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Abstract 

Clostridium difficile is one of the leading causal agents of hospital acquired 

infection and antibiotic-associated diarrhoea. The treatment and control of 

Clostridium difficile infection (CDI) is critically dependent on accurate laboratory 

diagnosis. However, current diagnostic methods have limitations including cost, 

potential over-sensitivity, lack of detection of toxin protein associated with nucleic 

acid amplification techniques, and long turnaround time for toxigenic cultures. 

Detection of toxins in faecal samples of patients suffering from CDI is a highly 

significant and necessary criterion for the diagnosis of CDI. Rapid enzyme 

immunoassays are used for toxin detection and can be completed in less than an 

hour, however, their low sensitivities make them unacceptable for use as a stand-

alone test. To date, no one-step diagnostic that is low cost, sensitive and specific is 

available for CDI diagnosis. Leeds has developed a non-antibody binding protein 

called Affimer type II (Affimer). From phage display libraries, Affimer binders 

against >350 targets have been identified.  

This thesis investigates the isolation of Affimers against biomarkers of Clostridium 

difficile infection for use as diagnostic tools. Phage display screening yielded high 

affinity Affimers against the three well-established biomarkers of CDI (toxin A, toxin 

B and glutamate dehydrogenase). Characterisation of the Affimer binders show 

that they bind to their target with low nanomolar affinity. Through sandwich phage 

ELISA, two toxin B Affimers have been established for use as a pair in sandwich 

assay format. This thesis has also explored the ability of Affimers to function as 

novel reagents for the potential development of a point-of-care diagnostic tool for 

C. difficile infection. The most exciting result include the development of a toxin B 

hybrid assay which shows improved sensitivity and specificity by switching one of 

the molecular recognition elements of a clinically used C. difficile detection kit from 

antibodies to Affimers. 

  



vi 
 

Table of content 

Acknowledgement .................................................................................................... iii 

Abstract ....................................................................................................................... v 

Table of content ......................................................................................................... vi 

List of Figures ......................................................................................................... xiii 

List of Tables .......................................................................................................... xvii 

Abbreviations ........................................................................................................ xviii 

Chapter 1: Introduction ............................................................................................... 1 

1.0   Clostridium difficile Infection ........................................................................ 2 

1.1   The bacteria .................................................................................................... 3 

   1.2.1    Risk factor ............................................................................................ 4 

   1.2.2 Epidemiology ....................................................................................... 5 

1.2  Pathogenicity ................................................................................................... 7 

   1.2.1 Toxin A and toxin B ............................................................................. 7 

   1.2.2    Pathogenicity Loci: .............................................................................. 7 

   1.2.3 Structure and function of toxin A and toxin B ..................................... 8 

   1.2.4 Role of toxin A and B in pathogenicity ............................................. 11 

   1.2.5 CDT Binary toxin ............................................................................... 12 

1.3  Diagnosis of Clostridium difficile infection. ................................................. 12 

   1.3.1 Microbiological cultures .................................................................... 14 

   1.3.2.  Enzyme immunoassays ..................................................................... 16 

   1.3.3 Nucleic Acid Amplification tests (NAATs). ...................................... 19 

1.4  Enzyme immunoassay ................................................................................... 23 

   1.4.1 Principle and protocol of ELISA ....................................................... 23 

   1.4.2 Types of ELISA ................................................................................. 24 

1.5  Antibodies, use and limitations ..................................................................... 26 

   1.5.1  Structures ........................................................................................... 26 

   1.5.2 Uses of antibodies .............................................................................. 29 

   1.5.3 Limitations in the use of antibodies ................................................... 29 

   1.5.4  Antibody fragments ............................................................................ 29 

1.6   Antibody mimetics: Scaffold proteins .......................................................... 32 

   1.6.1  Characteristics of alternative binding proteins. ................................. 32 

   1.6.2 Protein engineering of alternative binding proteins ........................... 33 

   1.6.3 Phage display technology ................................................................... 36 

   1.6.4 Protein Scaffolds. ............................................................................... 38 

1.7.  Applications of scaffold proteins .................................................................. 41 



vii 
 

1.8   Molecular Recognition Elements for diagnosing C. difficile Infection. ...... 43 

1.9   Aims of the thesis ......................................................................................... 44 

1.10   Structure of the thesis ................................................................................. 44 

Chapter 2: Materials and Methods ............................................................................ 46 

2.0    Introduction ................................................................................................. 47 

2.1     E. coli .......................................................................................................... 47 

   2.1.1 XL-10 Gold ........................................................................................ 47 

   2.1.2 XL1-Blue ........................................................................................... 47 

   2.1.3  BL21 (DE3) Star ............................................................................... 48 

   2.1.4 ER2738 electrocompetent cells .......................................................... 48 

2.2   Plasmids ........................................................................................................ 49 

   2.2.1 pDHis phagemid vector ..................................................................... 49 

   2.2.2 pET Vectors ....................................................................................... 49 

2.3   Growth Media ............................................................................................... 50 

   2.3.1 2TY medium ...................................................................................... 50 

   2.3.2 SOB medium ...................................................................................... 50 

   2.3.3  SOC medium ..................................................................................... 51 

   2.3.4 LB medium ........................................................................................ 51 

   2.3.5 LB Agar plates ................................................................................... 51 

2.4   Bacterial transformation ............................................................................... 51 

   2.4.1 Preparation of competent cells ........................................................... 51 

   2.4.2 E. coli transformation ......................................................................... 52 

   2.4.3 Antibiotics .......................................................................................... 52 

2.5   Plasmid purification from E. coli.................................................................. 52 

   2.5.1 Mini-preparation of plasmid DNA ..................................................... 52 

   2.5.2 Midi-preparation and maxi-preparation of plasmid DNA. ................ 53 

       2.5.3      Determination of DNA concentration .............................................. 54 

   2.5.4 DNA sequencing ................................................................................ 54 

2.6   Molecular biology and DNA manipulation .................................................. 54 

   2.6.1 Polymerase Chain Reaction (PCR) protocols .................................... 54 

   2.6.2   Oligonucleotide primers ...................................................................... 55 

   2.6.3 Restriction digestion .......................................................................... 56 

   2.6.5    Ligation .............................................................................................. 57 

   2.6.6 Colony PCR ....................................................................................... 57 

   2.6.7 Agarose gel electrophoresis ............................................................... 58 

   2.6.8 Dephosphorylation of DNA ............................................................... 59 

   2.6.9 Purification of DNA from an agarose gel .......................................... 60 



viii 
 

   2.6.10  Purification of PCR products ............................................................ 60 

2.7   Protein expression and purification .............................................................. 61 

   2.7.1 Expression by IPTG induction ........................................................... 61 

   2.7.2 Expression by autoinduction ................................................................. 61 

   2.7.3 Cell lysis ............................................................................................. 61 

   2.7.4 Protein Purification using Ni-NTA affinity chromatography ............ 62 

   2.7.5 Determination of protein concentration ............................................. 63 

   2.7.6 Analysis by SDS-PAGE ........................................................................ 64 

2.8   Biotinylation ................................................................................................. 66 

   2.8.1 Toxin A and Toxin B target protein ................................................... 66 

   2.8.2 Biotinylation of targets ....................................................................... 66 

   2.8.3 ELISA to check biotinylation ............................................................ 68 

2.9   Phage Display Screening. ............................................................................. 68 

   2.9.1   Preparation of ER cells. ...................................................................... 70 

   2.9.2 Biopanning- Round 1 ......................................................................... 70 

       2.9.2  Preparation of streptavidin coated strips. ......................................... 70 

   2.9.3 Biopanning Round 2 .......................................................................... 72 

   2.9.4 Biopanning round 3 ............................................................................ 76 

        2.9.4.1         Preparation of streptavidin coated strips. ............................... 76 

2.10 Identification of specific Affimer phage .................................................. 78 

   2.10.1   Propagation and preparation of individually selected binders .......... 78 

   2.10.2  Preparation of streptavidin-coated 96-well plates ............................. 78 

   2.10.3   Phage ELISA .................................................................................... 79 

2.11 Identification of Adiron pair to target .......................................................... 80 

   2.11.1  Sandwich phage ELISA .................................................................... 80 

   2.11.2   Sandwich protein ELISA- using surface Adsorbed ......................... 80 

   2.11.3    Sandwich protein ELISA- using double biotinylation ..................... 81 

   2.11.4    Sandwich Phage display ................................................................... 81 

2.12   Characterisation of Affimers ...................................................................... 82 

   2.12.1    ELISA analysis with purified Affimers .......................................... 82 

   2.12.2    Size Exclusion Chromatography ..................................................... 82 

   2.12.3    Surface Plasmon Resonance ........................................................... 83 

   2.12.4   Thermostability and aggregation profile ........................................... 83 

   2.12.5  Differential Scanning Calorimetry (DSC) analysis .......................... 83 

   2.12.6   Circular Dichroism Spectroscopy ..................................................... 84 

   2.12.7  Heat denaturation and Centrifugation SDS-PAGE Analysis ............ 84 

   2.12.8   Biolayer Interferometry (BLitz) ........................................................ 84 



ix 
 

   2.12.9    Conjugation of Affimer to HRP ....................................................... 84 

2.13: Evaluation of Affimer for diagnostic purposes ........................................... 85 

   2.13.1  Determination of the limit of detection ............................................. 85 

   2.13.2  Affimer-Antibody hybrid assay-Protocol 1 ...................................... 86 

   2.13.3   Affimer-Antibody hybrid assay-Protocol 2 ...................................... 86 

Chapter 3:   Optimisation studies of the Affimer scaffold. ...................................... 87 

3.1.   Introduction.................................................................................................. 88 

3.2    Selection of residues for mutations ............................................................. 89 

3.3.    Production of JD-F12 mutants ................................................................... 91 

   3.3.1 Cloning of JD-F12 Mutants. .............................................................. 91 

   3.3.2 Expression and purification of JD-F12 mutants ................................ 92 

3.4    Characterisation of Affimer mutants. .......................................................... 96 

   3.4.1 Effect of mutation on aggregation state- Size .................................... 96 

   3.4.2 SDS-PAGE used to determine thermostability .................................. 98 

   3.4.3 Effect of mutation on thermal stability- Differential Scannin ........... 99 

   3.4.4 Optim analysis explains the thermal unfolding  ............................... 101 

3.5    Analyses of the effect of selected mutation ............................................... 103 

   3.5.1: Impact of each point mutation ........................................................... 104 

   3.5.2 mGFP21 and EGFR-H9-N ............................................................... 104 

   3.5.3   Effect of adding D/DD/ ED/ E residues before each loop. ............... 111 

3.6    Bacterial cystatin ....................................................................................... 113 

   3.6.1 Consensus sequence framework for bacteri ..................................... 113 

   3.6.2 Subcloning of Bacterial cystatin ...................................................... 116 

   3.6.3 Protein expression of Bacterial Cystatin: ......................................... 118 

   3.6.4 Dot blot analysis of Bacterial cystatin: ............................................ 121 

   3.6.5 Cloning of Bacterial cystatin version 2: BCc6.0v2 .......................... 122 

   3.6.6 Protein expression and time course analysis for BCc6.0v2 ............. 122 

   3.6.7 SDS-PAGE Analysis ........................................................................ 123 

3.7    Discussion ................................................................................................. 124 

   3.7.1  JD-F12 and its mutants ................................................................... 124 

   3.7.2  Bacterial cystatin ............................................................................. 125 

Chapter 4:  Identification and characterisation of Affimer binders against GDH .. 127 

4.1    Introduction ................................................................................................ 128 

4.2    Design and production of GDH ................................................................. 129 

   4.2.1 Subcloning of the rGDHC. diff  coding region .................................... 129 

   4.2.2 Expression and purification ............................................................. 131 

4.3   Characterisation of recombinant GDH ....................................................... 133 



x 
 

   4.3.1 Determination of the molecular mass of rGDHC. diff ........................ 133 

   4.3.2 Enzyme activity. ............................................................................... 133 

4.4   Identification of Affimer binders to rGDHC. diff through phage display. ..... 134 

   4.4.1 Biotinylation of rGDHC. diff ............................................................... 134 

   4.4.2 Effect of biotinylation on enzyme activity ....................................... 135 

   4.4.3 Phage display screening ................................................................... 136 

   4.4.4 Phage ELISA .................................................................................... 137 

   4.4.5 DNA sequencing and identification of unique binders .................... 138 

   4.4.6 Sequence alignment for GDHC. diff Affimer binders. ........................ 139 

4.5   Protein production of GDHC. diff Affimer binders ................................... 141 

   4.5.1 Subcloning of selected clones into expression vector ...................... 141 

   4.5.2 Expression and purification of GDH Affimer binders. .................... 144 

    4.6  Biophysical characterisation of binders  ...................................................... 148 

       4.6.1 GDH Affimer proteins are monomeric ............................................... 148 

       4.6.2  Thermostability and aggregation profile of GDH Affimer proteins. . 150 

    4.7    Characterisation of Affimer Binding to rGDHC. diff ................................... 151 

       4.7.1    Protein ELISA using purified GDH Affimer protein ....................... 151 

       4.7.2   Binding of Affimers to Hexameric GDH .......................................... 152 

     4.8 Comparative studies of binders with commercially available kit. ............... 153 

        4.8.1  Determination of the Limit of Detection (LOD) ............................... 154 

             4.8.1.1  Optimisation of incubation time ............................................ 154 

             4.8.1.2  GDH-4 Affimer as best capture. ............................................ 156 

        4.8.2    Affimer has comparable sensitivity to GDH  .................................. 157 

     4.9 Summary ...................................................................................................... 158 

Chapter 5: Identification and characterisation of Affimer binders against  ........... 159 

     5.1.    Introduction .............................................................................................. 160 

     5.1.2   Characterisation of Toxin A and Toxin B. .......................................... 161 

      5.2    Phage Display ........................................................................................... 161 

     5.2.1    Biotinylation. ..................................................................................... 161 

     5.2.2     Screening of Affimer phage Library ................................................. 162 

      5.3 Identification of Target-binding Affimer clones. ........................................ 163 

     5.3.1      Phage ELISA ................................................................................... 163 

     5.3.2      DNA Sequencing ............................................................................. 165 

     5.3.3      Toxin A sequence alignment and selection of unique binders ......... 166 

     5.3.4      Toxin B sequence Alignment and selection of unique binders ........ 168 

      5.4 Production of Affimer Proteins ................................................................... 169 

   5.4.1        Subcloning into pET11 .................................................................... 169 



xi 
 

        5.4.1.1     Amplification and digestion of Affimer binders ...................... 170 

        5.4.1.2     Ligation and preparation of Affimer binders for DNA sequ. .. 170 

   5.4.2          DNA sequence analysis of Affimer clones. ................................... 171 

   5.4.3   Expression and purification of toxin A and toxin B Affimer ............... 172 

   5.5 Biophysical characterisation of Affimer binders ........................................... 176 

    5.5.1     Toxin A and B Affimer proteins are monomeric ............................... 176 

     5.5.2     Thermostability and aggregation profile of toxin A and B Affimer. 179 

    5.6 Characterisation of Affimer Binding to toxin A and toxin B ....................... 183 

     5.6.1      ELISA analysis with purified Affimer ............................................. 183 

             5.6.1.1       Direct immobilisation of Affimer onto Nunc plates ......... 183 

             5.6.1.2        Oriented immobilisation of binders onto Nunc plates. .... 185 

             5.6.1.3        Effect of surface adsorption of Affimer ........................... 185 

             5.6.1.4        BLItz analysis .................................................................. 186 

           5.6.2        Identification of pairs of Affimers for toxin A and B ............... 189 

             5.6.2.1         Sandwich ELISA by adsorption of capture Affimer ....... 189 

             5.6.2.2        Oriented immobilisation of capture ................................. 191 

        5.6.3       Sandwich Phage ELISA ........................................................... 194 

       5.6.4        Selection of the best Toxin B binder pairs. .............................. 200 

     5.7  Binding Kinetics of Affimer binders by SPR ....................................... 201 

     5.8 Summary ................................................................................................ 202 

Chapter 6: Development of a hybrid Affimer-based assay for CDI diagnosis ....... 203 

6.1 Introduction .................................................................................................. 204 

6.2  Determination of the Limit of Detection (LOD). .................................. 204 

6.3 Evaluating the specificity of Affimer pair. ............................................ 208 

6.4 Determination of Limit of detection using ............................................. 209 

    6.4.1     Conjugation of detection Affimer to HRP ................................... 209 

    6.4.2     Direct ELISA for the detection of target by Affimer-HRP .......... 213 

6.5 Replacing the capture antibody with a capture Affimer ............................... 214 

   6.5.1     Determination of the limit of detection for  ................................. 217 

   6.5.2    Selection of the best capture Affimer ............................................ 218 

   6.5.3    Improved sensitivity and specificity ............................................. 219 

  6.6  Summary .................................................................................................... 222 

Chapter 7: General Discussion ............................................................................... 223 

   7.1 Comparison with similar studies by other groups ..................................... 224 

     7.1.1     Toxin A and Toxin B .................................................................... 224 

   7.2   Replacing antibodies- why Affimers ....................................................... 224 

   7.3       Selection of pairs .............................................................................. 226 



xii 
 

    7.3.1    Performance of Affimer pairs........................................................ 228 

    7.3.2    Performance of Affimer-based hybrid assay for CDI diagnosis ... 229 

    7.4        Future work and recommendation ................................................... 230 

    7.4.1    GDH .............................................................................................. 230 

   7.4.2   Toxin A and Toxin B ..................................................................... 231 

   7.4.3   Crystallisation of toxin A and B ..................................................... 232 

   7.4.4   Potential applications of Toxin B pairs. ......................................... 233 

   7.4.5   Diagnosis of CDI: Developing a generally acceptable. ................. 233 

    7.5    Conclusion ........................................................................................... 235 

        References ....................................................................................................... 236 

  



xiii 
 

List of Figures 

Figure 1.1.  The life cycle of Clostridium difficile infection……………………………………….2 

Figure 1.2.   Incidence of Clostridium difficile infection in England………………………....6  

Figure 1.3.  Schematic diagram for the genetic organisation of the pathogenicity.…7 

Figure 1.4. Crystal structure of Toxin A domains……. ……………………………………………..9 

Figure 1.5. Crystal structure of the catalytic and cysteine proteinase domain……...10 

Figure 1.6.  Mechanism of action of toxin A and toxin B in vivo…………………………….11 

Figure 1.7.  Diagnostic methods for Clostridium difficile infection………………………..13 

Figure 1.8.  The two algorithms for C. difficile testing…………………………………………..22 

Figure 1.9.  Schematic representation of the types of ELISA…………………………………24 

Figure 1.10. The structure of an antibody protein ……………………………………………….27 

Figure 1.11.  Antibody and their derivatives…………………………………………………………30 

Figure 1.12. Steps in engineering new protein scaffold………………………………………..34 

Figure 1.13.  A schematic illustration of the steps involved in phage display ……….37 

Figure 1.14. The schematic 3D structures of selected scaffolds…………………..……....39 

Figure 1.15.  Characteristics of the Affimer scaffold …………………………………………….41 

Figure 2.1.   pDHis phagemid vector……………………………………………………….…………… 49 

Figure 2.2.  DNA size ladders used in agarose gel electrophoresis…………………….….59 

Figure 2.3.  PageRuler™ prestained protein size ladder used in SDS-PAGE…………...65 

Figure 2.4.  Overview of stages in the generation of Affimer to Targets……………… 69 

Figure 3.1. Structure of an Affimer….………………………………………..……………………….…90 

Figure 3.2. Sequence alignments of subcloned JD-F12 mutants……………………………92 

Figure 3.3. Purification profile of JD-F12 mutants analysed on 4-20 % ………….…...  94 

Figure 3.4. JD-F12 exist as a dimer……………………………………………………………..………..97 

Figure 3.5. SDS-PAGE showing the thermostability of JD-F12 ………………………………99 

Figure 3.6. DSC results of JD-F12 mutants..………………………………………………………...100  

Figure 3.7. Thermal denaturation and aggregation analysis of JD-F12………………..103 

Figure 3.8. Sequence alignment for EGFR-H9-N, mGFP-21 ……………………..………….105 

Figure 3.9. Analysis of purified variants ………………..……………………………………………106 



xiv 
 

Figure 3.10. Optim Analysis for EGFR-H9-N…………………………………………….............108 

Figure 3.11. Optim Analysis for mGFP-21……………………………………………………………109 

Figure 3.12. Optim Analysis for Affimer scaffold………………………………………….……..110 

Figure 3.13. Sequence alignments of JD-F12 variants…………………………………………111 

Figure 3.14. Analysis of the aggregation profile of all JD-F12 variants………………..112 

Figure 3.15.  Weblogo showing the conserved sequences in bacterial cystatin....115 

Figure 3.16.  Sequences of Bacterial cystatin consensus…………………………………....115 

Figure 3.17.  Subcloning of Bacterial cystatin from pUC57 into pET28c vector..….117 

Figure 3.18.  Multiple sequence alignment to show successful subcloning ……..…118 

Figure 3.19.  Analysis of IPTG induced protein expression ………………………………...119 

Figure 3.20.  Analysis of autoinduction of  bacterial cystatin …………………………..…120 

Figure 3.21.  Dot blot analysis for the detection of strep-tagged protein……..…….121 

Figure 3.22.  Multiple sequence alignment to show successful subcloning ………..122 

Figure 3.23.  Time course analysis for BCc 6.0v2 expression……………..……….……...123 

Figure 3.24.  Comparative SDS-PAGE analysis for the expression level ………………124 

Figure 4.1. Schematic diagram of the synthetic gene construct ………...………………129 

Figure 4.2. Sequence analysis for rGDHC. diff: …………….…………………………….………….131 

Figure 4.3. Production of rGDHC. diff……………………………………………….…..…………... ..132 

Figure 4.4. Glutamate dehydrogenase enzyme activity at 340 nm……………………..134 

Figure 4.5. ELISA to show biotinylation of GDH…………………………………….…………….135 

Figure 4.6. Effect of biotinylation with HPDP-Biotin …………………………………..….....136 

Figure 4.7. Evaluation of binding ability of screened phages by phage ELISA……..138 

Figure 4.8.  Annotation of DNA sequence of Affimer phagemid vector………………139 

Figure 4.9. Weblogo analysis of conserved residues of unique GDH………..…………140 

Figure 4.10. Schematic diagram of the subcloning experiment ………………………….141 

Figure 4.11. Agarose gel analysis of GDH-Affimer binder inserts…………………...…..142 

Figure 4.12. Alignment of ExPASy translated sequences of ……………………………… .143 

Figure 4.14. Expression analysis of Affimer binders………………………………………….. .145 



xv 
 

Figure 4.15. SDS-PAGE analysis of the purification of Affimers….………………….……146 

Figure 4.16. Size exclusion chromatography for GDH Affimer binders………………..149 

Figure 4.17. The static light scattering of the GDH Affimer ………….…………………….151 

Figure 4.18. Protein ELISA for purified GDH Affimer binders..……………..……………..152 

Figure 4.19. GDH-sandwich ELISA..………………………………….……………………………… ..153 

Figure 4.20. Optimisation of incubation time for GDH-4 phage ELISA  …….…………155 

Figure 4.21. Evaluating the sensitivity and specificity for GDH Affimers …….… …..157 

Figure 4.22. ELISA showing hybrid assay for GDH Affimer………….…..……………… …157 

Figure 5.1. ELISA to show biotinylation of Toxin A and B…………………………………….161 

Figure 5.2. Plate layout for Phage ELISA………………………………………………………. ……163 

Figure 5.3. Toxin A phage ELISA………………………………………………………………………….164 

Figure 5.4. Toxin B phage ELISA………………………………………………………………………….165 

Figure 5.5. Description of the sequencing of Affimer phagemid ………………………..166 

Figure 5.6. Analysis of conserved residues of unique Toxin A binders….…………….168 

Figure 5.7.  Sequencing alignment for subcloning experiment……………………………171 

Figure 5.8. Expression analysis of Affimer proteins by 4-20 % SDS-PAGE.…………..173 

Figure 5.9. SDS-PAGE analysis of the purification of Affimers……………………………..174 

Figure 5.10. Size exclusion chromatography for toxin A binders……………………….. 177 

Figure 5.11. Size exclusion chromatography for toxin B binder…………………………..178 

Figure 5.12. The static light scattering of the toxin A …………………………………………180 

Figure 5.13. The static light scattering of the toxin B …………………………………………182 

Figure 5.14. ELISA result using binders coated directly onto Nunc plate………..…..184 

Figure 5.15. ELISA showing successful biotinylation of Affimer with………….… ……185 

Figure 5.16. ELISA showing binding of Affimer to immobilised or free………………. 186 

Figure 5.17. BLItz analysis showing the binding of biotinylated Affimers…………….187 

Figure 5.18. ELISA analysis to identify Affimer pairs……………………………………………190 

Figure 5.19. Schematic diagram for double-biotinylation …………………………………..192 

Figure 5.20. Double biotinylation sandwich ELISA…………………………………………. ….192 



xvi 
 

Figure 5.21. Schematic diagram for sandwich phage display………………………………194 

Figure 5.22. Toxin A sandwich phage ELISA…………………………….………………………….196 

Figure 5.23. Toxin B sandwich phage ELISA……………………………….……………………….199 

Figure 5.24. sandwich ELISA for the selection of the best pair……………………………200 

Figure 5.25. SPR analysis of the binding of Toxin A and B to Affimers………………..201 

Figure 6.1. Optimisation of incubation time for Toxin B-18: Toxin B-45 pha…….…205 

Figure 6.2. Optimisation of incubation time for Toxin A-14/Toxin A-20 san………..207 

Figure 6.3. Evaluating the sensitivity and specificity for toxin A and toxin B …….. 208 

Figure 6.4. Size exclusion of Affimer binders conjugated to maleimide H…………..211 

Figure 6.5. SDS-PAGE of fractions eluted from SEC of Affimer-HRP ……………….. …212 

Figure 6.6. ELISA to show binding of Affimer-HRP conjugate to …………………………213 

Figure 6.7. Evaluating the sensitivity for toxin B unsing Affimer-HRP …………………214 

Figure 6.8.  Scatter plot of estimated specificity against sensitivity ……………………216 

Figure 6.9. Determination of limit of detection ……,…………………………………………..217 

Figure 6.10. Selection of the best capture Affimer ……………….……………………………218 

Figure 6.11. Effect of using Affimer B-18 as capture molecule …………………………..221 

Figure 7.11. Use of Affimer pairs to monitor size shift of …………………………………..233 

  



xvii 
 

 

List of Tables 

Table 1.1: Comparison of sensitivity and specificity of toxin EIA ............................ 18 

Table 2.1: Components of the PCR reaction  ........................................................... 55 

Table 2.2: Thermocycling condition for PCR reaction .............................................. 55 

Table 2.3: List of primers used in the study ............................................................. 56 

Table 2.4: The reaction conditions for colony PCR .................................................. 58 

Table 2.5: Recommended agarose gel percentages for the resolut ........................ 58 

Table 2.6: Buffers used during protein purification ................................................. 62 

Table 2.7: KingFisher Flex automated phage elution protocol ................................ 74 

Table 2.8: layout of target immobilisation for Phage ELISA .................................... 79 

Table 3.1: Biophysical properties of purified proteins from JD-F12 mutants ......... 96 

Table 3.2: Aggregation parameters for JD-F12 variants ........................................ 112 

Table 4.1: Biophysical properties of glutamate dehydrogenase. .......................... 140 

Table 4.2: Subcloning profile for GDH Affimer. ..................................................... 144 

Table 4.3: Properties and yields of purified Affimer proteins.. ............................. 147 

Table 5.1: Number of clones selected from toxin A and B screen ......................... 162 

Table 5.2: Groups of toxin A binders ..................................................................... 167 

Table 5.3: Alignment of sequences in VR1 and VR2 of toxin B Affimer binders .... 168 

Table 5.4: Subcloning profile for toxin A and toxin B Affimer binder. ................... 172 

Table 5.5: Properties of purifieddd Affimer proteins………………………………………….175 

Table 5.6. Ranking of toxin A binders. ................................................................... 181 

Table 5.7: Summary of binding characteristics of toxin B Affimers ....................... 188 

Table 6.1: Molar concentration for toxin A and B’s serial dilution. ....................... 204 

Table 6.2: List of capture and detection antibodies .............................................. 215 

Table 6.3: Difference between Lab-based protocol .............................................. 219 

Table 7.1: Comparison of the diagnostic methods based on toxin …………………….234  



xviii 
 

Abbreviations 

Ab   Antibody 

ABP  Artificial binding proteins 

Abs   Absorbance 

ADH-3  Affimer (ataxin binder) with 3 mutations 

ADH-5  Affimer (ataxin binder) with 5 mutations 

Ag:   Antigen 

APS   Ammonium persulfate  

ATP   Adenosine 5’-triphosphate  

Ax   Absorbance at x nm  

BCM  Barycentric Mean 

BLAST   Basic local alignment search tool  

bp/kb  Base pairs/ kilobase pairs 

bp:   Base pair  

BSA   Bovine serum albumin 

CCNA  cell culture cytotoxicity assay 

CDAD   Clostridium difficile Associated Disease 

CDI   Clostridium difficile Infection 

CDR  Complementarity determining regions 

CROPS:  Combined repetitive oligopeptides  

CV   Column volume  

Da  Daltons 

Deg   Degree 

DLS   Dynamic Light Scattering 

DNA:   Deoxyribonucleic acid  

dNTP:   Deoxyribonucleotide triphosphate  

DSC  Differential Scanning Calorimetry  

ds-DNA Double-stranded DNA 

EDTA   Ethylenediamine tetra-acetic acid 

ELISA  Enzyme-linked Immunosorbent assay 



xix 
 

g   Gram  

GC   Gas chromatography  

GDH  Glutamate dehydrogenase 

GO   Galactose oxidase  

GTP   Guanosine Triphosphate 

h   Hour  

HRP   Horseradish peroxidase  

Ig  Immunoglobulin 

InsP6   Inositol Hexakisphosphate 

IPTG   Isopropyl-β-D-thiogalactopyranoside  

JD-F12 (3) JD-F12 with mutations N16D, Q50E and N94D 

JD-F12 DED JD-F12 with DED mutations pre and post variable loops  

JD-F12  Ataxin Affimer binder 

Kb  Kilobase  

kDa  kilodalton  

L  Litre 

LB   Luria-Bertani Broth 

LCT   Large Clostridial Toxins 

LR  Long repeat  

m   Metre 

M   Molar 

M.W   Molecular weight 

MAb  Monoclonal clonal antibodies  

MT  Mutant 

mg   Milligram 

min   Min 

mL   Millilitre  

mM  Millimolar 

mV   Millivolt 

NAAT  Nucleic acid amplification Test 

N16D  JD-F12 with N16D point mutation 



xx 
 

N16D-N94D JD-F12 with N16D and N94D point mutations 

N16D-Q50E JD-F12 with N16D and Q50E point mutations 

N94D  JD-F12 with N94D point mutation 

NAD(H)  Nicotinamide adenine dinucleotide (reduced)  

NEB   New England biolabs  

ng  Nanogram 

nm     Nanometre 

nM   Nanomolar 

ºC   Degree celsius 

OD   Optical Density 

OD600   Optical density at 600 nm  

PAGE   Polyacrylamide gel electrophoresis 

PBS   Phosphate buffered saline  

PCR   Polymerase chain reaction 

PDB   Protein Data Bank 

PEG   Polyethylene Glycol 

PHE   Public Health England 

pM   Picomolar 

PMC   Pseudomembranous Colitis 

Q50E  JD-F12 with Q50E point mutation 

Q50E-N94D JD-F12 with Q50E and N94D point mutations 

RNA  Ribonucleic acid 

rpm  Revolutions per min 

s   Second 

SAXS   Small-Angle X-ray Scattering 

scFv   single chain variable fragment 

SDS   Sodium dodecyl sulphate 

SDS-PAGE  Sodium Dodecyl Sulphate Polyacrylamide Gel 

SEC  Size Exclusion Chromatography 

SLS  Static Light Scattering 

SOB  Super Optimal Broth 



xxi 
 

SR   Short repeat  

TAE  Tris Acetate EDTA 

TB   Terrific Broth 

TBS-T  Tris Buffered saline with Tween 

TEMED   Tetramethylenediamine 

TMB:   Trimethyl borate  

Tris-HCl Tris (hydroxymethyl) aminomethane pH adjusted with 0.2 M HCl 

TXN  Toxin 

UV/Vis  Ultraviolet-visible 

V   Volt 

WT  Wild Type 

μg  Microgram 

μL  Micro litre 

μM  Micromolar 

 

 

 



1 
 

 

 

 

 

 

 
 
 
 
 
 

Chapter 1: Introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 
 

1.0 Clostridium difficile Infection (CDI) 

It is a great concern when hospitals known as a “place of care” are also seen as a 

“place of contracting infection”. Clostridium difficile infection has become a global 

public health challenge (Lessa et al., 2012), and it is the leading cause of hospital-

acquired (nosocomial) infection and antibiotic-associated diarrhoea in developed 

countries with significant rise worldwide. Generally, when patient colonised by 

Clostridium difficile become exposed to broad-spectrum antibiotics, the normal 

microflora in the gut is altered allowing C. diff, an opportunistic bacteria to colonise 

the gut and produce its toxins, enterotoxin toxin A and cytotoxin toxin B, thereby 

leading to Clostridium difficile infection (see Figure 1.1) (Ghose, 2013). Clostridium 

difficile associated diseases range from mild diarrhoea, inflammation, to severe and 

life-threatening pseudomembranous colitis.   

 

Figure 1.1: The life cycle of Clostridium difficile infection. The development 
Clostridium difficile infection is dependent on the different stages of C. difficile life 
cycle. Following exposure to Clostridium difficile spores, perturbance of the normal 
flora in the gut leads to germination of the spores and then the eventual 
colonisation of C. difficile. Toxin producing C. difficile then produce toxin A and B 
which are the virulence factor that causes C. difficile infection symptoms such as 
diarrhea or life threatening pseudomembranous colitis. Spores are released into 
the environment, and transmission to new hosts continues the infectious cycle. 
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In the United States, Clostridium difficile is the most frequently reported 

nosocomial pathogen. According to the data obtained from US death certificates, 

Clostridium difficile infection accounted for 14,000 deaths in 2007 (Hall et al., 2012) 

which has risen to 29,000 deaths in 2011 (Lessa et al., 2015) as reported in the 

surveillance study carried out by Lessa et al. (2015) as part of the Centers for 

Disease Control and Prevention (CDC) Emerging Infections Program. In the United 

Kingdom, Clostridium difficile infection causes an estimate of 3,000 deaths per year 

(Planche et al., 2013). Increased surge in the number of cases of Clostridium difficile 

infection has led to increased financial burden. It has been estimated that $9,000 

to $13,000 is spent per case (McGlone et al., 2012, Zimlichman et al., 2013) while 

the health care cost per year is $500 million to $1.5 billion (Schroeder et al., 2014) 

in the United States. This rise in C. diff  incidence has been spurred by the outbreak 

of hypervirulent strains NAP1/ribotype 027 in 2000, and increased antibiotic 

resistance in C. diff strains.  

Further researches have  also indicated  a rise in CDI in classes of people considered 

previously as low-risk such as children and postpartum women (Freeman et al., 

2010). More recently, increases in C. diff  incidence have also been linked to the 

switch from toxin assays to more sensitive molecular testing which detects the 

toxin A and toxin B genes but do not differentiate asymptomatic colonised carriers 

from patients suffering from Clostridium difficile infection (Fong et al., 2011, 

Burnham and Carroll, 2013, Koo et al., 2014). Therefore, accurate and reliable 

diagnosis of Clostridium difficile infection is needed more than ever before.  

1.1 The bacteria 

Clostridium difficile is an anaerobic gram-positive, spore-forming bacterium that 

can be found in the gastrointestinal tracts of humans, animals and in the 

environment. It was first described in 1935 (Hall and O'Toole, 1935) as a 

component of the faecal flora in neonates. Due to the difficulty experienced with 

the isolation and culturing of this bacterium, it was initially called Bacillus difficile. 

Infact, up to 60 % - 70 % of newborn babies and infants have been shown to be 

colonised with C. difficile asymptomatically (Bolton et al., 1984), then the 

colonisation rate continues to drop off to 0 to 3 % at 3 years of age (Antonara and 
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Leber, 2016, Jangi and Lamont, 2010). Though the titre of C. difficile toxin found in 

healthy children and adults suffering from Clostridium difficile infection were 

similar (Viscidi et al., 1981), it has been proposed that lack of toxin receptors on the 

surface of infant intestinal wall, and the protective action of breast milk, play major 

roles in protecting infants from developing Clostridium difficile infection (Eglow et 

al, 1992, Cerquetti et al., 1995, Jangi and Lamont, 2010).  

C. difficile was not considered a particularly harmful pathogen until a rise in the 

number of cases of pseudomembranous colitis (PMC) in the 1970s. It was Bartlett 

et al. (1978) that identified toxin-producing C. difficile as the causative agent of 

PMC in patients receiving Clindamycin (Bartlett et al., 1978 1974, Tedesco et al., 

1974). Today, Clostridium difficile  is one of the most common causes of antibiotic-

associated diarrhoea in the world (Wong et al., 2017, Karen C and John G, 2011, 

Kyne, 2010) and a number of intestinal diseases known as C. difficile associated 

disease (CDAD) or C. difficile infections (Kyne, 2010). 

1.1.1 Risk factor 

Clostridium difficile infection is commonly referred to as a hospital-acquired 

infection because of its prevalence in hospitals and healthcare settings.  The major 

risk factors for Clostridium difficile associated diseases are antibiotic use, 

hospitalisation, and age. Exposure to antibiotics have been linked to CDI, especially 

to broad-spectrum antibiotics clindamycin, cephalosporines, penicillins and 

floroquinolones (Dingle et al., 2017, Lessa et al., 2015). The human colon contains 

1012 bacteria per gram of content (referred to as the normal gut microflora) which 

provides an important host defense against the growth and colonisation of 

pathogenic organisms such as Clostridium difficile (Owens et al., 2008a, Owens et 

al., 2008b). In C. diff infection, the use of antibiotics disrupts this defense by 

suppressing the growth of normal gut flora, leading to the overgrowth of toxigenic 

Clostridium difficile.  

Advanced age is also one of the most important risk factors for CDI.  Studies by 

Pepin et al. (2005) observed a 10 fold higher risk for developing CDI in people older 

than 65 years old compared to younger population (Pépin et al., 2005). The 
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prevalence of C. difficile spores in hospitals and care homes are higher than in the 

general community. Therefore, non-surprisingly, adult patients with long stay in 

these facilities have higher rate of colonisation (20 % -25 %), than healthy adults in 

the society (2 %-3 %) (Simor et al., 2002, McFarland et al., 1989). When combined 

with their low immunity status and use of antimicrobial agents, exposure to C. 

difficile spores, ultimately poses a great danger of acquiring C. difficile infection.  

Additionally, certain drugs have been implicated as risk factors for CDI such as 

proton pump inhibitors and hydrogen blockers (Francis et al., 2013, Tleyjeh et al., 

2012). This is because they alter the pH of the stomach by decreasing the acidity of 

the stomach which facilitates the transition of C. difficile spores from the stomach 

to the gut where it germinates into toxin-producing state (Ghose, 2013). 

1.1.2  Epidemiology 

Historically, C. difficile infection has been underestimated as a healthcare-

associated disease for these three major reasons. First, C. diff was identified as a 

normal component in the gut of healthy babies (Hall and O'Toole, 1935). Second, 

since its association as the causative agent of pseudomembranous colitis in 1978, 

there was low rate of severe disease and death reported (less than 3 %) (Rubin et 

al., 1995). Finally, by late 1980’s, research already conducted on the clinical 

features, diagnostic test, effective therapies and epidemiologic studies made many 

to believe that there is little else to be known about Clostridium difficile infection 

(Barlett, 1988, Gerding, 2009).  

The turn of the 21st century has witnessed a dramatic change in the epidemiology 

of Clostridium difficile infection due to a marked increase in incidence, severity and 

mortality. Of particular interest was the outbreak reported in Quebec, Canada in 

2003. According to the research by Pepin et al. (2005), the  incidence of CDI in 

Quebec was stable from 1991 (22.2 per 100,000) till 2002 (25.2 per 100,000) but 

rose four-fold in 2003 (92.2 per 100,000) (Pépin et al., 2005). Aside the increase in  

incidence, the greater concern was the simultaneous occurrence of outbreaks in 

major acute care hospitals in the region, then the increase in severity and mortality 

of the infection (Kelly and LaMont, 2008). The increase  incidence of CDI was 
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attributed to the outbreak of a hypervirulent strain designated restriction 

endonuclease analysis type BI, North American pulsed-field gel electrophoresis 

type 1 (NAP1), polymerase chain reaction (PCR) ribotype 027 (BI/NAP1/027) which 

accounted for 82 % of the strain isolated from outbreak in Quebec, Canada (Karen 

and John, 2011). The hypervirulent strain exhibited high level of resistance to 

floroquinolones,  an increased production of toxin A and toxin B in vitro, production 

of binary toxin and has emerged as a dominant strain globally (Ghose, 2013).  

The outbreak of increased incidence of CDI is not limited to the United States, 

several outbreaks have been reported in the England, Netherlands and across 

Europe (Kuijper et al., 2006). In the United Kingdom, C. difficile was listed as the 

primary cause of death for 499 patients in 1999, 1,998 in 2005 and 3,393 in 2006. 

Higher mortality has also been reported in Australia and Asia (Clements et al., 

2010). A closer look at the epidemiology of CDI incidence in England, when 

compared with other countries revealed that there has been a remarkable 

decrease over the past decade (Lessa et al., 2015, Ghose, 2013). This has been 

attributed to the introduction of national CDI prevention and management policies 

in 2007. Figure 1.2 below, which was taken from the most recent paper published 

in 2017 (Dingle et al., 2017), showed that the incidence of CDI in England increased 

from 1998 to 2006 then decreased drastically since 2007. 

 

Figure 1.2: Incidence of Clostridium difficile infection in England and 
fluoroquinolone prescription (Dingle et al., 2017).  
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Summarily, despite the decrease in CDI incidence in the United Kingdom, the 

changing epidemiology of C. difficile infection calls for worldwide surveillance to 

avoid a repeat of the CDI complacency witnessed in the 1980s. 

1.2 Pathogenicity 

1.2.1 Toxin A and toxin B 

During C. difficile infection, the bacteria produce two major toxins: toxin A and 

toxin B which are recognised as the major virulence factor. These two toxins are 

readily detected in faecal samples and have become the primary biomarkers used 

for the diagnosis of the infection. Due to their high molecular weight, toxin A (308 

kDa) and toxin B (270 kDa) belong to the family of large clostridial toxins (LCTs) 

alongside Clostridium sordellii lethal toxin (TcsL- 300 kDa), Clostridium sordellii 

hemorrhagic toxin (TcsH- 270 kDa) and Clostridium novyi alpha toxin (Tcnα- 250 

kDa) (Jank and Aktories, 2008).   

1.2.2 Pathogenicity Loci 

The genes encoding toxin A (tcdA) and toxin B (tcdB) are located on the 19.6 kb 

pathogenicity locus (PaLoc) (Figure 1.3) along with three other regulatory genes 

(tcdD, tcdE and tcdC) involved in toxin production in all toxigenic strains of C. 

difficile (Voth et al., 2005; Govind and Dupuy, 2012; Aubry et al., 2012). However, 

in non-toxigenic strains, the PaLoc is replaced by 115 bp of non-coding sequence 

(Rupnik et al., 2009).  

 

Figure 1.3: Schematic diagram illustrating the genetic organisation of the 
pathogenicity Loci. 
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The role of the regulatory genes in C. difficile infection has been investigated 

(Matamourous et al., 2007; Rupnik et al., 1998; Govind and Dupuy, 2012). The gene 

encoding tcdC is found upstream of tcdA gene and is regarded as the negative 

regulator for toxin production during the exponential growth phase (Voth et al., 

2005). However, in hypervirulent strains, the negative toxin regulation of tcdC was 

elucidated to contain an 18 bp deletion and a frame-shift which leads to increased 

toxin production (Matamouros et al., 2007). tcdD is located downstream of tcdB 

and it is coordinately expressed with toxin A and B. It has been suggested that tcdD 

functions as a major positive regulator for toxin A and B expression. The gene 

encoding tcdE is located in between tcdB and tcdA, and has been speculated to 

facilitate the release of toxin A and B through permeability of the cell wall of 

Clostridium difficile (Cohen et al., 2000). 

1.2.3 Structure and function of toxin A and toxin B 

Toxin A and toxin B are large single-chain proteins with four functional domains.  At 

the primary structure level, toxin A and toxin B exhibit overall sequence similarity 

of 74 % and a sequence identity of 49 % (von Eichel-Streiber et al., 1991, Voth et al., 

2005, Pruitt and Lacy, 2012). Structurally, toxin A (TcdA) and toxin B (TcdB) contain 

four distinct domains with specific functions. They are, the N-terminal catalytic 

domain, a cysteine proteinase domain, a central hydrophobic region, and the C-

terminal receptor binding domain.  

High resolution structures of the holotoxin for toxin A and B has not been solved. 

However, a low resolution three-dimensional structure for TcdA (308kDa) and TcdB 

(270 kDa) has been solved by electron microscopy, small angle x-ray scattering and 

crystallization (Pruitt et al., 2010, Ho et al., 2005, Albesa-Jové et al., 2010). Most 

recently, the crystal structure of toxin A refined to 3.25 Å resolution (residues 1-

1832) has been determined by Chumbler et al (2016). The successfully solved 

structures of toxin A domains are displayed in Figure 1.4 and that of toxin B is 

displayed in Figure 1.5. 

The function of each domain can be explained using the mode of entry and 

mechanism of action of the toxin as illustrated in Figure 1.6 (Pruitt and Lacy, 2012). 

Upon secretion from the bacteria, C. diff toxins utilise the C-terminal receptor 
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binding domain (RBD) as binding sites for cell surface receptor carbohydrate and 

enter the cell by clathrin-mediated endocytosis (Burnham and Carroll, 2013). 

Following internalisation of the toxins, the acidification of the endosome induces 

structural changes in the toxin causing the exposure of the hydrophobic region of 

the central delivery domain which forms a pore for the passage of the N-terminal 

catalytic domain. Before the release of the catalytic domain into the cytosol, the 

toxin undergoes autoproteolysis. 

 

 

Figure 1.4:  Crystal structure of Toxin A domains. Each structure is colour coded to 
correspond with the schematic representation of domain organisation. PDB code: 
4R04 for toxin A residues 1-1832 and PDB code: 2QJ6 for toxin A residues 2390-
2706 which is part of the C-terminal receptor binding domain. Images were created 
using PyMOL.  



10 
 

 

Figure 1.5: Crystal structure of the catalytic and cysteine proteinase domain of 
Toxin B. Each structure is colour coded to correspond with the schematic 
representation of domain organisation. PDB code: 2BVL for toxin B N-terminal 
catalytic domain and PDB code: 3PEE for for the cysteine proteinase domain. 
Images were created using PyMOL. 

The cysteine proteinase domain is the self-cleavage proteolytic site required for the 

release of the N-terminal enzymatic domain (Pruitt and Lacy, 2012, Voth and 

Ballard, 2005). This cleavage is initiated and dependent on the binding of host 

factor Inositol hexakisphosphate (InsP6) to the catalytic site of the cysteine 

proteinase domain resulting in the release of the biologically active toxin, a 

glucosyltransferase (63 kDa). The N-terminal domain of toxin A and B possesses the 

glucosyltransferase enzymatic activity which once released into the cytosol 

catalyses the transfer of glucose or N-acetylglucosamine residues to host cell Ras 

and Rho GTPases (Just et al., 1995) leading to their inactivation. This causes 

disruption to the interactions of host cell Ras and Rho GTPases with regulatory 

molecules which consequently interrupts vital signalling pathways. Inactivating 

GTPases compromises their integrity and leads to disorganisation of actin 

cytoskeleton and cell death ultimately. 
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Figure 1.6:    Mechanism of action of toxin A and toxin B in vivo. Toxin A or Toxin B  
binds to the surface of the cell and is internalised by receptor-mediated 
endocytosis. Acidification of the endosome triggers the formation of a pore 
through which the GTD is translocated. The GTD is released into the cytosol by 
InsP6 dependent autoproteolysis which then glucosylates the Rho family GTPases 
at the cell membrane. The image was adapted from Pruitt and Lacy (2012). 
 

1.2.4 Role of toxin A and B in pathogenicity 

Initial studies carried out by Lyerly and colleagues (Lyerly et al., 1985) on the role 

played by toxin A and toxin B in the pathogenicity of C. diff suggested that only 

strains producing toxin A are toxigenic and able to cause disease in undamaged gut, 

while those producing only toxin B are unable to independently cause disease. 

Paradoxically, twenty-four years later, Lyras and colleagues published their 

research findings (Lyras et al., 2009) that toxin B is the virulence-determining factor 

and that strains with only toxin A are avirulent. This finding put forward again the 

question of the role of toxin A and B in C. diff pathogenicity. The first study to 

ascertain the toxin roles was conducted by (Kuehne et al., 2010), wherein the 

ClosTron knockout system was used to investigate the role of each toxin. The study 

confirms that bacteria producing either toxin A or toxin B or both toxins can cause 

acute severe colitis in the hamster model of infection used; therefore, they possess 

cytotoxic activity, in vitro, which translated directly to virulence in vivo. Further 

studies (Steele et al., 2012, Carter et al., 2010) have substantiated this result. 
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1.2.5 CDT Binary toxin 

In addition to toxin A and B, approximately 6 to 12.5 % of C. difficile strains produce 

another toxin called C. difficile transferase (CDT) also known as binary toxin, which 

has been associated with high mortality rate in C. difficile infection (Barth et al., 

2004). It is called binary toxin because it is composed of two subunits, CDTa and 

CDTb, which are separately produced and secreted, but combine into a potent 

cytotoxin CDT (Burnham and Carroll, 2013). The precise role of binary toxin in 

conferring virulence remains unclear (Geric et al., 2006, Bacci et al., 2011) however, 

production of CDT has been associated with hypervirulent strains (McDonald et al., 

2005, Bella et al., 2016). One study by Lim et al (2014) described an Australian 

outbreak caused by a binary toxin-producing strain (ribotype 244) which was 

associated with higher mortality than others.  Another study by Androga et al (2015) 

reported the isolation of toxin-negative, binary toxin-positive strains (A-B-CDT+) of 

Clostridium difficile infection from a 15-year old patient with ulcerative colitis and 

severe diarrhea.  

