001

11.001 0.14 0.07 0.19 0.14 0.21 0.16 0.17 0.26 0.11 0.31 0.10 0.08 0.12 0.29 0.15 0.21

0.14 11.001 0.10 0.06 0.17 0.06 0.15 0.45 0.17 0.16 0.13 0.14 0.18 0.22 0.09 0.19 0.19

0.07 0.12 11.001 0.07 0.10 0.09 0.21 0.15 0.14 0.04 0.10 0.09 0.13 0.09 0.13 0.09 0.07

0.19 0.06 0.07 11.001 0.21 0.17 0.09 0.06 0.22 0.07 0.21 0.13 0.16 0.11 0.21 0.18 0.13

0.14 0.16 0.11 0.22 11.001 0.18 0.12 0.15 0.16 0.16 0.29 0.19 0.12 0.11 0.16 0.30 0.17

0.20 0.07 0.08 0.16 0.19 11.001 0.07 0.06 0.20 0.12 0.18 0.22 0.09 0.15 0.13 0.21 0.07

0.13 0.16 0.26 0.07 0.11 0.05 11.001 0.11 0.08 0.06 0.08 0.11 0.07 0.15 0.09 0.11 0.06

0.17 0.45 0.14 0.06 0.14 0.06 0.13 11.001 0.13 0.18 0.21 0.08 0.26 0.17 0.13 0.14 0.18

0.28 0.18 0.14 0.20 0.15 0.20 0.08 0.13 11.001 0.19 0.15 0.28 0.13 0.08 0.10 0.30 0.12

Table 3-2: The correspondence array for AO rotated through 90°.

The displacement of the peak is due to the fact that the ordering of model and image
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Figure 3-9: The correspondence image for AO rotated through 900 .

line segments is no longer preserved. Also, the slight variations in the position and

orientations of line segments extracted from the image means that there is a small

decrease in the separation between correct and incorrect matches.

A graphical illustration of the correctness of the established correspondences between

line segments can be obtained by displaying matched model and image line segments

in the same colour. In figure 3-10(a), each model line has been been assigned a unique

colour. In figure 3-10(b) each image line is shaded with the colour of the model line

to which it is matched.

Figure 3-10: Colour-coded matches. (a) model lines and (b) image lines.
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3.2.4 Uniqueness

Having described the method by which geometric feature distributions are matched,

we are now in a position to be able to assess the uniqueness of the representational

scheme and the factors affecting it. It was argued in Section 2.6 that the primary factor

in determining the uniqueness of geometric feature distributions was the completeness

of the proposed geometric features. However, given a fixed set of geometric features,

the uniqueness of the representation is affected by the number of bins and the amount

of blurring used in the histogram. The purpose of this section is to examine this

relationship by recording the change in the relative values of D computed between the

set of model primitives as both the number of bins and the width of blur are varied.

This requires a measure of the degree of separation between the values within the

correspondence array. The chosen measure is given by

E/(1 - D)
S —

	

	 i j
I(M- 1)

where D'ij is the normalised value of D computed between mi and qj . While this

measure is somewhat arbitrary, it does provide a means by which the affect of histogram

resolution and blurring on the uniqueness of representations can be gauged.

Number of Bins

In order to assess the effect of the resolution of the histogram on the uniqueness of

the representation, a graph of S against n, the number of bins used on each axis, was

plotted. No blurring was used. Figure 3-11 shows the graph of S against rt. The

higher the value of S, ie. the greater the mean separation between the value of D for

the model primitives, the more unique the representation can be said to be.

A geometric interpretation of this result can be attempted. The behaviour of the

proposed distance metric is such that the uniqueness of a representational scheme is

related to the degree of orthogonality between the feature vectors it produces. In the

present scheme, increasing the number of bins used in the histogram increases the di-

mensionality of the feature space. This will tend to increase the degree of orthogonality

between the feature vectors produced.

Width of Blur

In order to examine the effect of the width of blur used in the histogram on the

uniqueness of the representation, a graph of S against o- was plotted, where a describes

the width of blur used on each axis. The number of bins used on each axis was fixed

at no = nd 40. Figure 3-12 shows the graph of S against a. It can be seen that,

as expected, there is a steady decrease in the uniqueness of the representations as the

amount of blurring is increased.

Again, a geometric interpretation of this result can be attempted. The effect of blurring

entries in the histogram is to move all feature vectors towards the vector in feature space
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Figure 3-11: A graph showing the relationship between S and the resolution of the

histogram.

Figure 3-12: A graph showing the relationship between S and the width of blur used
in the histogram.

in which all components are equal. The has the effect of compressing feature vectors

into a smaller volume of feature space. Thus, the effect of blurring is to reduce the
relative distance between feature vectors, effectively lessening the uniqueness of the

representation. However, in the noise free case, where shape descriptions are constant,

the increased blurring has no effect on classification.
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This section has described the use of techniques from statistical pattern classification in

the matching of local shape primitives represented as geometric feature distributions.

The next section examines the extent to which such matching is robust to variations

in the line description caused by fragmentation noise, sensor error and scene clutter.

3.3 Dealing With Variable Line Description

Central to the practicality of the proposed recognition system is its ability to perform

matching across the full range of potential imaging situations. This requires that

matching be preserved in situations where the description of an object's shape extracted

from an image differs quite drastically from that obtained during model acquisition.

In the vast majority of cases, variations in image shape description will be caused by

one or more of the following factors:

• Shape Fragmentation

• Scene Clutter

• Sensor Error

It is important to examine the performance of the recognition scheme under such con-

ditions. One approach to this issue would be to simply demonstrate the performance

of the system on a particular subset of example scenes in which such problems oc-

cur. However, such an exercise would provide no general, quantifiable information

upon which predictions about expected performance in different situations could be

made. Consequently, the motivation behind the studies reported in this section is a

desire to provide a characterisation of the performance of the proposed algorithm un-

der measurable conditions of shape variation. As such it can be seen as an attempt

to meet the challenge proposed by Haralick [44], namely that designers of computer

vision algorithms should attempt to answer the question,

"...what is the performance of the algorithm under various kinds of random

degradations of the input data?" Haralick, [44].

In order to answer this question it is necessary to generate a set of samples which fully

cover the expected "input image population", [44]. If the performance of the system is

to be quantifiable then ideally each member of this set should have associated with it a

parameter describing the amount of shape variation. This involves proposing a model

of the effects of each particular form of shape variation. Providing plausible models

is not easy in all cases. Also, it is often necessary to propose a simplified model so

that the effects of the particular form of shape variation can be isolated. Consequently,

the proposed models may be criticised on the grounds that they do not fully describe



Chapter 3. 2D OBJECT RECOGNITION 	 78

the changes that occur in "real" image data. However, provided the results of studies

based on the models provide an increased understanding of the likely performance of

the system under such conditions then their use is justified.

Each of the following sections considers a separate form of shape variation. Each is

structured in the following way: firstly a model of the shape variation is presented, sec-

ondly the effect of this variation on geometric feature distributions is assessed, thirdly

the effect of the changes in shape representation on the similarity metric D is consid-

ered, finally the likely effect of changes in D on the nearest-neighbour classification

is presented. Each of these sections includes a theoretical discussion, the validity of

which is then assessed experimentally. This ensures that the likely performance of the

recognition scheme under each form of shape variation is fully assessed.

3.3.1 Shape Fragmentation

Changes in the lighting of a scene may cause sections of the projected contour of

an object to go undetected, as evidenced by a break in the edgel strings returned

by the Canny operator. These will obviously have an affect on the line-based shape

description. Providing a general account of such changes is difficult, since they depend

on a number of factors, including the characteristics of the approximation algorithm,

the accuracy with which it is applied, the position at which the fragmentation occurs

and whether or not objects are polyhedral. However, if the performance of the proposed

recognition scheme in conditions of fragmentation noise are to be assessed then some

form of model must be proposed. The following model is based on that detailed in

Bray [16].

A Model of Fragmentation Noise
In describing the effects of fragmentation noise it will prove useful to represent a line

segment, s, by a single endpoint, e, a unit direction vector, d and a length ,e, figure 3—

13(a).

S = (e, (e + .e.d)

The fragmentation of the line segment s to produce a single line fragment s' is then

described by the two values, fi and f2 , figure 3-13(b), such that

s' = ((e + fi .d),(e + f2.d))

The degree of fragmentation, n f , , is given by

f2 — fl
71 f =	 t 
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s'

Figure 3-13: (a) line description and (b) a model of line fragmentation

This model makes the assumption that the direction vector of a line is preserved through

fragmentation. In the case where the fragmented edgel strings are due to the projec-

tion of a polyhedral object this assumption should be valid. However, in cases where

objects are non-polyhedral its validity is much less certain, and will depend both on

the accuracy of linear approximation and on the position of the fragmentation. Given

that the goal in this section is to isolate the effects of data loss, this assumption is

justified, (the effects of varying the direction vectors of line segments is addressed in

Section 3.3.3).

The effect on geometric feature distributions 
Consider the pair of line segments 17, and iq shown in figure 3-14(a). Also shown is the

entry made in the histogram, Htp , associated with 4. Both lines are now fragmented

to give the two line segments ep and i'q shown in figure 3-14(b). Again, the entries

made in Hip the histogram associated with ip' , are shown. It can be seen that, as a

consequence of the fact that the entry made in the histogram for a pair of line segments

approximates the net effect of considering individual edgels, the set of non-zero entries

in H is is a subset those in Hep . This is further demonstrated in figure 3-15, which

shows the effect of fragmentation on the histogram associated with a particular line in

a shape.

We now analyse the effect of fragmentation on the value of the entries in the histogram.

From Chapter 2 we have that V, the value of the entries in Rep is equal to

V = tp .(tp ig)

The value of the entries in .[/;, denoted by V', is equal to
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Figure 3-14: (a) a pair of line segments and (b) their fragmented counterparts, along

with the associated histograms.

V' = ep .(4 eq)

If we make the simplifying assumption that the fragmentation factor, n1 , is the same

for both lines, then

t' = nflp	and	 = nf.tq

thus

V' = n2f .444 tq)

V' -- nf2 V
	

(3.1)

This analysis shows that the sum of the values in the histogram representing the frag-

ment of a line segment is scaled by the square of the fraction of data remaining.



aim
• 'k:RM

sta(j)

gAINSIOM::*

(a)

Chapter 3. 2D OBJECT RECOGNITION
	

81

Figure 3-15: (a) the line tp and histogram He, (b) the line fp' and histogram H;p.

The effect on D 

We require an expression relating the change in the value of D computed between the

histogram representing a line m i and that of its image counterpart, q, to the amount

of fragmentation in the image shape description is increased. From Section 3.2.1 we

have that

n nd

D(qi,Mj) = E Hqi(X, y)	 ,r17
y

in the case where qi and mi match exactly. Therefore, in the case where the image

shape description is fragmented to produce the line q the value of D is equal to
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D(q'omj ) =	 (3.2)

Substituting 3.1 in 3.2 we have

D(q'orni ) = Vnpi

which gives

D(q,mi) = nfD(qi,mi)

Thus, as the shape in an image is fragmented, the value of the similarity metric D
computed between a model line, m 3 , and the corresponding image line, q, falls as

the fraction of shape remaining. The validity of this analysis can be demonstrated

by examining the graph of D against nf for a particular line in the shape AO as the

amount of fragmentation is increased, figure 3-16.
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Figure 3-16: A graph of D against nf.

The effect on nearest-neighbour classification
The above analysis suggests that shape fragmentation should have little effect on the

outcome of classification. That this is the case can be confirmed by considering a graph

showing the fall in the relative value of D computed between an image line, qi , and

the set of model lines, M, as the image shape description is increasingly fragmented,

figure 3-17. It can be seen that while the values of D for correct and incorrect model

lines converge, correct matching is preserved, theoretically at least, up to very high

levels of fragmentation.
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Figure 3-17: A graph of D against n1 for all model lines.

This analysis demonstrates that correct matching is preserved for a single image line,

q. In order to show that matching is preserved across the whole shape it is necessary

to examine the correspondence array at increasing levels of noise. The correspondence

array for the shape shown in figure 3-18, for which n f = 0.5, is shown in table 3-3. The
correspondence image and colour-coded matches for this shape are shown in figure 3-19
and figure 3-20 respectively.

Figure 3-18: A fragmented version of AO, at n 1 = 0.5.
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11.001 0.21 0.11 0.09 0.13 0.09 0.30 0.24 0.12 0.18 0.05 0.08 0.13 0.08 0.06 0.20 0.19

0.23 11.001 0.12 0.17 0.28 0.39 0.18 0.21 0.31 0.14 0.10 0.21 0.29 0.15 0.10 0.23 0.16

0.14 0.12 11.001 0.15 0.17 0.11 0.33 0.07 0.10 0.15 0.09 0.16 0.21 0.22 0.07 0.09 0.30

0.13 0.17 0.17 11.001 0.39 0.17 0.27 0.11 0.08 0.17 0.12 0.14 0.11 0.12 0.08 0.18 0.12

0.10 0.21 0.16 0.38 11.001 0.17 0.17 0.09 0.13 0.25 0.08 0.10 0.12 0.15 0.15 0.17 0.07

0.10 0.35 0.11 0.17 0.13 11.001 0.11 0.13 0.22 0.09 0.13 0.26 0.18 0.13 0.08 0.13 0.11

0.31 0.21 0.33 0.20 0.16 0.12 11.001 0.17 0.17 0.22 0.09 0.20 0.27 0.18 0.11 0.15 0.31

0.24 0.30 0.10 0.12 0.13 0.13 0.19 11.001 0.16 0.18 0.08 0.12 0.16 0.07 0.07 0.12 0.12

0.10 0.29 0.11 0.08 0.15 0.31 0.16 0.14 11.001 0.12 0.07 0.18 0.15 0.19 0.16 0.20 0.27

0.12 0.13 0.16 0.19 0.16 0.09 0.21 0.18 0.15 11.001 0.11 0.07 0.17 0.05 0.16 0.38 0.18

0.05 0.09 0.09 0.11 0.07 0.07 0.09 0.09 0.07 0.13 11.001 0.05 0.10 0.08 0.22 0.15 0.15

0.09 0.19 0.14 0.11 0.10 0.26 0.15 0.08 0.20 0.06 0.07 11.001 0.19 0.19 0.07 0.07 0.22

0.15 0.29 0.19 0.11 0.09 0.20 0.25 0.12 0.15 0.15 0.13 0.22 11.001 0.15 0.08 0.13 0.14

0.11 0.18 0.19 0.11 0.17 0.16 0.21 0.07 0.19 0.05 0.07 0.19 0.21 11.001 0.04 0.06 0.17

0.06 0.08 0.12 0.09 0.14 0.08 0.11 0.07 0.12 0.13 0.23 0.07 0.12 0.06 11.001 0.09 0.08

0.17 0.21 0.09 0.26 0.17 0.13 0.16 0.17 0.15 0.49 0.14 0.05 0.16 0.05 0.11 11.001 0.13

0.21 0.16 0.26 0.12 0.07 0.11 0.31 0.13 0.28 0.14 0.14 0.21 0.16 0.20 0.09 0.14 11.001

Table 3-3: The correspondence array for AO at nf = 0.5.

Figure 3-19: The correspondence image for AO at nf = 0.5.
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Figure 3-20: Colour-coded matches for AO at nf = 0.5.

This was repeated for n f = 0.25, and the colour-coded matches for the resulting shape

are shown in figure 3-21. It can be see that correct matching is preserved across all

lines, as expected from the above analysis. The histograms used to obtain this result
had parameters no = 40, nd = 30, a-0 = cid = 1.0. No local region was used.

Figure 3-21: Colour-coded matches for AO at nf = 0.25.

This analysis is simplistic in a number of respects. Firstly, the model of the effects of

fragmentation on a line accounts only for cases where the line is fragmented at both

ends. In reality it is quite possible that a line will be fragmented at multiple points

along its length, resulting in the creation of a series of line fragments. However, while

the analysis of this case is more difficult, similar results are obtained. This can be

seen by examining matches for the multiply fragmented shape shown in figure 3-22,

for which nf = 0.5. The correspondence image for this shape is shown in figure 3-
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23. It can be seen that peaks now run horizontally, as successive image fragments are

matched to the same model line.

Figure 3-22: A multiply fragmented version of AO, at n f = 0.5.

Figure 3-23: The correspondence image for the above shape.
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This can be seen clearly by examining the colour-coded matches, shown in figure 3-24.

Figure 3-24: Colour-coded matches for multiply fragmented AO at nf = 0.5.

Again this was repeated for nf = 0.25. The colour-coded matches for the resulting
shape are shown in figure 3-25.

Figure 3-25: Colour-coded matches for multiple fragmented AO at nf = 0.25.

The further simplification is that the above analysis assumes that the effect of the

fragmentation is evenly distributed across the shape. In more realistic situations it is

possible that the effect will be restricted to a particular region of the shape. In such

circumstances it is possible that the change in the histogram representation will not

be a simple scaling, and so matching may break down at lower fragmentation levels.
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3.3.2 Scene Clutter

The second form of shape variation addressed is the presence in the image of spurious

line segments. A spurious line segment is defined as any image line which does not

belong to the object of interest. This could be due to another object in the scene or

to some artifact of the lighting, eg. a shadow. Again, in order to assess the perfor-

mance of the matching scheme under measurable conditions it is necessary to propose

a generative model of the likely effects of detecting spurious lines in an image.

A model of scene clutter
The proposed model involves adding randomly oriented and positioned line segments

to the set of lines describing a shape. The amount of added noise in the shape, n a is

quantified by

L'
=

where L' is the total line length in the noisy shape and L is the same measure for the

original, noise-free, shape. An example of the effect of this form of noise on the shape

AO is shown in figure 3-26, for which n a = 5.

Figure 3-26: The effect of added noise on AO, at na = 5.

It could be argued that this model does not describe the full range of problems encoun-

tered in real scenes. In particular, the fact that they are randomly positioned with no

reference to the original shape ignores the problems caused by spurious lines that are

in some way correlated, eg. those arising from shadows. However, such conditions can

be thought of as a special case; the aim of this section is to provide a general analysis

of the effects of scene clutter on the matching of geometric feature distributions.
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The effect on geometric feature distributions
The lines describing the shape extracted from an image of a cluttered scene can be split

into two sets, the set S, which represents lines belonging to the object of interest and

the set N, which represents the remaining, spurious lines. We are concerned here with

describing the effect that members of N have on the matching of an image line, qi E S.

Recording the geometric feature distribution for qi involves computing its geometric

relationship not only with other shape lines but also with spurious lines. The effect of

such entries can be seen in figure 3-27.

•

Figure 3-27: (a) the histogram for a line and (b) for its counterpart in a cluttered

scene.
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It will prove useful to define the set U, representing non-zero bins in Hq, that receive

entries recording the geometric relationship between qi and qs e S,

U ••• {(x, 01(x , Y) E	 Hq,(x,y) > 0 AND G(qi ,qs)	 x,y, q3 E S}

where P is the set of positions in the histogram and G(qi, qs) 1-4 (x, y) indicates that

recording the geometric relationship between qi and Ts involves making an entry in the

bin whose position is given by x, y. Similarly, for spurious lines we can define the set

T,

T {(x,y)1(x,y) E	 Hqi(x,y) >0 AND G(qi ,q7 ) 1-4 x,y, qn E N}

The relationship between U and T depends to a large extent on the uniqueness of the

representation, as determined by the completeness of the geometric feature set and

the resolution and width of blur used in the histogram. In the theoretical case where

representations are unique, then

U n T {}

In more realistic case where representations are not unique then the intersection be-

tween these two sets will not be empty. The next section examines the effect this has

on the distance metric D.

The effect on D 

The behaviour of the proposed distance metric is such that its value increases with

the the size of the set U n T. This is due to a "lengthening" of the projection of the

feature vector representing image line qi in the direction of the vector representing the

corresponding model line mi . The rate at which the value of D rises therefore provides a

good indication of the uniqueness of the representation. The validity of this argument

can be assessed by examining the change in the value of D computed between the

histograms representing mi and qi as the number of added lines in the shape is increased.

In order to average out the random nature of the noise the results were averaged over

many trials. The graph of relative D against na is shown in figure 3-28. It can be seen

that the value of D does, on average, increase with the number of added lines in the

shape. The rate of increase is quite slow, indicating that the proposed representational

scheme is quite discriminatory. The histogram used in this and subsequent experiments

on scene clutter had parameters no = 40, nd = 30, o-o o-d = 1.0.
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Figure 3-28: A graph of D against na•

The effect on nearest-neighbour classification
The above argument can be generalised to deal with the change in the value of D

between qi and model lines other than mi , ie. the value of D should increase uniformly

across all model lines. That this is the case can be confirmed by considering a graph

showing the rise in the relative value of D computed between an image line, qi , and the

set of model lines, M, as the amount of added lines in the image shape is increased,

figure 3-29.
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Figure 3-29: A graph of D against na for all model lines.
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It can be seen that the separation in the value of D between correct and incorrect

model lines remains roughly constant up to very high levels of added noise. This result

can be appreciated by examining the effect of added noise on the shape AO at na = 50,

figure 3-30.

Figure 3-30: The effect of added noise on AO, at na = 50.

The reason for the decision not to normalise histograms representing image lines can be

appreciated by examining the corresponding graph in the case where such normalisation

is performed, figure 3-31.
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Figure 3-31: A graph of D against na for all model lines, with normalisation.
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Figure 3-32: The correspondence image for AO at na = 1.8.

This study demonstrates that correct matching is preserved for a single image line qi.

In order to show that matching is preserved across the whole shape it is necessary to

examine the correspondence array at increasing levels of noise. The correspondence

image for a noisy shape, in which n a = 1.8, is shown in figure 3-32. It can be see

that correct matching is preserved across all shape lines, as expected from the above

analysis. This can be further appreciated by examining the colour-coded matches for

the noisy shape shown in figure 3-26, for which n a = 5, figure 3-33.

Figure 3-33: Colour-coded matches for AO at n a = 5.
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As a consequence of the matching scheme, each spurious image line is matched to a

particular model line. Strategies for ensuring that such matches do not adversely affect

recognition are presented in Section 3.4.

Of course, this result does not guarantee that the proposed recognition scheme will

be robust to similar levels of noise arising from real imaging situations. Indeed, it is

difficult to imagine a situation in which so many spurious lines are detected in an image

while the description of the original shape remains intact. There is also the fact that

the proposed model does not model correlated noise. However, it does illustrate that

the matching of geometric feature distributions is theoretically robust to the presence

of arbitrary spurious lines in the image shape description.

3.3.3 Sensor Error

This section assesses the effect of variations in shape description involving changes in

the position and orientation of line segments. Variations in the detected position of

edgels caused by true sensor error are typically very small, (P.--2, 0.5 pixels). Of much

greater importance are the problems caused by shape fragmentation and variable linear

approximation. Fragmentation of an edgel string describing a curved shape is likely

to result in a change in both the number and the pose of the line segments used to

approximate it. Changes in the accuracy with which an approximation algorithm is

applied between model acquisition and recognition can cause very similar changes. For

convenience, variations due to these factors are combined under the heading of sensor

error, since their effect is generally similar.

In order to assess the performance of the recognition scheme it is again necessary to

provide a parameterised model of the effects of sensor error on line description.

A Model of Sensor Error
There are many possible models of the effects of sensor error on a particular line seg-

ment. One possibility is to define circular regions of uncertainty around each endpoint

of a line, as in [16]. This model has the advantage of being quite realistic, since it

accounts for the fact that the degree of variation in the orientation of a line segment is

directly related to its length; longer line segments are more likely to be stable. How-

ever, this means that the lines within a shape are rotated through a range of angles,

making it difficult to isolate the effects of a specific change in orientation. Also, the

model allows the length of lines to vary. This is not desirable since line length has a

significant effect on the representation, which is difficult to separate out. Therefore,

the present study is based upon the model proposed in Crimson, [40]. This involves

rotating each line segment around its mid-point by a fixed angle n a , irrespective of its
length, figure 3-34. This overcomes the difficulties mentioned above. An example of

the effect of sensor error is shown in figure 3-35.



Figure 3-34: A model of sensor error.
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Figure 3-35: The effect of sensor error on AO at nc, = 100.

The concentration on the effects of line rotation is justified since, as will be shown, the

displacement of a line segment has a second order effect on the values of the geometric

features computed between pairs of lines.

Changes in the orientation of line segments that are sufficiently large will obviously

result in a break down of matching based on geometric feature distributions. Indeed,

this must be true of any approach based on measuring the geometric relationships

between line segments. The purpose of this section section is to determine the factors

affecting the degree of variation that can be tolerated.
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The effect on geometric feature distributions
In order to understand the effects of sensor error on the proposed representational

scheme it is necessary to analyse its effect on the values of the proposed geometric

features. We therefore require expressions relating the change in the values of go and

gcl) the relative angle and perpendicular distance features respectively, to n oe , the angle

through which each line is rotated.

Figure 3-36: Worst case relative angle variation

Consider two line segments, .ep and 1q . The variation in go, termed Vge , is independent

of the relative position of 4 and iq • The worse case variation, shown in figure 3-36, is

given by

Vq, = ±2nc,

Conversely, the variation in gd , termed Vqd , is strongly dependent upon the lateral

displacement of the line segments, figure 3-37. The general expression for the new

value of gd for a particular endpoint p is given by

gld = gd cos no, + S sin na + dq

Where gd is the original value of the perpendicular distance feature, S is the distance

from the mid-point of the first line to the perpendicular dropped from p and dq is

the change in gd caused by the rotation of tq • The latter term will typically be small

compared with the change caused by the rotation of the base line 4. A change in the

orientation of the base line therefore has a dominant effect on the change in the value
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Figure 3-37: Variation in the perpendicular distance feature.

of the perpendicular distance feature. The worst case variation occurs when two lines
have the maximum possible lateral displacement, ie. S = R.

These changes in the values of the geometric features computed between two rotated

lines will obviously cause a displacement in the position in the histogram at which their

geometric relationship is recorded. The next section examines the likely effects of such

a change on the similarity metric D.

The effect on D 

The change in the distribution of geometric features representing an image line

caused by sensor error will result in a displacement of its feature vector. This suggests

that the projection of q: in the direction of m i , and therefore the value D computed
between mi and q, will fall as the amount of distortion in the image shape description
is increased. The rate at which D falls is determined by the displacement, in terms of

the number of bins, of the entry recording the geometric relationship between two line

segments as the lines are rotated by a fixed amount. This depends on two factors, the

lateral displacement of the lines, which is specific to each pair of line segments, and

the resolution and width of blur used in the histogram, which is the same for all line
pairs. These factors are now assessed.

Relative Line Position
The above analysis suggests that the position of lines within a shape will affect the

rate at which their geometric feature distributions are affected by sensor error. Lines

that are at the extreme of a shape and parallel with its major axis should be affected

more than those that are perpendicular to the axis. This was investigated by plotting
the change in D against na for three lines within the shape AO, figure 3-38.
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Figure 3-38: The three lines 4, £2 and £3.

The two lines, 4 and £3 provide examples of these extreme case, while £ 2 provides an

intermediate case. From the graph shown in figure 3-39 it can be see that D does

indeed fall with n a , and the rate at which D falls is related to line position in the

expected manner.

100

90

Figure 3-39: A graph relating D to na for the three lines 4, £2 and £3.
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Number of Bins
The rate at which D falls for a particular line segment depends on the number of bins,

(ne , nd), used in the histogram. In particular, D will fall at a quicker rate the higher the

resolution of the histogram. This is demonstrated by the graph shown in figure 3-40.

Figure 3-40: A graph relating D to na for different histogram resolutions.

( deg )

Figure 3-41: A graph relating D to nc, for different widths of blur.

Width of Blur

Similarly, the width of blur, (cre, gd ), used in the histogram can be used to vary the

effect of sensor error. If no blurring is used then the smooth change in the values of the

geometric features resulting from line variation is not translated to the representation,
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and the fall in D is quick and irregular. As the width of blur is increased so the rate

of fall in D is slowed, figure 3-41.

Ideally it would be possible to automatically determine the optimal setting of (no, nd)

and (cre , ad) for a particular value of n a . This is an area for further study.

The effect on nearest-neighbour classification 
Providing a general argument for the effects of sensor error on classification is more

difficult that in the cases of fragmentation noise and scene clutter. However, it is clear

that matching will be preserved up to the point at which the value of D computed

between m i and q: falls below that for another model line. In terms of the geometric

interpretation provided above, this occurs when the feature vector representing q: moves

out of the Voronoi cone associated with mi.
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Figure 3-42: A graph showing the fall in D between 4 and all model lines.

Clearly, the amount of sensor error that can be tolerated depends on the rate at which

D falls for a particular line, as determined by the factors described above. This can be

seen by examining the graph in figure 3-42 which shows the fall in the relative value of

D computed between the image line 4 and the set of model lines, M, as the amount
of sensor error in the image shape description is increased. It can be seen that correct

matching is preserved up to n a = 30°. This is to be contrasted with the corresponding
graph for the line £3 , figure 3-43, which shows that matching breaks down at n a = 15°.
This study demonstrates that the position of a line within a shape critically affects

the amount of sensor error that can be tolerated before matching breaks down. Of

course, for a fixed line, the amount of noise that can be tolerated is also affected by

the resolution and width of blur used in the histogram.
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Figure 3-43: A graph showing the fall in D between £3 and all model lines.

The above studies demonstrate the effect of sensor error on the matching of individual

lines. In order to examine the effect across the whole shape it is necessary to examine

the correspondence array at increasing levels of noise. The correspondence array for

the shape shown in figure 3-35, for which n,„ = 10 0 , is shown in table 3-4.

1.00 0.39 0.32 0.30 0.50 0.35 0.81 0.56 0.24 0.46 0.24 0.33 0.65 0.45 0.26 0.62 0.19

0.40 0.47 0.44 0.57 0.55 0.53 0.77 0.42 0.57 0.43 0.67 0.53 0.57 0.35 0.67 0.451.00
0.29 0.42 0.35 0.28 0.59 0.66 0.36 0.34 0.44 0.40 0.35 0.45 0.23 0.45 0.661.00 1.00
0.35 0.58 0.86 0.80 0.42 0.34 0.59 0.84 0.28 0.37 0.37 0.53 0.44 0.38 0.26 0.40 0.52

0.55 0.56 0.38 0.35 1.00 0.80 0.72 0.45 0.54 0.34 0.34 0.40 0.53 0.48 0.34 0.47 0.31

0.38 0.62 0.30 0.28 0.94 0.50 0.33 0.64 0.46 0.40 0.49 0.43 0.43 0.34 0.51 0.361.00
0.77 0.48 0.58 0.57 0.61 0.41 0.54 0.44 0.52 0.43 0.45 0.54 0.57 0.36 0.63 0.481.00

0.45 0.68 0.39 0.36 0.27 0.26 0.43 0.14 0.52 0.26 0.48 0.61 0.46 0.19 0.59 0.301.00
0.29 0.53 0.33 0.35 0.52 0.65 0.41 0.19 0.51 0.63 0.43 0.27 0.66 0.64 0.58 0.551.00
0.42 0.59 0.36 0.37 0.37 0.47 0.52 0.56 0.48 0.61 0.69 0.49 0.63 0.50 0.89 0.561.00
0.26 0.33 0.35 0.35 0.33 0.27 0.40 0.31 0.52 0.52 0.43 0.39 0.67 0.77 0.66 0.581.00
0.33 0.73 0.37 0.35 0.42 0.50 0.48 0.40 0.47 0.61 0.55 0.41 0.48 0.41 0.62 0.631.00
0.57 0.54 0.33 0.31 0.41 0.32 0.60 0.64 0.26 0.50 0.40 0.47 0.57 0.34 0.62 0.271.00
0.46 0.47 0.46 0.48 0.40 0.37 0.56 0.40 0.60 0.39 0.47 0.39 0.46 0.44 0.52 0.571.00
0.26 0.41 0.27 0.26 0.35 0.37 0.36 0.27 0.62 0.59 0.91 0.46 0.38 0.61 0.68 0.511.00
0.51 0.49 0.43 0.47 0.37 0.36 0.55 0.49 0.51 0.69 0.60 0.40 0.47 0.98 0.50 0.621.00
0.16 0.49 0.54 0.58 0.30 0.35 0.38 0.39 0.57 0.51 0.79 0.59 0.28 0.55 0.47 0.65 1.00

Table 3-4: The correspondence image for AO at na = 100.
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The correspondence image and colour-coded matches for this shape are shown in fig-

ure 3-44 and figure 3-45 respectively. It can be seen that while the degree of separation

in the value of D between lines is decreased, correct matching is preserved for all but

one line. To achieve this result it was necessary to use a coarser histogram than in the

previous sections, with parameters no = 30, rid = 20, at) = o-d = 1.5.

Figure 3-44: Correspondence image for AO at na =- 100.

Figure 3-45: Colour coded matches for AO at na = 10 0 .
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This was repeated for n a = 200 . The colour-coded matches for the resulting shape are
shown in figure 3-46.

Figure 3-46: Colour coded matches for AO at na = 20°.

The following sections demonstrate the performance of the matching scheme in sit-

uations where the variation in line orientation modelled in this section are likely to

Occur.

Variable straight line approximation
Variation in the accuracy with which linear approximation process is applied between

model acquisition and recognition can produce effects very similar to those modelled

above. Providing a general account of the changes is very difficult, since it depends

on the characteristics of the approximation algorithm, the degree of curvature of the

shapes and accuracy range in which the changes occur. However, a possible situation

for a curve of constant radius where the approximation accuracy is increased is shown

in figure 3-47. It can be seen that both the position and orientation of the two image

lines differ from that of the original model line.

/ r
Figure 3-47: The effect of increasing linear approximation accuracy.
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The performance of the matching scheme under such conditions was tested in the

following way. The curved shape shown in figure 3-48 was approximated at a relatively

coarse level of accuracy to give a model line description composed of 21 lines. A more

accurate approximation was then performed to give a scene line description containing

35 lines. The correspondence image and colour-coded matches for these shapes are

shown in figure 3-49 and figure 3-50 respectively. It can be seen that despite the change

in orientation of the lines they are, in general, correctly matched. The histograms used

in this experiment had parameters no = 40, rid = 30, 0-0 = 0d = 1.0.

Figure 3-48: A curved shape.