1.3 Diagnosis of Clostridium difficile infection 

The accurate diagnosis of Clostridium difficile infection is essential for treatment, 

prevention and control, but it is critically dependent on the sensitivity and 

specificity of the diagnostic method used (Burnham and Carroll, 2013). Having a 

diagnostic test with limited sensitivity implies that some patients who are CDI 

positive will obviously be missed, and may not receive optimum treatment (Barbut 

et al., 2013). Missed CDI positive patients  would not be effectively isolated which 

leads to further spread of CDI. On the other hand, having a diagnostic test with 

limited specificity implies that there would be a high rate of false positives. This 

means that some patients who do not have CDI would be classified as CDI positive, 

and placed on unnecessary treatment.  These patients would be wrongly isolated 

and placed with genuine cases. This exposes such patients to greater risk of 

infection (Barbut et al., 2013). Highly sensitive and specific diagnostic tests are 

therefore pivotal in Clostridium difficile infection diagnosis and control. 
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To diagnose Clostridium difficile infection, patients suffering from the symptoms of 

CDI (diarrhoea, abdominal pain, and fever) are tested for the presence of the 

bacteria, C. diff toxins, and glutamate dehydrogenase enzyme (GDH) which is the 

common antigen in faecal samples, or examined by colonoscopy to demonstrate 

pseudomembranous colitis (Bauer et al., 2009, Lloyd et al., 2015). The diagnostic 

approaches employed in clinical laboratories can be classified based on the target 

detected. Some detect the presence of the bacteria, some detect the presence of 

toxins and GDH while others detect nucleic acids for genes associated with toxin 

production. These classifications are: 

1. Microbiological cultures; which include the cell culture cytotoxicity 

neutralisation assay (CCNA) and toxigenic culture of C. difficile.  

2. Enzyme immunoassays for the detection of C. difficile products in 

faecal samples such as Toxin A, Toxin B and GDH. 

3. Nucleic acid amplification tests (NAATs) which identify the toxin 

genes, GDH genes and 16S RNA, in faecal samples. 

An overview of each diagnostic method is presented diagrammatically in figure 1.7, 

and discussed in the sections below.  

 

Figure 1.7: Diagnostic methods for Clostridium difficile infection. The three types 
of diagnostics are presented. These are the microbiological cultures, enzyme 
immunoassays and molecular based assays.  
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1.3.1 Microbiological cultures 

The two cultures, cell culture cytotoxicity neutralisation assays (CCNA) and the 

toxigenic cultures remain the gold standards for the C. difficile infection diagnosis 

(Planche and Wilcox, 2011). They also serve as a reference for the evaluation of 

other diagnostic methods. 

1.3.1.1 Cell culture cytotoxicity neutralization assay (CCNA) 

The earliest diagnostic method for Clostridium difficile infection was the cell culture 

neutralisation assay (Chang et al., 1978) which was developed contemporaneously 

with the discovery of Clostridium difficile as the causative agent for C. difficile 

infection. In this assay, a stool filtrate is prepared and applied onto sensitive tissue 

culture cells and incubated for 24-48 h. Different cell lines such as human fibroblast 

cells, Vero cells, MRC-5 and Hep2 cells have been used for this purpose (Burnham 

and Carroll, 2013). Following incubation, cells are observed for cell rounding which 

is characteristic of the toxin induced cytopathic effect (CPE). To verify that the 

cytopathic effect was indeed caused by C. difficile toxins and not by nonspecific 

toxicity, a neutralisation assay is performed. In the neutralisation assay, Clostridium 

Sordellii antitoxin or Clostridium difficile antitoxin is added. The absence of the 

cytopathic effect in the cell cultures provides evidence that the cellular changes 

were caused by C. difficile toxin. 

Cell culture cytotoxicity neutralisation assays (CCNA) detect toxin B primarily, 

although it has been reported that toxin A is also detected to some extent (Lyerly 

et al., 1988). It can detect faecal toxin at 1 to 10 pg/ mL and is still recognised as 

the gold standard with sensitivity and specificity of 98 % and 99 % respectively. 

However, the outbreak of hypervirulent strains and researches that compared the 

sensitivity and specificity of CCNA with nucleic acid amplification tests concluded 

that the overall sensitivity and specificity of CCNA is 68-86 % and 97-100 % 

respectively. Thus, challenging its use as an acceptable gold standard (Cohen et al., 

2010, Barbut et al., 2009, Eastwood et al., 2009, de Jong et al., 2012).  

The sensitivity of CCNA is affected by several factors. Clostridium difficile toxins are 

temperature sensitive and can degrade in the specimen, so improper storage of 



15 
 

faecal sample can lead to false negative results. As described above, different cell 

lines have been used to perform CCNA which would result in varying sensitivity of 

the assay.  In addition, slow turnaround time, and the lack of a generally accepted 

standardised procedure has limited the use of CCNA as a routine test.  

1.3.1.2 Toxigenic culture (TC) 

The toxigenic culture method was developed after CCNA for the detection of C. 

difficile in late 1979 (Chang et al., 1979, George et al, 1979). Toxigenic culture 

comprises an anaerobic culture of C. difficile bacteria from faecal samples, and it 

detects the presence of toxigenic bacteria rather than the toxin itself. This means 

that the bacteria Clostridium difficile is recovered from spores in faecal samples 

and then tested for toxin-producing ability.  

For the assay, C. difficile spores are enriched by subjecting faecal samples to 

alcohol shock which removes vegetative bacteria that may overgrow C. difficile 

(Riley et al., 1987).  An enriched specimen is then cultured onto an anaerobic 

culture medium. Media used for this purpose include cycloserine, cefoxitin and 

fructose agar (CCFA), or cefoxitin cycloserine egg yolk agar (CCEY). Sometimes 

lysozyme and taurocholate are added to the medium to enhance spore 

germination. The culture is then incubated at least for 48 h and could be held up to 

7 days, colonies are examined and typical C. difficile colonies are identified and 

isolated. Once confirmed as C. difficile, they are tested for toxin-producing ability. C. 

difficile isolates are grown in pre-reduced brain heart infusion broth, then the 

culture supernatant would be tested for cytopathic effect of toxin B using cell 

culture cytotoxicity neutralization assay. Alternatively, enzyme immunoassays are 

used to detect the presence of toxin in culture supernatant. 

Since toxigenic culture is cultured from C. difficile spores to identify toxigenic 

strains, it has a very high sensitivity (94 %-100 %) and specificity (99 %). When the 

sensitivity of cell culture cytotoxicity neutralisation assays (CCNA) was compared 

with toxigenic culture (TC), CCNA has a sensitivity of 75 %-85 % (Barbut et al., 2009; 

Eastwood et al., 2009; Kelly et al., 1987; Delmee et al., 2005). For this reason, 
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toxigenic culture has remained one of the two gold standards for the validation of 

new diagnostic methods and very importantly in epidemiological studies. 

Although toxigenic assay is very sensitive (94 %-100 %) and specific (99 %) for the 

detection of toxigenic strains of C. diff, it lacks the specificity to differentiate 

between patients with CDI or merely colonised because acquisition of toxigenic C. 

diff strain alone does not diagnose CDI. A high rate of false positive for TC has been 

reported in asymptomatic carriers (C. diff colonised), infants and in patients who 

were recently exposed to antibiotics (Su et al., 2013). Besides, toxigenic culture is 

time-consuming, taking 2-7 days, is laborious and does not have a standardised 

protocol. Also, toxigenic culture requires specialised facilities. Based on these 

limitations, toxigenic culture is too slow, and lacks specificity to be used in routine 

assays for patient management.  

1.3.2  Enzyme immunoassays 

Due to the above limitations associated with cultures, enzyme immunoassays (its 

principle and types are described in section 1.4) were developed to increase the 

speed of diagnosis. Enzyme immunoassays for CDI diagnosis use antibodies for the 

detection of biomarkers of Clostridium difficile infection. A biomarker is a 

physiological or pathological measurable object, which is related to a particular 

disease, and any change, increase or decrease, in concentration can be indicative of 

a particular disease (WHO, 2001). For Clostridium difficile infection diagnosis, the 

three validated biomarkers used as targets in immunoassays are toxin A, toxin B, 

and glutamate dehydrogenase. Enzyme immunoassays are widely in use for clinical 

diagnosis because of cost effectiveness, rapid turnaround time and ease of use.  

1.3.2.1 GDH enzyme immunoassays 

Glutamate dehydrogenase (GDH) is a metabolic enzyme that is encoded by the 

gluD gene. In Clostridium difficile, GDH is produced at high levels in both toxigenic 

and non-toxigenic strains and therefore referred to as C. difficile common antigen 

(Carroll, 2011, Delmee et al., 2005). This makes GDH a useful screening biomarker 

to rule out the presence of C. difficile during clinical diagnosis. Carman et al. (2012) 

evaluated how conserved GDH is in 77 different ribotypes from both toxigenic and 
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non-toxigenic strains from around the world. From the study (Carman et al., 2012), 

they found out that all the strains contained gluD, the gene encoding GDH, with 

almost identical protein sequences. Similarly, another study by Goldernberg et al., 

(2011) found no significant difference when GDH was assayed from different 

ribotypes.  

Consistently, studies have shown that GDH assays possess high sensitivity (80 % - 

100 %) and a high negative predictive value (NPV) when used as a screening test. 

This implies that patients with a negative screening test result truly don't have the 

disease, regardless of the assay type or reference method used (Planche et al., 

2013, Quinn et al., 2010, Shetty et al., 2011).  GDH assays are available in microwell 

enzyme immunoassay format, for example C. diff CheK-60, and C. diff Quik Chek, 

and in the lateral flow immnuo-chromatographic format such as C. diff Quik Chek 

complete. They provide a rapid turnaround time,  are inexpensive and require 

minimal hands-on time. The sensitivity of GDH assays makes them attractive in 

diagnostic algorithms (see section 1.3.4).  

1.3.2.2 Toxin A and toxin B immunoassays 

Toxin immunoassays use monoclonal or polyclonal antibodies raised against toxin A 

and/ or B for the diagnosis of CDI. In 1983, Lyerly and colleagues (Lyerly et al, 1983) 

developed the first toxin enzyme immunoassay for the detection of toxin A. The 

toxin immunoassay was favoured over culture for CDI diagnosis because of its 

inherent advantages over culture (cheap, quick, and easy to use). However, in the 

early 1990s, the latex agglutination test developed for toxin A was confirmed to be 

detecting a common antigen for Clostridium difficile- glutamate dehydrogenase 

(GDH), and not toxin A (Lyerly et al., 1991, Anderson et al., 1993). Toxin A specific 

immunoassays were reintroduced and widely used until pathogenic C. difficile 

strains which were toxin A-B+ (producing only toxin B) were identified and 

associated with outbreaks in 2000 because these strains were missed by the toxin 

A immunoassays (Alfa et al., 2000, Kim et al., 2008, Shin et al., 2008). Enzyme 

immunoassays for toxin A and B soon replaced immunoassays for toxin A only. 

However, production of monoclonal antibodies against toxin B was challenging 

(Deng et al., 2003). Therefore, as described in more details in Chapter 5, >85 % of 
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commercially available toxin immunoassays utilise polyclonal antibodies as 

capturing molecules for toxin B which limits their sensitivity. Toxin assays are 

available in either microwell EIA format or lateral flow immune-chromatographic 

format.  

For the microwell format, the capturing antibody (either monoclonal or polyclonal) 

is coated onto the walls of the microwell. Faecal samples diluted in buffers 

provided are added together with the conjugate (detection antibody conjugated to 

an enzyme). Enzyme substrates are added and optical density measured after an 

incubation period. Toxin immunoassays are easily performed and results are 

available within an hour and are easily interpreted which makes them widely used 

as a routine diagnostic test for CDI.  However, the sensitivity of toxin 

immunoassays has been reported to be unsatisfactorily low ranging from 40 % to 

99 % when compared to the two gold standards (CCNA and TC) or nucleic acid 

amplification tests (NAATs). It has been concluded that they cannot be used as 

stand-alone diagnostic for CDI due to poor sensitivity. Table 1.1 below gives a 

summary of some papers that evaluated the sensitivity and specificity of toxin EIA. 

Table 1.1: Comparison of sensitivity and specificity of toxin EIA 

Reference Toxin enzyme immunoassay Gold 

standard  

Sensitivity 

(%) 

Specificity 

(%) 

van den Berg et al., 2005 Meridian Premier Toxin A & B CCNA 96.8 94.8 

Chapin et al., 2011 Meridian Premier Toxin A & B  NAATs 42.3 100 

Eastwood et al., 2009 Meridian Premier Toxin A & B CCNA 91.7 97.1 

Eastwood et al., 2009 Techlab Tox A/B Quik Chek CCNA 84.3 98.6 

Eastwood et al., 2009 Techlab Tox A/B Quik Chek TC 74.4 98.9 

Eastwood et al., 2009 Remel ProSpecT TC 81.6 93.3 

Eastwood et al., 2009 Remel ProSpecT CCNA 89.8 92.6 

Novak-Weekley et al., 2010 Meridian Premier Toxin A & B TC 58.3 94.7 

Sloan et al., 2008 Meridian Premier Toxin A & B TC 48 98 

Sloan et al., 2008 Immunocard Toxin A & B TC 48 99 

Sloan et al., 2008 Remel Xpect C. difficile A/B TC 48 84 

 

Based on the evaluation of the sensitivity and specificity of the toxin immunoassay, 

a common trend can be observed. The sensitivity of the assay depends on the  gold 
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standard used. When CCNA test was used as the gold standard, the sensitivity 

ranged from 84.3 % - 96.8 %, but when toxigenic culture (TC) or NAATs was used, 

the sensitivity fell to 42.3 % - 81.6 %. The main reason for this disparity in 

sensitivity is because the two gold standards detect different targets. Planche and 

Wilcox (2011) in their paper argued that when evaluating the sensitivity of a 

diagnostic method, a gold standard that detects the same target must be used 

(Planche and Wilcox, 2011). This means that since CCNA detects the presence of 

toxins in faecal samples, it represents a true standard for toxin immunoassays and 

not toxigenic culture which only identifies toxigenic strains of C. difficile.  

Detection of toxins in faecal samples is critical for the diagnosis of C. difficile, 

however, use of rapid, cheap and easy-to-use toxin immunoassays as a stand-alone 

test have been limited by their low sensitivity (Cohen et al., 2010, Eastwood et al., 

2009, Carroll, 2011, Crobach et al., 2009). In 2012, Polage and his colleagues 

published a paper to evaluate the clinical significance of lower sensitivity of toxin 

immunoassays on the diagnosis of CDI (Polage et al., 2012). In their paper, they 

reviewed the chart of patients at the Davis Medical Centre, University of California, 

who had a toxin testing between a 4-year period (January 2005 and December 

2009). A total of 7,076 patients were included, 625 patients were toxin-positive 

while 6,121 were toxin-negative. After reviewing the chart, only 1/6,121 of the 

toxin-negative patients developed pseudomembranous colitis (PMC) and a small 

proportion of the total population (5.3 %) received treatment regardless of the 

toxin result. This result suggests that though toxin immunoassays have reduced 

sensitivity, the clinical significance of this was minimal because it has a good 

correlation with patients truly suffering from CDI. This has led the landscape of CDI 

diagnosis to be shifted in recent years to the use of Nucleic Acid Amplification Tests 

(NAATs). 

1.3.3 Nucleic Acid Amplification tests (NAATs). 

Nucleic acid amplification tests (NAATs) are molecular methods for the detection of 

Clostridium difficile toxin genes but not the presence of toxin in faecal samples. 

These assays use conventional PCR for the identification of tcdA, tcdB and 16S 

rRNA genes. As early as the 1990s, the use of NAATs was described in the literature. 
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However, the FDA approved the first NAATs for C. difficile detection, BD GeneOhm 

C. diff assay (BD diagnostics Inc., Sparks, MD) in 2009. Since then, NAATs that 

detect toxin A, toxin B genes have been commercially available (Swindells et al., 

2010). Molecular testing for the detection of toxigenic organisms are increasingly 

employed for the diagnosis of Clostridium difficile infection in many institutions 

(especially in the US), because of its superior sensitivity and specificity (90-100 %), 

and rapid turnaround time (<3 h) compared to other toxin immunoassays and 

microbiological cultures.  

Since NAATs detects only the gene encoding toxin A and B, thereby identifying 

toxigenic strains capable of producing these toxins regardless of toxin production, a 

few questions have been raised. 

(i) What is the clinical significance of detecting toxigenic strains and not 

the actual toxins, and its impact on the CDI diagnosis, epidemiology and 

treatment? 

(ii) Will strains emerge that are not detected by a particular assay? 

(iii) Can NAATs be used as a stand-alone test? 

Several studies have repeatedly reported that NAAT lacks specificity since it cannot 

distinguish infected patients from asymptomatic C. diff colonised patients (Song et 

al., 2015, Polage et al., 2015, Burnham and Carroll, 2013, Fong et al., 2011, Koo et 

al., 2014, Gould and McDonald, 2008). Since the percentage of patients colonised 

with toxigenic strain is 5 to 10 times higher than patients suffering from CDI, 

testing asymptomatic carriers through NAATs, whose cause of diarrhea is not C. 

difficile related would lead to them been diagnosed with CDI (Polage et al., 2015). 

In fact, up to 50 % of elderly patients who are residents in care homes carry 

toxigenic strains. 

Of interest, Polage et al., (2015) compared the history of patients who are PCR-

positive with those who are toxin negative, to investigate if PCR-positve/toxin- 

negative patients need treatment. In this study, 1416 hospitalised adults at the 

University of California Davis Medical centre between December 2010 and October 

2012 were included. Patients were categorised as tox+/PCR+ (131), tox-/PCR+ (162) 



21 
 

and tox-/PCR- (1123) which implied that 55.3 % (162/293) of patients who had PCR 

positive results did not produce toxin. Patients in the tox-/PCR+ group had 

outcome comparable to the tox-/PCR- group. Only one death (0.6 %) in the tox-

/PCR+ group was attributed to be CDI related while 18 out of 19 (94.7 %) deaths in 

the tox+/PCR+ group were CDI related. This study offered compelling evidence that 

up to half of patients diagnosed using NAATs are likely to be asymptomatically 

colonised with C. difficile, leading to overdiagnosis of CDI and undue exposure of 

such patients to antibiotics, and unnecessary treatments. Switching to molecular 

testing platforms has contributed to the higher  incidence of CDI reported in the US 

(Moehring et al., 2013). Although NAATs have very high sensitivity and specificity, 

recommendations from authors and official guidelines in the UK (Planche et al., 

2013, Department of Health, 2012) is that NAATs should not be used as a stand-

alone diagnostic test for Clostridium difficile infection but diagnosis must be 

defined with a positive toxin test. 

1.3.4 Multiple algorithms for C. difficile diagnosis 

With the complexity surrounding the diagnostic methods discussed in the above 

sections, clinical practice guidelines have been put forward by the Society for 

Healthcare Epidemiology of America (SHEA), the Infectious Diseases Society of 

America (IDSA) (Cohen et al., 2010), the American College of Gastroenterology 

(ACG) (Surawicz et al., 2013), and the United Kingdom National Health Service (NHS) 

(Ticehurst et al., 2006) to suggest diagnostic approaches for C. difficile infection. 

Since toxin immunoassays cannot be used as stand-alone test, a combination of 

testing methods is used as part of multiple testing algorithms. The two diagnostic 

algorithms currently in use are illustrated below in Figure 1.8. 
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Figure 1.8: The two algorithms for C. difficile testing. Algorithm one includes the 
use of GDH as a screening method in two or three-step algorithm, while Algorithm 
2 uses NAATs as either a standalone test or part of two step algorithm. 

The use of GDH immunoassay as a screening method, followed by a confirmatory 

test to test for the presence of toxin in clinical samples (either CCNA and/or toxin 

immunoassays) in two or three-step algorithm has been the acceptable algorithm 

in the UK (Wilcox, 2012).  In the US, clinical laboratories are switching to the use of 

NAATs as stand-alone or in combination with either toxin immunoassays or 

toxigenic cultures (Polage et al., 2015). In the words of Avila et al., (2016), 

“Laboratory testing for CDI is an exciting and rapid changing field: however, it 

remains an area of confusion”. As described in the sections above, CDI diagnosis 

has no generally acceptable gold standard and no single best test that is cheap, 

sensitive, specific, fast and in a user-friendly format. With the complexity 

surrounding the clinical diagnosis of C. difficile infection, some salient facts remain 

 Detection of the physical toxin in faecal sample is required for clinical 

diagnosis. 

 Toxin immunoassays represent the best potential platform for toxin 

detection however it has limited sensitivity. 
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One of the areas less explored in C. difficile infection diagnosis is how to improve 

the sensitivity of toxin immunoassays. Therefore, this forms one of the main 

objectives of this thesis;  to carry out experiments on how to improve the 

sensitivity of toxin immunoassays. A brief overview of enzyme immunoassays and 

antibodies is given in section 1.4 and 1.5 respectively. 

1.4 Enzyme-Linked immuno-sorbent assay (ELISA) 

Enzyme-linked immunosorbent Assay (ELISA) is an immunoassay technique that is 

widely used for the detection and quantification of specific target such as peptides, 

proteins, hormones and antibodies in a sample. Before the invention of ELISA, 

radioimmunoassay (RIA) was the only method for detecting and quantifying various 

biological molecules (Yalow and Berson, 1960). However, the use of radioactivity 

became a major safety concerns and so RIA techniques were modified by the 

replacement of the radioactive molecules with enzymes, giving rise to the widely 

used Enzyme-linked immunosorbent assay (Gan and Patel, 2013).  

The format of ELISA was developed independently in 1971 by two research groups: 

Peter Perlmann and Eva Engvall at Stockholm University (Engvall and Perlmann, 

1971), and the Dutch research group of Anton Schuurs and Bauke van Weemen 

(Van Weemen and Schuurs, 1971). van Weemen and Schuurs described the 

quantification of human chorionic gonadotrophin (HCG) in female patients’ 

samples. Here, they conjugated the target (HCG) with the enzyme horseradish 

peroxidase followed by the addition of the antibody bound to a molecule that 

would change the colour of a substrate when oxidised by horseradish peroxidase. 

They termed their assay enzyme immunoassay (EIA). In Engvall’s paper, antibody 

conjugated to the enzyme alkaline phosphatase was used for the successful 

quantification of immunoglobulin. Therefore, they named the assay enzyme-linked 

immunosorbent assay (ELISA). 

1.4.1 Principle and protocol of ELISA 

The principle of ELISA is based on the affinity and specificity of antibodies to the 

selected target (antigen) and the use of enzyme systems as the reporter label to 

detect the presence of the target of interest. The target is immobilised directly 
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onto the surface of a microtitre plate or through capture antibodies already coated 

onto the plate for target binding, then a secondary, enzyme-coupled antibody is 

introduced to detect the captured antigen (Figure 1.9). Chromogenic enzyme 

substrates are added which yields visible colour change or fluorescence thereby 

indicating the presence of the antigen (Hornbeck, 2001). The major components of 

an ELISA are antigen, antibodies (primary or secondary) and the enzyme. There are 

different types of ELISA format based on the arrangement of the target and the 

antibodies, these are described below. 

 

 

 

 

Figure 1.9:  Schematic representation of the types of ELISA. The protocol for each 
type of ELISA (a) Direct ELISA (b) Indirect ELISA (c) Sandwich ELISA and (d) 
Competition ELISA is illustrated. 
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1.4.2 Types of ELISA  

1.4.2.1 Direct ELISA  

In direct ELISA also referred to as antigen screening, the target (antigen) is 

adsorbed directly onto the surface of the plate and detected by an enzyme-linked 

antibody (Figure 1.9a). With the addition of chromogenic enzyme substrate, a 

visible colour change is obtained and its intensity can be measured 

spectrophotometrically (Engvall, 2010). It has been successfully used for the 

quantification of high molecular weight antigens (Xu et al., 2006), and the 

detection of non-structural 1 (NS1) protein, and for the diagnosis of west Nile virus 

infection (Saxena et al., 2013). Direct ELISA is the simplest form of ELISA and faster 

to perform as it contains fewer steps. However, direct ELISA has some 

disadvantages. Immobilisation of antigen is non-specific which can lead to 

unavailability of the epitope on the target. Also, labelling the primary antibodies for 

each ELISA is expensive and time-consuming. The signal amplification obtained 

from direct ELISA is minimal compared to other formats of ELISA.  

1.4.2.2 Indirect ELISA 

For the indirect ELISA, the antigen of interest is coated on the surface of the plate, 

and captured by an unlabelled primary antibody. The complex is then detected by 

the introduction of enzyme-conjugated secondary antibody raised against the 

primary antibody (Figure 1.9b). This method is particularly useful when it is difficult 

to get an enzyme-linked primary antibody specific for the target of interest and has 

been used more commonly in endocrinology (Lin et al., 2015). Advantages of the 

indirect format of ELISA include: flexibility and versatility since different primary 

antibody can be used with the same labelled secondary antibody, which also saves 

cost. There is also increased sensitivity since more than one labelled antibody is 

bound per primary antibody. The major limitation of indirect ELISA is potential 

cross-reactivity of the antigen to the secondary antibody which might cause high 

non-specific background signals.  
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1.4.2.3 Sandwich ELISA 

Sandwich ELISA was developed by Kato and his colleagues (Kato et al., 1977). In this 

assay, the antigen to be detected or quantified is sandwiched between two 

antibodies - the capture antibody and the detection antibody (Figure 1.9c). The 

capture antibody is immobilised onto the surface of the plate by direct adsorption 

or oriented immobilisation. When a sample containing the antigen of interest is 

added, the antigen gets bound to the capture antibody, and non-bound antigens 

are washed off. Addition of enzyme-conjugated detection antibody leads to the 

detection of the antigen–antibody complex. Sandwich ELISA has been the major 

format used in diagnostic kits for clinical and research purposes (Kragstrup et al., 

2008). One major advantage of sandwich ELISA is that the antigen does not have to 

be purified, but can be detected even in complex samples such as blood samples 

and faecal samples (Park et al., 2013). Also, the use of both capture and detection 

antibody in sandwich ELISA makes it 2 to 5 times more sensitive and specific than 

direct or indirect ELISA. The major disadvantage of sandwich ELISA is the 

requirement of a pair of antibodies that bind to non-overlapping epitope on the 

target molecule.  

1.4.2.4 Competition ELISA 

Competition ELISA is used to measure the concentration of the target by detecting 

interferences in an expected signal output. In this assay (Figure 1.9d), sample 

antigen and a reference (or inhibitor) compete for binding to a known amount of 

labelled antibody. Therefore, the more the reference, the less free antibody will be 

available to bind the immobilised antigen, and the less the signal obtained. Though 

Competitive ELISA is the most complex of the types of ELISA, however it is useful 

for the identification of antibodies binding to non-overlapping epitopes and can be 

based on either direct, indirect or sandwich ELISA. 

1.5 Antibodies, use and limitations 

1.5.1  Structures 

The discovery of antitoxins (later dubbed antibodies) can be dated to 1890 when 

Von Behring and Kitasato reported the existence of an agent in the blood that 
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could neutralise diphtheria toxin (Von Behring and Kitasato 1890). Antibodies also 

called immunoglobulins are structurally complex proteins produced by the humoral 

immune system in the higher organism (Schroeder Jr and Cavacini, 2010). They 

function to identify and destroy toxins and invading pathogens that are harmful to 

the organism.  

Structurally, antibodies (150 kDa) comprise of two identical light chains (25 kDa 

each) and two identical heavy chains (50 kDa each). Each light chain pairs with a 

heavy chain, and each heavy chain pair with another heavy chain, and is held 

together by disulphide bonds to form a Y-shape as depicted in Figure 1.6 below. 

Each of the chains is divided into two regions, the variable regions and the constant 

regions. The light chain consists of one variable region VL and one constant region 

CL while the heavy chain consists of one variable region VH and three constant 

regions CH1, CH2 and CH3. When digested with papain, antibodies are cleaved into 

two fragments, the antigen binding fragment (Fab) and the constant region 

fragment (Fc).   

 

Figure 1.10: The structure of an antibody protein. The two identical heavy chains 
are connected by disulphide linkages. The antigen-combining site is composed of 
the variable regions (purple) of the heavy and light chains, which contains the 
hypervariable region (light blue) whereas the effector site Fc region of the antibody 
controls whether it agglutinates antigens, binds to macrophages, or enters mucous 
secretions. 

The variable regions of the light and heavy chain is made of the first 110 amino acid 

residues  of the amino terminal region are called the Complementarity Determining 
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Regions (CDR) which forms the antigen (Ag) binding site  (Wang et al., 2007). To 

achieve antibody diversity,  the three gene segments of the CDR called the Variable, 

Diversity, and Joining (V,D,J) segments are recombined to bind  different target 

with great affinity and specificity through germ line gene recombination and 

somatic hypermutation (Jung et al., 2006). Through this recombination, human can 

make at least 1015 different antibodies, each with unique antigen specificity. 

Antibody diversity has made them very useful in the field of diagnostics as 

biological recognition molecules against nucleic acids, peptides, proteins, or 

carbohydrates etc.  

Polyclonal and monoclonal antibodies 

Antibodies are produced by the B-lymphocytes of the immune system in response 

to the presence of an antigen. Traditionally, when an animal is immunised with an 

antigen, several different B-lymphocyte clones produce a pool of antibodies, which 

is referred to as polyclonal antibody, that can be isolated from the sera (Stahl et al., 

2013). Polyclonal antibodies recognise the same target but binds different epitopes 

(antibody binding site) on the target. In addition to their ability to detect multiple 

epitopes, they can be generated rapidly with fewer technicalities involved. In 

assays such as sandwich ELISA, polyclonal antibodies used as capture antibody 

offer high sensitivity for detecting targets that are present even in low quantities 

since they can bind multiple epitopes. However, the use of polyclonal antibodies in 

assays has limitations. The major ones are: variability between different batches of 

polyclonal antibody produced in the same animal at different times. Each 

polyclonal serum produced is unique and not reproducible even when produced 

from the same animal. Also, since they recognise multiple epitopes on the same 

target, this heterogeneous mixture has higher potential for cross-reactivity with 

biomolecules containing similar epitopes which limits specificity in diagnostic 

assays.  

These limitations were overcome with the development of monoclonal antibodies 

by Köhler and Milstein in  1975 (Köhler and Milstein, 1975) through the hybridoma 

technology. A monoclonal antibody represents a specific antibody produced from a 

single antibody secreting B-cells and therefore only binds one unique epitope. In 
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the hybridoma technology, Köhler and Milstein fused a single antibody secreting B-

cells to immortal myeloma cells to produce a hybridoma cell capable of continuous 

production of a specific monoclonal antibody (mAb) (Kohler and Milstein, 1975). 

Monoclonal antibodies can be produced in large quantities and there is batch to 

batch homogeneity and consistency. Since they bind with high specificity to a single 

epitope, there is a reduced probability of cross-reactivity seen with polyclonal 

antibodies. However, monoclonal antibodies also have limitations. They are 

significantly more expensive to produce and time consuming. Their sensitivity is 

affected with small changes in the epitope of the target molecule. They also have 

more demanding storage conditions as they are sensitive to pH and buffer 

conditions.  

Summarily, production of monoclonal antibodies has been useful especially in 

diagnostic applications that require the production of unique antibody to a specific 

epitope in large quantities.  

1.5.2  Recombinant antibodies and fragments 

To overcome immunogenicity experienced when antibodies derived from murine 

sources are administered, scientists sought to humanise the monoclonal antibodies 

(Roque et al., 2004). This allows the generation of humanised chimeric antibodies 

containing 60-70 % of human antibody sequence and the antigen specificity from 

murine construct. Chimeric antibodies have been developed as therapeutics with 

rare adverse responses reported (van dijk, 2001, Brekke and Sandlie, 2003). 

Advances have been made in the development of highly humanised antibody 

through CDR grafting (Jones et al., 1986) in which sequences for the human CDR 

are replaced with those from the original murine antibody (Figure 1.11).  
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Figure 1.11:  Antibody and their derivatives. Adapted from Chames et al (Chames 
et al., 2009). (a) Full-length antibodies from murine (red) and human (green), using 
light colours for light chain and dark colours for heavy chains. (b) The improvement 
on immunogenicity of monoclonal murine antibodies gave rise to chimeric 
antibody (human antibody with the murine variable region) and humanised 
antibodies (human antibody with murine hypervariable region grafting). (c) The 
derived fragments which are engineered to maintain the affinity and specificity of 
full-length antibody but are smaller in size, examples include the antigen-binding 
fragment (Fab) and single chain variable fragment (scFv), minibody and diabody. 

Through antibody protein engineering, fragments of antibodies such as Fab and 

scFv have been developed. Fab fragment 55 kDa (consisting of the light chains, 

variable region of the heavy chain and CH1 of the heavy chain) retained antigen-

binding activity but lack an effector function. They can be used as alternative to full 

length antibodies because they are monovalent and are rapidly cleared from the 

body. scFv fragments (single-chain variable fragments) 28 kDa, which is the variable 

domains of the heavy and light chains linked by a flexible linker (Bird et al., 1988), 

has also been in use as attractive alternative to full-size antibodies. A diagrammatic 

flow of the generations of antibodies and some of their derivatives is given in 

Figure 1.11.  
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1.5.3 Uses of antibodies  

Development of the hybridoma technology has greatly enhanced the use of 

antibodies alongside with advancement in antibody protein engineering such as 

chimerisation of antibodies (Morrison et al., 1984), development of humanised 

antibodies (Jones et al., 1986), phage display (McCafferty et al., 1990), as well as 

the  discovery of single chain antibodies in camelids (Skerra, 2000, Grönwall and 

Ståhl, 2009, Hamerscasterman et al., 1993).  About 100,000 antibodies have been 

used in research and diagnostics and they are available commercially , more than 

30 antibody-based products have been approved for use while over 240 antibodies 

aimed to be used therapeutically are in clinical development (Reichert, 2010, Beck 

et al., 2008).  

The high sensitivity, specificity, and binding versatility of antibodies have made 

them valuable reagents in various diagnostic applications. Monoclonal antibodies 

have been developed for the diagnosis of animal viruses such as rotavirus, bovine 

herpes virus, Trichomonas vaginalis (Siddiqui, 2010); for the detection of mouse 

lymphocyte surface glycoprotein (Trowbridge, 1978).  Antibodies have remained 

the mainstream of molecular recognition elements against different targets in FDA 

approved diagnostic kits for use in clinical laboratories. However, despite the many 

uses of antibodies in therapeutic and diagnostic approaches, there are limitations 

with antibody use.  

1.5.3 Limitations in the use of antibodies for diagnostic application 

1.5.3.1  Structural Limitations 

Antibodies are relatively large multimeric proteins (150 kDa).  Structurally, they are 

made up of complex multiple domains that require disulphide bonds and post-

translational modification such as glycosylation, for stability (Banta et al., 2013). 

The heavy chains and light chains are held by disulphide bridges which make it 

difficult to be expressed in the reducing cytosol of microbial expression hosts 

(Frenzel et al., 2013). Consequently, the expression must be directed to the 

periplasmic space of prokaryotes, which leads to poor yield. 



32 
 

1.5.3.2   Production Limitations 

Antibodies are often highly sensitive to elevated temperature, become susceptible 

to irreversible denaturation, prone to aggregation, therefore, limiting their shelf 

life.  The behaviour of antibodies seems to vary, even though they have similar 

structures leading to batch-to-batch variation (Wang et al., 2007). In addition to 

these, monoclonal antibodies may take up to six months to produce and they are 

expensive. 

1.5.3.3   Patent Issues 

Biopharmaceutical companies, who have successfully produced recombinant 

antibodies, have protected intellectual property rights which makes the 

commercialisation of antibody derived products complicated (Stahl et al., 2013).   

1.6     Antibody mimetics: Scaffold proteins 

To overcome the limitations identified in the structure and function of antibodies 

and their derivatives,  naturally occurring binding proteins of non-immunoglobulin 

origin have been tested as backbone for affinity molecules. These affinity 

molecules must possess comparable sensitivity, specificity, mimicking the 

molecular recognition of antibodies, and better properties but overcoming the 

limitations identified in antibodies (Skerra, 2007). To be used as an alternative to 

antibody, the binding protein must meet most of the criteria listed below as 

compiled from various papers (Binz et al., 2005, Caravella and Lugovskoy, 2010, 

Carter, 2011, Hey et al., 2005, Löfblom et al., 2011). 

1.6.1  Characteristics of alternative binding proteins. 

Artificial binding proteins are in general small (less than 200 amino acids), 

monomeric, stable and easy to express in E. coli. Most do not contain cysteines, 

enabling the introduction of a cysteine for site-specific coupling of biotin, 

fluorescent labels or polyethylene glycol (PEG) to enhance their utility or stability. 

They are thermostable, they have a high level of expression in microbial host 

leading to high yield in bacterial system. They exhibit high sensitivity and specificity 

to targets, have a good method for selection and show robustness. Artificial 

binding proteins tolerate diversification, and for use as therapeutics, they should 
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have good Immunogenicity record, no undesired side effect, extended plasma half-

life, and ease of tissue penetration.  

In 1992, the first report of alternative binding protein from non-antibody sources 

was reported by Roberts et al (Roberts et al., 1992), they used the Bovine (or basic) 

pancreatic trypsin inhibitor, BPTI, a Kunitz-type protease inhibitor as a scaffold to 

select binders against human neutrophil elastase target protein. Since then,  more 

than 50 novel non-antibody protein scaffolds have been developed (Wurch et al., 

2008) but only a handful have proved robust. These alternative antibody binding 

proteins (see section 1.6.4) have proven to be viable solutions to some of the 

roadblocks faced by antibodies thus triggering a paradigm shift in so far as 

antibodies are no longer considered as the unique and universal class of receptor 

proteins in biotechnology and medicine (Gebauer and Skerra, 2009, Skerra, 2003). 

They offer structurally diverse frameworks as starting points for engineering. Steps 

involved in the engineering of non-antibody binding proteins are discussed in the 

section 1.6.4. 

Binding proteins that are non-immunoglobulin in origin have been called by 

different terminologies such as affinity protein (Grönwall et al., 2009), antibody 

mimetics (Baloch et al., 2016), alternative scaffolds (Stahl et al., 2012), scaffold 

proteins (Hosse et al., 2006) and non-antibody binding proteins (Löfblom et al., 

2011). These names have been used interchangeably in this thesis. 

1.6.2 Protein engineering of alternative binding proteins 

Understanding the relationship between protein sequences, structure and their 

functions and thereby improving these properties forms the core of protein 

engineering (Banta et al., 2013). It involves identifying residues in a protein that are 

responsible for its catalytic activities, stability when subjected to high temperatures, 

binding capacity and other functional properties. This insight has helped protein 

engineers to develop new mutant proteins with enhanced or even novel properties, 

desired physical and chemical properties of the proteins which do not occur in 

nature and enzymes with improved thermostability, enzymatic activities and 

folding properties (Lehmann et al., 2000, Jackel et al., 2008). For engineering an 
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alternative binding protein, the major steps involved are described schematically in 

Figure 1.12 

 

Figure 1.12:  Steps in engineering new protein scaffold. The process of designing 
new protein scaffold begins with the selection of a scaffold protein, then the 
optimisation of the scaffold, followed by the generation of a diverse library using a 
suitable display system. From this library, screening is carried out for the selection 
of binders with desired phenotype. To achieve affinity maturation, library of the 
selected binder can be generated by adding further diversification through PCR. 

1.6.2.1 Scaffold selection and optimisation 

The process of designing a new alternative binding protein begins with the 

selection of a suitable scaffold. A protein scaffold is defined as a polypeptide 

framework with a well-defined three-dimensional structure that tolerates 

mutations or insertions without a trade-off of its structural integrity (Skerra, 2007). 

Together with the other characteristics outlined in section 1.6.1, researchers began 

to explore proteins that exhibit natural binding abilities for use as protein scaffolds. 

One approach for designing a protein scaffold is the consensus design concept 

(Steipe et al., 1994). This is because in nature, conserved sequences arise from the 

desire to maintain stability during evolution. When non-antibody protein scaffolds 

exhibit natural binding abilities, the protein sequence of its homologous family 

members is aligned and analysed to identify regions in the sequence that are 

conserved (Binz et al., 2005). The amino acid positions in these conserved regions 

are thought to contribute to the stability of the proteins than the positions that do 
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not have clear consensus sequence (Jacobs et al., 2012). From these alignments, 

the consensus design concept results in the production of an optimally packed 

protein core structure which is the major determinant of the stability of the protein. 

This approach in protein engineering has been reported successful to improve the 

thermostability of antibodies (Knappik et al., 2000), enzymes (Komor et al., 2012), 

DNA binding proteins, fluorescent proteins  and also for the optimisation of 

scaffold proteins (Binz et al., 2005, Jacobs et al., 2012, Tiede et al., 2014).  

1.6.2.2 Introduction of diversity into protein scaffold 

Once a suitable scaffold has been selected, it is then optimised for the display 

system of choice followed by the introduction of variation and diversity to create a 

library. Binding residues on protein scaffolds that naturally participate in 

biomolecular recognition are an obvious choice for mutagenesis. For example, the 

inhibitory sequences within the Gln Val Val Ala Gly and Pro Trp Glu variable regions 

of the Affimer scaffold were selected for randomisation (Tiede et al., 2014).  Other 

sites on protein scaffolds considered for variation include exposed surface loops as 

in Adnectin (Koide et al., 1998) and Lipocalins (Schlehuber et al., 2000), or  exposed 

hydrophobic residues, stacked Beta sheets, and faces formed by alpha helical 

bundles (Banta et al., 2013). Examples of scaffold with surface rensomised residues 

include designed Ankyrin repeats proteins (Darpins) and Affibodies (Binz et al., 

2003, Nord et al., 1997). The scaffolds mentioned here are discussed in more 

details in section 1.6.4.  Once the appropriate site or region for randomisation has 

been selected, a mutagenic strategy is selected for the generation of mutant 

libraries, typically by using synthetic oligonucleotides and degenerate codons 

(Krumpe, et al., 2007, Stahl et al., 2013).  

1.6.2.3 Display systems for novel affinity properties 

Through combinatorial protein design, new proteins with new characteristics can 

be created in vitro. Nevertheless, predicting the combinations involved to design 

such a novel functionality is challenging (Grönwall and Ståhl, 2009). Thus, all 

protein selection systems are based on linking the genotype (the nucleic acid 

coding for the protein) to the phenotype (the expressed protein itself) of each 

protein which increases the ease of identification, screening, selection and 
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amplification of individual protein variant (Grönwall and Ståhl, 2009). Different 

protein selection systems have been developed, each of which has its pros and 

cons. The choice of a selection system depends largely on the diversity, size of the 

library and also on specific characteristics of the protein scaffold. Basically, there 

are three categories of protein selection systems which are (i) Cell-dependent 

display system (such as phage display, yeast display, E. coli surface display) where 

proteins are displayed on cellular surfaces or phage particles (Willats, 2002). (ii)  

Cell-free display systems (such as ribosomal display, mRNA display and DNA CIS 

display) which employs the transcription and translation machinery in cells for 

display (Gronwall, 2009, Binz, 2004, Odegrip, 2004).  (iii) Non-display system (such 

as the protein complementation assay and yeast-two-hybrid display) where in vivo 

selection system relies on affinity between protein and their target to generate cell 

growth survival (Michnick, 2000).  

1.6.3 Phage display technology  

Phage display technology is used for the study of interactions between 

macromolecules. It was first described by George Smith in 1985 (Smith, 1985) when 

he fused the peptide of interest onto the gene gIII of filamentous phage, therefore 

demonstrating the display of the peptide on the phage. One crucial principle in 

phage display is the physical linkage of the properties of a polypeptide (phenotype) 

to the sequence encoding it (genotype). In this technique, a foreign gene sequence 

is spliced into the gene of one of the phage coat proteins creating a hybrid coat 

protein. As phage are released from the cell, the hybrid coat protein is 

incorporated into the phage particles and displayed on the outer surface (Smith 

and Petrenko, 1997). Thus, the foreign proteins are displayed on surfaces of phage 

particles. 

The major filamentous phage strains used as vectors used in phage display are M13, 

fd and f1. The filamentous bacteriophage is flexible rod-like shape containing a 

single stranded genome of about 6400 nucleotides. The phage particle is 

encapsulated by the major coat protein pVIII, there are 2700 copies of the major 

coat protein on each virion. On one end of the cylinders, there are 5 copies of the 

minor coat protein pIII and pVI, while at the other end, there are 5 copies of pVII 
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and pIX (Petrenko et al., 1996, Scott and Smith, 1990). For phage display, the most 

widely used coat proteins are minor coat protein pIII and the major coat protein 

pVIII. One major difference in the use of either coat protein is the size of peptide 

that can be displayed. In pVIII, inserts more than 6-8 residues are less efficiently 

packaged into the capsid, however, peptide displayed on pVIII benefit from the 

avidity effect of being present in 2700 copies. On the other hand, larger inserts 

(>100 amino acids) can be readily packaged into the capsid when displayed on pIII 

(Sidhu et al., 2000).  

Phage display technique allows for the generation of combinatorial libraries with 

up to 1010 different variants. This peptide library could be used for screening of 

molecules (called target of interest) to select, study and characterise ligands 

selected from the affinity screening of the phage display library. The process of 

selecting binders from the phage display library is called biopanning (Ehrlich et al., 

2000). It involves the incubation of the phage library with the target of interest, 

unbound phages are washed off, and then bound phages are eluted for 

characterisation. Further rounds of panning are included to obtain highest target-

binding clone. A schematic illustration of the steps involved in phage display is 

presented in Figure 1.13. 

 

Figure 1.13: A schematic illustration of the steps involved in phage display 
screening. This occurs in three major steps of binding, washing, and eluting. 

1. phage library is incubated with 
immobilised target (Biopanning)

2. Unbound phage are washed away

3. Elution of bound phage

4. After 3 panning rounds, 
individual clones are isolated  
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1.6.4 Examples of Protein Scaffolds. 

1.6.4.1  Fibronectin 

They are one of the most frequent mediators of protein-protein interaction. 

Structurally, they resemble antibodies in that they contain complementarity-

determining region-like loops but unlike antibodies, they do not rely on disulphide 

bonds (Jones et al., 2008). The fibronectin type III domain is a 94-amino acid 

residue protein that is made up of seven strands with three connecting loops at 

one end of the beta sheet (Figure 1.14b) (Koide et al., 1998). The scaffold tenth 

fibronectin type III protein scaffold results from the randomization of the three N-

terminal loop of the 10th repeating structure in human fibronectin (Hey et al., 2005). 

Engineered Adnectin from the 10Fn3 domain has been designed with high affinity 

and specificity to generate binders against various therapeutic targets (Lipovšek, 

2011), such as the angiogenesis-related human vascular endothelial growth factor 

receptor 2 (VEGFR2), rheumatoid arthritis, psoriasis and Crohn’s disease (Hey et al., 

2005). 

1.6.4.2   Lipocalin 

 The Lipocalins just like the fibronectin belongs to the antibody-like scaffolds. They 

are a diverse beta- barrel protein that contains disulphide bonds (Figure 1.14c). 

Naturally, they bind small molecules in their barrels and thus involved in the 

transport or storage of small hydrophobic molecules such as steroids and lipids 

(Stahl et al., 2013). Lipocalins due to their properties have been engineered and 

found as a suitable scaffold for recognising low molecular weight targets or 

haptens (Hosse et al., 2006) 

1.6.4.3  Affibodies 

They are derived from an immunoglobin Fc binding domain of Staphylococcus 

aureus protein A, which exhibits protein binding properties naturally. Thus the 

engineered version is referred to as Z domain of Staphylococcal protein-A (Hosse et 

al., 2006). They belong to the non-β sheet protein scaffold, consisting of three α-

helices, which are arranged in an antiparallel three-helix bundle (Figure 1.14a). 

Thirteen surface exposed residues identified as necessary for binding were chosen 
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for randomisation to create the affibody library. The engineered Z domain lost 

almost all binding ability to the Fab of immunoglobulin but retained its binding 

ability to the Fc region of immunoglobulin (Löfblom et al., 2010). Unlike antibodies, 

they do not have disulphide bonds, yet they exhibit reversible folding. It is 

noteworthy that affibodies molecules can also be produced by chemical peptide 

synthesis (Löfblom et al., 2010). The application of affibodies has been reported for 

separation, purification, diagnostics, in vivo tumour imaging, therapeutic (Grönwall 

and Ståhl, 2009, Löfblom et al., 2010). 

 

Figure 1.14:  The schematic 3D structures of selected scaffolds. The structure of 
(a) affibodies, (c) anticalin and (d) DARPins were adapted from (Nuttall and Walsh, 
2008); the structure of (b) fibronectin was adapted from (Lipovšek, 2011) while the 
structure of Affimer was generated through PyMol using PDB file: 4N6U. 

1.6.4.4  DARPins 

Repeat proteins are proteins that are built upon consecutive units of small amino 

acid residues (20-40 residues) which form contiguous domains. Naturally, they 

exhibit binding abilities in many biological processes. Due to their structure, they 

can easily be adapted to the size of their targets by adjusting the number of 

repeats in the proteins. 
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The ankyrin repeat protein belongs to the repeat protein group. As a naturally 

occurring binding protein, they mediate various protein-protein interactions. Binz 

and his group (Binz et al., 2005, Binz et al., 2004) generated the designed ankyrin 

repeats of varying sizes called DARPins (14-18 kDa) through the combinatorial 

consensus design approach. DARPins use both the beta-turns and a randomised 

surface for binding (Figure 1.14d).  They show high thermodynamic stability, 

reversible folding properties. They show the highest expression levels for soluble 

functional proteins in E. coli, they do not contain cysteines, low aggregation 

tendencies. They are used for novel fusions for both extracellular and intracellular 

targeting (Binz et al., 2004). 

1.6.4.5  Affimers (also referred to as Adhirons) 

Scientists at the University of Leeds have developed a non-antibody binding protein 

called Affimer also known as Adhirons (Tiede et al., 2014). The Affimer scaffold is 

based on consensus from phytocystatin sequence which are small (ca. 100 amino 

acids) protein inhibitors of cysteine proteases (Kondo et al., 1991). This consensus 

protein displayed very good protease inhibitor activity and meets the requirements 

to be a good scaffold for peptide presentation (small, monomeric, high solubility 

and high stability and the lack of disulphide bonds and glycosylation sites). The 

inhibitory sequences comprising the QVVAG and PWE loops of the novel 

phytocystatin for peptide presentation were replaced with nine randomised 

residues in each loop. 

 Previous work on variants of human stefin A were shown to tolerate peptide 

insertion within surface exposed loops (Hoffmann et al., 2010, Stadler et al., 2011). 

Despite having a similar overall fold, Affimer shares only about 23 % pair-wise 

amino acid sequence identity with the human stefin variants. The consensus 

sequence of Adhiron was derived and constructed from multiple alignments of 57 

phytocystatin sequences (Tiede et al., 2014). An Affimer scaffold library was built 

by splice overlap extension (SOE) of two PCR products, the degenerate positions 

(NNN) were introduced as trimers representing a single codon for each of the 19 

amino acids excluding cysteine and there were no termination codons.   
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The Affimer library (1010) has been presented in phage display for screening and 

selection of high affinity binders. It has been screened against various targets such 

as yeastSUMO, the fibroblast growth factor (FGF1), receptor (CD31). It has been 

tested as a valuable research agent for high specificity binding. Using the bio-layer 

interferometry technology (BLItz™) and surface plasmon resonance, analysis of the 

binding kinetics of selected Affimers to their targets gave KD between 9 and 103 nM 

(Tiede et al., 2014, Kyle et al., 2015, Sharma et al., 2016). The introduction of 9 

additional amino acids residue within its two variable regions retained high 

thermostability with a melting temperature of 101oC. The work in this thesis has 

been based on the use of Affimer as the alternative scaffold protein  

 

Figure 1.15:  Characteristics of the Affimer (Adhiron) scaffold. This shows the 
structure and characteristics of the Affimer scaffold.  