Figure 3-49: The correspondence image.
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Figure 3-50: Colour-coded matches.

The proposed matching scheme should therefore be fairly robust to small changes in

the straight line approximation of shape. If robustness to larger changes is required

then an obvious solution would be to store multiple representations, each based on a

line approximation obtained at a different level of accuracy, (cf. [96]), although this

obviously increases both the memory and computation requirements of the system.

Figure 3-51: The effect of fragmentation on a curve of constant radius.

Fragmentation of curved shapes 

Section 3.3.1 established that the loss of shape information will, in general, have little

or no effect on classification. This was based on a model of fragmentation in which the

orientation of lines was preserved. However, if fragmented edgel strings are describing

the projection of a non-polyhedral object then this is unlikely to be the case. An

example of the kinds of problems that can occur is shown in figure 3-51. It can be seen

that the effect of fragmentation is very similar to that arising from variable straight

line approximation, although there is the added problem of data loss.
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The performance of the matching scheme under such conditions was tested by frag-

menting the edgel strings describing the shape in figure 3-48 by removing randomly

spaced continuous sections, such that the total loss of edgels amounted to 50% of those

in the original shape. The remaining strings were then approximated at the same level

of accuracy. The correspondence image and colour-coded matches for the resulting

shape are shown in figure 3-52 and figure 3-53 respectively. It can be seen that despite

both the fragmentation and the change in orientation of the lines they are, in general,

correctly matched. The histograms used in this experiment had parameters no = 40,

nd = 30, ao = o-d = 1.0.

Figure 3-52: The correspondence image.

Figure 3-53: Colour-coded matches.

The degree of shape variation caused by the fragmentation of curved contours can obvi-

ously be minimised by increasing the accuracy with which approximation is performed

at the model acquisition stage.
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3.4 Determining Object Pose

The preceding sections have demonstrated that a scheme based upon statistical clas-

sification of local geometric feature distributions is able to establish valid line corre-

spondences in a wide range of changed viewed conditions. The matches established in

this way represent a first order segmentation of the lines detected in the image. How-

ever, many applications require that in addition to this, the pose of each object in the

scene should be determined. If all matches provided by histogram classification were

guaranteed to be correct then this could be achieved straightforwardly by performing

a least squares fit of the transformation parameters computed from these matches.

However, the local nature of the proposed matching scheme means that there can be

no guarantee as to the validity of the set of matches produced. Mismatches may occur

through the classification of spurious lines or through confusions between valid object

lines caused by severe noise. In general, such mismatches are not even approximately

correct, and their inclusion in the computation of the transformation parameters will

result in large errors.

Two solutions to this problem are considered; the first involves applying local con-

straints in an attempt to remove all mismatches prior to computing the transformation

parameters using direct methods, while the second approach exploits the powerful

global constraint that the set of line matches must be consistent with a uniform trans-

formation of the object in the scene.

3.4.1 Local Methods

The primary objective of any local constraint is to remove from consideration as many

mismatches as possible, while not ruling out any valid matches. We now consider a

number of possible local constraints.

The Unary Geometric Constraint 
The notion of a geometric feature was introduced in Chapter 2. While the proposed

representational scheme is based on binary geometric features, computed -between pairs

of line segments, it is also possible to make use of unary geometric features as a direct

constraint on matching. In the case of line segments the only available unary geometric

feature is line length, [16,40].

This can be used as a constraint on matching by requiring that the length of an image

line is not greater, by some fraction e, than that of the model line to which it is

matched.

length constraint (1q, 1 m) =. TRUE if f 1'41 � linil + e. iimi
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The use of the inequality means that valid image lines that are shorter than the model

line, through fragmentation or occlusion, are not ruled out. The advantage of this

constraint is that it is very efficient to apply and can be used to rule out possible line
pairings prior to the computation of D, thereby speeding up recognition. However, its

use does place certain constraints on the relationship between model and image line

descriptions. Firstly, the model line description should be free of fragmentation noise.

Secondly the accuracy of linear approximation used to derive the image line description

should be equal to, or greater than, that used in obtaining the model line description.

These conditions should ensure that valid matches are not ruled out as a result of this
constraint.

Thresholding on the value of D 

While the nature of the matching scheme is such that all spurious lines must be matched

to a particular model line, it would seem reasonable to expect that the maximum value
of D computed for spurious lines would be lower than that for valid shape lines. Since

a spurious line does not, by definition, belong to any known object, it is unlikely that

the feature vector representing it will fall in the region of feature space occupied by the

set of model lines. Its projection in the direction of the feature vector representing any

model line is therefore unlikely to be high. This suggests that matches with spurious

lines can be ruled out by placing a threshold on the maximum value of D.

Unfortunately, the value of D depends on the length of the feature vector representing

each image line, which in turn depends on the total length of lines in the shape. There

is, therefore, no way of distinguishing between low values of D resulting from spurious
lines and those arising from valid lines in a fragmented shape. A possible solution to

this might be to normalise the value of D with the sum of the length of lines in the
shape. The normalised value of D for lines in fragmented shapes would then be high.
However, this solution fails in cases of scene clutter, since the values of D for valid lines
are forced downwards by the added lines. This approach is therefore discounted.

3.4.2 Generalised Hough Transform

The previous section has demonstrated that attempts to remove mismatches by rely-

ing on locally computed constraints do not provide a complete solution. This section

presents a method for determining object pose which exploits the powerful global con-
straint that all valid matches must correspond to a uniform transformation of the object

in the scene. The particular method used is the generalised Hough transform, [4], which

relies on clustering to implement the global constraint. Alternative methods which rely

on establishing multiple pairwise geometric consistency between matches could have

been used, eg. tree-search, [40] or maximal clique analysis [13].

The generalised Hough transform has been proposed as a method of recognising arbi-

trary shapes in cluttered scenes, [4]. In its original form this involves considering each
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image line as potential match for each model line. Each hypothesised match gener-

ates a set of transformation parameters which are used to cast a vote in a quantised

representation of transformation space. This scheme relies on the fact that valid as-

sociations will tend to vote for a consistent transform, while votes due to mismatches

will be evenly distributed throughout the space. By detecting peaks in the histogram

representing transformation space, likely object transformations can be obtained.

The GHT is often criticised on the grounds that making votes for all 1m possible

matches constitutes an excessive amount of computation. In the present scheme, where

each image feature has already been matched, the number of votes that have to be made

is reduced to I. This also has the effect of reducing the clutter in the transformation

space, since the majority of matches will be correct.

The use of the GHT to determine object pose, based on matches established through

the classification of geometric feature distributions, is now described.

Voting
Objects are restricted to transformations in 2D position and orientation. These can

be described using 3 parameters, 2 translation and 1 rotation, which means that a

3-dimensional Hough space must be used.

In order to make a vote in Hough space it is necessary to compute values for these 3

transformation parameters from a pair of matched model and image lines. While the

rotation parameter can be computed straightforwardly, determining the translation

parameters is more difficult. In order to uniquely determine these values from a pair of

matched line segments it is necessary to define a fixed point on each line; the centroid

is an obvious choice. However, as we have seen, such characteristics are not robust to

line fragmentation caused by image noise or occlusion. This suggests that each pair of

matched line segments can only be used to constrain the translation parameters to lie

along a line in transformation space. This can be seen from figure 3-54. The position

of the centre of the object, relative to the matched image line qi , may lie at any point

along a line parallel to qi and at a fixed distance from it, (for non-directed line segments

two such lines must be considered.) The length of this line is equal to the length of qi

plus some factor, e, to account for noise.

A direct solution to this problem would be to vote for each point along this line. How-

ever, this is both computationally expensive and increases the amount of clutter in

the Hough space. The chosen solution is to exploit the fact that pairs of non-parallel

matched lines can be used to uniquely determine the translation, by computing the

intersection of the possible lines in transformation space. This suggests that 7"(n2-1)

entries must be made in each hough space, where n denotes the number of matched

image lines for each object. However, two tests can be used to rule out a large propor-

tion of the possible pairings. The first involves checking that the two matches belong to

a consistent transformation of the object in the scene. This is determined by whether

or not the lines associated with each match intersect in transformation space. The



Chapter 3. 2D OBJECT RECOGNITION 	 110

Figure 3-54: Ambiguity in the translation parameters from a single matched line.

second test is a check for geometric consistency between the two matches. These two

tests combine to dramatically reduce the number of spurious votes in Hough space,
especially in cluttered scenes. Votes are weighted with the product of the line lengths

and blurred with a Gaussian to encode possible variations in the pose of matched image

lines.

Pose Validation 
Once votes for all consistent pairs of matches have been made then possible object

transformations are obtained by detecting peaks in the Hough space. It is possible to

attempt to validate hypotheses by projecting the model into the image and computing

the amount of local support it receives from image line segments. A threshold is then

placed on the fraction of model lines that must receive local support for an hypothesised

transformation to be regarded as valid. However, this method is not able to deal

robustly with situations in which a large proportion of the lines from an object are

missing due to occlusion. Consequently, the test used in this system is the relative

height of the peak. That is, the process of peak detection is repeated until the height

of the peak, relative to the highest peak, falls below a particular threshold value. This

method was found to perform robustly in scenes containing high degrees of occlusion.

While it is possible to use information gained from image lines that support a projected

model line to update the hypothesised transformation, eg. [3], this was not done in the

present system.

The ability of the proposed scheme to perform recognition is presented in Chapter 4.
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3.5 Global Shape Matching

One of advantages of the proposed scheme is that the matching of local and global

shape representations can be achieved using essentially the same mechanism. In the

case of global geometric feature distributions the value of D indicates the degree of

similarity between complete shapes. The ability of the GFD scheme to perform non-

correspondence recognition was investigated using the set of animal shapes shown in

figure 3-55. These were chosen as they provide a set of arbitrary curved shapes con-

taining a range of complexity, and so represent a reasonable test of the representation

and matching schemes.
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Figure 3-55: A series of animal shapes.
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An image of each animal was captured and used to construct object models. The

histogram used to record the global geometric feature distributions had parameters

n = 50, nd = 40, a-0 = 0d = 1.5. An image of each animal at a different position

and orientation within the scene was then captured and matched to the model shapes.

The correspondence array showing the value of D computed between model and image

shapes is shown in table 3-5, while the correspondence image is shown in figure 3-

56. It can be seen that, while the degree of separation in the value of D computed

between global geometric feature distributions is smaller than in the case of local

representations, the fact that peak values still lie along the diagonal indicates that

each shape is correctly matched.

11.00001 0.9725 0.9496 0.9409 0.9688 0.9820 0.9278 0.9449 0.9674 0.9523 0.9118

0.9718 11.00001 0.9507 0.9595 0.9627 0.9649 0.9479 0.9480 0.9636 0.9611 0.9408

0.9496 0.9496 11.00001 0.9229 0.9247 0.9594 0.9273 0.9230 0.9478 0.9395 0.9111

0.9349 0.9529 0.9172 11.000010.9315 0.9310 0.9554 0.9564 0.9468 0.9609 0.9652

0.9686 0.9642 0.9236 0.9364 11.00001 0.9530 0.9266 0.9362 0.9487 0.9421 0.9164

0.9847 0.9718 0.9644 0.9439 0.9603 11.00001 0.9398 0.9491 0.9753 0.9591 0.9233

0.9303 0.9511 0.9286 0.9576 0.9291 0.9372 11.00001 0.9333 0.9447 0.9433 0.9599

0.9411 0.9458 0.9171 0.9579 0.9344 0.9410 0.9290 11.00001 0.9508 0.9651 0.9502

0.9693 0.9680 0.9521 0.9536 0.9528 0.9727 0.9451 0.9564 11.00001 0.9623 0.9343

0.9534 0.9639 0.9405 0.9669 0.9457 0.9549 0.9456 0.9716 0.9616 11.00001 0.9457

0.9120 0.9338 0.9052 0.9625 0.9162 0.9148 0.9534 0.9475 0.9266 0.9383 11.00001

Table 3-5: The correspondence array for the animal shapes.

Figure 3-56: The correspondence image for the animal shapes.

In the case of the animal shapes it is difficult to interpret whether the value of D

computed between the representation of two shapes correctly captures their similarity,



3 8

5

6

7

vk

4

Chapter 3. 2D OBJECT RECOGNITION 	 113

since the relationships between shapes are unknown. If a set of shapes were available in

which the similarity relationships between shapes were known, then the ability of the

combined representational and matching schemes to capture this relationship could be

tested. Such a set was created by applying a "morphing" process to transform animal

1, the cheetah, into animal 8, the donkey. This involved describing each shape using an

equal number of control points. Intermediate shapes were then generated by moving

each point along a line linking it with the corresponding control point on the other

shape. This process was applied in 10 evenly spaced steps to give the 10 shapes shown

in figure 3-57.

Figure 3-57: A series of "morphed" shapes.
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The above procedure was repeated for these "morphed" shapes to give the correspon-

dence image shown in figure 3-58. It can be seen that the smoothly changing nature

of the shapes is successfully captured, both by the representational scheme and by the

similarity metric computed between representations.

Figure 3-58: The correspondence image for the "morphed" shapes.

A full analysis of the performance of global geometric feature distributions under condi-

tions of variable shape description is not attempted. However, it is possible to consider

the extent to which the properties established in Section 3.3 for local representation

generalise to the global form of representation. The analysis of the effect of shape

fragmentation can be extended straightforwardly to the case of global shape represen-

tations; the effect is again to scale the projection of the feature vector representing an

image shape in the direction of the corresponding model. Non-correspondence recogni-

tion should therefore be robust to the loss of data caused by fragmentation noise. This

constitutes an advance over previously proposed global shape representations, such as

Fourier coefficients or moment invariants. However, as with these schemes, global ge-

ometric feature distributions are adversely affected by the presence of spurious shape

primitives arising from scene clutter. In such conditions matching can be expected to

break down quickly.
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3.6 Discussion and Summary

This chapter has presented a recognition system capable of identifying and locating

both 2D and 3D objects from a fixed viewpoint. The system is based on the classifica-

tion of shape representations in the form of geometric feature distributions. Particular

attention was paid to the matching of local shape primitives, a form of recognition

suitable in cluttered scenes. This involved a discussion on the appropriate form of

similarity metric to be used within a matching scheme based on nearest-neighbour

classification. The ability of this scheme to correctly match lines within a shape was

demonstrated.

There are a number of advantages to the nature of the processing involved in the pro-

posed scheme, as compared with previous approaches to recognition. Firstly, matches

can be established using simple array multiplication. Secondly, elements of the scene

can be matched to all object models in parallel. This is in contrast to many other

recognition schemes in which each model has to be matched to the scene individually.
Together with the strength of the representational scheme, this property means that

the proposed system has the potential to provide recognition based on large numbers

of objects.

The performance of the combined representation and matching schemes was analysed

in conditions where the line description extracted from an image is degraded by various

forms of shape variation. In particular, the effects of fragmentation noise, scene clutter

and sensor error were investigated. This involved proposing a generative model of

each type of shape variation and using these models to analyse, both theoretically and

empirically, their effect on both the representational scheme and on the outcome of

classification.

It was found that pure shape fragmentation has little effect on the matching of geo-

metric feature distributions. It was also shown that, under the proposed model, the

classification of local geometric feature distributions is robust to very high levels of

added noise. The factors determining the robustness of matching in conditions where

the line description is affected by sensor error were analysed. It was found that the

relative position of a line within a shape is crucial in determining the levels of sensor

error that can be tolerated before matching based on local geometric feature distribu-

tions breaks down. The robustness of matching within a curved shape to changes in

line description caused by variable linear approximation and fragmentation was demon-

strated. This analysis suggests that the proposed recognition system should be able

to successfully operate in conditions where the image shape description is considerably

degraded by fragmentation noise, occlusion and scene clutter.

The use of the generalised Hough transform to determine object pose, based on the
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line matches provided by the classification of local geometric feature distributions, was

presented.

In conditions where objects are encountered in isolation the use of a recognition sys-

tem based on the matching of global shape representations is entirely appropriate.

The ability of global geometric feature distributions to support the matching of whole

shapes was illustrated using a set of 12 animal shapes. The ability of the combined

representation and matching schemes to capture the similarity relationship between a

set of 10 smoothly deforming shapes was also demonstrated.



Chapter 4

SYSTEM DEMONSTRATION

4.1 Introduction

This chapter presents a demonstration of the ability of the proposed recognition sys-

tem to identify and locate both 2D and 3D objects from their 2D projected shape.

The objects are constrained to lie flat on a table and are viewed from directly above,

ie. the optical axis of the camera is aligned with the normal to the table. This view-

point is maintained over both model acquisition and recognition, such that variations

in projected shape arising from changes in view direction need not be considered. The

object-camera distance is also fixed such that objects appear at a constant scale. This

is a restriction which is common to many approaches to 2D object recognition, eg. [52,

3], and leaves the objects free to occur at any 2D position and orientation within the

scene. It will be appreciated that these viewing conditions coincide with the particular

invariance properties of the representational scheme described in Chapter 2. The ap-

plication of the GFD scheme to the recognition of objects viewed under more general

conditions is addressed in Chapter 5.

The performance of the system is demonstrated using three sets of objects; cut-out

dinosaur shapes, industrial parts and a 3D widget. Each of these is intended to highlight

a different facet of the recognition system. Specifically, the dinosaur shapes were chosen

in order to highlight the ability of the system to recognise arbitrary curved shapes

containing a range of complexities. The recognition of industrial parts is included in

order to demonstrate that the system is able to deal with more conventional objects

containing features such as straight lines and circles. These examples also show that

the system is able to deal with large numbers of objects in a scene. Finally, the

recognition of a 3D widget from its 2D projection is shown in order to demonstrate

that the system is able to deal with problems that occur in "real" image data, such as

imperfect edge detection and shadows. The results presented in this chapter provide a

practical demonstration of the ability of the system to perform recognition in conditions
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of severe fragmentation noise and clutter, and follow directly from the properties of the

combined representation and matching schemes established in the previous chapter.

4.2 Dinosaur Recognition

The 5 dinosaur shapes used in this experiment are shown in figure 4-1. These particular

shapes were chosen as they demonstrate the ability of the system to deal with arbitrary

curved shapes. They also provide wide a range of shape complexity, eg. the "spikes" on

the back of D1 and the smooth "wings" of D3. The fact that the objects are planar

and black, and are viewed against a light background, means that the description

of shape extracted from an image is relatively stable to fragmentation noise. Thus,

the main purpose of the examples presented in this section is to demonstrate that

the recognition system is able to deal with high degrees of scene clutter and occlusion,

although performance under shape fragmentation is also investigated using a simulation

of its effect.

DOir D4 41110*

D3

Dl Di 1 24 iiihint.

Figure 4-1: The five dinosaur shapes used in recognition.
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4.2.1 Procedure

A 512 x 512 image of each object was captured and processed using a Canny operator to

extract a set of edgel strings describing the shape of the object. A linear approximation

process was then applied to the edgel strings to give a line-based shape description.

This required, on average, about 60 lines per object. These were then used to con-

struct models of each object in the form of local geometric feature distributions, which

involved storing a histogram for each line within each shape. The histograms used in

these experiments had parameters no = 40, nd = 30, cre = o-d = 1.0, while the radius

of the circular local region was was set to 50 pixels. The relative size of this region as

compared with object D4 is shown in figure 4-2.

Figure 4-2: The circular region for a line in D4.

4.2.2 Demonstrating Performance

The performance of the recognition system is demonstrated in two ways.

Graphical Illustration.
A graphical illustration is provided of the ability of the system to correctly match line

segments and to locate, on the basis of these matches, the objects present in the scene.

This is involves showing results at three levels of processing:

i) an image of the scene containing the objects.

ii) the lines describing the shape in the image coloured according to the object to which

they are matched. The colour coding scheme is as follows, DO - green , DI. - yellow,

D2 - blue, D3 - red, D4 - orange. This is useful in demonstrating that the matching

scheme is able to correctly segment the scene lines belonging to each object.

iii) the located objects projected into the image, using the same colour coding scheme.

The pose of each object was determined using the generalised Hough transform, as

described in Section 3.4.
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Quantitative Assessment.
A set of quantitative measures of the performance of the system are provided. Providing

statistics on the accuracy of matching or on the precision of localisation is not possible,

since the information needed to compute them is not available from real image data.

This problem was overcome to some extent by analysing the number and distribution

of entries in the Hough space associated with each object.

According to the scheme described in Chapter 3, the number of votes in Hough space

indicate the number of pairs of matched scene lines that are pairwise geometric con-

sistent and which correspond a uniform transformation of the object. This is quite a

stringent test, and so high numbers of votes indicate that a large proportion of the

line matches are correct. Also of interest is the relative values of correct and incor-

rect peaks in the Hough space, as this determines the ease with which objects can be

robustly located. Thus, the absolute and normalised peak values in the Hough space

associated with each objects are shown. This serves to demonstrate whether the peak

values for correct localisations are significantly higher than those resulting from incor-

rect matches. Indeed, the normalised peak value is used as a terminating condition,

the process of peak detection being stopped once its value falls below a particular level.

It was found that a value of 0.1 was, in the vast majority of cases, able to distinguish

between correct and incorrect peaks. The proportion of projected model lines that

receive support for each hypothesis is also shown. This provides a good measure of

the accuracy of the localisation, although care must be taken in interpreting the values

arising from scenes containing occluded objects.

4.2.3 Examples of Recognition

The performance of the recognition system was demonstrated for different combinations

of objects viewed under various conditions. Each example was generated by placing

objects at different positions and orientations within the scene and is intended to show

a particular characteristic of the recognition system. Five examples are shown:

Example 1.1 - Multiple objects.

Example 1.2 - Multiple objects plus occlusion.

Example 1.3 - Multiple objects plus severe occlusion.

Example 1.4 - Multiple instances of a single object plus occlusion.

Example 1.5 - Multiple objects with unknown objects occluding.

These examples are now presented.
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Example 1.1 - Multiple objects

This example demonstrates the ability of the system to perform basic recognition on

a scene containing a single instance of each object. The image of the scene is shown

in figure 4-3. Table 4-1 shows the results of localisation based on the generalised

Hough transform. It can be seen that a significant number of votes are made in the

Hough space associated with each object, indicating that a large proportion of the

matches produced by the system are correct. This is confirmed by an examination of

the colour-coded segmentation shown in figure 4-4.

Object Results

Number

of Votes

Peak

Number

Peak

Value

Normalised

Peak Value

Amount of

Support(%)

DO 710 1 2426 1.0 76

2 1 0.0

Dl 755 1 1256 1.0 60

2 1 0.0 -

D2 478 1 1659 1.0 80

2 0 0.0

D3 661 1 2648 1.0 79

2 0 0.0 -

D4 558 1 1471 1.0 71
2 0 0.0

Table 4-1: The results of localisation for example 1.1

As described in Chapter 3, the process of locating objects in Hough space continues
until the normalised peak value falls below some threshold. It can be seen from the

values in Table 4-1 that the Hough space of each object contains only a single significant

peak, corresponding to the correct localisation of the object in the scene. This provides

further evidence of the quality of the matches produced by classifying local geometric

feature distributions, although the test applied prior to voting obviously rules out a

significant proportion of any incorrect matches. The accuracy of the localisations can

be gauged by examining the projection of the objects onto the image of the scene,

figure 4-5.
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Figure 4-3: Example 1.1 - An image of the scene.

Figure 4-4: Example 1.1 - A colour-coded segmentation of the scene lines.

Figure 4-5: Example 1.1 - The located object(s) projected into the image.
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Example 1.2 - Multiple objects plus occlusion

This example demonstrates the ability of the system to recognise objects in a jumbled

scene where objects occlude one another. The scene contains a single instance of each

object. An image of the scene is shown in figure 4-6. The difficulty of performing

recognition in this particular scene is considerable, since certain objects have as much

as half of their shape missing through occlusion. Table 4-2 presents the results of

localisation. It can be seen that there is a drop in the number of votes made in

each Hough space, as compared with the previous example. This is explained by the

reduction in the number of lines in the scene caused by occlusion. However, the quality

of the matches is not seriously affected by the occlusion, as can be seen from the colour-

coded segmentation shown in figure 4-7. This is due in part to the use of the circular

local region to restrict the range over which geometric relationships are measured, since

it ensures that the effect of occlusion on the representation of lines in the visible parts

of the objects is minimised.

Object Results

Number

of Votes

Peak

Number

Peak

Value

Normalised

Peak Value

Amount of

Support(%)

DO 128 1 522 1.0 28

2 1 0.0 -

D1 176 1 442 1.0 34

2 1 0.0 -

D2 200 1 621 1.0 58

2 0 0.0

D3 17 1 140 1.0 21

2 0 0.0 -

D4 99 1 222 1.0 36

2 0 0.0 -

Table 4-2: The results of localisation for example 1.2

It can also be seen from Table 4-2 that the Hough space of each object again contains

only a single significant peak, corresponding to the correct localisation of the object.

The accuracy of this localisation can be seen in figure 4-8, which shows the projection

of the located objects into the image. It can also be seen that the proportion of

projected model lines receiving local support is reduced from example 1.1. Again this

is due to the occlusion. This example illustrates the difficulty of basing terminating

conditions on the amount of support received by an hypothesised set of transformation

parameters.
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Figure 4-6: Example 1.2 - An image of the scene.

Figure 4-7: Example 1.2 - A colour-coded segmentation of the scene lines.

- i
Figure 4-8: Example 1.2 - The located object(s) projected into the image.
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Example 1.3 - Multiple objects plus severe occlusion

This example presents a more severely jumbled scene containing two instances of each

object. The image of the scene is shown in figure 4-9. That correct line matching

is preserved in this more severe case of occlusion can be seen from the colour-coded

segmentation of the scene lines shown in figure 4-10.

Object Results

Number

of Votes

Peak

Number

Peak

Value

Normalised

Peak Value

Amount of

Support(%)

DO 301 1 562 1.0 42

2 327 0.58 33

3 1 0.0 -

D1 190 1 313 1.0 34

2 121 0.39 26

3 0 0.0 -

D2 241 1 815 1.0 52

2 84 0.10 34

3 0 0.0 -

D3 570 1 1430 1.0 63

2 556 0.39 55

3 0 0.0 -

D4 305 1 654 1.0 44

2 250 0.38 47

3 0 0.0 -

Table 4-3: The results of localisation for example 1.3

Table 4-3 presents the results of localisation. It can be seen that the Hough space

associated with each object contains two significant peaks, corresponding to the two

instances of each object in the scene. The particularly low value of the second peak for

object D2 is explained by the fact that only a small region of the rear of the object is

visible, (the object appears in the lower right hand portion of the image). The accuracy

of the localisations can be seen from the projection of the models into the image, as
shown in figure 4-11.
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Figure 4-9: Example 1.3 - An image of the scene.

Figure 4-10: Example 1.3 - A colour-coded segmentation of the scene lines.

Figure 4-11: Example 1.3 - The located object(s) projected into the image.
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Example 1.4 - Multiple instances of a single object plus occlusion

This example demonstrates the ability of the system to recognise multiple instances

of a single object in a scene. An image of the scene, which contains 10 instances of
object D3, is shown in figure 4-12. The fact that the objects are placed at random

positions and orientations in the scene means that the problem of occlusion must also

be overcome. The recognition of multiple instances of a single object is handled natu-

rally in the proposed classification scheme, since multiple scene lines may be matched,

in parallel, with the same model line. This can be seen from the colour-coded segmen-

tation shown in figure 4-13. Certain other recognition schemes, eg. tree-search, have

to address this problem by matching the model to the scene for each instance of the
object.

Object Results

Number

of Votes

Peak

Number

Peak

Value

Normalised

Peak Value

Amount of

Support(%)
DO 0 1 0 - -

D1 1 1 1 - -

D2 0 1 0 -
D3 1863 1 1310 1.0 55

2 1209 0.92 62

3 991 0.76 56
4 880 0.67 58
5 864 0.66 51

6 568 0.43 44

7 483 0.37 37
8 449 0.34 44
9 258 0.20 48

10 183 0.14 43

11 1 0.0 -

D4 0 1 0 -

Table 4-4: The results of localisation for example 1.4

Another reason for testing the system on a scene containing multiple instances of a

single object was to test the ability of the system to recognise the fact that certain

known objects were not present. That this is the case can be seen from the results of

localisation, shown in Table 4-4. It can be seen that there are no votes for objects
DO,D2 and D4, and only a single vote for D1, while there are a large number of votes

for D3. While the test applied before making each vote does play a part in ensuring

that any invalid matches are not reflected in Hough space, this result, together with the

colour-coded segmentation, indicates that the vast majority of the matches are correct.

It can also be seen from Table 4-4 that there are 10 significant peaks in the Hough

space of object D3, corresponding to the ten instances of the object in the scene. The

projection of the located objects into the image is shown in figure 4-14.
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Figure 4-12: Example 1.4 - An image of the scene.

Figure 4-13: Example 1.4 - A colour-coded segmentation of the scene lines.

Figure 4-14: Example 1.4 - The located object(s) projected into the image.
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Example 1.5 - Multiple objects with unknown objects occluding

In all four previous examples the lines extracted from the scene have been due to a

known object. The purpose of this example is to demonstrate that the proposed system

is able to deal with the presence of unknown, possibly occluding, objects in the scene,

where an object is unknown if the system possesses no model for it. An image of a

scene containing an instance of each dinosaur shape, partially occluded by a series of

human shapes, (these served as the unknown objects), is shown in figure 4-15. It was

established in Chapter 3 that the matching of local geometric feature distributions is

very robust to the presence of spurious lines in an image. This suggests that matching

in this scene should be preserved. That this is the case can be confirmed by examining

the colour-coded segmentation of the scene lines, shown in figure 4-16. It can be seen

that the visible contours of each object are, on the whole, correctly matched, despite

the loss of shape information arising from occlusion and the presence of spurious lines

due to the unknown objects.

Object Results

Number

of Votes

Peak

Number

Peak

Value

Normalised

Peak Value

Amount of

Support(%)

DO 321 1 1060 1.0 70

2 23 0.02 -

D1 404 1 732 1.0 63

2 6 0.01 -

D2 88 1 366 1.0 68

2 0 0.0 -
D3 325 1 1299 1.0 67

2 1 0.0 -

D4 176 1 481 1.0 65

2 0 0.0 -

Table 4-5: The results of localisation for example 1.5

Of course, the local nature of the matching scheme means that each spurious image

line is matched to a particular model line. One of the reasons for using the generalised

Hough transform to locate objects was to provide a robust method of dealing with

these spurious matches by applying, via pose clustering, a global constraint to the set

of matches. The results of localisation for this scene are shown in Table 4-5. The fact

that the Hough space associated with each object contains only a single significant

peak suggests that the test for pairwise geometric consistency applied prior to voting

is very effective in ruling out spurious matches. This calls into question whether the

clustering aspect of the Hough transform is actually needed, and whether some other,

less expensive method could be used. This is an area for further study. The projection

of the located objects into the image of the scene is shown in figure 4-17.
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Figure 4-15: Example 1.5 - An image of the scene.

Figure 4-16: Example 1.5 - A colour-coded segmentation of the scene lines.

Figure 4-17: Example 1.5 - The located object(s) projected into the image.
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4.2.4 Simulating the Effects of Fragmentation Noise

As stated above, the fact that the dinosaur shapes are planar and black, and are viewed

against a light background, means that edge detection is very robust. The ability of

the system to deal with shape fragmentation has not therefore been tested. This was

overcome to some extent by simulating the effects of fragmentation noise. This involved

fragmenting the edgel strings extracted for the scene by removing continuous sections

at random intervals, such that the 50% of the original edgels were remaining. A linear

approximation of the fragmented edgel strings was then performed. This model could

be criticised on the grounds that its effects are uniformly distributed across the visible

sections of an object. Also, the orientation of line segments was not explicitly changed.

However, it is likely that the combination of the shape fragmentation and the re-

application of the linear approximation algorithm will result in a small change in line

orientation.

Recognition based on fragmented shape descriptions is demonstrated in examples

1.6,1.7 and 1.8. These were obtained by applying the above process to the shape de-

scriptions extracted in examples 1.3, 1.4 and 1.5 respectively. In each example results

are shown at two levels of processing:

i) A colour-coded segmentation of the fragmented line description, using the same

colour scheme as above.

ii) The located objects projected onto the the fragmented line description.
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Example 1.6 - Fragmented version of example 1.3

The effect of applying the model of fragmentation noise to the scene lines extracted in

example 1.3, (which showed a jumbled scene containing two instances of each object),

is shown in figure 4-18. This also represents the colour-coded segmentation of the frag-

mented lines. From this it can be seen that correct matching is, on the whole, preserved,

despite the loss of shape information arising from fragmentation. This result follows

directly from the analysis presented in Chapter 3, which showed that the matching of

local geometric feature distributions is theoretically robust to shape fragmentation.

Object Results

Number

of Votes

Peak

Number

Peak

Value

Normalised

Peak Value

Amount of

Support(%)
DO 107 1 168 1.0 30

2 77 0.46 17
3 0 0.0

D1 24 1 45 1.0 19

2 15 0.32 16
3 1 0.03 -

D2 51 1 118 1.0 28

2 6 0.05 18
3 0 0.0 -

D3 137 1 304 1.0 36
2 79 0.26 37
3 0 0.0 -

D4 46 1 65 1.0 28
2 24 0.37 22
3 0 0.0 -

Table 4-6: The results of localisation for example 1.6

The results of localisation for the fragmented scene lines is shown in Table 4-6. It

can be seen that while the number of votes made in the Hough space associated with

each object is reduced, due to the reduction in the number of scene lines caused by

fragmentation, the presence of dual peaks corresponding to each instance of the object

is preserved. A slight problem occurs in the low significance of the second peak for
object D2. This is due to the fact that only a very small number of fragments of

the object remain. However, it can be seen from the projection of the object at the

position and orientation corresponding to this peak, shown along with the set of valid

localisations in figure 4-19, that it is correct, despite its low relative size. Finding a

reliable method of distinguishing between peaks of low significance that are due to a

small number of valid shape lines and those due to background noise is a fundamental

problem in any proposed recognition system, and is not due to any particular weakness
of the current system.
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Example 1.6

Figure 4-18: Example 1.6 - A colour-coded segmentation of the fragmented lines.