1.7  Applications of scaffold proteins  

The characteristics of non-antibody binding proteins highlighted earlier have made 

them powerful tools in a wide range of applications broadly classified as 

therapeutic or non-therapeutic applications such as diagnostics, and basic and 

applied research.   

Adhiron – a Novel Class of Non-Antibody binding proteins
BioScreening Technology Group
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1.7.1 Scaffold proteins in therapeutic applications. 

Application of scaffold proteins for therapeutic use has been the most common 

goal, which is stimulated by the large commercial success and therapeutic use of 

monoclonal antibodies (Škrlec et al., 2015). In therapeutic applications, scaffold 

proteins are directed against targets that are relevant in diseases such as 

biomarkers, surface receptors and signalling molecules with examples of these 

scaffold proteins advancing into clinical development discussed briefly. Angiocal is 

a PEGylated Anticalin that has been tested in Phase I clinical trials for targeting and 

antagonising a VEGFR-2 ligand, VEGF-A in patients with advanced solid tumours 

(Mross et al., 2013). Adnectin CT-322 was successfully tested against VEGFR-2 for 

the treatment of recurrent glioblastoma in a Clinical trial (Mamluk et al., 2010). 

Similarly, scaffold proteins have been used in the treatment of inflammatory 

diseases- Affibody against TNF-alpha (Johnson et al., 2009), and Repebodies against 

human IL-6 (Lee et al., 2014), cardiovascular disease and for the treatment of blood 

disorders- DX88 (Ecallantide) which is a selective inhibitor of plasma kallikrein 

based on a Kunitz domain (Dennis et al., 1995). DX88 remains the only protein 

scaffold that has been successfully approved for therapeutic use. 

1.7.2  Diagnostic use of scaffold proteins 

The high affinity, specificity and sensitivity with which antibodies interact with 

antigens make them a useful reagent not only in therapeutic applications but also 

as diagnostics (Skerra, 2000). Current diagnostic formats popularly used are 

Enzyme-Linked Immunosorbent Assay (ELISA), flow cytometry, 

immunohistochemistry (Binz et al., 2005). More recently, diagnostics are taking 

new approaches in which non-antibody binding proteins are immobilised onto the 

surface of miniature chips for screening (Chan et al., 2013).  Scaffold proteins 

possess many qualities that makes them more suitable than antibodies for in vivo 

and in vitro diagnostics. The small size of scaffold proteins enhances better tissue 

penetration and more rapid blood clearance better than antibodies. A radiolabeled 

EGFR-binding Affibody molecule was used as a tumor imaging agent in malignancy 

(Nordberg et al., 2007). In in vitro diagnostic applications, like antibodies, scaffold 

proteins with  high specificity and affinity has been selected against various targets 
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in many types of samples (Škrlec et al., 2015); they can be used in conjunction with 

multiple detection technologies such as microarrays, electronic chips and dip-sticks 

(Grönwall and Ståhl, 2009, Stahl et al., 2013). However, they have edge over 

antibodies for use as diagnostics because of the absence of cysteine in their 

structure which gives them flexibility of introducing unique cysteines for site-

directed immobilization when coupling to detectors for biosensor applications 

(Chan et al., 2013), their tolerance to fusion proteins such as fluorescent proteins 

or enzymes and their ease of being  engineered to contain intrinsic detection 

means. Protein scaffold such as Affibodies (Löfblom et al., 2010), Darpins (Binz et 

al., 2005), and Affimer (Affimer),  have been successfully used for diagnostics 

(Škrlec et al., 2015).  

1.8  Molecular Recognition Elements for diagnosing C. 

difficile Infection. 

Since the introduction of enzyme immunoassays for the diagnosis of C. difficile 

infection over three decades ago, antibodies have been the only molecular 

recognition element used for capturing and detection of toxin A, toxin B and GDH 

in commercially available diagnostic kit for CDI (Vanpoucke et al., 2001, Carroll, 

2011). The inherent limitations of antibodies as described in Section 1.6.3 directly 

impact the performance of antibody-based toxin immunoassay, in fact, the 

sensitivity and specificity of such assays is critically dependent on the sensitivity 

and specificity of the molecular recognition elements used. Ochsner and colleagues 

(Oschner et al., 2013) reported the use of slow-off rate aptamers (SOMAmers) as 

replacement for antibody for toxin A and B detection in CDI diagnosis. More 

recently, Hong and colleagues (Hong et al., 2015), reported the selection and 

characterisation of single-stranded DNA Aptamers as antibody alternatives for the 

detection of toxin B at nanomolar concentration in clinical samples. Although no 

other antibody alternatives have been reported in the literature for Clostridium 

difficile infection, these studies strongly suggest that replacement of antibodies 

with novel affinity reagent have the potential to significantly enhance the 

performance of current toxin immunoassays and emerging diagnostic techniques 

for Clostridium difficile infection. 
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1.9 Aims of the thesis 

The aims of this thesis are  

(i) To identify and isolate Affimers with high sensitivity and specificity 

against the three validated biomarkers (toxin A, toxin B and glutamate 

dehydrogenase) of Clostridium difficile infection. 

(ii) To characterise selected Affimers for their stability, affinity and ability to 

function as novel reagent for the development of point-of-care 

diagnostic tool for Clostridium difficile infection. 

1.10 Structure of the thesis 

Chapter 2 details the materials and methods used throughout in this thesis.  

Chapter 3 describes mutational studies of aggregation-prone Affimers, using Ataxin 

binder as a case study. Selected point mutations were tested in other aggregation-

prone Affimers to see if they could be used as a generic approach for engineering 

aggregation-resistant Affimers. Secondly, since the Affimer scaffold was developed 

from plant cystatin, this chapter details the engineering of bacterial cystatin using 

the consensus design approach, then describes the optimisation trials for the 

protein expression of bacterial cystatin. 

Chapter 4 describes work done using glutamate dehydrogenase from C. difficile as 

the biomarker of interest. This chapter is structured into three main parts: the first 

part details the design, production and characterisation of recombinant glutamate 

dehydrogenase (GDH) from clostridium difficile, which is the common antigen, used 

in the screening for the presence of the bacteria. The second part   describes the 

selection of Affimers against GDH using phage display technology, then the cloning, 

expression and purification of unique Affimers. Then the third part details the 

various characterisation carried out, that led to the selection of the best Affimer for 

GDH and finally the sensitivity of Affimer-based assay was compared to a 

commercially available and clinically used GDH ELISA kit. 

Chapter 5 details the work done using toxin A and toxin B from C. difficile as 

biomarkers of interest. This chapter is structured into three main parts: the first 
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describes the identification, isolation and selection of Affimers against toxin A and 

B using phage display technology. The second part details the description of the 

cloning, expression and purification of unique Affimers. The last part of this chapter 

gives an extensive characterisation of the selected Binders using a range of 

biophysical and biochemical approaches, then the identification of Affimer pairs 

possessing high affinity and specificity for toxin A and toxin B.  

Chapter 6 details conjugation of the Affimers to detection enzymes to produce a 

one-step detection system and testing this against the current state-of-the art 

clinical ELISA tests used in the NHS in the UK. Finally, the chapter describes the 

development of an Affimer-based hybrid assay for toxin B that shows higher 

sensitivity and discriminate between Toxin A and Toxin B compared to commercial 

test kits. 

Chapter 7 is a summary of the findings of Chapter 3 to 6 and placing the work 

presented here in context with the literature. Then discusses future work and 

applications for the research carried out in this thesis.  
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Chapter 2: Materials and Methods 
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2.1 Introduction 

This chapter outlines the materials and methods used throughout the project. It 

gives an overview of the principles of each technique and a description of how it 

was carried out. Unless otherwise stated, all chemicals were purchased from 

Sigma-Aldrich or Fisher Scientific; randomised oligonucleotide primers were 

generated by IDT while other oligonucleotide primers were generated by Sigma-

Aldrich. Synthetic genes were generated by GenScript. 

2.1 E. coli 

2.1.1 XL10-Gold  

Genotype: TetrΔ (mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 

gyrA96 relA1 lac Hte [F' proAB lacIqZ ΔM1 Tn10 (Tetr) Amy  Camr] 

Source: Stratagene  

XL10-Gold cells were used routinely for replication, purification and storage of 

plasmid DNA as they have been optimised by a number of mutations: (i) the recA1 

mutation improves insert stability as unwanted recombination is reduced; (ii) non-

specific digestion by endonuclease I is prevented by incorporation of the endA1 

mutation thereby greatly improves the quality of the miniprep; (iii) incorporation of 

the hsdR mutation prevents the cleavage of cloned DNA by the EcoK endonuclease 

system; (iv) the supE44 mutation suppresses amber (UAG) stop codons by insertion 

of glutamines therefore, the termination of translation is reduced; (v) Exhibit Hte 

phenotype, which increases transformation efficiency of large and ligated DNA 

molecules. The other mutations in the genotype were not relevant for the work 

presented here. 

2.1.2 XL1-Blue 

Genotype: recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F´ proAB lacIqZ 

ΔM15 Tn10 (Tetr)] 

Source: Stratagene  

XL1-Blue cells were also used for replication, purification and storage of plasmid 

DNA as they have been optimised by a number of mutations: the recA1, endA1, 
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hsdR and supE44 mutations as described for XL10-Gold. The other mutations in the 

genotype were not relevant for the work presented here. 

2.1.3  BL21 (DE3) Star 

Genotype: F- ompT hsdSB (rB-mB-) gal dcm rne131 (DE3) 

Source: Invitrogen  

BL21 (DE3) Star cells were used for protein expression as they have been optimised 

by a number of mutations: (i) the ompT mutation in outer membrane protease VII 

as well as the absence of the Ion protease reduces the proteolytic cleavage of the 

expressed protein; (ii) the hsdSB mutation reduces degradation of transformed 

plasmids which are ‘foreign’ to the host cell; (iii) the rne gene (rne131) mutation 

encodes a truncated ribonuclease E enzyme that lacks the ability to degrade mRNA,  

thereby increasing the stability of mRNA, with a resultant increase in the yield of 

the recombinant protein; (iv) the DE3 designation means that the BL21 strain 

contains λ DE3 lysogen which carries the gene for T7 RNA polymerase under the 

control of the IPTG-inducible lacUV5 promoter for which it is used to induce 

expression in a T7 promoter-based system (for example pET vectors used here).  

2.1.4 ER2738 electrocompetent cells 

Genotype: [F´proA+B+ lacIq ∆(lacZ)M15 zzf::Tn10 (tetr)] fhuA2 glnV_(lac-proAB) thi-

1_(hsdS-mcrB)5 

Source: Lucigen 

The E. coli host strain ER2738 is an F+ strain, which produces highly efficient 

electrocompetent cells and was used for phage propagation during phage display 

library screening. ER2738 is a suppressor strain, it contains the supE (GlnV) 

mutation which suppresses the amber (UAG) stop codons within the library by 

insertion of glutamine (CAG). This generates a fusion of the pIII protein and the 

binding molecule displayed on the surface of the phage. The F-factor of ER2738 

contains a mini-transposon which confers tetracycline resistance, so that cells 

harbouring the F-factor can be selected by plating and propagating in tetracycline-

containing medium. 
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2.2 Plasmids 

2.2.1 pDHis phagemid vector 

The pDHis phagemid vector used in this project was derived from pDHis II that was 

developed from pHEN1 (Hoogenboom et al., 1991). The vector contains a 

recombinant coding sequence for Affimer flanked by NheI and NotI restriction sites, 

and an ampicillin (amp) resistant gene for selection (Figure 2.1). The presence of 

the DsbA secretion signal peptide allows for efficient translocation to the periplasm.  

The in-frame amber (TAG) stop codon allows translational read-through to create 

an Affimer-truncated-pIII fusion protein.  

 

Figure 2.1:  pDHis phagemid vector. The Affimer phagemid vector contains a fusion 
coding sequence encoding a DsbA secretion signal peptide, Affimer flanked 
between NheI and NotI restriction site, a hexa-histidine tag, Amber stop (TAG) 
codon and C-terminal half of gene III of bacteriophage M13. It contains an amp 
resistant gene for selection. (Adapted from Tiede et al., 2014). 

2.2.2 pET Vectors 

In this work, pET11a (Novagen) and pET28c (Novagen) were used as vectors for 

recombinant protein expression due to the presence of the T7 promoter upstream 

of the coding sequence. The E. coli strain BL21 star (DE3) was used for protein 

expression as it inducibly produces T7 RNA polymerase which has a high selectivity 
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for the T7 promoter leading to enhanced transcription of the gene of interest 

(Studier and Moffatt, 1986). The pET vectors also carry a copy of the lacI gene 

which codes for the lac repressor. When expressed, Lac repressor binds to the lac 

operator inhibiting the transcription of the gene of interest. Therefore, expression 

in pET vectors is regulated by the lac regulatory system. 

2.2.2.1  pET11a 

Source: Novagen 

Backbone: 5677 bp ds-DNA plasmid 

pET11a expression vector contains a T7 promoter and T7 termination site, multiple 

cloning site, a Lac I repressor coding sequence, and an ampicillin resistance gene 

(amp) for selection. In this project, all Affimer binders identified after phage display 

screening were sub-cloned from pDHis II phagemid vector into the pET11a vector 

for protein production.  

2.2.2.2  pET28c 

Source: Novagen 

Back bone: 5369 bp ds-DNA plasmid 

This vector has a pBR322 and an f1 origin of replication, the latter allowing the 

production of single stranded plasmid DNA when infected with helper phage. 

pET28c contains a kanamycin resistance gene, T7 promoter and T7 termination site, 

a N-terminal and C-terminal His. Tag, and a multiple cloning site. In this project, all 

synthetic coding regions ordered from GenScript were sub-cloned form pUC57 

vector into the pET28c vector for protein production. 

2.3 Growth Media 

2.3.1 2TY medium 

Tryptone (16 g/L), yeast extract (10 g/L) and NaCl (5 g/L) were dissolved in 

deionised water and the solution was autoclaved at 121 °C, 15 psi for 20 min. 

2.3.2 SOB medium 

Tryptone (20 g/L), yeast extract (5 g/L) and NaCl (0.5 g/L) were dissolved in 

deionised water and autoclaved at 121 °C, 15 psi for 20 min 
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2.3.3  SOC medium 

Tryptone (20 g/L), yeast extract (5 g/L) and NaCl (0.5 g/L) were dissolved in 

deionised water and autoclaved at 121 °C, 15 psi for 20 min. The following sterile 

solutions were added to 79 mL before use (final concentrations are shown in 

brackets): 10 mL 1 M MgCl2 (0.1 M), 10 mL MgSO4 (0.1 M), 1 mL 2 M D-glucose (20 

mM). 

2.3.4 LB medium 

Tryptone (16 g/L), yeast extract (10 g/L) and NaCl (5 g/L) were dissolved in 

deionised water, and autoclaved at 121 °C, 15 psi for 20 min.  

2.3.5 LB Agar plates 

Agar (12 g/L) was added to LB medium and the solution was autoclaved at 121 °C, 

15 psi for 20 min. After autoclaving, the solution was cooled in a 50 °C water bath 

for 30 min before addition of antibiotic to the appropriate concentration (Section 

2.4.3), followed by dispensing of approximately 25 mL into petri dishes under 

aseptic conditions. 

2.4 Bacterial Transformation 

2.4.1 Preparation of competent cells 

Three strains of E. coli cells (XL1-Blue, XL10-Gold and BL21 Star (DE3)) were made 

competent by using rubidium chloride. Cells were streaked from glycerol stocks 

onto LB-agar plates containing no antibiotics, and incubated overnight in a static 

incubator at 37 oC. A single colony was picked from the agar plate into 5 mL of SOB 

and incubated overnight in a shaking incubator at 37 oC with shaking at 200 rpm. 50 

µL aliquot of the overnight culture was used to inoculate 50 mL of pre-warmed SOB 

media which was then incubated in a shaking incubator at 37 °C and 200 rpm until 

OD600 is 0.4-0.6 (2-4 h). The culture was transferred into a 50 mL falcon tube and 

chilled on ice for 5 min. The cells were harvested by centrifugation in a Swing-out 

rotor at 3,000 rpm and 4 oC for 10 min, and the supernatant was discarded. Cells 

were gently resuspended in 20 mL of ice-cold TFB1 buffer (100 mM RbCl2, 50 mM 

MnCl2, 10 mM CaCl2, 3 mM CH3COOK, 15 % (v/v) glycerol, pH 5.8) and incubated on 

ice for 5 min, harvested by centrifugation in a swing-out rotor at 3,000 rpm and 4oC 
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for 10 min. The supernatant was discarded and the tube wiped dry, then cells 

pellets were gently resuspended in 2 mL of ice-cold TFB2 buffer (10 mM RbCl2, 75 

mM CaCl2, 10 mM MOPS, 15 % (v/v) glycerol, pH 6.5), and incubated on ice for 15 

min. 250 µL aliquots of competent cells were dispensed into sterile microcentrifuge 

tubes, frozen on dry ice and stored at –80 °C.  

2.4.2 E. coli transformation 

Competent cells were thawed on ice and sterile microfuge tubes were cooled on 

ice. 25 µL of competent cells was gently mixed with 1 µL (40 ng) of plasmid DNA 

and incubated on ice for 30 min. The cells were then heat-shocked in a water bath 

at 42 oC for 45 s and immediately returned to chill on ice for 2 min. Pre-warmed LB 

(250 µL) was then added to the tube and the culture was transferred to a shaking 

incubator (37 oC, 230 rpm) for 1 h, allowing cell recovery and expression of the 

antibiotic resistance protein. Then, 50 µL of culture were transferred to labelled 

agar plates containing appropriate antibiotics and spread out until all liquid was 

absorbed. The plates were inverted and incubated overnight at 37 oC in a static 

incubator. 

2.4.3 Antibiotics 

Antibiotics used in this work were carbenicillin, kanamycin and tetracycline. A 1000 

x stock solution of each antibiotic was made up in deionised water, filter sterilised 

through a 0.2 μm syringe-end filter and stored in 1 mL aliquots at -20 °C. The final 

concentration used in cultures was 60 μg/mL of carbenicillin or 50 μg/mL 

kanamycin (Sambrook et al., 1989). Carbenicillin was used in place of ampicillin 

because it demonstrates improved stability over ampicillin in growth media, and 

can reduce the growth of satellite colonies during long-term incubation. Also, the 

by-products generated upon its degradation are less toxic to cells, permitting 

denser cell growth. 

2.5 Plasmid purification from E. coli 

2.5.1 Mini-preparation of plasmid DNA 

Routinely, the QIAprep® spin miniprep kit (Qiagen) was used to purify plasmid 

carrying the gene of interest (insert) from E. coli cells. A single colony containing 

the desired plasmid was used to inoculate 5 mL of LB media supplemented with the 
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appropriate antibiotic. The culture was incubated at 37 °C in a shaking incubator 

(230 rpm) and allowed to grow overnight for 16 h. The cells were harvested by 

centrifugation in a 50 mL falcon tube for 15 min at 4,700 rpm and the supernatant 

was drained by inverting the tube. The pellet was then completely resuspended in 

250 µL of buffer P1 (50 mM Tris-HCl, pH 8.0, 10 mM EDTA, 100 µg/mL RNase A, 1 

µL/mL lyse blue reagent) and transferred into a 1.5 mL microcentrifuge tube. Lysis 

was initiated by the addition of 250 µL of buffer P2 (200 mM NaOH, 1 % (w/v) SDS) 

and mixing was carried out by inversion until the blue colour was homogeneous. 

350 µL of buffer N3 (4.2 M guanidium chloride, 0.9 M potassium acetate, pH 4.8) 

was added and immediately mixed by inversion until all the blue colour had 

disappeared, resulting in a white precipitant indicating neutralisation of lysis by 

precipitation of SDS. The sample was centrifuged at 13,000 rpm in a bench top 

microcentrifuge for 10 min to pellet all the cell debris. The supernatant was applied 

to a QIAprep column, containing a silica membrane which selectively adsorbs 

plasmid DNA in high salt buffer and binds up to 20 µg of DNA. The QIAprep column 

was centrifuged for 1 min. The flow-through was discarded and the column was 

washed with 750 µL of buffer PE (10 mM Tris-HCl pH 7.5, 80 % (v/v) ethanol) to 

efficiently remove the salts and centrifuged for 1 min. The flow-through was 

discarded and centrifuged for additional 1 min to remove any residual ethanol 

which could prevent loading of sample onto an agarose gel and inhibit any future 

enzymatic reactions. The column was transferred to a sterile 1.5 mL 

microcentrifuge tube and 30–50 µL of deionised water (depending on the desired 

final concentration) was carefully pipetted directly onto the membrane. After 1 min, 

the column was centrifuged for 1 min at 13,000 rpm in a bench top microcentrifuge 

to elute the DNA. The column was discarded and the plasmid DNA was stored at -

20 °C. 

2.5.2 Midi-preparation and maxi-preparation of plasmid DNA 

For the purification of plasmids (pET11a and pET28c parent plasmid) from larger 

culture volumes of E. coli cells, the QIAprep® spin midiprep (plasmid purification 

from 50 mL culture) or the maxiprep kit (plasmid purification from 150 mL culture) 

was used according to the manufacturer’s protocol.  
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2.5.3 Determination of DNA concentration 

The concentration of the plasmid DNA was measured using a NanoDrop Lite 

spectrophotometer (Thermo ScientificTM), which measures the nucleic acid 

concentration at 260 nm and assesses sample purity using the 260/280 nm ratio. 

From the home tab on the screen dsDNA assay was selected, following the on-

screen instructions, a blank was established by pipetting 1.5 µL of deionised water 

onto the bottom pedestal. Once the blank measurement was confirmed, the 

sample holder was wiped clean using a dry laboratory wipe. A 1.5 µL aliquot of DNA 

sample was pipetted onto the sample holder and the concentration determined. As 

a rule of thumb, samples with A260/A280 ratio between 1.8 and 2.0 are considered 

pure. The purified plasmid DNA were stored at -20 oC or sequenced. 

2.5.4 DNA sequencing 

DNA sequencing was carried out using Beckman Coulter Genomics, and the 

sequencing primers are listed in Table 2.1. Plasmid DNA samples were prepared at 

100 ng/µL and a 15 µL aliquot was sent for DNA sequence determination. Data 

were returned as Fasta files and .ab1 files. Results were analysed using the BioEdit 

Sequence Alignment Editor v. 7.0.9.1 to confirm the chromatogram, ExPASy 

translate tool to translate nucleotide sequences into protein sequences and 

ClustalW alignment tool for sequence alignments. 

2.6 Molecular biology and DNA manipulation 

2.6.1 Polymerase Chain Reaction (PCR) protocols 

For the amplification of Affimer insert in cloning vectors, standard PCR protocol 

was employed using Phusion High-Fidelity DNA Polymerase (NEB) which offers high 

fidelity and robust performance.  The component of the standard PCR protocol for 

a 25 µL reaction volume is given in Table 2.1, while the amplification was carried 

out using the conditions outlined in Table 2.2. 
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Table 2.1: Components of the PCR reaction 

Component Volume (µL) Final Concentration 

Sterile Water 13.8   

5X Phusion HF Buffer 5  1X 

dNTP Mix, 25 mM 0.2  200 µM each 

DMSO 0.75  3 % 

Forward Primer, 10 µM 2  0.8 µM 

Reverse Primer, 10 µM 2  0.8 µM 

Phusion DNA Polymerase 0.25  0.02 units/µL 

Template DNA (phagemid vector) 1   

 
Table 2.2: Thermocycling condition for PCR reaction 
 

Cycle Step Temperature (°C) Time (s) Cycles 

Initial Denaturation 98 30  1 

Denaturation 
Annealing 
Extension 

98 
54 
72 

20  
20  
20  

 
30 

Final Extension 
Hold 

72 
4 

10 min 
Hold 

1 
 

The PCR products were analysed by electrophoresis of a 5 µL aliquot through an 

agarose gel of the appropriate pore size (Table 2.5). This confirmed the yield and 

size of the PCR product. 

2.6.2 Oligonucleotide primers 

All oligonucleotides were ordered from Sigma. All primary stocks were diluted to 

100 µM and working stocks to 10 µM. Table 2.3 gives a list of the primers used in 

this study for insert amplification, mutagenesis and for DNA sequencing.  
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Table 2.3: List of primers used in the study 

 

2.6.3 Restriction digestion 

Restriction endonucleases cut plasmid DNA at specific sequences. All restriction 

endonucleases used were purchased from New England Biolabs®, (NEB) as High- 

Fidelity (HF) endonucleases with the added benefit of reduced star activity, rapid 

digestion (5-15 min) and 100 % activity in CutSmart® Buffer. Briefly, 1-5 units (U) of 

restriction enzyme were used to digest 20 ng-2 µg of DNA in a buffered volume of 

50 µL. According to NEB, 1 U is defined as the amount of enzyme required to digest 

1 µg of DNA in an hour at optimum temperature in a reaction volume of 50 µL.  

Unless otherwise stated, double digestion was carried out with NheI-HF™ and NotI-

HF™ restriction enzymes. Following PCR clean-up of amplified Affimer insert, a 

Primer name Sequences

Affimer insert

Amplification

pDHisIID-final-for 5’TTCTGGCGTTTTCTGCGTCTGC 3’

Affimer Short 5’ATGGCTAGCGGTAACGAAAACTCCCTG 3’

forward shorter
5’ATGGCTAGCAACTCCCTGGAAATCGAAG 3’

pDHisIID-final-rev
5’TACCCTAGTGGTGATGATGGTGATGC 3’

pDHIS-C-rev 5’TTACTAATGCGGCCGCACAAGCGTCACCAACCGGTTTG 3’

Adh R8C - for 5’AAATCTGCTAGCGCCGCTACCGGTGTTTGTGCAGTTCCGGGTAACGAAAAC 3’

Colony PCR T7P
5’TAATACGACTCACTATAGGG 3’

T7R
5’CCGCTGAGCAATAACTAG 3’

Site-directed

mutagenesis

N16D For
5’GCAGTTCCGGGTAACGAAGACTCCCTGGAAATCGAAGAACTGGC 3’

N16D Rev
5’GCCAGTTCTTCGATTTCCAGGGAGTCTTCGTTACCCGGAACTGC 3’

Q50E For 5’CGTTCGTGTTGTTAAAGCTAAAGAAGAAGAAGTTGTTGTTCAGCG 3’

Q50E Rev 5’CGCTGAACAACAACTTCTTCTTCTTTAGCTTTAACAACACGAACG 3’

N94D For 5’CGCTGCTAAAATCATGTCTGACTTCAAAGAACTGCAG 3’

N94D Rev
5’CTGCAGTTCTTTGAAGTCAGACATGATTTTAGCAGCG 3’

D16N For
5’GTTCCGGGTAACGAAAACTCCCTGGAAATC 3’

D16N Rev
5’GATTTCCAGGGAGTTTTCGTTACCCGGAAC 3’

E50Q For 5’CGTTCGTGTTGTTAAAGCTAAAGAACAGGAAGTTGTTGTTCAGCG 3’

E50Q Rev 5’CGCTGAACAACAACTTCCTGTTCTTTAGCTTTAACAACACGAACG 3’

N94D For-2 5’CTGCTAAAATCATGTCTGACTTCAAAGAACTGCAG 3’

N94D Rev-2 5’CTGCAGTTCTTTGAAGTCAGACATGATTTTAGCAG 3’

DNA

sequencing

M13-26REV 5’CAGGAAACAGCTATGAC 3’

T7 P
5’TAATACGACTCACTATAGGG 3’

T7 R 5’CCGCTGAGCAATAACTAG 3’
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typical double digestion reaction contains 3 µL sterile water, 6 µL CutSmart® buffer, 

50 µL of amplified Affimer insert, and 0.5 µL each NheI-HF and NotI-HF restriction 

enzymes, making a total of 60 µL reaction volume in a microcentrifuge tube. The 

reaction is mixed and incubated for a minimum of 6 h or overnight at 37 oC in a 

static incubator. 

2.6.4 Ligation  

Ligation of linearised plasmid and insert was carried out using T4 DNA ligase from 

NEB. The appropriate amounts of the digested, dephosphorylated plasmid (75 ng) 

and the digested insert (25 ng) were combined with 2 µL of 10 x T4 DNA ligase 

reaction buffer, 1 µL of T4 DNA ligase and made up to a total reaction volume of 20 

µL with deionised water. Incubations were carried out in 200 µL PCR tubes 

overnight at room temperature. 

2.6.5 Colony PCR 

Colony PCR is a quick screening method for determining the presence or absence of 

inserts DNA in plasmid constructs directly from transformed E. coli colonies. A 200 

µL pipette tip was used to collect a single colony and was swirled gently in 100 µL 

sterile deionised water before being used to inoculate 3 mL 2TY broth containing 

the appropriate antibiotic. This culture was incubated overnight at 37 °C with 

shaking at 220 rpm to enable purification of the DNA by miniprep (Section 2.5.1). 

Meanwhile, the inoculated water was heated to 99 °C for 5 min in a G-Storm GS2 

thermal cycler, cooled to room temperature and centrifuged at 13,000 rpm in a 

microcentrifuge to pellet cell debris leaving the DNA in suspension. Colony PCR was 

performed by adding 1 µL of this suspension to 24 µL of PCR master-mix 

(containing 0.2 mM dNTPs, 0.1 μM T7P primer; 0.1 µM T7R primer, 1 x GoTaq Hot 

start Green Master mix and sterile water to make up the reaction volume to 25 μL- 

see Table 2.1 for T7P and T7R primer sequence). Positive and negative controls 

were included and the amplification was performed as outlined in Table 2.4. The 

PCR products were analysed by agarose gel electrophoresis alongside a 5 µL aliquot 

of 2 log DNA marker to confirm the presence or absence of the desired product.  
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Table 2.4: The reaction conditions for colony PCR 

Stage Temperature 
(˚C) 

Time 
(s) 

Hot start 95 60 

30 cycles: 

Denature 94 60 

Anneal 55 60 

Extend 75 Depends on 
expected product 

Final extension 72 300 

Store 4 ∞ 

 

2.6.6 Agarose gel electrophoresis 

Agarose gels were prepared and run using a HU6 Mini (small gel) or HU10 Mini-Plus 

(large gel) horizontal gel unit (Scie-Plas, Harvard Bioscience). Agarose gels of the 

desired percentage were made by combining the appropriate volume of Tris-

acetate ethylenediaminetetraacetic acid (TAE) buffer (40 mM Tris-acetate, 1 mM 

ethylenediaminetetraacetic acid (EDTA), made up as a 50 x stock, pH 8.0) with 

agarose in a 250 mL Duran bottle and heated in the microwave for approximately 2 

min until the agarose completely dissolved and the solution was bubbling. The 

agarose solution was cooled in a 50 °C water bath for 30 min before adding the 

appropriate volume of SYBRsafe DNA gel stain (Invitrogen). The molten agarose 

was then poured into the casting tray in a casting unit, a comb added and the gel 

left to set at room temperature. 

 Table 2.5: Recommended agarose gel percentages for the resolution of linearised 
DNA 

 

 

 

 

 

 

To run the gel, the casting tray containing the agarose gel was removed from the 

casting unit and placed into the running chamber. The comb was removed and TAE 

buffer was added until the gel was submerged. DNA samples were prepared by 

Agarose gel percentage DNA size range 

0.5 % 1,000-30,000 bp 

0.7 % 800-12,000 bp 

1.0 % 500-10,000 bp 

1.2 % 400-7,000 bp 

1.5 % 200-3,000 bp 

2.0 % 50-2,000 bp 
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addition of 6 x gel loading dye (NEB) and then loaded into the wells of the agarose 

gel. A 1 µL aliquot of the appropriate DNA size ladder was also combined with 1 µL 

6 x gel loading dye and added to a well: either 1 kb DNA size ladder or 100 bp DNA 

size ladder (NEB) were used (Figure 2.2). 

Once samples were loaded, the running chamber was connected to the power unit 

and a voltage of 100 V wasapplied for 40 min or longer if better resolution was 

required. DNA was either visualised under UV light and photographed using an 

Alpha Imager system (Alpha Innotech) or if it was to be used for downstream 

applications, was visualised using a Safe Imager (Invitrogen) which is a blue light 

trans illuminator and does not lead to DNA damage as does UV light. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Figure 2.2: DNA size ladders used in agarose gel electrophoresis.  The 2-log, 1 kb 
and 100 bp DNA size ladders (NEB) were used to estimate the size of DNA analysed 
by agarose gel electrophoresis.  

2.6.7 Dephosphorylation of DNA 

By dephosphorylating the digested plasmid, the 5’ phosphate groups are removed 

and self-ligation is prevented (Sambrook et al., 1989). Dephosphorylation was 

carried out by adding 0.1 U/µL Antarctic Phosphatase and 1 x Antarctic 
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Phosphatase reaction buffer (NEB) to the completed restriction digestion reaction 

(Section 2.6.4) and incubating at 37 °C for 15 min. The phosphatase enzyme was 

heat-inactivated by incubation at 65 °C for 5 min in a G-Storm GS2 thermal cycler. 

2.6.8 Purification of DNA from an agarose gel 

The QIAquick® Gel Extraction kit (Qiagen) was used to purify DNA from agarose gels. 

The DNA sample was first separated by agarose gel electrophoresis and visualised 

using a Safe Imager (Invitrogen) (Section 2.6.6). DNA was not visualised by UV light 

as this can cause damage which significantly reduces the efficiency of downstream 

applications such as overlap extension, and ligation. The band of interest was 

excised using a clean, sharp scalpel and placed in a weighed 1.5 mL microcentrifuge 

tube. The agarose gel was solubilised by addition of 3 gel volumes (v/w) of buffer 

QG (5.5 M guanidine thiocyanate, 20 mM Tris-HCl, pH 6.6) at 50 ˚C; the chaotropic 

salt guanidine thiocyanate ensures binding of DNA to the QIAquick membrane. To 

ensure the highest efficiency binding, the pH of the solution was adjusted to below 

pH 7.5 by addition of 10 µL of 3 M sodium acetate, pH 5.0 and 1 gel volume of 

isopropanol was added. The sample was then applied to the QIAquick column and 

centrifuged for 1 min at 13,000 rpm in a microcentrifuge. The flow-through was 

discarded and the column was washed to remove impurities by addition of 750 µL 

of buffer PE (10 mM Tris-HCl, pH 7.5, 80 % (v/ v) ethanol) and centrifugation for 1 

min at 13,000 rpm. To elute the DNA the column was placed in a clean 1.5 mL 

microcentrifuge tube and 30 µL deionised water added to the centre of the 

membrane. After 1 min at room temperature this was centrifuged for 1 min at 

13,000 rpm, the spin column discarded and the DNA solution stored at -20 ˚C. 

2.6.9  Purification of PCR products 

The QIAquick® PCR Purification kit (Qiagen) was used to purify DNA products 

following PCR, overlap extension or ligation where separation from other DNA 

species was not necessary but removal of reaction components was required for 

the highest efficiency of downstream processes, such as restriction digestion or 

transformation. The protocol was the same as that of the QIAquick® Gel Extraction 

kit except that the PCR reaction was mixed with 5 volumes of buffer PB (5 M 
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guanidinium chloride, 30 % (v/v) isopropanol) containing pH indicator, rather than 

buffer QG, before being applied to the QIAquick column.  

2.7 Protein expression and purification 

 2.7.1 Expression by IPTG induction 

Transformation of BL21 (DE3) Star cells with recombinant vectors was carried out 

and incubated overnight at 37 oC on LB-agar plate with the appropriate antibiotics 

(cab/kan). A single colony was picked from the agar plate and used to inoculate 7 

mL Lb-(cab/kan) +1% Glucose, the starter culture. The inoculated starter culture 

was incubated overnight at 230 rpm and 37 oC. 2 mL overnight culture was used to 

inoculate pre-warmed autoclaved 50 mL LB-(cab/kan) in 250 mL baffled flasks, and 

then incubated at 37 oC, 230 rpm until the OD600nm reaches 0.8, then induction of 

protein expression at OD600 nm = 0.8 was carried out by addition of IPTG to a final 

concentration of 0.1 mM. The culture was incubated for 6 h at 25 oC at 150 rpm. 

Cells were harvested by centrifugation at 4,000 rpm, 4oC for 15 min, and pellets 

were stored at -20oC. 

2.7.2 Expression by autoinduction 

Single colonies of BL21 (DE3) Star cells containing the appropriate plasmids were 

used to inoculate 2 mL of autoinducing media (Terrific Broth - TB) containing the 

appropriate antibiotic and grown at 37 °C with shaking at 230 rpm for 6 h. 

Following this, 200 μL of the starter culture was used to inoculate 400 mL of TB 

supplemented with LAC and the appropriate antibiotic in 2 L baffled flasks. The 

cultures were then incubated at 25 °C with shaking at 250 rpm for 48 h.  

2.7.3 Cell lysis 

Protein-expressing cells were harvested by centrifugation at 4,700 rpm, 4 oC for 20 

min and the pellets were stored at -20 oC.  Buffers used for protein purification are 

provided in Table 2.6, they were filter sterilized and stored at room temperature. 
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Table 2.6: Buffers used during protein purification 

Buffer components 

Lysis Buffer 50mM NaH2PO4, 300 mM NaCl, 20 mM Imidazole, pH 7.4 

Wash Buffer 50mM NaH2PO4, 500 mM NaCl, 20 mM Imidazole, pH 7.4 

Elution Buffer 50mM NaH2PO4, 500 mM NaCl, 300 mM Imidazole, pH 7.4 

 1 x PBS 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2.0 mM KH2PO4, 

pH 7.4 

 

Immediately before use, 1 mL of lysis buffer was supplemented with 100 µL 

BugBuster® 10X Protein Extraction Reagent (Novagen), 0.4 µL of Benzonase® 

Nuclease (Novagen), and 10 µL of Halt Protease Inhibitor cocktail EDTA-Free (100X) 

(Thermo Scientific). BugBuster® was used for the gentle disruption of the E. coli cell 

resulting in the liberation of the soluble proteins, Benzonase® Nuclease was used 

for the degradation of DNA and RNA impurities in the lysate, while the Halt 

Protease Inhibitor cocktail protects the expressed recombinant protein from 

degradation by inhibiting endogenous proteases. Cell pellet obtained from the 50 

mL expression culture was lysed by resuspending the pellet in supplemented 1 mL 

lysis buffer centrifuged for 20 min at 13,000 rpm on a bench top centrifuge to 

separate the insoluble fraction from the soluble fraction (the supernatant). 

Expressed protein was purified usually from the soluble fraction. 

2.7.4 Protein Purification using Ni-NTA affinity chromatography 

His-tagged Affimer binders were purified from the soluble samples using affinity 

chromatography. The principle of purification using Ni-NTA affinity 

chromatography is that the hexahistidine tag present in the expressed protein 

exhibits very strong affinity and interaction for immobilized metal ion matrices. The 

electron donor group on the histidine imidazole forms coordination bond with the 

immobilized Ni2+, therefore hexahistidine proteins are selectively retained on the 

column matrices while impurities are washed off. Bound his-tagged proteins can be 

easily eluted by adding higher concentration of free imidazole to the column which 
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displaces the protein from the matrix. The method outlined below was used as a 

one-step purification method for all Affimer binders. 

300 µL of Ni-NTA resin slurry (Qiagen) was resuspended in 1 mL wash buffer in a 2 

mL microcentrifuge tube, centrifuged at 1,000 x g for 1 mn to sediment the resin 

and the supernatant was carefully aspirate off with a pipette. The resin was washed 

3 times and then resuspended in 150 µL wash buffer to make a 300 µL of Ni-NTA 

slurry.  

The clear supernatant containing the soluble protein was mixed with 300 µL of Ni-

NTA resin slurry for 1.5 h with mild agitation on a rotor at room temperature, then 

centrifuged at 1,000 x g for 1 min. The supernatant was carefully collected into a 

fresh tube as it contained all unbound protein and can be analysed on a SDS-PAGE.  

In the meantime, a 5 mL Pierce centrifuge column was equilibrated with 5 mL of 

wash buffer. The resin was resuspended in 1 mL wash buffer and transferred into 

the equilibrated column, and allowed to empty by gravity flow. The resin was 

washed extensively with wash buffer until the A 280 nm reading of the collected wash 

buffer fraction is consistently < 0.01. To elute the bound protein, the column was 

closed, and the resin resuspended in 1 mL elution buffer, incubated for 5 min and 

fractions collected into labelled 1.5 mL microcentrifuge tubes. Further elutions 

were collected with 500 µL elution buffer until the A280 nm of the eluted fractions 

drops to < 0.5 g/mL. 

2.7.5 Determination of protein concentration 

The concentration of purified proteins was measured using a NanoDrop Lite 

spectrophotometer. Since the purified proteins contains tryptophan, tyrosine, 

phenylalanine or cysteine-cysteine disulphide bonds which absorbs at A280nm, the 

absorbance at A280 nm in combination with the molar extinction coefficient, can be 

used to calculate the concentration of the purified protein as described below. 

From the home tab on the screen, Protein A280 nm was selected, and the default 

setting in which 1 abs = 1 mg/mL was used. Following the on-screen instructions, a 

blank was established by pipetting 1.5 µL of elution buffer onto the bottom 

pedestal. Once blank measurement has been confirmed, the sample holder was 
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wiped clean using a dry laboratory wipe. The elution fraction was flicked to mix the 

sample, then 1.5 µL aliquot of protein was pipetted onto the sample holder and the 

absorbance determined. The protein concentration was determined by absorbance 

measurements at 280 nm using theoretical molecular mass and extinction 

coefficients calculated with the ExPASy ProtParam Tool (Pace et al., 1995).  

2.7.6 Analysis by SDS-PAGE 

Protein samples were separated according to their motility through a SDS-

polyacrylamide gel by electrophoresis following the commonly used protocol 

developed by LaemmLi (1970). This was used to assess the purity of the protein 

samples. 

2.7.6.1 Preparation of soluble samples 

To ensure visualisation, denaturation and easy loading, samples were mixed with 4 

x loading buffer (200 mM Tris-HCl, pH 6.8, 20 % (v/v) glycerol, 8 % (w/v) SDS, 0.4 % 

(w/v) bromophenol blue, 20 % (v/v) β-mercaptoethanol) and heated at 95 °C for 5 

min. 

2.7.6.2  Preparation of insoluble samples 

The insoluble fraction obtained from the lysis of the cell pellet in 1 mL lysis buffer 

(Section 2.7.3) was resuspended in 1 mL 10 % (v/v) lysis buffer and centrifuged at 

13,000 rpm in a microcentrifuge for 5 min. The supernatant was discarded and the 

pellet resuspended once more in 10 % (v/v) lysis buffer. This was repeated three 

more times to wash the insoluble pellet and remove any soluble proteins before 

the pellet was resuspended in enough 4 x loading buffer (Section 2.7.6.1) to make 

the total volume up to 1 mL. The resuspended pellet was then heated at 95 ˚C for 5 

min. 

2.7.6.3  Preparing and running the gel 

Using a Bio-Rad PROTEAN casting system a 15 % resolving gel (15 % (v/v) 

acrylamide (Severn Biotech Ltd.), 375 mM Tris-HCl, pH 8.8, 0.1 % (w/ v) SDS, 0.1 % 

(w/v) ammonium persulfate (APS), 0.04 % (v/v) N,N,N’,N’,-

tetramethylethylenediamine (TEMED)) was poured between casting plates using a 

Pasteur pipette and allowed to polymerise overlaid with ethanol to ensure a flat 
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interface. The ethanol was then removed by rinsing with deionised water and a 

stacking gel (5 % (v/v) acrylamide, 125 mM Tris-HCl, pH 6.8, 0.1 % (w/ v) SDS, 0.1 % 

(w/v) APS, 0.1 % (v/v) TEMED) poured using a Pasteur pipette before the addition 

of a 10- or 15-well comb to create sample wells. Protein samples were loaded along 

with PageRuler™ Unstained Protein Size Ladder (Fermentas) (Figure 2.3) to permit 

estimation of the size of the protein bands. Gels were electrophoresed at 150 V in 

SDS-PAGE running buffer (25 mM Tris, 250 mM glycine, 0.1 % (w/v) SDS, pH 8.3) 

until the dye front had just run off the bottom of the gel (approximately 60 min). 

The gel was stained with InstantBlue (Expedeon); bands were visible within about 

10 min and the gel was photographed after 1 h using an AlphaImager system 

(Alpha Innotech).  

 

Figure 2.3: PageRuler™ prestained protein size ladder used in SDS-PAGE 

2.7.7  Glutamate dehydrogenase enzyme assay 

The assay for GDH activity was performed at 25 oC in a reaction mixture containing 

300 mM potassium phosphate buffer, pH 8, 300 mM Glutamic Acid, pH 7.5, 1 mM 

NAD and 0.5 μg GDH. The initial velocity was determined by measuring NADH 

production spectrophotometrically at 340 nm. Cell lysate prepared from E. coli 

BL21 (DE3) Star cell containing pET11a carrying  an unrelated gene was used as a 

negative control. 
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2.8 Biotinylation  

2.8.1 Toxin A and Toxin B target protein 

Purified native C. diff toxin A and B, and the recombinant fragment of toxin B 

(rTcdB) corresponding to the C-terminal domain of the toxin were kindly provided 

by Dr Cliff Shone, the Public Health England (PHE), United Kingdom. The purity of 

the toxins was analysed on an SDS-PAGE. 

2.8.2 Biotinylation of targets 

To prepare targets for phage display screening, targets were immobilised via 

Biotin-streptavidin interactions. Toxins A and B proteins were biotinylated using EZ-

link NHS-SS-biotin (Pierce), according to the manufacturer’s instructions, while 

rGDHC. diff was biotinylated using TCEP reduced EZ-HPDP-biotin since biotinylating 

with EZ-link NHS-SS-biotin led to the biotinylation of lysine residues present in the 

active site of GDH thereby rendering the enzyme inactive.  Biotinylation of the C. 

diff targets was confirmed by ELISA using streptavidin conjugated to HRP 

(Invitrogen). Similarly, purified Affimers were also biotinylated using the EZ-link 

Maleimide Biotin kit from Pierce for use in protein and sandwich ELISA. 

2.8.2.1  Biotinylation using EZ-Link® NHS-SS-Biotin 

The EZ-Link® NHS-SS-Biotin were used to label the primary amines and free lysine 

residues in proteins. The vial of EZ-Link® NHS-SS-Biotin was equilibrated at room 

temperature before opening. Immediately before use, a 5 mg/mL solution of NHS-

SS-Biotin was prepared in DMSO and appropriate volumes of NHS-SS-Biotin 

solution were added to the protein. For a 12 kDa Affimer protein, 10 µL of a 1 

mg/mL solution was added to 0.8 µL of NHS-SS-Biotin in a total volume of 100 µL 

PBS. The solution was incubated for 1 h at room temperature. Excess biotin was 

desalted using the Zeba Spin Desalting Columns, 7K MWCO according to the 

manufacturer’s instructions. Equal volume of 80 % glycerol was mixed with the 

biotinylated protein before storage at -20 oC. 
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2.8.2.2 Reduction of disulphide bonds using immobilized TCEP 

reducing gel 

To label cysteines containing protein, the disulphide bonds were reduced to make 

the sulfhydryl groups (-SH) available for labelling. A 112.5 µL of immobilized TCEP 

disulphide Reducing Gel was placed in a microcentrifuge tube and centrifuged at 

1,000 x g for 1 min, supernatant was removed by pipetting and was discarded. The 

gel was carefully washed by adding 300 µL of PBS containing 1 mM EDTA, vortexed 

gently to resuspend the gel, centrifuged at 1,000 x g for 1 min, and supernatant 

discarded. This washing step was repeated twice. A 3.75 µL aliquot of PBS 

containing 50 mM EDTA was added to the gel, and then 75 µL of a 1 mg/mL 

solution of the peptide to be reduced was added. The tube was vortexed briefly 

and incubated for 1 h at room temperature on a Stuart SB2 fixed speed rotator (20 

rpm) to keep the gel in suspension. Immediately before biotinylation, the 

microcentrifuge tube was centrifuged at 1000 xg for 1 min to recover the 

supernatant containing the reduced peptide. 

2.8.2.3  Biotinylation using EZ-Link® HPDP-Biotin 

The EZ-Link® HPDP-Biotin (Thermo Scientific) is a membrane permeable biotin 

labelling reagent. It reacts with sulfhydryl (-SH) groups in the protein to form a 

reversible and cleavable disulphide bond between the target sulfhydryl molecule 

and the biotin group. The rGDHC. diff target protein was biotinylated using the EZ-

Link® HPDP-Biotin protocol which is outlined below. A 4 mM HPDP-Biotin stock 

solution was prepared by adding 2.2 mg of EZ-Link® HPDP-Biotin to 1 mL of DMSO. 

The mixture was gently warmed to 37 oC and vortexed to ensure complete 

dissolution of the reagent. The stock was aliquoted and stored at –20 oC.  2 µL of 

HPDP-Biotin stock solution was added to 50 µL of the reduced peptide and the 

solution was incubated either at room temperature for 2 h or incubated overnight 

at 4 oC. The reaction mixture was desalted using a Zeba Spin desalting column 

equilibrated with PBS. Equal volume of 80 % glycerol was mixed with the 

biotinylated protein before storage at -20 oC. 
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2.8.3 ELISA to check biotinylation 

Biotinylation of target was confirmed by ELISA using the protocol described below. 

50 µL per well of PBS was added into 4 wells of a Nunc-Immuno™ MaxiSorp™ strip. 

1, 0.1 and 0.01 µL of biotinylated target was added to the first 3 wells, while the 4th 

well was used as a negative control. The strip was incubated overnight at 4 oC to 

allow immobilization of the target onto the strip, then washed three times with 300 

µL per well of the wash buffer (PBST) to remove excess sample. Each well was 

blocked with 250 µL of 10 x blocking buffer, incubated at 37 oC for 3 h without 

shaking and washed 3 x with 300 µL per well of the wash buffer. 1:1000 dilution of 

high sensitivity streptavidin-HRP was prepared in 2 x blocking buffer and 50 µL of 

the dilution was added to the wells then incubated at room temperature for 1 h on 

a vibrating platform shaker. Excess streptavidin-HRP was extensively washed off 

with 300 µL wash buffer 6 times and then 50 µL per well of TMB substrate was 

added and allowed to develop, noting the time taken for a blue colour to develop. 

The absorbance at 620 nm was measured using an ELISA plate reader. 

2.9 Phage Display Screening. 

An Affimer phage Library has been generated and used to identify high affinity 

binders to >350 targets. The stages involved in the isolation, identification and 

characterisation of binders are presented in Figure 2.4. 
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Figure 2.4: Overview of stages in the generation of Affimer to targets. 
Identification of Affimer binders to target of interest follows the stages outlined. 
The target of interest is immobilised and used in phage display screen, then phage 
ELISA to identify potential binders. DNA sequencing identifies unique binders and 
conserved binding motifs. The Affimer binder of interest is subsequently subcloned 
into an expression vector for expression, then purification and characterisation.  

Preparation of targets

Phage display screening

Phage ELISA

DNA sequencing of selected clones

Subcloning Affimer DNA coding sequence from 
pDHis into pET11a expression vector.

Expression of Affimers

Purification of Affimers

Characterisation of Affimers
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2.9.1  Preparation of ER cells. 

E. coli host strain ER2738 cells were streaked onto LB agar plates containing 

tetracycline (12 µg/mL) and incubated at 37 oC overnight. A colony of ER2738 E. coli 

cells was picked into 5 mL of 2TY media supplemented with 12 µg/mL tetracycline 

and incubated overnight in an orbital incubator at 37 oC and 230 rpm. 

2.9.2 Biopanning round 1 

2.9.2.1  Preparation of streptavidin coated strips.  

For each target, 4 wells of Streptavidin coated (HBC) 8-well strips (3 wells to be 

used for pre-panning the phage and 1 well to be used for binding the target and 

panning the phage) were blocked overnight with 300 µL per well of 2 x Blocking 

Buffer at 37 oC without agitation. The wells were washed 3 times with 300 µL PBST 

per well on a plate washer (TECAN HydroFlex), and a 100 µL aliquot of 2 x blocking 

buffer was added into all wells. 20 µL of the biotinylated target was added to the 

well to be used for panning, and incubated for 2 h at room temperature on the 

vibrating platform shaker (Heidolph VIBRAMAX 100; speed setting 3). During the 

incubation period, the phage was pre-panned. 

2.9.2.2  Pre-panning the phage. 

Extensive pre-panning steps were applied to reduce background binding of Affimer 

phage library to streptavidin coated strip surface, streptavidin and blocking buffer 

before panning of the Affimer library with the target protein.  To the first pre-

panning well containing 200 µL of 2 x blocking buffer, 5 µL of the phage was added, 

mixed and incubated on the shaker for 40 min. Blocking buffer was removed from 

the 2nd pre-panning wells, then the phage containing buffer from pre-panning well 

1 was transferred into pre-panning well 2 and incubated for 40 min. This process 

was repeated for the 3rd pre-panning well. 

2.9.2.3  Binding of pre-panned phage to target 

The well containing the immobilised target was washed six times with 200 µL per 

well of PBST and then the phage from the 3rd pre-panning well was added. This was 

incubated for 2 h at room temperature on a vibrator platform shaker. Meanwhile, a 
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fresh 8 mL culture of ER2738 cells was prepared by adding 500 µL of the overnight 

culture, and incubated for about 1 h at 37 oC and 230 rpm to give an A600nm of 0.6. 

2.9.2.4  Washing 

Unbound phages were removed by washing the panning well 27 times with 300 µL 

per well of PBST on the plate washer. 

2.9.2.5  Elution 

 Bound phages were eluted by adding 100 µL of Glycine elution buffer (0.2 M 

Glycine, pH 2.2), and incubated for 10 min at room temperature. To avoid decrease 

in phage infectivity, the eluted phage was neutralized immediately by adding 15 µL 

of 1 M Tris-HCl, pH 9.1, and added to the 8 mL aliquot of ER2738 cells in a 50 mL 

falcon tube. 14 µL of Triethylamine was diluted with 986 µL of PBS and the 

remaining phages in the panning well were eluted by adding 100 µL of the diluted 

trimethylamine. This was incubated for 6 min at room temperature, neutralised 

immediately by adding 50 µL of 1 M Tris-HCl, pH7 and added immediately to the 

ER2738 cells. 

2.9.2.6  Amplification and phage particle propagation  

The ER2738 cells were incubated for 1 h at 37 oC and 90 rpm to allow the cells to be 

infected with the phage. 1 µL of the phage infected cells were plated onto LB plates 

(containing 100 µg/mL of carbenicillin) to titre the phage. The remaining cells were 

harvested by centrifuging at 3,000 x g for 5 min, resuspended in a smaller volume 

(50 µL) and spread onto LB-carb plate for overnight incubation at 37 oC.  Next 

morning, colonies on the plates containing 1 µL of cells were counted and 

multiplied by 8,000 to determine the total number of cells per 8 mL culture while 

cells were scraped from the plate containing the remaining cells by adding 5 mL 

2TY-carb (2TY media supplemented with 100 µg/mL carbenicillin) to the plate, 

scraped using a disposable plastic spreader and transferred to a clean 50 mL falcon 

tube, then cells remaining on plate were further scraped with 2 mL 2TY- carb. The 

absorbance at 600 nm of a 1:10 dilution of the cells were measured to determine 

the dilution required to obtain A600 nm = 0.2 for an 8 mL culture (in 2TY media) in 

fresh 50 mL falcon tube. This culture was incubated at 37 oC and 230 rpm, for 1 h to 
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allow cells propagation, then infected with 0.32 µL of M13K07 helper phage and 

incubated at 37 oC and 90 rpm for 30 min. Phage infected cells were amplified by 

adding 16 µL Kanamycin (25 mg/mL) and incubated overnight at 25 oC, 170 rpm.  

2.9.2.7  Phage precipitation 

Phage-infected culture was centrifuged at 3,500 x g for 10 min and the phage-

containing supernatant was transferred to a fresh 15 mL falcon tube. A 100 µL 

aliquot was removed for use in the second panning round, before proceeding to 

phage precipitation.  For precipitation, 2 mL of PEG-NaCl precipitation solution (20 % 

(w/v) PEG 8000, 2.5M NaCl) was added to the remaining supernatant and 

incubated overnight at 4 oC. Phage cells were harvested by centrifugation at 4,816 

x g for 30 min, the supernatant discarded and the pellet resuspended in 320 µL of 

TE, transferred into microcentrifuge tube and centrifuged at 16,000 x g for 10 min. 

The supernatant containing precipitated phage was transferred to a fresh 

microcentrifuge tube and stored at 4 oC for long term storage or mixed with 40 % 

glycerol and stored at -80 oC. 

2.9.3 Biopanning round 2 

 A solution-phase panning with affinity bead capture was used in biopanning round 

2. Here, the Affimer phage library was reacted with the biotinylated target 

conjugated to streptavidin magnetic bead in solution, followed by the magnetic 

separation of the target-phage complexes from the solution. After binding, the 

library sorting (binding, washing, and elution steps) was performed using a 

Kingfisher instrument (Thermo Scientific). Also during this panning round, the 

binders could be eluted directly (called the standard protocol) or the binders could 

be subjected to 24 h incubation with free target in solution to improve and identify 

high affinity binders (this is referred to as competitive elution protocol). Both 

protocols are described in this section. 

2.9.3.1  ER2738 E. coli cells preparation 

ER2738 E. coli cells were prepared as described in section 2.9.1 
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2.9.3.2  Pre-blocking steps and plates preparation 

Before panning, the streptavidin beads and plates for the kingfisher Flex protocol 

were pre-blocked. (i) 20 µL of streptavidin beads (Dynabeads® MyOne™ 

Streptavidin T1) per target was blocked overnight with 100 µL 2 x blocking buffer at 

room temperature on a Stuart SB2 fixed speed rotator (20 rpm). The pre-blocked 

streptavidin beads were centrifuged at 800 x g for 1 min, immobilized on a magnet 

and the blocking buffer removed. The beads were resuspended in fresh 100 µL 2x 

blocking buffer per 20 µL of streptavidin beads. (ii) 1 well (per target) in a deep 96-

well plate was pre-blocked with2x blocking buffer for 6 h at 37 oC. This deep well 

plate was used for panning. (iii) 1 well (per target) in either one (for competitive 

elution protocol) or two (for standard panning protocol) kingfisher 96 well plate 

with 300 µL per well of 2 x blocking buffer for 6 h at 37 oC. These plates were used 

for the elution steps. 

2.9.3.3  Pre-panning the phage 

In Pan 2, negative selection was used to select background phage that bind 

specifically to the streptavidin bead. This was carried out by pre-incubating the 

amplified phage from pan 1 with the streptavidin bead in the absence of target. 

The supernatant containing the pre-panned phage was then reacted with the 

target in a positive selection. For the pre-panning protocol, 125 µL of phage-

containing supernatant from the first panning round was mixed with 125 µL of 2x 

Blocking Buffer (or 5 µL of purified phage with 245 µL of 2 x Blocking Buffer), 25 µL 

of the pre-blocked Streptavidin beads was then added to the mixture in an 

eppendorf Protein LoBind Tube and incubated for 1 h at room temperature on the 

rotator. After this, the mixture was centrifuged at 800 x g for 1 min and placed on 

the magnet. The supernatant containing the phage was transferred to a fresh tube 

and pre-panned the second time by adding fresh 25 µL of the pre-blocked 

streptavidin beads, incubated for 1 h at room temperature on the rotor. 

2.9.3.4  Target preparation and binding 

The target was bound to the streptavidin beads by adding 15 µL of biotinylated 

target to 200 µL of 2 x blocking buffer and 50 µL of the pre-blocked streptavidin 
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beads, and incubated for 1 h at room temperature on a Stuart SB2 rotator. In the 

meantime, buffers were removed from the pre-blocked deep well 96 plate and the 

pre-blocked elution plates. For standard panning, 100 µL aliquot of 0.2 M Glycine, 

pH 2.2 was added into one well (per target) of the 96 well plate, while 100 µL 

aliquot of freshly diluted trimethylamine (14 µL of trimethylamine diluted with 986 

µL of PBS) was added into one well (per target) of the other 96 well plate. After 

incubation, the tube containing the biotinylated target was centrifuged at 800 x g 

for 1 min, supernatant discarded and the beads containing the biotinylated target 

were washed 3 times in 500 µL of 2 x blocking buffer by repeating the resuspension, 

centrifugation and removal of supernatant cycle. To the beads-containing target, 

the supernatant containing the pre-panned phage was added and resuspended. 

This was then transferred to the pre-blocked deep 96 well plate. To complete 

binding, washing and elution of phage binders, either standard phage elution 

protocol or competitive phage elution protocol was followed on the KingFisher flex 

automated machine. 

2.9.3.5  Standard phage elution protocol 

For standard phage elution, the KingFisher Flex was setup to run the protocol 

“Phage display pH elution” as outlined in Table 2.7. 

Table 2.7: KingFisher Flex automated phage elution protocol 

Protocol Step Plate Volume 
(µL) 

Duration Standard 
panning 

Competitive 
elution 

Binding Plate: Binding 
Microtiter DW 96 plate 

300   

Wash 1 Plate: Wash 1 
Microtiter DW 96 plate 

950   

Wash 2 Plate: Wash 2 
Microtiter DW 96 plate 

950   

Wash 3 Plate: Wash 3 
Microtiter DW 96 plate 

950   

Wash 4 Plate: Wash 4 
Microtiter DW 96 plate 

950   

pH Elution Plate: pH elution 
KingFisher 96 KF plate 

100   -

Triethylamine 
Elution 

Plate: Triethylamine 
KingFisher 96 KF plate 

100   -

Particle 
Release into 
PBS 

Plate: pH elution 
KingFisher 96 KF plate 

100  - 
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In the meantime, a fresh 8 mL culture of ER2738 cells was prepared by making a 

1:15 dilution of the overnight culture, and incubated for 1 h at 37 oC and 230 rpm. 

For the protocol, phage was first eluted into glycine elution buffer for 10 min, and 

immediately after elution, the solution was neutralized with 15 µL of 1 M Tris-HCl, 

pH 9.1, mixed and added to the 8 mL aliquot of ER2738 cells. Then the protocol will 

elute in trimethylamine for 6 min. After elution, the solution was neutralized 

immediately with 50 µL of 1 M Tris-HCl, pH 7, mixed and added to the ER2738 cells. 

Amplification and precipitation of phage particles were carried out as described in 

sections 2.9.2.6 and 2.9.2.7 respectively. 

2.9.3.6  Competitive phage elution protocol 

To isolate binders with higher affinity, the KingFisher Flex was set up to run the 

protocol “phage display particle release comp”. As seen in Table 2.7, the protocol 

released the beads into the 100 µL PBS which was then transferred into an 

Eppendorf protein Lobind tube. To this tube, 60 µL of 10 x blocking buffer, 60 µL of 

80 % glycerol, 3 µL of Halt protease inhibitor cocktail (100X), 2.5 µg of non-

biotinylated target (for toxin A screen, non-biotinylated toxin B was used to 

improve specificity and get rid of cross-reactivity binders, while for toxin B screen, 

non-biotinylated toxin A was used), and PBS to bring the total volume to 300 µL. 

The tube was incubated at 4 oC on the rotor for 24 h to allow for competition and 

the retention of high affinity binders which are not displaced in the presence of 

non-biotinylated target protein. 5 mL of 2TY was inoculated in a 15 mL falcon tube 

with a single clone of ER2738 E. coli cell from an agar plate and grown shaking 

overnight at 37 oC and 230 rpm. A fresh 8 mL culture of ER2738 cells was prepared 

by adding 500 µL of the overnight culture, and incubated for about 1 h at 37 oC and 

230 rpm to give an A600 nm of 0.6. After the 24 h of competitive binding, the tube 

was centrifuged at 800 x g for 1 min and placed on a magnet to collect the beads 

while the supernatant was discarded. The beads were washed 6 times with 500 µL 

of 2 x blocking buffer per wash, then resuspended in 100 µL of 0.2 M Glycine 

elution buffer for 10 min for phage elution. The tube was placed on the magnet 

and the eluted phage was transferred to fresh tube containing 15 µL of 1 M Tris-HCl, 

pH 9.1 for neutralization. Remaining phage bound to the beads were eluted by 
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resuspending the beads in 100 µL of diluted trimethylamine and incubated for 6 

min. The tube was again placed on the magnet and the eluted phage was 

transferred to fresh tube containing 50 L of 1 M Tris-HCl, pH7 for neutralisation. 

Both sets of eluted phages were used to infect the 8 mL culture of ER2738 cells. 

The cells were incubated for 1 h at 37 oC and 90 rpm. Amplification and 

precipitation of phage particles were carried out as described in sections 2.9.2.6 

and 2.9.2.7 respectively. 

2.9.4 Biopanning round 3 

2.9.4.1  Preparation of streptavidin coated strips.  

For each target, 6 wells of NeutrAvidin coated (HBC) 8-well strips (4 wells to be 

used for pre-panning the phage, 1 well for panning against the target, and 1 well as 

a negative control panning against the blank well) were blocked overnight with 300 

µL per well of 2x Blocking Buffer at 37 oC without agitation. The wells were washed 

three times with 300 µL PBST per well on a plate washer (TECAN HydroFlex), and a 

200 µL aliquot of 2 x blocking buffer was added into all wells except the first pre-

panning well.  

2.9.4.2  Pre-panning the phage 

Extensive pre-panning steps were applied to reduce background binding of Affimer 

phage library to streptavidin coated strip surface, streptavidin and blocking buffer 

before panning of the Affimer library with the target protein.  To the first pre-

panning well, a 20 µL aliquot of 10 x blocking buffer, and 200 µL of phage 

containing supernatant from the second panning round (or 8 µL of purified phage 

and 212 µL of 2 x blocking buffer) were added, mixed and incubated on the shaker 

for 1 h at room temperature. Blocking buffer was removed from the 2nd pre-

panning wells, then the phage containing buffer from pre-panning well 1 was 

transfer into pre-panning well 2 and incubated for 1 h. This process was repeated 

for the 3rd and 4th pre-panning wells.  

2.9.4.3  Target preparation and binding to pre-panned phage  

During the 4th round of pre-panning the phage, buffers were removed from the 

well to be used for panning against the target, a 100 µL aliquot of 2 x blocking 
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buffer and a 20 µL aliquot of the biotinylated target was added to the well. This 

was incubated for 1 h at room temperature on the vibrating platform shaker. Well 

containing the target and the negative control blank well were washed three times 

with 300 µL PBST. For panning, 100 µL per well of pre-panned phage (from the 4th 

pre-panning well) was added to the well containing the target and the negative 

control blank well. This was incubated for 45 min at room temperature on a 

vibrating platform shaker.  

2.9.4.4  Standard phage elution protocol 

In the meantime, two 5 mL fresh cultures of ER2738 cells were setup by diluting the 

overnight culture (1:15 dilution) and incubated at 37 oC, 230 rpm for 1 h. After 

incubation period for panning, panning wells were washed 27 times with 300 µL 

per well of PBST on the plate washer. Bound phages were eluted and added to the 

ER2738 cells as described previously. The ER2738 cells were incubated for 1 h at 37 

oC, 90 rpm, then a range of volumes such as 0.1, 1, 10 and 100 µL were spread onto 

LB-carb plates. For the negative control, only 10 µL was spread onto LB-carb plate. 

All plates were incubated overnight at 37 oC. 

2.9.4.5  Competitive phage elution protocol 

After incubation period for panning, panning wells were washed 27 times with 300 

µL per well of PBST on the plate washer. To these wells, 80 µL of 2 x blocking buffer, 

20 µL of 80 % glycerol, 1 µL of Halt protease inhibitor cocktail (100 X), 5 µg of non-

biotinylated target (for toxin A screen, non-biotinylated toxin B was used to 

improve specificity and get rid of cross-reactivity binders, while for toxin B screen, 

non-biotinylated toxin A was used) was added. The tube was incubated at 4 oC on 

the vibrating platform shaker for 24 h to allow for competition and the retention of 

high affinity binders which are not displaced in the presence of non-biotinylated 

target protein. In the meantime, 5 mL of 2TY–Tet was inoculated in a 15 mL falcon 

tube with a single clone of ER2738 E. coli cell from an agar plate and grown shaking 

overnight at 37 oC and 230 rpm. The next day, two 5 mL fresh cultures of ER2738 

cells was setup by diluting the overnight culture (1:15 dilution) and incubated at 

37oC and 230 rpm for 1 h. Following competitive binding, panning wells were 

washed 27 times with 300 µL per well of PBST on the plate washer. Bound phages 
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were eluted and added to the ER2738 cells as described previously. The ER2738 

cells were incubated for 1 h at 37 oC and 90 rpm, then a range of volumes such as 

0.1, 1, 10 and 100 µL were spread onto LB- carb plates. For the negative control, 

only 10 µL was spread onto LB carb plate. All plates were incubated overnight at 37 

oC. 

2.10 Identification of specific Affimer phage 

After the 3rd panning round, individual clones from the target plates were randomly 

picked, amplified and tested for binding and specificity against the target of 

interest.  

2.10.1 Propagation and preparation of individually selected binders 

A 200 µL aliquot per well of 2TY carb was added into a 96-well V-bottom deep well 

plate using a multichannel pipette. 32 colonies were randomly picked from the 3rd 

panning round of phage display and used to inoculate the wells (one colony per 

well). The culture was incubated overnight at 37 oC and 1,050 rpm in an incubating 

microplate shaker (Heidolph Incubator 1000 and Titramax 1000). The following 

morning, a fresh culture was prepared by inoculating fresh 200 µL 2TY carb media 

with 25 µL of the overnight culture, and incubated for 1 h at 37 oC, in the 

incubating microplate shaker at 1050 rpm. Into this, a 10 µL aliquot per well of 

1:1000 dilution of M13K07 helper phage (titre ca. 1014/mL) in 2TY-carb was added 

and incubated for 30 min at room temperature, 450 rpm. Then, 10 µL aliquot per 

well of 1:20 dilution of kanamycin stock in 2TY-carb was added to the phage 

infected cultures and incubated overnight at room temperature, 750 rpm in the 

incubating microplate shaker. A streptavidin coated plate to be used for the phage 

ELISA was prepared as explained in section 2.10.2. Next morning, the phage-

infected culture was centrifuged at 3,500 x g for 10 min and the phage-containing 

supernatant was used directly for phage ELISA (as described in section 2.10.3). 

2.10.2   Preparation of streptavidin-coated 96-well plates 

5 mg of Lyophilized streptavidin (in 10 mM phosphate buffered saline, pH 7.4) was 

reconstituted with 1 mL of deionized water and aliquots were stored at -20 oC. A 

1:2000 dilution of streptavidin at 5 mg/mL was prepared by adding 2.5 µL into 5 mL 
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of PBS and 50 µL per well was added to a F96 Maxisorp Nunc-Immuno Plate. The 

plate was covered with a sealable strip and incubated overnight at 4 oC or 2 h at 

room temperature. Streptavidin-coated plates could be stored at 4 oC for up to one 

week.  

2.10.3   Phage ELISA 

The binding affinities and specificity of each Affimer phage clones were 

characterised using the phage ELISA technique (Li et al., 1995). The streptavidin 

coated plate was blocked overnight with 200 µL per well of 2 x blocking buffer at 37 

oC without agitation, after which the plate was washed once with 300 µL per well 

of PBST on the plate washer. Biotinylated targets were diluted 1: 1000 in 2 x 

blocking buffer, and 50 µL per well was added to the first 4 columns of the 

streptavidin coated 96 well plate, 50 µL of 2 x blocking buffer was added to well A5-

A8 (blank wells) and 50 µL of diluted biotinylated cross-reactive controls were 

added to wells A9-A12. The layout for target immobilisation on the 96 well plate 

(well A1 to H12) is given below. 

Table 2.8: Layout of target immobilisation for Phage ELISA 

Target A1-H4 
(Biotinylated 

target) 

A5-H8 
(Blank control) 

A9-H12 
(Biotinylated 

cross-reactive control) 

Phage 

toxin A toxin A Blocking 
buffer 

toxin B toxin A Phage 

toxin B toxin B Blocking 
buffer 

toxin A toxin B phage 

rGDH C. diff rGDH C. diff Blocking 
buffer 

BL21 (DE3) Star cell 
lysates 

rGDHC. diff  phage 

 

The plate was incubated for 1 h at room temperature on a vibrating platform 

shaker to allow for immobilization, and then washed once with 300 µL of PBST on a 

plate washer. A 10 µL aliquot of 10 x blocking buffer was added to all wells then, 40 

µL per well of phage containing supernatant phage was added so that each phage 

is tested against the target and the corresponding controls (e.g binder 1 was added 

to target well A1, blank well A5 and cross-reactive well A9). This was incubated for 

1 h at room temperature on the shaker to allow binding to occur between the 

target and the phage.  Unbound phage was washed off once with 300 µL per well 
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of PBST on a plate washer. HRP conjugated anti-Fd-Bacteriophage diluted 1:1000 in 

2x blocking buffer was added (50 µL per well) and the plate incubated for 1 h at 

room temperature on the shaker. The plate was washed 10 x with the wash buffer, 

then 3.3’5.5’-tetramethylbenzidine (TMB) substrate (50 µL) was added and the 

plate was incubated at room temperature until a blue colour developed (at least 

for 3 min). The absorbance was read at 620 nm using an ELISA plate reader. 

2.11  Identification of Affimer pair to target 

2.11.1   Sandwich phage ELISA 

Individual Affimer phagemid plasmid was transformed into competent ER2738 cells 

and single colonies from each transformation plate were grown in 100 µL of 2TY 

with 100 µg/mL of carbenicillin in a 96-deep well plate at 37 oC and 900 rpm for 6 h. 

A 25 µL aliquot of the culture was added to 200 µL of 2TY containing carbenicillin, 

then grown at 37 oC and 900 rpm for 1 h. Helper phage (10 µL of 1011/mL) were 

added, followed by kanamycin to 25 µg/mL overnight and incubated at 25 oC and 

450 rpm. 

50 µL of the protein solution (1 µg/mL of biotinylated Affimer in 2 x Blocking Buffer) 

were incubated in streptavidin-coated wells (Pierce) for 1 h at room temperature 

with gentle agitation. The wells were blocked with 200 µL of 2 x blocking buffer 

overnight at 4 oC with gentle agitation. Wells were washed once with 300 µL PBST 

and 50 µL per well aliquot of targets (10 µg/mL) were added and incubated for 1 h 

at room temperature with gentle agitation. Then, wells were washed once with 300 

µL PBST, 10 µL of 10 x blocking buffer and 40 µL of phage containing supernatant 

was added and incubated for 1 h. Following 12 x washing with 300 µL PBST, phage 

was detected by a 1:1000 dilution of HRP-conjugated anti-phage antibody 

(Seramun) for 1 h, visualised with 3,3´,5,5´-tetramethylbenzidine (TMB) (Seramun) 

and the absorbance measured at 620 nm. 

2.11.2    Sandwich protein ELISA - using surface Adsorbed capture 

Affimer 

50 µL of the protein solution (10 µg/mL of Affimer in 2 x Blocking Buffer) were 

incubated in Nunc Maxisorp wells overnight at 4 oC with gentle agitation. Next 
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morning, the wells were blocked with 200 µL of 2 x blocking buffer for 4 h at 37 oC 

with no agitation, wells were washed once with 300 µL PBST and 50 µL per well 

aliquot of targets (10 µg/mL) were added and incubated for 1 h at room 

temperature with gentle agitation. The wells were washed once with 300 µL PBST; 

Biotinylated binders at concentrations as high as 10 µg/mL in PBS-T containing 2 × 

blocking buffer were added to the wells and incubated for 1 h with shaking. Wells 

were washed three times in PBS-T, and streptavidin conjugated to HRP (Invitrogen) 

diluted 1:1000 in 50 µL PBS-T was added for 1 h. After washing, Affimer binding 

was visualised by addition of 50 µL TMB (Seramun) and the absorbance measured 

at 620 nm. 

2.11.3 Sandwich protein ELISA - using double biotinylation  

50 µL of the protein solution (1 µg/mL of biotinylated Affimer in 2 x Blocking Buffer) 

were incubated in streptavidin-coated wells (Pierce) for 1 h at room temperature 

with gentle agitation. The wells were blocked with 200 µL of 2 x blocking buffer 

containing 2 mM biotin for 6 h at 37 oC with no agitation, wells were washed once 

with 300 µL PBST and 50 µL per well aliquot of targets (10 µg/mL) were added and 

incubated for 1 h at room temperature with gentle agitation. The wells were 

washed once with 300 µL PBST; Biotinylated binders at concentrations as high as 10 

µg/mL in PBS-T containing 2 × blocking buffer were added to the wells and 

incubated for 1 h with shaking. Wells were washed three times in PBS-T, and 

streptavidin conjugated to HRP (Invitrogen) diluted 1:1000 in 50 µL PBS-T was 

added for 1 h. After washing, Affimer binding was visualised by addition of 50 µL 

TMB (Seramun) and the absorbance measured at 620 nm. 

2.11.4 Sandwich Phage display 

50 µL of the capture Affimer protein (1 µg/mL of biotinylated Affimer in 2 x 

Blocking Buffer) were incubated in streptavidin- coated wells (Pierce) for 1 h at 

room temperature with gentle agitation. The wells were blocked with 200 µL of 2 x 

blocking buffer for 6 h at 37 oC with no agitation, then washed once with 300 µL 

PBST. 50 µL per well aliquot of targets (10 µg/mL) were added and incubated for 1 

h at room temperature with gentle agitation. The wells were washed once with 300 
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µL PBST. Phage display screening is then carried out on captured target using 

protocols described in Section 2.9 and 2.10. 

2.12 Characterisation of Affimers 

2.12.1    ELISA analysis with purified Affimers 

ELISA was initially used to determine whether the purified Affimer binders 

recognized native toxin A, toxin B and rGDHC. diff. Equimolar concentrations of 

proteins (toxin A, toxin B, rGDHC. diff) in PBS were absorbed onto Immuno 96 

MicrowellTM Nunc MaxisorpTM plate wells overnight at 4 oC. The next day, wells 

were blocked with 200 µL of 3 × blocking buffer at 37 oC for 4 h with no shaking. 

Biotinylated binders at concentrations of 10 µg/mL in PBS-T containing 2 × blocking 

buffer were added to the wells and incubated for 1 h with shaking. Wells were 

washed three times in PBS-T, and streptavidin conjugated to HRP (Invitrogen) 

diluted 1:1000 in 50 µL PBS-T was added for 1 h. After washing, Affimer binding 

was visualised by addition of 50 µL TMB (Seramun) and the absorbance measured 

at 620 nm. 

2.12.2    Size exclusion chromatography 

Size exclusion chromatography (SEC) also known as gel-filtration is a technique that 

can be used to measure the distribution of protein sizes such as aggregates, 

monomers and fragments in a sample (Synge and Tiselius, 1950, Hong et al., 2012). 

Seperation of molecules based on size is achieved using a porous resin stationary 

phase. Under isocratic flow, large molecules which cannot fit into the pores of the 

resin are eluted first, while small molecules retained for longer on the column are 

eluted last.   

The AKTA Purifier system (GE Healthcare) was used to perform all gel exclusion 

experiments. Dialysed Affimers at 1 mg/mL were loaded on to a Superdex 200 

10/300 GL column (GE Healthcare) with a flow rate of 0.5 mL min−1 using the 

dialysis buffer - PBS (pH 7.4), 150 mM NaCl.  Absorbance of each Affimer was 

monitored at 220 nm (for peptide bond absorption), 260 nm (to probe for DNA 

contamination) and 280 nm (absorbance of aromatic amino acids). The molecular 
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mass of eluted proteins was estimated following calibration of the gel filtration 

column using protein standards (GE Healthcare). 

2.12.3    Surface Plasmon Resonance 

The binding kinetics for the interaction of Affimers and Toxin A or Toxin B was 

determined by surface plasmon resonance using a Biacore 2000 biosensor system 

(GE Healthcare).  Affimers were biotinylated with the EZ-link Maleimide Biotin kit 

from Pierce and successfully immobilised on to the surface of streptavidin-coated 

CM5 sensor chips using an Affimer capture method. Briefly, a streptavidin-coated 

CM5 sensor chip was docked to the system and subjected to standard cleaning 

according to the manufacturer’s recommendations. A total of 92 resonance units 

(RUs) of biotinylated toxin A or toxin B Affimers were immobilised. Affinity 

measurements were carried out in PBS, pH 7.4, 0.05 % Tween 20) at a flow rate of 

25 µL/ min. A titration of toxin concentrations (1, 10, 100 nM) was injected in 

horizontal orientation. An empty flow cell served as control, and toxin A served as a 

cross-reactivity control for toxin B and vice versa. Association and dissociation were 

measured over time as changes in the refractive index. Data were analysed with 

BIAevaluation 4.1 software (GE Healthcare). 

2.12.4   Thermostability and aggregation profile 

 The Avacta Optim® compatible micro-cuvette arrays (MCAs) were loaded with 

sixteen 10 μL samples of 1 mg/mL Affimer proteins, in PBS at pH 7.4. The Optim® 

2000 was programmed to measure the intrinsic protein fluorescence which 

monitors protein tertiary structure and static light scattering is utilised to monitor 

protein aggregation at sample temperatures in the range 10 – 90 °C at steps of 1 °C. 

The Static light scattering (SLS) at 266nm absorbance and barycentric mean (BCM) 

of the spectra range 280 - 460 nm were measured. Data were collected, exported 

and analysed with OriginPro software. 

2.12.5    Differential Scanning Calorimetry (DSC) analysis 

DSC measurements were carried out on VP-DSC (Microcal). The Affimer scaffold 

mutants were dialysed into 1 x PBS at pH 7.4 and the dialysed Affimer proteins 

were prepared at a concentration of 1 mg/mL in 1 x PBS at pH 7.4. Protein samples 
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and buffer were degassed twice under vacuum for 10 min. The scanning was 

performed between 11 oC and 130 oC at a scan rate of 90 oC/h with a 15 min pre-

scan equilibration. A buffer only scan was measured to calculate a baseline for 

integration. Aliquots of each sample were taken pre- and post DSC analysis. 

2.12.6    Heat denaturation and centrifugation SDS-PAGE analysis 

Affimer mutant variants samples were diluted to 0.5 mg/mL, heated to 50 oC for 5 

min, and centrifuged for 15 min at 13,000 rpm on benched centrifuge prior. This 

was repeated four times with the temperature sequential increased by 10 oC 

ultimately reaching a final temperature of 90 oC. Samples were then analysed on a 

15 % SDS Page gel as described in Section 2.7.6.   

2.12.7   Biolayer Interferometry (BLitz) 

The BLitzTM (ForteBio) dip and read Streptavidin biosensors were used to as a quick 

yes/no binding interaction between purified Affimers and the target. Prior to use, 

streptavidin (SAX) biosensors were soaked in BLitz assay buffer (1 x PBS, pH 7.4) for 

at least 10 min. Biolayer interferometry assays using the advanced kinetics mode 

consisted of five steps, all performed in Blitz assay buffer: initial base line (30 s), 

loading (60 s), baseline (30 s), association (120 s) and dissociation (60 s). Neat 

Biotinylated Affimers were immobilized onto the streptavidin biosensor chip during 

the loading step, excess biotinylated Affimer were washed off during the baseline 

step. 10 µg/mL of non-biotinylated target was added to the sample holder during 

the association step. Controls used during the assay were: (i) empty streptavidin 

sensor (no biotinylated Affimer loaded), (ii) association with an unrelated protein 

(such as using toxin B as target for biotinylated toxin A Affimer to test for cross-

reactivity), and (iii) association with BLitz assay buffer.  These experiments 

indicated that empty sensors and sensors loaded with controls yielded similar 

values in binding experiments. Since this assay was for quick yes/no, the 

sensograms were not used to determine the binding kinetics of the binders. 

2.12.8 Conjugation of Affimer to HRP 

The Affimer binders were reduced on TCEP resin (as described in section 2.8.2.2) 

and buffer exchanged into the maleimide coupling buffer (100 mM sodium 
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phosphate, 5 mM EDTA, pH 7.2) on Zeba spin columns.  The maleimide-HRP (Sigma) 

comes as a powder of 1:4 HRP: salt. Since the HRP contains 1-3 moles of maleimide 

per mole of HRP, therefore, from the molecular weights, a 1:1 mass ratio of HRP: 

Affimer gives a 3.5 x molar excess of Affimer. 0.25 mg of the Affimer in a 250 µL 

volume was mixed with 1.25 mg of the maleimide–HRP powder and the reaction 

was incubated overnight at room temperature. A SuperDex 200 analytical SEC 

column was equilibrated in the coupling buffer (degassed, filtered) and the sample 

was loaded and flowed through the column at 0.5 mL/min. After 6 mL were flowed 

through, 0.5 mL fractions were collected over 30 mL, while absorbance was 

monitored at 280 nm and 403 nm. Fractions were analysed by SDS-PAGE and 

western blot with anti-His antibody. 

2.13  Evaluation of Affimer for diagnostic purposes 

2.13.1   Determination of the limit of detection 

Individual Affimer phagemid plasmid was transformed into competent ER2738 cells. 

Single colonies from each transformation plate were grown in 100 µL of 2TY with 

100 µg/mL of carbenicillin in a 96-deep well plate at 37 oC and 900 rpm for 6 h. A 

25 µL aliquot of the culture was added to 200 µL of 2TY containing carbenicillin and 

grown at 37 oC and 900 rpm for 1 h. Helper phage (10 µL of 1011/mL) were added, 

followed by kanamycin to 25 µg/mL overnight and incubated at 25 oC and 450 rpm. 

50 µL of the protein solution (1 µg/mL of biotinylated Affimer in 2 x Blocking Buffer) 

were incubated in streptavidin-coated wells (Pierce) for 1 h at room temperature 

with gentle agitation. The wells were blocked with 200 µL of 2 x blocking buffer 

overnight at 4 oC with gentle agitation, then washed once with 300 µL PBST. A 

serial dilution of toxin A, toxin B full length, toxin B-fragment and Glutamate 

dehydrogenase was prepared from 2.5 µg/mL to 1.2 ng/mL in 2 x blocking buffer 

and 50 µL aliquot was added per well accordingly, and incubated for 1 h at room 

temperature with gentle agitation. The wells were washed once with 300 µL PBST, 

then 10 µL of 10 x blocking buffer and 40 µL of phage containing supernatant was 

added and incubated for 1 h. Following 12 times washing with 300 µL PBST, phages 

were detected by a 1:1000 dilution of HRP-conjugated anti-phage antibody 
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(Seramun) for 1 h, visualised with 3,3´,5,5´-tetramethylbenzidine (TMB) (Seramun) 

and measured at 620 nm. 

2.13.2  Affimer-Antibody hybrid assay - Protocol 1 

The protocols outlined in the Techlab’s C. difficile TOX A/B II (for toxin A and toxin 

B), and C. diff QUIK CHEK® (for GDH) package inserts were modified to use 

biotinylated Affimer immobilised on streptavidin coated Nunc Maxisorp plate as 

the capture.  

Briefly, 50 µL of the protein solution (1 µg/mL of biotinylated Affimer in 2 x 

Blocking Buffer) were incubated in streptavidin-coated wells (Pierce) for 1 h at 

room temperature with gentle agitation. The wells were blocked with 200 µL of 2 x 

blocking buffer for 4 h at 37 oC with no agitation, wells were washed once with 300 

µL PBST. A serial dilution of toxin A, toxin B or GDH was prepared at the desired 

concentration (from 50 ng/mL to 1.2 ng/mL) in 2 x blocking buffer and 50 µL aliquot 

was added per well and incubated for 1 h at room temperature with gentle 

agitation. The wells were washed once with 300 µL PBST, then the conjugate 

antibody (50 µL/well) was added and the reaction was incubated for 1 h at room 

temperature with gentle agitation.  Wells were washed 6 times  with 300 µL PBST, 

then 50 µL of TMB substrate was added and incubated for 10 min. The absorbance 

was measured at 620 nm. 

2.13.3 Affimer-Antibody hybrid assay - Protocol 2 

The only difference between protocol 1 and protocol 2 was that for protocol 2, the 

target and conjugate antibody are added to the wells simultaneously, and 

incubated 37 oC, 1,200 rpm for 20 min. 

 

 

  



87 
 

 
 
 
 
 

 

 

 

 

 
 
 
 

Chapter 3:   Optimisation studies of the Affimer 

scaffold 
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3.1 Introduction 

Scaffold proteins have been used in great applications such as diagnostics, imaging 

and therapeutics. Affimers are novel non-antibody binding proteins used for the 

selection of high affinity binders that are thermally stable and monomeric against 

various targets (section 1.6.4.5). Nevertheless, aggregation-prone binders such as 

Ataxin binders (JD-F12) have been selected which makes them less desirable in 

some applications.  It was therefore necessary to develop an aggregation resistance 

scaffold, from which highly soluble, thermally stable binders would be selected.  

There have been various studies on improving the solubility of aggregation-prone 

proteins. As early as 1994, Dale and his colleagues (Dale et al., 1994) were able to 

improve the solubility and achieved a 240-fold increased activity of trimethoprim 

resistant –type SI dihydrofolate reductase (DHFR) which had low expression level 

and >95 % of the protein accumulated in inclusion bodies. Improved solubility was 

achieved by mutating two neutral charge residues at the surface of the protein to 

negatively charged residues (N63E, N130D). Similarly, one of the notable 

differences between camelid antibodies and human antibodies is that camelid 

antibodies possess more hydrophilic and charged residues close to their CDR loops, 

which may explain why they are aggregation-resistant. Randomised loops and 

variable regions in proteins are usually solvent exposed. They contain hydrophobic 

residues for high affinity binding to targets, which have also affected the solubility 

and aggregation of such proteins. Perchiacca, et al. (2011) compared a wild-type 

(WT) antibody prone to aggregation upon unfolding with an aggregation resistant 

strain, HeL4.  Comparison of the amino acid sequences highlighted the differences 

between the antibody strains in the CDR region. During experiments to substitute 

either WT CDR 1, 2 or 3 with the corresponding HeL4 CDR region, they subjected 

them to thermal denaturing and centrifugation. It was found that the WT variants 

existed only as soluble (non-aggregated) antibodies and were left in solution.  

Substitution of WT CDR1 with HeL4 CDR 1 was found to confer the aggregation 

resistance and further analysis of the amino acid sequence within the CDR loop 1 

revealed that a negatively charged triad of DED in the middle of CDR loop 1 was 

responsible for conferring the aggregation resistance.  
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Based on these studies, A new variant of ataxin Affimer (JD-F12-DED) was 

constructed by the introduction of DED-4x residues before and after the VR1 and 

VR2 of the Affimer. Though it has been previously shown that this variant exists as 

a monomer in solution with improved solubility, the addition of the 12 new amino 

acid residues ((D-E-D)-4x) would extend the binder’s length. Therefore, it was 

desirable to have a variant of JD-F12 that is highly soluble, aggregation-resistant 

without extending the length of the scaffold.  

This chapter describes:  

(i) The generation of mutants containing charged residues through point 

mutation, their expression, purification and characterisation in an 

attempt to develop an improved Affimer scaffold that is aggregation-

resistant.  

(ii) The design and optimisation of bacterial cystatin for potential library 

generation. 

3.2   Selection of residues for mutations 

To study the effect of introducing negatively charged amino acid (aspartate and 

glutamate) as point mutations within the scaffold, the following properties were 

desirable. 

(i) The selected residues must be solvent exposed. 

(ii) Mutation of residues flanking the variable loops should help to improve 

solubility by decreasing hydrophobic interactions. 

(iii) Since the variable loops are usually rich in hydrophobic residues which 

mediate their high affinity binding to targets, the presence of charged 

residues close to the variable loops would help to break long stretches 

of potential hydrophobic interactions.  

(iv) Residues selected should not be involved in target binding or crucial to 

maintain the conformational stability of the Affimer scaffold. 

Based on the outlined features, careful analysis of the Affimer structure guided the 

selection of eight positions for point mutation rather than the addition of extra 

amino acids that extends the length of the protein. 
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The eight residues selected for point mutation are shown in Figure 3.1. Asparagine 

16 is located in the unstructured part of the scaffold at the N-terminal. Glutamine 

50 is the amino acid before the variable loop 1; Threonine 60 and Methionine 61 

are residues immediately after the variable loop 1. Tryptophan 82 and Lysine 84 

are residues before variable loop 2, while Asparagine 94 and Phenylalanine 95 are 

residues after variable loop 2.  

Effects of these mutations were studied using Ataxin binder (JD-F12) as the model 

protein, and three newly designed mutants containing varying amount of the 

mutation. JD-F12-3 contained 3 mutations - N16D, Q50E and N94D. JD-F12-5 

contained 5 mutations N16D, Q50E, T60D, K84E and N94D. The last mutant, JD-

F12-8 contained all 8 mutations N16D, Q50E, T60D, M61E, W82E, K84E, N94D and 

Figure 3.1: Structure of an Affimer. The eight residues selected for mutation are 
highlighted in cyan while variable loop 1 and 2 are shown in magenta. Drawn 
from PDB File ID no. 4N6U. 
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F95D. Alongside these mutants, the previously tested variant JD-F12-(DED) 4x was 

studied. 

3.3. Production of JD-F12 mutants 

3.3.1 Cloning of JD-F12 Mutants. 

The synthetic constructs of JD-F12 mutants (JD-F12-3, JD-F12-5 and JD-F12-8) 

ordered from GenScript, had their coding region cloned between NheI and PstI 

restriction sites in pUC57 cloning vector. The mutant genes were amplified by PCR 

using pUC57 forward and reverse primer (Table 2.3, Chapter 2). For subcloning, the 

fragments were ligated between the NheI and PstI restriction sites of linearised 

pDHis phagemid vector, amplified in pDHis vector using the pDHis forward and 

reverse primer. Then, the amplified fragments were digested using NheI/NotI 

endonucleases and then ligated into similarly digested pET11a expression vector. 

Successful subcloning of Affimer mutants from pUC57 into pDHis phagemid vector 

was confirmed by DNA sequencing, as it can be seen in Figure 3.2a. The sequence 

contained pDHis DsbA signalling peptide sequence (shown in italics) and was 

ultimately subcloned into pET11a expression vector successfully (Figure 3.2b). 
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A. Sequence alignment after subcloning from pUC57 into pDHis vector 
  

JD-F12    -----------------MASAATGVRAVPGNENSLEIEELARFAVDEHNKKENALLEFVR 

JD-F12-3  MKKIWLALAGLVLAFSASASAATGVRAVPGNEDSLEIEELARFAVDEHNKKENALLEFVR 

JD-F12-5  MKKIWLALAGLVLAFSASASAATGVRAVPGNEDSLEIEELARFAVDEHNKKENALLEFVR 

JD-F12-8  MKKIWLALAGLVLAFSASASAATGVRAVPGNEDSLEIEELARFAVDEHNKKENALLEFVR  

             **************:*************************** 

JD-F12    VVKAKEQEVVVQRKMYTMYYLTLEAKDGGKKKLYEAKVWVKYKIAAKIMSNFKELQEFKP 

JD-F12-3  VVKAKEEEVVVQRKMYTMYYLTLEAKDGGKKKLYEAKVWVKYKIAAKIMSDFKELQEFKP 

JD-F12-5  VVKAKEEEVVVQRKMYDMYYLTLEAKDGGKKKLYEAKVWVEYKIAAKIMSDFKELQEFKP 

JD-F12-8  VVKAKEEEVVVQRKMYDEYYLTLEAKDGGKKKLYEAKVEVEYKIAAKIMSDDKELQEFKP 

          ******:*********  ******************** *:*********: ******** 

JD-F12    VGDAAAAHHH 

JD-F12-3  VGDAAAAHHH 

JD-F12-5  VGDAAAAHHH 

JD-F12-8  VGDAAAAHHH 

          ********** 

B. Sequence alignment after subcloning from pDHis into pet11a vector 
 

                         

C. Sequence Alignments of JD-F12 and its mutants  
 

 

Figure 3.2: Sequence alignments of subcloned JD-F12 mutants. The DNA 
sequencing results for JD-F12 mutants (JD-F12-3, JD-F12-5 and JD-F12-8) are shown 
when subcloned into pDHis vector (a) pDHis vector with the DsbA signal peptide 
shown in italics, and (b) into pET11a expression vector, and aligned with the wild-
type JD-F12 and the variant JD-F12-DED. Mutated residues are highlighted red.  

3.3.2 Expression and purification of JD-F12 mutants 

Once the sequence of mutants in pET11a expression vector had been confirmed, E. 

coli BL21 (DE3) Star cells were transformed with the recombinant pET11a 

expression vectors as described in Section 2.7.1. Recombinant JD-F12 and mutant 

proteins were produced in 50 mL LB cultures by IPTG induction under the control of 

the T7 lac promoter (Studier and Moffatt, 1986). After 6 h of induction, the cells 

ADHIRON-WT    MASAATGVRAVPGNENSLEIEELARFAVDEHNKKENALLEFVRVVKAKEQ-----VVAG-- 

JD-F12        MASAATGVRAVPGNENSLEIEELARFAVDEHNKKENALLEFVRVVKAKEQ---EVVVQRKM 

JD-F12-DED    MASAATGVRAVPGNENSLEIEELARFAVDEHNKKENALLEFVRVVKAKEQDEDEVVVQRKM 

JD-F12-3      MASAATGVRAVPGNEDSLEIEELARFAVDEHNKKENALLEFVRVVKAKEE---EVVVQRKM 

JD-F12-5      MASAATGVRAVPGNEDSLEIEELARFAVDEHNKKENALLEFVRVVKAKEE---EVVVQRKM 

JD-F12-8      MASAATGVRAVPGNEDSLEIEELARFAVDEHNKKENALLEFVRVVKAKEE---EVVVQRKM 

              ***************:*********************************:   ******** 

ADHIRON-WT   ----TMYYLTLEAKDGGKKKLYEAKVWVK----PWE--------NFKELQEFKPVGDAAAAHHHH 

JD-F12       Y---TMYYLTLEAKDGGKKKLYEAKVWVK---YKIAAKIMS---NFKELQEFKPVGDAAAAHHHH 

JD-F12-DED   YDEDTMYYLTLEAKDGGKKKLYEAKVWVKDEDYKIAAKIMSDEDNFKELQEFKPVGDAAAAHHHH 

JD-F12-3     Y---TMYYLTLEAKDGGKKKLYEAKVWVK---YKIAAKIMS---DFKELQEFKPVGDAAAAHHHH 

JD-F12-5     Y---DMYYLTLEAKDGGKKKLYEAKVWVE---YKIAAKIMS---DFKELQEFKPVGDAAAAHHHH 

JD-F12-8     Y---DEYYLTLEAKDGGKKKLYEAKVEVE---YKIAAKIMS---DDKELQEFKPVGDAAAAHHHH 

JD-F12        ASAATGVRAVPGNENSLEIEELARFAVDEHNKKENALLEFVRVVKAKEQ---EVVVQRKM 

JD-F12-DED    ASAATGVRAVPGNENSLEIEELARFAVDEHNKKENALLEFVRVVKAKEQDEDEVVVQRKM 

JD-F12-3      ASAATGVRAVPGNEDSLEIEELARFAVDEHNKKENALLEFVRVVKAKEE---EVVVQRKM 

JD-F12-5      ASAATGVRAVPGNEDSLEIEELARFAVDEHNKKENALLEFVRVVKAKEE---EVVVQRKM 

JD-F12-8      ASAATGVRAVPGNEDSLEIEELARFAVDEHNKKENALLEFVRVVKAKEE---EVVVQRKM 

              **************:*********************************:   ******** 

 

JD-F12        Y---TMYYLTLEAKDGGKKKLYEAKVWVK---YKIAAKIMS---NFKELQ--- 

JD-F12-DED    YDEDTMYYLTLEAKDGGKKKLYEAKVWVKDEDYKIAAKIMSDEDNFKELQ--- 

JD-F12-3      Y---TMYYLTLEAKDGGKKKLYEAKVWVK---YKIAAKIMS---DFKELQ--- 

JD-F12-5      Y---DMYYLTLEAKDGGKKKLYEAKVWVE---YKIAAKIMS---DFKELQ--- 

JD-F12-8      Y---DEYYLTLEAKDGGKKKLYEAKVEVE---YKIAAKIMS---DDKELQ--- 
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were harvested and pellets were lysed (Section 2.7.3) and aliquots of the total 

lysate, soluble fraction, column flow-through and elution obtained from the one-

step Ni-NTA affinity chromatography, were analysed by 4-20 % SDS PAGE. The 

expression and purification profile of the empty Affimer scaffold (Affimer-WT) was 

used as the positive control.  The results are shown in Figure 3.3.  
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Figure 3.3: Purification profile of JD-F12 mutants analysed on 4-20% SDS-PAGE 
gels. Denaturing SDS-PAGE analysis of fractions obtained during purification 
steps for (a) Affimer wild-type and Ataxin binder JD-F12. (b) JD-F12-DED and JD-
F12-3 (c) JD-F12-5 and JD-F12-8. The fractions analysed were total lysate - TL, 
soluble fraction - SF, flow-through - FT and the elution - EL. The expected 
protein bands are indicated with an arrow.  
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Lanes loaded with total lysate as expected have many bands but with the most 

prominent band migrating in the range of 10–15 kDa when compared to the 

protein markers. The prominent bands corresponded to the expected sizes of JD-

F12 and mutant proteins, which confirmed their expression: JD-F12 (13. kDa); JD-

F12-DED (14.7 kDa); JD-F12-3 (13.5 kDa); JD-F12-5 (13.5 kDa); JD-F12-8 (13.4 kDa). 

The mutation of W82E could account for the lower mass of JD-F12-8 compared to 

JD-F12-5. This prominent band was also observed in the lanes loaded with the 

solution fraction (SF) obtained after centrifugation of the cell lysate for all 

expressed protein except JD-F12-8. This suggest that the expressed JD-F12-8 was 

unstable and not properly folded and therefore accumulated in inclusion bodies.  

The flow-through fraction (FT) obtained after incubating the soluble fraction with 

the Ni-NTA resin showed that most of the recombinant proteins were captured by 

the affinity resin. For Affimer WT and JD-F12-DED, the presence of a band 

corresponding to the expected molecular mass of recombinant protein in the flow 

through fraction indicated that the columns were saturated and some unbound 

recombinant proteins were eluted in the flow through. Specifically bound 

recombinant proteins were purified to homogeneity as seen as a single band on 

lanes loaded with the elution fraction (EL).  