Figure 4-19: Example 1.6 - The located object(s) projected onto the fragmented
lines.
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Example 1.7 - Fragmented version of example 1.4

The fragmented scene description of example 1.4, (which showed 10 instances of object

D3), is shown in figure 4-20. This also shows the colour-coded segmentation of the

fragmented lines. Again it can be seen that the shape fragmentation has little or

no effect on the ability of the system to correctly match line segments. The results of

localisation based on these matches is shown in Table 4-7. It can be seen that there are

again 10 significant peaks in the Hough space associated with object D3, corresponding

to the ten instances of the object, while the Hough spaces associated with all other

objects receive no votes. This further demonstrates the ability of the system to deal

robustly with shape fragmentation.

Object Results

Number

of Votes

Peak

Number

Peak

Value

Normalised

Peak Value

Amount of

Support(%)

DO 0 1 0.0 - -

D1 0 1 0.0 - -

DO 0 1 0.0

D3 592 1 266 1.0 45

2 243 0.91 28
3 220 0.83 22

4 191 0.72 43

5 161 0.60 40

6 109 0.41 24

7 93 0.35 36

8 45 0.17 20
9 44 0.17 20

10 36 0.14 37

11 0 0.0 -

D4 0 1 0.0 - -

Table 4-7: The results of localisation for example 1.7
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Example 1.7

Figure 4-20: Example 1.7 - A colour-coded segmentation of the fragmented lines.

Figure 4-21: Example 1.7 - The located object(s) projected onto the fragmented
lines.
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Example 1.8 - Fragmented version of example 1.5

The effect of applying the model of fragmentation noise to the scene description of

example 1.5, (which showed an instance of each object with unknown objects occlud-

ing), is shown in figure 4-22. This also represents the colour-coded segmentation of the

fragmented lines. This example represents a significant challenge to any recognition

system, since it contains examples of occlusion, fragmentation noise and scene clutter,

ie. lines due to unknown objects. However, it can be seen that a large proportion of

the matches are maintained. The results of localisation are shown in figure 4-8. This

shows that while the number of votes made in the Hough space associated with each

object is often quite small, eg. 10 in the case of D4, each space contains only a single

significant peak, corresponding to the single instance of each object in the scene. The

projection of the localised objects onto the fragmented line description is shown in

figure 4-23.

Object Results

Number

of Votes

Peak

Number

Peak

Value

Normalised

Peak Value

Amount of

Support(%)

DO 33 1

2

158

1

1.0

0.01

44

D1 42 1

2

122

3

1.0

0.03

30

D2 17 1

2

62

0

1.0

0.00

36

D3 63 1

2

268

11

1.0
0.04

41

D4 10 1
2

46

0

1.0
0.00

37

-

Table 4-8: The results of localisation for example 1.8
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Figure 4-22: Example 1.8 - A colour-coded segmentation of the fragmented lines.

Figure 4-23: Example 1.8 - The located object(s) projected onto the fragmented

lines.
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4.3 Industrial Part Recognition

This section demonstrates the recognition of a set of 4 parts from the mechanism of

a typewriter, figure 4-24. These are based upon objects shown in Grimson [40]. The

purpose of showing recognition on these shapes is to demonstrate that the system

is able to deal with conventional objects, containing features such as long lines and

circular arcs. Furthermore, the reduced size of the objects means that many more

instances of each object can be included in a scene, further demonstrating the ability

of the system to operate in conditions of severe scene clutter and occlusion. However,

the fact that the objects are planar and black means that edge detection should again

be stable.

Figure 4-24: The four industrial parts used in recognition.
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Figure 4-25: The circular region for a line in P2.

The performance of the recognition system on these shapes was tested using the same

procedure as used in the previous section, using histograms with the same parameters.

In order to gain satisfactory performance it was found necessary to reduce the radius

of the local region to 30 pixels. The size of this region relative to object P2 is shown
in figure 4-25.

Recognition was demonstrated for two cases.

Example 2.1 - Multiple objects plus severe occlusion.

Example 2.2 - Multiple instances of a single object plus occlusion.

These examples are now presented.

Example 2.1 - Multiple objects plus severe clutter

This example demonstrates the ability of the system to recognise objects in a severely

cluttered scene. An image of the scene is shown in figure 4-26. The scene contains 5
instances of PO, 6 of P1, 4 of P2 and 4 of P3. It was envisaged that these particular
objects might cause certain problems due to the fact that they contain elongated sec-

tions described by long, straight lines that provide relatively little shape information.

However, it can be seen from the colour-coded segmentation of the scene lines, shown

in figure 4-27, that the lines belonging to each object are, on the whole, correctly

matched. The results of localisation for this scene are shown in Table 4-9.
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Object Results

Number

of Votes

Peak

Number

Peak

Value

Normalised

Peak Value

Amount of

Support(%)

PO 565 1 1457 1.0 55
2 1426 0.98 52

3 952 0.65 69
4 388 0.27 57
5 168 0.12 57
6 9 0.01 -

P1 665 1 1200 1.0 63
2 1106 0.92 66

3 962 0.80 68
4 299 0.25 58

5 256 0.21 55
6 229 0.19 52

7 7 0.01

P2 625 1 3417 1.0 60
2 1636 0.48 61

3 1368 0.40 53
4 487 0.14 51

5 190 0.06 -
P3 234 1 4610 1.0 65

2

3

1993

528

Q..43

0.11

U,

49
4 496 0.11 49

5 77 0.02 -

Table 4-9: The results of localisation for example 2.1

It can be seen that the Hough space associated with each object contains the appro-

priate number of significant peaks, given the number of instances of each object in the

scene, ie. P0(5), P1(6), P2(4), P3(4). Although a number of the lower ranked peaks

are only just above significance, eg. for object P3, this again is due to the small number

of actual scene lines describing the instance of the object, (cf. example 1.8). However,

the accuracy of the localisation can be appreciated by examining the projection of the

located objects into the image of the scene, shown in figure 4-28.
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Figure 4-26: Example 2.1 - An image of the scene.

Figure 4-27: Example 2.1 - A colour-coded segmentation of the scene lines.

Figure 4-28: Example 2.1 - The located object(s) projected into the image.
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Example 2.2 - Multiple instances of a single object plus occlusion

This example demonstrates the ability of the system to recognise multiple overlapping

instances of the same object. As mentioned above, the reduced size of the industrial

parts, as compared with dinosaurs, means that it is possible to include more objects

in a scene. An image of a scene containing 15 instances of object P3 is shown in

figure 4-29. It can be seen that there is a significant level of occlusion in this scene.

However, the colour-coded segmentation of lines in the scene, shown in figure 4-30,

illustrates that matches are, on the whole, correct.

Object Results

Number

of Votes

Peak

Number

Peak

Value

Normalised

Peak Value

Amount of

Support(%)

PO 0 1 0 - -
P1 0 1 0 - -
P2 6 1 23 1.0

P3 1233 1 6108 1.0 73

2 4476 0.73 43

3 3251 0.53 59

4 2962 0.48 51

5 2752 0.45 67
6 2533 0.41 43
7 2326 0.38 64
8 2305 0.38 54

9 1548 0.25 62
10 1491 0.24 62
11 1247 0.20 64
12 1160 0.19 62
13 1042 0.17 40

14 907 0.15 46

15 848 0.14 51

16 405 0.07 -

Table 4-10: The results of localisation for example 2.2

The results of localisation for this scene are shown in Table 4-10. It can be seen that

the Hough spaces associated with objects PO, P1 and P2, which are not in the scene,

receive very few votes, while that of object P3 receives a large number. Although the

Hough space of object P2 receives 6 votes, the small size of the primary peak means

that no hypothesis verification is attempted. It can also be seen that the Hough space

of object P3 contains 15 significant peaks, corresponding to the 15 instances of the

object in the scene. The accuracy of these localisations associated with each of these

peaks can be appreciated by examining the projection of the objects into the image of

the scene, shown in figure 4-31.



Ex. 2.2 

Lz7*/
_	 _

OCIALr\c,4
dz/‘

Chapter 4. SYSTEM DEMONSTRATION 	 143

Figure 4-29: Example 2.2 - An image of the scene.

Figure 4-30: Example 2.2 - A colour-coded segmentation of the scene lines.

Figure 4-31: Example 2.2 - The located object(s) projected into the image.
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4.4 Projection of a 3D Object

It could be argued that the previous examples do not provide a very severe test of the

recognition system, since the shape description extracted from the image of black, 2D

planar objects viewed against a white background is very stable. The shape description

extracted from the image of a 3D object on the other hand will typically be affected

by problems such as shadows and shape fragmentation due to changes in the amount

of incident light falling on adjacent 3D surfaces. The purpose of this section is to

demonstrate that the proposed recognition system is able to deal with such problems.

Figure 4-32: The 3D object used in the demonstration.

The 3D object shown in figure 4-32 was viewed from directly above in favourable

lighting conditions and the resulting image processed to give a line-based description

of its shape. This was used as a model of the object. The histograms used in this

demonstration had parameters no = 30, nd -= 20, ao = ad = 1.0. This is a little coarser

than in the previous examples and was found to be necessary in order to overcome the

variation in shape description. The radius of the circular local region was set to 40

pixels, as shown in figure 4-33.
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Figure 4-33: The circular region for a line in the object.

The performance of the recognition system was demonstrated for a number of example
scenes:

Example 3.1 - A single object.

Example 3.2 - A pair of objects.

Example 3.3 - A pair of objects in a cluttered scene.

In each case results are shown at three levels of processing:

0 an image of the scene containing the object(s).

ii) the lines describing the shape in the image.

iii) the located object(s) projected into the image.

These examples are now shown.
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Example 3.1 - A single object

This example provides a demonstration of the ability of the recognition system to
perform basic recognition on a scene containing a single instance of the object. An

image of the scene is shown in figure 4-35. The line description extracted from this
image, shown in figure 4-36, is affected by the presence of spurious lines resulting from
shadows.

Results
Number
of Votes

Peak
Number

Peak
Value

Normalised
Peak Value

Amount of
Support(%)

93 1
2

3
4

234

156
111

8

1.0

0.67
0.47
0.04

49
32
29

Table 4-11: The results of localisation for example 3.1

Table 4-11 shows the results of localisation for this scene. It can be seen that there
are three significant peaks in the Hough space associated with the object. Initially

this might seem to indicate a breakdown in the performance of the system, since the
scene only contains a single object. However, by analysing the localisation associated
with each peak it is possible to provide a satisfactory explanation for the presence of

these additional peaks. The projection of the object into the image at the position and
orientation indicated by these three peaks is shown in figure 4-34. It can be seen that
each corresponds to positions in which the cylindrical section of the object is correctly

located, but in two cases the orientation of the object is incorrect. This behaviour can

be explained by the fact that the system has mismatched lines describing the inner or
outer rings of the cylinder. Localisations based on these mismatches will be correct in

position but not in orientation. These localisations then receive a significant amount of

support, since the cylindrical sections are correctly matched. However, the localisation

corresponding to the strongest peak is correct, as shown in figure 4-37.

Figure 4-34: Object localisations associated with the three peaks.
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Figure 4-35: Example 3.1 - An image of the scene.

Figure 4-36: Example 3.1 - A colour-coded segmentation of the scene lines.

Figure 4-37: Example 3.1 - The located object(s) projected into the image.
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Example 3.2 - A pair of objects

This example demonstrates that the system is able to deal with multiple instances of
an object in a scene. An image of the scene is shown in figure 4-39.

Results

Number
of Votes

Peak

Number

Peak
Value

Normalised

Peak Value

Amount of

Support(%)

339 1 600 1.0 54

2 552 0.92 64

3 136 0.23 38

4 83 0.14 45
5 73 0.12 47

6 56 0.09 -

Table 4-12: The results of localisation for example 3.2

Table 4-12 shows the results of localisation for this scene. It can be seen that there are
five significant peaks in the Hough space associated with the object. This is due to the

same factor as in the previous example, namely the mismatching of lines describing the
circular sections, resulting in incorrect estimates of object orientation. The localisations
corresponding to the five significant peaks are shown in figure 4-38. It can be seen that

two of the localisations are correct. Indeed, these correspond to the two most significant

peaks, whose relative values are much higher than the incorrect peaks. These are shown

separately in figure 4-41.

Figure 4-38: Object localisations associated with the five peaks.

This problem should be particular to objects containing circular sections. It could be

overcome quite easily by noting that 3D objects cannot occupy the same position in
space. This fact could be used to rule out correctly positioned, but incorrectly oriented,
localisations arising from spuriously significant peaks in Hough space.
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Figure 4-39: Example 3.2 - An image of the scene.

Figure 4-40: Example 3.2 - A colour-coded segmentation of the scene lines.

Figure 4-41: Example 3.2 - The located object(s) projected into the image.
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Example 3.3 - A pair of objects in a cluttered scene

This example demonstrates that the system is able to deal with the presence of unknown

objects in the scene. An image of the scene, which contains two instances of the known

object, is shown in figure 4-43. It can be seen that there are also three unknown

objects present; a large block, (in the top right hand corner), a small polyhedral object,
(in the lower left hand corner), and an object similar to the object used in these

experiments but with a differently proportioned base, (in the top left hand corner).

The line description of this scene is shown in figure 4-44.

Results

Number

of Votes

Peak

Number

Peak

Value

Normalised

Peak Value

Amount of

Support(%)

367 1 546 1.0 59
2 396 0.73 42

3 371 0.68 47
4 291 0.53 49
5 114 0.21 41
6 106 0.20 45
7 47 0.09 -

Table 4-13: The results of localisation for example 3.3

Table 4-13 shows the results of localisation for this example. It can be seen that

there are six significant peaks in the Hough space associated with the object. The
localisations associated with these six peaks are shown projected into the image in
figure 4-42.

Figure 4-42: Object localisations associated with the six peaks.
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Figure 4-43: Example 3.3 - An image of the scene.

Figure 4-44: Example 3.3 - A colour-coded segmentation of the scene lines.

Figure 4-45: Example 3.3 - The located object(s) projected into the image.
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The characteristic confusion in the orientation of the objects is again present, although

the two most significant peaks still correspond to the correct localisations, as shown in

figure 4-45. However, in this example there is the additional problem of the unknown
object containing a circular component. Peaks 5 and 6 in table 4-13, which have lower

relative values that the first 4 peaks, correspond to localisations of the object in which

the circular sections of this object are matched. Whether this is seen as a good or a

bad thing depends on the requirements of the system. It could be considered useful
that the system has generalised its recognition to include objects that have similar

features. However, if the goal is to distinguish between such objects then the system,

as it stands, is obviously not suitable.

4.5 Discussion and Summary

This chapter has demonstrated the ability of the recognition system based on the

matching of local geometric feature distributions to identify and locate a range of 2D

and 3D objects in conditions of considerable fragmentation noise, occlusion and clutter.
The results presented in this chapter can be seen as a practical demonstration of the

properties of local geometric feature distributions that were established through the

theoretical analysis of Chapter 3.

The performance of the system was shown using three sets of objects. A set of five

"cut-out" dinosaurs was used to demonstrate that the system is able to recognise

arbitrary curved shapes in conditions of severe occlusion, and with unknown objects

present in the scene. The system was also shown to be capable of dealing with the

simulated effects of fragmentation noise. The recognition of a set of "industrial parts"

in severely jumbled scenes was included in order to illustrate that the system is able to
deal with more conventional objects containing features such as long lines and circular

arcs. Finally, the recognition of a 3D object from a fixed viewpoint was presented to
show that the system could deal with the problems arising from "real" image data, eg.

fragmentation, sensor error and the presence of spurious image features resulting from

shadows.

The results of recognition were demonstrated using both graphical illustrations of the

accuracy of matching and localisation and quantitative measures of the results of the

localisation process. It was found that the quality of the matching providing by the
system, together with the stringest test applied prior to making a vote in Hough space,
meant that the Hough space associated with each object often contained only as many

significant peaks as there were instances of the object in the scene. This brings into

question whether the relatively expensive clustering aspect of the Hough transform is

needed, and whether some other, simpler method could not be used. This was identified

as an area for further study.



Chapter 4. SYSTEM DEMONSTRATION	 153

The type of problem addressed in this chapter, ie. the recognition of objects from a

fixed viewpoint directly above the objects, suggests that the proposed system could

be successfully applied to the classic bin-picking problem, in which objects in jumbled
scenes must be identified and located in order to guide some aspect of the manufacturing

process. In a suitably calibrated system the information provided by the recognition

system could be used to guide a robotic arm in some form of pick-and-place task, eg.

the sorting of objects coming along a conveyor belt.



Chapter 5

3D OBJECT RECOGNITION

5.1 Introduction

This chapter presents the application of the representational scheme based on geometric

feature distributions, (GFD's) to the the problem of 3D object recognition. It is shown
that the GFD scheme is able to support two forms of 3D object recognition; the 3D

approach, which involves extending the scheme to handle the representation of 3D

shape, and the multiple view-based approach, which involves the use of 3D models

composed of a relatively small number of example 2D views of an object, Tepiesented
as geometric feature distributions. The chapter is organised into the following sections.

1. Problem Description
The difficulties involved in performing 3D object recognition are discussed and
the two approaches that are to be investigated are described.