From the purification profile of the mutants, Figure 3.3 (b&c) showed that mutants 

and the controls were expressed and purified from the soluble fraction except JD-

F12-8 which was therefore eliminated from further studies. The protein 

concentration of purified Affimer mutants that was calculated from their extinction 

coefficients are given in Table 3.1. JD-F12-8 does not contain any tryptophan 

residue. According to the ExPASy computational site, no tryptophan in the protein 

to be analysed could result in more than 10 % error in the computed extinction 

coefficient. This could explain why the extinction coefficient of JD-F12-8 was 

different from the other mutants. 

  

A. 
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Table 3.1: Biophysical properties of purified proteins from JD-F12 mutants. The 
isoelectric point pI, molecular masses, and the protein concentration of the 
mutants are given.  

 

3.4 Characterisation of Affimer mutants 

The effect of the point mutations on the biophysical properties of JD-F12 was 

elucidated using several techniques such as size exclusion chromatography, 

differential Scanning calorimetry (DSC), Optim and gel electrophoresis. The results 

obtained from each technique is described below. 

3.4.1 Effect of mutations on aggregation state of Affimers using size 

exclusion chromatography 

Size exclusion chromatography is a useful technique that can be used to identify 

and characterise the oligomeric state of protein aggregates. In this study, it was 

important to determine the effect of the mutations introduced to JD-F12-3 and JD-

F12-5 on the dimerisation of the JD-F12-wild-type.  

From the results shown in Figure 3.4, the two dimeric peaks observed in JD-F12 (c) 

have been replaced by a single peak in JD-F12-3 (d) and JD-F12-5 (e). Comparing 

the chromatogram obtained from the mutants to the chromatogram for the wild-

type Affimer scaffold (a) and JD-F12-DED (b) which are monomeric proteins and 

were used as controls in the experiment, the single peak observed in JD-F12-3 and 

JD-F12-5 are monomeric.  
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Figure 3.4: JD-F12 exist as a dimer. The Chromatograms of JD-F12 and its mutants (a-e) resolved in a Superdex 200 10/300 column.  
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3.4.2 SDS-PAGE used to determine thermostability   

To study the influence of the mutants on the thermostability of the protein, SDS-

PAGE was used as the first analytical technique to understand the effect of heat-

induced denaturation of the protein in solution. As described in section 2.7.6.4, 9 

aliquots of each mutant were prepared, heated at the desired temperature for 20 

min, sedimented at 13,000 rpm for 5 min to remove aggregates while the soluble 

proteins were analysed on SDS-PAGE (Figure 3.5 (a-e)).  

The Affimer scaffold which has been characterised as monomeric, thermally stable 

(up to 101 oC) with good expression yield (Tiede et al., 2012) was used as the 

positive control. From this experiment, Affimer-WT and JD-F12-DED were shown to 

be thermally stable up to 99 oC which is the highest heating temperature that could 

be obtained by the heating block. Figure 3.5a shows that JD-F12, JD-F12-3 and JD-

F12-5 were thermally stable up to 70 oC, 70 oC and 60 oC respectively before 

reduction in soluble protein was observed.   
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3.4.3 Effect of mutation on thermal stability of mutants using 

Differential Scanning Calorimetry (DSC) 

Differential Scanning Calorimetry was used as a technique to understand the 

thermal unfolding properties of JD-F12 and its mutants. The Affimer-WT scaffold 

with a published Tm of 101oC was used as the positive control to test instrument 
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Tm=101oC 

Figure 3.6: DSC results of JD-F12 mutants. 1 mg/mL of each sample was analysed 
using Microcal VPS DSC. (a) Determination of the melting temperature of Affimer 
scaffold (Tm= 101oC), (b) DSC scans for JD-F12 compared with the mutants JD-F12-3 
and JD-F12-5. (c) DSC scans for JD-F12-DED (d) SDS-PAGE gel showing Pre- and Post 
DSC analysis of the mutants.                                                                                                                                                                                            

(a (b) 

(c

performance. As shown in Figure 3.6a, the thermal stability of the Affimer scaffold 

gave a profile with a melting temperature of 101 oC as expected (Tiede et al., 2014).  

 

  

 

 

 

                                                                                      

 

 

          

 

 

 

DSC thermogram confirmed that JD-F12, JD-F12-3 and JD-F12-5 (Figure 3.6b) 

aggregates upon thermal denaturation, which started to unfold at 75 oC, 83 oC and 

66 oC respectively. The unfolding of these proteins was followed immediately by an 

irreversible exothermic aggregation step as indicated by the noisy data observed as 

unfolding starts. On the SDS PAGE gel (Figure 3.6d), the single protein band for JD-

F12, JD-F12-3 and JD-F12-5 seen in the pre-DSC lane has aggregated and 

(d) 
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precipitated out of solution in the post-DSC lane. Though the mutants aggregated, 

it is noteworthy that JD-F12-3 improves the thermal stability of JD-F12 by 8oC 

before the onset of aggregation, while JD-F12-5 was less thermally stable by 9oC. 

The DSC scan for JD-F12-DED which is the variant with DED triad before/ after each 

variable loop has a Tm at 55 oC, the protein sample was soluble pre- and post DSC 

analysis (from the gel analysis). Scan 2 for JD-F12-DED was performed to test the 

reversibility of the DSC transitions of intact JD-F12-DED by consecutive heating of 

the same sample in the calorimeter. Although no aggregation was observed for 

scan 2, addition of 12 acidic residues have drastically reduced the transition 

temperature of JD-F12 by 20 oC. 

3.4.4  Thermostability and aggregation profile of JD-F12 and its 

mutants 

The Optim 2000® (Avacta) is a high throughput protein characterisation system 

that uses intrinsic fluorescence and the static light scattering technique 

simultaneously to measure the structural integrity of the proteins in solution. The 

results obtained from Optim analysis of JD-F12 and its mutants are given in Figure 

3.7.  This technique uses intrinsic fluorescence technology and static light 

scattering to test more than one parameter of a protein simultaneously including 

protein stability, unfolding transition temperature, and aggregation onset 

temperature (Tagg). 

For protein unfolding characterisation, tryptophans were excited at 266 nm and its 

intrinsic fluorescence was measured at a range from 300 to 400 nm as the sample 

unfolds. The Barycentric mean (BCM) is the fluorescence intensity at a given 

wavelength (λ). Analysis of the BCM was performed using the Optim Analysis 

Software (Avacta Analytical). As seen in Figure 3.7a, JD-F12, JD-F12-3 and JD-F12-5 

remained folded up to 78 oC, 74.5 oC, and 63 oC respectively. This shows that JD-

F12 has the highest conformational stability, while JD-F12-3 is the most stable of 

the mutants. On the other hand, the melting temperature of JD-F12-DED showed 

an unfolding pattern from as early as 50 oC and increases with rise in temperature. 
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This indicates that of the mutants, JD-F12-DED has the lowest conformation 

stability. 

The static light scattering (SLS) of the JD-F12 and its mutants was recorded as the 

samples were heated from 10 oC to 90 oC to detect the presence of aggregates. 

Importantly, the aggregation onset temperature (Tagg), which is the temperature at 

which a protein begins to aggregate, was identified for each sample. Tagg is usually 

accompanied by a significant increase in the static light scattering (SLS) intensity 

count. Figure 3.7b gives the thermogram for JD-F12 and its mutants. Data from the 

static light scattering generated automatically by the Optim software, showed that 

JD-F12-DED has the highest colloidal stability which means it does not aggregate 

when subjected to thermal denaturation up to 90 oC. For JD-F12, JD-F12-3 and JD-

F12-5, the temperature for the onset of aggregation (Tagg) was calculated to be 58 

oC, 62 oC, and 55 oC respectively. Comparison of the effects of JD-F12-3 and JD-F12-

5 on the unfolding and aggregation profile of JD-F12 showed that JD-F12-3 delayed 

the onset of aggregation temperature and decreased the aggregation level of JD-

F12. On the other hand, JD-F12-5 only decreased the aggregation level but has a 

lower Tagg.  

Based on the results obtained so far on the biophysical characterisation of the 

effect of adding acidic residues at selected position by point mutation, the 

following were inferred and used as a guide for the next step of the study. 

(i) JD-F12-3 containing the three mutations reduces the aggregation 

propensity of JD-F12. Therefore, it was used for subsequent studies. 

(ii) JD-F12-DED has high colloidal stability, with no aggregation up to 90 oC, 

however from DSC data and protein unfolding data (Optim analysis), it 

unfolds at 55 oC. 
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3.5  Mutational studies on other Affimer binders 

This section describes the work carried out to understand the effect of each of the 

mutations introduced in JD-F12-3 and the impact of the three mutations on two 

other previously characterised aggregation-prone binders. Similarly, the impact of 

having one (D) or two acidic residues (either DD, or DE, or ED) before and after 

each loop was investigated. 

Figure 3.7: Thermal denaturation and aggregation analysis of JD-F12 and 
mutants. (a) Unfolding profile of the samples while (b) provides their thermal 
aggregation profile. 
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3.5.1 Impact of each point mutation and their combination on 

aggregation resistance of JD-F12-3 

The three mutations in JD-F12-3 (N16D, Q50E and N94D) were individually studied 

to determine if just one of the mutations was sufficient to improve aggregation 

resistance in JD-F12, or whether two or all three mutations are required. 

Samuel Rhoden, as part of his undergraduate research project carried out 

mutagenesis, cloning, expression, purification and characterisation of the single 

and double mutants (Rhoden, 2015). The table below gives a comparison of the 

data for the single and double mutants to JD-F12-3 and JD-F12.  

Table 3.2: Characterisation of Affimer and mutants for thermostability and 
aggregation profile. The the aggregation profile (Tagg) and the aggregation intensity 
count obtained from Optim analysis. 

Mutants SLS (Tagg) 
oC 

Peak SLS intensity 
count 

JD-F12  58 590 x 103 

JD-F12 (N16D) 51 580 x 103 

JD-F12 (Q50E) 49 582 x 103 

JD-F12 (N16D, Q50E) 48 585 x 103 

JD-F12-3 (N16D, Q50E, N94D) 62 350 x 103 

 

The results obtained from DSC and SLS analysis of the mutant variants (Table 3.2) 

revealed that neither single mutations in JD-F12 (N16D or Q50E), nor the double 

mutations (N16D and Q50E) increased the aggregation resistance of the binder. So 

far, the mutant with all three mutations (JD-F12-3) was the best mutant that 

improves the melting temperature of the JD-F12 by 8 oC and delayed the onset of 

aggregation by 4 oC with 40.7 % reduction in aggregation intensity count.  

3.5.2 mGFP21 and EGFR-H9-N 

Based on these results, the next question in mind was “can N16D, Q50E, N94D 

mutations increase the aggregation-resistance in other binders?” Therefore, to 

answer this, the ability of three point mutations to decrease aggregation was 
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further studied using two more aggregation-prone binders, MGFP 21 and EGFR-H9-

N and on the Affimer-WT scaffold.  

3.5.2.1  Cloning of mGFP-21, EGFR-H9-N and Affimer-WT mutants 

The mutant gene of MGFP-21, EGFR-H9-N and the Affimer-WT scaffold was 

designed to carry the N16D, Q50E and N94D mutations. These synthetic constructs 

were ordered from GenScript with their coding region cloned between NheI and 

NotI restriction sites in pUC57 cloning vector. The mutant genes were amplified by 

PCR using pUC57 forward and reverse primer (Table 2.3, Chapter 2) then treated 

with DpnI enzyme to get rid of methylated plasmid template. The amplified 

fragments were digested using NheI/NotI endonucleases then ligated into similarly 

digested pET11a expression vector. 

Successful subcloning of Affimer mutants from pUC57 into pET11a vector was 

confirmed by DNA sequencing, as it can be seen in Figure 3.8. 

 

Figure 3.8: Sequence alignment for EGFR-H9-N, mGFP-21 and Affimer-scaffold. 
The alignment of the wild-type (WT) and the mutant (MT) is shown, with the 
mutated residues highlighted and the variable region 1 (VR1) and 2 (VR2) 
underlined. 

3.5.2.2  Purification and characterisation of mGFP-21, EGFR-H9-N and 

Affimer-WT mutants 

Expression by IPTG induction of the wild-type and mutant variants of mGFP-21, 

EGFR-H9-N and Affimer scaffold called (MG, EG, and SC respectively) were carried 

 

 

 

 

EGFP-H9-N-WT      MASAATGVRAVPGNENSLEIEELARFAVDEHNKKENALLEFVRVVKAKEQMSQWLD-AVDTM 

EGFP-H9-N-MT      MASAATGVRAVPGNEDSLEIEELARFAVDEHNKKENALLEFVRVVKAKEEMSQWLD-AVDTM 

mGFP21-WT         MASAATGVRAVPGNENSLEIEELARFAVDEHNKKENALLEFVRVVKAKEQPSNYGYAERWTM 

mGFP21-MT         MASAATGVRAVPGNEDSLEIEELARFAVDEHNKKENALLEFVRVVKAKEEPSNYGYAERWTM 

AFFIMER SC-WT     ------------MASNSLEIEELARFAVDEHNKKENALLEFVRVVKAKEQV------VAGTM 

AFFIMER SC-MT     ------------MASDSLEIEELARFAVDEHNKKENALLEFVRVVKAKEEV------VAGTM 

                                .:*********************************:          ** 

 

 

 

 

EGFP-H9 new-WT    YYLTLEAKDGGKKKLYEAKVWVKKMPIMNYNTNFKELQEFKPVGDAAAAHHHH 

EGFP-H9-new-MT    YYLTLEAKDGGKKKLYEAKVWVKKMPIMNYNTDFKELQEFKPVGDAAAAHHHH 

mGFP21-WT         YYLTLEAKDGGKKKLYEAKVWVKTQYARYGAQNFKELQEFKPVGDAAAAHHHH 

mGFP21-MT         YYLTLEAKDGGKKKLYEAKVWVKTQYARYGAQDFKELQEFKPVGDAAAAHHHH 

AFFIMER SC-WT     YYLTLEAKDGGKKKLYEAKVWVKPW------ENFKELQEFKPVGDAAAAHHHH 

AFFIMER SC-MT     YYLTLEAKDGGKKKLYEAKVWVKPW------EDFKELQEFKPVGDAAAAHHHH 

                  ***********************         :******************** 

N16D 

N94D 

Q50E 

VR 1 

VR 2 
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out as previously described in Section 3.3.2. Cell pellets obtained from the 50 mL 

culture samples were lysed and the His-tagged variants were purified using Ni-NTA 

affinity chromatography. Analysis of the purity of the eluted proteins is given in 

Figure 3.9a which shows >99 % purity. Purified protein samples from JD-F12 

variants (DE, DD, ED, and D) described in Section 3.5.3 were analysed alongside on 

the gel, and the proteins were used without further purification step in other 

experiments. 

 

  

 

 

Size exclusion chromatography: 1 mg/mL of dialysed Affimer-scaffold, EGFR-H9-N, 

mGFP21 wild-type binders and their corresponding mutants were analysed on 

sepharose 200 10/300 column to investigate if the presence of N16D, Q50E and 

Figure 3.9: Analysis of purified variants. (a) The purified proteins of the wild-
type and the mutants were analysed on 4-20% SDS-PAGE. SC, MG and EG are 
the short forms for Affimer-scaffold, MGFP-21 and EGFR-H9-N respectively. The 
size exclusion analysis of each protein WT and mutant is shown in (b,c,d) 
respectively.  
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N94D mutations has effectively decreased aggregation. The results are presented 

in Figure 3.9(b-d). Mutant of the Affimer scaffold possessed only a major peak 

corresponding to the monomeric peak of the wild-type as expected. For mGFP21 

(3.9c) and EGFR-H9-N (3.9d), the chromatogram of the mutants indicated the 

presence of two peaks which corresponds to the monomeric and dimeric peaks. 

This suggested that the mutations in mGFP21 and EGFR-H9-N did not eliminate 

aggregation. 

Thermal unfolding properties of the binders: To further characterise the impact of 

the mutations, the intrinsic flourescence properties of each protein was used to 

probe its unfolding and light scattering properties during thermal denaturation. 

From Figure 3.10a, 3.11, and 3.12a, a common trend was observed across all the 

mutants as their thermograms followed the same pattern as the wild-types. These 

results suggest that the presence of more acidic residue made the buried 

tryptophan become more exposed in the mutants.  

Aggregation profile of the binders: A more pronounced effect of the mutants was 

observed when static light scattering was used to detect the aggregation intensity 

of each protein. For EGFR-H9-N, the aggregation intensity count was reduced from 

75 x 103 in the wild-type to 28 x 103 in the mutant which gives a 63 % reduction in 

aggregation. Similarly, the aggregation intensity count for mGFP21 was reduced 

from 62 x 103 (wild-type) to 35 x 103 (mutant), resulting in a 44 % reduction in 

aggregation. For both Affimer scaffold wild-type and mutant, no aggregation was 

observed as the intensity count across the temperture gradient was < 1 x 103. 
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Figure 3.10: Optim Analysis for EGFR-H9-N. The effect of mutation N16D, Q50E 
and N94D on the thermal unfolding properties and aggregation profile of EGFR-H9-
N is given in (a) and (b) respectively. Wild-type plot given is in (red) while mutant in 
(orange). 

80

70

60

50

40

30

20

10

0

S
c
a

tt
e

r2
6

6
 /
 1

0
3
 c

o
u
n

ts
.n

m

80604020

Temperature /  °C

Wild-Type 
Mutant 

EGFR-H9-N 

Wild-Type 
Mutant 

EGFR-H9-N 

(a) 

(b) 



109 
 

 

 

Figure 3.11: Optim Analysis for mGFP-21. The effect of mutation N16D, Q50E and 
N94D on the thermal unfolding properties and aggregation profile of mGFP-21 is 
given in (a) and (b) respectively. Wild-type plot is given in (light green) while 
mutant in (cyan).  

  

(b) 

(a) 
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Figure 3.12: Optim Analysis for Affimer scaffold. The effect of mutation N16D, 
Q50E and N94D on the thermal unfolding properties and aggregation profile of 
Affimer scaffold is given in (a) and (b) respectively. Wildtype plot is given in (blue) 
while mutant in (purple).  
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3.5.3  Effect of adding D/DD/ ED/ E residues before each loop  

From section 3.4 and 3.5 above, the data presented showed that the three point 

mutations N16D, Q50E and N16D, have the potential of decreasing but not 

eliminating aggregation propensity in the binders. Therefore, it is not a generic 

approach to stability enhancement. However, addition of DED residues before and 

after VR1 and VR2 showed complete elimination of aggregation in JD-F12. Taking 

these together, this section describes the characterisation of new JD-F12 variants 

with either D or DD or ED or DE, before and after VR1 and VR2. 

The cloning, expression and purification of JD-F12-D, JD-F12-DD, JD-F12-ED and JD-

F12-DE was carried out just as described in section 3.5.2.1 and 3.5.2.2 respectively. 

The alignment of the variants is given below with the added residues highlighted in 

red (Figure 3.13). All variants were easily expressed, purified and the analysis of the 

purified proteins is presented in Figure 3.9a. 

 

Figure 3.13: Sequence alignments of JD-F12 variants. The variants of JD-F12 were 
successfully subcloned into pET11 expression vector. The added residues for each 
variant are highlighted in red. 

Optim static light scattering analysis was used to probe the aggregation profile of 

each variant.  As described in section 3.4.4, samples used for analysis were dialysed 

into PBS (pH7.4) and prepared to a final concentration of 1 mg/mL. For comparison, 

fresh aliquot of Affimer scaffold, JD-F12, JD-F12-3, JD-F12-DED, JD-F12-D, JD-F12-

DD, JD-F12-ED and JD-F12-DE were analysed at the same time. Figure 3.14 and 

Table 3.3 presents the results obtained. 

 

JD-F12-D      --NENSLEIEELARFAVDEHNKKENALLEFVRVVKAKEQD--EVVVQRKMYD--TMYYLT 

JD-F12-DD     --NENSLEIEELARFAVDEHNKKENALLEFVRVVKAKEQDD-EVVVQRKMYDD-TMYYLT 

JD-F12-ED     --NENSLEIEELARFAVDEHNKKENALLEFVRVVKAKEQED-EVVVQRKMYED-TMYYLT 

JD-F12-DE     --NENSLEIEELARFAVDEHNKKENALLEFVRVVKAKEQDE-EVVVQRKMYDE-TMYYLT 

JD-F12-DED    --NENSLEIEELARFAVDEHNKKENALLEFVRVVKAKEQDEDEVVVQRKMYDEDTMYYLT 

                *************************************   *********   ****** 

 

JD-F12-D      LEAKDGGKKKLYEAKVWVKD--YKIAAKIMSD--NFKELQ--- 

JD-F12-DD     LEAKDGGKKKLYEAKVWVKDD-YKIAAKIMSDD-NFKELQ--- 

JD-F12-ED     LEAKDGGKKKLYEAKVWVKED-YKIAAKIMSED-NFKELQ--- 

JD-F12-DE     LEAKDGGKKKLYEAKVWVKDE-YKIAAKIMSDE-NFKELQ--- 

JD-F12-DED    LEAKDGGKKKLYEAKVWVKDEDYKIAAKIMSDEDNFKELQ--- 

              *******************   *********   ******    
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Figure 3.14: Analysis of the aggregation profile of all JD-F12 variants. The effect of 
adding residues D/ DD/ DE / ED were monitored on the aggregation profile of the 
variants alongside DED, JD-F12-3, JD-F12 and the Affimer scaffold as controls. 

Table 3.3: Aggregation parameters for JD-F12 variants 

 

This result gives a complete analysis of the effect of each variant. JD-F12 which is 

the wildtype has the highest aggregation count as expected. The presence of the 

three-point mutation D-E-D in JD-F12-3 delayed the onset of aggregation of JD-F12 

by >10oC but did not eliminate the aggregation intensity observed in JD-F12. 

Addition of aspartic acid residue before and after each loop for JD-F12-D reduced 
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the aggregation of JD-F12 by 50 %. Interestingly, two aspartic acid before and after 

each loop in JD-F12-DD completely eliminated aggregation as seen in JD-F12-DED 

and the Affimer scaffold, which remained monomeric across the temperature 

gradient. Overall, JD-F12-DD looks promising and could be taken forward for future 

work. 

3.6 Bacterial cystatin 

The Cystatin superfamily comprises cysteine protease inhibitors such as stefins, 

cystatin and kininogens that play key roles in regulating protein degradation 

processes (Kordiš et al., 2009). Structural analysis of stefin and cystatin revealed 

three conserved regions that are important for their inhibitory properties. These 

are the N-terminal sequences, the highly conserved QXVXG motif, which forms the 

VR1, and the PW motif, which formed the VR2 (Kordiš et al., 2009). Besides its 

inhibitory properties, characterisation of human Stefin A showed it is a monomeric, 

single-domain protein of 98 amino acid residues, which made it a potential 

candidate for developing a scaffold protein (Woodman et al., 2005). In 2011, an 

engineered protein scaffold from Stefin A was developed (Stadler et al., 2011). 

Similarly, the novel non-antibody binding protein called Affimer used in this thesis 

was engineered and developed from the consensus sequences of plant cystatins 

(Tiede et al., 2014). To date, little is known about microbial cystatin in (Kordiš et al., 

2009). Therefore, it was of interest to examine the extent to which bacterial 

cystatins exist and whether these might also provide a useful scaffold protein for 

potential library generation. This section describes the design and the expression 

optimization steps for bacteria cystatin. 

3.6.1 Consensus sequence framework for bacterial cystatin protein 

design 

To design the consensus bacterial cystatin gene, a tblastn search of the GenBank 

database was performed using PCA-1 (Pectobacterium carotovorum; CP009678.1) 

and VCO (Vibrio cholera; AJFN02000019.1) protein sequences as the search probes 

which yielded 66 sequences. 58 sequences (>80 %) were from bacteria while the 

remaining 8 sequences have origins other than bacteria such as from fungi, 
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parasitic flatworm, pacific oyster, orchard grass, sheep and western clawed frog. 

No definite function has been attributed or known about bacterial cystatin, thus it 

is mainly a hypothetical protein.  Each of the sequences identified was in turn used 

as an input query sequence to ensure all potential bacterial cystatin was retrieved. 

The coding sequences obtained were translated and aligned using the program 

MultAlin (Corpet, 1988). The output of the multiple alignment is shown in LOGOS 

(Crooks et al., 2004) in Figure 3.15. 

The final bacterial cystatin consensus called BacCysCon 9.4 was manually checked 

to ensure that each residue in the consensus was the most frequent residue for 

that position. Alignment of the bacterial csytatin consensus sequence with the 

Affimer revealed only 16 % sequence similarity. Using ExpaSy protoparam, the 

physical parameters of Bacterial cystatin (BacCysCon) was computed. Bacterial 

cystatin contained 87 residues and a pI of 9.4 which was high compared to Affimer 

scaffold (92 residues) with a pI of 5.84. The high pI of BacCysCon was due to the 

high number of lysines but relative low abundance of acidic residues. Essentially 

Affimer has more lysines, but also a greater number of acidic residues than of 

lysines and so have a lower pI. Therefore, seven residues coloured red as outlined 

in Figure 3.16 were substituted in the Bacterial cystatin (pI-9.4) to obtain Bacterial 

cystatin (pI-6.0), by increasing the number of acidic residues at positions where 

there is significant variation in residue. Four threonine residues were substituted 

with two uncharged polar residue serine and two negatively charged glutamate. 

Two lysines were replaced, one with alanine and the other with glutamate. One 

leucine was replaced with glycine. 
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Figure 3.15 Weblogo showing the conserved sequences in bacterial cystatin (Crooks et al., 2004). The percentage abundance of 
each amino acid in the sequences is represented by the height of each residue. Negatively charged residues are represented in red, 
each logo consists of stacks of symbols, one stack for each position in the sequence. The overall height of the stack indicates the 
sequence conservation at that position, while the height of symbols within the stack indicates the relative frequency of each amino or 
nucleic acid at that position. Polar amino acids (G, S, T, Y, C, Q, N) show as green, basic (K, R, H) blue, acidic (D, E) red, and 
hydrophobic (A, V, L, I, P, W, F, M) amino acids as black. 

BacCysCon9.4 MASTQLLGG WTAFHELTAE DKAVFKTALK GLVGVTYTPL AVAT-QVVAG TNYSFITKAT VVYPGAKVYL AKVYIYKPLK GDAHITKIE       

BacCysCon6.0 MASTQLGGG WSAFHELSAE DKAVFAEALK GLVGVEYTPL AVAT-QVVAG TNYSFITKAT VVYPGAKVYL AKVYIYKPLE GDAHITKIE  

      

Figure 3.16: Sequences of Bacterial cystatin consensus. The amino acid residues in the consensus sequence with a description of 
the effect of amino acid mutations on the pI of Bacterial Cystatin. The substituted residues in bacterial cystatin consensus 9.4 and 6.0 
are shown in red.  

The synthetic bacterial cystatin construct was designed to contain a NcoI restriction site at the N terminal, the coding sequence of the 

protein, a linker sequence, StrepTagII sequence for purification, two stop codons and XhoI restriction site at the C terminal. An E. coli 

codon optimised gene was synthesized by GenScript in pUC57 plasmid DNA cloning vector. 
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3.6.2 Subcloning of Bacterial cystatin from pUC57 into pET28c 

expression vector 

The bacterial cystatin construct from GenScript (BCc9.4 and BCc6.0) arrived in the 

cloning vector pUC57. For further studies and characterisation of bacterial cystatin 

to be carried out, the bacterial cystatin was subcloned into pET28c expression 

vector.  

 Aliquots from purified cloning vector (pUC57) containing the bacterial cystatin 

coding regions (BCc9.4 and BCc6.0) alongside purified expression vector pET28c 

and 1 kb DNA ladder were analysed on 1 % (w/v) agarose gel (Figure 3.17a). The 

bands show purified plasmids migrating at the expected positions of 2.3Kbp. 

Analysis of double restriction digestion of pUC57-BCc9.4 and BCc6.0 on a 2 % (w/v) 

agarose gel electrophoresis is given in Figure 3.17b. Digestion of pUC57-BCc with 

NcoI and XhoI restriction enzymes gave two clear bands on the gel. The top bands 

correspond to the cleaved pUC57 vector (2 kbp), while the lower bands migrating 

at 317 bp correspond to the BCc insert (BCc9.4 and BCc6.0 respectively). These 

inserts were successfully ligated between the NcoI and XhoI restriction site of 

linearised pET28c expression vector. Colony PCR was performed for 3 different 

colonies from pET28c-BCc9.4 and pET28c-6.0 plates respectively using T7P and T7F 

primers to amplify the region between T7 promoter and T7 terminator to identify 

clones with insert. The analysis of the colony PCR products of transformed XL-10 

Gold E. coli cells with pET28c-BCc9.4/BCc6.0 on 1 % (w/v) agarose gel 

electrophoresis is presented in (Figure 3.17c). Positive control (undigested vector) 

migrated at 309 bp, no band was seen on the negative control (pUC57) because it 

has no T7 promoter and terminator site. Successful ligations have band size of 517 

bp while vectors without insert have 244 bp band size. 
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Figure 3.17: Subcloning of Bacterial cystatin from pUC57 into pET28c vector. (a) 
1 % (w/v) agarose gel showing eluted plasmid DNA. (b). Analysis of double 
restriction digestion (NcoI /XhoI) of pUC57-BCc9.4 and BCc6.0 with on a 2 % (w/v) 
agarose gel electrophoresis. (c) PCR analysis of transformed colonies with ligation 
products for pET28-BCc inserts.  

The plasmid DNA of the positive clones from colony PCR was sequenced. All 

colonies identified as having insert by colony PCR was confirmed as correct through 

DNA sequencing as shown in Figure 3.18. This indicated that colony PCR is a reliable 

analytic method of screening for positive ligation clones before sequencing. 
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Figure 3.18: Multiple sequence alignment to show successful subcloning. DNA 
sequencing data for pET28c-BCc9.4 and pET28c-BCc6.0 cloning regions were 
aligned with the original sequences provided for the synthesised genes GenScript 
for BCc9.4 and BCc6.0 respectively. The astrices show the presence of same residue 
at each position. Thus, the bacterial cystatin with correct sequence has been 
successfully cloned into the expression vector (pET28c). 

3.6.3 Protein expression of Bacterial Cystatin  

A pET-28c-BCc9.4 or pET28c-BCc6.0 plasmid was transformed into BL21 (DE3) Star 

cells for expression.  3 colonies were picked from each plate and grown overnight 

as a starter culture which was used to inoculate 50 mL of media. 1 mM IPTG was 

used for protein induction and cells were harvested after 6 h. To investigate the 

expression levels of the six bacterial cystatin proteins expressed before purification, 

1 mL samples were taken after the 6 hours expression culture and lysed. The total 

lysate and soluble fractions from each sample were analysed on a SDS-PAGE gel 

alongside the Affimer-WT control and is given in Figure 3.19. In the lane loaded 

with total lysate and soluble fractions from Affimer wild-type, a prominent band 

was seen at the expected size, this indicated that the Affimer wild type expressed 

well and can be purified from the soluble fraction. However, no protein band 

corresponding to the expected size (BCc9.4 = 10.8 kDa; BCc6.0 = 10.7 kDa) was 

observed on the total lysate and soluble fraction lane for BCc9.4 and BCc6.0. 

Therefore, the protein purification of  BCc9.4 and BCc6.0 was not done. 

GenScript9.4    MASTQLLGGWTAFHELTAEDKAVFKTALKGLVGVTYTPLAVATQVVAGTNYSFITKATVV 60 

BCc9.4.         MASTQLLGGWTAFHELTAEDKAVFKTALKGLVGVTYTPLAVATQVVAGTNYSFITKATVV 60 

                ************************************************************ 

GenScript       YPGAKVYLAKVYIYKPLKGDAHITKIEAAASSAWSHPQFEK 101 

BCc9.4          YPGAKVYLAKVYIYKPLKGDAHITKIEAAASSAWSHPQFEK 101 

                ***************************************** 

 

 

 Genscript6.0     MASTQLGGGWSAFHELSAEDKAVFAEALKGLVGVEYTPLAVATQVVAGTNYSFITKATVV 60 

Bac6.0.2        MASTQLGGGWSAFHELSAEDKAVFAEALKGLVGVEYTPLAVATQVVAGTNYSFITKATVV 60 

                ************************************************************ 

Genscript6.0    YPGAKVYLAKVYIYKPLEGDAHITKIEAAASSAWSHPQFEK 101 

Bac6.0.2        YPGAKVYLAKVYIYKPLEGDAHITKIEAAASSAWSHPQFEK 101 

                ***************************************** 
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Figure 3.19: Analysis of IPTG-induced protein expression of bacterial cystatin on 
15 % SDS-PAGE. A 1 mL sample for each protein expression trial was lysed with 
Bugbuster TM (Novagen). Total lysate and soluble fraction from Affimer wild-type 
(Adh-WT); three different colonies for bacterial cystatin 9.4 (BCc9.4); and three 
different colonies for bacterial cystatin 6.0 (BCc6.0), were analysed alongside a 
molecular weight ladder. Proteins were viewed on Coomassie blue stained 15 % 
SDS-PAGE. Expressed Adh-WT protein in total lysate and soluble fraction lane is 
marked by the arrow at 12 kDa.  

To improve expression for BCc9.4 and BCc6.0, different strategies were used. First, 

the bacterial cystatin was sub-cloned from pET28c into pET11a, since the Affimer- 

WT used for positive control is expressed in pET11a. Secondly, aside IPTG induction, 

the bacterial cystatin was also expressed by auto-induction since greater cell mass 

will often result in greater soluble protein yield. Third, two different negative 

controls (undigested pET28c expression vector, BL21 (DE3) Star expression host 

cells were included, and lastly, dot blot analysis was carried out on the total lysate 

obtained during the 96 h autoinduction. The results obtained are given in Figure 

3.20 and 3.21. As seen in Figure 3.20a, only Affimer-WT gave significant expression 

level in the soluble fraction after 24 h of incubation, with increased intensity after 

72 h, a small band was also observed in its insoluble fraction at 72 h incubation. No 
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band was seen for BCc9.4 in either soluble or insoluble fractions and the change in 

expression vector did not improve its expression level at 24 h and 72 h. For BCc6.0, 

It appears that the protein pET28-BCc6.0 is poorly expressed at both 24 h and 72 h. 

No improvement in expression level was observed with the change in expression 

vector. These observations led to the decision of performing dot blot analysis on 

the total lysate obtained from the autoinduction experiment. 

 

Figure 3.20: Analysis of auto-induction of  bacterial cystatin protein expression 
on 15 % SDS-PAGE. A 1 mL sample for each expression culture was lysed with 
Bugbuster. Soluble and insoluble fractions alongside effect of change of expression 
vector (from pET28c to pET11a) on the expression level of bacterial cystatin was 
analysed on the 15 % SDS-PAGE. (a) The expression profile of proteins after 24 h of 
autoinduction. (b) The expression of proteins after 72 h of autoinduction. The 
expressed protein samples are from negative controls (undigested pET28c and 
BL21(DE3) Star cells), positive control (pET11-Affimer)and test samples (pET28-
BCc9.4, pET28-BCc6.0, pET11-BCc9.4 and pET11-BCc6.0) 
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3.6.4 Dot blot analysis of Bacterial cystatin 

The dot blot analysis was carried out on the total lysate obtained from 96 h auto-

induction expression culture at specific time intervals is shown in the Figure 3.21, 

to detect strep-tagged protein. Using strep-tag GO as the positive control, signals 

were visualised on the lane dotted with pET28c-BCc6.0, and the highest signal 

intensity was observed for BCc6.0 at 48 h. Expression level decreased after 48 h of 

auto induction for BCc6.0 as signified by decrease signal intensity. On the other 

hand, no signal was observed in the lane dotted with pET28c-BCc9.4 from 15 h until 

96 h. This confirmed the results obtained from the expression trials. No signals 

were seen on lane dotted with the negative controls as expected; undigested 

pET28c vector, since it has no insert and BL21 (DE3) Star cells which was the 

untransformed expression host. No expression was found on pET11-BCc9.4/ BCc6.0, 

which confirms the previous result, that the change of vector has no effect on the 

expression level of bacterial cystatin. 

 

Figure 3.21: Dot blot analysis for the detection of strep-tagged protein. Total 
lysate from 1 mL samples of expression cultures taken at the indicated hours during 
96 h autoinduction were analysed on a dot blot using Streptactin for detection, 
only pET28-BCc6.0 and the galactose oxidase (GO) control gave signal on the dot 
blot. pET11a-Affimer which is his-tagged (not strep-tagged) was used as the 
negative control and gave no signal on the dot blot. 
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From this experiment, Bacterial cystatin (BCc6.0) was chosen for further analysis. 

To further improve the expression of BCc6.0 even more, a second version called 

BCc6.0v2 was designed to exclude rho dependent termination factor, which may 

cause early termination of transcription and disrupt protein synthesis of BCc6.0. 

The results for the cloning of the improved version (BCc6.0v2) is explained in the 

section below. 

3.6.5 Cloning of Bacterial cystatin version 2 - BCc6.0v2 

The improved version BCc6.0v2 was subcloned from pUC57 and cloned successfully 

into pET28c as described for BCc6.0. The DNA sequencing results in Figure 3.22 

showed that pET28c-BCc6.0v2 has the expected sequence. 

 

Figure 3.22: Multiple sequence alignment to show successful subcloning. DNA 
sequencing result for pET28c-BCc6.0v2 was aligned with the original sequence 
provided by GenScript for BCc6.0v2. The asterisks show the presence of same 
residue at each position. Thus, the bacterial cystatin version 2 with the expected 
sequence has been successfully cloned into the expression vector (pET28c). 

3.6.6 Protein expression and time course analysis for BCc6.0v2 

Expression of BCc6.0v2 was carried out alongside BCc6.0 (previous version) to 

enhance comparative studies, while Affimer scaffold expressed in pET11a was used 

as the positive control. The time course analysis obtained showed a similar growth 

trend for the cells in all flasks (Figure 3.23).         

1.1.C           MASTQLGGGWSAFHELSAEDKAVFAEALKGLVGVEYTPLAVATQVVAGTNYSFITKATVV 60 

BCc6.0v2        MASTQLGGGWSAFHELSAEDKAVFAEALKGLVGVEYTPLAVATQVVAGTNYSFITKATVV 60 

                ************************************************************ 

 

1.1.C           YPGAKVYLAKVYIYKPLEGDAHITKIEAAASSAWSHPQFEK 101 

BCc6.0v2        YPGAKVYLAKVYIYKPLEGDAHITKIEAAASSAWSHPQFEK 101 

                ***************************************** 
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Figure 3.23. Time course analysis for BCc6.0v2 expression: The absorbance  
measured at 600 nm at one-hour intervals for each sample are presented. NIS 
(Non-Induced Sample) represents absorbance taken before IPTG induction. The 
absorbances were measured each hour after induction for 6 h then overnight (O/N) 
respectively. 

 

3.6.7 SDS-PAGE Analysis of protein expression 

Fractions obtained from a 1 mL sample taken at intervals during protein expression 

were prepared and 10 μL aliquot of the total lysate, soluble fraction and insoluble 

fraction were analysed on a 4-20 % SDS-PAGE gel. Figure 3.24 gives the result 

obtained. 
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Figure 3.24: Comparative SDS-PAGE analysis for the expression level for Adh-
WT, BCc6.0 and BCc6.0v2 (a-c). A 1 mL sample for each protein expression trial was 
lysed with Bugbuster TM (Novagen) and total lysate, soluble  and insoluble fraction 
were loaded on the gel. (a) gives the SDS-Page analysis for Adh-WT which was used 
as positive expression control. (b) gives the SDS-PAGE analysis for BCc6.0 which is 
the previous version of bacterial cystatin with very low expression level. While (c) 
gives the  SDS-PAGE analysis for the new version of bacterial cystatin (BCc6.0v2). 

The intensity of the band obtained for BCc6.0v2 at 6 h after IPTG induction shows 

that the new version (BCc6.0v2) (Figure 3.24c) is better expressed compared to 

BCc6.0 (Figure 3.24b). It is noteworthy that BCc6.0 showed some level of 

expression, this could have been because of a change in the expression conditions. 

Previously, BCc6.0 have been expressed at 30 oC and 150 rpm but the expression 

condition used here included reduced temperature 25oC and 150 rpm).  

3.7  Discussion  

3.7.1  JD-F12 and its mutants 

Interactions between polypeptides in quaternary structure cause them to 

aggregate and form complexes. These interactions are usually stabilised by 

interfacial contacts between residues (Mino et al., 2013). When such residues are 
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mutated, the observed stability and aggregation are altered. According to Trevino 

et al., (2007) the approach generally used to increase the solubility of a protein is 

to replace the most hydrophobic residue on the surface with a charged or polar 

residue. Bertone et al., (2001) analysed 562 proteins from Methanobacterium 

thermoautotrophicum and confirmed that high content of negative residues 

(DE >18 %) and absence of hydrophobic patches are associated with improved 

solubility (Smialowski et al., 2007).  

Studies carried out in this chapter have shown that no generalised scaffold 

optimisation strategy has been achieved through selected point mutation for 

eliminating aggregation propensity in aggregation-prone binders. Nevertheless, 

introduction of DD residues before and after VR1 and VR2 eliminated aggregation 

in JD-F12. This result presents a potential binder-specific approach for engineering 

aggregation-resistant Affimer binders. 

3.7.2  Bacterial cystatin 

The bacterial cystatin scaffold was engineered using the consensus design concept, 

an approach that has been used to develop novel Affimer scaffold (from plant 

cystatin). The gene construct for the bacterial cystatin consensus sequence BCc9.4 

and BCc6.0 was successfully cloned in frame between the NcoI/XhoI site of pET28c. 

It is noteworthy that results from colony PCR results identified colonies with the 

correct insert, therefore increasing positive results obtained from the DNA 

sequencing data. The time course analysis for the IPTG induction of bacterial 

cystatin expression shows that the absorbance of BCc6.0 is similar in trend to that 

observed in the control while BCc9.4 shows minimal increase in its absorbance 

compared to control. Analysis of the 1 mL sample taken from each flask on 15 % 

SDS-PAGE gel respectively shows that only the control ADH-WT was expressed well 

in the soluble fraction. Though a faint band about the MW of BCc9.4 and BCc6.0 

was observed on the gel, it is hard to conclude it was expressed since lysozyme, 

which is similar in size, was used for the cell lysis. According to Boettner et al., 

(2007), a high isoelectric point has been associated with no detectable protein 

expression. Hence, BCc6.0 (pI=6.0) was expected to express better than BCc9.4 

(pI=9.4). It has been shown that change of expression vector could enhance the 



126 
 

expression of synthetic proteins (Deacon and McPherson, 2011, Terpe, 2006), thus 

BCc9.4 and BCc6.0 were subcloned respectively into pET11a to allow for expression 

comparison with the control ADH-WT. SDS-PAGE and dot blot analysis of the total 

lysate of the samples (Fig 3.20 and 3.21) eliminates the possibility of contamination 

of the expression vector or the expression strain BL21 (DE3) Star cells with foreign 

protein. However, no significant improvement was observed in the soluble 

expression of BCc9.4 with a vector change. For BCc6.0, change in vector improved 

the expression, but was accumulated in the insoluble fraction. Further steps taken 

to improve the expression of bacterial cystatin was to ensure that no rho factor 

binding sequence was present upstream the gene. Rho factor when present 

upstream or within the gene to be expressed could cause abrupt termination of 

gene expression. Thus, BCc6.0 version 2 was synthesised. IPTG induction of 

BCc6.0v2 shows improved level of expression compared to BCc6.0. As protein 

solubility is an important pre-requisite for structural, biophysical studies, and 

applications (Smialowski et al., 2007), the difficulty encountered with the 

expression of bacterial cystatin has limited further analysis initially planned to be 

carried out. Analysis done so far in comparing plant cystatin (Affimer) to bacterial 

cystatin revealed that much optimisation is required before bacterial cystatin could 

be considered for the generation of new libraries. 
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4.1 Introduction  

Glutamate dehydrogenases (GDH) are a class of enzymes that are involved in the 

oxidative deamination of glutamate to α-ketoglutarate and vice versa. The 

metabolic role of GDH is determined by its coenzyme specificity (NAD or NADH, 

NADP or NADPH). GDHs involved in glutamate catabolism are NAD+-dependent and 

those involved in ammonia assimilation are NADP+-dependent. Glutamate 

dehydrogenases found in E. coli and certain yeasts are NADP+-dependent, that 

consist of six subunits (McPherson and Wootton, 1983), while GDH enzymes from 

several anaerobes such as C. difficile, Peptostreptococcus assacharolyticus are 

NAD+-dependent (Anderson et al., 1993).  NAD+-dependent GDH can either be 

hexameric (six subunits that are 48 kDa each) or tetrameric (four subunits that are 

about 115 kDa each) (Baker et al, 1992), while mammalian form of glutamate 

dehydrogenase can utilise either NAD(H) or NADP(H) as coenzymes. 

For GDH produced by C. difficile, it has a hexameric structure with each of the GDH 

subunits assembling to form an oligomer (Baker et al, 1992). Each GDH subunit 

comprises of two domains separated by a cleft and the enzyme active site is 

located in the cleft between the two domains (Pasquo et al, 1996). C. difficile GDH 

is NAD+-dependent and is encoded by the gene gluD (Lyerly, 1991). It catalyses the 

deamination of glutamate to α-ketoglutarate using NAD+ as the coenzyme. 

 

GDH produced by C. difficile can be detected in both intracellular and extracellular 

culture supernatants. Intracellular GDH is an important metabolic enzyme for the 

fermentation of amino acids. while the role of extracellular GDH in C. diff is unclear, 

it was suggested that it could be used for generating extracellular NADH to create a 

reducing environment for the anaerobe. Glutamate in the host acts as an 

important signalling molecule to regulate gut function and modulate the immune 

response. Therefore, it was also suggested that C. difficile may affect its host 

functions by scavenging the host glutamate (Bartlett et al, 2008). Most recently, 

Girinathan et al., (2016), provided the first evidence that C. difficile utilises 

glutamate to establish itself in the human gut, thereby promoting colonisation and 

disease progression.   

L-glutamate + H2O + NAD+              2-oxoglutarate + NH3 + NADH + H+ 
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Glutamate dehydrogenase (GDH) was discovered as a potential biomarker for 

Clostridium difficile infection when the latex agglutination test that was developed 

to identify C. diff toxin A was reported to be cross-reactive to an unknown protein 

(Lyerly and Wilkins, 1986, Lyerly et al., 1988). A few years later, Lyerly and his 

colleagues completed the DNA sequencing of the gluD gene that codes for the 

glutamate dehydrogenase in Clostridium difficile, and did a comparative sequence 

analysis with glutamate dehydrogenases from other bacteria (Lyerly et al., 1991). It 

was confirmed that the cross-reactive protein produced by C. difficile is glutamate 

dehydrogenase. It is produced by both toxigenic and non-toxigenic strains of C. 

difficile, therefore it has been used as a screening biomarker for the detection of 

the presence of C. difficile (Eastwood et al., 2009).  

This chapter describes how a codon optimised gene for C. difficile glutamate 

dehydrogenase was generated and used for production and purification of active 

GDH. Then, the recombinant GDH was used as a target for the identification of 

potential Affimer binders by screening an Affimer phage display library. Finally, 

characterised binders were tested for use as a diagnostic tool for CDI. 

4.2  Design and production of GDH 

The complete coding sequence for Clostridium difficile GDH was obtained from 

GenBank using accession number: M65250 (Anderson et al., 1993) and was codon 

optimised for E. coli expression using JCAT. The construct for production of 

recombinant GDH (rGDHC. diff) was designed to contain the following:  a NcoI site at 

the N-terminal end of the coding sequence and a HindIII site, His6-tag to facilitate 

purification and a stop codon at the C-terminal end (Figure 4.1).   

 

Figure 4.1: Schematic of of the synthetic gene construct for C. difficile glutamate 
dehydrogenase (GDH). The features of the construct are presented.   

4.2.1 Subcloning of the rGDHC. diff  coding region 

The synthetic construct for rGDHC. diff was ordered from GenScript cloned between 

the NcoI and HindIII restriction sites in the cloning vector pUC57. PCR (Section 2.6.1) 

was carried out to amplify the coding sequence for rGDHC. diff using pUC57 forward 
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and reverse primer (Table 2.3, Chapter 2). The thermal cycling was carried out for 

30 cycles: denaturation at 98 oC for 30 s, annealing at 54 oC for 20 s, extension at 72 

oC for 1 min 20 s, with a final extension at 72 oC for 20 min to allow complete 

extension of rGDHC. diff (1306 bp). Following purification of the products using a 

QIAquick PCR purification kit (Section 2.6.9), the amplicon was digested with NcoI 

and HindIII and ligated into similarly digested pET28c expression vector. Chemically 

competent XL10-Gold cells (Section 2.1.1) were transformed with recombinant 

pET28c-rGDHC. diff plasmid and plated onto LB-agar plates containing kanamycin.  

Following overnight incubation, several colonies were analysed by colony PCR and 

agarose gel electrophoresis, and the products corresponded to a ca. 1310 bp DNA 

fragment corresponding to the calculated size of expected PCR product of pET28c-

rGDHC. diff. Plasmids were purified from two positive clones using a QIAgen miniprep 

kit (Section 2.5.1) and DNA sequencing confirmed the correct incorporation of the 

insert (Figure 4.2). Translation of the DNA sequencing results showed the subunit, 

with the addition of the 6xHis tag comprises 440 amino acids with a deduced 

molecular mass of 47.907 kDa which was calculated using ExPASy Protparam tool 

(Gasteiger et al., 2003).  
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Figure 4.2: Sequence analysis for rGDHC. diff. The pET28-rGDHC. diff was sequenced 
using T7F and T7R primers and the sequence obtained was aligned with the 
sequence data provided by GenScript for the pUC57 construct. This shows that 
rGDHC. diff was successfully subcloned into pET28c. 

4.2.2 Expression and purification  

The pET28c-rGDHC. diff expression vector was used to transform BL21 (DE3) Star 

cells and the expression of rGDHC. diff  protein was induced with 0.1 mM IPTG, then 

the time course was followed for 6 h. Total lysates obtained from each time point 

were analysed on a 4-20 % SDS-PAGE and by Coomassie blue staining. Even though 

more protein was loaded for the 6 h sample, as shown in Figure 4.3a, the highest 

expression level was obtained 6 h post-induction - the level of GDH protein is 

substantially greater than in the preceding fraction. While later induction times 

were not analysed, the level of GDH production at 6 h was considered sufficient for 

the current experiments, as indicated by the yield of protein. Therefore, cells were 

harvested after 6 h induction and lysed (Section 2.7) and the recombinant GDH 

protein was purified from the soluble fraction using Ni-NTA affinity 

chromatography.  

For assess the protein purity, aliquots of the unbound fraction, final wash and the 

elution fractions were analysed on a 4-20 % SDS-PAGE. As shown in Figure 4.3b, a 

faint band migrating at around 48 kDa corresponding to the expected size of a GDH 

subunit was observed in the flow-through, showing that the column was saturated 

with the target protein. Bound rGDHC. diff  was eluted with a single band migrating at 

T7F-GDH1        MGSGKDVNVFEMAQSQVKNACDKLGMEPAVYELLKEPMRVIEVSIPVKMDDGSIKTFKGF 60 

GenScript       MGSGKDVNVFEMAQSQVKNACDKLGMEPAVYELLKEPMRVIEVSIPVKMDDGSIKTFKGF 60 

                ************************************************************ 

T7F-GDH1        RSQHNDAVGPTKGGIRFHQNVSRDEVKALSIWMTFKCSVTGIPYGGGKGGIIVDPSTLSQ 120 

GenScript       RSQHNDAVGPTKGGIRFHQNVSRDEVKALSIWMTFKCSVTGIPYGGGKGGIIVDPSTLSQ 120 

                ************************************************************ 

T7F-GDH1        GELERLSRGYIDGIYKLIGEKVDVPAPDVNTNGQIMSWMVDEYNKLTGQSSIGVITGKPV 180 

GenScript       GELERLSRGYIDGIYKLIGEKVDVPAPDVNTNGQIMSWMVDEYNKLTGQSSIGVITGKPV 180 

                ************************************************************ 

T7F-GDH1        EFGGSLGRTAATGFGVAVTAREAAAKLGIDMKKAKIAVQGIGNVGSYTVLNCEKLGGTVV 240 

GenScript       EFGGSLGRTAATGFGVAVTAREAAAKLGIDMKKAKIAVQGIGNVGSYTVLNCEKLGGTVV 240 

                ************************************************************ 

T7F-GDH1        AMAEWCKSEGSYAIYNENGLDGQAMLDYMKEHGNLLNFPGAKRISLEEFWASDVDIVIPA 300 

GenScript       AMAEWCKSEGSYAIYNENGLDGQAMLDYMKEHGNLLNFPGAKRISLEEFWASDVDIVIPA 300 

                ************************************************************ 

T7F-GDH1        ALENSITKEVAESIKAKLVCEAANGPTTPEADEVFAERGIVLTPDILTNAGGVTVSYFEW 360 

GenScript       ALENSITKEVAESIKAKLVCEAANGPTTPEADEVFAERGIVLTPDILTNAGGVTVSYFEW 360 

                ************************************************************ 

T7R-GDH1        VQNLYGYYWSEEEVEQKEEIAMVKAFESIWKIKEEYNVTMREAAYMHSIKKVAEAMKLRG 420 

GenScript       VQNLYGYYWSEEEVEQKEEIAMVKAFESIWKIKEEYNVTMREAAYMHSIKKVAEAMKLRG 420 

                ************************************************************ 

T7R-GDH1        WYGGGGSKLAAALEHHHHHH 440 

GenScript       WYGGGGSKLAAALEHHHHHH 440 

                ********************   
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~48 kDa corresponding to the expected size of a GDH subunit. The purification 

profile shows the recombinant protein was 90 % pure. 

 

Figure. 4.3: Production of rGDHC. diff. (a) SDS-PAGE analysis of the expression profile 
of rGDHC. diff showing product at 6 h induction. (b) SDS-PAGE analysis of the 
fractions obtained during purification. Only a single band corresponding to rGDHC. 

diff was observed on the elution fraction lane indicating the purity of the protein. (c) 
Western blot analysis of the eluted fractions showed only a prominent band in 
each lane corresponding to rGDHC. diff (47.9 kDa). M - Molecular weight marker; TL -
total lysate; FT - flow-through; W - final wash. 

Using an anti-His tag antibody, the western blot analysis confirmed the presence of 

His-tagged GDH protein in the elution fractions (Figure 4.3c) as a single prominent 

band in all the elution fractions. The protein concentration of the purified protein 

was determined by nanodrop, using the theoretical molecular weight and 

extinction coefficient calculated with the ExPASy ProtParam tool (Gasteiger et al., 

2005). rGDHC. diff has a pI of 5.52 and it was well expressed in E. coli with a protein 
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concentration of 21 mg obtained from a 50 mL expression culture (= 427.69 mg/L). 

This agrees with previous studies (Anderson et al., 1993, Girinathan et al., 2014) 

who reported a high yield of GDH in E. coli. Purified GDH was then dialysed into PBS 

(pH 7.2)  for use in further experiments or stored at -80 oC. 

4.3  Characterisation of recombinant GDH 

4.3.1 Determination of the molecular mass of rGDHC. diff 

Glutamate dehydrogenase from C. difficile is a hexameric protein containing six 

identical subunits with calculated native molecular weight of ~300 kDa (Anderson 

et al., 1993). Under denaturing conditions, the molecular mass of a glutamate 

dehydrogenase subunit as determined by SDS-PAGE (Figure 4.3b) is consistent with 

the calculated theoretical MW (47.9 kDa).  

4.3.2 Enzyme activity 

GDHC. diff catalyses the deamination of glutamate to alpha-ketoglutarate using NAD 

as the coenzyme. Purified recombinant protein was analysed for glutamate 

dehydrogenase activity (Section 2.7.7). Enzymatic activity of glutamate 

dehydrogenase was measured spectrophotometrically in the direction of oxidative 

deamination of glutamate by following the increase in absorbance at 340 nm.  The 

reaction assay contained 300 mM potassium phosphate buffer, pH 8, 300 mM 

Glutamic Acid, pH 7.5, 1 mM NAD and 0.5 μg GDH in a final volume of 1 mL. The 

reaction was started with the addition of enzyme into the reaction mixture at room 

temperature. Since the cell lysate from BL21 (DE3) Star not expressing rGDHC. diff 

would be used for pre-panning the phage during the phage display screening, the 

GDH enzyme activity of the lysate was examined to serve as a negative control. As 

expected, Figure 4.4 shows that only recombinant glutamate dehydrogenase 

displayed enzyme activity while no activity was found in the BL21 (DE3) Star cell 

lysate (negative control).  
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Figure 4.4: Glutamate dehydrogenase enzyme activity at 340 nm. The enzyme 
activity of purified rGDHC. diff and BL21 (DE3) Star cell lysate (negative control) was 
monitored. Enzyme activity was only seen in the purified enzyme sample. 

Summarily, a synthetic gene for GDHC. diff was constructed. It was expressed in E. 

coli and purified from the soluble fraction using Ni-NTA chromatography, and 

displayed glutamate dehydrogenase enzyme activity as expected. 

4.4  Identification of Affimer binders to rGDHC. diff through 

phage display 

The next phase of the project was to identify high affinity binders against 

glutamate dehydrogenase from Clostridium difficile, for diagnostic purposes. This 

was achieved by screening the Affimer phage display library against the target 

(rGDHC. diff), as outlined below. 

4.4.1 Biotinylation of rGDHC. diff 

Direct surface immobilisation of targets can lead to partial denaturation, or result 

in inaccessible binding sites during phage display screening. Hence, recombinantly 

produced glutamate dehydrogenase was immobilised onto streptavidin-coated 

Nunc Maxisorp plate via biotin-streptavidin interaction. For diagnostic purposes, a 

high affinity binder is sufficient and it does not matter where it binds. However, 

selecting inhibitory binders for other applications requires that the enzyme 

maintain its activity during the selection process. As an example, the active site of 
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glutamate dehydrogenase contains residues (including lysine 125) that are critical 

for its catalytic activity, (Baker et al., 1992).  

 In preparation for the phage display screening, rGDHC. diff was biotinylated using EZ-

link® NHS-SS-Biotin  and EZ-link®HPDP-Biotin (see Section 2.8.2.1 and 2.8.2.2).  EZ-

link® NHS-SS-Biotin labels lysine ɛ-amino groups and N-terminal amine groups 

while EZ- link® HPDP-Biotin labels reduced cysteine residues. Lysate from BL21 (DE3) 

Star cells was also biotinylated since it would be used in pre-panning steps in order 

to reduce non-specific binding during phage display, while non-biotinylated GDH 

was used as negative control (blank). Biotinylation was confirmed by ELISA and the 

absorbance read at 620 nm within 3 min of incubation with the TMB substrate 

(Section 2.8.3).  The results presented in Fig 4.5 show successful biotinylation of the 

three samples.  

 

Figure 4.5: ELISA to show biotinylation of GDH. The binding of adsorbed 
biotinylated GDH-NHS, GDH-HPDP and the cell lysate  to strep-HRP was detected 
using TMB substrate. The absorbance reading at 620 nm shows that were 
successfully biotinylated while no signal was observed with the blank. 

4.4.2 Effect of biotinylation on enzyme activity 

To evaluate the impact of the two biotinylation methods used on the enzyme 

activity of glutamate dehydrogenase, samples of GDH-NHS (glutamate 

dehydrogenase biotinylated with EZ-link® NHS-SS-Biotin), GDH-HPDP (glutamate 

dehydrogenase biotinylated with EZ-link® HPDP-Biotin), biotinylated cell lysate 
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(negative control) and non-biotinylated GDH (positive control) were examined for 

GDH enzyme activity. GDH activity for biotinylated enzyme was measured 

spectrophotometrically in the direction of oxidative deamination of glutamate by 

following the increase in absorbance at 340 nm. As stated in Section 4.4.1, 

biotinylating free lysine (using EZ-link® NHS-SS-Biotin kit) randomly labels lysine 

residues, which may include those in the active site of an enzyme that are 

important for its catalytic activity.  The  results obtained revealed that GDH became 

inactivated upon biotinylation with EZ-link® NHS-SS-Biotin (magenta trendline) 

while GDH biotinylated with EZ- link® HPDP Biotin maintained its enzyme activity 

(blue trendline) which overlays the activity observed for the non-biotinylated 

purified GDH (black trendline). Therefore, it is vital to consider the effect of 

biotinylation method when designing phage display screen for various targets 

especially enzymes. No enzyme activity was observed with the negative control 

which is biotinylated cell lysate (green). 

 

Figure 4.6: Effect of biotinylation with HPDP-Biotin and NHS-SS-Biotin on GDH 
enzyme activity: Enzyme activity of freshly biotinylated GDH with either HPDP-
Biotin (Blue trendline) or NHS-SS-Biotin (Magenta- trendline) and biotinylated cell 
lysate was monitored at 340 nm wavelength. Purified GDH and non-biotinylated 
cell-lysate was used as positive and negative control respectively. 

4.4.3 Phage display screening 

Affimer-displaying phage that bound to rGDHC. diff were selected from the Affimer 

phage library by three successive biopanning rounds. In the first panning round, 
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wells of streptavidin-coated Nunc Maxisorp strip were incubated with biotinylated 

rGDHC. diff as target (panning well) or biotinylated cell lysate (pre-panning wells). 

The input phage was pre-panned against biotinylated cell lysate before addition to 

the panning well, to minimise the non-specific cross-reactivity with bacterial 

proteins. (Section 2.9.2.2). Bound phage particles were eluted with 0.2 M glycine 

pH 2.2 followed by neutralisation with 1 M Tris-HCl, pH 9.1 and then an alkali 

elution step (trimethylamine) followed by neutralisation with 1 M Tris-HCl, pH 7. 

The eluted phages were used to infect ER2738 cells and the resulting colonies 

collected, resuspended in growth medium and infected with M13K07 helper phage 

to generate a fresh enriched phage pool, which was used as input for the second 

panning round. To exert selective pressure to ensure affinity and specificity, the 

second and third panning rounds for GDH included a 24 h incubation in the 

presence of free, non-biotinylated GDH target. Over 500-fold amplification in 

colony recovery was observed after the third panning round compared to control 

samples, which gave signal of a successful screening for target-specific Affimers and 

not just background phage. Then, 32 clones were randomly picked and assessed for 

specific binding to GDH.  

4.4.4 Phage ELISA 

Phage ELISA was carried out to assess whether the selected clones showed 

specificity towards GDH protein. As described in Section 2.10.3, the biotinylated 

GDH was captured onto streptavidin coated plates, then individual phage produced 

from the selected clones were tested for specific binding to immobilised GDH using 

immobilised cell lysate as negative control. Binding was confirmed using HRP-

conjugated anti-phage antibody then visualised using TMB substrate. Absorbance 

was read within 6 min of incubation with the substrate (Figure 4.7). 
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Figure 4.7: Evaluation of binding ability of screened phages by phage ELISA. GDH 
phage ELISA of randomly selected clones after the 3rd panning round including 24 h 
incubation with free non-biotinylated GDH. Signals for GDH (blue bar) and cell 
lysate control (red bar) are presented.  

From the phage ELISA result, clones were selected based on the signal intensity 

obtained in the sample well compared to their corresponding control wells. Clones 

with absorbance >0.2 (more than 2-fold increase in signal intensity in the control 

well) were selected as positive clones. Based on this, 25 of the 32 analysed clones 

were positive clones showing specific binding to immobilised rGDHC. diff. On the 

other hand, clone 2, 5 and 6, 14, 16 and 25 gave A620 values ≤ 0.1, are non-specific 

background binders therefore were not selected. This indicates that 25 of the 

randomly selected rGDHC. diff phage express Affimers that bind specifically to 

glutamate dehydrogenase from C. difficile with no cross-reactivity to the cell lysate, 

representing a 78 % success rate in Affimer binders selection for the sample 

screened.  

4.4.5 DNA sequencing and identification of unique binders 

In total, phagemid DNA was prepared from 25 clones that were judged positive in 

the phage ELISA, with the DNA concentrations ranging from 400-550 ng/µL. A 15 µL 

aliquot of each phagemid DNA was prepared at 100 ng/µL and submitted for DNA 

sequencing from the M13-26REV primer (Table 2.3). Sequencing results were 

analysed using the ExPASy translate tool (Gasteiger et al., 2003) to ensure the 

integrity of the Affimer coding region and to determine their amino acid diversity in 

the variable region 1 and 2. As an example, an annotated version of the sequencing 

data obtained for the GDH-HPDP-4 binder is presented in Figure 4.8. 
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As expected, the DNA sequence contained the DsbA signal peptide required for 

periplasmic secretion, NheI and NotI restriction sites which can be used for cloning, 

sequence in the variable region 1 and 2 which gives the unique binding properties 

to each Affimer, and a Hexa-His tag sequence for affinity purification. The in-frame 

amber (TAG) stop codon allows translational read-through to create an Affimer-

truncated-gpIII fusion protein in a suppressor E.  coli strains such as ER2738 but 

Affimer alone in non-suppressor strains such as JM83. 

 

 

 

4.4.6 Sequence alignment for GDHC. diff Affimer binders. 

To determine the sequence diversity of the clones, protein sequence alignment of 

the GDHC. diff  Affimer binders was performed using the ClustalW alignment tool, 

and nine distinct Affimers were identified with the amino acid sequences in the 

VRs given in Table 4.1. For binders occurring more than once, one binder was 

selected as representative of the group.  

Figure 4.8:  Annotation of DNA sequence of Affimer phagemid vector. The 
analysis of the sequencing result obtained with M13-26 REV primer for GDH-
HPDP-4 clone is shown, with important features highlighted. 
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Table 4.1: Sequences of variable regions in GDH Affimer binders. The frequency of 
each sequence is presented, and the conserved residues among the sequences in 
variable region 1 and 2 (VR1 and VR2) are highlighted. 

Representative 
binder 

VR1 VR2 Frequency Affimer clone ID 

GDH-HPDP-19 QQAYYPFQE VNHWTDAYF 2x 19, 29 

GDH-HPDP-18 TLWSYMAAS HNHGYWDAM 3x 7, 18, 20 

GDH-HPDP-28 VEIYIWDYP AVHGFHMDA 1x 28 

GDH-HPDP-23 TQNNLYTPA AHGFWLDQ 6x 23, 32, 13,8, 8, 21 

GDH-HPDP-26 PHISIDYYD PQHEFWTEE 1x 26 

GDH-HPDP-31 VPPLLWDYN PGHGFFTND 4x 10, 17, 27, 31,  

GDH-HPDP-4 HVTQFDSFA SNHGFFQQE 1x 4 

GDH-HPDP-24 HSNGIHGYS AEMGFFVTR 4x 11, 22, 24, 30, 

GDH-HPDP-15 RHPNLWQQY QSFQMPQYG 3x 1, 12, 15 

 
Analysis of the sequence alignment of the distinct binders for rGDHC. diff shows that 

there are conserved residues in VR2 (shown in red) and potential similarities in VR1 

(shown in blue). Only GDH-HPDP-15 has no conserved sequences in VR1 or VR2. 

The conserved residues in VR2 are presented graphically in Figure 4.9. In VR2, 

seven out of the nine selected Affimers (77 %) have a histidine residue conserved 

at position 3, six out of nine (67 %) have glycine at position 4, phenylalanine at 

position 5, phenylalanine or tryptophan at position 6, while no conserved sequence 

was found at position 1,2,7,8 and 9. Conserved sequences within the variable loop 

gives an indication that the binders could be binding to the same epitope on the 

target. 

 

Figure 4.9. Weblogo analysis of conserved residues of unique GDH binders: The 
sequence alignment showing conserved residues in the VR2. 
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4.5 Protein production of rGDHC. diff Affimer binders 

Once binding of individual clones to GDH had been confirmed by phage ELISA, nine 

Affimer binders with unique sequences in VR1 and VR2 were identified from the 

sequencing result. As described in Section 2.2.1, the Affimer coding region was 

fused to coding region for the C-terminal D2 domain of pIII in the phagemid vector 

which could obstruct the study of interactions of the binders to GDH. Thus, for 

expression and further characterisation, the coding sequences of each Affimer 

binder was subcloned from the phagemid into an expression vector. Once 

expressed and purified, each Affimer binder was characterised for their biophysical 

properties and utility in applications such as enzyme-linked binding assays.  

4.5.1 Subcloning of selected clones into expression vector 

A schematic diagram of the subcloning experiment is provided in Figure 4.10.  

 

Figure 4.10: Schematic diagram of the subcloning experiment. The steps involved 
in the subcloning steps are provided which includes amplification, digestion with 
restriction enzymes 1 and 2 (RE1, RE2), and ligation. 

First, the coding region of Affimer binder (insert) is amplified from the phagemid 

vector by PCR using Phusion DNA polymerase. Since the Affimer library was 

generated without any cysteine residues, a cysteine codon could be introduced by 

PCR into the C-terminal region upstream of the His-tag to enable site-specific 
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coupling of biotin, fluorescent labels or enzymes to facilitate analysis and 

subsequent use on assays. Thus, the coding DNA sequence for each Affimer binder 

was amplified as versions with and without a cysteine codon using forward primer 

and alternative reverse PCR primers (Section 2.6.1). The amplicon is then cleaned 

up using QiAgen PCR purification kit according to the manufacturer’s protocol. Next, 

both the destination vector (pET11a) and the amplicon was digested with 

restriction enzyme 1 (RE1) and restriction enzyme 2 (RE2) - NheI/NotI generating 

cohesive ends. Digested vector and inserts are then ligated to generate a 

recombinant vector.  Transformation of E. coli cells with the ligation products and 

then DNA sequencing is used to confirm the DNA sequence of the insert and insert 

orientation in the recombinant vector.  

The PCR products obtained were initially digested with DpnI to destroy any of the 

template plasmid DNA, which would be methylated and thus susceptible to this 

enzyme, and purified using a QIAquick PCR purification kit according to the 

manufacturer’s protocol (Section 2.6.10). The purified PCR products were digested 

using NheI-HF and NotI-HF restriction enzymes before a further QIAquick PCR 

purification step and quantification using a Nanodrop spectrophotometer. Figure 

4.11 shows the DNA samples of the double digested PCR fragments separated on a 

2 % (w/v) agarose gel. These corresponded to the theoretical size of the Affimer 

binder inserts (370 bp).  

 

Figure 4.11: Agarose gel analysis of GDH-Affimer binder inserts.  After restriction 
digestion of the PCR products, twelve samples were randomly selected for GDH, 
toxin A and toxin B and were analysed by 2 % agarose gel electrophoresis to show 
that the digestion was successful. 
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4.5.1.1  Ligation and preparation of Affimer coding regions in pET11a 

for DNA sequencing 

Affimer binder inserts were ligated into linearised pET11a expression vector 

similarly digested with NheI-HF/NotI-HF restriction enzymes, while a ligation 

control reaction was carried out for the linearised pET11a vector containing no 

insert. The ligation products were used to transform E. coli XL1-Blue competent 

cells (Section 2.1.2) and the ligation control reaction was used as the negative 

control for re-ligated plasmids. Over 50-fold increase in colony counts were seen 

on the ligation plate compared to the negative control plate. For each sample, two 

clones were selected from the positive plate, then plasmid DNA was prepared from 

each colony. The DNA concentration of purified plasmid DNA was quantified using 

a Nanodrop spectrophotometer.  

4.5.1.2   DNA sequence analysis of Affimer clones. 

As stated in Section 4.5.1, each Affimer coding region was subcloned with or 

without a cysteine codon at the C-terminal (C96). Plasmid DNA was prepared for 

two clones per subcloning experiment, therefore, a total of 32 clones were 

submitted for DNA sequencing using the T7P primer (Table 2.2).  

 

Figure 4.12: Alignment of ExPASy translated sequences of pDHis and pET11a-
GDH-HPDP-4 clones. (a) The DNA sequencing analysis shows successful subcloning 
of Affimer coding region from pDHis into pET11a expression vector and confirms 
that the pET11a GDH-HPDP-4 clones have the same insert sequence (VR1 and VR2 
are shown in red) and that pET11a GDH-HPDP-4C contains the additional cysteine 
residue (yellow). (b) The single C-terminal cysteine was successfully introduced at 
position 96 of the Affimer coding region. 

(a) 

 

PDHis GDH-HPDP-4   MKKIWLALAGLVLAFSASASAATGVRAVPGNENSLEIEELARFAVDEHNKKENALLEFVR 

pET11 GDH-HPDP-4   -----------------------------MASNSLEIEELARFAVDEHNKKENALLEFVR 

pET11 GDH-HPDP-4c  -----------------------------MASNSLEIEELARFAVDEHNKKENALLEFVR 

                                                .****************************** 

PDHisGDH-HPDP-4    VVKAKEQHVTQFDSFATMYYLTLEAKDGGKKKLYEAKVWVKSNHGFFQQENFKELQEFKP 

pET11 GDH-HPDP-4   VVKAKEQHVTQFDSFATMYYLTLEAKDGGKKKLYEAKVWVKSNHGFFQQENFKELQEFKP 

pET11 GDH-HPDP-4c  VVKAKEQHVTQFDSFATMYYLTLEAKDGGKKKLYEAKVWVKSNHGFFQQENFKELQEFKP 

                   *******         *************************         ********** 

PDHisGDH-HPDP-4    VGDA AAAHHHHHH-- 

pET11 GDH-HPDP-4   VGDA-AAAHHHHHHHH 

pET11 GDH-HPDP-4c  VGDACAAAHHHHHHHH 

                   ****.********* 

(b)  

        10         20         30         40         50         60  

MASNSLEIEE LARFAVDEHN KKENALLEFV RVVKAKEQHV TQFDSFATMY YLTLEAKDGG  

        70         80         90        100  

KKKLYEAKVW VKSNHGFFQQ ENFKELQEFK PVGDACAAAH HHHHHHH  
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Subcloning of GDH-HPDP-19C was not successful after three attempts, therefore it 

was not taken further. DNA sequencing results were translated using the ExPASy 

translate tool (Gasteiger et al., 2003) to ensure the integrity of the Affimer coding 

region. Each sequence was aligned to the sequence of its corresponding pDHis 

plasmid and overall, 95 % of the clones had the correct insert sequence. Figure 4.12 

showed an annotated version of the sequencing data obtained for GDH-HPDP-4 

binder which was used as a representative binder. 

These results confirm the successful subcloning of binder coding sequences from 

pDHis phagemid vector into pET11a expression vector. It confirms that the final-

reverse-c primer introduced a cysteine codon into pET11a-GDH-HPDP-4C, 

positioned as C96 (12 residues from the C-terminal). Also, pET11a vector carried a 

His8-tag at its C-terminal rather than His6-tag in pDHis. Except for GDH-HPDP-19C, 

the Affimer coding regions were successfully subcloned both with and without a 

cysteine codon. Table 4.2 gives the subcloning profile of each binder with and 

without a cysteine codon.  

Table 4.2: Subcloning profile for GDH Affimers. 

Representative 
binder 

VR1 VR2 Subcloning 

   Without C96 With C96 

GDH-HPDP-19 QQAYYPFQE VNHWTDAYF 
 X 

GDH-HPDP-18 TLWSYMAAS HNHGYWDAM 
  

GDH-HPDP-28 VEIYIWDYP AVHGFHMDA 
  

GDH-HPDP-23 TQNNLYTPA AHGFWLDQ 
  

GDH-HPDP-26 PHISIDYYD PQHEFWTEE 
  

GDH-HPDP-31 VPPLLWDYN PGHGFFTND 
  

GDH-HPDP-4 HVTQFDSFA SNHGFFQQE 
  

GDH-HPDP-24 HSNGIHGYS AEMGFFVTR 
  

 

4.5.2 Expression and purification of GDH Affimer binders 

E. coli BL21 (DE3) Star competent cells were transformed with the recombinant 

pET11a expression vectors as described in Section 2.7.1. Recombinant proteins 

were induced with 0.1 mM IPTG to facilitate transcription from the T7 lac promoter 

(Studier and Moffatt, 1986). After 6 h induction, the cells were harvested and lysed 

(Section 2.7.3). To assess the expression profile of each Affimer, the soluble 
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fraction (SF) and the insoluble fraction (IF) were analysed on a precast 4-20 % SDS-

PAGE gel. Figure 4.14 presents only the expression analysis for 12 clones. Seven of 

these twelve Affimer binders were produced as predominantly soluble proteins. 

GDH-HPDP-28 Affimer protein was predominantly in the insoluble fraction. On the 

other hand, GDH-HPDP- (23C, 23, 26C and 26) had very low levels in both soluble 

and insoluble fractions.  

 

Figure 4.14: Expression analysis of Affimer binders. The soluble and insoluble 
fraction of each protein sample was resolved on a 4-20 % SDS-PAGE. The Affimer 
(ADH) is indicated by an arrow; M- Molecular weight markers; SF- soluble fraction; 
IF- insoluble fraction. 

To purify GDH-HPDP Affimers from the soluble fraction, samples were loaded onto 

Ni-NTA affinity resin slurry. The resin was washed extensively with 20 mM 

imidazole until the A280nm of the washed fraction is <0.01 which signifies the 

removal of unbound proteins from the resin, bound protein is then eluted with 300 

mM imidazole including 500 mM NaCl. During purification, 300 µL of Ni-NTA slurry 

was used to capture recombinantly expressed His-tagged protein from a 50 mL 

culture, since the binding capacity of the resin used is 50 mg his-tagged 

recombinant protein/ mL resin (Amintra, Expedeon Ltd, Cambridgeshire, UK).  

To analyse the fractions obtained during purification, the flow-through (FT) 

collected after loading the soluble fraction onto the column, the fraction collected 

after washing the column extensively (fraction OD280nm <0.01), and up to five 

elution fractions were analysed on 4-20 % SDS-PAGE. The result obtained from the 
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analysis of these fractions shows that Ni-NTA affinity chromatography is sufficient 

to effect one-step purification sufficiently pure for our purposes. Since the 

purification of GDH binders as well as the toxin A and B binders were carried out 

simultaneously (35 proteins purified), the result for the gel electrophoresis for an 

example binder toxin B-18 is presented in Figure 4.15a while the purified proteins 

for  GDH Affimers are shown in Figure 4.15b. Purity estimated to be of >99 % was 

achieved for all GDH Affimer binders as shown in Figure 4.15b. 

                                      

 

Figure 4.15: SDS-PAGE analysis of the purification of Affimers. Analysis on 4-20 % 
SDS-PAGE gel of purified Affimers after one-step Ni-NTA affinity chromatography. 
Gel (a) gives the analysis of fractions obtained during purification of Affimer 
binders. A 5 µg aliquot of each GDH binder was loaded on the gel (b). Affimers 
produced a single band of ca. 12 kDa as expected. M- Molecular weight markers; 
FT- flow-through; W- last wash; E1- E5- elution fractions; ADH- Affimer. 

The SDS-PAGE gel analysis of the fractions obtained during purification as 

presented in Figure 4.15a shows that the flow-through and the wash elution 
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fraction contained a faint band present at 12.5 kDa, corresponding to the expected 

size of expressed Affimer. This showed that all other soluble proteins were 

successfully washed off, while the expressed His-tagged Affimer remained 

complexed with the resin during the washing step. Bound Affimer were eluted with 

a single band migrating at ~12 kDa corresponding to the expected size of Affimer in 

the eluted fractions. The theoretical molecular mass and pI for each Affimer binder 

was calculated using the ExPASy protparam tool and is presented in Table 4.3 

alongside the calculated protein yield in mg/L for cysteine and no cysteine-

containing Affimer.  

Table 4.3: Properties and yields of purified Affimer proteins. Calculated molecular 
mass (MM), pI and the concentration of protein obtained from purification. 

Affimers MM (kDa) pI Yield (mg/L) 

No cys With cys 

GDH-HPDP-31 12.3 6.54 213.0 Not expressed 

GDH-HPDP-28 12.4 6.4 11.1 0.8 

GDH-HPDP-24 12.2 7.21 249.7 169.6 

GDH-HPDP-18 12.4 6.83 232.2 42.8 

GDH-HPDP-23 12.3 6.83 8.0 5.5 

GDH-HPDP-4 12.4 6.59 306.2 148.1 

GDH-HPDP-26 12.5 6.24 37.0 36.6 

GDH-HPDP-15 12.5 8.03 99.8 54.9 

GDH-HPDP-19 12.5 6.54 313.6 Not expressed 

 

As seen in Table 4.3, the protein yield for Affimer proteins ranged from 0.8 mg/L to 

313.6 mg/L. These data are consistent with the expression profile obtained for the 

Affimers as shown in Figure 4.14. GDH-HPDP-28, 28C, 23, 23C, 26 and 26C, with 

very low protein expression profile gave the poorest protein yields, while Affimer 

binders such as GDH-HPDP-31, 19 and 4, with very high expression levels, gave 

similarly high protein yield with GDH-HPDP-4 having the highest protein yield. The 

pattern of protein yield obtained from Affimer proteins without cysteine were 

higher than those of the corresponding protein containing the cysteine. For 

example, GDH-HPDP-4 had a yield of 306.2 mg/L while GDH-HPDP- 4C had a yield 

of 148.1 mg/L. This represents a 52 % decrease in the protein yield. Overall, 4 of 

the 7 binders had at least a 40 % decrease in protein yield when expressed as a 

cysteine-containing protein.  
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The reason for the reduced yield is unclear, and is not due to reduced expression 

levels as shown in Figure 4.14. One possible explanation is that the proteins 

aggregated during purification steps and could not be purified to the same level as 

those Affimers without cysteine residue. Addition of reducing agents in buffers 

used for lysis and elution may enhance future yields. Nevertheless, the yield 

obtained from the cysteine-containing Affimers was sufficient for further analysis.  

4.6 Biophysical characterisation of binders  

Purified Affimer proteins were characterised to determine their biophysical 

properties using two techniques. First, size exclusion chromatography was used to 

analyse the oligomeric state of the proteins. Second, Optim® 2000 (Avacta) was 

used to determine the thermostability profile of each protein using the intrinsic 

florescence properties while the static light scattering function of Optim was used 

to decipher the aggregation profile of each protein. For this biophysical 

characterisation, 4 of the 7 GDH Affimer binders were selected as representatives. 

These are GDH-HPDP-4, -15, -19, and -24. The results obtained from each analysis 

are presented below. 

4.6.1 GDH Affimer proteins are monomeric  

Size exclusion chromatography was used as an analytical technique to identify the 

oligomeric state of purified GDH Affimer proteins (non-cysteine Affimers). Each 

binder was buffer exchanged into 1 x PBS (pH 7.4) and prepared to a concentration 

of 1 mg/ml before loading onto a Superdex 200 10/300 column. Absorbance of 

each sample was monitored at 220 nm, 260 nm and 280 nm, also conductivity was 

monitored to detect changes in salt concentration during the chromatographic run. 

Chromatograms obtained for the binders are presented in Figure 4.16. Comparing 

the absorbance of each Affimer at the three different wavelengths used, a general 

trend is seen, A260 nm showed the least absorbance which indicated minimal 

contamination of the sample with nucleic acids. At A280 nm, a low absorption reading 

was obtained, this is because the Affimer scaffold contained only a few aromatic 

amino acid residues in its backbone. This signal was amplified at A220 nm where 

peptide bonds absorb light. A stable signal obtained from monitoring conductivity 
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throughout the chromatographic run shows equilibration of the salt concentration 

in the column buffer.  

 

Figure 4.16: Size exclusion chromatography for GDH Affimer binders: Purified 
protein samples of GDH Affimers were analysed using Superdex 200 10/300 
column.  The chromatograms of the GDH Affimers showed single monomeric peaks 
compared to JD-F12 Affimer which is an oligomeric Affimer (showing two peaks) 
and used as a negative control.  

As shown above, all four GDH Affimer binders show a monomeric peak as expected. 

This result is consistent with the literature that wild-type Affimer, and >90 % of 

binders selected from the Affimer phage library are monomeric (Tiede et al., 2014). 
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4.6.2 Thermostability and aggregation profile of GDH Affimer 

proteins  

Thermostability and aggregation profile of GDH binders were characterised using 

the Avacta OpTim® 2000 analytical instrument (see Section 2.12.4 and 3.4.4). When 

compared with Differential scanning calorimetry (DSC) which is a standard 

technique for measuring the thermostability of protein samples, Avacta OpTim® 

2000 provides useful advantages. First, only 4 µL of sample at a concentration as 

low as 0.5 mg/mL is needed compared with Differential scanning calorimetry (DSC) 

which requires 2 ml of 1 mg/mL per sample. Second, 48 samples can be analysed at 

once using the multi cuvette array (MCA) in Optim while only one sample can be 

analysed by DSC. Third, there is no need for a buffer control in Optim and finally, it 

uses intrinsic fluorescence technology and static light scattering to test more than 

one parameter including protein stability, unfolding transition temperature, 

aggregation onset temperature (Tagg), simultaneously of a protein. The only 

limitation in using an Optim in this work is that the temperature ranges from 10-90 

oC while DSC can analyse over a temperature range from 0 to 130 oC. Nevertheless, 

Optim was the preferred technique since the binders would not be used in any 

application that requires a temperature greater than 90 oC. 

The static light scattering (SLS) of the Affimers was recorded as the samples were 

heated from 10 to 90 oC to detect the presence of aggregates. Importantly, the 

aggregation onset temperature (Tagg), which is the temperature at which a protein 

begins to aggregate, was identified for each Affimer. Tagg is usually accompanied by 

a significant increase in the static light scattering (SLS) intensity count. Figure 4.17 

gives the thermogram for GDH binders. Analyses were performed in duplicate and 

the data presented are the average obtained.  
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Figure 4.17: The static light scattering of the GDH Affimer binders at pH 7 upon 
thermal stress by Optim. Thermally induced aggregation of GDH Affimer samples 
were monitored with static light scattering. Duplicates were performed and the 
mean values were plotted.  

The thermostability of each binder is shown in Figure 4.17 the four binders show a 

similar pattern of stability with <20,000 static light scattering (SLS) intensity count 

as they were heated from 0 to 60 oC. Then, as the temperature increases each 

binder displayed its distinct property. For comparison, the Tagg for each binder was 

set as the temperature at which the SLS intensity count is >25,000. Affimer GDH-

HPDP-4 has the highest thermostability with Tagg of 88 oC (SLS intensity count 

15,733.5 at 87 oC to 55,010.5 at 88 oC and 131,750.0 at 89 oC). GDH-HPDP-19 has a 

Tagg of 75 oC, with a SLS intensity count that peaks at 80 oC.  GDH-HPDP-15 has a 

Tagg of 73 oC with a SLS intensity count which peaks at 85 oC while GDH-HPDP-24 

has a Tagg of 60 oC, and a broad aggregation profile from 60 oC which peaks at 80 oC.  

4.7 Characterisation of Affimer Binding to rGDHC. diff  

4.7.1 Protein ELISA using purified GDH Affimer protein  

Protein ELISA was carried out to test for the binding of purified Affimer binders to 

GDH. Each Affimer (without cysteine) at 10 µg/mL was adsorbed onto a separate 

microtitre plate well and incubated overnight. 1 µg/mL of biotinylated GDH was 

added to wells and detected with strep-HRP. Binding was confirmed with the 

10 20 30 40 50 60 70 80 90 100

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

St
at

ic
 li

gh
t 

sc
at

te
ri

n
g 

at
 2

6
6

n
m

Temperature (oC)

 GDH-HPDP-4

 GDH-HPDP-15

 GDH-HPDP-24

 GDH-HPDP-19



152 
 

addition of TMB substrate and incubated for 6 min and the absorbance at 620 nm 

was then measured. As expected, all GDH binders showed binding to GDH. GDH-4 

has the highest signal intensity (OD620 nm= 1.4) while GDH-28 has the lowest signal 

intensity (OD620 nm= 0.14). There was no binding in the control wells that contained 

the toxin B Affimer, which showed the specificity of the Affimer binders in the test 

wells to GDH.  The protein ELISA results confirmed that Affimer phage binders, 

selected from the phage display library maintained binding to the target as purified 

Affimer protein. It is interesting that despite the small size of the Affimers and how 

they were randomly oriented during adsorption onto the wells, the Affimers bound 

specifically to GDH.  

 

Figure 4.18: Protein ELISA for purified GDH Affimer binders. Biotinylated GDH was 
used to detect immobilised Affimers followed by the addition of strep-HRP. Binding 
was confirmed with the addition of TMB substrate and signal was measured at 620 
nm. The blue bars represent the binding for each Affimer binder with biotinylated 
GDH while the red bar (control) showed no binding for biotinylated GDH in wells 
containing toxin B-Affimer.  

4.7.2 Sandwich ELISA of GDH Affimers to Hexameric GDH  

GDH from Clostridium difficile is a hexameric protein which implies that each 

subunit has a binding site for an Affimer. To test the binding of Affimers to 

hexameric GDH, a sandwich assay format was used as outlined in Section 2.11.2. As 

seen in Figure 4.18 GDH-4 has the highest signal intensity for binding to GDH, 

therefore it was selected to be used as capture Affimer.  A 10 µg/mL solution of 

non-biotinylated GDH-4 was immobilised in each well and used to capture GDH. A 

panel of all biotinylated GDH–Affimer binders were prepared at 1 µg/mL and used 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

GDH-4 GDH-15 GDH-18 GDH-19 GDH-24 GDH-26 GDH-28 GDH-31

A
b

so
rb

an
ce

 a
t 

62
0 

n
m

purified GDH Affimer binders

ELISA using purified Affimer

Binder

control



153 
 

as detection Affimer. Therefore, each well has a sandwich of GDH-4 + GDH target + 

biotinylated detection Affimer. Binding was detected with Streptavidin-HRP and 

the A620 nm was recorded at 6 min incubation with the TMB substrate. The results 

are presented in Figure 4.19. 

 

Figure 4.19. GDH-sandwich ELISA: Non-biotinylated GDH-HPDP was immobilised 
onto Nunc wells and was used to capture GDH. Biotinylated GDH-HPDP Affimer 
binders was used as detection binder. The binding of the sandwich assay was 
detected using Strep-HRP and TMB substrate.  

From the sandwich ELISA, the detection binder that gave the strongest and highest 

signal is GDH-4. This shows that GDH-4 that gave the highest affinity binder for 

GDH, can serve as both a capture binder and detection binder and provides the 

most sensitive detection of all Affimer combinations tested.  

4.8 Comparative studies of binders with 

commercially available kit. 

Glutamate dehydrogenase is produced in large quantities in both toxigenic and 

non-toxigenic strains and has been found to be highly conserved between PCR 

ribotypes (Carman et al., 2012). It is usually referred to as C. difficile common 

antigen. Glutamate dehydrogenase ELISA remains a sufficient screening test to 
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accurately rule out the presence of Clostridium difficile in faecal samples (Sharp, et 

al, 2010; Goldenberg et al., 2010).  A GDH ELISA test has been recommended as a 

possible first step in a two-step diagnostic algorithm by current UK and USA 

guidelines (Novak-Weekley and Hollingsworth, 2008).  One of the most widely used 

kits, the Techlab Quik CheK® can detect up to 0.8 ng/mL of GDH in clinical samples. 

Most researches confirm it has a specificity of 100 % and sensitivity of 99 %. 

According to the package insert, this sandwich ELISA consists of microwells coated 

with polyclonal antibodies against GDH and the conjugate solution containing 

highly specific monoclonal antibodies conjugated to horseradish peroxidase.  

It was therefore necessary to test the sensitivity and specificity of identified 

Affimers against glutamate dehydrogenase from Clostridium difficile compared to 

Techlab Quik CheK® kit. 

4.8.1  Determination of the Limit of Detection (LOD) for 

Affimers against rGDH C. diff 

Sandwich phage ELISA was used to determine the limit of detection of Affimer 

binders using serial dilutions of PBS spiked with purified rGDHC. diff protein from 

2500 ng/mL to 1.2 ng/mL). Following on from the result shown in Figure 4.19, GDH-

4 was used as the capture while GDH-4 phage or GDH-18 was used for detection 

and their signal intensity compared. As described in Section 2.13.1, 50 µL of 

biotinylated capture at 1 µg/mL was immobilised onto streptavidin coated Nunc 

Maxisorp plate, and then 50 µL from the serial dilutions were added to their 

respective well. A 50 µL aliquot of the detection phage supernatant introduced to 

bind captured target. Binding was detected using anti-phage-HRP then TMB 

substrate. 

4.8.1.1 Optimisation of incubation time  

To monitor the effect of TMB incubation time on the ELISA signal intensity, the 

ELISA signal for the sandwich phage ELISA was measured at 3, 9, 15, 30 and 45 min 

as shown in Figure 4.20.  
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Figure 4.20.  Optimisation of incubation time for GDH-4 phage ELISA. (a) Sandwich 
phage ELISA for GDH using GDH-4 as capture Affimer binder and GDH-4 phage as 
detection binder. A serial dilution of rGDHC. diff from 2500 ng/mL to 1.2 ng/mL was 
used to determine the limit of detection of the Affimer. (b) Expanded segment of 
part (a) showing the signal intensity obtained between 19.5 ng/mL to 1.2 ng/mL.  
Signals at 3, 9, 15, 30 and 45 min are represented as navy, red, green, purple and 
blue trend lines.  

As a negative control, toxin B at 2500 ng/mL was used to replace the target and 

even at 45 min incubation (orange line) no signal was observed between the 

capture and detection binder in the absence of the target.  

From Figure 4.20a, it was confirmed that GDH-4 can serve as both capture and 

detection molecule for hexameric GDH. Next, the signal intensity was observed at 
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regular time points for each target concentration to identify the best incubation 

time for the assay. This result shows that as the incubation time increases, the 

signal intensity also increases. However, the effect of longer incubation times could 

not be easily detected at lower toxin concentration. Therefore, for better 

assessment, the signal intensity from 19.5 ng/mL to 1.2 ng/ mL was expanded in 

Figure 4.20b. This shows that increasing the incubation from 3 min to 30 min, there 

was a 234 % increase in signal intensity (from at 19.5 ng/mL GDH concentration 

and a 133 % increase at 1.2 ng/mL GDH concentration. From this result, increasing 

the incubation to 30 min increases the limit of detection for GDH from 9.8 ng/mL to 

1.2 ng/mL. As expected, no signal was observed when toxin B (negative control) 

was used as the target against biotinylated GDH-4 and GDH-4 phage with 45 min 

incubation time. 

4.8.1.2 GDH-4 Affimer as best capture and detection molecule 

GDH. 

Since GDH-4 could serve as both capture and detection Affimer, its limit of 

detection was compared with the GDH-4/GDH-18 pair in a sandwich phage ELISA. 

As shown in Figure 4.21, GDH-4/GDH-18 detects GDH up to 19.5 ng/mL while GDH-

4/GDH-4 detects GDH at 1.2 ng/mL. This result shows that GDH-4 has higher 

affinity for GDH than GDH-18. Importantly, GDH-4 is sufficient to act as both 

capture and detection binder.  

In Clostridium difficile infection, GDH would be present in faecal samples alongside 

the bacterial toxins. To test for the specificity of GDH-4/ GDH-4 pair, toxin A or 

toxin B at 2.5 µg/mL were used as target in place of GDH. The absorbance at 620 

nm was measured after 30 min incubation with TMB. The result obtained is 

presented in Figure 4.21. It shows that there was no binding (no positive signal 

detected) with either toxin A or toxin B as the trendline for toxin A and B overlaps. 

This result indicates that the GDH Affimer is specific for the detection of GDH from 

C. difficile. 
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Figure 4.21: Evaluating the sensitivity and specificity for GDH Affimer pairs. The 
limit of detection was compared for GDH-4 (capture) / GDH-4 phage (detection)-
blue trendline and GDH-4 (capture)/ GDH-18 (detection) - red trendline. Specificity 
was tested using toxin A (green trendline) or toxin B (purple trendline) as target, no 
binding occurred as expected in the absence of GDH. 

4.8.2  Affimer has comparable sensitivity to GDH techlab kit 

The ability of GDH-4 Affimer to serve as a capture molecule in an Affimer-antibody 

hybrid assay was tested. This was done by replacing the capturing antibody in the 

Techlab Quik CheK® with biotinylated GDH-4 Affimer immobilised onto 

streptavidin-coated plates. 

 

Figure 4.22: ELISA showing hybrid assay for GDH Affimer. The signal intensity for  
Antibody/Antibody sandwich assay was compared with those from 
Affimer/Antibody assay 
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As shown in Figure 4.22, GDH was detected in both the antibody-antibody assay 

and the Affimer-antibody assay at concentration of 2.5 ng/mL in spiked buffer. 

With further optimisation, this result suggests that Affimers against GDHC. diff can be 

used as alternative capturing molecule in diagnostic kit for CDI screening. 

4.9 Summary  

Identification of high affinity specific diagnostic reagents is essential for the 

development of affinity reagent for C. diff infection diagnosis. One of the validated 

biomarkers for C. diff is glutamate dehydrogenase. In this chapter, the design of a 

synthetic gene and the successful production of active recombinant C. difficile 

glutamate dehydrogenase were demonstrated. The enzyme activity was 

maintained after biotinylation. Using phage display technology, highly specific 

Affimers against rGDHC. diff have been selected. Nine Affimers were identified 

through DNA sequencing. These were subcloned successfully into the expression 

vector pET11a and were expressed and purified. Characterisation of GDH Affimer 

binders shows that the properties of these binders are consistent with those of 

toxin A and toxin B Affimer binders (see chapter 5) as well as published data (Raina 

et al., 2015; Tiede et al., 2012). GDH Affimer proteins were purified from the 

soluble fraction of cell lysates with yields as high as 300 mg/L. >98 % of the binders 

were monomeric and they can withstand thermal stress at 85oC without forming 

aggregates. The binding of GDH Affimers to GDH has been confirmed using protein 

ELISA and sandwich ELISA. Using GDH-4 as capture Affimer and GDH-4 phage for 

detection, the limit of detection for GDH was determined to up to 1.2 ng/mL.  

Further studies are required to explore approaches to enhance the detection limits 

and considerations of possible future experiments will be discussed in Chapter 7. 
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Chapter 5: Identification and characterisation of 

Affimer binders against C. difficile Infection toxin A 

and toxin B 
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5.1 Introduction 

The previous chapter discussed the identification and selection of specific Affimer 

binders for Clostridium difficile glutamate dehydrogenase, which is a common 

antigen found in both toxigenic and non-toxigenic strain of the bacteria. Glutamate 

dehydrogenase remains a key screening biomarker for Clostridium difficile infection, 

in addition to the two toxins (toxin A and toxin B) used as diagnostic biomarkers in 

CDI (Planche et al., 2013). During the infection, C. difficile produces one or both 

virulence factors toxin A and toxin B.  

One of the readily available diagnostic test for the detection of toxin A and toxin B 

in clinical samples is enzyme immunoassay (see Section 1.3.2). As described in 

Section 1.4, enzyme immunoassays rely on the use of antibodies as molecular 

recognition elements because they bind their targets with high affinity and 

specificity. Nevertheless, their batch-to-batch variation, cost, production timeframe 

and modest thermostability, have been the major limitations of these assays. On 

the other hand, commercially available diagnostic ELISA kits for Clostridium difficile 

infection have displayed unacceptably low sensitivity, which makes them 

inadequate for them to be used as a standalone test (Eastwood et al., 2009, 

Crobach et al, 2010, Planche and Wilcox, 2011). Therefore, there remains a huge 

desire to develop an optimum diagnostic test, which is highly sensitive, specific, 

cheap, and could be incorporated into a point-of-care technology for CDI diagnosis. 

This chapter describes the identification of highly specific and sensitive Affimer 

binders to toxin A and B by phage display. The identified Affimer proteins were 

expressed, purified and characterised to determine their biophysical properties and 

affinity profiles. Finally, pairs of Affimers that recognised different epitopes on 

toxin A and B were identified for use in sandwich-type of applications. Together 

with the Affimers identified against glutamate dehydrogenase from C. difficile in 

Chapter 4, a panel of Affimers was generated which could be tested for the 

development of a one-step diagnostic tool for C. difficile infection. 
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5.1.2 Toxin A and toxin B target 

To isolate Affimer binders against toxins A and B, which are routinely used as 

diagnostic biomarkers for Clostridium difficile infection, purified native proteins of 

toxin A and toxin B (VPI 10463 strains) were kindly provided by Dr Cliff Shone, 

Public Health England (PHE), Porton Down.  

5.2 Phage Display  

5.2.1 Biotinylation of toxin A and toxin B 

In preparation for the phage display screening, biotinylation of toxin A and toxin B 

was performed using EZ-Link® NHS-SS-biotin (Section 2.8.2)  which labels lysine ɛ-

amino groups and N-terminal amine groups exposed on toxin A and B. Then, ELISA 

was used to confirm biotinylation and the absorbance read at 620 nm within 3 min 

of incubation with the TMB substrate (Section 2.8.3). Biotinylated GDH protein 

(Chapter 4) was used as the positive control while blocking buffer was used as the 

negative control (blank). The result presented in Figure 5.1 shows that toxin A and 

B were successfully biotinylated. 

 

Figure 5.1: ELISA to show biotinylation of toxin A and B. The binding of 
immobilised biotinylated toxin A and toxin B to strep-HRP were detected using 
TMB substrate. The signal intensity of the binding was measured at 620 nm 
wavelength, which showed the successful biotinylation of toxin A and B when 
compared with the positive control (biotinylated GDH). No signal was observed in 
the negative control containing only blocking buffer (blank) as expected. 
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5.2.2 Screening of Affimer phage Library for specific and high 

affinity binders 

Once biotinylated, toxin A and toxin B were immobilised on high affinity 

streptavidin-coated strips (Thermo Scientific). The Affimer phage display library 

was screened against the immobilised toxin A and B wells to identify specific and 

high affinity binders using three biopanning selection rounds as described in 

Chapter 2 (Section 2.9.2). After each biopanning round, phage particles were 

eluted with an acid and then an alkali elution step. They were then used to infect 

ER2738 cells, and the resulting colonies collected were infected with M13K07 

helper phage to generate a fresh enriched phage pool. Three standard panning 

rounds were carried out for both toxin A and B, but only toxin A screen was 

successful from which 32 clones were randomly picked for phage ELISA. Due to the 

failure of toxin B screen, the phage display screening for toxin A and B was 

repeated. This time with a view to exerting selective pressure to ensure specificity, 

the third panning round for toxin B included a competitive incubation in the 

presence of free non-biotinylated toxin A. Similarly, free non-biotinylated toxin B 

was included in toxin A screen. Over 500-fold amplification in colony recovery was 

observed compared to control samples. As shown in Table 5.1, 48 clones were 

randomly picked from the toxin B screen while an additional 32 clones were 

randomly picked from the toxin A screen.  