2. The 3D Approach
The extension of the GFD scheme to the representation and matching of 3D shape

descriptions is presented. It is shown that the representation of 3D shape can be
achieved simply by proposing a set of geometric features defined between 3D line

segments. The matching of 3D scene descriptions, extracted using an existing

stereo algorithm, to 3D wire-frame models can then be performed by a simple

extension of the system previously proposed for 2D recognition. The ability of

this system to identify and locate 3D objects in a scene is demonstrated.

3. The Multiple View-Based Approach
This section presents the application of the GFD scheme within a 2D, multiple

view-based approach to recognition. This includes a general description of the

process by which the representation of the set of all 2D views of an object gener-

ates a hypersurface in feature space. Through a discussion of the likely properties
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of these hypersurfaces it is argued that there are significant advantages to pro-

viding probabilistic recognition information. The structure of a self-organising

neural network is presented which is able to construct 2D, appearance-based ob-
ject representations by clustering, on the basis of their similarity in feature space,

views of an object represented as geometric feature distributions. The system is

shown to be capable of performing accurate classification of a set of aeroplanes

while storing a relatively small number of views of each object.

5.2 Problem Specification

This chapter addresses the problem of recognising 3D objects from an arbitrary view-

point. As such it can be thought of as a relaxation of the set of viewing conditions

assumed in Chapter 3. The fact that the spatial relationship between an object and the

viewing camera is no longer fixed means that we must now address the problem caused
by the variation in the 2D, projected shape of an object as it is viewed from different

directions and distances. It will be noted that such variations are over and above those

addressed in Chapter 3, ie. fragmentation noise, occlusion and scene clutter. The task

in 3D object recognition is to associate each of the possible views of an object with a
unique object classification.

This chapter presents two alternative methods for performing 3D object recognition
using shape representations in the form of geometric feature distributions. The first,

termed the 3D Approach, involves matching 3D scene descriptions, obtained by estab-

lishing stereo correspondence between pairs of images, to 3D, wire-frame object models.
This requires that the representational scheme presented in Chapter 2 be extended to

deal with the the problem of representing 3D shape. The 3D object recognition prob-

lem then becomes a relatively straightforward extension of the 2D matching problem,
and can be addressed using essentially the same system as that presented in Chapter 3.

The practical limitations of the 3D approach, together with the desire to provide a more
physiologically plausible account of recognition, provides the motivation for studying
a multiple view-based approach to 3D object recognition. This involves basing recog-

nition on the 2D projected shape information present in a single image, while using

object models composed of only a relatively small number of example views of each

object. It will be appreciated that the variations in 2D shape arising in 3D object
recognition go beyond the particular invariance properties of the 2D geometric feature

distributions presented in Chapter 2. A mechanism must therefore be proposed for

generalising recognition from the small set of example 2D views to all possible views of

an object. The proposed solution involves using a self-organising artificial neural net-

work to cluster views on the basis of similarity and to use the generalisation properties
of network classification mechanism to provide recognition.
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Both of these approaches are now addressed in detail.

5.3 The 3D Approach

This section describes the application of the geometric histogramming scheme to the
problem of representing and matching 3D shape descriptions.

The major difficulty in performing 3D object recognition based on the projected shape
information present in a single 2D image is that such descriptions are view-dependent.
One way of overcoming this difficulty is to attempt to derive a description of the objects
in a scene which is view-independent, or object-centred. This involves exploiting some

form of depth cue present in an image, or images, in order to produce a description of
the scene as a collection of 3D surfaces or contours. Since such descriptions are invari-

ant to changes in viewpoint, modulo visibility constraints resulting from self-occlusion,

they can be matched directly to similarly described 3D object models. This approach

can therefore be seen as a relatively straightforward extension of the 2D 4-* 2D problem.
Various strategies have been proposed for performing the matching of 3D shape primi-
tives, including interpretation tree-search, [41,34,70], graph analysis, [14,77], relaxation

labelling, [9], the generalised Hough transform, [6], and hashing techniques, [97].

To date, very few 3D object recognition systems have employed statistical pattern clas-

sification techniques. This has been primarily due to the fact that previously proposed
shape representational schemes, being intrinsically global in nature, are not robust to
the loss of object features resulting from self-occlusion. Given the results presented

in Chapter 3 demonstrating the robustness of 2D GFD's to loss of shape information

it seems reasonable to expect that will extend successfully to the representation and
matching of 3D shape representations.

5.3.1 Obtaining 3D Shape Descriptions

The 3D approach requires that descriptions of the 3D shape of objects in the scene

be matched to similarly described object models. In the present study, 3D scene

descriptions are obtained using the PMF stereo algorithm, [76], as implemented in the
TINA vision system, [79,78]. This is based on establishing correspondences between

shape primitives detected in a pair of images of the scene. These correspondences can

be used, together with information regarding the parameters of the viewing cameras,

to produce a set of 3D shape primitives, in this case line segments, which describe the

shape of objects in the scene. An example of the line segments obtained from the pair
of images in figure 5-1 is shown in figure 5-2.

Objects to be recognised are described using 3D line segments. These combine to form

a "wire-frame" model of the object's contours . While a number of researchers have
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Figure 5-1: Left and right images of a scene.

Figure 5-2: The 3D scene lines produced by the PMF algorithm.

attempted to devise methods for constructing such models automatically from multiple
views of the object, the success of this approach has been limited. Consequently, the

models used in this study were obtained through hand coding. The "wire-frame"

models of the two- objects in figure 5-3 are shown in figure 5-4. It can be seen that the

model of the object shown in figure 5-4(b) is not complete, since the non-polyhedral
sections of its contour are not well described using 3D line segments.

5.3.2 Representing 3D Shape

One of the major advantages of the GFD representational scheme is the ease with

which it can be adapted to the representation of either 2D or 3D shape. The scheme

presented in Chapter 2 for representing 2D shape can be extended to deal with the



Chapter 5. 3D OBJECT RECOGNITION 	 158

Figure 5-3: The objects used to demonstrate the system, (a) BO and (b) Bl.

Figure 5-4: Wire-frame models of (a) BO and (b) Bl.

representation of 3D shape by simply defining a set of geometric features that can be

used to measure the relationship between pairs of 3D line segments. The distribution

of the values of these features can then recorded in exactly the same way to provide a

robust, discriminant representation of 3D shape.

A 3D Geometric Feature Set 

The geometric features presented in Chapter 2 for measuring the relationship between
pairs of 2D line segments can be generalised without too much difficulty to the case

of 3D line segments. However, the nature of 3D object projection is such that the

directionality of the 3D lines segments extracted from a scene may vary with lighting.
Changes in the proportion of incident light falling on adjacent object surfaces may

result in a change in the direction of the intensity gradient upon which the detection

of line segments is based. Consequently, 3D line segments must be treated as being



1 
0 — 7r if 0 > 7r

go =
0	 otherwise
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non-directional. This fact must be taken into account when defining 3D geometric
features.

Relative Angle

The relative angle feature can obviously be used to measure the geometric relationship
between pairs of 3D line segments. However, the non-directionality of the line segments
means that the range of the relative angle feature is reduced from [0 -4 27r] to [0 ir].
The value of go is therefore given by

where 0 is the measured angle between the two lines segments.

The Perpendicular Distance Feature

The perpendicular distance feature defined between two 3D line segments is given by

gd = IIPj adi — — ((pj + adi — pi ), di)cli J1 a E [0, ti]

where pi and pj are endpoints on lines and and d i , di are the unit direction vectors
of and ti respectively. The values used in recording the relationship between two

line segments are those that occur at the extrema of this expression, where aj = 0 , Ku.
Distances are now measured in physical, rather than pixel-based, units.

The distribution of the values of these geometric features measured between elements

of a 3D shape description can be recorded in exactly the same way as those measured

between 2D line segments. Consequently, both local and global levels of representation

are possible. A slight difference is that the local region defined around a line segment

now becomes a spherical volume in 3D space, rather than a circular region in the image

plane. Also, the non-directionality of 3D line segments, and the resulting weakening of
the geometric features, means that representations of 3D shapes are less discriminatory
than those of 2D shape.

5.3.3 Global 3D Shape Matching

If objects are encountered in isolation then the GFD scheme could also be used in 3D,

non-correspondence recognition, based on the matching of global representations of 3D
shape. However, such recognition provides no information on the pose of objects in the

scene. Given the difficulty in extracting a 3D scene descriptions it is likely that such

information will be a requirement. However, global shape matching can be thought of

as a method for indexing likely object models. The matching of local shape primitives
within the indexed models could then be used to determine pose.
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5.3.4 Demonstration of Local 3D Shape Matching

Correspondences between 3D model and scene line segments are established through the
matching of local geometric feature distributions using essentially the same mechanism

as that proposed for 2D object recognition. The ability of this 3D system to establish

correct matches between 3D scene and model lines is demonstrated by the colour-coded

matches shown in figure 5-5. It can be seen that the loss of shape information in the

scene description arising from self-occlusion does not affect matching. This is to be

expected given the robust properties of the GFD scheme established in Chapter 3.

Figure 5-5: Colour-coded matches between (a) wire-frame model and (b) scene de-
scription.
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5.3.5 Determining Object Pose

The line matches delivered by the classification scheme can be used to determine the 3D
position and orientation of objects in the scene. However, in practice certain difficulties

were encountered in performing localisation. The scene description shown in figure 5—

5 was obtained by placing the object in a favourable pose, ie. one in which a large
number of object contours are visible to both viewing cameras. However, in general the

description of shape obtained from the scene will not be as complete. Also, the fact that
the chosen objects are highly symmetric, together with the decrease in the strength

of the geometric features caused by the non-directionality of 3D line segments, means
that the the representation of a particular model line is unlikely to be unique. This

introduces the possibility that a particular scene line may match identically to several

model lines, only one of which is correct. This difficulty was overcome by making a
number of modifications to the matching and recognition schemes previously described
for the 2D case. In particular, the nearest-neighbour classification rule was relaxed

such that the top k responding model lines are carried forward as potential matches

for a particular scene line. It was found that k = 3 was sufficient.

Using the matches delivered by the GFD scheme to determine the position and ori-

entation of objects is obviously more difficult than in the 2D case. Pairs of matched,

non-parallel, lines can be used to determine the 6 parameters needed to describe the

pose of an object in the scene, Grimson [40]. However, the high degree of symmetry

within the chosen objects means that many pairs of lines are parallel, and so cannot
be used in computation. The second, and more important, problem is due to the non-
directionality of the line segments. If each each line is considered in both directions

then each pair of matched lines gives rise to four sets of transformation parameters.

The use of the generalised Hough transform to determine object pose was investigated

but found to be unsuitable, due to the number of spurious entries made in the Hough

space. If one considers that there are kI potential matches, and therefore

possible pairings, and each pairing gives rise to 4 sets of transformation parameters,

then given the high degree of symmetry in the objects it becomes clear why the GHT

faces problems. In practice it was found that the Hough spaces were quite cluttered,

giving rise to many, equally ranked, hypotheses. While these poses were often partially

correct, eg. they placed the object being upside down or on its side, the solution was

discounted.

In the present study object localisation was achieved using an alignment approach, [50].
While this does not overcome the problems highlighted above, it can be expected to

return acceptable solutions, where they are available, in reasonable time. Each set of

transformation parameters computed from a possible pairing was evaluated using a
model test, ie. the model was projected into the scene at the hypothesised position

and orientation and the amount of local support it received was determined. If an

hypothesis received sufficient support, ie. a certain percentage of the contours receive

kl(kI-1)2 
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support, then the search was terminated. In the case where the scene contained a single

occurrence of an object at a favourable pose it was found that search terminated very

quickly. For scenes containing less favourable poses more model tests were necessary
before an acceptable match could be found. In the latter case, where the number of

scene contours is typically small, it was found that finding an acceptable threshold that
distinguished between correct and incorrect localisations was quite difficult.

In the case where a scene contains multiple occurrences of an object this strategy

is obviously inadequate, since search terminates after the first object is found. An

obvious solution to this problem is to remove from consideration those scene lines

that are matched by a validated localisation. The search could then continue until the

number of lines in the scene falls below a certain level, (although this will obviously fail

in scenes containing unknown objects). In the present system, in order to demonstrate
that matching can be performed in cluttered scenes, the system was adapted to return

a fixed number of hypothesis, eg. 5, which were then ranked on the basis of the amount

of support they received. The localisations shown in the following examples were, in

each case, the highest ranked hypotheses. Automating the localisation of objects in
cluttered scenes is an area for further study.

5.3.6 System Demonstration

The ability of the system to perform 3D object recognition and localisation is now

demonstrated using the objects BO and B1 shown above. Left and right images of

the scene containing the object(s) were captured and used as input to the PMF stereo

algorithm. This provided a 3D, line-based description of the contours in the scene

which was then matched to the wire-frame model. The matches produced in this way

were used to determine object pose, using the method described above. The histograms
used in these examples had parameters no = 30, nd = 20, cre = ad = 1.0. The radius
of the local region was set to 60mm, so as to just include the whole object.

The performance of the system is demonstrated in a number of examples:

Example 1.
Object BO is placed in a relatively favourable pose, such that a significant number of

the lines in the wire-frame model are matched. In this case the object was located after

only 1 model test.

Example 2.
Object BO is placed in a less favourable pose, upside down, such that the 3D scene

description contains fewer object contours. In this case, 5 model tests had to be
performed before the object was correctly located.

Example 3.
This example presents a scene containing two instances of object BO that partially

occlude one another. The correct localisations correspond to the top two ranked hy-
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potheses returned by the system. It is interesting to note that the occlusion caused

by the presence of multiple objects is effectively no different from that caused by self-

occlusion, which, as the previous examples show, the system is robust to.

Example 4.
Here object B1 is shown on its side. The object was located after 6 model tests. The
fact that the wire-frame model of B1 is incomplete means that elements of the scene
description corresponding to the cylindrical section can be regarded as scene clutter.

The fact that the system is able to deal with this noise follows from the property
established in Chapter 3.

Example 5.
Two instances of object B1 are shown. As in example 3, the correct localisations
correspond to the top two ranked hypotheses.

In each example results are shown at three levels of processing:

i) the left image of the scene.
ii) the 3D lines extracted by the PMF algorithm.
iii) the located object(s) projected into the left image.



Ex. 1
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Figure 5-6: Example 1 - An image of the scene.

Figure 5-7: Example 1 - The 3D lines extracted from the scene.

Figure 5-8: Example 1 - The located object(s) projected into the image.



Ex. 2
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Figure 5-9: Example 2 - An image of the scene.

Figure 5-10: Example 2 - The 3D lines extracted from the scene.

Figure 5-11: Example 2 - The located object(s) projected into the image.



Ex. 3

Chapter 5. 3D OBJECT RECOGNITION	 166

Figure 5-12: Example 3 - An image of the scene.

Figure 5-13: Example 3 - The 3D lines extracted from the scene.

Figure 5-14: Example 3 - The located object(s) projected into the image.



Ex. 4
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Figure 5-15: Example 4 - An image of the scene.

Figure 5-16: Example 4 - The 3D lines extracted from the scene.

Figure 5-17: Example 4 - The located object(s) projected into the image.



Ex. 5
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Figure 5-18: Example 5 - An image of the scene.

Figure 5-19: Example 5 - The 3D lines extracted from the scene.

Figure 5-20: Example 5 - The located object(s) projected into the image.
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5.3.7 Discussion

This section has demonstrated that a scheme based on the classification of local geo-

metric feature distributions representing 3D line segments is able to both recognise and

locate 3D objects in a scene. However, the performance of system could be improved

in a number of ways. Firstly, the current system does not take visibility conditions into
account when constructing object representations. That is, when recording geometric

feature distributions, no account is taken of whether pairs of model lines could possi-

bly be visible from the same viewpoint. The incorporation of such constraints into the

representational scheme could be expected to have significant advantages in terms of
the ability of the system to deal with unfavourable poses. Secondly, although the sys-

tem was shown to be able to locate objects, the method of achieving this is not totally
satisfactory. The development of strategies for automatically and robustly determining

accurate transformation parameters from the matches delivered by the GFD scheme is

an area for further study.

The remainder of this chapter examines an alternative form of 3D object recognition
which does not rely on the matching of 3D shape. The proposed system is based upon

the use of a self-organising neural network to cluster 2D views of an object, repre-

sented as geometric feature distributions, in order to provide probabilistic recognition

information, and is based on work presented in Evans et al. [31].

5.4 A Multiple View-Based Approach

The practical limitations of the 3D approach, both in the difficulty of obtaining 3D

scene descriptions and in model acquisition, together with the desire to explore a
more physiologically plausible solution, provides the motivation for investigating a

multiple view-based approach to 3D object recognition. Such approaches do not rely

on the availability of 3D, object centred scene descriptions, but rather propose that

recognition be based on the 2D, projected shaped information present in an image
of the scene. Furthermore, models of the objects to be recognised do not explicitly

represent the 3D structure of the object but instead are appearance-based, in that

they are composed only of a relatively small number of example views of the objects.
Such models are obviously much easier to acquire than those in which 3D structure

is explicitly represented. Moreover, they place no restrictions on the types of object

that can be modelled. The view-based approach therefore holds great promise for

delivering a truly adaptive artificial recognition system in which object models are

learned through experience.
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5.4.1 Describing Shape Variation

The obvious difficulty in attempting to base 3D object recognition on 2D image data
and 2D appearance-based models is in generalising from the small set of example views

to all possible views of an object. If recognition is treated as a classification problem,

where 2D projected shape is represented by a feature vector, then each object is repre-
sented not as a point, but as a hypersurface in feature space. Various approaches have

been proposed for basing recognition on such hypersurfaces. These include extensions

of the nearest-neighbour classification approach, [25,83,85,108], learning vector quan-

tisation, [91,26,82], linear combinations, [104,7] and view interpolation, [75,27]. These
approaches differ both in the mechanism they propose for generalising recognition from

familiar to novel views, and in the processes by which models are acquired, and each

makes certain assumptions about the nature of the hypersurfaces, eg. smoothness,

linearity.