Table 5.1 Number of clones selected from toxin A and B screen 

Target Final panning round Tested in 
phage ELISA 

Positive clones 
sequenced 

Toxin A 

3rd standard panning round 32 21 

with 24h incubation of free 
toxin B 

32 16 

Total 64 37 

Toxin B 

3rd standard panning round - - 

with 24h incubation of free 
toxin A 

48 32 

Total 48 32 
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The individual selected clones were isolated, grown overnight and phage was 

produced in a 96-well format (section 2.10.1). Finally, phage clones were tested for 

their ability to bind their target by phage ELISA (section 2.10.3). 

5.3 Identification of target-binding Affimer clones. 

5.3.1 Phage ELISA 

The phage ELISA was performed to investigate the binding and specificity of 

Affimers for toxin A and B. As an example, the 96 well plate layout for toxin A 

phage ELISA (from the standard panning round) is shown in Figure 5.2. On the 

streptavidin-coated plate, wells A1 to H4 (32 wells) were incubated with 

biotinylated toxin A, wells A5 to H8 (32 wells) contained the blocking buffer 

(negative control) and wells A9 to H12 (32 wells) incubated with biotinylated toxin 

B. Then, phage-containing suspension was added to all wells. Binding was 

confirmed by using HRP-conjugated anti-phage antibody, then visualised using TMB 

substrate.  

 

Figure 5.2 Plate layout for Phage ELISA. The 96 well plate layout for toxin A phage 
ELISA performed on 32 toxin A Affimer binder clones randomly selected after three 
rounds of panning of phage display library. A1-H4 wells were immobilised with 
biotinylated toxin A, A5-H8 contained blocking buffer (negative control), and A9 – 
H12 contained immobilised biotinylated toxin B (cross-reactivity test). Therefore, 
clone A1 has a negative control well A5 and a cross-reactivity test well A9 etc. 

Binding of Affimer-displaying phage raised against toxin A was observed in 21 wells 

containing immobilised toxin A, while no binding occurred in the blank wells or in 
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the immobilised toxin B wells. This indicates that 21 of the randomly selected toxin 

A phage clones express Affimers that bind to toxin A and that they are specific for 

toxin A showing no cross-reactivity with toxin B. Similar ELISA analysis of random 

clones selected against toxin B was also performed. The absorbance readings of 

each ELISA well were measured after 6 min of incubation with TMB substrate. The 

data are presented graphically in Figure 5.3 for toxin A and Figure 5.4 for toxin B. 

 

Figure 5.3. Toxin A phage ELISA. (a) toxin A phage ELISA after 3rd standard panning 
round. (b) toxin A phage ELISA after 3rd panning round with 24 h incubation with 
free toxin B. signals for toxin A (blue bar), blocking buffer control (red bar) and 
toxin B for cross-reactivity control (green bar) are presented.  

(b)

(a)
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Figure 5.4. Toxin B phage ELISA. Toxin B phage ELISA of the selected clones 1-32 
are presented in (a) and 33-48 in (b). Signals for toxin B (blue bar), blocking buffer 
control (red bar) and toxin A for cross-reactivity control (green bar) are presented.    

Figure 5.3 and 5.4 gives the absorbance readings obtained from the toxin A and 

toxin B phage ELISAs. Clones with >2-fold increase in absorbance over their controls 

were selected for DNA sequencing. It is positive that binders are specific for the 

target against which they were screened, despite the fact that toxin A and B exhibit 

a high degree of  overall  sequence similarity of 66 % (Von Eichel-Streiber et al., 

1992, Di Bella et al., 2016).  

5.3.2  DNA Sequencing  

In total, phagemid DNA was prepared from 37 clones for toxin A and 32 clones for 

toxin B (Table 5.1) that were judged to be positive in the phage ELISA, and 

submitted for DNA sequencing from the M13-26REV primer (Table 2.3). Sequencing 

results were analysed using ExPASy translate tool (Gasteiger et al., 2003) to ensure 

the integrity of the Affimer coding region and insertional junctions and to 

determine their amino acid diversity in the VR1 and VR2. Figure 5.5 shows an 

annotated version of the sequencing data obtained for Toxin A-1 binder.  
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Figure 5.5: Description of the sequencing of Affimer phagemid vector. Analysis of 
the sequencing result obtained with M13-26 REV primer is shown, with important 
features highlighted. 

As expected, the sequence contained the DsbA signal peptide required for 

periplasmic secretion, NheI and NotI restriction sites which are used for cloning, 

sequence diversity in the variable region (VR) 1 and 2 which gives unique binding 

properties to each Affimer, a hexa-His tag sequence for affinity purification and an 

amber stop codon for expression in suppressor bacterial strains. 

5.3.3  Toxin A sequence alignment and selection of unique 

binders 

The protein sequence alignment of toxin A Affimer binders was performed using 

the ClustalW alignment tool. The sequence alignments of binders from standard 

panning (labelled with Txn-A prefix) and the panning with competitive elution 

(labelled with TOXIN-A prefix) are shown in Table 5.2. 
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Table 5.2 Groups of toxin A binders: the 12 unique binders of toxin A were divided 
into three groups based on sequence similarities. The frequency of each binder is 
provided. 

 

For binders occurring more than once, a representative binder was selected for 

the group as shown in Table 5.2. In total, 12 unique Toxin A Affimer binders were 

selected after sequencing, their sequence alignment is provided in Figure 5.8. 

Analysis of the sequence alignment of the unique binders allowed the binders to 

be grouped into 3 based on the revealed conserved residues in Loop 1. Group 1- 

binders (Txn- A-1, Toxin A-25, and Toxin A-31) have P.R.N.V.X.L.W. Group 2- 

binders (Txn-A-22,29,30,23, Toxin A-20,23) have  P.R/K.F/N.I.W.L.G conserved 

sequences while Group 3- binders have no conserved residues.  

From the sequencing results: (i) four sequences came up in both standard and 

competitive elution round (ii), sequences with VARSAYHWD in VR1 and SPPKNRMLTN in 

VR2, occur as 21 % of the population from standard panning round, and 40 % in 

the competitive round. (iii) sequences with LIPRNVMLW in VR1 and TWDEPINDL in VR2 

occurs as 42 % of the population in the standard panning only and not at all in the 

competitive panning. It is noteworthy that Toxin A-14 has the highest frequency 

10x, but has no conserved residues with other binders. There are no conserved 

residues in the Loop 2 of all the 12 binders for Toxin A. Further characterisation of 

these binders would shed more light on their properties.  

A graphical representation of conserved residues using Weblogo (Crook et al., 

2004) for group 1, group 2 and a combination of group 1 and 2 is given in Figure 

5.6. 

 

Group Representative binder VR1 VR2 Frequency Affimer clone ID

1
Txn-A-1 LIPRNVMLW TWDEPINDL 8x 1,3,4,9,12,15,19,21
TOXIN-A-31 HVPRNVQMW WSGAQDPWM 1x 31*
TOXIN-A-25 PIPRNVYLW KVKSNMFMN 1x 25*

2

Txn-A-22 WVPRNIFLG QNEKHDDGQ 2x 22,26
Txn-A-29 FVPKFIWLG GEPADMPMG 3x 29,17*,30*
Txn-A-30 AYPKFIWLG SQRNLNQPM 3x 30, 24*,29*
Txn-A-23 IVPRFIWVG EDVVEPAWK 1x 23
TOXIN-A-20 PYPKFVFLG QYQSEFTGV 1x 20*
TOXIN-A-23 IIPKLHWLG HDPAAEQMT 1x 23*

3
Txn-A-14 VARSAYHWD SPPKNRMLT 10x 14,5,20,27,18*,19*,21*,22*,26*,32*

Txn-A-18 SYVDPWQQT QSAGFHRLN 2x 18,27*
Txn-A-7 VVIISSTFA KKHMYPTWS 1x 7
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Figure 5.6. Analysis of conserved residues of unique Toxin A binders: The 
conserved residues in the variable region (VR1) of group 1 (a), group 2 (b) and 
combined group 1 and 2 (c) are shown in LOGOS (Crooks et al., 2004); the input to 
LOGOS was a ClustalW (Thompson et al., 1994) alignment of the VR1 of each group.  

 5.3.4   Sequence alignment and selection of unique toxin B 

Affimer binders 

The sequence alignment of toxin B Affimer binders identified from the phage 

display screening is presented in table 5.3. The frequency of each unique sequence 

is also indicated. 

Table 5.3: Alignment of sequences in the VR1 and VR2 of toxin B Affimer binders 

Representative 
binder 

VR1 VR2 Frequency Affimer clone ID 

 1. TOXIN-B-45 EQRHKHATF NNNRAMFMT 12x 17,19,20,25,27,31,36,30, 
39, 43,44,45 

 2. TOXIN-B-18 EETNVYGKD RFNRWPSNL 8x 18,21,22,29,37,38,40,46 

 3. TOXIN-B-28 QKEESAMFL YIKRWPHNM 1x 28 

 4. TOXIN-B-33 AQEYQPAFTN RIHRWPPEM 1x 33 

 5. TOXIN-B-35 NGRRAYIRN GDYVMPGNR 1x 35 

 6. TOXIN-B-24 NMHSSRYST KIGFWNAGN 1x 24 

 7. TOXIN-B-26 DIANSRFFI EQVHALPLF 1x 26 

 8. TOXIN-B-47 VMPPHWTWK SYRQQISLQ 1x 47 

 9. TOXIN-B-32 QTIPYPTTH QFHYRHRGK 1x 32 

10.TOXIN-B-23 ADTSPFALP YYHPYIKHM 1x 23 

 

(a) VR1- Group 1 

 

(c) VR1- Group 1 and 2 

 

(b) VR1- Group 1 
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Usually, Affimer binders have 9 randomised residues in VR1 and VR2, but 

occasionally, binders with 10 randomised residues in either VR are also recovered. 

An example of this is Toxin B-33 with 10 residues in VR1. For binders occurring 

more than once, one binder was selected as representative of the group. In total, 

10 unique toxin B Affimer binders were selected after sequencing. There are no 

observable highly conserved sequences, nonetheless, Toxin B-18, Toxin B-33 and 

toxin B-28 have R.W.P conserved residues at position 4-6 in VR2. This might suggest 

they have similar binding properties. Toxin B-45 was selected as the representative 

binder with the highest frequency (12x) and Toxin B-18 for those with 8x 

frequency. In summary, 12 unique binders were identified from toxin A screen and 

10 unique binders were identified from toxin B screen. 

5.4  Production of Affimer Proteins 

Once binding of individual clones to the targets of interest has been confirmed by 

phage ELISA, toxin A and B screening identified 22 unique Affimer binders. As 

described in section 2.2.1, the Affimer coding region was fused to the gene 

encoding C-terminal half of gene pIII of the phagemid vector which could obstruct 

the study of interactions of the binders to their target. Therefore, for expression 

and further characterisation, the Affimer insert coding sequences were subcloned 

from the phagemid vector into an expression vector to remove the phage coat 

particles. Once expressed and purified, each Affimer binder was characterised for 

their biophysical properties and utility in applications such as enzyme-linked 

binding assays.  

5.4.1 Subcloning of Affimer binders into pET11a expression 

vector. 

Subcloning of Affimer binders was carried out in five stages.  

(i) Amplification of the coding region of Affimer binder from the phagemid 

vector by PCR using Phusion DNA polymerase. Since the Affimer library was 

generated to exclude cysteine, site-specific cysteine(s) was introduced by 

PCR into the C-terminal region before the His-tag of the expression vector 

to enable site specific coupling of biotin and fluorescent labels during 



170 
 

characterisation. Therefore, the coding DNA sequence for each Affimer 

binder was amplified using specific primers that either encoded a cysteine 

or no cysteine upstream of the octa-His tag (section 2.6.1).  

(ii) Digestion of the Affimer PCR fragment using NheI/NotI restriction 

endonucleases   

(iii) Ligation of inserts into similarly digestion pET11a expression vector already 

containing an Affimer coding region.  

(iv) Transformation of E. coli competent cells with the ligation product  

(v) DNA sequence analysis of recombinant plasmids to confirm the DNA 

sequence of the insert and insert orientation.  

The results obtained from subcloning experiments are presented in below. 

5.4.1.1  Amplification and digestion of Affimer binders 

The PCR products obtained from the amplification of the Affimer coding regions 

from the phagemid vector were digested with DpnI to remove the methylated 

template plasmid DNA and purified using the Macherey-Nagel NucleoSpin® Gel and 

PCR Clean-up kit according to the manufacturer’s protocol (Section 2.6). The 

purified PCR products were digested using NheI-HF® and NotI-HF® restriction 

enzymes to obtain the Affimer coding region which was further purified using the 

NucleoSpin® Gel and PCR Clean-up kit, then quantified by Nanodrop. An aliquot of 

the purified fragments obtained from the double digestion of toxin A and toxin B 

binders were analysed alongside GDH binders which was presented in Figure 4.11.  

5.4.1.2 Ligation and preparation of Affimer binders for DNA 

sequencing 

Affimer binder inserts were ligated into linearised pET11a expression vector (NheI-

HF®/NotI-HF® digested) using T4 DNA Ligase. To check for religated vector, a 

ligation control reaction (negative control) was carried out for the linearised 

pET11a vector without the insert. The ligation products were used to transform E. 

coli XL-1 blue competent cells (Section 2.6.5 and 2.4.2). Over a 50-fold increase in 

colony counts was seen on the ligation plate compared to the negative control 

plate. Two clones were selected from the positive plate for each sample, then 

recombinant plasmid DNA was prepared from each colony. The DNA concentration 
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of purified plasmids was quantified by using the Nanodrop giving a range of 100 

ng/µL- 250 ng/µL.  

5.4.2  DNA sequence analysis of Affimer clones 

As stated in Section 5.4.1.1, each Affimer coding region was subcloned with or 

without a cysteine residue. In total, plasmid DNA was prepared from the 46 clones 

for toxin A and 36 clones for toxin B, and was submitted for DNA sequencing from 

the T7P primer except Toxin A-23c, Toxin B-23 and Toxin B-23c which was not 

successfully subcloned. Sequencing results were analysed using ExPASy translate 

tool (Gasteiger et al., 2003) to ensure the integrity of the Affimer coding region. 

Each sequence was aligned to the sequence of its corresponding pDHis phagemid.  

Of the clones submitted for DNA sequencing, 95 % had the correct insert sequence. 

Figure 5.7 shows an annotated version of the sequencing data obtained for Toxin B-

45 binder used as a representative binder. This result shows the successful 

subcloning of binders from pDHis phagemid vector into a pET11a expression vector. 

Using the final-reverse-C primer, a cysteine residue was successfully introduced 

into pET11a Toxin B-45c.  The sequencing result also confirmed that the pET11a 

vector carried a His8 tag at its C-terminus rather than a hexa-His-tag as in pDHis 

vector. Table 5.4 gives the subcloning profile of each binder with and without 

cysteine residue (C96). From the sequencing result, all toxin A binders (except Toxin 

A-25 and Toxin A-23), and all toxin B binders (except Toxin B-23 and Toxin B-23c) 

were successfully subcloned with and without cysteine (C96). 

 

Figure 5.7:  Sequencing alignment for subcloning experiment. The DNA 
sequencing analysis shows successful subcloning of binders from pDHis phagemid 
vector into pET11a expression vector and that the pET11a Toxin B-45 has the same 
insert sequence (VR1 and VR2 are shown in red) as contained in the pDHis vector. 

CLUSTAL O(1.2.1) multiple sequence alignment 

 

PDHis Toxin B-45   MKKIWLALAGLVLAFSASASAATGVRAVPGNENSLEIEELARFAVDEHNKKENALLEFVR 

pET11 Toxin B-45   -----------------------------MASNSLEIEELARFAVDEHNKKENALLEFVR 

pET11 Toxin B-45C  -----------------------------MASNSLEIEELARFAVDEHNKKENALLEFVR 

                                                .**************************** 

 

PDHisToxinB-45     VVKAKEQEQRHKHATFTMYYLTLEAKDGGKKKLYEAKVWVKNNNRAMFMTNFKELQ 

pET11 Toxin B-45   VVKAKEQEQRHKHATFTMYYLTLEAKDGGKKKLYEAKVWVKNNNRAMFMTNFKELQ 

pET11 Toxin B-45C  VVKAKEQEQRHKHATFTMYYLTLEAKDGGKKKLYEAKVWVKNNNRAMFMTNFKELQ 

                   ******************************************.********* 

 

PDHisToxinB-45     EFKPVGDA-AAAHHHHHH— 

pET11 Toxin B-45   EFKPVGDA-AAAHHHHHHHH 

pET11 Toxin B-45C  EFKPVGDACAAAHHHHHHHH 
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Also, pET11a-Toxin B-45c was successfully sub-cloned with a cysteine residue C96 
(highlighted in yellow).  

Table 5.4: Subcloning profile for toxin A and toxin B Affimer binder. 
 

 

Representative 
binder 

VR1 
 

VR2 
 

Subcloning 

Without cys With cys 

1 TOXIN-A-25 PIPRNVYLW KVKSNMFMN  x 

2 TOXIN-A-31 HVPRNVQMW WSGAQDPWM  

3 TOXIN-A-23 IIPKLHWLG HDPAAEQMT  x

4 TOXIN-A-20 PYPKFVFLG QYQSEFTGV  

5 Txn-A-1 LIPRNVMLW TWDEPINDL  

6 Txn-A-22 WVPRNIFLG QNEKHDDGQ  

7 Txn-A-29 FVPKFIWLG GEPADMPMG  

8 Txn-A-30 AYPKFIWLG SQRNLNQPM  

9 Txn-A-23 IVPRFIWVG EDVVEPAWK  

10 Txn-A-14 VARSAYHWD SPPKNRMLT  

11 Txn-A-18 SYVDPWQQT QSAGFHRLN  

12 Txn-A-7 VVIISSTFA KKHMYPTWS  

1 TOXIN-B-18 EETNVYGKD RFNRWPSNL  

2 TOXIN-B-35 NGRRAYIRN GDYVMPGNR  

3 TOXIN-B-45 EQRHKHATF NNNRAMFMT  

4 TOXIN-B-28 QKEESAMFL YIKRWPHNM  

5 TOXIN-B-33 AQEYQPAFTN RIHRWPPEM  

6 TOXIN-B-24 NMHSSRYST KIGFWNAGN  

7 TOXIN-B-26 DIANSRFFI EQVHALPLF  

8 TOXIN-B-47 VMPPHWTWK SYRQQISLQ  

9 TOXIN-B-32 QTIPYPTTH QFHYRHRGK  

10 TOXIN-B-23 ADTSPFALP YYHPYIKHM x x

 

5.4.3  Expression and purification of toxin A and toxin B 
Affimer binders 
Once the sequence of each binder in pET11a expression vector had been confirmed, 

E. coli BL21 (DE3) Star competent cells were transformed with the recombinant 

pET11a expression vectors as described in Section 2.4.2. Recombinant Affimer 

proteins were produced in 50 mL LB cultures by IPTG induction (0.1 mM) under the 

control of the T7 lac promoter (Studier and Moffatt, 1986). After 6 h of induction, 

the cells were harvested and pellets were lysed (Section 2.7.3). To assess the 

expression profile of each Affimer, the soluble fraction (SF) and the insoluble 

fraction (IF) were analysed on a 4-20 % SDS-PAGE gel. Figure 5.8 presents a 

representative set of the expression analysis for 21 protein samples. This shows 
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that the Affimer proteins were expressed mostly as soluble protein except for B-

26c which had very low expression level in both soluble and insoluble fraction. 

Based on the analysis of protein expression, all toxin A and B Affimer binder protein 

were purified from the soluble fraction of the lysate using Ni-NTA affinity 

chromatography. To analyse the fractions obtained during purification, the flow 

through (FT) collected after loading the soluble fraction onto the column, the last 

wash with OD280 nm (<0.01), and five elutions were analysed by 4-20 % SDS-PAGE. 

The result of the gel electrophoresis for a sample binder is presented in Figure 5.9a. 

 

 

 

 

 

 

 

 

 

Figure 5.8: Expression analysis of Affimer proteins by 4-20 % SDS-PAGE: The 
soluble (SF) and insoluble (IF) fraction of each protein sample were analysed 
alongside the protein marker(M). The over-expressed Affimer protein is indicated 
by an arrow. 
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Figure 5.9: SDS-PAGE analysis of the purification of Affimers. Analysis on 4-20 % SDS-PAGE gel of purified Affimers after one-step 
Ni-NTA affinity chromatography. (a) Analysis of fractions obtained during purification for Toxin B-18: FT- Flow-through, W- Wash, 
E- Elutions. 5 µg of each toxin A and toxin B binders, and protein marker (M) were loaded on gels shown in (b)-(d). Affimers 
produced a single band of ~ 12 kDa as expected. 
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During purification, the 300 µL of Ni-NTA slurry used was sufficient to capture most 

His-tagged recombinant protein prepared from 50 mL cultures. This agrees with the 

binding capacity of resin used (50 mg his-tagged recombinant protein/mL resin) 

(Amintra, Expedeon Ltd, Cambridgeshire, UK).  

After binding, proteins were washed and eluted from Ni‐NTA affinity matrix with 

elution buffer containing 300 mM imidazole. The result obtained from the analysis 

of fractions collected during the affinity purification of Affimer proteins shows that 

Ni-NTA affinity chromatography is sufficient to obtain a one-step purification. 

Purity estimated to be of >99 % was achieved for all toxin A and toxin B Affimer 

binders as shown in Figure 5.10 (b-d).  

The theoretical molecular mass and pI for each Affimer binder was calculated using 

the ExPASy protparam tool. This is presented in Table 5.5 alongside the calculated 

protein yield in mg/L for cysteine and no cysteine-containing Affimer.  

Table 5.5 Properties of purified Affimer proteins. Calculated molecular mass from 
the extinction coefficientof each Affimer, pI and the concentration of protein 
obtained from purification. NA (Not applicable) was used for Affimers that were 
not expressed.  

Affimers 
Calculated 
Molecular mass                       
(kDa) 

pI 
Yield (mg/L) 

No 
cysteine With cysteine 

TOXIN-A-25 12.5 9.1 108 66 

TOXIN-A-31 12.5 7.18 204 50 

TOXIN-A-23 12.3 6.83 227 NA 

TOXIN-A-20 12.3 7.14 148 94 

Txn-A-1 12.5 6.49 114 66 

Txn-A-22 12.4 6.79 160 NA 

Txn-A-29 12.2 6.75 106 86 

Txn-A-30 12.4 8.81 116 111 

Txn-A-23 12.4 6.75 152 55 

Txn-A-14 12.4 8.81 86 87 

Txn-A-18 12.4 7.18 100 35 

Txn-A-7 12.3 8.78 100 46 

    
 

TOXIN-B-18 12.5 7.14 131 79 

TOXIN-B-35 12.3 9.13 124 111 

TOXIN-B-45 12.5 8.84 76 57 

TOXIN-B-28 12.5 8.01 97 118 

TOXIN-B-33 12.6 7.18 97 90 

TOXIN-B-24 12.3 8.81 154 119 

TOXIN-B-26 12.3 6.79 4 6 

TOXIN-B-47 12.5 8.81 66 95 

TOXIN-B-32 12.5 9.1 70 100 
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As seen in Table 5.5, the protein yield for Affimer proteins ranged from 4 mg/L to 

227 mg/L. Toxin B-26 had the lowest protein yield. This agrees with the expression 

profile result for Toxin B-26 shown in Figure 5.11. In addition, the pattern of 

protein yield obtained from Affimer proteins without cysteine were higher than 

those of the corresponding protein containing the cysteine. For example, Toxin A-

31 had a yield of 204 mg/L while Toxin A-31c had a yield of 50 mg/L. This 

represents a 75 % decrease in the protein yield. Overall, 11 of the 19 binders had at 

least a 40 % decrease in protein yield when expressed as a cysteine-containing 

protein. A similar pattern was observed for GDH binders as discussed in Chapter 4. 

5.5 Biophysical characterisation of Affimer binders 

5.5.1  Toxin A and B Affimer proteins are monomeric  

Size exclusion chromatography was used as an analytic technique to identify the 

oligomeric state of purified toxin A and B Affimer proteins. For aggregation studies, 

purified binders without cysteine residues were analysed. Each binder was buffer 

exchanged into 1 x PBS (pH 7.4) and prepared to a concentration of 1 mg/mL 

before loading onto a Superdex 200 10/300 column. As shown in Figure 5.10, all 

toxin A binders except Txn-A-23 show a monomeric peak. Similarly, Figure 5.11 

shows that all toxin B binders are monomeric.  
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Figure 5.10: Size exclusion chromatography for toxin A binders. Toxin A binders 
analysed using Superdex 200 10/300 column. Chromatograms for binders (a)-(d) 
showed a single monomeric peak while chromatogram for (e) shows Toxin A-23s 
with a major monomeric peak and two mutimeric shoulders. 
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Figure 5.11: Size exclusion chromatography for toxin B binder. Toxin B 
binders analysed using Superdex 200 10/300 column. Chromatograms for 
binders (a)-(f) showed a single monomeric peak. 
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5.5.2 Thermostability and aggregation profile of toxin A and 

B Affimer proteins.  

The thermostability of toxin A and B binders was characterised using the Optim 

2000® (Avacta) (Section 2.12.4) and as described for GDH binders in Chapter 4 

(Section 4.6.2). The Optim 2000® was programmed to monitor the static light 

scattering (SLS) using a 266 nm laser source. Increase in size of the species in 

solution and of aggregation is reported by an increase in the scattered light 

intensity.  The static light scattering (SLS) of the binders was recorded in 1 oC steps 

to detect the presence of aggregates as the samples are been heated from 10 to 90 

oC. The Optim software analysed the data set to obtain the integrated scattered 

light intensity as a measure of the amount of aggregation. These primary results 

were further analysed automatically in the software to yield a temperature for the 

onset of aggregation for each binder. 

The aggregation onset temperature (Tagg) is the temperature at which protein 

begins to aggregate. This is usually accompanied by a significant increase in the 

static light scattering intensity count. Figure 5.12 and 5.13 gives the thermogram 

for toxin A binders and toxin B binders, respectively. Duplicate analyses were 

performed and the data presented is the average obtained. An assessment of the 

Tagg for all toxin A binders reveals that Toxin A-22 was the most thermally stable as 

it remained thermally stable up to 90 oC and had the lowest scattered light 

intensity (41,000 intensity count) compared to other toxin A binders. The complete 

Tagg and the SLS intensity count for all toxin A binders analysed are given in Table 

5.6. 
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(a) 

(i) (h) (g) 

(f) 
(e) (d) 

(c) 

Figure 5.12: The static light scattering of the toxin A Affimer binders at pH 7 upon thermal stress. Duplicates were performed 
and the average values were plotted.  

 

(b) 
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Table 5.6.  Ranking of toxin A and B binders: (a) and toxin B binders (b) based on 
aggregation profile from the most aggregation-prone binder (having the highest 
peak SLS intensity count) to the least.  

                   

 

 

 

 

 

 

 

    (b) 

  

Binder Tagg  (oC) Peak SLS intensity count 

Toxin A-25 76 306, 000 

Toxin A-1 68 178, 000 

Toxin A-23s 76 161, 000 

Toxin-A-30 83 130, 000 

Toxin A-14 84 124, 000 

Toxin A-29 82 113, 000 

Toxin A-20 82 100, 000 

Toxin A-31 82   50, 000 

ToxinA-22 90   41, 000 

Binder Tagg  (oC) Peak SLS intensity count 

Toxin B-28 70 480,000 

Toxin B-32 75 369,000 

Toxin B-47 71 241,000 

Toxin B-24 82   95,000 

Toxin B-33 83   84,000 

Toxin B-45 90   15,355 

Toxin B-18 90   13,000 

(a) 
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Figure 5.13: The static light scattering of the toxin B Affimer binders at pH 7 upon 
thermal stress. Duplicates were performed and the mean values were plotted.  
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5.6  Binding characterisation of Affimers to toxin A 

and B 

The binding characterisation of purified Affimers selected against toxin A and B was 

carried out, and the results are described in this section. Using Enzyme linked 

immunosorbent assay (ELISA), purified Affimers were characterised for their ability 

to bind to immobilised targets or targets in solution. They were tested in different 

formats to identify pairs of Affimer capable of binding to non-overlapping epitopes 

on the targets, which would be useful in a sandwich assay format.  

5.6.1  ELISA analysis with purified Affimer 

Once the selected Affimer from phage display were purified, it was important to 

test if the purified Affimer protein binds the target as seen in the phage ELISA 

results using two formats (i) purified Affimers directly coated onto Nunc-plate and 

detected with biotinylated targets (ii) target protein directly coated onto Nunc-

plate and detected with biotinylated Affimers. 

5.6.1.1  Direct immobilisation of Affimer onto Nunc plates 

The purified Affimer proteins were directly coated onto Nunc Maxisorp plates, 

biotinylated targets (toxin A or toxin B) were introduced and binding was detected 

with Streptavidin–HRP. From the ELISA analysis with purified Affimers, Figure 5.14a 

shows that for toxin A, 10 out of the 12 Affimers tested bind to toxin A while two 

binders (Toxin-A 18 and A-23) showed a poor binding signal. For toxin B (Figure 

5.14b), 5 out of 9 Affimers showed binding to toxin B while Toxin B-32 showed poor 

binding signal and B-47, B-45 and B-35 showed no signal. These results show that 

only 71 % of the binders tested bound to the target when they were directly 

immobilised onto a plate surfaces. This led to the question of whether the 

remaining Affimer proteins were poor binders or simply affected by their direct 

immobilisation onto the plate surface?  
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     (a) 

 

 

  

 

 

 

                 

Figure 5.14: ELISA result using binders coated directly onto Nunc plate. (a) Binding 
of adsorbed toxin A binders to toxin A (blue bar), blocking buffer blank serving as 
negative control (red bar) and toxin B (green bar) for test for cross-reactivity. (b) 
Binding of adsorbed toxin B binders to toxin B (blue bar), blocking buffer blank 
serving as negative control (red bar) and toxin A (green bar) for test for cross-
reactivity. 

Passive adsorption of proteins onto the surface of plates offers a simple approach 

for immobilisation. However, proteins could denature at interfaces, undergo 

conformational changes due to random immobilisation, which would affect their 

binding abilities. 
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5.6.1.2  Direct immobilisation of target onto Nunc plates. 

For the second format of protein ELISA, toxin A and B were directly immobilised 

onto the surface of Nunc Maxisorp plate by passive adsorption and detected with 

biotinylated Affimers. To ensure site-specific biotinylation of the Affimers, all 

cysteine-containing binders were biotinylated with BMCC-biotin via the single 

cysteine-residue and biotinylation was confirmed with ELISA as shown in Figure 

5.15, before used in the protein ELISA.  

 

Figure 5.15. ELISA showing successful biotinylation of Affimer with single-cysteine 

For the protein ELISA, toxin B was immobilised onto the plates by surface 

adsorption and then detected with biotinylated Affimers. Figure 5.16 shows the 

ELISA results from using immobilised Affimers (format one) and immobilised target 

(format two).  
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Figure 5.16: ELISA showing binding of Affimer to immobilised or free toxin B. Each 
binder was tested when it was adsorbed onto the microwell as capturing molecule 
and biotinylated toxin B was added (blue bar). Each was also tested with adsorbed 
toxin B and biotinylated Affimer used for detection (red bar). 

It was clear from this experiment that the immobilisation strategy used during 

ELISA places a crucial role in binding events. Toxin B-18, B-28, B-33 and B-24 gave 

better signal intensity (OD 620 nm = 1.56, 0.78, 0.72, 0.29 respectively) when they 

were passively immobilised onto the surface of Nunc Maxisorp plates as capturing 

molecule compared to when used as detection molecule against passively 

adsorbed toxin B (OD 620 nm = 0.16, 0.10, 0.15, 0.09 respectively). On the other hand, 

this result shows that passive immobilisation of toxin B-45 Affimer negatively 

affected its binding to toxin B (OD 620 nm = 0.11). However, high signal intensity was 

observed when the target was adsorbed and biotinylated toxin B-45 was used for 

detection (OD 620 nm = 1.33). Toxin B-47 gave good signals in the two panels, but a 

50 % increase in signal intensity when used for detection (OD 620 nm = 1.25). The 

signal obtained from Toxin B-35 and toxin B-32 in either panels show that they are 

weak binders.  

5.6.1.4  BLItz analysis 

Biolayer interferometry technology was used as a technique to measure the 

interactions between biotinylated Affimers (ligand) immobilized onto streptavidin 

biosensor tip and the targets - toxin A or toxin B (analytes) in solution. This is 

particularly useful because for diagnostic applications the targets would be free in 

solution, not biotinylated. Interactions were measured in real time, providing the 

Immobilised Affimer

Immobilised toxin B
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ability to monitor binding specificity, rates of association and dissociation, with 

precision and accuracy.  

 

 

Figure 5.17. BLItz analysis showing the binding of biotinylated Affimers to target 
in solution. Biotinylated toxin A Affimers (a) and toxin B Affimers (b) were 
immobilised on streptavidin coated biosensor chip. The binding association and 
dissociation is presented. 

All toxin A binders showed binding to toxin A but with varying affinity. A PBS 

negative control was included to test for background binding of immobilized 

Affimer binder, as shown in Figure 5.17a, no binding to PBS was observed. Similarly, 

to test for specificity or cross-reactivity, biotinylated Toxin B-28 binder was 

immobilized on to a streptavidin biosensor tip and tested for binding to toxin A, the 

sensogram line labelled B-28 shows that there was no binding interaction of Toxin 

B-28 to toxin A. This shows that toxin A truly binds specifically to toxin A binders. 

The toxin A sensogram shows that toxin A binders have a high on-rate as well as a 

(a) 

(b) 
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high off-rate which gives an indication about the affinity of the binders, though 

BLItz was not used to determine the binding kinetics of the Affimer binders, it could 

be hypothesised that Toxin A binders were not very high affinity binders. No 

binding was observed in the negative control when PBS was used as the analyte. 

For toxin B, the sensogram shown in Fig 5.17b shows that all toxin B binders bind to 

toxin B but with varying affinity, with Toxin B-35 showing the least binding. No 

binding was observed when one of the toxin A binders (A-31) was immobilized onto 

a streptavidin biosensor chip and interacted with toxin B in solution, this shows the 

specificity of Toxin B binders to Toxin B. No background binding of binders was 

observed when PBS was used in place of toxin B (B-18/PBS), similarly, toxin B did 

not bind to streptavidin chip (in PBS) in the absence of biotinylated Affimer.  

Comparing the result obtained from the protein ELISA and BLItz assay for toxin B, it 

was clear that the method used for immobilising the binders play a crucial role in 

their binding to the target. A summary of the binding characteristics of each toxin B 

Affimer binders is presented in Table 5.7 this shows that Toxin B-18, B-28 and B-33 

are best suited as a capturing molecule while Toxin B-45 is best suited as a 

detection molecule.  On the other hand, Toxin B-35 and B-24 should not be taken 

forward because of their very weak binding signal with toxin B. 

Table 5.7. Summary of binding characteristics of toxin B Affimers. Binding ability 
of binders with different C-capturing molecule and D- detection molecule. High 
binding ability= OD620 nm > 0.7; weak = OD620 nm=0.3; low= OD620 nm- <0.1 
 

 

Binding characteristics

Binder ELISA data
C: Adsorbed binder
D: Biotinylated toxin B

BLItz data
C: Biotinylated binder
D: Free toxin in solution

ELISA data
C: Adsorbed toxin B
D: Biotinylated binder

Toxin B-18 High High Low 

Toxin B-35 Low Low Low

Toxin B-45 Low High High

Toxin B-28 High High Low

Toxin B-33 High High Low

Toxin B-24 weak weak Low

Toxin B-47 High High High

Toxin B-32 Low High Low
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5.6.2 Identification of pairs of Affimers for toxin A and B 

The treatment and control of CDI is critically dependent on accurate laboratory 

diagnosis which relies on sensitive and quantitative measurement of validated 

biomarkers in patient samples. Sandwich-type immunoassays is a highly sensitive 

and specific analytical technique that has been widely employed for diagnostic 

purposes. To develop a sandwich ELISA, a pair of binders (capture and detection 

binder) recognising non-overlapping epitopes on the targets should be selected.  

As described for hexameric glutamate dehydrogenase (Chapter 4), one Affimer 

binder was sufficient to act as both capture and detection molecule since GDH has 

six binding sites. Thus, pairs against multimeric proteins were less important. 

However, selection of pairs against monomeric toxin A and B are necessary for 

sandwich type assays that require  optimisation to identify the best capture and 

detection binder and the best orientation. This section describes the selection of 

Affimer pairs against toxin A and toxin B, and the characterisation of the selected 

pairs. 

5.6.2.1  Sandwich ELISA by adsorption of capture Affimer  

Since the binding of the Affimers was confirmed to their respective targets using 

protein ELISA and BLItz, the Affimers identified for toxin A and B were evaluated 

through sandwich ELISA to identify Affimer pairs that could recognise distinct 

epitopes of Toxin A and Toxin B respectively. The first approach used for potential 

pair identification was to immobilise two binders that showed the highest signal in 

protein ELISA (see Figure 5.18) as the capture Affimer by direct surface adsorption, 

while a panel of the remaining binders were tested for potential binding to 

different epitopes. Toxin A-1 and Toxin A-14 were capture Affimers for toxin A 

while Toxin B-18 and Toxin B-28 were capture Affimers for toxin B. The results 

obtained are shown in Figure 5.18. 
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Figure 5.18: ELISA analysis to identify Affimer pairs. (a) toxin A binders were 
tested in sandwich ELISA format using toxin A-1 (blue bar) or toxin A-14 (red bar) as 
capture Affimers. (b) toxin B binders were also tested using toxin B-18 (blue bar) or 
and toxin B-28 (red bar) as capture Affimers. The data represents mean absorbance 
value (OD620 nm). The error bars indicate standard deviation of averaged data (OD620 

nm) from duplicate microtitre wells. 

With Toxin A-1 as the capture Affimer (blue bars in Figure 5.18a), two potential 

pairs were identified. These are Toxin A-1/Toxin A-23 (OD620 nm = 0.44) and Toxin A-

1/Toxin A-22 (OD620 nm = 0.63). On the other hand, when Toxin A-14 was 
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immobilised as the capture Affimer (red bars in Figure 5.21a), Toxin A-14/ Toxin A-

23 pair gave the highest signal (OD620 nm = 0.26). Comparing the two capture toxin A 

binders, toxin A-23 would pair with either toxin A-1 or toxin A-14, however Toxin A-

1 acts as a better capture molecule for toxin A-23 with a 2-fold increase in signal 

intensity when immobilised directly onto Nunc Maxisorp plates than Toxin A-14.  

For toxin B, direct immobilisation of Toxin B-18 (blue bar in Figure 5.18b) showed 

that of all the binders, Toxin B-45 with an OD620 nm of 0.5 could be the best 

potential detection binder to make a pair, though B-18/B-28 also gave a signal 

intensity 0.36. With the direct immobilisation of Toxin B-28, no potential detection 

binder was identified. This suggested that Toxin B-18 is a better capture Affimer 

molecule for Toxin B when immobilised directly onto Nunc Maxisorp plates. 

The results from Sandwich ELISA by direct immobilisation (adsorption) of capture 

Affimer indicates that it is possible to identify potential binder pairs, but due to the 

lower sensitivity observed with longer incubation times (12 min incubation of 

bound streptavidin-HRP to TMB substrate), inconsistent ELISA values for controls in 

different wells and plates, further optimization was therefore required.  

5.6.2.2  Oriented immobilisation of capture for Sandwich ELISA 

As an alternative method to surface adsorption of the capturing Affimer, oriented 

immobilisation of the capturing Affimer was tested for Affimer pair identification to 

achieve higher sensitivity, reduced non-specific binding, providing consistent and 

reproducible results.   

Three methods where explored for this purpose, for the identification of Affimer 

pairs using streptavidin-biotin based directional immobilisation of capture Affimer.   

5.6.2.2.1  Sandwich ELISA with biotinylated capture and detection Affimer  

It has been reported that when a biotinylated capture molecule is used in sandwich 

assays, a biotinylated detection can be introduced once the available biotin sites on 

the plates are blocked with excess free biotin (Sherwood and Hayhurst, 2012, Zhu 

et al., 2014). An overview of this method is given in Figure 5.19 while the protocol 

used is described in section 2.11.3 and the result obtained from this experiment is 

shown in Figure 5.20. 
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Figure 5.19: Schematic diagram for double-biotinylation sandwich assay (adapted 
from Sherwood and Hayhurst, 2012). 1. Streptravidin is coated on a surface, by 
passive adsorption onto wells of an ELISA plate; 2. Immobilisation of biotinylated 
capture Affimer via the single biotin molecule; 3. Unoccupied biotin binding sites 
are blocked with free biotin; 4. Target is added and is captured by the immobilised 
Affimer; 5. Biotinylated detection Affimer is added and binds to a different epitope 
on the target; 6. Streptavidin conjugated to HRP is added which can only bind to 
the biotinylated detection Affimer, and TMB substate is added for signal 
development. 

 

Figure 5.20: Double biotinylation sandwich ELISA. The plate layout obtained from 
the sandwich ELISA for toxin B using biotinylated capture toxin B Affimer and 
biotinylated detection Affimer is given. In Lane 1-8 each biotinylated capture is 
tested with different biotinylated detection Affimer. Lane 9 -12 were used for 
controls. In lane 9, toxin A was used as the target in place of toxin B when the same 
binder was capture and detection. In lane 10, a biotinylated toxin A binder (Bio A-
20) was used as capture against toxin B. Lane 11 contained immobilised capture 
detected with biotinylated toxin B. Lastly, Lane 12, contained a buffer blank control 
using PBS in place of toxin B. 
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When biotinylated capture Affimers were immobilised onto a streptavidin coated 

Nunc plate, free biotin was introduced to block remaining biotin sites on the plates, 

followed by the target molecule,  then biotinylated detection binder was added. As 

seen in figure 5.20, the whole plate shows positive signals (blue colour) including 

the controls which indicated that the added free biotin was not an efficient method 

to block the remaining biotin-binding sites on the streptavidin coated plate. 

Therefore, the control wells were able to produce a signal in the absence of the 

target because the biotinylated Affimer (capture/detection) remained in the well 

and was detected by the streptavidin-HRP conjugate. Sherwood and Hayhurst 

(2012), gave an explanation why this might occur - when capture molecules are 

chemically biotinylated, multiple biotins are randomly distributed over the surface 

of the protein, which is unlikely to allow for single-biotinylated capture molecule.  

Therefore, devising a sandwich ELISA requires that the detection molecule is made 

distinct to the capture molecule either by fusion to a different enzyme or tag 

(Sherwood and Hayhurst, 2012).  

5.6.2.2.2  Sandwich Phage Display 

Sandwich phage display (capture sandwich panning) is a technique that can be 

used as a selection strategy to identify pair of binders against a single target. Ki et 

al. (2010) described the selection of EGFR-specific antibody using the capture 

sandwich panning. The selected single-chain variable fragment (scFv) antibodies 

yielded sandwich ELISA reagent that could be used for capturing or detection, and 

also paired with commercial cetuximab.  
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Figure 5.21: Schematic diagram for sandwich phage display. Biotinylated capture 
Affimer is immobilised onto the surface of streptavidin coated Nunc plate. 
Streptravidin. 2. Target is added and is captured by the immobilised Affimer; 3. 
Phage display screening is carried out on the captured target to identify detection 
Affimer that identifies non-overlapping epitope on the target. The phage display 
screening involves four steps (bind; wash; amplify; elute).  

To test this approach, Toxin A-1 and Toxin B-18 were used as the capture Affimer in 

toxin A and toxin B sandwich capture panning respectively. After immobilisation of 

the target on the capture Affimer, phage obtained from the second panning round 

of the target is used as the input phage, and the phage display screening is carried 

out as previously described (section 2.9). However, this sandwich capture panning 

failed for toxin A and B (colony count on control plate and panning plate were 

similar: 20/25). Therefore, rather than repeating it which is time consuming, It was 

decided to analyse the panels of binders already selected against toxin A and B in a 

sandwich assay before searching for new pairs. 

5.6.3 Sandwich Phage ELISA 

Having tried two methods for the selection of Affimer pairs described in section 

(5.6.2.1 and 5.6.2.2) which failed, sandwich phage ELISA was explored. Here, the 

capture Affimer is immobilised onto streptavidin coated plate using biotin-

streptavidin interation. Once the target is added and captured, individually 

prepared phage of the Affimer binder is tested for binding (section 2.11.4). The 

main advantages of the sandwich phage ELISA is that it provides oriented 

immobilisation of the capture Affimer, enables the capture and detection Affimer 
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are differently labelled, and enjoys the amplification provided by the use phage in 

detection. 

5.6.3.1   Sandwich phage ELISA for toxin A 

 Sandwich phage ELISA was carried out for toxin A using biotinylated Affimers 

immobilised in lane 1-9 as the capture Affimer on a streptavidin coated plate. 

Biotinylated toxin A was immobilised in lane 10 to test the binding of the capture 

Affimer phage to Toxin A, serving as the positive control. Biotinylated toxin B in 

lane 11 was used for cross-reativity testing for each of the Affimer phage , while 

PBS  was added to lane 12 to serve as a negative control to ensure there is no 

background binding. The result obtained from the sandwich phage ELISA is 

presented in Figure 5.22.  

This result shows that Toxin A-14 is the best capture Affimer for Toxin A and it 

could pair with a panel of other binders (Figure 5.22a and c). Although no other 

binder showed binding in a sandwich format, the individual Affimer phage bound 

to toxin A when biotinylated toxin A was immobilized in lane 10 (positive control). 

This confirms that all the selected Affimer binders  bind toxin A. A graph showing 

the signal intensity obtained for each Affimer phage when tested against toxin A, 

toxin B or PBS is given in Figure 5.22b. As expected, toxin A Affimers are highly 

specific for toxin A.  
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5.6.3.2   Sandwich phage ELISA for toxin B 

Sandwich phage ELISA was also carried out for toxin B using biotinylated Affimers 

immobilised in lane 1-9 as the capture Affimer on a streptavidin coated plate, 

biotinylated toxin B immobilised in lane 10 to test the binding of the capture 

Affimer phage to toxin B, serving as the positive control. In lane 11, biotinylated 

toxin A was used for cross-reativity testing for each of the Affimer phage , while 

PBS  was added to lane 12 to serve as a negative control to ensure there is no 

background binding. The results obtained from the sandwich phage ELISA is 

presented in Figure 5.23. Figure 5.23a  gives an image of the sandwich phage ELISA 

plate after 6 min incubation with TMB substrate. An overview of this result shows 

that for toxin B, an array of potential pairs have been identified for use in a 

sandwich-type of assay. Analysis of the binding patterns obtained for each capture 

binder reveals that the binders can be grouped into three groups based on the 

similarities observed. 

Group 1 binders – Toxin B-18, Toxin B-28 and Toxin B-33: These are capture 

binders that form pairs with the same detection binders (Toxin B-45 and Toxin B-47) 

with highly similar signal intensity. On the other hand, weak signals were observed 

when Toxin B-18, Toxin B-28 and Toxin B-33 detection phage was added to wells 

containing immobilised Toxin B-45, while no binding of these binders were 

observed in wells containing immobilised Toxin B-47.  This suggests that for the 

right orientation of the Group 1 binder pairs, Toxin B-18, B-28, and B-33 would 

serve best as capturing Affimer with Toxin B-45 and Toxin B-47 serving as detection 

Affimer.  It is noteworthy that the group 1 binders consist of RWP motif in the 

variable loop 2 (see Table 5.3) which might be an indication that they bind the 

same epitope. 

Group 2 binders- Toxin B-45 and Toxin B-24:  This binder pair shows binding to 

each other when used either as capture or detection binder. 

Group 3 binders- Toxin B-47 and Toxin B-32: These binders when used as capturing 

Affimer did not pair with any binder except a mimimal binding observed for Toxin 

B-32 with immobilised Toxin B-32. Nonetheless, the two binders could serve as 
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good binders for toxin B in single-binder applications. The toxin B-35 result shows 

that it is not a good binder because no binding was observed when it was used as 

either a capturing Affimer or detection Affimer. This is not surprising since no 

binding signal was observed with immobilised toxin B. 
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Analysis of the signal intensity of each Affimer phage against immobilised toxin B 

showed that Affimers B-32, B-45 and B-47 gave the highest binding signal (A620nm = 

0.4-0.7)  to immobilised toxin B in Lane 10, Toxin B-18 and B-24 gave signal 

intensities of 0.24 and 0.18 respectively, while Toxin B-35, B-28 and B-33 showed 

no binding signal. With biotinylated toxin A immobilised in Lane 11 or PBS in lane 

12, no signal was observed across the binders showing their specificity to toxin B. 

5.6.4  Selection of the best toxin B binder pairs.  

In total, 8 potential pairs were identified from toxin B sandwich ELISA. To select the 

best binder pair, sandwich ELISA was repeated, and the result obtained is shown in 

Figure 5.24.  

 

Figure 5.24: Sandwich ELISA for the selection of the best pair. The signal 
intensities obtained from the sandwich phage ELISA of each pair is presented as 
average of two independent repeats and the error bar indicate standard deviation 
of averaged data (A620 nm) from the two independent repeats. 

Toxin B-18 has consistently shown higher binding signal intensity to toxin B 

compared to Toxin B-28 and Toxin B-33, therefore was taken forward as the best 

capturing Affimer. For detection Affimer, Toxin B-45 has also given consistently 

higher binding signal intensity in Group 1 binders compared to Toxin B-47, 

therefore was taken forward as the best detection binder. Although Toxin B-45 and 

Toxin B-24 would pair with each other in any direction, the signal intensity 
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obtained from this pair made it less optimal for developing a highly sensitive rapid 

diagnostic tool for toxin B.  

Overall, Toxin B-18/ B-45 Affimer pair has the highest signal intensity and was 

therefore taken forward as the best toxin B Affimer pair.  

5.7  Surface plasmon resonance (SPR) 

SPR was used to assess the interaction of toxin A and B binders with toxin A and B. 

The SPR biosensor chip was streptavidin-coated to allow for immobilisation of 

biotinylated Affimers through streptavidin-biotin interactions, and toxin A or B 

were used as analytes. Each biosensor chip has four flow cells (called channel 1, 2, 

3 and 4) to allow the running of parallel experiments.  