This section attempts to formalise the source and nature of the shape variation in 3D

object recognition by describing the process by which the set of all views of an object
generates a hypersurface in the space of possible shape representations. The form of

this hypersurface determines to a large extent the ease with which multiple view-based

recognition can be performed. Therefore, by considering possible characteristics of

these hypersurfaces, together with the factors affecting them, a greater understanding
of the difficulties involved in performing multiple view-based recognition will be gained.

Projection

The 2D shape found in an image is the result of the projection of a set of object features
onto the image plane of the camera. This process can be approximatea by the general

projective transformation p, taken here to be a perspective projection. For a given

object o the shape s produced by p depends on two factors, the viewing parameters A

and a noise term 77.

p : (o, A, 77)	 s	 (5.1)

The vector A describes the position and orientation of o relative to the viewing camera.

If we restrict the camera to be foveated on the object, then this relationship can be fully

described by 4 parameters; 3 orientation and 1 distance. The noise term 77 describes

variations in s caused by changes in lighting and/or occlusion by other objects; a

number of such models were presented in Chapter 3. It will be useful at this stage to
distinguish between the set of shapes SA , obtained by applying projection p to o for all

possible values of A, and Sn , the set of shapes produced by applying the noise model

77 to S.
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Shape Representation

The next stage is to produce an encoding of the 2D projected shape of an object in

the form of a feature vector. The construction of such an encoding can be described in

general terms by the representational function r, which takes the set of 2D primitives

s and returns a vector d, the components of which are related to some characteristic

of s.

r : .s —> d

It will be noted that this description of the representation process places no restriction

on the level of representation that is adopted. If representation is global then each

view of an object is represented by a single feature vector, while representation of local

shape elements produces k features per view, where there are lc primitives in s.

The GFD scheme is a specific example of a representational function r. Other forms
of shape encoding that have been employed in multiple view-based approaches include
Fourier coefficients [85,108], moment invariants [25,83], log-polar maps [91,82], chain-

codes, [107], coarse coding, [28], and ordered correspondence vectors, [104,75].

Hypersurface Generation

We now define a composite function f = r o p, which defines a mapping between
A4 , the space of possible viewing parameters, and D, the space of possible shape
representations. If we consider a fixed object o, viewed under conditions of zero noise,
ie. ri = 0, then f maps each point in A4 to a point in D, Eq. 5.2. The application
of Eq. 5.2 to all points in A 4 generates, via the intermediate set of shapes S A , a set of

points H in Dm that can be said to lie on a hypersurface, Eq. 5.3.

f: (o,A) —> d	 (5.2)

H = f (o, A4 )	 (5.3)

Hypersurface Properties

The nature of the hypersurfaces generated by a particular shape representation for

a set of objects determines to a large extent the ease with which recognition can be

performed. This section discusses likely hypersurface characteristics and the way in
which particular features of both the objects and the representational scheme can be

expected to affect them.

i) Smoothness
The ease with which generalisation from familiar to novel views can be performed is
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determined largely by the smoothness of H. This depends crucially on the behaviour of

the representational function r: if r is well-behaved, in the sense that a small change in

s produces a small displacement of d, then the hypersurface should be locally smooth.

ii) Dimensionality

Although H exists in the high-dimensional representation space Dn , it need not it-

self be n-dimensional. Provided that r is well-behaved, H can be considered as a

low-dimensional manifold embedded in the high-dimensional space of possible shape

representations [104]. The use of a function r which is invariant to changes in A along

some dimension, eg. rotation about the camera axis, will locally reduce the dimension-
ality of the hypersurface. Thus, in general, the local dimensionality of H is determined

by the number of degrees of freedom in the viewing parameters A, minus any invari-

ances that r may have. An extreme example of this observation is provided in Rothwell

et al. [87]. This shows that for planar objects there exists a function r which is in-

variant to changes in all 4 viewing parameters: the use of such a function produces a

"hypersurface" consisting of a zero dimensional point.

iii) Symmetry
The possibility of symmetries within an object implies that Eq. 5.1 may represent a

many-to-one mapping. For instance, in the projection of a cube all possible 2D shapes

can be obtained from a sub-volume in A' corresponding to views from a single octant

of the space surrounding the cube. Additionally, emergent symmetries may be created

by the behaviour of r. For example, if r is invariant to rotations about the camera axis

then certain views of a cube from within an octant are treated as being symmetric and

mapped to a common point in D. The effect of these real and emergent symmetries

is to collapse H and to cause it to become self-intersecting.

iv) Self-Occlusion
If objects are constrained to be transparent, [75], then all object features are visible
for all values of A. Provided r is well-behaved the hypersurfaces of such objects will
be continuous. The use of opaque objects on the other hand means that r must deal
with rapid changes in the set of visible object features caused by self-occlusion. If
r is sensitive to the presence of individual shape primitives in s then H may well be

disjoint and grouped into regions corresponding to the notion of an aspect, Koenderink
& van Doom [55]. Within these regions, where the set of visible object features is

quantitatively unchanging, the hypersurface should be smooth.

v) Noise
The description of hypersurface generation has thus far been limited to the set SA. The

effect of noise on this process is now addressed by considering the mapping, by r, of

Sii to Dn . Let s E SA be mapped to a point c in D. Let A C Sn be the set of shapes

produced by applying 77 to s. What is the mapping of A to Dn ? If r is well-behaved

under noise, in the sense that a small corruption of s produces a small displacement

of c, then A is mapped to a "cloud" of points C, centred on c. The variance of C is
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obviously related to the degree to which r is well-behaved under noise, ideally C =-- c.

The expansion of each point c E H into a cloud of points will therefore cause the

"thickening" of H.

The conclusion from this section is that, depending on the characteristics of the sets of

objects and the representational function r, each hypersurface will be a locally smooth,
low-dimensional manifold which may be self-intersecting, disjoint and thickened by

noise.

5.4.2 Probabilistic Recognition

This section examines the nature of recognition based on these hypersurfaces. The

application of Eq. 5.3 to the set of known objects 0 : {oi ...oni } generates a set of

hypersurfaces H: {11]....H„,} in D. We now define a function q, the inverse of f,

which maps each vector d E Hi to the identity oi of an object, Eq. 5.4. The set H

therefore defines the domain of q.

q: d E	 oi	 (5.4)

An important factor in the ability of q to perform recognition is the degree to which

individual hypersurfaces in H are seperated. If two hypersurfaces intersect at a point

k E Dn , ie. f(oi , A) F.- f(oi , A') k, then given an approximation to q, recognition

based on shapes whose representations fall in the region of k must necessarily be

ambiguous. This implies that q should be revised to provide probabilistic, rather than
absolute, classifications. If we consider recognition as a 1 from M problem then the

distribution of each Hi provides an indicator of the probability density function of oi

in D. We therefore require, for each object oi , the Bayesian a posteriori probability

P(oild),

P(oold) )

qp : d

P(onild)

The advantage of this probabilistic approach is that it provides principled behaviour in

the presence of object symmetries, ambiguities between objects and the thickening of

hypersurfaces caused by image noise. The next section presents the structure of an arti-

ficial neural network capable of approximating the function q p to provide probabilistic,

view-based recognition.

(5.5)
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5.4.3 Neural Network Architecture

This section describes the use of an artificial neural network to approximate the prob-

abilistic function qp . This provides the basis for a flexible learning system that is able

to generate the appropriate mapping through exposure to example views of the set of

objects. The particular network architecture used has been previously shown to be
capable of approximating Bayesian probabilities, [113]. This ensures that the system

will provide optimal classification given the uncertainty caused by projective similar-

ities between objects and by image noise. It has the further advantage that it places

no restrictions on the distribution or structure of the data. This is important since the
exact nature of the distribution of the hypersurfaces in feature space is not known.

The self-organising nature of the processing involved in the proposed network is com-

mon to many previously proposed systems, including Kohonen nets [56], Counter-

propagation [45], Adaptive Resonance Theory [43], Competitive Learning [89], and
CLAM, [102], and is related to the k-means clustering technique of standard pattern
classification, (see Lippmann [61] for a review). The advantage of this approach over

supervised learning, eg. achieved using a Multi-Layer-Perceptron, (MLP), [88], is in
the ease with which the network can be trained.

Figure 5-21: Network Architecture.

The network used to perform probabilistic classification has two layers, a shape repre-

sentation layer (V1 ) and an object recognition layer (Os), figure 5-21. The purpose of
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V/ is to distribute units throughout the space of possible shape representations Dn so

as to cover the domain of the function qp . The object layer 01 then encodes the value

of qp in the region of Dn covered by each unit in VI . The function of each layer is now

discussed in more detail.

Shape Representation Layer
The input to Vi is a set of unlabelled feature vectors I, each representing a particular

view of an object, taken randomly, but with equal probability, from the set of hy-

persurfaces H. Units in V/ are trained in an unsupervised manner using the standard

competitive learning rule, [89]. If the current input vector is b E I then the activation

ai of unit u i in V/ is given by

a i = ETI=1

where w i is a "weight" vector representing the position of unit u i in D. The unit with

maximum a i , ie. the nearest unit, is taken to be the winner and is updated according

to

Awij = a(bi —w3)

where a is a variable that determines the learning rate of the system. This is gradually

reduced throughout presentation of the training data such that the position of the

units in Dn is forced to stabilise. Weights are re-normalised after being updated to

ensure that their length remains constant. The conscience mechanism described in [45]
is employed to guarantee that all units are recruited during training. This ensures that

units in V/ distribute themselves throughout Dn so as to cover the statistical variation

in the hypersurfaces H, as sampled by the examples in I.

Once trained, units in Vi tessellate the feature space dn into a series of Voronoi cones,

(see Section 3.2.2), the size of each cone being inversely proportional to the number of

units used in

Object Recognition Layer
The purpose of units in 0 1 is to approximate the value of the probabilistic function qp

in the region of Dn defined by the Voronoi cone associated with each unit in VI . The

distribution of hypersurfaces in Dn may be such that input points falling within the

cone of a unit in VI may represent views of more than one object. The value of P(oj lui)

can be approximated by estimating the relative proportion of hypersurface Hm that

falls within the Voronoi cone associated with flj. This can be achieved by creating a

connection zij between shape unit u i and object unit xj . These weights are trained

by presenting a second, possibly different, set of example shapes to VI . In order for

the response of units in VI to be calibrated these shapes must now be labelled with

the identity of the viewed object. This is achieved by the supervisory vector t, where

ti = 1 for object oi being viewed and tj = 0 for all other objects. On each trial the

output weights of the winning unit in V/ are updated according to



Chapter 5. 3D OBJECT RECOGNITION	 176

Once training is complete the output vector of a shape unit u i can be thought of as

a "frequency of wins" histogram for each object. From this the estimated probability

P(oi lb) can be encoded in connection z ij simply by computing the ratio of the number

of times ui responded to a view of object oi , to the total number of times that u i has

won,

Zij
Zij = 	

Zij

These layers combine to produce a network that is capable of learning the probabilistic

function, qp , mapping projected 2D shape to object identity.

5.4.4 Recognition Experiment

This section investigates the ability of the proposed system to perform view-based

recognition. Ideally, this would be demonstrated using images captured from real
objects. However, the problem of capturing the 100's of images of each object from

different viewpoints in order to train the network was beyond the scope of the present

study. Consequently, views are generated automatically from 3D, wire-frame models

of objects, in this case aeroplanes. Models of four aeroplanes, an F-16, a BAe Hawk, a
Jumbo Jet and a Sopwith Camel are shown in figure 5-22. These models were obtained

by measuring the position of control points from scale models of the planes.

Generating a Data Set
In order to produce a data set that can be used to train the network it is necessary
to compute the appearance of each object from a particular viewpoint, using the in-
formation contained in the wire-frame model. Unfortunately, the computations of true

visibility conditions requires surface information, which was not included in the above

models for reasons of simplicity. However, given the projection of a wire-frame model

it is possible to compute the bounding contour, or silhouette, of the object. Various
techniques can be used to achieve this, including carrying out a search for extremal

lines, eg. Sykes [98]. This method has the advantage that the silhouettes can be com-

puted directly from the projected position of 3D lines in the wire-frame models. This

method was implemented but found to be overly sensitive to the projected position of

model lines whose endpoints meet at a vertex.
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Figure 5-22: The planes used in the recognition experiment. Clockwise from top

left, F-16, BAe Hawk, Jumbo Jet, Sopwith Camel.

The solution that was adopted involves first drawing each projected model line into an

image, figure 5-23(a). A recursive flood-fill algorithm is them performed which sets all

elements in the image that are outside the shape to 1 while setting those inside to 1,
figure 5-23(b). Of course, at certain points in the rotation of the object this simple

technique breaks down and produces a "false" silhouette, eg. figure 5-24. Such changes

occur rapidly and pose an additional problem that must be handled by the recognition
system. A set of lines describing the silhouette can be obtained by applying a Canny
operator, (or any other edge detecting algorithm), to this image and performing a

linear approximation of the resulting edgel strings. While this obviously involves more
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Figure 5-23: (a) the projected lines and (b) the result of applying the flood-fill
algorithm.

Figure 5-24: An example projection which produces a "false" silhouette...

processing than computing the silhouette directly from the projected wire-frame model,

it was the only solution that was found to be robust across the whole view sphere.

A data set was obtained by computing the appearance of the objects at fixed intervals

from a single quadrant of the view sphere. In particular, views were obtained at 50

intervals from [0 0 —+ 1801 azimuth, (0) and [0° —> 901 elevation, (0), giving 703 views
of each object. This was performed for each object, giving a total of 2812 views in the

data set. The object-camera distance was fixed, such that changes in the apparent size

of the objects were not considered. Each shape was processed and represented by a
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single histogram recording the global geometric feature distribution, for which ne = 30,
nd = 20, o-o = = 1.

Training
The view representation layer was trained by presenting each view from the data set

in a random order. This ensures that units are not "dragged around", following the
latest set of inputs. Once the position of units in Vt is fixed, the object representation
layer is trained by presenting the training set once more.

Recognition
On presentation of an unknown shape the network produces a set of outputs indicating
the probability of the unknown shape corresponding to a view of each object. This form

of output is useful in that it effectively signals that when a shape is ambiguous, either
through projective similarity between objects, image noise or because of the weakness

of the representational scheme. It also provides a form of output that can be integrated
with information from other systems, which similarly provide probabilistic information,
to provide improved recognition. However, in order to evaluate the performance of the
network, a forced decision regime was implemented in which the unknown shape is

identified with the object having the highest probability.

0
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Figure 5-25: A graph showing classification accuracy for networks with different
numbers of units.

The graph in figure 5-25 shows the classification error rate for networks with different

numbers of units. Plotted on this graph are both the apparent error rates, obtained

by testing the performance of the network on the training data set, and estimates of

the true error rate obtained by testing the network on a different data set comprised

of 500 views of each object taken from random values of 0 and 0. It can be seen

from the graph that very good performance, (98.7% classification accuracy), can be
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obtained storing only 80 views per object. This compares favourably with previous

approaches based on nearest-neighbour classification, and using Fourier coefficients or

moment invariants, which involve storing many more views of each object, (typically
500-1000), [25,83,107,84 A confusion matrix describing the response of a network

containing 40 units per object for this second data set is shown in figure 5-26.

Hawk Camel Jumbo F-16

Hawk 462 10 8 24

Camel 0 481 12 0

Jumbo 17 5 473 27

F-16 21 4 7 449

Figure 5-26: The confusion matrix for a network with 40 units per object.

Interestingly, it was found that extending the system by basing recognition on the

interpolated output of the top k, (eg. k = 3), responding units drastically reduced
performance. The likely reason for this is that units that are near to one another

in feature space are more likely to represent views of different objects from the same

viewpoint, rather than nearby views of the same object. Incorporating the response of
the top k responding units therefore decreases the performance of the system.

The forced choice regime is a poor test of network performance, since units which
represent views of more that one object, and which are therefore ambiguous, will, by

definition, be wrong for a certain proportion of inputs. The performance of the network

can be improved considerably by introducing a certainty threshold; a unit is then forced
to make a choice only if its maximum probability is above a threshold value, CT. If it is
below this value then no classification is made. Figure 5-27 presents the performance

of a network with 40 units per object at different levels of CT. It can be seen that as
the value of CT is raised the performance of the system increases significantly, until at

CT = 75% the classification error rate has been raised to 98.6%. Of course, this result

would not be of use if the proportion of inputs for which no decision could be made
became too large. However, it can be seen that even at the CT = 75% level, almost
89% of inputs are still being classified.