To investigate the Toxin B-18 kinetics, channel 1 was used to check the change in 

the SPR angle due to the refractive index of the buffer control. For channel 2, 3 and 

4, they were functionalised with Toxin B-18 dilutions (0.1 nM, 10 nM and 100 nM 

respectively).  The SPR sensograms for the binding of Toxin B-18 to toxin B, and for 

the evaluating the cross-reactivity of the binders are shown in Fig 5.25a and 5.25b 

respectively.                                                                                                                                                                                                                                  

 

Figure 5.25. SPR analysis of the binding of toxin A and B to Affimers. Biotinylated 
Affimers were immobilised on streptavidin chips, and toxin A or toxin B was flowed 
through as analyte. The SPR sensograms were recorded with 10-fold serial 
dilutions, starting at the lowest concentration of 0.1 nM. (a), Sensogram for 
biotinylated Toxin B-18 against Toxin, (b). Sensogram showing the specificity of 
toxin B Affimers for toxin B. There was no cross-reactivity observed on the flow cell 
on which Toxin A-14 Affimer was immobilised. 

dissociationAssociation

(a) Binding of Toxin B-18 Affimer to toxin B

dissociationAssociation

(b) Specificity of toxin B to only toxin B Adhirons
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Figure 5.25(a) shows the binding curve obtained for toxin B-18 after subtracting the 

response due to the change in refractive index of 10 mM PBS, pH 7.2. Based on the 

association and dissociation curve, the data were analysed with BIAevaluation 4.1 

software (GE Healthcare). Toxin B-18 and B-45 Affimers bind to toxin B with 

equilibrium dissociation constant (KD) of 4.04 nM and 4.68 nM respectively, while 

Toxin A-14 Affimer binds to toxin A with a KD of 81.5 nM. Investigating the cross-

reactivity of toxin B Affimers to toxin A reveals the specificity of the Affimers 

identified. Toxin B Affimers do not cross-react with toxin A and vice versa. The SPR 

data confirms the specificity results obtained from phage ELISA (see Figure 5.4), 

sandwich phage ELISA (Figure 5.23) and BLItz data (Figure 5.17). 

5.8  Summary 

This chapter describes the use of the Affimer phage display library as a robust 

technique for the identification of highly specific and sensitive binders to the two 

exotoxins toxin A and toxin B, which are used as biomarkers for the diagnosis of 

Clostridium difficile infection CDI. Twelve binders were selected for further 

characterisation for toxin A while 10 binders were selected for toxin B.  The 

Affimers were easily expressed in E. coli and purified from the soluble fraction of 

lysed cells using one-step Ni-NTA affinity chromatography with the highest yield of 

227 mg/L.  Biophysical characterisation of toxin A and B binders revealed that most 

binders were monomeric, thermally stable with no evidence of aggregation at 90 

OC. The Affimers were then tested for use in direct and sandwich ELISA format, 

toxin B-18 was identified as the best capturing Affimer for toxin B while toxin B-45 

was the best detection Affimer, and both binders serving as the best identified pair 

for toxin B. Toxin A-14 was identified as the best capturing Affimer for toxin A. The 

KD of these three binders was determined by surface plasmon resonance.  
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Chapter 6: Development of a hybrid Affimer-based 

assay for CDI diagnosis 
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6.1  Introduction 

Following the identification and biophysical characterisation of unique Affimers 

against toxin A and B as described in chapter 5, the next objective was to develop 

an Affimer-based diagnostic assay referred to here as Affimer-sorbent assay 

(AFFISA) and then compare its sensitivity and specificity to commercially available 

kit.  

6.2  Determination of the Limit of Detection (LOD)  

Most commercially available ELISA kits for toxin detection can detect 1 to 2 ng/mL 

of toxin in clinical samples (Novak-Weekley and Hollingsworth, 2008).  Therefore, 

sandwich phage ELISA was used to determine the limit of detection of toxin A and B 

pairs identified using serial dilution of PBS spiked with purified native toxin A and B. 

The molar concentration of toxin A and B used for the serial dilution (from 2500 

ng/mL to 1.2 ng/mL) is given in Table 6.1. For the determination of the limit of 

detection for toxin A, Toxin A-14, which has been identified as the best capture in 

Section 5.6.3 was paired with Toxin A-20 phage as the detection Affimer. For the 

determination of the limit of detection for toxin B, the best pair identified for toxin 

B (Toxin B-18: Toxin B-45) were tested with Toxin B-18 as the capture and Toxin B-

45 phage as the detection Affimer.  

Table 6.1.  Molar concentration of Toxin A and B used for the serial dilution. 

concentration (ng/mL) 
Molar concentration 

toxin A toxin B 

2500.0 8.12 nM 9.26 nM 

1250.0 4.06 nM 4.63 nM 

625.0 2.03 nM 2.31 nM 

312.5 1.01 nM 1.16 nM 

156.3 0.51 nM 0.58 nM 

78.1 0.25 nM .29 nM 

39.1 0.13 nM .15 nM 

19.5 63 pM 72 pM 

9.8 32 pM 36 pM 

4.9 16 pM 18 pM 

2.4 8 pM 9.04 pM 

1.2 4 pM 4.5 pM 
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As described in Section 2.11.1, 1 µg/mL of biotinylated capture was immobilised, 

and then 50 µL from the serial dilutions were added to their respective wells. 

Following incubation and washing step, a 50 µL aliquot of the detection phage 

supernatant introduced to bind the captured target. Binding was detected using 

Anti-phage-HRP then TMB substrate. To monitor the effect of TMB incubation time 

the ELISA signal intensity was measured at 3 min, 9 min, 15 min, 30 min and 45 min. 

Results obtained from the toxin B sandwich phage ELISA are presented in Figure 6.1 

while that of toxin A is provided in Figure 6.2. 

 

 

Figure 6.1: Optimisation of incubation time for Toxin B-18/Toxin B-45 phage 
ELISA. (a) Sandwich phage ELISA using Toxin B-18 as capture Affimer and Toxin B-
45 phage as detection binder. A serial dilution of toxin B from 1500 ng/mL to 1.2 
ng/mL was used to determine the limit of detection of the Affimer pair. (b) 
Expanded region of (a) showing effect of incubation time on the signal intensity 
obtained between 39.1 ng/mL to 1.2 ng/mL.  Signals at 3, 9, 15, 30 and 45 min are 
represented as navy, red, green, purple and blue trend lines respectively.  

(a) 

(b) 
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As a negative control, GDH was used to replace the target to show that no signal 

was observed between the capture and detection binder in the absence of the 

target. The signal intensity after 45 min incubation was represented as the orange 

trend line. 

 Figure 6.1a, confirmed that Toxin B-18 is a binding partner to Toxin B-45. The 

result shows that as the incubation time increases, the signal intensity also 

increases. The effects of increasing the incubation time were seen more clearly at 

lower concentrations from 39.1 ng/mL, to 1.2 ng/ mL Toxin B in the expanded 

region shown in Figure 6.1b. Increasing the incubation time from 3 min to 30 min, 

showed a 58 % rise in signal intensity at 39.1 ng/mL toxin B concentration and a 30 % 

rise at 1.2 ng/mL toxin B concentration. From this result, it is clear that increasing 

the incubation to 30 min increases the limit of detection for toxin B, making it 

possible to detect the toxin even at 1.2 ng/mL concentration. In the negative 

control well, that contained biotinylated Toxin-B-18 and Toxin-B-45 phage but no 

target, there was no signal observed up to 45 min incubation time. 

For toxin A, the sandwich phage ELISA result is presented in Figure 6.2. Toxin A 

binder-pair (Toxin A-14/Toxin A-20) detects toxin A in a sandwich format only in 

the presence of the target. No signal was observed in wells with no toxin A. Like 

results for toxin B, increasing the incubation to 30 min increases the limit of 

detection for toxin A. 

The Sandwich Phage ELISA for toxin B Affimers demonstrated high sensitivity and 

specificity toward toxin B, and no positive results were obtained from using toxin A 

as the target or from the control (Figure 6.3). A sample was considered positive if 

the OD620 nm was twice the average of the negative controls from three replicates. 

Therefore, toxin B assay detected toxin B down to 1.2 ng/mL and for toxin A assay 

detected toxin A down to 312 ng/mL. 

 



207 
 

    

    

Figure 6.2: Optimisation of incubation time for Toxin A-14/Toxin A-20 sandwich 
phage ELISA. (a) The sandwich phage ELISA for toxin using Toxin A-14 as capture 
Affimer binder and Toxin A-20 phage as detection binder is presented. A serial 
dilution of toxin A from 2500 ng/mL to 1.2 ng/mL was used to determine the limit 
of detection of the Affimer pair. (b) Effect of incubation time on the signal intensity 
obtained between 312.5 ng/mL to 1.2 ng/mL.  Signals at 3, 9, 15, 30 and 45 min are 
represented as navy, red, green, purple and blue trend lines respectively.  

(a) 

(b) 
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6.3 Evaluating the specificity of Affimer pair  

Despite the sequence similarity between toxin A and B, toxin-specific antibodies 

have been reported for toxin A. However, identification of monoclonal antibodies 

against toxin B are difficult to generate (Humphrey et al., 2013). By contrast, the 

selection of toxin specific Affimers was quite straightforward. To test for the 

specificity of the toxin A Affimer pair therefore, toxin B at 2.5 µg/mL was used. 

Similarly, toxin A at 2.5 µg/mL was used to test the specificity of the toxin B Affimer 

pair. Toxin A Affimers showed no positive signal for toxin B as the target (Figure 

6.3a), and similarly for toxin B Affimers, no positive signal was detected for toxin A 

as the target (Figure 6.3b).  

 

 

Figure 6.3. Evaluating the sensitivity and specificity for toxin A and toxin B 
Affimer pairs. (a) toxin A sandwich ELISA using toxin A-14 as capture and toxin A-20 
phage for detection. (b) toxin B sandwich ELISA using toxin B-18 as capture and 
toxin B-45 for detection. In the absence of target, no binding occurred which shows 
the specificity of the Affimer pairs. 

(a) 

(b) 
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These results indicate that the toxin A Affimer pair and toxin B Affimer pair are 

highly specific for the detection of toxin A and toxin B respectively. 

6.4 Determination of Limit of detection using a detection 

Affimer conjugated to HRP 

Conjugation of a detection binder or secondary antibodies to a variety of labels 

including enzymes, biotin and fluorescent dyes has been reported in literature. 

Generally, the choice of reporter system is application-dependent. Applications 

such as ELISA utilise enzymes (horseradish peroxidase or alkaline phosphatase) to 

obtain signal amplification, while fluorescent-based applications utilise fluorescent 

labels.  

This work focuses on the use of ELISA-based assays to develop a rapid sensitive, 

specific multiplex diagnostic platform for Clostridium difficile infection. Therefore, 

the detection Affimer binder could be conjugated to enzymes or biotin. As 

described in Section 5.6.2.2 specific orientation of capture Affimer using biotin-

streptavidin interaction increases the binding efficiency of the capturing Affimer. 

However, results obtained from sandwich ELISA using biotinylated capture and 

biotinylated detection Affimers (Figure 5.20) indicates that background signals 

could not be abolished in the experiments. To test different labels on capture and 

detection binders, capture Affimers were biotinylated while detection Affimers 

were conjugated to HRP. 

6.4.1     Conjugation of detection Affimer to HRP 

The maleimide activated HRP (ThermoFisher) contains 1-3 moles of maleimide per 

mole of HRP. Since Affimers were modified to contain a single C-terminal cysteine 

residue, the conjugation reaction would result in a mixture of different ratios of 

Affimer: HRP with up to 3 molecules of Affimer per HRP molecule. In addition, 

unconjugated Affimer or HRP would be present. The presence of unlabelled 

detection Affimer during sandwich ELISA would compete with conjugated 

detection Affimer which would decrease the signal intensity obtained, hence it was 

necessary to remove unlabelled Affimer from the reaction. Unconjugated HRP on 

the other hand would easily be removed during the washing steps. Therefore, the 
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conjugation reaction mixture was resolved on Superdex 200 10/300 high resolution 

matrix as described in Section 2.12.2 to fractionate the reaction mixture based on 

size. HRP (ca. 44 kDa) and Affimer-HRP (>56.5 kDa) would be separated from 

unconjugated Affimer (ca. 12.5 kDa). Protein and peroxidase in the elution fractions 

were detected by simultaneous by monitoring the absorbance at 280 nm and 403 

nm, the latter wavelength corresponding to the absorbance Soret peak for heme-

containing peroxidase.  

Figure 6.4 shows the result obtained from the conjugation of Toxin A-14, Toxin B-

18 and Toxin B-45 to HRP. From the chromatogram of Toxin A-14-HRP, a major 

peak eluting at 15.5 mL, a shoulder at 14 mL and a minor peak at 12.5 mL was 

observed at 403 nm while two major peaks eluting at 15.5mL and 19 mL were 

observed at 280 nm wavelength. Toxin A-45-HRP chromatogram shows a major 

peak eluting at 15.5 mL and a shoulder at 14mL at 403 nm with a major peak at 

15.5 mL and a minor peak at 19 mL at 280 nm. By contrast, the chromatogram of 

Toxin B-18-HRP shows a major peak with a broad shoulder and a minor shoulder 

eluting from 14 mL to 18 mL at 403 nm wavelength. Similar peaks were observed at 

280 nm with an additional minor peak at 20.5 mL. Approximately 0.5 mL fractions 

were collected and 15 µL of fractions from major and minor peaks at 403 nm and 

280nm and maleimide-activated HRP were analysed by 4-20 % SDS-PAGE.  
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Figure 6.4: Size exclusion of Affimer binders conjugated to maleimide HRP. Three 
binders: (a) Toxin A-14, (b) Toxin B-45, (c) Toxin B-18, were conjugated to 
maleimide HRP. The chromatograms using SuperdexTM 200 reveals the absorption 
profile of the conjugate at 403 nm and 280 nm. For all conjugated binders, a major 
peak at 403 nm corresponds to the absorbance of HRP, while a minor double peak 
at 280 nm eluting later corresponds to unconjugated Affimer. Elution fractions 
were collected and analysed by SDS-PAGE. 

Gel images of the analysed fractions for (a) A-14-HRP, (b) B-45- HRP, and (c) B-18- 

HRP are shown in Figure 6.5. Bands were labelled a-g for ease of identification. 

From band migration, molecular mass determination identified that band (a) was 

the unconjugated HRP with size (~ 44kDa) which migrated to the same position as 

the unconjugated HRP (e). Band (b) migrated at ~56.5 kDa which could correspond 

to HRP conjugated to Affimer in 1:1 ratio. Band (c) migrated at ~69kDa which could 

correspond to HRP-Affimer in a 1:2 ratio. Unconjugated Affimer migrated as band 

(d) with mass (~12.5 kDa). Multimeric HRP migrating at ~132 kDa is band (f). The 
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presence of his-tagged Affimer in the Adh-HRP samples were confirmed by western 

blot as shown in Figure 6.5(d). As expected conjugated Adh-HRP and toxin B-45 

protein sample used as positive controls were detected. No band was observed for 

unconjugated HRP. 

 

    

Figure 6.5: SDS-PAGE of fractions eluted from SEC of Affimer-HRP conjugation 
reaction. Each panel represents a separate SEC analysis for a specific Affimer 
binder: (a) A-14-HRP, (b) B-45-HRP, (c) B-18-HRP. Fractions corresponding to 
conjugated sample from each panel was analysed by western blotting (panel (d)) to 
confirm the presence of his-tagged protein. Bands were identified based on size 
and were labelled a-g. 

The results obtained from Figure 6.4 and 6.5 shows that the conjugation of Affimer 

to HRP was successful and free unlabelled Affimer was successfully removed 

through size exclusion chromatography. Fractions confirmed as Affimer-HRP 

conjugate were pooled and concentrated using an Amicon concentrator for use in 

further assays. 
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6.4.2     Direct ELISA for the detection of target by Affimer-HRP 

conjugate  

Affimers conjugated to HRP were tested by direct ELISA for their ability to bind 

immobilized target before using them in sandwich ELISA assays. Biotinylated target 

were immobilised on to streptavidin plates then a 50 µL aliquot of Affimer-HRP 

conjugate were added. Binding was detected by colour formation upon the 

addition of TMB substrate and the results obtained are presented in Figure 6.6. A-

14 HRP successfully detected immobilised toxin A while no signal was seen in the 

negative control well containing immobilized toxin B. Similarly, B-18-HRP and B-45 

HRP detected immobilized toxin B with no observed signal in the control well. The 

signal intensity observed for A-14-HRP was about 60 % lower than those from B-18-

HRP and B-45-HRP. Possible reasons for this could be inefficient labelling of A-14 

with HRP or the affinity of A-14 Affimer to toxin A is lower than those of B-18 and 

B-45 to toxin B. Since the apparent conjugation efficiency for A-14 was similar to B-

18 and B-45 (>80 %) then it seems likely that the lower signal intensity relates to A-

14 having a weaker affinity for toxin A. than either toxin B binder for toxin B. This is 

supported by the binding kinetics obtained through SPR analysis (Section 5.7). 

 

 

Toxin B sandwich ELISA using HRP-conjugated detection binder. 

Toxin B Affimers conjugated to HRP were tested for their ability to bind captured 

target in a sandwich ELISA format. The result presented in Figure 6.7 show that B-

0

0.2

0.4

0.6

0.8

1

A
b

so
rb

an
ce

 a
t 

6
2

0
 n

m

Detection Affimer conjugate

1 in 50 dilution

1 in 200 dilution

Buffer blank

Figure 6.6: ELISA to show binding of Affimer-HRP conjugate to target. The 
binding of immobilised biotinylated toxin A and toxin B to Affimer-HRP was 
detected using TMB substrate and absorbance reading at 620 nm. The 
conjugates were added either in 1:50 dilution of 1:200 dilution.  
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18-HRP and B-45-HRP bind toxin B in a sandwich format. With 10 µg/mL of toxin B, 

B-18/B-45-HRP capture/detection pair (OD620nm = 1.45) showed a 5-fold higher 

signal intensity compared to the reverse B-45/B-18-HRP pair (OD620nm = 0.28), this 

result further substantiates the claim (Section 5.6.2) that B-18 is best utilised as a 

capture Affimer while B-45 is best suited as a detection Affimer.  

 

Figure 6.7. Evaluating the sensitivity for toxin B unsing Affimer-HRP conjugate. 
Toxin B sandwich ELISA was performed using toxin B-18 as capture and toxin B-45 
conjugated to HRP for detection and data presented as blue bars. Binding was also 
observed when B-45 was used as capture and B-18-HRP as detection Affimer (red 
bar). 

 
To determine the limit of detection for toxin B using B-18/B-45-HRP pair, a serial 

dilution of toxin B was prepared from 50 ng/mL to 1 ng/mL.  The data show that 

Affimer-HRP conjugate did not give any substantial difference in signal intensity for 

concentrations less than 10 ng/mL. Though the conjugation of Affimer to HRP was 

successful and could detect its target in a sandwich assay format, the limiting factor 

to the sensitivity of Affimer-HRP sandwich assay is the fact that Affimer could only 

be labelled with one HRP per molecule thereby limiting signal amplification. 

6.5 Replacing the capture antibody with a capture Affimer improves 

specificity and sensitivity of a commercially available kit (Techlab kit)  

The diagnosis of Clostridium difficile infection (CDI) is strongly associated with the 

presence and detection of its exotoxins. Having reviewed the currently available 
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platforms for CDI diagnosis in Chapter 1, it is an established fact that nucleic acid 

amplification tests detect only the genes responsible for potential toxin production 

but they clearly cannot detect the presence of biologically active toxin in stool 

specimens, leading to potential over-diagnosis of CDI.  In the same vein, though it is 

evident that toxin immunoassays detect the presence of toxins in clinical samples, 

they cannot be used as a stand-alone test for the diagnosis of CDI due to low 

sensitivity of the assays. Therefore, there remains the question of how to improve 

the sensitivity of toxin immunoassays.  

Since the sensitivity of any ELISA based assay is dependent on the sensitivity and 

specificity of the capturing and detection molecules, an analysis of the capturing 

and detection molecules used in toxin A and B ELISA kits as listed on the Public 

Health England website and commercially available in the UK was carried out. It 

was revealed that >85 % of the toxin A and/B ELISA kits for the diagnosis of CDI 

utilises polyclonal antibodies as the capture reagent and monoclonal anti-toxin A 

antibody but polyclonal anti-toxin B antibody as the detection reagent as shown in 

Table 6.2.  

Table 6.2: List of capture and detection antibodies used in commercially available 
clinically used C. difficile toxin kit. 

 

 The use of polyclonal antibodies for the development of an ELISA-based diagnostic 

provides the ability to recognise multiple epitopes and they are easy to generate. 

Nevertheless, they are plagued by the inherent limitations of polyclonal antibodies 
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such as batch-to-batch variation, which explains why reagents from different kits 

should not be mixed, and by decreased specificity since they are polyclonal.  A 

logical explanation for the use of polyclonal anti-Toxin B antibody was provided by 

Deng et al., (2003), who found that antibodies against toxin B are difficult to 

generate. Analysis of the capture antibodies used in most of the kits  (Table 6.2) 

suggests that the sensitivity and specificity of C. difficile ELISA kits may be limited 

due to use of polyclonal antibodies.  

In this work, it was hypothesised that “Introducing an Affimer as a capture or 

detection molecule will improve the sensitivity and specificity of commercially 

available kits”. An Affimer has the potential to complement antibodies in a hybrid-

ELISA, resulting in an Affimer-sorbent Assay (AFFISA). To test this hypothesis, the 

Techlab Tox A/B Quick Chek ELISA kit was selected based on two criteria: First, it 

has high specificity (98.6 %) and sensitivity (84.3 %) according to the data published 

by the Public Health England (Figure 6.8) and second, it is one of the routinely used 

kits for C. diff diagnosis in the Leeds Teaching Hospitals NHS Trust clinical 

microbiology laboratories. The results obtained are discussed in this Section 

 

. 

Figure 6.8.  Scatter plot of estimated specificity against sensitivity (cytotoxin assay 
comparator). Figure was taken from the UK Department of health guideline for C. 
difficile diagnosis (2012). 
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6.5.1 Determination of the limit of detection for Techlab Tox A/B kit 

Techlab’s C. difficile TOX A/B II kits were purchased from Alere (UK) and ELISA was 

carried out as described by the manufacturer (Section 2.13.2). The kit is a sandwich 

ELISA format, the microwells are coated with a mixture of polyclonal antibodies 

against toxin A and toxin B, while the conjugate solution contains HRP conjugated 

monoclonal anti-toxin A and polyclonal anti-toxin B. It was essential to determine 

the limit of detection (LOD) of the kit for toxin A and B and compare with the LOD 

described in the product insert (toxin A ≥ 0.8ng/mL, toxin B ≥ 2.5 ng/mL) (C. difficile 

TOX A/B II product insert; TechLab, Inc.). To this end, serial dilutions of purified 

toxin A and B, spiked into PBS were prepared from 50 ng/mL to 1 ng/mL as 

described in Section (2.13.1) and exposed to the assay. The absorbance values at 

620 nm were recorded after 10 min incubation with TMB substrate (Figure 6.9). 

 

Figure 6.9. Determination of limit of detection using the C. difficile Tox A/B II for 
toxin A and B: The kit detects toxin A to ca. 1 ng/mL (red bar) while it detects toxin 
B to ca. 10 ng/mL.  

 From the results shown in Figure 6.9, the C. difficile TOX A/B II assay detects toxin 

A to ca. 1 ng/mL although lower concentrations were not tested, however it only 

detected toxin B to ca. 10 ng/mL. This implies that the kit has higher affinity for and 

is more sensitive to toxin A than toxin B. The lower sensitivity of the kit to toxin B 

has also been previously reported by Novak-Weekley and Hollingsworth, (2008). 

They found that the kit detected toxin B with weaker signals at every dilution point 
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they tested and declined to negative values at concentration below 250 pg/100 µL 

(=2.5 ng/mL). 

6.5.2 Selection of the best capture Affimer to complement the C. 

difficile TOX A/B II ELISA 

It was proposed to replace the capturing polyclonal anti-toxin B with and anti-toxin 

B Affimer. Panels of toxin B binders were tested in sandwich assay format with the 

kit’s conjugate solution containing toxin A monoclonal antibody and toxin B 

polyclonal antibody (Section 2.13.3).  

 

Figure 6.10: Selection of the best capture Affimer for an Affimer-Antibody hybrid 
assay. 

Four of the eight toxin B Affimers tested gave a signal when paired with the kit 

detection antibody (Figure 6.10). These were B-33, B-18, B-28 and B-45 with OD620 

nm of 0.72, 1.09, 0.77, 0.29 respectively. This implies that these whilst Affimers will 

recognise a specific epitope, the polyclonal antibodies clearly detect other epitopes 

and thus these reagents can be combined to form a hybrid assay. Toxin B-18 

Affimer gave the highest signal in the hybrid assay and thus it was identified as the 

best capturing Affimer to be used for a toxin B hybrid assay. 
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6.5.3 Improved sensitivity and specificity with toxin B Affimer-

antibody hybrid ELISA  

In the Affimer-Antibody hybrid assay, the effect of introducing Affimer B-18 as the 

capture molecule was assessed. For this, the microwell containing immobilised 

polyclonal antitoxin A and B in the Techlab kit was replaced with biotinylated Toxin 

B-18 immobilised on streptavidin-coated wells. Then serial dilutions of toxin B from 

50 ng/mL to 1 ng/mL was added to each well. Cross-reactivity of the hybrid assay to 

toxin A was tested using 50 ng/mL of purified toxin A spiked into PBS. The 

conjugate solution from the Techlab kit containing HRP-conjugated polyclonal anti-

toxin B and monoclonal toxin A were used as for detection.  

Initially, protocol 1, which is the usual protocol to perform sandwich ELISA (Section 

2.11.2.) was used for the hybrid assay, while the Antibody-antibody ELISA was 

carried out using protocol 2 which is the optimised protocol described in the 

product insert (Table 6.3).  

Table 6.3: Difference between Lab-based protocol and the optimised protocol 
based on the commercial kit assay. 

Protocol 1 Protocol 2- Optimised protocol from 
the kit 

Prepared microwells containing 
immobilised capture Affimer (toxin B-18) 

Prepared microwells containing 
immobilised capture molecule 

Add target and incubate for at room 
temperature for 1 hr 

Add target and detection molecule and 
incubate at 37 oC, 1,200 rpm for 20 min 

Wash-1x- (2 min) - 

Add detection molecule- incubate for 1 
hr 

- 

Wash -6x –(6  min) Wash 5x (5 min) 

Add TMB substrate-incubate for 10 min Add TMB substrate-Incubate for 10 min 

Total time- 2 hours 18 min Total time-  35 min 

 

The result obtained from this experiment (Figure 6.11a) substituting the capturing 

antibody with toxin B-18 Affimer, the sensitivity of the assay was increased across 

all concentration tested. Importantly, the limit of detection for the techlab C. 

difficile TOX A/B II was significantly increased from 10 ng/ mL (blue bar) to 1 ng/mL 

in the hybrid assay (red bar). This result strongly infers that the hypothesis -  
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“Introducing an Affimer as a capture or detection molecule will improve the 

sensitivity and specificity of commercially available kits” is correct.  

As shown in Table 6.3 the protocol described in the package insert (protocol 2) is 

optimised for the kit with total assay time of 35 min compared to protocol 1, with 

total assay time of 2 hours 18 min. It is seen that instead of a separate step for 

target addition and incubation, a wash step, and conjugate solution addition and 

incubation (step 1 to 3) in protocol 1, protocol 2 contains a single step of target and 

conjugate solution addition. Therefore, the experiment was repeated using 

protocol 2. The result is shown in Figure 6.11a as the green bars. Using the 

optimised protocol from the kit eliminated 103 min from the incubation time in 

protocol 1. Interestingly, there was an increase in sensitivity of the hybrid assay by 

almost 2.5-fold at 50 ng/mL, 5.3-fold at 10 ng/mL, 7.5-fold at 5 ng/mL, 3.3-fold at 

2.5 ng/mL and 5.4-fold at 1 ng/mL. 
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Figure 6.11: Effect of using Affimer B-18 as capture molecule on the sensitivity 
and cross-reactivity of Techlab C. difficile TOX A/B II. The comparison of the 
sensitivity of an Affimer-Antibody hybrid assay using protocol 1 (red bar) and 2  
(green bar) with Antibody-Antibody assay  (blue bar) is presented in (a), while the 
cross-reactivity of the two assays to toxin A is presented in (b).  

The result from the cross-reactivity of the hybrid assay and the antibody-antibody 

ELISA assay at 50 ng/mL of toxin A is presented in Figure 6.11b. While the antibody-

antibody ELISA kit binds strongly to toxin A, replacing the capturing molecule by the 

high affinity toxin B-18 Affimer which displays high specificity for toxin B, increases 

the specificity of Techlab C. difficile TOX A/B II the kit to toxin B by 30-fold. A hybrid 

assay with enhanced sensitivity and specificity to toxin B has been developed using 
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toxin B-18 Affimer as capturing Affimer and antibodies from Techlab C. difficile TOX 

A/B II kit as the detection molecule. 

6.6 Summary 

This chapter describes a hybrid assay that was developed for the detection of toxin 

B which is based on the combination of Affimer B-18 as capturing molecule and 

antibody (Techlab C. difficile Tox A/B II) as the detection molecule. It is a positive 

demonstration that can be subjected to further optimisation. Also, toxin A assay 

could either use the current approach, or higher affinity Affimers against toxin A be 

identified in further studies. 
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Chapter 7: General Discussion 
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7.1 Comparison with similar studies by other groups 

7.1.1   Toxin A and Toxin B 

Clostridium difficile infection remains a threat to public health with recent reports 

of the infection not just limited to nosocomial settings but also in animals, foods 

and in the environment (Ghose, 2013). Therefore, the place of accurate and rapid 

diagnosis cannot be over-emphasised for Clostridium difficile infection, as it 

ensures that: only the right patient with the infection are correctly identified,   

isolated and started on the appropriate treatment at the earliest possible time 

(Planche et al., 2008). In addition, epidemiological studies would provide a true 

reflection of the state of infection (Dingle et al., 2017). 

it has ben shown that current diagnostic methods for Clostridium difficile infection 

have limitations (as stated in the introductory chapter, Section 1.3). The toxigenic 

cultures and the cytotoxicity neutralisation assays remain the two gold standards 

for diagnosing CDI but they have long turnaround times of 48 - 72 hours. They are 

also complex, labour intensive and require specialised training. Detection of toxins 

in faecal samples of patients suffering from CDI is a highly significant and necessary 

criterion for the diagnosis of CDI. Rapid enzyme immunoassays are used for toxin 

detection and can be completed in less than an hour. However, low sensitivities 

shown by these diagnostic EIA makes them unacceptable for use as a stand-alone 

test. Development of DNA-based tests are proposed to be quick and showing 

higher sensitivity compared to the gold standard. Nevertheless, the costs and the 

inability of such molecular tests to differentiate between asymptomatic carriers of 

toxigenic strains and patients suffering from C. diff infection raises concern for their 

routine use in CDI diagnosis due to over-diagnosis (Polage et al., 2015). Therefore, 

there remains a huge desire for an optimum diagnostic for CDI.  

7.2 Replacing antibodies- why Affimers? 

Non-antibody binding proteins are increasingly being used as alternatives to 

antibodies as binders because they display high affinity, specificity and stability 

against a wide range of targets. For example, Lee et al., (2008) identified a specific 

peptide aptamer to retinol binding protein 4 (RBP4), a biomarker for the diagnosis 
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of type 2 diabetes. This aptamer displayed  high affinity and sensitivity compared to 

conventional ELISA detection methods (Lee et al., 2008). Similarly, Lofblom et al., 

(2010) employed Affibody molecules as capture agents for analytes in serum or 

plasma sample.  

Peptides have also been utilised successfully as inhibitors against bacterial toxins 

such as anthrax toxin (Basha et al., 2006).  The Affimer-phage display libraries 

(Chapter 1, Section 1.6.4.5) have also been used to identify binding proteins 

against >350 targets. However, published articles for the use of non-antibody 

binding proteins identified for the diagnosis of C. difficile infection are scarce (in 

fact, only aptamers have been reported). The work presented in this thesis has 

implications for our understanding and seeks to address this deficiency.  

Can we improve the sensitivity and specificity of toxin-based detection assays for 

diagnosing Clostridium difficile infection? 

For discussion purposes, results obtained in this thesis will be compared with 

similar studies by other groups. Work was reported by Hussack and colleagues on 

the isolation and characterisation of toxin specific single domain antibodies 

(Hussack et al., 2012), and the use of single domain antibodies for neutralisation of 

C. difficile toxin A (Hussack et al., 2011). On the other hand, Ochsner  et al., (2014) 

focussed on the use of slow-off rate aptamers (SOMAmers) as replacement for 

antibody for toxin A and B detection in CDI diagnosis. 

In Chapters 4 and 5, Affimer phage display library was used for the identification of 

specific and high affinity binders against GDH, toxin A and toxin B of Clostridium 

difficile that were characterised for binding, specificity, aggregation, and 

thermostability. This project further supports the versatility of the Affimer phage 

display library to select binders against a wide range of targets within a one month 

timeframe. This is in contrast with VH phage libraries used in Hussack’s paper, 

which required specific phage libraries to be constructed for each target (Hussack 

et al., 2012) and could take no less than six months.  

The panning rounds used in this thesis were designed to enrich for specific Affimers 

binding to each target. To enhance specificity, the phage for GDH was pre-panned 
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against E. coli cell lysate to exclude binders against any endogenous GDH. For toxin 

A, bound phage in biopanning round 2 and 3 were challenged with free toxin B to 

eliminate cross-reactive phage. This was done similarly for toxin B binders. The 10 

unique binders for toxin A, 12 unique binders for toxin B and 9 for GDH were sub-

cloned into a bacterial expression vector and were well expressed in E. coli, yielding 

up to 300 mg/L of culture and was not optimised for high level expression. To date, 

this is the best expression level obtained from binders against Clostridium difficile 

toxins as compared to (1.2 to 72.3 mg/L) from single domain antibodies (Hussack et 

al., 2011). For specific orientation of the binders during characterisation, a single 

cysteine was introduced at the C-terminal end of the Affimer. Therefore, binders 

were produced separately both with and without cysteine.  

Toxin A and toxin B share over 63 % amino acid homology, nevertheless, highly 

specific and non-cross reacting Affimers were selected against toxin B and toxin A 

respectively. The specificity of Affimers is consistent with previous studies (Ochsner 

et al., 2014, Hussack et al., 2012). Most toxigenic strains reported in the literature 

are Toxin A+/B+, although  incidence of Toxin A-/B+ have appeared in several studies, 

but no cases of Toxin A+/B- strains have been reported (Kuehne et al., 2010). 

Therefore, specific binders against each toxin could provide preliminary 

information about strain types. The thermostability, and non-aggregating profile of 

identified Affimers at temperatures greater than 80 oC makes them suitable for 

incorporation into various biosensor platforms which further validates the 

robustness of the Affimer scaffold, potentially allowing distribution without need 

for refrigeration.  

7.3 Selection of pairs  

Diagnostic kits used in clinical settings for diagnosing infection and diseases rely on 

the use of molecular recognition elements (MRE) that bind to the target(s) of 

interest with high affinity and specificity, and antibodies remain the most widely 

used MRE for this purpose (Su et al., 2013). To enhance sensitivity and specificity, 

capture antibodies are immobilised onto suitable surfaces to capture the target, 

then detection antibodies are added in a sandwich assay format. Beyond clinical 

diagnoses, sandwich ELISA are widely used in many scientific, industrial and 
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research applications. However, selection of MRE pair that binds to non-

overlapping epitopes is critical for the development of a sandwich-type of 

diagnostic assay. A widely used approach for selection of pairs is to immobilise the 

capture MRE onto the surface of a 96-well plate, and then test different 

combinations of MRE to identify the best pair. This method has been used to 

identify monoclonal antibody (mAb) pairs against many targets (Qiu et al., 2009, 

Ding et al., 2014); aptamers that target hepatitis C virus (HCV) (Park et al., 2013); 

and single domain antibody against C. diff toxin A and B (Hussack et al., 2010).  

Ki et al., (2010) described an alternative method for identification of pairs. In this 

method, the capture molecule is complexed with the target and immobilised onto 

the surface before panning for a suitable detection molecule via phage display. The 

limitation of Ki’s approach is that it is time consuming since it would require phage 

display screening, selection and characterisation of a high affinity binder that 

would be used as the capture molecule, to be carried out before a second phage 

display is undertaken to identify the detection molecule. Also, it is not guaranteed 

that pairs would be identified.  

In this thesis, a direct absorption of capture binder was used as the first attempt to 

identify pairs of Affimer binders. However, the results obtained in Figures 5.19 to  

5.24 indicate that identification of binders by direct absorption of a capturing 

Affimer may prevent the selection of the best pair. Therefore, oriented 

immobilisation of capture Affimer and testing different combinations of binders for 

pair identification, provides a better method for selection of pairs. In contrast to 

the method described by Ki et al. (2010), sandwich phage ELISA was used as a 

technique for identifying Affimer pairs against toxin A, toxin B and GDH. In 

particular, sandwich phage ELISA described in this thesis has three major 

advantages for the identification of pairs: (i) oriented immobilisation of capture 

Affimer, (ii) the avidity provided by using Affimer phage for detection improved the 

signal intensity obtained, and (iii) reduced time spent for the identification of pairs. 

Through this method, a panel of potential pairs were identified.  

This thesis has successfully identified the optimal pair of binders against toxin B 

from the limited number of clones tested. Toxin B-18 (KD 4.04nM) as the best 



228 
 

capture Affimer and Toxin B-45 (5.7 nM) as the best detection Affimer for toxin B 

with no cross-reactivity to toxin A as shown in the phage ELISA and SPR data. The 

Affimer pair was used to design a toxin B sandwich phage ELISA to determine the 

limit of detection. As described previously (Chapter 6, Section 6.5, Table 6.2), >85 % 

of the commercial toxin detection assays uses polyclonal antibodies as the capture 

reagent paired with monoclonal. With the Affimer pair, a viable alternative to the 

use of antibodies in the detection assay is provided. Affimers do not have lot-to-lot 

variations, they are easily expressed as soluble non-aggregating protein, their 

thermostability (up to 80 oC) simplifies their storage (Zhang et al., 2013).  

7.3.1 Performance of Affimer pairs 

The limit of detection for the Affimer toxin B-18 and toxin B-45 pair using sandwich 

phage ELISA was calculated to be 1.2 ng/mL which is 4.5pM of toxin B. This is 

similar to the limit of detection reported for clinically used diagnostics kits for C. 

difficile; toxin A/B of 1-5 ng/mL (Novak-Weekley, 2008, Eastwood et al., 2009). 

However, this limit of detection could not be reproduced when toxin B-45-HRP was 

used in place of toxin B-45 phage. The reason for this is unclear, however, it is 

almost certainly related to the fact that multiple anti-phage antibodies used to 

detect the phage would provide a more sensitive detection signal than the single 

HRP conjugated to toxin B-45 Affimer. Also, the avidity of B-45 phage enhances the 

sensitivity of the sandwich assay, while the sensitivity of B-45-HRP was impeded 

due to the 1:1 conjugation ratio of HRP per B-45 Affimer molecule. This avidity 

effect of multicopy display of peptide on the surface of the phage has been 

reported to enhance affinity and specificity of displayed probes (Murase et al., 

2003, Han et al., 2016). Further studies are therefore needed to increase the 

sensitivity of protein-based toxin B-18/B-45 Affimer pair. Suggested methods 

would include: 

(1) Oriented immobilisation of capture Affimer using Maleimide chemistry on 

maleimide activated plates while the target is detected using biotinylated 

Affimer, as described by Hortigüela and wall (2013), and Kang et al., (2013).  

(2)  Oligomerisation of the detection probes, which has been shown to be an 

effective way of increasing their avidity. Park et al., 2013 described higher 
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sensitivity when biotinylated detection aptamer was pre-incubated with 

streptavidin-HRP to generate multimers of the detection aptamer.  

(3) Engineering a multivalent detection Affimer to enhance avidity effect (Deyev 

and Lebedenko, 2008). Cuesta et al., (2010) described the design of 

multivalent antibodies with multiple binding sites.  

(4) Display of detection Affimer on pVIII coat protein then used in assay since the 

major coat protein PVIII of the filamentous M13 phage is present in 2500 

copies. This could provide the avidity needed for signal amplification (Williams 

et al., 2015) 

These methods could be adopted to generate a better sensitivity for the Affimer-

based detection assay called Affimer-sorbent assay (AFFISA). 

7.3.2 Performance of Affimer-based hybrid assay for CDI diagnosis 

Analysis of the types of molecular recognition elements used in C. difficile toxin 

diagnostic kits revealed that >85 % utilise polyclonal anti-toxin B antibody as the 

capturing molecule for toxin B (Table 6.2). With the inherent disadvantages of 

polyclonal antibody such as low specificity, lot-to-lot batch variation, and the 

amount of time to generate them, it was therefore hypothesised in this project 

that substituting the capturing polyclonal antibodies with Affimers will improve the 

sensitivity and specificity of diagnostic kits. C. difficile TOX A/B II™ kit (Techlab) 

which detects both toxin A and toxin B in a patient’s sample, was used as a proof-

of-concept. Replacing capturing agent in sandwich assay has been reported in 

literature. Ochsner et al., (2013) used low off rate Aptamers (SOMAmers) as 

capture while a commercially available polyclonal antibody was used for the 

detection of C. difficile toxin B. The binding equilibrium of the binders were 

determined by radioactively labelling the SoMAmers. The toxin B aptamer-antibody 

sandwich assay showed no cross-reactivity to toxin A, but it detected toxin B up to 

100 ng/mL (0.3 nM). Comparing Ochsner’s data with the results described in this 

thesis, the Affimer-based hybrid assay used the conjugate antibody present in the 

Techlab kit for detection which has already been optimised for CDI diagnosis. It 

detected toxin B at 1 ng/mL which is a 100-fold better sensitivity compared to the 

detection level described by Ochsner.  
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Novak-Weekley and Hollingsworth (2008) assessed the sensitivity and specificity of 

Techlab’s C. difficile toxA/B II™ kit and reported the lower sensitivity of the kit for 

toxin B. The work presented in this thesis also confirms that the Techlab tox A/B II™ 

kit detects toxin A better than toxin B. It detects toxin A down to 1 ng/mL but could 

not detect toxin B below 10 ng/mL (Figure 6.9).  While the signals declined to 

negative values at concentration below 10 ng/mL when Techlab antibody-antibody 

was used, replacing the capturing antibody with toxin B-18 Affimer allowed toxin B 

to be detected down to 1 ng/mL. This implies that the Affimer-based hybrid assay 

led to a 10-fold increase in the sensitivity of the kit to toxin B. 

The cross-reactivity of Techlab tox A/B II™ kit indicates that it can detect both toxin 

A and toxin B in clinical samples. However, the lower sensitivity of the kit for toxin 

B implies that toxigenic strains that are toxin A-B+ (Alfa, 2000) could be missed by 

this assay. In fact, no toxigenic C. diff strain producing only toxin A (toxin A+B-) has 

been reported in the literature. With the Affimer-based hybrid assay, the cross-

reactivity of the kit to toxin A was eliminated. This provides a way to discriminate 

between toxin A and toxin B in samples. The work reported here developed a more 

sensitive assay for toxin B, however, further studies are required to:  

(a) establish the same for toxin A.  

(b) simplify the use of the capture Affimer and make it more cost-effective. 

(c) explore the potential for a higher sensitive Affimer detection reagents, by 

combining one or more Affimer(s) to form a polyclonal Affimer mix.  

7.4 Future work and recommendation 

7.4.1 GDH 

Glutamate dehydrogenase from C. difficile remains a useful screening biomarker in 

CDI diagnosis. This thesis has successfully identified Affimer binders that bind GDH 

with high affinity and specificity. GDH-4 Affimer was identified as a potential 

affinity reagent that is sufficient to act as both a capture molecule and a detection 

molecule simultaneously due to the hexameric nature of the GDH target. If the 

project were to be extended, a number of experiments could be carried out such as 

kinetic studies of the selected GDH Affimer binders to determine the KD, further 
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optimisation of the Affimer-based sandwich ELISA for GDH to achieve better 

sensitivity compared to commercially available ELISA. The important aspect is that 

the simplicity of the Affimer approach would allow routine testing of GDH, toxin A 

and toxin B in a single multiplexed assay. 

Inhibition studies: The Govind group has published some research papers 

(Girinathan et al., 2014, 2016) on the significance of C. difficile-derived glutamate 

dehydrogenase and they reported that the C. difficile strain gluD mutant (which 

does not produce GDH) was found to be more susceptible to hydrogen peroxide 

than the parent strain. In addition, they were able to detect C. difficile-derived GDH 

extracellularly (Girinathan et al., 2014). A more recent report by this group 

(Girinathan et al., 2016) showed for the first time that extracellular GDH produced 

by C. difficile supports bacterial colonisation in the gut and improves disease 

progression. Therefore, a useful follow-on project would be to investigate the 

inhibition studies of the identified Affimers against C. difficile-derived glutamate 

dehydrogenase. 

7.4.2 Toxin A and Toxin B 

In this project, high affinity binders against full-length native toxin B have been 

identified and characterised. Given the time limit of this research, focus was placed 

on the promising toxin B Affimer pair (Toxin B-18 and toxin B-45), therefore they 

were the most thoroughly characterised.  

For toxin A, the best capture Affimer toxin A-14 has a KD of 81.4 nM. Better low 

nanomolar or high picomolar affinity binders could be selected by including 

competitive elution during phage display screening, if repeated. Furthermore, 

though a panel of detection Affimers were identified as possible pair for toxin A-14, 

further studies and optimisation are needed to characterise each pair in order to 

identify the best pair. This would then be useful for the development of an Affimer-

based hybrid assay for toxin A.   

In practice, rescreening the Affimer phage library against toxins A and B under 

competitive elution conditions would likely be of value. Potentially, affinity 

maturation could be used to select variants based on existing Affimers for 
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enhanced affinity specifically through slower off-rate selection. Also, the 

exploration of the use of polyclonal Affimers for detection and the engineering of 

di- and multi-meric Affimers would be useful. The use of a streptavidin-based 

plates for oriented immobilisation is not cost-effective as a clinical diagnostic tool 

and so, exploring alternative systems such as CLICK chemistry approaches would be 

valuable. Previous work at Leeds has demonstrated the enhanced sensitivity that 

can be provided by using an electronic impedance-based system for detection of a 

cytokine in a complex biological sample (Sharma et al., 2016). Experiments to test 

the toxin B Affimers using such a platform would be very valuable as a comparison 

with EIA approaches in terms of detection sensitivity. 

Currently, patient samples have not been tested to measure the affinity and 

specificity of the binders. However, this work has collaborated with scientists at 

Public Health England and with clinical microbiologists at Leeds to assess the 

detection limits of binders on clinically relevant specimens. Similarly, aside from 

toxin A and toxin B, other potential toxins reported to show cross-reactivity in C. 

diff toxin immunoassay needs to be included in further studies. For proper analysis, 

comparison studies need to be carried out using the gold standard for toxins A and 

B diagnosis. Further experiments that incorporate Affimers against GDH, toxin A 

and toxin B for use as a polyclonal mixture of Affimer monoclonal reagents may 

enhance the specificity of diagnostic tests. 

7.4.3 Crystallisation of toxin A and B using the high affinity Affimers 

as crystallisation chaperones 

C. difficile toxin A and B are high molecular mass proteins (308 kDa and 270 kDa 

respectively). To date, crystal structures for full-length toxin A and B have not been 

solved, although crystal structures have been determined for some of the 

individual domains (Pruitt, et al, 2010, Albesa-Jove et al., 2010, Chumbler et al., 

2016). One possible reason for this has been ascribed to the heterogeneity of the 

sample as observed in electron micrographs of toxin B (Pruitt, et al., 2010). High 

affinity Affimers identified in this study, look promising and may be used as 

chaperones to obtain high resolution crystal structure for full length native toxin A 

and B.  
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7.4.4 Potential applications of toxin B pairs. 

The characterisation of toxin B pairs described in this project has made it a useful 

reagent for proof-of-concept for some other detection platforms.  

The Millner’ group at Leeds are currently using the toxin B-pairs from this work as a 

proof-of concept to develop a gold nanoparticles-based sandwich assay. In the 

assay, biotinylated B-18c and B-45c Affimers were individually conjugated to 

streptavidin gold nanoparticles (AuNPs). Using Dynamic Light Scattering (DLS), 

preliminary data showed that there was a significant increase in the size of gold 

particles caused by the formation of aggregate in the presence of toxin B. As shown 

in Figure 7.1, no significant size shift was observed with either B-18c only, B-45c 

only or a mixture of B-18c-AuNPs and B-45c-AuNPs in the absence of toxin B. 

 

Figure 7.1: Use of Affimer pairs to monitor size shift of aggregate by dynamic light 
scattering (Provided by Thanisorn Mahatnirunkul). 

7.4.5 Diagnosis of CDI: developing a generally acceptable gold 

standard for toxin A and B. 

The best diagnostic method for C. difficile has not been defined (Gerding et al., 

2016) even though researchers are increasingly supporting the claim that the 

presence of toxins in clinical sample is critical for the diagnosis of CDI. However, a 
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closer look at the inherent properties of the available diagnostic methods could 

give us a clue (see Table 7.1).  

Table 7.1: Comparison of the diagnostic methods based on toxin detection 

Method sensitivity characteristics Detect toxin in 
faecal sample 

Toxigenic culture Gold standard Isolate spores, then 
test for toxin 
production 

No 

NAATs very sensitive, has 
low turnaround time 

Detect tcdB gene No 

GDH EIA Very sensitive, fast 
but not specific 

Detects GDH common 
antigen 

No 

Toxin EIA Low sensitivity Detect toxin in clinical 
sample 

Yes 

 

Clostridium difficile infection diagnosis requires the identification of C. diff toxins as 

the causal agent in symptomatic patients with cell culture neutralization assay and 

toxigenic culture referred to as the gold standards. For toxigenic culture, however, 

it is important to bear in mind that the method involves isolation of spores from 

faecal samples and then testing if the spores are from toxigenic strains. Therefore, 

toxigenic cultures do not detect toxins directly from clinical samples. This 

important fact suggests the reason why the sensitivity of NAATs are comparable to 

the sensitivity of toxigenic cultures and not to cell culture neutralisation assay 

(CCNA), since both NAATs and toxigenic culture only detects toxigenic strains 

capable of producing toxins. CCNA on the other hand is also used as a gold 

standard but it is time consuming and it detects the presence of toxin B that can be 

neutralised by antitoxin.  

Enzyme immunoassay is the only method that can directly detect the presence of 

toxins in faecal samples and if EIA toxin testing is being used, it is more likely that a 

positive test represents CDI, but EIA testing may yield false negatives in patients 

with CDI because of lack of sensitivity.  

This thesis has opened a better understanding of the limited sensitivity and 

specificity observed in EIA (use of polyclonal antibodies for toxin B). Therefore, if 

the sensitivity of EIA for toxin A and B is enhanced by replacing antibodies with 
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Affimers, and further studies are carried out to identify Affimers that can recognise 

both conformational and denatured toxins in faecal samples, this would be a step 

in the right direction. Affimer-based toxin detection assays promise to be able to 

deliver a stand-alone diagnostic method that is sensitive, specific, reproducible, 

rapid, low cost, point-of-care and capable of replacing the current gold standards 

for the diagnosis of C. difficile infection. 

7.5 Conclusion 

Affimers with high sensitivity and specificity against the three validated biomarkers 

(toxin A, toxin B and glutamate dehydrogenase) of Clostridium difficile infection 

have been successfully identified and extensively characterised. This thesis has also 

explored the ability of Affimers to function as novel reagents for the potential 

development of point-of-care diagnostic tool for C. difficile infection.  
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