Cases where the ambiguity of the network's response is too high to support classifi-

cation could be handled by initiating some form of action, in an attempt to resolve
the ambiguity. A primary candidate for such an action would be to make a change
in viewpoint, hopefully providing a less ambiguous view of the object. Moreover, the

transitions between views can be used to provide a disambiguating source of infor-
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CT Classification
Accuracy (%)

Views Classified
(%)

25 93.25 100.0
35 93.62 99.6
45 94.14 98.2
55 95.90 95.2
65 98.06 90.1
75 98.60 88,8
85 98.97 87.4
95 99.64 84.8

Figure 5-27: A table showing system performance for different values of CT.

mation, eg. [91]. The construction of an aspect graph encoding the allowable links

between views of an object, (possibly containing probabilistic information), is an area

for further research.

Local Shape Matching 
While the work presented in this section has been restricted to recognition based on
global geometric feature distributions, and so is limited to the recognition of unoccluded
objects, the scheme holds the potential to deliver view-based recognition based on local

shape elements, achieved through the matching of local geometric feature distributions.
This would enable view-based recognition to be achieved in cluttered scenes, and would
inherit the robust properties established in Chapter 3. This issue is discussed further

in Chapter 6.

5.5 Discussion and Summary

This chapter has presented the application of the GFD representational scheme to the

problem of 3D object recognition. Specifically, two different approaches were investi-
gated.

The first, termed the 3D approach, involved generalising the GFD scheme to handle the
problem of 3D shape representation and matching. Extending the scheme to deal with

3D shape representation involved simply defining a set of geometric features between

3D line segments. Local geometric feature distributions representing 3D scene and

model lines can then be matched using essentially the same scheme as that proposed
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for performing 2D object recognition, despite the difficulties caused by self-occlusion. A

strategy was proposed for using these matches to determine the position and orientation

of objects. Although certain difficulties were encountered, due both to the symmetry
of the objects and to the non-directionality of 3D line segments, the system was shown

to be capable of accurately locating objects in a scene.

Despite this success, there are a number of difficulties involved in basing recognition on

the matching of 3D scene and model descriptions. Firstly there is the computational

load involved in obtaining 3D scene descriptions. Secondly, the need to model the

explicit 3D structure of the objects to be recognised means that the range of objects

to which the approach can be applied is limited. Finally, even in cases where such

modelling is appropriate, the problem of constructing such models remains, and often

has to be achieved through hand coding. These difficulties combine to motivate the
investigation into an alternative approach to 3D object recognition which does not rely

on the representation of 3D shape.

The second half of this chapter described the use of the GFD scheme within a multiple

view-based approach to 3D object recognition. This assumes that performing recogni-

tion involves matching the 2D, projected shape information found in a single image to

2D, appearance-based models, composed of a relatively small number of example views
of each object. Describing the application of the GFD scheme within this approach

involved first analysing the source of the variation in 2D, projected shape. This was

then used as the basis for a description of the process by which the representation of

the set of all possible views of an object generates a hypersurface in feature space.
The likely behaviour of such hypersurfaces was related to properties of objects and to

the characteristics of the scheme used to represent views. It was argued that there
are numerous reasons why a view-based system should be able to provide probabilis-

tic recognition information, eg. to signal the presence of ambiguity due to projective

similarity, weakness in the representational scheme or image noise. The structure of
a self-organising neural network capable of constructing view-based representations by

clustering views on the basis of similarity was presented and shown to be capable of
providing accurate classification of a set of aeroplanes.



Chapter 6

SUMMARY

This chapter summarises the contribution of the work presented in this thesis and
highlights directions for further study.

6.1 Contribution

This thesis has presented a novel form of shape representation that is able to support
the recognition and localisation of both 2D and 3D objects under conditions of severe
fragmentation noise, occlusion and clutter.

The main features of this work are:

1. The development of a novel scheme for representing shape. This is based
on recording the distribution of geometric features computed between pairs of
primitive elements within a shape.

The main features of this form of shape representation are:

• Invariance. The properties of the geometric features upon which the scheme
is based mean that representations are invariant to 2D transformations in
position and orientation, in the case of 2D shape, and full object transfor-
mation in the case of 3D shape.

• Robustness. The fact that geometric feature distributions are based upon

combining multiple local measurements of shape mean that they degrade

gracefully as shape information is lost through image noise or occlusion.

Particular attention was paid to ensuring that representations constructed
from line-based descriptions of shape retained this property.

• Strength. The factors affecting the strength, or uniqueness, of geometric
feature distributions were assessed. It was shown that the proposed scheme

possesses sufficient strength to allow discrimination between most distinct
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shape primitives, while the particular weaknesses of the representation pro-

vide considerable advantages in the representation of fragmented elements

of a line segment.

• Redundancy. The fact that the construction of full, local representations of

a shape involves recording multiple geometric feature distributions, one for
each primitive, means that recognition based on the representation should

be robust to the loss of lines through image noise or occlusion.

• A method of encoding allowable shape variation. The quantising effect of
the binning process, together with the blurring of entries across many bins,
provides a principled method for encoding the range of geometric feature
values that may arise within a shape.

• A scalable representation. The scale at which shape is represented can be

varied simply by changing the parameters of the histogram, ie. resolution

and width of blur, used to record geometric feature distributions.

• Flexibility in the level of shape representation. By varying the set of geo-

metric relationships recorded within a histogram it is possible to represent

shape either locally or globally. The scheme is therefore able to support
two forms of recognition, correspondence recognition, in which local shape

elements are matched, and non-correspondence recognition, in which whole

shapes are matched.

• Flexibility in the dimensionality of shape represented. The scheme can be
adapted for the representation of 2D or 3D shape by simply defining the set
of geometric features between either 2D or 3D shape primitives.

• A local form of representation. The range over which geometric relationships
are measured can be limited to provide a representation of local shape. This

effectively reduces the likelihood of the representation of a particular shape

primitive being affected by fragmentation noise, occlusion or scene clutter.

• Accessibility. Representations can be constructed straightforwardly from

descriptions of shape in terms of a set of primitive elements.

• Versatility. The only restriction placed on the type of shape that can be

represented is that they can be described to a sufficient degree of accuracy

using straight line segments.

2. A pattern classification approach to recognition. One of the primary aims
of the work presented in this thesis was, as stated in Chapter 1, to develop a
representational scheme that provided shape encodings which could be matched

using techniques from statistical pattern classification. The fact that histograms

recording the distribution of geometric feature values can be regarded as recording

the probability of co-occurrence of two lines at a particular geometric relation-

ship within a shape means that this has been achieved. This has a number of
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advantages. Firstly, given a suitable metric of similarity defined between two
shape encodings, in this case the Bhattacharrya distance, optimal classification
accuracy can be achieved using the nearest-neighbour classification rule, modulo
the strength of the representational scheme. Secondly, the processing involved

in computing the similarity metric and in implementing the classification rule is

both simple and uniform, and so lends itself directly to implementation in parallel
hardware.

3. An analysis of the effects of shape variation. Crucial to the practicality of
a recognition system is its ability to support matching across the full range of po-
tential imaging situations. In the present system this requires that the properties

of the representational scheme, similarity metric and classification rule combine

to provide robustness to variations in the image shape description. It was deemed

important that the performance of these elements be examined under measurable
conditions of shape variation, which involved proposing generative models of each

source of shape variation. Particular attention was paid to the effect of changes

caused by fragmentation noise, scene clutter and sensor error. It was found that,

under the particular models of shape variation used, the properties of the rep-
resentational and matching schemes combined to provide theoretical robustness

to very high levels of fragmentation noise and scene clutter. Providing a definite

conclusion for the performance of the system under sensor error was more diffi-

cult, but the factors determining the effect of such changes on the system were
fully analysed.

4. A parallel solution. The amount of computation needed in recording and
matching geometric feature distributions is obviously quite large, and recogni-
tion in complex scenes can be expected to be relatively slow on conventional,

serial machines. However, the fact that the processing involved in all stages of

recognition is both local, simple and uniform, means that the scheme is well
suited to implementation in parallel hardware. This can be expected to produce

a significant increase in the speed of recognition.

5. A memory/computation trade-off. The need to store histograms for each
primitive within a shape places heavy depends on memory. However, it seems
fair to say that there is an inherent trade-off in recognition between the amount

of memory needed to store object representations and in the speed and simplicity
of recognition. In the present scheme much effort has been put into producing
a shape representation with the desired properties of invariance, strength and

robustness. This has produced a form of shape representation that requires a large

amount of memory. This is justified on two grounds. Firstly, it enables matching

to be performed through simple, local processing that can be implemented in

hardware. Secondly, memory is a relatively cheap component of a system, and so

the heavy demands of the proposed scheme do not effect its practical application.
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6. 2D Object Recognition. A scheme based on the classification of geometric

feature distributions, together with the generalised Hough transform, was shown

to be capable of recognising a range of objects their 2D projection, the objects

being viewed from a fixed viewpoint. As expected, given the results of the noise

analysis, the system based on the matching of local geometric feature distribu-

tions was able to recognise objects despite the problems caused by severe frag-

mentation noise and occlusion. This constitutes an advance over many previous
pattern classification approaches that have been restricted by their reliance on

global shape representation to the recognition of un-occluded objects.

7. 3D Shape Matching. It was shown that the representational scheme was ca-

pable of supporting the matching of 3D scene and model shape descriptions. The
scheme was extended to deal with 3D shape representation by simply proposing a
set of geometric features defined between 3D line segments. The local geometric

feature distributions representing 3D scene and model lines were then matched
using essentially the same mechanism as for 2D object recognition. This matching
was shown to be robust to the loss of shape information caused by self-occlusion.

The line matches delivered by this scheme were used, together with an alignment

approach, to determine the 3D position and orientation of objects in a scene.

8. A Multiple View-Based Solution. The GFD scheme was shown to be capa-

ble of supporting an alternative approach to 3D object recognition based on the

matching of 2D image data to 2D, appearance-based object models. An under-
standing of the problems involved in performing multiple view-based recognition
was aided by an analysis of the process by which the set of all possible views of
an object forms a hypersurface in feature space. The effects of object proper-
ties and characteristics of the representational scheme on the behaviour of these
hypersurfaces was discussed. The structure of a self-organising artificial neural

network was presented which was able to cluster, on the basis of similarity, 2D

views of an object, represented as global geometric feature distributions, in order
to construct appearance-based object models.

One of the main advantages of the proposed view-based system is its ability to

provide probabilistic recognition information. This has a number of advantages.

Firstly, it means that the output of the system can be combined with that from

other recognition systems, which exploit alternative sources of information, in
order to provide improved recognition. Secondly, the system is able to signal
the ambiguity of a particular view, due either to projective similarity between
objects, image noise or weakness of the shape encoding. This is important as it

can be used to trigger actions that might resolve this ambiguity, eg. a change in

viewpoint.
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6.2 Further Work

Improvements could be made in the following areas:

6.2.1 Representation

Both the theoretical analysis and the empirical results presented in this thesis have
hopefully combined to demonstrate the suitability of geometric feature distributions as

a scheme for representing shape. However, various improvements could be made:

• Alternative geometric features could be proposed which are invariant to scale

changes.

• In cases where the 2D shape found in an image is the result of the projection

of a 3D object, the line segments describing this shape cannot be directed by

exploiting the sign of the image intensity gradient. This results in a considerable

loss of strength in the representation. Alternative strategies for directing line
segments could be investigated. A possible solution is to direct pairs of line

segments away from their point of intersection, although care must obviously be
taken to ensure that this does not affect the robustness of the representation.

• The form of the blurring function used on each axis of the histogram could be

better adapted to describe the true distribution of geometric feature values arising

from image noise.

• The method for determining the optimal parameters of the representation for

a particular task application are somewhat ad hoc. Basically, the parameters

have to be varied until the performance of the system is deemed acceptable.
Ideally, these parameters would be set automatically, based on an analysis of the

statistics of the input data for a particular application. For example, given a set
of objects that are to be viewed under a specified range of lighting conditions,

it should be possible to determine optimum values for the resolution and width
of blur used in the histogram by relating them to some measure of the mean

variation in geometric feature values across a sample of typical images. Similarly,

the optimal size of the local region could be determined by finding an acceptable

balance between the strength of representations, as gauged by the number of
misclassifications, and the likelihood of occlusion.
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6.2.2 Improving Efficiency

The main aim of the work presented in this thesis has been to demonstrate the feasi-
bility of representing shape by recording the distribution of geometric feature values

measured between its primitive elements. Relatively little effort has been put into de-
veloping strategies for improving the efficiency with which recognition is performed.

There are obviously many ways in which this could be achieved. One of the simplest

methods would be to develop a sequential implementation of the recognition system.

The set of complete matches produced by the proposed 2D recognition scheme, while
useful for providing a first order segmentation of the image shape description, is largely
redundant for the purposes of computing the position and orientation of objects in the
scene; for this the matching of two non-parallel model lines to the correct image lines is
sufficient. This fact could be exploited to provide an alternative recognition system, in

which local geometric feature distributions representing individual line segments were

recorded and matched sequentially. Once sufficient evidence had been accumulated for

the presence in the scene of a particular object at a certain pose, an attempt would
be made to validate the hypothesis. All matched image lines would then be removed

and the hypothesis/validation cycle repeated, (cf. [3]). This "sequential" recognition

scheme could be expected to be much quicker than the parallel scheme, although its

robustness in conditions of high scene clutter is not so certain.

6.2.3 Hardware Implementation

One of the most important considerations in assessing the potential of an algorithm
for practical application is the ease with which it can be implemented in hardware.
As mentioned above, the processing involved in both the recording and matching of
geometric feature distributions is simple, local and uniform, attributes which should

make such implementation relatively straightforward. Indeed, research has recently

begun on the feasibility of designing dedicated processors for performing specific tasks
within the recognition system, [101]. The two main areas of interest are:

• The design of a processor dedicated to the task of computing and recording the

distribution of geometric feature values between line segments.

• The use of an existing processor to perform the array multiplication involved in

matching geometric feature distributions.

The successful incorporation of these elements into a recognition system implemented

in dedicated hardware can be expected to bring the the time involved in matching

complex scenes to large numbers of objects down to practical levels.



Chapter 6. SUMMARY	 189

6.2.4 Extending the Multiple View-Based Approach

One of the most exciting areas of further research is in extending the multiple view-
based approach. Of particular interest is the extension of the proposed system to deal

with the matching of local shape elements. The view-based approach was demonstrated

using global geometric feature distributions. While these are robust to the loss of data
caused by fragmentation noise they cannot deal with cluttered scenes. This requires

that recognition be based on the matching of local elements of shape, which necessitates
the use of local geometric geometric feature distributions. The immediate difficulty

with extending the view-based system to deal with local shape matching is in the

amount of memory and computation involved in storing and matching histograms for

each line segments within each stored view of each object. It would be interesting

to investigate the use of the measures described above to overcome these problems
in order to make recognition tractable. If successful then the resulting system would
provide an adaptive, flexible 3D object recognition system that could operate under

conditions of considerable image noise and scene clutter.

Another interesting area in which the view-based approach could be extended is the

use of temporal information in resolving ambiguities. This would involve adapting the

neural network architecture so as to enable it to incorporate information regarding the

characteristic transitions between stored views for each object. If the shape extracted

from an image was signalled by the system as being ambiguous, due to projective simi-
larity between objects or to the weakness of the representational scheme, then a change

in viewpoint could be initiated. Information stored in the object models regarding the
temporal adjacency of views could then be exploited to resolve the ambiguity. The
system proposed by Seibert Si Waxman [91] would provide a starting point for this
work.

6.2.5 Modelling Higher Level Recognition Processes

The recognition system proposed in this thesis operates in order to answer to the
question "Which known objects are in the scene and where are they?". The recognition

problem could obviously be phrased differently. For example, one can imagine that

an intelligent agent, interested in achieving some task, might be more interested in

answering the question "Is there an X in the scene?", where X refers to some known
object. While this question can eventually be answered in the proposed system, one
might expect that a truly intelligent agent would possess certain strategies, schemas

or routines for answering specific queries about the presence of entities in the scene.
Investigating strategies by which high-level, knowledge-based processes may guide or

direct low-level visual processes in the pursuit of specific information about the world

provides an exciting area for further research. Of particular interest is the incorporation

of such processes into the sequential form of recognition described in Section 6.2.2.



Appendix

It is shown that the maximum of the Bhattacharrya similarity metric D ij	 \ToTvi—ni

is the minimum of a x 2 variable comparing two frequency distributions o i and mi.

The maximum likelihood statistic X2 for comparing two distributions o i and m i is
defined as

x 2 = Doi	 (1)

for small (o i — m i), the first order Taylor expansion of f at m i can be written as

a f (mi)
f (oi) f(m) + (0i ril t) ami	 (2)

which gives

,	 f(oi) — f (M) 
— 7720 r'n-•:%	 Of(m)	 (3)

8rni

Substituting (3) in (1) gives

x2 = En (f (c)i) f(Mi))2 

i	 m )
I,/  fpn i) 12mi

In the special case of f (x) N/i we have

X 2 = 4 E(N
2

which expanded gives

X2 = 4E 0i +4E172i — 8EN/07.0—ni

which for normalised in gives

X2 = const — 8E v-ow-n7;

(4)

Thus, under these assumptions, taking the maximum of the Bhattacharrya distance,

Dii is the same as taking the minimum of the X 2 statistic.
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